Head First
Object-Oriented

Analysis & Design

Impress friends with
your UML prowess

KB

Band your mind
arcund dezens of
00 axapeises

Load Impartant 0O

By deslgn principles stralght
inke your brain

T '..' 2e¢ how polymerphism,

Avoid embarrassing encapsulation and
relatlonship inheritance helped Jen
mistakes refactor her love life

O REILLY”

Eratt [. MeLanghlin, Gary Paollica & David Weat

Praise for other Head First books by the authors

“When arriving home after a 10-hour day at the office programming, who has the energy o plow
through ver another new facet of emerging technology? It a developer is going to invest free time in
sell=driven career development, should it not be at least remotely enjovable? Judging from the content off
O’ Reilly’s new release Head Rash dfny, the answer is ves. . Head Rush Ajax is a most enjoyable launchpad
into the world of Ajax web applications, well worth the investment in time and money.”

— Barry Hawkins, Slashdot.org

“By starting with simple concepts and examples, the book gently takes the reader from humble
beginnings to (by the end of the hook) where the reader should be comfortable creating Ajax-based
wehsites.. Probably the best web designer centric book on Ajax.”

— Stefan Mischook, Killersites.com

“Llsing the irreverent style common of the Head Firsed Head Bush series of books, this book starts at the
beginning and introduces vou o all vou need 1w know to be able to write the JavaScript thar will both
send requests to the server and update the page with the results when they are returned...One of the best
things abour this book (apart form the excellent explanations of” how the code works) is that it also looks
at security issues,. A0 you learn Ajax from this book you are unlikely to forget much of what vou learn,”

— Stephen Chapman, JavaScript.About.com

“Head Rish Ajery 15 the book iF vou want to cut through all the hype and learn how tw make yvour web apps
sparkled. . your users will love vou for it!”

— Kristin Stromberg, Aguirre International

“If vou know some HTML, a dollop of C85, a little JavaScript, and a bit of PHE but vou're mystified
alrout what all the Ajax lype s about, this book is for vou.. You'll have a blast learning Ajax with Hewd
Rl Ajax, By the time vou've reached the end of the hook, all those web technologies thar didn’t quite
fit together in your head will all snap into place and vou'll have The Ajax Power! Youw'll know the secrets
behind some ol the most popular web applications on the Internet. You'll impress vour friends and co-
workers with vou knowledge of how those imeractive maps and web forms really work,”

— Elisabeth Freeman, Director, Technology, The Walt Disney Internet Group
Co-Author, Head First Design Patterns and Head Fist HTME with C88 & XHTMEL

“IF you thought Ajax was rocket science, this book is for yvou. Head Rush Ajax puts dynamic, compelling
experiences within reach for every web developer,”

— Jesse James Garrett, Adaptive Path

“This stuff is brain candy; T can’t get enough of i.”

— Pauline McNamara, Center for New Technologies and Education
Fribourg University, Switzerland

Praise for other Head First books by the authors

*When arriving home after a 10-hour day at the office programming, who has the energy w plow
through vet another new facet of emerging technology? It a developer is going to invest free time in
sell=driven career development, should it not be at least remotely enjovabile? Judging from the content of
O'Reilly’s new release Head Rush djax, the answer is ves.. . Head Rush Ajax is a most enjoyable launchpad
into the world of Ajax web applications, well worth the investment in time and money.”

— Barry Hawkins, Slashdot.org

“By starting with simple concepts and examples, the book gently takes the reader from humble
|11']{i|'|r'|1'r'|§_::-i BN} :] |':|. Ehi_‘ I'nd_ (31‘ lh‘l']H H f|'\.| '|."|'] were [llf' l'i"i'l.{li T ?;'l”l,ll{l] H* {'I::I:I'l'lﬂ W i'il F]l_' 1_'|\1'.'||,.||'|}_'| ."'ﬁ:'ii'l:‘;-i:lu'l.‘il'i_l
websites... Probably the best web designer centric book on Ajax.”

— Stefan Mischook, Killersites.com

“Using the irreverent stvle common of the Head Firt/ Head Rush series of books, this book starts at the
beginning and introduces you to all vou need w koow to be able w write the JavaScript that will both
send requests o the server and update the page with the results when they are returned...One of the best
things about this book (apart form the excellent explanations of how the code works) is that it also looks
at security ssues IE you learn Ajax from this book vou are unlikely wo forget much of what vou learn.”

— Stephen Chapman, JavaScript.About.com

“Head Rusl Ajax is the book 0 you want to cut through all the hype and learn how o make your web apps
sparkled. . vour users will love vou for it!”

— EKristin Stromberg, Aguirre International

“If vou know some HTML, a dollop of CS5, a littde JavaScript, and a bit of PHE but vou're mystified
about what all the Ajax hype s about, this book is Tor you.. You'll have a blast learning Ajax with Hewd
Rk Ajax. By the time vou've reached the end of the hook, all those web technologies that didn't quie
fit together in your head will all snap into place and vou’ll have The Ajax Power! You'll know the secrets
behind some of the most popular web applications on the Internet, You'll impress vour friends and co-
workers with yvou knowledge of how those interactive maps and web forms really work,™

— Elisabeth Freeman, Director, Technology, The Walt Disney Internet Group
Co-Author, Head Fisi Design Patierns aomd Head Fit HTME coith CSS & XHTML

“If vou thought Ajax was rocket science, this book is for you, Head Bush Ajax pues dynamic, compelling
experiences within reach for every web developer.™

— Jesse James Garrew, Adaptive Path

“This stuff is brain candy; T can’t get enough of i.”

— Pauline McNamara, Center for New Technologies and Education
Fribourg University, Switzerland

Praise for other Head First Books

I *hear™ Head Fiest HTMEL with G55 & YHTME - it teaches vou evervthing you need to learn in a Tun
coated” format!”

— Sally Applin, UI Designer and Fine Artist, http:/ /sally.com.

“My wile stole the boole She’s never done any web design, so she needed a book like Head First HTME
with C88 & YHTML o take her from beginning o end. She now has a st of web sites she wants to buld
for aur H_H'I‘.‘i 1'];155. aur f‘.‘”‘l‘]il'l.. If F'm Eui_'l-:}; 'l el lhl' I_]l]l:]]'-. bul'k uh::n :iE'IL:.'H. (1¢1|'II‘.“

— David Kaminsky, Master Inventor, IBM

“Freeman's Head Fist HTME wirh OS85 & XHTML s a most entertaining book for learning how to build
a great web page, It not only covers evervihing you need o know about HTML, OS5, and XHTML,
it also excels in explaining evervthing in lavman’s terms with a lot of great examples. | found the book
truly enjoyvable to read, and I learned something new!™

— Newton Lee, Editor-in-Chief, ACM Computers in Entertainment
http:/ /www.acmcie.org

From the awesome Head Fost Jaoa folks, this book uses every conceivable trick wo help vou understand
and remember. Not just loads o pictures: piotures of humans, which tend o interest other humans.
Surprises everywhere, Stories, because humans love narrative, (Stories abourt things like pizza and
chocolate. Need we say more?) Plus, 16 darned funnwy.

— Bill Camarda, READ ONLY

*I'his book's admirable clany: humor and substanial doses of clever make it the sort of book that helps
even non-programmers think well about probleme-solving ™

Cory Doctorow, co-editor of Boing Boing
Author, “Down and Out in the Magic Kingdom™
and “Someone Comes to Town, Someone Leaves Town™

“I fee] like a chousand pounds of books have just been lifted off of my head.™

Ward Cunningham, inventor of the Wiki
and founder of the Hillside Group

“1 lieerally love this book. In face, 1 kissed this book in frone of oy wife,”

— Satish Kumar

Head First Object-Oriented Analysis and Design
by Brett [MeLanghling Gary Pollice, and Dievid West

Clopyvright © 2007 (FReilly Media, Inc. All rights seservecl.
Printed i the Unitec States of America,
Published by (FReilly Media, Inc., 1005 Gravenstein Highway Novth, Sebastopol, CA 95472,

Y Reilly Media books may be purchased for educational, business, or sales promaotional use, Online editions are
also available for mest tiles (safarboreillyeom). For more information, contact our corporates institutional sales
deparment: (BO00] 998-9%38 or corporatef@oreilly.com.

Series Creators: kathy Sicrra, Bert Bates
Series Editor: Brett [0 MeLanghlin
Editor: Mary (¥ Birien

Cover Designer: Mike Kohnke, Edie Freedman
00: Brect I MeLanghlin

A: [hevveael Weest

D: Gary Pollice

Page Viewer: Dean and Robbie MeLaughlin

Printing History:

Newember 2006 First Edition.

The CYReilly logo is a registered trademark of O'Reilly Media, Inc, The Head First series designations, Head Fist
CHAED, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and scllers o distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O°Reilly Media, Inc., was aware of 2 oademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the anthors assume no
responsibility for ervors or omissions, or for damages resulting from the use of the information contained herein,

In other words, if you use anything in Mead First O0AED to, say, write code that controls an American space
shuttle, vou're on vour own.

N dogs, rabbits, or woodchucks were harmed in che making of this book, or Todd and Gina’s dog door,

ISBN-10: (-596-0867-
ISBN-13: 978-0-396-00867-3
[M]

To all the brilliant people who came up with various ways 1o
gather requirements, analyze sofiware, and design code_..

...thanks for coming up with something good enough to
produce great sottware, but hard enough that we needed this
Lok o explain it all,

how to use this book

Intro

I can't believe

they put that in an object-
oriented analysis and design
book!

answer the burning F:.Iuctham'

2t in an QORED bk’

| Ehis settion, we

“Go why DID they put th

xxiii

how to use this book

Who is this book for?

If vou can answer “ves” o all of these:

You'll probably be okay if

Do you know Java? (You don’t need to be a guru.) — You know (4 wibiad

Do you want to learn, understand, remember, and
apply object-oriented analysis and design to real world
projects, and write better software in the process?

@ Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this hook 1s for VoL,

Who should probably back away from this book?

It wou can answer “ves” 1o any one ol these:

Are you completely new to Java? (You don't need to
be advanced, and even if you don't know Java, but
you know C#, you'll probably understand almost all
of the code examples. You also might be okay with
just a C++ background.)

@ Are you a kick-butt OO designer/developer looking
for a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes

with plaid? Do you believe that a technical book
can't be serious if programming concepts are
anthropomorphized?

"

this hook is not for vou,

[note from marketing: This bosk is
For anyone with a tredit pavd-J

xRV Intro

intro

We know what you'e thinking.

“How can #fs be a serious programming hook?™
“Whalt’s with all the graphics?™

“Can I actually fearn it this way?”

And we know what your brain is thinking.

Your brain craves novelty, [Cs always searching, scanning, weifing lor
something unusual, Towas built thae way, and ic helps vou stay alive,

So what does vour brain do with all the routne, ordinary, normal things
vou encounter? Evervihing it can to stop them from interfering with the
brain's real job——recording things that maiter. 1t doesn’t bother saving
the borng things: they never make it past the “this 15 obviously not
important” e,

How does vour brain frewe what’s important? Suppose vou're out
for o day hike and a dger jumps in frone of you, what happens mside
vour head and body?

Newrons fire. Emouons crank up. Chemcals singe,

And that's how vour brain knows, ..
This must be important! Don’t forget it!

Bur imagine yvou're at home, or in a library I0's a sale, warm, tger-free zone,

Great. Only
637 more dull,

dry, boring pages.

- Hirkts
You're studying. Geting ready for an exam. Or wrying to learn some tough wfour 19"3'1 e 2
technical wopic your boss thinks will take a week, wen days at the most, ™S v

saundy

Just one problem. Your brain's trving to do you a big favor, Is trving to
make sure that this efeisisfy non-imporant content doesn’t clutter up scarce
resources, Resources that are hetwer spent storing the really fig things, Like
dgers. Like the danger of fire. Like how you should never again
stowhoard in shorts,

And there’s no simple way to tell yvour brain, “*Hey brain, thank vou
very much, but no matter how dull this book is, and how liwde I'm
registering on the emotional Richter scale right now, T really do want
woul Lo keep this stadl around,”

you are here » KXV

p e Al

how to use this book

we think of a “Head First’ reader as a learner.

So what does it take to jearn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurcbiology, and educational psychology,
Jearning takes a lot more than text on a page. We know what turns your brain on.

A of Ehis i
some of the Head First learning principles: @ smgle ro.,..:?:':“"l'“
o chiee

Make it visual. Images are far more memaorable than words alone, and
make learning much more effective (up 1o 9% improvement in recall and
transfer studies). It also makes things mare understandable. Put the words
within or near the graphics they relate to, rather than on the bottam
or on another page, and learners will be up i@ twice as likely to solve problems
related to the content.

Use a conversational and p-rsnnall.:nd style.Inrecent studies,

students performed up 1o 40% better on post-learning tests if the cantent spoke

directly to the rea der, using a first-person, conve reational style rather than a king
a formal tone. Tell stories instead of lecturing. Use casual language. Don't take
yourself too seriously. Which would you pay more attention to:a stimulating

dinner party companian, or a lecture?

T+ really sucks to bean
ghstract methad. Yo
dart have o bady.

Get the learner to think more deeply. I other words, unless you actively flex
%q your neurons, nothing much happens in your head. A reader has to be motivated,
! engaged, curious, and inspired to solve problems, draw canclusions,
and generate new knowledge. And for that, you need challenges,
anercises, and thaught-pmmki ng questions, and activities that invalve
hoth sides of the brain, and multiple senses.

Great sof tware every time? I

can hardly imagine what that
would be likel

| Get—and keep—the reader's attention. Weve

b all had the “I really want 10 |earn this but | can’t stay awake past

page one” pxperience. Your brain pays attention to things that are

aut of the ordinary, inte rasting, strange, eye-catching, unexpected,
Learning a new, tough, technical topic doesn't have to be boring. Your

prain will learn much more quickly if it's not.

Touch their emotions. We now knaw that your ability to remember
something is largely dependent on its emetional content. you remember what you care aboul.
you remember when you feel something. No, we're not talking heart-wrenching stories about a
oy and his dog. we're talking emaotions like surprise, curiosity, fun, “what the.. 7", and the
feeling of " Bulel” that comes when you solve a puzzle, learm comething everybody else

thinks is hard, or realize you know something that “I'm mare rechnical than thou” Bob from
engineering doesn’t.

intro

intro

Metacognition: thinking about thinking

If you really want to learn, and vou want to learn more quickly and maore

I wonder how I
can trick my brain
into remembering
this stuff...

deeply, pay atention w how you pay attendon. Think about how vou think,
Learn how you learn,

Most of us did not take courses on metacogniton or learning theory when we
wene I-_':r'l Y H'I;-_'\I L,Il}. .‘!'inlf' wenre l":'l.:lll.l'fln' lrf'ﬁ'r [(4] ||"i,‘l|"“| I]lll l;l["'l} .llf]'fﬂ'gﬁu" L ||"|,II|].

But we assume that if you're holding this book, vou really want wo learn object- o
oriented analvsis and design. And vou probably don’t want w spend a loc ol

tme, And since vou're going o develop soltware, vou need w srenfer what vou
read. And for that, you've got wo sndersiand it To get the most from this book, or
ey book or learning experience, take responsibility for your brain, Your brain
on fhis content.

The ek 1s w get your brain w see the new macerial vou're learning as
Eeally Important. Crucial w vour well-being, As important as a tiger,

Ortherwise, you're in for a constant bactle, with your brain doing is best w
keep the new content from sacking,

So just how DO you get your brain to think object-
oriented analysis and design is a hungry tiger?

There's the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repeaton. You obviouwsly know that you are able w
learn and remember even the dullest ol wpics il vou keep pounding the same thing
into vour brain. With enough repetition, vour hrain says, “This doesn’t feel impaortant to
him, but he keeps looking at the same thing ever and seer and svea, so 1 suppose it must be.”

The faster way is o do anything that inereases brain activity, cspecially different
fypes off brain activity. The things on the previous page are a hig part of the solution,
and they're all things that have been proven o help vour brain work in vour favor. For
I."\;ill'l'l.lllli T hillﬂ]il'ﬁ .‘ihl:]'h'l' [hql[i'ul““}.‘; WO |"" I'l.'l:lrl|llllllnrll :]'H_' EJ‘II'[L,I“‘H lhll"l| Ill‘h[‘l'i]_H,' Lil& I}IJ!]I I!\jﬂ"(] ({N]
somewhere else in the page, like a caption or in the body text) causes vour brain to try o
makes sense of how the words and picture relate, and this causes more neurons to Are,
Maore neurons firing = more chances for vour brain w g that this is something worth
paving attenton in, and possibly recording

A comversational sivle helps because people wend o pay more awention when they
perceive that they're in a conversation, since they're expected o follow along and hold up
their end. The amazing thing 15, vour brain doesn’t necessarily core thae the “conversaton™
is between vou and a book! On the ather hand, it the writing seyle is formal and dry, your
hrain perceives it the same way vou experience being lectured to while sitting in a roomful
of passive attendees. No need o stay awake,

But pictures and conversational sivle are just the beginning,

you are here » xxvii

how to use this book

Here’s what WE did:

We used pictures, because vour brain is tuned for visuals, not text. As far as vour
brain's concerned, a picture really i worth 1,024 words, And when text and pictures
work together, we embedded the text w the pictures because your hrain works more
ellectively when the text is withie the thing the text refers w, as opposed to in a caption
ar huried in the text somewhere,

We used redundancy. saying the same thing in differend ways and with dilferent media opes,
and meleiple seses, w increase the chance that the coneent gets coded inw more than one area of
vour hrain,

We used concepts and pictures in snexpected wavs because your brain is wned [or noveliy
and we used pictures and ideas with at least sowme emotional conient, hecause yvour brain is
tuned o pay atendon o the biochemisoy of emodons, That which causes you w feel something
is more likely o be remembered, even il that feeling is nothing more than a linde Arereor,
surprise, or interest.

We nsed a personalized, conversational style, hecause vour brain is wned o pay more
attention when it believes vou're in a conversation than iU 10 thinks vou're passively listening (o a
presentanon, Your bram does this even when vou're rending.

We included more than 80 aetivities, because your brain is wined w learn and remember
maore when you de things than when yvou read abour things, And we made the exercises
challenging-vet-do-able, because that's what maost people prefer.

We used smultiple learning styles. hecause you might prefer step-by-step procedures, while
someone else wants o understand the big plewre first, and someone else just wants w see a
code example, But regardless of your own learning prelerence, aermone benefits from seeing the
same content represented in muluple ways.

We include content for both sides of your brain, because the more of vour brain vou
engage, the more likely yvou are to learn and remember, and the longer you can stay focused,
Since working one side of the brain ofien means giving the other side a chance w rest, vou can
be more productive at learning for a longer pedod of dme,

And we included stories and exercises that present maore than one point of view, hecause
vour brain is tuned to learn more deeply when its oreed o make evaluatons and judgements.

We included ehallenges, with exercizes, and by asking guestions that don't always have

a straight answer, because your brain is uned to learn and remember when it has o ek at
something. Think about it—you can't get vour bady in shape just by watdhing people at the gym,
Bur we did our Best 1o make sure that when vou're working hard, ics on the pight things, Tha
you're not spending one extra dendrite processing a hard-w-understand example, or
parsing difficult, jargon-laden, or overdy terse st

We used people. In sories, examples, pictures, ete., because, well, because you're a person. And
vour brain pays more attendon to geable than it does o fhings,

We used an 8020 approach. We assume that if’ vou're going for a PhID in software design, this
won't be vour only hook. So we don't talk about aerpthing. Just the stull vou'll actually need.

xxwiii Intro

AN BATARTANAIE:
|l il . il
="

Fireside Chats

intro

Here’'s what YOU can do to bend
your brain info subwission

So, we did our part. The rest is up to vou. These tips are a starting poing Rsten to
vour brain and figure out what works for vou and what deesn’, Try new things,
Cut £hi .
= 15 Ou'r:. dnd TEltk i{,
Your “Cﬁ*"lﬂfrﬂ'll:nr.)

@ Slow down. The more you understand, Talk about it. Out loud.
the less you have to memorize. Speaking activares a different part of the brain,
Dion't just read, Stop and think, When the I vou're trving to understand something, or
hook asks vou a queston, don’t just skip 1o the increase vour chance of remembering ic lawer, say
answer, Imagine that someone really & asking it out Joud, Beter sull, trv to explain it out loud
the guestion. The more deeply vou force your o someone else. You'll learn more quickly, and
brain wo think, the beter chance you have of vou might uncover ideas you hadn’t known were
learning and remembering, there when vou were reading about it,

(@) Do the exercises. Write your own notes. @ Listen to your brain.
We put them in, but il we did them [or vou, Pay attendon to whether vour brain s getting
that would be like having someone else do overdoaded, I vou find voursell” starting 1o skim the
vour workous for you, And don't juse feek o surface or forget what you just read, is nme for a
the exercises. Use a pencil. There's plenty of break. Once you go past a cortain poing, you worn't
evidence that physical activity witife learning learn faster v trving o shove more in, and vou
can increase the learning, might even hurt the process.

@ Read the “There are No Dumb Questions” Feel something!
That means all of them. They're not oprional Your hrain needs to know that this matiers. Get
side-bars— they’rve part of the core content! involved with the stories, Make up your own

Don’t skip them, capuons for the photos, Groaning over a bad joke 1s

still heter than eeling nothing at all,

@ Make this the last thing you read before
bed. Or at least the last challenging thing. Design something!
Part of the learning (especially the transter to Apply what you read to something new you're
long-term memory) happens after you put the designing, or rework an older project. Just do

hook down, Your brain needs tme on is own, to something to get some experience beyond the

i wweaier I 1 sthine rew . o ww . . .
do more processing. I you put in something new exercises and activides in this book. All you need is

a problem w solve... a problem that might benefit
from one or more |:~:-hni::|uq=_a' that we talk about.

during that processing ame, some of what vou
|l|‘\|, ll';[l“l'll.'[l 'I\'i” I“' ||l""|,.

@ Drink water. Lots of it.

Your brain works hest in a nice bath of fuid,
Dehydranon (which can happen before you ever
feel thirsty) decreases cognitive function.

you are here » HXix

how to use this book

Read Me

This iz a learning experience, not a reference hook, We deliberacely scrippecd oug
everything thar might get in the way of learning whatever it 15 we're working on at that
point in the book. And the first dme throogh, vou need w begn ac the beginning, because
the ook makes assumptions about what vou've already seen and learned.

We assume you are familiar with Java.

It would take an endre book w wach you Java (n fact, thac's exactdy what ic wook: flead
Foost Jara), We chose o focos this book on analysis and design, so the chapters are written
wiih the assumption that you know the hasics of Java. When intermediate or advanced
concepts come up, thev're tanght as il they might be totally new to you, though.

If vou're completely new to Java, ar coming o this book from a C# or U4+ background,
we strongly recommend vou turn to the back of the book and read Appendix 11 belore
going on. That appendix has some intro material that will help you start this book ofl” on
the right foor,

We only use Java 5 when we have to.

Java S introduces a lot of new features to the Java language, ranging from generics to
paramaterized wpes o enumerated tvpes 1o the foreach looping construct, Since many
professional programmers are just moving to Java 5, we didn't want vou gettiing hung up
on new synay while vou're iving w learn abowt OOASD Tn most cases, we stuck with
pre<Java 5 syniax, The only exception is in Chapter 1, when we needed an enumerated
tvpe—and we explained enums in that section in some decail.

If vou're new w Java 3, vou should have no trouble with any of the code examples. IF
vou're already comibrgable with Java 5, then vou will get a few compiler warnings ahout
unchecked and unsafe operadons, due w our lack of typed collecdons, but vou should be
able o update the code for Java 5 on vour own quite easily.

The activities are NOT optional.

The exercises and acovides are not add-ons; they're pare of the core content of the bool.
Some ol them are o help with memory, some are for understanding, and some will help
vou apply what vou've learned. Don’t skip the exercises. The crossword puzzles are
the only things you don’t fave 1o do, but they're good for giving your brain a chance o
think about the words and erms vou've been learning in a dillerent context,

HEX Intro

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want vou o really get it And we
want you to fimish the book remembering what vou've learned. Most reference books
don’t have retention and recall as a goal, but this book is about feerming, so vou'll see some
ol the same concepis come up more than once.

The examples are as lean as possible.

Oy readers tell us thad ics frustrating o wade through 200 lines of an example looking
tor the two lines they need o understand. Most examples in this book are shown within
the smallest possible context, so that the part yvou're oying w learn s clear and simple.
Don't expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully-funcional,

In some cases, we haven't included all of the import staements needed, buc we assume
that i you're a Java programmer, you know that ArrayList isin java util, for
example. If the impores are not part of the normal core J25E APL we menton ic. We've
also placed all the source code on the web so you can download it You'll find it at
http://www.hesadfirstlabs.com/books/hfoo/.

Also, for the sake of focusing on the learning side of the code, we did not put our
classes into packages (in other words, they're all in the Java default package). We don't
recommend this in the real world, and when you download the code examples from this
book, vou'll find that all classes are in packages.

The ‘Brain Power’ exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
ol the Brain Power actvities is for vou to decide it and when vour answers are right. In
some of the Brain Power exercises vou will find hints o point vou in the right directon.

you are here

intro

AKX

the authors

B#"E‘{'.‘E —2

Brett McLaughlin is a guitar plaver who is sill sorugeling [
with the realizaton that vou can't pay the bills if you're nw
acoustic fingerstyle blues and jazz, He's just recently discovered,
to his delight, that writing books that help people become better
programmers does pay the bills, He's very happy about this, as
are his wife Leigh, and his kids, Dean and Robhbie,

Before Brett wandered into Head First land, he developed
enterprise Java applications for Nextel Communications and
Allegiance Telecom. When that became fairly mundane, Bren
took on application servers, working on the internals of the
Lutris Enhvidra servler engine and EJB container. Along the
way, Brett 2ot hooked on open source software, and helped
found several cool programming wols, like Jakara Turbine and
JDOM. Write to him at brettedoreillyv.com.

Gar}r Pollice is o sellitabeled curmudgeon [that's a crusty, ll-tempered,
usually old man) who spent over 35 years in industry orying o figure out
what he wanted to be when he grew up. Even though he hasn't grown up ve,
he did make the move in 2003 w the hallowed halls of academia where he
has been corrupting the minds of the next generaton of software developers
with radical ideas like, “develop software for your customer, learn how to
work as part of a team, design and code quality and elegance and correciness
counts, and it’s okay to be a nerd as long as vou are a great one,”

Giary 15 a Professor ol Pracoce (meaning he had a real job before becoming a
professor) at Worcester Polytechnic Instituce, He lives in central Massachusetts
with his wife, Vikki, and their two dogs, Aloysius and Tgnatus, You can visit
his WPI home page at http: //web.cs . wpi.edu/~gpollice/. Feel free
to drop him a note and complain or cheer about the book.

ﬁary —

Dave West would like to describe himself as sheik geek. Unfortunately
no one else would describe him in that wiay They would say he s a
professional Englishman who likes to walk about soltware development best
practices with the passion and energy of an evangelical preacher. Recenty
Diavve has moved w Ivar Jacobson Consultng, where he runs che Americas
and can combine his desive (o talk about software development and spread
the word on rughy and foothall, and argue thar cricket is more exciting that
bzasehall.

Before running the Americas for Ivar_Jacobson Consuldng, Dave worked
tor a number of vears at Ratonal Software (now a part of 1BM). Dave held
many positions at Ratonal and then IBM, including Product Manager for
RUP where he introduced the idea of process plug-ins and agility to RUP
Dyave can be contacted at dwestf@livarjacobson.com.

Dave —

viii

review team

The Technical Team

AWK

Hannibal Sdifin

Ava Yapejian

Technical Reviewers:

Huge thanks to our amazing wio ol technical reviewers, These guvs caught mistakes
that we missed, let us know when we were moving oo fast (or too slow), and even
ler us know when our jokes sucked. Several ames, they turned chapeers around ina
matter of hours... we're not sure if that means theyv're really helpful, or need o ger
away from software development a little more. Hannibal in particular made our
week when he let us know that the big OOA&TD arrow in Chapter 10 was "Hod!”
Thanks guys, this book wouldn’t be nearly as solid without vour hard work.

Kathy Sierra and Bert Bates:

We continue to be amazed at the insight and

expertise that Bert Bates has about cliffs, and that
Kathy Sierra has about dog doors. If that doesn’t
make much sense, don't be surprised—everything
your know about almost everything gets turned on its
head when vou meet this pair, and yet we all came
out much for the better because of their help.

Bert and Kathy did a ton of review at the eleventh
hour, and we're thankful they did, Their help and
guidance continues wo be the heart of Head First.

T Bert Bates

Intro

Acknowledgements

My co-authors:

Because I'm doing the tvping, T get o step out of “we” mode for a moment and sav thanks 1o my
co-authors, Dave West and Gary Pollice. Neither of these guys knew what they were signing up
tor when they came on hoard, but I've never heen so impressed by a couple of guys willing o explain,
defend, and even change their opinions and knowledze about software design, requirements and
analysis, and lilt shafis. They were simply incredible, writing up untl the very last day, and even got me
to relax and |:1u;.,'-’]'! until I cried on several oceasions,

Our editor:

This hook wouldn't be in vour hands il not for Mary O*Brien. | think

it's fair to say she fought more battes and paved the way for us to work
without interrupton more times than any of us really are aware of. Most
importantly, she made this the single most enjovable project weve worked on
in our careers, Frankly, she kicked our asses o number of tmes, and it made
all the difference, She really doesn’e realize how much of an effect she has
ar 1_]'“' IJI'I'I]_I'I‘ .‘ihl' \'l'llf]{?j \\'ilh. }Jﬂ‘('i_lu.‘il' W I,[jl'll‘l ll‘l] hl't' (a1 |L,H-_'|h I'Il'l'l.'n. I'I'I“l:':l'l
we respect her and value her opinions. So there, now vou know, Mary. If we

could put your name on the cover, we would (oh, wait.. we did!).

N Mavy 0'Brien

The O'Reilly team:

These books are a team effory, never more so than on this one, Mike Hendrickson and Launrie
Petrycki oversaw this project at various times, and ook heated phone calls more than onee,
Sanders Kleinfeld cur his Head First teeth on this project, and managed to come out alive;
better vet, he did a great job, improving the book, and we all are excited that this is just the brst of
many Head First books he'll be working on. Mike Loukides found Bert and Kathy way back
when, and Tim O'Reilly had the foresight to wrn their crazy idea into
a series. As always. Kyle Hart is instrumental in getting these hooks “out
there”, and Edie Freedman's heauatul cover design continues to amaze
us all.

A particularhy special thanks goes out to Louise Barr, the Head First

Design Editor. Lou pulled several 12- and T4-hour davs 1o help us with
araphics in this book, and put wgether the amazing Ohjecoville Subway Map
in Chapter 10, Low, your work has improved the learning quality of this

Lok, and we can’t thank vou enough for your contributions, ‘/-""_)'

Lou Barr

you are here » ®xAiii

spacial thanks

Special thanks

HAHXiY

Near the completion of this book, Laura Baldwin, the CFO of O'Reilly, encountered some
personal tragedy. ICs hard o know what (o say in these situations, especially because Laura has
really hecome the backbone of OReilly in many ways, Laura, we are thinking and prayving for vou
ancl your farmily, and we wish vouo all the very, very best in the days w come. We know vou'd want
nothing more than o see everyone at O'Reilly working harder than ever while you're away,

This book 1s certainly a testament o the people at O'Reilly conanuing wo deliver, and in many of

DU CONVETsAHons, Your name came up as someone we wanted o support, and not let down in any
way, Your eflect on this company is extraordinary, and CXReilly and the Head First series will all be
much better for the day vou can return to us in full swing

Intro

1 well-designed apps rock

Great Software
Begins Here

I can hardly get over it,
Sue, but since I started using
O0AAD, T'm just a new man... a
new man, I'll tell youl

So how do you really write great software? it's never easy
trying to figure out where to start. Does the application actually do what

it's supposed to? And what about things like duplicate code—that can't be
good, can it? It's usually pretty hard to know what you should work on first,
and still make sure you don't screw everything else up in the process. No
warries here, though. By the time you're done with this chapter, you'll know
how to write great software, and be well on your way to improving the way
you develop applications forever. Finally, you'll understand why O0AE&D is a

four-letter word that your mother actually wants you to know about.

this is a new chapter

the sounds of wood and steel

Rock and roll is forever!

There’s nothing better than the sound of a killer suitar in the hands
of a real '|'I|.':!:.'l‘l'._ and Ricks Guitars hpm'i;llim'ﬁ in 1'|I‘.|f|;il'|_s_:' the p:'i"i-t'n'l
imstrument for his discerning customers.

You wouldn't believe
the selection we have here,

Come on in, tell us about what kind
of guitar you like, and we'll find
vou the perfect instrument,
guaranteed!

Meet Rick, guitar
afizienado, and owner
high—end quitar shop-

Just a few months ago, Rick decided to throw out his paper-based
system for keeping track of guitars, and start using a computer-hased
system to store his inventory. He hired a popular programming firm,
Down and Dirty Coding, and thevve already built him an inventory
management app. He's even had the frm build him a new search
tool o help him match up a customer (o their dream instrument.

2 Chapter 1

well-designed apps rock

Rick’s shiny new application...

Here's the applicanon that the programming firm built for Rick... they've
put together a syvstem to completely replace all of Rick’s handwritten
notes, and help him match his customers with the perfect guitar. Here's
the UML class diagram they gave Rick to show him what they did:

Heve's Riek's entire muen{'m-}r,

ks 3 well a5 3 way for him 3
Eath E|_I.I:Ita'l' in Rick seavih -For 5:1:;”“ him £o The '|-.\1r-:r.£ﬂ'l"f stovres a list

mentory 1 verroried e o al the gtars dnat Rk
instante o . g‘. g.uﬂ"ch'H‘]I has availaoie

[
Guitar Inventory /
serialNumber: String guitars: List
price: double ; . : z :
Heve ave builder: String ﬂddGUlIﬁar{Strllrlg. dull.ltﬂe. String, String, String,
t madel: Strin String, String) =
he variables Ny getGuitar(String): Guitar Thi
in the type: String seanchiGuitar: Gultar is method
ﬁui{'.i-'r £lass. backWood: String s in al|
topWaod: Strin 3 quitay”
ps , lN g - 5 - This rnt".:hﬂd | T .\ df‘tﬂih., 5*:&1‘5;
QE:PE:na 'L:jmbglr” " takes a guibar's This is the seareh method; 3 Guitay object,
g:tF‘:ijE:f#:la?]u) sevial ““'“lm‘;ch n . dﬂjf"“{: a tlient's Eﬂd adds if {,
urns K itar, k's ;
_ 2 |oemuilder(): Sting M T vty s inventory
These are getModel(}: String R inventory that ..::-E;h{
the metheds oetlypel). S0'ng with the elient’s specs, |
for the getBackWoedi): String -
Guikar ¢lass getTopWood(): String "
" ve the defiring
Riek df-r"‘d‘d Jc'h:u:,ar the sevial RUPRDET
chavaEler B R the bulder and model
ey it is (atoustit o eleetrit), an
what bﬁ! : ed in the guiﬂ-'f

what woods ave s

‘New to Objectlle?® 2

If you're new to object oriented programming, haven't heard of UML before, ¥
or aren't sure about the diagram above, it's OK| We've prepared a special %5
“Welcome to Objectville" care package for you to get you started. Flip to the
back of the book, and read Appendix |l—we promise you'll be glad you did.
Then come back here, and this will all make a lot more sense,

you are here » 3

rick's initial application code

Here what the code for
Guitarjava looks like

You've seen the class diagram for Rick’s application on the last
page: now lecs look at what the actual code for Guitar, java
and Inventory. java look like.

public class Guitar {

private String serialNumber, builder, model, type,

private double price;

pubklic Guitar (String serialNumber,
2tring builder,
S3tring bhackWood,

.serialbumber

.price = price;

.builder = builder;

s model madel ;

Lype type:

backWood = backWood;

LLopWoed = topWood;

double price,

String topWood) |
serialbumber;

—

public String getSerialWumber(} |
return serialNumber;
}

public double getPrice() {
return price;

}

public void setPrice (float newPrice) |
this.price newPrice;

3
i

public String getBuilder{}) |
return builder;

}

You tan see how
+he tlass diﬂ&'rﬂrn

pukblic String getModel() { Mﬁiﬂhﬂs“?'"ﬁh
return model; bhe wethods in the
1
H &u_'rlfj'r ﬂia“ L3 E-Dd!
public String getType() {
return type:
}
public String getBackWood () |

return backWood;
‘| é\\—

I

puklic String getTopWood()
returh topkood;

b

4 Chapter 1

These are 4] Lhe
Properties we o3, -

e s disyam o

uitar ¢lass

backWood, topWeood;

String model, String tvpe,

WML tlass diagrams don't

show tonsbruetors; the Quitar .
tonstruttor dncsju:l: what you d
expect, though: sets all the imtial
properties for a new Guitar.

Guitar

serialNumber; String
price: double
builder: String
model: String

type: String
backWood: String
topWood: String

getSerialNumber(): String
getPrice(): double
setPrica(float)
getBuilder(}: String
getModel(): String
getTypel): String
getBackWood(): St

getTopWood(): Strir
T

Guitar.java

And Inventoryjava...

<« Remember, we ve stripped
Pl-lbli.: :laz? I:-r-.r-e;-'|t|::r§,|r { m-h {ht im?‘,—k 5{;-*.:“"{;
rivate List guitars;
) ’ 4o save some Spate.

public Inventory() |
guitars = new LinkedList(}:

b

public woid addGuitar{String serialWumber, double price,
String builder, 3tring medel,

well-designed apps rock

String tvpe, 3tring hackWood, 3tring topWood) |
Guitar guitar = new Guitar (serialbumber, price, builder,
model, type, backWood, teopWood): & addﬁuiﬁar“ tﬂkﬂ il

guitars.add (gquitar) ;

b
public Guitar getGuitar{String serialbMumber} |

for (lterator i = guitars.iterator{); i.hasHext():;)} |{

Guitar guitar = (Guitar}i.next()}

if f(guitar.get3erialNumber () .eguals{seriallumber)) {

return guitar;
1
I
return null;

b

for (Iterator i = guitars.iterateor(j: i.hasNext();) |{

Guitar guitar = (Guitar}i.next();

ff Ignore serial number since that's unigque
/{ Ignore price sinece that's unique

String builder = searchGuiktar.getBuilder();:

if ((builder != poull) && (!builder.equals(“")) &&
{!builder.equalsi{guitar.getBuilder({}}}}
continue;

String model = searchGuitar.getModel (};
if {imodel != null) && (!model.equals(™™}} &&
{Imodel .equals{guitar.getModel ()))}

cantinue;
String tvpe = searchGuitar.getType();
1f {leype != null) && (isearchGuitar.equals(*")) &&

{ltype.equals {guitar.getTypa ()i}
continue;
String backWeood = searchGuitar.getBackWoodl();
if {i{backWood != null) && (!backWood.equals (™)) &%

{!backlWood.equalsiguitar.getBackWood(}}])
continue}
String topWood = searchGuitar.getTopWood ()
if {(ftopWood != null) && (!topWood.egquals(™™)) &&

(!topWood.equals (guitar.getTophiocod ()})}
continue;
|

return null;

— {.hﬂ T"rﬂPﬂ'tlc; Wﬂuir{d

: 1'13{8 d new &ui.-tar
nstance, reates one, and

adds it 44 ﬁh:inv:nfnry

puklic Guitar search{Guitar searchGuitar) | &= ———— This m:-l:had is abr': o-F a8 mES...

it compares eath property of the
Quitar nbj:& it's passed in to eath
Guitar object in Ritk's inventory-

«

Inventory

guitars; List

addGuitar(String, double, String, String, String,
String, String)

getGuitar(String): Guitar

search(Guitar): Guitar

you are here » 5

the case of the missing guitar

But then Rick started losing customers...

i o B 3 A Ry e i et 1 ki 5 1A St T % thd - I a
It seems like no matter who the customer is .mL! what lJ.n”':. like, Ru._k s new search Hie &“'tﬂ""ﬁsft'r;}ava simulates 3
program almaost a||u".:|:.'h COTES U ey when it looks for good guitar marches, But }"'Fiﬁnﬂ da}r F.-_—,\y Riek now... 3 fu

L A - L = R e e ey L TR | . e - s{ﬂﬂﬂtr
Rick knows he has guitars that these customers would like... so what's going on? MMﬁmr&mmmw“££hymg

and he vups g seareh on his-nvtnfok?

o

| public class FindGuitarTester |

public static void main(String[] args) |
f/ Set up Rick’s guitar inwventory
Inventory inventory = new Inventory();
initializelnventory {inventory);

Guitar whatErinlLikes = new Guitar(“”, 0, “fender”, “Stratocastor”,
“"elactric”, “Alder®, “Alder"):
Guitar guitar = inventory.searchiwhatErinLikes);
if f{guitar != null) | Evin is looking
System.out.println(*Erin, you might like this * + for an Fender

guitar.getBuilder () + ™ * + guitar.getModel() + ™ * “Cheat” wrkar;
guitar.getType () + ™ guitar:hn "ot ;{ Alder
guitar.getBackWood() + " back and sides,\n "o+ i

a

guitar.getTopWood () + top.\n¥You can have it for only 5" +
guitar.getPrice() + “!*});

elsa |

System.ocut.println(™Sorry, Erin, we have nothing for you.”);

private static woid initializelnventory(Inventory inventory) |
{f Bdd guitars to the inventory...

FindGuitarTester java

I'm sorry, Rick, I guess T'll
just go to that other store
across town.

Fila EOit Window Hep Cieh
¥java FindGuitarTester

Sorry, Erin, we have nothing for you.

: hen Exin
Here s what happens W :
L::nc:‘- inko R'ltlils chove, and Riek

Lries to Find hev 3 quitar

6 Chapter1

well-designed spps rock

But I know T have a killer
Fender Strat guitar, Look, it's
right here:

inventory.addGuitar {("V35633",
149%,.95, “Fender”, “Stratoccastor”,
“"electric®, “Blder”, "“alder™): ﬂ

These spets seem

to mateh up
?e_r-pct-l;ljr with
what Erin asked

Here's part of the tode for... so what's
that sets vp Riek's .“"““{"W' 9ging ont
Locks like he's aot the

F:r-Fcr,t quitar tor Evin

How would you redesign Rick's app?

Look over the last three pages, showing the code for Rick's app, and the resulis
of running a search. What problems do you see? What would you change? Write
down the FIRST thing you'd do to improve Rick's app in the blanks before,

you are here » 7

how do you write great software?

What's the FIRST thing you'd change?

It obwvious that Rick’s app has problems, but its not so olwious what we
should work on first. And it looks like there’s no shortage of opinion:

Guitar

Look at all those Strings!
That's terrible... can't we use
constants or objects instead?

serialNumber: String
price: double
builder: String
model: String

type: Sfring
backWood: String
topWood: String

getSeralumber(): String
getPrice(): double
setPrice(float)
getBuilder(): String
getModel(}: String
getType(): String
getBackWood(): String
getTopWood(): String

Joe's Fawly new
{o programmin
but he's 3 big
believer in
b it~
url.z'n‘b!d tode

Frank’s been around for 3
w\-"'?nl:.and reaffy krows hig 00
Printiples and dciiﬁr- Patterns.

Chapter 1

Whoa... these notes from the

owher says he wants his clients
to have multiple choices. Shouldn't
the search() method return a list of
matches?

.‘; ’t
Inventory i £ |

guitars: List \

addGuitar(String, double, String, String, St S
String, String) '
getGuitar|String): Guitar
search(Guitar): Guitar
This design is terrible! The
Inventory and Guitar closses
depend on each other too much, and T
can't see how this is an architecture
that you'd ever be able to
build upon. We need some
restructuring.

g)
Jill's oot 3 vep For always

delivering evattly what
the pustomer wants-

What would you do first?

How am I supposed to know where to start? 1
feel like every time I get a new project to work
ah, everyone's got a different opinion about what
to do first. Sometimes I get it right, and sometimes I
end up reworking the whole app because I started in the
wrong place. I just want to write great softwarel
5o what should I do first in Rick's app?

well-designed apps rock

HOW ([O you

write great
software,

every time?

you are here » 9

what does great software mean?

Wait a second... T hate
to butt in, but what does “great
software” mean? That's sort of a
vague term to be throwing around,
isn't it?

lots of different answers:

s

Good question... and there are

The customer-friend]y programmer says:

The object-oriented programmer says:

“Great software is code that is object-oriented.
So there’s not a bunch of duplicate code, and
each object pretty much controls its own
behavior. It's also easy to extend because your
design is really solid and flexible.”

'ﬁ’md (24] Frogrammers
are always locking for
ways to make their
tode more -p.!tmbf.:

. L all
MNet sure a'bm-tj what all =
't'hc‘l‘i: meanst |-|;.=. ﬂ'k’:... *al.:-u I
learn about all these _'t'n'mﬁs
in the wptoming chapters

mﬁﬂmi advar t&5 s

t::_’_,.- GG -tlﬂl-l'lhiﬂug 5

The design-guru programmer says:

“Great software is when you use tried-and-true
design patterns and principles. You've kept your
objects loosely coupled, and your code open for
extension but closed for modification. That also oo
helps make the code more reusable, so ypu = :
don’t have to rework everything to use parts of b H(/

your application over and over again.”

“Great software always does what the customer
wants it to. So even if customers think of new
ways to use the software, it doesn't]
break or give them unexpected results.”

T \
This approach s 3

about making sure the

§ sustomer is happy with
. what Eheir app does
[
[

This dfsrﬂh_‘l:‘*?ﬁu!cd
ﬂF'F'raath D'F"Limizq;
| tode for extension
| and reuse, and takes

of dcs:g,h

f'a{'tﬂ'rhs an

d Froven

/

10 Chapter 1

s

Wiite your name here..

well-designed spps rock

What do you think “great software” means?

You've seen what several different types of programmers think
great software is... so who is right? Or do you have your own
definition of what makes an application great? It's your tum to write
down what you think makes for great software:

~dnd write what You think 5!:1:31":

t\'l'-ﬂl"l! meEans heve,

you are here » 11

great software satisfies the customer and the programmer

Great software is...
more than just gne thing

1t's going to take more than just a simple definition o
figure out exactly what “great software™ means. In fact,
all of the different programmers on page [alked
about a part of what makes soltware great.

First, great software must satisfy
the customer. The software must
do what the customer wants it to do.

Win your customers over

Custorners will think your software
is great when it does what it's
supposed fo do.

Building sofiware that works right is grear, but whar
about when it's time to add to your code, or reuse it
in another application? 1t's not enough to just have
software that works like the customer wants it to; vour

sofiware hetter be able to stand the test of time.
Second, great software is
wﬂllﬂdﬂsiaﬂﬂd, wall-r.:ndadl and

easy to maintain, reuse, and extend.

Make your code as
smart as you are.

You (and your co-workers) will think
your soffware is great when it's easy
fo mainitain, reuse, and extend.

12 Chapter 1

Wow, if my code could do all

that, then it really would be great
softwarel I even think I see how you
could turn this into a few simple steps
that work on every project.

well-designed apps rock

Great software in 3 easy steps

N

but
may £ seem 535“?’ rﬂuwl
i B Jou how OORGD ané

Fy
we || show oW]
come pasit printiples tan thandy

1- M&l&e sure yout' our <ohbware forever.

software does what the
customer wants it to do. ~ | e o e ke

Make suve the app does what it's
suppesed {0 do FIRET. This iz
wheve getting gno'_.d—::ﬂluiremcnh
and da—mg Some &r.ahfiis Lomes in.

2, Aﬂlly basic
00 Princi])les to
(” add ﬂeﬂbility.

Orte your soktware works, you
ean look For amy duplitate tode
f.'hﬂi Mltj,'ht have Slll??fd in, and

make swre ‘:,lou"'rg wsing food 00

i brtainges 3. Strive for a

ﬁﬂ{'. d food o[‘gjcﬂ{--nﬁri\!hffd

maintainable,
Ty, reusable design.

F'anﬂl?.IEi to make sure ourr

soktware is '.-:ad-?- to use Lor
Yedrs to Lome.

applying the steps

Remewber Rick? Remewmber his lost customers?

Lets put our ideas about how to write great software to the test and see il they hold
up in the real world, Rick’s got a search tool that isn't working, and it's your job o

fix the application, and trn it into something great. Let’s look back at the app and
see what's going o

Here's our

fest ?Toﬁ'ra-m =

hat veveals piblic class FindGuitarTester |

a ?rthN R v

with the public static veid main{String{] args) { bex % E‘FF_ E’Ih”""ld

searth +ool. /¢ Bet up Rick's guitar inventory mateh Evin's
Inventory inventory = new Inventory(): FH.‘-FmM:s heve.. 4o this
initializelInventory(inventory): 2

urLar
&)
Guitar whatEBrinlikes = new Guitar{™”, 0, "“fender™, “Stratocastor", in Rick's
“electric®, "Alder", “Alder®): 'mu:nfﬂ'r"j'-

Guitar guitar = inventory.searchi{whatErinLikes);

if [(guitar != null) |{ 12

inventory.addGuitar ("V356937,
¢ § i 1499.95, “Fender”, “Stratocastor”,
FindGuitarTester.java S e R e Tame

So let’s apply our 3 steps:

(.» 1. Make sure your
Remember, we Sﬂ'[twm C[oes What tlle

reed to start out N
b';‘,ﬁak.ha e customer wants it to do.

app attually does

w?a‘i‘., Riek wants- \

and it's definitely .

not doing that 2. APP[}r basic Don't worvy too muth abouk
Tlﬁh‘t oW

- = rying {0 apply patt
00 Pﬁnclpl{-:s to other 00 tczf.fw?;, app
add Hexi]:ility. st this point... just get it to

\ wheve i+'s working [ike it should

3. Strive for a 1—)

main’tainal:ule,
reusable c[esign.

14 Chapter 1

If we're starting with functionality,
let's figure out what's going on with that

inventory, he's got "fender”, all lowercase,

insensitive string comparison in the
gearch() method.

Frank: Sure, that would fix the problem Rick’s having now, but
I think there's probably a better way to make this work than just
calling toLowerCase() on a bunch of strings all over the place,

Joe: Yeah, [was thinking the same thing | mean, all that string
camparison seems like a bad idea, Couldn't we use constants or
mayhe some enumerated tvpes for the builders and woods?

Jill: You guys are thinking way too Gar ahiead, Step | was
supposed to be fixing the app so it does what the customer
wants it to do, I thought we weren't supposed to worry about
dlesign yet,

Frank: Well, veah, I get that we're supposed to focns on the
customer. But we can at least be smart abouat fowe we fix things,
right? T mean, why create problems we'll have 1o come hack and
fix later on if we can avoid them from the stan?

Jill: Hoomme.. T guess that does make sense, We don’t want our
solution to this problem creating new design problems for us

down the road. But we're sall not going to mess with the other
parts of the applicaton, right?

Frank: Right. We can just remove all those strings, and the

braken search() method. It looks like in Rick's

and the customer's specs have "Fender” with
a capital "F". We just need to do a case-

well-designed spps rock

Lr[-,’: 3.:1; a |IJ;T_|4'

b'IvEIIF -I:"rnm S0me a.F Py

Programmer buddiss

string comparisons, to avold this whole case-matching thing, DOH t Create
| A ——— mr

Joe: Exactly. IF we go with enumerated types, we can ensure
that only valid values for the builder, woods, and tvpe of guitar

anre :||'+'|~[}l:'q]. T]‘l:tl‘” make sUre [h'nl Rick’s clients .'|L'[:|'=|||'I. e 1o Prnl)lems to

look at guitars that match their preferences.

Jill: And we've actually done a little it of design at the same SOlvg Prﬂl)lemSl

time,.. very cool! Lets put this into action,

you are here »

15

step 1: satisfy the customer

Pitching String comparisons

The first improvement we can make to Rick’s guitar search tool is getting
ricl af all those annoving String comparisons. And even though vou could
use a function like toLowerCase () tw avoid problems with uppercase
and lowercase leters, lets avoid String comparisons altogether: Thes
e are all Jaug iz,
erumerated types that
Fnction srt o like consanis

-public enum Type |

ACOUSTIC, ELECTRIC;

(...-—é-

Each enum) _ _
public String toString() {
awitchithis) {
L dhe 5u'1t.ar case ACOUSTIC: return “a.cn:\ust'f_c"";
% C2% public enum Builder |

Kﬁm det

S{'.ahdra'l'd]_
atvess 1
all auitars

i FENDER,
OLSON,

MARTIN,
RYAN,

GIESON,
PRS, ANY;:

COLLINGS,

public String toStringi() |
switchithis) |
case FENDER: return “Fander”;
case oo - I
public enum Wood |

e

L] '\l'I!.J;"ET #:ﬂ‘ {Iht“
f: " LSTEA, o
Byilder GIBSON: o

i I|.|| 'U'Iﬂs': 5'1‘-".1“3
auoid @ W?ll ckely

\‘—-—————-E’"

he i
case
case

INDIAE_RGEEWOOD, EREZILIAN_RDSEWDOD, MARHOGANTY ,

P, MAPLE, COCOBOLO, CEDAR, ADIRONDACE, ALDEE, SITEA:

avisons

< public String toString() |

switch(this) {
case INDIAN ROSEWOOD:
return “Indian Rosewood”;
case EBRAZILIAN ROSEWCQOD;:
return “Brazilian Rosewood”;

One of L, big advantages of g
enums is that it limits the Fmiltrj

values you g3, wupply 4o 3 n-.»:{l-uar.llt
no more misspellings or ¢350 iS5kLes

e S S

U
thereyare no
............... DIIH] Quﬂﬁﬁgnﬁ o S S L ko K i o oo 47 5 g o o 0 i e T ko o o e 1 5 B s i o S s

Q: Enumerated types let you define a type name, like Wood, and then
a set of values that are allowed for that type (like COCOBOLO,

SITKA, and MAHOGANY). Then, you refer to a specific value like

I've never seen an enum before. What is that, exactly?

A: Enums are enumerated types. They're available in C, C++,
Java version 5.0 and up, and will even be a part of Per 6.

16 Chapter 1

this: Wood . COCOBOLO

= And why are enumerated types so helpful here?

wefl-designed apps rock

public class FindGuitarTester {

; 1) . ; : We can veplac, all &
public static void main{Stringl] args) | pw-f.Fﬂ_m“ with o5g Sfymﬂ
ff Set up Rick's guitar inventory Enumer afad the Pty
Inventory inventory = new Inventory(); 't}"P"-' valups,
initializeInventory(inventoryl ; /

Guitar whatErinlikes = new Guitar(™", 0, Builder.FENDEE,
(.--"__"' “Stratocastor”, Type.ELECTRIC, Wood.ALDER, Wood.ALDER);
) Gultar guitar = inventory.search{whatErinLikes);

The only Shring if (guitar l= null) |
lebt is for the

3 limiked set of FindGuitarTester java

Lhese like 4heve
is with builders

and wood ‘ : b : X

public Guitar searchi{Guitar searchGuitar) |
for (Iterator i = guitars.iterator(); i.hasMext(};)} {
Guitar guitar = (Guitarli.nexti();
/f Ignore serial number since that’s unigue
ff Ignore price since that’s unigue

if (searchGuitar.getBuilder() != guitar.getBuilder{)) that we need
continue; to were
String medel = searchGuitar.getModel () sbout ase on
4 looks ik | if {{model != null) && (!model.egquals (™)) && the wisdel
e = {lmedel .equals {guitar.getModel {} T st
nothing has continue; sinte J‘;“;*
still a ng

thanged, but if (searchGuitar.getType() !'= guirtar.getType())
with Enlams, we /:' continus;
don'E have ta | = if (searchGuitar.getBackWood({) != guitar.getBackWood())

g et continue;
T~ if (searchGuitar.getTopWood() != guitar.getTopWood())
th:: CompParisons continue;
getiing strewed return guitar;
up by misspellings }

oF LJTE ingues, return null;

A: The cool thing about enums is that methods or classes that Q I'm using an older version of Java. Am | stuck?

use them are protected from any values not defined in the enum.

So you can't misspell or mistype an enum without geffing a compiler

error. It's a great way to get not only type safety, but value safety; you A: No, not at all. Visit the Head First Labs web site at http: //
can avoid getting bad data for anything that has a standard range of www . headfirst labs . com, where we've posted a version of

sel of legal values. Rick's Guitars that doesn't use enums, and will work with alder JOKs.

you are here » 17

fragile apps break easily

Let’s take a look at the big picture:

We've veplated
most U'F ﬂl-ase
E\":.rihg Flm?cy-f;iﬂ
With tmmcra{:d
‘E}"I,‘-'fs. —

r/---‘I

The serial number
" ;£||:|_ L a"'d'
we lebt model as 3
Chring sinte there
are thousands
differvent E.ulﬂ"
models out there..

Guitar

serialNumber. String
price: double
builder: Builder
model: String

type: Type
backWood: Wood
topWood: Wood

getSerialNumber(): String
getPrice(): double
setPrice(float)
getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(); Wood

é) The Guitar tlass uses these

Maw Lhe 3ddGuitarl) method
Lakes in severs) enims, instead of

E{:rings or mf,rgelr Lonstants.

Inventory

guitars: List

addGuitar|String, double, Builder, Siring, Type,
Wood. Wood)
getGuitar|String); Guitar

search(Guitar): Guitar

Builder

Chumgrabd 'Eﬂ?ﬂs

Even thoush it
locks like nothings
f_h.ahﬂ_td. m seareh(),
oW WE TE uSing
enums to make sure
we don T miss anty
matehes betause
ok spelling or
ga?i-l;allza'i:'lr:m-

enumerated types to n:q:rescni:
data, in @ way that wont aet

sevewed wp by tase issues or
ervors in spelling,

wiy too many for an
enare Lo be h:|?$u!i

So what have we really done here?

We've gotten a lot closer to completing step |

i building great software. Rick's problem with
searches coming up empry when he's got a matching
zuitar in his inventory is a thing of” the past.

1. Make sure your
software does what the

customer wants it to do.

Even better, we've made Rick’s application less
Sragile along the waw It's not going o break so
t'?l!‘i‘il'ﬁ' [ALELEYS I._H'L'i'l.l_,l."i{' 'I'r't_‘"". L} i'l.ddl'l’_l.]_ll Flh [':I:J{' ‘i’lﬂ"['\
and value safety with these enums. Uhat means less
problems for Rick, and less maintenance for us,

Code that is not -Fvag,ih
is genevally referred to as
robust Ll-tin!

18 Chapter 1

Apply Step 1 to your own project.

It's time to see how you can satisfy your own customers. n the
blank below, write a short description of the current project you're
working on (you can also use a project you finished recently):

Mow, write down the first thing you did when you started working on
this project. Did it have anything to do with making sure your code
did what the custorner wanted it to?

If you started out focusing on something other than the customer,
think about how you might have approached things differently if
you knew about the 3 steps to building great software. What would
have been different? Do you think your application would be any
better or worse than it is right now?

— Dum

well-designed apps rock

thereyare no
b Questions—

Q: So it's OK to do a little design
when I'm working on Step 1, right?

. Yeah, as long as your focus is
still on the customer's needs. You want
the basic features of your application in
place before you start making big design
changes. But while you're working an
functionalify, you can certainly use good
Q0 principles and techniques to make
sure your application is well designed
from the starl.

- That diagram over on page
18 is a class diagram right? Or is it
class diagrams, since it's more than
one class?

A: It is a class diagram, and a single
diagram can have multiple classes in i,

In fact, class diagrams can show a lot
more detail than you've seen 5o far, and
we'll be adding o them in the next several
chapters,

Q_: So we're ready to move on
to Step 2, and start applying OO0
principles, right?

A: Mot quite... there's one more
thing Rick would like us to help him with
before we're ready to start analyzing
our code for places we might be able to
improve it Remember, our first job is to
please the customer, and then we really
focus on improving cur OO design.

you are here » 19

similar, but different

So I thought this was
perfect, but then I realized...
I have twe guitars that Erin would
love. Could you make the search
tool return both of them?

