
COMPUTER
ORGANIZATION

AND DESIGN
THE HARDWARE / SOFTWARE INTERFACE

DAVID A. PATTERSON
JOHN L. HENNESSY

MORGANKAUFMANN

F O U R T H E D I T I O N

Computer Organization and Design
T H E H A R D WA R E / S 0 F T W A R E I N T E R F A C E

Contents

Preface xv

C H A P T E R S

Computer Abstractions audi Technology 2

1.1 Introduction 3
1.2 Below Your Program 10
1.3 Under the Covers 13
1.4 Performance 26
1.5 The Power Wall 39
1.6 The Sea Change: The Switch from Uniprocessors to

Multiprocessors 41
1.7 Real Stuff: Manufacturing and Benchmarking the AMD

Opteron X4 44
1.8 Fallacies and Pitfalls 51
1.9 Concluding Remarks 54
1.10 Historical Perspective and Further Reading 55
1.11 Exercises 56

Instructions: Language of the Computer 74

2.1 Introduction 76
2.2 Operations of the Computer Hardware 77
2.3 Operands of the Computer Hardware 80
2.4 Signed and Unsigned Numbers 87
2.5 Representing Instructions in the Computer 94
2.6 Logical Operations 102
2.7 Instructions for Making Decisions 105
2.8 Supporting Procedures in Computer Hardware 112
2.9 Communicating with People 122
2.10 MIPS Addressing for 32-Bit Immediates and Addresses 128
2.11 Parallelism and Instructions: Synchronization 137
2.12 Translating and Starting a Program 139
2.13 AC Sort Example to Put It All Together 149

2.14 Arrays versus Pointers 157
2.15 Advanced Material: Compiling C and Interpreting Java 161
2.16 Real Stuff: ARM Instructions 161
2.17 Real Stuff: x86 Instructions 165
2.18 Fallacies and Pitfalls 174
2.19 Concluding Remarks 176
2.20 Historical Perspective and Further Reading 179
2.21 Exercises 179

Arithmetic for Computers 222

3.1 Introduction 224
3.2 Addition and Subtraction 224
3.3 Multiplication 230
3.4 Division 236
3.5 Floating Point 242
3.6 Parallelism and Computer Arithmetic: Associativity 270
3.7 Real Stuff: Floating Point in the x86 272
3.8 Fallacies and Pitfalls 275
3.9 Concluding Remarks 280
3.10 Historical Perspective and Further Reading 283
3.11 Exercises 283

The Processor 298

4.1 Introduction 300
4.2 Logic Design Conventions 303
4.3 Building a Datapath 307
4.4 A Simple Implementation Scheme 316
4.5 An Overview of Pipelining 330
4.6 Pipelined Datapath and Control 344
4.7 Data Hazards: Forwarding versus Stalling 363
4.8 Control Hazards 375
4.9 Exceptions 384
4.10 Parallelism and Advanced Instruction-Level Parallelism 391
4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404
4.12 Advanced Topic: an Introduction to Digital Design

Using a Hardware Design Language to Describe and
Model a Pipeline and More Pipelining Illustrations 406

4.13 Fallacies and Pitfalls 407
4.14 Concluding Remarks 408
4.15 Historical Perspective and Further Reading 409
4.16 Exercises 409

Contents xii

Large and Fast: Exploiting Memory Hierarchy 450

5.1 Introduction 452
5.2 The Basics of Caches 457
5.3 Measuring and Improving Cache Performance 475
5.4 Virtual Memory 492
5.5 A Common Framework for Memory Hierarchies 518
5.6 Virtual Machines 525
5.7 Using a Finite-State Machine to Control a Simple Cache 529
5.8 Parallelism and Memory Hierarchies: Cache Coherence 534
5.9 Advanced Material: Implementing Cache Controllers 538
5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and Intel Nehalem

Memory Hierarchies 539
5.11 Fallacies and Pitfalls 543
5.12 Concluding Remarks 547
5.13 Historical Perspective and Further Reading 548
5.14 Exercises 548

Storage and Other I/O Topics 568

6.1 Introduction 570
6.2 Dependability, Reliability, and Availability 573
6.3 Disk Storage 575
6.4 Flash Storage 580
6.5 Connecting Processors, Memory, and I/O Devices 582
6.6 Interfacing I/O Devices to the Processor, Memory, and

Operating System 586
6.7 I/O Performance Measures: Examples from Disk and File Systems 596
6.8 Designing an I/O System 598
6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 599
6.10 Real Stuff: Sun Fire x4150 Server 606
6.11 Advanced Topics: Networks 612
6.12 Fallacies and Pitfalls 613
6.13 Concluding Remarks 617
6.14 Historical Perspective and Further Reading 618
6.15 Exercises 619

Multicores, Multiprocessors, and Clusters 630

7.1 Introduction 632
7.2 The Difficulty of Creating Parallel Processing Programs 634
7.3 Shared Memory Multiprocessors 638

Contents xiii

7.4 Clusters and Other Message-Passing Multiprocessors 641
7.5 Hardware Multithreading 645
7.6 SISD, MIMD, SIMD, SPMD, and Vector 648
7.7 Introduction to Graphics Processing Units 654
7.8 Introduction to Multiprocessor Network Topologies 660
7.9 Multiprocessor Benchmarks 664
7.10 Roofline: A Simple Performance Model 667
7.11 Real Stuff: Benchmarking Four Multicores Using the

Roofline Model 675
7.12 Fallacies and Pitfalls 684
7.13 Concluding Remarks 686
7.14 Historical Perspective and Further Reading 688
7.15 Exercises 688

A P P E N D I C E S

Graphics and Computing GPUs A-2

A.l Introduction A-3
A.2 GPU System Architectures A-7
A.3 Programming GPUs A-12
A.4 Multithreaded Multiprocessor Architecture A-25
A.5 Parallel Memory System A-36
A.6 Floating Point Arithmetic A-41
A.7 Real Stuff: The NVIDIA GeForce 8800 A-46
A.8 Real Stuff: Mapping Applications to GPUs A-55
A.9 Fallacies and Pitfalls A-72
A. 10 Concluding Remarks A-76
A.l 1 Historical Perspective and Further Reading A-77

Assemblers, Linkers, and the SPAM Simulator B-2

B.l Introduction B-3
B.2 Assemblers B-10
B.3 Linkers B-18
B.4 Loading B-19
B.5 Memory Usage B-20
B.6 Procedure Call Convention B-22
B.7 Exceptions and Interrupts B-33
B.8 Input and Output B-38
B.9 SPIM B-40

xii Contents

B. 10 MIPS R2000 Assembly Language B-45
B. l l Concluding Remarks B-8I
B.12 Exercises B-82

Index 1-1

C D - R O M C O N T E N T

The Basics of Logic Design C-2

C.l Introduction C-3
C.2 Gates, Truth Tables, and Logic Equations C-4
C.3 Combinational Logic C-9
C.4 Using a Hardware Description Language C-20
C.5 Constructing a Basic Arithmetic Logic Unit C-26
C.6 Faster Addition: Carry Lookahead C-38
C.7 Clocks C-48
C.8 Memory Elements: Flip-FIops, Latches, and Registers C-50
C.9 Memory Elements: SRAMs and DRAMs C-58
C.10 Finite-State Machines C-67
C.l l Timing Methodologies C-72
C.l2 Field Programmable Devices C-78
C.13 Concluding Remarks C-79
C.l4 Exercises C-80

Mapping Control to Hardware 0-2

D.l Introduction D-3
D.2 Implementing Combinational Control Units D-4
D.3 Implementing Finite-State Machine Control D-8
D.4 Implementing the Next-State Function with a Sequencer D-22
D.5 Translating a Microprogram to Hardware D-28
D.6 Concluding Remarks D-32
D.7 Exercises D-33

A Survey of RISC Architectures for Desktop,
Server, and Embedded Computers E-2

E.l Introduction E-3
E.2 Addressing Modes and Instruction Formats E-5
E.3 Instructions: The MIPS Core Subset E-9

Contents xiii

E.4 Instructions: Multimedia Extensions of the
Desktop/Server RISCs E-16

E.5 Instructions: Digital Signal-Processing Extensions of the
Embedded RISCs E-19

E.6 Instructions: Common Extensions to MIPS Core E-20
E.7 Instructions Unique to MIPS-64 E-25
E.8 Instructions Unique to Alpha E-27
E.9 Instructions Unique to SPARC v.9 E-29
E.10 Instructions Unique to PowerPC E-32
E. 11 Instructions Unique to PA-RISC 2.0 E-34
E. 12 Instructions Unique to ARM E-36
E.13 Instructions Unique to Thumb E-38
E. 14 Instructions Unique to SuperIT E-39
E.15 Instructions Unique to M32R E-40
E.16 Instructions Unique to MIPS-16 E-40
E.17 Concluding Remarks E-43

Glossary G-l
Further Reading FR-l

xii Contents

Preface

About This Book
We believe that learning in computer science and engineering should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreciate
the organizational paradigms that determine the capabilities, performance, and,
ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and
silicon engineers to make their programs run faster without change, that era is over.
For programs to run faster, they must become parallel. While the goal of many
researchers is to make it possible for programmers to be unaware of the underlying
parallel nature of the hardware they are programming, it will take many years to
realize this vision. Our view is that for at least the next decade, most programmers
are going to have to understand the hardware/software interface if they want
programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

About the Other Book
Some readers maybe familiar with Computer Architecture: A Quantitative Approach,
popularly known as Hennessy and Patterson. (This book in turn is often called
Patterson and Hennessy.) Our motivation in writing the earlier book was to describe
the principles of computer architecture using solid engineering fundamentals and
quantitative cost/performance tradeoffs. We used an approach that combined exam-
ples and measurements, based on commercial systems, to create realistic design
experiences. Our goal was to demonstrate that computer architecture could be
learned using quantitative methodologies instead of a descriptive approach. It was
intended for the serious computing professional who wanted a detailed under-
standing of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance and energy efficiency of future software systems will be
dramatically affected, however, by how well software designers understand the basic
hardware techniques at work in a system. Thus, compiler writers, operating system
designers, database programmers, and most other software engineers need a firm
grounding in the principles presented in this book. Similarly, hardware designers
must understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions
of Computer Architecture were revised to remove most of the introductory mate-
rial; hence, there is much less overlap today than with the first editions of both
books.

Changes for the Fourth Edition
We had five major goals for the fourth edition of Computer Organization and
Design: given the multicore revolution in microprocessors, highlight parallel
hardware and software topics throughout the book; streamline the existing mate-
rial to make room for topics on parallelism; enhance pedagogy in general; update
the technical content to reflect changes in the industry since the publication of the
third edition in 2004; and restore the usefulness of exercises in this Internet age.

Before discussing the goals in detail, let's look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5, and
7 are found on both paths, no matter what the experience or the focus. Chapter 1
is a new introduction that includes a discussion on the importance of power and
how it motivates the switch from single core to multicore microprocessors. It also
includes performance and benchmarking material that was a separate chapter in
the third edition. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming

Preface xviii

Preface xvii

Read carefully Read if have time R e f e r e n c e y U \ j (

Review or read Read for culture \ J \ j (

xviii Preface

languages. It includes material from Chapter 3 in the third edition so that the
complete MIPS architecture is now in a single chapter, minus the floating-point
instructions. Chapter 3 is for readers interested in constructing a datapath or in
learning more about floating-point arithmetic. Some will skip Chapter 3, either
because they don't need it or because it is a review. Chapter 4 combines two chap-
ters from the third edition to explain pipelined processors. Sections 4.1, 4.5, and
4.10 give overviews for those with a software focus. Those with a hardware focus,
however, will find that this chapter presents core material; they may also, depend-
ing on their background, want to read Appendix C on logic design first. Chapter 6
on storage is critical to readers with a software focus, and should be read by others
if time permits. The last chapter on multicores, multiprocessors, and clusters is
mostly new content and should be read by everyone.

The first goal was to make parallelism a first class citizen in this edition, as it
was a separate chapter on the CD in the last edition. The most obvious example is
Chapter 7. In particular, this chapter introduces the Roofline performance model,
and shows its value by evaluating four recent multicore architectures on two
kernels. This model could prove to be as insightful for multicore microprocessors
as the 3Cs model is for caches.

Given the importance of parallelism, it wasn't wise to wait until the last chapter
to talk about, so there is a section on parallelism in each of the preceding six
chapters:

• Chapter 1: Parallelism and Power. It shows how power limits have forced the
industry to switch to parallelism, and why parallelism helps.

• Chapter 2: Parallelism and Instructions: Synchronization. This section dis-
cusses locks for shared variables, specifically the MIPS instructions Load
Linked and Store Conditional.

• Chapter 3: Parallelism and Computer Arithmetic: Floating-Point Associativity.
This section discusses the challenges of numerical precision and floating-
point calculations.

• Chapter 4: Parallelism and Advanced Instruction-Level Parallelism. It
covers advanced ILP—superscalar, speculation, VLIW, loop-unrolling, and
OOO—as well as the relationship between pipeline depth and power
consumption.

• Chapter 5: Parallelism and Memory Hierarchies: Cache Coherence. It introduces
coherency, consistency, and snooping cache protocols.

• Chapter 6: Parallelism and I/O: Redundant Arrays of Inexpensive Disks. It
describes RAID as a parallel 1/0 system as well as a highly available ICO
system.

Preface xxiii

Chapter 7 concludes with reasons for optimism why this foray into parallelism
should be more successful than those of the past.

I am particularly excited about the addition of an appendix on Graphical
Processing Units written by NVIDIA's chief scientist, David Kirk, and chief archi-
tect, John Nickolls. Appendix A is the first in-depth description of GPUs, which
is a new and interesting thrust in computer architecture. The appendix builds
upon the parallel themes of this edition to present a style of computing that allows
the programmer to think MIMD yet the hardware tries to execute in SIMD-style
whenever possible. As GPUs are both inexpensive and widely available—they are
even found in many laptops—and their programming environments are freely
available, they provide a parallel hardware platform that many could experiment
with.

The second goal was to streamline the book to make room for new material in
parallelism. The first step was simply going through all the paragraphs accumulated
over three editions with a fine-toothed comb to see if they were still necessary. The
coarse-grained changes were the merging of chapters and dropping of topics. Mark
Hill suggested dropping the multicycle processor implementation and instead
adding a multicycle cache controller to the memory hierarchy chapter. This allowed
the processor to be presented in a single chapter instead of two, enhancing the
processor material by omission. The performance material from a separate chapter
in the third edition is now blended into the first chapter.

The third goal was to improve the pedagogy of the book. Chapter 1 is now
meatier, including performance, integrated circuits, and power, and it sets the stage
for the rest of the book. Chapters 2 and 3 were originally written in an evolutionary
style, starting with a "single celled" architecture and ending up with the full MIPS
architecture by the end of Chapter 3. This leisurely style is not a good match to the
modern reader. This edition merges all of the instruction set material for the integer
instructions into Chapter 2—making Chapter 3 optional for many readers—and
each section now stands on its own. The reader no longer needs to read all of the
preceding sections. Hence, Chapter 2 is now even better as a reference than it was in
prior editions. Chapter 4 works better since the processor is now a single chapter, as
the multicycle implementation is a distraction today. Chapter 5 has a new section
on building cache controllers, along with a new CD section containing the Verilog
code for that cache.

The accompanying CD-ROM introduced in the third edition allowed us to
reduce the cost of the book by saving pages as well as to go into greater depth on
topics that were of interest to some but not all readers. Alas, in our enthusiasm
to save pages, readers sometimes found themselves going back and forth between
the CD and book more often than they liked. This should not be the case in this
edition. Each chapter now has the Historical Perspectives section on the CD and
four chapters also have one advanced material section on the CD. Additionally, all

xviii Preface

exercises are in the printed book, so flipping between book and CD should be rare
in this edition. '

For those of you who wonder why we include a CD-ROM with the book,
the answer is simple: the CD contains content that we feel should be easily and
immediately accessible to the reader no matter where they are. If you are interested
in the advanced content, or would like to review a VITDL tutorial (for example), it
is on the CD, ready for you to use. The CD-ROM also includes a feature that should
greatly enhance your study of the material: a search engine is included that allows
you to search for any string of text, in the printed book or on the CD itself. If you
are hunting for content that may not be included in the book's printed index, you
can simply enter the text you're searching for and the page number it appears on
will be displayed in the search results. This is a very useful feature that we hope you
make frequent use of as you read and review the book.

This is a fast-moving field, and as is always the case for our new editions, an
important goal is to update the technical content. The AMD Opteron X4 model
2356 (code named "Barcelona") serves as a running example throughout the book,
and is found in Chapters 1,4, 5, and 7. Chapters 1 and 6 add results from the new
power benchmark from SPEC. Chapter 2 adds a section on the ARM architec-
ture, which is currently the world's most popular 32-bit ISA. Chapter 5 adds a new
section on Virtual Machines, which are resurging in importance. Chapter 5 has
detailed cache performance measurements on the Opteron X4 multicore and a
few details on its rival, the Intel Nehalem, which will not be announced until after
this edition is published. Chapter 6 describes Flash Memory for the first time as
well as a remarkably compact server from Sun, which crams 8 cores, 16 DIMMs,
and 8 disks into a single 1U bit. It also includes the recent results on long-term
disk failures. Chapter 7 covers a wealth of topics regarding parallelism—including
multithreading, SIMD, vector, GPUs, performance models, benchmarks, multipro-
cessor networks—and describes three multicores plus the Opteron X4: Intel Xeon
model e5345 (Clovertown), IBM Cell model QS20, and the Sun Microsystems T2
model 5120 (Niagara 2).

The final goal was to try to make the exercises useful to instructors in this Internet
age, for homework assignments have long been an important way to learn material.
Alas, answers are posted today almost as soon as the book appears. We have a two-
part approach. First, expert contributors have worked to develop entirely new
exercises for each chapter in the book. Second, most exercises have a qualitative
description supported by a table that provides several alternative quantitative
parameters needed to answer this question. The sheer number plus flexibility in
terms of how the instructor can choose to assign variations of exercises will make
it hard for students to find the matching solutions online. Instructors will also be
able to change these quantitative parameters as they wish, again frustrating those
students who have come to rely on the Internet to provide solutions for a static and
unchanging set of exercises. We feel this new approach is a valuable new addition
to the book—please let us know how well it works for you, either as a student or
instructor!

Preface xxi i i

We have preserved useful book elements from prior editions. To make the book
work better as a reference, we still place definitions of new terms in the margins
at their first occurrence. The book element called "Understanding Program Per-
formance" sections helps readers understand the performance of their programs
and how to improve it, just as the "Hardware/Software Interface" book element
helped readers understand the tradeoffs at this interface. "The Big Picture" section
remains so that the reader sees the forest even despite all the trees. "Check Yourself"
sections help readers to confirm their comprehension of the material on the first
time through with answers provided at the end of each chapter. This edition also
includes the green MIPS reference card, which was inspired by the "Green Card" of
the IBM System/360. The removable card has been updated and should be a handy
reference when writing MIPS assembly language programs.

Instructor Support
We have collected a great deal of material to help instructors teach courses using this
book. Solutions to exercises, chapter quizzes, figures from the book, lecture notes,
lecture slides, and other materials are available to adopters from the publisher.
Check the publisher's Web site for more information:

textbooks.elsevier.coin/9780123744937

Concluding Remarks
If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cocl4biigs@mkp.
com or by low-tech mail using the address found on the copyright page.

This edition marks a break in the long-standing collaboration between Hennessy
and Patterson, which started in 1989. The demands of running one of the world's
great universities meant that President Hennessy could no longer make the sub-
stantial commitment to create a new edition. The remaining author felt like a jug-
gler who had always performed with a partner who suddenly is thrust on the stage
as a solo act. Hence, the people in the acknowledgments and Berkeley colleagues
played an even larger role in shaping the contents of this book. Nevertheless, this
time around there is only one author to blame for the new material in what you
are about to read.

Acknowledgments for the Fourth Edition
I'd like to thank David Kirk, John Nickolls, and their colleagues at NVIDIA (Michael
Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm, Paulius
Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov) for writing

xviii Preface

the first in-depth appendix on GPUs. I'd like to express again my appreciation to
Jim Larus of Microsoft Research for his willingness in contributing his expertise on'
assembly language programming, as well as for welcoming readers of this book to
use the simulator he developed and maintains.

I am also very grateful for the contributions of the many experts who developed
the new exercises for this new edition. Writing good exercises is not an easy task,
and each contributor worked long and hard to develop problems that are both
challenging and engaging:

• Chapter 1: Javier Bruguera (Universidade de Santiago de Compostela)

• Chapter 2: John Oliver (Cal Poly, San Luis Obispo), with contributions from
Nicole Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

• Chapter 3: Matthew Farrens (University of California, Davis)

• Chapter 4: Milos Prvulovic (Georgia Tech)

• Chapter 5: Jichuan Chang, Jacob Leverich, Kevin Lim, and Partha
Ranganathan (all from Hewlett-Packard), with contributions from Nicole
Kaiyan (University of Adelaide)

• Chapter 6: Perry Alexander (The University of Kansas)

• Chapter 7: David Kaeli (Northeastern University)

Peter Ashenden took on the Herculean task of editing and evaluating all of the
new exercises. Moreover, he even added the substantial burden of developing the
companion CD and new lecture slides.

Thanks to David August and Prakash Prabhu of Princeton University for their
work on the chapter quizzes that are available for instructors on the publisher's
Web site.

I relied on my Silicon Valley colleagues for much of the technical material that
this book relies upon:

• AMD—for the details and measurements of the Opteron X4 (Barcelona):
William Brantley, Vasileios Liaskovitis, Chuck Moore, and Brian
Waldecker.

• Intel—for the prereleased information on the Intel Nehalem: Faye Briggs.

• Micron—for background on Flash Memory in Chapter 6: Dean Klein.

• Sun Microsystems—for the measurements of the instruction mixes for the
SPEC2006 benchmarks in Chapter 2 and details and measurements of the
Sun Server x4150 in Chapter 6: Yan Fisher, John Fowler, Darryl Gove, Paul
Joyce, Shenik Mehta, Pierre Reynes, Dimitry Stuve, Durgam Vahia, and
David Weaver.

• U.C. Berkeley—Krste Asanovic (who supplied the idea for software
concurrency versus hardware parallelism in Chapter 7), James Demmel

Preface xxiii

and Velvel Kalian (who commented on parallelism and floating-point
calculations), ZhangxiTan (who designed the cache controller and wrote the
Verilog for it in Chapter 5), Sam Williams (who supplied the roofline model
and the multicore measurements in Chapter 7), and the rest of my colleagues
in the Par Lab who gave extensive suggestions and feedback on parallelism
topics found throughout the book.

I am grateful to the many instructors who answered the publisher's surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. They include the following individuals: Focus Group: Mark
Hill (University of Wisconsin, Madison), E.J. Kim (Texas A&M University), Jihong
Kim (Seoul National University), Lu Peng (Louisiana State University), Dean Tullsen
(UC San Diego), Ken Vollmar (Missouri State University), David Wood (University
of Wisconsin, Madison), Ki Hwan Yum (University of Texas, San Antonio); Surveys
and Reviews: Mahmoud Abou-Nasr (Wayne State University), Perry Alexander (The
University of Kansas), Hakan Aydin (George Mason University), Hussein Badr (State
University of New York at Stony Brook), Mac Baker (Virginia Military Institute),
Ron Barnes (George Mason University), Douglas Blough (Georgia Institute of
Technology), Kevin Bolding (Seattle Pacific University), Miodrag Bolic (University
of Ottawa), John Bonomo (Westminster College), Jeff Braun (Montana Tech), Tom
Briggs (Shippensburg University), Scott Burgess (Humboldt State University), Fazli
Can (Bilkent University), Warren R. Carithers (Rochester Institute of Technology),
Bruce Carlton (Mesa Community College), Nicholas Carter (University of Illinois
at Urbana-Champaign), Anthony Cocchi (The City University of New York), Don
Cooley (Utah State University), Robert D. Cupper (Allegheny College), Edward W.
Davis (North Carolina State University), Nathaniel J. Davis (Air Force Institute of
Technology), Molisa Derk (Oklahoma City University), Derek Eager (University of
Saskatchewan), Ernest Ferguson (Northwest Missouri State University), Rhonda
Kay Gaede (The University of Alabama), Etienne M. Gagnon (UQAM), Costa
Gerousis (Christopher Newport University), Paul Gillard (Memorial University of
Newfoundland), Michael Goldweber (Xavier University), Georgia Grant (College
of San Mateo), Merrill Hall (The Master's College), Tyson Hall (Southern Adventist
University), Ed Harcourt (Lawrence University), Justin E. Harlow (University of
South Florida), Paul F. ITemler (ITampden-Sydney College), Martin Herbordt
(Boston University), Steve J. Hodges (Cabrillo College), Kenneth Hopkinson
(Cornell University), Dalton Hunkins (St. Bonaventure University), Baback
Izadi (State University of New York—New Paltz), Reza Jafari, Robert W. Johnson
(Colorado Technical University), Bharat Joshi (University of North Carolina,
Charlotte), Nagarajan Kandasamy (Drexel University), Rajiv Kapadia, Ryan
Kastner (University of California, Santa Barbara), Jim Kirk (Union University),
Geoffrey S. Knauth (Lycoming College), Manish M. Kochhal (Wayne State), Suzan
Koknar-Tezel (Saint Joseph's University), Angkul Kongmunvattana (Columbus
State University), April Kontostathis (Ursinus College), Christos Kozyrakis
(Stanford University), Danny Krizanc (Wesleyan University), Ashok Kumar,
S. Kumar (The University of Texas), Robert N. Lea (University of Houston),

xviii Preface

Baoxin Li (Arizona State University), Li Liao (University of Delaware), Gary
Livingston (University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon
Institute of Technology), Yashwant I< Malaiya (Colorado State University), Bill
Mark (University of Texas at Austin), Ananda Mondal (Claflin University), Alvin
Moser (Seattle University), Walid Najjar (University of California, Riverside),
Danial J. Neebel (Loras College), John Nestor (Lafayette College), Joe Oldham
(Centre College), Timour Paltashev, James Parkerson (University of Arkansas),
Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted Pedersen (University
of Minnesota), Gregory D Peterson (The University of Tennessee), Dejan Raskovic
(University of Alaska, Fairbanks) Brad Richards (University of Puget Sound),
Roman Rozanov, Louis Rubinfield (Villanova University), Md Abdus Salam
(Southern University), Augustine Samba (Kent State University), Robert Schaefer
(Daniel Webster College), Carolyn J. C. Schauble (Colorado State University),
Keith Schubert (CSU San Bernardino), William L. Schultz, Kelly Shaw (University
of Richmond), Shahram Shirani (McMaster University), Scott Sigman (Drury
University), Bruce Smith, David Smith, Jeff W. Smith (University of Georgia,
Athens), Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M),
Timothy D. Stanley (Brigham Young University), Dean Stevens (Morningside
College), Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander
Taubin (Boston University), Will Thacker (Winthrop University), Mithuna
Thottethodi (Purdue University), Manghui Tu (Southern Utah University), Rama
Viswanathan (Beloit College), Guoping Wang (Indiana-Purdue University),
Patricia Wenner (Bucknell University), Kent Wilken (University of California,
Davis), David Wolfe (Gustavus Adolphus College), David Wood (University of
Wisconsin, Madison), Mohamed Zahran (City College of New York), Gerald D.
Zarnett (Ryerson University), Nian Zhang (South Dakota School of Mines &
Technology), Jiling Zhong (Troy University), Huiyang Zhou (The University of
Central Florida), Weiyu Zhu (Illinois Wesleyan University).

I would especially like to thank the Berkeley people who gave key feedback for
Chapter 7 and Appendix A, which were the most challenging pieces to write for this
edition: Krste Asanovic, Christopher Batten, Rastilav Bodik, Bryan Catanzaro,
Jilce Chong, Kaushik Data, Greg Giebling, Anile Jain, Jae Lee, Vasily Volkov, and
Samuel Williams.

A special thanks also goes to Mark Smotherman for making multiple passes to
find technical and writing glitches that significantly improved the quality of this
edition. He played an even more important role this time given that this edition
was clone as a solo act.

We wish to thank the extended Morgan Kaufmann family for agreeing to publish
this book again under the able leadership of Denise Penrose. Nathaniel McFadden
was the developmental editor for this edition and worked with me weekly on the
contents of the book. Kimberlee Honjo coordinated the surveying of users and
their responses.

Preface xxiii

Dawnmarie Simpson managed the book production process. We thank also the
many freelance vendors who contributed to this volume, especially Alan Rose of
Multiscience Press and diacriTech, our compositor.

The contributions of the nearly 200 people we mentioned here have helped
make this fourth edition what I hope will be our best book yet. Enjoy!

David A. Patterson

Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.

Alfred North Whitehead
/hi Introduction to Mathematics, 1911

Computer
Abstractions
and Technology
1.1 Introduction 3

1.2 Below Your Program 10

1.3 Under the Covers 13

1.4 Performance 26

1.5 The Power Wall 39

1.6 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.7 Real Stuff: Manufacturing and Benchmarking the AMD

Opteron X4 44

1.8 Fallacies and Pitfalls 51

1.9 Concluding Remarks 54

1.10 Historical Perspective and Further Reading 55

1.11 Exercises 56

M r o d l m i c t i o n

Welcome to this book! We're delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore's law. This unusual
industry embraces innovation at a breathtaking rate. In the last 25 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception of
electronic computing in the late 1940s. Had the transportation industry kept pace
with the computer industry, for example, today we could travel from New York
to London in about a second for roughly a few cents. Take just a moment to
contemplate how such an improvement would change society—living in Tahiti
while working in San Francisco, going to Moscow for an evening at the Bolshoi
Ballet—and you can appreciate the implications of such a change.

4 Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind's intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past, the
following applications were "computer science fiction."

• Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution, improve fuel efficiency via engine
controls, and increase safety through the prevention of dangerous skids and
through the inflation of air bags to protect occupants in a crash.

• Cell phones: Who would have dreamed that advances in computer systems
would lead to mobile phones, allowing person-to-person communication
almost anywhere in the world?

• Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It's unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago. More-
over, costs continue to drop; you may be able to acquire your own genome,
allowing medical care to be tailored to you.

• World Wide Web: Not in existence at the time of the first edition of this book,
the World Wide Web has transformed our society. For many, the WWW has
replaced libraries.

• Search engines: As the content of the W W W grew in size and in value, find-
ing relevant information became increasingly important. Today, many peo-
ple rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our soci-
ety. Hardware advances have allowed programmers to create wonderfully useful
software, which explains why computers are omnipresent. Today's science fiction
suggests tomorrow's killer applications: already on their way are virtual worlds,
practical speech recognition, and personalized health care.

1.1 Introduction 5

Classes of Computing Applications and Their Characteristics
Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have different design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which readers of this book have likely used
extensively. Desktop computers emphasize delivery of good performance to single
users at low cost and usually execute third-party software. The evolution of many
computing technologies is driven by this class of computing, which is only about
30 years old!

