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To Arthur Getis



Preface

Spatial data analysis has seen explosive growth in recent years. Both in mainstream
statistics and econometrics as well as in many applied fields, the attention to space,
location, and interaction has become an important feature of scholarly work. The
methods developed to deal with problems of spatial pattern recognition, spatial auto-
correlation, and spatial heterogeneity have seen greatly increased adoption, in part
due to the availability of user friendly desktop software. Through his theoretical and
applied work, Arthur Getis has been a major contributing figure in this development.

In this volume, we take both a retrospective and a prospective view of the field.
We use the occasion of the retirement and move to emeritus status of Arthur Getis
to highlight the contributions of his work. In addition, we aim to place it into
perspective in light of the current state of the art and future directions in spatial
data analysis.

To this end, we elected to combine reprints of selected classic contributions by
Getis with chapters written by key spatial scientists. These scholars were specifically
invited to react to the earlier work by Getis with an eye toward assessing its impact,
tracing out the evolution of related research, and to reflect on the future broadening
of spatial analysis. The organization of the book follows four main themes in Getis’
contributions:

• Spatial analysis
• Pattern analysis
• Local statistics
• Applications

For each of these themes, the chapters provide a historical perspective on early
methodological developments and theoretical insights, assessments of these con-
tributions in light of the current state of the art, as well as descriptions of new
techniques and applications.

Putting together a volume such as this would not be possible without the efforts
of many individuals. We feel most fortunate to have been in the skilled hands of
the Springer-Verlag team and in particular wish to extend our gratitude to Katharina
Wetzel-Vandai and Barbara Fess for their continued support during this project and
to Manfred Fischer for his editorial suggestions. We are indebted to the authors
of both the original pieces as well as the new contributions and the referees. The
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viii Preface

project benefited enormously from the technical typesetting skills of Xinyue Ye of
the Department of Geography at San Diego State University and David Folch of
the School of Geographical Sciences at Arizona State University, without whose
dedicated efforts this volume would not have been completed.

The Spatial Analysis Laboratory at the University of Illinois Champaign-Urbana
and the Department of Geography at San Diego State University both provided
institutional support during the early phases of this project. The GeoDa Center for
Geospatial Analysis and Computation in the School of Geographical Sciences at
Arizona State University provided critical support to bring the project to closure.

Finally, we would like to dedicate this volume to Arthur Getis whose contribu-
tions have impacted so many. We feel fortunate to not only count ourselves among
those, but also to call him a valued friend.

Tempe, AZ, USA Luc Anselin
August 2009 Sergio Rey



Foreword

Born in Philadelphia in 1934 Arthur Getis received his undergraduate degrees from
Pennsylvania State University and his Ph.D. in Geography from the University of
Washington in 1964. Until his retirement, he held the Stephen and Mary Birch Foun-
dation Endowed Chair on Geographical Studies at San Diego State University. Prior
to joining San Diego University, he was the Chairman of the Geography Department
and Director of the School of Social Sciences at the University of Illinois. He has
also served on the board, or as chairman of scientific societies, most notably the
Regional Science Association.

Getis’ research studies in social science have included work in location the-
ory, urban geography, mathematical pattern analysis, spatial analysis, geographical
information science, and most recently, clustering analysis of disease or crime.
Some of this material is reflected in his books: Models of Spatial Processes –
Approaches to the Study of Point, Line, and Area Patterns (with B. Boots, Cam-
bridge University Press 1978); Point Pattern Analysis (with B. Boots, Sage Publica-
tions, 1987); The Tyranny of Data (San Diego State University Press, 1995); Recent
Developments in Spatial Analysis – Spatial Statistics, Behavioral Modeling, and
Computational Intelligence (with M. Fischer, Springer 1997); and Spatial Econo-
metrics and Spatial Statistics (edited with others, Palgrave, 2003). Related work has
been published in over 80 articles and in worldwide lectures. With J. Getis, he has
also contributed to geographic education in the United States.

To summarize, Arthur Getis’ outstanding contributions have been to the rigorous
study of spatial patterns including the effect of autocorrelation and the introduction
of local statistics. The latter include numerous original developments that allow the
recognition of variations from place to place – in contradistinction to more conven-
tional global analyses that are not aware of spatial detail. The introduction of these
methods has revolutionized recent spatial analysis. For this, we need to thank the
editors Luc Anselin and Sergio Rey.

Santa Barbara, CA, USA Waldo Tobler
January 2009
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Chapter 1
Perspectives on Spatial Data Analysis

Luc Anselin and Sergio J. Rey

1.1 Introduction

This volume is inspired by the many contributions of Arthur Getis to the field of
spatial analysis. In 2004, Arthur Getis formally retired as the Stephen and Mary
Birch Foundation Chair of Geographical Studies in the Department of Geography
at San Diego State University. That transition to emeritus status marked the end
of a magnificent career spanning more than four decades. It started with under-
graduate education in geography at Pennsylvania State University, followed by a
PhD from the University of Washington in 1961. At Washington, he was part of
the generation that initiated the “quantitative revolution” in geography under the
tutelage of William Garrison. His graduate cohort included, among others, Brian
Berry, Waldo Tobler, Duane Marble, John Nystuen, Richard Morrill and William
Bunge. His academic appointments started with a position at Michigan State Uni-
versity, after which he moved to Rutgers University. He went on to become head
of the Geography Department at the University of Illinois in 1977, and joined San
Diego State University in 1989. In addition, he held many visiting scholar appoint-
ments at leading international institutions, including Cambridge University and the
University of Bristol in the UK and the University of California, Santa Barbara and
Harvard University in the USA.

During his career, Arthur Getis was awarded several honors and distinctions, such
as the 1995 Albert Johnson Research Lecture at San Diego State University (cap-
tured in Getis, 1995c), the Walter Isard Award from the North American Regional
Science Council (1997), the Robinson Lecture at The Ohio State University (1999),
and the 2002 Distinguished Scholarship Award from the Association of Ameri-
can Geographers (AAG). In 2005, he was elected Fellow of the Regional Science
Association International. He served as president of the Western Regional Science
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Association (1999) and of the University Consortium of Geographic Information
Science (2002).

Arthur Getis was instrumental in the growth and increased exposure of spatial
analytical research in institutional contexts in the discipline of Geography, through
his leadership of the Mathematical Methods and Quantitative Methods (MMQM)
specialty group of AAG and his role as driving force, secretary and organizer (jointly
with Manfred Fischer) of the Commission on Mathematical Models of the Interna-
tional Geographical Union. The latter led to the establishment of a new specialized
journal, Geographical Systems (now entitled Journal of Geographical Systems),
which he co-edited until the end of 2007.

The activities of the IGU Commission on Mathematical Models included orga-
nizing several workshops and conference sessions that led to a number of journal
special issues which he edited or co-edited. This includes an issue of Geographi-
cal Analysis (1992) and two issues of the Papers in Regional Science (1993, 1999).
Edited volumes summarizing the state of the field include a collection of essays
co-edited with Manfred Fischer on spatial statistics, behavioral modeling and com-
putational intelligence (Fischer and Getis, 1997b), and a compendium on spatial
econometrics and spatial statistics, co-edited with Jesus Mur and Henry Zoller
(Getis et al., 2004b).

Arthur Getis’ contributions were not limited to research in spatial analysis and
regional science (on which we further elaborate in the next section), but he also felt
strongly about promoting a rigorous approach to introductory geography. This is
reflected in several textbooks he published, most jointly authored with Judy Getis.
Classics are their Introduction to Geography (Getis et al., 2008), now in its eleventh
edition (with the first edition in 1981), and Human Geography (Fellmann et al.,
2008), now in its tenth edition (first edition in 1985). In addition, with Judy Getis, in
1995, he edited a regional geography text dealing with the United States and Canada,
now in its second edition (Getis et al., 2001). His strong societal engagement is also
reflected in five letters to the editor published in the New York Times.

With this volume, we aim to achieve two objectives. First, we want to honor
Arthur Getis and his distinguished career and highlight its influence on the field of
spatial data analysis. To this end, we have selected a small number of particularly
important articles by Getis to reprint here. The second objective is to demonstrate
the enduring effect of these early ideas on the current state of the art. We have
therefore invited a number of leading scholars to comment on these “classics,” with
an eye towards the frontiers of the field. These contributions provide some novel
perspectives and are intended to stimulate further research on cutting edge problems
in spatial data analysis.

In the remainder of this introductory chapter, we first briefly review the main
research contributions by Arthur Getis, with a particular focus on his work in spatial
data analysis. We next go on to further explore and quantify the importance of these
contributions and illustrate how they continue to affect current research in a range of
scientific disciplines. We close with the customary outline of the remaining contents
of the volume.
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1.2 Getis Perspectives on Spatial Analysis

Arthur Getis’s first peer reviewed article dealt with “a geographical analysis of rail
freight shipments in Pennsylvania” and was published in the The Pennsylvania Busi-
ness Survey (Getis, 1957). This interest in economic geography was also typical of
much of his other early work, covering topics such as retail location and urban land
use. Examples are “the determination of the location of retail activities with the use
of a map transformation,” which appeared in Economic Geography (Getis, 1963),
and “retail store spatial affinities” (with Judy Getis), published in Urban Geogra-
phy (Getis and Getis, 1968). However, even in these early studies, his interest in
quantitative approaches towards understanding patterns and the application of the
methodology of point pattern analysis was starting to become apparent. For exam-
ple, “temporal land use pattern analysis with the use of nearest neighbor and quadrat
method,” which appeared in the Annals of the Association of American Geographers
(Getis, 1964) applied the state of the art techniques of the time (nearest neighbor
methods and quadrat counts) to urban land use analysis.

These initial ventures into quantitative and mathematical geography led to a wide
ranging collection of writings that can be classified into four broad areas: spatial
analysis (in general), pattern analysis, local spatial statistics, and empirical applica-
tions of spatial data analysis methods. We will also use these four categories as the
structure for the essays included in this collection. In the remainder of this section,
we briefly review a selection of Arthur Getis’s main publications organized along
these lines.

1.2.1 Spatial Analysis

Getis’s contributions to the broad field of spatial analysis can be grouped into three
specific categories: the situation of spatial autocorrelation within the context of spa-
tial interaction theory, the linkages between GIS and spatial data analysis, and the
general role of mathematical models in geographical analysis.

In“spatial interactionandspatialautocorrelation:across-productapproach,”which
appeared in Environment and Planning A (Getis, 1991) and is included in this volume
as Chap. 2, the basic analogy is outlined between several spatial autocorrelation
statistics and the mathematical formalism of spatial interaction models. This builds
upon his earlier work on second order statistics and is one of the precursors for a
new general spatial autocorrelation statistic (Gi), subsequently further elaborated
in the specific context of local spatial autocorrelation statistics (see also Sects. 1.2.2
and 1.2.3). More recently, his thoughts on the importance of spatial autocorrelation
analysis in Regional Science are expressed in “reflections on spatial autocorrelation,”
which appeared in Regional Science and Urban Economics (Getis, 2007).

In a number of essays and edited volumes, the importance of the linkage between
Geographic Information Systems (GIS) and analytical methods is argued. The
article on “spatial statistical analysis and geographic information systems,” in the
Annals of Regional Science (Anselin and Getis, 1992) is included in this volume as



4 L. Anselin and S.J. Rey

Chap. 3. It outlines a general framework to incorporate both exploratory and con-
firmatory spatial data analysis within a GIS. The collection of essays included in
“Advances in Spatial Analysis” (Fischer and Getis, 1997a) further elaborates upon
this theme and presents several empirical examples.

Specific attention to the nature of geographical data and particularly the way in
which the increasing prevalence of large data sets will affect spatial analysis is given
in the delightful booklet on “The Tyranny of Data” (Getis, 1995c), which includes
materials from his 1995 Albert Johnson Research Lecture at San Diego State Uni-
versity. An extension of these ideas appeared in “some thoughts on the impact of
large data sets on Regional Science,” which appeared in the Annals of Regional
Science (Getis, 1999). More recently, Getis was also a co-author of the research
agenda for geographic information science of the University Consortium for Geo-
graphic Information Science (UCGIS), which outlined ideas on the research frontier
for “spatial analysis and modeling in a GIS environment” (Getis et al., 2004a).

Getis has been a constant commentator on the importance of mathematical mod-
els and formal analysis in geography, both theoretical as well as applied. In 1993,
he devoted a special issue of the Papers in Regional Science to mathematical mod-
els in geography, based on papers presented at a workshop organized by the IGU
Commission on Mathematical Models (Getis, 1993a). In an thought provoking con-
tribution to Urban Geography, he commented on “scholarship, leadership, and
quantitative methods” (Getis, 1993b). More recently, he contributed to the volume
on Applied Geography: A World Perspective, (Bailly and Gibson, 2004) with a chap-
ter that outlined his views on “the role of geographic information science in applied
geography” (Getis, 2004b).

1.2.2 Pattern Analysis

In 1978, Art Getis and his former student Barry Boots published an important text
on “Models of Spatial Processes” (Getis and Boots, 1978), which introduced formal
pattern analysis (and especially point pattern analysis) to quantitative geographers.
The book reviewed a number of mathematical models that generate point patterns
with specific characteristics (such as clustering or inhibition) and provided several
test statistics (such as nearest neighbor tests) to assess the extent to which this was
present in empirically observed point locations. About ten years later, a more acces-
sible version appeared in the Sage series on scientific geography (the “brown” Sage
series) as Boots and Getis (1987).

His early work in this area was primarily a survey of existing techniques devel-
oped in statistics and applications of these within geography. However, in the early
1980s Getis started to explore the properties of second order statistics in a number
of articles, which eventually led to the local Gi and G∗

i statistics (see Sect. 1.2.3).
The particular focus of second order statistics moves from the density of the points
(first order) to the information contained in all the inter-point distances. The latter
can be related to the structure of the covariance of point processes. This was initially
outlined by Ripley (among others, in Ripley, 1976, 1981) and formally expressed in
the by now familiar K and L statistics (“Ripley’s K”).
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In two related articles, one in The Professional Geographer, “second-order
analysis of point patterns: the case of Chicago as a multi-center urban region”
(Getis, 1983, included as Chap. 6), the other in Environment and Planning A,
“interaction modeling using second-order analysis” (Getis, 1984), Getis begins to
make the move away from the pure point pattern focus in the original K statistic
towards a broader context of spatial autocorrelation and spatial interaction (see also
Sect. 1.2.1). Specifically, he stresses the variation of inter-point distances within spe-
cific distance bands as an indication of positive (clustering) or negative (inhibition)
spatial autocorrelation (see also Getis, 1985b). This is applied to population densi-
ties in Boston and related to the identification of multiple nuclei within the urban
area, suggesting an alternative to the traditional emphasis on distance to CBD.

In Getis (1984), the original L statistic is generalized to include cross-products of
ratio scale variables in the numerator, in the form of the so-called L1(d) and L2(d)
statistics (differing in whether or not self-similarity is included). More importantly,
the statistics are framed in a context that focuses on clusters centered at a given
location, thus becoming precursors to the local Gi and G∗

i statistics (Sect. 1.2.3).
Another interesting aspect of these papers is their emphasis on the importance

of scale, which is further explored in the widely cited article with Janet Franklin on
“second-order neighborhood analysis of mapped point patterns” in Ecology (Getis
and Franklin, 1987, included as Chap. 7). Here, the notion of a neighborhood analy-
sis is suggested which uses the Li statistics (from Getis, 1984) to assess the extent to
which clustering around a given location varies with distance. This reveals interest-
ing patterns of heterogeneity in the clusters and further establishes the intellectual
basis for the explicit formulation of the local statistics in the 1990s.

Finally, it is worth mentioning that Getis’s methodological work in pattern anal-
ysis was paralleled by the development of easy to use software. The best known
example of this is the so-called PPA point pattern analysis package developed
with Dong Mei Chen (Chen and Getis, 1998). This provided the basis for some
of the point pattern functionality in ESRI’s widely distributed commercial ArcGIS
software.

1.2.3 Local Spatial Statistics

Arguably Getis’s most important contribution to spatial analysis is his work on local
spatial statistics (for an early overview, see Getis and Ord, 1996). While the origins
of these ideas can be found in some earlier articles (notably Getis, 1984, 1991), the
derivation of the formal properties of the G statistics is reflected in three articles
co-authored with Keith Ord.

In “the analysis of spatial association by use of distance statistics” (Getis and
Ord, 1992, included as Chap. 10), the basic derivations of the moments of the statis-
tic are provided and inference is based on a normal approximation. This is further
refined in “local spatial autocorrelation statistics: distributional issues and an appli-
cation” (Ord and Getis, 1995) and “testing for local spatial autocorrelation in the
presence of global autocorrelation” (Ord and Getis, 2001). In the former, the initial
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restriction to binary spatial weights (distance bands) is relaxed to allow the usual
row-standardized weights to be used for G statistics. Also, the problem of multiple
comparisons is addressed by means of a Bonferroni adjustment. The latter article
introduces a new local statistic, the Oi statistic, which accounts for the global struc-
ture of autocorrelation. It is essentially a spatially dependent t-test of means within
and outside an area around a candidate hot spot location. The moments of this new
statistic are derived and its asymptotic normality established.

The impact of this work on the practice of spatial data analysis cannot be
overemphasized. Most importantly, there was a significant shift of attention from
the global to the local (e.g., Fotheringham, 1997), with a focus on the detection
of local clusters and hot spots and a greater sensitivity to spatial heterogeneity.
Examples include the development and widespread adoption of a general frame-
work for local indicators of spatial autocorrelation (LISA) (Anselin, 1995) and the
collection of techniques for geographically weighted regression (for an overview,
see Fotheringham et al., 2002). The G statistics were applied in a wide range of
empirical studies, in fields ranging from criminology and epidemiology to ecology.
They were also implemented in a number of software packages, including Space-
Stat, STARS, the analytical toolbox for ESRI’s ArcGIS and the open source spdep
package for R.

Apart from his own work applying the local statistics in empirical studies, Getis
was also interested in two specific methodological refinements in which he saw the
G statistics playing a major role: spatial filtering and the construction of spatial
weights. We return to spatial filtering in Sect. 1.2.4, but include the spatial weights
problem in this section, given its more fundamental methodological importance.

Two articles in Geographical Analysis and co-authored with Jared Aldstadt argue
for the use of the Gi statistic as a means to determine the values for individual
elements in the spatial weights matrix. In “constructing the spatial weights matrix
using a local statistic” (Getis and Aldstadt, 2004, included as Chap. 11) and “using
AMOEBA to create a spatial weights matrix and identify spatial clusters” (Aldstadt
and Getis, 2006) the number of non-zero elements in each row of the weights matrix
and their values are obtained as a function of the Gi statistics for increasing distance
bands. This is suggested as an alternative to the standard procedure based on conti-
guity or geostatistical considerations. Further investigations are needed to assess the
performance of this new approach in a wide range of empirical contexts.

1.2.4 Empirical Applications

In this fourth category, we illustrate some publications by Getis that are represen-
tative of his wide range of empirical interests and collaborative work with other
researchers, many of whom are outside geography or regional science. We group
these articles into three main categories: urban and economic geography (regional
science); spatial filtering; and medical geography/epidemiology. This review is
intended to be representative rather than comprehensive. Most notably, it does not
include some of his recent work on crime analysis, e.g., in Getis et al. (2000).
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As mentioned in the introduction, much of Getis’s early empirical work dealt
with questions pertaining to urban and regional systems. Even though his main
focus later shifted to methodological concerns in spatial statistics, this interest in
cities and regions continued throughout his career. Some examples include a study
of urban population spacing (Getis, 1985c), a model of economic interdependen-
cies among urban communities (Getis, 1989b), and, more recently, an analysis of
regional patterns of affirmative action compliance costs (Griffin et al., 1996).

Getis’s idea to use the Gi statistic in the construction of spatial weights matrices
also led to a different approach towards modeling spatial dependence. Originally
suggested in Getis (1989a), this filtering perspective employs the Gi statistic to
eliminate spatial correlation from a variable. This then allows the statistical anal-
ysis to consider both the spatially filtered form of the variable as well as a new
artificial variable that contains the spatial effects. This idea was further developed
and illustrated in a number of articles and book chapters, including Getis (1990),
and “spatial filtering in a regression framework: examples using data on urban
crime, regional inequality, and government expenditures” (Getis, 1995a, included
as Chap. 14). The Getis filtering approach contrasts with the idea of employing
eigenvectors constructed from the spatial weights as additional artificial variables
in the regression equation in order to eliminate spatial autocorrelation, a sugges-
tion advanced by Griffith (e.g., Griffith, 2003). In Getis and Griffith (2002), the two
approaches are compared.

The filtering approaches are currently receiving considerable attention in the
literature (e.g., Griffith and Peres-Neto, 2006), although further and rigorous evalu-
ation of its statistical (asymptotic) properties and explanatory power relative to the
explicit modeling of space remains to be carried out.

A final category of empirical work by Getis deals with applications in medi-
cal geography and epidemiology. This includes articles where the main focus is on
the methodology, such as the use of local statistics to assess dispersion in AIDS
in California (Getis and Ord, 1998), or canine cancers in Michigan (O’Brien et al.,
2000). The bulk of his articles, however, are inspired by substantive concerns, pri-
marily related to the spread of Dengue fever. Some illustrative examples are listed in
Table 1.1. Of these, Getis et al. (2003) is included as Chap. 15. This work continues
to date.

1.3 Quantifying the Impact

According to the Web of Science, there are 65 articles with Getis as an author or
co-author which collectively have been cited in the literature 851 times.1 The high
impact of these contributions is reflected in the average Getis paper being cited over
13 times. During the course of a typical year over 23 scientific papers cite one of

1 The Web of Science data was current as of June 23, 2008.
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Table 1.1 Samples of empirical work by Getis in epidemiology

Reference Title Journal/book

Getis and Ord (1998) Spatial modeling of disease dispersion using
a local statistic: the case of AIDS

Jean Paelinck
Festschrift

Morrison et al. (1998) Exploratory space–time analysis of reported
Dengue cases during an outbreak in
Florida

American J. Trop.
Med. & Hygiene

O’Brien et al. (2000) Temporal distribution of selected canine
cancers in Michigan, USA 1964–1994

Preventive Vet. Med.

Getis et al. (2003) Characteristics of the spatial pattern of the
Dengue vector, Aedes Aegypti in Iquitos,
Peru

American J. Trop.
Med. & Hygiene

Morrison et al. (2004a) Evaluation of a sampling methodology for
rapid assessment of Aedes Aegypti
infestation levels in Iquitos, Peru

J. Medical
Entomology

Morrison et al. (2004b) Temporal and geographic patterns of Aedes
Aegypti (Diptera: Culicidae)

J. Medical
Entomology

production in Iquitos, Peru
Getis (2004a) A geographic approach to identifying disease
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Worldminds
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Fig. 1.1 Annual citation patterns for Arthur Getis

Getis’ contributions. And, as Fig. 1.1 reveals, the impact of this work has continued
to grow, even after his formal retirement in 2004.

Table 1.2 provides a listing of the highest impact papers published by Getis.
The major impact of his work with Ord on the local Gi statistics is clear as their
two contributions in Geographical Analysis account for over 45% of Getis cita-
tions over the period examined. At the same time, the mix of topics in the most
cited papers includes applications and methods in fields such as ecology and public
health, reflecting the broad influence of Getis’ scholarship.
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Table 1.2 Most cited articles
Authors Journal Total Annual

citations citations

Getis and Ord (1992) Geographical Analysis 236 13.88

Ord and Getis (1995) Geographical Analysis 149 10.64

Getis and Franklin (1987) Ecology 114 5.18

Morisson, Getis et al. (1998) AJTPH 44 4.00

Getis (1984) Environment and Planning A 35 1.40

Fig. 1.2 Concept co-citation network

This impact is not only numerically deep but has been extensive in its range of
fields and journals. Figure 1.2 portrays the diversity of interrelated topics treated in
his work in a co-citation network. Each edge in the network combines two terms
or concepts appearing in articles that have been cited by another paper which has
cited one of Getis’ contributions.2 The size of each term node is a function of the
number of times it is co-cited. This network portrays the footprint of the conceptual
space that has been influenced by Getis’ work. It is a footprint on a wide array of

2 The citation networks were developed using the package CiteSpace II (Chen, 2006).
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Fig. 1.3 Author co-citation network

disciplines and fundamental concepts, such as scale and patterns, interwoven with
an diversity of analytical topics, including spatial autocorrelation and second-order
analysis, and dealing with substantive areas ranging from habitats, to disease, to
economic convergence. The central nodes of statistics, autocorrelation, patterns, and
association anchor this complex and intricate influence.

A second way to explore the impact footprint is to consider the author co-citation
patterns for Getis’ contributions. Figure 1.3 displays this network where now nodes
are individual scholars and an edge connects two authors who have been cited in a
paper that originally cites a Getis paper. These edges can represent either a jointly
authored contribution, or two separate pieces cited by the same work. An examina-
tion of the figure indicates that many of the contributors to this volume are prominent
in this citation space, reflecting both types of scientific collaboration with Getis.

We can also examine the key journals that have been impacted by Getis.
Figure 1.4 contains the co-citation network for journals (and books) that have
published articles that have been co-cited by authors citing work by Getis. The domi-
nance of the journal Geographic Analysis is clear, again, reflecting the importance of
the two local statistics pieces as was seen in Table 1.2. Two other key journal nodes
are Environment and Planning and Ecology, both of which published contributions
by Getis and colleagues which are included in this volume.
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Fig. 1.4 Journal co-citation network

1.4 Outline of the Volume

As mentioned above, we have organized the volume along four broad themes that
match the main contributions by Arthur Getis to spatial analysis.

1.4.1 Spatial Analysis

In Part I, we include four chapters dealing with spatial analysis in general. Chap-
ters 2 and 3 are reprints of, respectively, Getis (1991) and Anselin and Getis (1992).
The other two chapters, respectively by Goodchild and by Fischer et al. expand on
these contributions.

Chapter 2, on “spatial interaction and spatial autocorrelation: a cross product
approach,” is an article by Getis first published in Environment and Planning A.
Arguably, this could equally be classified in Part III on local statistics, because to
our knowledge it is the first time Getis formally spells out the properties of the Gi(d)
local statistic. However, it presents a much broader perspective, outlining a general
framework that integrates the perspective taken in the spatial interaction literature
(dealing with flows of objects) with the spatial association/spatial correlation view
(dealing with similarity of objects).

Getis shows how nearly all spatial autocorrelation statistics can be expressed in
some way as a cross product statistic, relating the relative location of observations
(e.g., through a spatial weights matrix) to the attribute similarity. This includes join
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count statistics, Moran’s I , Geary’s c, the semivariance, the second order K statistic,
and others. In addition, the “Getis model”or Gi(d) statistic is included in this frame-
work. Getis also shows how the mathematical multiplicative operation contained in
spatial interaction models is formally similar to that in a cross product statistic, for
example, in an origin-specific production constrained interaction model.

Getis introduces the Gi(d) statistic as an extension of the second order Li(d)
statistic presented in his earlier work (Getis, 1984). Formally, the new statistic is
a partition of Ripley’s K(d) statistic for an individual location. It expresses the
proportion of the value of the variable x within a given distance band from the
observation. Getis also provides the initial derivation of the basic moments (mean,
variance) of this local statistic under the null hypothesis of spatial randomness
(using a permutation logic) and suggests some potential extensions. We revisit this
in Part III.

In “spatial statistical analysis and geographic information systems,” which orig-
inally appeared in the Annals of Regional Science, Anselin and Getis formulate
some general ideas on the role of GIS as an enabling technology to define the
research agenda for spatial data analysis. They situate this in the context of a broader
discussion of the interface between GIS, spatial statistics and regional science.

The point of departure is a modular description of spatial analytical functionality
in GIS, consisting of data selection/spatial sampling, data manipulation, explo-
ration (data-driven analysis) and confirmation (model-driven analysis). Within such
a framework, the importance of the special nature of spatial data is stressed, includ-
ing scale, spatial dependence and spatial heterogeneity. They also outline how the
GIS data model relates to spatial sampling, which affects the ensuing analysis in a
fundamental way. While many techniques are available to tackle spatial analytical
problems, the specification of a collection of generic functions of spatial analysis is
identified as an unresolved research question (at the time). Existing analytical func-
tionality can be linked with an operational GIS in a number of ways, referred to as
encompassing, modular and loosely coupled.

They discuss the implementation of a framework for spatial analysis within a GIS
through a cursory review of the state of the art (at the time), with a special focus on
exploratory (ESDA) and confirmatory (CSDA) data analysis methods. They also
identify the potential for GIS to complement the existing set of statistical meth-
ods with powerful computation intensive approaches and innovative visualization.
Anselin and Getis argue for a “new” spatial analysis to emerge from a creative
combination of the “old” spatial analysis with the new technologies, stressing that
technological development should be led by substantive theory and methodology.

In the provocatively entitled “whose hand on the tiller? revisiting ‘spatial statis-
tical analysis and GIS’,” Michael Goodchild takes a retrospective look at changes
in the relationship between GIS and regional science since the early 1990s. Two
themes organize the contribution. The first is the prescience of the original Anselin
and Getis article in laying out some of the key methodological challenges that would
confront spatial analysis and GIS.

The second theme broadens the examination to consider the relationship between
academic spatial analysis and the development of commercial GIS software on the
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one hand and the changes in the nature of science on the other. Goodchild agrees
with the argument made by Anselin and Getis that the development of GIS software
should be driven by the demands of substantive research questions. Yet, the com-
mercial reality in the GIS world since 1992 has seen scientific research and methods
representing only a tiny fraction of the overall market. This would seem to suggest
that academic researchers would have little influence over trends in GIS. However,
Goodchild argues that there are several reasons why this influence has actually been
larger than its small market share would suggest. These relate to universities’ his-
torical function of training future researchers and scientists, critical examinations of
the societal impacts of GIS technology, and academic spatial analysis being the key
source of methodological innovations.

In “spatial interaction and spatial autocorrelation,” Manfred Fischer, Martin Reis-
mann and Thomas Scherngell examine the issue of spatial autocorrelation in the
context of origin-destination interaction models and suggest two novel methodolog-
ical advances. The first concerns the issue of the proper specification of how to
specify spatial autocorrelation in the log-additive spatial interaction model, given
that each observation is now associated with a pair of locations. The dyadic nature of
spatial interaction data is exploited to develop a new spatial weights matrix. Based
on the notion of interaction similarity, a pair of flows are considered “neighbors”
if the origin locations in each of the flows are themselves geographic neighbors.
Mirroring this origin-based similarity matrix is a destination based similar weight
structure where two flows involving destination locations that are contiguous are
considered to be neighbors in interaction space.

The second innovation is a generalization of the local G statistic to the case of
spatial interaction data. Based on the interaction similarity matrix, this provides
a powerful tool to apply in the exploratory analysis of flow data and to detect
local interaction clusters. Both innovations are illustrated in an empirical analysis
of patent data for 112 European regions.

1.4.2 Spatial Pattern Analysis

Part II contains four chapters on point pattern analysis. Chapter 6 is a reprint of an
early discussion by Getis of second order point pattern analysis using Ripley’s K
function (Getis, 1983). The second reprint, included as Chap. 7, covers an extension
of these ideas to local analysis in the much cited Getis and Franklin (1987) article
that appeared in Ecology. Chapter 8 by Okabe et al. outlines a general class of
K functions and Chap. 9 by Franklin reviews the impact of spatial point pattern
analysis in plant ecology.

“Second order analysis of point patterns, the case of Chicago as a multi-center
urban region” was originally published in The Professional Geographer. Getis
approaches the study of urban population density from the perspective of point pat-
tern analysis. Using census tract population for the Chicago area and representing
each count of 10,000 people by a point, Ripley’s K and L functions are applied to
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detect patterns of clustering or inhibition. In these analyses, all the interpoint dis-
tances are considered, hence the reference to this approach as second order analysis.
This is in contrast to first order analysis, which concerns itself with the density of
the points as such.

A careful analysis of the Chicago example suggests both inhibition at small dis-
tances as well as clustering at about 7–9 miles, which corresponds to the mean
journey to work distance at the time. Getis makes the link between these distinct
patterns and the presence of multiple centers in the metropolitan area, and argues
for the use of second order analysis as an alternative to the more commonly applied
study of population density. Interestingly, he also points to the danger of a poten-
tial misinterpretation of these results due to the effect of scale, which is further
elaborated upon in his article with Franklin.

In “second-order neighborhood analysis of mapped point patterns,” Getis and
Franklin approach second order analysis from a local perspective, by considering
the variation of inter-point distances around a given point. It is suggested that the
relationship between a location and all other locations surrounding it can be cap-
tured by four distance parameters: the nearest neighbor distance, the distance where
heterogeneity begins, the distance where clustering becomes significant, and the
distance where clustering is maximized.

The point of departure is the statistic Li(d) (Getis, 1984), a measure of the frac-
tion of points within a given distance d of the location of interest. This is compared
to the null hypothesis of a random Poisson point process. As the distance d is varied,
different patterns are identified, revealing how pattern changes with scale. The anal-
ysis can be carried out for a given point, using different distances, or considering all
points for a given distance. This yields maps showing the degree of clustering for
different distance bands. The article illustrates this methodology with an application
to the location of ponderosa pines.

In “a class of local and global K functions and their exact statistical methods”
Okabe, Boots and Satoh extend the second order method introduced by Getis and
Franklin to develop a broader family of K statistics. This family is composed of
three pairs of K-based statistics, with each pair having a local and global form. The
first pair are the global and local cross K statistics. These consider two sets of point
patterns in which one set (P ) is considered to have random locations, such as crime
spots, while the second set are points whose locations are fixed as in the case of
railway stations. For each fixed (or base) location i the local cross statistic Ki(t)
is the number of points (from the random set P ) that are contained in a disc Di(t)
centered on i with radius t. The global cross K function is then taken as the sum of
the local functions K(t) =

∑m
i=1 Ki(t).

Under the null hypothesis that the points P have a uniform distribution, they
show that the local version of the statistic has a binomial distribution, yet, even
though the global statistic is a simple sum of the local statistics, the derivation of the
properties of the global statistic are not straightforward due to complications that
arise when the discs centered around the focal base points overlap and the lens of
this overlap contain points in P . This results in a double counting of the points in the
calculation of the global K statistic. They show that with overlapping, non-empty
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discs, the global statistic follows the univariate multinomial distribution, while in
the case where there are no overlapping discs, the global statistic has a binomial
distribution.

The solution to the overlapping problem is through the second pair of statistics
in the family, the local and global Voronoi cross K statistics. These rely on a tessel-
lation of the base points such that any overlapping lens is split by the edge of the
Voronoi polygon resulting in each point in P being assigned to only one base point
and disc.

The final pair of statistics in the family are the local and global auto K functions.
In contrast to the cross statistics, the auto functions only consider one set of points
and the local form of the statistic is in fact the original local K introduced by Getis
and Franklin. While recognizing that the original local K function was derived by
“localizing” the global K function, they demonstrate that it is entirely possible, and
perhaps more straightforward, to proceed in the opposite direction and create global
statistics as sums of the local statistics.

In “the spatial point pattern analysis of plants,” Janet Franklin revisits the impact
of the Getis and Franklin paper on the practice of spatial point pattern analysis in
plant ecology, and specifically aims to determine if local statistics are being used and
how. Broadly speaking, methods of point pattern analysis have been used by ecolo-
gists to relate spatial patterns to underlying processes of predation and competition,
as well as to explore spatial heterogeneity and to identify clusters of individu-
als sharing similar characteristics. Although endogenous biological processes are
expected to generate detectable spatial patterns, the application of point pattern
methods to relate patterns back to processes can encounter the equifinality problem
when multiple processes are capable of generating the same pattern.3

With regard to the question pertaining to the use of the local statistic in the sub-
sequent ecological literature, a detailed examination of citation patterns reveals that
although the paper was written to introduce local spatial statistics to ecologists, it
has most often been cited with reference to global point patterns statistics. Franklin
posits that this is because the original paper provides a clear summary of classic
work in global spatial pattern analysis. The pedagogical strength of the Getis and
Franklin paper in its publication history, as it originally submitted as a technical note
but the editors requested a full-length paper presaging the wide utility the methods
come would have in the field of ecology.

The second question taken up by Franklin is how local statistics have been used,
and three general areas are identified. The first is work on methods for edge cor-
rections that build on the adjustments presented in the original paper. Second is the
use of local statistics to detect spatial segregation of individuals and species and
to delineate homogeneous subareas. Third is the development of spatially explicit
indices of clumping using local statistics that are in turn used in logistic regression
models to test processes of survival and mortality. While these three areas represent

3 The equifinality problem is encountered under the guise of the identification problem in econo-
metrics, although to our knowledge the relations between the two have not been treated in the
literature.
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areas of methodological advancement, Franklin notes that a gap still exists between
applied work and theory in ecology since the original paper has typically been cited
for reasons other than the local spatial statistic it introduced.

1.4.3 Local Spatial Statistics

Part III contains four chapters dealing with a local perspective on spatial data analy-
sis. Two are selected reprints from the series of papers by Getis and co-authors on the
properties of the Gi(d) and related statistics and their application in the construction
of spatial weights matrices. Specifically, the classic Getis–Ord paper from Geo-
graphical Analysis (Getis and Ord, 1992) is included as Chap. 10, and a more recent
article on spatial weights, co-authored with Aldstadt (Getis and Aldstadt, 2004, also
from Geographical Analysis) appears as Chap. 11. Chapter 12 is a reflective essay on
spatial autocorrelation analysis by Keith Ord, and Chap. 13, by Rogerson, illustrates
a local approach to surveillance in spatial epidemiology.

In “the analysis of spatial association by use of distance statistics,” Getis and
Ord present both local and global forms of a family of the so-called G statis-
tics and outline their formal properties. The local form dates back to suggestions
in Getis (1984), whereas the global statistic has roots in the discussion of spatial
autocorrelation and spatial interaction in Chap. 2.

The local G statistics, Gi(d) and G∗
i (d) are related to Ripley’s K and show the

fraction of values of a variable within a given radius d around a specific observation.
They differ in whether or not the location itself is included in the calculation. The
global G statistic is a generalization of this concept that includes cross products of
the variates within a given radius. This measure is related to Moran’s I , but differs
in an important respect. Positive and significant values of the G statistics suggest a
cluster of high values, whereas negative and significant values suggest a cluster of
low values. In contrast, a positive Moran’s I suggests similarity (either high or low)
and a negative value indicates dissimilarity.

The moments of these statistics are derived under the null hypothesis of spa-
tial randomness, implemented using a randomization approach. With the mean and
variance in hand, a standardized Z value can be constructed. Its distribution can be
approximated by a Gaussian distribution, which allows for statistical inference.

The new statistics and Moran’s I are compared for a number of artificial spatial
layouts. They are also applied in two empirical examples. One is the familiar SIDS
data set for North Carolina counties popularized in the work of Cressie (1993),
the other a sample of dwelling unit prices for zip code areas in San Diego county.
The SIDS case is an example of a situation where global measures of spatial auto-
correlation fail to be significant, whereas the local statistics suggest the existence
of significant clusters. The San Diego case shows significance for both global and
local spatial autocorrelation statistics.

In “constructing the spatial weights matrix using a local statistic,” Getis and Ald-
stadt suggest a new method to compute the values for the elements of a spatial
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weights matrix. This is based on the local G∗
i statistic. For each location, it is com-

puted for increasing distance bands to determine the range beyond which no spatial
autocorrelation is assumed to exist. The specific criterion used to select this critical
distance is a decrease in the absolute value of the G∗

i (d) statistic. The actual weights
wij are then computed as a function of the G∗

i value for the actual distance and that
for the critical distance. Weights for locations that are more than the critical distance
apart are set to zero.

Since the calculation is carried out for each location in turn, this procedure allows
for heterogeneity in the range and values of weights. Getis and Aldstadt also present
a local statistics model (LSM), in which spatial structure is seen as consisting two
components, one which depends on a distance effect, and one that does not. This is
expressed as a regression with both a spatial weights matrix and a dummy variables
on the right hand side. For those locations that do not show a distance effect, the
row and column of the weights matrix is zero and the dummy variable is set to one.
When non-zero elements are present in the weights row, then the dummy variable is
set to zero.

This model is assessed in a small number of simulations for artificial layouts that
mimic spatial randomness and two types of clustering. The new weights perform
well in these examples compared to traditional contiguity based weights as well as
semi-variance based weights.

In “spatial autocorrelation: a statistician’s reflections” Keith Ord reminisces
about his original meeting with Getis while a new member of the economics fac-
ulty at the University of Bristol in the late 1960s. It was during this time that Ord
was collaborating with Andrew Cliff on statistical measures of spatial dependence in
possibly irregular spatial configurations. That work was presented at a Regional Sci-
ence Association meeting in London in a session shared with (now) Nobel Laureate
Clive Granger. Ord reminds us that many of the questions proposed by Granger in
that session some 40 years ago remain largely unanswered today and continue to
present challenges to spatial modelers. These include questions about whether the
spatial process is isotropic, spatially stationary and the relation of samples to popula-
tions in spatial data. Cognizant of the challenges facing spatial model development,
Ord proposes the “second law of geography”:

All maps are wrong but some are useful

which can be viewed as an addition to Tobler’s first law of geography: “everything
is related to everything else, but near things are more related than distant things,”
and an adaptation of George Box’s first law of statistics: all models are wrong but
some are useful.

Ord’s takes up spatial processes for lattice data, that is for data recorded as areas
within a region. He suggests an asymptotic relative efficiency (ARE) measure as
a guide to specification of the weight matrix. Ord uses the ARE to consider the
impacts of weights misspecification under two scenarios, one in which the true
matrix is the familiar rook definition of contiguity and the second the queen defini-
tion. For each case the ARE are calculated for misspecified weights matrices, using
the two aforementioned definitions and a third that is a hybrid based on the notion
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of isotropic dependence reflecting a directional invariance but distance-dependence
structure to the spatial autocorrelation. The hybrid case is found to dominate the
other two alternatives with regard to ARE.

Ord’s contribution also considers questions related to local spatial statistics, par-
ticularly concerns regarding significance levels when carrying out a large number
of tests. He also illuminates the differences between the Gk statistic and the local
Moran Ik statistic, noting that these differences make the statistics complements
rather than competitors since they each can detect different patterns in the data.
Ord also examines local estimation in two contexts, one in which the weights are
prespecified and the second in which the weights are also incorporated in the esti-
mation. The final topic introduced is that of an anisotropic spatial lag which allows
for directional dependence or asymmetry in the strength of spillovers as, for exam-
ple, the case of the negative effect of a high crime rate area on housing prices in a
neighboring low crime area being stronger than the positive effect on prices in the
other direction.

In “health surveillance around prespecified locations using case-control data”
Peter Rogerson considers the problem of monitoring data around a putative point
source in order to detect as quickly as possible any change in risk that may be
occurring. Known as prospective detection, Rogerson introduces a new the method
that relies on the availability of case-control data characterized by both location and
a time of diagnosis. A log-likelihood function for the cases and controls is specified
which is driven by two central parameters: one (θ1) which reflects the excess risk at
the location of the putative source, and a second (θ2) which captures the decline in
risk as distance from the putative source increases.

A likelihood ratio test is then derived for conducting a single test to determine if
there is both significant excess risk at the source and whether that risk declines with
distance from the source. This test is then extended to a temporal context through
the use of cumulative sum methods to derive a diagnostic for detecting change in risk
over time. A cumulative sum of score statistics, each of the latter formed as the ratio
of the log-likelihoods from before and after a change, is compared against a prede-
fined threshold parameter. The properties of the test are then examined in a carefully
developed set of simulations. The results indicate that, as expected, the detection
occurs more quickly as the underlying risk increases, while they also highlight some
of the challenges related to specifying parameter changes when implementing the
test in practice.

1.4.4 Empirical Applications

In this final part, we include four chapters illustrating empirical applications. The
two Getis reprints deal, respectively, with spatial filtering (Getis, 1995a, included
as Chap. 14) and with the use of global and local spatial statistics to character-
ize the spatial distribution of the Dengue vector (Getis et al., 2003, included as
Chap. 15). Chapter 16, by Daniel Griffith, considers a comparison of the eigenvalue
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and local statistics spatial filtering methods. Chapter 17, by John Weeks, is an
in-depth analysis of the spatial distribution of fertility in rural Egypt.

In “spatial filtering in a regression framework: examples using data on urban
crime, regional inequality, and government expenditures,” Getis refines his earlier
suggestion on how to construct spatially filtered variables (outlined in Getis, 1990)
and provides three detailed empirical illustrations. The rationale behind spatial filter-
ing is to remove the inherent spatial autocorrelation from all variables in a regression
specification (both dependent and explanatory variables). The new filtered variables
then allow for the regression to be estimated by means of classical ordinary least
squares. In addition, artificial variables containing the spatial effects can be included
in the specification as well.

The main contribution of this chapter is the use of the Gi(d) statistic to construct
the spatially filtered variable. An important aspect of this is the choice of the opti-
mal distance d, such that there is no remaining spatial autocorrelation beyond this
distance. The original variable is decomposed into a filtered part (which contains no
spatial autocorrelation) and the remainder, which represents the spatial effects due
to the spatial configuration of the data.

Getis suggests four tests to assess whether the procedure works: (1) no spatial
autocorrelation should remain in the filtered variable; (2) the difference between
the original and filtered variable should show significant spatial autocorrelation;
(3) there should be no remaining residual spatial autocorrelation in the regression;
and (4) the filtered variables should be significant in the regression. This is illustrated
with three empirical examples: the classic Columbus neighborhood crime data set;
a study of regional per capital income in regional divisions for Turkey; and govern-
ment expenditures for US states. In all instances, the filtering procedure performs
satisfactorily.

Getis and co-authors illustrate a careful application of global and local spatial
autocorrelation analysis in “characteristics of the spatial pattern of the Dengue vec-
tor, Aedes Aegypti, in Iquitos, Peru,” which originally appeared in the American
Journal of Tropical Medicine and Hygiene. The study is carried out using detailed
household data for two distinct neighborhoods in the Amazonian city of Iquitos,
Peru. These neighborhoods differ in the way water is managed, which is highly rel-
evant to the quantification of the vector population, largely driven by the presence
of water in containers.

Four variables were considered: the number of adult pupae; water holding con-
tainers; water containers positive for the presence of larvae; and water containers
positive for the presence of pupae. For each of these variables, a global K function
was utilized to assess clustering, and the local G∗

i (d) statistic was employed to iden-
tify the locations of clusters. This was implemented by means of the PPA software
package, co-developed by Getis (Chen and Getis, 1998).

A careful analysis of clusters by neighborhood and over time leads to specific rec-
ommendations for Dengue control and surveillance strategies. The results also point
to the importance of spatial scale in the study of the dynamics of Dengue transmis-
sion. In this particular application, the proper scale turns out to be the household,
but with a need to carry out measurement at frequent time intervals.
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In “spatial filtering and missing georeferenced data imputation: a comparison of
the Getis and Griffith methods,” Daniel Griffith explores the use of recently devel-
oped spatial filtering methods to the case of small area estimation. Previous research
had suggested that one class of filtering methods, those based on the local Gi statis-
tic appear to lend themselves to the problem of imputation, while the eigenvector
based filtering method did not. Griffith takes up this conjecture by a detailed analysis
of the properties of the two different filtering methods.

By viewing these filtering approaches as special cases of the more general Expec-
tation Maximization problem, Griffith derives missing data prediction equations
for each of these two original formulations, and then compares these approaches
using several popular datasets. The results provide two key corrections to the ear-
lier conjecture about filtering methods in an imputation context. The first is that the
eigenvector based approach can indeed be applied to impute missing georeferenced
data. The second corrective is that while the Gi approach also is applicable to small
area estimation problems, those applications are complicated by the constraint that
the variable in question has to be nonnegative and the potential requirement for the
additional estimation of threshold distances in the imputation.

In “spatial patterns of fertility in rural Egypt” John R. Weeks applies a suite of
geospatial tools to examine the spatial patterns of human reproduction in a rural gov-
ernorate in Egypt. Noting that existing demographic thought rarely has gone beyond
the question of rural vs. urban differences in fertility behavior, Week’s demonstrates
that even these regional differences can mask underlying spatial heterogeneity at
the finer spatial scale of the village. These patterns are uncovered through the novel
combination of remote sensing imagery together with dasymetric mapping and cen-
sus data to develop a spatially rich geodemographic dataset on fertility dynamics
over a 20-year period.

Clusters of high-fertility areas, or “hot spots” are identified through the use of the
local Gi statistics. These, in turn, are used in a spatially filtered regression model to
examine the determinants of fertility change. This specification includes traditional
covariates such as illiteracy, marital status, and age composition, but does so by
decomposing each into a spatial component (based on the Gi statistic) and a filtered
component in which the spatial autocorrelation in that covariate is removed. The
results indicate, that the traditional covariates do have their expected signs, how-
ever, the spatial components have became more important over time as a predictor
of fertility levels. This nicely demonstrates a basic tenet of geodemographics that
behavior is a joint function of who people are and their spatial context.
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Chapter 2
Spatial Interaction and Spatial Autocorrelation:
A Cross-Product Approach

Arthur Getis

This Chapter was originally published in:
Getis, A. (1991) Spatial Interaction and Spatial Autocorrelation: Across-Product
Approach. Environment and Planning A 23:1269-1277. Reprinted with permission
of PION Limited, London

Abstract A cross-product statistic is used to demonstrate that spatial interaction
models are a special case of a general model of spatial autocorrelation. A series
of traditional measures of spatial autocorrelation is shown to have a cross-product
form. Several interaction models are shown to have a similar form. A general spatial
statistic is developed which indicates that the relationship between the two types of
models is particularly strong when the focus is on measurements from a single point.

2.1 Introduction

In casual conversation one rarely makes a distinction between those elements of our
environment that are associated and those that interact. It is commonly believed that
if tangible or intangible variables interact they are therefore in association with one
another. Spatial scientists, however, have made in the technical literature a distinc-
tion between spatial association, which implies correlation, and spatial interaction.
There is among them a deep-seated view that spatial interaction implies movement
of tangible entities, and that this has little to do with spatial correlation. A literature
on spatial autocorrelation has arisen that is nearly devoid of references to the litera-
ture on gravity and interaction models. Only on rare occasions will a spatial scientist
use the words “spatial interaction” to refer to the ideas of the spatial associationists
(Haining, 1978; Ord, 1975).

In this paper, I suggest that the family of spatial interaction models is a special
case of a general model of spatial autocorrelation. The goal is to bring the two
modeling “camps” together into a single group whose purpose is to develop further
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spatial models in a general way. In recent reviews of the interaction model and
spatial autocorrelation literature, such as in Haynes and Fotheringham (1984) and
in Anselin (1988), respectively, there is little recognition of the contributions of the
other group. There has not been a discussion that shows that the two types of models
can be described in a general way by the same spatial model. In order to solidify the
relationship I will present a statistic that I have developed with the assistance of Ord
that can be interpreted as either an indicator of spatial autocorrelation or a measure
of spatial interaction.

There have been a number of generalizations of gravity and spatial interaction
models (Tobler, 1983; Wilson, 1970). The most recent contribution is by Haynes
and Fotheringham (1984), who write the general model as

Tij = f(Vi, Uj, Sij),

where Tij is the interaction (tangible or intangible) between i and j, Vi and Uj

represent vectors of origin and destination attributes, respectively, and Sij represents
a vector of separation attributes. By introducing constraints and specifying the form
of the attributes, one can produce a model for validation. The relationship between
the dependent and independent variables is often constrained. In some instances
emphasis is on Vi (origin-specific, production-constrained gravity models), whereas
in others the Uj are most important (destination-specific, attraction-constrained),
and in some models there is a balance between the two (doubly constrained models).
Fotheringham (1983) adds a further general term to the system, Cj , which represents
a vector of competition variables. As he implies, however, Cj is a refinement of and
a more detailed specification for Uj .

The historic background that has led to the current understanding of spatial auto-
correlation models is very much different from that of interaction models. Spatial
autocorrelation modeling has had a shorter history. Interaction modeling has been
active for over 100 years although it was in the late 1950s when there was a resur-
gence of interest that has lasted to the current time. The field had already been
reinfused with the theoretical energy of Wilson in the early 1970s when Cliff and
Ord (1973) presented their ground-breaking explication of the spatial autocorre-
lation problem based on the work of Moran (1948), Geary (1954), and Whittle
(1954).

Since 1973 the development of spatial autocorrelation models has been slow
and tedious. The literature gives no evidence that Moran’s I model, the join-count
model, and the Geary model have been replaced or modified. Considerable progress
is clear, however, in the development of regression models that include one or
more spatial autocorrelation coefficients. In related developments, spectral mod-
els and especially variograms (Kriging) are being used to estimate the nature of
autocorrelation in spatial data.

The common elements of the various spatial autocorrelation models are (1) a
matrix of values representing the association between locations and (2) values rep-
resenting a vector of the attributes of the various locations. To my knowledge, only
Hubert and his associates Golledge, Costanzo, and Gale (Hubert and Golledge,
1982; Hubert et al., 1981, 1985) have developed a general form for the association
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of these elements. Their cross-product statistic, Γ, is written

Γ =
∑

i,j

WijYij , (2.1)

where Wij are elements of a matrix of measurements of spatial proximity of places
i to places j, and Yij is a measure of the association of i and j on some other
dimension. A slightly different form is

Γ =
∑

i,j

WijYj (2.2)

in which the relationship between the Yi and Yj is implicit rather than explicit
as in (2.1). In this and in all subsequent formulations where we use summation
signs, i does not equal j (that is, there is no self-association or self-interaction),
unless otherwise indicated. In addition, in all subsequent formulations stationarity
and isotropy are assumed where required. A common choice for Yij is

Yij = (xi − xj)2, (2.3)

where the x are the values observed for variate Xi. Clearly Yij could be some other
measure of the association between i and j. For example, Hubert et al. (1981) pro-
pose cos(di − dj) where di and dj are angular directions at i and j. In the following
paragraphs I shall identify briefly the differentiating elements of the various spatial
autocorrelation models.

2.2 Cross-Product Spatial Autocorrelation Models

In this section I give a survey of the models of spatial autocorrelation. In each case
attention is on the form of the model. The purpose is to show that nearly all of the
models are simply just another specification of a cross-product statistic.

2.2.1 The Join-Count Models

These models require a 0,1 attribute scale. That is, some places display the attributes
(1) whereas others do not (0). The Yij of the cross-product statistic differs according
to the particular model of which there are three: (1) association of places with the
attribute Yij = xixj ; (2) association of places with and without the attribute Yij =
(xi−xj)2; and (3) association of places without the attribute Yij = (1−xi)(1−xj).
The first and the third model exhibit a multiplicative form. Each of the models is
constrained by allowing only a value of one for a success and zero for a failure.
The model is evaluated against the expectation of the moments of Xi (see Cliff
and Ord, 1973). There are no constraints on the weight matrix although in practice
researchers usually choose a one-or-zero scheme to identify spatial proximity or no
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Table 2.1 A comparison of various spatial models and the cross-product statistic
Model Wij Yij Restrictions Scale

Wij Yij

Cross-product statistics

Γ =
∑ ∑

WijYij Wij Yij None None None

Γ =
∑ ∑

WijYj Wij Yj None None None

Spatial autocorrelation models

Joint count

BB = 1
2
∑ ∑

Wijxixj Wij xixj 0/1 0/1 1
2

BB = 1
2
∑ ∑

Wij(xi − xj)2 Wij (xi − xj)2 0/1 0/1 1
2

BB = 1
2
∑ ∑

Wij(1 − xi)(1 − xj) Wij (1 − xi)(1 − xj) 0/1 0/1 1
2

Moran’s

I =
n

∑ ∑
Wij(xi−x̄)(xj−x̄)

W
∑

(xi−x̄)2
Wij (xi − x̄)(xj − x̄) None None n

W
∑

(xi−x̄)2

Geary’s

c =
(n−1)

∑ ∑
Wij(xi−xj)2

2W
∑

(xix̄)2
Wij (xi − xj)2 None None n−1

2W
∑

(xi−x̄)2

Semi-variance

γ = 1
2
∑n−h

i=1
∑n

j=i+h Wij (xi − xj)2 Wij (xi − xj)2 1 None 1
2

Second-order

K(d) =

∑ ∑
Wi,j(d)xixj

(
∑

xi)2−∑
x2

i

Wij (d) xixj 0/1 Positive [(
∑

xi)
2 − ∑

x2
i ]−1

Getis model

Gi(d) = [
∑

j Wij(d)xixj ](
∑

j xixj)−1 Wij (d) xixj 0/1 Positive (
∑

j xixj)−1

Spatial interaction models

General gravity

Tij = kxα
i xτ

j W
−β
ij

W
−β
ij

xα
i xτ

j None Positive k

Origin-specific, production-constrained

Tij = (xixα
j W

−β
ij

)(
∑

j xjW
−β
ij

)−1 W
−β
ij

xixα
j None Positive (

∑
j xjW

−β
ij

)−1

General spatial models

i-to-all-j model

Gi = (
∑

j xixjW
−β
ij

)(
∑

j xixj)−1 W
−β
ij

xixj None Positive (
∑

j xixj)−1

i-to-j model

Gij = (xixjW
−β
ij

)(xixj)−1 W
−β
ij

xixj None Positive (xixj)−1

Note: BB black–black joins, BW black–white joins, WW white–white joins

spatial proximity. In Table 2.1 the cross-product characteristics of the models are
identified.

2.2.2 Moran’s I Models

The theoretical base for these models is interval-scale observations. There are two
models here, differentiated only by the procedures for the evaluation of results.
Unlike the join-count models, these are essentially a Pearson product-moment cor-
relation coefficient model altered to take into consideration the effect of a spatial
weight matrix. The cross-product, Yij , is the covariance, (xi − x̄)(xj − x̄). The
weight matrix has no restrictions. As in the Pearson statistic, Moran’s measurement
includes a scaling factor. No doubt the popularity of the Moran statistic is because
of the asymptotic normal distribution of the model as n increases (Cliff and Ord,
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1973). A roughly equivalent model based on a likelihood ratio statistic is by Haining
(1977).

2.2.3 Geary’s c Models

The two models here are similar to Moran’s models except for the way in which
the cross-product attributes are written. In this case the Yij is (xi − xj)2. This is
the same as the second join-count model. The variance is a scalar, and the weight
matrix is as in the Moran models. The value 1 for c implies that there is no spatial
autocorrelation.

2.2.4 The Semivariance Model

The semivariance is a geostatistical measure of autocorrelation based on a lattice of
evenly spaced data points. Estimation of the semivariance, γ(h), results from the
sum of multiples of the values of pairs of points that are separated by a constant
spatial lag h units of distance from one another in a single direction. Because of
the supposed dependence between nearby data points, as h increases one would
presume that the degree of autocorrelation would decline and the variance would
increase to the level of the population at large. The model gets its name from the
fact that the quantity is half the expected squared difference between two values.
As h increases the trend of the γ(h) values is called a variogram, not unlike the
correlogram often found in studies that use Moran’s I . For Hubert’s statistic the
value h is the equivalent of a one-or-zero weight matrix for a specified set of pairs of
points that are h distance units apart in one direction (say east to west) and the values
of Yij are of the form (xi − xj)2. The variogram can be written in cross-product
form as

γ(h) =
1
2

n−h∑

i=1

n∑

j=i+h

Wij(xi − xj)2. (2.4)

2.2.5 Second-Order Spatial Autocorrelation

In a measure of spatial autocorrelation I developed earlier (Getis, 1984) the distance
between xi and xj , is d. The d value generates a weight matrix of ones for all pairs
of points found within d of one another and gives zeroes for all other pairs of points.
The result is a cumulative measure of spatial autocorrelation for each distance. The
measure taken over many distances creates a cumulative correlogram. The main
difference between the second-order approach and the variogram is its cumulative
nature, the second-order model does not depend on a lattice of points. The model
for an area of size A is given by the expression

K(d) =

⎛

⎝A
∑

i,j

Wi,jxixj

⎞

⎠
[(∑

Xi

)2

−
∑

X2
i

]−1

, (2.5)
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where the elements Wi,j of the matrix are one or zero, with a one attributed to those
j within d of i, and the Yi,j matrix contains xixj pairs. The X variable has a natural
origin and xi ≥ 0. Clearly, the cross-product statistic describes the numerator and
the denominator is a scalar that describes the sum of all xixj pairs, revealing that
the measure K(d) is a proportion.

2.2.6 Spectral Analysis

Although I suspect that it is possible to squeeze a spectral view of spatial autocor-
relation into a cross-product form, spectral analysis is fundamentally different from
the analytical models presented above. In spectral techniques it is assumed that there
is a series of frequencies making up distinct periodicities in spatial data. The math-
ematics for identifying the harmonics are more complicated than those embodied
in cross-product analysis. Spectra result from the addition of successive harmonics
of a cosine wave. Spectral analysis is an effective analytical device if one is willing
to assume that spatial autocorrelation is a consequence of some sort of vibratory
motion or accumulation of wave-like forces.

2.2.7 The Spatial Autoregressive Model

A first-order autoregressive model is given by

Yi = α + ρ
∑

Wi,jYj + εi. (2.6)

For a spatial autoregressive interpretation ρ is the spatial autocorrelation coefficient,
Wij is an element of the spatial weight matrix, and ε is the uncorrected, normally
distributed, nonspatially autocorrelated, homoscedastic error term. The Wi,jYj is
a spatial variable which we construct from the dependent variable itself, and the
system is stationary. Thus, the model represents the spatial dependence structure
of Y . This is not a model of spatial autocorrelation per se but a model of the effect
of spatial autocorrelation on a dependent variable. The main difference with the
models described above is that the coefficient ρ is a parameter that relates the spatial
dependence form of Y with itself, whereas Moran’s I , for example, is strictly a
value representing the spatial autocorrelation characteristic of variable Y . In fact,
the numerators of both I and ρ are the covariance.

2.2.8 A Cross-Product View of Spatial Autocorrelation

The point of the above exercise is that the numerators of the autocorrelation models
are essentially cross-product statistics (see Table 2.1). The Wij matrix is not con-
strained or, if it is, the constraint is usually because of some maximum-distance rule,
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contiguity, or another condition that focuses attention on a specified set of interact-
ing locations. In Table 2.1, the values of the Yij are entered into the equation in a
multiplicative way, as a squared difference, or as a covariation. All other parts of the
equations define the base or scalar for the calibration of the various statistics.

Hubert et al. (1981) imply that for testing purposes scales in the formulations
are unnecessary. Scales are generally included in the various measures of spatial
autocorrelation in order to satisfy assumptions that allow for statistical tests on
well-known probability distributions. Hubert (1977) has developed a randomization
technique of matrix manipulation that allows one to make statements of statisti-
cal significance without making distributional assumptions. Thus not only have we
defined a family of cross-product statistics, but if we were to follow Hubert’s advice
we would use the same type of evaluation procedure for every formulation of Yij .

2.3 Interaction Models

I shall write the formulas for two common gravity and interaction models:

Tij = kP y
i Pα

j d−β
ij (2.7)

and

Tij = AiOiW
αi

j d−βi

ij . (2.8)

The first is the general unconstrained gravity model where the Pi and Pj represent
the magnitude of the variable under study at i and j, dij is the distance separating
i and j, the exponents on the P variable are sometimes used to differentiate the
effect of the origin from that of the destination. The exponent on the distance value
represents the friction of distance. The k is a scalar or constant of proportion.