.ﬁ."rr_k's happY with Your
mProvements byt he really
needs the 3PP to return al|
mate h'rh5 Guit s, ha‘l':jl.-:

t ome.

JHE fﬂ therk
ot both of
thﬂc 3'-“'!:&':*;.

inventory,.addGuitar (*We569537,
1499.95, Builder.FENDEE,
“Stratocastor”, Type.ELECTRIC,

Wood ALDER, Wood.RLDER) ;

These guitars are almost

exactly the same. Only

the sevial rumber ihd inventory.addGuitar (V512"
prite ave difbevent 1549.95, Builder.FENDER,

“Stratocastor”, Type.ELECTRIC,
Wood.ALDER, Wood, ALDER);

20 Chapter 1

well-designed apps rock

Rick’s customers want choices!

Rick’s come up with a new requirement for his app: he wants his
search tool to return aff the guitars that match his client’s specs, not
just the first one in his inventory,

Inventory
gurs Lo el e
addGuitar(String, double, Builder, String, Type, objects if Rick]:-.as ::,r;&
Wood, Wood) one quitar that matikes ki =
getGuitar|String): Guitar tlient’s spes. ’
search(Guitar): List

(<=7 Code Magnets

LY
. il Let's continue with Step 1, and make sure we've got the app working right. Below

is the code for the search() method in Rick's inventory tool, but it's up to you to fill
in the missing pieces. Use the code magnets at the bottom of the page to return
all the matching guitars from Rick's inventory,

public search(Guitar searchGuitar)
= new L)z
for (Iterator i = guitars.iterator(); i.hasNext();) |
Guitar guitar = (Guitar)i.next(};

/Y Ignore serial number since that's unique

ff Ignore price since that’s unigue

if (searchGuitar.getBuilder() != guitar.getBuilder())
continue;

String model = searchGuitar.getModel ();

if {(model !'= null) && (!model.sguals(™"™)) &&

('model . equals {guitar.getModel (1)))

conhtinue;

if (searchGuitar.getType() != guitar.getType())
continue;

if {(searchGuitar.getBackWood () != guitar.getBackWood())
continue;

if (searchGulitar.getTopWood() !'= guitar.getTopWood())
continue;

[| I

}
return H

you are here »

21

maintenance, design, and requirements

nlmiﬁﬂ.
.
o]

Code Magnets

Let's keep on with Step 1, and make sure we've got the app working right. Below is
the code for the searchi) method in Rick's inventory tool, but it's up to you to fill in
the missing pieces. Use the code magnets at the bottom of the page to return all

'Fﬂ*" Ir{n:k“s tlient.

Guitar guitar =

the matching guitars from Rick's inventory.

i

/{ Ignore serial number since that's unigue
/f Ignore price since that’s unigue

if (searchGuitar.getBuildexr ()

= null) &&

searchGuitar.getModel ()
{Imodel .equals(™")] &&

(!model.eguals (guitar.getModel ())})

if (searchGuitar.getType ()

continue;
String model =
if ((model
continue;
Mﬂtﬁ\ing quitars continue;
ﬁl!“.‘. added fo the
list of uf‘f.inhi continue;

continus;

if {(searchGuitar.getBackWood ()

if (searchGuitar.getTopWood(}

Q—? !snatchj.?.gﬁuit ars '

t

return |matchingGuitars

fgire e

Q} So I'm not done with the first
step until the application works like my
customer wants it to?

A: Exactly. You want to make sure that
the application works like it should before
you dive into applying design patterns or
trying to do any real restructuring of how the
application is put together,

22 Chapter1

[e

-
Leftover magnets.

You actualty covld
have used either 3
LinkedList or an

.hasNext {);) ([HAvraylist here

both thaites are OK.

'= guitar.getBuilder()}

= guitar.getType ()]
'= guitar.getBackWood())

'= guitar.getTopWood())

ik | Arraviiot]

LSLERE =

the
Dumb Questions

* And why is it so important to
finish Step 1 before going on to Step 27

A: You're going to make lots of
changes to your software when you're
getting it to work right. Trying to do too much
design before you've at least got the basic
functionality down can end up being a waste,
because a lot of the design will change as
you're adding new pieces of funclionality to
vour classes and methods.

+ You seem sort of hung up on this
“Step 1" and “Step 2" business. What if |
don't code my apps that way?

+ There's nothing that says you have
to follow these steps exactly, but they do
provide an easy path to follow to make
sure your software does what it's supposed
to, and is well-designed and easy to
reuse. If you've got something similar that
accomplishes the same goals, that's great!

well-designed apps rock

Test drive

We've talked a lot about geting the right requirements from the
customer, but now we need to make sure we've act I,:I.'JI.]:.' 2ol those
requirements handled by our code. Let's test things out, and see if’ our
app is working like Rick wants it to:

Here s - public class FindGuitarTester |

the test We',
I p] : ! E"‘s'“’fjﬂhumfr,;-&
program, public static woid main(String[] args} | ‘l-."."'F'C-‘- ik d
,,Fﬁaéxd /f Bet up Ricek’s guitar inwventory T Lo test drive. [y
bo use Lthe Inventeory inventory = new Inventoryi): 1Pimg mistakes this Fime!
. initializeInventary (inventory)
nEw YErIion
"F Riek's Guitar whatErinLikes = new Guitar("™", {0, Builder.FEMNDER, el
searth teol "“Stratocastor”, Type.ELECTRIC, " ol
Wood . ALDER, Wood. ALDER); version, we need
List matchingbGuitars = inventory.sesarchiwhatErinLikes}; 'Eﬂi{t"'-!{: aver
if ('matchingGuitars isEmpty()) | == all the thoiges
This time System.out.println (YErin, wyou might like these guitars:”); returned from
- ﬁr‘lt. a for (Iterator i = matchingGuitars.iterater(); i.hasMext();)} { the seaveh ool
whole list Guitar guitar = (Guitar)i.next(); '
. e System.out.println(® We have a " +
Jﬁmﬂri LE : EaTy B e : _ .
guitar.getBuilder () + + guitar.getMcdel (|} +
that '“a*"ljh guitar.getType(] + ™ guitar:\m i
+he f-hﬁh‘ts guitar.getBackWeood() + ™ back and sides,’\n " 4
speds. guitar.getTopWood() + ™ top.\n You can hawve it for only 5" 4
‘ guitar.getPriea() + "l\n —----%);
}
] elae |

System.cut.println (“Serry, Erin, we have neothing for you.”):

FindGuitarTester java

Fla BS1 Window Halp SesatSmed

tjava FindGuitarTester
Erin, you might like these guitars:
We have a Fender Stratocastor electric guitar: Yesl That's txﬂﬂﬂy what I
and sides, want it to do.

1 can have it for only 51499.55!

We have a Fender Stratocastor electric guitar:
Alder back and sides,
Alder top.

You can have it for only 51549, 851

E,-:Erw?ll;hm‘u} warkcd!' Evin 5\.:{5
several ly.n&&r retommendations,
and Riek's eustomers ave going

u it in-
+o start buyirg guitars aga you are here » 23

apply your oo principles

Back to our steps

MNow that Fick’s all set with our sofiware, we can begin to use some
0 |'u'i|'|| iJ]]I‘h‘ :-Ll'lLf miake sure l|'||~ -iII:')lJ 15 flexible and 1.\|'|.]-|[L':~ig!'|t'd.

Now that the ap does what
P
software does what the
customer wants it to do.

5o this is where we can
make sure there's no duplicate
code, and all our objects are well
designed, right?

2. Apply basic
00]:brinci])les to
add fj:xil)i[ity.

Re

' Here's where You take
* sobbware that works, and
3. Strive for a e e b vy W ok
together attually makes semse
maintainable,

reusable Jesign.

24 Chapter 1

well-designed apps rock

Looking for problews

Let's dig a little deeper into our search tool, and see it we can find any
problems that some simple OO principles might help improve, Lets start by
taking a closer look at how the search () method in Inventory works:

I'm looking for a Martin
acoustic guitar... you got
anything, Rick?

The tlient provides 3 set &F spets

i For their ideal Qurtar, in the
/ \ form of 3 Guitar chiect

The searchl} methed is

¢alled with the spees from

the tlient, and begins 3
- seavth on Rick's inventory.

The tlient doesn't
Frﬂ'l'idf 8 P""d-f or
!cﬁﬂ-l humbn-‘ Sinte

theose are unique ta E-ﬂr:'l': l_!lui‘{:.a'r =
eath Fa"i::ﬁu];r ﬁhiﬂr Rick's inv:n‘{:m‘jl
She just provides is tompared

iﬁﬂ'll'-ft the spets
£ in the client's
Guitar objeet.

spees to mateh on.

pvei: 1.7 N
Is anything wrong here? What

problems might there be with
Rick’s search tool?

((/=
chpo wass Bunpduy wonsuny

gty o i There's a Guitar nhjtf;k For eath
jasigo yoes JeuM Jnoge YU JLIH auitar im RiK's oty sivios
the sevial rumber, price, ard
specs Lor eath instrument.

you are here » 25

analysis of the search() method

Analyze the search() method

Let's spend a licde ame analyveing exactly what poes on in the
search () method of Inventory. java. Before we look at
the code, though, let’s think about what this method sheuld do.

26

€) The client provides their guitar preferences. — 1, ot can speciy only

; e I I re i erties of an
Each of Rick’s clienis has some propertes that i]:q_-:.,- re interested Efr.§r3| Proper |
insbrument. So Lhey never PPl

in finding in their ideal guitar: the woods used, or the tvpe of
' ! : ide
a sevial number or @ FY

guitar, or a particular builder or model. They provide these
preferences o Rick, who feeds them into his inventory search tool,

The search tool looks through Rick’s inventory.

Onee the search ool knows what Rick’s client wants, it starts to
loop through each guitar in Rick’s inventory:

Each guitar is compared to the client’s preferences.

For each guitar in Rick’s inventory, the search tool sees i tha ‘t\.__
puitar matches the clients prelerences. I there's a match, the
matching guitar is added o the list of choices for the client.

All the geneval Properties,
like the 1|:af‘ wood Jnd Buita

Lot

builder, ave Lompared 1o the
thent's Prefevences.

Rick’s client is given a list of matching guitars.

Finally, the list of matching puitars is returned 1o Rick and his
client. The 1'][¢'I'|l can make a choice, and Rick can make a sale,

Use a textual Jescription of the Prn])le:n
yﬂu’re trying to solve to make sure that
your c[esigﬂ lines up with the intended
functionaljty of your aP]Jlicai'iun.

Chapter 1

The Mystery

well-designed apps rock

of the
Mismatched
Q\ Object

STOP! Try and solve
Ehis ...»-F{;:Yry before
furning the page.

In the better-designed areas of Objectville, objects

are very particular about their jobs. Each object is
interested in doing its job, and only its job, to the hest
of its ahility. There’s nothing a well-designed object
hates more than being used to do something that really
isn't its true purpose,

Unfertunately, it's come to our attention that this is
exactly what is happening in Rick's inventory search
tool: somewhere, an object is being used to do
something that it really shouldnt be doing. It's your job
to solve this mystery and figure out how we can get
Rick's application back in line.

Ta help you figure out what's gone amiss, here are
some helpful tips to start you on your search for the
mismatched object type:

1. Objects should do what their names indicate.

If an object is named Jet, it should probably takeOffi)
and land(), but it shouldn’t takeTicket{}—that's the job
of another object, and doesn't belong in Jet.

2. Each object should represent a single concept.
You don’t want objects serving double or triple duty.
Avoid a Duck object that represents a real quacking
duck, a yellow plastic duck, and someone dropping
their head down to avoid getting hit by a baseball.

3. Unused properties are a dead giveaway.

If you've got an ohject that is being used with no-value
or null properties often, you've probably got an object
daing more than one job. If you rarely have values for a
certain property, why is that property part of the cbject?
Would there be a better object to use with just a subset
of those properties?

What do you think the mismatched object type is? Whrite your answer in the blank below:

What do you think you should do to fix the problem? What changes would you make?

you are here »

27

duplicate code sucks

You knaw, Rick's clients really
aren't providing a Guitar object...
I mean, they don't actually give him
a guitar To compare against his
inventary.

Framk: Hev that's vight, Joe. T hadn’t thought aboue that before,

Jill: So what? Using a Guitar object makes it really easy 1o do
comparisons in the search{) method,

Joe: Novany more than some other object would, Look:

A small
if {searchGuitar.getBuilder() != -— -F'rag,mcn{-
guitar.getBuilder(})) f From the

continue; searehl)
""f{hﬂd I

rhh'fn{mﬂf.

Joe: 1t really doesn’t matter what tvpe of object we're using there, as

long as we can figure out what specibic things Rick’s clients are looking

Encapsulatinn for.

Frank: Yeah, 1 think we should have o new object that stores just the
al.l.ﬂws yﬂu tﬂ specs that clients want to send o the search) method. Then they're not

sending an entire Guitar object, which never seemed to make much
g[‘ﬂu]} yﬂli[' SERSe 10 e,

I_‘i _l_. . t Jill: But isn't that going o create some duplicate code? It there’s an
aPP cation into object for all the clients specs, and then the Guitar has all its properties,
weve pot two getButlder]) methods, two getBackWood) methods. .

lﬂgi{!al Pﬂt‘t.‘i; that’s not good,

Frank: So why don't we just encapsulate those properties away fvom
Cruitar into a new object?

Joe: Whoa. .. | was with vou until you said “encapsulate.” | thought

batk to Appen A that was when vou made all vour \':l]'mllh_'ﬁ private, so II.HEJH'IJ}'.('H.II]H use
that chart mhrnfuﬁt‘Z" . them incorrectly. What's that got 1o do with a guitar’s properties?
2 | d then Lomw 2 5 i : : z
ﬂhjzf-t“"l'c' :; Leer veading: Frank: Encapsulation is also about breaking vour app inte logical
£ 4 4 ;
batk heve) parts, and then keeping those parts separate, So just like vou keep the

data in your classes separate from the rest of your app’s behavior, we
can keep the generic properties of a guitar separate from the actual
Cruitar object itself

Jill: And then Guitar just has a variable pointing to a new object tvpe
that stores all its properties?

Frank: Exactly! So we've really encapsulated the guitar properties out
of Gruttar, and put them in their own separate object, Look, we could

28 Chapter 1 do something like this. ..

well-designed apps rock

Your pmcll Create the GuitarSpec object.
e Below, you'll see the class diagram for Guitar, and the new GuitarSpec object that Frank, Jill, and
Joe have been discussing. It's your job to add all the properties and methods that you think you'll
need to GuitarSpec. Then, cross out anything you don't need anymore in the Guitar class. Finally,
wa've eft you some space in the Guitar class diagram in case you think you need to add any new
proparties or methods. Good luck!

Guitar GuitarSpec
seriaiNumber: String
price: double
builder: Builder
model: String i h/')
D b
backWood: Wood Guitar object
topWood: Wood that you Ehink
belongs in the new
QuitarSpet tlass.

getSerialNumber(): String
getPrice(): double

setPrice(float) Vo i i
getBuilder(): Builder a;a Properties
getModel(): String s t&“:‘j}_l“;i b
getType(): Type thirk you need to
getBackWood(): Wood

getTopWood(): Wood)

* | you get stuck, Lhink abeut the things that ave
tommon bebween the Guitar ahj:d: and what 2
tlient would supply to the seavthl) method.

you are here » 29

encapsulate what varies

Create the GuitarSpec object.

Below you'll see the class diagram for Guitar, and the new GuitarSpec object

that Frank, Jill, and Joe have been discussing. It's your job to add all the
properties and methods that you think you'll need to GuitarSpec. See if you
made the same changes that we did.

These twe propecties are

=fill whigue Lo each Buitar,

50

30

‘[‘.hql -'i'!:&*f Guitar
X""‘ sarialNumber: String
prica; double
These are the RIZP = =)
yéuperacs
Ihat Rick's

tlients supply —

te searthl), so
we Lam movE
them nto
.5.,.[{375?1‘!5

=

getSerialNumber(): String
getPrice(): double

GuitarSpec

We ve removed
duplicated
tode b';r' maving
all the tommaon
'Fi'u?:r'b:s-
and velated

We also reed 2
veferente to
a GuitarSpes

setPrice(float)

methods—inte
an ui:lj:t{; that
we Ldn uie ;:-r

ob J,:f.{:, for
each auitar

(‘

The methods Follow the same pattern
as the properties: we remove any
duplieation bebween the ehient’s spees
and the Quitar object

Chapter 1

both search
vequests and
ﬁuita'r details

Now update your own code

With this class diagram, vou should be able to add the
GuitarsSpec class to vour application, and update the Guitar
class as well, Go ahead and make any changes you need o
Inventory.java so that the search tool compiles, as well.

dre no

the
Dum

Q,: | understand why we need an object for the client
to send specs to searchi)... but why are we using that
object to hold properties for Guitar, too?

A: Suppose you just used GuitarSpec to hold client
specs for sending to the search () method, and you kept
the Guitar class just the same as it was. If Rick started
carrying 12-string guitars, and wanted a numStrings
praperty, you'd have to add that property—and code for a
getNumStrings {} method—to both the GuitarSpec
and Guitar classes. Can you see how this would lead to
duplicate code?

Instead, we can put all that {potentially) duplicate code into
the GuitarSpeec class, and then have Guitar objects
reference an instance of it to avoid any duplication,

Anytime you see
cjgplicate code, look for a
place to encapsulate!

Q,: | still am confused about how this is a form of
encapsulation. Can you explain that again?

A: The idea behind encapsulation is to profect information
in one part of your application from the other paris of your
application. In its simplest form, you can protect the data

in your class from the rest of your app by making that data
private, But sometimes the information might be an entire

set of properies—Iike the details about a guitar—or even
behavior—like how a particular type of duck flies.

When you break that behavior out from a class, you can
change the behavior without the class having to change as
well. 5o if you changed how properties were stored, you
wouldn't have o change your Guitar class at all, because
the properties are encapsulated away from Guitar,

That's the power of encapsulation: by breaking up the different
parts of your app, you can change one part without having to
change all the other parts. In general, you should encapsulate
the: parts of your app that might vary away from the parts that
will stay the same.

Questions—

well-designed apps rock

Leb's see how we're toming along on

our three steps o great sof bware.

l
‘/I.’Pla]w. sure your

software does
what the customer
wants it to do.

Heve's what we're dainc_l,
now: working en design.

C. 2. Apply hasic

00 Principles to
add ﬂexilxilityé

This is where

‘l;‘ou lock #ar hllg,
problems, especially
related 1o things
like duplicate eode
or bad elass design

3. Strive for a
maintainable,

~ reusable Jesign.

Remember, we've aot even
more design work to do in this
step, so belore *Jlere derme,
your software is veally easy to

extend and reuse
you are here b

31

updaling the inventory

Update the Inventory class

Now that weve encapsulated away the specifications of a guitar,
we'll need 1o make a few other L'!'La'lr'l_qmi o o code,

Inventory

guitars: List
addGuitar(String, double, Builder, String, Type,

Wood, Wood)
getGuitarString): Guitar
search(GuitarSpec): List

o

Now searehl} takes a
ﬁuﬂ;&rﬂ?cﬂ. instead o-F an
entive Guitar objett

piblic class Inventory {

/f wariables, constructor, and other methods

public List search|GuitarSpec searchSpec) |
List matchingGuitars = new LinkedList():
for (Iterator i = guitars.iterator(); i.hasMext()i:) |

Guitar guitar = {(Guitar)i.next();
s i L guitn.rSpnc guitarSpec = guitar.getSpec();
£l of the i ey if (searchSpec.gstBuilder() != guitarSpec.getBuilder())
we uSE i W?if'“ﬁg : continue;
ﬁhliwﬂ itin ﬁurla.a'f ?‘l - String model = searchSpeec.getMcodel () .toLowerCase();
i “ﬁm&m{mtﬂ if ((model !'= null) && (!model.eguals (™7} &&
i !model.equals (guitarSpec.gatiModel () . toLowerCasa ())]
continue;
T # if (searchSpec.getTypel() != guitarSpec.getType())
= Lode is almast the cantinue;
same as it was before, if (searchSpec.getBackWood() != guitarSpec.getBackiood())
exlept now we've using continue;
“"F"""'ﬂ‘l'-i'#ﬂ in the if (searchSpec.gstTopWood() != guitarSpec.getTopWood())
QuitarSpec objeet continue;

matchingGuitars.add{guitar);
4
return matchingGuitars;

i
} \
d our
Even though we thanae .
.:.;:5!-:5 a ik, this hﬂ.ﬂ"uﬂrd ﬂ
reburns @ hisk ok guitars 1
_skeh the client's specs

32 Chapter 1

Getting ready for another
fest drive

You'll need w update the FindGuitarTester
class to test out all these new changes:

public class FindGuitarTester |

public static vold main(String[] args)
// Set up Rick's guitar inwventory
Tm;tmm.ﬂm Inventory inventory = new Inventory({):
tlient sends 3 initializelnventory (inventary);

seaveh(). —=|GuitarSpec whatErinlikes =

new GuitarSpec/(Builder.FENDER, “Stratocastor®,
Wood .ALDER, Wood.,ALDER) ;
List matchingGuitars = inventory.search(whatErinLikes);

if (!matchingGuitars.isEmptv()) |

well-designed apps rock

Type.ELECTRIC,

Syatem,out.println (YErin, you might like these guitars:*);
for (Iterator i = matchingGuitars.iterator():; i.hasMext{}; } |

Guitar guitar = (Guitar)i.next();

GuitarSpec spec = guitar.getSpec(); ‘E"-_____"_“‘"a

System.out.println{®* We have a

LT

spec.getBuilder () + + spec.getModel ()

Wy

spac.getType () + guitar:in

spec.getBackWood() + ™ back and sides,\n

We've wusing the mew
GuikarSpet tlass

heve as well

(=X 3

spec.getTopWood () + ™ top.\n You can hawve it for only 5% +

guitar.getPrice() + ™“!'\n —="});

]
b else |

System.out.printlni®saorrcy, Erin, we have nothing for wyou.”);

private static vold initializelInventory(Inventory inventory)

/f Bdd guitars to the inventory...

}

- (et ONLiNE
==

You can download the curvent version of Rick’s search wool ai
hitp:/ fwww headfirstlabs.com, Just look for Head First OQOA&D,
and find “Rick’s Guitars (with encapsulation)”.

FindGuitarTester.java

you are here » 33

using obejct-oriented principles

., W
L

Y WHY DO \ ﬂhﬂ:ﬂ-ew*r

o

¥

You've learned a lot about writing great soltware, and there’s still more to

zo! Take a deep breath and think about some of the terms and principles
we've covered, Connect the words on the lefi to the purposes of those

techniques and principles on the right.

Without me, you'll never actually make the

FLexibiLity

customer happy. No matter how well-designed

your application is, ['m the thing that puts a
smile on the customer’s Yace.

EncaPSuLation

I'm all about reuse and making sure you're not
trying to selve a problem that someone else has

already figured out.

You use me to keep the parts of your code that

FunctionaLity

stity the same separate from the parts that

change; then it's really easy to make changes to
your code without lrmﬂk‘ing everyt iﬁng.

DeSign Pattern

Use me so that your software can change and
grow witheut constant rewerk, [keep your

application from being fragile.

the
Dum

Q_T Encapsulation isn't the only 00 principle | can use at this
stage, is it?

A: Nope. Other good OO principles that you might want to think
about af this stage are inheritance and polymarphism. Both of these
relate to duplicate code and encapsulation though, so starting out by
looking for places where you could use encapsulation to better your
design is always a good idea,

We'll talk about a lot more OO programming principles throughout this
book (and even see a few sing in Chapter 8), so don't worry if you

are still getting a handle on things at this point. You'll learn a lot more
about encapsulation, class design, and more before we're done.

34 Chapter 1

gre no i
Questions

———— /nswers on page 52.

a But | don't really see how this encapsulation makes my
code more flexible. Can you explain that again?

A: Once you've gotten your software to work like it's supposed
to, flexibility becomes a big deal. What if the customer wants to
add new properties or features to the app? If you've got tons of
duplicate code or confusing inhertance structures in your app,
making changes is going fo be a pain,

By introducing principles like encapsulation and good class design
into your code, it's easier to make these changes. and your
application becomes a lot mare fiexible,

well-designed apps rock

Getting back fo Rick’s app...

Let's make sure all our changes haven't messed up the
Way Rick’s toal works, Cl H'l'llﬁh' wour classes, and run the
FindGuitarTester program again:

Fia Edi ‘Wiios Halp MotQuita| nasams:
%$java FindGuitarTester
Erin, you might like these guitars:

We have a Fender Stratocastor electric guitar:
Alder back and sides,

' Alder top.
it rmpﬁ’-tiﬂ:*- You can have it for only $1499.95!
dllﬁ;ﬂ"l!n‘l.‘_ his Time, gt
buk the application i
bebter desianed, and

We have a Fender Stratocastor electric guitar:
Alder back and sides,

lexible. Alder top.

muth more Flexi You can have it for only 51549, 95!

OURRANN
P AOWER

Can you think of three specific ways that well-

designed software is easier to change than software
that has duplicate code?

you are here » a5

time for some serious design

Pesign once, design twice

Onee vou've taken a first pass over vour software and applied
somne hasic (0 |3:|1'il'|n:'i|'r|u:'.\:, }'lll,]‘!l'l" |‘1".1l::|3.' 1o take another look,
and this time make sure your software is not only flexible, but
easily reused and extended.

ﬁ.' Make sure your
software does
what the customer
wants it to do.

It's time to really think about
reuse, and how easy it is to make
changes to your software. Here's where
you can take some well-designed classes
and really turn them into a reusable,

extensible piece of software.

\2./ ﬂpply hasic
00 Pt‘iﬂCiPlES to
add ﬂexi]:ility.

Onte you've pplied some basip

F"{J Printiples, you're vead

|
Lo dPpElY some Patterns gnd
r::l“‘;p' -Fo(.u: an Feuge.

3. Strive for a é/

maintainable,
reusable c[esigﬂ.

36 Chapter 1

well-designed apps rock

(really)
Let’s make sure lnventoryjava is'well-designed

Weve already used encapsulation to improve the design of Rick’s
search [nul, bt there arve still some ijl,':li,"t'!‘i in our code where we
could get rid of potential problems. This will make our code easier

WNow £ ! ; ;
to extend when Rick comes up with that sedt new featare he wants e — hat Youve made Rick 2 Wkrhg seaveh

7 i tool, you k :

in his inventory search tool, and easier to reuse i’ we want o take hc;;ﬁhﬁ?hciwhﬂﬁmlﬁﬂbﬂkWhn
. i ; “ nts &

just a few parts of the app and use them in other contexts. nges made £o the ool

) \ \
ublic List search(GuitarSpec searchSpec) |
List matchingGuitars = new LinkedList();:
for (Iterater i = guitars.iterateor(); i.hasMNext(); 1 |

Guitar guitar = (Guitar)i.next{);
GuitarSpec guitarSpec = guitar.getSpeci);
Heve's the if (zearchipec.getBuilder () != guitarSpec.getBuilder())
searchl) continue;
m&#ﬁlem String model = searchSpec.getModel () .toLowerCases();
| rertory. 3V if ((model != null) && {Imodel.equals(™")) &&
Take a tlose {!model.equals {(guitarSpec.getMcdel () .tolowerCasel())})
Lok at this continue;
k. if (searchSpec.getType() !'= guitarSpec.getType())
continue;
if (searchSpec.getBackWood() != guitarSpec.getBackWood{))
continue;
if (searchSpec.getTopWood() '= guitarSpec.getTopWood())
continue;

matchingGuitars.add (guitar);
i

return matchingGuitars;

et e —t Sl

Inventory java

m e B S B S

What would you change about this code?

There's a big problem with the code shown above, and it's up to you to figure it out. In
the blanks below, write down what you think the problem is, and how you would fix i,

See what we said on page 37.

[

you are here »

[45]
-

are simple changes simple?

You know, I've always loved
playing 12-string guitars. How hard

would it be to update my app so T
can sell 12-string guitars, and let my
clients search for them, too?

How easy is it to make this
change to Rick’s application?
Take a look at the class dingram oo Rick’s
application, and think abour what you
would need to do to add support for

| 2-string guitars. What properties and
methods would von need o add, and 1o
what classes?® And what code would vou
need o change 1o allony Rick’s clients to
search for 12-strings?

Heww mamy classes did you have to moddify

o make this change? Do vou think Rick’s
application is well designed right now?

Guitar

serialNumber: String
price: double
spec: GuitarSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

38 Chapter 1

well-designed apps rock

Annotate Rick's class diagram. @H m_rpm your Fﬁﬂi
: _ Y
Rick wants to be able to sell 12-string g
GuitarSpec guitars. Get out your pencil, and add notes
builder: Builder to the class diagram showing the following things:
model: String 1. Where you'd add a new property, called numStrings, to store the
type: Type number of strings a guitar has.
backWood: Wood 2. Where you'd add a new method, called getNumStrings(), to return
i the number of strings a guitar has.
topWood: Wood 3. What other code you think you'd need to change so that Rick’s

clients can specify that they want to try out 12-string guitars.

getBuilder(): Builder

etModel(): Strin Finally, in the blanks below, write down any problems with this design
g g
QE'[T}"EIE[II' T}fpe that you found when adding support for 12-string guitars.

getBackWood(): Wood
getTopWood(): Wood

H-E‘rg"s a hlh‘ll:. ':||'o1.- sheou|d 3::1;
dr drswer heve velated 4o
Inventory what you wrote down in Lhe

hlanki |:Gu’.k on Faﬁ: a._ll'

guitars: List

addGuitar(String, double, Builder, String, Type,

Wood, Wood)
getGuitar(String): Guitar
search(GuitarSpec): List

Builder)
Type l
Wood
toString(): String

v 3 7 N
TTVAOWEWR

What's the advantage of using a
numstrings property instead of

just adding a boolean property to
indicate if a guitar is a 12-string?

you are herg » 39

we have an encapsulation problem

narpen your PGI'ICII Annotate Rick’s class diagram.

N
- ahswm Rick wanis to be ble to sell 12-string guitars. Get out your pencil,
and add notes to the class diagram showing the following things:

1. Where you'd add a new property, called numStrings, to store the number of strings a

guitar has.

2. Where you'd add a new method, called getMumStrings(), to return the number of strings

a guitar has.

3. What other code you think you'd need to change so that Rick's clients can specify that

they want to try out 12-string guitars.

Finally, in the blanks below, write down any problems with this design that you found when

adding support for 12-string guitars.

We're adding a property to GuitarSpee, but we

have to change eode in the lnventory class’s

searchl) method, as well as in the construetor

We need ts I:-!'iﬂhﬂt
H'Inf ﬁmim{w
of this elass, sinte

fo the Guitar class.

it takes in all

Gulter the properties in

7

Heve's what we fame up
with... did You write deown

Some 'Ehimj similare

We need to add 3
r\-l.lﬂ"—(;hr""ﬁi ?’rﬁ?{'rt? {ﬁ'
bhe GukarSpec clas

GuitarSpec

builder: Builder
model: String

bype: Type
backWaod: Waod
topWood: Wood
getBuildar(): Builder
gethodell): String
getType(): Type

reed 3 -

ai{i::fh;ﬁ” getBackWood(): Wood
me L] ¥
tlass to vreturn
how many sbrings
3 quitar bas

getTopWood(): Wood

40 Chapter 1

serialNumber: String
price; double
spec: GuitarSpec

QuitarSpee, and

treates 3 GuitavSpes
object iteelf.

getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpecy); GuitarSpec

This elass's addGuitar() method
deals with all of a guitar's

properties, too. New properties
mears changes 4o this method—

that's a gr uhlclh"}

Inventory /

quitars: List /

addGuitar{String, double, Builder, String, Type,
Wood, Wood)
getGuitar(String): Guitar

search|{GuitarSpec): List

,L_/—‘ Anather preblem:

we have 4o

Builder L thange the

Type . searthl) method

here to atfount

Wood
for the new

toString|): .Stn'ng

F*FT{'F{":" n
ﬁu-{arﬂm

well-designed apps rock

So that's the preblem,
right? We shouldn't have to
change code in Guitar and Inventory to
add a new property to the GuitarSpec
class. Can't we just use more

encapsulation to fix this?

That’s right—we need to

encapsulate the guitar
specifications and jsglate
them from the rest of Rick’s
guitar search tool.

Even though you're adding a property

only 1o the GuitarSpec class, there

are two other classes that have to be
modilied: Guitar and Inventory.

The constructor of Guitar has o 1ake

an additional property now, and the
search () method of Inventery has to
do an extra property comparison.

This Cunsf:rudf‘.ur tredtes 3
ﬁuuta'rE?ct ab_jcc{. 5o every
time the pec ﬁhangcs. this
tode has to thange, {oo.

This tode is not easy {o
veuse. | he tlasses ave all
m{:\"d:"ﬁ!‘.ﬁdcnt and You
pant use one ¢lass without
using all the others, too

welel aquale (guitardpes, getMadal (b, talowartaas ()1]

Irrvenbory java

you are here » 41

strive for reusable applications

% Design Puzzle

It’s not enough to know what's wrong with Rick’s app, or even to figure out that
we need some more encapsulation. Now %, need to actually figure out how to fix
his app so it’s easier to reuse and extend. 72%

The problem:

Adding a new properiy io GuitarSpec. java results in changes
to the code in Guitar. java and Inventory.java. The
application should be restructured so that adding propertes w
GuitarSpec doesn't aftect the code in the rest of the application.

Your task:

o' Add a numStrings property and getNumStrings () method w

GuitarsSped. java,
e Modity Guitar. java so that the properties of GuitarSpec are Not sure what
1'r'|('nl}.~au'|a|.11:1’_l ':Iw:-'l} ﬁ'i Tl I}H' Constructor of 1}]4' L"I-"IHH. dtff}iﬁlﬂh ig?

6 Change the search () method in Inventory . java to delegate — Chetk this out.,
comparing the two GuitarSpec objects 1o the GuitarSpec class,
instead of handling the comparison directly,

All you should

have 1o do
beve is update = > 9 Update FindGuitarTester . java to work with vour new classes, and
tode that make sure everything still works,
L& le . 4 ;i
ereates 3 b ?“ e Ciompare your answers with ours on page 44, and then get ready for
Lt ' e 1 v . . . -~ &

invento Guitar another test drive to see iF we've finally got this application hnished.

the new Bw

t_gnst'rul'.-ltﬂ"'

42 Chapter 1

the ne

+ You said | should “delegate”
comparisons to GuitarSpec. What's delegation?

A: Delegation is when an object needs to
perform a certain task, and instead of doing that
task directly, it asks another object to handle the
task (or sometimes just a part of the task).

S0 in the design puzzle, you want the seaxch ()
method in Inventory [0 ask GuitarSpec 10
tell itif two specs are equal, instead of comparing
the two Gui tarSpec objecs directly within the
search () method itself. search () delegates
the comparison (o GuitarSpec.

Q_: What's the point of that?

- Delegation makes your cods more
reusable, It also lets each object worry about
its own functionality, rather than spreading the
code that handles a single object’s behavior afl
throughout your application

One of the most common examples of delegation
inJava is the equals () method. Instead of a
method rying to figure out if two objects are equal,
it calls equals () on one of the objects and
passes in the second object Then it just gels back
a frue or false response from the equals ()
method,

well-designed apps rock

. And what does delegation have to do
with code being more reusable?

Delegation lets each object worry about
equality {or some other task) on its own. This
means your objects are more independent of each
other, or more loosely coupled. Loosely coupled
objects can be taken from one app and easily
reused in another, because they're not tightly tied
lo other objects’ code.

* And what does loosely coupled mean
again?

A: Loosely coupled is when the objects in
your application each have a specific job to do,
and they do only that job. So the functionality of
your app is spread out over lois of well-defined
objects, which each do a single task really well.

- And why is that good?

A: Loosely coupled applications are usually
mare flexible, and easy to change. Since each
object is pretty independent of the other objects,
you can make a change to one object's behavior
without having to change all the rest of your
objecis. So adding new features or functionality
becomes a fof easier,

“Scholar’s Corner

dt|853{iﬂh. The att of one obj:.:{ Fa'rwarding an
a?cra{ion {5 another -:.-bjtd'[‘,, to be ?cr"Formtd on
o behalf of the fivst ahjgc,{,.

b 4

you are here »

43

more encapsulation

Design Puzzle Solution

It's not enough to know what's wrong with Rick’s app, or even to fgure out that
we need some more encapsulation, Now % need to actually figure out how to fix
his app so we can test it out, yau

The problem:
Adding a new property 1o GuitarSpec. java results in changes
o the code m Guitar . java and Inventory. java. The
application should be refactored so thar adding properties (o
GuitarSpec doesn't affect the code in the rest of the application,

Your task:

‘, Add 2 numStrings property and getNumStrings () method o
GuitarSpec. java.

public class GuitarSpec |

Don't Forget £, update Lhe
{/ other properties tonstrusdor $or QuitarC
¢ ! private int numStrings; e
This is pretty
edsy stubk.. public GuitarSpec(Builder builder, String model,
- Type type, int numStrings, Wood backWood, Wood topWood) |

this.builder = builder;
this.model = model;

thisz.type = type;
this.numStrings = numStrings;
this.backWood = backWood;
this.topWood = topWood;

£l Other maethods
public int getNumStrings() {

return numStrings;
}

GuitarSpec.java

44 Chapter 1

well-designed apps rock

e Maodilv Guitar. java so that the properties of GuitarSpec are
encapsulated away from the constructor of the class,

public Guitar(String serialWumber, double price, GuitarSpec spec) |
this.serialNumber = serialbumber;
this.price = prics;
this.spec = spec;
}

Just £ake in @ GurtavSpet. divet
now, instead of treating one in
+his tonsbructor. Guitarjava

ﬂ) Change the seareh () method in Inventory. java o delegate

comparing the two GuitarSpec objects to the GuitarSpee class, instead
of handling the comparison directh

=

| i chspec) |
I public List search {Guitarspec sear P

i is ‘:I P
Ll—‘ st JIIEEChlngGIJi Cars = e L...T'Lk!:‘:dl-l C i :I
':]: tor :IL au tAars. T rator [':I P . :I r
| for tera 0 - ita i1te o 1 IBEEJEK! |:

i = {farii.nexti}s
l Cuitar guitar {Gulita L.
| if {guitar‘gutSpen{},matchns{sn

matchianuitars,addiquitar]:

}

retuarn matchingGuitarsi

A c— f‘_r‘_f—q-.'{:“"t“i““

public boolean matches (GuitarSpec otherSpec) | ‘

MOG‘I;J the code ____.?.?"if {builder != ctherSpec.builder)
Leom seaveh() has return false;:

¢ if (imodel != null) && (!model.equals (™)) &&
been ?"H‘_"d ok {!model.equals (otherSpec.model)))
and ?"‘t into 2 return falses;
matthes() method if {type != otherSpac.type)
in QuitarSpee.java. return false;

if (numStrings != otherSpec.numsStrings)
return false;

if {(backWood != otherSpec.backWood)
return false;

if (topWood != otherSpec.topWood)

/—‘W' return false:
to

Adding ?”?“J'j“ A , return true;
GuitarSpee mow Vet PN N W e W
uh]T a f.halgf o 'l'_]'lﬂJC
tlass, not Guitar;java o e s
|nventery j3va-

you are here » 45

test drive

One last test drive
(and an app ready for reuse)

Wow, we've done a lot of work since Rick showed us that first version
of his guitar app. Let's see il the latest version still works for Rick
and his clients, and manages o satisfy our own goal of having a well-
designed, easily mamtainable applicanon that we can rease.

File Edil Window Help ReussRules

This is what
you sheuld see %¥java FindGuitarTester

when You vun Erin, you might like these guitars: : :

= &'t,;r'[cstﬂ' We have a Fender Stratocastor 6-string electric guitar:
Finasye - Alder back and sides,

with your new tode. Al oar oo

¥You can have it for only 51499, 95!

We have a Fender Stratocastor 6-string electric guitar:
Alder back and sides,
Alder top.

You can have it for only 51549.95!

F-T“'--_.--'—_— EHn P_l"F-‘ a3 'I:DGF'.I

itars o thooss From
Jnd R'H'.F! 5 ‘:IEI-':k tl'a SEJ.I;F.H
gm‘ll:ars to his elite t-'-:nteJe

Congratulations!

You've turned Rick’s broken
inventory search too] into 3 wel]-
designed piece of great software.

46 Chapter 1

well-designed apps rock

What we did R

ber oy 3 ﬁ:EF:? We

Lets take a quick look back at how we got Rick’s foll
search tool wi |n|'l-ﬁ|'|_!g| 50 well: a:::‘: :ht:;{:"rﬁ Riﬂk‘;
carch too | .

vell-designed So-F‘Ev::p? functiona,

We shavted out by El-rtll.na
some o the Eur;{.ana.vbf

rabene 0855 4 Make sure your
\ software does

et what the customer

st e, o yeants it to do.

list of uitars

l"‘i':t '\NEH'['. = ‘I:,n add S0eng

ddimdy];ti‘t'-‘": 5

While we were 3 o thoices -
=i L 2. Apply basic
00 Princi])les to

_— add flexibility

We alse encapsulated out
the fuitar Froperties, and
made sure we tould add new
properties o the app easily

o 3. Strive for a

maintainable,
We even added delegation 7 l’eusal)le C[esig 1l.

so that our objetts are ess
dependent upen each other,
and tan be weused t&s”‘;f.

you are here »

47

ooadd helps you build great software

Remember this poor guy?

ke e e

e,

He just wanted to write
great software. So
what’s the answer?
How do you write great

software consistently?

You just need a set of steps to follow

How do you
write great
sof tware,

every time?

that makes sure your sofiware works
and is well designed. It can he as simple
as the three steps we used in working

on Rick’s app; you just need something
that works, and that you can use on all
ol your software projects.

Qbject-Qriented Analysis &
¢ Design helps you write great

We eall software, every time

this

0OALD All this time that we've been talking
Cor I;har{ about the three steps vou can follow to

Wrile great s Wiware, we've really heen

talking abowt CHOAED.

OOALD is really just an approach

1o writing software that focuses on
making sure vour code does what it's
supposed o, and that its well designed,
That means vour code is Aexible, it's
easy to make changes to it and ics
maintainable and reusable.

48 Chapter 1

00A£D is about writing areat software,
not doing a bunch of paperwork!

Customers are satisfied when their apps WORK.

o We can get requiremients from the customer to make sure that we build
Wl:"l'l {',Jl-k them what [!'I:"f.' ask for. Use cases and Eli'rlgt‘an'l‘m are hrl]ﬂ'u| Wilys trr €l
all abeut that, but it’s all about figuring out what the customer wants the app to do.
rgl‘.ui'rtmchb
in Chapter L

Customers are satisfied when their apps KEEP WORKING.

Nobody is happy when an application that worked yesterday is crashing
You've — ™ today, I we design our apps well, then they're going to be robust, and
learned a bit not break every time a customers uses them in unusual ways. Class and
abeut Fragile sequence diagrams can help show us design problems, but the point is to
apps already write well-designed and robust code,

Customers are satisfied when their apps can be UPGRADED.
(There’s nothing worse than a customer asking for a simple new feature,
; and being told it's going o take two weeks and $25,000 w make it
on deleaation, happen. Using OO techniques like encapsulation, composition, and

ikiom, and . . R s i
tomposriion 85 delegation will make vour applications maintainable and extensible.
aﬁar:gaflﬂh? Well

4alk about all of
Lhese in detail in Programmers are satisfied when their apps can be REUSED,
Chapters % and Ever built something for one customer, and realized vou could use
then andin in sommething almost exactly the same for another customer? If vou do just a
Chapter @ littke bit of analysis on vour apps, vou can make sure they're casily revsed,
Iy avoiding all sorts of nasty dependencies and associations that vou don’t
really need. Conecepts like the Open-Closed Principle ((OCP) and the
You'll get 1o see Single Besponsibility Principle (SEP) are big dme in helping here,
'H'IES-E ?\‘I'ﬁﬂi?lg; --._____________,.".-':IL
'I"fﬂ” Struf ﬁ-.g'rr
sttt in Chapter @ Programmers are satisfied when their apps are FLEXIBLE.
Sometimes just a litde relactoring can take a good app and turm it into a
nice framework that can be used for all sorts of different things, "This is
where vou can begin to move from being a head-down coder and stary
thinking like a real architect (oh veah, those guyvs make a lot more money,
toa). Big-picture thinking is where it’s at.

1

Chapters b and 7 are all abeut
locking at the big picture,

and veally dﬂl:'lolf'i'n?, a good
arthitetture for your applications.

Wart more

well-designed apps rock

This is ALL. 00AsD!
[£'s not about doing
silly diagrams... it's
about wv'lfmg, killer
applications that
leave Yyour Customer
ha?ﬁr, and You
F:chng like jruu’vc
kicked major ass.

you are here » 49

review and a request

4

Cee? You're already
gtt{:'lna hr_qutvﬁs For
move work. Rick will have
fo wart undil l:ha?l;:r 8,
Ehough... we've got. some
hairier issues o tackle n
the next ehapter

This is fantastic! I'm selling
guitars like crazy with this new
search tool. By the way, I had a few
ideas for some new features...

ﬁﬂ“llﬂ' POINTS

It takes very little for something to go wrong with an
application that is fragile.

You can use OO principles like encapsulation and
delegation to build applications that are flexible.

Encapsulation is breaking your application up into logical
parts.

+ Delegation is giving another object the responsibility of
handling a particular task.

Always begin a project by figuring out what the customer
wants.

+ (Once you've got the basic functionality of an app in
place, work on refining the design so it's flexible.

With a functional and flexible design, you can employ
design patterns to improve your design further, and
make your app easier to reuse.

Find the parts of your application that change often, and
try and separate them from the parts of your application
that don't change.

Building an application that works well but is poorly
designed satisfies the customer but will leave you with
pain, suffering, and lots of late nights fixing problems.

Object oriented analysis and design (O0A&D) provides
a way to produce well-designed applications that satisfy
both the customer and the programmer.

50 Chapter 1

chapter. Good Juek!

well-designed apps rock

JEB 00AED Cross
Leet's put what you've learned to use, and stetch out your left brafna

bt All of the words to answer the puzzle below are somewhers in this

J:i:::"nL

Across

4. These help you avoid salving problems
someone else has already solved.

7. Customers focus on this part of your
applications.,

B. Objects in loosely coupled applications are
more than tightly coupled ones.

9. Flexible applications are usually easy to

10. This is one type of code you don't want to
write.
12. Your applications should be easy to

13. You usually need some sort of process to
write great software ;

14. Encapsulate what .

15. These types of applications satisfy
programmers.

1. Once your application works correctly, focus
on this,

2. Grouping your application into logical parts.
3. The goal of OOAAD is to help you write this
type of software.

5. Use this to let objects focus on more
specific tasks.

6. A good way to aveid duplicate code

7. An application that things can go wrong in
easily.

11. This is a four letter word your mom will be
proud you know,

you are here »

51

exercise solutions

‘. -
* WHY DG\ MATTER™? Exercise
& +
You've learned a fot about writing great soltware, and there's sull move w
go! Take a deep breath and think about some of the terms and principles
we've covered. Connect the words on the left o the purpose of those
technigues and principles on the right,

Without me, you'll never actually make the

F[_ufﬁﬁtg customer happy. Ne matter hew well-designed
your application s, I'm the thing that puts a
smile on the customer’s face.

. I'm all abeut reuse and making sure you're net
EncaPpsuLation trving to selve a problem that someone alse has
already Yigured out.
You wse me to keep the parts of your code that
FunctionaLity sty the same seperate front the parts that

change: then #t’s really easy 1o make changes to
your code without breaking everything.

Use me se that your seftware can change and
DeSigN Pattern prow witheut censtant rewerk. | keep your
application frem being fragile.

ViAlrR|TES

Wielulul-Iolels|z]eInlelD

52 Chapter 1

This isnt very good fc—i . .
design E“'“T Lime Guitar guitar =

a new praperty
is added to

GuitarSpee, this
tode is going o
have to tharge.

well-designed apps rock

}DUFPEﬂdI”” vvvvv O R SUUTTRT VST —— S -

What would you change about this code?
answers

There's a big problem with the code shown above, and it's up to you to figure it out. In
the blanks below, wite down what you think the problam is, and how you would fix it,

rSpecjava, or the methods in GuitarSpes change

IAVERTON ¥.jeli el W L=V

Every fime a new property is added fo Guita

g $eare] LLALELLY e, 100, AL ([

comparisons, and encapsulate these properties away from lnventory.

\ s

! k|
public List search(GuitarSpec searchSpec)

i
List matchingGuitars = new LinkedList():

(Iterator 1 = guitars.iterator();
{Guitar)i.next():
GuitarSpec guitarSpec = guitar.getSpec();

if (searchSpec.getBuilder() != guitarSpec.getBuilderi())
continue;

i.hasMNext();) |

.._—.:—____&._

String model = searchSpec.getModel () .tolowerCase();
if (({model != null) &&

{Imodel.equals (")) &k

{!model.equals (quitarSpec.getModel () . CoLowerCase ())})
continue;

if (searchSpec.getType(} != guiltarSpec.getType())
continue;

if (searchS8pec.getBackWood({} != guitarSpec.getBackWood())

continue;

(searchSpec.getTopWood () != guitarSpec.getToplood())
continue;

if
matchingGuitars.add{guitar);

1

return matchingGuitars;

Inventory.java
Thlhk aEm“{._ /ﬂ rr]

it is fnvep
::j-n:k’s inventory? E?r{:rii "’E::[Lfoﬁuiina
ume?m;ku twia C‘.iu.i{&rEpw_ objeets i::
-thﬁr. -D;“ want Yfour t'.risse: 1 Facus on
Eheir jobs, no{ the jobs of other ¢lasses

you are here » 53

I hape you like it... I've been
paying attention to every word
you've said lately, and I think
thig is just perfect for you!

2 gathering requirements

Give Them What
They Want

Everybody loves a satisfied customer. You already know
that the first step in writing great software is making sure it does what the
cutomer wants it to. But how do you figure out what a customer really
wants? And how do you make sure that the customer even knows what
they really want? That's where good requirements come in, and in this
chapter, you're going to learn how to satisfy your customer by making
sure what you deliver is actually what they asked for. By the time you're
done, all of your projects will be “satisfaction guaranteed,” and you'll be

well on your way to writing great software, every time.

this is a new chapter

b5

welcome to the big leagues

You've got a new programwing gig

You've just been hired as the lead prograommer at a new start-up,
]}Ul,l:;':l"i [)1:;.[[Doors, I}[Il,l.t’;l‘}i ol a J'r:'v[l':.' |'Li_u|]'!-[1':'|‘t door under
development, and he's decided you're the programmer that can
write all the software to make his killer hardware work,

Tired of cleaning up your dog’s misiakes?

Here's the new sales
insert that's running
in all the Sunday
papers this week.

Ruasly fur somveone clse o b yousr dhigr ougside?

Sick af dag doors tha stick when you open them?

Ir's ime 1o call...

Doug’s Dog Deors

* Professionally
installed by our
doer experte.

* Patewted
all-gteal
SonRICRTin Every night, Fido barks and barks at

o Sk e CWi the stupid door until we let him go

stom col :
:L:llimp:‘lil:t‘: outside. I hate gefting out of bed, and
PP E——— Todd never even wakes up. Can you

for your dos. help us out, Doug?

Todd and Gina: your
first customer

Todd and Gina want more than a “normal”
doggie door. Todd has everyvithing from his plasma
TV to his surround sound stereo to his garage
Gina door operating ofl’ of a remote control, and |JF‘
wants a dog door that vesponds to the press of
a buttom. Mot satisfied with a little plastic flap
leeting their dog in and out, they've given Doug’s
Dog Doors a call... and now Doug wants you to
build them the dog door of their dreams.

56 Chapter 2

gathering requirements

Let’s start with the dog door

The first thing we need is a class w represent the dog door, Let’s call this class
DogDoox, and add just a few simple methods:

Assume Lhe

£,...--—-—-.._______ 1 ; Eoﬁbﬂﬂr ﬂ,]lag_f_ 1‘,'”“
IWLErTdie with !
public class DogDoor { e l"a"'d:arc Dout’s tustom

private boolean opeh:;

public DogDoocr{) A
this.open = false;
}
. +
This 15 F"'":t“T 2= public vold open() ({

simple: openl) System.out.println(“The dog door opens.”);:
opens the door- open = true;

and elose() —> public void cleose() {

tloses {he o E'}*ELEm.Eu_t.prj_r]tlni“'l‘he dog door closes.™);
open = false;
}
This vaﬁwnj/,.,a public boolean isOpen() |
the state return open;
QJ? 'Eht doer i
whether it's +

opeEn or If.lDSCd.- W e iz

All his eode.

-Goes inte
oaDoor java..

DogDoor.java

whith will contrel —————————===
the havdware in
Todd and Qind's
dog, door-

Fido's depending on Yo

st o mention Todd, Ginds
and ol boss, pmﬂj

you are here » 5T

writing the dog door code

Code Magnets

Let's write ancther class, Remote, to allow a remote control to
operate the dog door. Todd and Gina can use the remote to Vi w
open the dog door without having to get out of bed. es, we know this is 3 reall

gds . W' :
Be careful... you may not need all the magnets.)'au?w::: ETI.-: LL":.{:',EEH""?

public class Remote |

private door;

public Eemote | J
this.door = door;

public wvoid pressButton{) |
System.out.println(“Pressing the remote control button...”);
if | ; {3
door. (17
I else |
door. {¥
I

Onee you're done, compare your answer with ours on page 108.

58

boolean

Thete v e methad s R i e
™ wte v e This keeps up with ;
Lu.- do; d.,j:_t whvel E\rcf‘}‘ tlasz reeds a little wh:thi:Pthu: door it dog door ubJ:ct

boolean logie, vight? open or tlosed.

Chapter 2

Test drive

gathering requirements

Let's see if evervthing works. Go ahead and take your

new {]1 o) (liHII" for a 1est {||:'1'u'.

o Create a class to test the door (DogDoorSimulator.java).

public class DogDocrSimulater |
public static woid main(3tring[] args)
Doghooar door = new DogDoor)i

Femote

System.
remote.
System.
remote.
System.
remote .
Eystem.
remote .

remote = new Bemote (door);
out.println("Fide barks te go outside...”)
pressEutton();

oukt.println(™\nFide has gone outside...");
press.l’-'.;ut:on (B
cut.printlo(™\nFide
pressButtoni);
out.println(*\nFide's bkack inside..."}:
pressButton() :

fe2 all dene..."™);

CogD mulator,java

@ Compile all your Java source code into classes.

Ja\ra-: *jaﬂ DogDoor.class
DogDoor.java - Remote.class
Remote.java DogDoorSimulator.class
DogDoorSimulator.java |

© Run the code!

Fie Edt Window Help Wood

%java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button...
The dog door cpens.

Fido has gone outside. ..
Pressing the remote control button...

The dog door closes.

Fido's all done...

Pressing the remote control buttom... H‘ w&rks! Lg-l"s gn

The dog door opens.

Fido's back inside..

show Todd and Gina...

Pressing the remote control button... ,_,.f?
The dog door closes.

you are here » 59

& broken dog door

But when Gina tried it...

Mot so fast, there...
what the heck is a rabbit
daoing in my kitchen?

Hew did 3
vabbit get into
Gina s kitehen?

narpen your pencil
i) How do you think the rodents are getting into Gina's

kitchen? In the blanks below, write down what you think is d L Y
wrong with the cument version of the dog door,

Don't go to the newt. page
until *fm-"fc wribten down
an Answer Lor this erertise.

60 Chapter 2

gathering regquirements

There's nothing wrong
with our codel Gina must have
forgotten to press the button on
the remote again after Fidoe came
back in. It's not my fault she's

using the door incorrectly!

But the door doesn’t work the
way Todd and Gina want it to!

Todd and Gina dhdn't expect to have o close
the dog door, so they pressed the buton on
the remoce only onee; 1o led Fido o,

Even worse, in this case, the way they used the
door created wei problems. Rats and rabbis
started coming into their house through the
open door, and vou're tking the blame,

Lets tackle Todd and Gina's dog door again,
bure this tme, we'll do things a livtle hit
differently. Here's our plan:

© Gather requirements for =

!'_D-Oks ||kf -.NgJ " J.
the dog door. Tral o fond 2

lot mare Lime {a!knr.g, with Todd

and Qin 15 Tim
Figurs out what the door < =3 38 this ime around

should really do.

2]

© Get any additional information
we need from Todd and Gina.

[£]

Build the door RIGHT!

We've paying 3 lot. move / 1' Make sure }-*ﬂur

él--i:_.f_n{',l.ah to Step | 50"1 ware E[EIEE
,.:ri-']:'un-a areat 5:0_; t“"?""t
Lhis dime, aven T We what the customer

wants it to do.

you are here » 81

what is a requirement?

So what exactly 1S a rEc[uiremnt, aﬂyway?

FI r:ﬂlmrfrm:r-f [} '.-51.-.3"-”‘:;' It’s a

3 sinale tL.I-.m.?J, and vou

ean test that thing - gem -
2z, specific thing
requirement.

your
“system” is the Lomplete app — Sy5tem

or I?r-::}:{.'lz \r'::».v.'rg working on i
he dog door system has 4o "4o"

[this tase, your :*r'sl,',cm i
Todd and ._"'l:|-|r~.a'5. tm?ltu dn-ﬂ!, has to !CI{'.E a-F thlh‘ji' oPeR; £|=:r.i¢ I'E'll.',
doov setup (which intludes the Fide out, keep vodents Jl-.rJnm

remote tontrel, by the wa\JrI' d o J E.rf,{mg inside, ‘;"Tth'"‘ﬁ that
Tﬂdd and El'rhﬂ Lome up 'u'"i‘ll_'h is

art of “does.’
POt ot what the system “does "

to

work correctly.
1\

R_Em{mbl!'r; the tustomer detides when a S.‘Jf-’fl'.Em
werks tm;w-fﬂti'\l,r. ﬂEa ik You leave out 3 requirement
oF even it they torget to mention something to You,
the a\fls{;:m 15n T working I.'.'G'F'FCI:'.{'.I-'TEI -

i1686}1:91&11"'}'5, Corner

rtﬂlui\"fm:n{, A 'rcqluir:m:n{: is 3 mu@r need d:{aihng
what a partitular produtt or service should be or do.

I+ is most c.on-.rnohlj' used in 3 Formal sense in

sijrs{:rns chﬁin:cring or SOI:{war: :hﬁinccring.

62 Chapter 2

gathering reguirements

Listen to the custowmer

When it comes to requirements, the best thing you can do is let the

Heve' .
customer talk, And pay attention to efaf the svstem needs to do; vou oy €3 what Tedd
can figure out Ao the system will do those things later. four job 4,

Fido's about a foot tall, and we don't
want him having to hurt his back
leaning over to get out the door.

Gina: And we want the door w automatically close after a few
seconds. I don’t want o have wo wake back up in the nuddle of
the night o close the door,

You: Do you want o single bucton on the remote, or both an
“Open” and “Close™ huton?

Todd: Well, i’ the door alwavs closes automatically, we really
don’t need separate “Open” and “Close™ buttons, do we? Let's

Just stick with a single button on the remote control,

(,.-—-ﬂ'- You: Sure. So the button opens the door i ics closed, and it can
also close the doaor if its open, just in case the door gets stuck.

nl‘t WO " ; ' . o)
E: t m-:jl Todd: Perfect. Gina, anything else vou can think of ?
oL
tode at this Gina: No, I think thacs i, That’s the dog door of our dreams.