Servers are the modern form of what were once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications—usually a scientific or engineering application—or handling many
small jobs, such as would occur in building a large Web server. These applications
are usually based on software from another source (such as a database or simula-
tion system), but are often modified or customized for a particular function. Serv-
ers are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. In general,
servers also place a greater emphasis on dependability, since a crash is usually more
costly than it would be on a single-user desktop computer.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple Web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of hundreds to thou-
sands of processors and usually terabytes of memory and petabytes of storage, and
cost millions to hundreds of millions of dollars. Supercomputers are usually used
for high-end scientific and engineering calculations, such as weather forecasting,
oil exploration, protein structure determination, and other large-scale problems.
Although such supercomputers represent the peak of computing capability, they
represent a relatively small fraction of the servers and a relatively small fraction of
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies
like eBay and Google also contain thousands of processors, terabytes of memory,
and petabytes of storage. These are usually considered as large clusters of comput-
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid-
est range of applications and performance. Embedded computers include the

desktop computer
A computer designed
for use by an individual,
usually incorporating a
graphics display, a key-
board, and a mouse.

server A computer
used for running larger
programs for multiple
users, often simultaneously,
and typically accessed only
via a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and typically
cost millions of dollars.

terabyte Originally
1,099,511,627,776(2'")
bytes, although some
communications and
secondary storage systems
have redefined it to mean
1,000,000,000,000 (10|:)
bytes.

petabyte Depending
on the situation, either
1000 or 1024 terabytes.

datacenter A room or
building designed to
handle the power, cooling,
and networking needs of
a large number of servers.

embedded computer
A computer inside
another device used
for running one
predetermined application
or collection of software.

6 Chapter 1 Computer Abstractions and Technology

microprocessors found in your car, the computers in a cell phone, the computers
in a video game or television, and the networks of processors that control a mod-
ern airplane or cargo ship. Embedded computing systems are designed to run one
application or one set of related applications, that are normally integrated with
the hardware and delivered as a single system; thus, despite the large number of
embedded computers, most users never really see that they are using a computer!

Figure 1.1 shows that during the last several years, the growth in cell phones that
rely on embedded computers has been much faster than the growth rate of desktop
computers. Note that the embedded computers are also found in digital TVs and
set-top boxes, automobiles, digital cameras, music players, video games, and a
variety of other such consumer devices, which further increases the gap between
the number of embedded computers and desktop computers.

• Cell Phones • PCs • TVs

1200

1100 -

1000 -

9 0 0 -
800 -

7 0 0
600 -

5 0 0 -
4 0 0 -
3 0 0
200

100

0 Ik Li I
C^ # cS

FIGURE 1.1 The number of cell phones, personal computers, and televisions manufactured
per year between 1997 and 2007. (We have Television data only from 2004.) More than a billion new
cell phones were shipped in 2006. Cell phones sales exceeded PCs by only a factor of 1.4 in 1997, but the
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell
phones, and 0.8B PCs. As the world population was about 6.4B in 2004, there were approximately one PC,
2.2 cell phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of U.S. families found
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles,
MP3 players, and cell phones.

1.1 Introduction 7

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in
a plane or cargo ship crashes). In consumer-oriented embedded applications, such
as a digital home appliance, dependability is achieved primarily through simplic-
ity—the emphasis is on doing one function as perfectly as possible. In large embed-
ded systems, techniques of redundancy from the server world are often employed
(see Section 6.9). Although this book focuses on general-purpose computers, most
concepts apply directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4).
The core allows a designer to integrate other application-specific hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Leairn in This Book
Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quicldy is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer's memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature of
processors and the hierarchical nature of memories. Programmers who seek to build
competitive versions of compilers, operating systems, databases, and even applications
will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what's inside this revolution-
ary machine, unraveling the software below your program and the hardware under
the covers of your computer. By the time you complete this book, we believe you
will be able to answer the following questions:

8 Chapter 1 Computer Abstractions and Technology

• How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect
program performance.

n What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

B What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer's
language, and the effectiveness of the hardware in executing the program.

• What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

• What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of "multicore" microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and power, introduces inte-
grated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don't panic! Yes, there
is a lot of special terminology used in describing modern computers, but the ter-
minology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted defini-
tion of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIE, SATA, and many others.

multicore
microprocessor A
microprocessor containing
multiple processors
("cores") in a single
integrated circuit.

acronym A word
constructed by taking the
initial letters of a string of
words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

1.1 Introduction 9

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include input/output (I/O) operations.
This table summarizes how the hardware and software affect performance.

Understanding
Program
Performance

Hardware or software
component

How this component affects
performance

Where is this
topic covered?

Algorithm Determines both the number of source-level
statements and the number of 1/0 operations
executed

Other books!

Programming language,
compiler, and architecture

Determines the number of computer
instructions for each source-level statement

Chapters 2 and 3

Processor and memory system Determines how fast instructions can be
executed

Chapters 4, 5, and 7

I/O system (hardware and
operating system)

Determines how fast 1/0 operations may be
executed

Chapter 6

Check Yourself sections are designed to help readers assess whether they compre- Check
hend the major concepts introduced in a chapter and understand the implications Yourself
of those concepts. Some Check Yourself questions have simple answers; others are
for discussion among a group. Answers to the specific questions can be found at
the end of the chapter. Check Yourself questions appear only at the end of a section,
making it easy to skip them if you are sure you understand the material.

1. Section 1.1 showed that the number of embedded processors sold every year
greatly outnumbers the number of desktop processors. Can you confirm or
deny this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of desktop computers in your home?

2. As mentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

H The algorithm chosen

• The programming language or compiler

• The operating system

• The processor

• The I/O system and devices

10 Chapter 1 Computer Abstractions and Technology

Iii Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

Mark Twain, The
Innocents Abroad, 1869

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operat ing system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.

Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier-
archical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user's program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important
functions are

• Handling basic input and output operations

• Allocating storage and memory

• Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, MacOS, and Windows.

FIGURE 1.2 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

1.2 Below Your Program 1 1

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, CTT, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and Appendix B.

compiler A program
that translates high-level
language statements
into assembly language
statements.

From a High-Level! Language to the Language of Hardware
To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and o f f , and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
biliary numbers. We refer to each "letter" as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don't want to steal that chapter's thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. The first
of these programs was named an assembler. This program translates a symbolic
version of an instruction into the binary version. For example, the programmer
would write

a d d A . B

and the assembler would translate this notation into

1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language. In con-
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

1 2 Chapter 1 Computer Abstractions and Technology

h i g h - l e v e l
p r o g r a m m i n g
l a n g u a g e A portable
language such as C, C++,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer. '

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions. Figure 1.3 shows the rela-
tionships among these programs and languages.

FIGURE 1.3 C program compiled into assembly language and then assembled into binary
machine language. Although The translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2.

1.3 Under the Covers 1 3

A compiler enables a programmer to write this high-level language expression:

A -t- B

The compiler would compile it into this assembly language statement:

a d d A , B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in
languages that require fewer lines to express an idea. Conciseness is a clear
advantage of high-level languages over assembly language.

The final advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any computer. These three advantages are so strong that today little program-
ming is done in assembly language.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let's open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important
that we hope you will remember it forever, we emphasize it by identifying it as a
Big Picture item. We have about a dozen Big Pictures in this book, the first being

1 4 Chapter 1 Computer Abstractions and Technology

the five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data. »

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.4 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these live cat-
egories. To help you keep all this in perspective, the five components of a
computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

FIGURE 1.4 The organization of a computer, showing the five classic components. The
processor gels instructions and data from memory. Input writes data to memory, and output reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

1.3 Under the Covers 1 5

FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet
cable that connected the laptop to the network and the Web. The laptop contains the processor, memory,
and additional I/O devices. This system is a Macbook Pro 15" laptop connected to an external display.

Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This
photograph reveals two of the key components of computers: input devices, such
as the keyboard and mouse, and output devices, such as the screen. As the names
suggest, input feeds the computer, and output is the result of computation sent to
the user. Some devices, such as networks and disks, provide both input and output
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let's take an
introductory tour through the computer hardware, starting with the external I/O
devices.

i n p u t d e v i c e
A mechanism through
which the computer is fed
information, such as the
keyboard or mouse.

o u t p u t d e v i c e
A mechanism that
conveys the result of a
computat ion to a user or
another computer.

16 Chapter 1 Computer Abstractions and Technology

I g o r the idea for the
mouse while attending
a talk at a computer
conference. The speaker
was so boring that I
started daydreaming
and hit upon the idea.

Doug Engelbart

Through computer
displays I have landed
an airplatie on the deck
of a moving carrier,
observed a nuclear
particle hit a potential
well, flown in a rocket
at nearly the speed of
light and watched a
computer reveal its
innermost workings.

Ivan Sutherland, the
"father" of computer
graphics, Scicntific
American, 1984

liquid crystal display
A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

active matrix display
A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture element.
Screens arc composed of
hundreds of thousands
to millions of pixels,
organized in a matrix.

Anatomy of a Mouse
Although many users now take mice for granted, the idea of a pointing device such
as a mouse was first shown by Doug Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macintosh
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all
desktop computers included this device, and new user interfaces based on graphics
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled
across a surface would cause an x and y counter to be incremented. The amount of
increase in each counter told how far the mouse had been moved.

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology. On page 22 we'll see
another example: flash memory.

Through the Looking Glass
The most fascinating I/O device is probably the graphics display. All laptop and
handheld computers, calculators, cellular phones, and almost all desktop comput-
ers now use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the screen
and the resolution, the display matrix ranges in size from 640 x 480 to 2560 x 1600
pixels in 2008. A color display might use 8 bits for each of the three colors (red,
blue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.

1.3 Under the Covers 1 7

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen is
stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel (X(), Y)
contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X ,Y).

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Opening the Box
If we open the box containing the computer, we see a fascinating board of thin
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the
contents of the laptop computer in Figure 1.5. The motherboard is shown in the
upper part of the photo. Two disk drives are in front—the hard drive on the left and
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our
advancing technology, called integrated circuits and nicknamed chips. The board
is composed of three pieces: the piece connecting to the I/O devices mentioned
earlier, the memory, and the processor.

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. Figure 1.8 shows that memory
is found on the two small boards, and each small memory board contains eight
integrated circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM

m o t h e r b o a r d
A plastic board containing
packages of integrated
circuits or chips, including
processor, cache, memory,
and connectors for I/O
devices such as networks
and disks.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

m e m o r y The storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

1 8 Chapter 1 Computer Abstractions and Technology

Hard drive Processor Fan with Spot for
cover memory

DIMMs

Spot for Motherboard Fan with DVD drive
battery cover

FIGURE 1.7 Inside the laptop computer of Figure 1.5. The shiny box with the white label on the lower left is a 100 GB SATA
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between Them is where the laptop battery would
be located. The small hole above the battery hole is for memory DIMMs. Figure 1.8 is a close-up of the DIMMs, which are inserted from the
bottom in this laptop. Above the battery hole and DVD drive is a printed circuit board (PC board), called the motherboard, which contains
most of the electronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the
large raised rectangle just below the left fan. Photo courtesy of OtherWorldComputing.com.

1.3 Under the Covers 1 9

stands for dynamic random access memory. Several DRAMs are used together
to contain the instructions and data of a program. In contrast to sequential access
memories, such as magnetic tapes, the RAM portion of the term DRAM means that
memory accesses take basically the same amount of time no matter what portion
of the memory is read.

dynamic r a n d o m access
m e m o r y (D R A M)
Memory built as an
integrated circuit; it
provides random access to
any location.

dual inline m e m o r y
module (D I M M)
A small board that
contains DRAM chips on
both sides. (SIMMs have
DRAMs on only one side.)

central processor
unit (CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and I/O devices
according to the instruc-
tions of the program.

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is under the fan and covered by a heat sink on the left
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more
bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a micro-
processor. The processor logically comprises two main components: datapath and
control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

FIGURE 1.8 Close-up of the bottom of the laptop reveals the memory. The main memory is
contained on one or more small boards shown on the left. The hole for the battery is to the right. The DRAM
chips are mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into
the connectors. Photo courtesy of OtherWorldComputing.com.

38 Chapter 1 Computer Abstractions and Technology

FIGURE 1.9 Inside the AMD Barcelona microprocessor. The left-hand side is a microphotograph of the AMD Barcelona processor
chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or "cores". The microprocessor in the
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo.

cache m e m o r y A small,
fast memory that acts as a
buffer for a slower, larger
memory.

static r a n d o m access
m e m o r y (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

abstract ion A model
that renders lower-level
details of computer
systems temporarily
invisible to facilitate
design of sophisticated
systems.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache mem-
ory. Cache memory consists of a small, fast memory that acts as a buffer for the
DRAM memory. (The nontechnical definition of cache is a safe place for hiding
things.) Cache is built using a different memory technology, static random access
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or abstractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard-
ware and the lowest-level software. Because of its importance, it is given a special

1.3 Under the Covers 21

name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know
to make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the details
of doing I/O, allocating memory, and other low-level system functions so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI).

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we
can talk about the functions of a digital clock (keeping time, displaying the time,
setting the alarm) independently from the clock hardware (quartz crystal, LED
displays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

Both hardware and software consist of hierarchical layers, with each lower
layer hiding details from the level above. This principle of abstraction is
the way both hardware designers and software designers cope with the
complexity of computer systems. One key interface between the levels
of abstraction is the instruction set architecture—the interface between
the hardware and low-level software. This abstract interface enables
many implementations of varying cost and performance to run identical
software.

A Safe Place for Data
Thus for, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD doesn't forget the recorded film when you turn off the
power to the DVD player and is thus a nonvolatile memory technology.

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and pro-
grams between runs, the term main memory or primary memory is used for the

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
lowest-level software
that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O,....

application binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
Defines a standard for
binary portability across
computers.

implementation
Hardware that obeys the
architecture abstraction.

The BIG
Picture
volatile memory Stor-
age, such as DRAM, that
retains data only if it is
receiving power.

nonvolatile memory
A form of memory that
retains data even in
the absence of a power
source and that is used to
store programs between
runs. Magnetic disk is
nonvolatile.

main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today's
computers.

2 2 Chapter 1 Computer Abstractions and Technology

secondary m e m o r y
Nonvolatile memory
used to store programs
and data between runs;
typically consists of mag-
netic disks in today's
computers.

magnet ic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material.

f l a s h m e m o r y
A nonvolatile semi-
conductor memory. It
is cheaper and slower
than DRAM but more
expensive and foster than
magnetic disks.

former, and secondary memory for the latter. DRAMs have dominated main
memory since 1975, but magnetic disks have dominated secondary memory
since 1965. The primary nonvolatile storage used in all server computers and
workstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc-
tor memory, is used instead of disks in mobile devices such as cell phones and is
increasingly replacing disks in music players and even laptops.

As Figure 1.10 shows, a magnetic hard disk consists of a collection of platters,
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal
platters are covered with magnetic recording material on both sides, similar to the
material found on a cassette or videotape. To read and write information on a hard
disk, a movable arm containing a small electromagnetic coil called a read-write
head is located just above each surface. The entire drive is permanently sealed to
control the environment inside the drive, which, in turn, allows the disk heads to
be much closer to the drive surface.

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads.

1.3 Under the Covers 23

Diameters of hard disks vary by more than a factor of 3 today, from 1 inch to
3.5 inches, and have been shrunk over the years to fit into new products; workstation
servers, personal computers, laptops, palmtops, and digital cameras have all inspired
new disk form factors. Traditionally, the widest disks have the highest performance
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies.
Although most hard drives appear inside computers, as in Figure 1.7, hard drives
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5 -20 milliseconds, while
DRAMs take 50-70 nanoseconds—making DRAMs about 100,000 times faster. Yet
disks have much lower costs than DRAM for the same storage capacity, because the
production costs for a given amount of disk storage are lower than for the same
amount of integrated circuit. In 2008, the cost per gigabyte of disk is 30 to 100
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per gigabyte
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but many have failed. Challengers have never had a product to
market at the right time. By the time a new product would ship, DRAMs and disks
had continued to make rapid advances, costs had dropped accordingly, and the
challenging product was immediately obsolete.

Flash memory, however, is a serious challenger. This semiconductor memory
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to
1000 times faster than disk. Flash is popular in cameras and portable music players
because it comes in much smaller capacities, it is more rugged, and it is more
power efficient than disks, despite the cost per gigabyte in 2008 being about 6 to 10
times higher than disk. Unlike disks and DRAM, flash memory bits wear out after
100,000 to 1,000,000 writes. Thus, file systems must keep track of the number of
writes and have a strategy to avoid wearing out storage, such as by moving popular
data. Chapter 6 describes flash in more detail.

Although hard drives are not removable, there are several storage technologies
in use that include the following:

• Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage. The Blu-
Ray (BD) optical disk standard is the heir-apparent to DVD.

• Flash-based removable memory cards typically attach to a USB connection
and are often used to transfer files.

gigabyte Traditionally
1,073,741,824 (2W)
bytes, although some
communications and
secondary storage systems
have redefined it to mean
1,000,000,000 (10") bytes.
Similarly, depending on
the context, megabyte is
either 2-" or 10" bytes.

• Magnetic tape provides only slow serial access and has been used to back up
disks, a role now often replaced by duplicate hard drives.

2 4 Chapter 1 Computer Abstractions and Technology

Optical disk technology works differently than magnetic disk technology. In
a CD, data is recorded in a spiral fashion, with individual bits being recorded'by
burning small pits—approximately 1 micron (10~6 meters) in diameter—into the
disk surface. The disk is read by shining a laser at the CD surface and determining
by examining the reflected light whether there is a pit or flat (reflective) surface.
DVDs use the same approach of bouncing a laser beam off a series of pits and flat
surfaces. In addition, there are multiple layers that the laser beam can focus on, and
the size of each bit is much smaller, which together increase capacity significantly.
Blu-Ray uses shorter wavelength lasers that shrink the size of the bits and thereby
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus,
for large quantities a different technique called pressing is used, which costs only
pennies per optical disk.

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, reflective material; pits are formed that are not reflective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is heated
and cooled slowly, allowing an annealing process to restore the surface recording
layer to its crystalline structure. These rewritable disks are the most expensive, with
write-once being cheaper; for read-only disks—used to distribute software, music,
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers
We've explained how we can input, compute, display, and save data, but there is
still one missing item found in today's computers: computer networks. lust as the
processor shown in Figure 1.4 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new computer without an
optional network interface would be ridiculed. Networked computers have several
major advantages:

• Communication: Information is exchanged between computers at high speeds.

• Resource sharing: Rather than each computer having its own I/O devices,
devices can be shared by computers on the network.

• Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and

1.3 Under the Covers 25

local area network
(LAN) A network
designed to carry data
within a geographically
confined area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

speed make Ethernet useful to connect computers on the same floor of a building;
hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the World Wide Web. They are typically based on optical
fibers and are leased from telecommunication companies.

Networks have changed the face of computing in the last 25 years, both by
becoming much more ubiquitous and by making dramatic increases in perfor-
mance. In the 1970s, very few individuals had access to electronic mail, the Internet
and Web did not exist, and physically mailing magnetic tapes was the primary way
to transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology,
developed about 25 years ago, was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared
by tens of, if not a hundred, computers. Today, local area network technology
offers a capacity of from 100 million bits per second to 10 gigabits per second,
usually shared by at most a few computers. Optical communications technology
has allowed similar growth in the capacity of wide area networks, from hundreds
of kilobits to gigabits and from hundreds of computers connected to a worldwide
network to millions of computers connected. This combination of dramatic rise in
deployment of networking combined with increases in capacity have made network
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com-
puters communicate. Wireless technology is widespread, and laptops now incorpo-
rate this technology. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmis-
sion rates from 1 to nearly 100 million bits per second. Wireless technology is quite
a bit different from wire-based networks, since all users in an immediate area share
the airwaves.

• Semiconductor DRAM and disk storage differ significantly. Describe the Check
fundamental difference for each of the following: volatility, access time, Yourself
and cost.

Technologies for Buflldling Processors and R/iennory
Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.11 shows the technologies that have been

2 6 Chapter 1 Computer Abstractions and Technology

used over time, with an estimate of the relative performance per unit cost for
each technology. Section 1.7 explores the technology that has fueled the computer
industry since 1975 and will continue to do so for the foreseeable future. Since this
technology shapes what computers will be able to do and how quickly they will
evolve, we believe all computer professionals should be familiar with the basics of
integrated circuits.

Year Technology used in computers Relative performance/unit cost

vacuum tube An
electronic component ,
predecessor of the
transistor, that consists of
a hollow glass tube about
5 to 10 cm long from
which as much air has FIGURE 1.11 Relative performance per unit cost of technologies used in computers over
been removed as possible time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. Sec Section 1.10 on the CD.
and that uses an electron
beam to transfer data.

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit 900

1995 Very large-scale integrated circuit 2,400,000

2005 Ultra large-scale integrated circuit 6,200,000,000

t r a n s i s t o r An on/off
switch controlled by an
electric signal.

v e r y l a r g e - s c a l e
i n t e g r a t e d (V L S I)
c i r c u i t A device con-
taining hundreds of
thousands to millions of
transistors.

A transistor is simply an on/off switch controlled by electricity. The inte-
grated circuit (IC) combined dozens to hundreds of transistors into a single
chip. To describe the tremendous increase in the number of transistors from
hundreds to millions, the adjective very large scale is added to the term, creating the
abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess
of 16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore's law, which states that transistor capacity doubles every
18-24 months. Moore's law resulted from a prediction of such growth in IC
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in manufacturing techniques. In Section 1.7, we discuss how to manu-
facture integrated circuits.

Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to

1.4 Performance 2 7

Year of introduction

FIGURE 1.12 Growth of capacity per D R A M chip over t ime. The y-axis is measured in Kilobits,
where K = 1024 (2"'). The DRAM industry quadrupled capacity almost every three years, a 60% increase per
year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two
years to three years.

purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser's
application. ITence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance
When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.13 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed is the Concorde, the plane with the longest range is the DC-8, and the plane
with the largest capacity is the 747.

Let's suppose we define performance in terms of speed. This still leaves two possi-
ble definitions. You could define the fastest plane as the one with the highest cruising
speed, taking a single passenger from one point to another in the least time. If you

28 Chapter 1 Computer Abstractions and Technology

Airplane
Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h.)

Passenger throughput
(passengers x m.p.h.)

Boeing 777 375 4630 610 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.13 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

response time Also
called execution time.
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/O activities,
operating system over-
head, CPU execution
time, and so on.

throughput Also called
bandwidth. Another
measure of performance,
it is the number of tasks
completed per unit time.

were interested in transporting 450 passengers from one point to another, however,
the 747 would clearly be the fastest, as the last column of the figure shows. Similarly,
we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you'd say that
the faster one is the desktop computer that gets the job done first. If you were running
a datacenter that had several servers running jobs submitted by many users, you'd say
that the faster computer was the one that completed the most jobs during a day.
As an individual computer user, you are interested in reducing response t ime—the
time between the start and completion of a task—also referred to as execution time.
Datacenter managers are often interested in increasing throughput or b a n d w i d t h —
the total amount of work done in a given time. Hence, in most cases, we will need
different performance metrics as well as different sets of applications to benchmark
embedded and desktop computers, which are more focused on response time, versus
servers, which are more focused on throughput.

EXAMPLE

ANSWER

Throughput and Response T i m e

Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the World Wide Web

Decreasing response time almost always improves throughput. Hence, in case 1,
both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost as large
as the throughput, the system might force requests to queue up. In this case,
increasing the throughput could also improve response time, since it would
reduce the waiting time in the queue. Thus, in many real computer systems,
changing either execution time or throughput often affects the other.

1.4 Performance 29

In discussing the performance of computers, we will be primarily concerned
with response time for the first few chapters. To maximize performance, we want
to minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

Performance,. = -p —r x Execution time

This means that for two computers X and Y, if the performance of X is greater
than the performance of Y, we have

Performance > Performance

1 > 1
Execution timex Execution timey

Execution timey > Execution time

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of two

different computers quantitatively. We will use the phrase "X is n times faster than
Y"—or equivalently "X is n times as fast as Y"—to mean

Performance,.

Performance

If X is n times faster than Y, then the execution time on Y is n times longer than it is
on X:

Performancex Execution timey

Performance,. Execution timex

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

Performance^ Execution time,,
= n

EXAMPLE

ANSWER

Performance,, Execution time

Jsik University Library

30 Chapter 1 Computer Abstractions and Technology

CPU execution time
Also called CPU time.
The actual time the CPU
spends computing for a
specific task.

user CPU time The
CPU time spent in a
program itself.

system CPU time
The CPU time spent in
the operating system
performing tasks on
behalf of the program.

Thus the performance ratio is

— = 1 5
10 K

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance,

Performance^
A = 1 . 5

means that

Performance v
— 1 = Performance^

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say "improve performance" or "improve execution time" when we mean "increase
performance" and "decrease execution time."

Measuring Performance
Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count. The most straightforward definition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence,
we often want to distinguish between the elapsed time and the time that the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult to

1.4 Performance 3 1

do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

Different applications are sensitive to different aspects of the performance of a
computer system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In
some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.

Understanding
Program
Performance

Although as computer users we care about time, when we examine the details
of a computer it's convenient to think about performance in other metrics. In par-
ticular, computer designers may want to think about a computer by using a mea-
sure that relates to how fast the hardware can perform basic functions. Almost all
computers are constructed using a clock that determines when events take place in
the hardware. These discrete time intervals are called clock cycles (or ticks, clock
ticks, clock periods, clocks, cycles). Designers refer to the length of a clock period
both as the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps) and as
the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period.
In the next subsection, we will formalize the relationship between the clock cycles
of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both a desktop client and a
remote server is limited by network performance. For the following changes,
state whether only the throughput improves, both response time and
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

clock cycle Also called
tick, clock tick, clock
period, clock, cycle. The
lime for one clock period,
usually of the processor
clock, which runs at a
constant rate.

clock period The length
of each clock cycle.

Check
Yourself

32 Chapter 1 Computer Abstractions and Technology

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput. •

c. More memory is added to the computer.

2. Computer C's performance is 4 times faster than the performance of com-
puter B, which runs a given application in 28 seconds. How long will computer
C take to run that application?

CPU Performance and Its Factors
Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU
execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time CPU clock cycles , , . c = p ' x Clock cycle time ror a program ror a program 7

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time _ CPU clock cycles for a program
for a program ~ Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

EXAMPLE
Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

1.4 Performance 33

Let's first find the number of clock cycles required for the program on A:

CPU clock cycles,
CPU time. = ——:

A Clock rate,
A

CPU clock cyclesx
10 seconds = —

cycles
2 x 1 0 " — r

second

cycles
CPU clock cycles = 1 0 seconds x 2 x 109 — — r = 20 x 109 cycles

A second '

CPU time for B can be found using this equation:

CPU time., =
1.2 x CPU clock cyclesA

B Clock rate,,

1.2 x 20 x 109 cycles
6 seconds = —— ;

Clock rate,,

1.2 x 20 x 109 cycles 0.2 x 20 x 109 cycles 4 x 10* cycles
Clock rate.. = = = 5— = 4 GHz

" 6 seconds second second

To run the program in 6 seconds, B must have twice the clock rate of A.

ANSWER

Instruction Performance
The performance equations above did not include any reference to the number of
instructions needed for the program. (We'll see what the instructions that make up
a program look like in the next chapter.) However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions
in a program. One way to think about execution time is that it equals the number
of instructions executed multiplied by the average time per instruction. Therefore,
the number of clock cycles required for a program can be written as

CPU clock cycles = Instructions for a program x A v e r a § e c l o c k c Y c l e s
per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different

clock cycles per
instruction (CPI)
Average number of clock
cycles per instruction for
a program or program
fragment.

34 Chapter 1 Computer Abstractions and Technology

instructions may take different amounts of time depending on what they do,
CPI is an average of all the instructions executed in the program. CPI provides
one way of comparing two different implementations of the same instruction
set architecture, since the number of instructions executed for a program will, of
course, be the same.

EXAMPLE

ANSWER

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2
for the same program. Which computer is faster for this program and by how
much?

We know that each computer executes the same number of instructions for
the program; let's call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cyclesA= 1x2 .0

CPU clock cycles,, = Ix 1.2

Now we can compute the CPU time for each computer:

CPU timeA = CPU clock cyclesA x Clock cycle time

= 1 x 2 . 0 x 2 5 0 ps = 500 x I ps

Likewise, for B:

CPU time,, = / x 1.2 x 500 ps = 600 x I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performanceA Execution time,, 600 x / ps

CPU performance,, Execution timeA 5 0 0 x / p s

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

1.4 Performance 35

The Classic CPU Penfoirmainice Equation
We can now write this basic performance equation in terms of instruction count instruction count The
(the number of instructions executed by the program), CPI, and clock cycle time: number of instructions

executed by the program.

CPU time = Instruction count x CPI x Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

T ,. Instruction count x CPI CPU time = ——-
Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts: EXAMPLE

CPI for each instruction class

CPI

For a particular high-level language statement, the compiler writer is consid-
ering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Code sequence A B C

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

36 Chapter 1 Computer Abstractions and Technology

ANSWER
Sequence 1 executes 2 T 1 T 2 = 5 instructions. Sequence 2 executes 4 + 1 + 1 = 6
instructions. Therefore, sequence I executes fewer instructions. »

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

n
CPU clock cycles = £ (CPI, x C)

i = I

This yields

CPU clock cycles, = (2 x 1) T (1 x 2) T (2 x 3) = 2 T 2 T 6 = 10 cycles

CPU clock cycles, = (4 X 1) T (1 X 2) T (1 X 3) = 4 T 2 T 3 = 9 cycles

So code sequence 2 is faster, even though it executes one extra instruction.
Since code sequence 2 takes fewer overall clock cycles but has more instruc-
tions, it must have a lower CPI. The CPI values can be computed by

CPU clock cycles
CPI = T :

Instruction count

CPU clock cycles, in
CPI = : = ^ = 2.0

1 Instruction count, 5

CPU clock cycles, n
CPI, = T : ^ = 7 = 1.5

- Instruction count, 6

Figure 1.14 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

c , m Instructions w Clock cycles w Seconds __ _ _ I ime = Seconds/Program = —- x — x ——; —
T h e B I G Program Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

Picture

1.4 Performance 3 7

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI, and
often, the sources of performance loss. Since the instruction count depends on the
architecture, but not on the exact implementation, we can measure the instruction
count without knowing all the details of the implementation. The CPI, however,
depends on a wide variety of design details in the computer, including both the
memory system and the processor structure (as we will see in Chapters 4 and 5), as
well as on the mix of instruction types executed in an application. Thus, CPI varies
by application, as well as among implementations with the same instruction set.

The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.8, we'll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix
A measure of the dynamic
frequency of instructions
across one or many
programs.

3 8 Chapter 1 Computer Abstractions and Technology

Understanding The performance of a program depends on the algorithm, the language, the
P m ^ m m compiler, the architecture, and the actual hardware. The following table summarizes

& how these components affect the factors in the CPU performance equation. Performance
Hardware

or software
component Affects what? How?

Algorithm Instruction count,
possibly CPI

The algorithm determines the number of source program
instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the
algorithm uses more floating-point operations, it will tend to have
a higher CPI.

Programming
language

Instruction count,
CPI

The programming language certainly affects the instruction count,
since statements in the language are translated to processor
instructions, which determine instruction count. The language
may also affect the CPI because of its features; for example,
a language with heavy support for data abstraction (e.g., Java)
will require indirect calls, which will use higher CPI instructions.

Compiler Instruction count,
CPI

The efficiency of the compiler affects both the instruction count
and average cycles per instruction, since the compiler determines
the translation of the source language instructions into computer
instructions. The compiler's role can be very complex and affect
the CPI in complex ways.

Instruction set
architecture

Instruction count,
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU
performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we'll see
in Chapter 4, some processors fetch and execute multiple instructions per clock cycle.
To reflect that approach, some designers invert CPI to talk about IPC, or instruction per
clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CPI of 0.5.