The characteristics of interaction measures that help differentiate them from auto-
correlation measures are (1) a focus on a single ij relationship; (2) the use of
exponents to adjust variables; (3) constraints to draw attention to one or more of
the variables. In terms of the cross-product statistic there are significant similari-
ties between them. In Table 2.1, (2.7) is rewritten to conform to the nomenclature
of the cross-product statistic. Note that no summation sign is used in (2.7) or in
Table 2.1. The focus in interaction modeling is on a single association, although the
derivation of the parameters usually depends on the empirical data of all associa-
tions. The point, however, is that the form of the measure is similar to measures of
spatial autocorrelation. The Tij is simply one value that could be used in the devel-
opment of a spatial autocorrelation statistic. The elements of a Wij matrix contain
the values of d−β

ij . The Yij are simply the association values between the places
i and j. As in the spatial autocorrelation statistics, the Yij are defined in any of a
number of ways. The various constraints placed on the values at the i places can eas-
ily be accommodated in a cross-product statistic. Thus, the exponents that are used
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in interaction models represent more advanced development than in autocorrelation
models, but there is nothing standing in the way of the use of exponents to enhance
spatial autocorrelation measures (Cliff and Ord, 1969).

Equation (2.8), the origin-specific production-constrained interaction model, has
been rewritten in Table 2.1 to conform to the cross-product model. It is clear that
even with the complexity characteristic of many interaction models, the general
form remains that of a cross product.

2.4 A General Spatial Statistic1

The statistic developed below contains the elements of the cross-product statistic but
instead of it being a summary measure over an entire set of data it focuses on a single
point as in spatial interaction measures. As it is developed here, the translation from
spatial autocorrelation to interaction is not without problems.

The statistic is given by the equation

Gi(d) =
[∑

j

Wij(d)xj

](∑

j

xj

)−1

, (2.9)

where Wij is a one-or-zero spatial weight matrix with ones for all links defined as
being within distance d of a given place i and all other links are zero. The variable
X has a natural origin and is positive. The numerator is a cross product and the
denominator is the sum of all the x other than xi. If S is equal to x1 + · · · + xn, it
follows directly that

K(d) =
[∑

j

xi(S − xi)Gi(d)
](

S2 −
∑

i

x2
i

)−1

(2.10)

so that Gi(d) represents a partition of K(d) to provide an index for the ith
location.

Making use of a permutations argument and recognizing that the denominator is
invariant under permutations, we can consider the statistic as

Gi =
[∑

j

Qjxj

](∑

j

xj

)−1

,

where Qj = 1 if Wij = 1, otherwise Qj = 0. This means that P (Qj = 1) is equal
to W (n − 1)−1 where W =

∑
j Wij(d). Then

1 This section was developed with J K Ord.
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E(Gi) =
[∑

j

E(Qj)xj

](∑

j

xj

)−1

= W (n − 1)−1 (2.11)

and

E(G2
i ) =

(∑

j

xj

)−2[∑

j

x2
jE(Q2

j) +
∑

j,k

xjxkE(QjQk)
]

so that E(Q2
j) = E(Qj) as Qj = 0 or 1, and E(QjQk) = W (W−1)(n−1)−1(n−

2)−1 (that is, hypergeometric). This yields

E(G2
i ) =

(∑

j

xj

)−2{[

(n − 1)−1W
∑

j

x2
j +

W (W − 1)
(n − 1)(n − 2)

[(∑

j

xj

)2

−
∑

j

x2
j

]}

so

var (Gi) = E(G2
i ) − E2(Gi)

=
(∑

j xj

)−2

)
[
(n − 1)−1(n − 2)−2W (n − 1 − W )

∑
j x2

j

+ (n − 1)−2(n − 2)−1W (
∑

j xj)2
]
.

If we put (
∑

j xj)(n − 1)−1 = Y1 and (
∑

j x2
j)(n − 1)−1 − Y 2

1 = Y2, then

var (Gi) =
W (n − 1 − W )
(n − 1)2(n − 2)

Y2

Y 2
1

. (2.12)

In this paper we will not further discuss properties of Gi(d) except to say that
Gi(d) is normal as n → ∞ (from properties of sampling without replacement,
that is, a Moran-type argument). In a subsequent paper (Getis and Ord, 1992),
characteristics of Gi(d) will be discussed for the case when normality cannot be
assumed.

2.4.1 Further Development of the Statistic

The difficulty with the statistic shown in (2.9) is in its dependence on a one-or-zero
weight or distance matrix. Further development of the statistic would allow i to
equal j and the substitution of d−β

ij for Wij . For example, the following formulation
would replace (2.9):
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Gi =
∑

j

xixjd
−β
ij

(∑

j

xixj

)−1

, β > 0, (2.13)

where i = j is allowed. In (2.13) there is an obvious correspondence between
both the cross-product statistic and the general form of the interaction model. The
expected value would be based on the assumption that all x values were similar.
Thus,

E(Gi) =
1
n

∑

j

d−β
ij , β > 0. (2.14)

As with Gj(d), the new statistic Gi would have a value as follows: 0 ≤ Gi ≤ 1. If
i were not equal to j then the denominator of (2.14) would be (n − 1). Tests based
on the statistic would answer the fundamental question: “are the association and the
interaction between i and all j greater than chance would have it?”

A variation on (2.13) and (2.14) would focus on the single relationship between
a single i and a single j. These equations are

Gij =
xixjd

−β
ij

xixj
, β > 0 (2.15)

and
E(Gij) = d−β

ij . (2.16)

Equations (2.15) and (2.16) complete the merger of correlation and interaction
formulations.

2.4.2 Interpretation of Gi(d)

In order to test hypotheses, for example, if all xi are set to one, the pattern of xj

represents a condition of no spatial autocorrelation. In this case, the null hypothesis
is: there is no difference (and thus no spatial autocorrelation) among the xj within
distance d of i. By substituting a one for each xj , we find (2.9) and (2.12) become

E[Gi(d)] =
W

n − 1
(2.17)

and

E[varGi(d)] =
(n − 1 − W )2

(n − 1)2(n − 2)
. (2.18)

The estimated Gi(d) is found by solving (2.19) by using the observed xj values.
If

Z =
Gi(d) − E[Gi(d)]
{E[varGi(d)]}1/2
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is positively or negatively greater than some specified level of significance, then pos-
itive or negative spatial autocorrelation are obtained. A large positive Z implies that
large values (values above the mean xj) are spatially associated. A large negative Z
means that small xj are spatially associated with one another.

When Gi(d) represents a measure of interaction, the model is expanded from
(2.9) to

Gi(d) =
[∑

j

Wij(d)xixj

][∑

j

xixj

]−1

. (2.19)

A null hypotheses might call for interaction no greater (or less) than one might
expect when all xj are equal. The expectations are as in (2.17) and (2.18). Rejection
of the null hypothesis would indicate that there is greater (or less) interaction than
expected.

2.5 Conclusion

In verbal terms, the key words differentiating the two types of models are interaction
and association. The interaction implied in gravity models refers to the possible
movement of elements at i to or from places j. In the spatial autocorrelation model,
the link between i and j is a correlation in the sense of places having common or
different specified characteristics. As the development of the spatial autocorrelation
model has a statistical origin, one usually considers association as having positive
or negative statistical significance. For interaction models, statistical significance is
less important and prediction is more important. For interaction modelers, interest
is in the flow between places, whether or not the flow are greater or less than those
predicted by a normal random variable model. In this paper we were able to show
that the cross-product statistic of Hubert et al. (1981) allows for a unification of
the two types of models. This was accomplished by means of the development of
a spatial autocorrelation statistic that serves as a measure of spatial interaction as
well. An advantage to the approach taken here is that the way is now paved for the
development of statistical tests on interaction theory.
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Abstract In this paper, we discuss a number of general issues that pertain to the
interface between GIS and spatial analysis. In particular, we focus on the various
paradigms for spatial data analysis that follow from the existence of this interface.
We outline a series of questions that need to be confronted in the analysis of spatial
data, and the extent to which a GIS can facilitate their resolution. We also review
a number of exploratory and confirmatory techniques that we feel should form the
core of a spatial analysis module for a GIS.

3.1 Introduction

Space plays a central role as an organizing concept in regional science. It is there-
fore to be expected that the analysis of spatial data and the specialized techniques
that this requires have received considerable attention in the research literature. The
emphasis of this research has been on theoretical and methodological aspects, such
as the role of spatial dependence and spatial heterogeneity, the effect of spatial scale,
and the development of estimation methods for spatial process models (for a review,
see Anselin, 1988). However, as pointed out by Anselin and Griffith (1988), the
dissemination of these results to the practice of data analysis in empirical work has
been rather limited. In part, this has undoubtedly been due to the lack of an easy
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and effective way to explicitly incorporate the spatial aspects of data. This problem
is now largely eliminated, due to recent advances in the technology of geographic
information systems (GIS). In spite of this, the effectiveness and importance of GIS
and spatial information systems as an enabling technology is only slowly becoming
recognized in regional science (Nijkamp and Rietveld, 1984; Nijkamp, 1988, 1990;
Anselin, 1990). In particular, some fundamental questions related to the role played
by GIS technology in defining the research agenda for spatial data analysis have not
received the attention they deserve. We thought it timely to identify a number of
important issues that pertain to the interface between spatial statistical analysis, GIS
and regional science. Our objective is not so much to review the recent literature, but
to outline and discuss alternative viewpoints, to summarize the current state of the
art in spatial statistical analysis and how it relates to GIS, and to suggest directions
for future research.

The focus of attention in GIS tends to be on the display, organization and simple
manipulation of information in spatial data bases. As a result, most commercial
GIS implementations are rather limited in what they offer in terms of statistical
tools for the analysis of spatial data. This lack of analytical capacities of a GIS
is by now a familiar complaint in the research literature (e.g., Goodchild, 1987;
Burrough, 1990; Couclelis, 1991) and several efforts have been initiated to alleviate
this situation (Abler, 1987). In those, spatial data analysis and spatial statistics are
often perceived as playing a central role among the components of the analysis
function in a GIS (HMSO, 1987; Gatrell, 1987; Goodchild and Brusegard, 1989;
Bailey, 1990; Openshaw, 1990; Csillag, 1991; Goodchild et al., 1992). There are
two aspects to this. First, there is the incorporation of spatial statistical techniques
as part of the toolbox provided with a GIS, by adding statistical functions to the
menu of GIS capacities, or by providing an easy link between a GIS and a statistical
package. A second, and potentially more interesting aspect is the extent to which
statistical and even spatial statistical techniques are appropriate for use with a GIS,
and the resulting need to develop new “spatial” analysis tools. In this paper, we
focus on both aspects.

We start by discussing the interface between GIS and spatial analysis, and the
various paradigms for spatial data analysis that follow from this. Included is a sec-
tion on the special qualities of spatial data. We next outline a series of questions
that need to be confronted in the analysis of spatial data, and the extent to which a
GIS can facilitate their resolution. We also briefly review a number of exploratory as
well as confirmatory techniques that in our opinion should form the core of a spatial
analysis module for a GIS. We close with some remarks about the role of GIS and
spatial analysis in regional science research in general.

3.2 Interfacing Spatial Analysis and GIS

Traditionally, geographic information systems are considered to perform four basic
functions on spatial data: input, storage, analysis, and output (Goodchild, 1987).
Of these, analysis has received least attention in commercial systems. Typically, a
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variety of map description and manipulation functions are defined by commercial
vendors as being “spatial analysis” but they have little bearing on the use of this
concept in the academic community (Couclelis, 1991). In the GIS literature spa-
tial analysis has become narrowly defined. For example, Gatrell (1987) defines it
as “the application of statistical methods to the solution of geographical research
questions” (see similar uses of the concept in Openshaw, 1990; Openshaw et al.,
1991; Ding and Fotheringham, 1991; Goodchild et al., 1992). Clearly, to support
research in regional science (as a spatial information system or a spatial decision
support system) a large set of techniques should be included under the rubric of
spatial analysis, such as location-allocation and other operations research methods,
urban and regional modelling, and spatial demographics.

We give a highly simplified schematic representation of the interaction between
the four basic functions of GIS in Fig. 3.1. At one end of the graph is “reality,” at the
other the “user,” concerned with policy or theory development. In between are the
four functions, input (data model and measurement), storage (of data values and
their location and topology), analysis (data selection, manipulation, exploration and
confirmation), and output (display). Our focus is on the analysis functions and their
interface with the storage function. The latter is typically associated with a relational
database. In a GIS, this database not only contains information on value, but also
on the location and spatial arrangement (topology) of observational units. The way
in which reality is measured and structured into a spatial data base is determined by
the data model, which has important implications for the types of spatial analyses
that can most effectively be carried out (Peuquet, 1984, 1988; Goodchild, 1992). We
return to this point below.

In the analysis module we distinguish between four important functions: one is
the selection or sampling of observational units from the data base and the choice of
the proper scale of analysis. The other three functions consist of increasing degrees
of abstraction from the data. We call them data manipulation, exploration and con-
firmation. In Fig. 3.1 they are represented on the same level to illustrate the property
that each of these can be considered as a self-contained module of spatial analysis,
followed by output (display). However, in an idealized framework of spatial anal-
ysis, there would be a natural progression from data manipulation to exploratory
analysis and confirmatory analysis, obviously with multiple feed-backs between the
modules.

In our framework, data manipulation encompasses the partitioning, aggregation,
overlay and interpolation procedures needed to convert the selected information into
meaningful maps and surfaces. Most of these techniques represent what is under-
stood by “spatial analysis” in commercial GIS, and they form some of the more
powerful aspects of the technology in terms of the flexibility in changing obser-
vational units. Under data exploration we classify inductive approaches to elicit
insight about pattern and relations from the data, without necessarily having a
firm pre-conceived theoretical notion about which relations are to be expected. We
could also call this “data-driven” analysis (Anselin, 1990) to stress the emphasis
on “letting the data speak for themselves” (Gould, 1981). The final module is then
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Fig. 3.1 Functions of a GIS

confirmatory analysis, where the point of departure is a theoretical notion or model
(“model-driven” analysis in Anselin, 1990). This would include most of the “tra-
ditional” techniques of spatial data analysis, such as hypothesis tests, estimation of
spatial process models, simulation and prediction. In principle, the type of model
implemented in this module could be anything where space (location, region) is a
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relevant element, and thus could encompass a wide range of urban, regional and
multiregional models from the toolbox of the regional scientist.

The way in which the analysis function in a GIS (as we perceive it) is linked to
the database has been forged differently. Logically, there are three ways in which
this can be done:

1. Fully integrate all spatial analysis within the GIS software
2. Construct modules of spatial analysis that efficiently link with the GIS and

effectively exploit the “spatial” information in the database
3. Leave the GIS and spatial analysis as two separate entities and simply import and

export data in a common format between the two

The third approach is really a non-solution, since it ignores the distinctive charac-
teristics of a spatial data base for use in spatial data analysis. Nevertheless, it seems
to be the approach most taken in practice, due to the problems with proprietary data
formats in commercial GIS and the limited facilities of often awkward macro lan-
guages (for an extensive discussion, see Kehris, 1990a; Bivand, 1990). Examples
of this strategy are the joint use of GRASS and S for exploratory data analysis in
Farley et al. (1990) and Williams et al. (1990); the combination of SPANS and SYS-
TAT to carry out stepwise regression in Bonham-Carter et al. (1988); and the use of
ARC/INFO and BMDP for logistic regression in Warren (1990).

The second approach is similar to the so-called “modular” design in integrated
regional modelling and consists of developing self-contained modules for various
types of spatial analyses. These modules are then linked to the specific data struc-
tures used in a commercial GIS. They are thus not “generic,” but limited to a
particular combination of GIS and technique. Among many examples are the work
of Walker and Moore (1988) on combining GIS and other statistical packages and
the linkage of ARC/INFO and GLIM in Flowerdew et al. (1991). Most of these
modules are written and compiled separately and access the data structure of the
GIS by means of proprietary library functions. In general, the use of the GIS macro
facilities is avoided, given its poor performance in terms of speed (Bivand, 1990;
but see Ding and Fotheringham, 1991, for an example of the use of the ARC/INFO
AML macro language to construct a measure of spatial association). Even though
this second approach links a statistical package to a GIS, it is generally limited to
simple descriptive measures, such as univariate measures of spatial association (e.g.,
Kehris, 1990b; Ding and Fotheringham, 1991; for an exception, see Bivand, 1990).

Finally, the first strategy (“encompassing” in the terminology of integrated
modelling) is basically non-existing, due to the lack of analytical capabilities in
most commercial GIS (partial exceptions are SPANS, IDRISI and GIS-PLUS/
TRANSCAD). It is most closely approximated by the idea behind the “spatial analy-
sis toolkit” of Openshaw and associates, if it were not that spatial analysis is limited
to a small number of generic functions in their approach (Openshaw, 1990; Open-
shaw et al., 1991). In contrast, our vision of the spatial analysis function in a GIS
is much wider and would include at least all of the “traditional” techniques. The
determination of an unambiguous set of “generic” functions of spatial analysis is an
important and still largely unresolved question.
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3.2.1 The Nature of Spatial Data

The implementation of a generally useful spatial analytical capability within a GIS
can be achieved once it is recognized that the solution to spatial problems inevitably
must be based on the special character of spatial data. From an analytical point of
view, it is more than the fact that data are spatially referenced that differentiates
spatial data from other types of data. When the data are spatially referenced one
must go beyond Tukey for spatial exploration and beyond standard statistics and
econometrics for confirmatory analysis.

What is it that makes spatial data special? Anselin (1990) explains in consider-
able detail why one must treat spatial data differently than other types of data. In
essence, the point is that spatial effects complicate any straightforward understand-
ing of spatial data. “Spatial effects” has two interrelated meanings. The first is that
embodied in Tobler’s First Law of Geography (Tobler, 1979a), where “everything is
related to everything else, but near things are more related than distant things.” This
simply implies that we should expect stronger relationships within and among vari-
ables that are sampled at places that are spatially near to one another rather than far
from one another. The more troublesome second meaning, however, is that because
of the size and configuration of spatial units we find relationships within or among
variables that are due as much to the nature of the spatial units as to the nature of
the variables being studied. The first type of spatial effect can be handled, for the
most part, with conventional data analytical procedures, but not the second. Since
all spatial data are subject to the second effect, one must take it into account when
devising systems for analysis.

Spatial effects can be divided into two types: dependence and heterogeneity. Spa-
tial dependence refers to the relationship between spatially referenced data due to
the nature of the variable(s) under study and the size, shape, and configuration of
the spatial units. The smaller the spatial units, the greater the probability that nearby
units will be spatially dependent. If units are spatially long and narrow, the chances
of spatial dependence with nearby units will be greater than if the units are more
compact. Spatial heterogeneity occurs when there is a lack of spatial uniformity of
the effects of spatial dependence and/or of the relationships between the variables
under study. A dependence structure that is inconsistent across the study area lacks
homogeneity. In a sense, then, spatial heterogeneity can be thought of as a spe-
cial case of spatial dependence. It represents a complex realization of the nature of
the variable(s) under study and the effects of the size, shape, and configuration of
spatial units.

3.3 GIS and Perspectives on Spatial Data Analysis

Spatial analysis ranges from simple description to full-blown model-driven statis-
tical inference. As outlined in Anselin (1990) many different perspectives can be
taken towards spatial data analysis. For the purposes of our discussion, we will
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classify techniques into exploratory (or data-driven), and confirmatory (or model-
driven), although in practice many techniques incorporate aspects of both (Haining,
1990a).

In an exploratory data analysis (EDA, Tukey, 1977) the data are used in an induc-
tive fashion to gain new insights. To date this is by far the most common approach
towards data analysis using GIS, although it has taken at least three different forms.

In one, represented by the work of Openshaw and associates (Openshaw, 1990;
Openshaw et al., 1987, 1988, 1990, 1991), the role of the analysis is limited to
pure description and indication of potentially interesting spatial patterns. In fact,
Openshaw goes so far as to reject most of the traditional spatial analytical meth-
ods of the type outlined in Berry and Marble (1968). Furthermore, the role of the
“spatial analysis” function in GIS is restricted to pure description of map pattern,
without explanation, since “what is causing the pattern is not a subject matter for
the geographer” (Openshaw, 1990, 158). His geographical analysis machine (GAM)
and geographical correlates exploration machine (GCEM) are computation inten-
sive approaches to elicit patterns in the data. In that sense, they can be considered to
be examples of exploratory data analysis. However, the lack of indication of “signif-
icance” and the admitted possibility that the patterns could be spurious are a far cry
from the usual interpretation of EDA (Tukey, 1977; Mosteller and Tukey, 1977). In
addition, while most EDA exploits the high dimensionality of data (using various
clustering and graphical cross tabulation methods), Openshaw’s examples so far per-
tain to univariate and bivariate situations. The extent to which these “machines” can
be made operational and cost-effective to address more complex research questions
remains to be resolved.

In a second approach to combining GIS with EDA, data are exported from a
GIS into a standard statistical package for analysis (typically, S; Becker et al.,
1988). This stands in sharp contrast to Openshaw’s rejection of such a linkage as
worthless and “an irrelevant distraction” (Openshaw et al., 1991, 788). The types
of analyses that are carried out use standard EDA tools, such as box plots, Chernoff
faces, Tukey stars, scatterplot matrices and hierarchical clustering (e.g., Farley et al.,
1990; Williams et al., 1990). Although such techniques are very useful in generating
insight into patterns and potential associations, they are a-spatial. Moreover, to the
extent that measures of fit and tests of significance are included (e.g., as in added
variable plots; Haining, 1990b) the presence of spatial dependence (and/or spatial
heterogeneity) can easily lead to spurious conclusions. One comes close to “spatial”
analysis in the work of Kehris (1990b) and Ding and Fotheringham (1991), who
provide a link between a GIS and specialized routines to compute measures of spa-
tial association. However, this is still fairly rudimentary, and a true “spatial” EDA, or
ESDA (exploratory spatial data analysis) does not yet exist (see also Anselin, 1990).

A third approach consists of some recent developments in the use of statis-
tical graphics, where the “map” is included as one of a series of dynamically
linked graphs (for an extensive discussion of this concept, see Cleveland and
McGilI, 1988). This is typified by the work of Haslett and associates (Haslett et al.,
1990, 1991; Stringer and Haslett, 1991; see also MacDougall, 1991) on interactive
graphic environments (SPIDER and REGARD) that combine a map, histogram and
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scatterplot view of the data, as well as various lists. Selection of any subset of the
observations in one of the dynamically linked windows affects the representation in
all other windows. This allows for an intuitive and visual impression of the corre-
spondence between value association (scatterplot) and locational association (map),
although no quantification of the latter is provided. In a sense, the focus is on spatial
heterogeneity (regional differentiation) rather than on spatial dependence. Ideally,
of course, both should be included in a framework for ESDA.

In contrast to the recent flurry of research activity in exploratory data analysis
and GIS, very little has been achieved in terms of model-driven or confirmatory
analysis. Most applications are non-spatial applications of regression analysis and
fail to exploit the information on the topology of the observations that is contained
in a GIS. As pointed out in Anselin and Griffith (1988) and Haining (1990a), the
general problem is one of lack of software to carry out the complex and nonlinear
estimation and inference for spatial process models. A number of recent advances
have been made in software development for spatial data analysis in the form of
libraries of macro routines for commercial statistical packages (e.g., Griffith, 1988b;
Griffith et al., 1990; Bivand, 1990, 1991). A self-contained spatial data analysis
software package, SpaceStat, is introduced in Anselin (1991). So far, however, the
linkage between this software and a GIS is very limited (e.g., the work of Bivand,
1990, which exports data from ARC/INFO into a SYSTAT module).

3.4 The GIS Data Model and Spatial Statistics

As defined by Goodchild (1992), the data model implicit in a GIS is the “dis-
cretization” of geographical reality necessitated by the nature of computing devices.
Commercial GIS can be classified as following either a raster (or grid) or vector data
model, i.e., a regular or irregular tesselation of the plane (see also Peuquet, 1984,
1988). The raster or vector structure defines the spatial unit of observation that can
be used in spatial analysis. In the former, the unit is the grid (or other regular tes-
selation) and all points within the grid are assumed to take on the same value. This
is an implicit form of spatial sampling. Clearly, if the grid does not exactly corre-
spond to the spatial arrangement of values in the underlying process there will be
an inherent tendency for spatial dependence. Similarly, if the scale of the grid cell
has an imperfect match with the scale of the process studied, various types of mis-
specification may result, often called ecological fallacy or the modifiable areal unit
problem (MAUP).

When a vector structure is used, the choice of the points, lines and polygons
that will be represented, their spatial resolution and spatial arrangement are also
an implicit form of spatial sampling. Similar to the raster approach, homogeneity is
assumed within the point, line or areal unit of observation. For the latter in particular,
this may only be a crude approximation and spatial dependence as well as scale
problems are likely to be present.
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The implied spatial sampling is also a component of alternative conceptual-
izations of data models, such as the distinction between a so-called “field view”
(“infinite sets of tuples approximated by regions and segments,” Goodchild, 1992),
and an “object view” (“planes littered with objects,” Goodchild, 1992). For the
former it necessitates a choice of the size of the region and their relative spatial
arrangement (the so-called container view of GIS, Couclelis, 1991), for the latter
the selection of which “objects” will be included in the database.

It is important to keep this in mind, since this sampling process structures the
database and precedes any sampling the analyst may want to carry out (the data
selection module in Fig. 3.1). It is often dictated by administrative or policy (or
political) concerns which may or may not be founded on “accepted” theoretical
concepts of the time. Examples are the delineation of administrative regions which
pre-determine the collection of many socio-economic data. In a sense then, even
though spatial analysis may be exploratory, the data that are available and the way in
which they are collected and arranged are often constrained by the accepted theoret-
ical knowledge of the time (which variables are important, etc.) and its implications
for spatial resolution (or, rather, the lack of interest in spatial resolution).

Obviously, this sampling will lead to a sampling error and the resulting problem
of accuracy in spatial data bases (see Goodchild and Gopal, 1989, for an overview).
The error in spatial databases pertains both to value (the usual problem) as well
as to location and spatial arrangement (topology). As a result, what we perceive as
“observations” can be conceptualized as a mixture of signal (truth) and noise (error),
or, more precisely, as either a sample from an unknown population or a realization of
a stochastic process. The objective of spatial analysis is to elicit information about
the signal, taking into account the fact that noise is present. The presence of this
“error” does not preclude a statistical methodology (and its associated inference) as
argued by Openshaw (1990), but is in fact the very essence for its need.

3.5 Implementation Issues

In the implementation of a framework for spatial analysis within a GIS many issues
can be addressed by means of familiar techniques. These techniques do not neces-
sarily fit neatly within our classification of spatial analysis into the four modules of
data selection, data manipulation, exploratory and confirmatory analysis (Fig. 3.1),
but many methods are important in more than one module. In order to make our
discussions less abstract, we next review a number of ways in which specific tech-
niques would be incorporated into our framework. It is important to keep in mind
that this will only give a general flavor of what we envisage as a general purpose
spatial analysis system, since a detailed inventory of techniques is beyond the scope
of this paper. Also, much remains to be addressed, and many tricky methodological
problems have not yet found a satisfactory solution.

Most of the decisions made about the selection, manipulation, and analysis of
spatial data can be thought of as strategies designed to avoid, specify, or account
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for the effects of spatial dependence. The data available in a GIS are rarely refer-
enced in spatial units that are appropriate for final analysis. For example, pixel data,
which are highly spatially dependent, must be aggregated for land use studies. In the
data selection process (the first analysis module in Fig. 3.1), the nature of the data
dependence should be evaluated before a representative sample can be designated.

In a well-known study, Openshaw and Taylor (1979) summarize the results of
extensive experimentation in which scale changes radically altered the correlative
and autocorrelative relationships among variables. Arbia (1989) claims that it is the
spatial autocorrelation, or the dependence of nearby spatial units on one another,
that is responsible for changes in summary measures as scale is changed. If units
are summed into larger units, the mean increases, the covariance increases, and the
correlation decreases in absolute value in proportion to the change in the size of the
units. In all but a few circumstances, however, the variance increases in relation to
the changed size of units and to the correlation between specified neighboring units.
Immediately it becomes clear that statistical tests will be affected by the chosen
scale(see also Haining, 1991). This being the case, the selection of an appropriate
sample is a crucial decision to which a great deal of attention must be given. This
is particularly important, since it often is not clear whether the so-called modifi-
able areal unit problem is indeed an artifact of a particular data set, as is typically
assumed, or instead should be attributed to the use of an improper model and/or
technique, as argued by Tobler (1989).

If is difficult to predict how the moments of a spatial sample will change with
changing scale in all but the simplest circumstances, that is, when the specification
of the relationship between spatial units is simple, and therefore, not particularly
interesting. In addition, when spatial units are of unequal size, weighting schemes
to “equalize” them must be arbitrary and, as a consequence, one must settle for a
range of test results rather than a specific value. It is clear that any multi-purpose
GIS must be capable of assisting the data selection process by containing flexible
clustering and aggregation algorithms.

The manipulation of spatial data (the second spatial analysis module in Fig. 3.1)
may result in the creation or smoothing of a surface or the partition of data units
into polygons. These types of operations rest to a large extent on the evaluation of
the degree of spatial dependence present in the data. The creation of a surface by
interpolation is based on the nature of trends or regularities in the data. Filtering a
complex surface into a smooth one is essentially an exercise in specifying a structure
for spatial dependence. In order to carry out these operations, a GIS might contain
a number of measuring devices that evaluate dependence. Various cross product
statistics (Hubert et al., 1981) such as Moran’s I, Geary’s c, the variogram, and
Getis and Ord’s G are all helpful in this regard (Cliff and Ord, 1981; Haining, 1990a;
Cressie, 1985; Getis and Ord, 1992). In addition, smoothing techniques can be based
on spectra (Rayner, 1971), trend surfaces, spatial adaptive filtering (Foster and Gorr,
1986), and smooth pycnophylactic interpolation (Tobler, 1979b), to name only a few
commonly used methods.

For the creation of partitions, meaningful criteria should be based on the depen-
dence structure of the spatial data under investigation. The techniques mentioned
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in the last paragraph can be used for this purpose as can clustering algorithms.
Similarly, Thiessen polygons and associated tesselation techniques are often-used
partitioning devices (Boots, 1985).

Perhaps of greatest importance for the preparation and manipulation of spatial
data for further analysis is the need to fill a surface with estimates of variable values
when data are missing. For example, a GIS may contain data at points when the
analytical interest is in areas. This problem of missing spatial data has received
considerably attention (for a review, see Griffith et al., 1989) and many techniques
have been implemented in operational GIS, e.g., based on kriging (Cressie, 1986;
Davis, 1986; Oliver and Webster, 1990).

As pointed out before, the precise allocation of techniques to the exploratory spa-
tial data analysis (ESDA) and confirmatory spatial data analysis (CSDA) modules is
not always clear (the third and fourth spatial analysis modules in Fig. 3.1), although
there are some major differentiating characteristics between the viewpoints taken
in each (see Anselin, 1988; Haining, 1990a). Suffice it to say here that ESDA is
that phase of analysis in which spatial patterns and structures are revealed, hypothe-
ses proposed and models suggested. In contrast, CSDA includes the entire roster
of techniques and methodologies for hypothesis testing, the determination of confi-
dence intervals, estimation, simulation, prediction and the assessment of model fit.
In ESDA one searches for structure and association, while in CSDA one evaluates
the evidence. As Haining (1990a) points out, one alternates in the application of
the two aspects of spatial data analysis, similar in spirit to the idea behind EDA
advanced by Tukey (1977).

The various elements of ESDA include those which aid in the identification
and description of patterns and variables, elicit the characteristics of variables and
patterns, help determine the extent of data dependence and heterogeneity. In addi-
tion, ESDA should also allow for simple modeling, especially so that residuals can
be evaluated and the selection of a “best” subset of explanatory variables can be
determined.

A wide array of techniques are available for ESDA. These include the stan-
dard tools of EDA and statistical graphics, such as box plots, star plots, Chernoff
faces, etc., as well as many of the measures mentioned above. In addition, pattern
recognition devices such as those discussed in the artificial intelligence and spa-
tial statistics literatures are highly relevant here, e.g., as outlined in the work of
Ahuja and Schachter (1983); Pielou (1977); Ripley (1981); Boots and Getis (1987).
However, the “spatial” aspects of ESDA have to date not been fully developed. In
this respect, approaches that blend the analytics of the traditional techniques with
the computing power and interactive graphics of some of the recent developments
could show great promise.

In addition to the predominantly non-parametric approach taken in traditional
EDA, one often also needs to know moments, errors, and other parametric charac-
teristics of samples and surfaces at different scales. For example, the parameters of
simple linear regression, trend surfaces, periodicities, semi-variograms and correlo-
grams are often useful. Directional statistics and spatial ANOVA are tools that could
be included in any exploratory analytical module. In addition, categorical variables



46 L. Anselin and A. Getis

are often mapped by GIS users. Thus, logit analyses of overlapping variables would
prove useful in the exploratory stage of analysis.

It is here that the distinction between ESDA and CSDA becomes difficult. Indeed,
the standard tools of CSDA consist of estimation algorithms for a wide range of
specifications, both linear and nonlinear. The spatial aspects of such analysis are
often identified with the field of spatial econometrics, i.e., “the collection of tech-
niques that deal with the peculiarities caused by space in the statistical analysis of
regional science models” (Anselin, 1988, 7). In essence this boils down to four broad
categories of methods: (1) diagnostics for the presence of spatial dependence and
spatial heterogeneity in regression analysis (this includes ANOVA and trend surface
models as special cases); (2) methods to estimate and obtain inference (e.g., based
on maximum likelihood, instrumental variables or bootstrap estimators) for various
types of regression models for cross-sectional and space–time data that explicitly
take into account spatial effects (e.g., spatial process models); (3) methods to esti-
mate and obtain inference that are robust to the presence of spatial effects; (4) spatial
measures of model validity. Although much methodological progress has been made
in these areas, a number of very tricky issues remain to be resolved, such as the
issue of spatial dependence in models with limited dependent variables (e.g., logit,
probit and Poisson regression models), the discrimination between spatial depen-
dence and spatial heterogeneity, nonstationarity in models for space–time data, edge
effects, etc. (Anselin, 1990). To some extent then, the implementation of CSDA in
a spatial analysis system is constrained by the state of the art, which to date is still
unsatisfactory to be able to answer the range of questions faced by the users of
a GIS.

3.6 GIS, Spatial Analysis and Regional Science

The fundamental issue in carrying out spatial analysis with a GIS is whether the
“observations” (in the GIS) contain sufficient information to extract the signal and
control for the noise. This is not necessarily satisfied, even though the technological
sophistication of a GIS and the large size of many databases may give the opposite
impression. The more one knows (or assumes) about the signal, the easier it will be
to falsify preconceived notions and/or generate new hypotheses. Sometimes addi-
tional information can be obtained by combining observations on many different
indicators (variables) and at many locations or spatial scales, but often even this is
not sufficient. As is well known, in many instances different processes can gener-
ate observationally equivalent patterns of values. Failure to distinguish “significant”
patterns or to gain insight into underlying causal relationships should not imply a
rejection of the statistical methodology. Instead, more data (e.g., in the time dimen-
sion) and/or better theoretical notions may be needed. The statistical methodology
provides one with a set of tools to assess the extent to which this is the case. This
set of tools should not be used to the exclusion of others, but the GIS technology
allows it to be complemented with powerful computation intensive approaches and
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innovative visualisation. A creative combination of the “old” spatial analysis with
these new technologies, to form a “new” spatial analysis (similar to the change in
perspective generated by the “new” urban economics of the 1970s) has not yet been
achieved.

To suggest that the recent developments in GIS have already transformed the way
in which spatial analysis is carried out in the field of regional science is clearly an
overstatement. Although some embrace the new technology as an innovative means
to look at the world in a different way, others tend to dismiss it as just another set of
fancy color graphics. The opportunity in the use of GIS is that it indeed has made
previously prohibitive computationally intensive and highly visual ways of spatial
analysis accessible at reasonable cost. The challenge to the GIS field is that it has not
yet been able to furnish or incorporate the types of analytical tools that are needed
to answer the questions posed by regional scientists. Some would argue that those
are the wrong questions and that using the existing GIS tools will lead to different
and more interesting questions. Our position is that the technology should be led
by theoretical and methodological developments in the field itself. Does this require
an abandonment of the traditional spatial analysis? Clearly, approaches that were
inspired by the lack of computational and graphical resources have now become
redundant, but a considerable number of fundamental insights into the nature of spa-
tial structure, spatial dependence and spatial processes remain relevant. An effective
integration of these perspectives with the new technology may go a long way toward
convincing researchers in regional science and other social sciences that the special
role of space which underlies the essence of the field merits its own analytical tool-
box. We suggest that spatial statistical analysis should play a central role in this
toolbox.
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Chapter 4
Whose Hand on the Tiller? Revisiting
“Spatial Statistical Analysis and GIS”

Michael F. Goodchild

Abstract Anselin and Getis argue in their 1992 paper “Spatial statistical analysis
and GIS” that the development of a toolbox of spatial analytic techniques should be
directed by the scientists whose work defines the need for such a toolbox. The field
of GIS has changed fundamentally since 1992 as a result of new technical develop-
ments, including a general move away from the map as the defining metaphor, the
influence of the Internet and the World Wide Web, and changes in the practice of
software engineering. Science as a whole has also changed, towards a more collab-
orative model that is more dependent on computational infrastructure. The impacts
of space on the methodology of science are also better understood. The Anselin and
Getis paper was remarkably prescient in its identification of the major issues that
continue to affect the relationship between spatial analysis and GIS. Institutional
issues continue to frame the relationship between GIS and spatial analysis, and are
best addressed through partnerships.

4.1 Introduction

In 1992 Luc Anselin and Art Getis published “Spatial statistical analysis and GIS”
in the Annals of Regional Science (Anselin and Getis, 1992). The paper was one of a
number of explorations of the relationship between spatial analysis and geographic
information systems (GIS) that appeared at about that time (Burrough, 1990; Ding
and Fotheringham, 1992; Fotheringham and Rogerson, 1994; Goodchild, 1987;
Goodchild et al., 1992; Openshaw et al., 1990), driven perhaps by a perception
that the evident growth in GIS as a large and complex software application might
eventually benefit science, by providing improved access to many of the tools that
researchers had developed over the previous decades. Indeed GIS was being widely

M. F. Goodchild
National Center for Geographic Information and Analysis and Department of Geography,
University of California, Santa Barbara, CA, USA
e-mail: good@geog.ucsb.edu

L. Anselin and S.J. Rey (eds.), Perspectives on Spatial Data Analysis,
Advances in Spatial Science, DOI 10.1007/978-3-642-01976-0 4,
c© Springer-Verlag Berlin Heidelberg 2010

49



50 M.F. Goodchild

hailed in this light (Abler, 1987), and it seemed only a matter of time before virtually
all of the known methods of spatial analysis would be available in a single, massive,
widely available toolbox.

The Anselin and Getis paper was distinguished from others in the genre by its
focus on regional science, and by its strongly stated belief that future develop-
ments in GIS should be driven by scientists in the substantive fields of application,
including regional science:

Some would argue that using the existing GIS tools will lead to different and more inter-
esting questions. Our position is that the technology should be led by theoretical and
methodological developments in (regional science) itself. (Anselin and Getis, 1992, p. 30)

In other words, future developments in GIS should be directed by those most
familiar with the kinds of questions it was ideally able to answer; the idea that the
GIS tail might wag the regional science dog was clearly not as attractive.

Approximately a decade and a half has elapsed since the paper was written, and
the landscape of GIS has been changed almost beyond recognition. In this paper I
attempt to bring the discussion up to date, to answer some of the questions raised
by the authors, and to pose new ones that seem to have arisen recently – and to do
so within a somewhat larger context that includes geography and other social and
environmental sciences in addition to the regional science of the original paper. The
next section provides a brief and I hope accurate summary of the main arguments
of the Anselin and Getis paper. This is followed by a review of events and trends
within the field of GIS since 1992, and then by a review of major trends affecting
science, and particularly the social and environmental sciences. The final section of
the paper updates the 1992 comments on the role of regional scientists in directing
the development of GIS, by suggesting specific parts that substantive scientists can
play in the evolving saga of software development and support.

4.2 Synopsis of the 1992 Arguments

The model that underpins the Anselin and Getis discussion is particularly elegant in
the way it combines widely accepted organizing principles from both GIS and spa-
tial analysis. It is reproduced in Fig. 3.1. It defines GIS operations in four classes –
input, storage, analysis, and output – following many extensive discussions of GIS
functionality (see, e.g., Maguire, 1991; Maguire and Dangermond, 1991). The anal-
ysis function has been seen as the most important by several authors (see, for
example, Cowen, 1988), who have argued that it represents the vital transformation
of data into useful information, making visible what might otherwise be invisi-
ble to the user. The authors then introduced a four-way classification of analysis,
into selection, manipulation, exploration, and confirmation. The sharp distinction
between analysis and display that was implicit in the classification of GIS was
softened somewhat, as display was seen as inherent in each of manipulation, explo-
ration, and confirmation. Selection encompassed sampling and other aspects of what
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today might be termed ontology, or in statistical terms support, while manipulation
included many of the lower-grade operations of GIS such as buffering, spatial joins,
and point-in-polygon operations, that are nonetheless termed analysis by many GIS
developers (see, e.g., Mitchell, 1999).

The authors identified several software strategies that were used circa 1992
to deliver the functionality of spatial analysis using GIS. Some techniques were
included directly in the GIS itself as core functions, though it was recognized that
this strategy was not always the fastest computationally. Separate modules could be
constructed that performed the more elaborate forms of spatial analysis, and cou-
pled to the GIS for purposes of data input, storage, and display, either through the
exchange of files or through access to a common database (Nyerges, 1993).

Anselin and Getis adopted the distinction between exploratory and confirma-
tory analysis, while accepting that the distinction was often somewhat blurred.
Exploratory analysis was seen as data driven and inductive, while confirmatory
analysis was theory driven and deductive. Exploratory spatial data analysis (ESDA)
was a new and exciting field in 1992, building on the improved interactive graphics
capabilities that became available first in the Macintosh and in Unix workstations
in the 1980s, and later in the PC. Exploratory analysis also included the data-driven
approach being advocated by Openshaw (Openshaw et al., 1987, 1988, 1990), which
saw the search for pattern as an essential activity that could be essentially indepen-
dent of any theoretical framework. Today we might find echoes of the same strategy
in the use of techniques borrowed from artificial intelligence, including neural nets
and self-organizing maps (Fischer, 1997; Fischer and Leung, 1998; Skupin and
Hagelman, 2005).

The fourth section of the paper looked at the relationship between GIS data
models and spatial statistics, making the point that discretization of space was an
essential step in any representation, and that it impacted the results of analysis in
ways that were largely out of the analyst’s control. The Modifiable Areal Unit Prob-
lem (MAUP) had caught the attention of many researchers in the 1980s, who were
dismayed to discover how much their results were affected by the choice of areal
units, and therefore by decisions made in statistical agencies that were far from
neutral in this respect. The impact of such scale-related effects was discussed at
greater length in the fifth section of the paper, titled Implementation Issues, which
emphasized the importance of spatial dependence in determining the effects of scale
change, and in confounding any attempt to use spatial methods in a confirmatory
mode.

In their concluding section, Anselin and Getis argued that to serve the needs
of regional science, GIS needed to be complemented with powerful computational
intensive approaches and innovative visualisation. A creative combination of the
“old” spatial analysis with these new technologies to form a “new” spatial analysis
has not yet been achieved. It was “clearly an overstatement” to suggest that “the
recent developments in GIS have already transformed the way spatial analysis is
carried out in the field of regional science.” “An effective integration (of computa-
tionally intensive approaches and innovative visualization) with the new technology
may go a long way toward convincing researchers in regional science and other
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social sciences that the special role of space which underlies the essence of the field
merits its own analytical toolbox.”

4.3 GIS Since 1992

The term GIS had rather different connotations in 1992 than it does today. New
technologies have driven a substantial restructuring of the field, as has massive
growth in numerous application areas. In 1992 GIS connoted a single, monolithic
software package running on a stand-alone workstation or perhaps a local-area net-
work, and analogous to Microsoft Word or Excel. Its purpose was to relieve its user
of tasks that would be too tedious, repetitive, time-consuming, complex, or inaccu-
rate if performed by hand. Analysis of maps and map data (Maling, 1989) has all
of these characteristics, and a technology that promised apparently effortless analy-
sis at the speed of light was clearly attractive. In 1992 several vendors offered such
packages, including Intergraph, MapInfo, ESRI, Wild, Caliper, and Tydac. Some
product differentiation was evident, between large, expensive packages targeted at
corporations, government departments, and universities, and small, cheaper pack-
ages designed for single users. Several packages were available from the academic
community, including Idrisi from Clark University, and in general these offered a
more sophisticated range of analytic tools but had more severe limitations in terms
of speed and capacity. Finally GRASS offered a large number of useful analytic
functions in an open-source package originally developed by the US Army Corps
of Engineers.

Many factors have contributed to a changing perspective on GIS over the past
15 years. First, early developments in GIS were built on the map as the primary
source of input, and the first applications of commercial GIS were accordingly in
areas heavily dependent on maps, such as resource management and forestry. By
the early 1990s, however, it had become clear that much could be gained by adding
geographic references to the records contained in the otherwise non-spatial but mas-
sive databases of utility companies, marketing companies, and other commercial
sectors. The leading database vendors, including Oracle and Informix, developed
extensions to handle such spatially enabled records and to support simple queries,
such as “select for me all of the hotels within 10 miles of this airport” – and the
major GIS vendors responded with products of their own, such as ESRI’s ArcSDE.

Second, the Internet became the dominant network, and the World Wide Web
emerged as a dramatically effective application. In the second edition of their sur-
vey of GIS, Longley et al. (1999) admit to having missed completely the impact that
this would have on the field when they wrote the conclusion of their first edition
in 1991 (Maguire, 1991). Data had always been something of an Achilles heel to
GIS, because the conversion of paper maps to digital records was difficult to auto-
mate and frustratingly error-prone. But the Internet opened an apparently unlimited
potential for sharing of digital geographic data, first with such early applications
as ftp and WAIS (Nebert, 1993) and later with Web applications. Today many
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GIS users have long forgotten the tedium of map digitizing, and instead rely on
a vast array of clearinghouses, data archives, digital libraries, and data warehouses
to supply the basic data on which GIS depends. The state of the art is perhaps best
represented by the Geospatial One-Stop (http://www.geodata.gov), a US Govern-
ment effort to provide a geo-portal, a single point of entry to a vast, distributed
network of geographic data sources. At the same time, much effort has gone into
developing the standards and protocols needed to achieve interoperability between
suppliers and users of data, with their many different data formats and GIS software
products. The Open Geospatial Consortium (http://www.opengeospatial.org) has
developed and promulgated many standards, and the Federal Geographic Data Com-
mittee (http://www.fgdc.gov) continues to have a very effective influence. The term
National Spatial Data Infrastructure was coined in the early 1990s (Mapping Sci-
ence Committee, 1993) to describe a vision of an interoperable, networked future,
and was authorized by Presidential Order in 1994. Similar efforts are under way in
many other countries, and within the European Union (http://inspire.jrc.it).

This networking of GIS data access has had a fundamental effect on the software,
requiring that it contain the data conversion routines needed for interoperability,
as well as the tools to support search for data over a distributed network. It has
become essential to support metadata, the descriptive catalog entries that now allow
researchers to specify needs and to search, evaluate, and retrieve suitable data sets.
Increasingly, students of GIS find themselves learning as much about the manage-
ment of geographic data as about the software that runs in their local machine, and
there have been calls to drop the S and to refer to the field simply as GI.

The Internet has had a further influence in allowing the processing steps that
underlie GIS to occur at locations remote from the user. Client-server systems divide
the processing tasks between the user’s own local machine, the client, and a remote
and probably more powerful machine known as the server. In the extreme, all pro-
cessing occurs on the server and the client is reduced to a “dumb terminal” or a
simple Web browser such as Microsoft Explorer. This arrangement is often favored
by government agencies, which make limited GIS services available in this way
and thus avoid having to distribute copies of their data. Many Web sites now offer
mapping and simple forms of analysis via servers, allowing users to visualize data,
make summary extracts, and even perform simple statistical analyses. The GIS soft-
ware industry now offers a range of server-based products, such as ESRI’s ArcIMS,
to provide the necessary services, and MapServer (http://mapserver.gis.umn.edu)
is a popular public-domain product. The term GIServices is sometimes used to
distinguish such client-server configurations from the more traditional GISystem.

In principle any GIS function, and any form of spatial analysis, could be offered
as a GIService. In practice a limited number of simple GIS functions are now avail-
able as commercial or public services, including geocoding (the task of converting
street addresses to coordinates, e.g., http://www.travelgis.com/geocode/), wayfind-
ing (the task of generating driving directions from an origin to a destination, e.g.,
http://www.mapquest.com), gazetteer lookup (the task of converting a placename to
coordinates, e.g., http://www.alexandria.ucsb.edu), location analysis (e.g., a demo-
graphic analysis of the neighborhood of a potential retail site, offered by many
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market research companies), and spatial search (e.g., search for hotels within a
given distance of an airport, http://www.expedia.com). Some of these are based on
a viable business model, and it seems that the functions most likely to be offered
as GIServices are those that (1) depend on access to a large and rapidly changing
database that individuals would not be able to keep up to date, and (2) require a level
of complexity of analysis that would be beyond the average user. There is clearly
potential here for providing the kinds of exploratory and confirmatory spatial anal-
ysis discussed by Anselin and Getis as GIServices, but to date there appear to be no
obvious examples in practice.

Third, the past 15 years have seen a radical rethinking of practice in software
engineering. The single, monolithic package of 1992 has largely been replaced by
re-usable software components that can be mixed and matched for specific appli-
cations. Microsoft’s COM/OLE and .Net environments allow software components
to be mixed across boundaries that once seemed impenetrable, such as between
Excel and ESRI’s ArcGIS (Ungerer and Goodchild, 2002), allowing applications
to combine functions from both under the direction of scripts written in standard
languages such as Visual Basic or Python. Instead of a single package, vendors
now offer a variety of extensions for specific purposes, leading to a growing sense
of segmentation in the GIS market. This sense has been reinforced by the advent
of object-oriented data modeling (Zeiler, 1999; Arctur and Zeiler, 2004), which
allows the basic data objects of a GIS (points, lines, and areas) to be specialized for
particular application domains.

Today the old sense of GIS as a well-defined type of software has been signif-
icantly eroded. Some vendors have chosen to adopt descriptions that better reflect
their target application domains, while others emphasize the ability to customize
a range of products to specific needs. An adjective seems more appropriate than
a noun in this new more complex world, and in recent years the term geospatial
appears to have gained some traction, as evidenced by the recent renaming of
what was the Open GIS Consortium and by extensive restructuring within the US
Geological Survey.

The geospatial world of today is clearly a much broader domain of data, tools,
services, and concepts than the limited GIS world of 1992. Many of the statistical
packages now include limited support for spatial analysis, and an extensive set of
geospatial tools can be found in Matlab. Links have been constructed between GIS
packages and simulation environments such as Stella and Repast, and what were
previously considered functions exclusive to GIS, such as simulated fly-by, are now
readily available in Google Earth and other geo-browsers. A social or environmental
scientist needing tools to support spatial analysis now has a vast array of options,
many of which would no longer involve anything recognized as a GIS. The idea
examined by Anselin and Getis in 1992, of whether the particular needs of spatial
analysis justify the development of a special toolbox, no longer seems as relevant –
the importance and special nature of spatial analysis is clearly demonstrated by the
vast array of data, tools, and services that are now available, whether or not they are
labeled as GIS.
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Moreover, the days of monolithic software environments are now over, and it is
no longer appropriate to envision a day when all forms of spatial analysis will be
available in a single toolbox. Just as geo-portals provide a single point of entry to
a complex, distributed array of data, it seems appropriate to envision a day when
a single point of entry will provide access to a set of distributed, interoperable
tools and services. Already some sites provide searchable directories of tools (see,
e.g., http://www.csiss.org), and some geo-portals provide searchable directories of
GIServices in addition to data (see, e.g., http://www.geographynetwork.com). But
as yet there are no universal standards for catalogs of tools (Crosier et al., 2003), or
standards for interoperability. Thus the necessary supporting infrastructure for such
a vision still needs substantial work.

4.4 The Broader Context

4.4.1 Cyberinfrastructure

The topics discussed in the previous section – the need for interoperability, access
to distributed data, and GIServices – are representative of much broader trends
within computation and within the infrastructure it provides for science. Vari-
ous names have been given to this new, distributed form of computing, including
cyberinfrastructure, and much has been written about its potential. In the UK the
Economic and Social Research Council has made substantial investments in build-
ing a cyberinfrastructure for social science through the e-Social Science initiative
(http://www.ncess.ac.uk), and in the USA the National Science Foundation (NSF)
has recently established an Office of Cyberinfrastructure (http://www.nsf.gov).

One of the most definitive documents in this general trend is the report of the
Report of the Blue-Ribbon Advisory Panel on Cyberinfrastructure, generally known
as the Atkins report after the study committee’s chair (Atkins et al., 2003). It argues
persuasively that cyberinfrastructure can not only improve the ability of scientists to
do what they already do, but also underpin a new kind of science that is more com-
putationally intensive, more collaborative, and more visual than before. The report
distinguishes between two traditional kinds of science, one inductive and data driven
and the other deductive and theory driven, and argues that cyberinfrastructure can
enable a third kind that has elements of both, and that relies heavily on simula-
tion. This vision has clear echoes of the comments made by Anselin and Getis in
1992, regarding the need for computationally intensive tools and better methods of
visualization, and it reflects trends that have been evident within the social and envi-
ronmental sciences for at least the past decade. It could be argued that this is a case
of the computational tail wagging the substantive dog. But the Atkins report clearly
leaves the role of defining needs to the substantive sciences and to the fundamental
questions they need to answer.
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In principle one might expect GIS to provide an ideal environment for this third
kind of science. It is digital, and it allows rules and functions representing process
to be simulated on the data contained in its databases. But in practice, as Anselin
and Getis noted in 1992, the macro or scripting languages used by GIS to program
complex tasks have had a reputation for being awkward to use and slow to execute.
Traditional GIS software has been designed for the comparatively leisurely pace of
analysis, rather than the computationally intensive pace of simulation.

However this situation has changed significantly in the past decade. Certain GIS
packages, notably GRASS and the PCRaster package produced by the University of
Utrecht (http://pcraster.geo.uu.nl)have been designed specifically to support simula-
tion, and reference has already been made to recent efforts to link GIS to simulation
environments such as Repast. Moreover, the comments in the previous section sug-
gest that it is no longer useful to ask whether some somewhat arbitrarily delimited
type of software known as GIS can or cannot perform simulation – rather, the
broader set of geospatial tools able to support simulation is now clearly rich and
powerful (Maguire et al., 2005).

Nevertheless, the community identified with GIS remains somewhat limited in
its perspective, and has not yet built the kinds of bridges to larger communities
focused on simulation, in domains such as atmospheric science, geophysics, or
oceanography, all of which are clearly embedded in geographic space. Moreover,
simulation technology is very advanced in domains that deal with other spaces,
including aeronautical and structural engineering. As yet, no GIS vendor supports
the representation of partial differential equations, either as finite difference or finite
element approximations, and there is little support for simulation of processes in
three spatial dimensions.

4.4.2 New Methodologies

Cyberinfrastructure is only one manifestation of other, more fundamental trends in
science. It argues for the use of information and communication technologies (ICT)
to support collaboration between scientists, reflecting a general trend away from the
single-investigator style of science to a more cooperative mode in which teams of
specialists combine their expertise to solve complex problems. The software sys-
tems needed to support massive simulation of complex systems, such as those that
underlie global climate models, are far too elaborate for any one person to know
completely. To most scientists, computational tools will have to be black boxes,
defined by their inputs and outputs rather than by their contents, and no one indi-
vidual will be able to meet the traditional standard of scientific reporting: to provide
sufficient detail to allow another scientist to replicate the experiment.

Unfortunately this problem is all too well known to scientists who use compu-
tational tools developed and marketed by the commercial sector, and particularly
geospatial tools. The GIS industry has been driven largely by commercial applica-
tions, and science has always been only a small fraction of its market. Standards
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of documentation that are adequate for commercial applications may well fail the
scientific test of providing sufficient detail for replicability. For example, it is fre-
quently impossible to determine exactly how certain GIS functions operate, or to
determine the degree of noise introduced in certain operations such as raster-vector
conversion or projection change.

The widespread use of GIS is raising other issues of a methodological nature.
Anselin and Getis refer to spatial dependence and spatial heterogeneity as the two
defining characteristics of spatial data, noting the problems that the former causes
for many methods of statistical analysis. Tobler’s First Law of Geography (Tobler,
1970) asserts that positive spatial dependence is endemic in geographic data, in
obvious violation of the independence assumption of many statistical tests, and
ensuring that any significance test that results in the acceptance of a null hypothesis
of no spatial dependence is almost certainly making a Type II statistical error.

Spatial heterogeneity raises even greater methodological issues, because it sug-
gests that any attempt to find universal principles that apply everywhere on the
Earth’s surface is fundamentally problematic. Instead, analysis should focus on esti-
mating and interpreting the inevitable variation in parameters, adopting a method-
ological position that is somewhere between the traditional nomothetic and
idiographic extremes. So-called local or place-based analysis is more consistent
with this position, and is now represented by a range of techniques that includes
Anselin’s LISA (Anselin, 1995) and the geographically weighted regression of
Fotheringham et al. (2002).

Substantial progress has been made in building geospatial tools to support spa-
tial analysis in the presence of both spatial dependence and spatial heterogeneity
over the past 15 years. ESRI’s ArcGIS supports a range of geostatistical tech-
niques through its Geostatistical Analyst, and extensions are also available for the
analysis of point patterns and other spatial statistical tests. Anselin’s own GeoDa
(http://geoda.uiuc.edu) has been developed as a stand-alone package but using stan-
dard GIS data structures, and has proven very popular (by March 2006 over 10,000
copies had been downloaded). The issues raised by Anselin and Getis in 1992 are
now rapidly becoming the basis of standard practice.

4.5 Whose Hand on the Tiller?

Anselin and Getis concluded with comments about the need for regional scientists
to play a central role in directing the future of GIS. As noted in the previous sec-
tion, GIS has been a largely commercial product, and its development has been
driven by its market, where the emphasis has been on such applications as forestry
and utility management rather than on science. More effort has gone into provid-
ing rapid responses to simple queries from massive databases than into the kinds of
sophisticated spatial analysis demanded by the social and environmental sciences.

The commercial nature of GIS is both a blessing and a curse, of course. On
the one hand it is doubtful if GIS could have survived commercially based on the
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science market alone, and the existence of large commercial applications has pro-
vided access by scientists to a well-engineered, well-supported range of products.
The distinction between commercial and science applications is also quite blurred,
with many companies and agencies making use of the more sophisticated analytic
functions of GIS and many universities using GIS to maintain inventories of their
own physical plant. On the other hand, academics are traditionally leery of commer-
cial motives, and as noted in the previous section there are clear differences between
modes of operation in the commercial world and the norms of the scientific method.

Moreover, many significant contributions have been made by the non-commercial
GIS sector, by such products as Idrisi, PCRaster, and GRASS. But these always run
the risk of being attacked as unfair competition, and the early support of GRASS
by the US Army Corps of Engineers had to be withdrawn, at least in part for this
reason.

Nevertheless, there are several reasons why the academic sector continues to
exert a greater amount of influence on the future of GIS than its significance as
a market would suggest. First, academics are also educators, and have a strong
influence on the knowledge and predilections of future generations. A commer-
cial GIS vendor looking to long-term success will clearly want to curry favor with
the academic sector, by discounting software and providing other forms of support.
If academics feel the need to educate students in particular techniques of spatial
analysis then commercial GIS vendors may well choose to support those techniques,
whether or not the market for them is viable. Sophisticated features also add to the
perceived attractiveness of a product, whether or not they are actually used, just as
many customers demand features in other products that they will never learn to use.

Second, the academic sector has a well-recognized duty to reflect and comment
on all aspects of human society, and commentary on GIS and its impacts has become
a significant subject of scholarship in geography, planning, and related disciplines.
Academics have pointed to the importance of uncertainty, and the inherent vulnera-
bility of GIS when uncertain results are used to regulate the use of land (Goodchild
and Gopal, 1989); and they have questioned many of the assumptions underlying
GIS analysis (Pickles, 1995). While the impacts of these critiques may not be appar-
ent in GIS software products, they have undoubtedly altered the context in which
GIS is used.

Finally, the academic sector is the primary source of fundamental innovation
in GIS. The research domain variously known as geographic information science,
geomatics, geovisualization, or geoinformatics has grown rapidly in the past decade,
and has spawned journals, conferences, and organizations (http://www.ucgis.org).
GIScience research has led to new insights into such fundamental issues as scale,
new methods of representation that go far beyond the traditional GIS data models,
and new techniques for addressing uncertainty. Such research increasingly provides
the framework for new geospatial standards, and for improvements in user interface
design.
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4.6 Conclusion

In hindsight, Anselin and Getis provided a remarkably prescient analysis of the
issues surrounding GIS and spatial analysis in the early 1990s. They accurately
anticipated the growing need for tools that were more computationally intensive,
with better support for advanced visualization, in a clear call for what today has
become a much more broadly based interest in cyberinfrastructure. They also recog-
nized the importance of spatial dependence and spatial heterogeneity as the defining
characteristics of geographic data, and their implications in the need for new forms
of analysis and new supporting tools.

The software landscape has changed dramatically since 1992. GIS is no longer
a monolithic, stand-alone application, but instead encompasses a range of product
types and a range of new functions, and new, broader terms such as geospatial have
been adopted to try to capture this new complexity. The idea of a single toolbox
has been replaced by the concept of interoperable software modules, operating in a
mix of hardware architectures that ranges from the hand-held PDA (personal digital
assistant) through the desktop workstation to the remote server. New techniques of
search allow researchers to discover and access these modules quickly, though much
work remains to be done on appropriate catalogs and methods of description.

Like almost all of us, Anselin and Getis missed the massive transformations
caused by the Internet and the Web that began in 1993 and still continue today, and
the impacts that these transformations are having on the practice of science. They
were correct, however, in arguing that it should be the basic questions addressed by
science, and the needs of scientists for techniques to answer those questions, that
should drive future development of tools. The GIS steam-engine has always been
driven by a range of applications, only some of which are concerned with funda-
mental science questions, and the needs of researchers have always had to battle
with the needs of other users. Anselin’s own GeoDa is an excellent example of a
feasible strategy in this environment – a package for sophisticated spatial analysis
that is designed to interoperate with standard GIS products, but is designed and pro-
grammed by a team of scientists. But it is difficult for the academic marketplace to
provide an income stream, and such projects must therefore be funded by grants, an
erratic source at best. Software produced by academic teams is rarely engineered to
the same standards as commercial software, and it is difficult to provide the same
kinds of support.