S‘l:-élat—jui{ make
Sure \r-gu k'ﬁﬂ‘w
what the system
should de

Heee's your new sek of Poq Poor, ver. 2

remote tontrol and dog

door plars, based on Todd
and Gina's rtqhul'rdmth‘ti- D
““"-———'—::- i

)
£

Eemote Control, »
ver, 2 There's just one button,

'ﬂhif,h {pﬁahi bE'E'Mt:n

2

This ‘?Fthi:nﬂ

needs 1o be 3¢
least 12" 431
so Fido doesn't
hﬂ'i"ﬂ' tﬂ urgah_"

Lz

oFening dnd £|os'm5 the door

you are here » B3

a simple requirements list

Creating a requirements list

Mo that we know what Todd and Gina want, let’s write down our new
sl af m-1|uin-m|~m.~c. \"ﬁ: f]nl'l'l I'H"i'i'l, ':1|13'1]'|i.'|'|]_'; (ENLN] I.:l'I:H":;..,

Todd and Gina’s Pog Poor, version 2.0

Keqllll"ﬂﬂ‘lﬁi‘lﬁ LiSf d___-_-_-_-_""'\-—-;__ This is Jlus-t a list
"?F 'H&E 'Eh'lr.as

1. The dog door opening wmust be af least 12° tall.

| -thEH:: Your tustomer
Wﬂ']t! the system
Sl 2. A button on the remote control opens the dog door o building
Compare thee ™ if the door is elosed, and closes the dog door if the em {0 do
wi d
ﬁ ?ﬁ. = dooris open.
comnerts 3 Opee the dog door has opened, it should close
50050 automatically if the door iswt already closed.
+urned Lheir
words into 3 ?
basit set 0‘55? we'll juiJI: ¢lose the door after
requivements: 7 F:w 5{|:.¢hd5 O_F 'n:'mﬁ, open.
]
——— — m— ﬂ

BE Suirg {'ﬂ |-C3'-'
SFaIfE.. ﬂdditl,rgh:fi{ra
i H Fequirements st
A special bonus prize ents almost

al‘way: Eome up a5 v,
In addition o having a list of things vou need o do o

complete Todd and Gina’s dog door, now vou can show
vour boss exactly what vou're working on, and what work
yvou think is lelt o linish the project.

Woir ;
kona Projest

64 Chapter 2

= 4d and ___—= the system should do. Then, vou can
|r, o an

Gina's tase, the
system is the dog
dq}ar ahd 'Lht
vemobe tontrel

.

gathering requirements

Iz this list really going to
help? Todd and Gina completely
forgot to tell us they wanted the door
to automatically close before... won't
they just forget something

You need to understand how
the dog door will be used.

You've hgured out one of the hardest
paris about getting a customer’s
requirements—sometimes even the
ciestorier doesn't know what they really
want! 5o vou've got o ask the customer
questions to figure out what they want
belore vou can determine exactly what

begin to think fepond what vour customers
asked for and andcipate their needs, even
betore they realize they have a problem,

What sorts of things do you think Todd and Gina might not have
thought about when it comes to their new dog door? Make a list

of any concerns you might have in making sure Todd and Gina
are happy with the new door you're building them.

you are here » 65

figuring out what todd and gina need

What does the dog door really need fo do?

You know what Todd and Gina want the dog door to do, but it's vour job to
miake sure that the door 'fu'lu'fl”':.' roonke, In the Process, VOU may even come across

some things that Todd and Cina want, but didn’t think about on their own.

Let’s write down exactly what happens when Fido needs o go owmside:

H't'rtls. ':f""-"'rl-'l'
requirements |ist

from page &4
[This is 3 nEwW

list, which details
Todd and Gina’s Pog Poor, version 2.0 i ﬂ'::; dog doc
Requirements List 5
1. The Todd and Gina’s Pog Door, version 2.0

tall Whaf the Poor l?ues o
2. At 1. Fido barks to be let out,

do¢ 2. Todd or ¢ina hears Fido barking.

h)
T3 Todd or ina presses the button on the
3.0n remote control.

ele
" 4. The dog door opens. We £an use
. these steps
9. Fido goes outside. cee 1 da N
- mlssirg an
6. Fido does his business. *cﬁwrcme.-fts

" 7 Fido goes back inside.
C 8. The door shuts automatically.

e

When s{‘_:rﬁ @ is Enrnll'-"lﬂl,c, Fido's back
inside ,,;F-L.:r d-:r'mﬁ his business, and
Todd ard Gina are happy-

66 Chapter 2

thereyare no a
Questions

Q_: So a requirement is just one of
the things that a customer wants the
application you build for them to do?

A: Actually, a requirement is a lot mare
than just what the customer wants—although
that's a good place to start. Begin by finding
out what your customer wants and expects,
and what they think the system you're building
fior them should do. But there's still a lot maore
fo think about. ..

Remember, most peaple expeact things lo

work even if problems occur. So you've gol

fo anticipate what might go wrong, and add
requirements to take care of those problems as
well. A good set of requirements goes beyond
just what your customers tell you, and makes
gure that the system works, even in unusual or
unexpected circumstances.

Q_: And the system for Todd and Gina is
just the dog door, right?

A: The system is everything needed to
meet a customer's goals. In the case of the

dog doar, the system includes the door, but it
also includes the remole contral. Without the
remote, the dog doar wouldn't be complete,

And even though they aren't part of the
system, Todd and Gina and Fido are all
things you have to at least think about when
designing the system. So there's a lof more to
worry about than just the actual dog door.

Q: | don't see why | have to figure out
how Todd and Gina are going to use the
dog door, and what can go wrong. Isn’t that
their problem, not mine?

Do you remember the first step we
lalked abaut in writing great software? You've
gol o make sure your app works like the
customer wants it lo—even if that's not how
you would use the application. That means
you've gol to really understand what the
syslem has to do, and how your customers
are going lo use it.

In fact, the only way to ensure you get Todd
and Gina a working, successful dog door is
to know the system even baffar than they do,
and to understand exactly what it needs fo
do. You can then anticipate problems, and
hopefully sclve them before Todd and Gina
ever know something could have gone wrong.

= S0l should just come up with all
sorts of bad things that might happen when
Todd and Gina use their door?

A: Exactly! In fact, let's do that now...

gathering requirements

The best

way to

get gom:[
rec[uirements
is to
understand
what a
system 1s

supposec{
to do.

you are here » 67

68

what can go wrong will go wrong

Plan for things going wrong

Below is a diagram of how Todd and Gina’s dog door should work: all
the |'|u|'|‘||u~|':-¢ l'.l'ﬁ'l[l'l:'l u[} W i'lh I]'lr* !‘ill';j.\: in T]i:-c[il I‘mgi' i3l Hu['I]!il'lgs
aren’t always going to go according to plan, so weve written down some
things that might go wrong along the waw,

Gina, open the dog
door... Fido won't

a‘:} quit barking!
%atrrﬁddahd e —
hd Jrep 'L homt?
What if they don't
hear Fid, bﬂ*kinﬁ?

@ Fido barks to be let out 2

Vi Todd or Gina hears Fido barking /
Dees Fido abways Todd or Gina presses the button on
bark when he needs

the remote control.
= i h.ﬂ‘l.'
to 8o outside? W
:F he usk seratehes | |
at {-,hﬂ_ door? What if Fide barks betause hes

extited, or huhgpr‘f'? will it be a
'E'rub'lcm irl: Todd and &-n.i_l open

+he door and Fido doesn t need
to ao outside?

R

If Fido is stutk outside,
gan Todd and l‘iir-a“htﬂ'rlr
him bark to press U?.EH
the vemote and et —3 -
:M back inf (8 The door shuts automatically

Chapter 2

gathering requirements

Can You think of other things that
!.qu‘}:: wrong? That's reaf.. the more
Problems you can £hink c}, the less fragile
You ean make Your application. Go ahead

and write anything else that might happen
unexpectedly below, dicectly on the diagram.

Do we need 1o Hhink
JLW'E 'Alhai haFPEhs

I'{" '[',h-t dm.— Iamf,.? {}
ma fbe that's more of
d hardwa'r: T"""-‘-'Htm'?

@ The dog door opens - o

Fido goes outside == y,ak if Fido stays inside?

-

I feel much
better now!

- Fido does his business

What happens if the door
has hfﬂmﬂ{lﬁaﬂ? tlosed irtrjr
the time Fide is Finished?

=t

@ Fido goes back insi

you are here » 69

expect things to go wrong

Alternate paths handle systewm problems

Now that you've figured out some of the things that can go wrong, vou
]!1'1'{| 1a3 1||31(L'|E|' :.uur‘ |'th of l]]i'liH:\ I]!l."l[t'IL'l.'d:-i 143 I'L'.ll'rp:'n LL¥] make the
dog door work. Let's write down what should happen il the door closes

Lefore Fido gets back insde,

Todd and Gina's Pog Poor; version 2.0

Requirements List

L TH Todd and Gina’s Dog Poor, version 2.0
¢ What the Poor Poes -

2. A 1. Fido barks to be let out.
+ 2.Todd or Gina hears Fido barking.

3.0 3. Todd or Gina presses the button on the

(

We tan use these
"sub—numbers” o
show some sub—
SJ;-I."PE that rn'lﬁh{',
happen as part

of Step &

|§ Fido stays

oukside, theve are
3 few additional _—7
ﬂ:t?ﬂ -,-cqf..irfd

in 3¢Jc, him batk

inside. These

exbra steps

gre talled an

slkevnate path

70 Chapter 2

remote control,

i 4 The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
64 Todd or Gina presses the button on the

remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatically.

This is that same Yequivements
list Firom Page &4 'i':l": may
need to update these later,
but for now, {:h:‘fr{ still 0K,

-

Ml of these new
5{:?5 handle the
problem ok the
door tlosing before
Fido an aet batk
inside the house.

With Some pxiyq
!’EL‘F.'E dddgd_l -F:‘da
an still get pagp
msrdﬂ; EVER fhw h
3 Problen, Todd and
ha hady'L th"—"“ﬂhf
4bout ceturyeq

gathering reguirements

Hey, I took a course in college
on this stuff.. aren't we just
writing a use case?

Yes! You’ve been writing
use cases all along

When you wrowe down the steps in getdng
Fido outside to use the hathroom, vou
were actually writing o use case.

A use case i what people call the seeps that Look! [ts 4 use Egns
a svstem takes to make something happen,

In Todd and Gina’s case, the “something” /

that needs o happen is getting

Ficle ourside to do his business Todd and Einay Poor, version 2.0
- : s, What the Bor Poes

and then back inside.
1. Fido barks to be let aut,

2. Todd or Gina hears Fido barking.

% Todd or Bina presses the button on the
remsote eonfral,

4 The dog door opews.
& Fida qoes outside.
6. Fido does his busimess,
61 The door shuts automatieally.
6.2 Fido barks to be let back inside.
B.9 Todd or Hina hears Fido barking (againl

G4 Todd or Bina presses the button om the
remote comtrol,

8.5 The dog door opens (again].
T Fido goes bask inside,
&. The door shuty automaticzally,

Vou've attually a'.r:adjlj; r/‘

written the use tase tor
Tedd ard 'ﬁmaii d.::ﬂ door.

yvou are here » 71

what's 8 use case?

(Re) introducing use cases

You've been writing a use case for almost 10 pages now, but let's take a
closer look at exactly what thai list of steps—the use case for Todd and
(rina’s dog door—is really all about:

A use case describes
Ase cases ave all about the / Wh at

ok b does ;hﬂ dq‘::r
od 1o dof Remember:
door need to you r SyStem We've still defim{;:lxl,r

; i shout the “how
don t wore ek bo hat ﬁ:{.usina on what the system

vight now-- we'll 3

does - L

hﬂ?‘}“tn 1] ﬂ'rdft‘ J-:D ﬁt{'. Flda
outside (and then back inte

to accompliSh a the house)?

L fotuses

h sinole v ET The single t - I
i thrfﬂ ard 62 o pa racuiar
s gztﬁﬂ'ﬁi;i: z;u bhem

e customer goal.

|f Todd and Gina ief;dl! (The tustomer goal is +he
i o 9 in s
they 1&714:, u;iﬁ:a;:s the The user (or users) a'ri @%%Fig H '?{i the ::t tase: what
iy e A {.C wok @ part @ 1 L £ie 5 Pt need {G
a the gystem, i : - r

dop coar. 'Lhﬂ‘::r :;Wl:u'l:itnctd uses E‘hc system, and hes outside of Q:J; happen? We've -FD«t.hEinﬂ
dirent 5;? '|:,¥u5: case. it; Gina has 3 03l for the wﬂ:k: The sfrtﬁ“tmn Domenbert
another, dRTerar i one's also outside of the systen 1% SYstem has fo help {5

Sowe're the
outsiders, huh?

The d
e door
£ ad remote gre

Fﬂf{ of the
FYstem, or insigl
the -*:}fﬁ:em.'_'""c

72 Chapter 2

gathering requirements

The entive uie tase ﬂ

deseribes exattly what the

dog deor """:;:_ e Todd and Gina’s Pog Poor, version 2.0
needs 1o gp ot What the Door Poes
1. Fido barks o be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the
remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business. T
The use case ends s 6.1 The door shuts automatically, alternate path,
tt::rj:f;is Fido 6.2 Fido barks to be let back inside. ::i'ﬁ; j"t'l_m
back ..\sad;f af:-:; i 6.3 Todd or Gina hears Fido barking (again). the same goal %
s, :ﬁ; Gva shill 64 Todd or Gina presses the button on the | ih: et S:JE:LW
comfortable in bed remote control, ol ol
6.5 The dog door opens (again).
7 Fido goes back inside,

8. The door shuts automatically.

) &

éESEIwa:L'I?”s Corner

use ease. A use case is a technique for capturing the

potential vequivements of a new system or software thange
Eath use ease provides one or more stenavios that tonvey how
the system should interact with the end user or another

system to athieve a specific goal.

you are here » 73

one use case, three parts

One use case, three parts

There are three basic parts to a good vse case, and you need
all three if VOUT UEe Case is Huing [or el I,]'It'.illh done,

oClear Value

?! Every use case must have a clear
value (o the system. I the use case
doesn’t help the customer achieve their
gaoal, then the use case isn't of much use,

The e Ladse starts op

when Fid, bavks.. it s:toF
when he's baek inside s
done with hiz bus; I

The use L3se
must. help
Todd and
ﬁ'ma dta]
with Fide.

REST.

Every use case must have a delinile

9 starting and stopping peint. Something
must begin the process, and then there must be a

condition that indicates that the process is complete,

In £he dog doov; EXtBEml Illiﬁ&tﬁl’

Fido it the

nal inrbiator s, : : . j
':.:J’.:H vt skarks initiator, outside of the system. Sometimes
e5w .

I|'|;Ll iI‘Jili;'linl' i a p:*r'.\'.nn.]'rI,J[il L'l::u]1| he

very use case is started off by an external

he entive protess.

anything outside of the system.

74 Chapter 2

gathering requirements

{221 Use Case Magnets

~ §| Below is Todd and Gina" 5 use case, and a magnet for each of the

three parts of a good use case (one part, Start and Stop, actually
has two magnets). Your job is to identify where each magnet
goes and attach it to the right part of the use case.

Todd and Gina’s Pog Poor, version 2.0
What the Poor Poes

N
. int: One of these
1. Fido barks to be let out. thould be vealy sgy..

2. Todd or Gina hears Fido barking. if you look 3L the icons.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatically.

What kicks off the use

£ase? This is wsual

I some attion outside of
STOP| {‘7 'i:hccsy:{:::. e

P . Put this c‘é'
~ maﬂht‘:. on t'hc
tondition in
Put the Super Buy magnet the use tase C
on the part of the use that indicabes

case that is the tlear value the protess Who starts the
ko Todd and Gina should stap. use taset

you are here »

the parts of a use case

Use Case Magnet Solutions

Below is Todd and Gina's use case, along with several use case
magnets, Your job was to identify where each magnet goes, and
attach it to the right part of the use case.

Todd and Gina’s Dog Poor;, version 2.0
What the Poor Poes -
c > 1 to be let out. ff’i‘i??’l;"f;?f‘"
T s 2, Todd or Gina hears Fido barking.
oD . 3, Todd or Gina presses the button on the
- remote control.
4. The dog door opens.

5. Fido goes outside.
6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be lef back inside.
6.3 Todd or Gina hears Fido barking (again).

64 Todd or Gina presses the button on the
remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.
C 8. The door shuts automatically.

Here's the stop Case s of b
tondition.. _H";“-'rt Tﬂdd a;d
Fide is back in, flna Can stay
A=, “d and o'y
'42 outside,

76 Chapter 2

Q,T So a use case is just a list of the
steps that a system has to do to work
correctly?

. Inmost cases, yes. But, remember,
one of the key points about a use case is
that it is focused on accomplishing one
particular goal. If your system does more
than ane thing—like let Fido outside and
track how many times ha's been out in an
entire day—then you'll need more than one
uge case.

Q,: Then my system will have a use
case for every goal it accomplishes,
right?

» Exactly! If your system just does one
single thing, you'll probably only need one
use case. If it does ten or fiteen things, then
you're gaing to have a Jot of use cases.

+ And a use case is what the system
does to accomplish a goal?

A: Now you've got il If you wrile down
what the system nesds to do to perform a
task, you've probably gol a use case.

ther e no

Dumb Questions

- But the use case isn't VEry
specific. Why didn’t we talk about the
Remote class or the DogDoor class?

» Use cases are meant to help
you understand what a system should
do—and often to explain the system to
others (like the customer or your boss). If
your use case focuses on specific code-
level details, it's not going to be useful to
anyone but a programmer. As a general
rule. your use cases should use simple,
everyday language. If you're using lots of
programming terms, or technical jargon,
your use case is probably getting too
detailed to be that usaful.

Q— Is a use case the same as a use
case diagram?

AT Mo, use cases are usually a list
of steps (although you can write them
differently, something we talk about in the

Appendix). Use case diagrams are a way fo

show use cases visually, but we've already
been waorking on our own diagram of how
the system works (check out page 69 for

a refresher). Don't worry, though, we'll still
look at use case diagrams in Chapter 6.

gathering requirements

- Then how do | turn my Use case
into actual code?

+ That's another step in the process
of writing your application. In fact, we're
going o look at how to take our use case
for Todd and Gina and update our code in
just a few more pages.

Bul the purpose of the use case isn't to
detail how you'll write your code. You'll
probably still have to do some thinking
about how you want to actually put the
steps of your use case into action.

Q,: If the use case doesn't help me
write my code, then what's the point?
Why spend all this time on use cases?

A: Use cases do help you write your
code—they just aren't specific about
programming details. For instance, if you
didn't write & use case for Todd and Gina,
you never would have figured out that Fido
might get stuck outsida, or realize that the
dog door neaded o clase automatically.
Those all came from writing & use case.

Remember, you'll never write great software
if you can't deliver an app that does what the
customer wants it to do, Use cases are a togl
to help you figure that out—and then you're
ready lo write code to actually implement the
system your use case describes.

you are here » 77

did you cover all the features?

Checking your requirements
against your use cases

S0 far, vou've got an initial set of requirements and a good solid
use case, But now vou need o go fuob 1o your requirements and
make sure that they'll cover everything your system has to do,
And that’s where the use case comes in:

Todd and Gina’s Pog Poor, version 2.0
Requirements List

1. The dog door opening must be at least 12” tall.

2. A button on the remote control opens the dog door
if the door is closed, and eloses the dog door if the
door is open.

3. Once the dog door has opened, it should close
automatically if the door isn't already closed.

:.\:I Fi% 'I!.'I FLI 'I:H‘I_‘El (N} I:'i:ll::lll'i. L 1]“‘ LIS el st ':ﬂ'ld b
i everything the system needs to do is covered by
the regquirements,

78 Chapter 2

£

Here's our list of requirements
that we aot from Todd ard Gina..

I _and heve's what we know the

g dog door needs to de.

Todd and Gina's Pog Poor, version 2.0
What the Poor Foes

1. Fido barks to be let out,
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control,

4 The dog door opens.
5. Fido goes outside.
6. Fido does his business.

N tasian? 6.1 The door shuts avtomatically.
IS aﬂvthmg Wissing: ///—> 6.2 Fido barks to be let back Inside.

6. Todd or Gina hears Fido barking lagalnl.

64 Todd or &ina presses the button on the
remote control.

6.5 The dog door opens (again).
7 Fido goes back inside.
8. The door shuts automatieally.

gathering reguirements

q@p&n your penci
N “a. Do your requirements handle everything?

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job is to identify the requirement that
handies each step of the use case and write that requirement's number
down in the blank next to that step of the use case. If a step in the use case
doesn't require you to do anything, just write N/& down, for “not applicable”.

Todd and Gina's Dog Door, version 2.0

What the Door Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1 The door shuts automatically.
6.2 Fido barks to be let back inside.

6.3 Todd or Gina hears Fido barking
(again).

6.4 Todd or Gina presses the button on
the remote control.

6.5 The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

Here ave the three requivements we
have... You £an use any of these for

eath step in the use tase j

Todd and Gina’s po Poor, version 2.0
Requirements List

1. The dog door ope
12 all Pening must be at [east

2, A button on the remote
control o
the dog door if the door is closed, :::}3
closes the dog door jf the door is open,

3. Once the dog door has opened, it shoylq

close automatically if th i
already closed, it

F\"" Write |, 1, 3 or N/A

in eath of these blarks

3

Did you find any steps in the use case that you don’t think
you have a requirement to handle? If you think you need
any additional requirements, write what you think you need
to add to the requirements list in the blanks below:

you are here » 9

inguiring minds want to know

@m your pencil
N ANSWErsS po your requirements handle everything?

Below on the left is the list of things that the dog door does, pulled straight
from our use case on page 78. Your job was to identify the requirement that
handles each step of the use case, and write that reguirement's number down
in the blank next to that step of the use case. You should have written down
N/& for a step that didn't require our system to do anything.

Todd and Gina's Dog Door, version 2.0

What the Door Does
Alot of the things that
h&FFrEn to a System don't
1. Fido barks to be let out, NA = require you 1o do anything
2. Todd or Gina hears Fido barking. N/A
. o —— fm ,,.'..5||-,{; have fu{: N/P here,
3. Todd or Gina presses the buttononthe 2 _ hina the button
cemote control sinte them pushing the
= sk swnt'l.'.hll"-ﬂ. {_h,:ﬂ: 5 Tm.h&vt
4. The dog door opens. -2 to handle... then 393in, X uhﬂkf,
5. Fido goes outside. 1 too, sinte they wouldn t push 3
bubton without a remote.
6. Fido does his business. N/A Did
6.1 The door shuts automatically. 3 L;H,J; Efj é'*; ?Fihﬁda
Iae SPEnin
6.2 Fido barks to be let back inside. N/A isn't the right size. T
6.3 Todd or Gina hears Fido barking N/A
(again). - The sltevnate path sheuld
6.4 Todd or Gina presses the buttonon 2 have been easy once Yo
the remote control, ;13 ured out the requiremen
6.5 The dog door opens (again). 2 for the main path.
7. Fido goes back inside. _E
8. The door shuts automatically. 3

Did you find any steps in the use case that you dont think
you have a requirement to handie? If yvou think you neead
any additional requirements, wrte what you think you need
to add to the requirements list down in the blanks below;

No, our requirements cover everything the system needs

to do. We're ready to actually write code to handle these

requirements now. right?

80 Chapter 2

So now can we write some code?

With wse case and requirements in hand, vou're ready to
write code that you know will make Todd and Gina sarisfied

customers. Let’s check out our requirements and see exactly
what we're going to have to write code for:

This is

gghti;'hmg, ¥ﬂr
Doug and the
hardware quys
to deal with...
W dm-.l'l:. need

any tode For Todd and &ina’s Pog Poor, version 2.0
E;Ts veauirement Requirements List

&__, 1. The dog door opening must be at least 12” tall.

2. A button on the remote control opens the dog door

if the door is closed, and closes the dog door if the
door is open.

3. Onee the dog door has opened, it should ¢lose
(’)’ automatically if the door iswt already closed.

This is what Tedd
and Gina added when
we Lalked to them..

we need to write

tode to take tave

of tlosing the door

subomatitally.

We're getting pretty psyched
about our new door. We love that
you thought about Fido getting
stuck outside, and took care of

that, too.

gathering requirements

We've alveady
got tode to
take tare this
requivement.

you are here » a1

adding a timer to the dog door

Automatically closing the door

The ooy requirement left to code is taking care of
Albormal i'l':-l"l':.' 1'|I:I!iil'l:._'; l]‘u' {]1 Wi alﬁm' il'ﬁ]H_‘I'I'I 1 rl'rt"!'l:_'(], !.t'l‘!‘i Eir
back to our RBemote class and handle that now:

import java.util.Timer;
import java.util. Thneﬂas‘;g

public class Remote |

g J.Q\ra’s

private DogDoor door;

public Remote (DogDocr door) |

This heeks {',hg
state of the

door htrair:

oPERing or

—

this.door = door;

public wvoid pressButtoni) {
System.cut.println(“Pressing the remote control

tlosing it. ——s i ¥ (door.isOpen{)) I
door.closel); ~—— The vemote already has tode to

Remote.java

Ylm’” néed HTCS:
. twe
rrnFG'l-E s-t.;{-:,"fh{; T

'Ermmﬂ tlasses,

button..."};

| iéii . j:-pen () handle losing the door t it's open
S All £ |
CTE&{‘;MH final Timer timer = new Timer () :; the d:ﬂi:ﬂ;kdd:r:: is ¢lose
ot e Lan timer.schedule (new TimerTask() { _ fr the ;E rd then furp
o wd le the public void run() { ey,
R duw door.close() ;
g ' famer.cancel 0 ; This tells 44, t
:—1::15“"5]' wal't bt_Fo* 1Fe i hﬂ"ﬂ' |In|-| {a
: | 3 EUﬂu this case :ei:fﬂufénﬂ the task i
h. !] wai i 5
} “hich is 5000 mi iszﬂ?:hd:mmds
1
therey are no
]
Dumb Questions

Q_: What's all this Timer stuff? Can't |
just use a Java thread to close the door?

A: Sure, there's nothing wrong with
using a Thread io close the dog door. In
fact, that's all the Timer class does: Kick
off a background Thread. But the Timer
class makes running a task in the future
easy, 50 it seemed like a good choice for the
Remote Class.

82 Chapter 2

s Why did you make the timer
variable final?

AT Because we need to call its
cancel ()} method in the TimexrTask
anonymous class. If you need to access
variables in your anonymous class from
the enclosing class (that's Remote in this
case), those variablas must be final. And,
really, just because it makes things work.

- Why are you calling cancel(}?
Won't the timer quit automatically after
running the TimerTask?

+ Itwill, butit turns out that most
JVMs take forever before they garbage
collect the Timer. That ends up hanging
the program, and your code will run for
hours before it actually guits gracefully.
That's no goed, but calling cancel ()
manually takes care of the problem.

We need a new simulator!

Onr old simulator st that wseful anvmore... it assumes Todd and Ging are
closing the door manually, and not letting the timer do its work, Let's update
our simulator to make it work with the updated Remote class:t

public class DogDoorSimulator |

public static wvoid main(Stringl]
DogDoor door = new DogDoori);
Eemote remote = new Remote (door)

This is the same
35 in our earlier

vevsion, but

pressing the ——= ropore. pressButton () ;

button will open
the deor and
start 3 Limer to
tlese the door.

System,out.println (“*\nFido's all done..."):

—romerteprress St err -

e

Cinte the door's
- Lirner, Fido

has plent

{rmt? to 14:, batk }
inside betore the

door tloses. Gina
doesn't need to

open the door to

let Fido back in.

P

S

args)

gathering requirements

DogDoorSimulator.java

System,cut.println (“Fido barks to go outside...”};

System.out.println (“\nFido has gone ocutsida...”);

- In the new improved d

door, Gina doesn't need
te press 3 button o tlese
the door. That will happen

. . : . -ﬂutﬂmaﬁmr }
System.out.println (*\nFido's back inside...”); hf new

Heve's another spot wheve we
ean get vid of some tode..

the door tloses au’toma-Eiﬁally

Q,: You lost me on that timer code.
What's going on there again?

T That's OK.. you don't need to

get too hung up on Java here. The point
is that aur use case helped us write good
requirements, and our requirements made
it easy lo figure oul how to write a working
dog door. That's a lol more important than
how—ar even in what language—you wrile
the: dog door code.

. Sothe new simulator tests out the
main path we figured out, right?

A: That's right. Flip back to page 78
and review what the dog door does.._ that's
what the new DogDoorSimulator tests
out. We want to make sure that Todd and
Gina's new door works just like they want

it ta.

- Why aren't we testing out that

alternate path we found?

A: That's a very good question, Let's
test this version of the door, and then we'll
talk more about that...

you are here » 83

does it work?

Test drive, version 2.0

It's time to see i all our hard work is going to pay off. Let’s
test out the new and :il'l'.ll'll'i wed t]u;_f door,

€) Compile all your Java source code into classes.

javae *jarva

DogDoorSimulator. java DogDoorSimulator.class

© Run the code!

File Edit Window Halp InAndOu

$java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button...
The dog door opens.

Fido has gone outside. Tickl.

Fido's all done...

Fido's back inside...

ol drSimulator
3 .Elcklm go ocutside...
5 b

JECEN ressing the remote control button. ..

b few setonds will

bebween when . ' e dog el _-l.s.
'E‘i'“d opens-- - oc s
the door) : ido has gone ocutside...
&= | Fido’'s all done. ..

~and when it tloses. Fido's back inside
_5 The dog door closes.

84 Chapter 2

gathering reguirements

It works! Let’s go show Todd and Gina...

Your

system
must
work in

the 11@1
world...

L 1] I-so p I'an
and test

'[OI' when
things go

wrong .

.%\{gﬂAlH
'{__}Q'L.' QWE“

How would you change the DogDoorSimulator
class to test for Fido staying outside longer?

But I don't think we're ready to
show Todd and Gina yet... what about that
alternate path, when Fido stays outside
and the door closes behind him?

Good catch... we need to
test alternate paths as
well as the main path.

Wouldn't it be great if things worked Just
hke WOl :'x;]i't'l:‘c] them [0 Every e
O course, in the real world, that almost
never happens, Belore we can show the
ey ';li Wil l:lji- Hia rE.l'll ll! .'||-|1| {-Il-lrlil, |‘|'[1'1 [:l..l";i'
a litdle extra ome to make sure the door
works when Fido doest come right back

inside alter doing his business,

Can you come up with at least one more alternate
path for Todd and Gina's dog door? Write out the
use case and update the requirements list for your
new alternate path, too.

yoaLu are nerg »

85

alternate paths

Reviewing the alternate path

Lets make sure we understand exactly what happens on the
alternate path, and then we can update DogDoorSimulator
to test the new path our. Here's the original main path diagram
from page 68, along with the alternate path we figured out

and added 10 our use case:

Gina, open the dog
door... Fido won't
quit barking!

(D) Fido barks to be let out

m

@'Tha dog door opens
Fido goes outside

Todd or Gina hears Fido barking
Todd or Gina presses the button on

the remote control.
This part of the
dlaar‘am is the main Fa{'n,

where cwe'rjr‘f:hing oes
natﬂy as planned.

(@ Fido goes back inside e

The door shuts automatically

86 Chapter 2

gathering requirements

Rcmembfh Lhis is
Z—_\—\\ an alternal, path...
thins G
this Wil I:'-l'{'r}r {im:
the SYstem is yseg.

Heve's where the

alkernate path

charts. Lhe door

shuks while Fide s ==
shill outside-

I feel much
better now!

v.:::fi_
.-.=:-,9~'-"=::;: ' Fido does his business

Note Lhat when
the door oftns 5.::“,
‘H"il'ﬂ‘ contimug O
-—‘_‘___-_-_-_‘_-_-_-_-_-_-___ -.-E-tu'rn"'ﬂa -I:ﬁ k’h{

matn ?a-tln

E:It
Fido barks to be let back inside.
handled all of ,,/77 E

!':'wr s‘;’sl;ﬂ"“ acha-dT

Ehese things.. but

we wouldn £ have

Again with the
Lnown £hat wnless barking! Semeone let O 4
e mapped out Ehis Fido back inside.
alteenate path \ J
Todd or Gina hears
Fido barking (again)
r 4
V4
V4

*‘}r/
=
r,

odd or Gina presses
the button on the
remote control

. The dog door opens (again)

you are here » ar

testing the alternate path

Code Magnets

It's time to update the simulator, but this time it's your job
to actually write some code, Below is what we have so far for
DogDoorSimulator, DogDoorSimulator.java

‘four job is to match the code magnets at the bottom of the page
to where they belong in the simulator. If you get stuck, check the diagram on
the last page to see what's going on at each step of the way. Oh, and there's
a twist... all the magents for periods, semicolons, and parentheses fell off the
fridge, so you'll have to add those wherever they're needed, too,

public class DogDoorSimulator |

public static wvoid main(String[] args) |
DogDocr door = new DogDoori);
Eemote remote = new Eemote(door);

Here's where Svystem.out.println(®*\nFide has gone outside...”);
the alteemate System.out.println(“*\nFido’s all done...”};

ath begins.
P) by We wart the Prodram 4o
. & "~ Pause and lef Lhe d
Thread.currentThread (). _(10000}7), dutomati o
} catch (InterruptedException e) { } .
System.out.println(“\nFido's back inside...”); n
} € altevnat,
path
} P ehims £ g main

path Fight hepe

System.out.println

== Heve are Lhe methods 4o
the vemote Lontrol a

System.ou J pPressButton

System.out ,, println '
Eysnem.mut.print;n

Syste println
System.out.println

pressButton

| pres5E'J'.’.tDTl

ir.{ mljl; are m'E'Ehud'!’
l.lg'l'&.l ntﬂaﬁﬂ \fqu Ltan 7Y Th:i: 11 4
Here ave 3€ ou Lam Lall o
nride scratches at the door.” Java Hhead.
£l

88 Chapter 2

gathering requirements

Test drive, version 2.1

Make the changes to your copy of DogDoorSimulator. java,
andl ll'll‘]'l red rl':'l[jih* :nml‘ 1esl class, Wi j.t:u'r‘i' J'L';'H,'H. Loy Test ol !]h'
alternate path of your use case:

Fila Edil Windiw Halp IflL,lu:-ﬁ-.lnl'l

%¥java DogDoorSimulator

Fido barks to go outside...

Pressing the remote control button.,.
The dog door opens.

Fido has gone outside...
Fide's all done...

The doov opens: and ; i ke DDgDc;-orSj.mulatm.:

Fido goes autzide) #:arks to go outside...

do his business , et cSsing the remote control button...
But Fido starts o ne dog door opens.
thasing bugs, and the _ _
doy door tloses while Fido has gone outside...

he's =till outside. \i. Fido's all done. ..
The dog door closes.
Fide barks to 5!:1': back .. .but he's stuck cutside!

inside, and Gina uses her Fido starts barking. ..

remete tontrgl, ...50 Gina grabs the remote control.
H\““‘-—-—a- Pressing the remote control button...

-1 The dog door opens.

File Edil Window Help ThersfindBacka - : :

%java DogDoorSimmlator j FRH0NE: SaER 81 .
Fido barks to go outside... ;
Pressing the remote control butty =% and Fids gets

The dog door opens. i Y . to veturn 4o gir

Fido has gone outside. .. RN, = ' ""’“di{i""'“ﬁ
Fido's all done...

The dog door closes.

...but he's stuck outsida!

Fido starts barking...

++ .80 Gina grabs the remote control.
Pressing the remote control butten..
The dog door opens.

Fido'= back insidae... an
The dog door closes.
bugs sakely outside

you are here » a9

completing the simulator

Code Magnets
Solution

Here's what we did to complete the simulator, Make sure you got
the same answers that we did,

public class DogDoorSimulator |

DogDoorSimulator.java
public static void main{Stringl[] args) |
Deghoor door = new DogDoor(); f"'“ should have written
Remote remote = new Remote {door): 'n periods, semicolons,

.l

5'_-[’5 ST

B gone outside...”);
System.out.println{™\nFido’s all done...");

try {
Thread.currentThread() .HHDOOO: ;
} catch (InterruptedException 2} { |}

P

System.out.printl

System.out.printlf!

and paventheses as You
é,_____..""""' needed the,

L - .but he's stuck ::ut:—:-_ide.""] e /
\nFids starts barking..." 'l.'ll_'

Vou tould have thesen

Lhe message abovt i
vabbing the vemote,

stem.out.printls n

k inside...");

..50 Gina grahs the remote coentrol.

i

90

Chapter 2

gathering requirements

Pelivering the new dog door

Good use cases, requirements, main paths, alternate paths, and a
uul'k'ir'lg simulator: we're fl:'ﬁl'li'll"'\:.' on the road to Freal software,
Let's take the new dog door to Todd and Gina.

This dog door rocks! We
don't have to get out of bed fo let
Fido out anymore, and the door
closes on its own. Life is good|

T_Gdd -ﬂhd {5”1&"5 P‘Ii

hl
uhin InLs are

Frupted now, which

ak
them satisfied Lustomeys, -

Fido's inside, and the
rabbits, woodthutks, and
mite ave cutside.

This was Eﬁ% the outeome we Working app, happy customers

were hopi way back on page

bO. m-i'{‘. a d‘i’i‘"l;ﬂﬁhf-t 5“"’& customers, we made sure their door worked when Fido did
rtﬂuii’tmth'{'.s make, huh? something they didin’t expect

Not only did we turn Todd and Gina into satisfied

like stay outside plaving,

you are here » 91

when things go right

a2

Use Cases Exposed

This week's interview:

Getting to Know the Happy Path
HeadFirst: Hello there, Main Path.

Happy Path: Actually, | prefer o be called “Happy Path.” 1 know a lot of books refer to me as “Main
Path.” but 1 find lots more people remember who 1 am when 1 go by “Happy Path.”

HeadFirst: Oh, | apologize. Well, in any case, it's great 1o have you with us wday, Happy Path, and you're
right on time, too.

Happy Path: Thanks... I'm always on time, that's really imporeant to me,

HeadFirst: Is that nght® You're mever lace?

Happy Path: Nope, not a single time. 1 never miss an appointment, either. I never make a mistake, nothing
ever goes unexpectedhy.. vou can really count on me w come through just like you want, every ame.
HeadFirst: That's quite a statement o make.

Happy Path: Well, its just part of who T am.

HeadFirst: And that’s how you got vour name? You make people happy by always being on time and never
making a mistake?

Happy Path: No, but that's close. They call me “Happy Path™ because when you're hanging out with me,
everything goes just as vou'd hope, Nothing ever goes wrong when the “Happy Path™ is at the wheel,

HeadFirst: T have to admit, I'm still a bit amazed that nothing ever goes wrong around you, Are you sure
vou're Iving in the real world?

Happy Path: Well, don't get me wrong,.. things definitely go wrong in the real wordd, But when that
happens, I just hand things off to my buddy, Alternate Pach.

HeadFirst: Oh, I think I see now.. so things can go wrong, but that’s Alternate Path’s job to handle,

Happy Path: Yeah, pretty much, But [don’t worry too much about that. My job is to take care of things
when the sun is shining and things are going just like people expect.

HeadFirst: Wow, that must be really satisfying,

Happy Path: Well, most of the dme it is. But things do tend 1o go wrong a loc It seems like hardly anvone
sticks with me from start w fnish. Alternate Path usually gets involved ac some point, but we get along well, so
it's no hig deal.

HeadFirst: Do vou ever feel like Alternate Path is buting in? T could imagine some tension there...

Happy Path: No, nocac all, I mean, we're all after the same thing: geting the customer o their goal, and
making sure they're satisfied. And once we're defined well, actually coding an applicadon is a lot simpler

HeadFirst: Well. you heard it here folks. Next week, we'll v and catch up with Alternate Path, and get her
side of the story, Undl then, uy and stay on the Happy Padh, but remember o plan for problems!

Chapter 2

gathering reguirements

.. -
TWHAT'SE MY PLURPQSE
*

E‘;i']il“ a1 1_|"'H' .l‘l'l:.l, Ae ST (31- |,|"H' nesy [erms '\.HLIL'\.'l" li'illl\'l'll."'d il"l l‘hi.‘\ I:'i'li_'l[:l{f'l'. ':jl-l 1]“']'ll_';l‘ll.
are descriptions of what those terms mean and how thev're used. Your job is 0 match
the term on the left with that term’s purpose on the right,

ExternNaL Kicks off the List of steps described in a

use case, Without ti-xis, a4 use case never gets
going.

Something a system needs to do 10 be a
SUCCESS.

Case

Start

Lets you know when a use case is finished,
Without this, use cases can go on forever.,

RQQUIREMEHt Heip.s you gather goocl requirements. Tells a
story about what a system does,
Val.l-le What a system does when everything is
— Y i 8

going rigl-lt. This is u.'iuail}r what customers

., describe when they're talking about the
ConpitioN)
—_— ystem.

This is alwafs the first ste]: in the use case.

Paty

Without this, a use case isn't worth an}fthing
5 to anyone. Use cases without this alwaxs fail.

WUh oh.. parts of some of '.l'.'hf ‘I[.Et'r!n‘.n on ‘:',:ht

left have done missing You've E,G‘lz o use the
definitions on the vight to mateh to a term,
and F||| in the missing PavT of the tevrm

you are here » 93

i have a purpose

Exercise -
SoLutions Y S .
"WHAT'S MY PLURPASE
&

Below on the left are some of the new terms vou've learned in this chapter. On the right
are descriptions of what those rerms mean, and how thev're used. Your job is o match
the terim on the lefl with what that terngs purpose is on the nght.

Exteﬂﬂal. Ihi‘[fla‘[iﬂ' —_— Kicks off the list of steps described in a

use case. Without Ihis* a use case never gels
guing.

Sumﬂhiug a system has to do to he a success.

Use Case

Lets you know when a use case is finished.
Without this, use cases ean go on forever.

Start Condition

1 Helps you gather good requirements. Tells
Requirement ps you gather good requirements. Tells a

story ahout how a s_v,-'st{-m works.

How a system works when E'h'ﬂ‘:,-‘iLing‘ 18
going riglﬂ. This is usualiy what customers
describe when 1119:,-':1 !alking about the

srstern.

Clear VaLve

Stop Conpition

This is a[wa}'s the first steI} in the use case.

Without this, a use case isn't worth an_v,rih:ing
to anyone. Use cases without this always fail.

Main VPaty

R

mﬂh_- Suk

bl ¢ You filled ;. all the

amles cucily like we did,

94 Chapter 2

gathering requirements

v, ..__WWW'

N & Time to write some more use cases.

Below are three more potential customers that are interested in
Doug's Dog Doors. For each customer, your job is to write a use
case to solve the customer's problem.

Doua’s i

- | Dﬂﬂl‘s is pg

Bitsie is constantly nudging w'{: H‘If loeal sg,ch,,.l.f:: jﬁ“"’“
open our back door, or nasing open the andle {hej, e

kitchen bay windows. T want a system that
locks my dog door and windows behind
me every time I enter a code, so Bitsie
can't get out.

Bitsie

Bruce is constantly barking, so
I never know if he really wants
out or not. Can you build a door
that opens up when he scratches it
with his paws?

Tex is constantly
tracking mud inside the house. I
want a dog door that automatically
closes every time he goes outside, and
stays closed until I press a button to let
him back in.

/

E‘l' ule

Answers on page 96.

you are here » 95

use case bonanza

harpen your pencil
-4 answers Time to write some more use cases!

 Ehouah s is 3
Ed:; dwtsﬁ]{sit atkually
has ne ekfeet on how

— []

tht s.";‘ﬂ*.ﬂ"" h.:'nauds’

You've seen the customers; now let's look at the use cases. Here 15
how we wrote our use cases for the dog-loving folks on page 95.
See if your use cases look anything like ours.

Bitsie is constantly nudging
open our back door, or nosing open the
kitchen bay windows. I want a system that
locks my dog door and windows behind
me every time I enter a code, so Bitsie

K}'I‘IS‘E,Enjs uie fise i
can't get out,

._j"“"'"r: two 5‘[’.I!'|Js: she

enters 3 tode, and
then

the dog door and
[the windows lock.

Kristen and Bitsie’s Pog Poor

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
P in the house lock.

Tex is constantly tracking
mud inside the house. I want a
dog door that automatically closes
every fime he goes outside, and stays
closed until I press a button to let
him back in.

John's vequest burrs out o be very /
similar te what Tedd and ﬁma

wanted Fart af aa'lz,ht'rinﬁ aaod
'rtﬂlu.ﬂrtrr\!ﬁ‘ts is retognizing wht.h .

It;ll.:u.."wn.lr_ a'llr:ad"]r built: Enmffhtna sienilar

'|:,n whérl; =1 vl'.l.nfk‘.ﬂ‘ht!' wﬂ'n'l:,s.

96

Chapter 2

7 Tex comes back inside.
q

gathering requirements
/Gj; is constantly barking, so
I never know if he really wants

out or hot. Can you build a deor
that opens up when he scratches it
with his paws?

Holly and Bruce’s Pog Poor

1. Bruce seratches at the dog door.
2. The dog door opens.

3. Bruce goes outside.

{" > 4 The dog door closes avtomatically.
Come of this 4 Bruce does his business.
;‘“;“f ‘f‘“'i 5 Bruce scratches at the door again.
aid out W
what Helly 53, 6. The dog door opens up again.
but you sheuld) (:a
have £igured it 7 Bruce comes back inside. iy
out when fou

trouapt e 8, The door closes automatically.
how her 5‘;‘!":.\‘-“
will be used

We 'reall'*f need more inkormation
ko weite this use case. |ocks
like we need to ask John some

Even thoush John said Tex
-us,ua“‘?r 5:{:.: muddjﬁ he doesn't
have to get muddy... so that's

ATl veally an alternate path.
John and Tex’s Pog Poor
1. (Somehow) the dog door 4. Tex does his business.
opeus. 41 Tex gets wmuddy
2. Tex goes oufside. 4.2 John cleans Tex up
. The dog door closes 5. John presses a button.
automatically.

6. The dog door opens.

8. The door closes avtomatically.

you are here » a7

the three components of a use case

More Use Case Magnets

Holly and Bruce’s Pog Voor

Bruce scratches at the dog door to be lef out.
The dog door automatically opens, and Bruce
goes outside. The dog door closes after a preset
time. Bruce goes to the bathroow, and then
seratches at the door again. The dog door opens
automatically, and Bruce returns inside. The dog
door then closes automatically.

If Bruce seratches at the door but stays inside
(or stays outside), he can scratch at the door

Remember the three parts of a use case? It's time to put what
you've learned into action. On these pages, vou'll find several
use cases; your job is to match the use case magnets on the

Y bottom of the page to the correct parts of each use case,

f}u Lan veview 3ll
these by -Frippu-.a
back to page 74

Vou should be able to fdlow —mM8M8M8M8™™
Fhese alternate use tase

fmrrna‘l:s w{hm-'t mulh trouble

I£ ou get tonbused, ehetk out

Appendix | for the stoop on

albernate use tase formats.

again to re-open it, from inside or oviside. Kriston and Bitsie’s Pog Poor

—_— — — — S

.

1. Kristen enters a code on a keypad.

v .The dog door and all the windows
in the house lock.

bl
:=:. SllP'e' - .

ISHF" z, B o
2 BUY < gupe

lse these maanets to
inditate the tlear value
of a use tase.

98 Chapter 2

‘L-_‘\' This magnet indicates

- [o the start ondition for

d use fase

gathering requirements

John and Tex’s Pog Poor
Primary Actor: Tex Main Path
Secondary Actor: John 1. Tex goes outside.
Preconditions: The dog 2. The dog door closes avtomatically.
door is open for Tex 1080 3 11 4oo¢ his husiness.
Qutsse. 4. John presses a button
= Goal: Tex uses the bathroom P :
and comes back inside, 9. The dog door opens.
without getting mud 6 Tex comes back inside.
inside the house. 7 The door closes automatically.
Extensions |
31 Tex getfs muddy.
3.2 John cleans Tex up.
Fida heve
vepresents
Use this the external
magnet. for the initiator of 3

stop condition —, _
of 3 use tase i
How de 'j'D'-l
k'ﬂﬂ"'ﬂ WhEn
the use tase is
-Fim.lihtd?

you are here »

use £ase, whith

kicks things off.

———— Answers on page 100.

use case magnets solutions

Use Case Magnets Solutions

Remember the three parts of a use case? [t's time to put what
you've learned into action. On these pages, you'll find several
use cases (in different formats, no lessl); your job is to match the

use case magnets on the bottom of the page up to the correct
parts of each use case,

olly and Bruce’s Pog Poor

e'scratehes at the dog door to be let out.
dog door automatically opens, and Bruce
goes outside. The dog door closes after a preset
time. Bruce goes to the bathroom, and then
serafehes at the door again. The dog door opens
_amn aytomatically, and Bruce returns inside. The dog
£3(0] or then closes automatically.
S 1£ Bruce seratehes at the door but stays inside
(or stays outside), he can scratch at the door
again fo re-open it, from inside or outside.

Look elosely ¥or the s

E.r:tndi‘l;.iuh in this 1‘|:'7‘|.c ot
use tases; it's uw;'ﬂg not
+he last sentente i there (
are any altevrate ?a-t'hs.

¥ outside to use the
bathroom without
Holly having to open
and close the dog door
lor even listen for
Bruce to bark)
-~ /

The elear value of a use
gase—in most J?-:rrma‘l:SH
isn't stated in the use
tase, so You ll need to
Elg,ul"t it out on Yyour own.

The start Londition and
externg initiator dre

i'r!{, H:EF o

Kristen enters a code on a keypad.

vl bot port ok _~" 2.The dog door and all the win
3 use ¢ace in the house lock. :

Bitsie can't get outside with

risten letting her out. The shop conditionis ——""

almest alwaxfs the last

100 Chapter 2

step in the use tase.

gathering requirements

In +his use tase
format, the external
initiater is E.|wa|‘?‘s the

Frimary attor \

John and Tex’s Po¥lloor i |
Primary Actor: Tex Main Path y
Secondary Actor: Johw 1. Tex goes outside.
Preconditions: The dog 2. The dog door closes automatically.
door is open for Tex 1090 3 1,1 4oos his business.
outside.
Goal; Tex uses the bathroom % Jonn presses a betton.
and comes back inside, 5. The dog door opens.
without getting wmud 6 Tex comes back inside.

M the house. 7. The door closes avtomatically, 4

T Extensions -
firyLim S ————
of T:E;f;*: . 31 Tex gets muddy.
expuLy !
you've g0t Your 3.2 John cleans Tex up.
tlear value: Sl
Lock ‘FW the

last S&P in the
madip Fath .

ht [t Ktth!m‘h&

you are here » 101

the power of use cases

102

sharpen your penc

What's the real power of use cases?
You've already seen how use cases help you build a8 complete requirements list, Below are

several more use cases fo check out. Your job is to figure out if the requirements list next
to each use case covers everything, or if you need to add in additional reguirements.

Kristen and Bitsie’s Pog Poor
Use Case

1. Kristen enters a code on a keypad.

2. The dog door and all the windows
in the house lock.

Kristen and Bitsie's Pog Door
Requirements List

1. The keypad wust accept a 4-digit
code.

2. The keypad must be able to lock the
dog door.

-~

Heve's the r:qluircm:r.{.s
list For Evicken's doﬂ_
deor. s ahjl“uﬁ:mﬁ missing
or intomplete based

on +he use tase? £

so, write in the extra
Ttﬂlul'rcrncn‘{',i You thirk
the door needs o hardle.

Remember Kristen
and Er'l{:.{lt?

Chapter 2

gathering requirements

Holly and Bruce’s Pog Door e :;, i b
Use Case folh b b
nd she's 3] e !

1. Bruce seratches at the dog door. and she’s all set!

2. The dog door opens.

3. Bruce goes oufside.

4. The dog door closes automatically.
4, Bruce does his business.

5. Bruce scratches at the door again.
6. The dog door opens up again.

7 Bruce cowmes back inside.

8. The door closes automatically.

Holly and Bruee’s Dog Poor
Requirements List

1. The dog door must deteet seratehing
from a dog.

2. The door should be able to open on a
command (from #1),

c

HD“'}T is F‘-‘mhfd

J

s arqH:'h'ma r\nissir.a?
[t's up 4o you to

make sure Holly is 2
satistied customer-

———— [\nswers on page 104

you are here » 103

from use cases to requirements

104

qﬁf‘l{}'ﬂ‘l your pencil
SN ANSWEIS \What's the real power of use cases?

In each situation below, the use case describes how the dog door should work-but the
requirements aren’t complete. Here are the things we saw that were missing from the
requirement list, based on the ever-helpful use case.

Kristen and Bitsie’s Pog Poor
Use Case

1. Kristen enters a code on a keypad.
2. The dog door and all the windows

in the house lock. :
s Kristen and Bitsie's Dog Poor
Requirements List
. The keypad must accept a 4-digit
This one was a little trickier.. ﬂﬂdﬂ.
J;:;tf'-:a d‘;!:aftg {’;:;:E:ﬁ 2. The keypad must be able to lock the E{:immf
batk in, so rcﬂ”‘f the h-s:Ef-as: dﬂ'ﬂ dﬂﬂl’ and a" fhE Wiﬂdﬂwa. e intomplete...
and the rtﬁuircmcn{s list ave 3 Th'E kﬂ'ﬂlad l'll'lUSf bE hl e i
imtomplete. Eristen wouldn't) o b be abl
ot borry iF e soddr’t > the dog door and all the windows lock tf:: dfu

urlotk evevything, would she? I" 'ﬂ‘lE. ouse.

‘E"'_d “'lhdaw;.

Be tavefull Good use cases make for aood reauivements, but a
bad—or intomplete—use tase tan vesult in BAD vequivements/

Chapter 2

gathering requirements

Holly and Bruce’s Dog Door
Use Case

1. Bruce scratches at the dog door.

2. The dog door opens.

3. Bruce goes outside.

4. The dog door closes automatically.
4 Bruce does his business.

5. Bruece seratches at the door again.
6. The dog door opens up again.

7. Bruce comes back inside.

8. The door closes automatically.

Holly and Bruce's Dog Poor

Requirements List
1. The dog door wmust detect seratching

from a dog.

2. The door should be able o open on a

command (from #1),

3. The dog door should close
automatically.

rhis 15 ope U"F

hequirc,":n 11:5
a
and Ging's dog

you are here » 105

ooa&d toolbox

Tools for your 00AZD Toolbox

OO0AS&D is all about writing great software, and
you can't do that without making sure your apps do
exactly what customers want them to.

In this chapter, you learned several tools for making
sure your customers are smiling when you show them the
systems you've built. Here are some key tools to keep handy:

: %< Heve ave
Requivemen e
T ey tools e,
tar“d EI
Giood vespivements ensuve your Syscen = e ,;fa;i
works like your ustomers expett. _
Make sure Yyour veauivements tover all the
rlx'fsin{*-eus:uusl:w\fwrsjstm-
i bout
Use your use tases to find out 3
e addinn lots
Your use tases will veveal any intomplete e Todli b
or missing requivements that you might Jch:: a#h:;
v Latenories
have to add to Yyour syste Geprel
thapters.

00 Basies ‘ ")>

_— 00 Printiples

Requirements are things your
system must do to work correctly.

Your initial requirements usually
come from your customer.

To make sure you have a good
set of requirements, you should
develop use cases for your
syslem.

Use cases detail exactly what your
system should do.

A use case has a single goal, but
can have multiple paths to reach
that goal.

A good use case has a starting
and stopping condition, an
external initiator, and clear value
to the user.

A use case is simply a story about
how your system works,

You will have at least one use case
for each goal that your system
must accomplish.

After your use cases are complete,
you can refine and add to your
requirements.

A requirements list that makes all
your use cases possible is a good
set of requirements.

Your system must work in the real
world, not just when everything
goes as you expect it to.

When things go wrong, your
system must have alternate paths
to reach the system’s goals.

¥* Readers of Head First Dcsi5n Patterns will find these C.a'tcﬁorics

106 Chapter 2

Lamiliar... that's because DOAED and design patterns g0 hand in hand.

4. The main path is sometimes called the

5. A use case must have this (two words) to
the user,

8. Regquirements ensure that your system
works
10. In the dog door system, who was the
external inrtiotor?

13. Use cases focus ona user
qgoal,

14, When Fido is here, the dog door has hit its
stop condition,

16. A use case is just a list of things that a
system

18. A use cese tells a about how a
system works,

21, Use cases are easeist to understand when
they're in this kind of language.

22. bood use coses make for
requirements.

24, A use case helps you understand how a
system will be .

25. Use cases help you gather

1. A use case details how a system

with users or other systems,

2. When things go right, you're on this.

3. Use cases are all about the "____" of your

System.

6, Without use cases, you won't know if your

requirements are A

7. If you have four godls in a system, you'll

have af least this many use cases.

9. Good systemswork inthe

11. Fide does this to signal the start of the deg

door system's use case,

12. When things go wrong, you end up on an
path.

15. Fido isn't part of this, but his dog door is.

17. This is what you should do to the customer
to gather an initial set of requirements.

19. How mary use cases are there in Todd and
Gina's deg door?

20. Fido was chasing these when he got stuck
outside.

23. A requirement documents this many needs,

you are here »

gathering requirements

107

exercise solutions

Code Magnets Solutions

The DogDoor class is done, so all vou need now is to write a class for
the remote contral, We've started this class below, but it's your job to
finish things up. Using the code magnets at the bottom of the page,

complete the code for the Remote class.

Be careful... you may not need all the magnets.

public class Remote |

private door;
public Remc::l;e{

this.deor = door;
}

public veid pressButton() |
System.out.println (*Pressing the remote control button...”);

108 Chapter 2

gathering requirements

you are here » 109

3 requirements change,

I Love You, You’re Perfect...
Now Change

What in the world was T
thinking? I just found out he
doesn't even like NASCAR.

Think you’ve got just what the customer wanted?
Mot so fast... So you've talked to your customer, gathered
requirements, written out your use cases, and delivered a killer application.
It's time for a nice relaxing cocktail, ight? Right... until your customer
decides that they really wanted something different than what they told
you. They love what you've done, really, but it's not quite good enough
anymore. In the real world, requirements are always changing, and it's

up to you to roll with these changes and keep your customer satisfied.

this is a new chapter 111

walcome to paradise

You’'re a hero!

A nice pifia colada to sip on, the sun shining down on vou, a roll of
hundred dollar Bills stulled into your swim trunks... this is the life ol a
Programimer w hu‘.\ju:ﬂ made I}Irllg.h‘ ”u_q Daoors a successful venture. The
door vou built for Todd and Gina was a huge success, and now Doug's

Ti#ed of cleaning 1 your dang’s midseakes

i e else o let youe dog outsicle?

onre thar stick when you agren them?

selling it 1o customers all across the world,
Duutj;i making
come sevious butks
with your tede

* Frotessionally
installed by cur
door experiy,

* Fafembed
all-stzal

* Choose your swn
e tom eolors
and imprints.

* Custom-cut door
for your dog,

But then came a phone call...

Call Dhougg tody ae 1-3[!0-993—9933

Listen, our dog door's
been working great, but we'd
like you to come work on it
some more...

You: Oh, has something gone wrong?

Todd and Gina: Mo, not at all, The door works just like you said
it would.

You: Burt there must be a problem, right? Is the door not closing
quickly enough? 1s the button on the remote not funetoning?
Todd and Gina: No, really... its working just as well as the day
vou installed it and showed everything o us.

You: Iz Fido not barking 1o be let out anymore? Oh, have you
checked the hatteries in the remote?

Todd and Gina: No, we swear, the door 1s great. We just have a
few ideas about some i"l'l;_l,l'flL"‘t‘h we'd like Yol to make...
Todd ard ﬂ"“"’" Ling You: But if evervthing is working, then what's the problem?

1 | 5l
happily in rrvp

\fm..lr -raf.ﬁ‘h'ﬂ“"

112 Chapter 3

requirements change

We're both tired of having

to listen for Fido all the time.
Sometimes, we don't even hear him
barking, and he pees inside.

And we're
constantly losing that
remote, or leaving it in
another room. I'm tired of
having to push a button to
open the door.

Todd and Gina’s Pog Poor, version 2.
What the Poor (Currently) Does

1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.

3. Todd or Gina presses the button on the
remote control.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatieally.
6.2. Fido barks to be let back inside.
6.3. Todd or Gina hears Fido barking (again).