Check A given application written in Java runs 15 seconds on a desktop processor. A new
Yourself Java compiler is released that requires only 0.6 as many instructions as the old

compiler. Unfortunately, it increases the CPI by 1.1. ITow fast can we expect the
application to run using this new compiler? Pick the right answer from the three
choices below

1 5 x 0 . 6 0 ~ a. — — — - 8.2 sec

b. 15 x 0.6 x 1.1 = 9 . 9 sec

15 x 1.1 c.
0.6

= 27.5 sec

1.5 The Power Wall 3 9

The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 25 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

10000

1000

Q)
a 100 -

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a
simpler pipeline with lower clock rates and multiple processors per chip.

The dominant technology for integrated circuits is called CMOS (complemen-
tary metal oxide semiconductor). For CMOS, the primary source of power dissi-
pation is so-called dynamic power—that is, power that is consumed during
switching. The dynamic power dissipation depends on the capacitive loading
of each transistor, the voltage applied, and the frequency that the transistor is
switched:

Power = Capacitive load x Voltage2 x Frequency switched

4 0 Chapter 1 Computer Abstractions and Technology

Frequency switched is a function of the clock rate. The capacitive load per
transistor is a function of both the number of transistors connected to an output
(called the fanout) and the technology, which determines the capacitance of both
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a
factor of 30? Power can be reduced by lowering the voltage, which occurred with
each new generation of technology, and power is a function of the voltage squared.
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages
have gone from 5V to IV, which is why the increase in power is only 30 times.

{Relative Power

EXAMPLE

ANSWER

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it has adjust-
able voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?

Power inv (Capacitive load x 0.85) x (Voltage x 0.85)- x (Frequency switched x 0.85)

Power M Capacitive load x Voltage2 x Frequency switched

Thus the power ratio is

0.85'1 = 0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut off. Even
today about 40% of the power consumption is due to leakage. If transistors started
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used in a
given clock cycle. Although there are many more expensive ways to cool chips and
thereby raise their power to, say, 300 watts, these techniques are too expensive for
desktop computers.

Since computer designers slammed into a power wall, they needed a new way
forward. They chose a different way from the way they designed microprocessors
for their first 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in
CMOS, static power dissipation occurs because of leakage current that flows even when
a transistor is off. As mentioned above, leakage is typically responsible for 40% of
the power consumption in 2008. Thus, increasing the number of transistors increases
power dissipation, even if the transistors are always off. A variety of design techniques
and technology innovations are being deployed to control leakage, but it's hard to lower
voltage further.

1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 4 1

I b e S e a ©Bnaimges The S w i t i c l t o f r o m

U m i p i r o c e s s o i r s t o M u l t i p r o c e s s o r s

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.16 shows the improvement in response time of programs for desktop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to less than a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program run-
ning on the single processor, as of 2006 all desktop and server companies are ship-
ping microprocessors with multiple processors per chip, where the benefit is often
more on throughput than on response time. To reduce confusion between the
words processor and microprocessor, companies refer to processors as "cores," and
such microprocessors arc generically called multicore microprocessors. Hence, a
"quadcore" microprocessor is a chip that contains four processors or four cores.

Figure 1.17 shows the number of processors (cores), power, and clock rates
of recent microprocessors. The official plan of record for many companies is to
double the number of cores per microprocessor per semiconductor technology
generation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get significant improve-
ment in response time, they need to rewrite their programs to take advantage of
multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programmers will have to continue to improve performance of
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use
a special section, Hardware/Software Interface, throughout the book, with the first
one appearing below. These elements summarize important insights at this critical
interface.

"Up to now, most
software has been like
music written for a
solo performer; with
the current generation
of chips we're getting a
little experience with
duets and quartets and
other small ensembles;
but scoring a work for
large orchestra and
chorus is a different
kind of challenge."

Brian Hayes, Computing
in a Parallel Universe,
2007.

Parallelism has always been critical to performance in computing, but it was often
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro-
grams faster by overlapping the execution of instructions. This is one example of
instruction-level parallelism, where the parallel nature of the hardware is abstracted
away so the programmer and compiler can think of the hardware as executing
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly
rewrite their programs to be parallel had been the "third rail" of computer architec-
ture, for companies in the past that depended on such a change in behavior failed
(see Section 7.14 on the CD). From this historical perspective, it's startling that
the whole IT industry has bet its future that programmers will finally successfully
switch to explicitly parallel programming.

Hardware/
Software
Interface

4 2 Chapter 1 Computer Abstractions and Technology

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year.

Product

AMD
Opteron X4
(Barcelona) Intel Nehalem IBM Power 6

Sun
Ultra SPARC T2

(Niagara 2)

Cores per chip 4 4 2 | 8

Clock rate 2.5 GHz ~ 2.5 GHz ? 4.7 GHz I 1.4 GHz

Microprocessor power 120 W ~ 100 w ? - 100 W ? | 94 W

FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 mult icore micro-
processors.

Why has it been so hard for programmers to write explicitly parallel programs?
The first reason is that parallel programming is by definition performance pro-
gramming, which increases the difficulty of programming. Not only does the
program need to be correct, solve an important problem, and provide a useful
interface to the people or other programs that invoke it, the program must also be
fast. Otherwise, if you don't need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer
must divide an application so that each processor has roughly the same amount to

1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 4 3

do at the same time, and that the overhead of scheduling and coordination doesn't
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To
achieve this increased speed, one would need to break up the task so that each
reporter had something to do at the same time. Thus, we must schedule the sub-
tasks. If anything went wrong and just one reporter took longer than the seven
others did, then the benefits of having eight writers would be diminished. Thus, we
must balance the load evenly to get the desired speedup. Another danger would be
if reporters had to spend a lot of time talking to each other to write their sections.
You would also fall short if one part of the story, such as the conclusion, couldn't
be written until all of the other parts were completed. Thus, care must be taken
to reduce communication and synchronization overhead. For both this analogy and
parallel programming, the challenges include scheduling, load balancing, time for
synchronization, and overhead for communication between the parties. As you
might guess, the challenge is stiffer with more reporters for a newspaper story and
more processors for parallel programming.

To reflect this sea change in the industry, the next five chapters in this edition of
the book each have a section on the implications of the parallel revolution to that
chapter:

• Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually
independent parallel tasks need to coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multicore processors to synchronize tasks.

• Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Associativity.
Often parallel programmers start from a working sequential program.
A natural question to learn if their parallel version works is, "does it get the
same answer?" If not, a logical conclusion is that there are bugs in the new
version. This logic assumes that computer arithmetic is associative: you get
the same sum when adding a million numbers, no matter what the order.
This chapter explains that while this logic holds for integers, it doesn't hold
for floating-point numbers.

• Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism.
Given the difficulty of explicitly parallel programming, tremendous effort was
invested in the 1990s in having the hardware and the compiler uncover implicit
parallelism.This chapter describes some of these aggressive techniques, includ-
ing fetching and executing multiple instructions simultaneously and guessing
on the outcomes of decisions, and executing instructions speculatively.

4 4 Chapter 1 Computer Abstractions and Technology

I thought [computers]
would be a universally
applicable idea, like a
book is. But I didn't
think it would develop
as fast as it did, because
I didn't envision we'd
be able to get as many
parts on a chip as
we finally got. The
transistor came along
unexpectedly. It all
happened much faster
than we expected.

J. Prosper Eckert,
coinventor of ENIAC,
speaking in 1991

• Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence.
One way to lower the cost of communication is to have all processors iise
the same address space, so that any processor can read or write any data.
Given that all processors today use caches to keep a temporary copy of the
data in faster memory near the processor, it's easy to imagine that parallel
programming would be even more difficult if the caches associated with each
processor had inconsistent values of the shared data. This chapter describes
the mechanisms that keep the data in all caches consistent.

• Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive
Disks. If you ignore input and output in this parallel revolution, the
unintended consequence of parallel programming may be to make your
parallel program spend most of its time waiting for I/O. This chapter
describes RAID, a technique to accelerate the performance of storage
accesses. RAID points out another potential benefit of parallelism: by having
many copies of resources, the system can continue to provide service despite
a failure of one resource. Hence, RAID can improve both I/O performance
and availability.

In addition to these sections, there is a full chapter on parallel processing.
Chapter 7 goes into more detail on the challenges of parallel programming;
presents the two contrasting approaches to communication of shared addressing
and explicit message passing; describes a restricted model of parallelism that is
easier to program; discusses the difficulty of benchmarking parallel processors;
introduces a new simple performance model for multicore microprocessors and
finally describes and evaluates four examples of multicore microprocessors using
this model.

Starting with this edition of the book, Appendix A describes an increasingly
popular hardware component that is included with desktop computers, the graph-
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming
programming platforms in their own right. As you might expect, given these times,
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights
parts of its parallel programming environment.

Real Stuff: Manufacturing and!
Benchmarking the AMD Opteron X4

Each chapter has a section entitled "Real Stuff" that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern computers. For this first "Real Stuff" section, we look at how
integrated circuits are manufactured and how performance and power are mea-
sured, with the AMD Opteron X4 as the example.

1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 45

Let's start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
materials to silicon that allow tiny areas to transform into one of three devices:

• Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

• Excellent insulators from electricity (like plastic sheathing or glass)

• Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.18 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8 -12 inches in diameter and about 12-24 inches long. An ingot is
finely sliced into wafers no more than 0.1 inch thick. These wafers then go through
a series of processing steps, during which patterns of chemicals are placed on

silicon A natural element
that is a semiconductor.

semiconductor
A substance that does not
conduct electricity well.

sil icon crystal ingot
A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more
than 0.1 inch thick, used
to create chips.

Silicon ingot

Slicer

Blank
wafers

20 to 40
processing steps

Bond die to
package

packaged dies

Tested dies
• •

• IS DEI • • • • •

• ••• • •
Dicer

Tested
wafer

nnn Part
tester

no uuu
Part

tester nn

Tested packaged dies

Patterned wafers

Wafer
tester

Ship to
customers

FIGURE 1.18 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.19). These patterned wafers
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies
(see Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages
and tested one more time before shipping the packaged parts to customers. One bad packaged part was
found in this final test.

46 Chapter 1 Computer Abstractions and Technology

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

die The individual
rectangular sections that
are cut from a wafer,
more informally known
as chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today's integrated circuits contain only one layer of transistors but may have frbm
two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic flaw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wafer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro-
processor die and its major components.

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the flaws, rather than the whole wafer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fit on a wafer. To reduce
the cost, a large die is often "shrunk" by using the next generation process, which
incorporates smaller sizes for both transistors and wires. This improves the yield
and the die count per wafer.

Once you've found good dies, they are connected to the input/output pins
of a package, using a process called bonding. These packaged parts are tested a
final time, since mistakes can occur in packaging, and then they are shipped to
customers.

As mentioned above, an increasingly important design constraint is power.
Power is a challenge for two reasons. First, power must be brought in and distrib-
uted around the chip; modern microprocessors use hundreds of pins just for power
and ground! Similarly, multiple levels of interconnect are used solely for power and
ground distribution to portions of the chip. Second, power is dissipated as heat and
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in
2008, which must be removed from a chip whose surface area is just over 1 cm2!

Elaboration: The cost of an integrated circuit can be expressed in three simple
equations:

Cost per wafer
Cost per die

Dies per wafer =

Dies per wafer x yield

Wafer area
Die area

1.7 Real Stuff: Manufacturing and Benchmarking the A M D Opteron X4 4 7

FIGURE 1.19 A 12-inch (3 0 0 m m) wafer of A M D Opteron X2 chips, the predecessor of
Opteron X4 chips (Courtesy A M D) . The number of dies per wafer at 100% yield is 117. The several
dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it's easier
to create the masks used to pattern the silicon. This die uses a 90-nanometer technology, which means that the
smallest transistors are approximately 90 nm in size, although they are typically somewhat smaller than the
actual feature size, which refers to the size of the transistors as "drawn" versus the final manufactured size.

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.19). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in die area.

4 8 Chapter 1 Computer Abstractions and Technology

SPEC CPU Benchmark

workload A set of
programs run on a
computer that is either
the actual collection of
applications run by a user
or constructed from real
programs to approximate
such a mix. A typical
workload specifies both
the programs and the
relative frequencies.

benchmark A program
selected for use in
comparing computer
performance.

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
a worldoad. To evaluate two computer systems, a user would simply compare the
execution time of the workload on the two computers. Most users, however, are
not in this situation. Instead, they must rely on other methods that measure the
performance of a candidate computer, hoping that the methods will reflect how
well the computer will perform with the user's workload. This alternative is usually
followed by evaluating the computer using a set of benchmarks—programs
specifically chosen to measure performance. The benchmarks form a workload
that the user hopes will predict the performance of the actual workload.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of benchmarks
for modern computer systems. In 1989, SPEC originally created a benchmark
set focusing on processor performance (now called SPEC89), which has evolved
through five generations. The latest is SPEC CPU2006, which consists of a set of 12
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The floating-point benchmarks include structured
grid codes for finite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.20 describes the SPEC integer benchmarks and their execution time
on the Opteron X4 and shows the factors that explain execution time: instruction
count, CPI, and clock cycle time. Note that CPI varies by a factor of 13.

To simplify the marketing of computers, SPEC decided to report a single
number to summarize all 12 integer benchmarks. The execution time measure-
ments are first normalized by dividing the execution time on a reference processor
by the execution time on the measured computer; this normalization yields a
measure, called the SPECratio, which has the advantage that bigger numeric
results indicate faster performance (i.e., the SPECratio is the inverse of execution
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the
geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.

1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 49

Description Name
Instruction
Count x 109 CPI

Clock cycle time
(seconds x 109)

Execution
Time

(seconds)

Reference
Time

(seconds) SPECratio

Interpreted string processing perl 2,118 0.75 0.4 637 9,770 15.3

Block-sorting
compression

bzip2 2,389 0.85 0.4 817 9,650 11.8

GNU C compiler gcc 1,050 1.72 0.4 724 8,050 11.1

Combinatorial optimization mcf 336 10.00 0.4 1,345 9,120 6.8

Go game (Al) go 1,658 1.09 0.4 721 10,490 14.6

Search gene sequence hmmer 2,783 0.80 0.4 890 9,330 10.5

Chess game (Al) sjeng 2,176 0.96 0.4 837 12,100 14.5

Quantum computer
simulation

libquantum 1,623 1.61 0.4 1,047 20,720 19.8

Video compression h264avc 3,102 0.80 0.4 993 22,130 22.3

Discrete event
simulation library

omnetpp 587 2.94 0.4 690 6,250 9.1

Games/path finding astar 1,082 1.79 0.4 773 7,020 9.1

XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0

Geometric Mean 11.7

FIGURE 1.20 S P E C I N T C 2 0 0 6 benchmarks running on A M D Opteron X4 model 2356 (Barcelona) . As the equation on
page 35 explains, execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CI'I), and
clock cycle time in nanoseconds. SPFCratio is simply the reference time, which is supplied by SPIIC, divided by the measured execution time.
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.<l() on page 5-12 shows that mcf, libcjuantum,
omnetpp, and xalancbmk have relatively high CP Is because they have high cache miss rates.

The formula for the geometric mean is

j n

n Execution time ratioj
\ 1=1

where Execution time ratio, is the execution time, normalized to the reference computer,
for the /th program of a total of n in the workload, and

n

a. means the product s 1 x a , x „ . x a n
i=i

SPEC Power Benchmark
Today, SPEC offers a dozen different benchmark sets designed to test a wide

variety of computing environments using real applications and strictly specified
execution rules and reporting requirements. The most recent is SPECpower. It
reports power consumption of servers at different workload levels, divided into
10% increments, over a period of time. Figure 1.21 shows the results for a server
using Barcelona.

SPECpower started with the SPEC benchmark for Java business applications
(SPECJBB2005) , which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operating

5 0 Chapter 1 Computer Abstractions and Technology

Performance Average Power
Target Load % (ssj_ops) (Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 92,035 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall Sum 1,283,590 2,605

Z ssj_ops / X power = 493

FIGURE 1.21 SPECpower_ssj2008 running on dual socket 2.3 GHz AMD Opteron X4 2356
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk.

system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC
boils these numbers down to a single number, called "overall ssj_ops per Watt." The
formula for this single summarizing metric is

I io
overall ssj_ops per Watt = ssj_ops ; / ^T power.

\i = 0 I \ i = 0 /

where ssj_ops. is performance at each 10% increment and power, is power con-
sumed at each performance level.

Check A key factor in determining the cost of an integrated circuit is volume. Which of
Yourself following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

1.8 Fallacies and Pitfalls 51

1.8 Fallacies ancil IFWais

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The purpose
of these sections is to help you avoid making these mistakes in the computers you
may design or use. Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if I want my program to run five times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl's law:

Execution time after improvement =

Execution time affected by improvement

Amount of improvement

For this problem:

Execution time after improvement =

T Execution time unaffected

80 seconds T (1 0 0 - 8 0 seconds)

Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

in j 80 seconds , , 20 seconds = F 20 seconds

Science must begin
with myths, and the
criticism of myths.

Sir Karl Popper, The
Philosophy of Scicncc,
1957

Amdahl's law A rule
stating that the
per fo r m a n ce en h a nce-
ment possible with a
given improvement is
limited by the amount
that the improved feature
is used. It is a quantita-
tive version of the law of
diminishing returns.

0 = 80 seconds

That is, there is no amount by which we can enhance-multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload.

52 Chapter 1 Computer Abstractions and Technology

The performance enhancement possible with a given improvement is limited by
the amount that the improved feature is used. This concept also yields what'we
call the law of diminishing returns in everyday life.

We can use Amdahl's law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl's
law, together with the CPU performance equation, is a handy tool for evaluating
potential enhancements. Amdahl's law is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl's law: Make the
common case fast. This simple guideline reminds us that in many cases the frequency
with which one event occurs may be much higher than the frequency of another.
Amdahl's law reminds us that the opportunity for improvement is affected by how
much time the event consumes. Thus, making the common case fast will tend to
enhance performance better than optimizing the rare case. Ironically, the common
case is often simpler than the rare case and hence is often easier to enhance.

Amdahl's law is also used to argue for practical limits to the number of parallel
processors. We examine this argument in the Fallacies and Pitfalls section of
Chapter 7.

Fallacy: Computers at low utilization use little power.

Power efficiency matters at low utilizations because server workloads vary. CPU
utilization for servers at Google, for example, is between 10% and 5 0 % most of the
time and at 100% less than 1% of the time. Figure 1.22 shows power for servers
with the best SPECpovver results at 100% load, 5 0 % load, 10% load, and idle. Even
servers that are only 10% utilized burn about two-thirds of their peak power.

Since servers' workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Holzle [2007] argue that we should redesign hardware to achieve
"energy-proportional computing." If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO, emissions.

Server
Manufacturer

Micro-
processor

Total
Cores/

Sockets

Peak
Performance

(ssj.ops)

100%
Load

Power

50%
Load

Power

50%
Load/
100%
Power

10%
Load

Power

10%
Load/
100%
Power

Active
Idle

Power

Active
Idle/
100%
Power

HP Xeon E5440 8/2 3.0 GHz 308,022 269 W 227 W 84% 174 W 65% 160 W 59%

Dell Xeon E5440 8/2 2.8 GHz 305,413 276 W 230 W 83% 173 W 63% 157 W 57%

Fujitsu Seimens Xeon X3220 4/1 2.4 GHz 143,742 132 W 110 W 83% 85 W 65% 80 W 60%

FIGURE 1.22 S P E C P o w e r results for three servers with the best overall ssj_ops per watt in the fourth quarter of
2007. The overall ssj_ops per watl of The three servers are 698, 682, and 667, respectively. The memory of the top two servers is 16 GB and
the bottom is 8 GB.

Pitfall: Using a subset of the performance equation as a performance metric.

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CPI. Another common mistake is to use only

1.8 Fallacies and Pitfalls 5 3

two of the three factors to compare performance. Although using two of the three
factors may be valid in a limited context, the concept is also easily misused. Indeed,
nearly all proposed alternatives to the use of time as the performance metric have
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given
program, MIPS is simply

MIPS =
Instruction count

Execution time x 10"

Since MIPS is an instruction execution rate, MIPS specifies performance
inversely to execution time; faster computers have a higher MIPS rating. The good
news about MIPS is that it is easy to understand, and faster computers mean bigger
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifies the instruction execution rate but does not take into
account the capabilities of the instructions. We cannot compare computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. Second, MIPS varies between programs on the same computer; thus, a com-
puter cannot have a single MIPS rating. For example, by substituting for execution
time, we see the relationship between MIPS, clock rate, and CPI:

MIPS = Instruction count
Instruction count x CPI

Clock rate
x 10"

Clock rate
CPI x 10"

Recall that CPI varied by 13x for SPEC2006 on Opteron X4, so MIPS does as well.
Finally, and most importantly, if a new program executes more instructions but
each instruction is faster, MIPS can vary independently from performance!

mill ion instruct ions
per second (M I P S)
A measurement of
program execution speed
based on the number of
millions of instructions.
MIPS is computed as the
instruction count divided
by the product of the
execution lime and 10''.

Consider the following performance measurements for a program: Check
Yourself

Measurement Computer A Computer B

Instruction count 10 billion 8 billion
Clock rate 4 GHz 4 GHz
CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

54 Chapter 1 Computer Abstractions and Technology

Where... the ENIAC
is equipped with
IS,000 vacuum tubes
and weighs 30 tons,
computers in die future
may have 1,000
vacuum tubes and
perhaps weigh just
I'A tons.

Popular Mechanics,
March 1949

Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance comput-
ers will have in the future, it's a safe bet that they will be much better than they
are today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today's computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innovations
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

Seconds _
Program Program

Instructions Clock cycles Seconds
Instruction Clock cycle

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

The BIG
Picture

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting exe-
cution time; other times a metric that is valid in a limited context is
extended and used beyond that context or without the additional clarifi-
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor-
tance to an understanding of integrated circuit technology is an understanding of
the expected rates of technological change. While silicon fuels the rapid advance
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program,

1.10 Historical Perspective and Further Reading 55

typically today via multiple processors, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor
design. Conserving power while trying to increase performance has forced the
hardware industry to switch to multicore microprocessors, thereby forcing the
software industry to switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well
as other important factors such as power, reliability, cost of ownership, and scal-
ability. Although this chapter has focused on cost, performance, and power, the
best designs will strike the appropriate balance for a given market among all the
factors.

Roadl ft/Hap for This Book
At the bottom of these abstractions are the five classic components of a computer:
datapath, control, memory, input, and output (refer to Figure 1.4). These five
components also serve as the framework for the rest of the chapters in this book:

• Datapath: Chapters 3 ,4 , 7, and Appendix A

• Control: Chapters 4, 7, and Appendix A

• Memory: Chapter 5

• Input: Chapter 6

• Output: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par-
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that
are at the heart of the parallel revolution, and Appendix A describes the highly
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy
exploits locality. Chapter 2 describes instruction sets—the interface between com-
pilers and the computer—and emphasizes the role of compilers and programming
languages in using the features of the instruction set. Appendix B provides a
reference for the instruction set of Chapter 2. Chapter 3 describes how computers
handle arithmetic data. [j§! Appendix C, on the CD, introduces logic design.

IHistoricafl Perspective and Fuirftihier Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of computers or describe some important projects, and we
provide references in case you are interested in probing further.

An active field of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tumbling
over each other, carry-
ing information from
place to place, passing
it around at the speed
of light.

Lewis Thomas, "Natural
Science," in The Lives of
a Cell, 1974

56 Chapter 1 Computer Abstractions and Technology

The historical perspective for this chapter provides a background for some
of the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section "Further Reading." The rest
o f ® Section 1.10 is found on the CD.

• flyj Exercises
Contributed by Javier Bruguera of Universidade de Santiago de Compostcla

Most of the exercises in this edition are designed so that they feature a qualitative
description supported by a table that provides alternative quantitative parameters.
These parameters are needed to solve the questions that comprise the exercise.
Individual questions can be solved using any or all of the parameters—you decide
how many of the parameters should be considered for any given exercise question.
For example, it is possible to say "complete Question 4.1.1 using the parameters
given in row A of the table." Alternately, instructors can customize these exercises
to create novel solutions by replacing the given parameters with your own unique
values.

The number of quantitative exercises varies from chapter to chapter and depends
largely on the topics covered. More conventional exercises are provided where the
quantitative approach does not fit.

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <1.3> means you should have read
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise i . l
Find the word or phrase from the list below that best matches the description in the
following questions. Use the numbers to the left of the words in the answer. Each
answer should be used only once.

1.11 Exercises 5 7

1. virtual worlds 14. operating system

2. desktop computers 15. compiler

3. servers 16. bit

4. low-end servers 17. instruction

5. supercomputers 18. assembly language

6. terabyte 19. machine language

7. petabyte 20. C

8. . datacenters 21. assembler

9. embedded computers 22. high-level language

10. multicore processors 23. system software

11. VHDL 24. application software

12. RAM 25. cobol

13. CPU 26. fortran

1 . 1 . 1 [2] <1.1> Computer used to run large problems and usually accessed via a
network

1 . 1 . 2 [21 < 1.1 > 10'3 or 23w bytes

1.1.3 [2] <1.1 > Computer composed of hundreds to thousands of processors and
terabytes of memory

1.1.4 [2] < 1.1 > Today's science fiction application that probably will be available
in near future

1.1.5 [2] < 1.1 > A kind of memory called random access memory

1.1.6 [2] <1.1> Part of a computer called central processor unit

1.1.7 [2] <1.1> Thousands of processors forming a large cluster

1.1.8 [21 <1.1> A microprocessor containing several processors in the same chip

1.1.9 [2] <1.1> Desktop computer without screen or keyboard usually accessed
via a network

1.1.10 [2] < 1.1 > Currently the largest class of computer that runs one application
or one set of related applications

1 . 1 . 1 1 [2] <1.1> Special language used to describe hardware components

58 Chapter 1 Computer Abstractions and Technology

1.1.12 [2] <1.1> Personal computer delivering good performance to single users
at low cost *

1.1.13 [2] <1.2> Program that translates statements in high-level language to
assembly language

1.1.14 [2] <1.2> Program that translates symbolic instructions to binary
instructions

1.1.15 [2] <1.2> High-level language for business data processing

1.1.16 [2] <I .2> Binary language that the processor can understand

1.1.17 [2] <1.2> Commands that the processors understand

1.1.18 [2]<1.2> High-level language for scientific computation

1.1.19 [2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user's program and hardware providing a
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users

1.1.22 [2] <1.2> Binary digit (value 0 or 1)

1.1.23 [2] <1.2> Software layer between the application software and the hard-
ware that includes the operating system and the compilers

1.1.24 [2] <1.2> High-level language used to write application and system software

1.1.25 [2J <1.2> Portable language composed of words and algebraic expres-
sions that must be translated into assembly language before run in a computer

1 . 1 . 2 6 [2] <1.2> 1012 or 2mbytes

Exercise 1.2
1.2.1 f 10J <1.3> For a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel and with a resolution of 1280 x 800 pixels, what should
be the size (in bytes) of the frame buffer to store a frame?

1.2.2 15] <1.3> If a computer has a main memory of 2 GB, how many frames
could it store, assuming the memory contains no other information?

1.11 Exercises 59

1.2.3 [5] <1.3> If a computer connected to a 1 gigabit Ethernet network needs to
send a 256 Kbytes file, how long it would take?

1.2.4 [5] <1.3> Assuming that a cache memory is ten times foster than a DRAM
memory, that DRAM is 100,000 times faster than magnetic disk, and that flash
memory is 1000 times faster than disk, find how long it takes to read a file from
a DRAM, a disk, and a flash memory if it takes 2 microseconds from the cache
memory?

Exercise 1=3
Consider three different processors PI, P2, and P3 executing the same instruction
set with the clock rates and CPIs given in the following table.

Processor Clock rate CPI

P I 2 GHz 1.5

P2 1.5 GHz 1.0

P3 3 GHz 2.5

1.3.1 J5] <1.4> Which processor has the highest performance?

1.3.2 [5] <1.4> If the processors each execute a program in 10 seconds, find the
number of cycles and the number of instructions.

1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to
an increase of 20% in the CPI. What clock rate should we have to get this time
reduction?

For problems below, use the information in the following table.

Processor Clock rate No. instructions Time

P I 2 GHz 20 x 109 7 s

P2 1.5 GHz 30 x 10° 10 s

P3 3 GHz 90 x 109 9 s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 [5] <1.4> Find the clock rate for P2 that reduces its execution time to that
o f P l .

1.3.6 [5] <1.4> Find the number of instructions for P2 that reduces its execution
time to that of P3.

6 0 Chapter 1 Computer Abstractions and Technology

Exercise 1.4
«

Consider two different implementations of the same instruction set architecture.
There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each
implementation are given in the following table.

Clock rate CPI Class A CPI Class B CPI Class C CPI Class D

P I 1.5 GHz 1 2 3 4

P2 2 GHz 2 2 2 2

1.4.1 [10] <1.4> Given a program with 10f' instructions divided into classes as
follows: 10% class A, 2 0 % class B, 5 0 % class C and 2 0 % class D, which implemen-
tation is faster?

1.4 .2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.

The following table shows the number of instructions for a program.

Arith Store Load Branch Total

500 50 100 50 700

1.4.4 [5] < I .4> Assuming that arith instructions take 1 cycle, load and store 5
cycles and branch 2 cycles, what is the execution time of the program in a 2 GHz
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4 .6 [10] <1.4> If the number of load instructions can be reduced by one-half,
what is the speed-up and the CPI?

Exercise 1.5
Consider two different implementations, PI and P2, of the same instruction set.
There are five classes of instructions (A, B, C, D, and E) in the instruction set. The
clock rate and CPI of each class is given below.

Clock rate CPI Class A CPI Class B CPI Class C CPI Class D CPI Class E

a. P I 1.0 GHz 1 2 3 4 3 a.

P2 1.5 GHz 2 2 2 4 4

b. P I 1.0 GHz 1 1 2 3 2 b.

P2 1.5 GHz 1 2 3 4 3

1.11 Exercises 61

1.5.1 [51 <1.4> Assume that peak performance is defined as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of PI and P2 expressed in instructions per second?

1.5.2 [5] <1.4> If the number of instructions executed in a certain program is
divided equally among the classes of instructions except for class A, which occurs
twice as often as each of the others. Which computer is faster? How much faster is it?

1.5.3 [5] <1.4> If the number of instructions executed in a certain program is
divided equally among the classes of instructions except for class E, which occurs
twice as often as each of the others? Which computer is faster? How much faster
is it?

The table below shows instruction-type breakdown for different programs. Using
this data, you will be exploring the performance tradeoffs with different changes
made to a MIPS processor.

Instructions

Compute Load Store Branch Total

a. Program 1 1000 400 100 50 1550

b. Program 4 1500 300 100 100 1750

1.5.4 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 10 cycles, and branches take 3 cycles, find the execution time of each program
on a 3 GHz MIPS processor.

1.5.5 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, find the execution time of each program
on a 3 GHz MIPS processor.

1.5.6 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, what is the speed-up of a program if the
number of compute instruction can be reduced by one-hall?

Exercise 1.6
Compilers can have a profound impact on the performance of an application on a
given processor. This problem will explore the impact compilers have on execution
time.

62 Chapter 1 Computer Abstractions and Technology

Compiler A Compiler B

Instructions Execution time # Instructions Execution time

a. 1.00E+09 1 s 1.20E+09 1.4 5

b. 1.00E+09 0.8 s 1.20E+09 0.7 s

1.6.1 [5] <1.4> For the same program, two different compilers are used. The
table above shows the execution time of the two different compiled programs. Find
the average CPI for each program given that the processor has a clock cycle time
of 1 nS.