In short, while much has happened in the decade and a half since the publica-
tion of the Anselin and Getis paper, its institutional context remains much as it was
in 1992. The commercial GIS sector is large and growing, and able to produce and
support complex “industrial-strength” software. The academic sector has only a lim-
ited ability to influence the commercial sector’s directions, in integrating the kinds
of tools needed to support research, and in ensuring adherence to the norms of the
scientific method. As in many other fields, it is clear that innovative partnerships
represent the best way forward, integrating the work of the two sectors and allowing
their different objectives to be harmonized.



Chapter 5
Spatial Interaction and Spatial Autocorrelation

Manfred M. Fischer, Martin Reismann, and Thomas Scherngell

Abstract The objective is to combine insights from two research traditions, spa-
tial interaction modelling and spatial autocorrelation modelling, to deal with the
issue of spatial autocorrelation in spatial interaction data analysis. First, the prob-
lem is addressed from an exploratory perspective for which a generalisation of
the Getis–Ord G statistic is presented. This statistic may yield interesting insights
into the processes that give rise to spatial association between residual flows. Sec-
ond, the log-additive spatial interaction model is extended to spatial econometric
origin-destination flow models consistent with an error structure that reflects ori-
gin, destination or origin-destination autoregressive spatial dependence. The models
are formally equivalent to conventional spatial regression models. But they differ in
terms of the data analysed and the way in which the spatial weights matrix is defined.

5.1 Introduction

Spatial econometric theory and practice have been dominated by a focus on object
data. In economic analysis these objects correspond to economic agents with dis-
crete locations in space, such as addresses, census tracts and regions. In contrast,
spatial interaction or flow data pertain to measurements each of which is associated
with a link or a pair of origin-destination locations that represent points or areas in
space. While there is a voluminous literature on spatial autocorrelation with a typi-
cal focus of interest in the specification and estimation of models for cross-sectional
object data, there is scant attention paid to its counterpart in spatial interaction data.
For example, there is no reference to spatial interaction data in any of the commonly
cited spatial econometric or statistic texts, such as Anselin (1988), Griffith (1988a)
or Cressie (1993).

In contrast, there is the field of spatial interaction modelling which has a long
and distinguished history that has led to the emergence of three major schools
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of analytical thought: the macroscopic school based upon a statistical equilibrium
approach (see Wilson, 1967), the microscopic school based on a choice-theoretic
approach (see Sen and Smith, 1995) and the geocomputational school based upon
the neural network approach that perceives spatial interaction models as universal
function approximators (see Fischer, 2002). In these schools there is a deep-seated
view that spatial interaction implies movement of tangible entities such as per-
sons and commodities or intangible ones such as information and knowledge across
space, and that this has little to do with spatial association (Getis, 1991).

The focus in this chapter is on the spatial autocorrelation problem in spatial
interaction data analysis. The objective is to combine insights from both research
traditions, spatial interaction modelling and spatial autocorrelation modelling. First,
we address the problem from an exploratory perspective, and present a generalisa-
tion of the Getis–Ord G statistic. This statistic may yield interesting insights into
the processes that give rise to spatial association between residual flows in that it
enables to detect local non-stationarity. Second, we shift the attention to the model
driven mode of analysis,1 and extend the log-additive model of spatial interaction
that has served as the workhorse in spatial interaction analysis, to a general class of
spatial econometric origin-destination flow models consistent with an error struc-
ture that reflects origin and/or destination autoregressive spatial dependence. These
models represent not only extensions of the spatial interaction models but also exten-
sions of the spatial regression models introduced by Anselin (1988), Griffith (1988a)
and others. The paper derives the log likelihood function for these models and sug-
gests a computational approach that relies on sparse matrix Cholesky algorithms
to efficiently compute the maximum likelihood estimates. An example using patent
citation data that capture knowledge flows across 112 European regions serves to
illustrate the way the Gij statistic and the spatial regression origin-destination flow
models might be applied.

5.2 The Classical View on Spatial Interactions

Spatial interaction data represent phenomena that may be described in their most
general terms as interactions between actors and opportunities distributed among
some relevant geographic space. Such interactions may involve movements of
individuals from one location to another. Interactions may also involve flows of
knowledge as captured by means of patent citations. Here inventors may be the
relevant actors, and the possible receivers of knowledge may be considered as the
relevant opportunities.

1 This draws heavily on previous work by Fischer et al. (2006a,b).
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5.2.1 The General Spatial Interaction Model

Suppose we have a spatial system consisting of n regions. Flows, Yij , are observed
between each pair (i, j) of regions where i (i = 1, . . . , n) denotes the origin region
and j (j = 1, . . . , n) the destination region of interaction. The Yij are assumed to
be independent random variables. They are sampled from a specified probability
distribution dependent upon some mean, say μij . Let yij denote the observed flows
and assume that no a priori information is given on the row and column totals of
the flow matrix [yij]. Then this so-called unconstrained spatial interaction problem
may be solved by modelling the observed flows yij , according to a statistical spatial
interaction model of the general form

Yij = μij + εij , (5.1)

where E[Yij ] = μij , εij is an error term about the mean, and μij is specified as
a function of covariates measuring the characteristics of origin regions, destination
regions, and their separation:

μij = C Ai Bj Fij . (5.2)

Ai is called origin factor that characterises the origin region i, Bj destination fac-
tor that characterises the destination region j, and Fij the separation function that
measures separation between i and j. It is implicitly assumed that A, B and F
are positive, and that the factors A and B are independent of F . μij is the expected
mean interaction flow for a given separation configuration defined by Fij . C denotes
a constant of proportionality.2

Various specific models can be derived from (5.2) specifying A, B and F appro-
priately. It is general practice to represent the variables Ai and Bj as power functions
of the form

Ai = A(ai, α1) = aα1
i , (5.3)

Bj = B(bj , α2) = bα2
j , (5.4)

where ai and bj denote some appropriate origin and destination variables. α1 and
α2 are parameters to be estimated. The separation function Fij that constitutes the
very core of spatial interaction models may be specified as

2 Note that if the origin totals of [yij ] are a priori given, C has to be replaced by an origin specific
constant Ci that is given by Ci = yi• [Ai

∑
j BjFij ]

−1, so that
∑

j μij = yi• is guaranteed. If the
destination totals are a priori given, C has to be replaced by a destination specific constant Cj that
is given by Cj = y·j [Bj

∑
i AiFij ]−1 which ensures

∑
i μij = y·j . The first case is called the

production constrained case of spatial interaction and the second the attraction constrained case. In
the production-attraction constrained case yi· and y·j are given. Generally, it is assumed here that
C = CiCj , where Ci is dependent on all the Cj , and vice versa (see Fischer and Reggiani, 2004
for more details).
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Fij = exp

[
K∑

k=1

βk d
(k)
ij

]

(5.5)

with d
(k)
ij representing a measure of separation between i and j. The βk are unknown

parameters. There are various ways to estimate the parameters α1, α2, β1, . . . , βK .
Maximum likelihood and least squares are among the most commonly used (see Sen
and Smith, 1995 for a general discussion).

5.2.2 The Log-Additive Model of Spatial Interaction

From the positivity of the factors A, B and F follows that spatial interaction models
defined by (5.1)–(5.5) can equivalently be expressed as a log-additive model3 of the
form

y(i, j) = α0 + α1a(i) + α2b(j) +
K∑

k=1

βk

(k)

d(i, j) +ε(i, j), (5.6)

where y(i, j) ≡ ln μij , α0 ≡ ln C, a(i) ≡ ln ai, b(j) ≡ ln bj , d(i, j) ≡ dij and
ε(i, j) ≡ εij . Under the assumption that a(i) and b(j) are measured without error
and that the error terms ε(i, j) are independent identically distributed with zero
mean and constant variance,4 we obtain the ordinary least squares estimator, say γ̂,
for γ = (α0, α1, α2, β1, . . . , βK)T as the solution to the matrix equation

(XT X)γ̂ = XT y, (5.7)

where

XT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 · · · 1 · · · 1 · · · 1
a(1) · · · a(1) · · · a(n) · · · a(n)
b(1) · · · b(n) · · · b(1) · · · b(n)
(1)

d(1, 1) · · ·
(1)

d(1, n) · · ·
(1)

d(n, 1) · · ·
(1)

d(n, n)
...

...
...

...
(k)

d(1, 1) · · ·
(k)

d(1, n) · · ·
(k)

d(n, 1) · · ·
(k)

d(n, n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.8)

↑ ↑ ↑ ↑
1 · · · n · · · N−n+1 · · · N

3 Note in some cases yij = 0 indicating the absence of flows from i to j. This leads to the so-called
zero problem since the logarithm is then undefined. There are several pragmatic solutions to this
problem with adding a small constant to the non-zero elements of [yij ] being widely used. In this
contribution we have decided to add 0.08 in such cases.
4 This assumption implies that the individual flows, y(i, j), from origin i to destination j are inde-
pendent from each other and that interaction flows between any pairs of regions are independent
from flows between any other pairs of regions. A violation of this assumption leads to spatial
autocorrelation or heterogeneity.
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and
yT = [y(1, 1), . . . , y(1, n), . . . , y(n, 1), . . . , y(n, n)] (5.9)

given that the N = n2 vector d(k) = [
(k)

d(1, 1), . . . ,
(k)

d(n, n)]T is the vectorised form
of the n-by-n separation matrix [d(k)

ij ], a = [a(1), . . . , a(1), . . . , a(n), . . . , a(n)]T

and b = [b(1), . . . , b(n), . . . , b(1), . . . , b(n)]T are N -by-1 vectors, appropriately
indexed over the N = n2 values. The N -by-1 vector ε = [ε(1, 1), . . . , ε(n, n)]T

denotes the vectorised form of [εij ].
Depending upon the assumptions made about the variance-covariance matrix of

ε, the estimators derived from (5.7) may or may not be efficient. But (5.7) is an
unbiased equation (Durbin, 1960) in the sense that

E[XT Xγ̂] = XT XE[γ̂] = XT E[y] = XT Xγ, (5.10)

where E[.] denotes the expectation operator. From (5.10) we see that

E[γ̂] = γ (5.11)

provided that (XT X)−1 exists. That is, the data must not be perfectly collinear.
This result holds whatever dispersion matrix, σ2V , is postulated for the distur-
bance, ε.

A violation of the assumptions made may lead to two separate problems: (1) spa-
tial autocorrelation among the X-variables, and (2) spatial autocorrelation among
the residuals, ε. Both problems may well arise, but neither implies the other. If (1)
holds, this will affect the matrix (XT X)−1, or (XT V −1X)−1 in general, and thus
the variance estimates of the coefficients. If (2) holds, then the basic assumption of
a scalar dispersion matrix for the disturbances, ε, is violated, that is E[εεT ] = σ2V
where V 	= I. Thus, there will be an extra V matrix in the expressions, and gen-
eralised rather than ordinary least squares should be used. If V is unknown, as is
generally the case, then some form of iterative generalised least squares should be
performed. In this case the parameter estimates will be consistent, but not necessar-
ily unbiased. But this is true for every regression problem, and the residuals should
be tested for spatial autocorrelation (Cliff et al., 1974).

The problem of modelling spatially autocorrelated residuals in spatial interaction
models has been largely neglected so far.5 This may be because spatial interaction
models are more complex than linear regressions for object data, and each region is
associated with several values as an origin and/or destination so that specification of
the autocorrelation structure is less obvious. In the next section we suggest spatial
weights structures that enable to model dependence between origin-destination pairs
in a fashion consistent with conventional spatial autoregressive models.

5 There are only very few exceptions, most notably the studies by LeSage and Pace (2005); Bolduc
et al. (1992, 1995); Brandsma and Kelletaper (1979).
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5.3 Spatial Autocorrelation Among Flows

While the conventional notion of spatial autocorrelation in a cross-sectional spatial
regression context involving a sample of n regions relies on a n-by-n spatial weights
matrix, in a spatial interaction context where the y vector reflects flows between
origin-destinations we need to extend the notion of spatial autocorrelation to a con-
cept of spatial connectivity between origin-destination pairs of regions. In analogy
to the conventional case of object data, we loosely define spatial autocorrelation
among flows, say y(i, j), between origin-destination pairs (i, j) of regions as coinci-
dence of y(i, j)-value similarity with what may be termed interaction similarity, i.e.,
similarity of flows (i, j) and (r, s) in the four-dimensional space {i, j; r, s|i, j, r, s =
1, . . . , n}. A crucial issue in this definition of spatial autocorrelation is the notion
of interaction similarity, or the determination of those dyads for which the val-
ues of the random flow variable are correlated. Such dyads may be referred to as
“neighbours.” A convenient way to define interaction similarity is by means of a
four-dimensional spatial weights matrix that defines for each dyad (i, j) a relevant
“neighbourhood set.”

5.3.1 Specification of a Spatial Weights Matrix

A spatial weights matrix, say W ∗ = [w∗(i, j; r, s)], in a spatial flow context is a
N -by-N positive matrix which expresses for each dyad (i, j) those dyads (r, s) that
belong to its neighbourhood set as non-zero elements. Formally, w∗(i, j; r, s) > 0
when (i, j) and (r, s) are neighbours, and w∗(i, j; r, s) = 0 otherwise. By conven-
tion, the diagonal elements of the weights matrix are set to zero. The specification
of which elements are non-zero is a matter of considerable arbitrariness. But this is
true for the case of area data as well.

In this contribution we distinguish between origin-based and destination-based
similarity. In the first case, flows (i, j) and (r, s) are similar if origin regions i
and r are neighbours (see Case A in Fig. 5.1), while in the second case flows (i, j)
and (r, s) are considered to be similar if destination region s is an element of the

Fig. 5.1 Origin-based and destination-based similarity. The flows (i, j) and (r, s) are origin-based
similar in Case A since the origin regions i and r are contiguous spatial units, and destination-based
similar in Case B since the destination regions j and s are contiguous spatial units
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neighbourhood set of destination region j (see Case B in Fig. 5.1). Intuitively, it
seems plausible that forces leading to flows from a region i to a particular destina-
tion j may create similar flows from neighbours to this origin region to the same
destination region j, as well as forces leading to flows of an origin i to a destina-
tion j may create similar flows to neighbouring destinations (see LeSage and Pace,
2005).

Formally, we define the following N -by-N binary spatial weights matrix oW ∗ =
[ow∗(i, j; r, s)] to capture origin-based spatial dependence:

ow∗(i, j; r, s) =

{
1 if j = s and wir = 1,

0 otherwise,
(5.12)

where wir is the element of a conventional n-by-n first order contiguity matrix that
defines whether the origin regions i and r are contiguous or not:

wir =

{
1 if i 	= r, and i and r have a common border,

0 otherwise.
(5.13)

This spatial weights matrix specifies an origin-based neighbourhood set for each
origin-destination pair (i, j). An element ow∗(i, j; r, s) defines an origin-destination
pair (r, s) as being a “neighbour” of (i, j) if the origin regions i and r are contiguous
spatial units, and j = s. By convention, an origin-destination pair (i, j) is not a
neighbour to itself so that the diagonal elements are zero. It is convenient to work
with a row-standardised form of oW ∗. In order to achieve this, each element of the
matrix has to be divided by the respective row sum so that the row elements of the
standardised matrix oW sum to one:

ow(i, j; r, s) =
ow∗(i, j; r, s)

N∑

r,s=1
(r,s) �=(i,j)

ow∗(i, j; r, s)

. (5.14)

In analogy, we define a row-standardised destination-based N -by-N spatial
weights matrix dW = [dw(i, j; r, s)] in which we capture destination-based depen-
dence as follows:

dw(i, j; r, s) =
dw∗(i, j; r, s)

N∑

r,s=1
(r,s) �=(i,j)

dw∗(i, j; r, s)

(5.15)

with

dw∗(i, j; r, s) =

{
1 if i = r and wjs = 1,

0 otherwise,
(5.16)
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and

wjs =

{
1 ifj 	= s, and j and s have a common border,

0 otherwise.
(5.17)

The spatial weights matrix oW +dW specifies origin-to-destination dependence
in which case it is assumed that flows from origin region i to destination region j are
accompanied by similar flows from neighbours of region i to neighbours of region j.

Given n regions and, thus, N observations, it takes five steps to generate a spatial
weights matrix of the form oW , dW or oW + dW :

1. Partitioning the surface into Voronoi diagrams or Thiessen polygons
2. Constructing the polygon topology
3. Generating the n-by-n binary first-order contiguity matrix [wir ] or [wjs]
4. Producing the N -by-N binary spatial weights matrix W ∗ = [w∗(i, j; r, s)]
5. Standardising the N -by-N matrix W ∗ to arrive at the N -by-N row-standardised

spatial weights matrix W

Steps (1) and (2) are computationally complex, but many GIS packages provide
functions for these tasks. The other steps can easily be performed by means of stan-
dard tools. Note that the spatial weights matrix W is an extremely large, sparse
matrix. A sample of n = 100 regions, for example, would result in a W -matrix of
dimension N -by-N where N = 10,000. Only a very small portion (generally less
than 1%) of the elements is non-zero.

5.3.2 The Generalised Getis–Ord Statistic

Recently a number of statistics, called local spatial statistics, have been developed
for object data. They identify the association between a single value in each region
and its neighbours. These statistics are well suited to identify the existence of pock-
ets or “hot spots” and to assess assumptions of stationarity. Prominent examples are
provided by the family of G statistics introduced by Ord and Getis (1995) to allow
for non-binary spatial weights matrices and non-positive values.

Although the Getis–Ord’s Gi statistic was defined in the context of scalar
observations in each region, it is easily generalised to flow data (see Berglund
and Karlström, 1999). Let (r, s) denote the flow from origin region r to destina-
tion region s, and e(r, s) the residual flow associated with the origin-destination
pair (r, s). Let, moreover, [w(i, j; r, s)] be a spatial weights matrix. Then it is
straightforward to define the flow autocorrelation statistic Gij(W ) as6

6 Including the residual flow from i to j defines the G∗
ij in analogy with the G∗

i statistic. The null
hypothesis appropriate for the Gij statistic requires that e(i, j) be excluded from the summation,
while the null hypothesis appropriate for the G∗

ij statistic requires that e(i, j) itself be summed
together with the values of the “neighbouring” (r, s) dyads.
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Gij(W ) =

N∑

r,s=1
(r,s) �=(i,j)

w(i, j; r, s) e(r, s)

N∑

r,s=1
(r,s) �=(i,j)

e(r, s)

. (5.18)

In this and in all subsequent formulations where we use summation signs, (r, s)
does not equal (i, j) so that there is no self-interaction.

The estimated Gij(W ) is found by solving (5.18) using (5.6) to obtain e(r, s) =
y(r, s)− ŷ(r, s). The statistic can be transformed to a standard variate which asymp-
totically follows a normal distribution. The standardised z-value is obtained in the
usual manner as

z[Gij(W )] =
Gij(W ) − E[Gij(W )]

{var[Gij(W )]} 1
2

. (5.19)

If z[Gij ] is positively or negatively greater than some specified level of signifi-
cance, then positive or negative spatial autocorrelation is obtained. A large positive
z[Gij ] implies that the residual flow from i to j is surrounded by relatively large
residual flows from r to s whereas a negative z[Gij ] indicates that the flow is
surrounded by relatively small residual flows.

Under the assumption of a normal error, the expected value and the variance of
the statistic are given as

E[Gij(W )] =

N∑

r,s=1
(r,s) �=(i,j)

w(i, j; r, s)E[e(r, s)]

N∑

r,s=1
(r,s) �=(i,j)

e(r, s)

=
1

N − 1
W (i, j) (5.20)

and

var[Gij(W )] =
W (i, j)[N − 1 − W (i, j)]

(N − 1)2(N − 2)

[
Q2(i, j)
Q1(i, j)2

]

, (5.21)

where

W (i, j) =
N∑

r,s=1
(r,s) �=(i,j)

w(i, j; r, s), (5.22)

Q1(i, j) =
1

N − 1

N∑

r,s=1
(r,s) �=(i,j)

e(r, s), (5.23)
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and

Q2(i, j) =
1

N − 1

N∑

r,s=1
(r,s) �=(i,j)

e(r, s)2 − Q1(i, j)2. (5.24)

Note that the Gij statistic is formally equivalent to the Gi statistic. It differs from
the latter in terms of the data analysed and the manner in which the spatial weights
matrix is defined. As it is true for object data analysis, the flow statistic Gij is a
convenient exploratory tool to identify the existence of pockets or “hot spots” and
to assess assumptions of stationarity.

5.4 A Spatial Econometric View on Spatial Interactions

One way to deal with the issue of spatially autocorrelated errors is to respecify
the log-additive model of spatial interaction by modelling spatial error dependence
with an autoregressive error structure. The resulting error covariance will be non-
spherical, and thus OLS estimates while still unbiased will be inefficient.

5.4.1 The General Spatial Econometric Model
of Origin-Destination Flows

To improve the precision of inference and the prediction accuracy we introduce a
spatial error structure into spatial interaction models. The resulting models may be
viewed as an extension of the conventional spatial regression models described in
Anselin (1988). Different spatial processes lead to different error covariances. The
most common specification in conventional spatial regression models is a first order
autoregressive spatial process in the error terms. Using this specification results into
the following general spatial econometric origin-destination flow model:

y = Xγ + ε (5.25)

i.e., a log-additive spatial interaction model (as defined in Sect. 5.2.2) with a N -by-1
error vector ε given by

ε = ρWε + η, (5.26)

where y denotes the N -by-1 vector of observations on the interaction variable, X
is the (N, K + 3)-matrix of observations on the explanatory variables including the
origin, destination and separation variables, and the intercept. γ is the associated
(K + 3)-by-1 parameter vector, η a N -by-1 vector of independent identically dis-
tributed random errors with zero mean and equal variances. Usually we shall take
them to be normally distributed so that

η ∼ N (0, σ2I). (5.27)
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W is a row-standardised N -by-N -spatial weights matrix as specified in the pre-
vious section. All diagonal elements of the matrix are zero by construction. ρ is a
scalar parameter that reflects the magnitude of spatial dependence and is typically
referred to as the spatial autoregressive parameter. It is assumed that |ρ| < 1. If
|ρ| > 1, the model would be explosive and non-stationary.

If |ρ| < 1 and I − ρW is non-singular, then

ε = (I − ρW )−1η (5.28)

follows from (5.26). Thus, E[ε] = 0 and E[εεT ] = Ω(ρ) where

Ω(ρ) = σ2V (ρ) (5.29)

with
V (ρ) = [(I − ρW )T (I − ρW )]−1. (5.30)

To ensure the variance-covariance matrix Ω(ρ) is positive definite and, thus, non-
singular, the autocorrelation parameter ρ has to be within its feasible range ρ ∈
]λ−1

minλ
−1
max[, where λmin and λmax are the smallest and largest eigenvalues of W ,

respectively, with λmin < 0 < λmax (Hepple, 1995). Since the row sums of W are
bounded uniformly in absolute value by one, the Perron–Frobenius theorem (Cox
and Miller, 1965, p. 120), tells us that λmax = 1 and −1 ≤ λmin, so that we have
the restriction of |ρ| < 1 for the stationarity of the spatial origin-destination flow
models of type (5.25) with an error structure specification given by (5.26).

Different Model Specifications. The general model defined by (5.25)–(5.26) leads
to three specifications that are of specific interest in this contribution. These are
derived from the following spatial weights matrices:

1. W = oW results in a model specification which reflects origin-based auto-
regressive spatial error dependence.

2. W = dW leads to a model specification which reflects destination-based
autoregressive spatial error dependence.

3. W = oW + dW generates a model form which reflects autoregressive spatial
dependence at both origins and destinations.7

5.4.2 The Log Likelihood Function and Maximum
Likelihood Estimation

Given η ∼ N (0, σ2I), the log-likelihood function for ρ, γ and σ2 is

L(γ, ρ, σ2) = −N

2
ln(2πσ2)+ln |A(ρ)|− 1

2σ2
(y−Xγ)T [A(ρ)]T A(ρ)(y−Xγ)

(5.31)

7 In this case we implicitly assume that there is a lack of separability between the impacts of origin
and destination interaction effects in favour of a cumulative impact.



72 M.M. Fischer et al.

with
A(ρ) = I − ρW , (5.32)

where |A| is the determinant of A. The log-likelihood function can be maximised
with respect to ρ, γ and σ2 simultaneously to obtain the maximum likelihood (ML)
estimates. This optimisation can be difficult if the number of explanatory variables
is large. Alternatively, the ML estimates can be obtained from the concentrated like-
lihood function. First, (5.31) is solved for the values of γ and σ2 to maximise L,
conditional on ρ. These are

γ̃(ρ) = (XT [A(ρ)]T A(ρ)X)−1XT ([A(ρ)]T A(ρ))−1y, (5.33)

σ̃(ρ)2 =
1
N

(y − Xγ̃(ρ))T [A(ρ)]T A(ρ)(y − Xγ̃(ρ)). (5.34)

The concentrated likelihood function is then obtained by substituting (5.33) and
(5.34) into (5.31):

L(ρ) = K + ln |A(ρ)| − N ln
[
(y − Xγ̃(ρ))T [A(ρ)]T A(ρ)(y − Xγ̃(ρ))

]
,

(5.35)

where K is a constant not depending on ρ. The concentrated likelihood function is
maximised with respect to ρ. ML estimates of γ and σ2 (γ̃ and σ̃2, respectively)
are found by substituting the optimal value of ρ into (5.33) and (5.34). Since (5.35)
has only one parameter, its optimisation can be performed with a more sophisticated
optimisation technique or with a simple one-dimensional search over (λ−1

min, 1).
The major difficulty in numerical maximisation of the concentrated likelihood

function is the necessity of evaluating the N -by-N log-determinant of A at each
step. The evaluation becomes computationally intensive when N is not small. To
minimise the computational burden Ord (1975) suggested to exploit the log-
determinant of A in terms of the eigenvalues λi(i = 1, . . . , n) of the spatial weights
matrix W :

ln |A| =
N∑

i=1

ln(1 − ρλi). (5.36)

The advantage of (5.36) to compute the log-determinant is that the {λi|i =
1, . . . , n} can be determined once and for all at the outset of the optimisation pro-
cess, and not repeatedly at each of the iteration steps. But the eigenvalue approach
to computing the log-determinant still leaves the researcher with the task of deter-
mining the eigenvalues of the N -by-N spatial weights matrix. Unless W has a
particular structure, this task is typically very challenging especially if n and, hence,
N is large. W is a large sparse N -by-N matrix. A sparse matrix is one that has only
a very small proportion of non-zero elements. Unfortunately, common procedures
for sparse eigenvalue problems, such as rank-one modification or band-peeling, have
limited appeal since the required structure is unrealistic for spatial weights matrices
(see Smirnov and Anselin, 2001).
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Matrix factorisation procedures for sparse matrices in general and sparse matrix
Cholesky factorisation techniques in particular provide very powerful procedures
to quickly evaluate the log-determinant of I − ρW . For a row standardised spatial
weights matrix, such as oW + dW , transferred to symmetric form, the Cholesky
factorisation consists of solving

A = LLT , (5.37)

where L is a lower triangular matrix, referred to as the Cholesky factor of A. Since
the determinant of a triangular matrix only involves the diagonal elements, the log-
determinant is easily computed as

ln |A| =
N∑

i=1

ln lii (5.38)

with lii(i = 1, . . . , N) denoting the diagonal elements of L. Cholesky factorisa-
tion is very efficient when the sparse structure of A is exploited by reordering
rows and columns to yield a sparse factor matrix L while preserving the numeri-
cal characteristics of A. Good reordering techniques can reduce the complexity of
the factorisation for A from O(N3) down to O(N2) (see Smirnov and Anselin,
2001). This approach puts the maximum likelihood solution of spatial econometric
flow models into the computational reach for larger origin-destination interaction
systems.

5.5 An Empirical Example

To illustrate the way the Gij statistic and the spatial econometric origin-destination
flow models might be applied, patent citation data are used. Such data recorded in
patent documents are widely recognised as a rich and fruitful source for the study of
the spatial dimension of innovations and technological change8 (see, for example,
Jaffe and Trajtenberg, 2002; Fischer et al., 2006b).

5.5.1 The Data

We use interregional patent citation flows as the dependent variable in the mod-
els. The data specifically relate to citations between European high-tech patents.
By European patents we mean patent applications at the European Patent Office
assigned to high-tech firms located in Europe. High-technology is defined to

8 Each patent contains highly detailed information on the invention itself, the technological area
to which it belongs, the inventors, the assignee and the technological antecedents of the invention.
Because patents record the residence of the inventors they are an invaluable resource for studying
how knowledge flows are affected by the geography.
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involve the ISIC-sectors aerospace (ISIC 3845), electronics-telecommunication
(ISIC 3832), computers and office equipment (ISIC 3825) and pharmaceuticals
(ISIC 3522). Self-citations, i.e., citations from patents assigned to the same firm,
have been excluded, given our interest in pure externalities as evidenced by interfirm
knowledge spillovers.

It is well known that the observation of citations is subject to a truncation bias,
because we observe citations for only a portion of the “life” of an invention. To
avoid this bias in the analysis we have established a five-years-window to count cita-
tions to a patent.9 The observation period is 1985–1997 with respect to cited patents
and 1990–2002 with respect to citing patents. The sample used in this contribution
is restricted to inventors located in n = 112 regions, generally NUTS-2 regions,
covering the core of “Old Europe” including Germany (38 regions), France (21
regions), Italy (20 regions), the Benelux countries (24 regions), Austria (8 regions)
and Switzerland (1 region), resulting into N = 12,432 interregional flows.10

Subject to caveats relative to the relationship between citations and spillovers,
these data allow us to identify and measure spatial separation effects to interre-
gional knowledge spillovers in this interaction system of 112 regions. Our interest
is focused on K = 3 measures: d(1) is a N -by-1 vector that represents geographic
distance measured in terms of the great circle distance (in kilometers) between the
regions represented by their economic centres, d(2) is a N -by-1 country dummy
variable vector that represents border effects measured in terms of the existence of
country borders between the regions.

As we consider the distance effect on interregional patent citations it is important
to control for technological proximity between regions, as geographical distance
could be just proxying for technological proximity. To do this we use a techno-
logical proximity index sij that defines the proximity between regions i and j in
technology space. We divide the high-technology patents into 55 technological sub-
classes following the International Patent Code classification system. Each region is
assigned a (55, 1)-technology vector that measures the share of patenting in each of
the technological subclasses for the region. The technological proximity index sij

between regions i and j is given by the uncentred correlation of their technological
vectors. Two regions that patent exactly in the same proportion in each subclass have
an index equal to one, while two regions patenting only in different subclasses have
an index equal to zero. This index is appealing because it allows for a continuous
measure of technological distance by the transformation dij = 1− sij . Appropriate
ordering leads to the N -by-1 vector d(3).

The product AiBj in (5.2) may be interpreted simply as the number of distinct
(i, j)-interactions which are possible. Thus, it is reasonable to measure the origin

9 For details on data construction see Fischer et al. (2006b). The trouble is that to obtain citations
by any one patent application in year t, one needs to search the references made by all patent
applications after year t. This is called the inversion problem that arises due to the fact that the
original data on citations come in the form of citations made, whereas we need dyads of cited and
citing patents to construct interregional patent citations flows.
10 Note that intraregional flows are left out of consideration. In the case of cross-regional inventor
teams the procedure of multiple full counting has been applied.
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factor in terms of the number of patents in the knowledge producing region i in the
time period 1985–1997, and the destination factor in terms of the number of patents
in the knowledge absorbing region j in the time period 1990–2002 to produce the
N -by-1 vectors a and b.

5.5.2 Application of the Gij Statistic

We briefly illustrate the application of the Gij statistic as a tool for identifying non-
stationarities, using oW as spatial weights matrix and error flows generated by the
conventional log-additive spatial interaction model (5.6). The parameter estimates
and their associated probability levels are summarised in Table 5.1, along with some
performance measures. The estimated coefficients indicate that the origin, destina-
tion and separation variables are highly significant with appropriate signs of the
coefficients. The results provide clear evidence that geographical distance is impor-
tant, but less so than national borders. Most important is technological proximity.
This suggests that interregional knowledge flows seem to follow particular techno-
logical trajectories, and occur most often between regions that are located close to
each other in both technological and national spaces.

Table 5.1 The log-additive spatial interaction model: parameter estimates and performance
measures (N = 12,432)

Ordinary least
squares estimation

Parameter estimates (p-values in brackets)
Constant [α0] −4.851 (0.000)
Origin variable [α1] 0.594 (0.000)
Destination variable [α2] 0.562 (0.000)
Geographical distance [β1] −0.181 (0.000)
Country border [β2] −0.592 (0.000)
Technological distance [β3] −2.364 (0.000)

Performance measures
Adjusted R2 0.563
Log likelihood −21,024.128
Sigma square 1.723

Notes: The spatial interaction model is defined by (5.6) where the stan-
dard assumptions for least squares estimation hold. a is measured in
terms of the log number of patents (1985–1997) in the knowledge pro-
ducing region i, b in terms of the log number of patents (1990–2002) in
the knowledge absorbing region j, d(1) represents geographic distance
measured in terms of the great circle distance (in kilometers) between
the economic centres of the regions i and j, d(2) border effects mea-
sured in terms of the existence of country borders between regions i and
j, and d(3) technological distance measured in terms of the technolog-
ical proximity index sij . Model performance is given in terms of the
adjusted R2, the log likelihood and sigma square (the error variance).
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High residual flows from neighbours
of origin i to the destination region
Ile-de-France
^

(a) Low residual flows from neighbours
of the region Leipzig to a destination
region j

(b)

Fig. 5.2 Flows with selected significant Gij(
oW) statistic: (a) indicating high residual flows from

neighbours of origin i to the destination region Île-de-France; and (b) indicating low residual flows
from neighbours of the region Leipzig to a destination region j

An origin-destination pair (i, j) with a significant Gij(oW ) statistic indicates
that there is local non-stationarity in flows from a neighbourhood of origin region
i to destination region j. A closer look at the Gij statistic scores reveals that some
destination regions and some origin regions have many significant statistics of the
same sign. Figure 5.2 provides a visualisation for two specific cases. Figure 5.2
represents the case where Île-de-France is the destination region, and Fig. 5.2 the
case where Leipzig is the origin region. These two figures clearly indicate that there
is spatial non-stationarity in flows when these regions are the destination and the
origin, respectively.

Given regions with many significant Gij(oW ) origin or destination factors in
the spatial interaction model may be misspecified. We apply the G∗

i•(
oW ) and

G∗
•j(

oW ) statistics11 which may be – as Berglund and Karlström (1999) have
shown – considered as test statistics for local non-stationarities in the origin and des-
tination factors, respectively. Examining the G∗

i•(
oW ) and G∗

•j(
oW ) statistics we

find that the regions Île-de-France and Leipzig indeed have significant high G∗
•j and

significant low G∗
i• statistics, respectively. This might indicate that the significant

Gij(oW ) statistics for these regions could be attributed to non-stationarity in the
destination and origin factors. The heterogeneity in the residual flows is confirmed
by a Breusch–Pagan test. Its value of 568.1 is fairly significant (p = 0.000).

11 For the definition of the G∗
ij statistic see (5.18) together with Footnote 6. The subscript dot

signifies that a sum is taken with respect to the subscript replaced by the dot.
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5.5.3 ML Estimates of the Origin-Destination Spatial
Econometric Flow Models

The pattern of residuals examined by means of the Gij statistic clearly indicates spa-
tial autocorrelation, so that it makes sense to fit the models given by (5.25)–(5.26).
This section reports the ML estimates of the three spatial econometric model spec-
ifications that reflect origin, destination and origin-destination spatial dependence
of flows, respectively. We used the spdep package12 running on a Sun Fire V250
with 1.28 GHz and 8 GB RAM to create the spatial weight matrices from polygon
contiguities, and the errorsarlm procedure based on Ng and Peyton’s (1993) sparse
matrix Cholesky algorithm to generate the ML estimates for the models. Using this
algorithm, computation of the maximum likelihood estimates of the spatial econo-
metric models that reflect origin, destination and origin-destination dependence of
flows required only between 56 and 836 s, a remarkably short time considering that
each iteration required calculating the determinant of a 12,432-by-12,432 matrix.

Table 5.2 contains the parameter estimates of the three model specifications and
their associated log likelihoods. Moving from the log-additive spatial interaction
model to the flow model reflecting spatial dependence at the origins (destinations)
raises the log likelihood from −21,024.13 to −20,676.15 and −20,516.01, respec-
tively. This is to be expected given the indication of the Lagrange multiplier test
for spatial error dependence.13 It is clear that least squares which ignores spatial
dependence and assumes residual flows to be independent produces a much lower
likelihood function value. Capturing the dependences greatly reduces the residual
variance and strengthens the inferential basis affiliated with the models. Moving
further to the model specification that reflects spatial dependence at both origins
and destinations raises the log likelihood further to −20,212.01.

The ML estimates display the expected signs, as the ordinary least squares esti-
mates do. The estimates reported in Table 5.2 are not significantly different from
each other, and, moreover, lie within the 95% confidence limits of the least squares
estimates. So, in accordance with spatial econometric theory, mere spatial depen-
dence in disturbances does not impact the point estimates, just the precision of
the parameters. Turning to the spatial autoregressive parameter, we see that the
estimates are highly significant. They clearly point to origin-based, destination-
based and origin-to-destination-based spatial dependence. The strength of depen-
dence for destinations seems to be slightly more important than that for origins. But
the estimate for the spatial autoregressive parameter reflecting dependence based on
interaction between origin and destination neighbours is clearly most important.

Turning to the spatial autoregressive parameter ρ, we see that the estimates
are highly significant. They clearly point to origin-based, destination-based and

12 Source package: spdep 0.3-17 which may be retrieved from http://cran.r-project.org/src/contrib/
Descriptions/spdep.html.
13 Its value is at 833.6 and 1,254.8 respectively, when using oW and dW , and fairly significant in
both cases (p = 0.000).
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Table 5.2 Spatial econometric flow models based on different spatial weights matrix specifica-
tions: ML estimates using Ng and Peyton’s Cholesky algorithm (N = 12,432 observations)

Model specifications based on
oW dW oW + dW

Parameter estimates
(p-values in brackets)

Constant [α0] −7.041 (0.000) −6.817 (0.000) - 4.658 (0.000)
Origin variable [α1] 0.598 (0.000) 0.576 (0.000) 0.593 (0.000)
Destination variable [α2] 0.548 (0.000) 0.560 (0.000) 0.553 (0.000)
Geographical distance [β1] −0.194 (0.000) −0.223 (0.000) −0.224 (0.000)
Country border [β2] −0.641 (0.000) −0.600 (0.000) −0.651 (0.000)
Technological distance [β3] −2.395 (0.000) −2.040 (0.000) −2.183 (0.000)
Spatial autoregressive 0.311 (0.000) 0.365 (0.000) 0.613 (0.000)
parameter [ρ]

Performance measures

Log likelihood −20,676.142 −20,516.006 −20,212.013
Sigma square 1.595 1.541 1.442
Computational time (s) 62 56 836

Diagnostics

(p-values in brackets)
Likelihood-ratio test 3,695.970 (0.000) 1,016.243 (0.000) 1,624.23 (0.000)
Moran’s I −0.008 (0.929) −0.014 (0.990) −0.006 (0.939)

Notes: The origin-destination models are defined by (5.25)–(5.26). a is measured in terms of the
log number of patents (1985–1997) in the knowledge producing region i, b in terms of the log
number of patents (1990–2002) in the knowledge absorbing region j, d(1) represents geographic
distance measured in terms of the great circle distance (in kilometers) between the economic cen-
tres of the regions i and j, d(2) border effects in terms of the existence of country borders between
i and j, and d(3) technological distance in terms of the technological proximity index sij . The
origin-based spatial weights matrix oW is defined by (5.14), the destination-based spatial weights
matrix dW by (5.15), while the origin-destination-based weights matrix oW + dW by (5.14)–
(5.15). Model performance is measured in terms of the log likelihood, sigma square (the error
variance) and computational time in seconds (running on a SunFire V 250 with 1.28 GHz and
8 GB RAM)

origin-to-destination based spatial dependence. The strength of dependence for des-
tinations seems to be slightly more important than that for origins. But the estimate
for the spatial autoregressive parameter reflecting dependence based on interaction
between origin and destination neighbours is clearly most important.

5.6 Conclusions and Outlook

The chapter has illustrated the importance of proper handling spatial interaction
data where spatial dependence is present. The generalised Getis–Ord statistic Gij

appears to be a powerful tool in exploratory spatial interaction data analysis that
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yields interesting insights into the processes that give rise to spatial association
between residual flows in that it enables detection of local non-stationarities.

Spatial econometric origin-destination flow models extend conventional spatial
interaction models to deal with the problem of spatial autocorrelation among the
residuals and to examine the role of spatial dependence in flows. These models
are formally equivalent to conventional spatial regression models. But they differ
in terms of the data analysed and the way in which the spatial weights matrix is
defined. The chapter has suggested a computational approach for maximum like-
lihood estimation that relies on sparse matrix Cholesky algorithms to efficiently
compute the maximum likelihood estimates and to test for origin-based, destination-
based and origin-to-destination-based spatial dependence. This approach makes ML
estimates practical for larger spatial interaction systems and yields reasonable com-
puting times. An example using patent citation data that capture knowledge flows
between 112 European regions has served to illustrate the discussion. The ML esti-
mates results have shown the importance of incorporating spatial dependence in the
estimation of spatial interaction relationships.

Acknowledgements The authors gratefully acknowledge the grant no. 11329 provided by the
Jubiläumsfonds of the Austrian National Bank. Many thanks go to Roger Bivand (Norwegian
School of Economics and Business Administration) for solving an issue with procedure errorsarlm
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Chapter 6
Second-Order Analysis of Point Patterns:
The Case of Chicago as a Multi-center
Urban Region∗

Arthur Getis

This Chapter was originally published in:
Getis, A. (1983) Second-Order Analysis of Point Patterns: The Case of Chicago as
a Multi-Center Urban Region. The Professional Geographer 35:73-80. Reprinted
with permission of Taylor & Francis, Philadelphia, c©The Association of American
Geographers

Abstract A comprehensive approach to the analysis of point patterns demonstrates
the usefulness of second-order methods by exploring population distribution in the
Chicago region. The methods are based on the development of a distribution of
all interpoint distances representing the total covariation in a pattern. Clustering and
inhibition models are explored with regard to the population pattern. Some evidence
supports a multi-center city hypothesis for the region.

In the past, most point pattern work has relied on either quadrat sampling or the
analysis of nearest neighbor distances. The former technique, while lending itself to
spatial modeling, has had limited usefulness because significance tests cannot verify
or reject the spatial character of the supposed process. Also, the sampling technique
commonly used, a lattice of regions, has many drawbacks, including the strong pos-
sibility of a violation of the required independence assumption. Furthermore, results
depend on the size of the sampling units. When border effects are taken into account,
nearest neighbor techniques have been useful for tests on a Poisson-process model,
but they tend to be inadequate to test other models. Study is usually restricted to
only the first few nearest neighbor distances.

The first attempts at a comprehensive analysis of point patterns were made by
Bartlett (1963, 1964), who proposed the use of a two-dimensional spectrum of all
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the interpoint distances of a spatial point pattern. The difficulty with his method
lies in the need to smooth the spectral estimate with an arbitrary smoothing func-
tion. Nonetheless, the method provides considerable promise, especially when the
assumption of spatial stationarity (see below) can be sustained (Cliff and Ord, 1975).
In geography, Tobler (1969) and Rayner and Golledge (1972, 1973) used spectral
analysis to advantage for the examination of town spacing.

The use of a spectrum of distances allows for the development of tests at many
different scales. Perhaps it was the challenge of the need for a comprehensive statis-
tic that led Ripley to introduce second-order techniques (Ripley, 1976, 1977). These
have since been modified and extended by Ripley (1979a, 1981), Diggle (1979),
Besag (1977a), and others. Cliff and Ord (1981) were the first in geography to dis-
cuss second-order theory, although Glass and Tobler, as early as 1971, considered
city spacing in this general context. In a related development, a useful model of
clustering by Strauss (1975) is also based on interpoint distances.

6.1 Second-Order Theory

The motivation for the development of second-order theory is that a single measure-
ment or even several measurements from a point or location to other points is not
sufficient to summarize a set of point pattern data (Ripley, 1976, 1977, 1979a). The
object is to find a cumulative distribution function based on all distances between
pairs of objects. Since all interpoint distances taken together represent the total
covariation in a set of points, we consider the analysis of the distribution of these
distances as the study of the second moment or second-order analysis. Because
attention is focused on the exploration of the arrangement of sets of points rather
than on specific point locations, it follows that stochastic processes are the vehi-
cle for analysis (Ripley, 1979a, p. 55). It must be borne in mind in the analysis
we assume a known generating mechanism is responsible for the configuration of
points. The method is designed for tests on hypotheses that are culled from our
knowledge of point processes.

Perhaps the major limitation of the method to be discussed is that the assumption
of stationarity must be met (Cliff and Ord, 1975). The assumption can be thought
of as being divided into two parts: homogeneity and isotropy. The first implies that
the surface on which the objects (represented by points) are contained is uniform,
so that objects are not denied sites for their location. For example, a mountainous
region is not uniformly able to contain towns. Second, the pattern must be isotropic;
that is, there must be no directional biases in the data. Although it is possible to
make adjustments so that the stationarity assumption can be met, the need to make
corrections might limit the usefulness of second-order analysis.

If we can assume stationarity, then following Ripley (1977) we define a quantity
λK(t) as the expected number of additional points within distance t of an arbitrary
point. λ is the density of points per unit area and is estimated by N/A, where N
is the number of points in the sample and A is the area. K(t) is a non-negative
increasing function. The empirical cumulative distribution function of points to all
other points within distance t in a region is F (t) = (

∑
1)/N(N − I),where the
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Fig. 6.1 A border correction is needed when the distance xy is greater than the distance of x to
the nearest border

sum is over all ordered pairs of points not more than t apart. The difficulty with
this function is that border effects and the size and shape of the region introduce
bias. Ripley demonstrates that it is possible to produce an unbiased estimator by
weighting pairs of objects (Ripley, 1981, p. 159). Thus,

K̂(t) = A

∑
k(x, y)
N2

, (6.1)

where A is the area of the region under consideration and
∑

k(x, y) is the sum of
the weights associated with each of the ordered pairs of points labeled x and y. In
order to find the weight, consider the value 1/k(x, y) as the ratio of ayb to the entire
circumference, as seen in Fig. 6.1.

Thus, when the border plays a strong role, that is, when the ratio 1/k(x, y) is low,
the resulting value of K̂(t) will be increased. The weights make K̂(t) an unbiased
estimator for K(t) as long as t is less than the circumradius of the region studied.
For a square of unit area, K̂(t) would be unbiased up to t = 0.707.

Besag (1977a) further developed Ripley’s statistic by suggesting that the plot of
K̂(t) be made linear for the Poisson process (Ripley, 1981, p. 160). The value L(t)
straightens K(t), and Ripley (1979a, p. 63) shows that its mean is t

L̂(t) =

√

K̂(t)
π

(6.2)

and variance is 1
2πN2 a Poisson process, thus allowing for statistical tests of

significance up to the point of biasedness.
Before analyzing the Chicago data we shall briefly discuss two second-order

models. The first is based on a clustering process while the second pertains to an
inhibition (or evenness) process. Both can be discussed using the distribution func-
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tion of distances. Also, we will show that clustering and inhibition can be considered
simultaneously.

6.1.1 Clustering Model

The second-order clustering model is much like the models discussed under the
title “generalized” in Getis and Boots (1978). Such models as the negative bino-
mial, Neyman Type A, and the Polya–Aeppli are based on a multiplicative process
involving a certain distribution of offspring related to another distribution of pro-
genitors. Diggle (1981) shows that the distribution function K(t) can be interpreted
as the sum of a Poisson progenitor function of intensity ρ and a random number
(Poisson variate) of offspring per parent positioned in a radially symmetric (Gaus-
sian) way around the parent with common dispersion parameter σ. The totality of
offspring is

K(t) = πt2 + ρ−1
{
1 − exp

[−t2/(4σ2)
]}

. (6.3)

The first term of (6.3) represents the progenitors and is a Poisson variable. The
second term accounts for the offspring and thus represents the clustering over and
above that expected in a Poisson process. Thus, K(t) > πt2 implies clusters of
points scattered around parent points.

6.1.2 Inhibition Model

An inhibition model depicts the disinclination of objects to be near one another.
Following Matern’s technique of identifying a radius from a point within which no
other point is observed (Matern, 1971), the second-order model would be one where
little or no covariation in the data is present. The L̂(t) function is close to or at 0
for t values representing dispersal in the data. A regularity in the inhibition process
(evenness) would yield a function less than the Poisson L̂(t) throughout the range
of unbiasedness.

6.1.3 Clustering with Inhibition

It is possible to observe clustering when inhibition is present. For example, towns
may be clustered together, but they do not occupy the same space. Strauss (1975)
provides us with a way of modeling this type of clustering/inhibition. From theory
or observation, we identify some distance t as our indicator representing points that
are close. A parameter ν measures the clustering tendency and can be estimated by
finding the cumulants of Y , where Y is the number of pairs of points whose distance
apart is less than t. The quantities a, b, and s can be estimated from the cumulants
(defined below) of Y by
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a = κ1 − 2κ2
2/κ3,

b = 1
4κ3/κ2,

s = 8κ3
2/κ2

3,

and ν̂ =
1
2b

− s

2(y − a)
.

(6.4)

The observed number of pairs of points within distance t of all points is y. In a
Poisson pattern with no inhibition, ν̂ = 0 and var(ν) = (1−2bν̂)2/2b2s. A positive
value for ν̂ implies clustering, while a negative value indicates inhibition.

In the two-dimensional case where we define a region as having unit area, we
have D = πt2,

κ1 = E(Y ) +
(
N
2

)
D,

κ2 = var(Y ) = κ1(1 − D),

κ3 = κ2(1 − 2D) + N (3)(0.5865− D)D2,

κ4 = κ2(1 − 6D(1 − D)) + N (3)D2(D(0.4596− D)
+ 6(0.5865− D)(1 − 2D)),

where N (s) = (N)(N − 1) · · · (N − s + 1). Technical problems associated with
cumulants are discussed in Strauss (1975).

The choice of t depends on our understanding of the processes bringing about
clustering. As I will show in the example below, there are several values of t that
are directly related to assumptions about the population distribution in urban areas.
Strauss provides a test for any t, although the optimal test obtains when the value of
t corresponds to the maximum variance (κ2).

6.2 The Population Pattern of Chicago

In order to demonstrate constructively the use of second-order methods, I have
attempted to develop further the notion of the multi-center city (see Griffith, 1981
and Plane, 1981 for recent analytical development of this idea). For many years,
urban population density decline analysis has been used to test empirically single
center urban land use theory. The multi-center city hypothesis requires, however,
some other forms of analytical routines. I suggest that second-order methods may
offer a useful approach for testing some spatial aspects of cities that are assumed
to have more than one center of high population density. I am using data on the
residential population distribution in the Chicago metropolitan region.

Suppose that each of the major centers of the multi-center city is a workplace
focus and that peoples’ residences cluster around those centers according to some
journey-to-work distance principle (see, e.g., Getis, 1969). What results in most
cases is a city comprised of overlapping population clusters. These clusters cannot
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be identified exactly, because of the overlap, but they can be modeled to some extent
by second-order methods.

Before the analysis can be carried out, three problems must be addressed. The
first concerns the level of generalization, that is, the number of points used to rep-
resent the population. It is obvious that analysis of a population distribution map
for a large urban area must utilize something less than one point per person. Also
the greater the ratio of points to people, the more accurate is the representation of
the population. Both the realism of the map desired and the value of computer time
and labor must be weighed in selecting a level of generalization. For every ten-fold
increase in the number of points used (N), there is a 100-fold increase in computer
time needed to find L̂(t).

Chicago census tracts are used as the fundamental data base. These are small
enough for a careful but uncrowded and realistic placement of points to represent
the population distribution. I decided on one point for each 10,000 people, using data
from the 1970 census. Any reasonably accurate representation of the point pattern
will yield similar results for a clustering hypothesis, though not for an inhibition
hypothesis. In the case of inhibition, any result will vary directly with the level of
generalization simply because the more points there are, the closer they will be to
one another. Thus, hypotheses dealing with inhibition must be carefully constructed.

The second problem concerns the assumption of stationarity. No city occupies a
completely homogeneous site, therefore no point set representing population satis-

Fig. 6.2 Population distribution in the Chicago region
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fies the assumption. Steps such as map transformations may be taken to correct for
heterogeneity. In the Chicago region, physical features affecting population distri-
bution are generally absent except for Lake Michigan. The lake affects population
distribution along the shoreline, especially to the north of the CBD (the Loop). The
strip of clustering along the north shore was eliminated by constructing a rectan-
gular study area that has as its eastern edge Lake Michigan south of the Loop and
an arbitrary line about 1 mile inland north of the Loop (see Fig. 6.2). Eliminating
that strip reduces the likelihood of a directional bias in the data but retains isotropic
properties.

The third problem concerns the bias that might result from failure to consider
the region’s boundaries, a problem that can be handled in at least two ways. The
first is to employ the boundary condition discussed above, that is, use the factor
1/k(x, y) in the formula for K(t). One might also consider mapping the study area
onto a torus and thus eliminating boundaries altogether. In practice, this procedure
means that the original study area is reproduced eight times; the reproductions are
placed along the borders of the study area so as to completely surround it. Adopting
this strategy solves both the boundary problem and the problem of the absence of
settlement in Lake Michigan. The reflection along the eastern edge expands the
study area into the shape of a square and effectively allows us to define A = 1
and t values to correspond to distances within the square of unit area. One mile is
equivalent to 0.032t. In the area under study, there are 422 points representing more
than four million people.
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Fig. 6.3 A plot of L̂ for the population of the Chicago region. The straight line is the mean for a
Poisson process. The portion of the diagram from t = 0 to t = 0.06 is enlarged on Fig. 6.4
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Fig. 6.4 A plot of L̂ for the population of the Chicago region. The dashed lines are the 95%
confidence bands of the Poisson process

L̂(t) for the 1970 map of Chicago’s population is shown in Fig. 6.3. Recall that
L̂(t) is the linearized cumulative distribution function of pairs of points; the Pois-
son process model is represented by the straight line. Several noteworthy features
appear. First, there is evidence of an inhibition effect within 1 mile; second, there is
a smooth curve above the diagonal representing clustering. The clustering appears
to increase with t to about 7–9 miles, at which point there is a movement toward the
Poisson expectation. At longer distances (greater than 15 miles) the pattern becomes
much less clustered and the curve has very few irregularities. The pairs of points
increase in distance from each other at a fairly constant rate, implying a certain
spatial regularity to the clustering.

An enlarged view of the first 4 miles of interpoint distances is shown in Fig. 6.4.
Also shown is the 95% confidence band around the Poisson process expecta-
tion. One can identify the inhibition effect to a distance of 0.3 miles; by 0.9 miles
the clustering tendency is pronounced. Here, too, one observes a very smooth
curve.

The Chicago Area Transportation Study (1980) reports that the mean journey-to-
work distance for the Chicago SMSA for 1970 was close to 7.00 miles. Applying
the Strauss model for the comparable t value of 0.225, we get the following:
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N = 844,

D = 0.159,

y = 73,194 (number of pairs of points within t),

κ1 = 56,579,

κ2 = 47,580,

κ3 = 6,509,939,

κ4 = 27,236,366,

ν̂ = +0.014.

Note that ν̂ is positive, indicating clustering within the distance t. Using a nor-
mal test (y − κ1)/

√
κ2, we see that ν̂ is 76 positive standard deviational units away

from the Poisson expectation. A check of the data reveals that the maximum vari-
ation in L̂(t) occurs at t = 0.230 (or 7.11 miles). The 7-mile journey-to-work
distance appears to encompass the greatest degree of clustering in the Chicago
area. This value does not necessarily link the mean journey-to-work distance to
the spacing of urban centers, but it does suggest that such a hypothesis is plausible.
Further empirical evidence suggests that in the Chicago metropolitan area relatively
short journey-to-work distances (less than 10 miles) focus on a few widely-spaced,
important work centers (Continental Illinois National Bank, 1978; Getis, 1985a).

The configuration shown on Fig. 6.3 results from more than one cluster of points.
A single cluster of points with a lower density of dispersed points would tend to
yield a curve that would dip below the Poisson expectation for medium and long
distances. More than one cluster forces the curve above the diagonal for most of its
length. Nearest neighbor distances would not capture this important difference. The
curve’s peakedness depends on the proportion of points that are very close to one
another. In this example, a rather modest peak in the range 7–9 miles implies that
the clustering is not intense. During earlier periods in Chicago’s history the peaked-
ness was probably more pronounced. Thus, I suggest that a new type of population
density analysis might be available by means of second-order methods.

A second model based on an inhibition distance of 0.5 miles (t = 0.015) yields

N = 844,

D = 0.0007069,

y = 77,

κ1 = 251.46,

κ2 = 251.28,

κ3 = 426.27,

κ4 = 250.56,

ν̂ = −1.689.

In this case ν̂ is negative, indicative of inhibition within the distance t. Since ν̂ is
11 negative standard deviational units from the Poisson expectation, I conclude that
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the inhibition is pronounced, as expected. As was mentioned previously, this is a
function of the scale of analysis and is not a true population effect.

6.3 Conclusions

The advantages of second-order analysis seem to lie in the help it gives for the
development of plausible models of the distribution of geographic phenomena. This
is in addition to the possible analytical value of having a complete description-of
interpoint distances. Both of these advantages should not be undervalued since L̂(t)
provides more opportunities for insight than do a few summary numbers.

In the Chicago population example, I have shown the nature of population
clustering and tentatively conclude that a 7–9 mile distance includes maximum
clustering. This approach and finding suggest there are numerous other urban
characteristics worth exploring, including inferences about population density, pop-
ulation patterns over time, and population pattern differences among cities of
different sizes and cultures.
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Abstract A technique based on second-order methods, called second-order neigh-
borhood analysis, is used to quantify clustering at various spatial scales. The
theoretical model represents the degree of clustering in a Poisson process from the
perspective of each individual point. The method is applied to point location data for
a sample of ponderosa pine (Pinus ponderosa) trees, and shows that heterogeneity
within the forest is clearly a function of the scale of analysis.

7.1 Introduction

In any study where spatial data or pattern analyses are required, the appropriate scale
for analysis must be chosen. The choice is often arbitrary. Scale is usually defined
as the ratio of map distance to the real world distance it represents (Robinson et al.,
1984). As scale changes, so does the level of resolution, and new spatial patterns
emerge. Theory or subject matter should guide the selection of an appropriate scale,
but often researchers need to look at pattern at a number of scales. Spatial pattern
has both intensity, the extent to which density varies in space, and grain, the distance
over which density is perceived to vary (Pielou, 1977, 155–156).

Workers in a number of disciplines have attempted to find methods for identify-
ing parameter changes that take place when scale is made to vary. Perhaps blocking,
or contiguous quadrat analysis, is the most common method used for examining
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grain of pattern. The study area is covered by an array of N quadrats. These quadrats
are combined into larger quadrats in a systematic way. Various guidelines have been
proposed for selecting the optimum quadrat size, the most common of which is an
analysis of variance (Moellering and Tobler, 1972; Grieg-Smith, 1983).

Spectral analysis, as a method for selecting scales, has been satisfactorily applied
to studies where blocking or hierarchically defined units are used. In addition, data
transects have been studied as continuous spectra for scale effects (for a review of
the literature see Ripley, 1981). Rayner (1971), following the lead of Bartlett (1950),
demonstrates how pattern may be studied using two-dimensional spectra. Although
more complicated than the technique discussed here, an important advantage is that
it allows for an assessment of the effect of orientation on pattern and scale.

While one of the authors was engaged in a remote sensing study of canopy
reflectance for a ponderosa pine (Pinus ponderosa) forest (Franklin et al., 1985),
we developed a technique for describing both intensity and grain of tree spatial
patterns simultaneously at a number of scales. The method, second-order neigh-
borhood analysis, is a variation on second-order analysis of point patterns (Ripley,
1977, 1981; Diggle, 1983; Getis, 1984). Second-order analysis is designed to test
randomness hypotheses, often based on the Poisson distribution, by examining the
proportion of total possible pairs of points in Euclidean space whose pair members
are within a specified distance of each other. The analysis is second order because it
is the variation rather than the mean of distances that is being studied. The technique
discussed below, while similar to second-order analysis, differs in that consideration
is given only to those pairs of points having as one of its members a given point i.
This method depends on relatively large amounts of digitized point data, from aerial
photographs or maps, where coordinates can be accurately recorded.

7.2 The Model

Getis’ model (1984) has the form

L̂i(d) =

⎡

⎣A

n∑

j=1

kij/π(n − 1)

⎤

⎦

1
2

, (7.1)

where Σkij is the summation over all points that are within distance d of point i,
and it includes a boundary correction where required. If for a given neighborhood
point j the specified distance d is more than the distance between i and j, then
the pair (kij) counts as 1 (unless the boundary correction is required); otherwise
kij counts 0. The value A is the area of a rectangular region, and n − 1 represents
all possible pairs of points having i as a pair member. Taking into consideration the
circular area centered on point i, for convenience, π and the square root are included
in order to make Li(d) linear with respect to d and to have Li(d) = d when Li(d)
represents a pattern produced by a Poisson process in the plane.

The boundary correction is as follows: if the distance between i and j is greater
than the distance between i and the nearest boundary (e1), instead of the value 1 for
kij , substitute
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kij = [1 − cos−1(e1/d)/π]−1. (7.2)

If the distance between i and j is greater than the distance to both of two boundaries
(e1, e2), use

kij = {1 − [cos−1(e1/d) + cos−1(e2/d) + π/2]/2π}−1. (7.3)

The boundary correction is based on the assumption that the region outside of the
boundary in the vicinity of the distance measurement has a spatial pattern similar to
the nearby areas within the boundary. If this assumption cannot be accepted, then
results must be exclusively for the areas within A greater than d from all boundaries
(see Getis, 1984 for further discussion of the boundary problem).

The form of the analysis can best be depicted by a diagram. Figure 7.1 shows
a curve describing the typical values of L̂i(d) for a given i in a somewhat clus-
tered forest in a square of area 1. The horizontal axis represents d; that is, at any
distance from a tree designated as i we can identify an L̂i(d) value. The diagonal
represents Li(d) values for a pattern that is created by a Poisson process. The ini-
tial part of the curve for L̂i(d) displays a value of 0 as far as distance 0.08. This
means that no other tree is within 0.08 of tree i, and so this is the nearest neighbor
distance. Up to distance 0.14 from i, the curve remains below the expectation. The
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Fig. 7.1 Cumulative distribution curve (heavy line) of L̂i(d) for hypothetical tree in a square of
area 1. Li(d) is the number of points within distance d of point i corrected for the boundary effect,
and scaled such that Li(d) = d when Li(d) represents a pattern produced by a Poisson process
in the plane. Dashed lines represent 0.01 significance levels around the line representing Poisson
process
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fact that the curve for the observations is advancing upward at a faster rate than the
theoretical curve implies a tendency for clustering or heterogeneity. It is not until
0.16 from i that one can say that the spatial distribution of pairs displays a statis-
tically significant level (0.01) of clustering (see below). At 0.28, the curve reaches
its maximum above Li(d), implying maximum clustering. In summary, the param-
eters representing i’s relationship with all j are (1) the nearest neighbor distance,
(2) the distance at which heterogeneity begins, (3) the distance at which clustering
becomes statistically significant, and (4) the distance at which maximum clustering
can be observed.