64. Todd or Gina presses the button on the
rewmote control.

6.5. The dog door opens (again).
7 Fido goes back inside.

What if the dog door opened
outomatically when Fido barked at it? Then,
we wouldn't have to do anything to let him
outsidel We both talked it over, and we
think this is a GREAT ideal

you are here » 113

the customer is right

Back to the drawing board

Fimie tor et working on fixing up Todd and Gina's dog
door :I!._:':-I.ir'l. We need to ﬁ_',;m':' CHIT @ iy Et:-u|'u'l| the

door whenever Fido barks. Let’s start our Iy

Wait a minute... this totally
sucks! We already built them a

working door, and they soid it was
fine. And now, just because they had
some new idea, we have To make more
changes to the door?

The customer is always right
Even when requirements change,

vou've got to be ready w update your
application and make sure it works

like vour customers expect, When vour
customer has a new need, 10s up to you

4] 1']1;1:1@' viour ;:|r|ﬂil'ut'ii WIS L0 Imeel

those new needs.

K ‘DWE, loves it when this

happens, sinte he gets o
tharge Tedd and Gina for
the thanges You make.

e 3 N
P OWEWR

You've just discovered the one constant in software
analysis and design. What do you think that constant is?

114 Chapler 3

The one constant in software analysis and design®

requirements change

Okay, what’s the one thing you can always count on in writing software?

No matter where vou work, what vou're building, or what language you are programming in, what's

the one true constant thar will alwavs be with vou?

JoVAHD

RS | If'l'.llll'l"lill' Lk 566 l|.'ll." AlSWer

No matter how well vou design an application, over time the applicaton

Ty i“ .il,l'l.'l.l}'h ;_"Cl.l}'l.'n tl]“l :I'I.ilt'lg_"'t'. 11}:!“‘“ ll-l'i'('f WET W M]]th‘ll s L Jlr'1||l||‘l'|:'|.‘-.
programming languages will evalve, or your friendly customers will come up
with craey new requirements that foree vou o “hx"™ working applicatons,

the middle of a project, and sometimes when you
think everything is complete. Write down some
reasons that the requirements might change in
the applications you currently are working on.

wdharpen your Fmg“ Requirements change all the time... sometimes in
b, : v k

My eustomer detided that they wanted the applitation 4o work differently

My boss thinks my application would be better as 3 web application than a dedetop app

#*|t ‘?'m-"-'e'. read Head First Et‘.‘-ilﬁh Patterns, this page might look a bit Familiar
They did suth a aood job deseribing thange that we detided to just vip o—F-F their
ideas, and Juﬂ: Cr:f‘.N'élE- a few 'Eh'lhg,s here and there. Thanks, B]ci:h and Evie!

Rer;[uirements
always change.
I ynu've got
goocf use cases,
tlmugh, you can
usually change
your software
a[uir]sly to anust
to those new
re::{uirenlents.

you are here » 115

add an alternate path

Add bark recognition to Todd and Gina's dog door.

ExerciSe

Update the diagram, and add an alternate path where Fido barks, Doug's
new bark recognizer hears Fido, and the dog door automatically cpens. The
remote control should still work, too, so don't remove anything from the
diagram; just add another path where Fido's barking opens the door.

Gina, open the dog
door... Fido won't
quit barking!

(@ Fido barks to be let out
(®) Todd or Gina hears Fido barking @ The e durapens
@ Todd or Gina presses the button on Fido goes outside
the remote control.

@ Fido goes back inside

Tha door shuts automatically

116 Chapter 3

requirements chango

I feel much
better now!

S

" (® Fido does his business

....H__A

The door shuts automatically

Again with the

barking! Semeone let
Fide back inside.

J

Todd or Gina hears
Fido barking (again)

Todd or Gina presses
the button on the
remote control

The dog door opens (again)

you are here »

17

meeting fido's needs

Doug's invented hardware to recognize barks, but it's up to you to
figure out how to use his new hardware in the dog door system.

Here's how we solved Todd and Gina's problem, and implemented their
bark-recognizing dog door. See if you made similar additions to the diagram.

Fina, open the dog
door... Fido won't
quit barking!

(®) Todd or Gina hears Fido barking

Todd or Gina presses the button on
the remote control.

We need 1o add 3
The bark nizer
@ Fido barks to be let out :;M {1"’;: heam" i o :
deg door- / @Th* bark recognizer @The dog door opens
sends a request to the ! .
ost of the diagram door to open Fido goes outside
M
B b Jusk ik on he atterate path, we
et e s o i
3 - on an ﬂfﬂ‘ﬂa& ?au"

@ Fido goes back inside ‘\

The door shuts automatically

118 Chapter 3

reguirements change

o
o
&
I feel mich ;
be Eﬂfnnw' The door shuts automatically
° 7/ le of
C need 3 e
) T{md“;& 'I:‘?’ﬂ' 40 Fido barks to be let back inside.
g The bark recognizer °’.
“hears” abark (again) &
Again with the
@ The bark recognizer barkig gl Someone let s
Fido does his business sends a request to the Fidg'back inside.
door to open
Tadd or Gina hears

gk e s ido barking (again)

are alveady on an

ﬂ":ﬂ'ﬂﬂh 1

we need fwo sub—

numbers.

Todd or Gina presses
the button on the
remote cantrol

The dog door opens (again)
vou are here » 119

which path do i follow?

But now my use case is totally
confusing. All these alternate
paths make it hard to tell what in the
world is going onl

Optional Path?
Alternate Path?
Who can tell?

Todd and Gina's Pog Poor, version 2.1
What the Poor Poes

1. Fido barks to be let out.
mn 2. Todd or Gina hears Fido barkinag.
sre now —> 21.The bark recognizer “hears” a bark.
alternate 3 Todd or Gina presses the button on the remote control.

steps for

both 47 > 31.Thebark recognizer sends a request to the door fo =
and 93, open.

4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside. %‘i““‘mﬁ
Even the 6.2. Todd or Gina hears Fido barking (again).
dternate ——== 6,31, The bark recognizer "hears” a bark (again).

~ These ave listed as sub-
skeps, but they veally are
voviding 3 LG‘MF'E‘I.'.I'Y
d.'l-”ﬂ':nf 'Path ‘IE.H\"ough

the use case.

These Subrs{x?_ﬂh \
— l.—.;-\lldl! an M
be Ec-ncmltd- "

&‘Flm 64. Todd or Gina presses the button on the remote
alternate control.
steps 64.1. The bark recognizer sends a request to the door

to open.
6.5. The dog door opens (again).
7. Fido goes back inside.
8. The door shuts automatically.

120 Chapter 3

bu{'. 'I:hcsc su'b—FE,I:'f'i
ave veally a diffevent
way to werk through
the use tase

requirements change

I still think this use
case is confusing. It looks
like Todd and Gina always hear Fido
barking, but the bark recognizer only
hears him sometimes. Buf that's not
what Todd and Gina want...

=

¥ 5 Lﬂ“ﬁhﬁ
Da o SEE WHE‘L Iﬁ! éi]ld 1
aha:Jc? Todd and Ginas big ided
was +hat J:hc‘lr wm-'ldr-"t 1_1'31_'43
lisken for Fido's barking arjmore:

Todd and Gina’s Pog Poor, version 2.1
What the Poor Poes

1. Fido barks to be lef out.
= 2.Todd or Gina hears Fido barking.

|n the rew use Lase,

we veally want to =3y = 2.1. The bark recognizer “hears” a bark.

that either Step 2 or 3. Todd or Gina presses the button on the remote control.
Step 2.1 hopgens N 3.1. The bark recognizer sends a request to the door to
and ther el_-|:|r-._¢'r S-Lg? Y open,
o Step 3.1 happens 4, The dog door opens.

5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.
Hove, cither Step 63 ——== 6.3 Todd or &ina hears Fido barking (again).
or b1 happens.. ————=== 6,31, The bark recognizer "hears” a bark (again).

64. Todd or Gina presses the button on the remote
PR —— — 7 control.
or b4 | happens. ————— . §41. The bark recognizer sends a request to the door
to open.

6.5. The dog door opens (again).
T Fido goes back inside.
8. The door shuts automatically.

you are here » 121

write it any way you want fo

Use cases have to make sense to you

If' & use case 15 confusing to vou, yew can smply reconfe @, There are tons of
different ways that people write use cases, but the important thing is that
it makes sense to you, your team, and the people vou have to explain it to.
So let’s rewrite the use case from page 121 5o it's not so confusing,

Todd and Gina's Pog Poor;, version 2.2

Now we've What the Poor Poes
added a label
to Ll ;?“‘BJ‘ Main Path Alternate Paths
ﬂ:gih are 1. Fido barks to be lef out.
part of the 2. Todd or Gina hears Fido barking. 2.1. The bark recognizer “hears” a
maif ?ﬂth- Ilark.
3. Todd or Gina presses the button on the 3.1. The bark recognizer sends a
remote control. \ request to the door to open.
When there's

_ 4 The dog door opens.
only a single step, 5 Fid
we'l ahuays use — 9 Fido goes outside.

that step when —— 6, Fido does his business.
“‘f:s::‘;:?"' 6.1. The door shuts avtomatically.

6.2. Fido barks to be let back inside.

These sub-steps 6.2. Todd or Gina hears Fido barking (again).

a nﬁamal.-- You
mr:‘f' usg Tthem, h“tﬁ
ou don't. have 64. Todd or Gina presses the butfon on the
- But theyve remote control.
oill on the left,
betause they dont 6.5. The dog door opens (again).
veplage steps on 7 Fido goes back inside.

main path.
he. e A 8. The door shuts automatically.

No matter how you werk .
through Lhis use Lase, You |
always end wp 3t Step @ on
the main path.

122 Chapter 3

Thc:r. ste

“
;Dh Lan Dn’]r {.&kf one Sf.{ tao
wark Ehraugh the use I:as:r

either 1k ste
OR the si:: P-on Che]"F{:a

This is a [iktle r.'ltarcr;:: t.ar;.
use Step 1,9&2{:? 1, an
then Shep 3, i_}_&_E{,c? 3],

6.31. The bark recognizer "hears”
a bark (again).

64.1. The bark recognizer sends a

\ 7 request o the door to open.

s on the right tan

eplace Steps 6.3 and & 4

P on the right

requirements change

If we can really write the use
case however we want, can we make the
bark recognizer part of the main path?

That's really the path we want to follow
mast of the time, right?

Excellent idea!

The main path should be what vou want to
have happen most of the time. Since Todd
and Gina probably want the bark recognizer
ror handle Fido more than they want 1o use the
remote, lets put those steps on the main patch:

Todd and Gina’s Pog Poor, version 2.3
What the Poor Poes

Main Path Alternate Paths
1. Fido barks to be let out.

2. The bark recognizer "hears” a bark. 2.1. Todd or &ina hears Fido barking.
3. The bark recognizer sends a request 31. Todd or &ina presses the button

-

to the door to open. on the remote control.
TR 4. The dog door opens. =y ﬁ"T ,
+hat involve the 5. Fido goes outside. r:maf::hmor:ao;:::f ';:::
bark vecognizer 6. Fido does his business. the steps related to the remote
;th:;;;ﬂ;} an 6.1. The door shuts automatically. ave better as an alternate path.
altevnate path 6.2, Fido barks o be let back nside. VAR

¢ 6.3. The bark recognizer "hears” a 6.31. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the
request to the door to open. button on the remote control.

6.5. The dog door opens (again).
7 Fido goes back inside.
8. The door shuts avtomatically.

you are here » 123

getting to the goal

Start to finish: a single scenario

With all the alternate paths in the new use case, there are lots of
different w i'l:\.'!'i Tor et Fido outside 1o use the bathroom, and then
back in again. Here's one particular path through the use case:

Todd and Gina’s Pog Poor, version 2.3
What the Poor Poes

Main Path Alternate Paths /r

Each 7ath 1, Fido barks to be let out.

b

t:r:':i 2. The bark recognizer “hears” a bark. 21. Todd or Gina hears Fido barking.
case starts 3 The bark recognizer sends a request 31. Todd or Gina presses the button
vith Stet | to the door to open. on the remote control.

4, The dog door opens, 4—*——//

5. Fido goes outside. We'll £ake the optiond

sub—path here, wheve
6. Fido does his business. R Fido aets stutk outside.

6.1. The door shuts automatically.
6.2. Fido barks to be let back inside.

6.3. The bark recoanizer "hears” a 6.3.1. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the

request to the door to open. / button on the remote control.
6.5. The dog door opens (again). T
7 Fido goes back inside. We've letting Todd and Gina

s e st iomaieaty e

Following the arrows gves ‘fou a

?arr'l:.“:_ul]alr ?‘a{.}l thrwﬂlh 'I:hE use "?ajt ?rm"-l" J|w.a'4}r_; fl'ld
B path like this is talled a scendrio g 3t Step @, with
Theve ave uihal'.r‘f 5“¢-ral Fms!b.l! ido h&':k inside.

stenarias in @ single use tase

124 Chapter 3

Let's take

this alternate
path, and let
Todd ard lﬁih.ﬂ
handle ofening
the door with
the remote.

‘foere e no e
Dumb Questions

Q_T | understand the main path of a
use case, but can you explain what an
alternate path is again?

A: An alternate path is one or more
sleps that a use case has that are optional,
or provide alternate ways to work through the
use case. Alternate paths can be additional
steps added to the main path, or provide
steps that allow you ta get to the goal in a
totally differant way than parts of the main
path.

Q,: So when Fido goes outside and
gets stuck, that's part of an alternate
path, right?

- Right. In the use case, Steps 6.1,
0.2, 6.3, 6.4, and 6.5 are an alternate path
Those are addifional sleps that the systam
may ga through, and are needed only when
Fido gets stuck outside, But it's an alternate
path because Fido doesn't always get stuck
outside—the syslem could go from Step 6
directly on to Step 7.

*

+ And we use sub-steps for that, like
6.1 and 6.27

A: Exactly. Because an alternate path
that has additional steps s just a set of steps
that can accur as part of another step an the
use case's main path, When Fido gets stuck
putside, the main path steps are G and 7,

50 the alternate path steps start at 6.1 and
go through 6.5, they're an optional part of
Step 6.

- Sowhat do you call it when you
have two different paths through part of a
use case?

A: Well, that's actually just another kind
of alternate path. When Fido barks, there's
one path that involves Todd and Gina hearing
Fido and opening the doar, and anather path
that involves the bark recognizer hearing a
bark and opening the daar. But the system

is designed for one or the other—either

the remote opens the door, or the bark
recognizer does—nol both.

requirements change

+ Can you have more than ong
alternate path in the same use case?

A: Absolutely. You can have altemate
paths that provide additional steps, and
multiple ways to get fram the starting
condition te the ending condition. You can
even have an alternate path that ends the
use case early... but we don't need anything
that complicated for Todd and Gina's dog
dagr,

A com])lete Path tlu'ough
a use case, from the first
step to the last, is called

a gcenario.

Must use cases have

several different scenarios,
but t11ey always share the

same user goal.

126

you are here »

alternate paths are optional

126

Chapter 3

)
y” Use Cases Exposed

This week’s interview:
Confessions of an Alternate Path

HeadFirst: Hello, Alternate Path, Weve heen hearing that vou're really
unhappy these days, Tell us what's going on,

Alternate Path: T just don't feel very included sometimes. T mean, vou can
hardly put together a decent use case without me, but 1 sill seem to get ignored
all the tme.

HeadFirst: I[gnored? But vou just said vou're part of almost every use case, It
sounds like vou're quite important, really,

Alternate Path: Sure, it may sawnd that way, But even when I'm part of a use
case, | can get skipped over for some other set of steps. It really sucks.. ics like
I'm not even there!

HeadFirst: Can you give us an example?

Alternate Path: Just the other day, I was part of a use case for buying a CD at
this great new online store, Musicology. I was so excited. ., but it turned oue tha 1
handled the sitwaton when the customer's credic card was rejected.

HeadFirst: Well, that sounds like a really important job! So what's the
problem?

Alternate Path: Well, veah, I guess it’s important, but T always get passed over,
It seems like evervone was ordering CDs, but their eredit cards were all getting
accepted. Even though [was part of the use case, I wasn’'t part of the

most conmon SL'B‘JI:L!'I";LIS'.

HeadFirst: Oh, 1 see. S0 unless someone’s credit card was rejected, vou were
never involved,

Alternate Path: Fxactly! And the finance and security guys loved me, they just
went on and on about how much T'm oworth to the company, but who wants o
git there unused all the dme?

HeadFirst: I'm starting to get the picture. But you're sdll helping the use case,
right? Even if you're not used all the dme, you're bound o get called on once in
a while,

Alternate Path: That's true; we all do have the same goal. T just didn’t realize
that I could be important to the use case and sdll hardly ever get noticed,
HeadFirst: Well, just think... the use case wouldn’t be complete without vou.
Alternate Path: Yeah, that's what 5.1 and 4.1 keep telling me. Of course,
they're part of the alternate path for when customers already have an account
on the system, so they get used constanty. Easy for them o say!

HeadFirst: Hang in there, Alternate Path. We know vou're an important part
ol the use case!

We' ve written

out the steps we
followed for the
stenario highliahte
above to help 5"'JE'

requirements change

w your pencl
A How many scenarios are in Todd and Gina's use case?

How many different ways can you work your way through Todd and Gina's use case?
Remember, sometimes you have to take one of multiple alternate paths, and sometimes
you can skip an alternate path altogether.

Todd and Gina’s Pog Poor, version 2.3
What the Poor Poes

Main Path Alternate Paths
1. Fido barks to be let out.
2, The bark recognizer “hears” a bark. 2.1. Todd or Gina hears Fido barking.

3. The bark recognizer sends a request 21. Todd or Gina presses the button
to the door to open.

on the remote control.
4. The dog door opens. t’_//
5. Fido goes outside.
6. Fido does his business.
6.1. The door shuts avtomatically.
6.2. Fido barks to be let back inside.

6.3. The barlcl: recognizer "hears” a 6.31. Todd or Gina hears Fido
bark (again). barking (again).
64. The bark recognizer sends a 64.1. Todd or Gina presses the

request to the door to open. button on the remote control.
6.5. The dog door opens {aﬂafn].{f
7 Fido goes back inside.

4 8.The door shuts automatically.

h———

———— Check out our answers on the next page

\rw :iﬂ'l"lf.ld'
N
1.- ra lll %‘I 'ﬁ‘n ;J 'bl 'E' rr b'll 5'3'“ L&‘h éc';" ?" G 5~
2 6.
3. T.
4. 8

1:‘.:“"‘---- "]"rau miﬂhf no‘E need -"J,::"

all of these blanks. you are here

127

one yse case, multiple scenarios

harpen your penci

TN, answers

This is just the use

tasc's main

These two

path.

How many different ways can you work your way through Todd and Gina's use case?
Remember, sometimes you have to take one of multiple alternate paths. and sometimes

How many scenarios are in Todd and Gina's use case?

you can skip an alternate path altogether,

Todd and Gina’s Pog Poor, version 2.3

What the Poor Poes

Main Path
1. Fido barks to be [et out.

2. The bark recognizer "hears” a bark.

% The bark recognizer sends a request
to the door to open.

4 The dog door opens.

5. Fido goes outside.

6. Fido does his business.
6.1. The door shuts avtomatically.
6.2. Fldo barks to be let back inside,

6.3 The bark recognizer “hears™ a
bark (again).

64, The bark recognizer sends a
request o the door to open.

6.5 The dog door opens (again).
7 Fido goes back inside.
8. The door shuts avtomatically.

Alternate Paths

2.1. Todd or Gina hears Fido barking.

31, Todd or Bina presses the button
on the remote contral,

6.21. Todd or Giwa hears Fido
barking (againl.

641, Todd or Gina presses the
buttom on the remote eontrol.

When you take 3.1, you'l
also take Step 6.4-|.

L\

1.1 21,31, 4,5, 5,61, 62,631, 641,657, 8 51,23 %565l 62,631 6415578

dﬂh‘l‘{: ‘tak: _____-_2 ': 1.! 3I +] l;r 'bl -.lrl G

albernate
path where
Fido nets

6.1, L1,3], 4 56 b, b2, 3], 64l 457, 8

3.1,20,3,4,557,8

7 12,3, 4,5 b 61, 62,53, b4,65,7,8

4.“' 1'r: %'rl q‘J ‘5- é'r f?.'_, b 11 5'3: b'*.r 'b'gj -?J E E‘ {hﬂ{..l'l-lhﬁ, tl!f:"

shutk outside.

128

Chapter 3

16 you kake Step 2. you'
always also take Step 3.l

reguirements change

Let’s get ready to code...

Now that our use case is finished up, and we've figured out all
the possible scenarios for using the dog door, we’re ready to
write code to handle Todd and Gina’s new requirements. Let’s
figure out what we need to do...

I think we should recheck our
requirements list against the new use
case. If Todd and Gina's reguirements
changed, then our requirements list
might change too, right?

Any time you change your use
case, you need to go back
and check your requirements.

Remember, the whole point of a good
use case 1s o pet good requirements. IF
vour use case changes, that may mean
that your requirements change, too, Let's
review the requirements and see if we
need wo add anvihing to them.

Todd and Gina’s Pog Poor, version 2.2
Requirements List

1. The dog door opening must be at least 12 tall.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the

o ahead and wrike
in amy 3dd‘.1{"mal

'rt“,.u:l'rl!hth"[ﬁ that you ve

distovered working door is open.
Ehrough the scenarios 3, Once the dog door has opened, it should elose
[or +he new dog door automatically if the door isn't already closed.

on ?aag | 1'3

.

you are here » 129

evolving the requirements list

Finishing up the requirements list

mo we need to handle the owo new alternate paths by adding a couple
extra N_‘i'l[l‘if‘l'ﬁ'li'ﬂlh 1o our |‘1'1’|l|ih‘l'|‘|t'r'|lx list. We've Fone ahead and
crossed off the steps that our requirements already handle, and it looks
like: we need a few additons w our requirements list:

Todd and Gina's Pog Poor, version 2.3

What the Poor Poes
Main Path Alfernate Paths
et b bt aui—
There ave > 2. The bark recognizer “hears” a bark. —2 1 Todd-oe-bina-hearatide-baring- i:’“*'ﬁbl:h thece
veally two 3, The bark recognizer sends a request : &p: uLthc
ve n,.ui'rcrn:nfshﬁ“"ﬁ to the door to open. $1-Todd-or-Stmarpresses THE BUTTON g :} {;I-.P&{h were
here: “h:aviha" 4 The dog door-opews— ﬂﬂ'{"hﬂmtfﬂ'ﬂ'ﬂmmt. it j £ use
L 4l M LT FI;'H'] i
doas bark, a ih 5-Fido goss-outside, S~ We took tare the |ast thapler..
'Hucn a?‘l.'.mnﬁ i) - g-F ma&{ t:ri:
dey oo §1 The door shuts ﬂll;l]]ﬂﬂﬂll by & ‘these main 50 we've afrcad}r
path steps m handled the
6.2 Eido harks to he let haek inside. (Chapter 1. requivements 4o
6.3 The bark recognizer “hears” a _ take eare of Lhese.
These are bark (again. 6-81.Todd or Gina hears Eido
diffevent 64. The bark recognizer sends a baeking-tagaini—
cheps than 17> request fo the door to open. §44—TFodd-or-imaprevseythe

ard 3, but the 6.5, The dog doar opess (agail— bution-sntheremotecontxal
rcq;.-ircmcnﬁ

are Lhe same ZFido-goes-batic-trside-

as for these §. The-doorshita-atrtomatis

Todd and Gina's Pog Poor, version 2.3
earlier steps.

Requirements List

————————————

1. The dog door opening wust be af least 12 tall.

2. A button on the remote control opens the dog door
if the door is closed, and closes the dog door if the
door is open.

3, Onee the dog door has opened, it should close
automatieally if the door isn't already closed.

o R s R e 4, A bark recognizer must be able to fell when a dog
Mere ar REW

reauirements we need e is barking.
to add to our list 5. The bark recognizer must open the dog door when
it hears barking.

130 Chapter 3

Now we can start coding the
dog door again

With new requirements comes new code, We need some
barking, a bark recognizer to listen for barking, and then
a dog door to apen up:

o
]

This is the method in our

sok bware Lhat we want 1o |
have talled every Lime Dougs
hardware heavs 3 bark.

DogDoorSimulator.java

Remember, Fido is
outside the system,
o ddhl't ntﬁd an
object for him. We
e We still need 4o write
ol # AN . the tode for the bark
D Dwglmuh % FEﬁDﬂhiRr. WEI“ du

o that on fhe next page.

BarkRecognizer.java

is salid. Nite workl

reguirements change

Just like dhe bark recognizer
theve's hardware angd J

tware in the doﬁ door: the

door itzelf 3,4 Your code.

! pefhing new -
e dont (3 need any ()
bhis elass: i 1) _/I
ml'.thﬂd for the ¥ o3 'L need te

so this tode doesr

thandf

We've ‘3°Jr‘ an

.EIJE. 311

D

Even 'Ei‘IDUﬂI'I we ve sti| wﬁrlﬂinﬂ on

3r{£in5 the software te do w
the tustomer wants, £hie |soa o

9ood inditation that Your dciijn

you are here » 131

recognizing barks

Was that a “woof” | heard?

We need some software to run when Doug’s hardware “hears™
@ bar‘k. I.a:'i'.\; cieate a BarkRecngnizer l']:LK‘i, alt'l(i l.\']'i[l: A
method that we can use to respond to barks: BarkRecognizer java

We'll store the dog door that this
b.a.rk retodnizer is attached 4o i

public class BarkRecognizer | - b

e e A The BarkRetosnizer needs to know
£ whieh door it il open

public BarkRecognizer (DogDoor door) |

i 1 Ever +i
this.door = door; Y time the hardwg
:, bark, it will ¢4l re hears 4

{.hii mgthad
with
F-_______-_H___ the sound of the bark it heand
public veid recognize (String bark) | '
System.out.println(® BarkBecognizer: Heard a ‘% +
bark + ™ ") J 7
Taka : i .
door.open () ; All we need to do is autpy 5

} messdte letting Lh
t \ we heard 3 b:?k ¢ System know

~and then open up

the dﬂﬁ decr.
thereyare no ”
Dun?b Questions
: That's it? It sure seems like the BarkRecognizer Q} But what happens if a dog other than Fido is
doesn't do very much, barking? Shouldn't the BarkRecognizer make sure it's

Fido that is barking before opening the dog door?

. Right now, it doesn't. Since the requirements are
simple—when a dog barks, open the door—your code is A: Very interesting question! The BarkRecognizer
pretty simple, too. Any time the hardware hears a bark, it hears all barks, but we really don't want it to open the daor
calls recognize () inour new BarkRecognizer for just any dog, do we? We may have to come back and
class, and we open the dog door. Remember, keep things as fix this later. Maybe you should think some maore abaut this
simple as you can; there's no need to add complexity if you while we're testing things out
don't need it.

132 Chapter 3

requirements change

I think with this new class, we've got
everything we need. Let's fest out the
BarkRecognizer and see if we can make
Todd and Gina happy again,

First, let's make sure we've taken care of Todd
and Gina’s new requirements for their door:

Todd and Gina's Pog Poor, version 2.3

This is another Requirements List
::f;f:;t for 1. The dog door opening must be af least 12 tall.
Doug. For now, 2. A button on the remote control opens the dog door
we tan use the if the door is elosed, and eloses the dog door if the
simulator to get door is open. .
3 ha“'h. to the 4 3, Onee the dog door has opened, it should close - \
ETELT;J?EW automatically if the door isw't already closed.
we weote —— =4 A bark recognizer must be able fo tell when a dog
is barking.
5. The bark recognizer must open the dog door when

it hears barking.

This is the code

we just wrote...
anlyLime the TP T 'rtaln"]l
. Hmmm... aur bar‘k‘ thﬂﬁr" P
;:iiﬁr:lur hfﬂz;ﬂ IR e “'I'Cﬁ-aﬁn.lz..l i a hﬂfh.- 15 I‘h? HC-5 Q?E:"r'ﬁ
3 ﬂ?’El‘u! | 4 S IPIIH.T! ll:hi'l'k WE Ma'\]r ave
doy, door the door ik

some batk 4o this later

you are here » 133

test drive

Power up the new dog door

Use cases, requirements, and code have all led up to this, Lets
see il evervithing works like it should.

DogDoorSimulator.java
€ Update the DogDoorSimulator source code:
public class DogDoocrSimulator |
puklic static void main(String[] args) | Create the
DogDoor door = new DogDoori); 'Barkﬁ.!-tﬂﬁh"uh
BarkRecognizer recognizer = new BarkRecognizer (door):? ,..nect it 4o
Femote remote = new Remote (door); [the door, and
lek it listen For
~—= /) Simulate the hardware hearing a bark some barking
We dont hd¥e System.out.println(“Fido starts barking.”};
veal hardwdveé, recognizer.recognize (“Woof”); -!'—————-_____________‘ ,
ok wEr“ Ju!JC- H‘t‘rts where
cimulate the System.out.println(“\nFido has gone outside...”); E‘r hew
hardware hkﬁ!ﬂagnizgr
heaving 3 System.out.println(*\nFido’s all done..."}; "’&"ﬂ"t gets 45
bark ¥ 90 into aetion.
try {
/_,..» Thread.currentThread () .sleep (10000} ;
} catch (InterruptedException e} { }
Wi simulate n th
: €
some time Syvstem.out.println{™...but he's stuck outside!"); We te h
passing heve. . w+;;
: e,
/f Simulate the hardware hearing a bark again w..__f:io:::.nakc e
System.out.println{*Fido starts barking.”); J t‘th""'“"B wevks
s : " TR ey
recognizer.recognize ("Woof"); ke it should.
System.cut.println{™\nFido’s back inside...™):
| } R“-—- Netite that Todd ard
Gina never press 3
bukton on the remote
this time around.
#¥The authors of this book S'Ihﬂﬂ'ﬂhr wanted teo
intlude hardware that could hear dogs barking.
but mﬂrkc'l:ii i?si-sl:s that nobody would buy a
book prited at 1299.95. Go Figure!
134 Chapter 3

Q Recompile all your Java source code into classes.

Javat *java

DogDoorSimulator.java

requirements change

DogDoorSimulator.class

@ Run the code and watch the humanless dog door go into action.

File Eot Window Help WouBaril ikeAPoodie

%$java DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...

d
f F:‘: T:":_:a Fido's all done...
Pass he

vile Fido ...but he’'s stuck outside!

iy e Fido starts barking.

?l'ws outside BarkBRecognizer: Heard a ‘Woof’
The dog door opens.

Fido's back inside. ..

your pencl

Which scenario are we testing?

see the use case again);

Can you figure out which scenario from the use case we're testing?
Write down the steps this simulator follows (flip back to page 123 to

you are here » 1356

answers and open doors

Sy your pencll
"W, answers Which scenario

are we testing?

Did you figure out which scenano from the use

- ﬂ : ‘“ case we're testing? Here are the steps from the

use case on page 123 that we followed:

‘I 2—: ?'a "’f. E: E': E'JJ b 2-1 -b%_, b q-r 5'51 F.Irr e

Did You -piﬂurc ﬂuf‘_ what
W&i.h’r’ih? 'l.rl'H'.u Ol ﬂﬂ{{ﬂf
version of Lhe dog door?

K/__\—/I

In our new version of the dog door,
the door doesn’t automatically close!

In the scenarios where Todd and Gina press
the button on the remote concrol, here's the
coule that runs:

publi:_‘: vold pressButton() |)
System.out.println(“Pressing the remote contrel button..."};
if (door.isOpen{)} |
door.close();

} else
door.openi);
final Timer timer = new Timer 0 Remember, this Limer waits
When Todd /7 timer.schedule (new TimerTask() { S seconds, and Yool
and Gina press public void run() { request o the dog der 4o
the butkon on 7 —= door.closel(); lote el 09
he vemate, timer.cancel () ;
this code 3 .
also sets wp ; }. 5000);
3 timer to

] .
f’l o= -H“: dw M |
g.:bmﬂfltallw- “-_f-l

136 Chapter 3

But in BarkRecognizer, we open the

th:-mL and never close

public woid recognize (String bark) |
System.out . .println(® BarkRecognizer: " +
““Heard a ‘7 + bark + ")
door.openi) ; S "
'J We open Lhe
l.lt nevEr (_jai&:;f

— —— — B

BarkRecognizer.java

[i
Dou , ownEY ot Dm?js
D.;Dwrs, detides that
he know exatthy what
You thould do-

Even I can figure this one
out. Just add a Timer to your
BarkRecognizer like you did in the
remote control, and get things
working again. Todd and Gina are
waiting, you know!

requirements change

What do YOU think about
Doug’s idea?

you are here » 137

duplicated code sucks

I think Doug's lame. I don't want to
put the same code in the remote
and in the bark recognizer.

Duplicate code is a bad idea.
But where should the code
that closes the door go?

Well, closing the door is really
something that the deer should

do, not the remote control or the
BarkRecognizer. Why don't we have the
DogDoor close itself?

Let’s have the dog door close
automatically all the time.
Since Gina never wanis the dog door leli
open, the dog door should alears close
;11:[(:]11;1Li:';1||!1|.. S0 we can move the code

o close the door automancally mto the
DogDoor class. Then, no matter ot

Even ll:.'hﬂ'“ﬁlh thig 15 E. dc:_E!ﬂ.a the apens the door, it will alwavs close iself,
F it's gt oot En d

dtgmﬂnl t{:p? ok like the tusbomer

sotbware 1o W

it's DK
R rmtr-hhr:r, I'L 5
waﬁt:::l Eacaiﬁi. as ou ¥E o ing
I.‘.:”t‘*]?lf.u.-lr' 5""5-1L_tm.5 Fuwr.'l:;mmall'l'l'}]'

138 Chapter 3

requirements change

Updating the dog door

Let’s take the code that closed the door from the Remote

class, and put it into our DogDoor code: . qj
DogDoor java
. e l Vm’“ have i
public class DogDoor | imPoy-fc -Fx:,»r ddd
public woid open{) {

Javauti]

T‘imﬂl" ﬂnd Ja Va. ﬁlll

System.out.println(“The dog door opens.”};

e T
open = true; e
T s

final Timer timer = new Timer(); <= {i::é ey
timer.schedule (new TimerTask() ({ Rem E:E'd o

public void run() { i

close () ; *______'_“"‘1
; timer.cancel() ; Nw;{-,he door tlases
. ikself . even if we add
} }, 5000); new devites that can

open the door. Nice!
public void close() |
System.out.println(™*The dog door closes.”);
open = false;

}

Simplifying the remote control

You'll need to take this same code out of Remote now, since
the dog door handles auvtomatically closing itsell:

%
public void pressButtond) |) %
System.out.println{*Pressing the remote control button...”):
if {door.isCpeni)} |
door.closel):
} else |
door.openl};

Fammt—f e time T = oW LIt

T M PV TR S ETEEE RS N .

public woid sunf—

Remote java you are here » 139

test drive the door

A final test drive

You've made a lot of changes to Todd and Gina's dog door
since 1]31'} first called YR U, Let’s test I]'li]!;_';h out and see if
everything waorks. Make the changes to Remote. java and
DogDoor. java so that the door closes isell, compile all vour
classes agam, and run the simulator

Fie Ect Window Help PesiCanaml

%java DogDoorSimulator

Fido starts barking.
BarkRecognizer: Heard a ‘Woof’

The dog door opens.

Fido has gone outside...
Fido's all done...
The dog door closes.
...but he's stuck cutside!
Jesl The door i
¢losing by ikselk mow

Fido starts barking.
BarkRecognizer: Heard a ‘Woof'
The dog door opens.

Fido's back inside...
The dog door closes.

What would happen if Todd and Gina decided they wanted the door
to stay open longer? Cr to close more quickly? See if you can think of
a way to change the DogDoor so that the amount of time that passes
before the door automatically closes can be set by the customer,

140 Chapter 3

requirements change

Sometimes a change in requirements reveals
]jrnl)lems with your system that you didn't

even know were there.

Change is constant, and your system should
always imgrmre every time you work on it.

. impmm pencil

W Write your own design principle!

You've used an important design principle in this chapter related to
duplicating code, and the dog door closing itself. Try and summarnize the
design principle that you think you've learmed:

Design Principle
Q-’

11":1:".-L weon £ Pind an answer to *.;Jhu. /
puzzle in the thapter, hu.‘t we've

oint o tome batk to this a]I{‘I‘ilc
iater. Shill, take your best ouess!

you are here » 141

ooa&d toolbox

More
| Tools for your 00AED Toolbox

You've learned a lot in this chapter, and now it's
time to add what you've picked up to your O0OA&D
toolbox. Review what you've learned on this page,
and then get ready to put it all to use in the O0OASD
cross on the next page.

Rﬂuircmch'é_

Good vequirements ensure ‘your system
works like ‘our tustomers ﬂftf:b

Make sure Your rew\uh-emn{s tover all the
steps in the use tases for Your s'}is‘ttm.

tases to F'md out about

Use your use

i 'EI'-‘ "',C“ Ol Thti"{ was
thinas your tustomers Pm-go’c Y Ththenac.
Your use tases will veveal any intomplete requirement
o missing r:ﬂ\uivcm:n{,s that you might lr;:::;}:, JT "
have to add to your sfs{:em. - im%ﬂh{'ﬂ;;
Your veauivements will ahways change (and
5\-#-4] over time.

00 Printiples

Eﬁf_éﬂala-& what varies.

helped us vealize that the
Id handle tlesing iksel£. We
behavior from the

vest of the tode in our PP

E.-,f_.aysu]ai:.'lﬁh
door shou :
separated the door s

142 Chapter 3

Requirements will always change
as & project progresses.

When requiremenis change, your
system has to evolve to handle
the new requirements.

When your system needs to work
in a new or different way, bagin
by updating your use case.

A scenario is a single path
through a use case, from start o
finish,

Asingle use case can have
multiple scenarios, as long as
each scenario has the same
customer goal.

Alternate paths can be steps
that occur only some of the time,
or provide completely different
paths through parts of a use
case.

If a step is optional in how a
system works, or a step provides
an alternate path through a
system, use numbered sub-
steps, like 3.1, 4.1, and 5.1, or
211,221, and 231,

You should almost always try

to avoid duplicate code. It's

a maintenance nightmare, and
usually points to problems in how
you've designed your system.

requirements change

O0AGD Cross

The puzzles keep coming. Make sure you've gotten all the key
concepta in this chapter by working this crossword. All the
answer words are somewhere in this chapter.

Across Down

2. We made this responsible for clesing the 1. If a step is optional, use this in your use
dog door. case

4, This is what you follow in a use case mostof 2 Alwoysaveid ___ code,

the time. 3. A set of steps that don't always occur in
5, When your use case changes, these often your use case.

change as well. 7. Do this to things that vary.

6. Requirements always change sver . 9. The main path is alss called this.

B. We had to add this to our dog doer to 10. Every scenario in @ use case shares the
satisfy Tadd and Gina. same .

10. When your system changes, you should

clways update this before writing code.

11. Use cases often have

Scenarios.

12. Many real-world applications invalve both

software and this.

13. The one constant in software analysis and

design.

you are here » 143

axarcise solutions

s |
Emﬂﬂﬁlﬂ E
L

M A I NPATH &
. R E QU IREMENT I s
I

l E EIEIHI!I!FEEH

mmm

144 Chapter 3

4 analys‘i‘ﬁ
Taking Your Software
into the Real World

I think I'm
finally ready!

It’s time to graduate to real-world applications.
Your application has to do more than work on your own personal
development machine, finely tuned and perfectly set up; your apps
have to work when real people use them. This chapter is all about
making sure that your software works in a real-world context, You'll
learn how textual analysis can take that use case you've been
waorking on and turn it into classes and methods that you know are what
your customers want. And when you're done, you too can say; 'l did it!
My software is ready for the real world!”

this is a new chapter 145

it's a dog-loving world

One dog, two dog, three dog, four..

Things are going well at Doug’s Dog Doors, The version of the dog door you
Just developed in Chapter 5 s selling like crazy., but as more doors get installed,
complaines have started coming in:

I loved your new model, with the bark
recognizer, But now that you've got it installed at
my house, it opens up every time the neighbers'

dogs bark. That's not what T wanted when I
bought this thing!

/I_

Holly's dog doo¥
ﬂ-.culld wl;.?- open when

Brute barks
b""{'.- lt?S D_Pﬂnma
wP when al| the @
other dogs in the
Bruze neigborhoed bark, 4oo. 2
0
Ruffl Ruff!
Yipl Yipl ()

o]

146 Chapter 4

Your software has a context

S0 far, weve worked on writing sofbware in a vacoum, and
haven’t 1'(':=|||j.' IhHLI_!._':]!I[miech about the context that our
software is running in. In other words, we've been thinking
about our software like this:

In £he perfect

world, evexyfent
WSES W

sob bware Jus{.

like we expett
them to.

E'-l'tr':,ror.: is relaxzd, and
there ave ne mulfi—

; de
The Perfect World < "¢i9hborhoods heve

But our software has to work in the real world. not just
in a perfect world, That means we have to think about our
sofftware m a diflerent coneext:

|w this tortert
Hhil"l"ﬁ*-" a2 wirond d

lot more ovLEn

B a=——|n the veal world, theve are

e doas, tats, vodents, and 3 host
of other problems, all set to
The Real World sevew up Your software

The key to making sure things work and that the real world
doesn’t serew up your application is analysis: Hipuring out
potential problems, and then solving those problems—/efore
vou release your app out into the real woarld.

analysis

ﬂnalysis IIEI.PS

}’OU ensure

your system

works in a
real-world
context.

you are here »

147

what’s going wrong?

Identify the problem

The first step in good analysis is figuring out potential
I'.II'I::IIJ]i't'I"I:i. We ;J]f‘{'.‘l(]y know that theres a]m:hh-m when
there are multiple dogs in the same neighborhood:

’« open () We u‘ll"rg.,;d}.-
HnIIT tan use her \ have ¢lasses for
vemote tornbrol to all £he Parts
open the deor-. ne 'D'l: H‘l: Wﬂ:m

F-r.:.h]gn.s heve that we need.

opehn ()
-

Rowlfl Rowlfl Y=~ g B

EarkRuegnizar

The bark vetogrizer /) *

hears Brute and ofens
the door, whith is }.s{;
what Ha]h' wants

But heve's the ﬁ

'f’l‘cHrm- the bark

vetognizer also hears
other doas, and opens

'U"IC deov FO\' ‘thl!'n'x. {'_r:an

o

148 Chapter 4

analysis

Plan a solution

It looks like there's a change we need to make in what our
H":.'N[I;_'I“ does, ”H':.uu knoww what it is? Below is a pau'[af the [n]
diagram detailing how the dog door system works: o

Bruce, I'm
opening the door...
hang on a sec.

B'ru-f.c has taken Fida’s
Plate... betier wpdate
Your diagram a bit

The remote is part '°£
Ehe alternate path in

bhe latest ucrs'T____'i Holly hears Bruce

Hhe.#48 e baiking @' Haolly presses the
@ _____________,.—-—-"'"'"'_’ button on the remote
PR 1

contral

;

qD

@ Bruce barks to be let out

[5
B
@Th& dog door opens
.-“"'f'

Bruce goes outside

The bark recognizer The bark recognizer
“hears” a bark

is part of the main

path, and it's letting in / ® The bark recognizer
all degs, net just the ,._._-——-—-""'___J sends a request to the
:;..m.g duﬂ- door to open

What's wrong with this diagram?

It's your job to figure out how you would fix the dog door. You
can add steps, remove steps, or change steps... it's up to
you. Write down what you think you need to change, and then
mark your changes on the diagram above.

you are here » 149

adding the missing step

your penci
answers

What's wrong with this diagram?

Bruce, I'm
opening the door...
hang on a sec.

Holly hears Bruce /
barking Holly presses the
butten on the remote
Rowlfl Rowlf| control
/

@ Bruce barks to be let out

The bark recognizer \ @ The dog d
® e st 7 1, O s i
The bark retognizer hears e @ Tzer !
all dogs, which is OK... but 3 to the
it's the next step that's door to open
tausing 3 problem. ® fit's Bruce barking,
send a request to the
door to
I sep 3, bhe w;;/” ortoopn
izer needs
e Ehe bark it hears IF the bark is Bruce’s,
and see if it's Brute, or f:h;bark recognizer £an
s an et
some other dod: B s, ey to

150 Chapter 4

frere are no
mb Questions

Q: | came up with a different solution.
Does that mean my solution is wrong?

Ma, as long as your solution kept all the
dogs except for Bruce from going in and out of
the dog door. That's what makes talking about
software so tricky: there's usually more than one
way to solve a problem, and there's not always
just one “right” solution.

Q: In my solution, | turned step 3 of the
original use case into two steps, instead of
just replacing the existing step. Where did | go
wrong?

A: You didn’t go wrang. Just as there is
usually more than ane solution to a problem, there
i5 usually maore than cne way to write that sclution
in a usa case, If you wuse morne than one step,

but have the scenario with other dogs barking
handled, then you've got a working use case.

Q: So these use cases really aren't that
precise, are they?

A: Actually, use cases are very precise. If
your use case doesn't detail exactly what your
system is supposed to do, then you could miss
an important reguirement or two and end up with
unhappy customers.

Bul. use cases don't have to be very formal; in
other words, your use case may not look like
aurs, and ours might nat look like anyone else's
The important thing is that your use case makes
sense to you, and that you can explain it to your
co-warkers, boss, and customers.

awain
Yo oweER

There's an important addition that needs to be made to the dog
door system, in addition to what's shown on page 150. What is it?

analysis

Write your use cases in
a way that makes sense
to you, your l:lgg_s, and
your customers.

Analysis and your use
cases let you show
customers, managers,
and other Jevelo])ers
how your system works
in a real world context.

you are here » 151

keep your use case up to date

Update your use case

since we've changed our dog door diagram, we need to go
back to the du;u" cloor use CAsE, and LI[}[_'!'.?I.[I;' it with the new

¥
steps we've figured out. Then, over the next few pages, we'll We've removed all £he rc-[:evcnus

ta s?er.i-l:‘m', owners and dﬂ-ﬂ!, 50
new this use 2aze will work for
3ll of Doug's eustomers.

figure out what changes we need w make to our code,

The Ultimate Pog Poor, version 2.0

Brye bye,
4l T3 What the Poor Poes
" \Lth
::,ﬁ':dag” Main Path Alternate Paths [nstead of
o oW on 4 Todd and
£ _,H__I_Jhe owner’s dog barks to be let out. e Gina, or Hlly
2. The bark recognizer “hears”abark. 2.1, The owner hears her dog led's jusk use
barkinag. “The owner.”
> &Ifit’s the owmer’s dog barking, the 31. The owner presses the button
Here is the bark recognizer sends a request to on the remote control.

wpdated step the door to open.
:ﬁ“ ;‘:;'5 4. The dog door opens.
allowing the 5. The owner’s dog goes outside.

ownee’s dog G, The owmer’s dog does his business.

in and out
the door. 6.1. The door shuts automatically.
6.2. The owner's dog barks to be let
back inside.
6.3. The bark recognizer “hears” a 6.31. The owner hears her dog
Dont $urgf:5 bark (again). barking (again).
tfbizi:ﬁm —= B4 Ifit’s the owner’s dog barking, 64.1. The owner presses the
the bark recognizer sends a button on the remote control.

request to the door to open.
6.5. The dog door opens (again).
7. The owner’s dog goes back inside.
8. The door shuts automatically.

162 Chapter 4

Don't we need to store the
owner's dog's bark in our dog door?
Otherwise, we won't have anything
to compare to the bark that our
bark recognizer gives us.

We need a new use case to
store the owner's dog’s bark.

Our analysis has made us realize we need
to make some changes w0 our use case—
and those changes mean that we need o
make some addidons w our system, o,

If we're comparing a bark from our bark
recognizer o the owner’s dog’s bark, then
we actually need w store the owner's
dog’s bark somewhere, And that means
wie need another use case.

your penc

analysis

Add a new use case to store a bark.

You need a use case to store the owner's dog's bark; let's store the
sound of the dog in the dog door itself (Doug's hardware guys tell
us that’s no problem for their door technolagy). Use the use case
ternplate below to write a new use case for this task.

Sinte this is

our setond use
case, let’s [abel
it ateording {o

The Ultimate Pog Poor, version 3.0
Storing a dog bark

‘].":,1,. chould need
:rn|'~?l twe skeps e l.
-Fgr 'I:hli wse

tase, and JC-""E-"'E\\
aren't ardy 2
alternate paths
{-ﬂ oy Ebﬂut

you are here »

'Il-"'lﬂ{ |£ dfsﬁ?‘ll:les.

153

a new use case

ANSWErS Add a new use case to store a bark.

You need a use case to store the owner's dog's bark; let's store the
sound of the dog in the dog door itsalf (Doug’s hardware guys tell us
that's no problem for their door technology). Use the use case template
below to write a new use case for this task.

We dont reed to know +he

The Ultimate Pog Poor, version 3.0

exact details of dhis, sinte

it's 3 hardware issue —-...______3

1. The owner’s dog barks “into”
the dog door.
2. The dog door stores the
This is what ve eed to 27 _owner’s dog’s bark.

do.. add 3 method 1o
DeaDoor 4o store the
owner's dog's bark.

thereyare no

Questions

_______________________ Dum

Q,: Do we really need a whole new
use case for storing the owner's dog's
bark?

A: Yes. Each use case should detail
one particular user goal. The user goal

for our original use case was fo get a dog
outside and back in without using the
bathroom in the house, and the user goal of
this new use case Is 10 store a dog's bark.
Since those aren't the same user goal, you
need two different use cases.

154 Chapler 4

Storing a dog bark

Q} How are we representing the
deg's bark?

Q} Is this really the result of good
analysis, or just semething we should
have thought about in the last two

chapters? .
. Thal's a good question, and it's one

you're going to have to answer next...
Aﬁ Prabably a bit of both. Sure, we
probably shauld have figured out that we
needed to store the owner's dog's bark
much earlier, but that's what analysis is
really about; making sure that you didn't
forget anything thal will help your software
work in a real world context.

Design Puzzle

You know what classes vou already have, and you've got owo use cases
that tell yvou what vour code has to be able to do. Now it's up to you to

figure out how yvour code

Your task:

needs to change:

o Add anv new objects you think vou might need for the new dog door

e Add a new method o the DogDoor class that will store a dog’s bark, and
another new method o allow other classes to access the hark.

e Il vou need to make changes w any other classes or methods, write in those
changes in the class diagram below.

e Add notes w the elass diagram w remind you whae any oicky avribuces or
operations are used fon, and how they should work,

We used glass diagrams
batk in Chapter |i they
show the basit tode-level

f.crnst'ruf-‘kﬁ in Hfour a

<o

RE“"EH‘LET, {h:s:

Remote

are the &E{rihuhal door: DogDoor
ok Your tlass, whith { I

uiuaH"?l mateh up

with the elass's pressButton()

member variables..

and these are the
¢lass’s operakions:
which are usvalty the
tlass's publie methods.

/’,

RE"I"-'EMI‘.'rE'r‘, D'-'J'-I-ﬁli
havdware sends
the sourd of +he
curvent doa's bark
to this method.

S

DogDoor
open: boolean

open()
close()
isOpen(): boolean

BarkRecognizer

door: DogDoar

recognize|String)

analysis

Wpdate Dgﬁﬂm ts
SUpPort the pey use
Lase we df{ﬂirfd -
Page 154

you are here » 155

fixing the dog door 17 inthes oF vaw

Arple and |ntel power-
A tale of two coders

There are lots of ways vou could solve the design puzele on page 155,
In fact, R;‘LH([}' and Sam, two devels Hrers who I}Ei[lg‘.\i ”n;_{ ”lHrr:aju.\ii
hired, both have some pretty good ideas. But there's more at stake

here than just programmer pride—Doug’s offered the programmer
with the best design a sparkling new Apple MacBook Prol

Randy: simple is best, right?

Randy doesn't waste any time with unnecessarv code. He
starts thinking about how he can compare barks:

Bark sounds are just
Strings, so I'll store a String for
the owner's dog's bark in DogDoor, and
add a couple of simple methods,
Piece of cakel

Randy adds an

allowed B ayk variah)

: et
his 'Do'ﬁb‘i'ﬂ" elass.

public class DogDoor |

private boolean open;:
private String allowedBark: -5—-)’

public DogDoor()
open = false;

1
I

public void sethAl lowedBark (String bark) {
this.allowaedBark = bark:; R\
} This handles setting
Fhe bark, which was

public String getAllowadBark({) { what our new use Lase

return allowedBark:

H&nd:" : Eotu;:d)
S Hher tlasses £an get
| the cwner's dng,lﬁ bark Dugﬂuul‘
with this methed open: boclean
allowedBark: String
apen|)
close()
ok tlass — isOpen(): boolean
l;_m aﬂarifpj;}w setAllowedBark(String)
iagram getAllowedBark(): String

156 Chapter 4

analysis

Sam: object lover extraordinaire

sam may not be as fast as Randy, bur he loves his

i 2 I've got the power
ohjects, so he ligures that a new class devoted to of objects!

dog barks is just the tcket

Sam Plans 45 itore

Sams new _—f———w Bark the sound of 3 da-g,’;

Park tlass Bark as 3 gfm,.'ﬂ i
sound: String <—————1— his new Bavk elye.

getSound(): String ==————1— _; method fo return
equals(Object bark): boolean the sound of the Bark

F\“ and an :alua%sf} methed

ko allow other "B:-""ﬂﬁ to
Bavk instantes.

Lompare two

oM ﬂl'Peﬂ YUUT Pmu] ‘.u"'u’ritinlg code based on a class diagram
N A is a piece of cake.
You've already seen that class diagrams give you a lot of information
about the attributes and operations of a class. Your job is to write
the code for Sam's Bark class based on his class diagram. We've
written just a bit of the code to help get you started.

public class _ _
private H

public | ¥ f
this. - :
]

public (DI

]

1f _ lnstancecf }
Bark otherBark = |) i
if (this. .equalsIgnoreCasa | " 1
return _ a8

return i

you are here » 157

writing the Bark and DogDoor classes

harpen your pencl
SN, answers

Your job was to write the code for Sam's Bark class based on his

class diagram. Here's what we did:

Writing code based on a class diagram
is a piece of cake.

Randy's Bark
elass dla-glr .

A

Bark
Just: like F.{and‘]l put:-'_liv: class __ Bark sound: String
did, Sam is using private String -
3 Chring b0 getSound(): String
chore the attual public Bark (String sound) | equals{Object bark): boolean
bark sound- thiz. goumd = ;
b-,-é: he's — !
::ZP:‘; ih; public String getSound () | Sdm is planning on other clag
1, d -. 7
A e e b
) vk elass’s equals() method
public boolean equals (_ Object bark) { Th nethod
if (__bark instancecf _ Bark) | ke e i
Bark otherBark = Bark) bark ancther Bark

if (this=. soumd .=gualsIgnoreCase(otherBark . soumd) | a'hj;;_{,ﬁgm.,?m

‘\¥ itself anainst.-
~dnd then

return true ;

]
|

Compares the fuo

return false ; Bark sounds.

Sam: updating the PogPoor class

Since Sam created o new Bark object, he takes a
slightly different path than Randy did in updating
his version of the DogDoor class:

Cgm s vErSion ot

es a

(Sam's) DogDoor E:‘E::;j:“ﬁ (Randy's) DogDoor
open: boolean just a Cring, sound open: boolean
allowedBark: Bark allowedBark: String
open() open()
close() close()
isOpen(): boolean Sam's get and sef isOpen(): boolean
setAllowedBark(Bark] operations deal setAllowedBark(Siingp
getAllowedBark()(Bark) with Bark objeets, getAllowedBark().Glingy

rot Sbri!-.lj;.
158 Chapter 4

\—_’/

analysis

Comparing barks

Al that’s Left to do is add o comparison of barks into BarkRecognizer's
recognize () method.

Randy: I'll just compare two strings T‘: aryenent
ien

When the BarkRecognizer class gets a signal from the Fecognize() i 4

hardware that a dog is barking, it also geis the bark, and Etnng, wibh 45
) ; ;]

compitres it to what's stored in the door: dog's bayk

public class BarkRecognizer { /—/ (ompare Lhe bark we
apt from the recotnizer

public void recognize (String bark) |
System.out.printlin(™ BarkRecognizer: ” thWMIQH{thhk
“"Heard a " + bark + ™" "); Sbfﬂd‘“{htdﬂﬂﬂ
if (deoor.getAllowedBark () .equals (bark)) {'E—-—;}

door.opan() !

} alsa {

Systam.out.println(“This dog is ~ +
*not allowed. ") ;

floete

Sam: I'll delegate bark comparison

Sam is 1|ﬂinl_q a Bark object, and llw lets that object Cam has 44, havdware
take care of all the sound comparisons: §uys make sure he ey
sent. 3 Bavk obje
public class BarkRecognizer | /""‘ not Just the S{rinﬂ
bark Sound, ke Rﬂr\d:"
public volid recognize (Bark bark) |

System.out.println{* BarkRecognizer:
“Heard a ** + bark.getSound() + “'");
if (door.gethllowedBark().equals(bark)) {

#

Cam's tode lets Ehe bark o
chored in the Doglloor handle Wk

s B e System.ocut.println(“This dog is not allowed.”);
deleaates bark comparison to y

the Bark n'bjc&

Jfoeto

you are here »

£ Sk

159

Dj..-[ﬂiun Dhfaat

Pelegation in Sam’s dog door:
an in-depth look

Sarn 15 doing something very similar in his Bark and
DogDoor classes. Let's see exactly what's going on;

9 The BarkRecognizer gets a Bark to evaluate.
Doug’s hardware hears a dog barking, wraps the sound of
the dog’s bark in a new Bark object, and delivers that Bark
instance o the recognize () mechod.

Dous's hardware hears 2
dog, barking, and treates
a new Bark -:-'hj,cr.t

e

Tb:p.‘_ d:ﬂjli h&rk is Fassed
InLo retognize()

BarkRecognizer

© BarkRecognizer gets the owner’s dog’s bark from DogDoor

The reconize () method calls getAllowedBark () on the dog door its
attached o, and retrieves a Bark object representing the owner’s dog’s bark,

lowedBark()

e
nizer J DogDoor

The dog door veturns the
o=z Bark ub_\':,:f.’t. representing

bhe awner's dog’s bark

160 Chapter 4

Defegation Detour

We'll come back to Cam ang
Rﬂhﬁf! -ﬂ'H;:n-.Fs to win the
MaeBook Pro onge i
@ BarkRecognizer delegates bark comparison to Bark 30t 3 handle on delegartion,
The recognize () method asks the owner's dog’s Bark object to see
if it is equal 1o the Bark instance supplied by Doug’s hardware, using

Bark.equals ().

Hey there, allowedBark. Can you see if this
other Bark that T have matches you? I really
don't krow much about what makes Barks the

same, but T'll bet that you do.

"E'--..__h ’
€5 up ¢ the Bavk

- !
LpCLA T H i
ject 4o FJS.,...: £l

e equal,

BarkRecognizer

N

\':f,nﬁh.lz.tf} talls Eﬁuﬂ-‘iﬂ' on the
sllowed bark, and passes it in the
bavk from Dm-ﬁls hardware.

9 Bark decides if it’'s equal to the bark from Doug’s hardware

The Bark object representing the owner’s dog’s bark Agures out if it 15 equal to s
the Bark object from Doug’s havdware.,. however that needs to happen, The detals of how i
e (fompavisen h“-’?":;f

il

a
It really takes one Bark to understand another hidden h:wb im the
Bark, you knew? So let's see if we're really equal. obher obyet I
dog door IFRIEIVET

/

Yeu get that right. Let's compare properties.

‘\

s o to Bark to handle £ omparisons.
e tusk Lell the chje& Fhat called

and H‘lf_n
ﬂluals“ iﬁh:s: Lwo barks are the same.

you are here » 161

Tieleiafian Tictoas

The power of loosely
coupled applications

In Chapter 1, we said that delegation helps our
applications stay loosely coupled, That means that
vour objects are independent of each other; in
other words, changes to one object don’t require
WO T make a bunch of l']]:ll!'L"t'H to ather ol ri:':'lh‘.