1.6.2 [5] <1.4> Assume the average CPIs found in 1.6.1, but that the compiled
programs run on two difference processors. If the execution times on the two
processors are the same, how much faster is the clock of the processor running
compiler A's code versus the clock of the processor running compiler B's code?

1.6 .3 [5] <1.4> A new compiler is developed that uses only 600 million instruc-
tions and has an average CPI of 1.1. What is the speed-up of using this new compiler
versus using Compiler A or B on the original processor of 1.6.1?

Consider two different implementations, PI and P2, of the same instruction set.
There are five classes of instructions (A, B, C, D, and E) in the instruction set. PI
has a clock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number of
cycles for each instruction class for PI and P2 are listed in the following table.

Class CPI on P I CPI on P2

a. A 1 2 a.

B 2 2

a.

C 3 2

a.

D 4 4

a.

E 5 4

Class CPI on P I CPI on P2

b. A 1 2 b.

B 1 2

b.

C 1 2

b.

D 4 4

b.

E 5 4

1

1.11 Exercises 81

1.6.4 [5] <1 .4> Assume that peak performance is defined as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of PI and P2 expressed in instructions per second?

1.6.5 [5] <1.4> If the number of instructions executed in a certain program is
divided equally among the classes of instructions in Problem 2.36.4 except for
class A, which occurs twice as often as each of the others, how much faster is P2
than PI?

1 . 6 . 6 [5] <1 .4> At what frequency does P2 have the same performance as PI for
the instruction mix given in 1.6.5?

Exercise 1.7

The following table shows the increase in clock rate and power of eight generations
of Intel processors over 28 years.

Processor clock rate Power

80286 (1982) 12.5 MHz 3.3 W

80386 (1985) 16 MHz 4.1 W

80486 (1989) 25 MHz 4.9 W

Pentium (1993) 66 MHz 10.1 W

Pentium Pro (1997) 200 MHz 29.1 W

Pentium 4 Willamette (2001) 2 GHz 75.3 W

Pentium 4 Prescott (2004) 3.6 GHz 103 W

Core 2 Ketsfield (2007) 2.667 GHz 95 W

1.7.1 [5] <1 .5> What is the geometric mean of the ratios between consecutive
generations for both clock rate and power? (The geometric mean is described in
Section 1.7.)

1.7 .2 [5] < 1.5> What is the largest relative change in clock rate and power between
generations?

1.7 .3 [5] <1.5> How much larger is the clock rate and power of the last generation
with respect to the first generation?

6 4 Chapter 1 Computer Abstractions and Technology

Consider the following values for voltage in each generation.

Processor Voltage

80286 (1982) 5

80386 (1985) 5

80486(1989) 5

Pentium (1993) 5

Pentium Pro (1997) 3.3

Pentium 4 Willamette (2001) 1.75

Pentium 4 Prescott (2004) 1.25

Core 2 Ketsfield (2007) 1.1

1 . 7 . 4 [5] <1.5> Find the average capacitive loads, assuming a negligible static
power consumption.

1 . 7 . 5 [5] <1.5> Find the largest relative change in voltage between generations.

1 . 7 . 6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations
since the Pentium.

Exercise 1.8
Suppose we have developed new versions of a processor with the following
characteristics.

Version Voltage Clock rate

version 1 5 V 0.5 GHz

version 2 3.3 V 1 GHz

1 . 8 . 1 [5j <1.5> By how much has the capacitive load been reduced between
versions if the dynamic power has been reduced by 10%?

1 . 8 . 2 [5] <1.5> By how much has the dynamic power been reduced if the capaci-
tive load does not change?

1 . 8 . 3 [5] <1.5> Assuming that the capacitive load of version 2 is 8 0 % the capaci-
tive load of version 1, find the voltage for version 2 if the dynamic power of version
2 is reduced by 4 0 % from version 1.

1.11 Exercises 6 5

Supposing that the industry trends show that a new process generation scales as
follows:

Capacitance Voltage Clock rate Area

1 1/2-1/J 2U2 2-i/J

1.8.4 [51 <1.5> By what factor does the dynamic power scales?

1.8.5 [51 < 1.5> Find the scaling of the capacitance per unit area.

1.8.6 [5] <1.5> Using data from Exercise 1.7, find the voltage and clock rate of
the Core 2 processor for the next process generation.

Exercise 1.9
Although the dynamic power is the primary source of power dissipation in CMOS,
leakage current produces a static power dissipation V x Ilril. The smaller the on-chip
dimensions, the more significant is the static power. Assume the figures shown in the
following table for static and dynamic power dissipation for several generations of
processors.

Technology Dynamic power (W) Static power (W) Voltage (V)

a. 250 nm 49 1 3.3

b. 90 nm 75 45 1.1

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by
static power.

1.9.2 [5] <1.5> If the static power depends on the leakage current, Pt = V x I,
find the leakage current for each technology.

1.9.3 [5] <1.5> Determine the ratio of static power to dynamic power for each
technology.

Consider now the dynamic power dissipation of different versions of a given
processor for three different voltages given in the following table.

a. 80 W 70 W 40 W

b. 65 W 55 W 30 W

6 6 Chapter 1 Computer Abstractions and Technology

1.9.4 [5] <1.5> Determine the static power for each version at 0.8 V, assuming a
static to dynamic power ratio of 0.6. '

1.9.5 [5] <1.5> Find the leakage current for each version at 0.8 V.

1.9.6 [10] <1.5> Determine the larger of the two leakage currents at 1.0 V and
1.2 V, assuming a static to dynamic power ratio of 1.7.

Exercise 1.10
The table below shows the instruction type breakdown of a given application
executed on 1,2,4, or 8 processors. Using this data, you will be exploring the speed-
up of applications on parallel processors.

Processors # Instructions per processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

a. 1 2560 1280 256 1 4 2

2 1280 640 128 1 4 2

4 640 320 64 1 4 2

8 320 160 32 1 4 2

Processors # Instructions per processor CPI

Arithmetic Load/Store Branch Arithmetic Load/Store Branch

b. 1 2560 1280 256 1 4 2

2 1350 800 128 1 6 2

4 800 600 64 1 9 2

8 600 500 32 1 13 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required
per processor to complete a program on a multiprocessor with 1, 2 ,4 , or 8 proces-
sors. What is the total number of instructions executed per processor? What is the
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, find
the total execution time for this program on 1, 2, 4, and 8 processors. Assume that
each processor has a 2 GHz clock frequency.

1.10.3 [10] <1.4, i .6> If the CPI of arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?

1.11 Exercises 67

The table below shows the number of instruction per processor core on a multicore
processor as well as the average CPI for executing the program on 1,2,4, or 8 cores.
Using this data, you will be exploring the speed-up of applications on multicore
processors.

Cores per processor Instructions per core Average CPI

a. 1 1.00E+10 1.2 a.

2 5.00E+09 1.3

a.

4 2.50E+09 1.5

a.

8 1.25E+09 1.8

Cores per processor Instructions per core Average CPI

b. 1 1.00E+10 1.2 b.

2 5.00E+09 1.2

b.

4 2.50E+09 1.2

b.

8 1.25E+09 1.2

1.10.4 [101 <1.4, 1.6> Assuming a 3 GHz clock frequency, what is the execution
time of the program using 1, 2,4, or 8 cores.

1.10.5 [10] <1.5, 1.6> Assume that the power consumption of a processor core
can be described by the following equation

Power = "V^l1?^ Voltage2
MHz °

where the operation voltage of the processor is described by the following
equation

Voltage = ^ Frequency T 0.4

with the frequency measured in GHz. So, at 5 GHz, the voltage would be 1.4 V. Find
the power consumption of the program executing on 1, 2,4, and 8 cores assuming
that each core is operating at a 3 GITz clock frequency. Likewise, find the power
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each
core is operating at 500 MHz.

1.10.6 [10] <1.5,1.6> Find the energy required to execute the program for 1,2,4,
and 8 cores assuming that each core has a clock frequency of 3 GHz and 500 MHz.
Assume the power consumption equations from 1.10.5.

68 Chapter 1 Computer Abstractions and Technology

Exercise 1.11
The following table shows manufacturing data for various processors.

Wafer diameter Dies per wafer Defects per unit area cost per wafer

a. 15 cm 90 0.018 defects/cm3 10

b. 25 cm 140 0.024 defects/cm- 20

1.11.1 [10] <1.7> Find the yield.

1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, find the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech-
nology, the yield varies as shown in the following table.

T1 T2 T3 T4

yield 0.85 0.89 0.92 0.95

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die
area of 200 mm2.

1.11.5 [5] <1.7> Represent graphically the variation of the yield together with
the variation of defects per unit area.

Exercise 1.12
The following table shows results for SPEC2006 benchmark programs running on
an AMD Barcelona.

Name Intr. count x 109 Execution time (seconds) Reference time (seconds)

a. perl 2118 500 9770

b. mcf 336 1200 9120

1.12.1 [5] <1.7> Find the CPI if the clock cycle time is 0.333 ns.

1.12.2 [5] <1.7> Find the SPEC ratio.

1.12.3 [5] <1.7> For these two benchmarks, find the geometric mean.

1

1.11 Exercises 69

The following table shows data for further benchmarks.

Name CPI Clock rate SPECratio

a. sjeng 0.96 4 GHz 14.5

b. omnetpp 2.94 4 GHz 9.1

1 . 1 2 . 4 [5] <1.7> Find the increase in CPU time if the number of instruction of
the benchmark is increased by 10% without affecting the CPI.

1 . 1 2 . 5 [5] <1.7> Find the increase in CPU time if the number of instruction of
the benchmark is increased by 10% and the CPI is increased by 5%.

1 . 1 2 . 6 [5] <1.7> Find the change in the SPECratio for the change described in
1.12.5.

Exercise 1=13
Suppose that we are developing a new version of the AMD Barcelona processor
with a 4 GITz clock rate. We have added some additional instructions to the
instruction set in such a way that the number of instructions has been reduced by
15% from the values shown for each benchmark in Exercise 1.12. The execution
times obtained are shown in the following table.

Name Execution time (seconds) Reference time (seconds) SPECratio

a. perl 450 9770 21.7

b. mcf 1150 9120 7.9

1.13.1 [10] < 1.8> Find the new CPI.

1 . 1 3 . 2 [10] <1.8> In general, these CPI values are larger than those obtained in
previous exercises for the same benchmarks. This is due mainly to the clock rate
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI
is similar to that of the clock rate. If they are dissimilar, why?

1 . 1 3 . 3 [5] <1.8>By how much has the CPU time been reduced?

The following table shows data for further benchmarks.

Name Execution time (seconds) CPI Clock rate

a. sjeng 820 0.96 3 GHz

b. omnetpp 580 2.94 3 GHz

7 0 Chapter 1 Computer Abstractions and Technology

1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% without
affecting the CPI and with a clock rate of 4 GHz, determine the number of
instructions.

1.13.5 [10] <1.8> Determine the clock rate required to give a further 10% reduction
in CPU time while maintaining the number of instructions and CPI unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPI is reduced by 15% and the
CPU time by 20% while the number of instructions is unchanged.

Exercise 1 M
Section 1.8 cites as a pitfall the utilization of a subset of the performance equation
as a performance metric. To illustrate this, consider the following data for the
execution of given instruction sequence of 10" instructions in different processors.

Processor Clock rate CPI

P i 4 GHz 1.25

P2 3 GHz 0.75

1.14.1 [5] <1.S> One usual fallacy is to consider the computer with the largest
clock rate as having the large performance. Check if this is true for PI and P2.

1.14.2 [lOj <1.8> Another fallacy is to consider that the processor executing
the largest number of instruction will need a larger CPU time. Considering that
processor PI is executing a sequence of 10" instructions and that the CPI of
processors PI and P2 do not change, determine the number of instructions that P2
can execute in the same time that PI needs to execute 10" instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per
second) to compare the performance of two different processors, and consider that
the processor with the largest MIPS has the largest performance. Check if this is
true for PI and P2.

Another common performance figure is MFLOPS (million of floating-point
operations per second), defined as

MFLOPS = No. FP operations/execution time x 10"

but this figure has the same problems as MIPS. Consider the programs in the
following table, running on a processor with clock rate = 3 GHz.

I S Instr. count L/S instr. FP instr. Branch Instr. CPI(L/S) CPI(FP) CPI(Branch)

a. 10° 50% 40% 10% 0.75 1 1.5

b. 3 x 10e 40% 40% 20% 1.25 0.70 1.25

1.11 Exercises 71

1.14.4 [10! <1.8> Find the MFLOPS figures for the programs.

1.14.5 [10] <1.8> Find the MIPS figures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare with
MIPS and MFLOPS.

Exercise 1.15
Another pitfall cited in Section 1.8 is expecting to improve the overall performance
of a computer by improving only one aspect of the computer. This might be true,
but not always. Consider a computer running programs with CPU times shown in
the following table.

FP instr. INT instr. L/S instr. Branch instr.

a. 35 s 85 s 50 s 30 s 200 s

b. 50 s 80 s 50 s 30 s 210 s

1.15.1 [5] <1.8> By how much is the total time reduced if the time for FP
operations is reduced by 20%?

1.15.2 [5] < 1.8> By how much is the time for INT operations reduced if the total
time is reduced by 20%?

1.15.3 [5] < 1.8> Can the total time can be reduced by 20% by reducing only the
time for branch instructions?

The following table shows the instruction type breakdown per processor of a given
application executed in different numbers of processors.

Branch CPI CPI CPI CPI • # Processors FP instr. INT instr. L/S instr. Instr. (FP) (INT) (L/S) (Branch)

a. 1 560 x10 G 2000 x10 6 1280 x10 6 256 x 10s 1 1 4 2

b. 8 80 x 106 240 x10 G 160 x 1 0 e 32 x 10° 1 1 4 2

Assume that each processor has a 2 GHz clock rate.

1.15.4 [10] <1.8> By how much must we improve the CPI of FP instructions if
we want the program to run two times faster?

1.15.5 [10] <1.8> By how much must we improve the CPI of L/S instructions if
we want the program to run two times foster?

7 2 Chapter 1 Computer Abstractions and Technology

1.15.6 [5] <1.8> By how much is the execution time of the program improved
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/5 and
branch is reduced by 30%?

Exercise 1.16
Another pitfall, relating to the execution of programs in multiprocessors systems,
is expecting improvement in performance by improving only the execution time of
part of the routines. The following table shows the execution time of five routines
of a program running on different numbers of processors.

I # Processors
Routine A

(ms)
Routine B

(ms)
Routine C

(ms)
Routine D

(ms)
Routine E

(ms)

2 20 80 10 70 5

±1 16 4 14 2 12 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> By how much is the total time reduced if routine B is improved
by 10%?

1.16.3 [10] <1.8> By how much is the total time reduced if routine D is improved
by 10%?

Execution time in a multiprocessor system can be split into computing time for
the routines plus routing time spent sending data from one processor to another.
Consider the execution time and routing time given in the following table. In this
case, the routing time is an important component of the total time.

Processors
Routine A

(ms)
Routine B

(ms)
Routine C

(ms)
Routine D

(ms)
Routine E

(ms)
Routing

(ms)

2 20 78 9 65 4 11

4 12 44 4 34 2 13

8 1 23 3 19 3 17

16 4 13 1 10 2 22

32 2 5 1 5 1 23

64 1 3 0.5 1 1 26

1.11 Exercises 73

1 . 1 6 . 4 [10] <1.8> For each doubling of the number of processors, determine the
ratio of new to old computing time and the ratio of new to old routing time.

1 . 1 6 . 5 [5] <1.8> Using the geometric means of the ratios, extrapolate to find the
computing time and routing time in a 128-processor system.

1 . 1 6 . 6 [10] <1.8> Find the computing time and routing time for a system with
one processor.

§1.1, page 9: Discussion questions: many answers are acceptable. Answers to
§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost Check Yourself
$0.20-$2.00/GB. Semiconductor memory: volatile, short access time (nanoseconds),
and cost $20-$75/GB.
§1.4, page 31: 1. a: both, b: latency, c: neither. 2. 7 seconds.
§1.4, page 38: b.
§1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn't have to be true.
§1.8, page 53: a. Computer A has the higher MIPS rating, b. Computer B is faster.

I speak Spanish
to God, Italian to
women, French to
men, and German to
my horse.

Charles V, King of France
1337-1380

Instructions:
Language of
the Computer
2.1 Introduction 76

2.2 Operations of the Computer Hardware 77

2.3 Operands of the Computer Hardware 80

2.4 Signed and Unsigned Numbers 87

2.5 Representing Instructions in the

Computer 94

2.6 Logical Operations 102

2.7 Instructions for Making Decisions 105

2.8 Supporting Procedures in Computer Hardware 112

2.9 Communicating with People 122

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 128

2.11 Parallelism and Instructions: Synchronization 137

2.12 Translating and Starting a Program 139

2.13 A C Sort Example to Put It All Together 149

2.14 Arrays versus Pointers 157

g 2.15 . Advanced Material: Compiling C and Interpreting Java 161

2.16 Real Stuff: ARM Instructions 161

2.17 Real Stuff: x86 Instructions 165

2.18 Fallacies and Pitfalls 174

2.19 Concluding Remarks 176

H 2.20 Historical Perspective and Further Reading 179

2.21 Exercises 179

The Five Classic Components of a Computer

Compiler

b

Evaluating
performance

Interface
~Cyr"

76 Chapter 2 Instructions: Language of the Computer

instruction set The
vocabulary of commands
understood by a given
architecture.

Introduction

To command a computer's hardware, you must speak its language. The words
of a computer's language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by people and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see
the real language of a real computer. Chapter 3 continues our downward descent,
unveiling the hardware for arithmetic and the representation of floating-point
numbers.

You might think that the languages of computers would be as diverse as those
of people, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost
and power. This goal is time honored; the following quote was written before you
could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets] that are in abstract adequate to control and cause the execution of any
sequence of operations.... The really decisive considerations from the present
point of view, hi selecting an [instruction set], are more of a practical nature:
simplicity of the equipment demanded by the [instruction set], and the clarity of
its application to the actually important problems together with the speed of its
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The "simplicity of the equipment" is as valuable a consideration for today's
computers as it was for those of the 1950s. The goal of this chapter is to teach
an instruction set that follows this advice, showing both how it is represented
in hardware and the relationship between high-level programming languages
and this more primitive one. Our examples are in the C programming language;

Section 2.15 on the CD shows how these would change for an object-oriented
language like Java.

2.2 Operations of the Computer Hardware 7 7

By learning how to represent instructions, you will also discover the secret of
computing: thestored-program concept. Moreover, you will exercise your "foreign
language" skills by writing programs in the language of the computer and running
them on the simulator that comes with this book. You will also see the impact of
programming languages and compiler optimization on performance. We conclude
with a look at the historical evolution of instruction sets and an overview of other
computer dialects.

The chosen instruction set comes from MIPS Technologies, which is an elegant
example of the instruction sets designed since the 1980s. Later, we will take a quick
look at two other popular instruction sets. ARM is quite similar to MIPS, and more
than three billion ARM processors were shipped in embedded devices in 2008. The
other example, the Intel x86, is inside almost all of the 330 million PCs made in
2008.

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making the computer's language more palat-
able. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

stored-program
concept The idea that
instructions and data of
many types can be stored
in memory as numbers,
leading to the stored-
program computer.

2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

a d d a , b , c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only

one operation and must always have exactly three variables. For example, suppose
we want to place the sum of four variables b, c, d, and e into variable a. (In this
section we are being deliberately vague about what a "variable" is; in the next
section we'll explain in detail.)

The following sequence of instructions adds the four variables:

a d d a , b , c # T h e s u m o f b a n d c i s p l a c e d i n a .
a d d a , a , d # T h e s u m o f b , c , a n d d i s n o w i n a .
a d d a , a , e # T h e sum o f b , c , d , a n d e i s n o w i n a .

Thus, it takes three instructions to sum the four variables.
The words to the right of the sharp symbol (#) on each line above are comments

for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

There must certainly
be instructions
for performing
the fundamental
arithmetic operations.

Burks, Goldstine, and
von Neumann, 1947

7 8 Chapter 2 Instructions: Language of the Computer

MIPS operands

Name Example C o m m e n t s

32 registers
S s 0 - $ s 7 , S t 0 - $ t 9 , S z e r o .
S a 0 - S a 3 , S v O - S v l , Sgp . $ f p ,
S s p , S r a , Sat

Fast locations for data. In MIPS, data must be in registers to perform arithmetic,
register S z e r o always equals 0, and register S a l is reserved by the assembler to
handle large constants.

2 3 0 memory
words

Memory[0], Memory[4]
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so
sequential word addresses differ by 4. Memory holds data structures, arrays, and
spilled registers.

MIPS assembly language

Category Instruction Example Meaning C o m m e n t s

Arithmetic

add add S s l , S s 2 , S s 3 S s l = Ss2 + $ s 3 Three register operands

Arithmetic subtract sub S s l . S s 2 . S s 3 S s l = Ss2 - Ss3 Three register operands Arithmetic
add immediate a d d i S s l . $ s 2 , 2 0 S s l = Ss2 + 20 Used to add constants

Data
transfer

load word lw Ss 1 , 2 0 (S s 2) S s l = Memory[Ss2 + 20] Word from memory to register

Data
transfer

store word sw S s l , 2 0 ($ s 2) Memory[Ss2 + 20] = S s l Word from register to memory

Data
transfer

load half l h S s l . 2 0 (S s 2) S s l = Memory[Ss2 + 20] Halfword memory to register

Data
transfer

load half unsigned l h u S s 1 .2 0 (S s 2) S s l = Memory[$s2 + 20] Halfword memory to register

Data
transfer

store half s h S s 1 , 2 0 (S s 2) Memory[Ss2 + 20] = S s l Halfword register to memory
Data
transfer

load byte l b S s 1 , 2 0 (S s 2) S s l = Memory[Ss2 + 20] Byte from memory to register Data
transfer

load byte unsigned l b u $ s l . 2 0 ($ s 2) S s l = Memory[Ss2 + 20] Byte from memory to register

Data
transfer

store byte s b S s l , 2 0 (S s 2) Memory] S s 2 + 20] = S s l Byte from register to memory

Data
transfer

load linked word 11 S s l , 2 0 (S s 2) S s l = Memory[Ss2 + 20] Load word as 1st half of atomic swap

Data
transfer

store condition, word s c S s 1 , 2 0 (S s 2) Memory]Ss2+20]=Ssi : S s l = 0 or 1 Store word as 2nd half of atomic swap

Data
transfer

load upper immed. 1ui S s l , 2 0 S s l = 20 * 2 l f> Loads constant in upper 16 bits

Logical

and and S s l . S s 2 . S s 3 S s l = Ss2 & Ss3 Three reg. operands; bit-by-bit AND

Logical

or o r S s l . S s 2 . S s 3 S s l = Ss2 | Ss3 Three reg. operands; bit-by-bit OR

Logical

nor n o r S s l , S s 2 . S s 3 S s l = ~ (Ss2 | Ss3) Three reg. operands; bit-by-bit NOR

Logical and immediate a n d i S s l . S s 2 . 2 0 S s l = Ss2 & 20 Bit-by-bit AND reg with constant Logical
or immediate o r i S s l . S s 2 , 2 0 S s l = Ss2 | 20 Bit-by-bit OR reg with constant

Logical

shift left logical s l l S s l , S s 2 , 1 0 S s l = Ss2 « 10 Shift left by constant

Logical

shift right logical s r l S s l . S s 2 . 1 0 S s l = Ss2 » 10 Shift right by constant

Conditional
branch

branch on equal beq S s l , S s 2 , 2 5 if (Ss 1 == Ss2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional
branch

branch on not equal bne S s l , S s 2 , 2 5 if {Ss 11= Ss2) go to
PC + 4 + 100

Not equal test; PC-relative

Conditional
branch

set on less than s i t S s l , S s 2 , S s 3 if (Ss2 < Ss3) S s l = 1;
else S s l = 0

Compare less than; for beq, bne

Conditional
branch set on less than

unsigned
s i t u S s l , S s 2 , S s 3 if (Ss2 < Ss3) S s l = 1;

else S s l = 0
Compare less than unsigned

Conditional
branch

set less than
immediate

s l t i S s 1 , S s 2 , 2 0 if (Ss2 < 20) S s l = 1;
else S s l = 0

Compare less than constant

Conditional
branch

set less than
immediate unsigned

s l t i u S s l . $ s 2 . 2 0 if (Ss2 < 20) S s l = 1;
else S s l = 0

Compare less than constant
unsigned

Unconditional

jump

jump j 2500 go to 10000 Jump to target address
Unconditional

jump
jump register j r Sra go to Sra For switch, procedure return

Unconditional

jump
jump and link j a l 2500 Sra = PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. This information is also found in Column 1 of the MIPS Reference
Data Card at the front of this book.

2.2 Operations of the Computer Hardware 79

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of programs
written in higher-level programming languages to programs in this more primitive
notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a = b + c ;
d = a - e ;

The translation from C to MIPS assembly language instructions is performed
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

a d d a , b , c
s u b d , a , e

EXAMPLE

ANSWER

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the five variables f, g, h, i, and j:

f = (g T h) - (i T j) ;

What might a C compiler produce?

EXAMPLE

80 Chapter 2 Instructions: Language of the Computer

• • • ^ • 1 The compiler must break this statement into several assembly instructions,
y i H I ^ H since only one operation is performed per MIPS instruction. The first,MIPS

instruction calculates the sum of g and h. We must place the result somewhere,
so the compiler creates a temporary variable, called tO:

a d d t O . g . h # t e m p o r a r y v a r i a b l e t O c o n t a i n s g + h

Although the next operation is subtract, we need to calculate the sum of i and
j before we can subtract. Thus, the second instruction places the sum of i and
j in another temporary variable created by the compiler, called t l :

a d d t l . i . j # t e m p o r a r y v a r i a b l e t l c o n t a i n s i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

s u b f . t O . t l # f g e t s t O - t l , w h i c h i s (g T h) - (i T j)

Check For a given function, which programming language likely takes the most lines of
Yourself code? Put the three representations below in order.

1 . J a v a

2 . C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes (see
SS Section 2.15 on the CD), which is quite different from the MIPS instruction set. To
get performance close to the equivalent C program, Java systems today typically compile
Java bytecodes into the native instruction sets like MIPS. Because this compilation is
normally done much later than for C programs, such Java compilers are often called Just
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers
in the start-up process, and Section 2.13 shows the performance consequences of
compiling versus interpreting Java programs.

W ^ M Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built directly
in hardware called registers. Registers are primitives used in hardware design that

2.2 Operations of the Computer Hardware 81

are also visible to the programmer when the computer is completed, so you can
think of registers as the bricks of computer construction. The size of a register in
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are
given the name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers,
like MIPS. (See @ Section 2.20 on the CD for the history of the number of reg-
isters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen from
one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as "smaller is faster" are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designers desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;
as we shall see in this chapter, effective use of registers is critical to program
performance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.8 will explain the reasons behind these names. For
now, we will use $s0 , $ s l , . . . for registers that correspond to variables in C and
lava programs and $ t 0 , $11, . . . for temporary registers needed to compile the
program into MIPS instructions.

word The natural unit
of access in a computer,
usually a group of 32 bits;
corresponds to the size
of a register in the MIPS
architecture.

Compiling a C Assignment Using Registers

It is the compiler's job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f = (g + h) - (i + j) ;

The variables f, g, h, i, and j are assigned to the registers $s0, $ s 1, $ s 2, $ s 3,
and $s4, respectively. What is the compiled MIPS code?

EXAMPLE

8 2 Chapter 2 Instructions: Language of the Computer

ANSWER
The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $ t 0 and $ t l , which correspond to the temporary variables above:

a d d $ t 0 , $ s l , $ s 2 # r e g i s t e r $ t 0 c o n t a i n s g T h
a d d $ t l , $ s 3 . $ s 4 # r e g i s t e r $ t l c o n t a i n s i + j
s u b $ s O , $ t O , $ t l / / f g e t s $ t 0 - $ t l , w h i c h i s (g h) - (i + j

data transfer instruction
A command that moves
data between memory
and registers.

address A value used to
delineate the location of
a specific data element
within a memory array.

Meinioiry Operands
Programming languages have simple variables that contain single data elements, as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated
on page 75. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory[2] is 10.

3 100

2 10

1 101

0 1

Address Data

Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements
were words, These addresses would be incorrect, since MIPS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

2.2 Operations of the Computer Hardware 83

The data transfer instruction that copies data from memory to a register is
traditionally called load. The format of the load instruction is the name of the
operation followed by the register to be loaded, then a constant and register used
to access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is 1 w, standing for load word.

Compiling an Assignment When an Operand Is in Memory

Let's assume that A is an array of 100 words and that the compiler has asso-
ciated the variables g and h with the registers $ s 1 and $ s 2 as before. Let's
also assume that the starting address, or base address, of the array is in $ s 3.
Compile this C assignment statement:

g = h + A [8] :

EXAMPLE

Although there is a single operation in this assignment statement, one of
the operands is in memory, so we must first transfer A [8] to a register. The
address of this array element is the sum of the base of the array A, found in
register $s3, plus the number to select element 8. The data should be placed
in a temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

l w $ t O , 8 ($ s 3) # T e m p o r a r y r e g $ t 0 g e t s A [8]

(On the next page we'll make a slight adjustment to this instruction, but we'll
use this simplified version for now.) The following instruction can operate on
the value in $10 (which equals A [8]) since it is in a register. The instruction
must add h (contained in $ s 2) to A [8] ($ t 0) and put the sum in the register
corresponding to g (associated with $ s 1) :

a d d $ s l , $ s 2 , $ t 0 # g = h + A [8]

The constant in a data transfer instruction (8) is called the offset, and the reg-
ister added to form the address ($ s 3) is called the base register.

8 4 Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

a l i g n m e n t res t r i c t ion
A requirement that data
be aligned in m e m o r y on
natural boundaries.

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can then
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the
4 bytes within the word, and addresses of sequential words differ by 4. For example,
Figure 2.3 shows the actual MIPS addresses for the words in Figure 2.2; the byte
address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter 4
suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or "big end"
byte as the word address versus those that use the rightmost or "little end" byte.
MIPS is in the big-endian camp. (Appendix B, shows the two options to number
bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $ S 3 must be 4 x 8, or 32, so
that the load address will select A [8] and not A[8/4] . (See the related pitfall on
page 175 of Section 2.18.)

1 2 1 0 0

8 1 0

4 101

0 1

P r o c e s s o r

Byte Address Data

M e m o r y

FIGURE 2.3 Actual MIPS m e m o r y addresses and contents of m e m o r y for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of 4: there are 4 bytes in a word.

2.2 Operations of the Computer Hardware 85

The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to select
the array element, and finally the base register. Once again, the MIPS address is
specified in part by a constant and in part by the contents of a register. The actual
MIPS name is sw, standing for store word.

Compiling Using Load and Store

Assume variable h is associated with register $ s 2 and the base address of the
array A is in $ s 3. What is the MIPS assembly code for the C assignment state-
ment below?

EXAMPLE

A [1 2] = h + A [8]

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two
instructions are the same as the prior example, except this time we use the
proper offset for byte addressing in the load word instruction to select A [8] ,
and the add instruction places the sum in $ 10:

l w $ t O , 3 2 ($ s 3) # T e m p o r a r y r e g $ t 0 g e t s A [8]
a d d $ t O , $ s 2 , $ t O # T e m p o r a r y r e g $ t 0 g e t s h + A [8]

The final instruction stores the sum into A [12], using 48 (4 x 12) as the offset
and register $ s 3 as the base register.

s w $ t O , 4 8 ($ s 3) # S t o r e s h + A [8] b a c k i n t o A C 1 2]

Load word and store word are the instructions that copy words between
memory and registers in the MIPS architecture. Other brands of computers use
other instructions along with load and store to transfer data. An architecture with
such alternatives is the Intel x86, described in Section 2.17.