Statistical significance can be ascertained either by simulation or by accepting
the values ±1.42

√
A/(n− 1) and ±1.68

√
A/(n−1) as reasonable approximations

of the 5% and 1% significance points, respectively. These are a modification of
Ripley’s (1978; 1979b) estimates for the second-order case.

In addition to the above indicators of the relationship of i to all j are the scale
parameters. If we identify the L̂i(d) value at certain specified distances, say 0.05,
0.10, 0.15, 0.20, for each i, we are then able to compare the spatial situation of
each tree. One tree may display a high L̂i(d) value at 0.05, implying that a number
of neighbors are close by, while a second tree may have a low L̂i(d) value at 0.05
but a high value at 0.20. The second tree is much less crowded by near neighbors,
but is within a cluster of trees at a distance of 0.20 from it. If the chosen scale of
analysis were 0.05, the first tree would be considered a member of a cluster, but the
second tree would not. The distance chosen represents the scale at which one can
view pattern.

To demonstrate the method, ponderosa pine tree distribution was analyzed. The
locations of≈5,000 ponderosa pine trees in the Klamath National Forest in Northern
California were determined from United States Forest Service aerial photographs
(nominal scale 1:24,000); trees <2.5 m apart were not resolvable, nor were small
trees within the canopy of another tree. These points were digitized for auto-
matic analysis (Franklin et al., 1985). A subarea selected for study, 120 m× 120 m,
included 108 trees that visually display nonrandom characteristics: clumps and
clusters of trees appear to dominate the pattern (Fig. 7.2).

7.3 Results

Figure 7.3 shows the observed and expected L(d) values; L̂(d) represents the aver-
age distance relationships for the 108 trees in the subarea shown in Fig. 7.2. For
convenience the study area was made equal to 1; thus a distance of 0.01 is equiv-
alent to 1.2 m. All data points on Fig. 7.3 are within the 95% confidence region of
the Poisson expectation. This implies that although there are clusters of points and
an apparent inhibition effect, the overall pattern cannot be differentiated from one
created by a Poisson spatial process.

Figure 7.4 contrasts the pattern membership characteristics of three selected
trees, labeled A, B, and C in Fig. 7.2. Note that tree A appears to be a member
of a small cluster of trees. Figure 7.4a shows a short nearest neighbor distance
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distance d of all points i corrected for the boundary effect, and scaled such that L(d) = d when
L(d) represents a pattern produced by a Poisson process in the plane. L̂(d) may be interpreted as
the average for all 108 points (from Fig. 7.2) taken together. Solid line shows expected values given
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Fig. 7.4 Values for L̂i(d) over the range 0.01 ≤ d ≤ 0.30 when i = A (a), B (b), and C (c). The
locations of trees A, B, and C are shown in Fig. 7.2

(0.03 = 3.6 m), a rapid rise to clustering status at a distance of 0.03 (3.6 m), and
maximum clustering at 0.09 (10.8 m). Visually, point B does not appear to be a
member of a cluster, but inspection of Fig. 7.4b reveals that B is a member of a
cluster at distances of 0.11 (13.2 m) and greater. The distance at which maximum
clustering takes place (0.25), however, is much greater than for point A. Point C is
within an area of the forest where densities are much lower than is true of either A
or B. Its L̂i(d) values, shown in Fig. 7.4c, reveal that it is not a member of a cluster
at most scales.

Figure 7.5 shows the pattern created by the trees in our sample for scales (d) of
0.05 (6 m), 0.10 (12 m), 0.15 (18 m), and 0.20 (24 m). Of course, a much finer group
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Fig. 7.5 Pattern created by assigning to each tree its L̂(d) value for the following values of d:
(a) 0.05 (6 m), (b) 0.10 (12 m), (c) 0.15 (18 m), (d) 0.20 (24 m). The shaded areas contain trees that
have L̂i(d) values above the Poisson expectation. Intensity of shading corresponds to increase in
tree density at a given scale. Isolines are in units of d

of scales could have been selected. The isolines, drawn at intervals of 0.025, indi-
cate areas of greater or lesser tree densities. Accuracy in drawing the isolines was
enhanced by the addition of control points to the empty or sparsely vegetated areas;
no measurements were taken to a control point. The shaded areas contain all trees
that display L̂i(d) values above the expected, that is above 0.05, 0.10, 0.15, and
0.20, respectively. Intensity of shading corresponds to increases in tree density at
the given scale.

Comparisons can be made among all areas of the maps or only among the areas
unaffected by the border correction. For the entire area of each map in Fig. 7.5 and
by casual inspection of Fig. 7.2, it is clear that the higher densities are generally in
the west and the lower densities in the east. Figure 7.5 reveals, however, a number
of further interesting contrasts. For example, note that at a scale of 0.05 (Fig. 7.5a),
only trees within 6 m of one another are considered as members of clusters, so that
large areas of Fig. 7.5a have a relatively low density of trees. When the scale is
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increased to 0.10 (Fig. 7.5b), some of the clusters identified at the 0.05 level are now
considered part of larger clusters or are not part of any cluster at all. By contrasting
the 0.05 (6 m) and the 0.10 (12 m) levels, one can see that geographic interpretations
would be greatly different due to the scale chosen. In addition, note that the rela-
tively low-density area in the western half of Fig. 7.5a becomes part of a clustered
region when the scale is increased to 0.20 (Fig. 7.5d).

The variance about the observed mean, L̄i, for a particular d indicates the extent
of the heterogeneity within the pattern. The scale at which the variance is maximized
will show the greatest contrast in pattern. This may be a reasonable choice for an
investigation when no other information is available to indicate an appropriate scale.
In our example, the variance reaches its first peak at 0.15 (18 m), decreases, and
then increases to a maximum at 0.35 (42 m) before decreasing again. The border
correction contributes greatly to the creation of the second peak.

7.4 Conclusions and Discussion

We have shown that second-order neighborhood analysis can identify different dom-
inant patterns at different scales for mapped point data. In the example given, the
overall pattern cannot be differentiated from one created by a spatial Poisson pro-
cess, but close inspection of the spatial relationships of individual trees to nearby
trees reveals noteworthy variations. The influence of nearest neighboring trees dom-
inates the pattern at or below a scale of 6 m. At 12 m, clustering is seen, but it is
stronger at 18 m. From 24 to 42 m the effect of the border correction appears to play
a role in intensifying the clustering (for example, near the northwest border).

Second-order analysis identifies several important scales of pattern: (1) the dis-
tance to nearest neighbor, (2) the distance where heterogeneity begins, (3) the
distance where clustering becomes significant, and (4) the distance where maximum
clustering is observed. The technique presented here, neighborhood analysis, can be
applied to selected individuals, and maps of pattern density at a given scale can be
produced. A knowledge of the scale-dependent spatial setting of individuals would
be useful in testing neighborhood models of population dynamics and competition
(Weiner, 1984; Pacala and Silander, 1985).

This study of scale pertains specifically to points each valued ostensibly as 1. It
requires only a slight modification in our model, however, to place interval scale
values at each point, such as size of a tree (see Getis, 1984). In addition, if data were
given for units having areal extent (nonpoint data), such as a lattice of quadrats,
the analysis could be carried out if the researcher assigns the data values to points
representing each sample area.
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Chapter 8
A Class of Local and Global K Functions
and Their Exact Statistical Methods

Atsu Okabe, Barry Boots and Toshiaki Satoh

Abstract In 1987 Getis and Franklin introduced a technique, based on second-
order methods, for quantifying clustering at various scales in mapped point patterns.
Subsequently, this technique has become known as local K function analysis. In this
paper we develop the local and global forms of a class of K functions and cross K
functions formulated on a bounded plane that includes the technique of Getis and
Franklin. Exact statistical methods are formulated or discussed and computational
methods are shown for the functions.

8.1 Introduction

One of the most frequently used techniques in statistical point pattern analysis is
the K function method. This method, which was originally proposed by Ripley
(1976, 1977, 1979b, 1981), has been extended and applied by many researchers in
various fields (e.g., animal ecology as in Gaines et al., 2000; cell biology as in Prior
et al., 2003; cosmology as in Stein et al., 2000; landscape ecology as in Spooner
et al., 2004a; network analysis as in Okabe and Yamada, 2001; transportation as
in Yamada and Thill, 2004). A general review is given by Dixon (2002). Among
those, the study by Getis and Franklin (1987) is notable because it was the first to
extend the original method to a K function method that focuses on the location of
points with respect to a specific point. Although they did not put a special name
on their method, it can be called a local K function method. In celebration of one
of Getis’ pioneering works, this chapter discusses a class of local and global K
function methods.

The chapter consists of five sections including this introductory section. For ease
of explanation, first, Sect. 8.2 discusses the local and global cross K functions, and
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shows their exact statistical methods. Because the local space assumed in the local
cross K function is not always natural, and moreover, the exact statistical test of
the global cross K function requires heavy computational time, Sect. 8.3 proposes
alternative local and global Voronoi cross K functions, and formulates their exact
statistical methods. Section 8.4 deals with the local and global auto K functions (the
original K functions), and discusses the difficulty of deriving their exact statistical
methods. The chapter ends in Sect. 8.5, summarizing the results.

8.2 Local and Global Cross K Functions

Consider two sets of points P = {p1, . . . , pn} (the white circles in Fig. 8.1) and
Q = {q1, . . . , qm} (the black circles in Fig. 8.1) placed in a bounded space S, the
global space (e.g., the square in Fig. 8.1, but generally a polygon). The points P are
assumed to be stochastically distributed in S, but the points Q are fixed. A typical
example is that the points P represent crime spots and the points Q represent railway
stations. Note that the configuration of the points Q is arbitrary; it is not necessary
that the points are uniformly placed in S.

Let Di(t) be the disk centered at a point, qi, of Q with radius t, and t∗i be the
distance between qi and the farthest point in S (Fig. 8.1), i.e., the minimum value of
t that satisfies S ⊆ Di(t∗i ). Let Ki(t) be a function given by

Ki(t) = the number of the points of P in Di(t) ∩ S. (8.1)

Because Di(t) includes a local space of the global space S (i.e., Di(t) ⊆ S), this
function is called a local cross K function.

Two remarks are made on this function. First, the function Ki(t) could be stan-
dardized by multiplying a constant (i.e., the density of points), but in this paper, this
is not done in order to make the following mathematical derivations look simpler.
Second, the space S is assumed to be bounded, and so the edge effects should be

Fig. 8.1 Points of P (the white circles), points of Q (the black circles) and a disk Di(t) centered
at a point of Q with radius t
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(a) (b) (c)

Fig. 8.2 The edge effect: (a) the first case, (b) the second case, (c) adjustment

treated. This treatment varies according to the following two cases. In the first case,
other events (of the same type as those in S) can be present outside of S (Fig. 8.2a).
In the second case, no other events of the type found in S are found outside of S
(Fig. 8.2b). Both situations lead to edge effects but our treatment of them is differ-
ent in the two cases. Most literature of the K functions assumes the first case where
the space including S is unbounded (as is assumed in the Poisson point processes).
A common treatment is to correct the edge effect in terms of a constant α(t) for t
that adjusts a bounded space to an imaginary unbounded space (Getis and Franklin,
1987). For example, as in Fig. 8.2c, α(t) is given by the ratio of the length of the cir-
cumference of the circle included in S to the circumference of the full circle. In this
paper we assume the second case (as is assumed in the binomial point processes),
and exactly take the edge effect into account.

In terms of the local cross K functions, Ki(t), i = 1, . . . , m, a function, K(t), is
written as

K(t) =
m∑

i=1

Ki(t). (8.2)

This function, which is often referred to in the literature, is called the cross K func-
tion. In contrast to the local cross K function defined by (8.1), this function is
referred to as a global cross K function. Note again that the constants α(t) and
1/m are neglected in the term on the right-hand side of (8.2) to make the following
derivations look simpler.

Having defined the local and global K functions, the remainder of this sec-
tion develops exact statistical methods. Among many possible null hypotheses, the
most fundamental one is that the n points of P are independently distributed in
the bounded space S according to the uniform density function, f(x), on S, i.e.,
f(x) = 1/|S| = 1, x ∈ S, where |S| denotes the area of S, and for simplic-
ity |S| = 1 is assumed without loss of generality. This hypothesis, which will be
referred to as Ho, implies that the points P are independent of the configuration of
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the points Q, e.g., the distribution of crime spots is not affected by the location of
railway stations.

8.2.1 The Expected Value and Variance of the Local
Cross K Function

For a fixed t, under the null hypothesis Ho, the value of Ki(t) is a random variable
following the binomial distribution with parameters n and |Di(t) ∩ S|. From this
property, it is straightforward to obtain the expected value and variance of Ki(t) as

E(Ki(t)) = n|Di(t) ∩ S|, (8.3)

V ar(Ki(t)) = n|Di(t) ∩ S|(1 − |Di(t) ∩ S|). (8.4)

The value of |Di(t) ∩ S| is explicitly written as an algebraic function of the coor-
dinates of qi and vertices of S for a continuous t (Okabe et al., 2000, 515–516).
Therefore the computation of the values of E(Ki(t)) and V ar(Ki(t)) is readily
done with constant computation time, i.e., the order of computation time is O(1).

The exact test can be achieved using the binomial distribution with parameters n
and |Di(t) ∩ S|. For a large n, the distribution can be approximated by the normal
distribution with E(Ki(t)) given by (8.3) and V ar(Ki(t)) given by (8.4). There-
fore the exact, as well as approximate, statistical test for the null hypothesis Ho is
straightforward. Note that this test exactly considers the edge effect of the second
case mentioned above.

8.2.2 The Expected Value and Variance of the Global
Cross K Function

One might consider that the expected value and variance of the global cross K
function would be easily obtained from the following formulae

E(K(t)) = E

(
m∑

i=1

Ki(t)

)

=
m∑

i=1

E(Ki(t)), (8.5)

V ar(K(t)) = V ar

(
m∑

i=1

Ki(t)

)

=
m∑

i=1

V ar(Ki(t)) + 2
m∑

i=1

m∑

j=i+1

×Cov(Ki(t)Kj(t)), (8.6)
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(a) (b)

Fig. 8.3 Disks are not overlapped, t ≤ tmax (a), and they are overlapped, t > tmax (b)

where each Ki(t) follows the binomial distribution with parameters n and |Di(t)
∩S|. However, as will be proved later, this is not true. The derivation is more com-
plex than what it looks. To be explicit, let tmax be the maximum value of t that
satisfies |Di(t) ∩ Dj(t)| = 0 for i 	= j, i, j = 1, . . . , m, implying that disks Di(t),
i = 1, . . . , m do not overlap each other except at their boundaries (Fig. 8.3a). The
derivation of the expected value and variance of K(t) differs according to t ≤ tmax

or t > tmax.
When t ≤ tmax holds (Fig. 8.3a), K(t) indicates the random number of points

of P that are included in the mutually exclusive m areas Di(t)∩S, i = 1, . . . , m
where the n points of P are uniformly and randomly distributed. Hence the random
variable K(t) follows the binomial distribution with parameters n and

∑m
i=1 |Di(t)

∩S|. The expected value and variance of K(t) are given by

E(K(t)) = n
m∑

i

|Di(t) ∩ S|, (8.7)

V ar(K(t)) = n

m∑

i

|Di(t) ∩ S|
(

1 −
m∑

i

|Di(t) ∩ S|
)

. (8.8)

Note that V ar(K(t)) of (8.6) leads to a false value, n
∑m

i |Di(t)∩S|(1−|Di(t)∩
S|), even for t ≤ tmax. The computational method for calculating these values is
almost the same as that for the local cross K function mentioned above, but the order
of computational time is linear to m, i.e., O(m).

When t > tmax holds (Fig. 8.3b), the calculation of the expected value and the
variance becomes complex, because disks overlap and some points of P are counted
twice, three times, and so forth. For instance, in Fig. 8.3b, the gray colored points in
the overlapping area of the disks Di(t) and Dj(t) are counted not only in Ki(t) but
also in Kj(t); as a result, the same points are counted twice in K(t). To treat this
multiple count, let D(k)(t) be the area in which exactly k disks out of the m disks
Di(t), i = 1, . . . , m overlap. Note that D(0)(t) indicates the area not covered with
the m disks. Let K(k)(t) be the random number of points of P that are included in
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the area D(k)(t) ∩ S under the null hypothesis Ho. Because the points in D(k)(t)
are counted k times, the value of K(t) is given by

K(t) =
m∑

k=0

kK(k)(t). (8.9)

Under the null hypothesis Ho, the value of K(t) is also a random variable, which
follows the univariate multinomial distribution with parameters n, m, |D(k)(t)∩S|,
k = 1, . . . , m (Johnson et al., 1992, 460–461). The probability that the global K
function takes a specific value K(t) is given by

∑ n!|D(0)(t) ∩ S|K(0)(t)|D(1)(t) ∩ S|K(1)(t) · · · |D(m)(t) ∩ S|K(m)(t)

K(0)(t)!K(1)(t)! · · ·K(m)(t)!
, (8.10)

where the summation is over all possible nonnegative integers K(k)(t), k =
1, . . . , m such that

∑m
k=1 K(k)(t) = n. The expected value and variance of K(t)

are given by

E(K(t)) = n

m∑

k=1

k|D(k)(t) ∩ S|, (8.11)

V ar(K(t)) = n

⎧
⎨

⎩

m∑

k=1

k2|D(k)(t) ∩ S| −
(

m∑

k=1

k|D(k)(t) ∩ S|
)2

⎫
⎬

⎭
. (8.12)

Note that E(K(t)) of (8.7) and V ar(K(t)) of (8.8) are specific cases of that of
(8.11) and that of (8.12), respectively, where k = 1. Also note that (8.5) and (8.6)
both lead to false values.

The exact test can be achieved using the univariate multinomial distribution with
parameters n, m, |D(k)(t) ∩ S|, k = 1, . . . , m. For a large n, this distribution is
approximated by the normal distribution with the expected value given by (8.11)
and the variance given by (8.12). The computational time hinges on the geometrical
computation of |D(k)(t)∩S|, k = 1, . . . , m. Because m intersections are examined
for m disks, computational time is of order O(m2).

8.3 Local and Global Voronoi Cross K Functions

The local space Di(t) of the local cross K function includes a local space, i.e.,
Di(t) ⊂ S, but for a large t, the local space Di(t) includes the whole space, i.e.,
S ⊆ Di(t). This sounds somewhat peculiar since Di(t) is called a local space.
Rather, it is more natural that a local space remains part of the global space S. To
formulate a more natural method, this section proposes alternative local and global
cross K functions whose statistical properties are nicer than those of the ordinary
local and global cross K functions defined in Sect. 8.2.
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(a) (b)

Fig. 8.4 Local Voronoi cross K function (a) and global Voronoi cross K function (b)

A natural way of defining local spaces is to tessellate the global space S into
local spaces that are mutually exclusive and collectively exhaustive, for example,
the whole area of Japan consists 47 local areas called prefectures. In the context
of the railway stations Q in S, it is natural to regard the neighborhoods of the
railway stations as local spaces. If people use their nearest railway station, the
local spaces are given by the Voronoi diagram generated by the railway stations.
Generally, let V = {V1, . . . , Vm} be the Voronoi diagram generated by points
Q, and Pi = {pi1, . . . , pini} be the set of points of P that are included in the
ith Voronoi polygon Vi (Fig. 8.4a). By definition, the equations

⋃m
i=1 Pi = P ,

Pi ∩ Pj = 0, i 	= j, i, j = 1, . . . , m and
∑m

i=1 ni = n holds. For given Pi in
Vi, let

KVi(t) = the number of points of Pi in Di(t) ∩ Vi ∩ S. (8.13)

This function can also be regarded as a local cross K function. To distinguish
it from the local cross K function defined by (8.1), the function given by (8.13) is
referred to as the local Voronoi cross K function.

For a given t and Pi, under the null hypothesis Ho, the statistical properties of
KVi(t) are almost the same as those of Ki(t) except for parameter values. The
random variable KVi(t) follows the binomial distribution with parameters ni and
|Di(t) ∩ Vi ∩ S|. Its expected value and variance are given by

E(KVi(t)) = ni|Di(t) ∩ Vi ∩ S|, (8.14)

V ar(KVi(t)) = ni|Di(t) ∩ Vi ∩ S|(1 − |Di(t) ∩ Vi ∩ S|). (8.15)

The exact statistical test for the null hypothesis Ho can be achieved using the
binomial distribution with parameters ni and |Di(t) ∩ Vi ∩ S|. For a large ni,
this distribution is approximated by the normal distribution with the expected value
given by (8.14) and the variance given by (8.15). Therefore, the exact, as well as an
approximate, statistical test is straightforwardly done.

The computation time is almost the same as that of the local cross K function,
although a pre-processing is necessary for constructing the Voronoi diagram. The
order of the computation time is O(m log m) in the worst case, but if the bucketing
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method is used, the average computation time is O(m) (Okabe et al., 2000). Once
the Voronoi diagram is given, the value of |Di(t) ∩ Vi ∩ S| is explicitly written
as an algebraic function of the coordinates of qi and vertices of S for a continu-
ous t (Okabe et al., 2000, 515–516). Therefore the computation of the values of
E(KVi(t)) and V ar(KVi(t)) is readily done with a constant computation time, i.e.,
the order of computation time is O(1).

Paralleling the extension from the local cross K function Ki(t) to the global
cross K function K(t) shown in Sect. 8.2, the local Voronoi cross K function can
be extended to the global Voronoi K function as

KV (t) =
m∑

i=1

KVi(t). (8.16)

This function indicates the number of the points P that are included in Di(t) ∩
Vi ∩ S, i = 1, . . . , m. Because the Voronoi diagram V = {V1, . . . , Vm} is a tes-
sellation of a given space, the areas Di(t) ∩ Vi ∩ S, i = 1, . . . , m are mutually
exclusive except at their boundaries and collectively exhaustive of S; there are no
overlaps among the areas Di(t) ∩ Vi ∩ S, i = 1, . . . , m except at their boundaries.
The union of these areas, i.e.,

⋃m
i=1 Di(t) ∩ Vi ∩ S, is the buffer zone of the set

of points Q, denoted by BQ(t) (the gray colored area in Fig. 8.3b). Therefore the
function KV (t) implies the number of the points of P that are included in the buffer
zone BQ(t).

The global cross K function of (8.2) and the global Voronoi cross K function of
(8.16) deal with points of P in the global space S in a similar fashion; both deal
with the points included in the area

⋃m
i=1 Di(t) ∩ S. However, a distinct difference

exists between them. The global cross K function K(t) possibly counts the same
points of P more than once; for example, the gray colored points in Fig. 8.4b are
counted twice in K(t). Stated more precisely, the points in the area D(k)(t) ∩ S,
k = 1, . . . , m are counted k times in K(t). On the other hand, the global Voronoi
cross K function KV (t) counts each point of P at most once; for example, the gray
colored points in Fig. 8.3b are counted once in KV (t). Stated more explicitly, the
points in the area D(k)(t) ∩ S, k = 1, . . . , m are counted only once in KV (t). Both
functions capture different aspects of the distribution of the points P .

The statistical properties of the global Voronoi cross K function KV (t) are nicer
than those of the global cross K function K(t). Unlike the case of K(t), the deriva-
tion of the expected value and variance of KV (t) is much simpler. The reason is
that the areas Di(t)∩Vi ∩S, k = 1, . . . , m are mutually exclusive, and hence the
random point process of KV (t) is the binomial point process in which each point
is placed in the buffer zone BQ(t) (the gray colored area) in S or its compliment
S\BQ(t) (the white area in S). Under the null hypothesis Ho, the random vari-
able KV (t) follows the binomial distribution with parameters n and |BQ(t) ∩ S|.
Therefore, the expected value and variance of KV (t) are simply given by

E(KV (t)) = n|BQ(t) ∩ S| = n

∣
∣
∣
∣
∣

m⋃

i=1

Di(t) ∩ Vi ∩ S

∣
∣
∣
∣
∣
, (8.17)
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V ar(KV (t)) = n|BQ(t) ∩ S|(1 − |BQ(t) ∩ S|)

= n

∣
∣
∣
∣
∣

m⋃

i=1

Di(t) ∩ Vi ∩ S

∣
∣
∣
∣
∣

(

1 −
∣
∣
∣
∣
∣

m⋃

i=1

Di(t) ∩ Vi ∩ S

∣
∣
∣
∣
∣

)

. (8.18)

The exact statistical method for testing the null hypothesis can be achieved in
terms of the binomial distribution with parameters n and |BQ(t) ∩ S|, which is
approximated by the normal distribution with the expected value of (8.17) and the
variance of (8.18).

The computational method is almost the same as that of the local Voronoi cross
K function. In pre-processing, the Voronoi diagram is constructed. The order of
computational time is O(m log m) in the worst case and O(m) on average. The
value of |BQ(t)∩S| is explicitly written as an algebraic function of the coordinates
of qi, i = 1, . . . , m and vertices of S for a continuous t (Okabe et al., 2000, 515–
516). Therefore the computation of the values of E(KV (t)) and V ar(KV (t)) is
readily done with constant computation time, i.e., the order of computation time
is O(1).

8.4 Local and Global Auto K Functions

A distinct difference between the K functions to be discussed in this section and
the cross K functions discussed in the preceding sections is that the former deals
with spatial relations among points of only one set of points P (e.g., crime spots),
whereas the latter deals with two different sets of points P (e.g., crime spots) and
Q (railway stations). To contrast with “cross” as in the cross K functions, the K
functions can be called auto K functions (where the term “auto” means among
themselves, as in the spatial autocorrelation).

As referred to in the introduction, a local auto K function was first proposed by
Getis and Franklin (1987). A slightly different definition of a local auto K function
is given by

KAi(t) = the number of points of P−i in Di(t) ∩ S, where P−i = P\{pi}.
(8.19)

The definition looks almost the same as that of the local cross K function of
(8.1), but in the context of testing the null hypothesis Ho, a big difference exists in
that the base point pi in the local auto K function is a random point, whereas the
base point qi in the local cross K function is a fixed point. For a fixed location of
pi, under the null hypothesis Ho, the random variable KAi(t) follows the binomial
distribution with parameters n − 1 and |Di(t) ∩ S| (notice that it is n in the local
cross K function). Therefore, the conditional expected value and the variance of
KAi(t) are given by
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E(KAi(t)|pi) = (n − 1)|Di(t) ∩ S|, (8.20)

V ar(KAi(t)|pi) = (n − 1)|Di(t) ∩ S|(1 − |Di(t) ∩ S|). (8.21)

The unconditional expected value E(KAi(t)) is obtained from

E(KAi(t)) = (n − 1)
∫

pi∈S

|Di(t) ∩ S|dpi. (8.22)

The integral of this equation indicates the expected area of Di(t) ∩ S. Stated a
little more explicitly, the integral indicates the expected area of the intersection of
a disk and S when the disk is randomly placed on S (recall |S| = 1 is assumed).
Applying a formula of integral geometry (Santaló, 1976, (6.67)), (8.22) is written as

E(KAi(t)) = (n − 1)
2π2t2

2π(2πt2 + 1) + 2πt|∂S| , (8.23)

where |∂S| denotes the perimeter of S.
The unconditional variance V ar(KAi(t)) is obtained from

V ar(KAi(t)) = (n − 1)
∫

pi∈S

|Di(t) ∩ S|dpi + (n − 1)
∫

pi∈S

|Di(t) ∩ S|2dpi.

(8.24)

The first term is given by (8.23) but it is difficult to obtain the explicit form of the
second term.

From the above examination, it is concluded that it is difficult to test the null
hypothesis Ho exactly using the local auto K function. In theory, the observed value
is compared with the exact expected value of (8.23). A statistical test should be done
using Monte Carlo simulation.

The local auto K function can be extended to the global auto K function as

KA(t) =
n∑

i=1

KAi(t). (8.25)

To obtain the distribution of KA(t), recalling the case of the local auto K func-
tion, one might attempt to obtain the conditional distribution of KA(t|p1, . . . , pn).
However, this does not work because all points pi, i = 1, . . . , n are fixed. An
alternative procedure is: first, n points, R = {r1, . . . , rn}, are randomly generated
according to the uniform distribution over S; second, the disk centered at ri trun-
cated by S, i.e., Di(t)∩S, is generated for i = 1, . . . , n; third, KAi(t) is defined by
the number of points P included in Di(t)∩S, i = 1, . . . , n; fourth, KA(t) is defined
by (8.25) for these KAi(t), i = 1, . . . , n. Then, for a given R = {r1, . . . , rn},
the conditional distribution KA(t|r1, . . . , rn) can be defined for the null hypothe-
sis Ho. This conditional distribution follows the univariate multinomial distribution
with parameters, n, n, |D(k)(t) ∩ S|, k = 1, . . . , n (Johnson et al., 1992, 460–461).
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The probability that the conditional global auto K function takes a specific value
KA(t|r1, . . . , rn) is given by

∑ n!|D(0)(t) ∩ S|K(0)(t)|D(1)(t) ∩ S|K(1)(t) · · · |D(n)(t) ∩ S|K(n)(t)

K(0)(t)!K(1)(t)! · · ·K(n)(t)!
, (8.26)

where the summation is over all possible nonnegative integers K(k)(t), k = 1, . . . , n
such that

∑n
k=1 K(k)(t) = n. The conditional expected value and the variance of

KA(t) are given by

E(KA(t)|pi) = (n − 1)
n∑

k=1

k|D(k)(t) ∩ S|, (8.27)

V ar(KA(t)|pi) = (n − 1)

⎧
⎨

⎩

n∑

k=1

k2|D(k)(t) ∩ S| −
(

n∑

k=1

k|D(k)(t) ∩ S|
)2

⎫
⎬

⎭
.

(8.28)

The unconditional expected value is obtained from

E(KA(t)) = (n − 1)
n∑

k=1

k

∫

r1,...,rn∈S

|D(k)(t) ∩ S|dr1 · · · drn. (8.29)

The integral term means the expected area in which exactly k disks are over-
lapped in S when n disks are randomly placed on S. Applying a formula of integral
geometry (Santaló, 1976, (6.67)), (8.29) is written as

E(KA(t)) = (n − 1)
n∑

k=1

k

(
n
k

)
(2π2t2)k(2π + 2πt|∂S|)n−k

(2π(2πt2 + 1) + 2πt|∂S|)n
. (8.30)

Like the case of the local auto K function, it is difficult to obtain the uncondi-
tional variance of KA(t) from (8.28).

8.5 Summary and Conclusion

This chapter has dealt with a class of K functions: the local cross K function, the
global cross K function, the local Voronoi K function, the global Voronoi K function,
the local auto K function, and the global auto K function, whose major statistical
properties can be summarized as follows:

1. The local cross K function follows the binomial distribution with parameters n
and |Di(t) ∩ S|. The exact expected value and variance are given by (8.3) and
(8.4), respectively. The order of computing these values is O(1).
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2. The global cross K function follows the univariate multinomial distribution with
parameters n, m, |D(k)(t) ∩ S|, k = 1, . . . , m. The exact expected value and
variance are given by (8.11) and (8.12), respectively. The order of computing
these values is O(m2).

3. The local Voronoi cross K function follows the binomial distribution with param-
eters ni and |Di(t) ∩ Vi ∩ S|. The exact expected value and variance are given
by (8.14) and (8.15), respectively. The order of computing these values is O(1).

4. The global Voronoi cross K function follows the binomial distribution with
parameters n and |BQ(t) ∩ S|. The exact expected value and variance are given
by (8.17) and (8.18), respectively. The order of computing these values is O(1).

5. The local auto K function follows a parametric binomial distribution, but its
parameters are difficult to obtain. However, the exact expected value is explicitly
given by (8.23), and its computational time is of order O(1).

6. The global auto K function follows a parametric binomial distribution, but its
parameters are difficult to obtain. However, the exact expected value is explicitly
given by (8.30), and its computational time is of order O(1).

We recognize that the Getis and Franklin technique is one from a family of
similar techniques. Typically, local statistics are generated by “localizing” global
statistics, which is what Getis and Franklin did. Here we have shown that it is pos-
sible (and perhaps more straightforward) to go in the other direction, i.e., creating
global statistics as sums of local statistics.

We observe that exact tests are not possible for all K functions; some need to be
evaluated using Monte Carlo tests. Further, the K functions differ considerably in
terms of the computational effort involved (order of computing).

In terms of applications, in general, global and local K functions can be used to
test different types of hypotheses, e.g., the global K functions can be used to test if
crimes tend to occur around railway stations while the local K functions can be used
to test if crimes tend to occur around specific stations. Further, specific types of a
given K function (i.e., local or global) can be used to specify these general hypothe-
ses more specifically, e.g., the global cross K function tests if the number of crimes
within distance t of a typical station is significantly different from chance while the
global Voronoi cross K function tests if the number of crimes within distance t of
all stations is significantly different from chance.

Acknowledgements We express our thanks to Kei-ich Okunuki and Ikuho Yamada for their
comments on earlier drafts.



Chapter 9
Spatial Point Pattern Analysis of Plants

Janet Franklin

9.1 Introduction

Plants, especially terrestrial long-lived perennials such as trees, do not usually move
once established. Spatial patterns of sessile organisms can suggest or reveal ecolog-
ical processes affecting the population or community in the present or the past –
dispersal, establishment, competition, mortality, facilitation, growth – and as such,
patterns of plants motivated early developments in spatial statistics (Pielou, 1977;
Diggle, 1983). Specifically, it is intuitive to treat individual plants (or other sessile
organisms) as discrete events on a plane whose locations are known and generated
by point pattern processes (Ripley, 1981; Diggle, 1983; Fortin and Dale, 2005).
Second-order point pattern statistics are used to measure their spatial pattern.

Arthur Getis (Getis and Franklin, 1987) introduced ecologists to the applica-
tion of local spatial statistics, specifically neighborhood second-order point pattern
analysis, to maps of organisms. As Wiegand and Moloney (2004) noted in their
review paper, second-order global statistics based on the distribution of distances
between pairs of points, especially Ripley’s K-function (Ripley, 1976, 1977) derived
from distances between all pairs, have been widely used in plant ecology. However,
their review does not mention neighborhood analysis or local measures of spatial
association (Anselin, 1995) at all. This chapter revisits the impact of the Getis and
Franklin paper on the practice of spatial point pattern analysis in plant ecology, and
specifically aims to determine if local statistics are being used and how.

9.2 Questions Addressed with Point Pattern Analysis of Plants

Most applications of point pattern analysis in plant ecology try to determine to what
degree processes that cause patchiness, clumping or aggregation (local concentra-
tions of events), and those that cause overdispersion, repulsion or regular patterns,
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have affected the development of a population or community. “One of the most
commonly observed spatial patterns in forests is the tendency for understory young
stems to be clumped and for canopy old stems to be more uniformly distributed”
(McDonald et al., 2003). Paraphrasing Franklin and Rey (2007), a clumped pattern
of individuals or the aggregation of juveniles near adults might result from limited
dispersal or from environmental heterogeneity (Palmiotto et al., 2004), while an
increasingly regular pattern of older plants (Condit et al., 2000) would result from
density- or distance-dependent juvenile mortality due to predation (Janzen, 1970;
Connell, 1971; Connell et al., 1984), or inter-specific or intra-specific competition
(Kenkel, 1988; Barberis and Tanner, 2005; Stoll and Bergius, 2005). If younger
plants are found near older ones less frequently than expected by chance this would
also suggest density dependent mortality (Clark and Clark, 1984). This theme is
repeated often in the literature. For example, from Mast and Wolf (2004, p. 168):

although initial spatial patterns may be determined by regeneration mechanisms, subsequent
spatial distributions may result from the ability of individual trees to survive competi-
tion and dominate the patch (Oliver and Larson, 1990; Deutschman et al., 1993). As a
forest ages, tree distributions within a patch may shift from a clumped distribution to a
random (or regular) distribution due to self thinning and/or succession to shade-tolerant
species (Cooper, 1961; Laessle, 1965; Whipple, 1980; Good and Whipple, 1982; Peet and
Christensen, 1987).

Studies of processes that generate spatial pattern in plant communities focus on
dispersal, establishment and mortality. Propagule dispersal can occur over short to
long distances depending on the mechanisms or agents, e.g., wind, animals, grav-
ity (Ridley, 1930; van der Pijl, 1972; Howe, 1986; Clark et al., 1999; Nathan and
Muller-Landau, 2000), and competition among plants for light, water, nutrients and
space is usually a very localized process.

Environmental heterogeneity occurs at multiple scales, as was nicely summarized
by McDonald et al. (2003, p. 442): Many studies of mature and old-growth forests
have found that establishment occurs preferentially in canopy gaps, leading to char-
acteristic spatial clumping of new stems at the scale of a gap (e.g., Leemans, 1991;
Moeur, 1993; Busing, 1996). Over time, stems that are crowded by other stems are
more likely to die, and the remaining stems are more regularly dispersed (Kenkel,
1988; Moeur, 1993; Busing, 1996; He and Duncan, 2000). Many other factors may
obscure the trend from a clumped understory distribution to a more regular over-
story distribution, including patterns of seed dispersal (Fowler, 1986), windthrow
events (Ida, 2000), and surface fire (Miller and Urban, 1999).

Thus, the inherent or endogenous biological processes (Fortin and Dale, 2005)
expected to generate detectable spatial pattern in populations of sessile organisms
include: dispersal limitations leading to clustering, spatial competition or inhibition
resulting in less clustered patterns or repulsion between types (species, age classes),
and facilitation leading to clustered patterns or attraction between types. The fun-
damental paradox of spatial pattern analysis is that the same pattern can result from
different processes, e.g., according to the principle of equifinality. Clustering can
arise from endogenous processes such as facilitation or dispersal limitations, or
exogenous ones, such as spatial heterogeneity in environment, and pattern analysis
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alone cannot distinguish the causes. This is emphasized in all treatments of spatial
analysis including recent ones (Fortin and Dale, 2005; Perry et al., 2006).

9.3 The Impact of Getis’ Paper on Plant Ecology

Getis and Franklin (1987) is cited for a number of different reasons. First, it dis-
cussed the application of second order analysis to point patterns of trees. It presented
the following version of the local Li(t) statistic (using the notation L(d)):

L̂i(t) =

√
√
√
√A

n∑

j=1

kij/π(N − 1), (9.1)

where A is the area of the region, N is the number of points, and kij is 1 for all
points j that are within distance t of point i. In contrast, the global L(t) statistic
is a square-root transformation of what is often referred to as Ripley’s K-function
(Ripley, 1976, 1977):

L̂(t) =

√

K̂(t)
π

− t, (9.2)

where

K̂(t) = A

⎛

⎝
N∑

i�=j

N∑

j �=i

kij

⎞

⎠ /(N(N − 1)). (9.3)

Ripley (1981) attributed this transformation L(t) to Besag (1977b), and it linearizes
the relationship of K(t) to t (distance) and stabilizes the variances. The transfor-
mation presented in Getis and Franklin for the local Li(t), shown in (9.1), makes
L(t) = t for a Poisson process, while a more-commonly used standardization of
global Ripley’s K-function, expressed here as the difference between observed and
expected, makes L(t) = 0 for a Poisson process (Fortin and Dale, 2005) as in (9.2).

Secondly, Getis and Franklin presented a weighted boundary or edge correction,
which Fortin and Dale attribute to Diggle (1983) and others (Pelissier and Goreaud,
2001) attribute to Ripley (1977). In this correction, if a circle centered on i with
radius ti,j is completely within the study area the weight is 1, otherwise the weight
is the reciprocal of the circles’ circumference within the plot. Third, the paper used
fixed values to approximate confidence intervals, based on Ripley (1977). Currently
most use Monte Carlo simulation to evaluate significance, also discussed by Dig-
gle (1983). Finally, but most importantly, the main purpose of the paper was to
illustrate the application of a new local point pattern statistic to ecological data.
“The method, second order neighborhood analysis, is a variation on second-order
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analysis of point patterns . . . [which] while similar [to second order analysis] dif-
fers in that consideration is only given to those pairs of points having as one of its
members a given point i” (Getis and Franklin, 1987, p. 473, emphasis added). Fortin
and Dale (2005) stated, as other have, that global spatial statistics, summarizing the
spatial pattern of the study area in a single number, are not appropriate when the
assumption of stationarity is violated, and instead local spatial statistics should be
used to estimate the spatial pattern for each sample location. Local spatial statistics
have been developed and applied more recently than global (Anselin, 1995), and
some promising methods have not yet been exploited in ecology (e.g., Okabe et al.,
2000).

The 1987 paper used, as an illustration of the local statistic, a map of 108 pon-
derosa pine trees in a 120 m× 120 m area in northern California, USA, subset from
an earlier much more extensive study (Franklin et al., 1985). In the original study
we mapped 5,147 trees in six 11-ha plots from air photo interpretation, and applied
several methods of global second-order analysis to these mapped point patterns,
including spectral analysis which is not used very often in this context (Mugglestone
and Renshaw, 1996). Ripley’s K-function was calculated but the results were not
presented graphically because they were so similar to the spectral analysis. When
Dr. Getis and I wrote the paper illustrating his local point pattern analysis method,
we originally submitted it as a technical note to Ecology, the premier high-impact
North American journal in its field. Not only was it accepted with very little revi-
sion, the editor asked us if it could be published as a regular full-length paper. That
was the first and last time such a thing has ever happened to me.

Of 98 papers citing Getis and Franklin (1987) (according to ISI Web of Science,
September 2006), half (48) were related to point pattern analysis of plants (including
macroalgae), overwhelmingly trees, while another 13% involved patterns of other
organisms (animals) or biological variables excluding disease. Almost 15% were
epidemiological studies of patterns of disease outbreaks or vectors, and the balance
were either methodological papers or other applications of point patterns analysis,
for example in human geography. Notably, of the 48 plant ecology studies, very few
actually used the local point pattern statistic introduced in Getis and Franklin, or
any type of local spatial statistic!

To examine these citation patterns in greater depth I reviewed 50 papers citing
Getis and Franklin in detail, including 40 from plant ecology and 10 others. Collec-
tively they cited it for 62 reasons (one paper could have cited it more than once for
different reasons). A large number of them (38%) cited it with reference to second
order point-pattern analysis using global Ripley’s K-function, or even for its gen-
eral definition of second order statistics (Kenkel, 1988; Moeur, 1993; Larsen and
Bliss, 1998; Chen and Bradshaw, 1999; Mast and Veblen, 1999; Parish et al., 1999;
Condit et al., 2000; Crook et al., 2001; Gu et al., 2001; Guerra et al., 2001; Schooley
and Wiens, 2001; Mast and Wolf, 2004; Spooner et al., 2004b; Youngblood et al.,
2004; Kashian et al., 2005; Munyekenye et al., 2005; Schroff et al., 2006). Strictly
speaking, the paper did not present any results for (global) Ripley’s K-function,
and the original citations for the method are Ripley’s (1976, 1977). Some refer
specifically to its analysis of spatial pattern in ponderosa pines (Mast and Wolf,
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2004; Youngblood et al., 2004) and, interestingly, both for its findings of clumped
(Youngblood et al., 2004) and random (Wolf, 2005) spatial patterns of trees. In these
cases the original study would have been a more appropriate citation (Franklin et al.,
1985), as Getis and Franklin did not discuss the pattern of ponderosa pines per se.
These papers and others will be considered in the next section reviewing recent
applications of second order point pattern analysis in plant ecology.

Quite a few (28%) cited it with reference to the weighted edge correction (Haase,
1995; Haase et al., 1996; Pelissier, 1998; Cole and Syms, 1999; Lookingbill and
Zavala, 2000; Gu et al., 2001; Schooley and Wiens, 2001; Call and Nilsen, 2003;
Malkinson et al., 2003; Tirado and Pugnaire, 2003; Liang et al., 2004; LaFrankie
and Saw, 2005; Shi et al., 2006), which is actually from Diggle (1977) as noted
above. Ironically, more recent studies that describe and test edge correction methods
incorrectly attribute the weighted edge correction to Getis and Franklin in one case
(Haase, 1995), and point out errors in the formulas we published in the other case
(Goreaud and Pelissier, 1999). I refer the reader to the later paper for a detailed
discussion of the edge correction.

Two papers referred to the approximation for confidence intervals attributable to
Ripley as noted above (Haase, 1995; Pancer-Koteja et al., 1998). One referred to it
for its description of weighting Ripley’s K-function by some quantitative attribute
of the points (Donnegan and Rebertus, 1999), such as size or age. While Getis
and Franklin discussed weighting in their conclusion, they did not implement it,
although Wells and Getis (1999) did. Several papers actually cited it with refer-
ence to global Ripley’s K-function, and used this global point pattern statistic in
their study, but mistakenly refer to it as second order neighborhood analysis (Stamp
and Lucas, 1990; Nicotra, 1998; Parker et al., 2001), presumably based on their mis-
reading of Getis and Franklin and lack of knowledge of developments in local spatial
statistics. This semantic confusion is regrettable but perhaps understandable because
Ripley’s K-function is based on all interpoint distances and averages the pattern
observed in “neighborhoods” of a range of sizes (lag distance or scale) around each
point.

It is puzzling that many of these studies would cite Getis and Franklin (1987)
or other recent papers (especially Moeur, 1993; Haase, 1995) with regard to the
general methods of second order point patterns statistics and their application to
ecological patterns instead of the foundational work published earlier. Although the
classic texts by Ripley (1981) and Diggle (1983) focus on the statistical methods
rather than underlying ecological mechanisms that produce pattern, they are full of
examples of applications to patterns of trees, as well as other biological (birds nests,
cells) and non-biological (magnetite crystals) phenomena (see also Pielou 1977).

Thirteen studies (26%) did refer specifically to the local version of Ripley’s
K-function published in Getis and Franklin. A few of these studies implement it,
while others develop new local spatial statistics or apply other existing ones. These
studies will also be discussed below.
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9.4 Recent Applications of Ripley’s K-function
and Related Methods in Plant Ecology

Recent studies addressing global Ripley’s K-function can be divided into two
groups, those that apply second-order point pattern analysis to address ecological
questions about plant populations and communities, and those that present method-
ological developments. I identified several themes in the recent literature that I will
highlight, although I make no claim that this is a comprehensive review of the
literature and apologize in advance for my oversights.

Many studies, almost all of forest trees, begin with an observed or hypothe-
sized pattern of clumped juveniles and random or regular adults. They conclude
that initially clumped establishment results from dispersal limitations, e.g., juveniles
clustered near adults (Forget et al., 1999; Condit et al., 2000), gap-phase regener-
ation, e.g., tree fall gaps (Pancer-Koteja et al., 1998; Pelissier, 1998; Forget et al.,
1999; Mast and Veblen, 1999; Mast and Wolf, 2004; Wolf, 2005) or larger-scale
gaps resulting from disturbances such as fire or wind (Parish et al., 1999; Wells
and Getis, 1999; McDonald et al., 2003). The relatively more regular patterns of
adults was frequently attributed to density-dependent (non-random) mortality (but
see Wiegand et al., 2000) resulting from interspecific or intraspecific competition
(Kenkel, 1988; Moeur, 1993; Haase et al., 1996; Chen and Bradshaw, 1999; Don-
negan and Rebertus, 1999; Parker et al., 2001; Malkinson et al., 2003; McDonald
et al., 2003; Kashian et al., 2005; Wolf, 2005), a conclusion also supported by sim-
ulation modeling in the study by Druckenbrod et al. (2005) (but see Moravie and
Roberts, 2003). Competition was often invoked as an explanation of overdispersion
or repulsion in studies of relatively species-poor plant communities. In a com-
prehensive survey of species-rich tropical forests, weakening aggregation in larger
(older) trees was attributed to density-dependent mortality (Condit et al., 2000).

Some of these studies used weighted Ripley’s K-function to explicitly examine
pattern as a function of tree size or age (Donnegan and Rebertus 1999; Wells and
Getis 1999). Others have used Ripley’s K-function and related methods in a gen-
eral way to describe point pattern as a function of scale, and where clumping was
detected it was attributed to various causes including environmental heterogene-
ity (Navas and Goulard, 1991; Couteron and Kokou, 1997; Cole and Syms, 1999;
Forget et al., 1999; Spooner et al., 2004b; Youngblood et al., 2004). Finally, bivariate
Ripley’s K-function has been used to explicitly identify attraction between species
or age-classes caused by facilitation (Donnegan and Rebertus, 1999; Lookingbill
and Zavala, 2000; Malkinson et al., 2003; Tirado and Pugnaire, 2003; LaFrankie
and Saw, 2005), and repulsion caused by competition (Haase et al., 1996; Call and
Nilsen, 2003; Malkinson et al., 2003; McDonald et al., 2003).

Although point maps of individuals were used in these studies, I should mention
that measures of spatial dependence in area data, for example Moran’s I (Moran,
1948), are also applied to measures of plant abundance collected in contiguous
regions (e.g., Wadda and Ribbens, 1997; Almeida-Neto and Lewinsohn, 2004;
Fonseca et al., 2004; Franklin and Rey, 2007) but because point pattern analysis
is the focus of this paper, I will not discuss those studies in detail.
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Almost all of these studies used the global K-function to explore point patterns
of plants by comparing the observed to the null hypothesis of CSR, a homoge-
neous Poisson process. Very few fit alternative models describing clustering or
inhibition (or both) such as the heterogeneous Poisson process, Poisson cluster pro-
cess, Strauss process or Markov point process. This is in spite of the fact that these
alternative models have been around for quite a while (e.g., Neyman, 1939) and
are described in classic and recent methodological books and papers (Pielou, 1977;
Getis and Boots, 1978; Ripley, 1981; Diggle, 1983; Wiegand and Moloney, 2004).
We fit alternative models of heterogeneous Poisson and Poisson cluster processes
in our original paper (Franklin et al., 1985), another thing for which it is frequently
overlooked (Perry et al., 2006).

9.5 Methodological Developments in Spatial Point Pattern
Analysis Applied to Plants

Recent developments and applications have focused on several areas including (a)
refined edge-correction methods, especially for irregular boundaries (Haase, 1995;
Fortin and Dale, 2005), (b) the application of the neighborhood density function
(NDF) or “O-ring statistic” based on discrete ranges of distances (annuli) rather than
cumulative lag distance used in K(t) (Condit et al., 2000; Wiegand and Moloney,
2004; Perry et al., 2006), and (c) the development of methods to objectively delin-
eate subregions within a heterogeneous pattern where stationarity can be assumed
(Dale and Powell, 2001; Pelissier and Goreaud, 2001). These areas were the focus
of two recent review and comparison papers (Wiegand and Moloney, 2004; Perry
et al., 2006) and I refer the reader there. Both papers particularly advocated the use
of the NDF for testing hypotheses in plant ecology. It will be interesting to see if it
becomes more widely used. Again I would like to note that Voronoi methods also
generate a set of characteristics that can be associated with individual points (Okabe
et al., 2000) and may also be a useful approach to explore in plant ecology.

It is relevant to mention that the methods proposed for delineating homoge-
neous subregions are based on local measures of pattern. For example, Pelissier and
Goreaud (2001) calculate local density at some specified lag for a regular array
of points, and note that this is proportional to the local K(t) presented by Getis
and Franklin (1987). They then fit a surface to those values (using loess regression,
although other methods could be used) and divided the study area along a contour
corresponding to a natural break in the frequency distribution of local densities.

9.6 Applications of Local Point Patterns Statistics
in Plant Ecology

The potential usefulness of the local second-order point pattern statistic, the neigh-
borhood Li(t), or local spatial statistics in general, has been highlighted recently
(Fortin and Dale 2005, Perry et al. 2006). Perry et al. (2006) state that “while the
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global tests suggest there is spatial segregation and at what scale(s), the local tests
can explicitly show where this is occurring.” And yet there have been very few appli-
cations of them since Getis and Franklin (1987) was published. Apparently it is still
an idea that is ahead of its time.

Camarero et al. (2005) mapped the values of the local statistic to show where
tree seedlings of a relict pine population were aggregated or repulsed at selected
scales. This was one line of evidence supporting their conclusion that frequent short-
distance dispersal events induced the primary spatial clustering of seedlings in safe
sites, while wind turbulence caused rare medium-distance dispersal events, result-
ing in clustering at multiple scales. As part of a detailed study of subalpine forest
succession based on forests reconstructed over time using dendrochronological (tree
ring) data, Donnegan and Rebertus (1999) calculated a weighted bivariate neighbor-
hood Li(t) from the number of spruce and fir neighbors surrounding a target adult
limber pine to account for shading and other interactions between the species. They
then used this index of clumping in a logistic regression model of pine survival and
found that mortality was highest when pines were surrounded by many spruces and
firs at lag distance of 2 m. Potvin et al. (2003), studying habitat selection by deer,
used high values of the local K-function (at 0.5–2 km distance) based on observed
locations of deer to map areas of animal concentrations, and found those patterns to
be consistent with those derived from habitat selection indices and kernel estimators.

Dale and Powell (2001) presented a new method of second order point pattern
analysis based on circumcircles, and included a spatially explicit mapping of pos-
itive and negative residual scores to locate events that are members of clusters vs.
gaps. In one example this method was used to show that regions of high spruce
seedling density and high tree density did not coincide, suggesting that local con-
ditions for germination were as important to establishment as high density seed
source.

Although they did not use local Li(t), Shi and Zhang (2003) applied local spatial
statistics or “local indicators of spatial association” (LISA) (Anselin, 1995; Ord and
Getis, 1995) to forests. These are area pattern, rather than point pattern statistics,
applied to sample data, usually measurements of a continuous variable for a point
or area. In this study several LISAs including local Moran’s I , local Geary’s C and
the local G∗

i statistic, were derived from size measurements of individual trees and
compared to traditional forestry competition indices used in models of tree growth.
They performed quite well as predictors and were also useful for identifying clusters
of trees of similar size.

Wells and Getis (1999) also used a local statistic G∗
i (Ord and Getis, 1995)

applied to measurements of tree age made for individuals, to identify the locations
of clusters of old or young trees. In their study Torrey pine trees (Pinus torreyana), a
rare, endemic California pine species, were mapped in three 1-ha plots. They located
clusters of younger trees and found greater clustering in young stands, consistent
with establishment of cohorts following episodic disturbance (fire). This local area
statistic was used in lieu of the local point pattern statistic, neighborhood Li(t),
and without discussion of the earlier work, although Wulder and Boots (1998)
identify second order neighborhood analysis (Getis and Franklin 1987) as an early
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Fig. 9.1 Locations of 440 Torrey pine trees (Pinus torreyana) in the East Grove area of Torrey
Pines State Reserve, La Jolla, CA, USA (E. Santos and J. Franklin, unpublished data). Map on
left shows tree locations scaled by size (DBH, trunk diameter at 1.3 m height), and center map
shown the tree locations scaled by the local value of L(t) at lag of 14 m (see Fig. 9.2). Negative
values shown as squares, positive values as circles. Map on right shown tree locations scaled by
the values of local Gi* (see text) where neighborhood contiguity is based on a lag distance of 25 m
(maximum nearest neighbor distance used to avoid islands). These analyses were carried out using
the spatstat package in the R statistical environment (R Development Core Team, 2004)

formulation if the Gi* statistic – the Getis model (circa 1984) – which it is. Recently,
my student and I initiated a project to map the entire mainland population of Torrey
pines (over 5,000 trees) and measure the size and condition of each tree for con-
servation monitoring purposes. For illustration, I show the distributions of all 440
trees in the 5.69-ha East Grove area (encompassing one of Wells and Getis’ sites), of
local Li(t), and of local G∗

i (9.1). Global L(t) indicates significant clumping peak-
ing at about 14-m lag distance, and Moran’s I indicated positive spatial association
of tree size at roughly the same scale (9.2). Figure 9.1 shows that regions of high
tree density mainly comprise clumps of small trees, consistent with the previous
observations of Wells and Getis (1999).

9.7 Conclusion

Judging from its citation patterns, the paper by Getis and Franklin (1987) continues
to influence the practice of spatial point pattern analysis in plant ecology. However,
most practitioners continue to apply global analyses, while local spatial statistics are
mainly advocated by specialists in methodological papers. Therefore, the legacy of
this paper is, in part, accidental. Although written to introduce local spatial statistics
to ecologists, it is most often cited with reference to global point pattern statistics,
perhaps because of its clear summary of classic work in this area, and perhaps also
because of the visibility of the journal in which it appeared.
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Fig. 9.2 Global L(t) for the trees shown in Fig. 9.1 at lags of 2–100 m showing significant clump-
ing at all scales and a peak in L(t) at 10–18 m; (b) Moran’s I as a measure of spatial autocorrelation
of tree size (DBH, see Fig. 9.1 caption) where neighborhood contiguity is based on a lag distance
of 10 m, indicating significant positive spatial association of tree size at lag 1 (10 m). These analy-
ses were carried out using the splancs package (Rowlingson and Diggle, 1993) in the R statistical
environment (R Development Core Team, 2004)
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Those specialists considering methodology have focused their recent efforts on
improved edge corrections and automated methods for delineating homogeneous
subareas. They have advocated the application of the neighborhood density func-
tion to explore pattern as a function of discrete ranges of distances, and I would also
advocate fitting alternative models of clustering or inhibition (certainly not a new
idea). Perhaps citation patterns, like sausage- and law-making, should not be exam-
ined in such detail, but the citing of Getis and Franklin for reasons other than the
local spatial statistic they introduced, in a majority of cases, is perhaps indicative of
a gap that still exists between theory and practice in spatial analysis.

Where local spatial statistics have been applied to point patterns in forestry and
ecology they have proven very useful in identifying individuals that are members of
clusters or that fall within gaps, and in locating groups of individuals that share some
characteristic (such as similar size). They have been related empirically to, e.g.,
regeneration patterns, growth characteristics, competition and mortality. Method-
ologically, measures of local context have been used delineate areas over which
the assumption of stationarity is valid. There is considerable future opportunity for
both exploratory spatial data analysis and hypothesis testing in spatial ecology using
global and local methods.
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Chapter 10
The Analysis of Spatial Association
by Use of Distance Statistics
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This Chapter was originally published in:
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well Publishing, Oxford

Abstract Introduced in this paper is a family of statistics, G, that can be used as
a measure of spatial association in a number of circumstances. The basic statis-
tic is derived, its properties are identified, and its advantages explained. Several of
the G statistics make it possible to evaluate the spatial association of a variable
within a specified distance of a single point. A comparison is made between a gen-
eral G statistic and Moran’s I for similar hypothetical and empirical conditions. The
empirical work includes studies of sudden infant death syndrome by county in North
Carolina and dwelling unit prices in metropolitan San Diego by zip-code districts.
Results indicate that G statistics should be used in conjunction with I in order to
identify characteristics of patterns not revealed by the I statistic alone and, specifi-
cally, the Gi and G∗

i statistics enable us to detect local “pockets” of dependence that
may not show up when using global statistics.

10.1 Introduction

The importance of examining spatial series for spatial correlation and autocorrela-
tion is undeniable. Both Anselin and Griffith (1988) and Arbia (1989) have shown
that failure to take necessary steps to account for or avoid spatial autocorrelation
can lead to serious errors in model interpretation. In spatial modeling, researchers
must not only account for dependence structure and spatial heteroskedasticity, they
must also assess the effects of spatial scale. In the last twenty years a number of
instruments for testing for and measuring spatial autocorrelation have appeared.
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To geographers, the best-known statistics arc Moran’s I and, to a lesser extent,
Geary’s c (Cliff and Ord, 1973). To geologists and remote sensing analysts, the
semi-variance is most popular (Davis, 1986). To spatial econometricians, estimating
spatial autocorrelation coefficients of regression equations is the usual approach
(Anselin, 1988).

A common feature of these procedures is that they are applied globally, that
is, to the complete region under study. However, it is often desirable to examine
pattern at a more local scale, particularly if the process is spatially nonstationary.
Foster and Gorr (1986) provide an adaptive filtering method for smoothing parame-
ter estimates, and Cressie and Head (1989) present a modeling procedure. The ideas
presented in this paper are complementary to these approaches in that we also focus
upon local effects, but from the viewpoint of testing rather than smoothing.

This paper introduces a family of measures of spatial association called G statis-
tics. These statistics have a number of attributes that make them attractive for
measuring association in a spatially distributed variable. When used in conjunc-
tion with a statistic such as Moran’s I , they deepen the knowledge of the processes
that give rise to spatial association, in that they enable us to detect local “pockets”
of dependence that may not show up when using global statistics. In this paper,
we first derive the statistics Gi(d) and G(d), then outline their attributes. Next, the
G(d) statistic is compared with Moran’s I . Finally, there is a discussion of empirical
examples. The examples are taken from two different geographic scales of analysis
and two different sets of data. They include sudden infant death syndrome (SIDS)
by county in North Carolina, and house prices by zip-code district in the San Diego
metropolitan area.

10.2 The Gi(d) Statistic

This statistic measures the degree of association that results from the concentration
of weighted points (or area represented by a weighted point) and all other weighted
points included within a radius of distance d from the original weighted point. We
are given an area subdivided into n regions, i = 1, 2, . . . , n, where each region is
identified with a point whose Cartesian coordinates are known. Each i has associated
with it a value x (a weight) taken from a variable X . The variable has a natural origin
and is positive. The Gi(d) statistic developed below allows for tests of hypotheses
about the spatial concentration of the sum of x values associated with the j points
within d of the ith point.

The statistic is

Gi(d) =

∑n
j=1 wij(d)xj
∑n

j=1 xj
, j not equal to i, (10.1)

where {wij} is a symmetric one/zero spatial weight matrix with ones for all links
defined as being within distance d of a given i; all other links are zero including
the link of point i to itself. The numerator is the sum of all xj within d of i but not
including xi. The denominator is the sum of all xj not including xi.
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Adopting standard arguments (cf. Cliff and Ord, 1973, pp. 32–33), we may fix
the value xi for the ith point and consider the set of (n − 1)! random permuta-
tions of the remaining x values at the j points. Under the null hypothesis of spatial
independence, these permutations are equally likely. That is, let Xj be the random
variable describing the value assigned to point j, then

P (Xj = xr) =
1

(n − 1)
, r 	= i,

and E(Xj) =
∑

r �=i xr/(n − 1). Thus

E(Gi) =
∑

j �=i wij(d)E(Xj)/
∑

j �=i EXj

= Wi/(n − 1),
(10.2)

where Wi =
∑

j wij(d).
Similarly,

E(G2
i ) =

1
(
∑

j xj)2
[∑

j

w2
ij(d)E(X2

j ) +
∑∑

j �=k

wij(d)wik(d)E(XjXk)
]
.

Since
E(X2

j ) =
∑

r �=i

x2
r/(n − 1)

and
E(XjXk) =

∑∑
r �=s�=i xrxs/(n − 1)(n − 2)

= {(∑r �=i xr)2 −
∑

r �=i x2
r}/(n − 1)(n − 2).

Recalling that the weights are binary

∑∑

j �=k

wijwik = W 2
i − Wi

and so

E(G2
i ) =

1
(
∑

j xj)2

{
Wi

∑
j x2

j

(n − 1)
+

Wi(Wi − 1)
(n − 1)(n − 2)

[(
∑

j

xj)2 −
∑

j

x2
j ]

}

.