By delegating comparison of barks to the

Bark ohject, we abswract the details about

what makes two barks the same away from the
BarkRecognizer class. Look again at the code
that calls equals () on Bark:

public void recognize (Bark bark) |
aystem.out.printlin(® BarkRecognizer:
“"Heard a ' + bark.getScund({) + “*"):
if (door.getAllowedBark() .equals (bark) |

door.open():

e

"

else |
System.out.println{*This dog is not allowed."):

The details of how
Eq[,_;ls” werks are

Now suppose that we started storing the sound shielded awdy brom the
of a dog barking as 2 WAV file in Bark. We'd ftf-ﬂ"j“'u[:' wethod.
need to change the equals () method inthe

Bark class to do a more advanced comparison

of sounds and account for the WAV files. Bue,

since the recognize () method delegates bark

comparison, no code in BarkRecognizer

wold have to change.

Soowith delegaton and a loosel: coupled 2 =
application, vou can change the implementation DElegatlon Shlews
of one object, like Bark, and vou won't have wo
change all the other objects in vour application,

Your objects are shielded from implemeniation your Dl:'jects {rﬂm

changes in other ohjects.
implementation changes
to other gl;jgg_ts in your
software.

162 Chapter 4

analysis

Back to Sam, Randy, and the contest...

With Randy's quick solution, and Sam’s more object-orented one, let's see
how their i'l!":llj]i{":lliuliﬁ Are Wi rl‘kiny‘ Ot

Rtmgmbﬁ Rand
! dy's bavk ;
| St J}r 15 3
Rowlf! Rowlf! il and Cam's is & aBJe.: ¢

Ra-r-dfs tode Just does some
simple Ctring tomparison 2

if (door.gethllowedBark (
.agquals (back)}
door.open() ;

if {deor.getAllowadBa 1
.aquals (barkh} |
door.open ()} ;

0

Sam's tode uses objetts and
delegation to get the job dene

o
G

Randy ANP Sam: It works!

Both Randy and Sam ended up with a working
dog door that let in only the owner's dog,

We both got it right? So
who won the laptop?

you are here » 163

dog doors and the real world

Maria won the MacBook Pro!

To both Randy and Sam'’s surprise, Doug announces
that Maria, a il,ll'lil:):l' ps'm.;'r:um'l‘u-r he Bt o work for the
company as a sumimer intern, has won the laptop.

Randy: Oh, this is ridiculous. My solution worked! That

laptop is mine, not some mern's!

Sam: Whatever man. My solution worked, too, and | used
objects. Didn't vou read Head First_Java? An object-oriented

solution is the way to go... the laptop’s mine!

Maria: Umm. guvs, I don’t mean o interrupt, but I'm not
sure either one of vour dog doors weally worked.

This is Maria- Try not to hate
her 5!.-4:5 oo mulh.. rr-afuf Yo
£an borrow her M atBosk Pro

when she s on vatation ——— s

Sam: What do vou mean? We tested it Bruce barked,

"R:n'.”'!“ ;|_|'u| l:]‘u- :in::l‘n|n'1]:':] u]}... Em{ il 'il_..'l_"_-.'l'{l. .-i]‘lul |-I'_I|' lhr*

other dogs. Sounds hike a working solunon o me,

Ma:‘ia: Hul, er.| Vi do ;ll‘nl. -.uml:.-hin il your s |]|_|lin|'|:1 .[.]l](_'!'i

your door cruly work i the real world?

Randy: What are vou talking about? Are you some sort of

philosophy major? Is this like a “there is no spoon™ sort of

thing?

Maria: No, not at all, I'm just wondering,.. what if Bruce

were to make a different sound? Like “Wool ™ or “Ruff™?

Sam: A different sound? Like if he’s hungrv..

Randy: ..or excited..

Maria: ...or maybe... he really needs w get owside o wse the

hathroom. That's, ummm, sort of how things work in the real

world, 1sn't i?

Rawlf! Rawlf!

Randy and Sam: [guess we hadn’t thought about that..,] Woof.
o

Brute is 3 E.Om'lli'l.ti-. sensrbive
arimal bhat tommunitd
bhe subleties of bark-ese, us'mg,.
|p.-fllzlf.t1m‘u and eruntigtion te et

a

Les through ——

164 Chapter 4 his lpe;{lri abross

analysis

So what did Maria do differently?

Maria started out a lot like Sam did, She created o Bark object to
1'L-]'}|‘t-.~it'nl the bark of a dr M,

I knew abjects and
delegation were
important!

Bark
sound: Sting

getSound!(): String
equals(Bark): boolean

Maria knew she'd need

delesation via the equals()
methed, Jest as Sam did.

But Maria went even further: she decided that since a
dog might have different barks, the dog door should
store mudtiple Bark objects. That way, no matter how
the owner’s dog barks, 1t sull gets outside:

DogDoor

open: boolean
allowedBarks: Bark [*]

Heve's wheve Mariz really L
w::n.r_ dewn 3 di-lffrrcn*t
Path. She decided that

open() the dog door shoulg sty
close() more than Just one bark,
isOpen(): boolean Sinte the owner's dog can
addAllowedBark(Bark) bark in different ways
getAllowedBarks(): Bark []

Wondering about this

askevisks? Chetk this out.

UML Up (lsse

i g T
We've added something new to our class diagrams: id‘{fa{:s‘f::::lﬁ;:ﬁtﬁgulf drn

attribute: how many of a tertain

= ’l':'ﬂ’{ that the attribute tan held

allowedBarks: Bark [#]
S

. bfw £ the sllowedBarks And this asterisk medns that
etk Bark. allowed Barks Ean hold an unlimited
umber n;rF Bark Bt:-:,e-!b

you are here » 165

the use case tells you what to do

How in the world did you know
to store multiple barks? I never
would have thought about a dog
having multiple barks,

Rand"fi mot Hhrilled
he losk either, but
Figres Mavia might
be his Fitket to
wirning the nex

The Ultimate Pog Poor, version 3.0

It's r‘ighT here
in the use case...

We've -Fna.us'rng, on our
main use L3se here, not
the new one we developed
edvrfier in +his chapter.

?ruﬁr;mmma ontest.

"~ Opening/tlosing the door
Maln Path Alternate Paths

1. The owner’s dog barks fo be let ouf.

[4's the don that is 2. The bark recognizer "hears” a bark.
Hq: Fﬂ“fi heve, hﬂt
st 2 speeifie bark | 1 1t the owner'Clogdarking, the
bark recognizer sends a request to
the door to open.
4. The dog door opens.
5 The owner’s dog goes ouiside.

6. The owner's dog does his business.
6.1 The door shuts automatically.
6.2. The owner's dog barks to be let

baek inside.

6.3. The bark recognizer “hears”™ a
bark [againl.

64, If it's the owner’s dog barking,

crilb e smeada

166 Chapter 4

21. The owner hears her dog
barking.

41. The owner presses the button
on the remote control.

K version 3.0

6.31. The owner hears her dog
harking (again).

641, The owner presses the
hutton on the remote control.

analysis

Pay attention to the nouns in your use case

Maria’s figured out something really important: the nouns

in a use case are usually the classes you need to write and
focus on in your system.

ﬁ’@l’?ﬂﬂ Yaur PE“&I Your job is to circle each noun (that's a person, place, or thing) in the

use case below, Then, in the blanks at the bottom of the page, list all the
nouns that you found (just write each one a single time; don't duplicate any
nouns). Be sure to do this exercise before turning the page!

The Ultimate Poq Poor, version 3.0

Opening/tlosing the door
Main Path Alternate Paths
1. The owner’s dog barks to be lef out.
2. The bark recognizer “hears” a bark. l,ll.jl'h; Inwmr hears her dog
arking.
s :l:i :?:nf ” 3 Hit's t:e owner €dogparking, the 31. The owner presses the button
b o ") bark recognizer sends a request fo on the remote control.
ety the door o open.
4 The dog door opens.

5. The owner s dog goes outside.
6. The owner’s dog does his business.
6.1, The door shuts avtomatically.

6.2, The owner’s dog barks to be let
back inside.
6.3. The bark recognizer "hears” a 6.31, The owner hears her dog
bark (again), barking lagainl.
i ‘ya 641, The owner presses the
ﬁ&.i]'it;tl:;mgrz:;::;znd :I;tm, buttonon th: remote control.
request to the door to open.
6.5 The dog door opens (againl. _
7 The owner s dog goes back inside. E::E te the nouns
8. The door shuts automatically. You Lireled

L 'H'l: usE L3se in
these blanks.

rd

you are here » 167

noun analysis

@ }wr Per(:[l Your job was to circle each noun (that's a person,
\"‘\ H 1

place, or thing) in the use case below. Here's the
answers use case with all the nouns circled.

The Ultimate Pog Poor, version 30
Opening/closing the door

Main Path Alternate Paths
1 The owner €dog) .arks to be let out,

. Tha@ark recoanizars hears” Kgarky 21, Thwmirpears hex@o1)

barking.

3.1 H‘ g nwmri@arkiuq. the

ends agzquesTro

ﬂl {door’yo open.

4 The(@og door ppens.

5, The owner s@giyoes@uisided

6. The owner ‘sdimsloes his business.
6.1. The(doadrshuts automatically.

6.2. The owner ‘sdogbarks to be let

6.3 Thé&bark recognizep hears” a 6.31. ThemErhears her@Iy
againl. barking lagain).
B4 If it's the owner ‘slfogharking, 641, The@unerpresses the
-*mmpa... diToren th
Gegueshto thaﬁil;btu open

7 The owner Sdgiyoes back inside.

8. Thedgor xhuts astomatically.

the (owner’s) dog bark recognizer dog door
the owner request rewmote control
the button inside/outside bark

P_/___R\" ./-ﬁ
Here ave ali the nouns we

tiveled in the s tase.

168 Chapter 4

analysis

OK, I get it...
almeost all of these nouns
are the classes in my
system.

Maria: That's nzhe, That's how 1 hgured out 1 needed a
Bark 1'|U.."i."-.... |I hhl I‘u\i'{l lll]‘ ir‘l lhl:' LISE Case s a Noun il‘.l Hl"l}.“- 2
and .4, So 1 created a Bark class.

Randy: So thats where Twent wrong,.. il Thad looked at the
use case and circled the nouns, 1 would have known o create
a Bark class, too.

Maria: Probably, A loc of tmes, even i’ T think T know what
classes | need, | double-check my ideas with the nouns in my
use case o make sure [didn't forgee anything,

Sam: But vou don't need a class for some of those nouns, like

“the owner” or “request,” or even Sinside.”

Maria: That’s true... vou stll have to have some common

sense, and understand the sysem that

vou're building. Remember, vou need

classes anly lor the parts ol the system vou Lookiﬂ at tl‘e
have to represent. We don't need a class for g

“outside™ or “inside™ or “the owner™ because

st doesic e oo noyns (and verhs)

things.

Randy: And vou don’t need a class for i
“the button”™ because is part of the remote 1n your use

control—and we already dv have a class for

o case to figure

Sam: This is all greac, bu 1 was jus
thinking.. I came up with a Bark class, too,

and I didn’t need the use case to figare that out Cl,asses aﬂJ

oL,

Masia: v e sondiancen— methods is called

with a dog door that really worked, did vou?

Sam: Well, no... bt l_]ml_‘h_]u.l:l because you t al l .
stored more than one Bark object in the tex u aﬂa YSISa

dog door. What does chat have to do wath

lhll‘ Li=d I';I,!-\.II‘I.:l

you are here » 169

the nouns are the objecis

It’s all about the use case

Take a close look at Step 3 in the use case, and see
exactly which classes are being used:

170

“ouner’s dog s 2 nown but

we dont need a tlass For
jc.hl: sinke the daﬁ. s an -ih‘-q:ﬂ'

and outside the system

3.1fit’s the owner’s dog barking, the
bark recognizer sends a request fo

the door to upen S Dt o
Fepresented by the bark

retognizer caﬂmﬁ $he "
method on the doﬂ dp:ran

BarkRecognizer DogDoor
door: DogDoor ,
open: boolean
recognize(Bark) allowedBarks: Bark [']
opent()
close()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark ["]

There is no Bark class here!

The classes in use here in Step 3 are BarkRecognizer and
DogDoor... not Bark!

Chaptler &

analysis

Wait a second... I don't buy

that. What if T happened to
use just a slightly different
wording?

3. 1f the owner’s dog’s bark
matches the bark heard by the
bark recognizer, the dog door ™ .. step3 from the ue

case that Randy wrote for

should open. W dog door n s Step 3

“park” iz 3 noun-

Step 3 in Randy’s use case looks a lot like Step 3 in our
use case... but in his step, the focus is on the noun “bark”,
and not “the owner’s dog.” So is Randy right? Does this
whole textual analysis thing fall apart if you use a few
different words in your use case?

What do you think?

\

r;rH'fT: L.,ao‘{ tlosely af Randy's Step 3. Does
it deseribe 3 system that works exad!:ly the
Sdme 35 the system on page | 707

you are here » 171

words matter in use cases

One of these things is not like the other...

It looks like Randy's Step 3 15 actually just a liede bit different than our orignal
HI:'|} 3... soo where did R:-I'l'll.:i':.' o -.*.'1'|rl'|p:'.’

find heve's Step 3 £
. e e ep rom the e
fere's owr Step 3, ¢ obe batk Gase that Randy came up with
m-lﬁ'mﬂl- wit hase WE WD 'F-nlr {h{ Sdeme dﬂﬂl dﬂﬂ'c'

in Chapter 3- ’l

3. 1f it’s the owner’s 3. 1f the owner’s dog’s bark
dog barking, the bark matches the bark heard

recognizer sends a request by the bark recognizer,
to the door to open. the dog door should open.

Focus: owner’s dog Focus: owner’s dog’s bark

Riundy's use case focuses on the owner's
dog’s bark... but what if' the dog has more
than one sound it makes? And what i’ two
dogs bark in a really similar wav? This step
looks similar to the original Step 3, but o
really ol Wi same at all!

Our original Step 3 focuses on the owner’s dog..
dn malter foe te dog sownds when ot barfks, So of the
owner’s dog barks with a loud “Rowlf! one
day, but a quiet “ruft™ the next, the system will
let the dog in, either way, That's because we're
focnsing on the dog, not a particular bark.

@ Rawlfl Rawlf!
0
—

=

o
With 3 poor}
Shey writie Ete:?-

Wikh the vight

3, the d‘”ﬁdﬂ
w'nlﬂ?'-“ ﬂa V

IElr'uu 5

onl‘}r one of Brues's
barks will ﬁﬂl- hirn

in and out of fhe
dog door.

172 Chapter 4

iire_no

the
Dumb Questions

+ 5o you're telling me as long as |
write use cases, all my software will work
like it should?

A: Well, use cases are certainly a good
start towarnds writing good software, But
there's a lot more to it than that, Remember,
analysis helps you figure out the classes
from your use case, and in the next chapter,
we'll spend some time talking about good
design principles in writing those classes,

Q: ['ve never used use cases before,
and |'ve never had any problems. Are you
sawing that | have to write use cases to
create good software?

A: No. not at all. There are plenty of
programmers whao are good at their jobs,
and don't even know what a use case is.
But if you want your software o satisfy the
cuslomer mare often, and you want your
code to work correctly with less rework,
then use cases can really help you nail
your requirements dawn... before you make
embarassing mistakes in front of your boss
or a customer.

Q- It seems like this stuff about
nouns and analysis is pretty tricky, and
I'm not any good at English grammar.
What can | do?

A: You really don't need to focus too
much on grammar. Just write your use
cases in conversational English (or whatever
language you speak and write in). Then
figure out what the “things” are in your use
case—ihose are generally the nouns. For
each noun, think about if you need a class to
represent it, and you've got a good start on a
real-world analysis of your system.

analysis

. But what if | make a mistake like
Randy did, and use a noun in my use case
when | shouldn't?

A: Randy's mistake—using ‘bark’ as a
noun in step 3 of his use case—had nothing
to do with Randy's grammar. He didn't think
through the use case, and how his system
would work in the real world. Instead of
focusing on getting the owner's dog outside,
he was warrving about one specific bark, Ha
focused on the wrong thing!

When you write your use case, reread it, and
make sure that it makes sense o you. You
might even wanl to let a couple of friends or
co-workers read through it, too, and make
sure it will work in the real world, not just in a
controlled environment.

A good use case clearly and

accurately explains what
a system c[oes, n language
that's easily understood.

With a good use case complete,
textual analjsis 1s a quick and

easy way to {igure out the
classes in your system.

173

you are here »

the power of analysis

OK, I see what Randy's mistake was:
he got hung up on a bark, not the owner's
dog. But even in the correct use case, we
don't have a Dog object. So what's the
point of all this, if our analysis doesn't tell
us what classes to create and use?

Textual analysis tells you what
to focus on, not just what
classes you should create.

Even though we don’t have a Deg class, textual
analvsis gave us an important clue about what our
systern really needs to do: gee the owner's dog in
and out of the door, wegardiess of how he bavks, In
other words, our analysis helped us understand
what to focus on.., and iCs wef a specific bark.

Onee vou've fgured that out, it makes sense o
think about what a dog really does, Does a dog
alwavs bark the same way? That's when Mana
figured out her real-world solution: she realized
that if the owner's dog could bark in more than
one way, and the point was geting the owner’s dog
outside, then the dog door needed o store alf the
ways that the dog could bark, not just one of them.
Bur Maria would have never figured this out if’ she
hadn't really analvzed her use case.

*‘&\rf’e" Y“”r FEI’IGE‘ Why is there no Dog class?
Wi,

When you picked the nouns out of the use case, one that kept showing up was "the
owner's dog.” But Maria decided not to create a Dog object. Why not? Below, write
down three reasons you think Maria didn'f create a Dog class in her system.

—— i B
174 Chapter 4 Answers on page 179

Remewmber: pay attention to those nouns!

Fven if the nouns in your use case don't get turned into classes inovour

SYRLEm, i]w'_. re .'Il'n.'.:l‘.\.h it'l'l[':n::l:l'l'dlll (KN} J‘:'Luf;il'lg YOI SYSLEm work like it -i]!nlllh].

. %
[w Ehis use LASE U owmer s dofy
""J not d ¢lass.- m_klmﬁ G

3, If it's the owner’s dog barking,
the bark recognizer sends a
request to the door to open.

s ~dnd even +h¢hu|.l €
a moun, DUL

The point is that the nouns are what you should
focus on. If you focus on the dog in this step,
you'll figure out that you need to make sure the
dog gets in and out of the dog door—whether he
has one bark, or muItIEIe barks.

DogDoor
open: boolean
r““—‘“* allowedBarks: Bark [*]
This tellettion of opent)
barks essentially ﬂ%ﬁﬁ{} o
vepresen ks the dan, isOpen(): boolean
1: :ﬁ tn “parking | addAllowedBark™ .
part of the use £ase getAllowedBark BarkRecognizer

daor: DogDoar

recognize|Bark)

.

Even -[-.l-.mg,r this me

single bark, its

out which Hog bavked. |£

th-rm:al-. all Jl-.c nllawrd bavks in

duq door 45 see if Lhis bark Lomes
rom the swner's dog,

lhﬂd 3Et5§
Purpose is 4o fing

Funs

analysis

Pay attention to
the nouns in your
use case, even
when tlley aren't
classes in your
system.

Think about how
the classes you @

have can su])fmrt
the behavior your

use case describes.

175

you are here »

the verbs are operations

176

It seems like if the nouns in the
use case are usually the classes in
my system, then the verbs in my use
case are my methods. Doesn't that
make sense?

The verbs in your use case
are (usually) the methods of
the objects in your system.

You've already seen how the nouns in
vour use case usually are a good starting
point for lguring out what classes vou
might need in your svstem. IF vou look at
the verbs in vour use case, you can usually
hgure out what methods vou'll need for
the objects that those classes represent:

The Ultimate Pog Poor, version 50 L
Openingelosing the door - D
Main Path Alternate Paths “

1. The owner’s dog barks o be lef aut.
2. The bark recegaizer “hears” a bark. 21, The owner hears her dog

barking.
3.1f it's the owner's dog barking, the &L ﬂﬂawne
bark recognizer sends a request fo on the remote confron
The Dﬂ&pm the doar fo open.
tlass needs o g dggaripens) S
have an d?tn” 5 The owner’s dog goes oufside. Fra«gmmi:.: =
and elose() 6. The owmer’s dog does his business, i bu-E-E:om."F'ﬂw“
ﬁ‘&——m@ﬂllﬂﬂhﬁ"m
method to Remote elass has
£.2. The owmer s dog barks fo be lef
support, These back inside. a pressButton()
verb attions- 6.4 The bark recognizer “hears” a 6.3.1. The owner haars her dog method that
bark [again). barking (againl et ﬂT
B4 H 145 the owner s dog barking, G40, The owner presses the teh per fee
the bark recogwizer sends a birttom on the remote sonfral.
request to the door 1o open,

Chapter 4

6.5 The dog door opens lagainl
T The owner’s dog goes back nside.
$. The door shuts autematically.

Code Magnets

It's time to do some more textual analysis. Below is the use case for the dog door
you've been developing. At the bottom of the page are magnets for most of the

classes and methods we've got in our system so far.
magnets up with the nouns in the use case, and the method magnets up with the

Your job is to match the class

verbs in the use case. See how closely the methods line up with the verbs.

The Ultimate Pog Poor, version 3.0

Opening/closing the door

Main Path Alternate Paths

1. The owner’s dog barks to be let out.

2, The bark recognizer “hears” a bark. 2.1. The owner hears her dog

analysis

barking.
3. If it's the owner’s dog barking, the 3. The owner presses the button
bark recognizer sends a request to on the remote control.
the door to open.
4. The dog door opens.
5. The owner’s dog goes outside.
6. The owner’s dog does his business.
6.1. The door shuts automatically.
6.2. The owner’s dog barks fo be let
back inside.
There are 6.2. The bark recognizer "hears” a 6.2.1. The owner hears her dog
lots of bark (again). barking (again).
”‘*‘1’::;":{ 64. If it's the owner’s dog barking, 64.1. The owner presses the
:‘: ik the bark recognizer sends a button on the remote control.
i} 1 i
-k request to the door to open.
vour 4ime. 6.5. The dog door opens (again).
7 The owwer’s dog goes back inside.
8. The door shuts avtomatically.
Ramote , R
Fiiing fia Doghoar recognize o ragssButton (]
BarkRecognizer g Remote T - recognize () —
getSound() e : Bark M BAL Dog ooy _r:'_c it :I::-:l:l::-gn - — FESE“:LLC?'“
BarkRecognizer SelS o bl getAllowedBarks () fredtton ()
S — Bark open () close (| - tR171 o
BarkRecogni A -1 Y g9etAllowaedBarks [
getSound() BarkRecognize openl) S gethllowedBarks i) you are here ¥

textual analysis

Code Magnets Solutions

It's time to do some more textual analysis. Below is the use case for the dog door
you've bean developing. At the bottom of the page are magnets for most of the
classes and methods we've got in our system so far. Your job is to match the class
magnets up with the nouns in the use case, and the method magnets up with the
verbs in the use case, 5ee how closely the methods line up with the verbs.,

The Ultimate Pog Poor, version 3.0
Opening/elosing the door

Main Path Alternate Paths
1. The owner's dog barks to be let out.

BarkRecogni m‘m 21. The owner hears her dog

barking.

Motize that

mns‘t n¥ 4:.'hcst r-\"_b\ :

54::?5 witheut anf !
magnets ave thinas 6, The owner’s dog does his business.

3a{£hace;urhou+,:$ T 6L Thi oo e
SYSLErm
that thj system 6.2. The owner s an barks fo be let

then veatts to. back inside.

ner’s dog goes outside.

L

6.21. The owner hears her dog
barking (again).

641. Theowne| pressBuctont)
button on

$. The| Dogbhoor

close ()

lk The use tase shill makes a lot of serse with the
maguets in place! That's 3 good sign that our tlasses
and methods ave doing exactly what they're supposed
to so that the system will be a suzeess.

178 Chapter 4

analysis

Why didn't Maria create a Dog class?

When you picked the nouns out of the use case, one that kept showing up was “the
owner's dog.” But Maria decided not to create a Dog object. Why not? Here are three
reasons we think Maria made the right choice.

— 1. The dog is external to the system, and you vsually don't need
Theve ave fimes when to represent things external to the system.
mi&h‘t do this, but:

usually only when you 2 oo lsnt a software object (and houldn't be)... you
need to mteract with
these external thirgs
We dont need to

down't represent living things
with a class unless the system is going to store long-terw information about that thing.

di 3 _Even if you had a Pog elass, it wouldw't help the rest of the system. For example, you

inkevact with the

cant really ‘store” a Dog in the dog door: that doesn’t make any sense.

(

You'll often see lasses

g Ilkt u_lt‘r or Ma \

You could have 3 velerente to the Doy elass in but these ""‘-"P"'h:?i:w
T DegDoor et bt haw do You tare B rolesin 3 system, or

L ibhin & doov in Ehe veal world? le::trr store eredit tards

B ks in softuare docs't abays vork i or addresces. A doy
" like. Make sure your applications are ¥¢ doesn't £it any of
world compatible! those patterns

therejare neo
Dumb Questions

Q: So the nouns in the use case turn into classes, and the
verbs turn into methods?

A: That's almost it. Actually, the nouns are candidates for
classes... not every noun will be a class. For instance, “the owner®is a
noun in the use case (check out Steps 2.1 and 3.1, for example), but
we don't nead a class for that noun. So even though “the owner” is a
candidate for a dass, it doesn't become a class in the actual system,

In the same way, the verbs are candidates for operations. For example,

one verb phrase is “does his business,” but we just couldn't bear to
write a pae () of pecp () method. We hope you'll agree that we
made the right choice! Still, textual analysis is a really good start to
figuring out the classes and methods you'll need in your system.

Q: It looks like the nouns that are outside the system don't
get tumed into classes. |s that always true?

A: Most of the time it is. The only common exception is when

you have io interact with something outside the system—like when
there's some stale or behavior that the system needs to work with on a
recurring basis.

In the dog door system, for example, we didn't need a class for the
owner because the Remote class took care of all the owner-related
activity. If we ever needed to track owner state, though—like if the
owner was asleep of awake—then we might have to create an Ownerx
class.

179

you are here »

maria’s class diagram

From good analysis to good classes...

Once I knew the classes and

operations that I needed,
I went back and updated my
class diagram.

Maria’s Pog Poor Class Piagram

Remote

BarkRecognizer

pressBution()

Wheve did the

recognize(Bark)

door g_i:_"[,rl.bl.l
em The Rfr’“":'l:'t
elass E_TD? K
DogDoor
Why did the open: boolean

J:Irnwdaﬂkks ,/.P

ﬂ1lj.1|:h|5~|_. 1'1_,: move

ror up here.,

open()

close()

isOpen(): boolean
addAllowsdBark(Bark)
ethAllowedBarks(): Bark [*

oo down heve?

Q—» allowedBarks

Bark
sound: Siring

getSound(); String
equals(Bark): boolean

180 Chapter 4

[Remember, the
a;tt'rﬁk mEdns {'hﬂ'l'
setAllowedBarksl)
can rebuen mltiple
Bark abjtr.‘-ﬂ-

~UML Investigation

Maria's gone prewy crazy wi

analysis

th her UMUL diagrams... do you think vou can figure

out what all she's done? On the diagram below, add notes to all the new things
she's added, and try and figure out what the lines, numbers, and additional

wiords all mean. YWe've writte

1 a few notes of’ our owmn to get you started.

Remote

BarkRecognizer

pressButton()

The Remote class has
a veferente o the ”'//
DogDoor tlass. i
DogDoor
open: boolean
open()
close()
is0pen(): boolean
addAllowedBark(Bark)
getAllowedBarks{): Bark [*]
PogDocr has 4,
ﬁ‘{'lli.r'ibuf;,: f_a.”cd

dllowedBarks — = allowedBarks

recognize(Bark)

Bark
sound: Siring

netSound(): String
equals(Bark): boolean

—— Answers on page 184.

you are here » 181

associations and multiplicity

Class diagrams dissected

There’s a lot more to a class diagram than boxes
and text. Let's see how some lines and arrows can

This lime ﬁtﬂ!! -Frorn 'l:j'nt
add a lot more information to your class diagrams. sourte tlass (Remode)

1o the J.:E'rr_nrct_ ¢lass
ID:}EJT)QGH’} This fdng
that the sowree lass,
Rtmul.'.t,. has an attribute
of type DoaDoor, Lhe
éarg|¢+. elass.

r\-!ﬁ:ﬂ{'ﬂaru E'ILF \ &/

Remote

lid Time [rom one tlass T@
zr::lthtr is talled an .mgg_l;m
|4 means That one ¢lass is
at.sa-[.l.,rl':d wirkh another
elass, by e by reberente, extension

When _llau'*e
ushng a-nmd,'na{'.'lor.‘:

The Dnﬁﬁ'am ¢lass has
dm a‘.:.‘E.'r'llﬂu‘[,: ramed
ey Sllowed Bares, whith
sbbribukes, You Press BUtton() Bk ber
l.l‘iu.a“j' de

ot write the
;{T"lhudll-f that
Lhe assotiation
ulf".-cs-tr"li m 'I-'-l"'"'
elasss ?H:“bl“lt‘ a”DWGd Barks

sechion. Thats

why Remote no

langer has & door

athribute heve Ba rk *

sound: String

]'\I' Frila| ‘ ¥
r-fr1 -D'F -l}
: t =
dilgy dea d t £
Wi hl:! 1 i IJLLE Iz

getSound(): String :551‘”11?
equals(Bark): boolean * s,

t means that

182 Chapter 4

analysis

The name a-'; the atbribute

T
T his turm by is
in the sourte tlass &

]h -
po Che myl ivlici
ef this 35!-:-{,,34. l'E-

T
writhben here, at the o the Lar. 2 Lion It's how man

il d of the line Lo $hi =2 L, t}'FE is stoved in
target e € attribufe of &

Lhe Seurte l3:e
oo d{'!:rihute
DogDooe.

the Remote elass has an In this Case, the 4
atkribute ealled deoot: stores single

Lype sz"; /

door 1
> DogDoor

———=_Jopen: boolean

open()

close()

IsOpen(): boolean
addAllowedBark(Bark)

e | getAllowedBarks(): Bark [*]

though the tlasses are m
different plates, it's the CAME
tlass diagram. So the position
of the elasses on the diagram N R
doesn . matter wers o his exercine

dre on page |G5.
&,&;ﬂrp&n your pecil
A \.\g

Eased on the class diagram above, what types could you use for the
allowedBarks attribute in the DogDoor class? Write your ideas below:

you are here » 183

more um/

&3

UML Investigation Complete

Maria's gone pretty crazy with her UML diagrams... see if vou can
fgure out everything that she’s done,

H‘,]aoki Mf.-! R.Ernu‘b! d.u:snr{.
have any a'H:.ri-'h'utz: - bt

when ont elass r:&ﬂ

The line goes From the
tlass with the veferente to
the elass that is the type
being veferented

1o anether ¢lass, that

-r:f--rcsf:n{-,s 4n abbribute Se
the Bemate glase <till does

have one abbribute.

3

The Remote tlass has
a veleverte Lo the

attribute named deor

The decr athribute

helds 8 smﬁl: (
DogDeor cbjett

DnﬁDw has an
atbribute talled
sllowedBarks. The type

n-F £he a‘|;'|‘_'r||nu-|:.c i Bark,

The Dﬂﬁp gor £Iass b
hold an wrlimited
ok Bark o)t

al'luwzdﬁar'lm at{n'nu"l;r..

184 Chapter 4

pressButton()

DogDloor tlass, using an /

BarkRecognizer
recognize(Bark)

door

1 hdmned dﬂo‘n of
/ DogDoor that holds ;i’ 1
&
open: boolean referenge 4, | g
open() °38eer objert
closel()

isOpen(): boolean
addAllowedBark(Bark)
getAllowedBarks(): Bark []

This asterisk means “an
_—=allowedBarks z”f ke wambii®

Bark
sound: String

getSound(): String
equals(Bark): boolean

analysis

Exercise
SoLutions

.}wr | I Based on the class diagram below, what types could you use for the barks
N ANSWErsS member variable in your DogDoor class? Write your ideas in the blank below:

List, Array, Vector, ete.

'j"lou tould wr'rl:_e a.m]l -E'ﬂ"e
that sulﬁ-vcr-hs wultiple
values... most of the Java
(Cellethion tlasses would werk

Remote door 1, DogDoor
open: beolean
pressButton() opent)
closa()
is0pen(): boolean
addAllowedBark{Bark)
Bark getAllowedBarks() Bark [*]
sound: String

getSound(): String
equalsiBark): boolean

Notice that i
very dr‘FFE\"Eh'H}',
5otigtions as this diagram.

*“--—-.__—__.----"'/

diagram, although Positioned
has the Sdme tlasses angd

you are here » 185

why use class diagrams?

I guess I'm still
Just not sure why
you need all these

diagrams..,

Randy: [may have missed creatng a Bark class, but my
selution wasn't that bad, and T didn’t waste a bunch of my
tame drawing squares and arrows,

Maria: Hiven't vou ever heard that a picture 1s worth a
thousand words? Omnee T had my class diagram, T had a preoy
good idea about how my whole system was going 1o work.

Randy: Well, yeah, T guess Tean see that., buc T had a good
idea of how my svstem would work, wo. It was just in my head,
not drawn out on paper.

Sam: [think I'm starting 1o come around on this TUML thing,
Randy. I mean, once vou've got the use case, it's pretty natural
to dlo some analysis, and trn the nouns mw classes. Icseems
like vou wouldn't have w spend as much tme worrying about
what should be a class, and what shouldn’t.

Maria: Exactly! T hate writing a bunch ol classes and then finding oud 1 did someching
wrong With use cases and class diagrams, ift | make a mistake, [can just scribble things

(%. out and redraw my dingram.
Randy: Well, I zuess that's rue. Rewriting code takes a lot more time than rewritng a

Remember how we use case or redrawing a class diagram...
. £ . -l j . .
said GEP"D:}T e Maria: And vou know, if’ you ever have to work with anyone else, you're going to have (o
weite 'EI“#' s explain that system in head w them somewhow, right?
etk xpls at sy your head to them somewhaow, right
every 't'tmt? This s . o)) .))
one WY OOAED tan Sam: | think she’s rghe, Randy. Tve seen vour whiteboard when vou're trving to explain

help you avoid waking vour ideas... it's a mess!

A : L g 5 & . . - 3
miskakes in your £od Randy: OK, even | can't argue with that. But I sall think class diagrams don't el the
whale story, Like, how is our code actually going 1o compare barks and figure out it the
dog door should open up?

DogDoor
L I open: boolean
sound: String ~_|allowedBarks: Bark Rémiols

getSound(): 5“"'”3 open() door: DogDoor
equals(Bark): boolean | close()
. isOpen(): boolean LPressButton)
addAllowedBark(Bar
getAllowedBarks(). Bark

BarkRecognizer

186 Chapterd

analysis

Class diagrams aren’t everything

Class dingrams are a great way to get an overview of your system, and
show the Eha!l‘[n‘ ol YOur 'i:r.\i'l,l‘r'l'l [=workers :u'|1’_| -::-l]‘wr‘ Ijl‘c:-gi':-ll'l‘n'r'lt'l'h.
But there's still plenty of things that they don'f show

Class diagrams provide limited
type information

Bark * gllowedBarks DogDoor
sound: String open: boolean
getSound(): String open()
equals{Bark): boolean close()
that allowedBarks ean ﬁ’dﬂiﬁf”’ﬂ"ﬂ"'ﬂ i

We lnow 1 B e dpecks W owedBark(Bark) § The same problem

hold mlf; a; i L}:‘{_? 5 getAllowedBarks(): Bark [*]

what is its e i

exists for return
Veekor? Comething else? types.. what Eype does

getAllowed Barks() return?

Class diagrams don’t tell you how
to code your methods This diagram —
Fi rhsl

:bwt what reconizel) should
. S B even why
BarkRecognizer ark as ap &:;uiet‘{.:akﬂ ’
door: DogDoor e—/)

recognize|{Bark)

Class diagrams only give you a
10,000 foot view of your sytem

EIS You might ke able to Pigm.-:;
T out the -ycwral. ided 'I:lc'h:
o =" the Remobe lass bt .rtf-
it i not appavent from this

dianyram what the ?uﬁ:‘as:l o
kg elass veally i Wou omly
fnew Ths purpest Eramm Tzur
and yeauirEemER L1
use Lase an v you are here » 187

what’s missing from the diagram?

188

,.',_-II:_PH?H +
+ - "ﬁ
Py
WH AT 'S pMISSI\WNG
‘.,) +

Class fl,iil_!.'_"I":-'l]'.l'IH are great o I‘nm,’]t'ﬁl'l_q' the classes b need to create, but Il'u'j. don’t |j1'c:k'i1_’lt* all
the answers vou'll need in programming vour system. You've already seen that the dog door
class dingram doesn't tell us much about matching up return types; what other things do yvou
think are unclear from this diagram that vou might need to know to program the dog door?

Add notes to the diagram below about what vou might need to figure out in order to program
the door, We've added a note about comparing barks o ger you started,

Remote BarkRecognizer

pressButton() recognize(Bark)

door if the Bavi

DogDoor

open: boolean

open()

close()

isOpen(); boolean
addAllowedBark(Bark)
gethllowedBarks(): Bark [*]

allowedBarks

Bark
sound: String

getSound): String
equals(Bark): boolean

————— [Answer on page 190

Chapter 4

So how does recognizel) work now?

Maria's figured out that her BarkRecogni zer class should be able to compare
i-il'll\ !Ji’l]'k il FeCeIVes ilg:lir'lﬁl mul:i]ﬂv alls nu'(l]HLI'I'LH,_ I WU her 1'!.‘-‘1.\&5 I:l.iq'l._'L:'l'E!'lfl‘.l [:I:Jt'?i“‘l
tell us much about how to actually write the recognizea () method.

Instead. we have to look at Maria's code. Here's the recognize ()} method of
her BarkRecogni zer, and how she solved the barking problem:

public void recognize(Bark bark) | ﬂhﬁa"_ getting 3

[terater i a Java System.out.println(® BarkRecognlizer: Heard a ‘" + ::f:{;l“} of Bark
obijeet that lets us bark.getSound () + “*7); d-i;, 4o Tm Ehe
:;li thTI..ﬂs: each List allowedBarks = door.getAllowedBarks () ; -:L-"/F

) for (Iterator i = allowedBarks.iterator(); i.hasNext();)

Bark allowedBark = (Bark)i.next(): -— P oo E‘E{

A W b R if (allowedBark.equals (bark)) { We cast ‘11::;’:; Ly
tode, Maria door.open() ; FE;:’I t:f-tt‘t-
delegates Bark return; *——This makes sure we don't keep o
Eﬂ;:Fka::::;-{q - : lmF'“ﬂ onte we've found 3 mateh.

}
5 P

ystem.out.println("This dog is not allowed.”™);:

This method represents
an entive doa; all the
hﬂ'rklnﬁ sounds fh&f
the dog tan make

Maria's textual analysis helped her figure out that /
her BarkRecognizer needed to focus on the dog —,
involved, rather than the barking of that dog.

4

nocr.gerﬂllcwedaarhsrj

door.gethllowedBark()

This method is fotused on 3 single
bark... on one sound the dog makes,
vather than the dog itself

you are here » 189

puzzle solutions

WHAT' S MISSING

ExerciSe
SoLutions

- - By

-, = -

Add notes w the diagram about what you might need w figure out 1o

program the door,

Remote

BarkRecognizer

pressButton|)

-

What does the
pressButtonl)
method dof

Does eath s}lg-ttm /

have __:,u:-[-_ a 5‘“5'!
DegDoor object?

K;’

What 'l',*ﬁt is wsed
{0 store the multiple
Bark objects?

190 Chapter 4

recognize(Bark)

{

This method negds

S if the Bark ab__jca‘.f t": -
/ rlc.:-:wzs matehes the 4
' ored
— e ih the 4 door
does {4 happen?
open: boolean -

open)
closel)
isOpen(): boolean
getAllowedBarks(): Bark []

.DO n[-‘tn” dnd £lazel)
Jus'\'_ r:h:'lnﬁr. the dooe's

5‘[‘.&{:. ar do {',hgl}: da
mmc{-.hi:-.ﬂ eloe, ou?

allowedBarks

Bark ™ |4's untlear what amy of the
Ot tonstruttors for these elasses
S S m-:_.rh-l; de... ov what argumn".:s
getSound(): String Lhey might vequive
equals(Bark): boolean

¥ These are just a few of the things we thought of. Your
answers may be ‘f:njcall'f different, if You {:hnugh-!'. of
other things that the tlass diagram doesn't really show.

i/

S0 when do we get fo
see the final version of
Maria's dog door?

analysis

Analysis helps you ensure that your software works
in the real world context, and not just in a perfect
enviranment.

Use cases are meant to be understood by you, your
managers, your customers, and other programmers.

You should write your use cases in whatever format
makes them most usable o you and the other people
who are looking at them.

A good use case precisely lays out what a system
does, but does not indicate how the system
accomplishes that task.

Each use case should focus on only one customer
goal. If you have multiple goals, you will need to write
mutiple use cases.

Class diagrams give you an easy way to show your
system and its code constructs at a 10,000-foot view,

The attributes in a class diagram usually map fo the
member variables of your classes.

The operations in a class diagram usually represent
the methods of your classes.

Class diagrams leave lots of detail out, such as class
constructors, some type information, and the purpose
of operations on your classes.

Textual analysis helps you translate a use case into
code-level classes, attributes, and operations.

The nouns of a use case are candidates for classes in
your system, and the verbs are candidates for methods
on your system’s classes.

you are here » 191

brush off your coding chops

192

Design Puzzle

T'll bet you expected to find
all the code I wrote here, didn't you? L
wish... when T was transferring files to

new MacBook Pro, almost all of the
code for my dog door got corrupted.
Can you help?

.\I. [.;,'I,Ivi;_l,lf\ [)Il,l ('[hl'l'l.l_]l,l[l"l' SCIEY ‘1{| l_lI_] i,l” [h[‘ 1'1_|1,|r‘ hhl!' WO [;211' hl:']' 1|| FL:'

door except for DogDoorSimulator . jawva. shown on the next page.
All weve got to go on are the code fragments rom her solunon n this
['I'Ii_lEjll."l'. hl:‘l" I'li_lh.‘-. Eiiilﬂrﬂ M4, i_lr'l[_i Wh hﬂ[‘:.t:ll,]‘\.'{' lt'q' I_:I'rH,'ii i:'l,l](_:ll,ll ?_’:1 Il_Hl 1] i.ll'!.'!‘ii.‘i.
requirements and (0 programming. It's vour turn w be a hero...

The problem:
You need to code the dog door applicaton so thart it satshes
all of Doug's new customers (that's a lot of potenal
sales), especially the ones with more than one dog in the
neighborhood. The door should operate just as the use cases in
this chaprer describe the system,

Your task:

o Start out by re-creating the dog door application as it was described in Chapter
3. You can download this code from the Head First Labs web site if vou want a
jump sart,

e Copy or download DogDoorSimulator. java, shown on the next page.

This is the only file that survived Maria's laptop melwdown,

Make vour cade match up with Maria’s class diagram, shown on page 180,

Start coding! First concentrate on getting all of your classes to compile, so vou

can hegin testing.

Use the DogDoorSimulator class to see i things are working like they

should.,

Keep up the analvsis and coding untl vour test class’s output matches the
output shown on the next page, Don’t give up!

© 06 0 00

Once you think vou've got a working dog door, check vour code against ours at
the Head First Labs web site, We'll e wadting,

Chapter 4

analysis

public class DogDoorSimulator

public static woid main(String(] args)
Pogloor dosr = new Dogloox {);
doar . addhl lowaedBark (new Bark(“rowlf™));
door.addAllowedBark (new Bark(“rooowlf™));
door.addallowaedBark (new Bark(“rawlf®)); DogDoorSimulator.java
door.addAl lowaedBark (new Bark(“woof™)):
BarkRBecognizer recognizer = new BarkBecognizer (door);
Remote remots = new Remote (door);

This is {he test
|:|.iss 'Fh;'h'u M&FI&IIS
old lﬂP{?ﬂ'F- Use {his
o Your own dog

door te 5{""'3

f// Simulate the hardware hearing a bark
System.out.println(™Bruce starts barking.”):
recognizer,recognize (new Bark(“rowlf”));

System.out.printlni™\nEBruce has gone outside...”}:

tey |
Thread.currentThread() .sleep (10000) ;
} catch (InterruptedException e] [|

System.out.println ("\nBruce’s all deone..."};
System.out.println{™...but he's stuck ocutsgide!”);

f{ Simulate the hardware hearing a bark {(not Bruce!)
Bark smallDogBark = new Bark(“yip"i:
System.out.println{™k small dog starts barking.”);
recognizer.recognize {smallbDogBarck])

try | Fila Edit Window Help Hollyl ovasHrucs
Thread.currentThread () .sleep (5040) ¢ $java DogDoorSimulator
} catch (InterruptedException &) ([} Bruce starts barking.
BarkRecognizer: Heard a 'rowlf'
ff Simulate the hardware hearing a bark again The dog door opens.

System.out.println{“Bruce starts barking."):

recognizer.recognize {new Bark(“roocowlf”)): Bruce has gone outside...

The dog door closes.

wh

System.out.println(*\nBruce’s back inside...™);

Bruce’s all deone. ..
b .. .put he’'s stuck outside!
! Bitsie starts barking.
BarkRecognizer: Heard a ‘yip'
This dog is not allowed.

rﬁﬂaf”ﬂa’. Bruce starts barking.
BarkRecognizer: Heard a ‘rooowlf’

Heve's The :"Ji?“t:fm The dog door opens.

w&h‘t- whith Frov

£ door works Bruce’'=s back inside...
']E'“a vEH": ?hch. Lk P The dog door closes.
or Brute,
al:hﬂ' d"ﬁs

you are here » 193

define me, please

194

+

WHAT'S MY DEFINITION
; +

LML and use cases have a loc of terms that are similar w, but not quite the same
as, the programming terms you're already Taimiliar with, Below are several OOA&D-
related terms, and their defintions... but everything is all mixed up. Connect the

term to the defimtion, and unscramble the mess.

Noun ANaLySis
MuLtiPLicity
Attribute
CLass Diagram
OPeratioN
ASSociation
Verb AnaLysis

Chapter 4

Lists all the code-level constructs, aleng with
their attributes and operations.

This is the UML term that usually vepresents

a method in one of your ¢lasses.

Helps you Figure out the candidates for

methods on the objects in your system.

Visually shows that ene class has a relation

to another class, often through an attribate.
Equivalent to a member variable in a class,

Describes how many of 4 sPﬂeiﬁc type can

be stored in an attribute of a class.

You do this to your use case to figure out

what classes you need in your systen.

OO0A&D Cross

You know you love it... try another puzzling crossword

to get those new concepts Indged firmly in your brain.

HIII-l_.E.:n-

Across

1. Use cases should use this kind of language.
5. Every class diagram has one of these for
each member variable.

10. This focuses on putting your application
into the correct context.

12. Software always works better in the
testing lab than here,

13. Maria won the laptop because she paid
attention to the

14. This relates ore closs to another

16. You write your use case so you can

your customers

17. Use cases should be a3 well as easily
understood,

18. UML is this type of modeling language.

Down

2. Analysis makes sure your application works
in this place.

3. An operation is UML-ese for this.

4, You do this to your use cases to figure out
the classes and operations in your system.

6. He replaced Fido as this chapter's star.

7. Class diagrams are a great way to get this of

your system.
8. How many of a type an attribute can held is

its
9. These types of diagrams are worth o
thousand words to a programmer,

11, Use cases aren't formal, but they are

15. Verb is to operation as this is to artribute.

you are here »

analysis

195

answers, answers, answers

196

W, .
wWH AT < M‘r?l'lh‘l‘flﬁﬂ
o L

UNIL anned vise esmses have 2 Jok of terms than are suadar o, bar oor guire e sanse

aes, dlie progranmning terms you've alvesdy Gonliar witls, Below are several O0OA&D.
related terms, and their defmtions... but everything is all mixed up. Connect the
terin o the definition, ami mscrunble the moess,

Noun AnaLysiS Lists all the code-leve] constructs, aleng with
their attributes and eperations,

Mﬁﬂﬂﬁﬂ This 1 the UML termt that wsually reprosonts
a methed in one of your classes.

Attribute Helps you Figure out the candidates for
metheds on the shiects in your system.

Visoally shows that one class has u velation

. to another eluss. usually through an atiribize.
" Equivalent to i member varable in class.
Association Deseribes how many of specific type can

be stored in an attribate of 4 class.

'hl.blm You do this te yeur use cise o Hpure out

what classes you need in your system.

Chapter 4

i

BiHh < 2 Z > > C 4 X|m

5(part1) good design = flexible software

Nothing Ever Stays
the Same

Molly, I hope we never have
to grow up. Let's just stay like
this forever!

Change is inevitable. No matter how much you like your
software right now, it's probably going to ehange tomaorrow. And the
harder you make it for your software to change, the more difficult

it's going to be to respoend to your eustomer’s changing needs. In
this chapter, we're going to revisit an old friend, try and improve an
existing software project, and see how small changes can turn into
big problems. In fact, we're going to uncover a problem so big that

it will take a TWO-PART chapter to solve it

this is a new chapter 197

going beyond guitars

§mnged Instruments
Rick’s Guitars is expanding

Fresh off the heels of selling three guitars to the rock group Augustana,
Ricks I‘._'"I,Ii[ill‘llLI.'\-i.'l'!l'HH is (lcﬁl'lg hetter [I'l.'ll'l ever—anid Ihv .‘il':-ll*i,']!l L{E] ol Yo
built Rick back in Chapter 1 is the cornerstone of his business.

Your software is the best—I'm selling
guitars left and right. I've been getting
a lot of business from Nashville, though,
and want to start carrying mandolins, too.
I figure I can make a killing!

Mandolins ave 3
Lok like apitars:
l.-,'r-n_fT shouldn't

f be foo havd to

Suppor JC-.- .,-.,3'[1'{,?

Let’s put our design to the test

Welve talked a lot abow good analvsis and design being the key (o
software that you can reuse and extend... and now it looks like we're
poing to have to prove that w Bick. Lets figure out how easy it is to
restructure his application so that it supports mandaolins,

198 Chapter 5 (part 1)

harpen your penc

good design = flexible software

Add support for mandolins to Rick’s search toal.

Below is the completed class diagram for Rick’s guitar search app, just like it was
when we finished up with Chapter 1. It's up to you to add to this diagram so that Rick
can start selling mandolins, and your search tool can help him find mandoling that
match his clients’ preferences, just like he already can with guitars.

e ve added

'ge lear
Frimts you we .
WML tlass diaoyrams:

inventory

Guitar

serialNumber: String
price: double

get3erialNumber(): String
getPrice{}: double
setPrice(float)
getSpecy): GuitarSpec

Inventory

addGuitar(String, deuble, GuitarSpec)
getGuitar(String): Guitar

ba
saarch(GuitarSpec): Guitar [*] % and used

dstodidtions 'rns{::‘l-d.

GuitarSpec

medel: Siring
numatrings: int

getBuilder(): Builder
getMadeli): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
gethumSiringsi): int

builder

Builder

ob o3 hem 3y3 3q Jy6ru FEFAIGH
A3 e :::[eu ‘o5 y| juowwoy i Gunyhue
aney wiopeely pue sejmb € o : LI

Notice that we
toString(): String Ean write fhese
R el S Properties on
e e o o
assetiation.. there's

ng “'riﬁhf ﬂhp’;g:"l
Just use what works
best for You.

199

you are here »

updating rick’s class diagram

@ Your penci
N partial

Add support for mandolins to Rick's search tool.

Below is the completed class diagram for Rick’s guitar search app, just like it

answers was when we finished up with Chapter 1. Here's what we did first to add support
for mandolins (we'll make some more changes over the next few pages).

L—Nk: |il:.g WCI'-'C

i e, Instrument 3ot Yt move mew
Sinte Guta” ah;n serialNumber: String AML rotation
Mandelin *‘Eﬂ price: double 5":;5| on here...
¥ ' we
many W?; wew getSerialNumber(): String ook 3t these
greaten 8 on page 104,

we it base getPrieel): double

3":“1“3& L ores JsetPrivelfioat)

L ;ss

Lgmman ?.,g?gr"l’.lf"'
inventory

Lek's ereate a mew
elass, Maﬂd‘ﬂ‘h"*

4o -.rgfr'rf.sth‘t
mahdﬂll'ﬁi |'ﬂ _}'*SE
2 ety we ll t.\"ti"ti
a MandolinSpet
glass for mandolin
rf.w?cvbes, foo.

they get moved info the

Instrument base ¢lass.

200 Chapter 5 (part 1)

| Mandolin Guitar
_' R
getSpeel): MandolinSpee ool
S e—
setlsestioal

getSpec(): GuitarSpec

fullmmf E""""’}"‘H"Hﬂ. -
Quitar gets pushed

up to [rstrument, and
9ets inhevited So e
tan aet vid of Jods of
these Propevties, as

Inventory

addGuitar{String, double, GuitarSpec)
getGuitarString): Guitar

search({GuitarSpec): Guitar [7]

GuitarSpec

model: String
numStrings; int

getBuilder(): Buildar
getbodel): String

getType(): Type
getBackWood(): Wood
getTopWood(): Wood
gethumStnngs(): int
matches(GuitarSpec); boolean

Builder

toString(): String

toStringl): String

toString(): String

Pid you notice that abstract
base class?

Take a close ook at the new Instrument class
thar we created:

Instrument
: athributes and operations
getSerialNumber(): String <— Lhat ave tommon Lo both
getPrice{): double Guitar and Mandolin and
selPrice|float) ik Ehvew n |nskirument:
getSpec(): InstrumentSpec '

Instrument is an abstract class: that means that yvou
can't create an instance ol Instrument. You have
tor dlefine subclasses of Ingtrument., like we did
with Mandolin and Guitar:

Instrument

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Instrument: is the base
I’-_ld_.'n.'t fﬂr fﬂ:‘ihdﬂ-.lm_:l-n_d

GQuitar... \!.51!":.!' b_ﬂj- their
behavier off of it

-

Mandaolin

Guitar

getSpec(): GuitarSpec

getSpec(): MandolinSpec

‘_‘_‘_‘_‘_‘_ —_ Quitar dnd Mandaliy,

i Pllfrnfn%

dE'Fir.fd ™

We made Instrument absiract because the oPerations
Instrument is just a placeholder tor actual _r“‘f-"'-"hfhf, in
instruments like Guitar and Mandolin. An ways spetifie 4o 4 auitsy
abstract class defines some hasic behavior, but its 3nd mandalin
really the subelasses of the abstract class that add the
implementation of those hehaviors, Instrument

is just a generic class that stands in for vour actual
implementation classes,

good design = flexible soffware

Abstract classes
are Placehulcler;s
for actual

implementati(m

CI.EISSES.

The abstract
class defines

hehavior, and

the subclasses
in_t_Plement that

hehavior.

you are here » 201

adding a MandolinSpec

We'll need a MandolinSpec class, too

Mandolins and guitars are similar, but there are just a few things
L'Hfﬁ'ﬁ,'l'l[.'Lht:m t'l"l:-ll'll:[l rlill.\... Wie Can 1':|[}1u|‘t' []'In:::-u' {li1T:'J'L'I'|1':'.~i in a

MandolinSpec class:
GuitarSpec MandolinSpec
builder; Builder builder: Builder
model: String madal: String
type: Type type: Type
backWood: Wood Style: Style
topWood: Wood backWood: Wood

numStrings: int
getBuilder(): Builder

topWood: Wood
o

Mandelins ¢3n
Lome in severgl
S‘i‘.}'lf!, like an “rdI“
S‘t}lrt, or an “F"

style mandalin, —\

Just as we used

gethModel(); String
gelfType(): Type
getBackWood(): Wood
gefTopWood(): Wood
getMNumStrings(): int
maiches(GuitarSpec): boolaan

Mast mandalins an enumevated

getBuilder(); Builder
have & paivs type For Wood and

geliodel(): String

getType(): Type of strinas Builder, we tan
getStyle(): Style (8 4otal), so ereate a mew Lype
getBackWood(): Wood numStrings isnt for mandelin styles.

geiTopWood(): Wood

t's OK if you dont know anything ab.mt ;
mandoling, or didnt Figure out {he dikkevent
properties in {he MandolinSpee tlass. The main
thing is bhat Hou vealized we ?rqhahhl “Ed 3
new tlass for mandolins and theiv _s'['rem-FI you
Lame Wp with using 3n [nsbrument intertate or

shskratt elass, all Lhe better!

peei: 3 7 N

needed heve /

et ARG stal—
malches(MandelinSpec): baclean

Those spec classes sure
loak a lot alike. How about we use
an abstract base class here, Too?

What do you think about this design? Will it do what the customer
wants it to do? How flexible is it? Do you think software designed
like this will be easy to extend and maintain?

202 Chapter 5 (part 1)

Style

tfme are no

good design = flexible software

——Dumb Questions

. We made Instrument abstract because we abstracted the
properties common to Guitar and Mandelin inta it, right?

A: No, we made Instrument abstract because in Rick's
system right now, there’s no such things as an actual “instrument.”
All it does is provide a comman place to store properties that exist in
both the Guitar and Mandolin classes. Bul since an instrument
currently has no behavior outside of its subclasses, it's really just
defining common attributes and properties that all instruments need
fo implement.

So while we did abstract out the properfies common te both
instrument types, that doesn’t necessarly mean that Instrument
has to be abstract. In fact, we might later make Instrument 3
concrete class, if that starts to make sense in our design...

+ Couldn't we do the same thing with GuitarSpec and
MandolinSpec? It looks like they share a lot of common
attributes and operations, just like Guitar and Mandalin.

A: Good idea! We can create another abstract base class,
called InstrumentSpec, and then have GuitarSpec and
MandolinSpec inharl from that base class:

InstrumentSpec
mode: Stmg

getBulden). Builder

qathodel(): Sinng

gatType(): Typa

gatBackiWaod(): Wood
gatTopWood(); Wood
metchas(InstrumentSpec): bealean

GuitarSpec MandolinSpec
numSirings: int
gethlum3tingsd]; int getSiyle(: Style
matches GuitarSpec): bookean matches|{MandalinSpec) boolean

Let’s put everything together...

203

you are here »

abstracting common behavior

Behold: Rick’s new application

It looks like all that work on design back in Chapter | has paid off;
it took us less than 10]'I;-L;L-':-I‘:-i o aclel .w'uppu::i'l for mandolins o Rick’s
search tool. Here's the completed class diagram:

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument =—

search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

We've chanaed addQuitarl) to addinstrument().

New 8et() veturns gn Instrument
instead of jus{ 3 Quitar

We need two searehl)
methods now: ome

-Fm‘ aui{ars and one

-‘:ar m&nd.&lmi
inventory | *
— Instrument
|pshrument: is an - -
sbstract elass.. serialNumber: String S~

bhat's what an
ihalitized ¢lass mame
means in WML

price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

12 3 special type of
L dssodisti §
lock at on the n o Wil

tnt P‘}Ht

Quitar and Marndalin don't da .iln}"l:hing
but extend Insbrument. The differences
between the tuo types of instruments
are entapsulated away in the spee elasses.

Guitar Mandolin

204 Chapter 5 (part 1)

good dasign = flexible soffware

Whenever you find common behavior in two
or more Places., look to abstract that hehavior

into a class, and then reuse that behavior in

the common classes. "

Heve's the printiple that

led +o us treating both the

|n5£‘l"\lﬂ'fn 5

t and |ns£’rvhl!!'-'k£'f'€"-

abshratt base tlasses

|ns‘[:‘rumen£§Pﬂ‘. is assotizted
with all £he enumerated 'Eilﬂ;‘fi
that we used to refevente
dl'rtl'.{’.h' n Eulf&rEFmr. —

VRS

InstrumentSpec

New the absbract | nstrument
¢lass is assetiated with the
sbstract lnsbrumentSpec class

Q spec

builder

1
model: String

getBuilder(): Builder

We' ve moved getModel(}. String

all the comn” = | getType(): Type

e A getBackWood|(): Wood
e getTopWood(); Wood

Lyatk tlass
RO matches(InstrumentSpec): boolean

Builder
toString(): String

Type
toString(): String

Wood

toString(): String

PP prated Lype that
|.;‘. h'f the ,',l]and.aﬁ?m.‘;?ﬂ'-

'|1:,I5 5.1'?I'.L"F:'r' _
t all instrument

S{_\Fac FLa!
is used on
tlass, smie
mandolins, and 7o

5|?t|'_:|-';'ll:-3{.":'“ 'l’-‘l'?“'

GuitarSpec MandolinSpec

numStrings: int

getNumStrings(): int getStyle(): Style

matches(GuitarSpec): boolean

F‘\"“‘-- We need to overvide matehes() in each
spet. tlass to handle additional properties
.t'P:El-Fll‘. to each InS'E_rl.!m:n‘E_.

matches(MandolinSpec): boolean

Style

toString(): String

you are here » 205

a little more um|

Class diagrams dissected (again)

Now that you've added abstract classes,
subclasses, and a new kind of association, it’s time
to upgrade your UML and class diagram skills.