ANSWER

86 Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and places
the rest in memory, using loads and stores to move variables between registers and
memory. The process of putting less commonly used variables (or those needed
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers, since there are fewer registers. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it.

Thus, registers take less time to access and have higher throughput than memory,
making data in registers both faster to access and simpler to use. Accessing registers
also uses less energy than accessing memory. To achieve highest performance and
conserve energy, compilers must use registers efficiently.

Constant or Immediate Operands
Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half
of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant
from memory to use one. (The constants would have been placed in memory when
the program was loaded.) For example, to add the constant 4 to register $53, we
could use the code

I w $ t O , A d d r C o n s t a n t 4 ($ s l) # $ t 0 = c o n s t a n t 4

a d d $ s 3 , $ s 3 . $ t 0 # $ s 3 = $ s 3 + $ t 0 ($ t 0 = = 4)

assuming that $ s 1 T Add rCons t a n t 4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arith-

metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi . To add 4 to register
$s3 , we just write

a d d i $ s 3 , $ s 3 , 4 # $ s 3 = $ s 3 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

2.4 Signed and Unsigned Numbers 87

Constant operands occur frequently, and by including constants inside arithmetic
instructions, operations are much faster and use less energy than if constants were
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by
offering useful variations. For example, the move operation is just an add instruc-
tion where one operand is zero. Hence, MIPS dedicates a register $ z e r 0 to be hard-
wired to the value zero. (As you might expect, it is register number 0.)

Given the importance of registers, what is the rate of increase in the number of Check
registers in a chip over time? Y o u r s e l f

1. Very fast: They increase as fast as Moore's law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. SH Appendix E shows the differences between MIPS-32 and MIPS-64.

The MIPS offset plus base register addressing is an excellent match to structures
as well as arrays, since the register can point to the beginning of the structure and the
offset can select the desired element. We'll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an index
of an array with the offset used for the starting address of an array. Thus, the base
register is also called the index register. Today's memories are much larger and the
software model of data allocation is more sophisticated, so the base address of the
array is normally passed in a register since it won't fit in the offset, as we shall see.

Since MIPS supports negative constants, there is no need for subtract immediate in
MIPS.

Signed and Unsigned Numbers

First, let's quickly review how a computer represents numbers. Humans are taught
to think in base 10, but numbers may be represented in any base. For example, 123
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the "atom" of computing, since all
information is composed of binary digits or bits. This fundamental building block

binary digit Also
called binary bit. One
of the two numbers
in base 2 ,0 or 1, that
are the components of
information.

8 8 Chapter 2 Instructions: Language of the Computer

can be one of two values, which can be thought of as several alternatives: high or
low, on or off, true or false, or 1 or 0. •

Generalizing the point, in any number base, the value of ith digit d is

dx Base'

where i starts at 0 and increases from right to left. This leads to an obvious
way to number the bits in the word: simply use the power of the base for that
bit. We subscript decimal numbers with ten and binary numbers with two. For
example,

lO l l two
represents

(1 x 2 3)
= (1 x 8)

8
= 11 ten

We number the bits 0, 1,2, 3, . . . from right to left in a word. The drawing below
shows the numbering of bits within a MIPS word and the placement of the number
i o i W

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+ (0 X Z2)
+ (0 x 4)
T 0

+ (1 X 2 1)
+ (1 x 2)
+ 2

+ (1 x l) t e n

+ 1 ton

0 1 0 1 1

least significant bit
The rightmost bit in a
MIPS word.

most significant bit
The leftmost bit in a
MIPS word.

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 232 different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 23 2 - 1
(4,294,%7,295 t en):

0000 0000 0000 0000 0000 0000 0000 0000 t w n = 0
0000 0000 0000 0000 0000 0000 0000 0001

two
two = 1

' ten

ten
0000 0000 0000 0000 0000 0000 0000 0010 t w o = 2 l e n

1111 1111 1111 1111 1111 1111 1111 1101 t w o = 4 , 2 9 4 , 9 6 7 , 2 9 3 t e n

1111 1111 1111 1111 1111 1111 1111 1 1 1 0 t H o = 4 , 2 9 4 , 9 6 7 , 2 9 4 t e n

1111 1111 1111 1111 1111 1111 1111 l l l l t w o = 4 . 2 9 4 , 9 6 7 , 2 9 5 t e n

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

2.4 Signed and Unsigned Numbers 89

(x31 x 23 1) T (x30 x 23 0) T (x29 x 22 9) T . . . T (xl x 21) T (xO x 2°)

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don't normally show leading Os.

Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred.
It's up to the programming language, the operating system, and the program to
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a
representation that distinguishes the positive from the negative. The most obvious
solution is to add a separate sign, which conveniently can be represented in a single
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it's
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can't know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and a negative
zero, which can lead to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of leading
Os, so the result would have a string of leading Is.

Given that there was no obvious better alternative, the final solution was to pick
the representation that made the hardware simple: leading Os mean positive, and
leading Is mean negative. This convention for representing signed binary numbers
is called two's complement representation:

0000 0000 0000 0000 0000 0000 0000 0000 t w o = 0 l e n

0000 0000 0000 0000 0000 0000 0000 0001 t w o = l t e n

0000 0000 0000 0000 0000 0000 0000 0010 t w n = 2,p n

0111 1111 1111 1111 1111 1111 1111 1101 tw0 =
0111 1111 1111 1111 1111 1111 1111 1110 t w o =
0111 1111 1111 1111 1111 1111 1111 l l l l l w o =
1000 0000 0000 0000 0000 0000 0000 0000 t w o =
1000 0000 0000 0000 0000 0000 0000 0001 l w o =
1000 0000 0000 0000 0000 0000 0000 0010 t w n =

2 , 1 4 7 , 4 8 3 , 6 4 5 t e n

2 , 1 4 7 , 4 8 3 , 6 4 6 t e n

2 . 1 4 7 , 4 8 3 , 6 4 7 t e n

-2 ,147 . 4 8 3 , 6 4 8 t e n

-2 .147 , 4 8 3 . 647 t e r ,
- 2 , 1 4 7 . 4 8 3 . 6 4 6 t e n

1111 1111 1111 1111 1111 1111 1111 1101 t w o = - 3 t C n
1 0 t w o = - 2 L e n

1 , w o = - l t e n

90 Chapter 2 Instructions: Language of the Computer

The positive half of the numbers, from 0 to 2,147,483,647 ten (231 - 1), use the
same representation as before. The following bit pattern (1000 . . . 0000tw^) rep-
resents the most negative number -2,147,483,648 t e n (- 2 3 1) . It is followed by a
declining set of negative numbers: -2,147,483,647 t e n (1000 . . . 0001 t w o) down to
- l t c n (l l l l . . . l l l l n v o) .

Two's complement does have one negative number, -2,147,4S3,648 t c n , that has
no corresponding positive number. Such imbalance was also a worry to the inat-
tentive programmer, but sign and magnitude had problems for both the program-
mer and the hardware designer. Consequently, every computer today uses two's
complement binary representations for signed numbers.

Two's complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only this
bit to see if a number is positive or negative (with the number 0 considered posi-
tive). This bit is often called the sign bit. By recognizing the role of the sign bit, we
can represent positive and negative 32-bit numbers in terms of the bit value times
a power of 2:

(x31 x —231) T (x30 x 230) T (.v29 X 229) T . . . T (xl X 21) T (xO x 2°)

The sign bit is multiplied by -2 3 1 , and the rest of the bits are then multiplied by
positive versions of their respective base values.

EXAMPLE

ANSWER

Binary to Decimal Conversion

What is the decimal value of this 32-bit two's complement number?

1111 1111 1111 1111 1111 1111 1111 1100 t w o

Substituting the number's bit values into the formula above:

(1 x - 2 3 1) T (1 x 2 3 0) T (1 x 2 2 9) T . . . T (1 x 2 2) T (0 x 2 ') T (0 x 2°)
= - 2 3 1 T 230 T 2 2 < J T...T 22 T 0 T 0
= -2 ,147 ,483 ,648 t c n T 2 ,147 ,483 ,644^
= - 4 Men

We'll see a shortcut to simplify conversion from negative to positive soon.

lust as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two's complement numbers.
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on
the left of the bit pattern when the number is negative or a 1 when the number is
positive.

2.4 Signed and Unsigned Numbers 91

Unlike the numbers discussed above, memory addresses naturally start at 0 and con-
tinue to the largest address. Put another way, negative addresses make no sense. Thus,
programs want to deal sometimes with numbers that can be positive or negative and
sometimes with numbers that can be only positive. Some programming languages
reflect this distinction. C, for example, names the former integers (declared as i nt in
the program) and the latter unsigned integers (u n s i g n e d i n t) . Some C style guides
even recommend declaring the former as s i g n e d i nt to keep the distinction clear.

Hardware/
Software
Interface

Let's examine two useful shortcuts when working with two's complement
numbers. The first shortcut is a quick way to negate a two's complement binary
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This
shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 . . . I l l t w o , which represents - 1 . Since x T x = —1,
therefore x T x T l = 0 o r x T l = - x .

Negation Shortcut

Negate 2tcn, and then check the result by negating -2,e n .
EXAMPLE

2ten = 0000 0000 0000 0000 0000 0000 0000 0010tWH
ANSWER

Negating this number by inverting the bits and adding one,

1111 1111 1111 1111 1111 1111 1111 110UM1

two

1111 1111 1111 1111 1111 1111 1111 1110
•2,,

two

92 Chapter 2 Instructions: Language of the Computer

EXAMPLE

Going the other direction,

1111 1111 1111 1111 1111 1111 1111 1110 t w o

is first inverted and then incremented:

0000 0000 0000 0000 0000 0000 0000 0001 t w o

+ 1 two

0000 0000 0000 0000 0000 0000 0000 0010 t w o

2ten

Our next shortcut tells us how to convert a binary number represented in n bits
to a number represented with more than n bits. For example, the immediate field
in the load, store, branch, add, and set on less than instructions contains a two's
complement 16-bit number, representing -32,768 I c n (-2 1 5) to 32>767Ien (2 1 3 - 1).
To add the immediate field to a 32-bit register, the computer must convert that
16-bit number to its 32-bit equivalent. The shortcut is to take the most significant
bit from the smaller quantity—the sign bit—and replicate it to fill the new bits of
the larger quantity. The old bits are simply copied into the right portion of the new
word. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and -2 t c n to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000 0000 0000 0010 t w o « 2 t e n

It is converted to a 32-bit number by making 16 copies of the value in the most
significant bit (0) and placing that in the left-hand half of the word. The right
half gets the old value:

0000 0000 0000 0000 0000 0000 0000 0010 t w o = 2

2.4 Signed and Unsigned Numbers 9 3

Let's negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 0010 t w o

becomes

1111 1111 1111 1101 two

+ ltwo

= 1 1 1 1 1 1 1 1 1 1 1 1 1110 Lw0

' Creating a 32-bit version of the negative number means copying the sign bit
16 times and placing it on the left:

1111 1111 1111 1111 1111 1111 1111 1110 t w o = - 2 t e n

This trick works because positive two's complement numbers really have an
infinite number of 0s on the left and negative two's complement numbers have an
infinite number of Is. The binary bit pattern representing a number hides leading
bits to fit the width of the hardware; sign extension simply restores some of them.

Summary
The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to any
option, the overwhelming choice since 1965 has been two's complement.

What is the decimal value of this 64-bit two's complement number? Check
m i m i m i m i 1111 m i m i m i m i m i m i m i m i m i m i ioootwo Yourself

1) - 4 t e n

~ 8 t e n

3) " 1 6 t e n

4) 1 8 . 4 4 6 , 7 4 4 . 0 7 3 , 7 0 9 , 5 5 1 , 6 0 9 t e n

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an n-bit number and its negative is 2"; hence, the complement or negation of a two's
complement number x is 2" - x.

94 Chapter 2 Instructions: Language of the Computer

one's complement
A notation that represents
the most negative value
by 10 . . . 000 two and the
most positive value by
01 . . . l l t w o , leaving
an equal number of
negatives and positives
but ending up with
two zeros, one positive
(00 . . . 00 two) and one
negative (11 . . . l l t w o) .
The term is also used to
mean the inversion of
every bit in a pattern: 0 to
1 and 1 to 0.

biased notation
A notation that represents
the most negative value
by 00 . . . 000 two and
the most positive value
by 11 . . . 11 t w o ,with0
typically having the value
10 . . . 00,wo, thereby
biasing the number such
that the number plus the
bias has a nonnegative
representation.

A third alternative representation to two's complement and sign and magnitude is
called one's complement. The negative of a one's complement is found by inverting each
bit, from 0 to 1 and from 1 to 0, which helps explain its name since the complement of
x is 2n - x - 1. It was also an attempt to be a better solution than sign and magnitude,
and several early scientific computers did use the notation. This representation is
similar to two's complement except that it also has two Os: 00 . . . 00two is positive
0 and 11 . . . l l l w 0 is negative 0. The most negative number, 10 . . . 000two, represents
-2,147,483,647ten, and so the positives and negatives are balanced. One's complement
adders did need an extra step to subtract a number, and hence two's complement
dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3,
is to represent the most negative value by 00 . . . 000two and the most positive value
by 11. . . l l t w o , with 0 typically having the value 10 . . . 00twD. This is called a biased
notation, since it biases the number such that the number plus the bias has a nonneg-
ative representation.

Elaboration: For signed decimal numbers, we used " - " to represent negative because
there are no limits to the size of a decimal number. Given a fixed word size, binary and
hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally
use "T" o r " - " with binary or hexadecimal notation.

J ^ j M IRepresemtSng InstrmctSoDis fin tine Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by side
forms the instruction.

Since registers are referred to by almost all instructions, there must be a con-
vention to map register names into numbers. In MIPS assembly language, registers
$s0 to $s7 map onto registers 16 to 23, and registers $ t 0 to $17 map onto registers
8 to 15. Hence, $s0 means register 16, $s 1 means register 17, $s2 means register
1 8 , . . . , $ tO means register 8, $ 11 means register 9, and so on. We'll describe the
convention for the rest of the 32 registers in the following sections.

2.5 Representing Instructions in the Computer 9 5

Translating a MIPS Assembly Bnstruction into a Machine Instruction

Let's do the next step in the refinement of the MIPS language as an example.
We'll show the real MIPS language version of the instruction represented
symbolically as

add $ 1 0 , $ s l , $s2

first as a combination of decimal numbers and then of binary numbers.

EXAMPLE

The decimal representation is

0 17 18 8 0 32

ANSWER

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $ S1), and the
third field gives the other source operand for the addition (18 = $s2). The fourth
field contains the number of the register that is to receive the sum (8 = $t0) . The
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $ s 1 to register $s2 and places the sum in register $ t0 .

This instruction can also be represented as fields of binary numbers as
opposed to decimal:

000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the
same size as a data word. In keeping with our design principle that simplicity favors
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of instruc-
tions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings
of binary numbers. We avoid that tedium by using a higher base than binary that
converts easily into binary. Since almost all computer data sizes are multiples of 4,
hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, we can
trivially convert by replacing each group of four binary digits by a single hexadeci-
mal digit, and vice versa. Figure 2.4 converts between hexadecimal and binary.

instruction format
A form of representation
of an instruction
composed of f ields of
binary numbers.

machine language
Binary representation
used for communication
within a computer system.

hexadecimal
Numbers in base 16.

9 6 Chapter 2 Instructions: Language of the Computer

Hexadecimal 1 Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary

°hex 0000two ĥex 0100two 8hex 1000two chex noo two

ihex 0001lwo ĥex 0101lwo ®hex 1001two dhex 1101two

ĥex 0010two 6hex 0110two ahex 1010two ehex 1110lwo

ĥex 00Utwo 7hex Olll lwo bhex 1011two fhex l l l l t w o

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with ten, binary numbers with /wo, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation 0xnnnn for hexadecimal numbers.

EXAMPLE

ANSWER

Binary to Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base:

e c a 8 6 4 2 0 , , e x

0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1001 1011 1101 l l l l t w o
Using Figure 2.4, the answer is just a table lookup one way:

, e c a 8 6 4 2 0 h e x

1110 1100 1010 1000 0110 0100 0010 0000 t w o

And then the other direction:

0001 0 0 1 1 0101 0 1 1 1 1001 1011 1101 l l l l t w o

5 7 9 b d f h e x

MIPS Fields
MIPS fields are given names to make them easier to discuss:

op rs r t rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

2.5 Representing Instructions in the Computer 9 7

Here is the meaning of each name of the fields in MIPS instructions:

• op: Basic operation of the instruction, traditionally called the opcode. opcode The field that
denotes the operation and

• rs: The first register source operand. f o r m ; U o f a n i n s t r u c t i o n .

• rt: The second register source operand.

• rd: The register destination operand. It gets the result of the operation.
• shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it

will not be used until then, and hence the field contains zero in this section.)
• fimct: Function. This field, often called the function codc, selects the specific

variant of the operation in the op field.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above,
the constant within the load word instruction would be limited to only 25 or 32.
This constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-fonnat. A second type of instruction format is called I-type (for immediate)
or I-fonnnt and is used by the immediate and data transfer instructions. The fields
of I-format are

op rs r t constant or address
6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a
region of ±2 1 3 or 32,768 bytes (±21 3 or 8192 words) of the address in the base
register rs. Similarly, add immediate is limited to constants no larger than ±2 Ir). We
see that more than 32 registers would be difficult in this format, as the rs and rt
fields would each need another bit, making it harder to fit everything in one word.

Let's look at the load word instruction from page 83:

l w $ 1 0 . 3 2 ($ s 3) # T e m p o r a r y r e g $ t 0 g e t s A [8]

9 8 Chapter 2 Instructions: Language of the Computer

Here, 19 (for $ s 3) is placed in the rs field, S (for $ t 0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destination
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complex-
ity by keeping the formats similar. For example, the first three fields of the R-type and
I-type formats are the same size and have the same names; the length of the fourth
field in I-type is equal to the sum of the lengths of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.5 shows the numbers used in
each field for the MIPS instructions covered here.

Instruction Format op rs rt rd s h a m t funct address

add R 0 reg reg reg 0 n.a.

sub (subtract) R 0 reg reg reg 0 34 t e n n.a.

add i m i n e d i a t e 1 8 t c n reg reg n.a. n.a. n.a. constant

1 w (load word) 1 reg reg n.a. n.a. n.a. address

sw (store word) 1 4 3 t c n reg reg n.a. n.a. n.a. address

FIGURE 2.5 IV1IPS instruction encoding. In the table above, "reg" means a register number between
0 and 31,"address" means a 16-bit address,and "n.a." (not applicable) means this field does not appear in this
format. Note that add and sub instructions have the same value in The op field; The hardware uses the funct
field to decide the variant of the operation: add (32) or subtract (34).

EXAMPLE

Translating IVilPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to
what the computer executes. If $ t l has the base of the array A and $s2 corre-
sponds to h, the assignment statement

A [3 0 0] = h + A [3 0 0] ;

is compiled into

I w $ t 0 , 1 2 0 0 ($ 1 1) # T e m p o r a r y r e g $ t o g e t s A [3 0 0]
a d d $ t 0 , $ s 2 , $ t 0 # T e m p o r a r y r e g $ t 0 g e t s h + A [3 0 0]
s w $ t O , 1 2 0 0 ($ t 1) # S t o r e s h + A [3 0 0] b a c k i n t o A [3 0 0 J

What is the MIPS machine language code for these three instructions?

2.5 Representing Instructions in the Computer 9 9

For convenience, let's first represent the machine language instructions using
decimal numbers. From Figure 2.5, we can determine the three machine lan-
guage instructions:

ANSWER

op rs rt rd
address/

shamt funct

35 9 8 1200

0 18 8 8 o 1 32 |
43 9 8 1200

The 1 w instruction is identified by 35 (see Figure 2.5) in the first field (op).
The base register 9 ($ 11) is specified in the second field (rs),and the destination
register 8 ($ t 0) is specified in the third field (rt). The offset to select A [3 0 0]
(1200 = 300 x 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op) and
32 in the last field (funct). The three register operands (IS, 8, and 8) are found
in the second, third, and fourth fields and correspond to $s2 , $ t 0 , and $ t 0 .

The sw instruction is identified with 43 in the first field. The rest of this final
instruction is identical to the 1 w instruction.

Since 1200tcn = 0000 0100 1011 0000two, the binary equivalent to the decimal
form is:

100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 00000 100000
101011 01001 01000 0000 0100 1011 0000

Note the similarity of the binary representations of the first and last instruc-
tions. The only difference is in the third bit from the left, which is highlighted here.

Figure 2.6 summarizes the portions of MIPS machine language described in this
section. As we shall see in Chapter 4, the similarity of the binary representations
of related instructions simplifies hardware design. These similarities are another
example of regularity in the MIPS architecture.

1 0 0 Chapter 2 Instructions: Language of the Computer

M I P S m a c h i n e l a n g u a g e

Name Format Example C o m m e n t s

add R 0 18 19 17 0 32 add S s l , $ s 2 . S s 3

sub R 0 18 19 17 0 34 sub S s l . $ s 2 , $ s 3

addi 1 8 18 17 100 addi $ s l . $ s 2 , 1 0 0

Iw 1 35 18 17 100 Iw $ s l , 1 0 0 ($ s 2)

sw 1 43 18 17 100 s w $ s l , 1 0 0 ($ s 2)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format R op rs rt rd shamt funct Arithmetic instruction format

l-format 1 op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so far are R and I. The first
16 bits are the same: both contain an op field, giving the base operation; an rs field, giving one of the sources; and the rt field, which specifies
the other source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field,
specifying the destination register; the sliamt field, which Section 2.6 explains; and the funct field, which specifies the specific operation of
R-format instructions. I-format combines the last 16 bits into a single address field.

Today's computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.7 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program is
using, and even the compiler that generated the machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such "binary compatibility" often leads
industry to align around a small number of instruction set architectures.

The BIG
Picture

2.5 Representing Instructions in the Computer 1 0 1

P r o c e s s o r

M e m o r y

Account ing program]
(mach ine code)

Editor p rogram
(machine code) (

C compi ler
(machine code)

i
Payro l l data

i
i

Book text
I

Source code in C J
for editor p rogram '

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing at
a given location in memory. Treating instructions in the same way as data greatly simplifies both the memory
hardware and the software of computer systems. Specifically, the memory technology needed for data can
also be used for programs, and programs like compilers, for instance, can translate code written in a notation
far more convenient for humans into code that the computer can understand.

What MIPS instruction does this represent? Chose from one of the four options Check
below Yourself

o p r s r t rd shamt funct

0 8 9 10 0 34

1. add $ s 0 , $ s l . $ s 2

2. add $ s 2 , $ s 0 , S s l

3. add $ s 2 , S s l , $ s 0

4. s u b $ s 2 , $ s 0 , S s l

1 0 2 Chapter 2 Instructions: Language of the Computer

"Contrariwise"
continued Tweedledee,
"if it was so, it might
he; and if it were so,
it would be; but as it
isn't, it ain't. That's
logic."

Lewis Carroll, Alice's
Adventures in
Wonderland, 1865

2.6 Logical Operations

Although the first computers operated on full words, it soon became clear that it
was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which is stored as 8 bits, is one
example of such an operation (see Section 2.9). It follows that operations were added
to programming languages and instruction set architectures to simplify, among
other things, the packing and unpacking of bits into words. These instructions
are called logical operations. Figure 2.8 shows logical operations in C, Java, and
MIPS.

Logical operations C operators Java operators M I P S instructions

Shift left << << sll
Shift right >> >>> srl

Bit-by-bit AND & & a n d . a n d i

Bit-by-bit OR 1 1 o r . o r i

Bit-by-bit NOT - - n o r

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS
implements NOT using a NOR with one operand being zero.

The first class of such operations is called shifts. They move all the bits in a word
to the left or right, filling the emptied bits with Os. For example, if register $s0
contained

0000 0000 0000 0000 0000 0000 0000 1001 t w o = 9 t e n

and the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000 t w o = 144 t e n

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s l l) and shift right logical (s r l) . The following

2.6 Logical Operations 1 0 3

instruction performs the operation above, assuming that the original value was in
register $sO and the result should go in register $ t2:

s l l $ t 2 , $ s O , 4 # r e g $ t 2 = r e g $ s O < < 4 b i t s

We delayed explaining the shamt field in the R-format. Used in shift instructions,
it stands for shift amount. Hence, the machine language version of the instruction
above is

op rs rt rd shamt funct

0 ' 0 16 10 4 0

The encoding of si 1 is 0 in both the op and funct fields, rd contains 10 (register
$ t 2), rt contains 16 (register $ s 0) , and shamt contains 4. The rs field is unused
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the
same result as multiplying by 2', just as shifting a decimal number by i digits is
equivalent to multiplying by 10'. For example, the above s 1 1 shifts by 4, which
gives the same result as multiplying by 24 or 16. The first bit pattern above
represents 9, and 9 x 1 6 = 144, the value of the second bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word
to avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are
1. For example, if register $ 12 contains

two 0000 0000 0000 0000 0000 1101 1100 0000

and register $ 11 contains

0000 0000 0000 0000 0011 1100 0000 0000 t w o

then, after executing the MIPS instruction

and $ 1 0 , $ 1 1 , $ 1 2 # reg $ t 0 = reg $ t l & reg $ t 2

the value of register $ 10 would be

0000 0000 0000 0000 0000 1100 0000 0000 t w o

AND A logical bit-by-
bit operation with two
operands that calculates
a 1 only if there is a 1 in
both operands.

104 Chapter 2 Instructions: Language of the Computer

OR A logical bit-by-
bit operation with two
operands that calculates
a 1 if there is a 1 in either
operand.

As you can see, AND can apply a bit pattern to a set of bits to force Os where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally
called a mask, since the mask "conceals" some bits.

To place a value into one of these seas of Os, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1. To
elaborate, if the registers $ 11 and $ 12 are unchanged from the preceding example,
the result of the MIPS instruction

o r $ t O , $ 1 1 , $ 1 2 # r e g $ t 0 = r e g $ t l | r e g $ t 2

is this value in register $ t 0 :

NOT A logical bit-by-
bit operation with one
operand that inverts the
bits; that is, it replaces
every 1 with a 0, and every
0 with a 1.

NOR A logical bit-by-
bit operation with two
operands that calculates
the NOT of the OR of the
two operands. That is, it
calculates a 1 only if there
is a 0 in both operands.

0000 0000 0000 0000 0011 1101 1100 0000 t w o

The final logical operation is a contrarian. NOT takes one operand and
places a 1 in the result if one operand bit is a 0, and vice versa. In keeping with the
three-operand format, the designers of MIPS decided to include the instruction
NOR (NOT OR) instead of NOT. If one operand is zero, then it is equivalent to
NOT: A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $ t l is unchanged from the preceding example and register $ t 3
has the value 0, the result of the MIPS instruction

n o r $ t 0 , $ t l , $ t 3 # r e g $ t 0 = ~ (r e g $ t l | r e g $ t 3)

is this value in register $ t 0 :

1111 1111 1111 1111 1100 0011 1111 111 l t w o

Figure 2.8 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations
as well as in arithmetic operations, so MIPS also provides the instructions and
immediate (a n d i) and or immediate (o r i) . Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the MIPS instruction set
architecture has no immediate version.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which
sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same.
C allows bit fields or fields to be defined within words, both allowing objects to be

2.7 Instructions for Making Decisions 105

packed within a word and to match an externally enforced interface such as an I/O
device. All fields must fit within a single word. Fields are unsigned integers that can be
as short as 1 bit. C compilers insert and extract fields using logical instructions in MIPS:
and, or, si 1, and s r l .

Which operations can isolate a field in a word?

1. AND

2. A shift left followed by a shift right

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make deci-
sions. Based on the input data and the values created during computation, different
instructions execute. Decision making is commonly represented in programming
languages using the if statement, sometimes combined with go to statements and
labels. MIPS assembly language includes two decision-making instructions, simi-
lar to an if statement with a go to. The first instruction is

beq r e g i s t e r l , r e g i s t e r ^ , L I

This instruction means go to the statement labeled LI if the value in r e g i s t e r l
equals the value in r e g i s t e r 2 . The mnemonic beq stands for branch if equal. The
second instruction is

b n e r e g i s t e r l , r e g i s t e r 2 , L I

It means go to the statement labeled LI if the value in r e g i s t e r l does nof equal
the value in r e g i S t e r 2 . T h e mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

Check
Yourself

The utility of an
automatic computer
lies in the possibility' of
using a given sequence of
iiistnictions repeatedly,
the number of times it is
iterated being dependent
upon the results of the
computation. ...This
choice can be made
to depend upon the
sign of a number
(zero being reckoned
as plus for machine
purposes). Consequently,
we introduce an
[instruction] (the
conditional transfer
[instruction]) which will,
depending on the sign of
a given number, cause
the proper one oftM'0
routines to be executed.

Burks, Goldstine, and
von Neumann, 1947

conditional branch
An instruction that
requires the comparison
of two values and that
allows for a subsequent
transfer of control to
a new address in the
program based on
the outcome of the
comparison.

106 Chapter 2 Instructions: Language of the Computer

EXAMPLE

ANSWER

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five vari-
ables f through j correspond to the five registers $ s 0 through $ s 4, what is the
compiled MIPS code for this C if statement?

if (i == j) f = g T H ; e l s e f = g - IT;

Figure 2.9 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want the branch if
registers are equal instruction (beq). In general, the code will be more efficient
if we test for the opposite condition to branch over the code that performs the
subsequent then part of the //(the label El se is defined below) and so we use
the branch if registers are not equal instruction (bne):

b n e $ s 3 , $ s 4 , E l s e # g o t o E l s e i f i * j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

a d d $ s 0 , $ s l , $ s 2 # f = g + h (s k i p p e d i f i * j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of
instruction is jump, abbreviated as j (the label E x i t is defined below).

j E x i t # g o t o E x i t

The assignment statement in the else portion of the //statement can again
be compiled into a single instruction. We just need to append the label E l s e
to this instruction. We also show the label Ex i t that is after this instruction,
showing the end of the if-then-else compiled code:

E l s e : s u b $ s 0 , $ s l , $ s 2 # f = g - h (s k i p p e d i f i = j)
E x i t :

2.7 Instructions for Making Decisions 1 0 7

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.

Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for
calculating data addresses for loads and stores (see Section 2.12).

Compilers frequently create branches and labels where they do not appear in H a r d w a r e /
the programming language. Avoiding the burden of writing explicit labels and c

branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level. Interface

Loops
Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.

Compiling a while Loop in C

Here is a traditional loop in C:

w h i l e (s a v e d] = = k)
i T= 1 ;

Assume that i and k correspond to registers $s3 and $s5 and the base of the
array s a v e is in $s6. What is the MIPS assembly code corresponding to this
C segment?