Thus

V ar(Gi) = E(G2
i ) − E2(Gi)

=
1

(
∑

j xj)2

[
Wi(n − 1 − Wi)

∑
j x2

j

(n − 1)(n − 2)

]

+
Wi(Wi − 1)

(n − 1)(n − 2)
− W 2

i

(n − 1)2
.
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Table 10.1 Characteristics of Gi statistics
j not equal to i j may equal i

Statistic Gi(d) G∗
i (d)

Expression
∑

j wij (d)xj∑
j xj

∑
j wij (d)xj∑

j xj

Wi =
∑

j wij(d) W ∗
i =

∑
j wij(d)

Definitions Yi1 =
∑

j xj

(n−1)
Y ∗

i1 =
∑

j xj

n

Yi2 =
∑

j x2
j

(n−1)
− Y 2

i1 Y ∗
i2 =

∑
j x2

j

n
− (Y ∗

i1)2

Expectation Wi/(n − 1) W ∗
i /n

Variance Wi(n−1−Wi)Yi2
(n−1)2(n−2)Y 2

i1

W∗
i (n−W∗

i )Yi2∗
n2(n−1)(Y ∗

i1)2

If we set
∑

j xj

(n−1) = Yi1 and
∑

j x2
j

(n−1) − Y 2
i1 = Yi2, then

V ar(Gi) =
Wi(n − 1 − Wi)
(n − 1)2(n − 2)

(
Yi2

Y 2
i1

). (10.3)

As expected, V ar(Gi) = 0 when Wi = 0 (no neighbors within d), or when Wi =
n− 1 (all n− 1 observations are within d), or when Yi2 = 0 (all n− 1 observations
are equal).

Note that Wi, Yi1, and Yi2 depend on i. Since Gi is a weighted sum of the variable
Xj , and the denominator of Gi is invariant under random permutations of {xj , j 	=
i}, it follows, provided Wi/(n − 1) is bounded away from 0 and from 1, that the
permutations distribution of Gi under Ho approaches normality as n → ∞; cf.
Hoeffding (1951) and Cliff and Ord (1973, p. 36). When d, and thus Wi is small,
normality is lost, and when d is large enough to encompass the whole study area,
and thus (n− 1−Wi) is small, normality is also lost. It is important to note that the
conditions must be satisfied separately for each point if its G, is to be assessed via
the normal approximation.

Table 10.1 shows the characteristic equations for Gi(d) and the related statistic,
G∗

i (d), which measures association in cases where the j equal to i term is included
in the statistic. This implies that any concentration of the x values includes the x at
i. Note that the distribution of G∗

i (d) is evaluated under the null hypothesis that all
n! random permutations are equally likely.

10.3 Attributes of Gi Statistics

It is important to note that Gi is scale-invariant (Yi = bXi yields the same scores
as Xi) but not location-invariant (Yi = a + Xi gives different results than Xi). The
statistic is intended for use only for those variables that possess a natural origin. Like
all other such statistics, transformations like Yi = log Xi, will change the results.
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Gi(d) measures the concentration or lack of concentration of the sum of values
associated with variable X in the region under study. Gi(d) is a proportion of the
sum of all xj values that are within d of i. If, for example, high-value xjs are within
d of point i, then Gi(d) is high. Whether the Gi(d) value is statistically significant
depends on the statistics distribution.

Earlier work on a form of the Gi(d) statistic is in Getis (1984), Getis and Franklin
(1987), and Getis (1991). Their work is based on the second-order approach to map
pattern analysis developed by Ripley (1977).

In typical circumstances, the null hypothesis is that the set of x values within d
of location i is a random sample drawn without replacement from the set of all x
values. The estimated Gi(d) is computed from (10.1) using the observed xj values.
Assuming that Gi(d) is approximately normally distributed, when

Zi = {Gi(d) − E[Gi(d)]}/
√

V arGi(d) (10.4)

is positively or negatively greater than some specified level of significance, then we
say that positive or negative spatial association obtains. A large positive Zi implies
that large values of xj (values above the mean xj) are within d of point i. A large
negative Zi means that small values of xj are within d of point i.

A special feature of this statistic is that the pattern of data points is neutralized
when the expectation is that all x values are the same. This is illustrated for the case
when data point densities are high in the vicinity of point i, and d is just large enough
to contain the area of the clustered points. Theoretical Gi(d) values are high because
Wi is high. However, only if the observed x, values in the vicinity of point i differ
systematically from the mean is there the opportunity to identify significant spatial
concentration of the sum of xjs. That is, as data points become more clustered in
the vicinity of point i, the expectation of Gi(d) rises, neutralizing the effect of the
dense cluster of j values.

In addition to its above meaning, the value of d can be interpreted as a distance
that incorporates specified cells in a lattice. It is to be expected that neighboring Gi

will be correlated if d includes neighbors. To examine this issue, consider a regular
lattice. When n is large, the denominator of each Gi is almost constant so it follows
that corr (Gi, Gj) proportion of neighbors that i and j have in common.

Example 1. Consider the rook’s case. Cell i has no common neighbors with its
four immediate neighbors, but two with its immediate diagonal neighbors. The
numbers of common neighbors are as illustrated below:

0 1 0
0 2 0 2 0
1 0 i 0 1
0 2 0 2 0

0 1 0
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All the other cells have no common neighbors with i. Thus, the G-indices for the
four diagonal neighbors have correlations of about 0.5 with Gi, four others have
correlations of about 0.25 and the rest are virtually uncorrelated.

For more highly connected lattices (such as the queen’s case) the array of nonzero
correlations stretches further, but the maximum correlation between any pair of
G-indices remains about 0.5.

Example 2.
m m m m m m m m m m

m A A A m m B B B m

m A A A m m B B B m

m A A A m m B B B m

m m m m m m m m m m

Set A + B = 2m, therefore x̄ = m; n = 50;
A ≥ 0;
B ≥ 0;
put A = m(l + c), B = m(l − c), 0 ≤ c ≤ 1

Using this example, the Gi and G∗
i statistics are compared in the following table.

Gi and Gi
∗ values (queen’s case; non-edge cells)

Cell Gi Z(Gi) G∗
i Z(G∗

i )

A, surrounded by As 8+8c
49−c

5.30# 9+9c
50

5.47

A, adjacent to ms 8+3c
49−c

2.06# 9+4c
50

2.43

Central m, adjacent to As 8+3c
49

1.89# 9+3c
50

1.82

Other m, adjacent to As 8+2c
49

1.26# 9+3c
50

1.21

Values for Bs are the same, with negative signs attached
∗These values are lower bounds as c → 1; they vary only slightly with c

We note that Gi, and G∗
i are similar in this case; if the central A was replaced by

a B, Z(Gi) would be unchanged, whereas Z(G∗
i ) drops to 4.25. Thus, Gi and G∗

i

typically convey much the same information.

Example 3. Consider a large regular lattice for which we seek the distribution
under Ho for Gi∗ with Wi neighbors. Let p = proportion of As = proportion of Bs

and 1 − 2p = proportion of ms.
Let (k1, k2, k3) denote the number of As, Bs, and ms, respectively so that

k1 + k2 + k3 = n. For large lattices, in this case, the joint distribution is approxi-
mately tri(multi-)nomial with index W and parameters (p, p, 1 − 2p). Since G∗

i =
[Wi + (k1 − k2)c]/n clearly E(G∗

i ) = Wi/n as expected and V (G∗
i ) = 2pWi/n,

reflecting the large sample approximation. The distribution is symmetric and the
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standardized fourth moment is

3 +
1 − 6p

2pWi
.

This is close to 3 provided pWi is not too small.
Since we are using Gi, and G∗

i primarily in a diagnostic mode, we suggest that
W ≥ 8 at least (that is, the queen’s case), although further work is clearly necessary
to establish cut-off values for the statistics.

10.4 A General G Statistic

Following from these arguments, a general statistic, G(d) can be developed. The
statistic is general in the sense that it is based on all pairs of values (xi, xj) such
that i and j are within distance d of each other. No particular location i is fixed in
this case. The statistic is

Gi(d) =

∑n
i=1

∑n
j=1 wij(d)xixj

∑n
i=1

∑n
j=1 xixj

, j not equal to i. (10.5)

The G-statistic is a member of the class of linear permutation statistics, first intro-
duced by Pitman (1937). Such statistics were first considered in a spatial context by
Mantel (1967) and Cliff and Ord (1973), and developed as a general cross-product
statistic by Hubert (1977, 1979) and Hubert et al. (1981).

For (10.5),

W =
∑

i=1

∑

j=1

wij(d), j not equal to i

so that
E[G(d)] = W/[n(n − 1)]. (10.6)

The variance of G follows from Cliff and Ord (1973, pp. 70–71):

E(G2) =
1

(m2
1 − m2)2n(4)

[B0m
2
2 + B1m4 + B2m

2
1m2 + B3m1m3 + B4m

4
1],

where mj =
∑

j=1 xi
j , j = 1, 2, 3, 4 and n(r) = n(n − 1)(n − 2) · · · (n − r + 1).

The coefficients, B, are

B0 = (n2 − 3n + 3)S1 − nS2 + 3W 2,

B1 = − [(n2 − n)S1 − 2nS2 + 6W 2],

B2 = − [2nS1 − (n + 3)S2 + 6W 2],

B3 = 4(n − 1)S1 − 2(n + 1)S2 + 8W 2, and

B4 = S1 − S2 + W 2,
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where S1 = 1/2
∑

i

∑
j (wij + wji)2, j not equal to i and S2 = 1/2

∑
i (wi. +

w.i)2; wi. =
∑

j wij , j not equal to i; thus

V ar(G) = E(G2) − {W/[n(n − 1)]}2 (10.7)

10.5 The G(d) Statistic and Moran’s I Compared

The G(d) statistic measures overall concentration or lack of concentration of all
pairs of (xi, xj) such that i and j are within d of each other. Following (10.5), one
finds G(d) by taking the sum of the multiples of each xi with all xjs within d of all
i as a proportion of the sum of all xixj . Moran’s I , on the other hand, is often used
to measure the correlation of each xi with all xjs within d of i and, therefore, is
based on the degree of covariance within d of all xi. Consider K1, K2 as constants
invariant under random permutations. Then using summation shorthand we have

G(d) = K1

∑∑
wijxixj

and
I(d) = K2

∑∑
wij(xi − x̄)(xj − x̄)

= (K2/K1)G(d) − K2x̄
∑

(wi. + w.i)xi + K2x̄
2W,

where wi. =
∑

j wij and w.i =
∑

j wji.
Since both G(d) and I(d) can measure the association among the same set of

weighted points or areas represented by points, they may be compared. They will
differ when the weighted sums

∑
wi.xi and

∑
w.ixi differ from Wx̄, that is, when

the patterns of weights are unequal. The basic hypothesis is of a random pattern in
each case. We may compare the performance of the two measures by using their
equivalent Z values of the approximate normal distribution.

Example 4.
Let us use the lattice of Example 2. As before,
Set A + B = 2m, therefore x̄ = m; n = 50;
A ≥ 0;
B ≥ 0;
put A = m(1 + c), B = m(1 − c), 0 ≤ c ≤ 1.
In addition, put

a = A − m;
B − 2m − A = m − a;
B − m = a;
m ≥ a;
j not equal to i.
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For the rook’s case, W =
∑∑

wij = 170.

I =
n
∑∑

wij(xi − x̄)(xj − x̄)
W

∑
(xi − x̄)2

=
50 · 24a2 · 2
170 · 18a2

= 0.784

for all choices of a, m.

V ar(I) = 0.010897
Z(I) = 7.7088 whenever A > B.

G =
∑ ∑

wijxixj∑ ∑
xixj

= 24A2+24B2+24Am+24Bm+74m2

2500m2−9A2−9B2−32m2

= 170+48c2

2450−18c2

When c = 0, A = B = m, and G is a minimum.

Gmin = 170/2450 = 0.0694.

V ar(Gmin) = 0.0000 from (10.7).

When c = I, A = 2m, B = 0, and G is a maximum.

Gmax = 218/2432 = 0.0896.

V ar(Gmax) = 0.000011855.

Z(Gmax) = 5.87 for any m.

G depends on the relative absolute magnitudes of the sample values. Note that I is
positive for any A and B, while G values approach a maximum when the ratio of A
to B or B to A becomes large.

Example 5.
m m m m m m m m m m

m m m m m m m m m m

m m A m m m m B m m

m m m m m m m m m m

m m m m m m m m m m

A, B, x̄, n, W as in Examples 2 and 4.

I = 0, for any possible A, B, or m.

Z(I) = 0.1920 since E(I) = −1/(n− 1), whenever A > B.

Gmin = Gmax = 0.0694, for any possible A, B, or m.

V ar(Gmin) = 0, but V ar(Gmax) = 0.00000059.

Z(Gmax) = 0.0739.
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Neither statistic can differentiate between a random pattern and one with little
spatial variation. Contributions to G(d) are large only when the product xixj is
large, whereas contributions to I(d) are large when (xi − m)(xj − m) is large. It
should be noted that the distribution is nowhere near normal in this case.

Example 6.
m m m m m m m m m m

m A B A m m B A B m

m B A B m m A B A m

m A B A m m B A B m

m m m m m m m m m m

A, B, x̄, n, W as in the above examples.

I = −0.7843
V ar(Z) = 0.010897

Z(I) = −7.3177
When A = 2m and B = 0,

G = 0.0502
V ar(G) = 0.00001189

Z(G) = −5.5760

The juxtaposition of high values next to lows provides the high negative covari-
ance needed for the strong negative spatial autocorrelation Z(I), but it is the
multiplicative effect of high values near lows that has the negative effect on Z(G).

Table 10.2 gives some idea of the values of Z(G) and Z(I) under various cir-
cumstances. The differences result from each statistics structure. As shown in the
examples above, if high values within d of other high values dominate the pattern,
then the summation of the products of neighboring values is high, with resulting
high positive Z(G) values. If low values within d of low values dominate, then the
sum of the product of the xs is low resulting in strong negative Z(G) values. In
the Moran’s case, both when high values are within d of other high values and low-
values are within d of other low values, positive covariance is high, with resulting
high Z(I) values.

10.6 General Discussion

Any test for spatial association should use both types of statistics. Sums of products
and covariances are two different aspects of pattern. Both reflect the dependence
structure in spatial patterns. The I(d) statistic has its peculiar weakness in not being
able to discriminate between patterns that have high values dominant within d or low
values dominant. Both statistics have difficulty discerning a random pattern from
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Table 10.2 Standard normal variates for G(d) and I(d) under varying circumstances for a
specified d value

Situation Z(G) Z(I)

HH ++ ++

HM + +

MM 0 0
Random 0 0
HL − − −
ML − # −
LL − − ++

Key: HH pattern of high values of xs within d of other
high x values
M moderate values
L low values
Random no discernible pattern of xs
++ strong positive association (high positive Z
scores)
+ moderate positive association
0 no association
# this combination tends to be more negative than HL

one in which there is little deviation from the mean. If a study requires that I(d)
or G(d) values be traced over time, there are advantages to using both statistics to
explore the processes thought to be responsible for changes in association among
regions. If data values increase or decrease at the same rate, that is, if they increase
or decrease in proportion to their already existing size, Moran’s I changes while
G(d) remains the same. On the other hand, if all x values increase or decrease by
the same amount, G(d) changes but I(d) remains the same. It must be remembered
that G(d) is based on a variable that is positive and has a natural origin. Thus, for
example, it is inappropriate to use G(d) to study residuals from regression. Also, for
both I(d) and G(d) one must recognize that transformations of the variable X result
in different values for the test statistic. As has been mentioned above, conditions
may arise when d is so small or large that tests based on the normal approximation
are inappropriate.

10.7 Empirical Examples

The following examples of the use of G statistics were selected based on size and
type of spatial units, size of the x values, and subject matter. The first is a prob-
lem concerning the rate of SIDS by county in North Carolina, and the second is a
study of the mean price of housing units sold by zip-code district in the San Diego
metropolitan region. In both cases the data arc explained, hypotheses made clear,
and G(d) and I(d) values calculated for comparable circumstances.
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Fig. 10.1 Sudden infant death rates for counties of North Carolina, 1979–1981

10.7.1 Sudden Infant Death Syndrome by County
in North Carolina

SIDS is the sudden death of an infant 1-year old or less that is unexpected and
inexplicable after a postmortem examination (Cressie and Chan, 1989). The data
presented by Cressie and Chan were collected from a variety of sources cited in the
article. Among other data, the authors give the number of SIDs by county for the
period 1979–1984, the number of births for the same period, and the coordinates
of the counties. We use as our data the number of SIDs as a proportion of births
multiplied by 1,000 (see Fig. 10.1). Since no viral or other causes have been given
for SIDS, one should not expect any spatial association in the data. To some extent,
high or low rates may be dependent on the health care infants receive. The rates may
correlate with variables such as income or the availability of physicians’ services.
In this study we shall not expect any spatial association.

Table 10.3 gives the values for the standard normal variate of I and G for various
distances.

Results using the G statistic verify the hypothesis that there is no discernible
association among counties with regard to SIDS rates. The values of Z(G) are less
than one. In addition, there seems to be no smooth pattern of Z values as d increases.
The Z(I) results are somewhat contradictory, however. Although none are statisti-
cally significant at the 0.05 level, Z(I) values from 30–50 miles, about the distance
from the center of each county to the center of its contiguous neighboring counties,
are well over one. This represents a tendency toward positive spatial autocorrelation
at those distances. Taking the two results together, one should be cautious before
concluding that a spatial association exists for SIDS among counties in North Car-
olina. Perhaps more light can be shed on the issue by using the Gi(d) and G∗

i (d)
statistics.
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Table 10.3 Spatial association among counties: SIDS rates by county in North Carolina, 1979–
1984

d (miles) Z(G) Z(I)

10 0.82 −0.55

20 0.29 0.99

30 −0.12 1.68

33a 0.40 1.84

40 −0.04 1.32

50 0.60 1.20

60 −0.36 0.48

70 −0.28 −0.45

80 −0.19 −0.13

90 0.11 −0.19

100 0.30 0.18
aAt all distances of this length or longer each district
is connected to at least one other county

Table 10.4 Highest positive and negative standard normal variates by county for G∗
i (d) and

Gi(d): SIDS rates in North Carolina, 1979–1984 (d = 33 miles)

County ZG∗
i (d) County ZG∗

i (d)

Highest Positive
Richmond + 3.34 Richmond + 3.62
Robeson + 3.12 Robeson + 3.09
Scotland + 2.78 Hoke + 1.78
Hoke + 2.12 Northampton + 1.44
Cleveland + 1.78 Moore + 1.39

Highest Negative
Washington −2.63 Washington −2.18
Dare −1.84 Davie −1.92
Davie −1.76 Dare −1.70
Cherokee −1.55 Bertie −1.64
Tyrrell −1.53 Stokes −1.58

Table 10.4 and Fig. 10.2 give the results of an analysis based on the Gi(d) and
G∗

i (d) statistics for a d of 33 miles. This represents the distance to the furthest first-
nearest neighbor county of any county.

The G∗
i (d) statistic identifies five of the one hundred counties of North Carolina

as significantly positively or negatively associated with their neighboring counties
(at the 0.05 level). Four of these, clustered in the central south portion of the state,
display values greater than +1.96, while one county, Washington near Albemarle
Sound, has a Z value of less than 1.96 (see Fig. 10.2). Taking into account values
greater than +1.15 (the 87.5 percentile), it is clear that several small clusters in
addition to the main cluster are widely dispersed in the southern part of the state.
The main cluster of values less than 1.15 (the 12.5 percentile) is in the eastern part
of the state. It is interesting to note that many of the counties in this cluster are in the
sparsely populated swamp lands surrounding the Albemarle and Pamlico Sounds. If
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Fig. 10.2 Z[G∗
i (d = furthest nearest neighbor = 33 miles)] for SIDS rates of counties of North

Carolina, 1979–1984

overall error is fixed at 0.05 and a Bonferroni correction is applied, the cutoff value
for each county is raised to about 3.50. However, such a figure is unduly conservative
given the small numbers of neighbors.

In this case it becomes clear that an overall measure of association such as G(d)
or I(d) can be misleading because it prompts one to dismiss the possibility of sig-
nificant spatial clustering. The Gi(d) statistics, however, are able to identify the
tendency for positive spatial clustering and the location of pockets of high and low
spatial association. It remains for the social scientist or epidemiologist to explain
the subtle patterns shown in Fig. 10.2.

10.7.2 Dwelling Unit Prices in San Diego County
by Zip-Code Area, September 1989

Data published in the Los Angeles Times on October 29, 1989, give the adjusted
average price by zip code for all new and old dwelling units sold by builders, real
estate agents, and homeowners during the month of September 1989 in San Diego
County (see appendix). The data are supplied by TRW Real Estate Information Ser-
vices. One outlier was identified: Rancho Santa Fe, a wealthy suburb of the city of
San Diego, had prices of sold dwelling units that were nearly three times higher than
the next highest district (La Jolla). Since neither statistic is robust enough to be only
marginally affected by such an observation, Rancho Santa Fe was not considered in
the analysis.

Although the city of San Diego has a large and active downtown, San Diego
County is not a monocentric region. One would not expect housing prices to trend
upward from the city center to the suburbs in a uniform way. One would expect,
however, that since the data are for reasonably small sections of the metropolitan
area, that there would be distinct spatial autocorrelation tendencies (see Fig. 10.3).
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Fig. 10.3 San Diego house prices, September 1989
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High positive I values are expected. G(d) values are dependent on the tendencies
for high values or low values to group, if the low cost areas dominate, the G(d)
value is negative. In this case, G(d) is a refinement of the knowledge gained from I .

Table 10.5 shows that there are strong positive values for Z(I) for distances
of 4 miles and greater. Z(G) also shows highly significant values at 4 miles and
beyond, but here the association is negative, that is, low values near low values are
much more influential than are the high values near high values. Moran’s I clearly
indicates that there is significant spatial autocorrelation, but, without knowledge of
G(d), one might conclude that at this scale of analysis, in general, high income
districts are significantly associated with one another.

By looking at the results of the Gi(d) statistics analysis for d equal to five,
the individual district pattern is unmistakable. The Z(G∗

i (5)) values shown in
Table 10.6 and Fig. 10.4 provide evidence that two coastal districts are positively

Table 10.5 Spatial association among zip code districts: dwelling unit prices in San Diego county,
September 1989

d (miles) Z(G) Z(I)

2 −0.67 0.33
4 −2.36 2.36
5a −2.32 4.13
6 −2.47 4.16
8 −2.80 3.51
10 −2.66 3.57
12 −2.20 3.53
14 −2.34 3.92
16 −2.54 4.27
18 −2.30 3.57
20 −2.25 2.92
a At all distances of this length or longer each district
is connected to at least one other district

Table 10.6 Highest positive and negative standard normal variates by zip code district for G∗
i (d)

and Gi(d): dwelling unit prices in San Diego county, September 1989 (d = 5 miles)

Neighborhood ZG∗
i (d) Neighborhood ZG∗

i (d)

Highest positive
Cardiff +2.27 Cardiff +2.08
Solana Beach +2.02 Solana Beach +1.81
Point Loma +1.93 Mini Mesa +1.56
La Jolla +1.89 Ocean Beach +1.37
Del Mar +1.55 R. Penasquitos +1.33

Highest negative
East San Diego −3.22 East San Diego −2.99
East San Diego −2.74 East San Diego −2.54
East San Diego −2.64 North Park −2.48
North Park −2.56 East San Diego −2.48
Mission Valley −2.38 College −2.19
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Fig. 10.4 Z[Gi
∗(d = furthest nearest neighbor = 5 miles)] for house prices of San Diego county

zip code districts, September 1989
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associated at the 0.05 level of significance while eight central and south central dis-
tricts are negatively associated at the 0.05 level. There is a strong tendency for the
negative values to be higher. It is for this reason that the Z(G) values given above
are so decidedly negative. The districts with high values along the coast have fewer
near neighbors with similar values than do the central city lower value districts. The
cluster of districts with negative Z(G∗) values dominates the pattern. The adjusted
Bonferroni cutoff is about 3.27, but again is overly conservative.

10.8 Conclusions

The G statistics provide researchers with a straightforward way to assess the degree
of spatial association at various levels of spatial refinement in an entire sample or in
relation to a single observation, when used in conjunction with Moran’s I or some
other measure of spatial autocorrelation, they enable us to deepen our understanding
of spatial series. One of the G statistics’ useful features, that of neutralizing the
spatial distribution of the data points, allows for the development of hypotheses
where the pattern of data points will not bias results.

When G statistics are contrasted with Moran’s I , it becomes clear that the two
statistics measure different things. Fortunately, both statistics are evaluated using
normal theory so that a set of standard normal variates taken from tests using each
type of statistic are easily compared and evaluated.

Appendix

San Diego county average house prices for September 1989 by zip-code district

Zip code Principal Coordinates (miles) Price (in thousands)
neighborhood name x y

01 92024 Encinitas 1 39 264
02 92007 Cardiff 2 36 260
03 92075 Solana Beach 3 34 261
04 92014 Del Mar 5 32 309
05 92127 Lake Hodges 10 34 265
06 92129 R. Penasquitos 12 32 194
07 92128 R. Bernardo 15 35 191
08 92064 Poway 17 32 236
09 92131 Scripps Ranch 13 29 270
10 92126 Mira Mesa 8 28 162
11 92037 Lajolla 3 22 398
12 92122 University City 6 23 201
13 92117 Clairemont 6 20 192
14 92109 Beaches 4 18 249

continued
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continued

San Diego county average house prices for September 1989 by zip-code district

Zip code Principal Coordinates (miles) Price (in thousands)
neighborhood name x y

15 92110 Bay Park 6 15 152
16 92111 Kearny Mesa 8 19 138
17 92123 Mission Village 10 19 131
18 92124 Tierrasanta 13 20 221
19 92120 Del Cerro 14 18 187
20 92119 San Carlos 17 19 182
21 92071 Santee 20 22 124
22 92040 Lakeside 23 24 147
23 92021 El Cajon 24 19 151
24 92020 El Cajon 22 17 150
25 92041 La Mesa 18 16 169
26 92115 College 14 16 138
27 92116 Kensington 11 16 192
28 92108 Mission Valley 9 16 89
29 92103 Hillcrest 8 14 225
30 92104 North Park 11 14 152
31 92105 East San Diego 13 14 111
32 92045 Lemon Grove 17 13 137
33 92077 Spring Valley 20 13 150
34 92035 Jamul 24 12 291
35 92002 Bonita 17 8 297
36 92139 Paradise Hills 16 9 117
37 92050 National City 13 8 99
38 92113 Logan Heights 11 10 84
39 92102 East San Diego 12 12 88
40 92101 Downtown 8 12 175
41 92107 Ocean Beach 3 14 229
42 92106 Point Loma 3 12 338
43 92118 Coronado 7 10 374
44 92010 Chula Vista 15 6 165
45 92011 Chula Vista 17 4 184
46 92032 Imperial Beach 11 1 164
47 92154 Otay Mesa 15 2 126
48 92114 East San Diego 15 11 126

Source of Data: Los Angels Times, October 29, 1989, page K15.
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Abstract Spatial weights matrices are necessary elements in most regression mod-
els where a representation of spatial structure is needed. We construct a spatial
weights matrix, W, based on the principle that spatial structure should be consid-
ered in a two-part framework, those units that evoke a distance effect, and those
that do not. Our two-variable local statistics model (LSM) is based on the G∗

i local
statistic. The local statistic concept depends on the designation of a critical dis-
tance, dc, defined as the distance beyond which no discernible increase in clustering
of high or low values exists. In a series of simulation experiments LSM is compared
to well-known spatial weights matrix specifications – two different contiguity con-
figurations, three different inverse distance formulations, and three semi-variance
models. The simulation experiments are carried out on a random spatial pattern
and two types of spatial clustering patterns. The LSM performed best according
to the Akaike Information Criterion, a spatial autoregressive coefficient evaluation,
and Moran’s I tests on residuals. The flexibility inherent in the LSM allows for its
favorable performance when compared to the rigidity of the global models.

11.1 Introduction

One or more spatial weights matrices are key elements in most regression models
where a representation of spatial structure is needed. In this paper we outline and
test an approach for constructing a spatial weights matrix, W. Our method is based
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on the principle that spatial structure should be considered in a two-part framework,
those units that reflect a distance effect and those that do not.

We report on the results of a series of simulation experiments on well-known
spatial weights matrix specifications – two different contiguity configurations, three
different inverse distance formulations, and three semi-variance models. These are
compared to a two-variable local statistics model (LSM) which is based on the G∗

i

local statistic (Getis and Ord, 1992; Ord and Getis, 1995). The G∗
i statistic is based

on the spatial association between observations to a distance d from i. Values of
G∗

i are given in standard normal variates. The local statistic concept depends on the
designation of a critical distance, dc, defined as the distance beyond which no dis-
cernible increase in clustering of high or low values exists. This definition implies
that any continuity in spatial association over distance ends at the critical distance.
The simulation experiments are carried out on a variety of possible raster spatial
distribution patterns including: random and two types of clustering. The appropri-
ateness of the various W specifications are evaluated by a series of goodness-of-fit
regression tests.

11.2 Previous Attempts to Create a Spatial Weights Matrix

The spatial weights matrix is an integral part of spatial modeling. It is defined as
the formal expression of spatial dependence between observations (Anselin, 1988).
It is curious to note that while most spatial analysts recognize that W is supposed
to be a theoretical conceptualization of the structure of spatial dependence, these
same analysts more often than not use in their work a W which is at best empir-
ically convenient. In many instances, W has no obvious relationship whatsoever
to dependence structure. Thus, models employing such structures are misspecified.
This is not to say that analysts have not struggled with the problem of a proper
dependence representation in the W matrix. A bevy of schemes have been cre-
ated to attempt to fashion the needed theoretical conceptualization. Typical of the
well-known schemes are:

1. Spatially contiguous neighbors
2. Inverse distances raised to some power
3. Lengths of shared borders divided by the perimeter
4. Bandwidth as the nth nearest neighbor distance
5. Ranked distances
6. Constrained weights for an observation equal to some constant
7. All centroids within distance d
8. n Nearest neighbors, and so on

Some of the newer schemes are:

1. Bandwidth distance decay (Fotheringham et al., 1996)
2. Gaussian distance decline (LeSage, 2004)
3. “Tri-cube” distance decline function (McMillen and McDonald, 2004)

Another approach, in the spirit of Kooijman (see below), that by Griffith (1996), is
designed to find a W that “extracts” or filters the spatial effects from the data y. A
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comparable approach by Getis (Getis, 1995b; Getis and Griffith, 2002) is designed
to find that part of a variable that is spatially autocorrelated. It may be that one of the
above choices leads to good, parsimonious results but the pall of misspecification
hanging over the chosen model may still remain. In this paper, we propose a form
for W that is based on the distance beyond which there is a specified change in the
nature of spatial association. In the next section, we discuss the nature of W. This is
followed by a description of our model in Sect. 11.4. In Sect. 11.5, we demonstrate
its operation using simulated data representing typical patterns in a 30-by-30 raster
setting. The results are compared to many different W specifications in Sect. 11.6.
Finally, in Sect. 11.7, we summarize our results and consider future strategies.

11.3 On the Nature of W

As early as the 1960s, researchers such as Dacey (1965) were aware that by cal-
culating join-count statistics for the purpose of identifying spatial autocorrelation,
results would vary with one’s definition of a neighbor. Using raster data, popular
were rook’s case and queen’s case definitions of neighbors. When data are in a
vector structure, models of W usually were constructed in the form of contiguity
matrices, that is, matrices that take as neighbors those regions having a side in com-
mon. Contiguous neighbors are elements of W equal to one while all other elements
are given the value 0. Oftentimes, the contiguity W matrix is row-standardized. By
definition, the ith observation is not considered a neighbor of itself.

Research on W has been reviewed by Griffith (1996, p. 80), who concludes that
five rules of thumb aid in the specification of weights matrices:

1. “It is better to posit some reasonable geographic weights matrix than to assume
independence.” This implies that one should search for or theorize about an
appropriate W and that better results are obtained when distance is taken into
account.

2. “It is best to use surface partitioning that falls somewhere between a regular
square and a regular hexagonal tessellation.” Griffith suggests that for planar data,
a specification between four and six neighbors is better than something either
above six or below four. Of course, the configuration of the planar tessellations
will play a role here (Boots and Tiefelsdorf, 2000).

3. “A relatively large number of spatial units should be employed, n > 60.” Fol-
lowing from the law of large numbers, most spatial research, especially due to
unequal size spatial units, would require fairly large samples.

4. “Low-order spatial models should be given preference over higher-order ones.”
Following from the scientific principle of parsimony, it is always wise to choose
less complicated models when the opportunity presents itself.

5. “In general, it is better to apply a somewhat under-specified (fewer neighbors)
rather than an over-specified (extra neighbors) weights matrix.” Florax and Rey
(1995) found this result by identifying the power of tests. Overspecification
reduces power. They recognize that “Uncertainty with respect to proper speci-
fication has long been recognized as a fundamental problem in applied spatial
econometric modeling” (p. 132).
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Kooijman (1976) proposed to choose W in order to maximize Moran’s coeffi-
cient. Reinforcing this view is Openshaw (1977) who selected that configuration
of W which results in the optimal performance of the spatial model. Boots and
Dufournaud (1994) create a binary contiguity/noncontiguity matrix by means of
a linear programming technique that maximizes and minimizes spatial autocorre-
lation. We subscribe to these approaches with one major caveat, that is, that the
proposed spatial structure be theoretically defensible. Bartels (1979) agrees that
these approaches would be better justified if appropriate tests could be constructed to
assure that dependency structure is taken into account. He concludes, however, that
since such tests are unavailable, binary W is defensible. The Hammersley–Clifford
(Bennett, 1979) approach to spatial Markov models allows for near neighbor proper-
ties of W, but special assumptions of the local Markov conditions must be invoked.
In our view, a realistic spatial dependency structure should not be sacrificed for
mathematical convenience.

In recent research, Tiefelsdorf et al. (1999) caution that a row-standardized W
gives too much weight to observations with few spatial links, like those on the
edge of the study region. Conversely, they point out that a globally standardized
W places too much emphasis on observations with a large number of spatial links.
Most researchers, however, have found that row-standardization is helpful in two
ways: weighting observations (but not spatial links) equally and interpreting auto-
regressive parameters and Moran statistics. With regard to an autoregressive spatial
process, Tiefelsdorf (2000, pp. 43–45) provides a formal interpretation of the role of
the spatial autocorrelation coefficient.

In a recent study by Florax and de Graaff (2004), it is suggested that an indicator
be used to evaluate whether a W is misspecified because of matrix sparseness (pro-
portion of a matrix that is zeroes). This suggestion corresponds to a path we have
chosen for our work.

It is in the nature of the variables being adjusted for spatial effects that is the key
to an appropriate W. Variables showing a good deal of local spatial heterogeneity
at the scale of analysis chosen would probably be more appropriately modeled by
few links in W, while a homogeneous or spatial trending variable would better be
modeled by a W with many links. This reasoning is borne out by the concept of
the range in geostatistics. Since W is defined as a model of spatial dependence, it
would seem plausible to include in the matrix the complete and, as far as possible,
accurate representation of the dependence structure of the variable(s) in question.
This implies that the scale characteristics of data are crucial elements in the creation
of W. As spatial units become large, spatial dependence between units tends to fall.
In an intrinsically stationary setting, larger units tend to have values of variables
close to the mean for the region as a whole.

11.4 The Local Statistics Model

For the local statistics model (LSM), we take advantage of the G∗
i local statistic

(Ord and Getis, 1995). A positive G∗
i indicates that there is clustering of high values

around i; a negative number indicates low values. These G∗
i values are scrutinized
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cumulatively, rather than by distance bands, around each observation as distance
increases from it. When these values fail to rise absolutely with distance, the cluster
diameter is reached, implying that any continuity in spatial association or depen-
dence over distance ends at that distance. We have called this the critical distance,
dc. This is an empirically derived value. No statistical test is associated with it. The
individual cell values of W are determined by the following:

When dc > dNN1,

wij =

⎧
⎨

⎩

|G∗
i (dc) − G∗

i (dij)|
|G∗

i (dc) − G∗
i (0)| , for all j where dij ≤ dc;

0, otherwise.

When dc = dNN1,

wij =

{
1, for all j where dij = dc;

0, otherwise.

When dc = 0,

wij = 0, for all j,

(11.1)

where dNN1 is the first nearest neighbor distance for observation i. G∗
i (dc) is the G∗

i

score at the critical distance, and G∗
i (0) is the G∗

i score for the ith observation only.
Thus, G∗

i (0) represents a base from which other measures of G∗
i are compared.

This procedure is based on positive association between nearby values, whether
or not the values themselves are low or high. The result is that all values in W are
greater than or equal to 0. The variable under study, y, is not restricted to a natural
origin nor to any particular measurement scale.

Equation (11.1) shows that each weight is a function of the trend in G∗
i as dis-

tance increases from i. From this, it is clear that spatial correlation is 0 at and beyond
dc. The correlation values are entered into the appropriate cell of the W matrix. As
is true of other models, we enter a zero in the ii cells. On the other hand, if dc is
0, using this reasoning, a zero would be placed in the appropriate row and column
of the W matrix. Zero rows and columns in W, without compensation for those
of the N observations so affected, destroys any statistical interpretation of y. This
problem leads to our local statistics model:

y = α + ρWy + βx + ε (11.2)

In this setup, it is conceivable for rows of W to be completely filled with zeroes
indicating that there is no autocorrelation surrounding an observation. To compen-
sate for the zero-row effect, we create a dummy variable, x, that takes on the value
one for all observations having no dependence structure and zero otherwise. Thus,
(11.2), has two spatial parameters, ρ and β, where each parameter equates the effect
of a different aspect of the spatial structure: ρ represents the dependence structure of
the variable y, while β equates the effect on y of those observations that are not cor-
related with any of their neighbors (the nondependence structure). It is conceivable



152 A. Getis and J. Aldstadt

for the x vector to contain all zeroes, although this is not likely in practice. In this
special case, we would not have the βx term in (11.2). The parameters are esti-
mated using maximum-likelihood techniques. This formulation is not limited to a
univariate approach. As in spatial lag models, one could have regressor variables in
addition to the dummy variable of (11.2). Technically, there is the question of matrix
singularity. In our approach, the matrix (I − ρW) is invertible and thus fulfills the
non-singularity requirement of a spatial autoregressive equation.

11.5 Experiments with LSM

11.5.1 Data Sets

We artificially created three types of 30-by-30 raster data sets (900 observations).
Each type is simulated 25 times for 75 experiments. The data sets represent a wide
variety of spatial patterns. Their construction is described in Table 11.1. The first
type, a random normal, represents a situation in which there is complete spatial
independence among the values placed in cells. The second type displays a pattern
of two clusters, and the third type is made up of six clusters. All patterns contain as
their data standard normal deviates. The 50 cluster patterns represent a wide vari-
ety of spatial structures usually found in research based on georeferenced variables.
The LSM is designed to be used as a W specification for any model where clus-
tered data obtains. Figure 11.1 shows one realization of the random normal pattern
type, Fig. 11.2 displays one realization of the two cluster pattern type, and Fig. 11.3

Table 11.1 Data set descriptions

Data set Description

Random Random placement of values sampled from the normal distribution with
mean 0, and standard deviation 1; 25 simulations

Two-clusters 1 cluster of high values at (10, 10) with radius 8 and 1 cluster of low values
at (20, 20) with radius 8 – values from the normal distribution with mean
0, and standard deviation 1; 25 simulations. The highest values from the
random generation were placed randomly in the high value cluster, while
the lowest were placed randomly in the cluster of low values. The remain-
ing values, those in the middle of the distribution, were placed randomly
outside the clusters

Six-clusters 6 randomly placed clusters, 3 of high values and 3 of low values with radii
2, 4, and 6 respectively; values are sampled from the normal distribution
with mean 0, and standard deviation 1; 25 simulations. As in the two-
cluster case the highest values were placed randomly, but this time in
the three high value clusters. The low values were placed randomly in
the three low value clusters. The remaining middle values were placed
randomly outside the clusters
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Fig. 11.1 Random data set. Shading values are in random normal deviates

Fig. 11.2 Two cluster data set. Shading values are in random normal deviates

displays one realization of the six cluster pattern. Figure 11.4 shows the spatial dis-
tribution of the critical distances for the data sets shown in Figs. 11.1, 11.2, and 11.3.
Note that the longest dc are within the clusters. This is indicative of the spatial extent
of the autocorrelation.
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Fig. 11.3 Six cluster data set. Shading values are in random normal deviates

11.5.2 Forms of W

Of the eight different experimental forms of W to which the LSM is to be compared,
the first five are called geometric and the final three geostatistical. By geometric we
mean that the matrices are mainly a function of the configuration of cells and/or
the distances separating them. The final three W can be compared more directly
with LSM since their form is a function of the values within the cells and thus are
empirically derived, as is LSM. These are the geostatistics models described below
(in the section titled “Geostatistical W”). In all cases the W are row-standardized.

Geometric W

1. Rook Contiguity
The four neighbors of each cell in the cardinal directions are given the value 1,
all others 0. This is the most popular formulation of W.

2. Queen Contiguity
The eight neighbors of each cell in all directions are given the value 1, all others 0.

3. Inverse Distance (1/d)
Taking the distance between near neighbors as 1, reciprocals of all pairs of
distances are calculated and entered into W.

4. Inverse Distance (1/d2)
Same as in 3, except that distances are squared. This formulation of W is
probably the most popular of all the distance-based W.
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Fig. 11.4 dc’s calculated for data sets in Figs. 11.1, 11.2, and 11.3. Distances are based on one
unit separating centers of rook’s case neighbors

5. Inverse Distance (1/d5)
This W, is similar to the two previous ones, except in this case the emphasis
is on the near neighbors of each cell. The higher the exponent, the greater the
influence of neighboring cells as opposed to greater distance between cells. This
formulation, in many respects, is comparable to contiguity W.
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Geostatistical W

The variogram, γ(d), describes the distance characteristics of a set of georeferenced
values. If the assumption of intrinsic stationarity holds, the function that describes
the distance characteristics of the data set is consistent over the entire set of data at
all distances d from all sites. The variogram is a global function. We may estimate
the variogram by

γ(d) =
1

2N

∑
{y(u) − y(v)}2

, (11.3)

where the sum is taken over all locations at distance d apart, and N denotes the
number of pairs in the distance band which d represents. Given the assumption of
intrinsic stationarity, the variance is σ2 and the autocorrelation is

ρ(d) = 1 − γ(d)
σ2

. (11.4)

There are many variogram models. The ones chosen are often the best fit to an
empirical distribution of γ(d). The form of the distance relationship of observed val-
ues usually defines the models. The empirical distribution of the variogram is fit by
a curve representing the theoretical variogram. From our selected variogram model
we create W by placing values in the cells representing the degree of correlation be
tween each uv pair of observations. These values will vary between one and zero
according to (11.4). For distances beyond the range, the correlation is zero. In our
work we selected three popular semivariogram models. Where appropriate, for each
data set we create a W based on the distance separating pairs of points. It is inap-
propriate to use variogram models where required assumptions do not hold. For the
three models that we used, only the two clustering data sets can be considered as
intrinsically stationary:

1. Spherical variogram

γ(d) =

⎧
⎪⎨

⎪⎩

σ2

(
3d

2r
− d3

2r3

)

, for d < r,

σ2, otherwise,
(11.5)

where r is the range (when γ(d) = σ2).
2. Gaussian variogram

γ(d) = σ2(1 − e−3d2/r2
). (11.6)

3. Exponential variogram

γ(d) = σ2(1 − e−3d/r). (11.7)
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11.6 Results

Tables 11.2–11.4 give the results for each set of simulations. We chose as our criteria
for evaluation: the Akiake Information Criterion (AIC), the autocorrelation coeffi-
cient, and a measure (Moran’s I) of the residuals of regressions where the weight
matrix is the independent variable. All of the comparisons are based on a spatial lag
model. Of course, the geometric and geostatistical examples do not contain the βx
term of (11.2).

11.6.1 Evaluation Criteria

1. AIC

The AIC uses the likelihood function in conjunction with the number of indepen-
dent variables (unknown parameters) to discriminate between models. The lower
the AIC value, the better the fit. This measure was chosen for two reasons. First, it
is based on the likelihood function and corresponds to other goodness of fit mea-
sures, such as the Schwarz criterion. Second, it is heavily influenced by the number
of independent variables, penalizing formulations with more independent variables
than those with fewer independent variables. For the LSM approach, two inde-
pendent variables are needed to describe the spatial structure. None of the other
approaches requires more than one variable. Thus, the AIC provides us with a
goodness-of-fit test that is particularly demanding for the LSM approach.

2. The Autocorrelation Coefficient ρ

The autocorrelation coefficient gives an interpretation for the possible association
between Wy and y. For example, if ρ = 1 the implication is that y can be described
by Wy, meaning that W does a good job of expressing the spatial relationships
embedded in y. On the other hand, a ρ value near 0 implies that W has little to do
with the spatial structure of y.

3. Residuals

If the W matrix completely accounts for all of the variation in y, the residuals of
a regression having Wy as the independent variable will be spatially random. In our
experiments, we use Moran’s I as our measure of spatial pattern. Moran’s I is com-
puted using the same W matrix that is used to estimate the corresponding model.

11.6.2 The Tests

1. AIC

Table 11.2 shows the AIC values for the six-clusters, two-clusters, and random
cases. The mean AIC values are considerably lower for LSM as opposed to the geo-
metric and the geostatistics models for the cluster cases. Even though the AIC values
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show greater variation for the LSM model, the highest AIC for LSM is lower than
the mean for all other models and cluster tests (16 tests). The geostatistics models
perform better than do the geometric models. The worst fit is for the inverse dis-
tance model among the six-clusters and two-clusters tests. The random data-pattern
type gives evidence that the LSM model reflects whatever clustering that might be
present in a random pattern of data. Some might argue that the LSM value of wij

will indicate clustering at least some of the time in a random pattern. Given that
all of the other matrices hover around the AIC = 1,930 level for the random pat-
terns, the fact that LSM has an AIC value of 1,841 indicates that some clustering
exists within these patterns. Also, it might be well to think of 1,930 as a base level
on which to evaluate all other results since an AIC of 1,930 represents unequivo-
cal randomness. If this is the case, then the mean AIC value of 718 for LSM in
the two-clusters cases and 936 in the six-clusters cases represents a 63% and 52%,
respectively, improvement over a null model (means used as predictors). Note that
no AIC values are calculated for the geostatistical models for the random patterns.
These models are not defined on randomness; thus it is inappropriate to use them in
this regard. All of these results give strong evidence for the strength and efficacy of
an LSM model.

2. The Autocorrelation Coefficient ρ

Table 11.3 clearly shows the strength of LSM as representing a truly autocor-
related model. Although several of the other models are highly spatially autocor-
related, none reach the level of the LSM model. A curious result is noted in the
simulations for the random patterns for the LSM. One might ask how there can
be autocorrelation in a random pattern. Actually, there is considerable local spatial
autocorrelation in such patterns. The LSM model picks up the positive correlation
between near values that are high or low and trending in a high or low direction.

3. Residuals

After applying the various W models, residuals were subjected to a test using
Moran’s I so as to identify any remaining autocorrelation in the pattern (see
Table 11.4). In all cases, the mean value of the standard normal variate of Moran’s
statistic [Z(I)] should be close to 0, and the spread should be normal around this
mean. In both of the clustering cases the LSM model outperforms the other models.
Note that the positive residuals nicely balance the negative residuals in the six-
clusters cases, and they are well within a normal curve. In the two-clusters cases
the balance is not in evidence, but the Z values and the standard deviation would
make it difficult to reject the existence of normally distributed residuals. Therefore,
again the LSM model outperforms all of the others.

The extremely high values for Z(I) for some of the models indicates that their
W matrices do a poor job of describing the cluster patterns. It is interesting to
note that as the power of d increases from 1 to 5 in the distance decay models,
they appear to perform better. Higher powers give greater weight to near neighbors
than to those further away. Note how the rook’s case model and the 1/d5 model
give similar results. The negative Z(I) values result from the nature of the clusters
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themselves. Recall, the clusters were constructed as random spatial distributions of
high (low) values. Thus, the negative values represent the negative autocorrelation
characteristic within the patterns.

11.7 Interpretation and Conclusions

We highlight some of the characteristics of the tested models in light of the evalu-
ation criteria. As mentioned above, the LSM performed best according to the AIC,
ρ, and residuals criteria. In general, the geostatistics models were next with good
scores on all three criteria. Of the geostatistics models, the Gaussian appeared to be
slightly more evocative of the data than the other two.

This may be a function of the greater complexity, and thus better descriptive
characteristics, of this model than of the other two. In quality, the queen’s contigu-
ity formulation, with its eight neighbors, appeared to be next, but further behind the
LSM and the geostatistics models. The rigidity of the queen’s case robs it of the
flexibility inherent in the LSM and the geostatistics models. As expected, the rook’s
case is among the least effective, again because of its inflexibility and because only
four neighbors for each cell are brought to bear on W. The distance decline func-
tions, surprisingly, do poorly, about as effective as the rook’s case with regard to
the AIC and residuals criteria, but 1/d and 1/d2 respond well as measures of auto-
correlation (the ρ criterion). Interestingly, 1/d5, a model that puts a great deal of
emphasis on near neighbors performs similarly to the rook model.

The spatial structure represented by LSM is made up of two parts, those observa-
tions that reflect a distance effect and those that do not. This is a distinct strength of
the LSM. Apparently, the heterogeneity embodied in most spatial distributions can
be effectively captured by this two variable approach.

More of the observed spatial structure is embodied within the LSM formulation
than in the other models. It must be remembered, however, that the LSM is empir-
ically based, and any explanation of the usefulness of its structure should allude to
the fact that what is being modeled are the spatial relations within the already exist-
ing data. Any theoretical notion about its form should be defended by a discussion
concerning not only its cluster structure but by the model’s dummy variable that
represents no apparent spatial dependence between nearby cells.

One might argue that the comparative success of the LSM over the geostatistical
and geometric models is unfair. LSM is locally adaptive; that is, it is based on a
series of local measures giving it great flexibility. The geostatistical and geometric
models are global measures based on a limited set of parameters. This has impli-
cations for the use of the AIC as a measure of fit, implying that the LSM has an
advantage because of its greater number of what could be called degrees of free-
dom.1 Our view is that since the LSM model outperforms the others, and that the

1 This point was made to us in correspondence by Michael Tiefelsdorf, the editor of this article.
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others are the “usual” models used in spatial autoregressive research, it is helpful to
know that with a locally based model, much better results obtain. We suggest that
this type of empirical approach be used as a substitute for the rigidity of the global
models.

Further work in this area should be directed at lowering the AIC scores. That
is, in the LSM case, we use a particular definition of clustering. Simulations might
indicate that a somewhat different definition gives us a better model fit. In addi-
tion, other local statistics were not applied on the supposition that the fundamental
additive quality of the G∗

i measure best represents the clustering inherent in the spa-
tial association between nearby units while the others represent other attributes of
patterns such as covariance and difference. In further work, where we theorize dif-
ferently about the form of spatial autocorrelation, we will use other local statistics
for the creation of W. In addition, note that in Fig. 11.4, the dc tends to be high
near the edges of clusters. This implies that the dc is sensitive to the values of cells
contained in the clusters. Currently, we are preparing a procedure that takes cluster
boundaries into account. Finally, the spatial filtering work mentioned earlier appears
to represent another promising approach to the problem of W specification.

Acknowledgements The authors greatly appreciate the comments of Michael Tiefelsdorf and
three anonymous reviewers. The paper has been considerably strengthened due to their suggestions.



Chapter 12
Spatial Autocorrelation: A Statistician’s
Reflections∗

J. Keith Ord

Abstract Improvements in both technology and statistical understanding have led
to considerable advances in spatial model building over the past 40 years, yet major
challenges remain both in model specification and in ensuring that the underlying
statistical assumptions are validated. The basic concept in such modeling efforts
is that of spatial dependence, often made operational by some measure of spatial
autocorrelation. Such measures depend upon the specification or estimation of a set
of weights that describe spatial relationships. We examine how the identification of
weights has evolved and briefly describe recent developments.

After a brief examination of some of the key assumptions commonly made in
spatial modeling, we consider the selection of tests of spatial dependence and their
application to irregular sub-regions. We then move on to a consideration of local
tests and estimation procedures and identify ways in which local procedures may be
useful, particularly for large data sets. We conclude with a brief review of a recently
developed method for modeling anisotropic spatial processes.

12.1 Introduction

In 1966, notwithstanding my academic status as ABD, I took a faculty position with
the Economics Department at the University of Bristol, England. Although I would
not recommend such a step nowadays, the academic world was a kinder, gentler
place 40 years ago and the step proved singularly worthwhile. In addition to inter-
actions with my new-found colleagues in the Economics Department, I met up with
Andrew Cliff, who was working with Peter Haggett. My previous exposure to geog-
raphy had been limited to pathetic attempts to draw maps, combined with futile
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attempts to remember the names of rivers and capital cities, so the whole notion
of a quantitative approach was completely novel and most intriguing. The Bristol
Geography Department attracted a number of prominent visitors from across the
Atlantic and Art Getis was among the first. Art’s primary interest at that time lay in
spatial point processes, which duly led to his widely acclaimed monograph (Getis
and Boots, 1978). At that time, my knowledge of point processes and their under-
lying distributions was essentially non-spatial, so our several discussions focused
primarily on statistical distributions for counts data (the topic of my by-then com-
pleted dissertation). We interacted periodically in the intervening years, but we did
not engage in any joint research projects until the beginning of the nineties when
Art contacted me about local measures of spatial autocorrelation that he had devel-
oped. We consider that topic in Sect. 12.4 of this chapter, but in order to place the
discussion in context, we first travel back in time to Bristol in the second half of the
1960s.1

Andrew Cliff was working on statistical measures of spatial dependence. As
time passed we began to work on these issues together, which led to our first joint
paper (Cliff and Ord, 1969), presented at the annual conference of the British Sec-
tion of the Regional Science Association in London. We shared our session with
[now Sir and Nobel Laureate] Clive Granger who made a number of very perceptive
comments about spatial analysis and the underlying assumptions. We return to his
observations, which remain highly relevant today, in Sect. 12.1.2 below.

The basic question we addressed in that paper was how to test for spatial auto-
correlation in possibly irregular spatial configurations. An intrinsic element in our
approach was the specification of a weighting matrix, whose form could be quite
general but was used to specify the type of dependence we might reasonably expect
to see in spatial data if, indeed, the observations were not randomly assigned across
the spatial units (or areas). Once the general concept was formulated, the ques-
tion arose of how to determine the weights. Indeed, over the years, the refrain
“how do you choose the weights?” has been heard at many a conference session.
Accordingly, it seemed appropriate in this retrospective study to explore some of
the answers to that question that have emerged over the years. The question is likely
to continue to stimulate further research for some time to come.

At the outset, we should delineate the scope of the chapter. The focus is exclu-
sively upon purely spatial processes and, even within that framework we restrict
attention to models that are appropriate for areal units within an overall (study
region). Thus, we refer to the units for which data are recorded as areas within
the region unless specific applications lead elsewhere (e.g., cells in a regular grid).
In particular, we do not consider observations located at points within a continuum,
for which kriging methods are more appropriate (cf. Cressie, 1993, Chap. 3).

At the time that Andrew and I began our work only binary weights describing
physical adjacencies had been used, but we decided to generalize the notion and

1 It is sometimes said that if you remember the 1960s, you weren’t there. I believe my recollections
to be reasonably accurate but I hope the reader will forgive any transgressions.



12 Spatial Autocorrelation: A Statistician’s Reflections 167

to specify weights that depended upon both the length of the common boundary
between spatial units and the distances between their geographical centroids. The
determination of these quantities is now straightforward in an era of digitized maps,
but back then it involved Andrew in many hours of work poring over maps of Eire
and making the requisite measurements! We re-examine the issue of choosing the
weights and the form of the test statistic in Sect. 12.2. The application of spatial
methods to irregularly shaped regions is then briefly discussed in Sect. 12.3. As
computing power has increased, local tests have become feasible and we consider
some of the issues underlying their application in Sect. 12.4.

Increased computing power has also led to a shift in emphasis from the specifica-
tion of the weights for testing purposes towards model specification and estimation.
Indeed, tests are rarely an end in themselves but they are a useful tool for model
checking and development. Thus, tests for spatial autocorrelation are useful in test-
ing regression residuals, to determine whether or not a model has captured the
essence of the data. In turn, a spatial model will often incorporate spatial lags,
wherein specification of the weighting matrix is even more critical than for test-
ing purposes. Conversely, if an initial test does not indicate any particular patterns
of spatial dependence, a spatial model is unlikely to provide much in the way of
insight. These thoughts lead naturally to issues of model specification and estima-
tion. Again, improvements in computing power and better computational algorithms
have led to the development of local models, which we consider in Sect. 12.5.

A feature of local models is that they allow for directional symmetry, but more
descriptively than in a formal inferential framework. Thus, in Sect. 12.6, we return
to global models, but review some recent work by Deng (2008) that allows for asym-
metric relationships. The chapter concludes with a few brief comments about future
developments.

12.1.1 The Laws of Geography

Tobler (1970) referred to “the first law of geography: everything is related to
everything else, but near things are more related than distant things.” This notion
underpins the emphasis upon models that rely upon physical adjacency and in turn
provides a basis for specifying the weights in hypothesis testing. The space in
question need not be purely physical but may depend upon other attributes. For
example, the cities of Detroit and Buffalo may be perceived as more similar than
the physically closer cities of Frederick and Annapolis (see a map of Maryland for
details). Whether we consider a physical or a more general space, model develop-
ment may proceed from this basic law and it will often provide guidance for model
specification.

Before we get too carried away with model development, we should keep in mind
George Box’s first law of statistics: all models are wrong but some are useful. We
might adapt Box’s law to generate the second law of geography:

All maps are wrong but some are useful.
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Examples are not hard to find. The schematic maps of subway systems are extremely
useful to riders, yet such representations clearly fail any examination based upon
distance-based criteria. The famous map created by Charles Joseph Minard, which
describes Napoleon’s 1812 Moscow campaign (cf. Tufte, 2001) is an even more
graphic example of the need to decide upon the metric to be used before judging
the utility of a map. We will focus upon quantitative measures but should never lose
sight of the power of graphical displays.

12.1.2 Granger’s Comments

In his 1969 paper, Clive Granger raised a number of issues that should be a standard
lexicon for anyone considering an analysis of spatial data:

• Is the process isotropic? Can we ignore direction in formulating a spatial model?
Does a suburban community have the same impact upon the city center as the city
does upon the suburb? The answer is that directional invariance may well hold
in some physical situations but is unlikely in economic contexts. When we have
data for multiple time periods, this asymmetry can be addressed; see, for example
the spatial econometric framework developed by Anselin (1988, and later work)
and a number of the papers in Anselin et al. (2004a). For purely spatial data we
have hitherto been forced to assume a symmetric relationship; we return to this
question in Sect. 12.6.

• Is the process spatially stationary? Is it only the relative distance between two
locations that matters? Granger is doubtful and reasonably so. He considers time
series data at different locations and uses such data to examine spatial depen-
dence via the time series spectrum. In general, it may be reasonable to assert
spatial stationarity as a basis for testing the residuals from a model, but such a
property is unlikely for original processes of interest.

• Did we observe the sample or the population? This question plagues both
non-spatial and spatial econometrics. Typically, we assume some kind of hyper-
population and make inferences on that basis. But to what entity are the infer-
ences to be made? If we are looking at spatial data through time, it is reasonable
to make forecasts for future activity, based upon the usual time series assump-
tions. When the data are purely spatial, the nature of the inferences needs careful
consideration. If indeed we have observed the population (of all milch cows in
Eire or any other phenomenon) our inferences may be restricted to statements
about patterns, based upon permutations tests rather than some more far-reaching
framework.

• Did we observe one population or many populations? For simple random sam-
pling the notion of repeated drawings from an urn (a single population) may
be reasonable. Once we leave behind the notion of independent and identi-
cally distributed observations, we must consider models that allow for drawings
from distinct populations, or some suitable joint distribution. The framework for
inference needs careful consideration.
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Although these comments were made nearly 40 years ago, they remain as chal-
lenges to the aspiring spatial modeler, and should be considered prior to launching
into any investigation. We use these questions as part of the framework for our
ruminations.

12.2 Tests for Spatial Dependence

We start with tests for spatial dependence and a consideration of tests for data on a
regular grid. Such tests are important in their own right given the widespread avail-
ability of imaging data, and also serve to simplify the discussion as the interactions
among cells are easier to define.

The two classical tests use patterns of joins known as the rook’s case (horizontal
and vertical linkages on the grid) and the queen’s case (rook’s case plus diagonal
links). In each case, all links are usually given equal weight, although edge and
corner cells may be treated differently; for example, the row sums of weights may
be scaled to equal sums, thereby giving greater weight to links between edge and
corner cells with other cells. Given a grid with n cells (n = RC, where R and C
refer to the numbers of rows and columns respectively) the total number of edge
and corner cells is of order n

1
2 so that edge effects have much more impact upon the

distributions of test statistics than in time series, where there are only two endpoints.
Pinske (2004) provides a comprehensive discussion of the conditions under which
Moran-type tests are asymptotically normally distributed, so we do not pursue that
topic further in this chapter.

Florax and de Graaff (2004) performed a meta-analysis of the many simulation
studies relating to the performance of the more popular tests for spatial dependence.
Among their findings are two items relating to weighting matrices:

1. Increased density (e.g., a higher proportion of ones in a binary matrix) has a
negative impact upon the power of a test.

2. Higher connectedness (e.g., average number of links per cell) has a positive effect
upon power.

As the authors note, these results are somewhat unexpected and warrant further
investigation. Folk-lore on this topic suggests relative sparseness of the weights is a
benefit, consistent with (1), but this perspective has probably developed mostly from
analyses with small numbers of areas. The scale of the data generating process is
clearly also important. An interesting question is whether any analytical studies can
complement these empirical findings and we now consider this question. As we are
looking for qualitative insights, we will focus upon asymptotic effects and ignore
edge effects (e.g., a regular grid could be mapped onto a torus).

Consider the possible hypotheses of spatial dependence on a regular grid. Three
obvious possibilities come to mind:

1. The rook’s case
2. The queen’s case
3. Isotropic dependence (i.e., direction invariant but distance-dependent)
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Fig. 12.1 True and test pattern for an interior cell on a regular grid

The third pattern comes closest to our usual expectations, yet in testing we typi-
cally assume the first or second case. Figure 12.1 illustrates the situation. If the true
pattern corresponds to the rook’s case, we have the left-hand pattern in Fig. 12.1
with a = 0. Likewise, when the correct version is the queen’s case, we would have
a = 1/2. If the dependence decays with the square of the distance between cell mid-
points, the value would be a = 1/3 since the squared diagonal distance is twice that
of the horizontal and vertical distances. Other choices of decay rate clearly produce
other values for a. However, the discussion in Florax and de Graaff (2004) suggests
that there is quite a strong argument for a choice that is intermediate between the
rook’s and queen’s cases, at least for smaller study regions.