This line with a diamond means 3
ﬁlgglrtﬁﬂi'}nh is @ spetial form of assetidbion, and means
that one thm& i made up {in I,'-‘ar{':' of another thing
. - - Lo
When the name of a tlass Ca [nebrument is ?‘ﬂ'r":,l‘?' made up of [nshrumen Capet Meve italies: bk

is al i
is in italies, £he tlass diso abstrged
is abstraet. Here, we —_\
don L winc; aupens Instrument

greating instantes
of |nshrument; it's

}ug-t wied to Frou’id: SEflamumbETI Strll’ig
3 tommen base for | price: double

s?.:.:'.hg inshbrument

elasses, like Guitar | getSerialNumber(): String
nd Mimdelia getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

:h-f;,_'f:Pm

Spec

InstrumentSpec

model: String

getBuilder(): Builder
getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

e

A line with an arrow that isn't
tolored in rmedrs aeneralizad;
eval
uig 3 I % zation Y:‘-"l'
genevalization fo show £hat
a elass (like Mardolin) eutends

T and inherits behavier from a more
generalized elase (fike Instrument),

Guitar

206 Chagpter 5 (part 1)

s
.
good dedign = flexible soffware
~

"~
Fold this page down so You
tan veker batk to it when "_/ ~

you Forget some of UML's ~
wotation and syebols. %
UMI, Cheat Sheet
What we call What we call How we show
it inJava it in UML itin UML
Abstract Class Abstract Class ltalicized Class Name
Relationship Association >
Inheritance Generalization >
Aggregation Aggregation <>
tlzer ire no -
Dum Queﬁtlgﬂﬁ Af There are a lot more symbols and notations in UML, but

Q} Are there lots more types of symbols and notations
that I'm going to have to keep up with to use UML?

it's up to you how many of them you use, let alone memorize.
Many people use just the basics you've already leamed, and
are perfectly happy (as are their customers and managers).
Bt other folks like to really get into UML, and use every

trick in the UML toolbox. It's really up to you; as long as you
can communicate your design, you've used UML the way it's
intended,

you are here » 207

abstract classes and instruments

Let’s code Rick’s new search tool

We can start off be creatng o new class, Instrument. and making it
abstract. Then we put all the properties common to an instrument in this class; We used the 3agreastion
form of assotiation because

gath [nstrument is made up

public abstract class Instrument |

R"__'—__"- |mshrument. is abshratt. you

private String serialbumber; have to inekantiate subtlasses ok
private douhle price; Lhis base elass, ke Guitar
private Instrument3pec spec:

of the sevidlNumber and
prite member variables, and

an [nstrumentSpee instante.

)

Instrument
public -.nstrumentt.:-.trinq gerialWumber, double price, serialNumber- String
InstrumentSpec spec) | ?‘ PR
L) = 5 price: double
this.serialNumber = serialMumber; Most of Lhis i
this.price = price; - g drls is pretty getSerialNumber(): String
this.spec = spec; T'Ic?ﬂ and lacks a lot getPrice(): double
) ! Eh:.h: old Quitar elaes setPrice(float)
v haik getSpect): InstrumentSpec
/F Get and set methods for serial niﬂz:-iand price — -
public InstrumentSpec getSpec() |
return spec;

Next we necd to rework Guitar. java, and create a class for mandolins,
These hoth extend Instrument o get the common instrument properties,
and then define their own constructors with the right type of spec class:

public class Mandolin extends Instrument |

Al eath
nsbrument public class Guitar extends Instrument | price,
elass needs
is to tifﬂd/man serialWumber, double price,
|nstrument, : = GuitarSpec spec) |
ard provide super (gerialNumber, price, spec):
a gg.-p.s{,rut-‘l:ﬂ'r }
that takes the | —
vight kind b ndolin.java
spet ﬁl‘}ﬁ-‘;—
itar.java Mandolin is almest identital
to ﬁm{:—pﬁ H e Ju;{, fakes noa
MandolinSpee in the temsbruttor,
instead of a GuitarSpet.
208 Chapter 5 (part 1)

good design = flexible soffware

Create an abstract class for
instrument specifications

With the instroments taken care of, we can move on to the spec
classes, We need to create another abstract class, IngtrumentSpec,
since somany instruments have common specifications:

public abstract class InstrumentSpec |

spec 1 F"“"-—————-—..\J“‘t like |h$‘|:.'runthf,

InstrumentSpec private Builder builder; Bl .
? private String model; dn Fl:ﬂ?ﬂ ¢ abstract,
I: Stri : i : and You ll use subtlasses for
model: Siring private Type type: csih kit b
getBuilder(): Builder private Wood backWood: ument TyTe:
getModel(): String private Wood topWood;
getType(): Type ; . . o
getBackWoad(): Wood public InstrumentSpec(Builder builder, String model, Type type,

getTopWood|): Wood M‘Mﬁa“kwmd* Wood topWiood) |
matches(InstrumentSpaci: boolean this.builder = builder; This is similge to our old

e this.model = model; Quitar constiuttor.
this.type = type; except Lhat we've pulled

this.backMood = backWood; -l;'m'..m:l‘tf-mmun
this.topWood = topWood; T wtir ke
ko all msbruments, like

InstrumentSpec java :' rumSrings and style

// Bll the get methods for builder, model, type, etc.

public booclean matches (Instrumentspec otherSpec) |
if {builder != otherSpec.builder)
return false;

if {{model != null) && (!model.equals (™)) &&
(Imodel . equals (aotherSpec . model) j)
return false; T This)
if {type != other3pec.type) does _":EJm o-f:rnatchﬂu
_return false; “Feti:) what you'd
if {(backWood '= otherSpec.backWood) Propert; “mPares 4|
return false; o £ in Lhi
¢ a1 i i S ahﬂ'thﬂ‘ 5 g CJ&H 'Eﬂ
if {(topWood !'= otherSpec. topWood) é,,.r-"'h PeL instanee el
return false; dve to vervide this ;.

return true; Mhclaste ﬂ‘""“ﬂh._.

you are here » 209

completing the spec classes

Let’s code GuitarSpec...

With InstrumentSpec coded up, it's precty simple to write the
GuitarSpec class Jusk 25 Guikar extended
|rskrument, &U-"{'-a'f'g?ff-

L cvtends IstramentSyet

public class GuitarSpec extends InstrumentSpec |

a— Dnly 3 quitar has 3 mums

private int numStrings; okt the bttt o trings Property; it's

perélass.
public GuitarSpec(Builder builder, String model, Type type,
int numStringg, Wood backWood, Wood topWood) |

super (builder, model, type,w topWood) ;
this. numStrings = numStrings:
‘EE_H‘_

! This eenstructor just adds
: the guitar—specitic properties

public int getMumStrings({) { to what's alveady stored in

: return numStrings; the base |nstrumentSpec ¢lass

ff Override the superclass matches() =————u01

public boclean matches (InstrumentSpec otherSpec) |

1f (!super.matches {otherSpec)) makehes() uses the w?ﬂdif-ﬁ

return false; ahehest), and then pexForms

1f (! {otherSpec instanceof GuitarSpec)) 2 ddikional thetks Lo make
return false; sure Lhe spet is +the vight

GuitarSpec spec = (GuitarSpec)otherSpec; d the Em{a_,_
!
if (num3trings != spec.numStrings) T=—— i:T?E.n;'ﬂ alﬂ‘iﬁu
return false; spetitit prope

return true;

InstrumentSpec
maded: Siring

getBuildar): Builder

gethodal(): Siring

getType{): Type

getBackWood]): Wood
getTapWeod(): Wood
matchas(InstinumentSpec): bocksan

GuitarSpee gets 3 lot of ife behavior
From fm{ﬁmtnﬁﬂ?\:c now, 5o the
tode For 6&&3?2?:# has slimmed

down 3 lot from EHJF‘EET |
_-““"S GuitarSpec

nurmStrings: ind

gethumSinngs). int
matches(GuitarSpec): boakean
—

210 Chapter 5 (part 1)

S MandolinSpec

good design = flexible sofiware

...and MandolinSpec, too

Alter seeing GuitarSpec, MandolinSpec is pretty simple.
[t’s very similar, with the addition of a member variable to
reference the mandolin's stvle (like "X or “F" style), and a
slichtly different matches () method:

public class MandelinSpec extends InstrumentSpec |

-— Oely mandaolins have a S{"JI[E, so this it not
PoominiSiyle st ?IsIfd wp inte the InshrumertSpet. base tlass.

public MandolinSpec (Builder builder, String model, Type type,
Style style, Wood backWood, Wood topWood) |
super (builder, model, type, backWood, topWood):
thiz.style = style;
}

public Style getStylel() {
return style;

1

ff Override the superclass matches()
public boclean matches (InstrumentSpec otherSpec) |
if {!super.matches {otheripac))

return false; Just like GQuitarSpee, Mandoling et
if {!{otherSpec instanceof MandolinSpec)) wses its superelass fo do basie ‘
return false; Comparison, and then ¢asts fo

MandolinSpec spec = (MandolinSpec)otherSpec; <= M-ﬂndglihs?eﬁ and Compares L
s the

if (lstyle.equals(spec.style)) R_/—/ mandolin—speifis ;
return false; SPECITIE Properties.

return true;

[public enum Style |
4, F;

getBiyle(): Style
matches{MandolinSpec): boo = | You'll need a
— new emumerabed
{'.‘:f["t, S'I;‘flt. [Aze
two erumerated
valees, & and F.
MandolinSpec.java

you are here » 211

coding rick's search fool

Finishing up Rick’s search tool w——

inventory: Instrument [*]

All that’s left is to update the Inventory class to
. : g ; i addinstremant{Sring, double, InstrurmantSpes
-.-.'m:k with multiple instrument tvpes, instead of just the getiString) Inﬁimmgm)
Guitar class: searchiGuitarSpec): Guitar [*]
The inventory list now holds gearchiMandolinSpeck: Mandalin [7]
e —————

public class Inventory multiple types of insbruments,
not juﬂ: guitars. Inventory. java
private List inventory;
BT lliihﬁ {'-l"E rﬂ$th¢n't and

public Inventory() i Ihirumgh-[-,gm-_ elasses, s an 'k
] M1

inventory = new LinkedList (}; adduitavt) into 3 more SEREHE mebhod
} // and tregte any king of instrument '

public veid addInstrument{String seriallumber, doullle price,
InstrumentSpec spec)
Instrument instrument = null;
if (spec instanceof GuitarSpec) | ="
instrument = new Guitar(serialbumber, price, {(GuitarSpec)spec);
} else if (spec instanceof MandolinSpec) |
instrument = new Mandclin(serialNumber, price, (MandeclinSpec)spec);

| S o this isn'f 5o great Cinge

inventory.add (instzument); Lt
| i ; rm:h 15 4 'I"‘Jﬂt. and we
tan't instantighe it direﬂtﬁ;. we

public Instrument get(String serialbNumber) | have to do some extrd work
for (Iterator 1 = inventory.iterater(); i.hasNext()s) L4 ':"’H'll:ing an inshrument.
Instrument instrument = (Instrument)i.next();
if (instrument.getSerialNumber{).equals{serialHumber)}) |

return inst fUTnent,-..-_—__\ .
] Heve's another spot where wsing

} 11 an abstract base tlass makes our
I T design move Flexible.

{{ search(GuitarSpec) works the same as before

public List search (MandolinSpec searchSpec) | é—j
List matchingMandolinse = new LinkedList();
for (Iterator i = inventory.iterator(); i.hasWext():)} { We reed another searthl) method
Mandolin mandelin = (Mandolin)i.next(}; {o handle mandoling

if (mandolin.getSpec () .matches (searchSpec))
matchingMandolins . add (mandolin) ;

I
return matchingMandelins;

* At this point, you're ready to try out
Riek's improved app. See 'I you €an update
FindQuitar Tester on own, and see how
{hin&s are w-k’mﬁ wmhcsc dcsisn ﬂhanﬁcs.

212 Chapter 5 (part 1)

* Guitar and Mandolin only have a
constructor. That seems sort of silly. Do
we really need a subclass for each type of
instrument just for that?

» Wedo, at least for now. Otherwise,
hiow could you tell a mandolin from a
guitar? There's no ather way to figure out
what type of instrument you're working
with than by checking the type of the class.
Besides, those subclasses allow us to have
canstructors that ensure that the right type
of spec is passed in. So you can't create a
Guitar, and pass a MandolinSpec
into its constructar,

These ave little
a design problem.
ko make sense m Y

wark to imvestigate a liktle

the e no

Dumb Questions

. But with Instrument as an abstract
class, the addinstrument() methed in
Inventery.java becomes a real pain!

A: You're talking about
addInstrument () on page 212,
aren’t you? Yes, with Instrument as
an abstract class, you do have some extra
code to deal with. But it's still a faily small
price fa pay to ensure that you can't creats
an Instrument, which really dogsn’t
exist in the real world.

indiators Lhat we ma?.hauc '_-_\“-_5
When Ehimas just don T seem
our applieation, fou mdY

Lurbher.. whith is

:nart{hr what we ve Fheut to de

good design = flexible software

Q: Isn't there some middle ground,
though? | mean, even if there's no such
thing as an “instrument” that isn’t a guitar
or mandaolin or whatewver, it still seems

like we must have a design problem
somewhera. Right?

AI Well, you may be onto something.
It does seem like pants of our code would
benefit from a concrele Instrument
class, while other parts wouldn't,
Sometimes this means you have to make
a decision ane way ar the other, and just
accapt the trade-off. But maybe there's
mare going on here thal we're not thinking
about...

Q: Why do we have two different
versions of search()? Can't we combine
those into a single method that takes an
InstrumentSpec?

A: Since InstrumentSpec s

an abstract class, like Instrument,
Rick's clients will have to give either a
GuitarsSpec of 3 MandolinSpac to
the ssarch () methad in Inventory.
And since a spec will match only other
specs of the same instrument type, there's
never a case where both mandoling and
guitars would be returned in the list of
matching instruments. S0 even if you
consolidated the two search () methods
into one, you wauldn't gel any functionality
benafit—and even warse, it might fook like
the method would return both mandolins
and quitars (since the return type of
search () would be Instrument
[*7), even though it never actually would.

213

you are here »

major improvements

214

-
o

Chapter 5 (part 1)

Wow, this is really starting to look
pretty good! Using those abstract classes
helped us avoid any duplicate code, and we've
got instrument properties encapsulated
away into our spec classes.

T

You've made some MAJOR
improvements to Rick’s app

You've done a lot more than just

add support for mandolins o Rick's
apphicadon. By abstracting common
properies and behavior into the
Instrument and InstrumentSpec
classes, vou've made the classes in

Rick’s app more independent, That's a
sigmificant improvement in his design.

I don't know... it seems like we've still
got a few problems, like the almost-
empty Guitar and Mandolin classes,

and addInstrument() with all that nasty

instrument-specific code. Are we just
supposed to ignore those?

Great software isn’t
built in a day

Along with some major design
imprivements, weve uncovered a few
[blems with the search tool, That's
OE... you're almost always going to find
a few new problems when vou make big

changes wo vour design,

S0 now our job s to take Rick’s better-
designed applicaton, and see il we can
improve it even further.,, to take it from
mood software to GREAT software.

good design = flexible software

3 steps to great software (revisited)

Is Rick's search tool great software?

Remember the three things we talked about that you can do to write great
software? Let's review them to see how well we've done on the latest version
of Rick's search tool.

1. Does the new search tool do what it's supposed to do?

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

3. How easy is it to reuse Rick's application? Do changes to one part of the
app force you to make lots of changes in other parts of the app? Is his
software loosely coupled?

ra
< Great software every time? 1
can hardly imagine what that
would be like!

Be sure Lo answer these qllu:si;im:,
ard then burn the 398 ks see
'ﬂha'l:, weE wirohbe down:

you are here » 215

is this great software?

Is Rick's search tool great software?

Remember the three things we talked about that you can do to write great

software? Let's review them to see how well we've done on the latest version
of Rick’s search toal.

SoLutions

1. Does the new search tool do what it's supposed to do?
Absolutely. It finds guitars and mandoling, although not at the

same time. So maybe it just mostly does what it’s supposed to
do. Better ask Rick to be sure...

2. Have you used solid OO principles, like encapsulation, to avoid duplicate
code and make your software easy to extend?

We used encapsulation when we came up with the InstrumentSpec
classes, and inheritance when we developed an Instrument and

InstrumentSpec abstract superclass. But it still takes a lot of work
to add new instrument types...

3. How easy is it to reuse Rick’s application? Do changes to one par of the

app force you to make lots of changes in other parts of the app? |s his
software loosely coupled?

It’s sort of hard to use just parts of Rick’s application. Everything’s
pretty tightly connected, and InstrumentSpec is actually part of
Instrument (rememeber when we talked about aggregationt).

Locks like there's still
some work to do... but Tll bet

this will be amazing by the
time you're done.

\

[t's ¥ if you got some
difFerent answers and
had different ideas
+han we did on these
qlutsfmns-- :,us{', make
e You {,hmﬂhjc things
through, and that you
wndershand why we

arswered how we did

216 Chapter 5 (part 1)

good design = flexible software

I'm loving what you're doing to my
search tool! As long as you're here, I think
I'd like to start carrying bass guitars, banjos,

and dobros (you know, those guitars you play

Let's put Rigy
with a slide). And how about fiddles, too? axd

sﬂﬁfware to the 'f:e:ﬁ;,

One of the best ways to see if software is
well-designed is to try and CHANGE it.

Il vour software is hard to change, there's

probably something you can improve about the

design. Let’s see how hard it is 1o add a couple

of new instruments to Rick’s app:

we'll have to thamge |memtary

anain and add support For tIhEL

'Fui-l'r nEw :Insbf'umf_hlt. ‘t‘f?!i Net { ‘\ﬁ‘ct
s el inshrument T

/ a ?H:asa“h o i:n!- ?;u'l' mEw tlasses, ont Eﬂ"’

Iembary

e gath instrument LYPE

" ; Banjo ;
: |: Gurar [7]
seiwchi Mandoin Spec | Mardolin]
ek | W
besinanant
seicaMlorrine Sling
s deubls e
E T r— ‘ﬁ:j
gePnioe| - doutie — —
wetfriceilon
e Imennen S

hl]:\'ﬂlﬂlg,:ﬂ
modsi Sty k- BanjoSpec
g uwde | Busdes (& 5 -
sy numstrings: int S Wk need four new
MandeinBps: | qatiug DobroSpec - ‘:i Dbjtc-f:, 1o,
male €dth one adding
J?:i::;ln‘jl-ﬂt:-e-'éiw' baxile] Eﬂﬂﬂspﬁﬂ f““ "1:75 oWR 5{{ O'F
- inﬁ'll:rum:hf;_swﬂifif_
. FiddleSpec propertics.
— oSt ::I::: ESEmy) .:I:I:: mat{: ﬁﬂish: String

getFinish(): Style

matches FiddieSpec): boolean

you are here » 217

change is hard

Uh oh... adding new instruments is not easy!

If ease of change s how we determine if oar sofbware 1s

'n'r'"-(]t'.\ii'q!'h'{l, [ht'l"l 1.1-1"".1: w01 seame :I'I;":I] i.:i}il,ll'.*i hl:]'r. i'-.'l.':'f:.'

time we need to add a new instrument, we have to add

another subdass of Instrument:

Instrument

serialNumber: Sfring
price: doubls
spec: InstrumentSpec

getSerialMumber(): String
getPrice(); double
setPrice(float)

getSpect): InstrumentSpec

Then, we necd a new subelass of
InstrumentSpec, o,

When you bhink abeut how mardy

insb'wchks Kk teuld end up
s;'l]irua, a tlass For eath instrument.

-t_'\!r?: 5 a lit:tle stavy

InstrumentSpec

BanjoSpec

madel; String

numStrings: int

I-"u'i:'re s{arimﬂ fp havc

getBuilder(); Builder

getMadel(): String

getType(): Type

getBackWood(): Wood
getTopWood{): Wood
matches(InstrumentSpec): boclean

Then things start to really get nasty when vou
have o update the Inventory class's methods 1o
support the new instrument type:

Inventory

inventory: Instrument [*]

addinstrument(String, double, InstrumentSpac)
get(String): Instrument

search|{GuitarSpec). Guitar [7]
search{MandolinSpec): Mandolin [*]
search|BanjoSpec): Banjo [*]

218 Chapter 5 (part 1)

getNumStrings(): int
matches(BanjoSpec): boolean

-

SOme dupli:a-[;.; tode heve..,
bal-‘.jas have 3 hunus{'_k‘lhﬁi
'F&:d‘Pe-rf}' Jikq Hm{a'ﬁ; b'u'f:
it's not 3 Eommon enough
Property o move ints Lhe
Instrument supere|ass.

/—_ For d 'r":'F"'f-‘-"ltr o I
problems with add/nste,

i ment()
Rtthbtr E“ that ”IF b&t‘.k ts 'P.aﬁg 111 Entl),
m?binuo; ard if/else shubf
in addhﬁjﬁ'untﬁjc.”? It
gets worse with every new

inshrument. type we SUWWL

The seareh() situation is 3:H;|hﬁ
more annaying with every new
instrument '«’:*I(Pc We need 3 new
version that deals with l:ran_}-us e,

good design = flexible software

So what are we supposed to do now?

It lonks like we've definitely soll got some work to do to turn
Rick's application into great software that'’s truly easy to change
and extend. But that doesn’t mean the work you've done isn't

important.,. lots of times, vou've got o improve vour design

to find some problems that weren't so apparent earlier

on. Now that we've applied some of our OO

e '|||'i]!n'i|':-]1'.\: to Rick™s search tool, we've been

ahle to locate some issues that we're going

to have to resolve i we don’t want to spend
the nest few WEATS H:I"ili]]:i_': new Banjo and Fiddle
classes (and who really wants o do that?).
Betore you're ready to really tackle the next phase of
Fack’s app, though, there are a few things you need o
know about, 5o, without further ado, let’s take a quick
break from Rick’s software, and wne in ...

Al BATABTAAPLIE!

Objectville's Favorite Quiz Show

i BATABTANPIE

Objectville's Favorite Quiz Show

~
Risk Famous Code Maintenance Software
Avoidance P Designers Constructs and Reuse Neuroses
F e [R N
pu 4 Y < =
G ‘47’ e B
Hella, and welcome to 00 CATASTROPHE,
I:IJECf"."I“ES favorite quiz show. We've got qun‘e.
an array of OO answers tonight, T hope you've
g come ready to ask the right questions. g\ o
Pl _ &8 P >
Yo Yo Y- ™
A '\ A _J

the

A: It might not seem like it, but we are working on Rick's
saarch tool, in a manner of speaking. We're geing to need some
pretty advanced OO technigques to make his application flexible and
reusable, and we wanted to give you a chance 1o get a handle on
these principles before you had fo start applying them fo a pratty
complicated problem.

Qﬁ: Why are we playing a game show? Shouldn't we be fixing
Rick's search tool?

222 00 CATASTROPHE!

We've got some great OO0 categories
today, so let's get started. Remember,
T'll read of f an answer, and it's your job fo

come up with the question that matches the
answer. Good luck!

10

fire
Dumb Answers

A: The questions that match up with the answers in this chapter
aren't easy, but you should be able o reason them all out. Take

your time; it's imporant that you come up wilh these questions on
your own if at all possible, and only then turn the page to get a little
mare information on each question and the OO principle it involves,
Besides, we think you're getting to be a pretly kick-ass developer, so
we have lots of confidence in you.

. [fthese ara new OO principles, how am | supposed to
figure out what the questions are? That's asking a lot, isn't it?

Al BATABTANBIE!

Objectville's Favorite Quiz Show

dual role of defini
that applies

F_-_ Wiite what You think

the Question is For the

“What is 1" ==

answers and questions » 223

Abhlete defines 3 — Athlete
elayll method that
all Lhese tlasses

mpltmzn{ I SPov 4:—'

Did o
fou et this? y
/-ﬂﬁktd his 2tk “lll':“:;hnmd have
K 1“5 Thon

SnSWEr on page 273

“What is an INTERFACE?”

Suppose you've got an application that has an interface, and then lots

of M.Ih('iil.‘cit'?i 1|'|:LI inherit common behiavior from l|'|:11 interface:

<<ipterface>> :
This i hews

dn In’{ﬂ'-r-aﬁc in WA

the {qi"{‘-’"’pﬂu!gm.
dngd if._rl_l

getSport): String
play()

s?ﬁ:.lL L wdis :\q‘ ‘\-i

BasghallPlaver | | Footballayer l

eeEeonn] HockeyPlayer| [gatsporj-ciua
getSport() l plasd) BasketballPlayer

TennisP getSport(): String
gelSport(): Strin playl)
playi)

.'\.t‘l'!."l'it‘l"ll" '!|l||_]\|'i' Wy I'i‘ing l:".?fl'!' [tl'ﬁ” i|1[f'l'i1i'[.‘i 'L'-'ilh lhl'hl' l:']il.h'il:.'!‘i., I'_\'IH,I]'Iil.\'l'
two choices, You can write code that interacts directly with a subclass,
like FootballPlayer, or yvou can write code that interacts with the
interface, Athlete, When vou run into a choice like this, vou should
aliways favor coding to the interface, not the implementation.

<<interface>>
Athlete

getSport): Siring
play()

addPlayer(?77)

=
| — BaseballPlayer
This methad take?

Why is this so important? Because it adds flexibility 1o vour app,
Instead of your code being able w work with only one specific
subclass—Ilike BaseballPlayer—vou're able to work with
the more generic Athleta. That means that vour code will
work with any subclass of Athelete, like HockeyPlayer or
TennisPlayer, and even subclasses that haven't even been
designed vet (anyone for CricketPlayer?).

224 00 CATASTROPHE!

You rfP‘ﬁfitnf

for the

Co:[ing to an
interface, rather
than to an
imPlEmEHtatiOH,
makes your
software easier
1o extend.

By coding to

an interface,
your code will
work with all of
the interface’s
subclasses—even
ones that

haven't been
created yet.

Maintenance

. and

“What is ?”

answers and questions » s2e

“What is ENCAPSULATION?”

Weve talked a fair bit about encapsulation already; in terms of
preventing duplicate code. But there’s more to encapsulation than
Just avoiding lots of copy-and-paste. Encapsulation also helps vou
protect your classes from unnecessary changes.

Anytime vou have behavior in an application that vou think is likely
oy change, vou want to move that hehavior away from parts of your
application that probably wen’t change very frequently. In other
words, vou should abvays uv to encapsulate what varies.

Here's a very

Gimple class that

does Lhree things: —
?"?a!’ti a meEw

Eaggll f.k:ihi

brushes, and

painks 3 ptkure

P'I'E'Pﬂ'rihﬂ an e23ze| and
ﬂcimna brushes ave
90ing to stay pretty

-“"dl" 'H'IE' SaFnge

Painter

prepareEasel()
cleanBrushes()
paint()

Bt what about ?a-m'l’_ing? The :E,&fh: of
painting varies. the way the bruﬂ?cs are
wsed varies.. even the speed at which
?a.'m{;ing séfure vavies. So here's where all
Lhe thange tould happen in Famter.

It looks like Painter has two methods that are pretty stable, but
that paint () method is going to vary a lot in its implementation.
So let's encapsulate what varies, and move the implementation of
how a painter paints out of the Painter class,

FaintStyle represents Lhe
varfing paint behaviers,

We've Painter 2> PaintStyle
entapsulated etStyle(): Sti
: prepareEasel() g g
_th :
:;1_1:: E:h:m:rr cleanBrushes() paint{) _
out of the

setPaintStyle(PaintStyle)
Painter elass- 7

EwraaIP}mtSiyia l

o an intey Bate here h"E paint()
an imPlementation e

paintj)

| cubistPaintStyle
paint(}

Now the variante is
Lucked away imto all

of these PamtStyle

226 0O CATASTROPHE! implementation tlasses

Maintenance

“What is 7”

answers and questions » 227

“What is CHANGE?”

You already know that the one constant in software is
CHANGE. Software that isn’t well-designed falls apart at the

first sign of change, but great software can change easily.

The easiest way to make vour software resilient to change is
to tmake sure each class has only one reason to change.
In other words, you're minimizing the chances that a clas is
going to have to change by reducing the number of things in
that class that can cause it to change,

Take a lock at the
methods in this lass
They deal with starting
and !‘{:ﬂ??\na. how Lires

are thanged, how 3

st dien: B 49 Automobile

waching the tar, and Ve | start() == There are LOTS of 4

¢hecking and thangind—> |stop|) Lould tause this ¢l3e t::f: et

Lhe oil “~—= | changeTires(Tire [*)) ¥ 2 meehanic eha i

. h ki. X J'IHES I'I-uw ht

drwa.” thetks Lhe oil, ar if 3 dviver
wash() drives the par diF;&Eh{]‘:ll' or
checkOil) ven if 3 ear wash is uparaded
getQil(): int this eode will need fo thange. J

When vou see a class that has more than one reason to
change, it is probably trying to do too many things. Sce
il vou can break up the functionality into multiple classes,

where each individual class does only one thing

and
therefore has only ome reason 1o change,

Driver and CavWash
: 4 eath do just
ONE thing, 5o they won't haiﬁ

Automobile o change nearly as often

Vou tould probably
sa() o o ek o
stop() CarWash I \l i e
getOil(): int wash(Automolgi=: vanted, and sepavate
‘?' Driver b the funetionality of

Mechanic

checkOiliAutomaobile)
changeTires(Automobile, Tire [*]

f‘lu‘l:pma'billt 5-?‘1: a ﬁT snfa?lg-r.
I+ handles skartimg, stoppint, and
re'?-:!rfmg on its il a{:l:ﬂ'hu{,:-r
Muth rove resilient to thange

a Metharnit inte two
behavior classes.

drive(Automobile)

228 00 CATASTROPHE!

You've been doing pretty well, but
now it's time for FINAL CATASTROPHE.
Below is the class diagram for an application that's
not very flexible. To show that you really can avoid an
00 catastrophe, you need to write down how you'd
change this design. You'll need to use all the principles
we've been talking about, so take your time, and
good fuck!

DessertCounter

arderCone(lceCream[*], Toppang[*]): Cone
arderSundaeylcaCraam(*], Topping[], Syrup[*)): Sendas
add Topping(Cone, Toppeng): Cong

Sundae
iceCream: loeCream [*]
syrups: Syrup [
toppings: Topping [°]

Cone

iceCream:; lceCream [*]
toppings: Topping [*]
addScoop lceCraam)

addiceCream|icaCream) addTopping(Topping)
addSyrupiSyrup) servad)
add Topping{Topping)

SRMVE])

Topping leeCream
description: Siring taste: Shng
gatDescription(): String el Taste(: Shing
serve() sarve()

Syrup
ingradiants: String [*]

getingredients(); String [*]
garvel)

[/ :p'l;ipped!:renm
/ Nuts

Cherries

vanila |\ \ |

'l:humla‘te\
s

MintChocolateChip

HotFudge

Caramel

answers ana gquestions » 229

“HATARTAAPIIEY

Desseyr tCounter is tudihg to ..ﬂ.nsw ers

; : :
."'-.F[ﬂ:i!hfﬂfw of the Desserd
Intertace. We Ean reduse these 4
A n‘fJ- : Che Twao
theds {5 ong! order)

1 Essertl
and thep retu T

i the inttf‘[‘:iﬁ!, Descerd

DessertCounter

orderCone(lceCream[*]. Toppingl’]): Cone
orderSundae(lceCream(*], Topping[*], Syrup[*]): Sundae
addTopping{Cone, Topping): Cona

addTopping{Sundae, Topping): Sundas

Sundas Cone
Dessert Counter has move than iceCream: lcaCream [*] iceCream: lceCream [7]
one reasen {o .-.b-.anﬁe_ if the syrups: Syrup [*] toppings: Topping []
'.der'ﬂ Process thanges, or if how Syfrup is an toppings: Topping [addScoop(lceCream)
the Cone and Sundae ¢lass adds implementation of addlceCream(lceCream) addTopping(Topping)
Topfings ¢hanges. r"llld.dlr.ﬁ a topping Topping.. we veally addSyrup(Syrup) serval)
should be dene to £he Desserd z dont meed 3 method ~—y addTopping(Tapping)
tlasses directly, not heve speeitically to add a serve()

Topping. That's toding
5 an implementation

e

There ave a LOT of servel)

) floa d. We should
|rnl|=|'.:m:1-.{'a{'.lm-.5 Hlaating aroun
try and :».r.a?sulai:.e what varies, and put
all the sevving code in one Flate TI'IEI'._I wafy
if the sevving protess Changes, We don t
! need to charge ALL these tlasses
therey gre no

+ You've seen several times already that when you see a So you're encapsulating what might vary—the code in the
potential for duplicate code, you should lock ta encapsulate. In this serve () mathod—and you're making sure that each class has
case, it's reasonable to assume that serving 8 Sundae probably only a single reason ta change, That's a double win!
isn't that different from semving a Cone.

So you could create a new class, called DassertService, Q, How did you know to encapsulate the serve{) methods
and put the serve () method in that class. Then, all of your out of all those different classes? | missed that.

Dessert, IceCream and Topping classes could simply refer

lu DessertService.serve (). |f serve () changes, you've

got to update code in only one place: DessertService.

230 00 CATASTROPHE!

Topping and leeCregm
both have 3 seyvel)

Pﬂfﬁhnd, and seem 1o be Netavan
pr c-l-.'E}l Similar.. Mm:,rhe —_— taste: String

we Lan abstraet out stal) ST
; Common properties and getlaste(): String
Maﬂz n-[-'rﬂ:ﬂtrz_:nmﬂﬁﬂ —//" treate g base £lazs? serve()
|EI {. attin
a:i""i::erhzs leads Yoo 2
entapsiation
Topping Vanilla "Il \ I
description: String Chocolate
getDeseription(): String Peppermint
/ ey MintChocolateChip
/ %ipp&dﬂmam Syrup
Mt ingredients: String [*]
. getingredients(): String [7]
Cherries serve()

servel)

231

answers and guestions »

back to rick’s search tool

It's been great having you as
a contestant, and we'd love to have
you back next week, but we just received
an urgent call from a "Rick"? Something
about getting back to work on his
search tool?

You're ready to tackle
Rick’s inflexible code now

With a few new 00 tools and technigues
under yvour belt, you're definitely ready wo
o back o Rick's software, and make it a
lot more flexible, By the ime vou're done,
yvou'll have used everything vou've just
learned on 00 Catastrophe. and made it
CIARY L0 L'E'l'.'lt'l;_{r Rick’s :|.|rp|il.';u]nr'|, LOnCe,

00 Printiples

Entapsulate what varies.

Code 1o an interfate vather than o an
implementation.

Each elass in Your a‘rﬂiﬂﬂoh should have r.mhr
one veason to thange.

.‘i

These thiree Pring
HUGE!
we'll be

iples are

Take not r
e of them, 35

¢ using them 3 ok in the
UFComing chapfeps

232 00 CATS

|
I
]

STROPHE!

5(part2) good design = flexible software

Give Your Software a
30-minute Workout

And stretch.. 2..3... 4.

Ever wished you were just a bit more flexible?

When you run into problems making changes to your application, it
probably means that your software needs to be more flexible and
resilient. To help stretch your application out, you're going to do some
analysis, a whole lot of design, and learn how OO principles can really
loosen up your application. And for the grand finale, you'll see how
higher cohesion can really help your coupling. Sound interesting? Turn

the page, and let's get back to fixing that inflexible application.

this is (sort of) a new chapter 233

problems with rick’s search fool

Back to Rick’s search tool

Loaded up with some new OO principles, we're ready to tackle making
Rick’s .'Lplj]i::'ulim'l h't'"-u:’]i'.\iigl'u'fl and flexible. Here's whete we left off,
and some of the problems we've discovered:

addinsbrument()
eath I p— o
add a new [nebrumen
got. to change tode here

Inventory

addInstrument(String, double, InstrumentSpec)
get(String): Instrument

search(GuitarSpec): Guitar [7]
search(MandolinSpec): Mandolin [*]

inventory | *

Instrument

has tode -'f"':.'g.""’ to
so every Lime we
sulbelass, we ve

There's a seaveh() method Lo eath and
every [nstrument subelass Not o food

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Guitar Mandolin

Ny

These have nothing but a
tonsbruttor, so they're 3 veal
pain.. and we have Lo add one For
EVEYY hEW '|r.5£'rumtnf ‘tw-

234 Chapter 5 (part 2)

good design = flexible soffware

This tlass seems 0¥ erlept that lF. we
add a new inshrument with anF:'rl!n‘L
properties, we're oing ko have o thange

Lhis tode, too 1

InstrumentSpec

Builder
toString(); String

builder

Type

model: String Hting: iting
getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Wood
toString(): String

GuitarSpec
numstrings: int

MandolinSpec

styla

getStyle(): Style
matches(MandolinSpec): boolean

getNumStrings(): int

matches(GuitarSpec): boolean Style

toString(): String

Just. like with Instrument, every

new LYPE results in 3 new subelass
of fhs{:rum-:r.{ﬁfg.:.

you are here » 2356

axamining the search{) method

Fhi nk

2386

Chapter 5 (part 2)

application, and there's just got to
be a better way to deal with this

Guys, I've been looking over
this class diagram for Rick's

search() method thing.

Frank: Yeah, it's a pain, but [don’t see any way o get around
i‘. Elll-l' hi,l,'\'l.' [EN .Ii'[I{‘H'k..‘\ I:,E-ll,'n s ﬁl‘i‘l!"']‘l ﬁ 1 f';H'h ‘]i"i‘i'l'l"l‘ll l".l]'_'
of instrument somehow.

Jim:] Hi_-lll 'Il.l “'l-i bl '\.'l'h'!.' Wy {'i,l,l'lll !'Ii_!"-.'l' -Iu.‘il e 'ﬂ,'j'l_l'l'h:)
method that takes in an Inscromentspec, Wouldn't chat cut
down on all those different versions of scarch()?

Jl:n::: Well, it u'ui,lh]_, bur we sall don't have ANy way
return muldple types of msoruments. I the client provides
a GuitarSpec, its never going to match a BanjoSpec or
Mandolinspec, 5o the list recurned from search(] will alwavs
have only the type of inscrument that the client’s spec is for,

Jim: Because we can't instantiate Instrumentspec, right? 1t's
an ahstract class, o we have to create a MandolinSpec, or a
BanjoSpec, or whatever

Franl: 50 mavbe that's the problem... besides, shouldn’t
we be coding to an interface like InstrumengSpec, not an
implementaton like GuitarSpec or BanjoSpec?

Joe: Hmmm. | hadn’t thought abour chae, bue you're right;

we really should be focusing on the interface, and noc all those
implementaton classes,

good design = flexible software

A closer look at the search() method

It seems pretty clear that there's a problem with the way we're handling
searches for Rick’s clients. We could make InstromentSpec a
concrete class, but would that solve all our problems?

D

search (FiddleSpec)

R]ﬁ'hjl; o, WE ::T: gath
Inventory.java st mE ok w
ry.ll 'l.r.‘-t\'urﬁf""*- t\ﬁ't “1:,5-?&
tan make {nstrumer .
o= 'b‘a't.'l'af-t 4 \
This version of lrventory . _ l (In&humuntﬂp;%
veauires loks of thanges [mshrumentSpee is no (ond<7 madel; String
For every new insbrument o vhalies. That means : -
9 ke sells.. H's mot an abstract tlass getBuilder(). Builder
Ly arhfmore. and Hhere's Qeuﬁﬂd?;{]}Ehi"Q
wbut. this version of . d to thanae |QetType(): Type
In i f#““mmm. getBackWood(): Wood
""*""Tr with enly a Lhe spet sub
single searth() method, is " ! getTopWood(): Wood
ek sasles b ihia matches(InstrumeniSpec): boolean
SIEY H&f-

New we ean let Riek's élients

pass in an [nstrumentSpee 4o
the seareh() method

{ search(InstrumentSpec) Qﬂ_)

Inventory.java

you are here » 237

moving to a non-abstract instrumentSpec

The benefits of our analysis Inventory
inventary: Instrument [*]
addinstrument(String, double, InstrumentSpec)
get(Siring): Instrument
search(instrumentSpec): Instrument [*]
S

Heve's the big thange

Let's take what we've figured out about turning
InstrumentSpec intoa concrete class, and see i it makes
the design of Inventory any better.

public class Inventory |

. - that this page highlights. Inventery java
private List inventory:
public Inventory({) { We still have some
inventory = new LinkedLiat(); jssues heve. this
! mtthﬂd 5’5{-5
h]ﬁ&ﬂ' and more
public woid addInstrument(3tring serialMumber, double price, gmfl’lt.ah.d every
InstrumentSpec spec) | Lime we add 3 new
Instrument instrument = null; &'/f {Wn;-m,{rum:n{...
if {(spec instancecf GuitarSpec) |

} else if (spec instanceof MandelinSpec) |
instrument = new Mandolin(serialWumber, price, ({(MandolinSpec)spec):
——————

} K_/_
inventory,add (instrumsent) ; ~and we're todi

instrument = new Guitari{serialNumber, price, (GuitarSpec)spec);)

to the impl
!ri:;g l'l-ﬂ ki 2 f"‘fhﬁﬂﬁ
} 5 mot the ety L
h Ument base £lass.
public Instrument get (String serialMNumber) |
for (Iterator i = inventory.iterator(); i.hasNext(}; }
Instrument instrument = (Instrument)i.next{);

if {instrument.getSerialWNumber(}.egquals(seriallumber}} |
return instrument;

] seavchl) js looking much bettor!
return nullj QHJ? one version, ﬂﬁ{gk y
] /’J— an Jhﬂﬁrument';pﬂ, mow =
public List search (InstrumentSpec searchSpec) |
List matchingInstruments = new LinkedList();
for (Iterator i = inventory.iterator(}; i.hasWexti}; } |
Instrument instrument = (Instrament)i.next{);
if (instrument.getSpec() .matches (searchipec))
matchingInstruments.add (instrument) ;

We've toding to the Instrument base type now,

: - rot the il‘n?lthth‘l;ﬂ‘tlﬂh tlasses like Guitar and
ST makehingne e Mandolin. This is 3 muth better design

C On top of better design, now seaveh()
tan return all instruments that mateh,

even if that list contains different
'['.‘ﬂ’t!- E-F Ihﬂ:hmtn{:s, like +we ﬁui{an

and one wandslin.

238 Chapter 5 (part 2)

good design = flexible software

your pencll
One of these things is not like the other... PEH
oris it?

The search{) method isn't the only thing that makes adding new
instruments to Rick's application difficult. You also have to add a new
subclass of Instrument for each new instrument type. But why? Let's do a
litthe more analysis,

Why is there a need for an Instrument class in Rick's application?

What things are commoen to all instruments?

What things are different between instruments?

If you have any ideas for how you might change Rick's application so that
you don't need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it's up to you to decide how you can improve Rick's design.

Instrument

sefalNumbar Stirg

e doukis

spat InstrumantSpec
galSeialbumben). Sinng
getPrical); double
SEtPCeoa)

QulSpas]). Irsnmentspec

you are here » 239

resistance to change

One of these things is not like the other... "8 WJF PH'lCll
orisit? W, ANSWers

The search{) method isn't the only thing that makes adding new
instruments fo Rick's application difficult. You also have to add a new
subclazs of Instrument for each new instrument type. But why? Let'= do a
little more analysis.

Why is there a need for an Instrument class in Rick's application?
Most ingtruments have at least a few common properties, like serial
(———$> wumber and price. lnstrument stores the common properties, and then

You didn't need to each specific instrument type can extend from Instrument.
wrike dewn exactly

e s bl-.t Ly What things are common to all instruments?
should be q:.'hlnklhli a]unﬁ

s vk Thien Were The serial number the price, and some set of specifications
the same lines v
S (even though the details of those spees may be different
for different instrument types).

What things are different between instruments?
The specifications: each type of instrument has a different set of

properties that it cam contain. And since each instrument has a
different lnstrumentSpec, each has a different construetor.

If you have any ideas for how you might change Rick's application so that
you don't need all the instrument-specific subclasses, mark those changes
on the class diagram below. Feel free to add or remove classes and
properties; it's up to you how you can improve Rick's design.

Instrivment
samialkumbar Sinng
PG doubik
spat: InstumentSpec
galSerialMumbar). String
getPrical): double
setPncedfioat)
gulSpacl). InskrumentSpec

240 Chapter 5 (part 2)

good design = flexible software

A closer look at the
instrument classes

Even though search () i looking beter, there are sall some
real problems with all the instrument subclasses, and the
addInstrument ()} method in Inventory.

Remember, we originally made Instrument abstract because
each mstrument type was represented by its own subelass:

Insfrument
"E-—-—-..,_\

b elass Lakes

serialNumber: String The |nsbrumer
price; double save of all bhe Lommon L
spac: InstrumentSpac ?mw.b:g an nstrument:
getSerialMumber(): String Es :
getPrice(): double ch instrument subelass just adds
setPrice(float) 3 tonstructor spetific 1o that
getSpec(): InstrumentSpec instrument type's spee ¢lass.
publliec class Mandelin extends Instrument |
publig Mandclin{String seriallumber, double price,
public class Guitar extepds Instrument | b
Banﬂn ic Guitar{String riallNumber, double price,

GuitarSpac spech |

per {serialWumber, price, spec);

Mandolin java

Fiddle

But classes are really about behavior!

But the reason yvou usually create a subclass is because the
behavior of the subclass is different than the superclass. In Rick'’s
application, is the behavior of 2 Guitar different than that of an
Instrument! Does it function differently in his application than a
Mandolin or Banjo!

you are here » 241

behavior or properties?

Guitar and Mandalin and
the other instruments don't
have different behavior. But they have
different properties... so we have to
have subclasses for each instrument,
right?

it WETE wn‘bhﬁ a !-‘fs-‘hﬁ""
All the instruments—at least from Rick’s Ijha{ vepresented how {'Ih.ﬂeh eed
perspective—behave the same. So thar leaves inebvuments played, we """a!lh F'Rt
only two reasons o have subclasses for each wbtlasses to handle 'neh.a:;df L
instrument type: phatk0) sbruml), or feaill}

l. Because the Instrument class represents
a concept, and not an actual ohject, it really

) \.. should be abstract. 3o we have to have
' subclasses [or each nstrument tvpe,

N od 00 printiple i I"._'ru_'h different Lype of in.n-mum-m hm
This is 3 309 B dilterent properties, and uses a different
but it sure "S{iau“ -Elht subiclass of InstrumentSpec, so we need ==— This looks like ,im‘tht,v
i) ’1'.1 e batk an instrument-specific constructor for each tase wheve we're toding
shtlasses lﬂ!’E 7 ent type of instrument. to an implementation
ha H‘!IS gne in 3 o) imetead u-F an]r.tt'r“‘l:ﬂﬂﬂ
These seem like pretty good reasons [well, at o this isn't @ good
least the first one does), but we're ending up veaion to keep
with lots of extra classes that don’t do much... |nsbrument abstract.

and that makes our software inflexible and
difficult to change. So what do we do?

Remember the second step in

Cinte Ritk's a??m writing great software, from
irﬁd: ":’:"d: back in Chapter 1:
Vo mEEds

(Ghep |, we've

o H.h an LT
veady to bry and A l l) 00 thop ap e thie
iz Apply basie 00 <— o

rlz'ﬂhlﬂ-- " s 'NEJ!,-{-
mirE)
= "wding in Rigk', app?

Principles to

add He:ii]ail.ity.

242 Chapter 5 (part 2)

good design = flexible soffware

your penci

Object-Oriented Principles to the rescue!

There's definitely a problem with Rick's app, but we're not sure what it is. When you
don't know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design,

For each principle, check the box if you think it could help us out. Then, if you checked
the hax for a principle, it's up to you to write down how you could use that principle to
improve Rick's search tool design.

D Inheritance

D Polymorphism

D Abstraction

D Encapsulation

——— See what we thought on the next page.

you are here » 243

sharpen solutions

aoharpen your pencil

&

g/ Inheritance

Q/ Polymorphism

d Abstraction

d Encapsulation

TN, answers

Object-Oriented Principles to the rescue!

There's definitely a problem with Rick’s app, but we're not sure what it is. When you
dom't know what to do to solve a design problem, just run through the OO principles
you know, and see if any of them might help improve your software’s design.

We're using inheritance already with the Instrument and InstrumentSpec
elasses, and their subclasses. But it does seem like the instrument-speeific

subelasses dont actually do anything but inherit from Instrument... they just
have slightly different construetors.

We use polymworphism in the searchl) method to treat all instruments as
instances of Instrument instead of worrying about whether they're a Guitar
or a Mandolin. So searching is a lot easier... but it would be nice to be able to
use this in addinstrument(), too, and cut down on some repetitive code.

IngtrumentSpec abstrae e de hout each en cificatio
away from the Instrument class itself, so that we can add new instrument
properties without affeeting the basic Instrument elass.

We're using encapsulation a lot, but maybe we can use it even wmore...
remember, encapsulate what varies! Since the properties in each instrument
type are what varies, can we somehow encapsulate those properties away
from Instrument and InstrumentSpec completely?

244 Chapter 5 (part 2)

[netrument
isnt in italies
a-n*]lmnrt:- .|{'-I5 a
tontrete tlass

.

good design = flexible software

Guys, we've been using
inheritance, polymorphism, and
abstraction in this design. But I'm beginning
ta think the key is encapsulation. Remember
what we learned about separating what

changes from what stays the same?

Joe: Yeuh, vou're wlking about encapsulating what varies, rghe’

Frank: Exactly! And we know that the properdes for each
instrument are what varies in the application.

Jimi: [thought we'd been over this: that's why we have all those
subclasses of Instrument, like Guitar and Mandolin. 50 we can
represent the differences between each instrument,

Frank: But that veally didn’t help.., and besides, the Sefiaeior of each
mstrument doesn’t vary, so do we really need subclasses for each
one?

Joe: So vou're saving we would make Instrument a concrete class,
instead of being abstract, dght? And then we can get rid of all those
instrument-specific subclasses,

Jim: But... I'm wtally confused, What about the properdes that
vy across each instrument?

Frank: What about them? The Instrument class has a reference o
an InstrumentSpec, and all the property differences can be handled
by those classes. Look:

We made |n5tTum{ntS'F€r.‘-
nnh-rabstrat:l_'.. too

g Jdéu&ﬂ}' d*rcad}" ha
£ Pr ve
L G.Pf'l"tl
Ty for &5 Entapsy]af d
;PP'r‘;-I:ﬂfnm
ke iy, -

3 ddvand g,

d:.ﬂan dﬂ-lilgh of
GuitarSpec

numStrings: int

setPrice(float)

There's really no reasan to hava

o
TIPELITIE subglasses T he
add {.'Om?'txi{}' to our appl

InNSErumen

Just

Instrument InstrumentSpec
serialNumber. String spec | builder: Buiider
prica; double model: String
getSerialNumber{): String T [type: Type

getPrica{}; double

getSpec|): InstrumentSpeac

backWood: Wood

gethumStrings(): int
matches|GuitarSpec): boolean

topWood: Wood

MandolinSpec

getBuilder(): Builder
getModel(}; String

getTypel): Type

getBackWood(): Wood
getTopWoad(): Waod

matchesi InstrumentSpec): boolean

itation,

gatStylal): Style
matehes(MandolinSpec): boolean

you are here »

245

letting bad design die

Peath of a design (decision)

One of the hardest things yvou will ever do s to let

@0 ol mistakes viou made .'-.li'l:l'u.lar L rfrl.{,_r-‘lﬂ.t, In Rick’s
search tool, it doesn’t make sense to have separate
Instrument subclasses tor cach ope of insorument.
But it took us almost 30 pages [and 2 parts of Chapter
3) to fgure that out. Why?

Because it seemed to make sense at the

time, and it's HARD to change something
you thought was already working!

~

: Code once, look twice (or more!)

A\ Keep looking over your designs when

you run into problems. A decision

you made earlier may be what's
causing you headaches now.

It's easy o rip apart someone else’s code, but vou've

zot to learn to look at your own code, and identify
problems, This is also where peer review, having fiellow
programmers look at your code, can really be a lifesaver,

Don’t worry i you have to make changes; a beter-
designed applicaton will save vou tons of tme in the

lomg run., 7

Design is jterative... and you have to be : o
willing to change your own designs, as Let's kill our bad design :.kﬂ-sb:]ﬂ
well as those that you inherit from other eveate -.,._‘,trmen{rs?mﬁm su {:sm
programmers. onte and For all, and get on Wi

writing great software again.

Pride kills good design

Never be afraid to examine
your own design decisions,
and improve on them, even if
it means backtracking.

2486 Chapter 5 (part 2)

good design = flexible software

Let’s turn some bad design
decisions info good ones

We
Let's kil all those instrument-speciiic subclasses: de,;t:fd:;t::f t of e
need 5
' N 5 {;,r. “}" hEw
|nsbrument st M = detides £ ,::f_?m& that Riek
abstract anymore. S i selling/
. InsErumert N{ . .-]_
sanahumber: Sirng
price; dowbha
s InstumentSpes —
getSanaMumber(): Siring —
£Fri doubl m:
g:m:;:rﬁw:-) S i
QedBpec(). InslumenlSpas
We also probably need a new property in each
instrument to let us kinow what tvpe of instrument it is;
instrumentType
Instrument] InstrumentType = We ean Pt values | e)
bt | da— -
serialNumber: String toString(): String QITHR BANJo, m e
price: double and zo on. Much b ﬁHDﬂLm
: h
spec: InstrumentSpec ?’ a buneh of sube Ia.::i ter than

getSerialNumber); String

' ated
getPrice(): double This tan be ancther enumer

setPrice(float) dype, like Wood and Bui tl:r L :Lw
getSpec(): InstrumentSpec adding a new insbrumen tye
means adding 3 new value 4o this

enumevated type

This is a huge improvement... but
it still seems like adding a new spec
class for every instrument type is
pretty inflexible.

-
ko

you are here » 247

encapsulate what varies

One wore cubicle conversation
(and sowme help from Jill)

I hate to butt in, but I've
been thinking about something

you said earlier, Joe: Encapsulate
what varies.

Joe: Bur we just did that... we made Instrument concrete, and
ot Tid of all the instrument-specific subclasses,

Jil: Actually, 1 think thad’s really ondy the Grst step What
really varies in Rick’s software?

What varies in Rick’s app? Write what
- ‘fou think

-— VEAES i

" these blaks

t Fr = We've gone through this already: the properties for
Jill's been listening i &n ank

bhe thapter, and has
somé ideas on how to

each instrument are what vary.
Jill: S0 can we encapsulate them somehow?

improve Ritk's app Joe: We already have: we used the InstrumentSpee class for
that,

Frank: Wait a second. Joe. We used InstrumentSpec because
those properties were used by both clients and instruments. So
that was more about duplicate code, ..

Jill: Yes! That's my point.. the proeprties inside
InstrumentSpec vary, too, So mavhe we need to add il
layer of encapsulaton.

Joe: So since the properties of each instrument vary, we
should pull those out of InstrumentSpec? I0s almost like
double-encapsulaton or something

Jill: Sorc of.. we encapsulate the specifications common
across client requests and instruments from the Instrument
class, and then we encapsulace the properties thac vary from
the InstrumentSpec class,

248 Chapter 5 (part 2)

good design = flexible softwara

L//}\

“Pouble encapsulation” in Rick’s software 7, ... oouip tem ot
be surprised if your professor looks at you

Let's ook at the laver ol encapsulation we already fumy if you use ik in tlass

have, and then see how we can add a little more
encapsulation o get those properties that vary out of the
InstrumentSpec class.

We vealized in Chapter | +hat tliewts
L/:r-_-‘ and instruments beth needed to wse
these properties, so we ereated Lhe

Instrument InstrumentSpec |n5{'rhmfn‘|;5?ft_ tlass 4o abstract them
EB_FIEIINUTI'IbEE String builder: Builder away from Ehe Insbrument ¢lass
price; double model: String

type: Type
backWood: Wood
fopWood: Wood

getBuilder(): Builder

getModel(); String

getType(): Type

getBackWood(): Wood
getTopWood(); Wood
matches(InstrumentSpec): boolean

get3erialNumber(): String
getPrice(}: double
setPrice(float)

getSpec() InstrumentSpec

The wroblem is Ehat these
propertics vary abross
inchruments, and 5o were
having to 3dd 3 subtlass for
eath t'\II'P{ of Hr.i‘i;rumcnl;

Since some of these properties vary, we want 1o move B | .
them out of the InstrumentSpec class, We need a way y EI'lCaPSII tlﬂg

to refer to properties and their values, but not have those

properties hardeoded ino the InstrumentSpec class, wlla‘l' Vﬂi‘ies’

Any ideas for how we could do thar?

What typels) do you think you could use to y Ou make y Our’

represent properties and access their values, . .
but not have to change your InstrumentSpec HPPl.lEathn more

class to support new properties? ﬂegil,le, &IICI

easier to change.

you are here » 249

simple solutions rock

Getting dynawic with
instrument properties

What did you come up with on the last page 1o store
properiies?’ We decided that using a Map would be a greai
way 1o handle various types of properties, and still be able
to easily add new properties at any time:

Ll have ont
Now ;:T 1;..3'!:!"!' a May
InstrumentSpec T{T‘:]W.rg; grpes gt
properties: Map r
WMI : '."'E ; We tan get vid ot all
iy +hese lf“r‘u?:r':lr_‘\'- {and the
Lot eloted methods), and
Mﬁ&d. d]us{, wse the ?m?e'rt'ms
I .ma-? For cwcrj-';_ln-.ne,

getProperty(String): Object

Passed in 1
matches{InstrumentSpec); boolean into the method

Even better, now we can dump all those
InstrumentSpec subclasses!

i
\ Guitarspeg/

numStringssipt

- The enly reason
we had these

subelasses of

e

Fralringsl)

properties

We Ldn

that we

T~

=

250

Chapter 5 (part 2)

Y0 to

getProperties(): Map We £an use aetProper £
petEuddar e . :!-fwh the F'ropgrf_:, values
. e ; ugs...,
gﬂﬂdﬂm his 'm"Jr.-st ask £h, map
getBackiWomst oo ™ the value assoriatey
- with Lhe g{r,hﬂ_ that's

|n$‘|:?‘UVHEH£E?Ef- wds
+o handle additional
|n5-|;'rum¢h4:.—$?:f.'|$|,!.

We need +£his property
to tell us what kind of

ﬂ instrument we're locking af

properties

17

Builder MARTIN
“On-1 8
Type.ACOUSTIC

Wood,
MAHDEANY

Wood SITKA

6
StyleF

take Y Properties
TE in thess subtlasses,

and Jurll; ddd them iy, te the
map in fnstrumen{ﬁﬁcﬂ

good design = flaxible soffware

What we did: a closer look

Anytime vou see something that varies, vou should look for
away to encapsulate, In the case of InstrumentSpec,
we realized that the properties of an instrument vary.

¥ i Hn:lw all tlh "
ﬁ: took all the properties, "EFVr.*::ntc; EWP”UH "
. a'l'a'I::E -'ﬂ ik 'I'ﬂf'}' atirasg Pﬂi.—s }" ha"“""‘"?'ur
|rekrumentSpec 18 sef instruments and instrument " a Map dats shructure.

wmert betause ;
JI;TOE l:ik: Jc::u?ﬂ; an ‘-'r?F!x.- .ahd pulled them out
Wi 5 CheEm :
|n5{'.'rurntn‘|..g-'?tﬂ to ::.aﬂ.'h[} h!—tr"‘"‘thﬂ?:c.

k;':\O e Pull out what varies

InstrumentSpec
class

When you have a set of]:m]}erties that vary
across your olajects, use a collection, like a MaP,
to store those PruPerties c[ynamically.