EXAMPLE

108 Chapter 2 Instructions: Language of the Computer

The first step is to load s a ve [i] into a temporary register. Before we can load
s a ve [i] into a temporary register, we need to have its address. Before we can
add i to the base of array s a v e to form the address, we must multiply the
index i by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 22 or 4 (see page 103 in the
prior section). We need to add the label L o o p to it so that we can branch back
to that instruction at the end of the loop:

L o o p : s l l $ 1 1 , $ s 3 , 2 # T e m p r e g $ t l = i * 4

To get the address of s a v e [i], we need to add $ 11 and die base of s a v e in $ s 6:

a d d $ t l , $ t l , $ s 6 / / $ t l = a d d r e s s o f s a v e f i]

Now we can use that address to load sa v e [i] into a temporary register:

l w $ t 0 , 0 ($ t l) # T e m p r e g $ t 0 = s a v e [i]

The next instruction performs the loop test, exiting i f s a v e [i] * k :

b n e $ 1 0 , $ s 5 , E x i t # g o t o E x i t i f s a v e [i] * k

The next instruction adds 1 to i:

a d d i $ s 3 , $ s 3 , 1 # i = i + 1

The end of the loop branches back to the while test at the top of the loop. We
just add the E x i t label after it, and we're done:

j L o o p # g o t o L o o p

E x i t :

(See the exercises for an optimization of this sequence.)

Hardware/
Software
Interface

basic block A sequence
of instructions without
branches (except possibly
at the end) and without
branch targets or branch
labels (except possibly at
the beginning).

Such sequences of instructions that end in a branch are so fundamental to compiling
that they are given their own buzzword: a basic block is a sequence of instructions
without branches, except possibly at the end, and without branch targets or branch
labels, except possibly at the beginning. One of the first early phases of compilation is
breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two

2.7 Instructions for Making Decisions 1 0 9

registers and sets a third register to 1 if the first is less than the second; otherwise, it is
set to 0. The MIPS instruction is called set on less than, or s 11. For example,

s i t $ t 0 , $ s 3 , $s4 # $ t 0 = 1 i f $s3 < $s4

means that register $ 10 is set to 1 if the value in register $ s 3 is less than the value
in register $s4 ; otherwise, register $ t 0 is set to 0.

Constant operands are popular in comparisons, so there is an immediate ver-
sion of the set on less than instruction. To test if register $ s 2 is less than the con-
stant 10, we can just write

s i t i $ t 0 , $ s 2 , 1 0 # $ t 0 = 1 i f Ss2 < 10

MIPS compilers use the si t, si t i , beq, bne, and the fixed value of 0 (always
available by reading register $ z e r o) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal.

Hardware/
Software
Dmitteiiface

Heeding von Neumann's warning about the simplicity of the "equipment," the
MIPS architecture doesn't include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock cycles
per instruction. Two faster instructions are more useful.

Comparison instructions must deal with the dichotomy between signed and
unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit
represents a negative number and, of course, is less than any positive number,
which must have a 0 in the most significant bit. With unsigned integers, on the
other hand, a 1 in the most significant bit represents a number that is larger than
any that begins with a 0. (We'll soon take advantage of this dual meaning of the
most significant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these
alternatives. Set on less than (s 11) and set on less than immediate (S11 i) work with
signed integers. Unsigned integers are compared using set on less than unsigned
(s i t u) and set on less than immediate unsigned (s i ti u).

Hardware/
Software
Interface

1 1 0 Chapter 2 Instructions: Language of the Computer

EXAMPLE

ANSWER

Signed versus Unsigned Comparison

Suppose register $ s 0 has the binary number

1111 1111 1111 1111 1111 1111 1111 l l l l t w o
and that register $ s 1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001 t w o

What are the values of registers $ tO and $ 11 after these two instructions?

s i t $ t O , $ s 0 , S s l # s i g n e d c o m p a r i s o n
s i t u $ t l , $ s 0 , S s l # u n s i g n e d c o m p a r i s o n

The value in register SsO represents-l t c n if it is an integer and 4,294,967,295l(,n

if it is an unsigned integer. The value in register S s l represents ltL.n in either
case. Then register S t O has the value 1, since -1 ten < 1 ten' a n d register S t l has
the value 0, since 4,294,967,295,cn > l,cn.

Treating signed numbers as if they were unsigned gives us a low cost way of
checking if 0 < x< y, which matches the index out-of-bounds check for arrays. The
key is that negative integers in two's complement notation look like large numbers
in unsigned notation; that is, the most significant bit is a sign bit in the former
notation but a large part of the number in the latter. Thus, an unsigned comparison
of x < y also checks if x is negative as well as if x is less than y.

EXAMPLE

ANSWER

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to
I n d e x O u t O f B o u n d s i f S s l > S t 2 o r i f S s l i s negative.

The checking code just uses s i t u to do both checks:

s i t u S t O , S s l , $ 1 2 # S t 0 = 0 i f S s l > = l e n g t h o r S s l < 0
b e q S t O , S z e r o , I n d e x O u t O f B o u n d s # i f b a d , g o t o E r r o r

2.7 Instructions for Making Decisions 1 1 1

Case/Switch St at em emit

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single value. The simplest
way to implement switch is via a sequence of conditional tests, turning the switch
statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table or jump
table, and the program needs only to index into the table and then jump to the
appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the code. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in the register. To support such situations, computers like MIPS include a jump
register instruction (j r), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction, which is
described in the next section.

j u m p address table
Also called j u m p table.
A table of addresses of
alternative instruction
sequences.

Although there are many statements for decisions and loops in programming
languages like C and Java, the bedrock statement that implements them at the
instruction set level is the conditional branch.

Hardware/
Software
Interface

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don't
worry: the MIPS assembler makes them invisible to the assembly language programmer.

I. C has many statements for decisions and loops, while MIPS has few. Which of Check
the following do or do not explain this imbalance? Why? Yourself

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

3. More decision statements mean fewer lines of code, which generally reduces
coding time.

4. More decision statements mean fewer lines of code, which generally results
in the execution of fewer operations.

112 Chapter 2 Instructions: Language of the Computer

II. Why does C provide two sets of operators for AND (& and 8c&) and two sets of
operators for OR (| and ||), while MIPS doesn't? »

1. Logical operations AND and OR implement & and |, while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inherited
from the programming language B, the predecessor of C.

2.8

procedure A stored
subroutine that performs
a specific task based on
the parameters with
which it is provided.

Soapportiimg Procedures "m Commputeir
Hardware

A procedure or function is one tool programmers use to structure programs, both
to make them easier to understand and to allow code to be reused. Procedures
allow the programmer to concentrate on just one portion of the task at a time;
parameters act as an interface between the procedure and the rest of the program
and data, since they can pass values and return results. We describe the equivalent
to procedures in Java in Section 2.15 on the CD, but Java needs everything from a
computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his or her tracks, and then returns to the point
of origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a "need to know" basis, so the spy
can't make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from
several points in a program.

2.8 Supporting Procedures in Computer Hardware 113

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention for procedure calling in allocating its 32 registers:

• $ a 0 - $ a 3 : four argument registers in which to pass parameters

• $ v O - $ v l : two value registers in which to return values

• S r a : one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register S r a . The jump-and-link
i n s t ruct ion (j a l) is simply written

j a l P r o c e d u r e A d d r e s s

The link portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This "link,"
stored in register Sra (register 31), is called the return address. The return address
is needed because the same procedure could be called from several parts of the
program.

To support such situations, computers like MIPS use jump register instruction
(j r) , introduced above to help with case statements, meaning an unconditional
jump to the address specified in a register:

j r S r a

Jump register instruction jumps to the address stored in register Sra—which is
just what we want. Thus, the calling program, or caller, puts the parameter values
in S a 0 - S a 3 and uses j a 1 X to jump to procedure X (sometimes named the callee).
The callee then performs the calculations, places the results in S v O and S v l , and
returns control to the caller using j r S r a .

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The j a l instruction actually saves PC T 4 in register Sra to link to the
following instruction to set up the procedure return.

jump-and-link
instruction An
instruction that jumps
to an address and
simultaneously saves the
address of the following
instruction in a register
($ra in MIPS).

return address A link to
the calling site that allows
a procedure to return
to the proper address;
in MIPS it is stored in
register Sra.

caller The program that
instigates a procedure and
provides the necessary
parameter values.

callee A procedure that
executes a series of stored
instructions based on
parameters provided by
the caller and then returns
control to the caller.

program counter
(PC) The register
containing the address of
the instruction in the pro-
gram being executed.

114 Chapter 2 Instructions: Language of the Computer

stack A data structure
for spilling registers
organized as a last-in-
first-out queue.

stack pointer A value
denoting the most
recently allocated address
in a stack that shows
where registers should
be spilled or where old
register values can be
found. In MIPS, it is
register $sp.

push Add element to
stack.

pop Remove element
from stack.

EXAMPLE

ANSWER

Usiug Move Registers
Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission
is complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware/Software
Interface section.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. MIPS software reserves register 29 for the stack
pointer, giving it the obvious name $sp. Stacks are so popular that they have their
own buzzwords for transferring data to and from the stack: placing data onto the
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks "grow" from higher addresses to lower addresses.
This convention means that you push values onto the stack by subtracting from
the stack pointer. Adding to the stack pointer shrinks the stack, thereby popping
values off the stack.

Compiling a C Procedure That Doesn't Call Another Procedure

Let's turn the example on page 79 from Section 2.2 into a C procedure:

i n t 1 e a f _ e x a m p l e (i n t g , i n t h , i n t i , i n t j)

i nt f;

f = (g
r e t urn

What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers
$a0, S a l , $a2, and $a3, and f corresponds to $s0 . The compiled program
starts with the label of the procedure:

1 e a f _ e x a m p l e :

2.8 Supporting Procedures in Computer Hardware 115

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 79, which
uses two temporary registers. Thus, we need to save three registers: $ s 0 , $ t 0 ,
and $ t l . We "push" the old values onto the stack by creating space for three
words (12 bytes) on the stack and then store them:

a d d i $ s p , $ s p , - 1 2 # a d j u s t s t a c k t o m a k e r o o m f o r 3 i t e m s
s w $ t l , 8 ($ s p) # s a v e r e g i s t e r $ t l f o r u s e a f t e r w a r d s
s w $ t 0 , 4 ($ s p) # s a v e r e g i s t e r S t O f o r u s e a f t e r w a r d s
s w $ s 0 , 0 ($ s p) # s a v e r e g i s t e r $ s 0 f o r u s e a f t e r w a r d s

Figure 2.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which

follows the example on page 79:

a d d S t O . S a O . S a l # r e g i s t e r S t O c o n t a i n s g + h
a d d S t l , $ a 2 , $ a 3 # r e g i s t e r $ t l c o n t a i n s i + j
s u b S s O . S t O . S t l # f = S t O - S t l , w h i c h i s (g + h) - (i T j)

To return the value of f, we copy it into a return value register:

a d d S v O . S s O , S z e r o # r e t u r n s f (S v O = S s O + 0)

Before returning, we restore the three old values of the registers we saved by
"popping" them from the stack:

I w S s O , O (S s p) # r e s t o r e r e g i s t e r S s O f o r c a l l e r
I w S t O . 4 (S s p) # r e s t o r e r e g i s t e r S t O f o r c a l l e r
l w S t l , 8 ($ s p) # r e s t o r e r e g i s t e r S t l f o r c a l l e r
a d d i S s p . S s p . 1 2 # a d j u s t s t a c k t o d e l e t e 3 i t e m s

The procedure ends with a jump register using the return address:

j r S r a # j u m p b a c k t o c a l l i n g r o u t i n e

In the previous example, we used temporary registers and assumed their old
values must be saved and restored. To avoid saving and restoring a register whose
value is never used, which might happen with a temporary register, MIPS software
separates 18 of the registers into two groups:

• S t 0 - S t 9 : ten temporary registers that are not preserved by the callee (called
procedure) on a procedure call

• $ s 0 - S s 7 : eight saved registers that must be preserved on a procedure call (if
used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller does not expect registers S t O and S t l to be preserved across a procedure call,

116 Chapter 2 Instructions: Language of the Computer

we can drop two stores and two loads from the code. We still must save and restore
$s 0, since the callee must assume that the caller needs its value. »

High address

$sp-

$sp-

Contents of register it !

Contents of register $ ft

Contents of register :

$sp-

L o w address

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the "top" of the stack, or the last word in
the stack in this drawing.

Nested! Procedures
Procedures that do not call others are called leaf procedures. Life would be simple if
all procedures were leaf procedures, but they aren't. Just as a spy might employ other
spies as part of a mission, who in turn might use even more spies, so do procedures
invoke other procedures. Moreover, recursive procedures even invoke "clones" of
themselves. Just as we need to be careful when using registers in procedures, more
care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument
of 3, by placing the value 3 into register $a0 and then using j a 1 A. Then suppose
that procedure A calls procedure B via j a 1 B with an argument of 7, also placed in
$a0 . Since A hasn't finished its task yet, there is a conflict over the use of register
$a0 . Similarly, there is a conflict over the return address in register $ r a , since it
now has the return address for B. Unless we take steps to prevent the problem, this
conflict will eliminate procedure A's ability to return to its caller.

One solution is to push all the other registers that must be preserved onto
the stack, just as we did with the saved registers. The caller pushes any argument
registers ($ a 0 - $ a 3) or temporary registers ($ t 0 - $ t 9) that are needed after
the call. The callee pushes the return address register $ r a and any saved registers
($ s 0 - $ s 7) used by the callee. The stack pointer $sp is adjusted to account for the
number of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

2.8 Supporting Procedures in Computer Hardware 117

Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let's tackle a recursive procedure that calculates factorial:

i n t f a c t (i n t n)
EXAMPLE

i f (n < 1) r e t u r n (1) ;
e l s e r e t u r n (n * f a c t (n - 1)) ;

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $ a 0:

f a c t :
a d d i $ s p , $ s p , - 8 # a d j u s t s t a c k f o r 2 i t e m s
s w $ r a , 4 ($ s p) # s a v e t h e r e t u r n a d d r e s s
s w $ a 0 f 0 ($ s p) # s a v e t h e a r g u m e n t n

The first time f a c t is called, sw saves an address in the program that called
f a c t . The next two instructions test whether n is less than 1, going to LI if
n > 1 .

ANSWER

s l t i
b e q

$ 1 0 , $ a 0 , 1
$ t O , $ z e r o , L I

t e s t
i f n

f o r n
>= 1,

< 1
g o t o LI

If n is less than 1, f a c t returns 1 by putting 1 into a value register: it adds 1 to
0 and places that sum in $v0. It then pops the two saved values off the stack
and jumps to the return address:

a d d i $ v 0 , $ z e r o , l # r e t u r n 1
a d d i $ s p , $ s p , 8 # p o p 2 i t e m s o f f s t a c k
j r $ r a # r e t u r n t o c a l l e r

Before popping two items off the stack, we could have loaded $ a 0 and $ ra. Since
$a0 and $ ra don't change when n is less than 1, we skip those instructions.

If n is not less than 1, the argument n is decremented and then f a c t is
called again with the decremented value:

L I : a d d i $ a 0 , $ a 0 , - l # n > = 1 : a r g u m e n t g e t s (n - 1)
j a l f a c t # c a l l f a c t w i t h (n - 1)

1 1 8 Chapter 2 Instructions: Language of the Computer

The next instruction is where f a c t returns. Now the old return address and
old argument are restored, along with the stack pointer: •

I w $ a 0 , 0 ($ s p) # r e t u r n f r o m j a l : r e s t o r e a r g u m e n t n
I w S r a , 4 ($ s p) # r e s t o r e t h e r e t u r n a d d r e s s
a d d i S s p , S s p , 8 # a d j u s t s t a c k p o i n t e r t o p o p 2 i t e m s

Next, the value register S v O gets the product of old argument SaO and the
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

m u l S v O , S a O , S v O # r e t u r n n * f a c t (n - 1)

Finally, f a c t jumps again to the return address:

j r S r a / / r e t u r n t o t h e c a l l e r

A C variable is generally a location in storage, and its interpretation depends both on
its type and storage class. Examples include integers and characters (see Section 2.9).
C has two storage classes: automatic and static. Automatic variables are local to a
procedure and are discarded when the procedure exits. Static variables exist across
exits from and entries to procedures. C variables declared outside all procedures
are considered static, as are any variables declared using the keyword static. The
rest are automatic. To simplify access to static data, MIPS software reserves another
register, called the global pointer, or S g p .

Figure 2.11 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack, guaranteeing that the caller will get the same data
back on a load from the stack as it stored onto the stack. The stack above Ssp is
preserved simply by making sure the callee does not write above Ssp; Ssp is itself
preserved by the callee adding exactly the same amount that was subtracted from it;
and the other registers are preserved by saving them on the stack (if they are used)
and restoring them from there.

Preserved Not preserved

Saved registers: Ss0-Ss7 Temporary registers: S t 0 - S t 9

Stack pointer register: $sp Argument registers: Sa0-$a3

Return address register: Sra Return value registers: S v O - S v l

Stack above the stack pointer Stack below the stack pointer

Hardware/
Software
Interface

global pointer The
register that is reserved to
point to the static area.

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the frame pointer register or on the global pointer register, discussed in the following subsections, they
arc also preserved.

2.8 Supporting Procedures in Computer Hardware 119

Allocating Space for New Data osm the Stack

The final complexity is that the stack is also used to store variables that are local
to the procedure but do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure's saved registers and local variables is
called a procedure frame or activation record. Figure 2.12 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($ f p) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory-references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We've been avoiding using $ f p by
avoiding changes to $ sp within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure.

procedure frame Also
called activation record.
The segment of the stack
containing a procedure's
saved registers and local
variables.

frame pointer A value
denoting the location of
the saved registers and
local variables for a given
procedure.

Low address

S f p -

$sp-

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

b.

$ f p -

$sp-

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($ f p) points to the first word of the frame, often a saved argument
register, and the stack pointer { S s p) points to the top of the stack. The stack is adjusted to make room for
all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it's easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $ s p on a call, and $ S p is restored using $ f p. This
information is also found in Column -1 of the MIPS Reference Data Card at the front of this book.

120 Chapter 2 Instructions: Language of the Computer

text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need
space in memory for static variables and for dynamic data structures. Figure 2.13
shows the MIPS convention for allocation of memory. The stack starts in the
high end of memory and grows down. The first part of the low end of memory is
reserved, followed by the home of the MIPS machine code, traditionally called the
text segment. Above the code is the static data segment, which is the place for con-
stants and other static variables. Although arrays tend to be a fixed length and thus
are a good match to the static data segment, data structures like linked lists tend to
grow and shrink during their lifetimes. The segment for such data structures is tra-
ditionally called the heap, and it is placed next in memory. Note that this allocation
allows the stack and heap to grow toward each other, thereby allowing the efficient
use of memory as the two segments wax and wane.

$ s p — 7 f f f f f f c ,

$gp— 1000 8000hex

1000 0000Mex

p c - ^ 0040 0000 h e x

0

Stack

Dynamic data

Static data

Text

Reserved

FIGURE 2.13 The MIPS m e m o r y allocation for program and data. These addresses are
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized to
7f f f f f f c (,e x and grows down toward the data segment. At the other end, the program code ("text") starts
at 0040 0000,,ex. The static data starts at 1000 0000h e x . Dynamic data, allocated by mal 1 oc in C and
by new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is
set to an address to make it easy to access data. It is initialized to 1000 8000n e x so that it can access from
1000 0 0 0 0 i,ex to 1 0 0 0 ff f f|,ex using the positive and negative 16-bit offsets from $gp. This information
is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions, mal 1 o c () allo-
cates space on the heap and returns a pointer to it, and f r e e () releases space on
the heap to which the pointer points. Memory allocation is controlled by programs
in C, and it is the source of many common and difficult bugs. Forgetting to free space
leads to a "memory leak," which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to "dangling pointers," which
can cause pointers to point to things that the program never intended. Java uses
automatic memory allocation and garbage collection just to avoid such bugs.

2.8 Supporting Procedures in Computer Hardware 121

Figure 2.14 summarizes the register conventions for the MIPS assembly language.

Register number Usage
Preserved on

call?

S z e r o 0 The constant value 0 n.a.

S v O - S v l 2 - 3 Values for results and expression evaluation no

Sa0-Sa3 4 - 7 Arguments no

S t 0 - S t 7 8 - 1 5 Temporaries no

Ss0 -$s7 16-23 Saved yes

St8-St9 24-25 More temporaries no

Sgp 28 Global pointer yes

Ssp 29 Stack pointer yes

Sfp 30 Frame pointer yes

Sra 31 Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called Sat, is reserved for The assembler (see
Section 2.12), and registers 26-27, called SkO-Skl , are reserved for The operating system. This information
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers SaO through $a3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all
references to variables in the stack within a procedure will have the same offset. The frame
pointer is not necessary, however. The GNU MIPS C compiler uses a frame pointer, but the
C compiler from MIPS does not; it treats register 30 as another save register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing the overhead associ-
ated with procedure calls. For example, consider a procedure used to accumulate a sum:

i n t s u m (i n t n , i n t a c c) (
i f (n > 0)

r e t u r n s u m (n - 1 , a c c + n) ;
e l s e

r e t u r n a c c ;
)

Consider the procedure call s u m (3 , 0) . This will result in recursive calls to
sum(2 , 3) , sum(1, 5), and sum(0 , 6) , and then the result 6 will be returned four
times. This recursive call of sum is referred to as a tail call, and this example use of tail
recursion can be implemented very efficiently (assume SaO = n and S a l = a c c) :

s u m : s l t i S a O . l # t e s t i f n < = 0
b e q S a O , S z e r o , s u m _ e x i t # g o t o s u m _ e x i t i f n < = 0
a d d S a l , S a l , S a O # a d d n t o a c c

1
1 2 2 Chapter 2 Instructions: Language of the Computer

Check
Yourself

a d d i $ a 0 , $ a 0 , - 1

j s u m

s u m _ e x i t :

a d d $ v O , $ a 1 , $ z e r o

j r $ r a

s u b t r a c t 1 f r o m n

g o t o s u m

r e t u r n v a l u e a c c

r e t u r n t o c a l l e r

W h i c h o f t h e f o l l o w i n g s t a t e m e n t s a b o u t C a n d J a v a a r e g e n e r a l l y t r u e ?

1 . C p r o g r a m m e r s m a n a g e d a t a e x p l i c i t l y , w h i l e it 's a u t o m a t i c i n J a v a .

2 . C l e a d s t o m o r e p o i n t e r b u g s a n d m e m o r y l e a k b u g s t h a n d o e s J a v a .

!(@ I = > (wow open

tab at bar is great)

Four th line o f the
keyboard p o e m "Hat less
Atlas," 1991 (s o m e
give n a m e s to ASCI I
c h a r a c t e r s : " ! " is "wow,"
" (" i s o p e n , " I " i s bar, and
so o n) .

2.9 Communicating with People

C o m p u t e r s w e r e i n v e n t e d t o c r u n c h n u m b e r s , b u t a s s o o n a s t h e y b e c a m e c o m -

m e r c i a l l y v i a b l e t h e y w e r e u s e d t o p r o c e s s t e x t . M o s t c o m p u t e r s t o d a y o f f e r S - b i t

b y t e s t o r e p r e s e n t c h a r a c t e r s , w i t h t h e A m e r i c a n S t a n d a r d C o d e f o r I n f o r m a -

t i o n I n t e r c h a n g e (A S C I I) b e i n g t h e r e p r e s e n t a t i o n t h a t n e a r l y e v e r y o n e f o l l o w s .

F i g u r e 2 . 1 5 s u m m a r i z e s A S C I I .

ASCII Char- ASCI I Char- ASCI I Char- ASCI I Char- ASCI I Char- A S C I I Char-
value acter value acter value acter value acter value acter value acter

32 space 48 0 64 @ 80 P 96 - 112 P

33 ! 49 1 65 A 81 Q 97 a 113 q

34 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 v 102 f 118 V

39 1 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 X

41) 57 9 73 1 89 Y 105 i 121 y
42 * 58 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 I 107 k 123 {
44 60 < 76 L 92 \ 108 1 124 1
45 - 61 = 77 M 93 1 109 m 125 }
46 62 > 78 N 94 A 110 n 126 -

47 / 63 ? 79 o 95 111 o 127 ' DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead
to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace,
9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the
end of a string. This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.

2.9 Communicating with People 123

Base 2 is not natural to human beings; we have 10 fingers and so find base
10 natural. Why didn't computers use decimal? In fact, the first commercial
computer did offer decimal arithmetic. The problem was that the computer still
used on and off signals, so a decimal digit was simply represented by several
binary digits. Decimal proved so inefficient that subsequent computers reverted
to all binary, converting to base 10 only for the relatively infrequent input/output
events.

Hardware/
Software
Interface

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers.
How much does storage increase if the number 1 billion is represented in
ASCII versus a 32-bit integer?

EXAMPLE

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.
Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition to the
expansion in storage, the hardware to add, subtract, multiply, and divide such
decimal numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

ANSWER

A series of instructions can extract a byte from a word, so load word and store
word are sufficient for transferring bytes as well as words. Because of the popularity
of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (l b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

l b $ t O , 0 ($ s p)
s b $ t 0 , 0 ($ g p)

R e a d b y t e f r o m s o u r c e
W r i t e b y t e t o d e s t i n a t i o n

124 Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Signed versus unsigned applies to loads as well as to arithmetic. The fdnction of
a signed load is to copy the sign repeatedly to fill the rest of the register—called
sign extension—but its purpose is to place a correct representation of the number
within that register. Unsigned loads simply fill with Os to the left of the data, since
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte
(l b) treats the byte as a signed number and thus sign-extends to fill the 24 left-
most bits of the register, while load byte unsigned (Ibu) works with unsigned
integers. Since C programs almost always use bytes to represent characters rather
than consider bytes as very short signed integers, 1 bu is used practically exclusively
for byte loads.

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first position
of the string is reserved to give the length of a string, (2) an accompanying variable
has the length of the string (as in a structure), or (3) the last position of a string is
indicated by a character used to mark the end of a string. C uses the third choice,
terminating a string with a byte whose value is 0 (named null in ASCII). Thus,
the string "Cal" is represented in C by the following 4 bytes, shown as decimal
numbers: 67, 97, 108,0. (As we shall see, Java uses the first option.)

EXAMPLE

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure s t r c p y copies string y to string x using the null byte
termination convention of C:

v o i d s t r c p y (c h a r x [] , c h a r y [])
(

i n t i ;

i = 0 ;
w h i l e ((x [i] = y [i]) ! = 1 \ 0 *) / * c o p y & t e s t b y t e * / i + = 1 ;

I

What is the MIPS assembly code?

2.9 Communicating with People 125

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and y are found in SaO and $ a 1, while i is in S s O . s t r c p y adjusts
the stack pointer and then saves the saved register SsO on the stack:

s t r c p y :
a d d i S s p , S s p , - 4 # a d j u s t s t a c k f o r 1 m o r e i t e m
s w S s O , O (S s p) # s a v e S s O

To initialize i to 0, the next instruction sets $ sO to 0 by adding 0 to 0 and plac-
ing that sum in SsO:

a d d S s O . S z e r o , S z e r o # I = 0 T 0

This is the beginning of the loop. The address of y [i] is first formed by add-
ing l to y [] :

L I : a d d S t l . S s O . S a l # a d d r e s s o f y [i] i n S t l

Note that we don't have to multiply i by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y [i], we use load byte unsigned, which puts the
character into S t 2 :

l b u $ 1 2 , O (S t l) # $ 1 2 = y [i]

A similar address calculation puts the address of x [i] in S t 3 , and then the
character in $ 12 is stored at that address.

a d d $ t 3 , S s O , S a O # a d d r e s s o f x [i] i n S t 3
s b $ 1 2 , 0 ($ 1 3) # x [i] = y [i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last
character of the string:

b e q S t 2 , S z e r o , L 2 # i f y [i] = = 0 . g o t o L 2

If not, we increment i and loop back:

a d d i S s O , S s O . l # i = i T 1
j L I # g o t o L I

126 Chapter 2 Instructions: Language of the Computer

If we don't loop back, it was the last character of the string; we restore $ s 0 and
the stack pointer, and then return. •

L2: I w $ s 0 , 0 ($ s p) # y [i] = = 0 : e n d o f s t r i n g . R e -
s t o r e o l d $ s 0

a d d i $ s p , $ s p , 4 # p o p 1 w o r d o f f s t a c k
j r $ r a # r e t u r n

String copies usually use pointers instead of arrays in C to avoid the operations
on i in the code above. See Section 2.14 for an explanation of arrays versus
pointers.

Since the procedure s t r c p y above is a leaf procedure, the compiler could allo-
cate i to a temporary register and avoid saving and restoring $s0. Hence, instead
of thinking of the $t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. When a compiler finds a leaf
procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java
Unicode is a universal encoding of the alphabets of most human languages.
Figure 2.16 is a list of Unicode alphabets; there are almost as many alphabets in
Unicode as there are useful symbols in ASCII. To be more inclusive, lava uses
Unicode for characters. By default, it uses 16 bits to represent a character.

The MIPS instruction set has explicit instructions to load and store such 16-bit
quantities, called halfwords. Load half (1 h) loads a halfword from memory, placing
it in the rightmost 16 bits of a register. Like load byte, load half (1 h) treats the
halfword as a signed number and thus sign-extends to fill the 16 leftmost bits of the
register, while load halfword unsigned (1 hu) works with unsigned integers. Thus,
1 hu is the more popular of the two. Store half (s h) takes a halfword from the
rightmost 16 bits of a register and writes it to memory. We copy a halfword with
the sequence

I h u $ t 0 , 0 ($ s p) # R e a d h a l f w o r d (1 6 b i t s) f r o m s o u r c e
s h $ t 0 , 0 ($ g p) # W r i t e h a l f w o r d (1 6 b i t s) t o d e s t i n a t i o n

Strings are a standard lava class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, lava includes a
word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allowing
the program to always use 1 w and sw (which must be aligned) to access the stack. This
convention means that a c h a r variable allocated on the stack occupies 4 bytes, even
though it needs less. However, a C string variable or an array of bytes will pack 4 bytes per
word, and a Java string variable or array of shorts packs 2 halfwords per word.

2.9 Communicat ing with People 1 2 7

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 "blocks,"
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at
0370),cx, and Cyrillic at 0400)1CX. The first three columns show 48 blocks that correspond to human languages
in roughly Unicode numerical order. The last column has 16 blocks that arc multilingual and are not in order.
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII
subset as eiglu bits and uses 16-32 bits for the other characters. UTF-32 uses 32 bits per character. To learn
more, see www.uuicodc.org.

Check
Yourself

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000 ten takes the most memory
space?

1 . i n t i n C

2. s t r i n g in C

3. s t r i n g in Java

I. Which of the following statements about characters and strings in C and Java
are true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters
in C and Java.

http://www.uuicodc.org

128 Chapter 2 Instructions: Language of the Computer

b f l W MIPS Addressing for 32-Bit Immediates
• S b h and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows the
optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate ©peraimds
Although constants are frequently short and fit into the 16-bit field, sometimes they
are bigger. The MIPS instruction set includes the instruction load upper immediate
(1 u i) specifically to set the upper 16 bits of a constant in a register, allowing a
subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17
shows the operation of 1 u i.

EXAMPLE

ANSWER

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using 1 u i :

1 u i $ s 0 , 6 1 # 6 1 d e c i m a l = 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 b i n a r y

The value of register $ s 0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

o r i $ s 0 , $ s 0 , 2 3 0 4 # 2 3 0 4 d e c i m a l = 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

The final value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 1 2 9

The machine language version of l u i $ t 0 , 255 It $t.O is r e g i s t e r 8:

001111 00000 01000 0000 0000 1111 11 11

Contents of register $ tO after executing l u i $10, 255:

0000 0000 111 1 1 111 0000 0000 0000 0000

FIGURE 2.17 The effect of the 1 ui instruction. The instruction 1 u i transfers the 16-bit immediate constant field value into the
leftmost 16 bits of the register, filling the lower 16 bits with Os.