If we now turn to the right-hand panel of Fig. 12.1, we can postulate various test
patterns, corresponding to choices of b, and see how these perform relative to the
“true” patterns given in the left-hand panel. We may consider the ARE (Asymptotic
Relative Efficiency) of the various tests, following the procedure laid out in Cliff and
Ord (1981, pp. 163–170) but originally explored in Cliff and Ord (1973, Chap. 7).
If test T is the most powerful test available for a specified pattern, but some other
(inefficient) test U is employed with ARE = 100A0 where A0 < 1 we say that U
would need n/A0 observations to be as locally powerful as T with n observations.
The ARE is an asymptotic comparison of local alternatives, but typically provides
a reasonable benchmark for test comparisons. In the present case, the ARE for test
U (based upon an assumed pattern with weights determined by b) relative to the best
test T (with weights specified using a) is

ARE =
100[(1 − a)(1 − b) + ab]2

[(1 − a)2 + a2][(1 − b)2 + b2]
. (12.1)
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Table 12.1 Asymptotic relative efficiencies for different patterns of weights

True pattern

Rook Queen

Test pattern

Rook 100 50
Queen 50 100
Best (b = 0.293) 85 85
b = 1/3 80 90

Thus, we may take each of the three cases listed above as the true pattern and eval-
uate the test performance when one of the three patterns is used to define the test
statistic. The results are given in Table 12.1.

The results are quite striking. If we mis-specify the pattern as the rook’s case,
when it is really the queen’s case, the ARE drops to 50%. The same applies when
the roles are reversed. By contrast, if we put b = 0.293 we are guaranteed an ARE
of at least 85% for any pattern at or between the rook’s and queen’s cases. Such a
value for b may be rather unappealing but the value b = 1/3, which corresponds
to the “quadratic-isotropic” case discussed earlier, is almost as good with an ARE
of 80% or more. Further, this pattern has the intuitive appeal that it corresponds to
combining the (binary) weights for the rook’s and queen’s cases. Accordingly, we
recommend that this test, which we designate the RQ test, be used in preference
to either of the standard procedures. The details for the RQ test are given in the
appendix.

More generally, the calculation of the ARE offers a quick guide to test selection
and is very easy to calculate even for completely general weights. Let W represent
the true weighting matrix (used in test T ) and W2 be the corresponding matrix for
test U . The ARE for T relative to U is

ARE =
tr(WT W + W 2)tr(WT

2 W2 + W 2
2 )

[tr(WT W2 + W2W )]2
. (12.2)

This ARE cannot be less than 1.0 (or 100%).

12.3 Irregular Regions and Spatial Stationarity

Irregularly shaped regions may arise by administrative fiat (e.g., city boundaries), as
natural features (e.g., zones of vegetation) or as essentially random locations (e.g.,
oil drillings). In the third case, spatial stationarity may be a viable assumption, but
in the first two it seems inherently unlikely. In principle, if an underlying spatial
process can be specified, at least in terms of the mean, variance and covariance
structures, we could generate the random variables for each region by aggregation
(cf. Granger, 1969, p. 14). In practice, as Granger observed, spatial stationarity is
implausible for economic variables and the aggregation process is intractable.
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If we think of a region as being a large number of small equal-sized grid cells
packed into the irregular space, we can make limited progress for testing purposes.
Under the null hypothesis of spatial independence, each cell might be assumed to
have area δA and to follow a distribution with mean μδA and variance σ2δA. The
overall region (with area A) then has a distribution with mean μA and variance
σ2A. A test for independence might reasonably proceed on the assumption that
the autocorrelation is local, so that weights are proportional to the length of com-
mon boundary. Once the model has been specified, tests should take account of
the implied heteroscedasticity. For example, we might proceed using appropriately
adjusted variables, such as

zj =
xj − mAj

s
√

Aj

for region j, where (m, s2) denote the weighted sample mean and variance:

m =
∑

xi∑
Ai

and s2 =
∑ (xj − mAi)2

Ai
.

Kelejian and Robinson (2004) explore this issue in depth.

12.4 Local Statistics

As time has progressed, two related factors have served to shift the emphasis in
much of spatial modeling. First, technological developments have led to huge spa-
tial data sets, such as those obtained from medical or satellite imaging. Second,
computational speeds have increased so that analyses are now possible that were
previously infeasible. In turn, these developments have produced more efficient
numerical methods (discussed very briefly in the next section) and an emphasis on
more local analyses, such as a search for “hot spots.” It was in this context that Art
contacted me regarding a local statistic he had developed to identify local activity.
This was the G-statistic, which we now define.

The G-statistic (Getis and Ord, 1992; Ord and Getis, 1995, 2001): The value for
site k is

Gk =
∑

j∈N(k)

wjkzj , (12.3)

where N(k) denotes the set of “neighbors” for site k, in the sense that all mem-
bers of the set have non-zero weights assigned. Thus, the set may include site k
itself, when the notation G∗ is used. G∗ is a more natural statistic to use in the
search for hot-spots, whereas G is better for looking for local spatial dependence
(e.g., among regression residuals). The original definition in Getis and Ord (1992)
used a scaling factor for ease of interpretation and assumed non-negative observa-
tions, but the formal test is the same when version (12.3) is used. We refer to G
below, but the comments apply in similar fashion to G∗. The discussion in Ord and
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Getis (2001) covers tests for local spatial dependence within a background of global
spatial autocorrelation, but the basic ideas are the same.

The crucial question that Art raised related to the level of significance to use in
testing these local coefficients. The problem relates to the fact that we are carrying
out a large number of tests (equal to the sample size). If the objective is to control
the overall probability of a Type I error (i.e., concluding that spatial dependence
exists when there is none at all) the Bonferroni limit suggested in Getis and Ord
(1992) is appropriate. However, if we are operating in a more exploratory mode,
this approach is too extreme. A reasonable alternative is to use a fairly stringent
conventional level (such as α = 0.01) and to combine this with the recognition that
n tests will produce an expected number of nα rejections just by chance. Better yet,
a normal probability plot of the z-scores can reveal where the true exceptions arise.

An alternative to these statistics is the local indicator developed by Anselin
(1995):

The Local Indicator of Spatial Association – LISA (Anselin, 1995)

Ik = zk

∑

j∈N(k)

wjkzj . (12.4)

The LISA statistic looks similar to G, but includes the extra term, zk which clearly
changes the results. The LISA statistics possess the property that

∑
k Ik yields the

global Moran statistic and so they are often referred to as local Moran statistics.
It is instructive to compare the performance of the two measures in a qualitative
fashion; Table 12.2 illustrates the nature of the behavioral differences between the
two statistics.

When the value of zk is close to zero, the G-statistic will signal extreme neigh-
bors, whereas LISA will not. However, LISA is able to distinguish cases where zk

is similar to its neighbors from those where it is strongly in the opposite direction.
Thus, the two measures are not competitors but are useful local measures that iden-
tify different patterns in the data. A reasonable analogy is the distinction between
the influence measure and Cook’s D in regression analysis.

Table 12.2 Relative magnitudes of the G and LISA coefficients: major differences are in bold and
moderate differences are in italics

Value of zk Sum of neighbors Gk Ik

Large & positive Large & positive Large & positive Large & positive
Large & positive Small Small Moderate
Large & positive Large & negative Large & negative Large & negative
Large & negative Large & positive Large & positive Large & negative
Large & negative Small Small Moderate
Large & negative Large & negative Large & negative Large & positive
Small Large & positive Large & positive Moderate
Small Small Small Small
Small Large & negative Large & negative Moderate
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Fig. 12.2 Normal probability plot for G statistics with two clusters of extreme values (Minitab
plot)

In the spirit of a more exploratory approach, we may use the local coefficients
in plots of various kinds. Anselin (1996) introduced the concept of Moran scatter
plots, which consist of plotting Ik against zk. Interpretations of the plot can be
determined from the entries in Table 12.2. An alternate plot and set of interpretations
are readily generated by plotting Gk against zk. Further plots may be obtained using
probability plots for each statistic (Fig. 12.2). Interactive graphics packages allow
identification of the sites associated with specific points making pattern recognition
more straightforward.

By way of example, we generated sample G-statistics corresponding to a 30× 30
grid. The observations were randomly drawn from a standard normal distribution,
save that two well-separated 5× 5 blocks were identified, one receiving an addi-
tional +2 in each cell and the other −2. The G statistics were computed using the
RQ format discussed in Sect. 12.2. The overly heavy tails of the empirical distribu-
tion are clearly apparent and the individual extreme points fall within the artificial
clusters. A real data set would not produce such clean results, but the general idea is
evident. Similar plots and insights may be obtained from the LISA statistic. In either
case, it is also feasible to generate plots for subsets of the data, on either the same or
separate charts. An interesting application of both local and global test statistics is
provided by Trevelyan et al. (2005), who examine the spatial spread of an epidemic
over time.
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12.5 Local Estimation

Model building for spatial processes is even trickier than hypothesis testing!
Whereas an incorrect choice of weights causes a loss of power when testing, the
wrong set of weights leads to inconsistent estimators in (auto)regression model-
ing. Notwithstanding the more serious consequences, we may recall Box’s rule in
Sect. 12.1.1 and expect to obtain useful results if we are able to formulate a plausi-
ble set of weights. In turn, this raises the question of whether we can estimate the
weights, subject to reasonable constraints to produce identifiable results.

12.5.1 Estimation with Pre-specified Weights

A standard model for spatial interaction is the joint dependence scheme with
independent normally distributed errors:

yi = α + β
∑

j

wijyj + εi; εi ∼ IIN(0, σ2), i = 1, . . . , n. (12.5)

The errors do not have to be identically distributed, but that assumption is commonly
made. The log-likelihood function depends upon the determinant |I − βW |, where
the matrix W = {wij} contains the set of weights specified in the model in (12.5),
and it may be written as

l(α, β, σ|y) = const − n ln(σ) + ln |I − βW | − 1
2
(y − α1)

′
(I − βW

′
)

× (I − βW )(y − α1). (12.6)

Here 1 and y are vectors. Maximum likelihood estimation requires repeated eval-
uation of the determinant, which is of order n. Ord (1975) provided a numerical
procedure for evaluating this determinant using its eigenvalues. Since that time
highly efficient numerical techniques have evolved for dealing with extremely large
regular lattices, see for example Griffith (2000, and related work). Anselin et al.
(2004b) summarize recent computational developments.

These methods are useful for fitting global models, but do not provide insights
into more local variations. Also, they assume a pre-specified weighting matrix.
Accordingly, we now explore local approaches to estimation that enable us to relax
these constraints. First, we stay with pre-specified weights but consider local estima-
tion. For example, when the weights are non-zero only for relatively near neighbors,
it becomes possible to partition the complete study area into K non-overlapping
sub-regions that are statistically unrelated, as illustrated in Fig. 12.3.

Each black-colored sub-region may be considered independently, conditionally
upon the white-colored areas. Each sub-region may be evaluated using its own log-
likelihood, which may be written as lr(αr, βr, σr |yr) for each of the K subsets.
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Fig. 12.3 Example of a partitioned study area

Standard procedures may be used to estimate the parameters for each sub-region
with correspondingly much smaller determinants. Alternatively, we may combine
the K log-likelihoods to produce overall estimators, retaining the advantage of
the smaller determinants but with some loss of efficiency. The simplest form of
these estimators, with black and white sub-regions each consisting of one cell were
introduced by Besag (1977c).

Given the numerical advances noted earlier, it may be asked why we should go
down this road? If we retain the single spatial parameter model given in (12.5), there
is indeed no real benefit. However, this path opens the way to consideration of multi-
parameter schemes for which existing numerical recipes are inadequate for very
large data sets. For example, the smaller scale of the individual sub-regions would
allow much more general models to be fitted, perhaps combined with the computa-
tional power provided by Markov Chain Monte Carlo; see Smith and Roberts (1993)
for an overview.

In addition to providing separate estimates for each sub-region, we may also form
likelihood ratio tests to determine whether all the regions have the same parametric
structure. The overall test of
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H0 : (αr, βr, σr) = (α, β, σ) ∀r, vs. HA : (αr, βr, σr) 	= (α, β, σ) for some r
(12.7)

may be written in the general form (after substituting in the ML estimates for each
parameter):

χ2 = 2
∑

r

{lr(αr, βr, σr) − lr(α, β, σ)}. (12.8)

The asymptotic distribution of the test statistic in (12.8) is chi-square with 3(K−1)
degrees of freedom. Further, the individual terms in the test statistic in (12.8) will
be independent and identically distributed under H0, each being close to chi-square
with three degrees of freedom. Thus, unusual sub-regions may be identified from
chi-square probability plots. At a more heuristic level, the individual coefficients
may be used to develop approximate standardized scores for each of the sets of
slope, autocorrelation and variance estimates, and these values used to explore
differences among regions.

A key question is how large should the sub-regions be? Ultimately this question
will need to be answered empirically and will depend upon the size of the study
region. However, for satellite image data, blocks of 20× 20 or larger would not seem
unreasonable. Further extensions are clearly possible, such as the use of a checker-
board pattern of sub-regions and the evaluation of black sub-regions conditioned on
the white sub-regions and vice-versa.

Another possibility is the “rolling” selection of sub-regions, such as taking
columns 1–20 then 11–30, 21–40 and so on. That approach leads naturally to
the more general framework of locally weighted maximum likelihood estimation,
where separate estimates are obtained for each area in the study region. Details are
provided by McMillen and McDonald (2004) and LeSage (2004).

12.5.2 Direct Estimation of the Weights

When we move from estimation for fixed (sub)sets of the data to rolling selections
or local weighted schemes for individual cells, we also change the inferential frame-
work. In the first case we can make the usual kinds of inference from the likelihood
function. However, in the second case we may implicitly use many more parameters
than we have observations, so formal inference is infeasible without imposing a con-
siderable number of constraints upon the estimators. This comment is not intended
as a criticism, but only as an observation. We need to be clear about the purposes of
the analysis. If we are interested in making formal inferences, we must stay within
a framework for which a likelihood function can be specified. If we are interested in
description or hypothesis generation, the local methods are invaluable.

The first approach to direct estimation of the weights was due to Kooijman
(1976), who estimated the weighting matrix by maximizing the value of the global
Moran statistics. The optimization is most readily achieved using linear program-
ming, when non-negativity constraints and other conditions (such as assigning a
maximum amount of weight to each unit) may be imposed. Several other approaches
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have been suggested over the years; see Getis and Aldstadt (2004) for a review. In
turn, these authors develop a local estimation procedure for the weights using the
G∗ statistic. Their simulation studies illustrate the effectiveness of this approach in
identifying local patterns.

12.6 Directional Dependence for Purely Spatial Models

By their nature, purely spatial models typically do not allow for directional depen-
dence. For example, we may be well aware of population movements from a city
center to its suburbs, but hitherto there has been no way to incorporate such effects
into a purely spatial model like (12.5). When appropriate data are available, space–
time models provide one way out of this dilemma, since we can incorporate time
lags on the right-hand side, such as

yi(t) = α + β
∑

j

wijyj(t − 1) + εi(t); εi(t) ∼ IIN(0, σ2), i = 1, . . . , n.

(12.9)
Regular regression methods are then available if we absorb the slope coefficient into
the weights and relax the non-negativity and summation conditions on the weights.
Even if those conditions are retained, linear or quadratic programming procedures
enable the models to be fitted.

Turning back to purely spatial models, Deng (2008) has developed an ingenious
way of allowing for directional dependence. He formulates an anisotropic spatial
lag model as

yi = α+
∑

j

f(gi|θ)wijyj+x′
iβ+εi; εi ∼ IIN(0, σ2), i = 1, . . . , n (12.10)

Model (12.5) has been extended to include regression effects (β is now a vector)
and a general anisotropic function f(g|θ); the weights may be specified in the usual
way. The regression terms are a standard extension and could have been included
earlier; they are useful at this stage for expository purposes. In particular, the func-
tion f(g|θ) may be represented as linear in variables g and parameters θ so that
familiar estimation procedures are available. The key element in Deng’s model is
that the new functional form can allow for directional dependence. This framework
is best discussed in the context of an example, taken from Deng’s paper.

Deng examines the Boston housing prices data set originally presented in Har-
rison and Rubinfeld (1978) and considered in a spatial context by Pace and Gilley
(1997). Housing prices are adversely affected by high crime rates and the direct
effects may be captured through standard regression terms, as in (12.10). However,
if area A has a high crime rate and adjacent area B has a low crime rate, a reason-
able hypothesis is that area A will have a negative impact on B’s price level that is
stronger than any positive impact that B’s low crime rate has on A’s prices. To test
for such directional effects, Deng considers dummy variables such as
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Dqij =
{

1, if xqj > xqi;
0, otherwise.

(12.11)

In the current example, q denotes the regression variable of interest (crime rate)
and the indicator would take the value 1 for high crime area A in the regression
equation for B. Conversely, low crime area B would have indicator value 0 in the
equation for area A. The detailed analysis in Deng (2008) shows this approach to be
an effective way of formulating and then testing for directional dependence. Deng’s
work is an important conceptual breakthrough and paves the way for further research
on anisotropic models.

12.7 Conclusions and Directions for Further Research

Statistical model building for spatial processes needs to keep in mind the three inte-
grated elements shown in Fig. 12.4. Going counter-clockwise, existing maps can
inform the process of data collection which in turn lead to model specification. Once
a theoretical model has been developed, we may proceed clockwise, collecting the
data to test the hypotheses and then summarizing the results in a map. Substantive
studies will typically involve iterative developments or multiple circuits around the
loop and the use of maps as diagnostic devices as well as final summaries.

Improved techniques for preliminary data analysis, both non-spatial and spatial
methods, provide greater insights into the complexity of spatial processes, and these
tools should be used both for initial model development and for testing (e.g., in the
examination of regression residuals). Further, the availability of ever-greater com-
puter power means that it becomes possible to explore more complex models, both
in terms of local and global models and in terms of general semi-parametric models
using Markov Chain Monte Carlo methods.

Finally, the ubiquitous nature of computer power means that many users of
geographical information systems will do their own analysis using the tools to
hand. It is imperative that those interested in spatial modeling continue to incor-
porate state of the art methods into the main GIS programs, as illustrated by
Anselin et al. (2004c).

Fig. 12.4 Components of spatial model building
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Appendix

Let (wij : i, j = 1, K, n, i 	= j) denote the set of weights defining links between all
pairs of cells in the grid. Following Cliff and Ord (1981, p. 17) we may define the
generalized Moran statistic as

I =
n
∑

(2) wijzij

S0

∑n
i=1 z2

i

, where zi = xi − x̄. (12.12)

In this expression S0 =
∑

(2) wij and
∑

(2) =
∑n

i=1

∑n
j=1 with i 	= j. We

assume that the random variables are independent and identically distributed. It fol-
lows that the first two moments of the statistic, under the null hypothesis of spatial
independence are (Cliff and Ord, 1981, pp. 42–45):

E(I) =
−1

(n − 1)
, and

E(I2) =
n2S1 − nS2 + 3S2

0

(n − 1)(n + 1)S2
0

, where (12.13)

S1 =
1
2

∑

(2)

(wij + wji)2 and S2 =
n∑

i=1

(wi∗ + w∗i)2,

wi∗ =
n∑

j=1

wij and w∗i =
n∑

j=1

wji.

The values of the various coefficients for the RQ statistic on a regular RxC grid,
with horizontal and vertical links having weight = 2 and diagonal link weight = 1
are

S0 = [12RC − 8R − 8C + 4],
S1 = [20RC − 12R − 12C + 4], and (12.14)

S2 = 16[36RC − 40R − 40C + 41].

The same coefficients are used for a test based upon random permutations, but the
second moment becomes

E(I2) =
n[(n2 − 3n + 3)S1 − nS2 + 3S2

0 ] − b2[(n2 − n)S1 − 2nS2 + 6S2
0 ]

(n − 1)(n − 2)(n − 3)S2
0

,

(12.15)

where b2 =
n
∑

z4
i

[
∑

z2
i ]2

.



Chapter 13
Health Surveillance Around Prespecified
Locations Using Case-Control Data

Peter A. Rogerson

Abstract There are several approaches one may use to model or test for potential
risk around point sources of interest. These approaches have been developed almost
universally to (a) fit model parameters to estimate the nature and significance of
decline in risk as one moves away from the point source, or (b) assess the signifi-
cance of a test statistic based upon the null hypothesis of no raised incidence around
the source. In this paper, I assume that the data on the locations of cases and controls
often used for these questions may be arranged in temporal order (for example, data
might consist of the date of diagnosis for both case and control diseases). I then
illustrate how conventional modeling approaches may be adapted to use the dataset
observation by observation, to detect as quickly as possible a change from one set
of model parameters to another.

13.1 Introduction

There is often interest in determining whether the number of observed health events
in the vicinity of putative sources is greater than could be expected by chance
alone. Both nonparametric tests (Stone, 1988) and parametric approaches making
use of point process models (Diggle, 1990; Diggle and Rowlingson, 1994; Lawson,
1993) have been suggested. Diggle and Rowlingson (1994) have suggested a likeli-
hood approach for testing retrospectively the null hypothesis of no raised incidence
around a prespecified location, when data on the locations of cases and controls are
available. Using their notation, assume that data are available on the locations of n
cases and m controls. The intensity of disease, λ(x), is modeled as

λ(x) = ρλ0(x)f(x − x0; Θ),

where λ0(x) represents background intensity due to the population at risk, and ρ is
a scaling parameter related to the number of cases and controls. Furthermore, risk at
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location x is presumed to vary with location according to the function f(x−x0; Θ),
where x0 is the prespecified location, and where Θ is a set of parameters. They
suggest the function:

f(x − x0, θ) = 1 + θ1e
−θ2d2

, (13.1)

where d2 is used to indicate the squared distance between locations x and x0. The
parameter θ1 estimates the excess risk at the source, and the parameter θ2 represents
exponential decline in risk as one travels away from the source. Although we will
use this function for convenience, the approach for prospective monitoring outlined
here is general and other specifications for f that may be deemed more appropriate
could also be adopted.

Conditional on the locations, the probability that an event at x is a case is

p(x) =
ρf(x − x0; θ)

1 + ρf(x − x0; θ)
.

The likelihood of the observed sample of cases and controls is given by

L(ρ, θ) = n ln ρ +
n∑

i=1

ln f(xi − x0; θ) −
n+m∑

i=1

ln{1 + ρf(xi − x0; θ)}. (13.2)

When the null hypothesis of no raised incidence around the prespecified point is
true, and when (13.1) is used to model the relationship between location and risk,
θ1 = θ2 = 0, and the likelihood equation in (13.2) reduces to

L0(ρ) = n lnρ − (n + m) ln(1 + ρ). (13.3)

Under the null hypothesis, (13.3) is maximized at ρ̂ = n/m, and thus:

L0(ρ̂) = n ln(n/m) − (n + m) ln
(

n + m

m

)

.

A formal test of the null hypothesis is carried out by (a) finding the parameter esti-
mates that maximize (13.2), and then comparing the quantity D = 2{L(ρ̂, θ̂) −
L0(ρ̂)} with the critical value of a χ2 distribution having degrees of freedom equal
to the number of parameters in θ.

13.2 Prospective Monitoring

The test described above is appropriate when carrying out a single test to determine
whether there is significant excess risk around a source, and whether risk declines
significantly as one travels away from the source. However, it may also be of interest
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to monitor data around point sources, to detect as quickly as possible any change in
risk that may occur. It is therefore of interest to develop an appropriate methodology
for the prospective detection of spatial variation in risk. In this section, we assume
that case-control data are characterized not only by their locations, but also by a
time variable (e.g., time of diagnosis). We make use of cumulative sum methods
(Hawkins and Olwell, 1998) to detect changes in model parameters as quickly as
possible.

These methods are optimal for detecting step changes in the parameters. They
are based on the score statistic, z, which in turn is derived from the observations, x:

zt = ln
(

f(xt|θ(1))
f(xt|θ(0))

)

= ln f(xt|θ(1)) − ln f(xt|θ(0)), (13.4)

where f designates the likelihood function, and θ(0) and θ(1) refer to the vector of
parameters before and after the change, respectively.

These scores are then used to formulate the cumulative sum, St:

St = max(0, St−1 + zt).

A change from θ(0) to θ(1) is detected when the cumulative sum, St, exceeds some
predefined threshold, h. There is an inverse relation between the threshold and the
rate of false alarms; higher values for h will lead to fewer false alarms, but also to
longer times of detection when a true change has occurred.

Suppose for monitoring case-control data, we adopt Diggle’s function (13.1),
and set θ(0) = {ρ, θ

(0)
1 , θ

(0)
2 } = {ρ, 0, 0}, implying no raised incidence around the

prespecified source prior to the change. Let θ(1) = {ρ, θ
(1)
1 , θ

(1)
2 } be the parameters

after the change. The likelihood of observing a control at a distance r from the
source under the new regime is, using (13.2),

L(θ(1)) = − ln{1 + ρ(1 + θ
(1)
1 e−θ

(1)
2 r2

)}. (13.5)

The likelihood of observing a control under the initial regime implies, using (13.3)
and the adoption of θ(0) = {ρ, 0, 0},

L(θ(0)) = ln(ρ) − ln(1 + ρ). (13.6)

Similarly, observation of a case under the new regime using (13.2) has the likelihood

L(θ(1)) = ln ρ + ln(1 + θ
(1)
1 e−θ

(1)
2 r2

) − ln{1 + ρ(1 + θ
(1)
1 e−θ

(1)
2 r2

)} (13.7)

and observation of a case under the initial regime, using (13.3) and the adoption of
θ(0)} = {ρ, 0, 0} leads to the following likelihood

L(θ(0)) = ln(ρ) − ln(1 + ρ). (13.8)
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These four expressions in (13.5) through (13.8) can then be used to form the like-
lihood ratio, and hence the score statistic for new observations as they become
available.

13.3 Illustration

To illustrate the use of monitoring in this context, we adopt a circular study area
of radius one, surrounding the hypothetical putative source. Observations were
assigned case status with probability one-half and control status with probability
one-half, and consequently we take the value of ρ under both the null and alternative
hypotheses to be equal to one. Population is assumed to be distributed uniformly,
and therefore cases and controls are generated under the null hypothesis by choosing
locations at random within the study area.

To simulate the distances that cases and controls lie from the source, the fol-
lowing approach, based on the cumulative distribution function of distances, was
used:

1. Take a randomly chosen number, u, from a uniform distribution on the interval
(0,1)

2. Set it equal to the cumulative distribution function associated with the distribu-
tion of distances

3. Solve for the random variable representing distance from source

Thus the uniform random number, u, is set equal to the probability that an obser-
vation lies within a distance r (less than or equal to one, which is the radius of the
study area) of the source. For both cases and controls under the null hypothesis,

u = F (r) =

∫ r

0 2πxdx
∫ R=1

0 2πxdx
=

r2/2
1/2

= r2.

Hence we can simply take as the simulated distance the square root of a random
number chosen from a uniform distribution on the interval (0,1), since r =

√
u. The

result represents the distance from the source at the center of the study area (the
direction, and hence precise location is not important, since we are only interested
in the distance from the source).

Under the alternative hypothesis, controls are generated in the same way, but
cases are now chosen in such a way that they are more likely to occur near the
putative source. Using the function suggested by Diggle (13.1),

u = F (r) =
2π

∫ r

0
(1 + θ1e

−θ2x2
)xdx

2π
∫ R=1

0 (1 + θ1e−θ2x2)xdx
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leads to

u = F (r) =
θ1 + θ2r

2 − θ1e
−θ2r2

θ1 + θ2R2 − θ1e−θ2R2 =
θ1 + θ2r

2 − θ1e
−θ2r2

θ1 + θ2 − θ1e−θ2
, (13.9)

where the latter term on the right-hand side results from our choice of R = 1. For
any choice of the random number u on the interval (0,1), we wish to solve for r.
Since it is not possible to solve for r directly as a function of u, the solution for
r is achieved by numerical root-finding methods (see appendix). Alternatively, it is
possible to find an approximation for r in terms of u. First rearrange (13.9) as

u(θ1 + θ2 − θ1e
−θ2) − θ1 = θ2r

2 − θ1e
−θ2r2

.

Designating the left-hand side by y and solving this for r2 in Maple 9.5 yields

r2 =
y + LambertW (0, θ1e

−1)
θ2

(13.10)

For a given argument x, the LambertW function (Corless et al., 1996) returns the
(possibly multiple) values W (x) satisfying W (x)eW (x) = x. For example, when
x = −0.1, W (x) = −3.577 and W (x) = −0.1118 represent solutions. In (13.10),
the first argument of “0” refers to a particular branch (in fact, the main branch) of
the multivalued function, and the second term is the argument of the function.

There are alternative approaches to the numerical evaluation of the LambertW
function (Chapeau-Blondeau and Monir, 2002). There are also various series expan-
sions for the LambertW function (Corless et al., 1997); an evaluation of them
reveals that different series are most accurate across different ranges of the argu-
ment. In particular, for various values of the argument z, LambertW (0, z) may be
approximated via the following series expansions:

LambertW (0, z) ≈ z − z2 + z3/3 − · · · z ≤ 0.3

≈ 2z

z + e
+

z(z − e)2

2(z + e)3
+ · · · 0.3 < z ≤ 4

≈ v +
vp

1 + v
+

vp2

2(1 + v)3
+ · · · z > 4, (13.11)

where v = ln z and p = − ln(ln z)). When z < 0.3, combining (13.10) and the first
few terms of (13.11) yields

r2 ≈ y + θ1e
−y − (θ1e

−y)2

θ2
≈ y + θ1e

−y

θ2
. (13.12)

Using just the first term on the RHS of (13.11) for the middle range of z yields

r2 ≈ y + 2q/(q + 1)
θ2

,
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where q = θ1e
−y−1. Finally, when z is large, using the first two terms of the last

approximation in (13.11) leads to

r2 ≈ y + w − (w ln w)/(1 + w)
θ2

,

where w = ln θ1 − y.
For example, suppose we wish to simulate for the scenario where θ1 = 2, θ2 = 4.

Suppose the random number is u = 0.5. Then y = 0.982. Then r2 = 0.771 or
0.768, using the two- and three-term numerators of (13.12), respectively.

After distances have been simulated, the scores (zt) are computed. Observation
of a control leads to a score found by subtracting (13.6) from (13.5):

zt = − ln(1 + (1 + θ
(1)
1 e−θ

(1)
2 r2

1 )) − ln(1) + ln(2)

= − ln(2 + θ
(1)
1 e−θ

(1)
2 r2

1 ) + ln(2) (13.13)

Observation of a case leads to a score found by subtracting (13.8) from (13.7),

zt = ln(1) + ln(1 + e−θ
(1)
2 r2

1 ) − ln(1 + 1 + e−θ
(1)
2 r2

1 ) − ln(1) + ln(2)

= − ln(1 + e−θ
(1)
2 r2

1 ) − ln(2 + e−θ
(1)
2 r2

1 ) + ln(2) (13.14)

These scores are then used in the cumulative sum.
We now illustrate the procedure and results for the choices θ(0) = {1, 0, 0} and

θ(1) = {1, 2, 4}. The null hypothesis is simulated by first assigning case/control
status (using 1/2 as the probability an observation is a case) and then choosing
distances r =

√
u for both cases and controls. These distances are then used to deter-

mine scores [(13.13) and (13.14)], and the cumulative sum is run until it reaches a
threshold, h. Suppose that we desire an average run length (ARL) of 250 obser-
vations between false alarms – i.e., declarations of change when in fact none has
occurred. Experimentation with different threshold values revealed that a value of
h = 2.0 is consistent with an in-control ARL of approximately 250. Next, the alter-
native hypothesis was simulated by using distances determined from (13.9) and the
numerical method outlined in the appendix, using parameters equal to those chosen
for θ(1) = {2, 4}. The ARL under this alternative hypothesis was approximately
103; this is the number of observations that would be required on average to detect
the change in risk.

For more pronounced increases in risk near the source, detection occurs more
quickly, as would be expected. For example, with θ(1) = {6, 5}, a threshold of
h = 2.7 leads to an ARL of approximately 250 (making this instance compara-
ble with the previous one); when the alternative hypothesis is simulated using the
chosen values of θ(1), the average time to detection declines to approximately 60
observations.

It will of course not usually be possible to specify correctly the magnitude of the
shift. For example, suppose that a shift to θ(1) = {2, 4} is hypothesized, but the
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actual shift is to {2, 4}. A threshold of h = 1.59 leads to an ARL of 250 under the
null hypothesis, and now the average time to detect a change is approximately 110 –
slightly longer than the 103 found earlier when a correct estimate of the shift is
adopted (using θ(1) = {2, 4}). Similarly if a shift to θ(1) = {3, 5} is hypothesized,
a threshold of h = 2.14 leads to an ARL of 250 under the null hypothesis of no
change, and the average time to detect the shift to {2, 4} is approximately 107. At
least in these examples, therefore, mis-estimation of the magnitude of the shift does
not affect significantly the time to detection.

13.4 Summary

Cumulative sum methods may be used together with case-control data to detect
quickly changes in risk that occur in the neighborhood of a putative source. The
methods are based upon scores that represent the difference in log-likelihoods of
the observations before and after the change.

One limitation of the approach outlined here is that it is necessary to prespecify
the parameters before and after the change. Although the choice of θ

(0)
1 = θ

(0)
2 = 0

is natural, it will often be more difficult to specify θ
(1)
1 and θ

(1)
2 . In general the

cumulative sum procedure will be efficient at detecting quickly changes from θ(0)

to θ(1), and will be relatively less efficient at detecting changes to parameter values
other than those specified.

Similarly, we have simplified the problem by assuming that ρ does not change.
This is analogous to cumulative sum procedures that are optimized for detection of
changes in the mean, where it is assumed that the variance does not change. Any
change in ρ will of course render the cumulative sum scheme less effective.

Finally, we have focused here solely on the spatial aspects of the process.
Although we have been interested here in the unfolding of spatial patterns over
time, we have essentially ignored the temporal aspect of the process. In any analysis
of disease, attention must of course also be given to how the intensity of the disease
varies over time.

Appendix

To find r in terms of u, we first write

g(r) = u − θ1 + θ2r
2 − θ1e

−θ2r2

θ1 + θ2R2 − θ1e−θ2R2 = 0.

Taking the derivative, we find

g′(r) =
−2θ2r(1 + θ1e

−θ2r2
)

θ1 + θ2R2 − θ1e−θ2R2 .
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An initial guess for r, say r0, is made. This initial guess is updated to derive an
improved estimate of r, say r1, via

r1 = r0 − g(r0)
g′(r0)

.

This is used to iterate until convergence has been achieved.



Part IV
Applications



Chapter 14
Spatial Filtering in a Regression
Framework: Examples Using Data on Urban
Crime, Regional Inequality, and Government
Expenditures

Arthur Getis

If autocorrelation is found, we suggest that it be corrected by appropriately transforming the
model so that in the transformed model there is no autocorrelation (Gujarati, 1992, p. 373).

14.1 Introduction

In a recent paper Getis (1990), I develop a rationale for filtering spatially depen-
dent variables into spatially independent variables and demonstrate a technique for
changing one to the other. In that paper, the transformation is a multi-step procedure
based on Ripley’s second order statistic (1981). In this chapter, I will briefly review
the argument for the filtering procedure and propose a simplified method based on
a spatial statistic developed by Getis and Ord (1992). The chapter is divided into
four parts: (1) a short discussion of the rationale for filtering spatially dependent
variables into spatially independent variables, (2) a review of a Getis–Ord statis-
tic, (3) an outline of the filtering procedure, and (4) three examples taken from the
literature on urban crime, regional inequality, and government expenditures.

14.2 Rationale for a Spatial Filter

One of the most difficult problems facing those who develop regression models of
spatial series is finding ways to estimate parameters of stochastically autocorrelated
variables. A typical stochastically autocorrelated spatial variable is a modified or
spatially lagged autocorrelated variable. It is made up of the original autocorrelated
variable (y) multiplied by a spatial weight matrix (W ) and a spatial autocorrela-
tion coefficient (ρ). ρWy does not fulfill the required fixed-effects linear regression
assumption that correlated variables are not to be stochastic. In this case, since

A. Getis
Department of Geography, San Diego State University, San Diego, CA, USA
e-mail: arthur.getis@sdsu.edu

L. Anselin and S.J. Rey (eds.), Perspectives on Spatial Data Analysis,
Advances in Spatial Science, DOI 10.1007/978-3-642-01976-0 14,
c© Springer-Verlag Berlin Heidelberg 2010

191



192 A. Getis

ordinary least squares yields biased parameter estimates and R-squared values, other
estimation techniques must be considered, such as maximum likelihood estimation.
In addition, any remaining spatial dependence in the regression equation, as may be
evident in error terms, must be accounted for. In multiple variable cases, it may be
necessary to develop a series of W matrices, thus further complicating the meaning
of the various tests on the significance of the parameters.

Because of the complexity of the typical spatial regression formulation, I pro-
pose that the spatial dependence within each dependent and independent variable
be filtered out before the estimation procedure is adopted. This proposal has the fol-
lowing ramification: one must somehow reintroduce into the regression equation the
removed spatial dependence in order to avoid misspecification. No spatial depen-
dence should be evident in the error term since supposedly it has been removed
from all of the possible sources. Since each variable on the right hand side is no
longer stochastically correlated nor spatially autocorrelated, and there is only the
usual spherical error, ordinary least squares can be used for estimation.

This argument for filtering from spatially autocorrelated variables the spatial
dependence effects is sound only insofar as there is a way to accomplish the task.
Before demonstrating the variable filtering procedure, let me briefly describe a
statistic that will act as its foundation.

14.3 The Gi Statistic

This statistic measures the degree of association that results from the concentration
of weighted points (or areas represented by weighted points) and all other weighted
points included within a radius of distance d from the original weighted point.1 We
are given an area subdivided into n regions, i = 1, 2, . . . , n, where each region is
identified with a point whose Cartesian coordinates are known. Each i has associated
with it a value x (a weight) taken from a variable X . The variable has a natural origin
and is positive.2 The statistic is written as

Gi(d) =

∑n
j=1 wij(d)xj
∑n

j=1 xj
, j 	= i, (14.1)

where wij is a one/zero spatial weight matrix with ones for all links defined as being
within distance d of a given i; all other links are zero. The numerator is, therefore,
the sum of all x within d of i except when i equals j. The denominator is the sum
of all xj except when i equals j. The mean is

E(Gi) =
Wi

(n − 1)
, (14.2)

where Wi =
∑

j wij(d).

1 For a full discussion see Getis and Ord (1992).
2 A more recent version of this statistic in Ord and Getis (1993) avoids these restrictions.
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If we set
∑

j xj/(n − 1) = Yi1 and
∑

j x2
j/(n − 1) − Y 2

i1 = Yi2 then:

V ar(Gi) =
Wi(n − 1 − Wi)
(n − 1)2(n − 2)

(
Yi2

Y 2
i1

). (14.3)

Gi(d) measures the concentration or lack of concentration of the sum of values
associated with variable X in the region under study. Gi(d) is to be differentiated
from a statistic G∗

i (d) that takes into account the value of x at i, that is, j equal
to i. Gi(d) is a proportion of the sum of all xj values that are within d of i. If,
for example, high-valued x′

js are near to the point i, and d includes these high
values, so that a large proportion of the sum of all x′

js is within d of i, then Gi(d)
is high. Whether the Gi(d) value is statistically significant depends on the statistic’s
expectation.

For our purposes here, the most important characteristic of the statistic is that
it gives the proportion of the summed variable within a specified distance from
a particular point i as a part of the entire summed variable. When this value is
compared to the statistic’s expectation, the difference tells us the degree of clustering
of the sum of the x variable in the vicinity of i that is greater or less than chance
would have it.

14.4 The Filtering Procedure

The rationale for transforming a spatially dependent variable into a spatially inde-
pendent variable is that the spatial dependence can be removed from the spatially
dependent variable and replaced as a separate independent variable. An easy solu-
tion to this problem, but useless, would be to set all values of the spatially dependent
variable to the mean. This “variable” would not be spatially dependent and it would
not correlate with any other variable. The solution I outline below attempts to adjust
the spatial dependent variables only to the point where spatial dependence is no
longer embodied in them. That which is filtered from the original variable becomes
a new spatial variable. It may be that the autocorrelation filtered from one variable is
highly correlated with that which is filtered from another. In a regression equation,
in order to avoid multicollinearity, in the final equation it may be necessary to use
only one spatial variable rather than all spatial variables extracted from the original
variables.

Suppose that within distance d of a point, x1, there are two other points with
values, x2, and x3, which when summed are a greater proportion of all x (minus
x1) than what one should expect in a similar spatial configuration with the same d
value when all x values are randomly distributed. This means that G1(d) is greater
than the random expectation, W1/(n − 1). Suppose G1(d) is the proportion 0.40
and E[G1(d)] = 0.30. Then 40% of the sum of all observed x (not counting x1

itself) is contained within d of x1, while the expectation is only 30%. We then call
30/40 of x1 the filtered value of x1. The difference between the original value and
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the filtered value is that which is filtered out due to the spatial clustering of x values
in the vicinity of x1. In this example, the ratio 30/40 represents the degree to which
x1 is similar to its expectation. The degree of dissimilarity, 10/40, represents that
which is due to positive spatial association. Negative spatial association is found in
like manner. Thus,

x∗
i =

xi( Wi

n−1 )
Gi(d)

(14.4)

which when solved for all xi, represents the filtered variable X∗. The difference
between X and X∗ is a new variable, L, that represents the spatial effects embedded
in X .

For realistic filtering it is essential to find an appropriate d value. The value
should represent the distance within which spatial dependence is maximized. In
Getis (1990), d corresponds to the maximum total sum of squared differences
between the observed and the expected Gi values. On reflection, however, a dif-
ferent d value seems more appropriate. This is the value that corresponds to the
maximum absolute sum of the normal standard variate of the statistic Gi(d) for
all i observations of the variable X . This single value is chosen since it represents
overall the distance beyond which no further association or nonassociation effects
increase the probability that the observed value is different than the expected value.
One might argue that beyond this d value there is an overall cessation of spatial
effects for the variable in question. For each variable, we use this value in the exam-
ples given below. A more detailed approach, but less general, would be to identify a
critical d value for each individual point i. Clearly, more research is needed on this
subject.

Our approach to spatial filtering can be given credence by showing that the
following four conditions hold:

1. There is no spatial autocorrelation embodied in X∗.
2. If X is a variable with spatial dependence embedded in it, then the difference

between X and X∗ is a spatially autocorrelated variable (L).
3. In any regression model where all variables have been filtered using an appropri-

ate distance d, residuals are not spatially associated.
4. In a regression equation, appropriate variables should be statistically significant

after spatial dependence has been removed from them. Of course, appropriate-
ness in this case requires theoretical justification. In this chapter, we will be
satisfied if intuitively correct variables are statistically significant after spatial
dependence has been removed.

If these conditions are met, one might conclude that a reasonable estimate of spa-
tial autocorrelation has been found and that ordinary least squares is appropriate for
regression modeling where this type of filtering has been used. In the next section,
these conditions are demonstrated by way of three examples.
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14.5 Filtering Variables: Three Examples

14.5.1 Example 1: Urban Crime

Anselin (1988) provides data on three variables (crime, income, and housing) by
neighborhoods (given as points with x, y coordinates) for Columbus, Ohio, for 1980
(n = 49). The autocorrelated variable, crime (CR), is constructed from the number
of burglaries and thefts per thousand households, and income (IN) and housing (HO)
are given by household in thousands of dollars. When d = 4 km spatial association
is at a maximum for crime, d = 3 for housing and income. In the tests that follow,
these values for d will be used. The trial OLS model is

CR = 68.62 − 1.597IN − 0.274HO

(t) (14.49) (−4.78) (−2.65)
(14.5)

The adjusted R2 = 0.533 and the standardized Moran’s I on the residuals is 2.765.
The criterion for spatial dependence in this and all subsequent tests is the 0.05
level of the normal curve calculated from the / statistic (randomization, distance
effect = 1/d2) of Moran (Cliff and Ord, 1973). This statistic will not be reviewed
here. In this case then, the residuals are spatially statistically significant. In addi-
tion, it is important to note that two of the variables reveal strong spatial auto-
correlation:

Variable Z(I)
CR 7.345
IN 4.168
HO 1.903

Test 1: There is no spatial autocorrelation embodied in X∗.
This test requires that the transformed variables, CR∗, IN∗, and HO∗ are not

spatially autocorrelated. The results are as expected:

Variable Z(I)
CR∗ −0.152
IN∗ −0.280
HO∗ −0.454

Test 2: If X is a variable with spatial dependence embedded in it, then the difference
between X and X∗ is a spatially autocorrelated variable (L).

The results of the test (see below) show that all three L variables are spatially
autocorrelated. Although it is not required for the housing variable to have a high
Z(I) value, it, too, has spatial dependence embedded within it.
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Variable Z(I)
LCR 7.659
LIN 2.059
LHO 3.044

Test 3: In any regression model where all variables have been filtered using an
appropriate distance d, residuals are not spatially associated.

In this case we use the linear regression:

CR∗ = a − IN∗ − HO∗ + e (14.6)

and then test e for spatial association using I . Clearly, this is an inadequate model
but it does serve to show how the filtering of variables satisfies our intuition. As
expected, the residuals are not spatially associated as Z(I) = 0.161. The correlated
variables explain 32% of the variation in the filtered crime variable. In the unfil-
tered case shown above, the adjusted R2 is 0.533. This indicates that by removing
the spatial association, the model becomes a weaker predictor of the location of the
incidence of crime.

Test 4: In a regression model, appropriate variables should be statistically significant
after spatial dependence has been removed from them.

Based on the earlier tests, an intuitively appealing model designed to “explain”
crime is

CR = 60.15 − 0.96IN∗ + 0.94LIN − 0.27HO∗ − 0.63LCR

(t) (14.11) (−3.40) (−2.97) (−3.28) (−6.08)
. (14.7)

The adjusted R2 is 0.719, and the residuals are not spatially associated as Z(I) =
1.1618.

Discussion: All four tests had satisfactory outcomes. The example tells us much
about the crime, income, and housing data of Columbus. Note that the adjusted
R2 value decreases when each of the variables is filtered for spatial association
(0.533–0.323). When the spatial effects are reintroduced to the filtered equation,
the R2 increases (0.323–0.719). The implication of this is that although filtered
equations are free of spatial effects, they must be included in the final model in order
to account for the spatial effects. In the case of crime in Columbus, it appears that the
configuration of the data units has as much to do with explaining crime as does the
income and housing variables. The proliferation of small, spatially autocorrelated
units in the high crime areas contributed to the inappropriateness of the original
unfiltered equation.
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14.5.2 Example 2: Regional Inequality

In a study of regional disparities among the 16 regional divisions of Turkey, Atalik
(1990) tested the Cobb-Douglas type model:

Y = aP bIcSdAf (14.8)

which can be written as

log Y = log a + b logP + c log I + d log S + f log A, (14.9)

where Y is GDP per capita, P activity rate (share of the country’s active popula-
tion), I infrastructure rate (share of the country’s literate population), S industrial
employment rate, and A agglomeration rate (the proportion of the people of the
region residing in the largest city).

The trial OLS equation is

log Y = 0.81 log a − 0.79 logP + 1.27 log I + 0.63 logS + 0.05 logA

(t) (0.23) (−0.47) (2.28) (2.12) (0.38)
(14.10)

in which each variable is spatially autocorrelated (see below) but the residuals are
not autocorrelated (Z(I) = −0.8061; see Fig. 14.1). Log P has the wrong sign, and
the log P and log A variables are not significant. Log I and log S are significant
predictors of log Y . The adjusted R2 is 0.797.

In order to give spatial meaning to these results, coordinates were identified that
correspond to the population centroid of each district Using the procedure described
earlier, the critical d value was found to be 187.5 miles for each variable (increments
of 18.75 miles were examined starting at 18.75 miles). The Z(I) values shown
below indicate that there is strong spatial autocorrelation in the data. There is a
clear east-west trend in the data; the more favorable socioeconomic values are in the
west (see Fig. 14.2).

V ariable Z(I)
log Y 5.608
log P 3.777
log I 4.437
log S 5.603
log A 2.790

Test 1: All filtered variables are free of spatial autocorrelation.
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Fig. 14.1 There is no discernible spatial pattern of the residuals of the trial equation. One might
get the impression from this that there is no spatial autocorrelation in the data

Variable Z(I)
log Y ∗ −1.203
log P ∗ −1.720
log I∗ −0.131
log S∗ −0.282
log A∗ −0.065

Test 2: L variables based on spatially autocorrelated variables are spatially autocor-
related.

Variable Z(I)
Llog Y 5.396
Llog P 3.292
Llog I 4.861
Llog S 5.223
Llog A 4.486
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Fig. 14.2 The dependent variable. Log Y , is high in the west and low in the east. AH other
variables in the trial equation act similarly

Test 3: Residuals of the filtered regression equation are not spatially associated.
The equation is

log Y ∗ = log a + log P ∗ + log I∗ + log S∗ + log A∗ + e. (14.11)

The Z(I) value of 1.8027 for residuals is not significant.

Test 4: In a regression model, appropriate variables should be statistically significant
after spatial dependence has been removed from them.

Taking into account the results of the trial OLS model shown above and multi-
collinearity, an appropriate equation is

log Y = 0.23 loga + 0.92 log I∗ + 0.53 logS∗ − 4.51 logLlog S + e

(t) (0.24) (1.67) (2.29) (−6.91)
. (14.12)
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The residuals are not spatially autocorrelated as Z(I) = −1.5282. The adjusted R2

is 0.836, an increase over the 0.797 of the trial model.

Discussion: Again, the four tests show how an inadequate model can be recast in
order to account for spatial association in the constituent variables. In this case, not
only were we able to show that the east-west trend in the data resulted in a poor
trial equation, but that a stronger model can be constructed with fewer variables.
As in the first example, the adjusted R2 value decreases when each of the variables
is filtered for spatial association (0.797–0.255). When the spatial effects are rein-
troduced to the filtered equation, the R2 increases (0.255–0.836). In this case, the
filtered infrastructure rate (log I∗), i.e., literacy, and filtered industrial employment
rate (logS∗) together with the strong west to east diminishing trend in the industrial
employment rate satisfactorily explain the level of GDP per capita in Turkey.

14.5.3 Example 3: Government Expenditures

In the well known econometrics text by (Pindyck and Rubinfeld, 1981, pp. 169–
170), an expenditure data set based on Bureau of Census information is given for
the states of the United States for 1970. Variables given in the table are trans-
formed by population size by the authors to study the response variable, state and
local government expenditures per capita in dollars (PCEXP = EXP/POP ),
using the regressors: federal grants to each state per capita in dollars (PCAID =
AID/POP ), population in thousands (POP = 1/POP ), and personal income per
capita (PCINC = INC/POP ) (Pindyck and Rubinfeld, 1981, p. 272). The trial
OLS equation is

PCEXP = −405.81 + 1.63PCAID + 25779POP + 0.210PCINC

(t) (−4.01) (6.18) (1.30) (10.08)
(14.13)

and the adjusted R2 is 0.753.
Population centroids of states were estimated. Using increments of 33.3 miles,

the critical d values are 333 miles for the first three variables and 267 miles for
PCINC. The values shown below indicate that only one variable, PCINC, is
spatially autocorrelated.

Variable Z(I)
PCEXP 1.861
PCAID 0.291
POP −0.080
PCINC 5.063



14 Spatial Filtering in a Regression Framework 201

Test 1: All filtered variables are free of spatial autocorrelation.

Variable Z(I)
PCEXP ∗ −1.619
PCAID∗ −1.147
POP ∗ 0.588
PCINC∗ −0.250

Although all filtered variables are free of spatial autocorrelation, the only require-
ment for this test is that PCINC∗ not be spatially autocorrelated. In any case, we
always expect filtered variables not to be spatially statistically significant.

Test 2: L variables based on spatially autocorrelated variables are spatially autocor-
related.

Variable Z(I)
LPCEXP 3.705
LPCAID 1.238
LPOP 1.208
LPCINC 5.274

The requirement that LPCINC autocorrelated holds. Note that PCEXP also
contains much embedded spatial dependency.

Test 3: Residuals of the filtered regression equation are not spatially autocorrelated.
For the equation:

PCEXP ∗ = a + PCAID∗ + POP ∗ + PCINC∗ + e (14.14)

the Z(I) value for the residuals is −0.666 and the adjusted R2 is 0.439, which is
considerably less than the 0.753 value of the trial OLS equation.

Test 4: In a regression model, appropriate variables should be statistically significant
after spatial dependence has been removed from them.

By experimentation, the best model for PCEXP is found to be

PCEXP = 369.68 + 1.72PCAID∗ + 0.19PCINC∗

(t) (−3.29) (7.28) (9.42)
−2.27LPCAID − 0.26LPCINC

(−4.06) (−3.84)

. (14.15)

The adjusted R2 is 0.747 and the Z(I) of the residuals is −0.819. There is essen-
tially no multicollinearity in this formulation, and all variables are highly significant.
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Discussion: The explanation for PCEXP is made up of both the non-spatial
aspects and the spatial configuration of PCAID and PCINC. Note that a con-
siderable degree of questionable explanation (0.753) in the trial model exists when
spatial association is not taken into account. The final model is slightly less in
explained variance (0.747), but it is free of embedded spatial autocorrelation.

14.6 Conclusions

The results of the tests indicate that for the cases presented here, in every instance
the filtering procedure conforms to our expectation. Clearly, these are but three case
studies. Many more examples should be carried out. In the cases shown here, the
procedure considerably helps in isolating the spatial dependence embedded within
spatial series variables. In addition, the methodology aids in the proper specification
of multiple regressionrelationships. The simplicity and ease of understanding made
available by least squares methodology enable us to avoid estimation procedures
that rob us of the convenience of R2 interpretations.
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Abstract We determine the spatial pattern of Aedes aegypti and the containers in
which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru.
Four variables were examined: adult Ae. aegypti, pupae, containers positive for lar-
vae or pupae, and all water-holding containers. Adults clustered strongly within
houses and weakly to a distance of 30 m beyond the household; clustering was not
detected beyond 10 m for positive containers or pupae. Over short periods of time
restricted flight range and frequent blood-feeding behavior of Ae. aegypti appear to
be underlying factors in the clustering patterns of human dengue infections. Perma-
nent, consistently infested containers (key premises) were not major producers of
Ae. aegypti, indicating that larvaciding strategies by themselves may be less effec-
tive than reduction of mosquito development sites by source reduction and education
campaigns. We conclude that entomologic risk of human dengue infection should
be assessed at the household level at frequent time intervals.

15.1 Introduction

Patterns of dengue transmission are influenced by the abundance, survival, and
behavior of the principal mosquito vector, Aedes aegypti (L.); the level of immunity
to the circulating virus serotype in the local human population; density, distribu-
tion and movement of humans; and time required for development of virus in Ae.
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aegypti (Halstead, 1990). The relative influence of these factors on dynamics of
virus transmission is poorly understood, including how they vary through space and
time. Although the apparent clustering of human cases of dengue within households
has been reported previously (Halstead et al., 1969; Waterman et al., 1985) there
has been little formal spatial research on the distribution pattern of Ae. aegypti and
dengue cases. An exception was the spatial statistics study of a dengue epidemic
in Florida, Puerto Rico by Morrison and others (1998). They found that dengue
cases clustered within individual households over short periods of time and that
a large proportion of the entire municipality of 9,000 people was affected within
seven weeks of the first reported case. Presumably the same, or very few, infected
adult mosquitoes were causing the household case clusters while infected humans
traveling within the town may have facilitated the rapid spread of infections. The
most effective dengue control programs rely on entomologic, viral, serologic, and
clinical surveillance (Gubler, 1993). Early detection of virus activity allows for
more streamlined application of vector control measures. Because there is no vac-
cine or clinical cure for dengue, mosquito control is the only method of reducing
virus transmission. Effective serologic and viral surveillance is often beyond the
resources of the majority of affected, developing countries. Consequently, they rely
on entomologic surveillance to estimate potential risk for virus transmission and
disease.

Traditional Ae. aegypti control measures include elimination (source reduction)
or treatment of larval habitats to prevent production of adults and insecticidal space
spraying to reduce adult population densities (Gubler, 1993; Reiter and Gubler,
1997). Contemporary programs emphasize reducing Ae. aegypti populations to lev-
els that prevent or slow virus transmission with the ultimate objective of decreasing
the incidence of disease, especially severe, life-threatening illness. However, tra-
ditional entomologic surveillance techniques are based on a series of indices that
were designed to detect the presence or absence of Ae. aegypti larvae. Those meth-
ods assume a strong positive correlation between the presence of larvae and adult
females in a household: only adult females transmit virus to humans. There are,
however, three important reasons to question the strength of the larvae-adult asso-
ciation. First, because larval mortality can be high, adults may not emerge from
a container holding immature mosquitoes. Alternative entomologic surveillance
methods, especially pupal surveys, were developed to circumvent this shortcoming
(Focks and Chadee, 1997). Second, because adults are capable of flight, they can
move away and become spatially disassociated from their development sites. Third,
independent of the surveillance technique (larvae, pupae, or adult collections) city-
wide surveys are often carried out in such a way that the number and location of
households selected are derived from standard parametric sample size calculations.
The assumption that there is no spatial structure among infested houses must be
validated.

The purpose of this study was to characterize the spatial distribution of Ae.
aegypti populations in two representative neighborhoods in the Amazonian city of
Iquitos, Peru over two time periods. Specifically, from complete samples of house-
holds in two areas of Iquitos we examined the (1) underlying spatial structure
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of Ae. aegypti infestations (larvae, pupae, and adult), (2) temporal stability of
that structure, and (3) correlation between clusters at different life stages of the
mosquito. We conclude by discussing the implications of our findings on estima-
tion of entomologic risk to epidemiologic studies of dengue and routine dengue
surveillance.

15.2 Materials and Methods

Study Area

The area chosen for this study consists of two neighborhoods in Iquitos (73.2◦W,
3.7◦S, and 120 m above sea level), a city that is surrounded on three sides by the
Amazon, Nanay, and Itaya Rivers. Because Iquitos is accessible only by air or river,
it is a geographically isolated city of approximately 345,000 people in the Ama-
zon forest (Watts et al., 1999) (Fig. 15.1). The major industries in Iquitos are small
commercial enterprises, fishing, oil, lumber, and to some extent agriculture.

The two neighborhoods where we carried out entomologic surveys were Maynas,
located in the north central part of the city, and Tupac Amaru, situated in the
southwestern-most part of the city (Fig. 15.1). We selected these two neighborhoods
because they were characterized as areas of high (Maynas) and low (Tupac Amaru)
prevalence of human dengue infection in previous informal studies (Morrison, A.C.
and Scott, T.W., unpublished data). Although Maynas could be characterized as
the wealthier and older of the two neighborhoods, households within both areas
vary greatly in socioeconomic status so that well constructed households with piped
water and poorly constructed households with no water or sewer services exist in
both neighborhoods in a patchwork. Nevertheless, there are some distinct differ-
ences between the two neighborhoods. Maynas has a higher proportion than Tupac
Amaru of permanent houses constructed with bricks and concrete. Conversely,
Tupac Amaru is a community in transition from predominantly temporary wood
houses with palm roofs to houses constructed with brick and concrete. Even though
Maynas has a better-developed sewer system than Tupac Amaru, the Maynas water
supply is inconsistent. Consequently, Maynas residents are more likely than those
in Tupac Amaru to store water in containers that are potential development sites for
immature Ae. aegypti. In contrast, Tupac Amaru has many open sewers but because
of close proximity to the city water plant most houses have a stable water supply
and are less likely to store water than in Maynas.

Study Design

A unique-house code was painted on the front of each of the 550 houses located
on 20 blocks in Maynas and the 510 houses located on 14 blocks in Tupac Amaru.
Almost all houses have at least one wall in common with a neighboring house.
Beginning in mid-November 1998, five two-person entomology collection teams
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Fig. 15.1 Map of Iquitos, Peru and location of the Maynas and Tupac Amaru study areas

were provided a map of a block to be surveyed with a designated start house. House-
holds were surveyed in sequence daily along the block from the start house between
7:00 a.m. and 1:00 p.m. Unoccupied or closed houses and houses where residents
did not provide permission for the survey, businesses, offices, and schools were not
sampled. Thus, we were able to survey 95% of the houses in both surveys: 528 in
Maynas and 481 in Tupac Amaru. Collecting teams were rotated among blocks each
day in an attempt to limit temporal and collector biases. Each day, prior to contin-
uing surveys of unsampled households, an attempt was made to inspect houses that
were previously closed or where access had been refused. Access to houses was
attempted a minimum of three times. Maynas and Tupac Amaru were surveyed on
alternating days. This process was carried out until all the houses in each neighbor-
hood had been surveyed or repeated attempts to gain access failed. In mid-December
1998, immediately after termination of the first survey, the sampling procedure was
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repeated. The second survey was completed on January 18, 1999. To differentiate
data associated with the four different collections, the two surveys will be referred
to as a (November–December) and b (December–January).

Entomologic Surveys

Our survey methodology was based on techniques suggested by Focks and others
(1993). Briefly, after asking permission to survey the household, one member of the
team administered a demographic survey designed to determine the number of occu-
pants, dimensions of the property, house construction materials, method of cooking,
water use patterns, type of sewage disposal, and insecticide use. Simultaneously,
the other team member began collecting adult mosquitoes using a backpack aspi-
rator (John W. Hock Company, Gainesville, FL) (Scott et al., 2000a). Aspiration
collections were attempted in all rooms of the house (when permitted) including
walls, under furniture, and inside closets and other likely adult mosquito resting
sites. Aspiration collections were similarly attempted outside the house from outside
walls, under eaves, vegetation, and in and around outdoor stored materials.

In our field laboratory, larvae were identified as Ae. aegypti by the relative size
of the siphon and their movement compared with the other most commonly found
Culex species (Consoli and de Oliveira, 1994). Limatus larvae were differentiated
by the characteristics on the eighth tergite (Consoli and de Oliveira, 1994). All larval
samples were cross-checked with the entomology collection sheets provided by the
field team. Pupae were counted and placed in plastic emergence vials, ≤30 per vial
and labeled with the house, container code, and date. Each subsequent day, emerged
adults were collected and placed in a −20◦C freezer. After 30 min to 1 h, their
species was identified, counted by sex, and data were recorded on the entomology
collection sheet.

Data Management

A geographic information system (GIS), using ARC/INFO and ArcView software
(Environmental Systems Research Institute, Inc., Redlands, CA), was developed for
the city of Iquitos. A base map of city blocks in the form of AutoCAD files was
obtained from the Peruvian Navy, which they created by digitizing ortho-corrected
1995 aerial photographs. The coordinate system and datum used were Universal
Transverse Mercator and WGS-84, respectively. The AutoCAD files were converted
to ARC/INFO export files and all polygons (city blocks) were closed using stan-
dard ARCEdit procedures. Files were then imported into ArcView and converted to
shape files.