You'll remove lots of methods from your classes,
and avoid having to change your code when
new Pruperties are added to your app.

you are here » 251

using Instrument and InstrumentSpec

Using the new Instrument and
InstrumentSpec classes

Let's take one last look at how our new Instrument
and InstrumentSpec classes work in practice. Here's [—
where we are with the design right now: t

{TSPcd s MJF e

hese erumergted types

J

Instrument InstrumentSpec InstrumentType l
serialNumber: String properties: Map Builder
price: double

getProperty(String): Object
getProperties(): Map
matches(InsirumentSpac): boolean

getSerialNumber(); String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec f\\ /

Both [nsbrument and [nsbrument Spet
are no longer abskract.

taString(): String

If vou were accessing a guitar, and wanted o know whao
built it, here's how vou could do that:

spec

4 7

We don't have instrument—
s?tﬁiJFlr_ subelasses now, so the
guitar is represented by an
ms.‘|:.'lru:: 05 |r-5{:,'r‘urntn+,-

Thf' Ilh!"trulhtn'r_', has ainy
fhstMi:hﬁﬂ?cc instance

dssofighed with it te shor
im{hmer.{ FraP«tl’tuts- :

And the [nsbrumentSpee has &
Mar of name/ value ?'ra?;rb.:s
-_ir.:: trument getProperty ("builder")

instrument.getSpec() .getProperty (“builder”) ;
——_{_‘_—\\/_

_-—-—-__.—-"‘

= This returns the
252 Chapter 5 (part 2) builder of 3 auitar.

good design = flexible software

.
=== - Code Magnets
a i Using a Map for staring properties seems like a good idea, but let's see how things

look once we actually code up a new version of InstrumentSpeac, Your job is to
finish off the code below using the magnets at the bottom of the page.

import java.util.
impert java.util.
import java.util.

e ms ma

public class InstrumentSpec |
private properties;

public InstrumentSpec(P
if (properties ==)
this.properties = new (s
} else |
this.properties = new i Ve

}

public getProperty(String b
return propertiss.get | Yi
t
public getProperties () |
IE";U.]‘.'D— H
}
public boolean matches | otherSpac) |
for | i = otherspec. () keySet (). (1
; G2 A
String = (String)i. L
if {(!properties.get|() .equals {
ctherSpec.getProperty (VI |
return H
}
]
TeClrn H
}

nasllaxt

Iiﬁ!ﬁﬁll lilihl llll!;iiﬁﬂllznfiaéiiiﬁi
G w
m__

getProperties

E terator

you are here » 253

tha new InstrumentSpec class

1 Code Magnets Solutions

|- Using a Map for storing properties seems like a good idea, but let's
see how things look once we actually code up a new version of
InstrumentSpec. Your job was to finish off the code below:

import java.util
import java.util.
import java.util.

public class InstrumentSpec |

private properties;

if (properties ==

Properties 1d af.bau‘!l wie anyf
- oo st 31

. 1:..““{3{.10"
:| 1.:1{.1'.5 .properties haS aP 1r.E,E'"'Eaf-E you wanted heve.
else |

this.properties = new |HashMap lpropertlesii
!
getFroperty (String

rropertylame

therSpec) |

JkeysSet (). (1

DthE'I Qi:nec ; Pt Prof
return ‘

:. o B s You 9ot these two right;

b ..t..--'-' otherwise, matehes() will abwarys
1

return the wrong result.

254 Chapter 5 (part 2)

Q,: So now both Instrument and
InstrumentSpec are concrete classes?

A: Right. Instrument isn't just

a concapt anymaore; it represents actual
instruments in Rick’s inventory, And
InstrumentSpec is whal disnts use o
pass in their specs when they're searching,
and what Instrument uses to store
properties for an instrument.

Q: So | can get rid of my Guitar and
Mandoclin subclasses?

A: Yup. As well as Banjo, Dobro,
and any other instrument-apecific subclasses
of Instrument you may have created.

Q_: And that's because we use the
Instrument class directly now, right?

A: You got it! Remember, you typically
subclass because behavier changas. In the
Instrument subclasses. no behavior
was changing; in fact, all we did for each
instrument subclass was create a new
constructor. That added a ton of classes,
reduced the flexibility of our app, and really
didn't give us any helpful functionality,

the:

e o
Dumb Questions

Q,: | understood getting rid of
Guitar and Mandaolin, but I'm confused
about why we don't need the different
subclasses of InstrumentSpec anymore.

A: It's OK; that's one of the trickiest
parts of the design of Rick's application.
Remember, one of the key principles in any
Q0 design is to encapsulate what varies, In
Rick's app, the properties of each instrument
varied. S0 we pulled those properties out of
InstrumentSpec, and put them into a
Map. Mow, when you add another instrument
with & new propery, you can just add the
new property as a name/value pair in the
properties Map.

Q: And with less classes to deal with,
our software is more flexible?

A: In thiz case, that's true. Thera

are certainly times where adding

classes will make your design more

flexible, though. Remember, adding an
InstrumentSpec class helped separate
inztruments from their properties, and that
was good; but in this chapter, we've been
remaving classes, and that's made it easier
to add new instruments to Rick's software.

good design = flexible software

Q_,: | never would have figured out
that we didn’t need subclasses for
instruments or their specs. How am |
supposed to ever get good at this?

A: The best way to get good at
software design is to write software! In

Rick's application, we had to go down some
wrong paths—like adding Guitar and
Mandelin classes—lo figure oul what the
right thing to do was.

Maost good designs come about through bad
designs; almost nobody gets it all right the
first time. So just do what makes sense,
and then start applying your OO principles
and patterns to see if you can make
improvements o what you've got,

Most goo;cl
c_[gg_igt_l_s_ come
from analysis of

bad designs.

Never be
afraid to make
mistakes and
then clmnge
ﬂlings around.

255

you are here »

updating rick's application

Finishing up Rick’s app: the
InstrumentType enum

We've almost got ourselves o prear picee of software, Let's
follow through on our new design ideas, starting with a So far, these are the ‘l‘,'}"[‘-‘ts of
new enumerated tvpe for each mstrument wype: nstruments Lhat Fitk sells.

public enum InstrumentType |

GUITAR, BANJO, DOBRO, FIDDLE, BASS, MANDOLIN;

InstrumentType

public String toStringi() |
switch({this) |

case GUITAR: return “Guitar”;

case BRMNJIO: return “Banjo®;

case DOBRO: return “Dobro”;

case FIDDLE: return "“Fiddle®; ek 4

case BASS: return "“Bass”;

case MAMNDOLIN: return ™Mandolin”;

default: return “Unspecified”; b"‘g{*i’ﬂ”j\‘-‘*{

makes it easier fo
P""h‘I: ﬂnihﬂs out

Let’s update lnventory, too inventory

inventory: Instrument ["]

With the changes 10 Instrument and InstrumentSpec,

our Inventory class starts to et much simpler: addinstrument(String, double, instrumenZpac)

get(String): Instrument
search(instrumentSpec): Instrument [*]

public class Inventory |
hdding an

insbrument
just yot 3

Il,it'- £asier

public void addInstrument (String serialMumber, double price,
InstrumentSpec spec) |

i
Instrument instrument = new Instrument(serialNumber, price, spec);

inventory.add (instrument) : i
&i] ______E‘___--———f Now we'ee able Lo instantiate
[nstrument directly,

Sinfe i'l;ls
/i ete ro longer abstract

256 Chapter 5 (part 2)

good dasign = flexible software

Let's see what we've really done.

We've made a ton of changes to Rick's software, all in the name of “more flexibility.”
Let's see how things look now. Flip back to the class diagram of Rick's app on page
234, and recall what things looked like when we started. Then, below, draw a class
diagram for how Rick's application looks now.

Answers on the next page!

you are here » 257

more flexibility

Behold: Rick’s flexible application

Weve made a ton of changes to Rick’s application... and it's easy to
fi et what we've heen '.'.'III'LliI'III._:' towainds, Look at the class flial_!.‘;l‘.'l]!'l l)t'[::-h,
though, and see how much simpler Rick’s application is now:

Inventory

|nu:n-|;p'ﬂ]r has .}“{’ one searthll
method now, and the methed
tan retuen multiples Jc,*ﬁ\:: of
ma{zh'lnﬁ lni{ﬁmcn{‘,ﬁ-

addinstrument{String, double, InstrumentSpec)
get{String): Instrument
search({InstrumentSpec): Instrument [*]

inventory | %

|n5brumch‘1:. st
abstratt arymere, and
we also EF"I: vid

all Hhose instrument—
SP‘EE:IEII: subtlasses

Instrument

sarialNumber; String
price: double

getSerialumber(): String
getPrice(): doubla
setPrice(float)

getSpec(): InstrumentSpec

We added 3 new €78
Lo vepresent Ehe .

s of inshromer

t
/ kﬂh Riek sells

InstrumentType .

nsbrumentSpet
ant absbract —|
s, b

properties; Map
//_, getProperty(String): Object
We're wing a Map getProperties(): Map
Lo store all +he matches(InstrumentSpec): boolean

———= InstrumentSpec

[7-E

Properties, sa

we don't need Al of these enumerated types
subelasses Lo eath dre used h‘f the propev-fies Map
'Hﬁrumcn-l; t:ﬂ’f i Ilhfli.'l'hhfntg.?ct Eg ‘Mtl'ﬂ! 'ﬂ_‘r}'

loosely toupled heve!

258 Chapter 5 (part 2)

good design = flexible software

But does the application actually work?

Rick’s software looks a lot better than it did way back at the beginning

of this L'h:‘lplﬂ'- —and it sure looks better than when we added all those
subclasses for banjos and mandolins. But we've still got to make sure his
search tool actually works! So lets update our test class, and check out how
searches work with the new version of Rick’s software;

Findinstrument.java
public class FindInstrument |
public static wveid main(String(] args) { Now lients £l out an InstrumentC :
J// 8=t up Rick's inventory this test thent didn': specif Pet. Since
Inventory inventory = new Inventory(}: type, the searveh could bei E;" mstrument
initializeInventory (inventory) ; andolins, or anythi ng back quitars,
ing else that Risk sells.

Map properties = new HashMap())
properties . put (“builder”, Builder.GIBSON] ;

properties . put (“backWood”, Wood.MAFLE) ;

InstrumentSpec clientSpec = new InstrumentSpec (propertiea);

We have o work a
little more dnrc-r_ﬂjr

with the Map that

List matchingInstruments = inwventory.search(clientSpec): [m{.rumcnﬁsftt- uses,

if (!matchingInstruments.isEmpty()) | but it's easy now te
System.out.println(You might like theses instruments:"); Ju_;q; loop through each
for (Iterator 1 = matchingInstruments.iterator():; i.hasNext(l:) { inshrument’s properties

Instrument instrument = {(Instrument}i.next(}; and?ﬂnfihmnnwb
InstrumentSpec spec = instrument.getSpec(); e ————
System.out.println(™We have a " + spec.getProperty(“instrumsntType”) +
“ with the feollowing properties:®);
for (Iterator j = spec.getProperties().keySet().iterator():
J-hasNext(); } {
String propertyName = (String)j.next()/
if (propertyName.equals{(“instrumentType”))

continue;
System.out.println(* ¥ + propertyMName + “: ¥ +
gpec .getProperty (propertyName)) ;
} @ Wc WH'!', ‘E‘,ﬂ jk|1} over {h:
System.out.println(™ You can have this * + m"f'b-""“"l"i-r}'ﬁ Propevty,
spec.getProperty (“instrumentType®) + ¥ for §* + SInLe we ve ﬂl'r:ad}l hardled
instrument.getPricei) + *\o==="); that bf‘ﬁr: we start 'U‘D'Fil'lj
|
1 else {

Svstem.out.println(“Sorry, we have nothing for you.'):

// initializeInventory() method here N
| oy We also need 45 add some 'mi.tn-mf_nts{:: Riek s
iw:n{,orjr co we Lan searth $m’ mo¥E n

5...'.1;;1-5... well de {hat on the next Fage

you are here » 259

initializing rick’s inventory

Inventory Roundup

To see if the new version of Rick’s software works, we need to run a search on
more than just guitars, Your job is te write code for the initializelnventory()
methad in Findinstrument.java, and add several guitars, mandelins, and
banjos to Rick's inventory. Below, we've listed the instruments Rick currently
has, and even written code to add the first guitar to help you get started.

Guitars
I Collings CJ 6.-str'mg acoustic,
indian Rosewood back and sides, 5pruce
top, Serial #11277, for $3999.95

T Martin D-18 6-string acoustic,

Mahogany back and sides, Adirondack top,
Serial #122784, for 5549595

Mando]ins

Gibsan F5-G acoustic mandalin,
Maple back, sides, and top,
| Serial #9019920, for $5495.99

Remember, the
humﬁtrihai
abbribute doesn £
apply to mandolins

_FE'T'IdEI' sfratucasmr 15~5tF
Alder back and sides and top,
Serial #V95693, for 51499.95

Fender stratocastor 6-string electric,
Alder back and sides and top,
| Serial #V9512, for 5154995

Gibson 5G ‘61 Reissue 6-string electric,

. Answers on page 262

Mahagany back, sides, and top, Elan_'}ns do not have
Serial #82765501, for 5 ':IBQ_[J_._ES_ a i:_ﬂ'f wood Gibson RB-3 5-string acoustic banjo,
e Gibson Les Paul 6-string electric, Maple back and sides,
Maple back, sides, and top, Serial #8900231, for $2945.05
Here's the Serial #70108276, for $2295.95

T . Banjos de nat have
inibializelnventoryl), v

wheve the First

quitar shown abaove .

ol
35ﬂdd£d{¢Rmks private static void initializeInventory(Inventory inventory) |
.,unhw$--—*"' Map properties = new HashMap():
properties.put (“instrumentType”, InstrumentType.GOITAR):
properties.put (“builder”, Builder.COLLINGS);
properties.put (“model”, “CJI¥);
properties.put (“type™, Typs.ACOUSTIC):
properties.put (“numsStrings”, ©);
properties.put (“topWood”, Wood.INDIAN ROSEWOOD) ;
properties.put (“backlcod™, Wood.SITEA);
inventory.addInstrument (*11277", 39499, %5,

new InstrumentsSpec (properties)):
/f your code goes here

‘:l"ﬂl.- should writs

1 ead'
here 4o add the otpe. Findinstrumentjava
|hsb-umcn‘|':.= Shown abeve.

260 Chapter 5 (part 2)

good design = flexible soffware

Test driving Rick’s
well-designed software

B sure yvou've added all the instruments shown on
the last page o vour initializeInventory ()
method in FindInstrument . java. and then
compile all yvour dasses. Now vou're ready to take
Rick’s software for a test drive. ..

awell, almost, First, yvou need o figure ot

what a search based on the current version of
FindInstrument should return, Here's the set of
preferences that Rick’s current client has supplied

Riek's Elient didn't sf'cci-l[l:f' a

mstrum:h-f- t

e ¥re, but |, I
Something from Gibsan 111 5
maple bask o

Map properties = new HashMapi):
properties.put (“builder”, Builder.GIBS0ON):
properties.put (“backWood”, Waod.MAFLE):
InstrumentSpec client3pec =

Based on those specs, look over the instruments Findinstrument.java
shown on the last page, and write in which guitars,

mandoling, and banjos vou think Rick’s search tool

should return:

File B Window HElp Theseachison

$java FindInstrumant Wrike in the insbruments

i e ik you think that vunning

Fird|nebrument should return
'e// based on Rick's inventory

':--..__‘__
SPECIAL Bowus crepiT
Tey and write the instruments
that this program finds

exattly as Findlnsh,
uut?‘h\'_ them. Sl

you are here » 261

adding to rick’s inventory

Inventory Roundup Solutions

To see if the new version of Rick's software works, we need to run a search on
more than just guitars. Your job was to write code for the initializelnventory()
method in Findinstrument java, and add several guitars, mandolins, and
banjos to Rick’s inventory.,

private atatic wvoid initializelnventorv({Inventory inventory) |
Map properties = new HashMap():
properties.put (“instrumentType”, InstrumentType.GUITAR);
properties.put (“builder”, Builder.COLLIN

':.._-____

1??;;: properties.put ("model®, “oJ%); ErcnanSC]Eﬁrﬁngacuusﬁq

bi . properties.put (“type”, Type.ACOUSTIC) |IndﬁﬂRﬂﬁEWbodbackandmﬂeﬁsp“me
ﬂ“?*‘"h properties.put (“numstrings”, 6); top, Serial #11277, for $3999 95

W YE properties.put (“topWood”, Wood.INDIAN ROS

}ﬂhvﬁﬂﬁ properties.put (“backWood”, Wood.SITEAR) ;

the same inventory.addInstrument (M11277", 3999.935,

Map ever new InstrumentSpec (properties));

Ve g : .
- 1 » Droperties.put(“builder”, Builder.MARTIN}; Martin D-18 6-string acoustic,

e o Sy LN e Ma!‘lﬂgany back and sides, Adirondack top,

properties.put (“topWood™, Wood.MAHOGANY) ; Serial #122784, for $5495.95

properties.put (“backWood”, Wood.ADIROMDRCKTDS

inventory.addInstrument (“122784", 5495.395,
new InstrumentsSpec(properties));

properties.put (“builder”™, Builder.FENDER) ; Fender5umncaqor6ﬁtnngeht““2
properties.put ("model”, “Stratocastor®): Alder back and sides and top,
properties.put (“type”, Type.ELECTRIC): Serial #V95693, for $1499.95
properties.put (“topWood”, Wood.ALDER): Fender stratocastor 6-string electric,
properties.put (“backWood”, Wood.ALDER) ; AMthﬂCkﬂndsMesandtun
inventory.addInastrument (“W95653"7, 149%.45, Serial #9512, for $1549,95
new InstrumentsSpec(properties));
inventory.addInstrument (“W9512% 1549.85,
new Instrumentfpec(properties)):

The specs for these twe Strats
ave the same; only the properties in
Inctrument. are different

262 Chapter 5 (part 2)

good design = flexible soffware

propertiss
propertiss
propertiss
properties
inventory.

new Inst

propertises
propertiss
properties

inventory.addInstrument ("82765501", 185%0.35,
new InstrumentSpec (properties)):

propertiss

propertiss.

propertises
propertiss
properties

propertiss.
inventory.addInstrument ("901%920%, 5485,9%9,
new InstrumentSpec (properties)):

propertiss
properties
propertiss
propertiss

inventory.addInstrument (“8900231%, 2945,95,
new InstrumentSpec (properties)):

1

put (*builder™, Builder.GIBSOM);
put [("model”; “Les Paul”); Maple back, sides, and top,
-put (“topWood”, Wood.MAPLE};: 59"3|#7ﬂ1032?&fbr$229i95
-put (“backWocd”, Wood.MAFLE)

addInstrument ("T0108276", 2295.95,
rumentipec iproperties));

Gibson Les Paul &-string electric,

Gibson 5G'61 Reissue 6-string electric,
Mahogany back, sides, and top,
serial #82765501, for $1890.95

Lput ("model”, "85 ‘6l Reissue”);
put (“topWood™, Wood.MAHOGANY) ;
-put (“backWocd”, Wood.MAHOGANY) ;

.put (tinstrumentType”, InstrumentType.MANDOLIMN) ;
put (“type”, Type.ACOUSTIC):
Jput ("model”™, "FP=3G"):

Put (“backWood”, Wood.MAPLE) ;
-put (“topWood”, Wood.MAPLE};
remove (“numStrings"™) ;

Gibson F5-G acoustic mandolin,
Maple back, sides, and top,
Serial #5019920, for $5495.99

Banjos den't have

ath‘Dﬂd,!nwg
put (t“instrumentType”, InstrumentType.BANIO) ; have {5 remove
put ("model”, “RB=3 Wreath"):

this property.
remove [“topWood®) ; %——"-f_ T

.put {“numStrings", 5);:

] Gibson RB-3 5-string acoustic banjo,
Maple back and sides,
Serial #8900231, for §2945.95

you are here » 263

rick's soffware works like it should

Rick’s got working software,
his client has three choices:

File Edit Window Help SatisfyTheCusiomar

%java FindInstrument

You might like these instruments:
We have a Guitar with the following properties:

topWood: Maple
backWood: (Mapla

Ritk's thient ends
wp with dhree
insi:rum:r-tf- to
thoose from: 3
guitar, a mandolin,
ard a banjo.

model: Les Paul
numStrings: 6

topWood: Maple

The ﬂnlt&r meets Br'}'ﬂhlz

builder:(Gibson) spees because it has 3
type: electric — ————— maple back and sides, and

's made by Gibson.

You can have this Guitar for 52295.95

We have a Mandolin with the following properties:

backWood: Maplg ﬁ_ Here's a Gibson mahdnli-n
builder:(Gibsomn)e— ——— with a maple back.. this

type: acoustic
model: F-5G

also meets ngah'z spets.

You can have this Mandeolin for 55495.99

We have a Banjo with the following properties:

backWood: (MapIas
builder: Gibso
type: acoustic
model: RB-3 Wreath
numStrings: 5

L e
!:_E—___________H\ b"?l vl'_‘iubsoh this ore's 3 ha-nja-

Ne top woed on ha@us, but
that doesn't matter

You can have this Banjo for 52945 85

ﬂ 1 fe no

|
Dumb Questions

Q; My output isn’t the same as yours. What did | do wrong?

A: IF your version of Rick's tool returmed different guitars, or
output the same guitars but with different properties, then you should
be sure you have the same instruments in your inventory as we

do. Check the exercise on page 260, and the answers on page
261-262, and make sure the instruments you have in Rick's inventory
miatch aurs.

264 Chaptler 5 (part 2)

. Is this really a good test since we only have one banjo
and one mandolin?

A: That's a great question, and you're right, it would be better
ta have a fiew more mandoling and banjos to really make sure Rick's
search tool picks only matching mandaling and banjos. Go ahead
and add a few non-matching banjos or mandading, and try l2sting out
Rick's search tool with the additional instruments.

good design = flexible software

That's great that you've got your software
working right, but don't start patting yourself
on the back for a great design just yet. Me and
my buddies at the bureau of change are here to see
just how cohesive your software really is.

#* How easy is it 10 change
Rick’s software?

* s Rick’s software really
well-designed?

#* And what the heck does
cohesive mean?

you are here »

265

the ease-of-change challenge

How easy is it to change Rick's search tool?

Let's add support for dobros and fiddles back into Rick's application. We
tried to do that earlier, back in the first part of Chapter 5, and it turned into
a total mess. Things should be much easier this time, right? Below is the
class diagram for the current version of Rick's software.

Inventory

get(String): Instrument
search(InstrumentSpec): Instrument [*]

inventory | %

Instrument

sefialMumber: String
price: double

getSerialNumber(): String
getPrica(): double
setPrica(float)

getSpec)): InstrumentSpec

InstrumentSpec

properties: Map

getProperty|String): Object
getProperfies(): Map
malches(InstrumentSpec): boolean

addinstrument|String, double, InstrumentSpec)

Heve's what our

SET s looks like
Tlﬁlh‘lf. Laha

InstrumentType h_

toStr

Builder
Type

Wood

toString(): String

Chapter 5 (part 2)

good design = flexible software

j bureau de cha@f
T

Seeing how easy it is fo
ﬂha-ngf Your :.D-Ff‘_warc 15 one
of the best wallfs to -Fuawc

out if fola '.-e,allT have well—
o How many classes did you have to add to support designed sobtware.
Rick’s new instrument types?

Let's apply the ease-of-change test to our software:

e How many classes did you have to change to support
Rick's new instrument types?

a Suppose that Rick decided that he wanted to start

keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

6 Rick also wants to add a new property, neckWood, that
tracks what wood is used in the neck of an instrument.

How many classes would you need to change to
support this property?

———— [nswers on page 268

you are here » 267

aasy to change?

How easy is it to change Rick's search tool?

Let's add support for dobros and fiddles back into Rick's application. We

tried to do that earlier, and it tumed into a total mess. Things should be
much easier this time, right?

Let's apply the ease-of-change test to our software:
o How many classes did you have to add to support
Rick's new instrument types?

Nowne! We got rid of all the instrument-specitic
subelasses of Instrument and InstrumentSpee.

e How many classes did you have to change to support
Rick's new instrument types?

One: we need to add any new instrument types to the
InstrumentType enumerated type.

@ Suppose that Rick decided that he wanted to start
keeping up with what year an instrument was made
in. How many classes would you need to change to
support keeping up with this new information?

None! You can just store the year that an instrument
was made in the properties Map in InstrumentSpec.

e Rick also wants to add a new property, neck\Wood, that
tracks what wood is used in the neck of an instrument.
How many classes would you need to change to
support this property?

Owe in the worst case, and maybe none! neckWood

is just another property we can store in the
InstrumentSpec map... but we might need to add new
wood enumerated values to the Wood enum,

268

Chapter 5 (part 2)

good design = flexible software

Sweet! OQur software is easy to change...
..but what about that “cohesive” thing?

A cohesive class does

The more tohesive

Cohesive £lasees are fotused

= _
- o ne t h I n on specitic fasks. Qur
| -
your elasses are, the Inventory elass worries about:

hinher {'ﬁt tahesion
al" Hour -sarr.J'._'-.-.i'n:

really well and

Lok ‘l'.'h'r'oulg"h +he methods ot
they all welate

does not try to
Lo the name ﬁ'l: o el

w hav methad {;h.i‘.{; |ooks
out :a; {'F|:-|:: ik mlt}h{. belong Or be

on another tlass.

¢lasses—de
our 4557 |E

Just Riek's inven I"_a-r';.-'. ot

what weeds £3n be used in
3

8 Quitdr; or how 1o Lompare

two instrument specs

|r.s".._'r|.\.mEn';:T, d-l?t'ihlt 'I:.'l""f' o
handle searches, or keep
uf with what woods ave

something else. -«

d :sf.'r'lhwe, an inshrume rk—and

. |se-
rothing £lse

iIﬁgélwlf::,l"'s Corner

the elements of a single module, ¢lass, or o'nljce;f The higher
the eohesion of your software is, the move well-defined and
related the responsibilities of eath individual elass in

your application. Each class has a very specific set
i of tlosely velated attions it F‘C\"-Fn'rrns.

tohesion. Cohesion measures the degree of Cahhtﬁ‘tivi‘t\f among

) §

you are here » 269

cohesjve classes are focused on one thing

Cohesion, and one reason for a

class to change

You mav not realize it, but we've already talked about
cohesion in this book, Remember this?

‘.---1"‘\
This was one of the arcwers
from 00 CATASTROPHE!

Da ba rémember what the
ﬂlUvE‘S't'lom wag_?

Cohesion is really just a measure of how closely related the
functionality of the classes in an application are. If' one class
15 made up of functionality that’s all related, then it has only
one reason to change,., which is what we already talked abour

in 00 CATASTROPHE! The funttion of eath of these
: ned. Eath

Here are the classes we talked about when we made sure elasses is ».E]'I-d"fmsd E;ss

each class had only a single reason o change: one is 3 highly eohesie '

and that makes it easy to
tharge, without tharging the

Automobile

start()

stop()
getCil(): int

270 Chapter 5 (part 2)

= other tlasses

-y

wash{Automolye

Driver L
drive{Automobile)

Mechanic

checkOil(Automobile)
changeTires{Automobile, Tire [*])

7

Can Yeu think of @ wiy to
make the Meehanie ¢lzss
more tohesive?

Q_: So cohesion is just a fancy
ward for how easy it is to change my
application?

A: Not exactly. Cohesion focuses on
hiow you've constructed each individual
class, object, and package of your software.
If each class does just a few things that are
all grouped together, then it's probably a
highly cohesive piece of software, But if you
have one class doing all sorts of things that
aren't that closely related, you've probably
got low cohesion.

Q: So highly cohesive software is
loosely coupled, right?

A: Exactly! In almost every situation,
the more cohesive your soffwara is, the
looser the coupling between classes.

In Rick's application, the Inventory
class really worries just about managing
inventory—and nof about how instruments
are compared or what properties are stored
in an instrument spec. That maans that
Inventoryis a highly cohesive class.
That also means it's loosely coupled with
the rest of the application—changes to
Instrument, for example, don't have a
lot of effect on the Inventory class,

therejare o~
Dumb Questions

- Butall that means the software
will be easier to change, doesn't it?

A: Most of the time, yes. But remember
the version of Rick's application that

wae started with in this chapter? It only
supparted quitars, and we didn't even have
Instrument & InstrumentSpec
classes. That was pretty cohesive software—
Guitar was very loosely coupled with
Inventory. However, it took a lot of work
and redesign to support mandoling.

Whean you fundamentally change what an
application does—like going from selling enly
cne type of instrument to multiple types—you
may have to make lots of changes to a
design thal's already cohesive and loosaly
coupled. So cohesion isn'l always a lest

of how sasy it is to change software; but

in cases where you're nof dramatically
changing how software works, highly
cohesive software i usually easy to change.

- And high cohesion is better than
low cohesion?

A: Right. Good OO design is when
each class and module in your software
does one basic thing, and that one thing
really well. As soon as one class starts
doing two or three different things, you'na
prabably moving away from cohesion, and
good 00 design.

good design = flexible softwara

- Wouldn't software that's cohesive
be easier to reuse, as well as change?

AI You got it. High cohesion and
[oose coupling adds up to software that
can easily be extended. or even broken up
and reusad, because all the abjests in the
software aren't interdependant,

Think about it this way: the higher the
cohesion in your application, the better
defined each object’s job is. And the better
defined an object (and its job) i, the easier
it is 1o pull that object out of one context,
and have the cbject do the same job in
another context. The object is happy to
just keep on doing its very specific job, no
matter where it's being used.

+ And we've been making Rick's
application more cohesive throughout his
chapter, haven't we?

A: For the most part, yes. But let's look
a little bit closer at that quastion...

271

you are here »

increasing cohesion

Rick’s software, in review

S0 have our changes to Rick’s software resulted in high
cohesion? Are our l]]]ii"[_‘l,"i IIJH.\GI;'I':. L'(J'I,I]'III:'(I-:J And can we
make changes easilv? Let's take a look:

Here's wheve Rick was just selling
guitars. The app was veally eohesive,
even though we had o do some veal
redesign to add suport for mandolins.

'E:lu'rta"-' '°£ Chanﬁ{

The :
eligver n the

s eb
high [l foi:% of hihly ches'®

: cohesion : cobbware desiyn

Heve was our Fiest attempt
ko add support for multiple
insbrument. types- but we
definitely have lower tohesion
here than in the previous version

.

Femember Hhis slmfl:
diaoyam From way batk in
Chapter |2 We _}usjc. had fwe
tlasses, and they wert not
well—d.:siu‘-,ned or very pohesive-

¢lass

]

272 Chapter 5 (part 2)

good design = flexible soffware

Each Lime you make mhﬁ“{pﬁ:
d‘i’,‘ﬂ\'h b—\j and make RS

gething mort COnESE

i are
IIJit'I'EI'S where ‘r..'l-.n-..las.
o with Riek's design Ht%’;
\oose touplindy
£ ohesion, |
sokbware Ehat's veally e3%f to

exbend ard veust

Ireariany

abfirairaneriiSinng, doubd, amuveniSpe)
] Sring | Infrurmend
searhilesirumen®ipec Inginumen [°|

ety |

Instrument
wovialHarsber: Sking

X prica: Soubls

This was 3 vea| low F"’l""l{'- JoetSernitimnberi Sring

in our design... Er}ﬁhﬂ o s

A pESpe] | InatvursenlSpes
add 3 new insbrument g

‘|:}'PE was 3 total disaster.

e |1
ni
progesties: Wap

petPmzark Sring| Dt
petPaparien Map
repicheslasTureri Spac boolsar

THIS is your goal...

== g —.._.. ruﬁ"mil:uﬂﬁﬂ ;oiiw:::;t:{;hrmﬁhh;ﬁﬁ
b e p——— m DabsSpes g
s mac the design life eyele.
s \‘"{_J FiddleBpec
—_— Hw: o] Siieh: Sling

aatFnish(); Sty
fra ichesd Fddle S pasc| . Bodeasn

the design ife cycle

you are here » 273

great software is good encugh

This sounds great and all, but how
do you know when you're done? I mean,
is there some sort of scale of cohesion,
and when T get to a *10” or whatever, it
means that T'm finished?

Great software is usually
about being good enough.

I£'s hard o know when 1w stop designing

software. Sure, vou can make sure that vour
soltware does what ics supposed o do, and
then start working on increasing the Hexibilicy
and cohesion of your code. Bud teer oot
Sometimes you just have w stop designing
because vou run out of dme.. or money..
and sometimes vou just have o recognize
vou've dome a good enoigh job to wove on.

If your software works, the customer s happy,
and \.rnu‘\'u:' done your best o make sure

things are designed well, then it just might be
time to move on to the next project. Spending
hours trving o write “perfect soltware™ is a
waste of tme; spending lots of dme writing
sreat software and then moving on, 15 sure
win you more work, big promotions, and
loadls ol cash and accolades.

274 Chapter 5 (part 2)

good design = flexible software

Knowing when to say “lt’s good enough!”

I love it! I can finally sell any

kind of instrument I want,
and help my clients find just what
they're looking for.

Before you ever leave 3
— T-'mj:n.'.t_ you always want 1o
make sure Your sof tware does

Makﬂ sure Thg what it's supposed +s do
customer is happy

Really nice design here. High cohesion, the
classes are loosely coupled... T'll bet the next
time Rick needs something changed, we won't have
too much trouble at all.

e
One 'i,l'cu'-\.'c 5:.4_-_ 'F'-'hfrf.lﬂh&“'l:}l Make sur‘g Yﬂur
dowm, nore on 4o making aoc design is flexible

dqi$l3h detisions, using salid Of)
Printiples o 3dd Fl{nsbilniy

If you've done both of these things, it may
just be time to move on... to the next project,
the next application, even the next chapter!

you are here » 275

ooad&d toolbox

276

Tools for your 00A&D Toolbox

Wow, y‘uu'w_rually come a long way since we
started working with Rick way back in Chapter 1.
You've learned a ton about design, so let's do a quick

review of what you've added to your toolbox. We did 3 4o of design in £hi
15

thapter, so Lake 5 seleomd 4o

Feview everylh; .
erything we've lesrned

chﬁrcmcn{_s_ l .

Good vequivements ensure You ﬁhﬂhs'ls aﬂd DCS'IO,h
works like your tuskomers exfp T U =

Make sure ‘your vequivements Well—designed softwave is easy fo thange
by developing use tases for y and extend.

Use your use eases to Find o Use basie 00 principles like enc ulation

Lhings your usbomers forgot. and inheritante Lo make your sottware
more Flexible.

Your use tases will veveal any

or missing requirements that |£ a desion isn't Fflexible, then %

have. [T! Never sebtle on bad design
#'s your bad design fhat has to thange.
Your vequivements will ahways| .
grow) over time. Make sure eath of your elasses is
eohesive: eath of your tlasses should *““Th: il of
-Fot!ui i d‘m& I']HE THIN& “a“'f well design = h]ah"nlr
) tohesive, luc-stljl
————————————————— Always skrive for higher tohesion as You caupled sof buare.
move thirough your software's design
| life eyele. <
00 Printiples
Enca?sula'i:,e what vavies
Code to an inkerfate vather than to an
'Lmﬂcmzh{a'l:ian.

i i y Between 00 {':.-"IT:I'IQTIE.{}FHE!'
G L a??l‘ﬁa{lﬂh oM ues ml‘? C o~ and this chapter, we've added
one reason to thange.

¢/ qlluu{,c a Few new 00 printiples to
Classes are about behavior and -Fum‘.-{‘.'lmali{-.\f. our toolber

Chapter 5 (part 2)

good design = flexible soffware

OO0A&D Cross

This one is a particwlarly tough puzele: almost all the
answers are more than one word, and they're spread
across both parts of Chapter 5. Good luck, and keep

that left brain working.

3. Never code to this if you can help it.
8. Ereat software is easy to
12, Software that's easy to change is

13, Bo this to what varies.

15, Mever be afraid to do this to your designs.
17. This will kill good design.

18. Classes are about this,

19, When one thing is made up of another.

1. Always code to this if possible.
2. Most good designs come from analysis of
these.

4. Abstract classes are written this way in

UML class diagrams.

5. When a class inherits behavior from another

class.

6. This was the type of group ensuring your

software was highly cohesive,

7. Apply these to add flexibility ta your

software.

9. Cohesive classes do this really well.

10. Don't be afraid to do this: it will help you

find better solutions.

11, We used this test to see if Rick's

application was cohesive,

14. Highly cohesive software is also almost

always coupled.

16. Great sof tware must always do what it is
to do.

you are here »

277

did you get the same answers as we did?

278 Chapter 5 (part 2)

6 solving really big problems

“My Name is Art Vandelay...
I am an Architect”

I was just thinking... do you
remember if we ever tightened
the bolts down on those basement
girders? Oh well...

It’s time to build something REALLY BIG. Are you ready?
You've got a ton of tools in your O0AS&D toolbox, but how do you use those tools

when you have to build something really big? Well, you may not realize it, but
you've got everything you need to handle big problems. We'll learn about some
new tools, like domain analysis and use case diagrams, but even these new tools
are based on things you already know about—like listening to the customer and
understanding what you're going to build before you start writing code. Get ready...
it's time to start playing the architect.

this is a new chapter

279

what about big applications?

Look, all this stuff about writing great
software sounds terrific, but real applications
have a lot more than five or ten classes. How

am T supposed to turn big applications into
great software?

You solve big problems
the same way you solve

small problems.

We've heen working with fairly simple

applicagons so far.. Bick’s guitar shop
had less than ffteen classes in its worst
state, and Doug’s dog door never had
maore than five, But everything vou've
learned so far applies o working with
big applicatons, two. 2
'Emrmbﬂ"' thes
twdre? The
""'ﬂ" huge, 10

€ steps fo il

ting great
Y all appl ¥ to Wk.?@
O+ ¢lass app'matmns

Just as mush,
1. Malce sure your with J“*‘EJ:*::FEHE:L' ?Tu re working
: or Elasses
software Jues whai t]w

customer wants it to do.)
2. Apply basic
00 prmmplﬁs to
add 'Flemlnlxty

X

3. Strive for a
maintainable,
reusable Jesign.

280 Chapter 6

solving really big problems

It’s all in how you look at
the big problem

Think about how vou work on big problems, in big
software applications, You usually look at the big
picture, but then start working on just one part of
the application’s functionality.

The best way to look at a YOII can SOI.VE a

big problem is to see it as lots of

individual pieces of functionality. ng Prol)lem l)y

You can treat each of those pieces as
an individual problem to solve, and

apply the things you already know. 1)1’ ealtlllg lt lﬂtﬂ
Onee vou get one part of an application working .

like vou want it to, then you can move on to another lﬂts 0 unctlona
picce of functionality within the app. At each step,

though, vou're applving the same basic principles

we've been talking about for the last 250 pages or so. Pieces, aﬂC[tl‘l.erl
wurlcing on each
of those Pieces

Tws Bl§ PROBLEM | J J au
e individually.
tolleetion
Euhﬂ;la'naliflr_h

where eath pece of
£onebionality is veally
a smaller ?kn’nlf.m on

s owme

Big
Problem

yau are here » 281

solving big problams

The things you already know...

You've already learned a lot of things that will help vou
solve |in|.;’ soltbware]‘Jl‘c:lﬂi'lt'l.*‘-... Vo jl,l!'il My ol have
realized it. Let’s take a quick look at some of the things

we already know about how toowrite great (big) software:

By encapsulating what

varies, you make youtr

a])Pli(:ati{m more ﬂexible,

and easier to cliange.

The best way
to get gooc[
rec[uirements 15 = ¥y ko
to understand
what a system is

su]:]:osec[to do.

2B2 Chapter 6

h
small Piece ofw o wack

it 1
@E‘f {hat does whj{,hi:?"_ls

uPPosed 4o 4.,

Using entapsy|ztior helps with big

robl
Problems, 4. € more yoy, entapsulat.

thi i

ras, the edsier it will | ;
break 5 large app up info ;.;EE: }PD; b
Piedes G-F -lrunC'E,il:-hJ.li{}I,'. -

-

CoJing to an
interface, rather
than to an
im]::lementation,
makes your
software easier

(‘ to extend.

This is even move '|m?ar{.3n‘lz
i 'mg, apps. Eﬁf I:aﬂ'mﬁ to
an intevkate, you reduce
dependenties between
dikfevent parts of your
application... and "|sosely
coupled” is always a go0d
-l:'h'l-nla, remember?

This sure doesn £ thange with bigger
problems. [n Faet, the higher the
tohesion of Your apps the more .
independent eath piete of Lunetionality
is, and the easier it is +o work on those

pietes one at 3 time
Great software >
is easy to
change and
extenc[, and
does what the

customer wants

it to do.

So let’s solve a BIG problem!

Encugh about what vou already know:; let’s see how
we can apply these things to a brand new;, really
big piece of soltware, Turn the page o learn a bit
about Gary, his new game company, and a large

soltware project.

&ot a big problem? Take a few
of these little principles, and call

me in the morning. T bet you'll
have things under contral in
ne time.

solving really big problems

Analysis helps
you ensure
your systEm

(works in a

wleeine real-world

more im?nrﬂn‘{f
with '|ar5:
mﬁ{,war:.. and in
most Lases, Yfou
start by analyzing
mndividwal pietes
of Fuht.flﬂ'nﬁht']fu
and then .'i'na|‘f2-lrl
+he lh:“.&_’él:-tll?ﬂ

those pietes.

context.

you are here » 283

introducing gary’s games

Heve's the big problem we're
going to be working on for the
nexk Few thaphers

o Garys Games (@)

Vision Statement

|_.—-
|
|

| Gary’s Games provides frameworks that game designers can use o
| create turn-based strategy gamcs. Unlike arcade-style shoot="em-up

games and games that rely on audio and video features to engage the
| player, our games will focus on the technical details of strategy and
| tactics. Our framework provides the hookkeeping details to make
building a particular game casy, while removing the burden of coding
| repetitive tasks from the game design.

| The game system framework (GSF) will provide the core of all of

| Gary's Games, It will be delivered as a library of classes with a well-
defined API that should be usable by all board game development

| project teams within the company. The framework will provide standard

| capabilities for:

| ¢ Defining and representing a board configuration

| + Defining troops and configuring armies or other fighting units
| ¢ Moving units on the board

o Determining legal moves

| + Conducting battles

| + Providing unit information

The GSF will simplify the task of developing a turn-based strategic
board game so that the users of the GSF can devote their ime to
| implementing the actual games. '

284 Chapter 6

solving really big problems

I'm not interested in one
of these fancy, flashy Star Wars
rip-off games... I want something with
strafegy, that makes you think! A
cool turn-based war game, that's the
ticket.

This is Gary He looks lffr::J.‘._-b]'
sevious, but he's an absolute
wuk For skrakegy games:

harpen your perci
Wi What should we do first?

Below are several things that you might start out doing to get going on Gary's
Games. Check the boxes next to the things you think we should start with.

O Talk to Gary. [Gather requirements. [Start a class diagram.

[Talk to people who might [} Write use cases. [Starta package diagram.
use the framework.

you are here » 285

what should you do first?

Hey, this is an easy one.
We start out by writing out the
requirements and use cases, like we did
with Doug's Dog Doors.

Requirements and use cases
are a good place to start...

Starting out working on a svstem by
building 2 requirements list and writing
use cases Is a great idea. You can figure out
what a1 system is supposed to do, and just
go down vour list adding functionality hit
by hit... solving lots of small problems o

salve one really big problem.

But I'm not sure we really
have enough information to figure out
the requirements or use cases yet ... all
we've got is that fancy vision statement.
But that really doesn't tell us much about
what the system we're building is
supposed to do.

e of the

progjrammers on
Nour Leaw.

...but what do we really know
about the system so far?

That vision statement seemed to have a
lor of information about what Gary wants,
but it leaves a lot open to Interpretation.

What kind of board did Gary have in
mind? And who's the customenr, really?
Game plavers or game designers? And

will all the zames be historically based, or
do we have (o support things like lasers
and spaceships? 1t sounds like there’s a Lot
more we need o know belore we can write
a very good set of requirements.

286 Chapter 6

solving really big problems

We need a lot wore information

Allwe've got to go on with Gary's system so far 1s 2 vision
statement... and that didn’ tell us very much at all, So
now we've got to fisure out what the system is supposed
tor do. So how do we do Hhat?

This is galled f-ﬂl'lmﬂrﬂh:,"f "
what things are similgrt

P
What is the system like?

One way you can find out more
about a system is to figure out
what the system is like. In other
words, are there some things that

you do know about that the system
functions or behaves like?

This is ealled variability..
wha'E {'.hinﬂs are di-wcrcwt?

/

What is the system not like?

Another great way to find out what
a system should do is to figure out
what it's ngt like. This helps you
determine what you don’t need to
worry about in your system.

So let’s listen in on one of Gary’s
meetings, and see what we can find ouf...

you are here » 287

listening to the customer

Custowmer Conversation

We need o listen i a little more on what Gary and his

leam are |||i'illlllir|k_'| hefore we can get -il'.ll:'!l'(i UH l|'|L' dame

system framework he wants us to build.

Bab in mﬂ'fkf't.'hﬁ'

(,..-—-3-
F|£:ﬁbl|l|{:'?l [
Eu.mlzl ‘.:_',ﬂl Ibl‘! k!‘]l'
H W ré ﬂﬂmﬁ
to support —7
all these

Ul}rlﬂ‘l._.lﬂl'lﬂ'-

Remember that old computer game,
Zork? Everybody loved that thing,
even though it was pure text.

has an interfy
like £ 5

|
Bethany in design o Susan an

d Tom

n sales

Tom: Yeah, Gary loves texi-hased games, And people are geting a licde tved of
all the fancy graphics in games like Star Wars episode 206 (or whaever the heck
they're up to these days),

Bethany: And we need all sorts of different time periods. We could have a Cil
Wiar version, with battles at Anoetam and Vickshurg, and a World War I version
over in Europe... players will love all the historical stufl, T bed,

Susan: Nice idea, Beth! Il bet we can let game designers create add-on packs, too,
so you could buy a Wodd War 11 Allies game, and then buy an add-on for other
torces that the core game didn’t include,

Bob: That’s a cool marketing point, wo... il our system supports different tme
J_H'r'iudn. L|F1i[l'::.l}l,"ﬁ-. |_,|r'|i;|"r:l1'r'|1-i. i,ll'll'l 1I|.|-|:'|'|:‘\'i".'l"‘i. \'I.i_"ll'l" E_\Illlll'll-_'| (KN !1!' i_l,l}lll" Lh] .‘il'” |,|"|'-|"\ Lk
almost anvone developing games.

Bethany: Do you think we need woworry about batdes that aren’t historical? 1
mean, we could sell our svstem to the tolks that make the tancy starship games, and
let them ereate sci-h batdes, righe?

288 Chapter 6

= W'y alrr_adF' found Somme
. i
D\mrnah.ﬂll‘t‘lr' Thf s'}rsf,:m

¢ sort of

e .r":"ﬂfk aa e

Heve's some
ua'r-lalb;nl-;lf.‘f- The
system is nat 3
graphie—vith game

(,——»
H little move
f,awmahah‘{'.‘f
so we're veally
annn'mﬁ at turn-
based wargames.

James afdin...
W d!'pim{:gl}r
hﬂl.ff Some
tommonalit
with that type
gdme to pa
attention {;.F ¢

solving really big problems

Tom: Hmmm... I'll het Gary would go for chat, if they're sill creating trn-hased
gumes. Why not clean up on that market as well as the history buoffs?

Bob: Do vou think we could market this as a system o create everything {rom
online Risk to a modern-day Stratego? Those were both killer strategy board
games back in the day... I'd love to sell our system o people that make those sorts
ol games.

Bethany: So let’s talk details. We know we've got to sell this to lots of game
designers, so we need it o be really fexible. I'm thinking we start with a nice
sequare board, and Gl it up with square dles.

Tom: We can let the game designers pick how many tiles on the board, right? e
4 QKI - WE

They can choose a height and widih, or something like tha? o
skarting
Bethany: Yeah. And then we should suppore all different types of terrains: == __} some deas
mountains, rivers, plains, grass,., z.;-"" bout ac‘lt.jl'h
he
" . . -1

Sumsan: ..mayhe space or craters or asterond or something for che space games... features ¢

game SYSLEM™

Bob: Even underwater tiles, like seaweed or silt or something, vight?
Bethany: Those are great ideas! So we just need a basic dle that can be
customized and extended, and a board that we can Bl with all the difterent tiles.

Susan: Do we have to worry about all those movernent rules and things that
these games usually have?

Tom: | think we have to, don't we? Don’t most of these So did you get all that? You're
ready to start working on my new

game system now, right?

stratesy games have all sorts of complicated rules, like a

unit can only move so many tiles because he's carrving

too much weight, or whatever?

Bethany: | think most of the rules depend on the o]
specitic game, though, I think we should leave
that up to the game designeres who use our
ramework. All our ramework should do is
qu*p track of whose urn it 15 1o move, and
handle basic movemnent stufl.

Susan: This is grear. We can build a
framework for challenging, fun strategy
cames, and make a wn of money, wo,
Bob: This is startng to sound prety
cool! Let's get this to Gary and those
software guys he’s hired, so they can
aet started.

you are here » 289

information, features, and requirements

Figure out the features

You've learned a lot about what Gary and his team
want the game svstem framework to do, so ler’s take that
information and figure out the features of the system.

| s-l:,trn shau]d.
+har said the game sy . :
E:W;Jdiﬂ&mt Lime ?r,rmd-s. That's 3

Leature of the game system. b__\

Bethany: And we need all sorts of different dme periods. We could have a Civil
War version, with batles at Antetam and Vieksburg, and a World War T version
over in Alrica and Lalyv.. plavers will love all the historical seufl, I'll het,

Here's another feature: different
types of Lterrain This single

feature will probably ereate several
individual requirements.

/

Betha.ny: Yeah. And then we should suppart all cifferemnt types of terrains:
mountains, rivers, plains, grass..

Susan: ..mavbe space or craters or asteroid or something for the space games...

Bob: Fven underwater tles, like seaweed or silt or something, right?

But what is a
feature, anyway?

A feature is just a figh-level deseription of something a
systemn needs to do. You usually get features from talking
to vour customers (or listening in on their conversations,

like we just did on the last few pages). iﬂrﬁha vith the features
a5] i
A lot of times, you can take one feature, and come up f bi I‘F-Et I byl hF'P&I 3
g projects—like Gary's game
sys'b:m—-wh:n You don't have fons
of details, and Just need +o get
3 handle on wheve 4o stavt.

with several different requirements that you can use w
satisty that feature, So figuring out a svstem’s feaiures is a
oreat way o start to get a handle on vour requirements.

290 Chapter 6

solving really big problems

Feature (from customer) Requirement (for developer)

A tile is associated with
a terrain type. ﬁ
Supports different That single

types of terrain. \ Game designers can create T Boture vesults

custom ferrain types. W omnd
Heve's 3 single feature we Fequirements.

oot From the tustomer

Each terrain has characteristics
that affeet movement of unifs.

Get features from the customer, and
then figure out the t'e::[uit'la'ments you
need to im]:lement those features.

your pencl

i .-% We need a list of features for Gary's game system.

You've got plenty of information from Gary and his team, and now you know how to
turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary's game system framework should have,

you are here » 291

feature or requirement?

292

N, answers

your pencl|

You've got plenty of information from Gary and his team, and now you know how to
turn that information into a set of features. Your job is to fill in the blanks below with
some of the features you think Gary’s game system framework should have,

Supports diffevent types of fervain.

We need a list of features for Gary’s game system.

Cupports diffevent time peviods, intluding

Fietional peviods like sti—¥i and Fantasy

Cupports multiple types of troops or

Euvpm-{s add—on modules -Fcrr addiﬁln:mj'_

units that ave aame—speeilic.

campaians or battle stenarios.

Eath Bdme has 3 board, made wp of

The framework keeps up with whose turn

square tiles, eath with a fevrain type.

it is and toordinates basic movement.

Chapter 6

This all seems pretty arbitrary...

some of those features look just like
requirements. What's the big difference
between calling something a feature, and

T

calling something a requirement?

Don’t get hung up on the
“difference” between a
feature and a requirement.

Lot of people use “leature”™ to mean dillerent
things, so1t’s not a term vou should get oo
worked up about. For some people, a feature i a
requirement; and you'll even hear some people
say “leamre requirement,” which really can ger
confusing.

Chithers think of features as higher-level

than requirement, which 15 how we've been
talking about them. So it might take several
recuirements to satishy one feature of a svstem.

The main thing is that if vou're stuck on where
o get started, especially with a big praject, vou
can gather leatures (or requirements!) to get a

handle on the high-level things you know vou'll

need o take care of in the system you're bulding

It's OK if these aren't
the exact features
9ot, or if you had more
detailed things in this
.'|r£. These dre Ju!‘t
what we fame up with

Q: S0 there’s no difference batween a
feature and a requirement?

A: Weil, this really depends on who
you ask, For some people, a feature is a
“big” thing that a system does, fike “support
differant types of terrain.” But to put that
feature into place, there are |ofs of “small®
things that the system must do, like “defineg
a base terrain type” and “allow developers
to extend the base terrain type” and “allow
each tile to contain multiple terrain fypes,”
All of these little things are consideraed
requirements. So a single featurs is salisfied
by several requirements, like this:

Feature

Requirements

L)

Features are big Ehings”
Ehat lots of vequivemen
Lowbine to satis :

fre No

the N
Dumb Questions
- You said, “some people.” So there

are other ways to look at features and
requirements?

A: Right. A lot of other people don't
make such a distinclion betweaen a feature
and a requiremant. One feature might be
*supports different time periods” (which is a
pretty big thing}, and another might be “allow
for water as a type of terrain” (which s a
pretty small, specific thing). In this approach,
there's not really a big difference between
what a feature is and what a requirement is.
5o these people see things a lot more like
this:

Features

Requirements

In this approach,
there's a lot of
over|ap in what a
Feature is, and what

a r:qu'rrtmfn'!: it | he
two terms are move or
less interehangeable.

solving realfy big problems

Q,: So which is right?

+ Both! Or neither, if you prefer.
There's no “one right way" to think about
features and requirements, especially if you
don't want to waste lots of time arguing over
definitions with your programmer buddies.
You're better off thinking about both features
and requirements as the things your system
neads to do. If you want to consider features
the “big picture” things, and requirements the
*smaller, more detailed” things, that's OK...
just don't get into any barmoom fights aver it,
alright?

Can't we all just get along?

293

you are here »

no valua, no use case

OK, so we've got the feature and
requirement thing figured out. Now we can
write some use cases, right?

Use cases don’t always help
you see the big picture.

When vou start to write use cases, vou're
really getting into a lot of detail abour
what the system should do. The problem

15 that can cause you o lose sight ol the
big picture. In Gary's game system, we're
really not ready for a lot of decal... we're
just trving o Ggure out what the framework
actually is at this point.

So even though vou reedd start wiiting use
cases, that probably won't help vou lgure
ot exactly what vou're trying to buld,
from the big-picture point of view. When
vou're working on a system, is a good idea
to defer details as long as vou can... you
won't get caught up in che Gt hings when

Always de{ef vou should be working on the big things,
details as long

as you can.

RALN
QWEWwR

If we did write use cases for Gary's game
system, who would the actors be?

294 Chapter 6

solving really big problems

So what are we supposed to do now?
You've been telling us we need to know
what the system is supposed to do for like

200 pages now, and suddenly use cases
aren’t a good idea? What gives?

You still need to know
what your system is
supposed to do... but you
need a BIG-PICTURE view.

Even though use cases mighe be a licde woo
[ocused on the details for where we are in
dlesigning the svstem right now, you still
need o have o pood understanding of what
vour system needs o do. Sa vou need a
way to focus on the big picture, and hgure

out what your system should do, while sall
avodding getting i oo much degadl,

Ever hear that a picture is
worth a thousand words?

Let’s see if we can show what
the systew is supposed to do.

you are here » 295

from use cases to use case diagrams

Use case diagrams

Sometimes vou need to know what a system does,
bt don't want to wel into all the detail that use cases

require. When yvou're in a situation like this, a use case

diagram could be just what vou need:

This big boy Fepresents L.
.syiim. What's insid, the box
' the system; what's outsid
Lggs Lhe system G, the b ;
the system I:'ﬂhndir}l o

e

This stick JF'lgl.n': ie an
attor. e atks on the
S‘fsb'.rm whith n this tase

is the ‘33’""’ -?r&mtwnr'lf..

Game Designer

4

Rﬂ'l'\-l!h".i:crJ 'E.ht
ﬂf—{ﬂi“ on '!',his SYS{EM

5 3 game designer,

net a Bame HE.E'F

Create New Game

— Eath of

k"’--“ these ovals

/-' represents

a sihg,h: use
tase in the
S'}'!’.‘l‘_}!m.

Modify Existing Game

Deploy Game

\—//{—J

296 Chapter 6

1 be the most detailed
but i dells \fllm-
Fn_:_"‘ﬁg % imple, easy-
ina Lhe system needs Lo do, in 3 simP -
2 a:i ;maﬁuu eases ave muth mmﬁhdt':-‘all
m-'hl:’ccd, and dont help “you]_?'ug'ur: c-;{. e b
pitture ke 3 good use Lase diagram does-

[iaht no
This use Lase diagram w3
set ch bluc?r'm{s -For a S\;’S‘;cm.

solving really big problems

OK, this is just plain stupid. What
good does that diagram do us? Do we
really need to draw a picture to figure
out that game designers are going to
create and modify games?

Use case diagrams are the
blueprints for your system.
Eemember, our focus here is on the big
preture. That use case dingram may seem
sort of vague, but it does help vou keep

your eve on the fundametal chings cthat
vour svsterm st do, Withoue i, vou could
easily get so caught up in the details of how
a designer creates a new game that you
completely forget that thev need o actually
deplay that game, With 2 use case diagram,
vou'll never forget about the hig picture,

But what about all those
features we worked so hard to figure
out? They don't even show up on the
use case diagram!

Use your feature list to

make sure your use case
diagram is complete.

Onee vou have vour leatures and a use case
diagram, vou ran make sure you're building
a systerm that will do evervihing it needs w.
Take vour use case diagram, and make sure
that all the use cases vou listed will cover
all the features you got from the customer.
Then yvou'll know that your diagram—the
blueprines for your svstem—1is complete,
and vou can start building the system,

you are here » 297

map your feafures fo your use case diagram

Feature Magnets

It's time to match up the game framework's features to the use cases in your use
case diagram. Place the magnet for each feature on the use case that will handle
that feature. If your use case diagram is complete, then you should be able to
attach each feature magnet to a use case on your diagram. Good luck!

Here's our use Lase
diagram, the \:'lue,?'rl-h{
For our S'jsttw-- e

Modify Existing Game

Game Designer

Deploy Game !

Each feature
Hors! ! should be
Fr“ the list of sttathed to one
eatures we Came wp with of he use cases
back on page 292

in the 5‘;‘5*3:""

Gary's Game System Framework
Feature List

The framework supports

1. The framework supports different | i rrorent types of terrain.

types of terrain.

2. The framework supports different 1l
periods, Including fietional periods flk

The framework suppeorts

sl and fantasy. different time pericds.
8 The framework supports woltiple - =
types of froops or units that are game The f._amewc-r.k supports
specific. multiple unit types.
4 The framework supports add-on

The framework supports
modules for additional campaigmsor | . o R
battle scenarios. s— -

W
5. The framework provides a board wmade | 11, o framework provides a 8
- - - — F'Ea,
::mnfrzﬁﬁﬁhundmhtﬂnhan board made up of tiles, each ture magnets

6 The f i kceeps wp with whoss with a terrain type.
turnit is. and eoordinates basio
movement.

The framework keeps up
with whose turn it is, and
coordinates basic movement.