Either the compiler or the assembler must break large constants into pieces and
then reassemble them into a register. As you might expect, the immediate field's
size restriction may be a problem for memory addresses in loads and stores as well
as for constants in immediate instructions. If this job falls to the assembler, as it
does for MIPS software, then the assembler must have a temporary register avail-
able in which to create the long values. This is a reason for the register $ a t , which
is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but by whatever the creator of an assembler chooses to include
(see Section 2.12). We stick close to the hardware to explain the architecture of the
computer, noting when we use the enhanced language of the assembler that is not
found in the processor.

Hardware/
Software
Interface

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
leftmost bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word. Logical or immediate from Section 2.6 loads Os into the upper 16 bits and hence
is used by the assembler in conjunction with l u i to create 32-bit constants.

Addressing in Branches and Jumps
The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field
and the rest of the bits for the address field. Thus,

j 1 0 0 0 0 # g o t o l o c a t i o n 1 0 0 0 0

could be assembled into this format (it's actually a bit more complicated, as we
will see):

1 3 0 Chapter 2 Instructions: Language of the Computer

2 10000
T

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify

two operands in addition to the branch address. Thus,

b n e $ s O , $ s l , E x i t # g o t o E x i t i f $ s 0 * $ s l

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

PC-relative addressing
An addressing regime
in which the address is
the sum of the program
counter (PC) and a con-
stant in the instruction.

If addresses of the program had to fit in this 16-bit field, it would mean that
no program could be bigger than 216, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register T Branch address

This sum allows the program to be as large as 232 and still be able to use conditional
branches, solving the branch address size problem. Then the question is, which
register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
±2 1 5 words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 216 words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC T 4) as opposed to the current instruction (PC).

Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches, because the destination of these instructions is likely to be close to
the branch. On the other hand, jump-and-link instructions invoke procedures that
have no reason to be near the call, so they normally use other forms of addressing.
Hence, the MIPS architecture offers long addresses for procedure calls by using the
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 131

times as far by interpreting the field as a relative word address rather than as a
relative byte address. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be
careful to avoid placing a program across an address boundary of 256 MB (64 million
instructions); otherwise, a jump must be replaced by a jump register instruction preceded
by other instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 107-108 was compiled into this MIPS assembler code:

L o o p : s 1 1 $ t l , $ s 3 , 2
a d d $ t 1 , $ t l , $ s 6
l w $ t 0 , 0 ($ t l)
b n e $ t 0 , $ s 5 . E x i t
a d d i $ s 3 , $ s 3 , 1
j L o o p

E x i t :

T e m p r e g $ t 1 = 4 * i
$ 1 1 = a d d r e s s o f s a v e [i]
T e m p r e g $ t 0 = s a v e [i]
g o t o E x i t i f s a v e [i] * k
i = 1 T 1
g o t o L o o p

EXAMPLE

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

The assembled instructions and their addresses are:
ANSWER

80000
80004
80008
80012
80016
80020
80024

0 0 19 9 2 0
0 9 22 9 0 32

35 9 8 0
5 8 21 2
8 19 19 1
2 20000

132 Chapter 2 Instructions: Language of the Computer

Remember that MIPS instructions have byte addresses, so addresses of
sequential words differ by 4, the number of bytes in a word. The bne instruc-
tion on the fourth line adds 2 words or 8 bytes to the address of the following
instruction (80016), specifying the branch destination relative to that following
instruction (8 T 80016) instead of relative to the branch instruction (12 T 80012)
or using the full destination address (80024). The jump instruction on the last
line does use the full address (20000 x 4 = 80000), corresponding to the label
L o o p .

Hardware/
Software
Interface

Most conditional branches are to a nearby location, but occasionally they branch
far away, farther than can be represented in the 16 bits of the conditional branch
instruction. The assembler comes to the rescue just as it did with large addresses
or constants: it inserts an unconditional jump to the branch target, and inverts the
condition so that the branch decides whether to skip the jump.

EXAMPLE

ANSWER

Branching Far Away

Given a branch on register $s0 being equal to register $ s l ,

b e q S s O , S s l . L I

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

b n e
j

$ s 0 , S s l , L 2
L I

L 2 :

addressing mode One of
several addressing regimes
delimited by their varied
use of operands and/or
addresses.

MIPS Addressing Mode Summary
Multiple forms of addressing are generically called addressing modes. Figure 2.18
shows how operands are identified for each addressing mode. The MIPS address-
ing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruc-
tion itself

2. Register addressing, where the operand is a register

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 1 3 3

1. Immediate addressing

op rs rt Immediate

2. Register addressing

op rs rt rd funct Registers

Register

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC.

3. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a
constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the instruc-
tion concatenated with the upper bits of the PC

134 Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Although we show MIPS as having 32-bit addresses, nearly all microprocessors
(including MIPS) have 64-bit address extensions (see gjg Appendix E). These exten-
sions were in response to the needs of software for larger programs. The process of
instruction set extension allows architectures to expand in such a way that is able to
move software compatibly upward to the next generation of architecture.

Note that a single operation can use more than one addressing mode. Add, for
example, uses both immediate (addi) and register (add) addressing.

Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. One example is when looking at "core dump." Figure 2.19
shows the MIPS encoding of the fields for the MIPS machine language. This figure
helps when translating by hand between assembly language and machine language.

EXAMPLE

ANSWER

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

0 0 a f 8 0 2 0 h e x

The first step in converting hexadecimal to binary is to find the op fields:

(B i t s : 3 1 28 26 5 2 0)
0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.19,
when bits 31-29 are 000 and bits 28-26 are 000, it is an R-format instruction.
Let's reformat the binary instruction into R-format fields, listed in Figure 2.20:

o p r s r t r d s h a m t f u n c t
000000 00101 01111 10000 00000 1 0 0 0 0 0

The bottom portion of Figure 2.19 determines the operation of an R-format
instruction. In this case, bits 5 - 3 are 100 and bits 2 - 0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The
decimal values are 5 for the rs field, 15 for rt, and 16 for rd (shamt is unused).
Figure 2.14 shows that these numbers represent registers $ a l , $17, and $s0.
Now we can reveal the assembly instruction:

a d d $ s 0 . $ a l . $ t 7

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 135

o p (3 1 : 2 6)

28-26

31-29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) R-format Bltz/gez jump jump & link branch eq branch
ne

blez bgtz

1(001) add
i mined i ate

addi u set 1 ess
than imm.

set less
than imm.
unsi gned

audi o n xor i 1oad upper
immediate

2(010) TLB FlPt

3(011)

4(100) 1oad byte 1 oad ha 1 f lwl 1 oad word 1 oad byte
unsigned

1 oad
half
unsigned

1 wr

5(101) store byte store hal f swl store word swr

6(110) load linked
word

lwcl

7(111) store cond.
word

swcl

o p (3 1 : 2 6) = 0 1 0 0 0 0 (T L B) , r s (2 5 : 2 1)

23-21

25-24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfcO cfcO mtcO ctcO

1(01)

2(10)

3(11)

o p (3 1 : 2 6) = 0 0 0 0 0 0 (R - f o r m a t) , f u n c t (5 : 0)

2-0

5-3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) shift left
1ogi cal

shift right
1ogi cal

sra sl 1 v srl v srav

1(001) jump regi ster jal r syscal1 break

2(010) mfhi mthi mflo mtl o

3(011) mul t mul t ti di v di vu

4(100) add addu subtract subu and or xor not or (nor)

5(101) set 1. t. set 1. t.
unsigned

6(110)

7(111)

F I G U R E 2 . 1 9 M I P S i n s t r u c t i o n e n c o d i n g . This notation gives the value of a field by row and by column. For example, the top portion
of the figure shows l o a d word in row number 4 (1 0 0 t w o for bits 3 1 - 2 9 of the instruction) and column number 3 (011|W() for bits 2 8 - 2 6 of the
instruction), so the corresponding value of the op field (bits 3 1 - 2 6) is 10001 I l w o . Underscore means the field is used elsewhere. For example,
R- f o r m a t in row 0 and column 0 (op = 0 0 0 0 0 0 l w o) is defined in the bottom part of the figure. Hence, s u b t r a c t in row 4 and column 2
of the bottom section means that the funct field (bits 5 - 0) of the instruction is 100010 t w u and the op field (bits 3 1 - 2 6) is 000000,W l) . The
f l o a t i ng p o i nt value in row 2, column 1 is defined in Figure 3.18 in Chapter 3. B1 t z / g e z is the opcode for four instructions found in
Appendix B: bl t z , b g e z , bl t z a 1, and b g e z a 1. This chapter describes instructions given in full name using color, while Chapter 3 describes
instructions given in mnemonics using color. Appendix B covers all instructions.

1 3 6 Chapter 2 Instructions: Language of the Computer

Name Fields Comments

Reld size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct Arithmetic instruction format
l-format op rs rt address/immediate Transfer, branch, imm. format
J-format op target address Jump instruction format

FIGURE 2.20 MIPS instruction formats.

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 78 shows
the MIPS assembly language revealed in this chapter. The remaining hidden portion
of MIPS instructions deals mainly with arithmetic and real numbers, which are
covered in the next chapter.

Check I. What is the range of addresses for conditional branches in MIPS (K = 1024)?

>urself 1 A d d r e s s e s between 0 and 64K - 1

2. Addresses between 0 and 256K - 1

3. Addresses up to about 32K before the branch to about 32IC after

4. Addresses up to about 128K before the branch to about 128K after

II. What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?

1. Addresses between 0 and 64M - 1

2. Addresses between 0 and 256M - 1

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128M after

5. Anywhere within a block of 64M addresses where the PC supplies the upper
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the upper
4 bits

III. What is the MIPS assembly language instruction corresponding to the machine
instruction with the value 0000 0000hcx?

1 . J
2 . R - f o r m a t

3 . a d d i

4 . s l l

5 . m f c O

6. Undefined opcode: there is no legal instruction that corresponds to 0

2.11 Parallelism and Instructions: Synchronization 137

2.11
Parallelism and Instructions:
Synchronization

Parallel execution is easier when tasks are independent, but often they need to cooperate.
Cooperation usually means some tasks are writing new values that others must read.
To know when a task is finished writing so that it is safe for another to read, the tasks
need to synchronize. If they don't synchronize, there is a danger of a data race, where
the results of the program can change depending on how events happen to occur.

For'example, recall the analogy of the eight reporters writing a story on page
43 of Chapter 1. Suppose one reporter needs to read all the prior sections before
writing a conclusion. Hence, he must know when the other reporters have finished
their sections, so that he or she need not worry about them being changed after-
wards. That is, they had better synchronize the writing and reading of each section
so that the conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level
software routines that rely on hardware-supplied synchronization instructions. In
this section, we focus on the implementation of lock and unlock synchronization
operations. Lock and unlock can be used straightforwardly to create regions where
only a single processor can operate, called mutual exclusion, as well as to implement
more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiprocessor is
a set of hardware primitives with the ability to atomically read and modify a memory
location. That is, nothing else can interpose itself between the read and the write of the
memory location. Without such a capability, the cost of building basic synchroniza-
tion primitives will be too high and will increase as the processor count increases.

There are a number of alternative formulations of the basic hardware primi-
tives, all of which provide the ability to atomically read and modify a location,
together with some way to tell if the read and write were performed atomically. In
general, architects do not expect users to employ the basic hardware primitives, but
instead expect that the primitives will be used by system programmers to build a
synchronization library, a process that is often complex and tricky.

Let's start with one such hardware primitive and show how it can be used to
build a basic synchronization primitive. One typical operation for building syn-
chronization operations is the atomic exchange or atomic swap, which interchanges
a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that
we want to build a simple lock where the value 0 is used to indicate that the lock
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set
the lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1 if
some other processor had already claimed access and 0 otherwise. In the latter
case, the value is also changed to 1, preventing any competing exchange in another
processor from also retrieving a 0.

data race Two memory
accesscs form a data race
if they are from different
threads to same location,
at least one is a write,
and they occur one after
another.

138 Chapter 2 Instructions: Language of the Computer

For example, consider two processors that each try to do the exchange simulta-
neously: this race is broken, since exactly one of the processors will perform the
exchange first, returning 0, and the second processor will return 1 when it does the
exchange. The key to using the exchange primitive to implement synchronization
is that the operation is atomic: the exchange is indivisible, and two simultaneous
exchanges will be ordered by the hardware. It is impossible for two processors
trying to set the synchronization variable in this manner to both think they have
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in
the design of the processor, since it requires both a memory read and a write in a
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction
returns a value showing whether the pair of instructions was executed as if the pair
were atomic. The pair of instructions is effectively atomic if it appears as if all other
operations executed by any processor occurred before or after the pair. Thus, when
an instruction pair is effectively atomic, no other processor can change the value
between the instruction pair.

In MIPS this pair of instructions includes a special load called a load linked and
a special store called a store conditional. These instructions are used in sequence:
if the contents of the memory location specified by the load linked are changed
before the store conditional to the same address occurs, then the store conditional
fails. The store conditional is defined to both store the value of a register in mem-
ory and to change the value of that register to a 1 if it succeeds and to a 0 if it fails.
Since the load linked returns the initial value, and the store conditional returns 1
only if it succeeds, the following sequence implements an atomic exchange on the
memory location specified by the contents of $ s 1:

t r y : a d d $ t 0 , $ z e r o , $ s 4 ; c o p y e x c h a n g e v a l u e

At the end of this sequence the contents of $ s 4 and the memory location speci-
fied by $ s 1 have been atomically exchanged. Any time a processor intervenes and
modifies the value in memory between the 11 and SC instructions, the SC returns
0 in $ t 0 , causing the code sequence to try again.

Elaboration: Although it was presented for multiprocessor synchronization, atomic
exchange is also useful for the operating system in dealing with multiple processes
in a single processor. To make sure nothing interferes in a single processor, the store
conditional also fails if the processor does a context switch between the two instructions
(see Chapter 5).

1 1 $ 1 1 , 0 ($ s 1) ; 1 o a d l i n k e d
$ t 0 , 0 ($ s l) ; s t o r e c o n d i t i o n a l
$ t O , $ z e r o , t r y ; b r a n c h s t o r e f a i l s
$ s 4 , $ z e r o , $ t l ; p u t l o a d v a l u e i n $ s 4

s c
b e q
a d d

2.12 Translating and Starting a Program 139

Since the store conditional will fail after either another attempted store to the load
linked address or any exception, care must be taken in choosing which instructions are
inserted between the two instructions. In particular, only register-register instructions
can safely be permitted; otherwise, it is possible to create deadlock situations where
the processor can never complete the sc because of repeated page faults. In addition,
the number of instructions between the load linked and the store conditional should be
small to minimize the probability that either an unrelated event or a competing processor
causes the store conditional to fail frequently.

An advantage of the load linked/store conditional mechanism is that it can be used
to build other synchronization primitives, such as atomic compare and swap or atomic
fetch-and-increment, which are used in some parallel programming models. These involve
more instructions between the 11 and the SC.

When do you use primitives like load linked and store conditional? Check
1. When cooperating threads of a parallel program need to synchronize to get

proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for
reading and writing shared data

Yourself

2.12 Translating and Starting a Program

This section describes the four steps in transforming a C program in a file on disk
into a program running on a computer. Figure 2.21 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are the
logical four phases that programs go through. This section follows this translation
hierarchy.

Compiler
The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level language programs
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher.

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were inefficient. The 500,000-
fold increase in memory capacity per single DRAM chip has reduced program size
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better
for large programs.

assembly language
A symbolic language that
can be translated into
binary machine language.

1 4 0 Chapter 2 Instructions: Language of the Computer

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and sonic systems use
linking loaders that perform the last two steps. To identify the Type of file, UNIX follows a suffix convention
for files: C source files are named x . C, assembly files are X. s, object files are named x. o, statically linked
library routines are x . a, dynamically linked library routes are x . s o, and executable files by default are called
a. out . MS-DOS uses The suffixes .C, .ASM, .OBJ, . L I B , .DLL, and . EXE to the same effect.

Assemblies
S i n c e a s s e m b l y l a n g u a g e i s a n i n t e r f a c e t o h i g h e r - l e v e l s o f t w a r e , t h e a s s e m b l e r c a n a l so

t rea t c o m m o n v a r i a t i o n s o f m a c h i n e l a n g u a g e i n s t r u c t i o n s a s i f t h e y w e r e i n s t r u c t i o n s

i n t h e i r o w n r i g h t . T h e h a r d w a r e n e e d n o t i m p l e m e n t t h e s e i n s t r u c t i o n s ; h o w e v e r ,

t h e i r a p p e a r a n c e i n a s s e m b l y l a n g u a g e s i m p l i f i e s t r a n s l a t i o n a n d p r o g r a m m i n g . S u c h

i n s t r u c t i o n s are ca l led p s e u d o i n s t r u c t i o n s .

A s m e n t i o n e d a b o v e , t h e M I P S h a r d w a r e m a k e s s u r e t h a t r e g i s t e r $ z e r o a l w a y s

h a s t h e v a l u e 0 . T h a t is , w h e n e v e r r e g i s t e r $ z e r o i s u s e d , i t s u p p l i e s a 0 , a n d t h e

p r o g r a m m e r c a n n o t c h a n g e t h e v a l u e o f r e g i s t e r $ z e r o . R e g i s t e r $ z e r o i s u s e d

p s e u d o i n s t r u c t i o n
A c o m m o n variation
of assembly language
instructions often treated
as if it were an instruction
in its own right.

2.12 Translating and Starting a Program 141

to create the assembly language instruction move that copies the contents of one
register to another. Thus the MIPS assembler accepts this instruction even though
it is not found in the MIPS architecture:

m o v e S t O , S t l # r e g i s t e r S t O g e t s r e g i s t e r S t l

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

a d d S t O , S z e r o , S t l # r e g i s t e r S t O g e t s 0 T r e g i s t e r S t l

The MIPS assembler also converts b i t (branch on less than) into the two
instructions si t and bne mentioned in the example on page 128. Other examples
include b g t , bge, and bl e. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardware. The only cost is reserving
one register, Sat , for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS
architecture and be sure to get best performance, however, study the real MIPS
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal.

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language
program, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions
in a symbol table. As you might expect, the table contains pairs of symbols and
addresses.

The object file for UNIX systems typically contains six distinct pieces:

• The object file header describes the size and position of the other pieces of the
object file.

• The text segment contains the machine language code.

• The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use both static data, which is allocated throughout
the program, and dynamic data, which can grow or shrink as needed by the
program. See Figure 2.13.)

• The relocation information identifies instructions and data words that depend
on absolute addresses when the program is loaded into memory.

symbol table A table
that matches names of
labels to the addresses of
the memory words that
instructions occupy.

142 Chapter 2 Instructions: Language of the Computer

• The symbol table contains the remaining labels that are not defined, such as
external references. *

• The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions
with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

linker Also called link
editor. A systems
program that combines
independently assembled
machine language
programs and resolves all
undefined labels into an
executable file.

executable file A
functional program in
the format of an object
file that contains no unre-
solved references. It can
contain symbol tables and
debugging information.
A "stripped executable"
does not contain that
information. Relocation
information may be
included for the loader.

What we have presented so far suggests that a single change to one line of one proce-
dure requires compiling and assembling the whole program. Complete retransla-
tion is a terrible waste of computing resources. This repetition is particularly
wasteful for standard library routines, because programmers would be compiling
and assembling routines that by definition almost never change. An alternative is
to compile and assemble each procedure independently, so that a change to one
line would require compiling and assembling only one procedure. This alternative
requires a new systems program, called a link editor or linker, which takes all
the independently assembled machine language programs and "stitches" them
together.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much
like that of an editor: it finds the old addresses and replaces them with the new
addresses. Editing is the origin of the name "link editor," or linker for short. The
reason a linker is useful is that it is much faster to patch code than it is to recompile
and reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.13 on page 120 shows
the MIPS convention for allocation of program and data to memory. Since the
files were assembled in isolation, the assembler could not know where a module's
instructions and data would be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typically,
this file has the same format as an object file, except that it contains no unresolved
references. It is possible to have partially linked files, such as library routines, that
still have unresolved addresses and hence result in object files.

2.12 Translating and Starting a Program 1 4 3

Linking Object Files

Link the two object files below. Show updated addresses of the first few
instructions of the completed executable file. We show the instructions in
assembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the addresses
of data words X and Y.

EXAMPLE

Object flic header

Name Procedure A
Text size lOOhex
Data size 20 h e x

Text segment Address Instruction

0 lw SaO, 0 ($ g p)
4 j a l 0

Data segment 0 (X) Data segment

Relocation information Address Instruction type Dependency

0 lw X
4 j a l B

Symbol table Label Address

X -

B -

Object file header

Name Procedure B
Text size 200 h e x

Data size 30hex
Text segment Address Instruction

0 sw $ a l , 0 ($ g p)
4 j a l 0

Data segment 0 (Y)

Relocation information Address Instruction type Dependency

0 sw Y
4 j a l A

Symbol table Label Address

Y -

A -

1 4 4 Chapter 2 Instructions: Language of the Computer

Procedure A needs to find the address for the variable labeled X to put in the
load instruction and to find the address of procedure B to place in t h e ' j a l
instruction. Procedure B needs the address of the variable labeled Y for the
store instruction and the address of procedure A for its j a 1 instruction.

From Figure 2.13 on page 120, we know that the text segment starts at
address 40 0 0 0 0 h e x a n d the data segment at 1000 0 0 0 0 h e x . The text of proce-
dure A is placed at the first address and its data at the second. The object file
header for procedure A says that its text is 100hex bytes and its data is 20(u:x bytes,
so the starting address for procedure B text is 40 0 1 0 0 h e x , and its data starts
at 1000 0 0 2 0 h e x .

Executable file header

Text size 300h e x

Data size 50hex
Text segment Address Instruction

0040 0000 h e x l w $ a 0 . 8000),ex($gp)
0040 0004 h e x j a l 40 0100,10x

0040 0100 h e x sw S a l , 8020 h e x ($gp)
0040 0104 h e x j a l 40 0000,

Data segment Address
1000 0000 h e x (X)

1000 0020 h e x (Y)

Figure 2.13 also shows that the text segment starts at address 40 0 0 0 0 h e x

and the data segment at 1000 0 0 0 0 h e x . T h e text of procedure A is placed at the
first address and its data at the second. The object file header for procedure A
says that its text is 100,iex bytes and its data is 20hex bytes, so the starting address
for procedure B text is 40 0 1 0 0 h e x , and its data starts at 1000 0020 (i e x .

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
two types here:

2.12 Translating and Starting a Program 145

1. The j a 1 s are easy because they use pseudodirect addressing. The j a 1 at
address 40 0004 h e x gets 40 0 1 0 0 h e x (the address of procedure B) in its
address field, and the j a l at 40 0 1 0 4 h e x gets 40 0 0 0 0 h e x (the address of
procedure A) in its address field.

2. The load and store addresses are harder because they arc relative to a
base register. This example uses the global pointer as the base register.
Figure 2.13 shows that $gp is initialized to 1000 8 0 0 0 h e x . To get the
address 1000 0000 hex (the address of word X), we place 8000(i e x in the
address field of 1 w at address 40 0 0 0 0 h e x . Similarly, we place 8 0 2 0 h e x

in the address field of sw at address 40 0 1 0 0 h e x to get the address
1000 0 0 2 0 h e x (the address of word Y).

Elaboration: Recall that MIPS instructions are word aligned, so j a l drops the
right two bits to increase the instruction's address range. Thus, it use 26 bits to
create a 28-bit byte address. Hence, the actual address in the lower 26 bits of the
j a l instruction in this example is 10 0040 h e X) rather than 40 0 1 0 0 h e x .

Loader
Now that the executable file is on disk, the operating system reads it to memory and
starts it. The loader follows these steps in UNIX systems: loader A systems

• program that places an
1. Reads the executable file header to determine size of the text and data segments, object program in main

2. Creates an address space large enough for the text and data. m c m o r > ' s o t h a t il is ready
r ° ° to execute.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the first free
location.

6. Jumps to a start-up routine that copies the parameters into the argument
registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exi t system call.

Sections B.3 and B.4 in Appendix B describe linkers and loaders in more detail.

Dynamically Linked Libraries
The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadvantages:

146 Chapter 2 Instructions: Language of the Computer

• The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

• It loads all routines in the library that are called anywhere in the executable,
even if those calls are not executed. The library can be large relative to the
program; for example, the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the file to find the appropriate libraries and
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines
of the library that might be called, versus only those that are called during the
running of the program. This observation led to the lazy procedure linkage version
of DLLs, where each routine is linked only after it is called.

Like many innovations in our field, this trick relies on a level of indirection.
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code that puts a number in a register to
identify the desired library routine and then jumps to the dynamic linker/loader.
The linker/loader finds the desired routine, remaps it, and changes the address in
the indirect jump location to point to that routine. It then jumps to it. When the
routine completes, it returns to the original calling site. Thereafter, the call to the
library routine jumps indirectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic
linking, but do not require that whole libraries be copied or linked. They pay a good
deal of overhead the first time a routine is called, but only a single indirect jump
thereafter. Note that the return from the library pays no extra overhead. Microsoft's
Windows relies extensively on dynamically linked libraries, and it is also the default
when executing programs on UNIX systems today.

Starting a Java Program
The discussion above captures the traditional model of executing a program,
where the emphasis is on fast execution time for a program targeted to a specific
instruction set architecture, or even a specific implementation of that architecture.
Indeed, it is possible to execute Java programs just like C. Java was invented with
a different set of goals, however. One was to run safely on any computer, even if it
might slow execution time.

dynamically linked
libraries (DLLs) Library
routines that are linked
to a program during
execution.

2.12 Translating and Start ing a Program 147

T e x t

j a l

Mw
j r

Data

T e x t

l Y I D
j •

1

T e x t

D y n a m i c l inker/loader
R e m a p D L L routine m
Data/Text

D L L routine

j r m
a. First call to D L L routine

T e x t

j a l

ciT"
j r

Data

B]

T e x t

D L L routine

j r m
b. Subsequent calls to D L L routine

FIGURE 2.22 Dynamically linked library via lazy procedure linkage, (a) Steps for The first
Time a call is made To the DLL routine, (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will sec in Chapter 5, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.

Figure 2.23 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled first
to instructions that are easy to interpret: the Java bytecode instruction set (see
IS Section 2.15 on the CD). This instruction set is designed to be close to the
Java language so that this compilation step is trivial. Virtually no optimizations
are performed. Like the C compiler, the Java compiler checks the types of data
and produces the proper operation for each type. Java programs are distributed
in the binary version of these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There
is no need for a separate assembly step since either the translation is so simple that
the compiler fills in the addresses or JVM finds them at runtime.

Java b y t e c o d e
Instruction from an
instruction set designed to
interpret Java programs.

Java V i r t u a l M a c h i n e
(J V M) The program that
interprets Java bytecodes.

148 Chapter 2 Instructions: Language of the Computer

FIGURE 2.23 A translation hierarchy for Java. A Java program is first compiled into a binary version
of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run on the
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while
the program is running. To achieve greater performance, the J VM can invoke the JIT compiler, which selectively
compiles methods into the native machine language of the machine on which it is running.

Just In Time compiler
(J IT) The name
commonly given to a
compiler that operates at
runtime, translating the
interpreted code segments
into the native code of the
computer.

Check
Yourself

The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most people could write and run Java programs shortly
after Java was announced. Today, Java virtual machines are found in hundreds of
millions of devices, in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances
in performance of the 1980s and 1990s made interpretation viable for many
important applications, but the factor of 10 slowdown when compared to tradi-
tionally compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the "hot" methods are and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers invent
betters ways to compile Java on the fly, the performance gap between Java and C or
C T T is closing. @ Section 2.15 on the CD goes into much greater depth on the
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most
important for the designers of Java?

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

2.13 A C Sort Example to Put It All Together 149

2.13 A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have
no idea what a full assembly language program looks like. In this section, we derive
the MIPS code from two procedures written in C: one to swap array elements and
one to sort them.

void swap(int v[] , int k)
1

int temp;
temp = v[k];
v[k] = v[k+l] ;
v[k+l] = temp:

FIGURE 2.24 A C procedure that swaps t w o locations in memory. This subsection uses this
procedure in a sorting example.

The Procedure swap
Let's start with the code for the procedure swap in Figure 2.24. This procedure
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap

As mentioned on pages 112-113, the MIPS convention on parameter passing is to
use registers $a0, $ a l , $a2, and $a3. Since swap has just two parameters, v and
k, they will be found in registers $a0 and S a l . The only other variable is temp,
which we associate with register StO since swap is a leaf procedure (see page 116).

150 Chapter 2 Instructions: Language of the Computer

This register allocation corresponds to the variable declarations in the first part of
the swap procedure in Figure 2.24.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v [k] :
v [k] = v [k + l] ;
v [k + l] = temp;

Recall that the memory address for MIPS refers to the byte address, and so words
are really 4 bytes apart. ITence we need to multiply the index k by 4 before adding it
to the address. Forgetting tJiat sequential word addresses differ by 4 instead of by 1 is
a common mistake in assembly language programming. Hence the first step is to get
the address of v [k] by multiplying k by 4 via a shift left by 2:

s l l S t l , S a l , 2 # reg S t l = k * 4
add S t l , S a O , S t l # reg S t l = v + (k * 4)

reg S t l has t h e a d d r e s s of v [k]

Now we load v [k] using S t l , and then v [k+1] by adding 4 to S t l :

lw StO, O (S t l) # reg StO (temp) = v [k]
lw $12 , 4 (S t l) # reg S t2 = v[k + 1]

r e f e r s to n e x t e l e m e n t of v

Next we store StO and S t 2 to the swapped addresses:

sw S t 2 , O (S t l) # v [k] = reg S t 2
sw StO, 4 (S t l) # v [k T i] = reg StO (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers used
within swap. Since we are not using saved registers in this leaf procedure, there is
nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and
the return jump. To make it easier to follow, we identify in Figure 2.25 each block
of code with its purpose in the procedure.

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language,
we'll try a second, longer example. In this case, we'll build a routine that calls the
swap procedure. This program sorts an array of integers, using bubble or exchange
sort, which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C

2.13 A C Sort Example to Put It All Together 1 5 1

Procedure body

swap: si 1 $ t l . S a l . 2 // reg S t l = k * 4
add $ t l . SaO. $11 // reg S t l = v + (k * 4)

i t reg S t l has t h e a d d r e s s o f v [k]
lw S t O . O (S t l) it reg StO (temp) = v [k]
lw S t 2 , 4 (S t l) it reg S t 2 = v[k + 1]

i t r e f e r s to n e x t e l e m e n t of v
sw S t 2 . O (S t l) it v [k] = reg S t 2
sw StO, 4 ($ 1 1) it v [k + l] = reg StO (t e m p)

| Procedure return

- j r Sra i t r e t u r n to c a l l i n g r o u t i ne

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24.

version of the program. Once again, we present this procedure in several steps,
concluding with the full procedure.

void s o r t (i n t v [] , i n t n)
I

int i . j ;
for (i = 0: i < n; i += 1) 1

f o r (j = i - 1 : j >= 0 && v [j] > v [j + 1] ; j -= 1) I
s w a p (v . j) ;

I

FIGURE 2.26 A C procedure that performs a sort on the array v.

Register Allocation for s o r t

The two parameters of the procedure s o r t , v and n, are in the parameter registers
SaO and S a l , and we assign register $ s 0 to i and register $ S1 to j.

Code for the Body of the Procedure s o r t

The procedure body consists of two nested for loops and a call to swap that
includes parameters. Lets unwrap the code from the outside to the middle.