We then divided city blocks into individual housing lots that were identified by
painted codes. The front end of each house lot was measured and recorded along
with the house code and street address on a rough sketch of each block. Based on
maps constructed in the field, each digital block in the GIS was split into lots of
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appropriate width using the measuring tool in ArcView. Lot length was estimated.
Lot geometric centroids were then added to each individual lot and assigned a
unique project code that was included on all subsequent survey forms. Construction
of maps with resolution to the level of household lots allowed all entomologic data
from the four surveys to be joined to geographic coordinates via house codes. Cen-
troids allowed for spatial analysis to be performed from the level of the individual
household upwards.

Analysis of the Data

Spatial patterns of four variables were examined (adult Ae. aegypti, pupae, all water-
holding containers, and water-holding containers positive for larvae and pupae).
Variables were explored by identifying the spatial distribution of each of the vari-
ables for each of the two time periods. Our study focused on (1) each of the two
neighborhoods as a whole, (2) the magnitude of each variable in each household
for each neighborhood, and (3) the presence or absence of a variable in a house-
hold for each neighborhood. Global K-functions, point and weighted, were used
to identify clustering for (1) and the local statistic, G∗

i , was used for (2). These
statistics are some of the suite of spatial statistical programs available as part of the
Point Pattern Analysis (PPA) program. The program was developed by Arthur Getis
with assistance from Laura Hungerford, Dong-Mei Chen, and Jared Aldstadt. An
online version is available at http://zappa.nku.edu/∼longa/cgi-bin/cgi-tcl-examples/
generic/ppa/ppa.cgi. For (3), we used chi-square tests to compare similarities and
differences among the various patterns.

K-functions

Pattern models are based on the K-function work of Ripley (1981) and Getis (1984).
The K-function describes the number of pairs of observations between a point,
which is the center of a disk and other points that are distance d away. For a sta-
tionary, isotropic process, λ(d) is the expected number of points within distance d
of an arbitrary point. The estimator of λ is N/A where N is the number of points in
the study area A.

The estimator of K(d) is

K̂(d) = A/N2ΣiΣju
−1
ij Id(dij ≤ d), i 	= j, (15.1)

where dij is the distance between the ith and jth observed points and Id(dij ≤ d)
is an indicator function that is 1 if dij is less than or equal to d and 0 otherwise.
For a circle centered on i passing through point j, uij is the proportion of the cir-
cumference of the circle that lies within A. When dij is less than the distance from
i to one or more borders of the study area, uij is 1. The “border correction” makes
K̂(d) an approximately unbiased estimator of K(d) provided that d is less than the
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circumference of A. A square-root scale makes the function linear and stabilizes the
variance. Thus, we have

L̂(d) ≡
√

K̂(d)/π (15.2)

which is the estimator of L(d) ≡ √
K(d)/π. The mean of L(d) is d and the

approximate variance is 1
2 (πN2) (Ripley, 1979a). The expectation of L(d) given

the hypothesis of complete spatial randomness (CSR) is d. CSR is a homogenous
planar Poisson process where all points are independent of all other points and all
locations are equally likely to contain a point. For CSR, a plot of L̂(d) against d on
similarly scaled axes yields a 45◦ line beginning at the natural origin. A clustered
pattern occurs when L̂(d) is greater than d and a dispersed pattern can be identified
when L̂(d) is less than d. In the spirit of a exploratory diagnostic tool, statistical
significance at the P ≤ 0.05 level is assumed to exist when the observed L̂(d) func-
tion falls outside of an envelope containing 19 permutations of the location of the
N objects where each permutation is based on CSR. L̂(d) is usually calculated for
a series of distances d.

Instead of considering each point as a nominal scale variable, points can be
weighted according to some measure of size or intensity (Getis, 1984),

L̂w(d) = [{AΣiΣju
−1
ij Id(dij ≤ d)xixj}/{π[(Σixi)2 − Σix

2
i ]}]1/2, i 	= j,

(15.3)

where X is a random variable having values x for adult mosquitoes in houses at
sites i. Equation (15.3) is the estimator for Lw(d), which is equal to E[L̂w(d)]. In the
cases discussed in this paper, the weights are in turn numbers of adult mosquitoes,
pupae, water-holding containers, and positive containers. For each xi, there are (N−
1) values xj . In this case, the numerator of L̂w(d) represents the product of the pairs
of values xi xj within distance d of each x. The denominator is scaled such that if all
x are of equal value, then L̂(d) will be approximately equal to L̂w(d). Thus, (15.3)
represents a measure of clustering or dispersion identified in (15.2). If the number
of adult mosquitoes, for example, is independently distributed within the plots of
houses, L̂(d) will be approximately equal to L̂w(d). Upper and lower significance
boundaries for L̂w(d) can be determined by a permutation procedure in which the
various observed values for number of adult mosquitoes, xi, are permuted among
the house locations a specified number of times.

We also explored the increments to L̂(d) and L̂w(d) observed for each equal
increase of distance. In a CSR pattern of adult mosquitoes, these successive values
will be the same for each equal increase of d. The focus is on the noncumulative
properties of these pattern indicators. When the change in L̂(d) is greater or less
than the change in L̂w(d) for a given distance band, the adult mosquitoes are less
concentrated or more concentrated, respectively, than that expected in the observed
pattern, no matter how clustered the pattern of houses. That is, the number of adult
mosquitoes is not randomly distributed among the houses. In essence, we compare
ΔL̂(d) with ΔL̂w(d) for a given small change in d.
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Table 15.1 Summary of clustering statistics

Test Purpose Scale Cut-off for statistic
L̂(d) To identify the existence of clustering for

a 1/0 variable in a neighborhood
d 19 simulations of random

occurrence within
neighborhood (0.05 level)

L̂w(d) To identify clustering of a weighted
variable in a neighborhood

d 99 simulations of random
occurrence within eligible
locations of variable (0.01
level)

G∗
i (d) To identify individual observations of a

variable who are members of clusters
Z > +2.575 (0.01 level)

G∗
i (d) Statistic

In addition to L(d), we used the local statistic, G∗
i (Ord and Getis, 1995), to identify

individual members of clusters. For G∗
i we take each house as a center, one at a time,

and search the nearby area for occurrences of more or fewer adult mosquitoes than
expected. In this way, specific houses are identified as members or non-members of
clusters. This statistic is written as

G∗
i (d) = [Σjwij(d)xj − W ∗

i x̄]/[s{[NS∗
1i − W ∗2

i ]/(N − 1)}1/2], all j, (15.4)

where wij(d) is the i, jth element of a one/zero spatial weights matrix with ones if
the jth house is within d of a given ith house; all other elements are zero; W ∗

i =
Σwij(d), where wii is included, and S∗

1i = Σw2
ij (all j). The mean of the adult

mosquitoes in houses is x̄ and s is the standard deviation. The value of G∗
i (d) is

given in normal standard deviates. Note that this statistic has as its expectation,
Wix̄, which controls for the number of houses within d of each house. Note, too,
that G∗

i (d) is 0 in a pattern where adult mosquitoes are randomly distributed within
d of house i. For this study, we arbitrarily define values greater than 2.575 (the 0.01
level of confidence) as representing houses which are members of clusters of adult
mosquitoes. The statistics used in the analysis and the test criteria are summarized
in Table 15.1.

15.3 Results

We begin the explanation of results from our study by focusing on one neighbor-
hood, Maynas, using data from the initial survey a. We first consider the general,
neighborhood (global) spatial pattern of adult mosquitoes and then focus on the
pattern of the numbers of Ae. aegypti in individual houses (local) followed by an
analysis of the presence or absence of adult mosquitoes in households. Next we
examine the same processes for immature mosquitoes. Finally, we compare the four
entomologic variables in the two neighborhoods and two time periods.
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Table 15.2 L(d) values for distances 10–100 m for houses and adult mosquitoes in Maynas a*

Distance (m) Houses Adult House Adult
mosquitoes increment increment

10 16.33 22.86 16.33 22.86

20 27.13 36.79 10.80 13.93

30 38.70 50.58 11.57 13.79

40 52.85 61.13 14.15 10.55

50 65.67 74.24 12.82 13.11

60 76.70 83.94 11.03 9.70

70 88.03 93.71 11.33 9.77

80 100.98 104.12 12.95 10.41

90 111.77 113.10 10.79 8.98

100 122.19 120.57 10.42 7.47
∗ i does not equal j

Neighborhood Pattern Analysis

The results of the K-function analysis for adult Ae. aegypti in Maynas in time period
a are shown in Table 15.2. Adult mosquito clustering occurs if values of L̂(d) are
higher not only than adult mosquitoes distributed at random in the Maynas neighbor-
hood for a given distance (i.e., d), but also higher than the L̂(d) value for the pattern
of houses at that same distance. Clearly, it is not enough that adult mosquitoes were
spatially concentrated at the same rate as the spatial concentration of houses. Note
that in column 3 in Table 15.2, the L̂w(d) value for adult mosquitoes at 10 m is
22.86, which is quite a bit higher than the 10.00 (random expectation) shown in col-
umn 1. However, houses were much more clustered than random (16.33 vs. 10.00
at 10 m). Even so, adult mosquitoes were more clustered than houses. In addition,
using 19 permutations to identify the range of possible values for adult mosquitoes
among houses (at the 0.05 level), we find that adult mosquitoes at 22.86 fall outside
of that range (low of 11.88 to high of 19.10) at 10 m. This gives strong statistical
evidence that adult mosquitoes were clustered in the Maynas neighborhood during
time period a. Clustering is at the 10-m level; thus, we can conclude that there is
clustering around houses to at least 10 m distant.

Notice that in column 2 of Table 15.2, as distance increases to 20, 30 m, and so
on, the L̂(d) values for houses increase at a rate that is not dissimilar from random
expectation. This means that although houses are closely spaced at short distances,
there is little or no increase in clustering as distance increases. The L̂w(d) value
for adult mosquitoes shown in column 3 at 20 and 30 m, however, increases at a
slightly higher rate than houses (column 5 vs. column 4), indicating a continuing of
the clustering identified at 10 m to at least 30 m. This pattern of increase changes by
40 m (the increment is 10.55, less than the house increment of 14.15) indicating an
end to the increase in clustering. That is, beyond 30 m, any further clustering of adult
mosquitoes corresponds to clustering of houses. We conclude that adult mosquitoes
cluster heavily at nearest house distances and moderately to approximately 30 m. In
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Table 15.3 L(d) values for distances 10–100 m for houses and adult mosquitoes in Maynas a*

Distance (m) Houses Adult House Adult
mosquitoes increment increment

10 21.44 39.30 21.44 39.30

20 30.46 48.65 9.03 9.35

30 41.08 59.67 10.62 11.02

40 54.60 68.75 13.51 9.08

50 67.06 80.52 12.47 11.77

60 77.88 89.46 10.81 8.94

70 89.04 98.60 11.16 9.14

80 101.83 108.44 12.79 9.84

90 112.52 117.00 10.69 8.56

100 122.87 124.17 10.34 7.17
∗ i may equal j

Maynas, the mean house width was 7 ± 3 m; thus, adult clusters could extend to
about two households on each side.

We altered (15.1) and (15.3) to include houses themselves; that is, we allowed i
to equal j (Table 15.3; see Getis (1984) for an explanation of the methodology). Our
focus now is on houses and their neighbors rather than neighboring houses only. In
this circumstance, the clustering of houses (column 2) is inflated to include not only
near neighbors at 10 m, but also the houses themselves. The original value of 16.33
at 10 m now increases to 21.44 for houses indicating that in this view, houses are
more clustered than was indicated previously (an increase of 31%). More impor-
tantly, however, are the results when adult mosquitoes within houses are taken into
account. Here the value at 10 m increases to 39.30 from 22.86, an increase of 72%.
The implication is that adult mosquitoes are heavily clustered within houses. Note
also that as distance increases, the increment to houses and adult mosquitoes is
approximately 10, indicating that there is a cessation of clustering beyond 10 m.
Again there is additional, albeit weak clustering up to 30 m because the increase in
the mosquito value is higher than that for the houses at 20 and 30 m. These results
taken together with the earlier ones unequivocally indicate that adult mosquitoes
cluster heavily within or among nearest neighboring houses. In addition, there is evi-
dence of further, albeit minor, clustering as far as 30 m. The clustering within houses
in the Maynas neighborhood quantitatively overwhelms this further clustering.

Household Pattern Analysis by Numbers of Adult Mosquitoes

After it was evident that there was short distance clustering of adult mosquitoes in
Maynas a, we identified the exact houses that could be considered as members of
clusters. First, we considered the actual numbers of adult mosquitoes in each house
in Maynas a (Fig. 15.2). If clustering was within households, the G∗

i statistic will be
above +2.575 at short distances, say 1 m at the 0.01 level of statistical significance.
If clustering continues to near neighbors within 10 m of a house, the value of G∗

i
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Fig. 15.2 Mosquitoes per house in the Maynas a study

will be higher at 10 m than at 1 m. If values of G∗
i do not increase with increases

in distance, then whatever clustering existed at the shorter distance ceases to exist
at longer distances. The houses that are members of significant clusters at 1, 10,
20, and 30 m are shown in Fig. 15.3. Note that of the 528 houses in Maynas during
time period a, 35 (6.6%) are members of statistically significant clusters of adult
mosquitoes. Of the 35, 10 exhibit clustering with near neighbors beyond the house
itself. Of these 10, seven show clustering to 10 m, two to 20 m, and one to 30 m. This
result reinforces the notion that adult mosquitoes tend to cluster in single households
with a modest spread to as far as 30 m.

Pattern of Houses Infested with Adult Ae. aegypti (<1 Mosquito)

Figure 15.4 is a map of the presence of one or more mosquitoes in households. One
hundred sixty-four (31.1%) of the houses had one or more adult mosquitoes present;
however, only 35 of them (21.3%) were members of statistically significant clusters.
This indicates that clusters were made up mainly of household concentrations, and
that 79.7% of the households with mosquitoes were spread about in a random pattern
among all households.
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to a Distance of:
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Fig. 15.3 Clusters of Aedes aegypti adults in the Maynas a study based on the number of
mosquitoes in houses
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Fig. 15.4 Clusters of Aedes aegypti adults in the Maynas a study based on presence or absence of
mosquitoes
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Neighborhood Pattern Analysis of Immature Mosquitoes

Results in Tables 15.4 and 15.5 allow for the comparison of K-function values
for water-holding containers, positive containers, and pupae with house and adult
mosquito patterns in the Maynas neighborhood [(15.1) and (15.3)]. The d = 10 m
row in Table 15.4 shows, as before, that adult mosquitoes cluster more so than
houses (22.86–16.33), but the pattern of water-holding containers and positive con-
tainers is more nearly like the pattern of houses (16.25–16.33 and 15.40–16.33).
Thus, there is evidence of no clustering for these variables. In the case of pupae,
however, there is a significantly lower value (12.03), indicating that pupae do not
cluster beyond the household and, in fact, are dispersed rather evenly through-
out the neighborhood. However, when we allow i to equal j (Table 15.5), pupae
increase from 12.03 to 56.13, an extremely high and statistically significant value.

Table 15.4 L̂(d) values for distances 10–100 for houses, adult mosquitoes, pupae, water-holding
containers, positive water-holding containers in Maynas a*

Distance (m) Houses Adult Pupae Containers Positive
mosquitoes containers

10 16.33 22.86 12.03 16.25 15.40

20 27.13 36.79 22.73 27.43 27.03

30 38.70 50.58 36.82 40.03 37.66

40 52.85 61.13 46.40 54.16 51.88

50 65.67 74.24 56.15 66.86 64.55

60 76.70 83.94 70.50 78.42 76.20

70 88.03 93.71 80.66 90.19 86.40

80 100.98 104.12 92.23 102.57 99.59

90 111.77 113.10 102.49 113.17 110.28

100 122.19 120.57 110.86 123.36 119.91
∗ i does not equal j

Table 15.5 L̂(d) values for distances 10–100 m for houses, adult mosquitoes, pupae, water-
holding containers, positive water-holding containers in Maynas a*

Distance (m) Houses Adult Pupae Containers Positive
mosquitoes containers

10 21.44 39.30 56.13 23.44 29.05

20 30.46 48.65 59.26 32.18 36.53

30 41.08 59.67 65.77 43.36 44.93

40 54.60 68.75 71.41 56.61 57.3

50 67.06 80.52 77.91 68.74 68.92

60 77.88 89.46 88.51 79.93 79.88

70 89.04 98.60 96.56 91.49 69.60

80 101.83 108.44 106.14 103.62 102.31

90 112.52 117.00 114.91 114.12 112.68

100 122.87 124.17 122.22 124.26 122.07
∗ i may equal j
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This indicates that pupae cluster strongly within houses, but households infested
with pupae are dispersed rather evenly throughout the neighborhood (Table 15.4).

Because water-holding container spatial data are similar to the house loca-
tion data (Tables 15.4 and 15.5), we conclude that water-holding containers are
ubiquitous in Maynas. That is, nearly all houses have water-holding containers.
Conversely, containers positive for pupae and/or larvae are more concentrated in
some houses than others and infested houses are dispersed evenly throughout the
neighborhood.

Continuing on to 20, 30 m, and further (Tables 15.4 and 15.5), only pupae act dif-
ferently than containers and positive containers. For both of the container variables,
increases mirror those of houses, reinforcing our earlier results that show ubiqui-
tous occurrences of these variables. Pupae values (Table 15.5), however, increase at
a much slower rate than houses after 10 m, indicating that households infested with
pupae are less common than households with water-holding containers or positive
containers, and that the spatial pattern of pupae is characterized by strong clustering
within households.

Household Pattern Analysis of Non-adult Mosquitoes

Our G∗
i statistic results show that there is a lack of statistically significant clustering

beyond households for container and immature mosquito variables. In the case of
pupae, there were 18 households exhibiting clustering with no clustering beyond the
household. Of the 24 houses with clusters of containers, only two were clustered to a
neighboring distance of 10 m. For positive containers, 23 houses exhibit clustering,
but only three of those were clustered beyond the household, 2–10 m, and 1–20 m.

Patterns of Pupae: Presence or Absence in Houses

In this analysis, the concern is less with numbers of pupae in houses and more with
their spatial occurrence in houses. Data in Fig. 15.5 were derived from a G∗

i analysis
that assigned a 1 to houses with one or more pupae present and 0 for the absence of
pupae. We found that 18 (3.4%) of the 528 houses can be considered as members
of clusters at the 99% level of confidence. There are two distinct clusters: one in the
middle block in the south and a smaller cluster in the north. These concentrations
raise the question of the relationship of the location of pupae to adult mosquitoes.

Comparison of Entomologic Spatial Patterns in Maynas a

Does the pattern of adult mosquito clusters correspond to the patterns of the other
variables? We answer this question in three ways. First, we consider the overlap
of clusters among the four variables. Second, we note the presence (one or more)
of each variable occurring simultaneously in individual houses. Third, we focus
on the number of water-holding containers, positive containers, pupae, and adult
mosquitoes in households
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Fig. 15.5 Clusters of Aedes aegypti pupae in the Maynas a study based on presence or absence of
pupae

Table 15.6 Number of members of clusters in Maynas and Tupac Amaru in time periods a and b

Maynas Tupac
Amaru

Houses 528 481
Adults in time period a 35 40
Adults in time period b 27 32
Pupae in time period a 18 18
Pupae in time period b 4 24
Adults in a and b 7a 2
Pupae in a and b 0 6a

Adults in a and pupae in b 0 1
Pupae in a and adults in b 2 3
Adults in a and pupae in a 3 4b

Adults in b and pupae in b 0 0
a Significant at the 0.01 level
b Significant at the 0.05 level

Association Among Clusters

In Table 15.6 we see, as before, that of the 528 houses in Maynas, 35 were members
of clusters of adult mosquitoes and 18 were members of clusters of pupae in time
period a. Only three houses were constituents of both clusters, a non-statistically
significant result at the 0.05 level (χ2 = 1.60, degrees of freedom= 1, Yates’
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Table 15.7 One or more adult mosquitoes and/or pupae present in houses in Maynas and Tupac
Amaru in time periods a and b

Maynas Percent Tupac Percent
Amaru

Houses 528 481
Adults in time period a 164 31.06 87 18.09
Adults in time period b 151 28.60 92 19.13
Pupae in time period a 155 29.36 86 17.88
Pupae in time period b 134 25.38 65 13.51

Maynas Tupac Amaru

Observed Expected Observed Expected

Adults in a and b 67 47a 20 15
Pupae in a and b 70 39a 25 11a

Adults in a and pupae in b 53 42b 14 11
Pupae in a and adults in b 50 44 20 15
Adults in a and pupae in a 66 48a 25 14a

Adults in b and pupae in b 50 38a 15 11
a Significant at the 0.01 level
b Significant at the 0.05 level

correction for small expectations). There was not a significant correlation between
pupal and adult abundance within household or neighborhood clusters detected
during the same survey.

Association Among Households Having One or More
of Each Variable Present

The analysis summarized in Table 15.7 reveals the overlap of households that have
as few as one mosquito or one pupae present. Note that of the 528 houses in Maynas,
164 had at least one mosquito present and 155 had at least one pupae present in
time period a. Expectation from a chi-square two-by-two contingency test indicate
that the two types of occurrence come together in households 48 times. A total of
66 households were infested with both pupae and adults, demonstrating that the
presence of these two variables are not independent (P < 0.01).

Association of Water-Holding Containers and Adult Mosquitoes and Pupae

Because there are water-holding containers in every household in Maynas, we com-
pared the relative abundance of positive containers, pupae and adult mosquitoes.
Table 15.8 shows the results of Spearman’s rank correlation test where the number
of water-holding containers per household were ranked from 1 to 14. Ranks 15 and
16 were made up of 15–19 and 20–35 containers, respectively. The final two ranks
were grouped because of the few numbers of observations at these high levels. The
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Table 15.8 Spearman’s rank correlations of the number of containers per house with the number
of mosquitoes and pupae per house

Location of containers Mosquitoes Pupae
Maynas a +0.615a +0.487
Maynas b +0.682b +0.594a

Tupac Amaru a +0.284 +0.486
Tupac Amaru b −0.199 +0.481
a Significant at the 0.05 level
b Significant at the 0.01 level

Table 15.9 L̂(d) values for 10 m for Maynas and Tupac Amaru for time periods a and b*

Maynas Maynas Tupac Tupac
a b Amaru a Amaru b

Houses 21.44 21.44 25.00 25.00
Mosquitoes 39.30 51.06 76.64 51.08
Pupae 56.13 71.42 80.34 76.14
Containers 23.44 23.43 27.68 27.87
Positive containers 29.05 31.00 38.56 44.30
∗ i may equal j

mean number of adult mosquitoes per house was ranked for each container level.
The result was a moderately high positive correlation for adults (+0.615, P < 0.05),
and a modest correlation for pupae (+0.487, not significant). Our analysis indicates
that elevated numbers of water-holding containers in houses increase the likelihood
for elevated numbers of adult mosquitoes and/or pupae to be present.

Maynas Vs. Tupac Amaru

Although non-spatial measures of Ae. aegypti population densities decreased in both
sites in the second surveys, they were higher in both surveys in Maynas than in
Tupac Amaru. For example, the house index (percentage of surveyed houses with
≥1 positive container) was 45% in Maynas a, 38% in Maynas b, 29% in Tupac
Amaru a, and 23% in Tupac Amaru b.

Clustering patterns of adult mosquitoes and pupae were consistent among the
four surveys, but the level of clustering was greatest during the first Tupac Amaru
survey. Table 15.9 shows the L̂(d) values (i may equal j) for each of the four sur-
veys for 10 m. Houses in Tupac Amaru were slightly more clustered than in Maynas
(25.00–21.44). Note also that in both neighborhoods water-holding containers are
distributed much the same as were houses, but positive containers tend to cluster.
Maynas with 29.05 and 31.00 in the two time periods are approximately 8–10 L
units higher than the pattern of houses. Tupac Amaru with 38.56 and 44.30 are
about 13–19 units higher than the pattern of houses. This implies that positive con-
tainers were more clustered in Tupac Amaru than Maynas, which may be a reflection
of lower infestation rates in Tupac Amaru. Nevertheless, in both sites the level of
clustering was relatively low.
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Time Period a Vs. b

The objective of carrying out back-to-back surveys in two sites was to account
for variability in collector aptitude; a commonly cited limitation of entomologic
surveys (Reiter and Gubler, 1997). Despite only three weeks separating surveys,
the number of water-holding containers and immature mosquito indices decreased
between the two sampling periods. Reasons for this are not known, but the possibil-
ity that our survey methodology affected immature populations must be considered.
During the first survey, small containers not used for water storage were tipped
over and homeowners may have cleaned or drained larger containers that our field
team identified as being infested with larvae or pupae. Following a reduction in
immature mosquitoes, we would expect a decrease in emergence of adults and in
turn a measurable reduction in adult population density. Curiously, a reduction in
adult density was only detected in Tupac Amaru, where the number of adults per
household decreased from 0.4 to 0.3. In Maynas, the number of adult Ae. aegypti
per household was 0.7 in both surveys. In the second surveys the number of water-
holding containers decreased by 13% in Tupac Amaru compared with only 3% in
Maynas.

Overall Patterns of Adult Mosquito and Pupae Household Clustering

Table 15.6 shows the number of houses that were members of statistically significant
clusters of pupae and adult Ae. aegypti. The number of houses included in clusters
for pupae in Maynas decreased from 18 to 4 from time period a to b. Interest-
ingly, the location of adult clusters changed between the two surveys. Twenty-eight
households were members of adult clusters in the first Maynas survey that were not
members of clusters in the second, a statistically significant finding that was not
the case in Tupac Amaru. Only seven households were members of adult clusters
in both Maynas surveys. Twenty Maynas households were members of clusters in
the second but not first survey. The same type of result, changing cluster locations,
was evident with member houses of pupae clusters. In Maynas none of the houses
were members of pupae clusters in both surveys, whereas six households were part
of pupae clusters during both time periods in Tupac Amaru (Table 15.6). This result
indicates that the spatial distribution of entomologic data varies greatly within short
periods of time.

Association Among Households Having One or More of Each Variable
Present in Each Neighborhood over Time

Although clusters of positive containers, pupae, and adult mosquitoes identified by
G∗

i were not consistent with time, Ae. aegypti infestations of individual households
were clearly a risk factor for future infestation. That is, there is evidence of repeat
offenders. Table 15.7 shows the number of houses observed to be infested with either
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pupae or adults in survey a, survey b, or both. Pupae in a are again found in the same
houses in b in both neighborhoods between 29% and 45% of the time, a statistically
significant result. The implication is that for unknown reasons mosquitoes are more
likely to lay eggs in containers on some house lots than others. Another risk factor
for infestation is the number of water-holding containers in a household. Results in
Table 15.8 indicate that there is a tendency for houses in both neighborhoods and
both time periods to contain more pupae when more water-holding containers are
present.

15.4 Discussion

Historically, entomologic surveillance for dengue was dominated by the use of
larval surveys, in large part because Ae. aegypti control grew out of an eradica-
tion paradigm that promoted complete, thorough and repeated coverage of infested
areas (Reiter and Gubler, 1997). In 1994, however, the Pan American Health Orga-
nization declared Ae. aegypti eradication an unattainable goal and promoted Ae.
aegypti control, which they defined as the “cost effective utilization of limited
resources to reduce vector populations to levels at which they are no longer of sig-
nificant public health importance” (PAHO, 1994). Although this recommendation
intuitively makes sense, it is not specific enough for public health officials to use
as a guideline to control dengue. For example, experience with yellow fever and
recent computer simulation estimates indicate that entomologic thresholds below
which dengue transmission will cease are low (Reiter and Gubler, 1997; Focks and
Chadee, 1997; Focks et al., 1995), but threshold values have not been systemati-
cally derived or tested (Reiter and Gubler, 1997). Empirically defined thresholds
will require prospective, longitudinal studies in which investigators simultaneous
monitor relationship between dengue virus transmission in a human cohort and
Ae. aegypti population densities. Interpretation of data from those kinds of stud-
ies will require careful consideration of (1) spatial auto-correlation and scale in
statistical analyses; (2) the most appropriate measure of entomologic risk-should
absolute numbers or indices be measured and what life stage of the mosquito pro-
vides the best estimate for risk of human dengue virus infection; and (3) survey
design, including the extent of data collection. Our study contributed to an improved
understanding for each of these issues.

The lack of spatial structure for immature forms of Ae. aegypti supports recom-
mended vector surveillance strategies where standard sample size calculations and
resource limitations are used to determine in a systematic way the number of houses
to be sampled, typically every ith house. Our K-function analysis indicates that indi-
vidual households are the appropriate spatial unit for entomologic surveys. From a
temporal perspective because water-holding containers were ubiquitous in Iquitos,
all households are at risk of infestation over any considerable period of time. Our
results, however, imply that as the number of containers on a premise increases so
does the risk of Ae. aegypti pupae and adult infestations. In other words, positive
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containers and pupae cluster within individual households, but the location of clus-
ters changes through time. Biologically this makes sense. Infestation of a household
is largely a function of container management practices by the occupants of the
property and the ecology of Ae. aegypti egg-laying behavior. We did not detect larger
scale structure that might have been affected by other factors (data not presented or
discussed in this paper) such as the availability of piped water, local temperature,
rainfall patterns, or garbage disposal.

Identification of “key premises” or households that are superproducers of Ae.
aegypti has been proposed as a way to streamline surveys (Tun-Lin et al., 1995).
The idea is that the presence of pupae or adults during an initial survey is a sig-
nificant risk factor for observing the same life stage at the same location during
subsequent surveys. If we adopt the notion of controlling key premises as a way of
reducing but not eliminating Ae. aegypti populations, the fundamental need to refine
our understanding of entomologic thresholds is reinforced. Until we quantitatively
define the relationship between mosquito density and risk of virus transmission,
we cannot predict the effect that eliminating key premises will have on the risk of
human infection and disease. For example, eliminating key premises may not reduce
the adult mosquito population below the threshold density and, depending on the
nature of the relationship between virus transmission and vector density, the pattern
of human infections could continue unabated. Interestingly, the transient pattern of
immature mosquito cluster locations observed in our study indicates that even if key
premises can be identified and eliminated there may still be a sufficient number of
Ae. aegypti to sustain dengue virus transmission. It should be noted, however, that
because Iquitos has a relatively low percentage Ae. aegypti production in perma-
nent water holding containers, our results may be site specific. The same kind of
thorough examination may need to be carried out (large sample sizes and spatial
analysis) at other locations.

Although small, there was significant spatial structure of adult mosquito popula-
tions compared with pupae and positive containers. Adults cluster most to distances
of approximately 10 m and to a lesser extent out to 30 m, which could include neigh-
boring houses. This finding is consistent with our conclusion to use the household as
the basic unit of entomologic surveillance. It also superficially supports focal insec-
ticide treatments for dengue control, a practice in which households are treated with
insecticides within a 50–100 m radius of the residence of a detected dengue case
(PAHO, 1994). There are, however, at least three shortcomings to focal treatments
that extend beyond spatial patterns of adult Ae. aegypti. The approach does not take
into account (1) the time delay between when a person is infective to mosquitoes
and they are detected as being clinically ill with dengue, (2) that infected people can
transport virus rapidly over greater distances than flying infected mosquitoes, and
(3) that viremic people can have an inapparent infection or may not seek medical
assistance, the homes and surrounding areas of many people infective to mosquitoes
will not be sprayed.

Our statistical approach corroborates results from mark-release-recapture exper-
iments on the dispersal of adult Ae. aegypti. Most researchers have concluded that
the typical flight range of this species is short (<100 m). Rodhain and Rosen (1997)
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stated that spontaneous dispersal of adult Ae. aegypti averages from 30 to 50 m per
day, so that females are rarely expected to visit more than two or three houses in
their lifetime. The length of an Ae. aegypti lifetime is difficult to estimate, but is
generally believed to range from 8 to 16 days (Focks et al., 1993). Ordonez and
others (1997) reported minimum and maximum daily flight distance for Ae. aegypti
of 8 and 120 m, respectively, with a mean of 30.5 m. In a Kenyan village, McDon-
ald (1977) found that most adult Ae. aegypti dispersed to less than 20 m and the
majority of those recaptured were collected in the same house where they were
released. Edman and others (1998) similarly collected most of their recaptured Ae.
aegypti in Puerto Rico from their release house. In Kenya, Trpis and Hausermann
(1986) reported 57 m as the mean daily flight distance for females, with a maximum
dispersal of 154 m. Sixty percent of their recaptured females were collected in 11
houses that were within 50 m from their release point. Our spatial analysis agrees
with the preponderance of evidence that in a place such as Iquitos most adult Ae.
aegypti do not fly far from the container where they developed as larvae and pupae.

Spatial referencing of our adult survey data and application of statistical tools,
such as K-function and G∗

i , provided insights into adult dispersal behavior that
help explain patterns of human dengue infections. We propose that over short peri-
ods of time the restricted flight range and frequent blood-feeding behavior of Ae.
aegypti (Scott et al., 2000b) are underlying factors in the clustering patterns of
human dengue infections. In addition to the studies cited above on Ae. aegypti
dispersal, several researchers have reported spatial and temporal clusters of clini-
cally ill dengue patients in the same household or adjacent houses (Halstead et al.,
1969; Waterman et al., 1985; Chan, 1985; Gubler, 1997). In the first spatial statistics
analysis of this phenomenon, Morrison and others (1998) found that dengue cases
reported within a three-day interval during an epidemic in Florida, Puerto Rico
clustered up to 10 m. With regard to blood-feeding behavior, Ae. aegypti is know
to frequently and preferentially imbibe human blood meals (Scott et al., 2000b;
Harrington et al., 2001) and infected females can transmit dengue virus to as many
as 20 consecutive hosts, one after another (Putnam and Scott, 1995). It is conceiv-
able that a single or very few infected Ae. aegypti that remain in the same general
area could bite and transmit virus to several susceptible family members or their
immediate neighbors within a period of a few days.

Upon further investigation, we may discover that the extent to which infected
humans are clustered is influenced by house construction and distribution. For exam-
ple, households in our study area were small and often located close together; most
were row houses with common walls. Although features of housing in Iquitos might
facilitate Ae. aegypti movement, we do not expect that the tendency for adult females
to disperse will be dramatically different at other locations. In Iquitos, water-holding
containers were found in all households surveyed, something that is expected to
decrease the probability of female dispersal (Edman et al., 1998).

Abundance of adult female mosquitoes should be the most appropriate measure
of entomologic risk because they are in the life stage from which viruses are trans-
mitted. Interestingly, in at least one previous study adult Ae. aegypti abundance
was correlated with diagnosed dengue cases (Rodriguez-Figueroa et al., 1995). The
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value of larval indices was recently challenged because their relationship with adult
densities is questionable (Reiter and Gubler, 1997). Pupal indices are now being
considered as alternatives to traditional larval indices (Focks and Chadee, 1997;
Focks et al., 1993). Pupal indices are attractive for three reasons. First, it is theoreti-
cally possible to make absolute counts of their abundance, something that cannot be
done for flying and difficult to capture adults. Second, pupal mortality is low. The
magnitude of the pupal population should, therefore, be directly and relatively easily
correlated with adult densities. Third, because the pupa is the life stage that directly
precedes the virus-transmitting adult, pupae should be a more direct measure of
transmission risk than larvae, which are a developmental step removed from adults.

Results from our spatial analyses, however, identified some limitations of pupal
indices. The transient nature and high variability of containers positive for pupae can
lead to misleading survey results, especially if the goal is to identify “key premises”
and if only a single survey is carried out. Examination of spatial correlations among
water-holding containers, larvae, pupae, and adults reveal significant correlations
between life stages that are directly linked in their developmental sequence. For
example, larval clusters correlated with pupal clusters and pupal with adults, but
larval clusters were not correlated with adult clusters. This indicates that many con-
tainers exhibited a cohort effect. That is to say, cohorts of mosquitoes in a given
container move in synchrony through the different stages of their life cycle without
overlapping other cohorts. A noteworthy observation in that regard is that we did not
consistently collect all stages of mosquitoes at the same time in the same household.
This indicates that containers in Iquitos are not in equilibrium with the mosquito
population. Instead houses are positive for a limited period of time as mosquitoes
develop, disperse, and the household reverts to being negative. Other households
subsequently become positive and the process repeats itself. In locations where pos-
itive containers are ubiquitous and permanent a different pattern of cluster spatial
stability may emerge.

We conclude that pattern analysis can efficiently describe local Ae. aegypti pop-
ulations and substantially aid in our understanding of dengue epidemiology and the
development of dengue surveillance and control strategies. We argue that develop-
ment of long-term entomologic risk assessment strategies requires thorough surveys
of all mosquito life stages. Our results highlight the importance of scale when inves-
tigating the dynamics of dengue transmission. In Iquitos, the appropriate scale for
assessing mosquito vector density is the household level at frequent time intervals.

This work is being extended with more extensive studies in additional areas of
Iquitos, including an entire city study of the affinity that Ae. aegypti may have for
particular types of water-holding containers and the relationship of various measures
of mosquito density to human dengue infection. In addition, related work is under-
way in Thailand, which will allow comparison of concepts and processes described
for Iquitos to results from an ecologically and epidemiologically distinct study area.
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Chapter 16
Spatial Filtering and Missing Georeferenced
Data Imputation: A Comparison of the Getis
and Griffith Methods

Daniel Griffith

Abstract Spatial filtering first introduced independently by Getis and by Griffith
is beginning to mature, with a third version now being developed by Legendre and
his colleagues. Like the Getis formulation, this newest version is distance-based;
like the Griffith formulation, it uses eigenfunctions, but extracted from a modified
distance matrix – it is a mixture of the other two. Bivand (2002) comments that
“the Getis filtering approach . . . seems to admit prediction to new data locations
. . . . The Griffith eigenfunction decomposition approach . . . does not . . . .” Missing
data prediction equations are presented for each of these two original formulations,
and then compared with several popular datasets.

16.1 The Imputation Problem

The Estimation–Maximization (EM) algorithm (Dempster et al., 1977), an iterative
procedure for computing maximum likelihood estimates when data sets are incom-
plete, is a useful device for helping to solve model-based small geographic area
estimation problems. Flury and Zoppè (2000, p. 209) emphasize:

it can not be stressed enough that the E-step does not simply involve replacing missing data
by their conditional expectations (although this is true for many important applications of
the algorithm).

But model-based small geographic area estimation problems desire just this type
of imputation output from the algorithm. The purpose of this paper is to illustrate
the use of the eigenvector- and Gi-statistic-based spatial filtering specifications to
compute such imputations.

Descriptions of the EM algorithm may be found in Flury and Zoppè (2000),
Meng (1997), and McLachlan and Krishnan (1997), among others. For only missing
response variable values, where missing is at random or completely at random, the
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EM algorithm can be implemented as a regression problem in the following way
(see Yates, 1933):

(
Yo

0m

)

=
(

1o Xo

1m Xm

)(
α

β

)

+
(

0o,m

−Im,m

)
(
ym

)
+

(
εo

0m

)

, (16.1)

where the subscript o denotes observed data, and the subscript m denotes missing
data, Y is the vector of response values, 1 is a vector of ones, X is a matrix of
covariates, 0 is a vector of zeroes, I is the identity matrix, ym is the vector of missing
values, α is the intercept term, β is the vector of covariate regression coefficients,
and ε is the vector of independent and identically distributed normal random errors.
Of note is that the estimates of ym are conditional expectations, resulting in their
corresponding residuals being zero.

The unknown ym are subtracted from both sides of a conventional linear regres-
sion equation to obtain (16.1). This subtraction results in the 0m subvector appear-
ing in the response variable, and the set of m indicator variables appearing in the
right-hand side of the equation. This subtraction is why Im,m has a negative sign.

Table 16.1 and Fig. 16.1 respectively tabulate and portray results obtained for
selected example dataset EM algorithm results reported in the literature. The nor-
mality diagnostics appearing in Table 16.1 imply that the linear regression normal
probability model seems reasonable to employ. The near-perfect alignment of esti-
mates depicted in Fig. 16.1 confirms that (16.1) and the EM algorithm yield exactly
the same imputation results; slight deviations from roughly the middle of the
trend line are attributable to the use of multiple imputation results by Schafer.
The bivariate linear regression equation describing the scatterplot in Fig. 16.1 is as
follows:

Table 16.1 Sources of data for using (16.1) to construct Fig. 16.1

Data source Page no nm # Co-variates Parameters P (S − W )

McLachlan and 49 8 2 1 μ̂2, σ̂12, σ̂22 0.1667
Krishnan (1997) 53 7 2 2 ŷ(−1,−1), ŷ(0,−1) 0.2205

54 34 2 7 ŷ23, ŷ51 0.4388
137 12 6 2 σ̂μ̂2 0.5672

Little and Rubin (1987) 31 13 2 8 μ̂1, μ̂2 0.9894
101 12 6 1 μ̂2 0.6661

Schafer (1997) 34 19 5 1 ŷ2,L8 , ŷ2,L9 , ŷ2,L10 , 0.9973
ŷ2,L11 , ŷ2,L12

195 19 9 2 ŷ3,2 , ŷ3,4 , ŷ3,5 , ŷ3,10 , 0.2485
ŷ3,13 , ŷ3,16 , ŷ3,18 ,
ŷ3,23 , ŷ3,25

Montgomery and Peck (1982) 145 25 4 2 ŷ26 , ŷ27 , ŷ28 , ŷ29 0.2711
http://missingdata.org.uk www 9 1 1 ŷ10 0.4244

Note: P(S-W) is the probability under the null hypothesis of normality of the Shapiro–Wilk
normality diagnostic test statistic calculated for regression residuals
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Fig. 16.1 Scatter plot of EM algorithm results: reported published vs. (16.1) generated estimates

reported = −0.15609 + 1.01245× equation(16.1) + e,
(t = −0.13) (t = 1.66)

which has an R2 value of 0.998.

16.2 Interpolation as Missing Data Imputation

Haining et al. (1984) outline a spatial EM algorithm for estimating missing geo-
referenced variable values. Consider the following partitioned spatial covariance
matrix:

Σ =
(

Σoo Σom

Σmo Σmm

)

=
(

Voo Vom

Vmo Vmm

)−1

σ2,

where, as before, the subscript o denotes observed data, the subscript m denotes
missing data. For a multivariate normal probability model, the maximum likelihood
estimate of missing data is given by

Ŷm = Xmβ + ΣmoΣ
−1
oo (Yo − Xoβ) (16.2)

which is the kriging equation of geostatistics (see Griffith, 1993). Using the preced-
ing notation, Haining, Griffith and Bennett show that for an autoregressive model
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specification, (16.2) becomes:

Ŷm = Xmβ − V −1
mmVmo(Yo − Xoβ)

which reduces to the following equation for the conditional autoregression (CAR)
model specification based upon a binary geographic connectivity matrix, C, and
spatial autocorrelation parameter ρ:

Ŷm = Xmβ + ρ(I − ρCmm)−1Cmo(Yo − Xoβ).

In other words, the spatial EM and geostatistical kriging solutions are identical, a
finding that is consistent with results reported in the preceding section.

Returning to the form of (16.1), and considering the simultaneous autoregres-
sive (SAR) model based upon the row-standardized version of matrix C, namely
matrix W ,

(
Yo

0m

)

= ρW

(
Yo

0m

)

+ (I − ρW )Xβ +
M∑

m=1

ym(−Im + ρWom
∗) + ε,

where again missing values in the vector Y are replaced by 0s, Im is the indicator
variable vector for missing value m that contains n − 1 0s and a single 1 in each of
its m columns, Wom

∗ is the column of the geographic weights matrix W associated
with the mth missing value, and M is the number of missing values.

16.3 Eigenvector- and Gi-Based EM Solutions
for Georeferenced Data

Getis (Getis and Griffith, 2002) notes that the geostatistical range furnishes one
way to determine the distance parameter of the Gi statistic. Because missing data
complicate a situation, this seems to be a preferred way to determine this distance
parameter. Once d has been identified with a semivariogram plot and model, the
following quantity needs to be computed for each location on a map:

Gi

E(Gi)
=

∑n
j=1 cij(d)yj

∑n
i=1 yi − yi

/
n − 1

∑n
j=1 cij(d)

, (16.3)

where the operator E denotes the expected value, and cij is the entry in cell (i, j) of
matrix C, with cij = 1 if the distance between locations i and j is less than or equal
to d. This quantity becomes the spatial covariate for imputation purposes.

Similar to the way (16.2) was formulated on the basis of (16.1), the following
bivariate regression equation can be formulated based upon (16.3), using a single
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missing value in this instance for illustrative purposes:
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where o|o and o|m respectively denote observed values given observed values and

observed values given both observed and missing values, and
〈 〉

denotes a sub-

vector. Estimation of (16.4) requires the use of nonlinear least squares, because the
missing value ym appears in both the numerator and the denominator of fractions
constructed according to (16.3).

In contrast, the eigenvector-based spatial filter EM solution may be written as

(
Yo

0m

)

= α1 + Xβx −
M∑

m=1

ymIm +
K∑

k=1

EkβEk
+ ε, (16.5)

where βx is the vector of regression coefficients for the set of X attribute vari-
able covariates, K eigenvectors, denoted by Ek, are selected from the candidate set
extracted from matrix

(I − 11T /n)C(I − 11T /n)

an expression that appears in the numerator of the Moran Coefficient, and βEk
is the

regression coefficient for the kth selected eigenvector.
One advantage of (16.5) is that it can be extended to the generalized linear model.

For example, a binomial regression takes on the form

(
〈
LN

(
p

1−p

)〉

o

0m

)

= α1 + Xβx −
M∑

m=1

ymIm +
K∑

k=1

EkβEk
, (16.6)

where LN denotes natural logarithm, and the vector 0m is obtained by substituting

p = 1/2 into the expression LN
(

p
1−p

)
. If p is based upon a total, then for missing

values its unknown numerator initially would be set to 50% of this total.

16.4 Empirical Examples

Consider the two empirical examples of coal ash data presented in Cressie (1993)
and vandalized turnip field plot yields presented in Hand et al. (1994). Distances
for the Gi statistic, obtained by estimating spherical semivariogram models1 with

1 Coal ash: C0 = 0.31, C1 = 1.14, RESS = 41.1%. Turnips yield: C0 = 7.54, C1 = 23.35,
RESS = 33.6%.
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Fig. 16.2 Spherical model plots (denoted by asterisks) superimposed on experimental semivari-
ograms (denoted by solid circles). (a) left: coal ash data (n = 208). (b) right: vandalized turnip
field plot residuals (n = 33)

Table 16.2 Selected model-based imputations for two selected empirical data sets containing
missing values: Pennsylvania coal ash, and vandalized turnip field plots

Estimator Coal ash
missing %

Vandalized turnip filed plot yields
Field(6,5) Field(5,6) Field(6,6)

Conventional EM algorithm 9.78 28.9 18.8 27.8
Cressie 10.27
Spherical 10.62
Gaussian 10.18
Exponential 10.12
SAR 10.17 29.99 17.66 28.26
Eigenvector-based spatialfilter 10.71 24.31 13.62 23.93
Gi-based spatial filter: constant d 9.59 0 0 0
Gi-based spatial filter: variable di 10.62 28.9 26.8 38.8

these data (see Fig. 16.2), respectively are 2.53 and 5.22 lattice units (these data are
distributed over regular square lattice grids based upon interval scale geocoding).

Missing value estimation results are reported in Table 16.2. Of note is that the
constant d values obtained as semivariogram spherical model ranges do not perform
well. Rather, estimating a di for each location tends to render more meaningful esti-
mates. These variable di values are obtained by increasing d for location i until its
relative Gi statistic (i.e., the ratio of the expected and observed values for location i)
begins to decrease. Both the eigenfunction- and Gi-based spatial filter missing value
estimates for the coal ash data are greater than most of the semivariogram and the
SAR estimates. In contrast, the eigenfunction-based spatial filter estimates for the
missing turnip yields appear too small, whereas the Gi-based spatial filter estimates
for two locations appear reasonable, while the third estimate appears too large.

16.5 Conclusions and Implications

A comparison of the two spatial filter missing value estimation techniques is
summarized in Table 16.3. A serious drawback of the Gi-based procedure is the
possible need to additionally approximate missing data location di values; this extra
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Table 16.3 Comparisons of the two spatial filter estimators

Gi-based Eigenvector-based

Conceptual basis Kriging EM algorithm
Required covariates Approximation of dm plus computed Gis Selected eigenvectors
Estimation technique Nonlinear LS (NLS) OLS or GLM
Value restrictions Positive numbers with a natural origin Real numbers
Spatial context Inter-pointdistances Tessellation topology or

inter-point distances

calculation may not be avoidable by resorting to semivariogram model range esti-
mation. A second serious drawback is that only positive numbers with a natural
origin can be used to compute Gi statistics.

In conclusion:

1. The Getis spatial filter approach enables missing georeferenced values to be
imputed.

2. The imputation procedure may well require an additional estimation to be made –
namely, the distance threshold for each missing value.

3. Resulting imputations appear to be reasonably consistent with those obtained
with other procedures, including Griffith’s eigenvector-based one.

4. Findings reported here supplement those reported in Getis and Griffith (2002).

Overall, Bivand’s (2002) contention that Gi-based spatial filtering can be used for
imputation purposes appears to be correct, although in need of more extensive study;
his contention that eigenfunction-based spatial filtering cannot be used to calculate
imputations is incorrect.



Chapter 17
Spatial Patterns of Fertility in Rural Egypt

John R. Weeks

Abstract The Getis–Ord G∗
i statistic and the Getis spatial filtering method are

shown in this paper to be very useful geospatial tools for uncovering the spatial pat-
terns of human reproduction in a rural governorate in Egypt that had been assumed
by many to be a spatially homogeneous area. We apply the G∗

i statistic to dasymet-
rically mapped data from the 1976, 1986 and 1996 censuses of Egypt to show that
there were very distinct spatial patterns in fertility over time in this predominantly
rural region of the Nile Delta. The spatial filtering technique allows us to conclude
as well that the spatial component became more important over time as a predictor
of fertility levels. Improvements in education represent a key feature of the changing
rural social environment driving these spatial changes in fertility. There is evidence
as well that increases in contraceptive utilization contributed to this change, but we
are unable to evaluate its spatial component. Nonetheless, the research illustrates
and illuminates the underlying conceptual framework that demographic behavior is
a joint function of who people are and where they are.

17.1 Background

Demographic literature is rich in studies that compare rural with urban areas, and
in the former women invariably have more children on average than do women in
the latter. It is nearly an iron law. One of the problems with this type of comparison,
however, is that even if rural places have higher fertility than urban places within
the same country, rural fertility may be higher in some countries than in others.
We may well find that rural fertility in a richer country is lower than urban fertility
in a less-rich country. This points to what might be thought of as the cultural and
geographic relativity of the urban–rural dichotomy and, at the same time, the under-
lying social nature of human reproduction. A second problem is that the dichotomy
ignores any variability that might occur within either the rural or the urban areas,
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assuming instead that fertility is uniformly higher in rural than in urban areas. Weeks
and his associates have shown that this assumption may be very wrong both in rural
areas (Weeks et al., 2000) and in urban areas (Weeks et al., 2004). In Greater Cairo
in 1986, for example, the average neighborhood-level total fertility rate (TFR) cal-
culated by indirect methods described below was 3.1 children per woman, whereas
in the rural governorate of Menoufia, just to the north of Cairo, the average level per
village was 5.8. That clear distinction hides considerable overlap, however. The low-
est TFR in Menoufia was 3.2 and only 25% of Cairo neighborhoods had a level that
was lower than that. The highest TFR in Cairo was 7.7 and only 1% of Menoufia’s
villages had a rate higher than that.

Very little attention has been given in the literature to the social causes and con-
sequences of fertility levels at these local levels. There is a vast literature on fertility
differentials, to be sure, but attention is paid largely to characteristics of individ-
uals without regard to where they live. Entwisle, Casterline and Sayed (Entwisle
et al., 1989) have demonstrated that village contexts can be important influences on
contraceptive behavior (and thus on fertility) in rural Egypt, but their analysis was
limited spatially to a distinction between villages in upper and lower Egypt. There
is also a nearly universal finding that fertility differs by social class (defined by
income differences, occupational prestige, educational attainment, and often incor-
porating some element of race/ethnicity). And, since there is a tendency for there to
be a geographic sorting process by social class, the local spatial dimension of fer-
tility is implicitly incorporated into that model. Yet, that is almost never measured
by demographers, and little attention has otherwise been given to the demographic
and social variability in fertility across space. That is to say, little attention is paid
to the ecology of fertility, even among social ecologists. Rather, the emphasis is on
examining fertility levels at the individual level, using data from surveys that by and
large do not permit more than a very generalized spatial analysis. These studies of
necessity focus attention on national comparisons or on regional differences within
a country.

From a purely geographic perspective, one could argue that this is simply a scale
issue. Variability may exist at any spatial scale and the only issue is whether we
have the tools to measure it. But from a broader social science perspective, the scale
issue matters because it fits into the human ecological approach that suggests that
the behavior of people is influenced by their personal characteristics (who they are)
and also by their locational characteristics (where they are). This is the underlying
premise of spatial demography (also known as geodemographics), as discussed by
Weeks (2004a). If we are to understand the patterns and changes in human fertility,
we must take into account all aspects of the social world in which people live. Char-
acteristics such as education, occupation, income, ethnicity and religion all play a
role in shaping behavior, but the likelihood that a given person will be at one end or
another of the continuum on each variable may well depend upon where they live.
This is not to be interpreted as geographic determinism, but rather as an acknowl-
edgement that we are social creatures who are influenced by those around us. If we
live in an area where, for whatever reason, education is not valued, then the proba-
bility that we will value education is commensurately low and our life will probably
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turn out very differently than if we live in an area where education is highly valued
and sought after. This is the essence of spatial autocorrelation as it applies to human
society.

The model that guides our research thus incorporates the assumptions that (a)
the social environment influences the social and human capital variables that more
directly influence the demand for children; (b) the reproductive behavior of some
people within a village may influence the behavior of others, even net of the human
capital opportunities that objectively exist in the village; and (c) these influences
operate on reproductive levels through the mechanisms of the proximate determi-
nants of fertility, such as age at marriage and the use of contraceptives within
marriage, to determine fertility at the local level; but (d) changes in reproductive
behavior at the local level may be influenced by changes in, and reciprocally influ-
ence changes in, other neighboring regions, resulting in spatial patterns of fertility
transition; the consequences of which (e) ultimately determine the overall societal
level of reproduction, thus creating the wider phenomenon of a fertility transition.

Our goal in this research is to use this conceptual framework to build upon earlier
work that examined the spatial component of fertility in the rural governorate of
Menoufia, Egypt. That study (Weeks et al. 2000) examined data from the 1976 and
1986 censuses of Egypt, but was published prior to the release of the 1996 census
data. That study concluded by making prognostications for the 1986–1996 period
with respect to fertility levels, as follows:

The period from 1976 to 1986 was a period of overall relative stability in fertility levels in
rural Egypt and not until the 1996 census data become available at the village level will we
be in a position to track significant changes in fertility over time. However, it is clear that
at least by 1976 there were clear spatial patterns to fertility in Menoufia and our analysis
suggests that these spatial patterns were even more definitive in 1986 than they had been
in 1976. This seems to suggest the existence of some momentum for change, which we
hypothesize will be observable when the 1996 data become available. The southern portion
of the governorate was more obviously the location of higher than average fertility in 1986
than had been true in 1976 and we would predict that the clustering of lower fertility will
have exhibited a southward drift or diffusion by 1996. The results from our spatial filtering
procedure suggest that some of this effect will be due solely to where villages are located,
regardless of any changes in female education. The analysis also suggests that improving
levels of female education will have been the most important human capital influence on
fertility between 1986 and 1996 (Weeks et al., 2000, p. 712).

In order to evaluate the correctness of those forecasts, we first revisit the data
sets in order to improve the dasymetric mapping so that the point-pattern spatial
analysis, which is based on distances between villages, is optimized. In that pro-
cess we are able to harmonize the administrative boundary changes that took place
between censuses. Furthermore, we have now been able to use the Egypt Demo-
graphic and Health Survey data to derive usable estimates of underenumeration
in the census, from which we can calculate improved fertility estimates for each
village in Menoufia. With these methodological refinements in hand, our research
questions become (1) Did fertility decline more between 1986 and 1996 than it
had between 1976 and 1986? (2) Did fertility decline more rapidly in the southern
part of the governorate than in the northern part? And (3) was the decline due both
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Fig. 17.1 The study site of Menoufia governorate, Egypt

toimprovements in female literacy as well as being conditioned by the geographic
location of a village within the governorate?

17.2 The Study Site

The study site is the governorate of Menoufia, in the Nile delta region of Egypt, just
to the northwest of Cairo (see Fig. 17.1). Menoufia is one of the 26 governorates that
form the administrative regions of Egypt, roughly equivalent to states in the United
States or to counties in the United Kingdom. The 1996 Census of Egypt enumer-
ated 2.8 million people in Menoufia, representing about 4% of the total population
of Egypt. The officially-defined rural population accounted for 80% of the gover-
norate’s population in 1996. The southern region of Menoufia is situated just below
(to the north of) the Barrage that controls the flow of water from the Nile as it enters
the Delta, which has permitted perennial irrigation in the region since the early nine-
teenth century. But even for millennia prior to that this was a rich agricultural area
with traditions that almost certainly contribute to the maintenance of low levels of
education and higher than average levels of fertility.

We chose Menoufia as a study site less for its specific demographic characteris-
tics than for the fact that it has been relatively well studied in nonspatial analyses and
thus there are comparative studies by which to judge the spatial analysis produced
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by our own work (see especially Gadalla, 1978; Weeks et al., 2000). Menoufia does
have some advantages for spatial analysis including its essentially flat landscape in
the Delta region of the Nile, which means that elevation is not an issue that needs
to be dealt with. Partly for this reason, there are more than 300 villages, with an
average population per village in 1976 of 6,036, increasing to 7,840 in 1986, and
up to 9,349 by 1996. Thus, in 1996 the average village had more than half again as
many people living in it as in 1976, a situation that almost certainly was going to
induce some changes into village life.

17.3 Data and Methods

17.3.1 The Variables in the Statistical Models

We use census data aggregated at the qurah level. In its most literal translation from
Arabic, a “qurah” is a city, but in the Egyptian census definitions it refers to the
administrative boundaries of a village, as illustrated in Fig. 17.1. The dependent
variable in our analysis is an estimate of the fertility rate derived from age struc-
ture data in the census. The independent variables include those that are measured
comparably over the three censuses that we are analyzing: (1) marital status as a
proxy for the average age at marriage; (2) female education (illiteracy); and (3) two
measures of the local neighborhood context, including the sex ratio as a proxy for
the impact of the outmigration of males to Cairo or, more likely, to Gulf States
for temporary employment, and the size of the village as a proxy for its level of
urbanness.

As is true in many less-rich countries, the amount of detailed information col-
lected in the census is limited, and so we employ an indirect measure of the total
fertility rate (TFR – the number of children a woman would have in her lifetime if
reproduction remained at the current level) as our dependent variable. We derived
the TFR from the age structure data in the census, applying the CBR-TFR popu-
lation analysis spreadsheet developed by the International Programs Center of the
US Census Bureau (Arriaga, 1994). This spreadsheet estimates the crude birth rate
and total fertility rate using the total population, the female population in child-
bearing ages by 5-year age groups, general fertility rate, and empirical patterns of
age-specific fertility rates included in the program.

Before making these calculations, we dealt with the issue of the accuracy of the
age and sex structure as enumerated in the census, since if we are to estimate fertility
indirectly from the age structure, we need to be confident in that source of data. We
have employed information from Demographic and Health Surveys (DHS) in Egypt
as a source of comparative data. The age groups that are of importance for indirectly
estimating fertility are the children aged 0–4, which are notoriously the least well
enumerated, and women of reproductive age (15–49). In general we assume that the
interviewers of the DHS were likely to obtain more accurate information than would
have been obtained by enumerators in the census. The sampling error in the DHS
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is sufficiently low so that any large disparities between the DHS and the census for
both girls and boys are likely to be statistically significant beyond the 0.01 level.
The 1995 DHS included 548 households from 17 different villages in Menoufia
governorate, and from the household listing in the DHS we reconstructed the age
and sex structure as reported for each household, representing a sample household
population in Menoufia in the 1995 DHS of 3,196 persons. These data were then
compared with the 1996 census age distribution for Menoufia to assess potential
errors in the census age distribution. We also made the assumption that the 1-year
difference between the census and the DHS would not affect our comparison in any
meaningful way.

From this comparison we concluded that boys aged 0–4 were underenumerated
by 18% in the census, and girls that age were underenumerated by 7%. We thus
made an across-the-board adjustment in each village to increase the number of chil-
dren aged 0–4 by those amounts. We then rejuvenated the population of girls and
boys aged 0–4 from the census by dividing by the respective sex-specific survivor-
ship rates. Survivorship rates are calculated from life tables derived from nMx data
compiled by the Cairo Demographic Center (2001), adjusted for likely underregis-
tration of deaths. From these estimates we calculated the number of births over the
prior five years, and dividing that by 5 and then dividing by the rejuvenated average
number of women of reproductive age produced an estimate of the average single
year general fertility rate. This value was combined with data on the female popu-
lation by 5-year age group, and the total population in each village to estimate the
total fertility rate based on empirically derived relationships between the GFR, the
female population, the total population, and age-specific fertility rates in the popu-
lation analysis spreadsheets. Our calculations produced a TFR for Menoufia in 1996
of 3.6 children per woman.

We repeated the procedure for 1986, comparing data from the 1988 DHS with
the 1986 census data for Menoufia. The DHS in 1988 included a sample of 379
households in 10 villages, with a total household population of 2,449. We did not
find that the differences were statistically significant, so no age adjustments were
undertaken. We then constructed a life table for Egypt for 1986, building on the 1996
life table, but incorporating higher death rates, especially at the younger ages, as
estimated from DHS data, in order to rejuvenate the population, as described above
for the 1996 calculations, in order to complete our indirect estimation procedure.
We did not have a comparable fertility survey for the period near the 1976 census,
and so we assumed that no adjustment was necessary, since that had been true in
1986. We then rejuvenated the 1976 census data based on the life table for Egypt
available from the International Programs Center at the US Census Bureau (http:
//www.census.gov/ipc/www/idbacc.html).

The predictor variables are limited in number, especially given the need to have
comparability across all three census dates. We measure the human capital vari-
able in the village in terms of female education. The data are available only for all
women aged 15 years and older, regardless of specific age or other characteristic.
In addition, because of the limited educational attainment of women in Menoufia,
the educational variable was measured as the percentage of women aged 15 years
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and older who are illiterate. Our expectation is that lower levels of illiteracy will be
associated with lower levels of fertility, and that declines in illiteracy over time will
be associated with declining fertility. We also anticipate some interaction between
education and marital status. The literature suggests that the early impetus for fer-
tility decline in Arab countries has come from a delay in marriage (occurring in
the general absence of any offsetting rise in out-of-wedlock births) (Rashad, 2000).
In a society where virtually all women eventually marry, the proportion of women
who are currently married should be an index of the relative age at marriage from
one place to another. And, since out-of-wedlock births are relatively rare in Mus-
lim countries such as Egypt, we would expect that fertility will be lower where the
proportion of married women is lower.

We also take into account that in rural areas there may be migration out of the
village and it will disproportionately affect males. As a result, the relative absence
of men could have a dampening influence on fertility. We control for this effect by
calculating the sex ratio of males aged 25–44 years to females aged 20–39 years as
a covariate in the analysis. The final covariate introduced into the model is the total
population size of the village, serving as a proxy for the relative degree of urbanness
of the place.