298 Chapter 6

thereyare no

Dum

Q,: So an actor is a person that uses the system?

+ An actor is actually any external entity (it doesn’t have to be
a person) that interacts with the system. So in a cagh machine, you'd
obwviously have a person that uses the system as an actor, but you
might alsa have the bank as an actor, bacause it deposils maney in
the system. If it's not part of the system but acts on the system, it's
an actor,

Q: What's the box around everything for? And why are the
actors outside of the box?

A: The box shows the boundaries of the system. 5o you have lo
code up everything inside the box, but you don't have to worry about
the stuff oufside the box. The actors—the game designers using your
framework—are outside of the box because they use your system;
they're not part of it.

Q:

A: Right. That's part of why use case diagrams are great for
gefting a handle on the big picture: they can show you multiple use
cases, and how all those use cases work together to do really big
tasks, It also helps you avoid getting into details about a particular
requirement too early (like now, when you should be worrying about
the overall system design).

And each circle is a use case?

features to a use case...

Questions

Thanks for all the info, but can we get
back to that Feature Magnets exercise?
I'm stuck trying to match one of the

solving realfy big problems

Q,: I've seen use case diagrams with lines marked with
<<include>> and <<extend>>. What's that about?

« UML and use case diagrams do define ways to specify
what kind of relationships exist between use cases. So you
could say that cne use case includes another, or that one use
case extends anaother, That's what the <<include>>and
<<extend>> keywords mean.

However, it's easy to spend a lot of time arguing over whether a
use case extends this use case, or includes that ane, And suddenly,
you're spending your ime on how a tile can support mountaing or
units need to carry a backpack, instead of focusing on the bigger
picture, You can use <<include>> and <<extend>>, bui

it's really not that big of a deal, and those keywords should peyer
distract from the overall design process.

-+ S0 use case diagrams are more about a general picture
of the system than including lots of little details?

» Now you've got it! If you're worrying too much about
what to call a use case, or whether you should use a particular
relationzhip between use cases, you've lost sight of the big picture.
Use your use case diagrams to get a clear 10,000-foct view of your
system, nothing more.

you are here » 299

we have a feature problem Well, i’ 3

/ Solution £h:c :::i:? fione”

=51 Feature Magnets Solutions

|- Bl It's time to match up the game framework's features to the use cases
in your use case diagram, Were you able to find a use case for each Almost all of 4 L
feature in the game framework? have {, > with € Teature,
I
" 3 game

The framework provides :
board made up of tile
with a terrain Type.

different types of terrain.
SEWO TR SUpparts
Create New Game |different time periods.

The framework supports
multiple unit types.

The framework supports
add-on modules,

Modify Existing Game

B

\fra.l- tould also have
Degloying th o i vk mast of thest
piece :F 1h c ﬂs:t ' 3n important %Eaﬂ“s 2 M“?i!r:t
ﬂ,.: fru{a = sy. Jl'n, Fven thﬂugh E.r(ls‘{;ihﬁ ﬁa.mtu v
h mer didn't mention s Ehey all zan be par
eatures related spg,f.i.fi‘-_a”? to it oFa redesign, too

But there’s one feature still left...
Whﬂ‘[‘ i.I'|J Wﬂh ‘rhaﬂ The framework keeps up

with whose turn it is, and
coordinates basic movement.

There's probably one feature you had some

trouble placing on the use case diagram.
Think abour this feature carefullyv: it’s really
nod something the game designer directly

interacts with or worries about, because the We know this is 3
functionality is already taken care of, featuve, but why e
. . 5o E L WE & Pha
S0 how is this feature related to the system? doesn bitha v

- ?
i : e vints®
And what actors are involved? And are we i our bluep
missing some use cases i our diagram?

What do you think?

300 Chapter 6

The Little Actor

solving really big problems

A small Socratic exercise in the style of The Little Lisper

What system are you designing?

A game framework, duh!

So what s the point ol the ramework?

To let game designers build games.

Bo the game designer is an actor on the system?

Yes. I've gor that in my use case diagram,

And whar does the game designer do with the
framework?

Design games. 1 thought we established that!

Is the rame the same as the framework?

Well, no, [suppose not.

Why not?

The game is complete, and vou can actually
play it. All the framework provides is a
[oundaton for the game o be bailt on.

So the framework 1s a set of wols for the
game designer?

Mo, it's more than that, 1 mean, the feawre
I'm stuck on is something the framework
handles for each individual garme, 5o 1t
more than just tools for the designer.

Interesting, 50 the framework is part ol the game,

then?

Well, T guess so. But ics like a lower level,
like it just provides some basic services to the
game. The game sort of sies on wp of the
framework.

So the game actually uses the famework?

Yes, exactly

Then the game actually uses the svstem you're
builcling?

Right, that’s just what 1 said. Oh, wait...
then...

Al the game uses the svstem, what 1s 1t?

An actor! The game is an actor!

you are here »

301

acfors aren’t always people

Actors are people, foo
(well, not always)

Lt turns out that in addition to the game designer,
the game itsell is an actor on the framework von're
building, Let’s see how we can add a new actor 1o our

use case diagram: ————m—m—o—ou

e

W{"\lf addtd a new

Create New Game

o

Game Designer
Modify Exisling Game

Units
Vi N

2ecor, for the Gadme
(whih the dfii‘ﬂhcr
cr{ﬂft&, usihﬂ 'H‘H:'
framework).

> X
2

The Game
=

Create Board

Rtmcmhtr.l ;t_-l:;.a»\’s
don't have to be
people... here, the

il .I-l\'lfﬁrﬂ't‘hi

V4

Heve are 3 ;gw o-‘: Ehﬂ

things that the game uses
+he 3Fnrev.ur--cwo.«:m-ht te de.

Do these new use cases
take care of the feature we
couldn’t find a place for?

wikh our E‘Fbﬂ“
These l'.?t:t'.nm!.' additional
usa:tcascs that our
system will need 45
Perform to be tomplete.

The

with whose turn

framework Kesps

S

it is,

up
and

coordinates basic movemeant.

302 Chapter 6

solving really big problems

Use case diagram... check!
Features covered... check!

With a new actor in place, we can finally take our use
case diagrams and ouwr features, and maich them all up,

Game Designer

-

Mest of the
Ceabures velate

ko what the aame
dcsiaht'r does with
+he «Frimtwk-

The framework provides a different £i
board made up of til

with a terrain type.

The framework supports

riods.

The framework SupporLTE
diffarent types of terrain.

Heve's our new attor,
the game, whith also
wses the Lramewark

multiple unit types.

Create New Gamea
i .

The framework supports

dwring aameplay

The framework supparts R
2dd-on modules,

Create Board

Modify Existing Game

Move Units

The framswork keeps up

With whose turn it is, apd

coordinates ba

The Game

sic mowament .

Add/Remove
LInits

Deploy Game

The new wse Lases
assotiated with the
aamc takf, Lare ﬂ"F
the feature we had
frouble with earlier.

Your pencil

That last feature is still a little funny... —————=

L

T heh frameworj keeps up

Wit ie -t
whoge Surn it is, and

ovement

-90rdinates hggie
The second part of that last feature, about movement, fits in with the “Mave Un

case... but what about keeping up with whose turm it is to move? It seems like there's
something still missing from our use case diagram. It's yvour job to figure out two things:

1. Who is the actor on “The framework keeps up with whose tum it 157"

2. What use case would you add to support this partial featura? :

diagyam

you are here » 303

completing the use case diagram

ha F
T..l—'_ Lramework keeps up
Wi it {
th whose turn it jg and
’ T &,

Coordinates basies Movemnsnt
1 I nt.,

That last feature is still a little funny... e

The second part of that last feature, about movement, fits in with the “Move Units" use
case.., but what about keeping up with whose turn it is to move? It seems like there's
something still missing on our use case diagram. It's your job to figure out two things:

1. Who is the actor on "The framework keeps up with whose turn it is?"
The game is still the actor.. it’s using the framework to
handle managing whose turn it is.

2. What use case would you add to support this partial feature?
We need a use case for “Take Turn” where the framework
handles basie turn duties, and lets the custom aame handle
the specifics of that process.

The “Take Torn” use f3se
tets us know that fhe
Gdme needs 1, handle
S-based duties

Create Board
-‘

The Eramework keeps up

with wheose turn 1t is.

We also broke
up that one

Feature imto
bwo separate

Features.

The framework supparks
different ti frricds .

The framework provides a
board made up of til
with a terrain TLype.

The framewcork suppoits
different types of terrain.

Create Mew Game
The frpamework supports | 8
multiple unit eypes.

q

The framewcrk supports
add-on modules,

Game Designer

Modify Existing Gama

The framewcrk coordinates
basic mevement

The Game

Deploy Game

304 Chapter 6

So what exactly have we done?

You've got a list of features that Garv's game svstem
framework needs to SUpport, and that tells you all the
major pieces of the system you need to build. This is
a lot like the requirements list you built way back in
Chapter 2 for Todd and Gina’s dog door.,, except it
lncuses on the big picture.

Use a feature or requirement list to
capture the BIG THINGS that your
system needs to do.

Chnee vou've got vour leatures and requirements
mapped out, you need to get a basic idea of how the
system is going o be put together, Use cases are often
too detailed at this stage, so a use case diagram can help
vou see what a system is like at LD feet... kind of like
i l:lui'p:'il'l[for Vour ill’}!:]ii.('}llil“l.

Draw a use case diagram to show
what your system IS without getting
into unnecessary detail.

solving realfy big problems

J_I ')
ere's our -Fc&"f:u'r'f list... the
s*j.rsf'..:m has 45 de these thin

I

Gary’s Game System Framework
Feature List o

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like
sei-fi and fantasy.

3. The framework supports multiple
types of troops or units that are game-
speeific.

4. The framework supports add-om
modules for additional campaigns or
battle seenarios.

3. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turn it is.

7 The framework coordinates basic
movement,

Game Desigl‘k

/?

pie LASE

feve's our 3
diaram- 'I;"I'-_ns [H
Lhe Inlut?fmt o
our System

Deploy Game

Create New Game
Madify Existing Game

Create Board

The Game

Add/Remove
Units

you are here » 305

speaking the customer’s language

Cubicle Conversation

Isn't it about time we started
actually talking about code? I mean, I get
that we need a feature list, and use case

diagrams, and all that, but at some point
we have to actually build something,
you know?

Frank: | don't know, Jim. I think we fare been mlking about code,
Jim: How do vou fgure thac? T mean, what line of code 13
“framewaork supports dilferent types of errain” really going to wrn

into?

Frank: You're talking about those features we figured our, righe?

Well. that's not just one line of code, but it certainly is a big chunk of

code, rght?

Jim: Sure., but when do we get to talk about whar classes we need

to write, and the packages we put those classes into?

Frank: We're gewing o that, definitely, But the customer really

(] > doesn’t understand what most of that stuff means. .. we'd never be
e o sure we were bulding the right thing il we started talking about
rank classes and variahles.

Jim: What about class diagrams? We could use those to show what

Dm:nain analysis we're going o code, couldn’t we?

Frank: Well, we could... but do you think the customer would

le‘ts yﬂu EIIEEI(understand that much bewer? That's really what domain analvsis is

all abour. We can calk wo the customer about their system, in terms
that they understand. For Gary, that means walking about unics, and

yﬂur ‘:[E‘s-igﬂs'r H.IICI terrain, and dles, instead of classes, objects, and methods,
still spe ak the

customer’s language.

306 Chaptler 6

solving realfy big problems

Let’s do a little domain analysis!

Lets put all these things we've figured out about the pame system
iug.;’i'[hﬂ', in a way lh;:l_ {i:u"y, O CUSTOIMeT, will a1L'[i|al]|j. I,II'I1'|I'I'H|,:l|'H'|..
This is a process called domain analysis, and just means that we're
deseribing a problem using terms the customer will understand.

Tl'lf dm'n |'IEH:'

iz ﬂ.ﬂmc !I:f'stffhs-

These F:ﬂ*ﬁﬁi ih: Gary’s bame S?stgm Framework 4—)
wsing tevms Feature List

uhdc"'f‘-ha“ds'
tustome 1. The framework supports different m
types of terrain.

2. The framework supports different time
periods, including fictional periods likea %
sei-fiand fantasy. l !.' 4:(.'

. The framework supports multiple
types of troops or units that are game-
& specific.
4 The framework supports add-on
modules for additional campaigns or

battle scenarios.
5. The framework provides a board made
Leakuve Vst © up of square tiles, and each tile has a
vie wihole Ked T © it terrain type.
! EEDW of 3_'&5_* f‘uih B, The framework keeps up with whose
?.kc we ve oeer doind turnitis.
1 lier ehapter 7 The framework coordinates basie
e movement.

the
~Scholar’s Corner

domain aha|'rsis. The protess of id.:n{if_iing, eollecting,
organizing, and rtﬂtsenﬁmg the relevant in-?armaﬁ@-. of a
domain, based upon the S‘E.ud‘]l' o-F c‘f-iﬂjhﬁ 5'}:5‘!:&1-'5 and

their development histories, knawlcdg,: taptured from
domain experts, underlying theory, and emerging
£eﬁhnu|ng}' within 3 domain.

you are here » 307

averyone loves a happy customer

What wost people give the customer...

Unit

type: String
properties: Map
selType(String)
getTypel): String
setProperty(Stringf
getF’mp-erty(Elrin

These are ¢lass and package diagrams,
‘?l-m:iJ code—level details about how
you'll build ﬁarf: game Framework.

What we're giving the customer...

tem Framework
Featwre List

Bary’

1. The framework supports differont
types of ferrain.
2, The framework supports dif ferant ime
perinds, ineluding fietional periods
946

sai-fl and fantazy l
The framework supports muitiple
tiypea of troops or snifs that are game-

e epecfie.

4 The framework sugports add-oi
modules for additional canipaigiz or
batthe seemarios.

5. The framework provides a board made
up of square tiles, and each file has &
terrain type.

6. The framework keeps up with whose
fwrn It s.

7 The framewnork coordinates basic
nedvesent.

Owr Jlr"tﬂ'ﬂ',urc
list, in language
+_hlt tustomer

308 understande.

Chapter 6

What the heck is this? I have no
idea if this is what T want,

Very cooll That's exactly what T
want the system fo do.

Gavy's Wl
betause hes not 3

o L

ﬁ'ﬂl"_‘i__"ﬂ"_"iac—

Gary's thrilled, betause he
uhdﬂri‘hﬂhd wha*l:, "f'i'.‘l‘.l- Ye
bwilding, and knows it will de
what he wants it to do

solving really big problems

Now divide and conquer

With the customer onboard, and a nice completed set

of IJIui_‘E}]'iE'l[N._ ':,'ull'r‘c: |‘L"r1r|,'|'§. To sTart]II'I"'EI:k;'I'.I;I.{ Uy Vour |:|ilq
problem into different pieces of functionality—and then
vou can use what vou've learned already to tackle each of

those pieces of functionality, one at a time, Time Peri Qdﬁ

We may not need to do
II-'I'm--.:J!x a \'m'ﬁh d"awi"ﬁ Dﬁ; /-’ much here.., as HIZ a5 we
some of the tort 'lf*arf-‘» .&ummn different terrains, .
unit types, and weapons, this

e aome Eramevork
should come naturally,

— =

L]
Tiles
The framework needs to
hirve a basic tile, and each
tile should be able 1o support
terrain types, units, and
probably handle battles, too.

e
b
ol
Units
\"wlm.wll;t Way to represent i Terrain Types
Brasic unit, and]ﬂllhl- T : Each tile should support at
designers extend that to create [R L
- east one terrain type, and
game-specific units, ?ﬁ game designers should be able
//71 to create and use thelr own
We 2an bregl the Jarae CUstoNm terrain types, from grass
dmework down ihﬁ,ﬁsﬂﬂm to lakes w asteriod dunes,

5
maller, more marageable, pieges

you are here » 309

breaking up the big problem

~The Big Break-Up

It's time to break up our big problem—Gary's game framework—into lots of smaller
pieces of functionality. You've already seen how we can divide the game and its features
into some basic groups of functionality, so you're already well on your way.

Bary's Game System Framework

specifie.

terrain Type.
turn it is.

movenent.

—

You need to address all the
Features in the sy&{zm.

35 well 35 Lhe
Fuhctionafity laid out in
Your use ¢35 dia-ﬁerm.

Y
Game D&signer\
- W

Feature List

1. The framework supports dif ferent
types of ferrain.

2. The framewnrk supports dif ferent Time
peripds, incleding fictional periods ke
sci-fi and fanfay

3 The framework supparts wmultiple
types of troops or wnits that are game-

4 The framework supports add-on
wodules for additlonal campaigns or
battle scenarios,

5 The framework provides a board made
up of sguare tiles. and each tile has a
6, The framewori keeps up with whose

T The framework eoordinates kasie

310 Chapter 6

Below are the features and diagrams we've been using throughout this chapter to show
what Gary's system needs to do. You need to look at these, and figure out what modules
you want to use to handle all this functionality, and how you want to split the features

and requirements up. Make sure your modules cover everything you think the game
framework will need to da!

Here's Lhe §dme board {o
reming You of Some of

the rna%m- areas to forus
on-.. by remember, this

isn't e'-'crﬁl.,ihﬂ.'

Muodify Existing Gama

Creale Board

Add/Remove
Urits

The Gamsa

solving really big problems

We've added a “Units" module
to get You stavted. This would
be where ¢lasses vepresenting
troops, armies, and velated
Fuh{‘.tiahafi'f:}r would go.

,,.,g.du].t;
Fo o o Dt

module should totus er

\

You tan add more modules if you
need, or use less modules than we've
provided. [+'s all up to ';rou"

We have BIG problems,
and I just can't handle them. It's
time to break up.

you are here » 311

fots of small problems

Our Big Break-Up

Here's what we did to handle all the features of Gary's
system, and to break the big problem up into several
smaller, more manageable pieces of functionality.

The bl:'éh‘d module
handles the bﬂﬂrd
ikself, diles, tervain, and
other tlasses velated

1o ereating the actual
board used in each Bame.

-

”

This takes tare of

'h:lr Armits i"t Lhest bj‘]Jﬂ have a H‘ﬂd‘l.l‘ﬁ :Iuﬁ
M?S i i “
1] d d- d

for tevrain, or tiles, sinte there

| |d enly be ene or $wo c'la_sscs in
e I::Er_ ::3-.-\:5. |nstead, we bied that
3“ 'ul'.‘l:ﬂ' ‘H‘l[Erﬂa'rd mﬂd.u‘t.
Wt‘h: uSin a('
i hasi5 Game module 4,

£ Elasses that 5

; be

:dihdcd b}r d¢5i5n¢|r-s. Th:se

oy :b'in. the time Feriod of th

ahdz snlt Properties of the ;

b :gihrza else that teds Fﬂf:cr /ﬂ

[ELure D_{' : >
edth game. [F's always a good idea to have 3 Ukilikies

odule, £o store tools and helper elasses
that ave shaved atvross maodules.

There’s no single RIGHT

Re]ib{ answer to this exercise!

It's OK if vour answers don’t match up
Heve's where we Can handle the turns of :

i - with ours exactly. There are lows of ways
i movement, and anything : : c !
eath ?hl?‘”‘ ::T m_ " :“E Mh:ltf ; tor dlesign a svstem, and this 15 just the one we chose,
m s . ;
else velated p rt?' 3 Ea the “brakfic ¢ What you do need to worry about is that you've covered
; ; is sor : i 2 ¥

oin -fTh’J:'I:“n e that designers eveate. t o all the features and use cases with your design, and that

top” for the games that :

it makes sense.., you don’t want a module o have jusi

312

one class in it, or one that will have one or two hundred.

FERAEEEEaAE R AHEERAEE AL FEBRA+EET FEEEEAA R RS EEE A FEAAAEEE 4 FERIFEE B RE A EEE

Chapter 6

solving really big problems

Dude, this game is gonna SUCK!
You don't even have a graphics package...

even if it's not all fancy, I've gotta at
least be able to see the freaking board
and units.

Pon’t forget who your
custowmer really is

It might seem like Tony has a good point... until you
remember who the customer for Gary's game system
framework really is. Your job is toowrite a framework
for game designers, not to create actual games. Every
wame’s user interface will be different, so it's up w the
game designer o take care of graphics, not you.

Domain analysis helps you avoid
building parts of a system that
aren’t your job to build.,

T:rmf’ may krow a let about what
makes For a killer game, but

he's not your tustomer:

= This is something
'H'Iﬂf 'Ehe ﬂaME
dfhﬂhﬂ mld

treate.. it's not
Your "CS‘FDMlb-Ii-ET_

B AT VTERNS
PLOZZ\E

Take a close look at the modules and groupings in the
game system framework, Do you recognize a commaonly
used design pattern?

‘I"T:'n!'s a himt: -Fn'r You Head
Furst Desion Patterns readers.

you are here » 313

model-view-controller

You know, once the game designer
adds in a Graphics module, this looks an
awful lot like the Model-View-Controller

pattern.

Most people veker o this
3¢ the MyC ?&{L{Yh.

It's the Model-View-Controller Pattern!

Heve's $he 8ame
tontroller that we've
Baing 1o write. I+
handles basie turns
and ‘Fig]wrinﬁ out what
needs to happen with
boards, wnits, ete.

Uniks modules

The Board and ¥
ok of the model
i:{; ir:dzq hat's actually

happening in the 32

miE-

s fj‘rﬂ ”JB i
?:w, addind ‘:.'jﬁ'?hms I_me h?._-:,ds : iy o ﬁﬁ;teﬁ Game dff‘"ﬁ"‘:':':
e Eﬂht Ene 1 Stare amﬂfrgg ‘“wmnﬂ"i pan extend This .
b wegy The module with +heir
wodel 5 own 83me—speCitic
?]Ia‘fﬂ#;'h.m‘fl' gontreller, but
somt this module 8 shill
the basit dgme
tontroller:

- These veally don't kit
into the MVC ?ﬁw“'
bt -I:;hc\f]'rc still ?arrlt-
of the system.

314 Chapter &

solving realfy big problems

What's a design pattern?
And how do | use one?

We've all used oll-the-shell” ibraries and hameworks. We take them, write some code against their APTs,
compile them into our programs, and benefit from a lot of code someone else has written, Think about
the Java APLs and all the funcoonalicy they give vou: neowork, GUILL 10O, ete. Libraries and frameworks go
along way towanrds a development model where we can just pick and choose components and plug them
right in. But... they don’t help us structure our own applications in ways that are easier to understand, more
maintainable and Qexable. Thats where Desizn Patterns come in.

Diesion patterns don't go directly into vour code, they first zo into your BRAIN, A design paciern is just

a way to design the solution for a particular tvpe of problem. Once vou've loaded vour hrain with a good
working knowledge of patterns, you can then stare w apply them w vour new designs, and rework vour old
code when vou find iCs degrading inwo an inflexible mess of jungle spaghei code,

fq' L:ll.lhﬂ-l'l -a-F Fattfl‘ni

Design Patterns

s s e
R

; nid 3
n find Lhis Fao5 ’
P mlnll:. move detail on ¥
ps ave and hov

you are here » 315

confused about design patterns?

I haven't read Head First Design
Patterns, and I'm still a bit fuzzy on
exactly what a design pattern even is.
What should T do?

Keep going! Design
patterns are one of the
last steps of design.

used OO principles like encapsulation
and delegation to make vour software

add just that extra bit of Qexibility 1o

through this book, and get a handle
on really solid design, Then, we'd

recommend you pick up Head First
Design Patterns, and see how other

Is OK if you're not familiar with design
patterns. Design pacterns help vou ke
those last steps of design—once you've

flexible, a well-chosen design patern can

vour design, and save vou some tme, (oo,

But its no big deal it you're not familiar
with design patterns, You can still work

peaple have been handling some classic
design problems, and learn from them,

316 Chapter &

Feeling a little bit lost?

We've done a lot of things in this chapter, and some of
them don't even seem to be related. ..

=* Crathering features

=* Domain analysis

=* Breaking Gary’s svstem into modules

=* Figuring out CGary's system uses the MVO pattern,

But how does any of this really help
us solve BIG problems?

Remember, the whole point of all this was to get a
handle on how to deal with really large applications
like Gary's game system framework—that involve a log

maore than some basic design and programming,

But here’s the big secret: you've
already done everything you need to
handle Gary’s BIG problem.

OK, T must have missed that. Can
you let me in on what T missed?

salving really big problems

you are here »

317

you know how to solve small problems

The power of 00A&D
(and a little common sense)

We started out with

we knew what we
{-hl! rﬂthcr wﬂﬂUE_. Onte we Kntw W

— Games _. ; : weve building, we treated 3
. Gary's 13 ff:{;ﬂiﬂ:lnﬁl wsizf, use tase diagram to 'h,:'|? s
|..n-n":n--.pua.u.-nl.---wul\.-_lhunr-l-:F:""'":'_'_I'fl mERT- Now }'i't‘l: 4 -Eh.g ,b;l sebure:
;T-L;:.T.;::-Tl:r.rhf:i;:.':::;::ﬁrf.m--r-.u-‘--- 4 BJ& Hﬂblfm. U“d'crﬂ:‘ar' "E'r ?

plwrs, e gams wtl Bt o b taand dhotade of -un.m:wl
it Ui Tpmiessvek prowidea e Iwakborping deralls g L
mgkfug 4 pariculal gane ces sl pepniscing the buoden of s iig
arpecipine: brks froen e gams rlesigne
i e i of dlial

The gamec mieti irare gk [LF3F) il prewvid e (he porr 1‘ o
Vi iamrs iy weill b vl wn Berary of claves wil i e
et A1tk ir--m-u..H-In..ln-a.--h.a.nr.{-u-l-fuml :
et i i ue eerguer, Tl Eramart ill e bl samser
ragpedvilirics o

* (hefaig el prpmosrnamg ¢ ol rondigaation

= defiming v sl conligurTieg ST oy cther Fghtimg e

LT sis i e bl

® dhiraiingg kgl AT

8]

= crardmeiig bt
4 precidung anit krmse

Thar G35 sall sy 1 sk o ke wrbrqang & Lrm-lwse il sEAOE
iascardl g = ahaat the s o ihe ST bk fhew Tarer 10

by b araal e !

o We listened to the customer.

[|
¥

© We drew up blueprints for
the system we're building.

Bary’s Game System Framework
Featore List

L The framewark supports different
types of terrain.

2. The framework supports different time
periods, ineluding fiotional periads like
sei-fi and famtagy

% The frameworlc supports multiple
typex of froops or units that are game-
speeifle.

4 The framework supports add-on
modules for addifional campaigns or

battle soanarios. """-)

§. The framework provides a board i 515, WE
up of square les, and each Hiehas s ol m:f stand
ferndnt'ng. ma¢¢ suvre wE Wnier 14l
6. The framework keeps up with whose what Gary wanted his

turn it ls, 51'5{:13"' to de.
7 The framewnrk coordinates basie
HiowEment.

© We made sure we
understood the system.

318 Chapter 6

With 2 blue
Ilvst in hahd.

to bregk up
into lots of

individual £

Brint and ‘F-:a{;urq solving really big problems

WE wére ﬂiﬂf{'
ﬁﬂﬂrfs h'el app
smaller Fi,_-,:_ﬂ D-F
ﬂﬁiianality.

We even took a design

pattern that we alveady

\-ndl!'rstﬂ'nd; ard EI-?IF]lEd

0 We broke the big problem up into 1 4o our 5\;5{:,,,_
smaller pieces of functionality.

/

Look! You already know how to
solve these smaller problems, using
everything you've already learned
about analysis and design...

...ahd you can even figure out

how to apply the MVC pattern

. : We apply design patterns to help
from Head First Design Patterns. o us solve the smaller problems.

Congrafulations!
You've turned 3 BIG PROBLEM

info a bunch of swatiez prostews that you
already know how o solve.

you are here » 319

ooa&d toolbox

Tools for your 00AZD Toolbox

You've taken on a huge problem, and you're still
standing! Review some of the things you've learned
about handling big problems, and then you're ready
for the return of the ODA&D crossword puzzile.

%. BULLET POINTY e o —

&
e -Fn--L-II. T 3
Reaw5 =57 Solving Big Problems
ol
L i I,l"."gll.'c ﬂa‘l: d whnl.c new
Good veau Listen fo the hsl:mve{: }::1 Figure out Labeneg o tachnnes
works like ¥ Well-designed what they want you e M-]Ea;hti about in
nd estond | oy together a Feature list, in language e i
e e bishomer sndevabinds
by developi Use basic 00 the i
and inheritar hak th
Use your v e Llevible Make ttamizi? MEE :]
Lhinas Your tustom SR
Vi vl 64 i 2 95997 ¥ Create blueprints of the system using use 00 P""""—'PICS
our W 4
or missing \ E:s Hi:';rh;; Lase diagram Eand usg .:as::l Ehga'psuraf: what vavies.
s Break the big system up into lots of Code to an intevface vather
: Make sure <f smaller settions. than to an imFl:mzh‘Ea'l:ign.
‘ﬁ"IrWr ﬂﬁ_ul’ﬁ eath ch \’:;m' E_a | . , |
grow) over| ONE THING Apply desi patterns to the smallev th tlass in your application
ﬂl- i P should have only one reason to
Always strive seetions 1 thange.
move throud 4o basie OOAED printiples to design an oo 0 o0 bk bebavier and
lifeeyele tode eath smaller settion. Lunchionali ty.

The best way to look at a big problem is to view it as a
collection of smaller problems.

Just like in small projects, start working on big projects
by gathering features and requirements.

Features are usually “big” things that a system does,

but also can be used interchangeably with the term
“requirements.”

Commonality and variability give you points of

comparison between a new system and things you
already know about.

Use cases are detail-oriented; use case diagrams are
focused more on the big picture.

Your use case diagram should account for all the
features in your system.

Domain analysis is representing a system in language
that the customer will undersiand.

An actor is anything that interacts with your system, but
isn't part of the system.

320

Chapler 6

solving really big problems

OO0AGD Cross S Thiaha i

their language (2 words)
It's time for another left-brain workout. 3. You can use your feature list to make sure
Below is a puzzle with lots of blank ‘_l'wruﬂmdiulgm:"iihi:. .
sqaures; to the right are some clues. You 5-”"1“’“"“”"'“?"‘"”‘““‘"“":2
know what to do, so go for it! 7. These aren't dhviaya people.

B. A feature isa ___ ___ description of

something a system needs to do (2 words)
10. Art Vandelay's “real® last name

12. A use case diagrom acts as this for your
system.

14. You can figure out these based on your
features.

16. This iz the measure of how things are
similar.

Bown

1. An oval in a use case diagram represents one
of these.

2. We applied ones of these to your Gary's

framework,

4, The measure of how things are different.

6. You should sclve a big problem by doing this

ta it (3 words)

8. You can figure out a system's features by
to the customer.

11. Yeu solve big preblems the _____ __ yeu

solve small problems (2 words).

13, Defer these as long as possible.

15, He wasn't the customer.

you are here » 321

crossword solutions

v
DOMAINANALY SIS

Emnanﬂmﬂ_
oHODBEENnE D |

_ EEHEEB
mnammmmﬂg

10’5 T ANZ
Al K

322 Chapter 6

7 architecture

Bringing Order to Chaos

OK, T've got these blueprints
now, but I'm still not sure how the
whatchamacallit connects to the

thingamajiggy.

You have to start somewhere, but you better pick the
right somewhere! You know how to break your application up into lots of

small problems, but all that means is that you have LOTS of small problems. In

this chapter, we're going to help you figure out where to start, and make sure
that you don't waste any time working on the wrong things. It's time to take all
those little pieces laying arcund your workspace, and figure out how to turn

them into a well-ordered, well-designed application. Along the way, you'll leam
about the all-important 3 Qs of architecture, and how Risk is a lot more than just

a cool war game from the ‘80s.

this is a new chapter 323

where do we start?

Feeling a little overwhelmed?

So vou've ot lots of small pieces of funcaonality that vou know
how 1o take care of,., but f.'nl_l"a.'ﬁ' also O U5e case f|i:1gr‘.=1l'|'|.~i,
feature lists, and a whole lot of other things to think about.

324

Gary's bam fem
Feature List

1, The framewark supports different
types of terrain. |

work su g dif ferent fime

2' ﬂ“ﬁﬂm mﬁmﬂ periods like
sei-fi and fantasy.

3 The framework supports multiple
types of froops or unifs that are game-
specifie.

4 The framework supports add-on
wodules for additional campaigns or
battle seenarios. =

Framework provides a board
’ ?:uf square tiles, and each tile hasa

OK, even if T do know how to
ferrain type. handle all these individual pieces, where
6. The framework keeps up with whose the heck am I supposed fo start? Can
turn it is. - you at least tell me what to do
7 The framework coordinates basie FIRST?
movement.

We have feature lists...

Chapter 7

_..individual modules to code...

Remember cur

o ammer -ftithd? ,_..--""F

Heve's how we leF4 him
b:r&t.k " Cha?ix‘r b,

architecture

Vision Statement

Llandh ey jwwss iekew Franmeneds dal e desgien van i b
v bt unogy ganes, Uni L

— Gary's Games— —.

Seactics, Chur ek procde dire b, Db
Iruibling s pursindar gimy vehl while weiviming ihe b of conding
Trpwan ks vy we g [
= uild... Ve urte wpantn farmssisth, K50 will rrmih. e esee o ol

-.high-level views of what we need to b Gy e e e e o ol
delivend AP ki dasniel bie siaale B il baxad g el ooinern
g b within b o e Samook wil Foom il anadagy|
copabilisiee b

= Dkfining s v Ty hesnd configeraiion

* Dty Uimos el cornllgrarinig armbes oor silus Babeing uins
* Mlirting niis oy v B

* Diricrmsiibig bgal imees

* Conabis g baii ks

* Prowiding usit ibrranarey

T GSF vl simpify thie fak oo becloping - bosses ey
Fesard garmes s tluat b s e TS F ran devoie ek i in

et ihe sl @ 1 ’

--.the customer's vision...

REHEMN
QWEW

Do you think it matters what you should try to do first? If
you do, why? And what would you work on first?

you are here » 325

the power of architecture

We need an architecture

It's really not enough to just fizure out the individual pieces of a
iji_gl |m|I-I:-m. You also need to know a livde bt about how those
pieces fit together, and which ones might be more important than
others: that wang yvou'll know what vou should work on i,

We alveady knew this. i)
:‘;.:'hl{xﬂfl’c helps us Archltthure is your

design Ehese big systems.

. design structure,
and highlights the e o,

how de we

- 'rrg,un_- out

most important - - -
1rm -AnT, 50

we Lan build

parts of your app, and the ifffjpﬁags;r
oo, — relationships

dl&aré Was
oM was tha
start of this, byt

L5 il pregy " between those parts.

: Al Ehis 15 'Pa'r{'.if.ul.arhf'
U'H':lEﬂlr'] :

important when 1:,l-:u.x"rn: working
with other Programmers... fou
have 4.'.0 .aIl undcrﬂ-l:jhd the
same avthitelture

“Schelar’s Corner .

architecture. Avehitecture is the organizational strutture
of a sjfs{;:m, 'mc]uding its dcf.nm?o:-]{ion into ?ar{:s, their
C-OthC.‘EIU't‘ET, interaction mechanisms, and the quiding

& P\"'mtl?lﬂs and detisions that You use in the dCSii‘!}h
: Q-l: a s\fsjccm,

how af| the

™ u|IC5 '"tﬂ'ﬂi_‘:{:_

326 Chapter 7

architecture

Architecture takes a big chaotic mess...

I have ne clue what to
2 o do with all of this stuff.

E-v:'r get this -chmﬁ
You've got: lots of
lrnfarﬁ'jwl; dlﬂ-arans and ﬁ
plans, but everything is
1}q.i!J: a 'h-.uac mess.

T]EESE ri;b and
shold hel, bt g

but it's har
knaw how it I Fils ;gf{:f‘;l‘

Al the

d.aar&mi and
abterns are

us:d Lo build

I : 7 the tustomer

Wow... now I see how
it all fits together! exattly what
they want, all
wI‘H‘I“‘\ a [exible,
reusable d'ﬁ'ﬁ“

you are here » azy

we're still building great software

You write great software the same
way, whether you’re working on a
small project, or a huge one. You can
still apply the three steps we talked
about way back in Chapter 1.

Remember Lhis Page from the

Fivst
haptev? These 3 sheps appl
bulrdlnﬂ great Bl m‘r{-,war:,y{on-

/

We know that these three —_—
steps will help us +ackle eath ok
$hese individual pieces of the

game system Framework.

to doy
wants an aFY
t ko dd—_gi'.s a'u-wt

£ the aPT:

{}\g tu*i{ﬂ"‘ﬂ
bekore we 3€%
tne atkval destn ©

328 Chapter T

L L T

breat software in 3 gasy steps

‘\H.\-n--i detm ATy == i

el b e ‘-'”:‘:r‘:i

1. Make sure your b T
software does what the

customer wants it to do. — ——

00 Prinriplﬂ to
.::"* add Huibi[ity.

B

'-_"'""' LT -

he dary

el & do-!?;::-:'r "
FIRET

e g sal by saerbs, o
e hird b emeotr depheats
e dmd wor el O praidues

3. Strive for a
oo - maintainable,
P L ,
kol *r_ff:}vzi.- reusahle :[lmgn.

et o cnidy fe st Ly
i be taea

Really BIG application

architecture

Let’s start with functionality

The first step 1s abways to make sure an application does what
it's SUpm wed to do. Tn small (B8 Pil'l"l.\i._ we used a 1';‘(;[1i1'1'3“:'|1[.~i list
to write down functionality; in big projects, we've been using a

feature list to Agure those things out:

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time
periods, including fictional periods like

?E;frf: Zfe about sci-fi and fantasy.
functionality-. they 3. The framework supports multiple
[o¢us on what the types of troops or units that are game-
syskem has o do ot specifie.
on what printifles or
oskberns you vse 4o 4. The framework sr..lppnm add-u:.m 5
build Ehe system. wodules for additional campaigns or We'll ome back
battle scenarios. ;'; *:‘fs 015;”
5. The framework provides a board made ?a{i”m 1:: .
up of square tiles, and each tile has a but vight now,
terrain type, we're Lotusing
6. The framework keeps up with whose ;::Lﬁl:“aﬁ:; G
turnitis, the system.
7 The framework coordinates basic 2
movement,

But which of these are
the most important?

Even if we know to start by focusing on
functionality, we stll need to figure out which
pieces are the most important, Those are the
pieces we want to focos on firse.

you are here » 329

start with functionality

your penci

What do YOU think are the most important features?

Even though our feature list has only seven things on it, there's a lot of work
in those seven features. It's your job to figure out which features you think are
the most important, and then in what order you'd work on those things.

Feature List

Bary’s Game System Framework
1. The framework supports different
types of terrain.
2. The framework supports different fime
periods, including fictional periods like e sl
sei-fi and fantasy. S vou've g0t to hard ; 1
3, The framework supports multiple ﬁ/ of these I:caku'rts].; urE
types of troops or units that are game- s wp do You to Figu
speeifice. e/ ouk the order you

4. The framework supports add-on chould Lackle them in
wodules for additional campaigns or
hattle scenarios.

5 The framework provides a board made |
up of square tiles, and each tile hasa

terrain type.
6. The framework keeps up with whose I
furnit is.
7 The framework coordinates basie I
ovement. i
L] E:ﬁ:it df-‘"ﬂ'h 'ti'iﬂ ‘]‘ Eh'"ji :fbll.ld d
/ + I s:lll’“dt!'n--J in H’:tsg_- Hﬂhksl o
1:
2.
3.
4.

330 Chapter 7

The things

in your
appljcatioﬂ
that are really
important are
architecturally
significant,
and you should

focus on them

FIRST.

architecture

Wait a second... if
architecture is about the relationships
between the parts of an application,
why are we talking about the individual
parts? Shouldn't we be talking about
how the parts work together?

You gotta start somewhere!

It"s awtully hard o talk abour the

relationships between parts of a system if

vou don’t have any of the parts themselves,
=0 say vou wanted o ialk about how the
Board module interacted with the Units
'IIH:I':]L,II["'.

To firure out how these modules interact,
vl need o have ar least the basics of the
two modules n place firse.

So architecture sn't just about the
relationships between pares of your app; it's
also about figuring out which parns are the
most important, so you cin start building
those parts first,

you are here » 331

what is architecturally significant?

The three Qs of architecture

When vou're trying o figure out if’ something s architecturally
Nigni!h‘nl'l[, there are three I'll.h_'.\:lil'll'lri YO Can ask:

332

MEARNE

N

1%

|
L Is it part of the essence of fhw}mL "

Is the feature really core 1o what a system
actually 152 Think about it this way: can vou
imagine the system without that feature? If not,
then vou've probably found a feature that is part of the
essence of o svsiem.

Nﬂ'tt -Frm. Nl’kﬂ't'lnﬂ:
5""55“{ 'rE'FJar:ir.ﬁ
Profanity with Hheek ”

v 8 t the 3% does it mean?

I vou're not sure what the description of a partcular
feature really means, iCs probably pretty important that
you pay attention to that feature. Anytime vou're unsure
about what something is, it could take lots of time, or
create problems with the rest of the system, Spend time on
these features early, rather than late.

3. How the “heck” do | do it?

Another place to focus vour attention early
on is on features that seem really hard o ;
implement, or are totally new programming et
tasks for vou. If you have no idea how you're %
going to tackle a particular problem, vou .
better spend some time up front looking ac that feature, so it
doesn’t create lots of problems down the road.

Chapter 7

BE the Architect

To the right, you'l] find the
feature]i%'i[t we figured out in the
last chapter. Your job is to play
. like you're the architect.
~ and C‘g;ure out what's
architeetura]ly significant
by using the three Qs of
architecture we just talked about.

What'’s significant?

architecture

Gary’s Game System Framework
Feature List

1. The framework supports ditferent
types of terrain.

2. The framework supports differe nt time
periods, including fietional periods like
sci-fi and fantagy,

3. The framework supports multiple
Types of troops or units that are game-
specifie.

4, The framework supports add-op
modules for additional campaigns or
battle scenarios.

9. The framework provides a board made
up of square tiles, and each tile has a
terrain type.

6. The framework keeps up with whose
turnitis,

7 The framework coordinates basie
movement,

You Lan write
morE 'E.hah one,

if You need +o)

(

lose your
Cheek and see how &
answers heve matth up 1o what you

wrote down on page 330. you are here » 333

figuring out what's significant

_ BE the Architect
s Solutions

To the right, you'll find

__ the feature [ist we

" Bigured out in the

last chapter. Below are

the things we thought were
architecturally significant,
and which of the three Qs we
used to make our decisions.

Gary’s Game System Framework
Feature List

1. The framework supports different
types of terrain.

2. The framework supports different time

periods, including fietional periods like
sci-fi and fantasy,

3. The framework supports multiple
types of troops or units that are game-
specific.

4. The framework supports add-on

modules for additional campaigns or
battle scenarios,

7. The framework provides a board made

up of square tiles, and each tile has a
terrain type,

6. The framework keeps up with whose
turnitis.

7. The framework coordinates basie

movement.
We decided that the

board was tore 1o
the aame... without

>
What’s slgnifl:ant? a board, there veally Why?
- nta 53“‘:! T &l
The board for the aame

e thauah{ that

TOOPs weve essentisl
to the aame... gnd
&L &1 = WEYE not supe what

“E.ﬂ-m e—spegifis" might
The framework toordinates basic movement. /) &3 (and maybe ®1)

Qame—spetitie units

rfﬂ”‘}" LT Ea. {.'Nﬂ
s applied here

LI
This seems 4 liktle vague, but L5

' abou
ething we ve sure
:Zt SJ:: do. Defimitely worth
s?:hd'mgl some Lime wp Yron

j nd
Fiaurmﬁ out what this means; a
do
334 Chapter7 what we need to

Q: I'm a little confused about what
you mean by the “essence” of the
system. Can you say more about that?

A: The essence of a system is

whal it is at its mast basic level, In ather
words, if you stripped away all the bells
and whistles, all the “neat’ things that
marketing threw in, and all the cool ideas
you had, what would the system really be
about? That's the essence of a system.

When you're loaking at a fealure,

ask yourself: “If this feature wasn't
implemented, would the system still
really be what it's supposed to be?” If the
answer is no, you've found yourself an
“essence feature.” In Gary's system, we
decided that the game wouldn't really be
agame withoul a board and some units,
and there are some more examples in the
Brain Power at the bottom of the page.

Q_: If you don't know what
something means, isn't that a sign that
you've got bad requirements?

- Mo, butitis a sign that you might

need to get some additional reguirements,

ar at least some clarification. In the early
slages, you can leave some details out
to get a basic sense of a system. But at
this stage, it's fime to fill in some of those
details, and that's what the second Q of
architecturs is all about.

LSRR AN

thereyare_no -
Dumb Questions

. If I'm working on a new system,
| probably won't know how to do
anything on my feature list. So won't
the 3rd Q of architecture about not
knowing how to do something always

apply?

A: No, not at all, For instance, even
if you've never written code to decide
whether a player typed in the letter "
or the letter *x." you know how to write a
basic 1f/el=e statement, and it's easy
to grab keyboard input from a player.

So a feafture like getting keyboard input
izn't something you don't know how to
do, even if you've never written code
specifically for that task before. It's just a
few new details, really.

But if you had to write a multi-threaded
chat server, and you're new to threads
and network programming, then that
would be something that you don't know
how to do. Those are the things to look
out for: particularly hard tasks that vou're
unsure about how to handle.

= Doesn't this all end up just
being a judgment call, anyway?

AZ In a lot of cages, yes. But as
long as you choose 1o start working on
the things that seem the most important
to the system, you're going to get off to
a good start.

architecture

What you gon’t want to do is see some
things that look familiar—perhaps you've
solved the same problem in another
project—and start thare, Start with the
core pleces of the system, and the things
that look like they might be particularly
hard, and you'll be on the road to
SUCCEss.

The essence
of a system
is what that
system 1s

at 1ts most
basic level.

P AWEWR

What do you think the essence of each of these systems is:

* & weather-monitoring station?
* A home automation remote control?
* A beat-controlling, music-mixing DJ application?

you are here »

335

moving towards order

We've got a lot less chaos now...

Using the three Os of architecture, we've started to add some

|r|'|:||:':|' [H':"Ill l:!l'.i.[a‘nl'il-usiun wie .-[:-n'11'1’_] ot 'n'i[h: BH\’.’. “H!n e
Remember all s {::‘:""fd on mal
& &uilt.t a mess when W € system do

;tar{,td ks it isL::uPF:-sed ta d:

ot terrain, et

The Framewori;
PEFieds, fugiy mﬂfﬁm'-h
_\ pliimy hmmm.u Periads i
L] ltiply

gty
bt e 34enacjgq Final aampaigng o

terrain typg Aand kach tifg g 5

B The framemod
turniely T EHERE VR Wb whasy
ZThe ira
Mw*m“‘fﬂlﬂr

6 Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system
2. Game-specific units—essence, and what does this mean?

< Finally, we ve
3, Coordinating movement—what is it, and how do we do if?

rarvowed that down
ko just a few key
Features to Fotus on.

I know I love a man in
uniform, but there are still
choices to be made...

..Ut there’s still plenty left to do

We've gotten Gary’s svstem down to three key features, but the
big question remains: which one should you work on first?

338 Chapter7

architecture

¥ Argument
Cubicle Conversation

Well, we obviously need to build
the board first... I mean, it's
the essence of the system!

Whatever! If you don't even know
what “game-specific units” means,
that's where to start.

Wrong! Start with the hardest thing=—
coordinating movement.

P

F?Jr.k

Jim: What in the world are you guys
thinking? What good is it starting with
anything that isn't the essence of the Jimm

system?

Joe: That's richculous. Even il that's the essence of the system, vou've got o figure owi
what game-specific units are. That could ke weeks w write if it's harder than we think!

Frank: Mavbe, ., bur we feore that coordinating movement will be tough, because we don’t have a clue
how to do 1! How can vou possibly work on anything else when vou few the movement deal is going to be
difficult?

Joe: But the game-specific units might be difheulr, ol We just don’t know, and that’s my point. We've got to
fizure out the parts of the system we don'’t know anything about, or they could be real trouble!

Jim: You guvs go on and write movement engines and deal with unis, Me, I'm gonna write a board,
because... well... something tells me Gary will want 1o see a board Tor his deard game ostem. And I'm not abow
to leave the board for later.. P'm taking it on first.

Franl: You're boch nus, While yvou're putting off the hard tasks, 'm gonna make sure the things tha |
don't have any real idea about are taken care of, right away.

So who do you think is right? Po you agree with:

O Jim (build the board) O Joe (build the game-specific units)
O Frank (build the movewent engine)

("hetk the box next -7

ee with
o whe you 34r you are here » 337

the problem is RISK

Leave it to a bunch of
boys to get into a big argument.
I think they're ALL right... the problem
isn't which feature to start with,

the problem is RISK! \ with Frank,

'Hll.'h.l and ulﬂfr and is
used 4o Ercak,hﬂ up

£y arﬂl"ﬂ"fhﬂ

The reason that these features are
architecturally significant is that they

all introduce RISK to your project. It
doesn’t matter which one you start
with—as long as you are working towards
reducing the RISKS in succeeding.

Take another look at our key features:

Gary’s Game System Framework
KEY Features

1. The board for the game—essence of the system

2. Game-specific units—essence, and what does this mean? j";f ‘%hc Lore
3. Coordinating movement—what I8 it, and how do we do It7 Features of {he
R E‘l‘fﬁ‘{'.:m n‘ﬂrcr.'t
1 n F[ﬂﬂf. there’
Ginte we dont d serious R.fg: S
Lhis mean ¥ Thiz is P i r.‘.us&;. '
pould be 3 fon how +4 ;:tihrf'ﬂ WE. Fe not Sulre like {;‘f"' it
k, and de, 30 there's 3 Rick 4 € system.
Gi‘ WO oy we "'*'ﬂ-l'lft, 'Fiﬂuh'_‘ y 4 —_— that
bhats a B_l_.“'_.- take 5 i‘-tah‘:',. | WG or it |
e mi'_i‘.'b'h?!- 'EHB 't"'nf
ehedules and The point here is to REDUCE RISK,
d:ad'.mf.i

not to argue over which key feature
you should start with first. You can
start with ANY of these, as long as
you're focused on building what you're
supposed to be building.

338 Chapter T

architecture

Well, I still think my risk is bigger
than yours...

your pencl

Find the risk in your own project.

Think about the project you're working on in your day job right now.
MNow write down the first thing you started working on when you
started the project:

Maow think about the 3 Qs of architecture that we talked about back
on page 332. If you applied those to your project, write down a few
features that you think would be architecturally significant:

If you look at those features closely, you'll probably see that they all
have a lot of RISK connected to them. They're the things that could
cause you lots of problems, or delay you getting your project done.
In the blanks below, write down which of those features you think
wou should have worked on first, and why. What risks did it create?
What risks could you have reduced by working on it first?

you are here » 339

writing the board interface

Architecture Puzz]e

For Garv's game system, let’s start out by working on the board module. Your
jobris o write a Board interface that game designers can then use and extend o
bualed their own games.

The problem:
You need a Board base type that game desizners can use w creae
new games. The board’s height and widch are supplied by the
/,.7 game designers for their gnmes. Addigonally, the board can return

Her the dle at a given positon, add units w a tile, and veturn all cthe
€ arg Som, '

ﬂrﬂf“i"'fmcnf; T{;itfrjfd units at a given X-Y positon.
L= o,
dESiﬂh f:a,,,_aw and ;, Yourtask:

o Create a new class called Board . java.

e Add a constructor o Board that takes in a width and height, and creaces
a new board with that heighe and width, The constructor also needs w fill
the board with square dles, one at each X-Y posidon.

Write a method that will return the le at a given position, given that tile's
X- and Y-posidon.

e Write methods w add units o a tle based on that dle’s X- and Y-position,

Write 1 method o return all the unis on o dle, given the X« and Y-positon
ol the tle.

board. This one —
Heve's 3 53""?]"' i 'I‘E"V"-""'Elh all
is 3 ?ﬂ*g""*’-;:fmu;t 10
lpoavds won e 54 | ! ”
T - _] | | {1 gaj,.,ms.ti'lt would
Theze gre the | | | _ be at (3, al}
f—ﬁmrdim{c;_ 5 _ _ |
&
L_é 3, ’qhd £h|! one 1t a-\l:
Pesition (4,2)
1
|

10

|
340 Chapter7 U These are the X-toordinates

——— Answers on page 346

architecture

Use Cases -Exp-ose&
This week's interview:
Scenarios help reduce risk

HeadFirst: Hi there, Scenario, we appreciate you taking the dme o alk with us today
Scenario: I'm really happy o be here, especially in a chapter that isn't just about use cases,
HeadFirst: Well. ves. to tell the truth, [was rather surprised when [was wld we'd be interviewing
vou, We're really focusing on architecoure here, and working on features thar would reduce risk,
Scenario: Absolutely! Well, that sounds like a very good way 1o approach big problems,
HeadFirst: Yes, well... ahem... then why are vou here?

Scenario: Oh! I'm SOTTY, |_i|_|h[assummed You knew, I'm here o h:"]]l reduce risk, also.

HeadFirst: But 1 thought you were just a particular path through a use case. We haven't even
WTILlen any use cises vet!

Scenario: That's no problem, I can sill be a real help. | mean, look, let’s be honest, lots of
developers just don't ever really take the tme o sit down and write out use cases, Good griell it ook
vou something like Tour pages in Chaprer 6w convinee people to even use a use case diagran, and
that’s much easier o draw than it is w wnte a use case!

HeadFirst: Well, that’s true... there is a lot of resistance o writing out use cases, But thev're really
helpful, I thought they saved the day with Todd and Gina’s dog door,

Scenario: Oh, I agree! But in cases where developers just don’t have the time, or a use case is to
formal for what's needed, [can really give you a lot of the advantages of a use case, without all the
paperwork,

HeadFirst: Hmmm, that is appealing So well me how that works,

Scenario: Well, iake that board vou've been writing Suppose you wanted to reduce the risks off
Gary seeing it, and thinking of something important vou forgot o add wic..

HeadFirst: Ahh, ves. lorgetting an important requirement 1s always a risk!

Scenario: Well, vou could come up with a simple scenario for how the board would be used
that’s where T come in—and then make sure the board works with evervthing in vour seenario.
HeadFirst: But there’s no use case... what steps do we pick in the seenario we make up?

Scenario: Tt doesn’t have to be that formal. You might say, “The game designer creates a new
board 8 sqquares wide by L} squares high,” and “Plaver | kills Plaver 2's troops at (4, 5) so the board
removes Player 2% troops from that dle.”

HeadFirst: Oh, so just litde descriptions of how the board is used?

Scenario: You've got it! Then you run through cach deseription, and make sure vour board
handles those cases. 1's not quite as thorough as a use case, but T really can help vou make sure vou
don't forget any big requirements,

HeadFirst: This is fantastie! We'll be right back with more from Scenario.

you are here » 341

figuring out a scenario

Scenario Scramble

Write a scenario for the Board interface you just coded.

Reducing risk is the name of the game in this chapter. You've coded a Board I}”s is the visk we've
interface based on a few requirements we gave you, but it's your job to figure out if "f"?""'ﬂ to redute o
we forgot anything—before Gary sees your work and finds a mistake. -q._.-/ elimingte USING 3 Stendrio.

Your job is to take the fragments of a scenario from the bottom of this page. and put
them into an order that makes sense on the bulletin board. The scenario should run
through a realistic portion of a game. When you're done, see if you left out anything
on the Beard interface, and if you did, add the missing functionality into your code.
You may not need all the scenario fragments; good luck!

: Ganr: @afam Framework
~ Board Scenario

h’luﬁ:"mrg_)l
deone a
Lm’f‘lc (?
1o help Pin the
you get stendrio
ante this
piece of
paper.
Idse boﬂ\ telumns
.FQ- -I;h: stendrio.

| heigh
(4, 3.

| Game requests terrain at {4, 3).

l Plaver |'s units arc remorved [ram

- Game designer

| Game TECuEsts units from (4, a),

342 Chapter 7

architecture

Use Cases Exposed
This week's interview:
Scenarios help reduce risk (cont.)

HeadFirst: We're hack with Scenario, again. Scenario, we're geoing quite a few calls, Would vou
mind taking some of our hstener's questions?

Scenario: Sure, I'd be happy o,

HeadFirst: Great First, here's one we're getting a lot. This is from Impadent in Tdaho: “So vou're
saving I don’t need to write use cases, anvmore, right? [can just use scenarios?”

Scenario: Oh, thanks, Impatient, 1 actually get that question often. [firmly believe you should

stll write use cases whenever possible, 'm helpful for quick problems, and w find the most common
requirements, but remember, 'm only e path through a use case. I there are Iots of alternare
paths, vou might miss some important requirements i’ vou used just a scenario for vour requirements,

HeadFirst: That's right, we've actually had Happy Path and Alternate Path on our show hefore.

Scenario: Well, they're really just specialized versions of me, if you want the ouch, We oy noc

to talk much about our family reladonships, we all wanted o make icin this world on our own,

But we're really all part of the Scenario familv And vou really need all of us to be sure youve got

a system completely right. Bu il you're just geting starced, and a use case seems like 10 might be
premature, just using me s a good way 10 get stared,

HeadFirst: OK, here's another question, from Nervous in Nebraska: “You said vou would help me
recduce risk, and T hate risk, Could vou tell me exactly hos vou can help me avoid risk?™

Scenario: Another good question. Remember, when you're figuring out requirements, whether
vou're using @ use case, a use case dingram, or a scenario, you're trying o make sure you are building
just what the customer wants, Without good requirements, the risk is letting down or upseting the
customer by building the wrong thing,

HeadFirst: 5o you're reducing risk in the requirements phase?

Scenario: Alotof the dme, ves. That's when you're writing use cases, putting wgether a
requirerments list, and using lots ol scenarios w chart out all the paths through a use case.
HeadFirst: But you also help out in big project architecture, dght® That’s why we're interviewing
vou now?!

Scenario: Exactdy Sometimes, you don’t have a complete requirements list and a bunch of use
cases, but vou stll need to get some basic work done to see how a system is going to work, That's
what we've been doing here: using a scenario w get the basics of a module or piece of code down, so0
vou can get the basic building blocks of vour application in place.

HeadFirst: 5o vou're really a handy guy, aren’t vou?

Scenario: ['d like to think so. | help in gathering requirements, in being sure vour use cases are
complete, but also in architeciure, helping vou reduce risk and reduce the chaos and conlusion
around what a particular module or piece of code does.

you are here » 343

reducing the risks fo your success

Write a scenario for the Board interface you just coded.

Below is the scenario we came up with. Yours might be a bit different, but you
should at least have the game designer creating the board, a battle occuring
between Player 1 and Player 2, and units being both added to and removed from

same designer ertates board with a
* height and wid

This ?{Jv{:ﬂ t:f Thtfif-ﬂﬂrin This part :
stenavio SETS Lortinues in the it shoy, " rea 'l)' °Fﬁ
o el et
" {.'Chr "juhg out
P!a'fcr T " 3in of 4 til
G'I"En,:h* He 'FII’ i:agrc
Quests.
Plaver 1's units lose the batile,
Game designer creates a new haoard. \\ b e steiivics
w1 Game designer supplies height and widih, > i these Fragmtn{‘.ﬁ
were extras.

344 Chapter 7

the
Dum

Q: Where did those requirements for the
Architecure Puzzle on page 340 come from?

. From Gary, with some common sense added
in. If you think about what Gary's asked for, a game
aystem framewaork, and then read back over the customer
conversation in Chapter 6, vou could probably come up
with these reguirements on your own. We did add a few
specifics, like being able to add a unit to a specific file, but
that's really just thinking through the problem.

Q,: But why didn't we write a use case to figure
out the requirements?

A: We could have. But remember, we're not trying
to complete the Board module, as much as get the basic
pieces in place. That's all we need to reduce the risk of
completing this piece of Gary's system. In fact, if we got
inta too much detail, we might actually add risk to the
project, by working on details that