17.4 Dasymetric Mapping of the Villages

The use of point pattern spatial analysis with data that are aggregated at an adminis-
trative level such as the qurah in Menoufia requires that an assumption be made
about the point that will best represent the area for which the data are aggre-
gated. The easiest and most common solution is to assume that data are uniformly
distributed within the area and that the geographic center (centroid) of that poly-
gon adequately describes the average location of people to whom the data refer.
This approach may, however, compromise the accuracy of the spatial analysis. For
decades, if not centuries, Menoufia has been one of the most rural and most densely
populated rural areas of Egypt (Gadalla, 1978). It has been, and remains, predomi-
nantly agricultural, with the population congregated into rural villages from which
people go out each day to work in the fields. Because most of the area in each qurah
is devoted to agriculture, the assumption of a uniform distribution of the population
within each qurah is certainly not accurate, and there is no reason to believe that the
geographic center of the area defined as the village is a good representation of where
the population actually resides. This is one component of the well-known modifi-
able areal unit problem (MAUP) Openshaw (1984). “The MAUP concerns the fact
that varying the scale of data aggregation, and/or aggregating data using different
aggregation boundaries at a single scale, may affect the results of spatial statistical
analysis” Mennis (2002).

A dasymetric approach to the data helped to deal with two additional problems
that confronted us with the Menoufia data: (1) the administrative boundaries of sev-
eral qurah actually cut right through the middle of built areas and so we had data for
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what seemed to be two or more places when in fact the data really only referred to a
single village; and (2) the administrative boundaries had changed slightly between
1976 and 1996, leading to the need to harmonize the data over time. The dasymetric
approach attempts to improve on the default method (the geographic center of the
entire administrative area) by more accurately locating the point in each polygon
based on ancillary information about where the people are located. Our ancillary
data are based on the classification of satellite imagery into those areas that represent
a built environment (the villages) or not (the agricultural fields and other non-village
areas). For this purpose we used an Indian Remote Sensing IRS-1C LISS-III 24-
m resolution multispectral image covering bands 2, 3, and 4 (green, red, and near
infra-red) satellite image acquired in 1996. Although the village boundaries may
have enlarged somewhat between 1976 and 1996, especially as a result of the sig-
nificant population growth discussed above, we assume that the geographic center of
the built area is the same for all three census dates. The classification methods used
with the imagery are discussed elsewhere (Weeks et al., 2004, 2005; Weeks, 2004b;
Rashed et al., 2001, 2003, 2005). Once the imagery was processed and the built area
identified, we calculated the centroid of the built area and used it to represent the
data for the village, rather than the geographic center of the entire administratively
defined area. If more than one built area existed within the village administrative
boundaries, the weighted mean center of all built areas was found, using the areal
extent of each built area as its weight.

Especially important in this process was the identification of single villages that
had been split into multiple administrative units. Figure 17.2 illustrates how the
default placement of points could artifactually create spatial autocorrelation in the
data because the hypothetical village shown is administratively divided into four
parts, for each of which a separate set of census tables will have been created. Apply-
ing the geographic center to those data would then produce data allocated to four
different points. Since the demographic characteristics are likely to be similar for all
four parts of the village, this situation would appear at first glance to refer to four
similar villages next to one another – a classic case of spatial clustering. In reality,
the data are all associated with different segments of the same built area, a fact that
we discover only with the use of ancillary data, in this case the satellite imagery,
and which is corrected for through the dasymetric approach. This process reduced
the number of points associated with villages from 314 to 286.

17.5 Statistical Analysis

Our approach to answering the research questions posed in this paper is to employ
multiple regression techniques, taking into account any observed spatial patterns.
Assuming that a spatial pattern exists in the data, we next want to know exactly
where the clustering occurs. Where are the “hot spots” in which high levels of
fertility are clustered and where are the “cold spots” in which lower levels of fertil-
ity are clustered? The local spatial statistic we utilize is the G∗

i (d) statistic (Getis,
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Fig. 17.2 Situations improved by dasymetric mapping

1995b; Ord and Getis, 1995). We then use the results from the clustering statistics
to conduct a spatially filtered regression analysis. This is a method that allows us
to quantify the role that spatial autocorrelation is playing in the observed variabil-
ity of the dependent variable (Getis, 1995b; Getis and Griffith, 2002; Weeks et al.,
2004). Anselin and Rey (1991) have differentiated between two forms of spatial
dependence; that which is a nuisance, and that which represents a substantive spatial
process. As a nuisance, it can be controlled with a properly designed weights matrix
within a spatially autoregressive model. However, when the spatial dependence is a
subject of inquiry, as it is in this research, it is useful to be able to quantify the role
that it plays within each of the predictor variables. Two such filtering approaches are
currently available – the Getis filtering method (see Getis, 1995b) and the Griffith
eigenfunction decomposition method (see Griffith, 2000). Both of these methods
are capable of identifying the spatial effects within a regression framework (Getis
and Griffith, 2002), but in this research, we employ the Getis method. We thus use
the G∗

i (d) statistic as a spatial filter to extract the spatially autocorrelated portion
of each of the variables in a regression model. The difference between the original
variable xi and the filtered variable xf

i becomes a new variable xsp
i , that represents

the spatial effects embedded in xi (Getis, 1995b). These two variables, xf
i and xsp

i

replace the original variable xi in the regression equation to produce a spatially
filtered regression model in which the contribution of the spatial and filtered (non-
spatial) components of each factor can be determined by the beta coefficients in the
resulting model. These techniques of spatial filtering were developed originally by
Getis (1995b) and have been modified into a Fortran program by Scott (1999) in the
format that will be used in this project. In this format, the regression model to be
tested is as follows:
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TFR ={illiteracy filtered} + {illiteracy spatial}
+ {marital status filtered} + {marital status spatial}
+ {sex ratio of adults filtered} + {sex ratio of adults spatial}
+ {village population filtered} + {village population spatial} + error

By solving the equation with the filtered and spatial components separated, the
spatial autocorrelation is removed from the residuals and incorporated into the
model as a component helping to predict variation in the dependent variable.

The final model fit has been shown to be comparable whether using spatial fil-
tering or autoregressive models (Getis and Griffith, 2002), but the spatial filtering
technique has the advantage of giving us intermediate information about the effect
of spatial dependence on the dependent variable that is not available within an
autoregressive framework.

17.6 Results

We organize our results around the three research questions posed above, which
require that we look at the spatial pattern and regression results for 1976, then 1986,
and 1996, and then examine the changes over time.

17.6.1 Did Fertility Decline More Between 1986 and 1996
than Between 1976 and 1986?

Fertility did indeed decline more in Menoufia between the 1986 and 1996 censuses
than it had in the previous decade. This pattern was at odds with the country as
a whole, which experienced a more rapid decline between 1976 and 1986 than
between 1986 and 1996, as can be seen in Table 17.1. In 1976, the TFR for Menoufia
was slightly less than for the country as a whole, but Menoufia experienced only a
slight decline between then and 1986, as Weeks and associates (2000) have already
shown. However, the country was experiencing a rather rapid decline during that
time and by 1986 the TFR in Menoufia was nearly one child higher than for the
country as a whole. The decline in Egypt was led by the urban areas, which had
about a 10-year head start on rural areas in the fertility transition (Weeks et al.,
2004). Between 1986 and 1996 Menoufia experienced a very rapid drop in fertility
and thus in 1996 it was once again at parity with the nation.

The data in Table17.1 lead us clearly to expect that changes in the educational
level of women were playing a role in Menoufias fertility decline. Between 1976 and
1996 there was little overall change in the proportion of women who were married,
suggesting that there were few observable shifts in the pattern of marriage. However,
female illiteracy dropped substantially, from 77% down to 52%. At the same time,
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Table 17.1 Fertility decline in Egypt and Menoufia, 1976–1996

Egypt Menoufia
TFR Change TFR Change Proportion Female Sex ratio at Village

in TFR in TFR married illiteracy reproductive population size
ages

1976 6.05 5.84 0.61 0.77 0.86 6,036
1986 4.51 1.54 5.40 0.44 0.63 0.67 0.88 7,840
1996 3.57 0.94 3.56 1.84 0.63 0.52 0.92 9,349

Sources: Data for Egypt are from the International Database of the International Programs
Center of the US Census Bureau; Menoufia data were calculated by the authors from Egyptian
census data

the sex ratio at the reproductive ages was increasing, probably due especially in the
1990s to the Gulf War, which forced many Egyptian men back to their villages from
the oil fields in Kuwait and Iraq. All other things equal, we would expect this to have
created an upward pressure on fertility as men returned to more frequent intercourse
with their wives. If age at marriage was not rising, and women were more likely
to have their husbands around, the likely explanation for the decline would almost
have to be an increase in contraceptive utilization among women, and we will look
for that evidence later using data from the Egypt Demographic and Health Survey.

Having now laid out the case for the overall pattern of change in fertility in
Menoufia, the remainder of this analysis is devoted to examining at a finer spatial
scale what was going on Menoufia to create this fertility transition that was timed
differently from the country as a whole, so that we can improve our understanding
of the demographic changes in Egypt.

17.6.2 Spatial Patterns of Fertility in Menoufia in 1976

In 1976 the average woman in Menoufia was having children at a rate that would
produce nearly six children over the course of her lifetime. Although fertility was
quite high in most places throughout the governorate, the distribution of fertility by
village was negatively skewed, indicating that there were several places with signif-
icantly below average fertility levels. The left panel of Fig. 17.3 shows the spatial
pattern of total fertility rates by village. The substantial level of spatial autocorre-
lation is evidenced by the global Moran’s I statistic of 0.35, with z(I) being equal
to 9.39.

The right panel of Fig. 17.3 shows the statistically significant clusters with
respect to fertility, based on the Getis–Ord G∗

i statistic, as discussed above. There
are scattered clusters of low fertility, especially in the center of the governorate
around the city of Shbin El Kom, the capital and largest of the governorate’s hand-
ful of urban areas and home to Menoufia University which was, in fact, founded in
1976. In particular, low fertility is found in the northern area formed by the triangle
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Fig. 17.3 Fertility levels in Menoufia in 1976

between Shibn El Kom, a larger urban center, Tanta, which is just across the admin-
istrative boundary in the adjacent northern governorate of Gharbia (not shown in
Fig. 17.3), and another urban center, Banha, which is just to the east in the adja-
cent governorate of Qalyubbia (also not shown). Highways and railroad lines link
these three places and form, in essence, the more urban or cosmopolitan corridor
in Menoufia. The highest fertility is in the southern part of the governorate nearest
to the Nile Delta Barrage. As the crow flies, this area is geographically closer to
Cairo, but it is less connected to Cairo by way of transportation networks than is the
northern part of the governorate.

Although we have only a limited number of variables available to us, the ordinary
least-squares model shown in Table 17.2 reveals that the four predictor variables
account for 47% of the village to village variability in fertility levels. Of these, the
proportion of women who are married is clearly the most important, and as that
proportion goes up, so does the fertility rate. But the other three variables are also
statistically significant predictors, with higher illiteracy being associated with higher
fertility, a higher sex ratio equating to higher fertility and a larger population size
in the village correlating with lower fertility. However, the model has a high level
of spatial autocorrelation in the residuals, suggesting that the model needs better
specification to account for the spatial component.

The lower panel of Table 17.2 shows the results of the spatially filtered regres-
sion, undertaken as described above in the methods section. The spatial and non-
spatial components of the proportion married are nearly equally important predictors
of fertility, suggesting that both the level itself and being in the neighborhood of sim-
ilarly situated villages affects the level of the TFR. However, only the non-spatial



17 Spatial Patterns of Fertility in Rural Egypt 247

Table 17.2 Regression models for fertility in Menoufia, 1976

Predictor variables Initial OLS model
Standardized t-score p-value Moran’s
beta coefficient z(I)

(Constant) −1.463 0.144
Proportion married 0.502 8.555 0 3.891
Female adult illiteracy 0.139 2.382 0.018 5.39
Sex ratio at reproductive ages 0.15 3.239 0.001 2.276
Village population −0.159 −3.412 0.001 1.091
Adjusted R2 = 0.47
Z(I) for residuals 2.997

Spatially filtered model
(Constant) −0.245 0.807
Female illiteracy non-spatial 0.135 2.423 0.016
Female illiteracy spatial 0.037 0.6 0.549
Proportion married non-spatial 0.357 6.594 0
Proportion married spatial 0.412 5.94 0
Sex ratio non-spatial 0.149 3.193 0.002
Sex ratio spatial 0.113 2.121 0.035
Village population −0.174 −3.706 0
R2 = 0.48
Dependent variable is village TFR

component of female illiteracy is statistically significant. We posit that the spatial
component is not significant because the high level of illiteracy in 1976 meant that
nearly every village was likely to be in the midst of other villages with generally
high levels of female illiteracy. The non-spatial component of the sex ratio was
somewhat more important than the spatial component, although the latter was sta-
tistically significant. The village population size had not exhibited a spatial pattern
and so it was not spatially filtered. It remains a statistically significant predictor of
fertility. The R2 is essentially the same for both the initial and the filtered models,
but the filtered model has provided additional information about the spatial nature
of the predictors of fertility in Menoufia.

17.6.3 Spatial Patterns of Fertility in Menoufia in 1986

As has been anticipated from the earlier study Weeks et al. (2000), the fertility pat-
tern in 1986 is not dramatically different from that in 1976. The left side of Fig. 17.4
reveals a spatial pattern very similar to that in Fig. 17.3, and the Moran’s I of 0.37
(with a normalized z-score of 9.85) confirms the visual impression of a non-random
distribution of fertility levels around the governorate. The right side of Fig. 17.4 does
show, however, that the hot spots of high fertility in the northern part of the gover-
norate were no longer visible in 1986. The implication is that the northern villages
in the governorate were the ones most involved in the relatively modest decline in
fertility between 1976 and 1986.



248 J.R. Weeks

Fig. 17.4 Spatial pattern of fertility in 1986

The regression models for 1986 are shown in Table 17.3. Two things stand out
in these results. The first is that female adult illiteracy emerges in 1986 as the most
important predictor of the TFR in Menoufia’s villages. The second is, that largely
as a result of the emergence of education as a key predictor of fertility, the R2 goes
up to 0.59, which is considerably improved over the 1976 results. The sex ratio is
again a predictor of fertility levels, but in 1986 the size of the village’s population is
no longer a factor.

The residuals showed a significant level of spatial autocorrelation, as they had in
1976, and so we applied the spatial filtering process to these data. The non-spatial
component of illiteracy was a stronger predictor of fertility than was the spatial
component, but both are the top two factors influencing fertility levels in 1986. The
spatial component of the proportion married was slightly more important than the
non-spatial, whereas the non-spatial component of the sex ratio was more important
than the spatial, as had been true in 1976.

17.6.4 Spatial Patterns of Fertility in Menoufia in 1996

By 1996 the spatial pattern of fertility in Menoufia was clearly altered from previ-
ous years, as shown in Fig. 17.5. Dramatically lower fertility levels are nearly the
norm throughout the governorate, so much so that there are very few clusters of low
fertility. The distribution of TFR by village is now positively skewed and the more
unusual villages are now those that persist in their high fertility. These places are
most noticeably in the southern part of the governorate.
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Table 17.3 Regression models for fertility in Menoufia, 1986

Predictor variables Initial OLS model
Standardized t-score p-value Moran’s
beta coefficient z(I)

(Constant) −3.679 0
Proportion married 0.244 5.297 0 5.294
Female adult illiteracy 0.589 12.587 0 5.223
Sex ratio at reproductive ages 0.11 2.813 0.005 4.907
Village population 0.019 0.464 0.643 1.735
Adjusted R2 = 0.594
Z(I) for residuals 2.559

Spatially Filtered Model
(Constant) −2.168 0.031
Female illiteracy non-spatial 0.48 10.83 0
Female illiteracy spatial 0.347 6.361 0
Proportion married non-spatial 0.167 4.005 0
Proportion married spatial 0.263 4.339 0
Sex ratio non-spatial 0.101 2.588 0.01
Sex ratio spatial 0.042 0.907 0.365
Village population 0.01 0.249 0.804
R2 = 0.605

Dependent variable is village TFR

Fig. 17.5 Spatial pattern of fertility in 1996



250 J.R. Weeks

Table 17.4 Regression models for fertility in Menoufia, 1996

Predictor variables Initial OLS model
Standardized t-score p-value Moran’s
beta coefficient z(I)

(Constant) −4.509 0
Proportion married 0.331 6.419 0 7.09
Female adult illiteracy 0.393 7.712 0 6.234
Sex ratio at reproductive ages 0.197 4.26 0 9.229
Village population −0.014 −0.299 0.765 1.825
Adjusted R2 = 0.45

z(I) for residuals 2.544

Spatially filtered model
(Constant) −3.34 0.001
Female illiteracy non-spatial 0.296 6.246 0
Female illiteracy spatial 0.291 5.046 0
Proportion married non-spatial 0.248 5.241 0
Proportion married spatial 0.214 3.605 0
Sex ratio non-spatial 0.179 3.849 0
Sex ratio spatial 0.118 2.435 0.016
Village population −0.014 −0.297 0.767
R2 = 0.45

Dependent variable is village TFR

In 1996 female illiteracy was the most important predictor of fertility, as it had
been in 1986, although the proportion married was nearly as important, as seen in
Table 17.4. The sex ratio continued to be a significant factor, whereas population
size was not. Again, the spatial autocorrelation in the residuals led us to engage
in spatial filtering and the results suggest that the non-spatial component of female
illiteracy was slightly more important than the spatial component, and this was true
as well for the proportion married, and also for the sex ratio. In all cases, however,
both the spatial and non-spatial components of those variables were statistically
significant. Overall, the predictor variables in 1996 were able to explain 45% of the
intervillage variability in the TFR in Menoufia.

Comparisons of the three different census dates suggests that over time illiteracy
became an ever-more important predictor of village-level fertility rates and that the
spatial component emerged out of the shadows between 1976 and 1986 to assume
greater importance in understanding fertility patterns within Menoufia.

17.6.5 Did Fertility Decline More in the South than in the North?

We examined the overall change in fertility between 1976 and 1996 to see if there
was a spatial pattern to the change. As can be seen in Fig. 17.6 there is a pattern to the
change, and the z-normalized value of Moran’s I is 5.03. But the decline in fertility



17 Spatial Patterns of Fertility in Rural Egypt 251

Fig. 17.6 Spatial pattern of fertility change between 1976 and 1996

was generally greater in the north than in south, contrary to what we had anticipated.
The data are shown in terms of absolute decline, regardless of the starting point,
so this would have privileged the villages in the south, where the starting level of
fertility was highest. Yet, even given this advantage to the south, the absolute decline
was higher in the north. The right-hand panel of Fig. 17.5 shows the clusters of
fertility change. Although the clusters are scattered about the governorate, there are
more “high decline” clusters in the north than in the south.

17.6.6 Was the Fertility Decline Due Both to Improvements in
Female Literacy and to Location Within Menoufia?

The data show that fertility underwent a dramatic decline in this governorate
between 1986 and 1996, a result that had been foreshadowed by the changes taking
place between 1976 and 1986, especially the improving level of education among
women, which was part of a nationwide program pushed by the government in Egypt
(Fargues, 1997). Between 1976 and 1986 the percent of adult women who were illit-
erate dropped from 81% to 67%, even though there was little change in fertility. It
seemed unlikely that a shift of that size in female education would not lead even-
tually to a decline in fertility and, indeed, that drop did occur between 1986 and
1996, as the level of education of women continued to climb, and as women began
to catch up with men in terms of educational attainment. On the other hand, there
was little change in the percent married, suggesting little change in the average age
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at marriage, and the sex ratio in the adult ages increased, which we would posit
should encourage, rather than discourage fertility.

The regression models of fertility change between 1976 and 1996 quantify these
changes, as shown in Table 17.5. We included the fertility level in 1976 as an
endogenous variable in the model, because we wanted to see how the other predic-
tors behaved after controlling for the fact that the 1976 fertility level might influence
the subsequent fertility decline. As we expected, the change in the proportion mar-
ried did not predict a change in fertility, largely because there was not much change
in the proportion married. The largest standardized beta coefficient, other than the
initial fertility level, was the change in levels of illiteracy. The unstandardized coef-
ficients (not shown in the table) suggest that a 10 percentage point drop in illiteracy
is associated with a decline of one child in the total fertility rate. The sex ratio was
also significantly related to a drop in fertility, with a decline in the sex ratio (indi-
cating fewer men per woman) being associated with a decline in fertility. Change in
population size of villages was not associated with a change in fertility.

It was noted above that fertility dropped more in the north than in the south,
and that is also where educational levels were changing most rapidly for women.
Figure 17.7 shows that in 1976 in nearly all villages at least 50% of adult women

Table 17.5 Regression models of fertility change between 1976 and 1996

Predictor variables Initial OLS model
Standardized t-score p-value Moran’s
beta coefficient z(I)

(Constant) 7.597 0
Change in proportion married 0.053 1.164 0.245 11.91
Change in female adult illiteracy 0.134 3.341 0.001 3.06
Change in sex ratio at reproductive ages 0.097 2.421 0.016 7.52
Change in village population 0.009 0.226 0.821 2.21
TFR in 1976 −0.69 −16.601 0 9.39
Adjusted R2 = 0.62

z(I) for residuals = 3.98

Spatially filtered model
(Constant) −0.336 0.737
Change in female illiteracy non-spatial 0.12 2.92 0.004
Change in female illiteracy spatial 0.113 1.741 0.083
Change in proportion married non-spatial 0.039 0.91 0.364
Change in proportion married spatial 0.073 1.16 0.247
Change in village population non-spatial −0.013 −0.358 0.721
Change in village population spatial 0.09 2.346 0.02
Change in sex ratio non-spatial 0.085 2.202 0.028
Change in sex ratio spatial −0.02 −0.353 0.724
TFR in 1976 non-spatial −0.659 −15.838 0
TFR in 1976 spatial −0.338 −5.639 0
Adjusted R2 = 0.64
Dependent variable is change in village TFR
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Fig. 17.7 Spatial pattern of illiteracy change between 1976 and 1996

were illiterate. The exceptions to this rule were in some, but not all, of the more
urban parts of the governorate, especially Shbin El Kom, in the central northern
part of the governorate. By 1996 there had been a huge swath of villages that had
dropped below 50% illiteracy and they were heavily concentrated in the northern
part of the governorate. This pattern was sufficiently widespread so that only the
non-spatial component of illiteracy was statistically significant in the spatially fil-
tered regression (bottom panel of Table 17.5). It is likely that the spatial component
of illiteracy was subsumed under the spatial pattern of the TFR in 1976, given the
overall relationship between education and reproduction.

17.7 Discussion and Conclusion

We have used a better measure of fertility and a more spatially precise dasymetric
mapping approach to confirm that between 1976 and 1986 there was little change
in fertility in the rural governorate of Menoufia, Egypt, but there was considerable
spatial variability in both of those years. As Weeks et al. (2000) had predicted, we
found that in 1986 the governorate was poised for a rapid drop in fertility because of
the rapid rise in female literacy that had not yet, in 1986, produced any clear decline
in the average number of children being born to women. Our results show that the
central and northern parts of the governorate were the sites of the most dramatic
declines in fertility, rather than the southern part, as had been anticipated. This is
due in large part, we assume, because the decline in illiteracy was more dramatic
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in those parts of the governorate, and the results do confirm the expectation that
education was a key predictor of changing fertility.

By itself, of course, education cannot directly determine fertility levels. Educa-
tion is a distal, not a proximate determinant of fertility, which include especially
age at marriage (which in Muslim countries is almost always the same as the age
at first intercourse), contraception, and abortion (which is only available under very
restricted circumstances in Egypt). It is noteworthy that the proportion married did
not emerge as a variable helping to explain the decline in fertility in Menoufia,
because we noted above that a change in the age at marriage has been posited as
an important element of the Arab fertility transition. In 1976, 1986, and 1996 it
helped to explain the spatial variability in fertility in the governorate, but it was
not a change in marriage behavior that seems to have accounted for the decline in
fertility between 1986 and 1996. In fact, there was practically no change in the per-
cent married in most villages during that 10-year interval. The obvious implication
is that fertility was accomplished by means of contraceptive utilization, rather than
delayed marriage.

The census data themselves provide no clues about the possible role of family
planning, but we can gain some insights using data from the Egypt Demographic
and Health Surveys (http://www.measuredhs.com). In 1988, there were 345 mar-
ried women of reproductive age included in the DHS in Menoufia sampled from
10 different villages, and in 1995 the sample included 507 women from 17 differ-
ent villages. Between 1985 and 1995 there was a slight increase in the average age
at marriage among women in the sampled villages, but most noticeably the per-
centage of women who had ever-used a modern method of contraception increased
from 62% to 75% (see Table 17.6). The increase was especially noticeable among
younger women. For example, women aged 20–24 increased their ever-use of mod-
ern contraceptives from 40% to 62%. Although the sample sizes are fairly small, that
difference is large enough to be statistically significant. The current use of modern
contraception increased from 39% in 1988 to 49% in 1995, and again it was the
younger woman among whom the increase was most notable, increasing from 24%
to 47% among women aged 20–24.

This rise seems plausible given the high percentage of women (three-fourths at
both dates) who indicated that their husband approved of birth control. The data in
Table 17.6 also show the likely source of the increase in the use of contraception,
namely “family planning effort.” Married women in Menoufia were switching from
the pharmacy as a source of contraception to a hospital or clinic. This was part of
a government effort to promote an increase in the use of contraception in order to
lower the birth rate. The decline in mortality was fairly substantial during this time
in Egypt. The US Census Bureau’s International Programs Center estimates that the
infant mortality rate (deaths during the first year per 1,000 live births) was 132 in
1976, 89 in 1986, and 49 in 1996 (US Census Bureau International Programs Center,
n.d.). Furthermore, in 1976 childhood mortality rates were consistently higher for
females than for males (Makinson, 1986) but that pattern had abated by 1986.

As the death rate goes down among children without a commensurate drop in
fertility, the result is that an increasing fraction of children survive to adulthood,
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Table 17.6 Results for Menoufia from the 1988 and 1995 Egyptian demographic and health
surveys

1988 1995

Age at marriage 17.7 18.8

Age at first birth 19.5 20.3

Percent ever having used a method of birth control 62 75

Percent aged 20–24 ever having used a method of birth control 40 62

Percent currently using a modern method of contraception 39 49

Percent aged 20–24 currently using a modern method of contraception 24 47

Percent whose husband approves of family planning 76 76

N of living children at first use 3.16 2.76

Source of last method = pharmacy 43 14

Source of last method = private physician 24 24

Source of last method = hospital or clinic 29 60

Percent of women with more than primary education-DHS 17 33

Percent of husbands with more than primary education-DHS 24 49

Percent of women with more than primary education-Census 7 17

Percent married-census 63 63

forcing families and the villages in which they live to adjust to ever larger numbers
of young people who need to be clothed, fed, housed, and provided with a job. In
1976, the combination of fertility and mortality in Menoufia meant that the average
women could expect to have 4.03 children survive to adulthood. By 1986 this had
risen to 4.52 because death rates had dropped dramatically, but birth rates had not.
Recognizing this, the Egyptian government implemented a family planning program
in many governorates, including Menoufia, to promote the use of contraception. As
we have seen, the birth rate did then drop dramatically, but even so a woman in
Menoufia in 1996 could expect to have 4.24 children survive to adulthood – a greater
number than 20 years earlier, despite the drop in fertility.

Was the drop in fertility between 1986 and 1996 due to this government-
sponsored push to encourage the use of contraception, or was it due to the
government-sponsored push to improve literacy among the rural villagers, in order
to improve their economic productivity? Almost certainly both of those factors were
at work, but we do not have the data to decompose their relative contributions.
In general, more educated women are more likely to be contraceptors, so we can
anticipate that type of interaction. We also know that there is a spatial clustering of
villages where illiteracy dropped between 1986 and 1996 and fertility also dropped
in those parts of the governorate. We can infer a cause and effect relationship, but
we cannot confirm it. Importantly, though, we know that no matter how widespread
both government programs might have been, villagers in different parts of the gov-
ernorate responded differently. There are clusters of high fertility and low fertility,
clusters of rapid change and clusters of slow or no change and our spatially fil-
tered regression results suggest that some portion of the spatial pattern is a product
of being in the neighborhood of villages where these phenomena are occurring,
whether or not your own village may be very similar to those other villages. We have
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thus shown that at this geographic scale it is important to know where a village is,
not just what its demographic characteristics might be, if we are to understand the
level of reproduction of women living in that place.

We end by noting that the story of fertility in Menoufia is not yet completely
told. We know that fertility changed very little between the 1976 and 1986 cen-
suses, but the data presented here show clearly that a rather dramatic fertility decline
was occurring between 1986 and 1996. Keep in mind that our fertility data refer to
behavior that was occurring on average 2.5 years prior to the census, so from a
calendar perspective, we can say more accurately that there was little evidence of
change in fertility between the 1970s and the early 1980s, but there was evidence
of substantial change between the early 1980s and the early 1990s. Interestingly
enough, the 1996 census seems to have captured the point at which fertility had at
least temporarily leveled off. Our calculations from the 1995 DHS for Menoufia
show that there is virtually no difference in the TFR as calculated from births in
the year preceding the survey compared to the five years preceding the survey, sug-
gesting no trend in reproductive behavior. By contrast, the 1988 DHS data showed
that the TFR based on the year prior to that survey was lower than that based on
the five years preceding the survey, implying that there was a downward trend over
time to the data. Consistent with this idea is the finding from the Egyptian DHS
for 2000 that fertility levels were not much different in 2000 in Menoufia than they
had been in 1995 (El-Zanaty and Way, 2001). In fact, our analysis of the data for
Menoufia (not shown) suggests, if anything, an upward trend in fertility based on
births in the year preceding the 2000 DHS compared to the five years preceding the
survey. The 2006 census of Egypt has not been completed as of this writing, but
when those data become available we will be able to determine whether, for exam-
ple, fertility stopped declining in villages where illiteracy had not decline as rapidly
as in other villages. From such a fact we may infer that the village’s fertility decline
had been due to the government’s family planning program (which was later sub-
stantially reduced in funding as a result of changing United States foreign assistance
priorities), rather than to a more systemic change in the education of women.
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Flury B, Zoppè A (2000) Exercises in EM. Am Stat 54:207–209
Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant surveillance method

for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56:159–167
Focks DA, Haile DG, Daniels E, Mount GA (1993) Dynamic life table model for Aedes aegypti

(Diptera: Culicidae): simulation results and validation. J Med Entomol 30:10018–28
Focks DA, Daniels E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology

of urban dengue fever: literature analysis, model development, preliminary validation, and
samples of simulation results. Am J Trop Med Hyg 53:489–506

Fonseca MG, Martini MZ, dos Santos FAM (2004) Spatial structure of Aspidosperma polyneuron
in two semi-deciduous forests in Southeast Brazil. J Veg Sci 15:41–48

Forget PM, Mercier F, Collinet F (1999) Spatial patterns of two rodent-dispersed rain forest trees
Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpinaceae) at Paracou, French
Guiana. J Trop Ecol 15:301–313

Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press,
Cambridge



262 References

Foster SA, Gorr WL (1986) An adaptive filter for estimating spatially-varying parameters:
application to modeling police hours spent in response to calls for service. Manage Sci
32:878–889

Fotheringham AS (1983) A new set of spatial-interaction models: the theory of competing
distances. Environ Plan A 15:15–36

Fotheringham AS (1997) Trends in quantitative methods I: stressing the local. Prog Hum Geogr
21:88–96

Fotheringham AS, Rogerson P (1994) Spatial analysis and GIS. Taylor & Francis, London
Fotheringham AS, Charlton ME, Brunsdon C (1996) The geography of parameter space: an inves-

tigation of spatial non-stationarity. Int J Geogr Inf Syst 10:605–627
Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the

analysis of spatially varying relationships. Wiley, New York
Fowler N (1986) The role of competition in plant-communities in arid and semiarid regions. Annu

Rev Ecol Syst 17:89–110
Franklin J, Rey SJ (2007) Spatial patterns of tropical forest trees in Western Polynesia suggest

recruitment limitations during secondary succession. J Trop Ecol 23:1–12
Franklin J, Michaelsen J, Strahler AH (1985) Spatial analysis of density dependent pattern in

coniferous forest stands. Vegetatio 64:29–36
Gadalla MS (1978) Is there hope? Fertility and family planning in a rural Egyptian community.

Carolina Population Center, University of North Carolina, Chapel Hill, NC
Gaines KF, Bryan Jr AL, Dixon PM (2000) The effects of drought on foraging habitat selection of

breeding wood storks in coastal Georgia. Waterbirds 23:64–73
Gatrell A (1987) On putting some statistical analysis into geographic information systems: with

special reference to problems of map comparison and map overlay. Working Paper Research
Report No 5. Northern Regional Research Laboratory

Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145
Getis A (1957) A geographical analysis of rail freight shipments in Pennsylvania. Pa Bus Surv

51:4–5
Getis A (1963) The determination of the location of retail activities with the use of a map

transformation. Econ Geogr 39:14–22
Getis A (1964) Temporal land use pattern analysis with the use of nearest neighbor and quadrat

method. Ann Assoc Am Geogr 54:391–399
Getis A (1969) Residential location and the journey to work. Proc Assoc Am Geogr 1:55–59
Getis A (1983) Second-order analysis of point patterns: the case of Chicago as a multi-center urban

region. Prof Geogr 35:73–80
Getis A (1984) Interaction modeling using second-order analysis. Environ Plan A 16:173–183
Getis A (1985a) Energy costs and land use patterns in metropolitan Chicago. In: Checkoway B,

Patton CV (eds) The metropolitan Midwest: policy problems and prospects for change.
University of Illinois Press, Urbana, IL, chap. 5

Getis A (1985b) A second-order approach to spatial autocorrelation. Ont Geogr 25:67–73
Getis A (1985c) Urban population spacing analysis. Urban Geogr 6:3–12
Getis A (1989a) A spatial association model approach to the identification of spatial dependence.

Geogr Anal 21:251–259
Getis A (1989b) A spatial causal model of economic interdependency among neighboring

communities. Environ Plan A 21:115–120
Getis A (1990) Screening for spatial dependence in regression analysis. Pap Reg Sci Assoc

69: 69–81
Getis A (1991) Spatial interaction and spatial autocorrelation: a cross-product approach. Environ

Plan A 23:1269–1277
Getis A (1993a) Introduction: mathematical models in geography. Pap Reg Sci 72:201–202
Getis A (1993b) Scholarship, leadership, and quantitative methods. Urban Geogr 14:517–525
Getis A (1995a) Spatial filtering in a regression framework: examples using data on urban crime,

regional inequality, and government expenditures. In: Anselin L, Florax R (eds) New directions
in spatial econometrics. Springer, Berlin, pp 172–188



References 263

Getis A (1995b) Spatial filtering in a regression framework: examples using data on urban crime,
regional inequality, and government expenditures. In: Anselin L, Florax RJGM (eds) New
directions in spatial econometrics. Springer, Berlin

Getis A (1995c) The tyranny of data. San Diego State University Press, San Diego, CA
Getis A (1999) Some thoughts on the impact of large data sets on regional science. Ann Reg Sci

33:145–150
Getis A (2004a) A geographic approach to identifying disease clusters. In: Janelle DG, Warf B,

Hansen K (eds) Worldminds: geographical perspectives on 100 problems. Kluwer, Dordrecht,
pp 81–86

Getis A (2004b) The role of geographic information science in applied geography. In: Bailly A,
Gibson LJ (eds) Applied geography: a world perspective. Kluwer, Dordrecht, pp 95–112

Getis A (2007) Reflections on spatial autocorrelation. Reg Sci Urban Econ 37:491–496
Getis A, Aldstadt J (2004) Constructing the spatial weights matrix using a local statistic. Geogr

Anal 36:90–105
Getis A, Boots BN (1978) Models of spatial processes: an approach to the study of point, line, and

area patterns. Cambridge University Press, Cambridge
Getis A, Franklin J (1987) Second-order neighborhood analysis of mapped point patterns. Ecology

68:473–477
Getis A, Getis J (1968) Retail store spatial affinities. Urban Stud 5:317–332
Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal

34:130–140
Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal

24:189–206
Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spa-

tial analysis: modelling in a GIS environment. Geoinformation International, Cambridge, UK,
pp 261–278

Getis A, Ord JK (1998) Spatial modelling of disease dispersion using a local statistic: the case of
aids. In: Griffith DA, Amrhein CG, Huriot JM (eds) Econometric advances in spatial modelling
and methodology: essays in honour of Jean Paelinck. Kluwer, Dordrecht

Getis A, Drummy P, Gartin J, Gorr WL, Harries K, Rogerson P, Stoe D, Wright R (2000)
Geographic information science and crime analysis. URISA J 12:7–14

Getis A, Getis J, Quastler I (2001) The United States and Canada: the land and the people, 2nd
edn. McGraw-Hill, New York

Getis A, Morrison A, Gray K, Scott TW (2003) Characteristics of the spatial pattern of the Dengue
vector Aedes Aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69:494–505

Getis A, Anselin L, Lea A, Ferguson M, Miller H (2004a) Spatial analysis and modeling in a GIS
environment. In: McMaster RB, Usery EL (eds) A research agenda for geographic information
science. CRC, Boca Raton, FL, pp 157–196

Getis A, Mur J, Zoller HG (2004b) Spatial econometrics and spatial statistics. Palgrave Macmillan,
London

Getis A, Getis J, Getis V, Fellmann JD (2008) Introduction to geography, 11th edn. Mc-Graw-Hill,
New York

Glass L, Tobler WR (1971) Uniform distribution of objects in a homogeneous field: cities on a
plain. Nature 233:67–68

Good BJ, Whipple SA (1982) Tree spatial patterns – South-Carolina bottomland and swamp
forests. Bull Torrey Bot Club 109:529–536

Goodchild MF (1987) A spatial analytical perspective on geographical information systems. Int J
Geogr Inf Sci 1:327–334

Goodchild MF (1992) Geographical data modeling. Comput Geosci 18:401–408
Goodchild MF, Brusegard D (1989) Spatial analysis using GIS: seminar workbook. National

Center for Geographic Information and Analysis, Santa Barbara, CA
Goodchild MF, Gopal S (1989) The accuracy of spatial databases. CRC, Boca Raton
Goodchild MF, Haining RP, Wise S (1992) Integrating GIS and spatial data analysis: problems and

possibilities. Int J Geogr Inf Sci 6:407–423



264 References

Goreaud F, Pelissier R (1999) On explicit formulas of edge effect correction for ripley’s k-function.
J Veg Sci 10:433–438

Gould P (1981) Letting the data speak for themselves. Ann Assoc Am Geogr 71:166–176
Granger CWJ (1969) Spatial data and time series analysis. In: Scott A (ed) Studies in regional

science. Pion, London, pp 1–24
Grieg-Smith P (1983) Quantitative plant ecology, 3rd edn. Blackwell, Oxford
Griffin P, Getis A, Griffin E (1996) Regional patterns of affirmative action compliance costs. Ann

Reg Sci 30:321–340
Griffith DA (1981) Evaluating the transformation from a monocentric to a polycentric city. Prof

Geogr 33:189–196
Griffith DA (1988a) Advanced spatial statistics: special topics in the exploration of quantitative

spatial data series, vol 12. Kluwer, Dordrecht
Griffith DA (1988b) Estimating spatial autoregressive model parameters with commercial statisti-

cal packages. Geogr Anal 20:176–186
Griffith DA (1993) Advanced spatial statistics for analyzing and visualizing geo-referenced data.

Int J Geogr Inf Syst 7:107–123
Griffith DA (1996) Some guidelines for specifying the geographic weights matrix contained in

spatial statistical models. In: Arlinghaus SL, Griffith DA (eds) Practical handbook of spa-
tial statistics. CRC, Boca Raton, http://www.loc.gov/catdir/enhancements/fy0731/95024710-d.
html

Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices
employed in spatial anlaysis. Linear Algebra Appl 321:95–112

Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through
theory and scientific visualization. Springer, Berlin

Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction
spatial analysis. Ecology 87:2603–2613

Griffith DA, Bennett RJ, Haining RP (1989) Statistical analysis of spatial data in the presence of
missing observations: a methodological guide and an application to urban census data. Environ
Plan A 21:1511–1523

Griffith DA, Lewis R, Li B, Vasiliev I, McKnight S, Yang X (1990) Developing Minitab software
for spatial statistical analysis: a tool for education and research. Oper Geogr 8:28–33

Gu WD, Kuusinen M, Konttinen T, Hanski I (2001) Spatial pattern in the occurrence of the lichen
Lobaria pulmonaria in managed and virgin boreal forests. Ecography 24:139–150

Gubler DJ (1993) Dengue and dengue haemorrhagic fever in the Americas. In: Thoncharoen P (ed)
Monograph on dengue/dengue hemorrhagic fever. WHO regional publication SEARO no 22.
World Health Organization, New Delhi, pp 9–22

Gubler DJ (1997) Dengue and dengue hemorrhagic fever: its history and resurgence as a global
public health problem. In: Gubler DJ, Kuno G (eds) Dengue and dengue hemorrhagic fever.
CAB International, Wallingford, Oxon, UK, pp 1–22, http://www.loc.gov/catdir/enhancements/
fy0605/97013184-d.html

Guerra MA, Walker ED, Kitron U (2001) Canine surveillance system for Lyme borreliosis in Wis-
consin and northern Illinois: geographic distribution and risk factor analysis. Am J Trop Med
Hyg 65:546–552

Gujarati D (1992) Essentials of econometrics. McGraw-Hill, New York
Haase P (1995) Spatial pattern-analysis in ecology based on Ripley K-function – introduction and

methods of edge correction. J Veg Sci 6:575–582
Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semi-arid

shrubland in southeastern Spain. J Veg Sci 7:527–534
Haining RP (1977) Model specification in stationary random fields. Geogr Anal 9:107–129
Haining RP (1978) Estimating spatial-interaction models. Environ Plan A 10:305–320
Haining RP (1990a) Spatial data analysis in the social and environmental sciences. Cambridge

University Press, Cambridge, http://www.loc.gov/catdir/description/cam024/90001361html
Haining RP (1990b) The use of added variable plots in regression modelling with spatial data. Prof

Geogr 42:336–344



References 265

Haining RP (1991) Bivariate correlation with spatial data. Geogr Anal 23:210–227
Haining RP, Griffith DA, Bennett. RJ (1984) A statistical approach to the problem of missing

spatial data using a first-order Markov model. Prof Geogr 36:338–345
Halstead SB (1990) Global epidemiology of dengue hemorrhagic fever. Southeast Asian J Trop

Med Public Health 21:636–41
Halstead SB, Scanlon JE, Umpaivit P, Udomsakdi S (1969) Dengue and Chickungunya virus infec-

tion in man in Thailand, 1962–(1964) IV. Epidemiologic studies in the Bangkok metropolitan
area. Am J Trop Med Hyg 18:997–1033

Hand D, Daly F, Lunn A, McConway K, Ostrowski. E (1994) A handbook of small data sets.
Chapman & Hall, New York

Harrington LC, Edman JD, Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae)
feed preferentially and frequently on human blood? J Med Entomol 38:411–422

Harrison D, Rubinfeld D (1978) Hedonic housing prices and the demand for clean air. J Environ
Econ Manage 5:81–102

Haslett J, Wills G, Unwin A (1990) SPIDER – an interactive statistical tool for the analysis of
spatially distributed data. Int J Geogr Inf Sci 4:285–296

Haslett J, Bradley R, Craig P, Unwin A, Wills G (1991) Dynamic graphics for exploring spatial
data with application to locating global and local anomalies. Am Stat 45:234–242

Hawkins D, Olwell D (1998) Cumulative sum charts and charting for quality improvement.
Springer, Berlin

Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage, Newbury Park,
CA

He FL, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth douglas fir
forest. J Ecol 88:676–688

Hepple LW (1995) Bayesian techniques in spatial and network econometrics: 2 Computational
methods and algorithms. Environ Plan A 27:615–644

HMSO (1987) Handling geographic information (the chorley report). London
Hoeffding W (1951) A combinatorial central limit theorem. Ann Math Stat 22:558–566
Howe HF (1986) Seed dispersal by fruit-eating birds and mammals. In: Murray J (ed) Seed

dispersal. Academic, Sydney, pp 123–187
Hubert L (1977) Generalized proximity function comparisons. Br J Math Stat Psychol 31:179–182
Hubert L (1979) Matching models in the analvsis of cross-classifications. Psychometriha 44:21–41
Hubert L, Golledge RG (1982) Measuring association between spatially defined variables:

Tjostheim’s index and some generalizations. Geogr Anal 14:273–278
Hubert L, Golledge RG, Costanzo C (1981) Generalized procedures for evaluating spatial

autocorrelation. Geogr Anal 13:224–233
Hubert L, Golledge RG, Costanzo C, Gale N (1985) Measuring association between spatially

defined variables: an alternative procedure. Geogr Anal 17:36–46
Ida H (2000) Treefall gap disturbance in an old-growth beech forest in southwestern japan by a

catastrophic typhoon. J Veg Sci 11:825–832
Jaffe AB, Trajtenberg M (2002) Patents, citations, and innovations: A window on the knowledge

economy. MIT, Cambridge, MA, http://www.loc.gov/catdir/toc/fy032/2001056257html
Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:

501–528
Johnson NL, Kotz S, Kemp AW, Johnson NL (1992) Univariate discrete distributions, 2nd edn.

Wiley, New York, http://www.loc.gov/catdir/description/wiley031/92011685html
Kashian DM, Turner MG, Romme WH, Lorimer CG (2005) Variability and convergence in stand

structural development on a fire-dominated subalpine landscape. Ecology 86:643–654
Kehris E (1990a) A geographical modelling environment built around ARC/INFO. Working Paper

Research Report No 13. North West Regional Research Laboratory, Lancaster University
Kehris E (1990b) Spatial autocorrelation statistics in ARC/INFO. Working Paper Research Report

No 16. North West Regional Research Laboratory, Lancaster University



266 References

Kelejian H, Robinson D (2004) The influence of spatially correlated heteroscedasticity on tests for
spatial autocorrelation. In: Anselin L, Florax R, Rey S (eds) Advances in spatial econometrics:
methodology, tools and applications. Springer, Berlin, pp 79–97

Kenkel NC (1988) Pattern of self-thinning in jack pine: testing the random mortality hypothesis.
Ecology 69:1017–1024

Kooijman S (1976) Some remarks on the statistical analysis of grids especially with respect to
ecology. Ann Syst Res 5:113–132

Laessle AM (1965) Spacing and competition in natural stands of sand pine. Ecology 46:65–72
LaFrankie JV, Saw LG (2005) The understorey palm Licuala (Arecaceae) suppresses tree

regeneration in a lowland forest in Asia. J Trop Ecol 21:703–706
Larsen DR, Bliss LC (1998) An analysis of structure of tree seedling populations on a lahar. Landsc

Ecol 13:307–322
Lawson A (1993) On the analysis of mortality events associated with a prespecified fixed point.

J R Stat Soc A 156:363–377
Leemans R (1991) Canopy gaps and establishment patterns of spruce (Picea abies (l) karst) in 2

old-growth coniferous forests in central Sweden. Vegetatio 93:157–165
LeSage JP (2004) A family of geographically weighted regression models. In: Anselin L, Florax R,

Rey S (eds) Advances in spatial econometrics: methodology, tools and applications. Springer,
Berlin, pp 241–264

LeSage JP, Pace R (2005) Spatial econometric modeling of origin-destination flows. In: 52nd
Annual North American Meetings of the Regional Science Association International. Las
Vegas, NV

Liang Y, Guo LD, Ma KP (2004) Genetic structure of a population of the ectomycorrhizal fungus
Russula vinosa in subtropical woodlands in southwest China. Mycorrhiza 14:235–240

Little R, Rubin D (1987) Statistical analysis with missing data. Wiley, New York
Longley PA, Goodchild MF, Maguire DJ, Rhind DW (1999) Geographical information systems,

2nd edn. Wiley, New York
Lookingbill TR, Zavala MA (2000) Spatial pattern of Quercus ilex and Quercus pubescens

recruitment in Pinus halepensis dominated woodlands. J Veg Sci 11:607–612
MacDougall EB (1991) A prototype interface for exploratory analysis of geographic data. Work-

ing paper, Department of Landscape Architecture and Regional Planning, University of
Massachusetts

Maguire DJ (1991) An overview and definition of GIS. In: Longley PA, Goodchild MF, Maguire
DJ, Rhind DW (eds) Geographical information systems: principles and applications. Longman
Scientific and Technical, Harlow, pp 9–20

Maguire DJ, Dangermond J (1991) The functionality of GIS. In: Maguire DJ, Goodchild
MF, Rhind DW (eds) Geographical information systems: principles and applications, vol 1.
Longman Scientific & Technical, Harlow, pp 319–335

Maguire DJ, Michael B, Goodchild MF (2005) GIS, spatial analysis and modelling. ESRI,
Redlands, CA

Makinson C (1986) Sex differentials in infant and child mortality in Egypt. PhD thesis, Department
of Sociology, Princeton University, Princeton, NJ

Maling DH (1989) Measurements from maps: principles and methods of cartometry. Pergamon,
New York

Malkinson D, Kadmon R, Cohen D (2003) Pattern analysis in successional communities – an
approach for studying shifts in ecological interactions. J Veg Sci 14:213–222

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer
Res 27:209–220

Mapping Science Committee NRC (1993) Toward a coordinated spatial data infrastructure for the
nation. Working paper, National Academy Press, Washington, DC

Mast JN, Veblen TT (1999) Tree spatial patterns and stand development along the pine-grassland
ecotone in the colorado front range. Can J For Res – Revue Canadienne De Recherche
Forestiere 29:575–584



References 267

Mast JN, Wolf JJ (2004) Ecotonal changes and altered tree spatial patterns in lower mixed-conifer
forests, Grand Canyon National Park, Arizona, USA. Landsc Ecol 19:167–180

Matern B (1971) Doubly stochastic poisson processes in the plane. In: Patil GP, Pielou EC,
Waters WE (eds) Statistical ecology. Pennsylvania State University Press, State College, PA,
pp 195–213

McDonald PT (1977) Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in
villages on the Kenya coast I. J Med Entomol 14:49–53

McDonald RI, Peet RK, Urban DL (2003) Spatial pattern of Quercus regeneration limitations and
Acer rubrum invasion in a Piedmont forest. J Veg Sci 14:441–450

McLachlan G, Krishnan T (1997) The EM-algorithm and extensions. Wiley, New York
McMillen D, McDonald J (2004) Locally weighted maximum likelihood estimation: Monte

Carlo evidence and an application. In: Anselin L, Florax R, Rey S (eds) Advances in spatial
econometrics: methodology, tools and applications. Springer, Berlin, pp 225–239

Meng X (1997) The EM algorithm. In: Kotz S, Read C, Banks D (eds) Encyclopedia of statistical
sciences. Wiley, New York, pp 218–227

Mennis J (2002) Using geographic information systems to create and analyze statistical surfaces
of population and risk for environmental justice analysis. Soc Sci Q 83:281–297

Miller C, Urban DL (1999) Forest pattern, fire, and climatic change in the Sierra Nevada.
Ecosystems 2:76–87

Mitchell A (1999) The ESRI guide to GIS analysis. ESRI, Redlands, CA
Moellering H, Tobler WR (1972) Geographical variances. Geogr Anal 4:34–50
Moeur M (1993) Characterizing spatial patterns of trees using stem-mapped data. For Sci 39:756–

775
Montgomery D, Peck E (1982) Introduction to linear regression analysis. Wiley, New York
Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc B 10:243–251
Moravie MA, Roberts A (2003) A model to assess relationships between forest dynamics and

spatial structure. J Veg Sci 14:823–834
Morrison A, Astete H, Chapilliquen F, Ramirez-Prada C, Diaz G, Getis A, Gray K, Scott

TW (2004a) Evaluation of a sampling methodology for rapid assessment of aedes aegypti
infestation levels in Iquitos, Peru. J Med Entomol 41:502–510

Morrison A, Gray K, Getis A, Astete H, Shihuincha M, Fochs D, Watts D and Scott TW (2004b)
Temporal and geographic patterns of Aedes aegypti (diptera: Culicidae) production in Iquitos,
Peru. J Med Entomol 41:1123–1142

Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P (1998) Exploratory space–time anal-
ysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J
Trop Med Hyg 58:287–298

Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-
Wesley series in behavioral science. Addison-Wesley, Reading, MA

Mugglestone MA, Renshaw E (1996) A practical guide to the spectral analysis of spatial point
processes. Comput Stat Data Anal 21:43–65

Munyekenye OG, Githeko AK, Zhou GF, Mushinzimana E, Minakawa N, Yan GY (2005) Plas-
modium falciparum spatial analysis, western Kenya highlands. Emerg Infect Dis 11:1571–1577

Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and
consequences for recruitment. Trends Ecol Evol 15:275–285

Navas ML, Goulard M (1991) Spatial pattern of a clonal perennial weed. Rubia Peregrina
(Rubiaceae) in vineyards of southern France. J Appl Ecol 28:1118–1129

Nebert D (1993) Implementation of wide area information server (WAIS) software to disseminate
spatial data on the internet. In: International ESRI User Conference. Palm Springs

Neyman J (1939) A new class of ‘contagious’ distributions, applications for entemology and
bacteriology. Ann Math Stat 10:35–57

Ng EG, Peyton BW (1993) Block sparse Cholesky algorithms on advanced multi-processor
computers. SIAM J Sci Comput 14:1034–1056

Nicotra AB (1998) Sex ratio variation and spatial distribution of Siparuna grandiflora, a tropical
dioecious shrub. Oecologia 115:102–113



268 References

Nijkamp P (1988) The use of information systems for regional planning. R Econ Reg Urb 15:
759–780

Nijkamp P (1990) Geographical information systems in perspective. In: Scholten HJ, Stillwell
JCH (eds) Geographical information systems for urban and regional planning, vol 17. Kluwer,
Dordrecht

Nijkamp P, Rietveld P (1984) Information systems for integrated regional planning, vol. 149.
North-Holland, Amsterdam

Nyerges TL (1993) Understanding the scope of GIS: its relationship to environmental modeling. In:
Goodchild MF, Parks B, Steyaert L (eds) Environmental modeling with GIS. Oxford University
Press, New York, pp 75–93

O’Brien D, Kaneene J, Getis A, Lloyd J, Rip M, Leader R (2000) Spatial and temporal distribution
of selected canine cancers in michigan, USA, 1964–1994. Prev Vet Med 47:187–204

Okabe A, Yamada I (2001) The K-function method on a network and its computational
implementation. Geogr Anal 33:271–290

Okabe A, Boots BN, Sugihara K, Chiu SN (2000) Spatial tessellations: concepts and applica-
tions of Voronoi diagrams, 2nd edn. Wiley, Chichester, http://www.loc.gov/catdir/description/
wiley033/99013149html

Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, New York
Oliver MA, Webster R (1990) Kriging: a method of interpolation for geographical information

systems. Int J Geogr Inf Sci 4:313–332
Openshaw S (1977) Optimal zoning systems for spatial interaction models. Environ Plan A 9:

169–184
Openshaw S (1984) The modifiable area unit problem, CATMOG 38. Geoabstracts, Norwich
Openshaw S (1990) Spatial analysis and geographical information systems: a review of progress

and possibilities. In: Scholten HJ, Stillwell JCH (eds) Geographical information systems for
urban and regional planning, vol 17. Kluwer, Dordrecht

Openshaw S, Taylor P (1979) A million or so correlation coefficients: three experiments on the
modifiable areal unit problem. In: Wrigley N, Bennett RJ (eds) Statistical applications in the
spatial sciences. Pion, London

Openshaw S, Charlton ME, Wymer C, Craft A (1987) A Mark I geographical analysis machine for
the automated analysis of point data sets. Int J Geogr Inf Syst 1:335–358

Openshaw S, Charlton ME, Craft A (1988) Searching for Leukaemia clusters using a geographical
analysis machine. Pap Reg Sci 64:95–106

Openshaw S, Cross A, Charlton ME (1990) Building a prototype geographical correlates explo-
ration machine. Int J Geogr Inf Sci 4:297–311

Openshaw S, Brunsdon C, Charlton ME (1991) A spatial analysis toolkit for gis. In: Proceedings
of the Second European Conference on Geographical Information Systems. Brussels, Belgium,
pp 788–796

Ord JK (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70:120–126
Ord JK, Getis A (1993) Distributional issues concerning distance statistics. In: Paper Presented at

the 40th North American Meeting of the Regional Science Association International. Houston,
TX

Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an
application. Geogr Anal 27:286–306

Ord JK, Getis A (2001) Testing for local spatial autocorrelation in the presence of global
autocorrelation. J Reg Sci 41:411–432

Ordonez JG, Fernandez Salas I, Flores-Leal A (1997) Monitoring dispersal of marked Aedes
aegypti females under field conditions using sticky ovitraps in Monterrey, northeastern Mexico.
J Am Mosq Control Assoc 13:121

Pacala S, Silander J Jr (1985) Neighborhood models of plant population dynamics. I. Single-
species models of annuals. Am Nat 125:385–411

Pace R, Gilley O (1997) Using the spatial configuration of the data to improve estimation. J Real
Estate Fin Econ 14:333–340



References 269

PAHO (1994) Dengue and dengue haemorrhagic fever in the Americas. Guidelines for prevention
and control. Pan American Health Organization Scientific Publication no 548. Pan American
Health Organization

Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat
specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

Pancer-Koteja E, Szwagrzyk J, Bodziarczyk J (1998) Small-scale spatial pattern and size structure
of Rubus hirtus in a canopy gap. J Veg Sci 9:755–762

Parish R, Antos JA, Fortin MJ (1999) Stand development in an old-growth subalpine forest in
southern interior british columbia. Can J For Res – Revue Canadienne De Recherche Forestiere
29:1347–1356

Parker AJ, Parker KC, McCay DH (2001) Disturbance-mediated variation in stand structure
between varieties of Pinus clausa (sand pine). Ann Assoc Am Geogr 91:28–47

Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–595
Pelissier R (1998) Tree spatial patterns in three contrasting plots of a southern Indian tropical moist

evergreen forest. J Trop Ecol 14:1–16
Pelissier R, Goreaud F (2001) A practical approach to the study of spatial structure in simple cases

of heterogeneous vegetation. J Veg Sci 12:99–108
Perry GLW, Miller BP, Enright NJ (2006) A comparison of methods for the statistical analysis of

spatial point patterns in plant ecology. Plant Ecol 187:59–82
Peuquet D (1984) A conceptual framework and comparison of spatial data models. Cartographica

21:66–113
Peuquet D (1988) Representations of geographic space: toward a conceptual synthesis. Ann Assoc

Am Geogr 78:375–394
Pickles J (1995) Ground truth: the social implications of geographic information systems. Guilford,

New York
Pielou E (1977) Mathematical ecology. Wiley, New York
Pindyck R, Rubinfeld D (1981) Econometric models and economic forecasts. McGraw-Hill, New

York
Pinske J (2004) Moran-flavored tests with nuisance parameters: examples. In: Anselin L, Florax R,

Rey S (eds) Advances in spatial econometrics: methodology, tools and applications. Springer,
Berlin, pp 67–77

Pitman EJG (1937) The ‘closest’ estimates of statistical parameters. Biometrika 58:299–312
Plane D (1981) The geography of urban commuting fields: some empirical evidence from New

England. Prof Geogr 33:182–188
Potvin F, Boots BN, Dempster A (2003) Comparison among three approaches to evaluate win-

ter habitat selection by white-tailed deer on Anticosti Island using occurrences from an aerial
survey and forest vegetation maps. Can J Zool – Revue Canadienne De Zoologie 81:1662–1670

Prior I, Muncke C, Parton R, Hancock J (2003) Direct visualization of Ras proteins in spatially
distinct cell surface microdomains. J Cell Biol 160:165–170

Putnam J, Scott TW (1995) The effect of multiple host contacts on the infectivity of dengue-2 virus
infected Aedes aegypti. J Parasitol 81:170–174

R Development Core Team (2004) R: a language and environment for statistical computing
Rashad H (2000) Demographic transition in Arab countries: a new perspective. J Popul Res

17: 83–101
Rashed T, Weeks JR, Gadalla MS, Hill AG (2001) Revealing the anatomy of cities through spectral

mixture analysis of multispectral imagery: a case study of the greater Cairo region, Egypt.
Geocarto Int 16:5–16

Rashed T, Weeks JR, Roberts D, Rogan J, Powell R (2003) Measuring the physical composition
of urban morphology using multiple endmember spectral mixture models. Photogramm Eng
Remote Sens 69:1011–1020

Rashed T, Weeks JR, Stow D, Fugate D (2005) Measuring temporal compositions of urban
morphology through spectral mixture analysis: toward a soft approach to change analysis in
crowded cities. Int J Remote Sens 26:699–718

Rayner JN (1971) An introduction to spectral analysis. Pion, London



270 References

Rayner JN, Golledge RG (1972) Spectral analysis of settlement patterns in diverse physical and
economic environments. Environ Plan 4:347–371

Rayner JN, Golledge RG (1973) The spectrum of US Route 40 re-examined. Geogr Anal
5: 338–350

Reiter P, Gubler DJ (1997) Surveillance and control of urban dengue vectors. In: Gubler DJ, Kuno
G (eds) Dengue and dengue hemorrhagic fever. CAB International, Wallingford, Oxon, UK,
pp 425–462, http://www.loc.gov/catdir/enhancements/fy0605/97013184-d.html

Rey SJ, Anselin L (2007) PySAL: a Python library of spatial analytical methods. Rev Reg Stud
37:5–27

Rey SJ, Janikas MV (2006) STARS: space–time analysis of regional systems. Geogr Anal
38: 67–86

Ridley HN (1930) The dispersal of plants throughout the world. L Reeve, Ashford, Kent
Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:

255–266
Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc B 39:172–212
Ripley BD (1978) Spectral analysis and the analysis of pattern in plant communities. J Ecol

66:965–981
Ripley BD (1979a) The analysis of geographic maps. In: Bartels CPA, Ketellapper RH (eds)

Exploratory and explanatory statistical analysis of spatial data. Martinus Nijhoff, The Hague,
pp 53–72

Ripley BD (1979b) Tests of ‘randomness’ for spatial point patterns. J R Stat Soc B 41:368–374
Ripley BD (1981) Spatial statistics. Wiley, New York
Robinson A, Sale R, Morrison J, Muehrcke P (1984) Elements of cartography, 5th edn. Wiley,

New York
Rodhain F, Rosen L (1997) Mosquito vectors and dengue virus-vector relationships. In: Gubler DJ,

Kuno G (eds) Dengue and dengue hemorrhagic fever. CAB International, Wallingford, Oxon,
UK, pp 61–88, http://www.loc.gov/catdir/enhancements/fy0605/97013184-d.html

Rodriguez-Figueroa L, Rigau-Perez JG, Suarez E, Reiter P (1995) Risk factors for dengue infection
during an outbreak in Yanes, Puerto Rico in 1991. Am J Trop Med Hyg 52:496–502

Rowlingson BS, Diggle PJ (1993) Splancs: spatial point pattern analysis code in s-plus. Comput
Geosci 19:627–655
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