The first translation step is the first for loop:

f o r (i = 0 ; i < n; i T - l) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

move SsO, S z e r o # i = 0

1 5 2 Chapter 2 Instructions: Language of the Computer

(Remember that move is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 141.) It also takes
just one instruction to increment i, the last part of the for statement:

addi $ s 0 , $ s 0 , 1 # i += 1

The loop should be exited if i < n is not true or, said another way, should be exited
if i > n. The set on less than instruction sets register $ 10 to I i f $ s 0 < $ a l a n d t o 0
otherwise. Since we want to test if $ s 0 > $a 1, we branch if register $ t 0 is 0. This
test takes two instructions:

f o r l t s t : s i t $ t 0 , $ s 0 , Sa l # reg StO = 0 if SsO > Sa l (i > n)
beq StO, S z e r o , e x i t l # go to e x i t l i f SsO > S a l (i > n)

The bottom of the loop just jumps back to the loop test:

j f o r l t s t # jump to t e s t o f o u t e r l o o p
e x i t l :

The skeleton code of the first for loop is then

move SsO, Szero # i = 0
f o r l t s t : s i t StO, SsO, Sal # reg StO = 0 if SsO > Sal (i > n)

beq StO, S z e r o . e x i t l # go to e x i t l if SsO > Sal (i>n)

(body of f i r s t f o r loop)

addi SsO, SsO, 1 # i += 1
j f o r l t s t // jump to t e s t of o u t e r loop

exi t l :

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

f o r (j = i - 1 ; j >= 0 && v [j] > v [j + 1] ; j - = 1) {

The initialization portion of this loop is again one instruction:

addi S s l , SsO, -1 # j = i - 1

The decrement of j at the end of the loop is also one instruction:

addi S s l , S s l , -1 # j — 1

The loop test has two parts. We exit the loop if either condition fails, so the first test
must exit the loop if it fails (j < 0):

f o r 2 t s t : s i t i StO, S s l , 0 # reg StO = 1 if Ss l < 0 (j < 0)
bne StO, Szero, e x i t 2 # go to e x i t 2 if Ss l < 0 (j < 0)

This branch will skip over the second condition test. If it doesn't skip, j > 0.

2.13 A C Sort Example to Put It All Together 153

The second test exits if v [j] > v [j T 1] is not true, or exits if v[j] <
v [j + 1]. First we create the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:

s l l S t l , $ s l , 2 # reg S t l = j * 4
add S t 2 , SaO, S t l # reg S t2 = v + (j * 4)

Now we load v [j]:

lw $ 1 3 , 0 ($ t 2) # reg S t 3 = v [j]

Since we know that the second element is just the following word, we add 4 to the
address in register $ 12 to get v [j + 1]:

lw $ t 4 , 4 ($ 1 2) # reg S t 4 = v [j t 1]

The test of v [j] < v [j t 1] is the same as v [j + 1] > v [j], so the two
instructions of the exit test are

s i t StO, $ 1 4 , $13 # reg StO = 0 i f S t4 > $ t 3
beq StO, S z e r o , e x i t 2 # go to e x i t 2 i f S t 4 > S t 3

The bottom of the loop jumps back to the inner loop test:

j f o r 2 t s t # jump to t e s t of i n n e r loop

Combining the pieces, the skeleton of the second for loop looks like this:

addi S s l , SsO, -1 # j = i - 1
f o r 2 t s t : s i t i StO, S s l , 0 # reg StO = 1 if Ssl < 0 (j < 0)

bne StO, Szero, ex i t2 # go to ex i t2 if Ssl < 0 (j < 0)
s l l S t l , S s l , 2 # reg S t l - j * 4
add S t2 , SaO, S t l # reg St2 = v T (j * 4)
lw S t 3 . 0 ($ t 2) # reg St3 = v [j]
lw S t 4 . 4 ($12) # reg St4 = v [j + 1]
s i t StO. S t4 , St3 # reg StO = 0 i f St4 > St3
beq StO, Szero, e x i t 2 # go to e x i t 2 if St4 > St3

(body of second for loop)

exi t2 :

addi S s l , S s l , -1 # j -= 1
j f o r 2 t s t # jump to t e s t of inner loop

The Procedure Call in s o r t
The next step is the body of the second for loop:

s w a p (v , j) ;

Calling swap is easy enough:

j a l swap

154 Chapter 2 Instructions: Language of the Computer

Passing Parameters in s o r t
The problem comes when we want to pass parameters because the s o r t procedure
needs the values in registers $a0 and $a l ,yet the swap procedure needs to have its
parameters placed in those same registers. One solution is to copy the parameters
for s o r t into other registers earlier in the procedure, making registers SaO and
S a l available for the call of swap. (This copy is faster than saving and restoring on
the stack.) We first copy SaO and S a l into $s2 and Ss3 during the procedure:

m o v e S s 2 , S a O # c o p y p a r a m e t e r S a O i n t o $ s 2
m o v e S s 3 , S a l # c o p y p a r a m e t e r S a l i n t o S s 3

Then we pass the parameters to swap with these two instructions:

m o v e S a O , $ s 2 # f i r s t s w a p p a r a m e t e r i s v
m o v e S a l , S s l # s e c o n d s w a p p a r a m e t e r i s j

Preserving Registers in s o r t
The only remaining code is the saving and restoring of registers. Clearly, we must
save the return address in register $ r a, since so rt is a procedure and is called itself.
The s o r t procedure also uses the saved registers S s O , S s l , S s 2 , and S s 3 , so they
must be saved. The prologue of the s o r t procedure is then

a d d i S s p , S s p , - 2 0 # m a k e r o o m o n s t a c k f o r 5 r e g i s t e r s
SW S r a , 1 6 ($ s p) # s a v e S r a o n s t a c k
SW S s 3 , 1 2 (S s p) # s a v e S s 3 o n s t a c k
SW S s 2 , 8 (S s p) # s a v e S s 2 o n s t a c k
SW S s l , 4 (S s p) # s a v e S s l o n s t a c k
SW S s O , O (S s p) # s a v e S s O o n s t a c k

The tail of the procedure simply reverses all these instructions, then adds a j r to
return.

The Full Procedure s o r t
Now we put all the pieces together in Figure 2.27, being careful to replace references
to registers SaO and S a l in the for loops with references to registers Ss2 and S s 3 .
Once again, to make the code easier to follow, we identify each block of code with
its purpose in the procedure. In this example, nine lines of the s o r t procedure in
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining.
Instead of passing arguments in parameters and invoking the code with a j a 1 instruction,
the compiler would copy the code from the body of the swap procedure where the call
to swap appears in the code. Inlining would avoid four instructions in this example. The
downside of the inlining optimization is that the compiled code would be bigger if the
inlined procedure is called from several locations. Such a code expansion might turn
into lower performance if it increased the cache miss rate; see Chapter 5.

2.13 A C Sort Example to Put It All Together 1 5 5

Saving registers

s o r t : addi S s p . S s p . -20 //make room on s t a c k for 5 r e g i s t e r s
sw Sra , 16($sp)// save Sra on s t a c k
sw S s 3 , 1 2 ($ s p) it save Ss3 on s t a c k
sw Ss2 , 8(Ssp)// save Ss2 on s t a c k
sw S s l . 4(Ssp)ir save Ss l on s t a c k
sw SsO, 0($sp)i/ save SsO on s t a c k

Procedure body

Move parameters
move
move

Ss2 , SaO // copy parameter SaO i n t o Ss2 (save SaO)
S s 3 . Sal // copy parameter Sal i n t o Ss3 (save S a l)

move SsO, Szero// 1 = 0
Outer loop f o r l t s t si tS tO, SsO, $s3 i/ reg StO = 0 if SsO S Ss3 (i 5 n) Outer loop

beq StO, S z e r o . exitl// go to e x i t l if SsO S Ss3 (i $ n)
addi S s l , SsO. -1//j = i - 1

f o r 2 t s t
bne
s l l

si t i StO, S s l , 0 # reg StO - 1 i f Ss l < 0 (j < 0)
StO, S z e r o . e x i t2 i t go to e x i t 2 if S s l < 0 (j < 0)
S t l . S s l . 2it reg S t l = j * 4

Inner loop add
lw
lw
s i t
beq

St2 , Ss2 , S t l # reg St2 - v + (j * 4)
S t3 , 0 (S12) // reg S t3 = v [j]
S t 4 , 4(S12)// reg St4 = v [j + 1]
StO. S t 4 , St3 it reg StO = 0 i f St4 $ S t3
StO, S z e r o . exit2// go to e x i t 2 i f St4 § S t3

Pass parameters
and call

move
move

S a O , S s 2 //1st parameter of swap is v (o ld SaO)
S a l , S s l it 2nd parameter of swap i s j Pass parameters

and call j a l swap it swap code shown in Figure 2.25
Inner loop addi

j
S s l . S s l . -1// j -= 1
f o r 2 t s t it jump to t e s t of inner 1 oop

Outer loop exi t 2 : addi
j

SsO. SsO. 1 it i += 1
f o r l t s t it jump to t e s t of outer 1 oop

Restoring registers

e x i t l : lw SsO. 0(Ssp) it r e s t o r e SsO from s t a c k
lw S s l , 4(Ssp)// r e s t o r e Ss l from s t a c k
lw S s 2 , 8(Ssp)// r e s t o r e Ss2 from s t a c k
lw S s 3 , 1 2 (S s p) i t r e s t o r e Ss3 from s t a c k
lw S r a , 1 6 (S s p) //restore Sra from s t a c k
addi S s p , S s p , 20 i t r e s t o r e s t a c k p o i n t e r

Procedure return

jr Sra # re turn to c a l l i ng rout i ne

FIGURE 2.27 MIPS assembly version of procedure s o r t in Figure 2.26.

1 5 6 Chapter 2 Instructions: Language of the Computer

Understanding
Program

Performance

Figure 2.28 shows the impact of compiler optimization on sort program perfor-
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti-
mized code has the best CPI, and 01 optimization has the lowest instruction
count, but 03 is the fastest, reminding us that time is the only accurate measure of
program performance.

Figure 2.29 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times
faster than the unoptimized C and within a factor of 1.13 of the highest optimized
C code. (US Section 2.15 on the CD gives more details on interpretation versus
compilation of Java and the Java and MIPS code for Bubble Sort.) The ratios
aren't as close for Quicksort in Column 5, presumably because it is harder to
amortize the cost of runtime compilation over the shorter execution time. The
last column demonstrates the impact of a better algorithm, offering three orders
of magnitude a performance increases by when sorting 100,000 items. Even
comparing interpreted Java in Column 5 to the C compiler at highest optimization
in Column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 x 2468, or 123
times faster than the unoptimized C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments
in case they need to be stored, so in reality they always decrement $sp by 16 to make
room for all four argument registers (16 bytes). One reason is that C provides a va ra rg
option that allows a pointer to pick, say, the third argument to a procedure. When the
compiler encounters the rare v a r a r g , it copies the four argument registers onto the
stack into the four reserved locations.

Relative Clock cycles Instruction count
gcc optimization performance (millions) (mill ions) CPI

None 1.00 158,615 114,938 1.38

01 (medium) 2.37 66,990 37,470 1.79

02 (full) 2.38 66,521 39,993 1.66

03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort . The programs sorted 100,000 words with the array initialized To random values.
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2 GB
of PC2100 DDR SDRAM. It used Linux version 2.4.20.

2.14 Arrays versus Pointers 1 5 7

Language Execut ion m e t h o d Optimization
Bubble S o r t relative

performance
Quicksort relative

performance
S p e e d u p Quicksort

vs. Bubble S o r t

C Compiler None 1.00 1.00 2468

Compiler 01 2.37 1.50 1562

Compiler 02 2.38 1.50 1555

Compiler 03 2.41 1.91 1955

Java Interpreter - 0.12 0.05 1050

JIT compiler - 2.13 0.29 338

FIGURE 2.29 Performance of t w o sort algorithms in C and Java using interpretation and optimizing compilers relative
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and
execution option. These programs were run on the same system as Figure 2.28. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspol
version 1.3.1.

r # l j Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing
assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clear a sequence of words in memory: one using
array indices and one using pointers. Figure 2.30 shows the two C procedures.

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We'll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear
Let's start with the array version, cl e a r l , focusing on the body of the loop and
ignoring the procedure linkage code. We assume that the two parameters a r r a y and
s i z e are found in the registers $a0 and $ a 1, and that i is allocated to register $ t 0 .

The initialization of i, the first part of the for loop, is straightforward:

m o v e S t O , S z e r o # i = 0 (r e g i s t e r S t O = 0)

To set a r r a y [i] to 0 we must first get its address. Start by multiplying i by 4 to
get the byte address:

l o o p l : s l l S t l , S t O , 2 # S t l = i * 4

Since the starting address of the array is in a register, we must add it to the index
to get the address of a r ray [i] using an add instruction:

a d d S t 2 , S a O , S t l # S t 2 = a d d r e s s o f a r r a y f i]

Finally, we can store 0 in that address:

1 5 8 Chapter 2 Instructions: Language of the Computer

c l e a r K i n t a r r a y [] , i n t s i z e)
I

i n t i ;
f o r (i = 0 ; i < s i z e ; i += 1)

a r r a y [i] = 0 ;

c 1 e a r 2 (i n t * a r r a y , i n t s i z e)
I

i n t * p ;
f o r (p = & a r r a y [0] ; p <

& a r r a y [s i z e] ; p = p + 1)
* p = 0 ;

FIGURE 2.30 Two C procedures for setting an array to all zeros. CI e a r l uses indices, while
c l e a r 2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. The
address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The declara-
tions declare that a r r a y and p are pointers to integers. The first part of the for loop in cl e a r 2 assigns
the address of the first element of a r r a y to the pointer p. The second part of the for loop tests to see if the
pointer is pointing beyond the last element of a r ray. Incrementing a pointer by one, in the last part of the
for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS
integer. The assignment in the loop places 0 in the object pointed to by p.

s w $ z e r o , 0 ($ t 2) # a r r a y f i] = 0

T h i s i n s t r u c t i o n i s t h e e n d o f t h e b o d y o f t h e l o o p , s o t h e n e x t s t e p i s t o i n c r e m e n t i :

a d d i $ t O , $ t O , l # i = i t 1

T h e l o o p tes t c h e c k s i f i i s less t h a n s i z e :

s i t $ 1 3 , $ t 0 , $ a l # $ t 3 = (i < s i z e)
b n e $ t 3 . S z e r o , 1 o o p l # i f (i < s i z e) g o t o l o o p l

W e h a v e n o w s e e n all t h e p i e c e s o f t h e p r o c e d u r e . H e r e i s t h e M I P S c o d e f o r

c l e a r i n g a n a r r a y u s i n g i n d i c e s :

m o v e S t O , S z e r o # i = 0
Sll S t l , S t O , 2 # S t l = i * 4
a d d $ 1 2 , S a O , S t l # S t 2 = a d d r e s s o f a r r a y [i]
S W S z e r o , 0 ($ 1 2) # a r r a y [i] = 0
a d d i s t o . s t o . i # i = i T 1

S i t $ t 3 , $ t O , S a l # S t 3 = (i < s i z e)
b n e S t 3 , S z e r o , 1 o o p l # i f (i < s i z e) g o t o l o o p l

(T h i s c o d e w o r k s a s l o n g a s s i z e i s g r e a t e r t h a n 0 ; A N S I C r e q u i r e s a tes t o f s ize

b e f o r e t h e l o o p , b u t w e ' l l s k i p t h a t l e g a l i t y h e r e .)

2.14 Arrays versus Pointers 159

P o i n t e r V e r s i o n off C l e a r

The second procedure that uses pointers allocates the two parameters a r r a y and
s i z e to the registers $a0 and $ a 1 and allocates p to register $ 10. The code for
the second procedure starts with assigning the pointer p to the address of the first
element of the array:

m o v e $ t 0 , $ a 0 # p = a d d r e s s o f a r r a y [0]

The next code is the body of the for loop, which simply stores 0 into p:

T o o p 2 : s w $ z e r o , 0 ($ t 0) # M e m o r y f p] = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next word:

a d d i S t O , S t O , 4 # p = p T 4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of a r r a y . Start with multiplying si ze by 4 to get its byte address:

s l l S t l , S a l . 2 # S t l = s i z e * 4

and then we add the product to the starting address of the array to get the address
of the first word after the array:

a d d S t 2 , S a O , S t l # S t 2 = a d d r e s s o f a r r a y f s i z e]

The loop test is simply to see if p is less than the last element of a r r a y :

s i t S t 3 . S t O . S t 2 # S t 3 = (p < & a r r a y [s i z e])
b n e S t 3 , S z e r o , 1 o o p 2 # i f (p < & a r r a y [s i z e]) g o t o l o o p 2

With all the pieces completed, we can show a pointer version of the code to zero
an array:

m o v e S t O . S a O # p = a d d r e s s o f a r r a y C O]
1 o o p 2 : s w S z e r o , 0 (S t O) # M e m o r y C p] = 0
a d d i S t O . S t O . 4 # p = p + 4
s l l S t l , S a l , 2 # S t l = s i z e * 4
a d d S t 2 , S a O , S t l # S t 2 = a d d r e s s o f a r r a y f s i z e]
s i t S t 3 . S t O . S t 2 # S t 3 = (p < & a r r a y [s i z e])
b n e S t 3 , S z e r o J o o p 2 # i f (p < & a r r a y [s i z e]) g o t o l o o p 2

As in the first example, this code assumes s i ze is greater than 0.

160 Chapter 2 Instructions: Language of the Computer

Note that this program calculates the address of the end of the array in every
iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

m o v e $ t O , $ a O
s l l $ t l , $ a l , 2
a d d $ t 2 , $ a 0 , S t l

1 o o p 2 : s w S z e r o , 0 (S t O)
a d d i S t O , S t O . 4
s i t $ t 3 , S t O , $ t 2
b n e S t 3 , S z e r o , l o o p 2

p = a d d r e s s o f a r r a y [0]
S t l = s i z e * 4
S t 2 = a d d r e s s o f a r r a y f s i z e]
M e m o r y [p] = 0
p = p + 4
S t 3 = (p < & a r r a y [s i z e])
i f (p < & a r r a y [s i z e]) g o t o l o o p 2

Comparing the Two Versions of Clear
Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are
highlighted):

move $ t O . S z e r o # i = 0 move

l o o p l : s l l S t l . S t O . 2 // S t l = i * 4 s l l

add S t 2 , $ a 0 , $ t l # $ t 2 = & a r r a y [i] add

sw S z e r o , 0 ($ t 2) // a r r a y [i] = 0 l o o p 2 : s w

addi S t O . S t O . l # 1 = i + 1 addi

s i t S t 3 . S t O . S a l // S t3 = (i < s i z e) s i t

bne $ t 3 , S z e r o . 1 oopl// if () go to l o o p l bne

StO,SaO // p = & a r r a y [0]

S t l . S a l , 2 // S t l = s i z e * 4

S t 2 , S a O , S t l # $12 = & a r r a y [s i z e]

S z e r o , 0 (StO) // Memory[p] = 0

S t O , S t O , 4 # p = p + 4

S t 3 , StO, S12 // St3=(p<&array[s i z e])

S t3 ,Szero , loop2// i f () go to loop2

The version on the left must have the "multiply" and add inside the loop
because i is incremented and each address must be recalculated from the new
index. The memory pointer version on the right increments the pointer p directly.
The pointer version moves them outside the loop, thereby reducing the instruc-
tions executed per iteration from 6 to 4. This manual optimization corresponds
to the compiler optimization of strength reduction (shift instead of multiply)
and induction variable elimination (eliminating array address calculations
within loops). US Section 2.15 on the CD describes these two and many other
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that s i z e
is greater than 0. One way would be to add a jump just before the first instruction of the
loop to the si t instruction.

2.16 Real Stuff: ARM Instructions 161

People used to be taught to use pointers in C to get greater efficiency than that
available with arrays: "Use pointers, even if you can't understand the code." Mod-
ern optimizing compilers can produce code for the array version that is just as
good. Most programmers today prefer that the compiler do the heavy lifting.

Understanding
Program
Performance

Advanced Material: Compiling C and
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java is
executed. Because the compiler will significantly affect the performance of a com-
puter, understanding compiler technology today is critical to understanding per-
formance. Keep in mind that the subject of compiler construction is usually taught
in a one- or two-semester course, so our introduction will necessarily only touch
on the basics.

The second part of this section is for readers interested in seeing how an
objected oriented language like Java executes on a MIPS architecture. It shows the
Java bytecodes used for interpretation and the MIPS code for the Java version of
some of the C segments in prior sections, including Bubble Sort. It covers both the
Java Virtual Machine and JIT compilers.

The rest of this section is on the CD.

object oriented
language A
programming language
that is oriented around
objects rather than
actions, or data versus
logic.

2.16 Real Stuff: ARM Instructions

ARM is the most popular instruction set architecture for embedded devices, with
more than three billion devices per year using ARM. Standing originally for the
Acorn RISC Machine, later changed to Advanced RISC Machine, ARM came out
the same year as MIPS and followed similar philosophies. Figure 2.31 lists the
similarities. The principle difference is that MIPS has more registers and ARM has
more addressing modes.

There is a similar core of instruction sets for arithmetic-logical and data transfer
instructions for MIPS and ARM, as Figure 2.32 shows.

Addressing Modes
Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS,
ARM does not reserve a register to contain 0. Although MIPS has just three simple
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex
calculations. For example, ARM has an addressing mode that can shift one register

1 6 2 Chapter 2 Instructions: Language of the Computer

A R M M I P S

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR x 32 bits 31 GPR x 32 bits

I/O Memory mapped Memory mapped

FIGURE 2.31 Similarities in A R M and MIPS instruction sets.

Instruction name A R M M I P S

Add add addu, addiu

Add (trap if overflow) adds; swivs add

Subtract sub subu

Subtract (trap if overflow) subs; swivs sub

Multiply mul mult, multu

Divide div, divu

Register-register
And and and

Register-register
Or orr or

Xor eor xor

Load high part register — lui

Shift left logical Isl1 sllv, sll

Shift right logical Isr1 srlv, srl

Shift right arithmetic asr1 srav, sra

Compare cmp, cmn.tst , teq slt/i, slt/iu

Load byte signed Idrsb lb

Load byte unsigned Idrb Ibu

Load halfword signed Idrsh Ih

Load halfword unsigned Idrh Ihu

Load word Idr Iw
Data transfer Store byte strb sb

Store halfword strh sh

Store word str sw

Read, write special registers mrs, msr move

Atomic Exchange swp, swpb ll;sc

FIGURE 2.32 A R M register-register and data transfer instructions equivalent to MIPS
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instruc-
tions. If there are several choices of instructions equivalent to the MIPS core, they are separated by commas.
ARM includes shifts as part of every data operation instruction, so the shifts with superscript 1 are just a
variation of a move instruction, such as 1 s r ! . Note that ARM has no divide instruction.

2.16 Real Stuff: A R M Instructions 1 6 3

by any amount, add it to the other registers to form the address, and then update
one register with this new address.

Addressing mode A R M v.4 M I P S

Register operand X X

Immediate operand X X

Register + offset {displacement or based) X X

Register + register (indexed) x —

Register + scaled register (scaled) x —

Register + offset and update register X —

Register + register and update register X —

Autoincrement, autodecrement x —

PC-relative data X —

FIGURE 2.33 S u m m a r y of data addressing modes. ARM has separate register indirect and register
+ offset addressing modes, rather Than just putting 0 in the offset of the latter mode. To get greater addressing
range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word.

Compare and Conditional Branch
MIPS uses the contents of registers to evaluate conditional branches. ARM uses
the traditional four condition code bits stored in the program status word:
negative, zero, carry, and overflow. They can be set on any arithmetic or logical
instruction; unlike earlier architectures, this setting is optional on each instruc-
tion. An explicit option leads to fewer problems in a pipelined implementation.
ARM uses conditional branches to test condition codes to determine all possible
unsigned and signed relations.

CMP subtracts one operand from the other and the difference sets the condi-
tion codes. Compare negative (CMN) adds one operand to the other, and the sum
sets the condition codes. TST performs logical AND on the two operands to set all
condition codes but overflow, while TEQ uses exclusive OR to set the first three
condition codes.

One unusual feature of ARM is that every instruction has the option of execut-
ing conditionally, depending on the condition codes. Every instruction starts with
a 4-bit field that determines whether it will act as a no operation instruction (nop)
or as a real instruction, depending on the condition codes. Hence, conditional
branches are properly considered as conditionally executing the unconditional
branch instruction. Conditional execution allows avoiding a branch to jump over a
single instruction. It takes less code space and time to simply conditionally execute
one instruction.

Figure 2.34 shows the instruction formats for ARM and MIPS. The principal
differences are the 4-bit conditional execution field in every instruction and the
smaller register field, because ARM has half the number of registers.

1 6 4 C h a p t e r 2 I n s t r u c t i o n s : L a n g u a g e o f t h e C o m p u t e r

Register-register

MIPS

31 28 27 20 19 16 15 12 11 4 3 0

Opx4 Op'1 Rs14 RdJ Opx" Rs24

31 26 25 21 20 16 15 11 10 6 5 0

Op" Rs15 Rs25 Rd5 Const5 Opx"

31 28 27 20 19 16 15 12 11

Opx' Op' Rs14 Rd4 Const'2

Data transfer 26 25 21 20 16 15

MIPS Op" Rs15 Rd5 Const'6

31 28 27 24 23

Opx* Op' Const*

Branch

Jump/Call

26 25 21 20 16 15

Op0 Rs15 ^Opx\Rs25 Const10

31 28 27 24 23 0

Opx4 Op4 Const*4

31 26 25 0

MIPS Consr'

• Opcode • Register • Constant

F I G U R E 2 . 3 4 I n s t r u c t i o n f o r m a t s , A R M , a n d M I P S . The differences result from whether the
architecture has 16 or 32 registers.

Unique Features of ARMI
Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since
it does not have a dedicated register for 0, it has separate opcodes to perform
some operations that MIPS can do with $ z e r o . In addition, ARM has support for
multiword arithmetic.

ARM's 12-bit immediate field has a novel interpretation. The eight least-
significant bits are zero-extended to a 32-bit value, then rotated right the number
of bits specified in the first four bits of the field multiplied by two. One advantage is
that this scheme can represent all powers of two in a 32-bit word. Whether this split
actually catches more immediates than a simple 12-bit field would be an interesting
study.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted before
being operated on. The shift options are shift left logical, shift right logical, shift
right arithmetic, and rotate right.

2.16 Real Stuff: ARM Instructions 1 6 5

Name Definition ARM v.4 MIPS

Load immediate Rd = Imm mov addi, SO,

Not Rd = ~(Rsl) mvn nor, SO,

Move Rd = R s l mov or, $0,

Rotate right Rd = Rs i » i

Rdo. • • 1-1 = ̂ S31-i. . . 31
ror

And not Rd = R s l & ~(Rs2) bic

Reverse subtract Rd = Rs2 - R s l rsb, rsc

Support"for multiword
integer add

CarryOut, Rd = Rd + R s l +
OldCarryOut

adcs —

Support for multiword
integer sub

CarryOut, Rd = Rd - R s l +
OldCarryOut

sbcs —

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS.

ARM also has instructions to save groups of registers, called block loads and
stores. Under control of a 16-bit mask within the instructions, any of the 16 regis-
ters can be loaded or stored into memory in a single instruction. These instructions
can save and restore registers on procedure entry and return. These instructions
can also be used for block memory copy, and today block copies are the most
important use of this instruction.

Heal Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than
those found in ARM and MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can occur at
the cost of simplicity, increasing the time a program takes to execute because the
instructions are slower. This slowness maybe the result of a slower clock cycle time
or of requiring more clock cycles than a simpler sequence.

The path toward operation complexity is thus fraught with peril. To avoid these
problems, designers have moved toward simpler instructions. Section 2.18 dem-
onstrates the pitfalls of complexity.

Evolution of the Intel x§6
ARM and MIPS were the vision of single small groups in 1985; the pieces of these
architectures fit nicely together, and the whole architecture can be described suc-
cinctly. Such is not the case for the x86; it is the product of several independent
groups who evolved the architecture over 30 years, adding new features to the
original instruction set as someone might add clothing to a packed bag. Here are
important xS6 milestones.

Beauty is altogether in
the eye of the beholder.

Margaret Wolfe
Hungerford, Molly Bawn,
1877

166 Chapter 2 Instructions: Language of the Computer

general-purpose register
(GPR) A register that can
be used for addresses or
for data with virtually any
instruction.

• 1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 5), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

• 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to
a 32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

• 1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium
Pro in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 7) and a conditional move instruction.

• 1997: After the Pentium and Pentium Pro were shipping, Intel announced
that it would expand the Pentium and the Pentium Pro architectures with
MMX (Multi Media Extensions). This new set of 57 instructions uses the
floating-point stack to accelerate multimedia and communication applica-
tions. M M X instructions typically operate on multiple short data elements
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 7). Pentium II did not introduce any new instructions.

• 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single precision
floating-point data type. Hence, four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE includes cache
prefetch instructions plus streaming store instructions that bypass the caches
and write directly to memory.

• 2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are

• 1978: The Intel 8086 architecture was announced as an assembly language-
compatible extension of the then successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture.

• 1980: The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead
of using registers, it relies on a stack (see US Section 2.20 and Section 3.7).

2.16 Real Stuff: ARM Instructions 167

versions of existing MMX and SSE instructions that operate on 64 bits of
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a different target for floating-point operations
than the unique stack architecture. Compilers can choose to use the eight SSE
registers as floating-point registers like those found in other computers. This
change boosted the floating-point performance of the Pentium 4, the first
microprocessor to include SSE2 instructions.

• 2003: A company other than Intel enhanced the x86 architecture this time.
AMD announced a set of architectural extensions to increase the address space
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and increases the number of 128-bit SSE registers
to 16. The primary ISA change comes from adding a new mode called long
mode that redefines the execution of all x86 instructions with 64-bit addresses
and data. To address the larger number of registers, it adds a new prefix to
instructions. Depending how you count, long mode also adds four to ten new
instructions and drops 27 old ones. PC-relative data addressing is another
extension. AMD64 still has a mode that is identical to x86 (legacy mode) plus a
mode that restricts user programs to x86 but allows operating systems to use
AMD64 (compatibility mode). These modes allow a more graceful transition to
64-bit addressing than the HP/Intel IA-64 architecture.

• 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMD64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating-point
conversion, and thread synchronization (see Section 2.11). AMD will offer
SSE3 in subsequent chips and it will almost certainly add the missing atomic
swap instruction to AMD64 to maintain binary compatibility with Intel.

• 2006: Intel announces 54 new instructions as part of the SSE4 instruction set
extensions. These extensions perform tweaks like sum of absolute differences,
dot products for arrays of structures, sign or zero extension of narrow data to
wider sizes, population count, and so on. They also added support for virtual
machines (see Chapter 5).

• 2007: AMD announces 170 instructions as part of SSE5, including 46 instruc-
tions of the base instruction set that adds three operand instructions like
MIPS.

• 2008: Intel announces the Advanced Vector Extension that expands the SSE
register width from 128 to 256 bits, thereby redefining about 250 instructions
and adding 128 new instructions.

168 Chapter 2 Instructions: Language of the Computer

This history illustrates the impact of the "golden handcuffs" of compatibility on
the x86, as the existing software base at each step was too important to jeopardize
with significant architectural changes. If you looked over the life of the x86, on
average the architecture has been extended by one instruction per month!

Whatever the artistic failures of the x86, keep in mind that there are more instances
of this architectural family on desktop computers than of any other architecture,
increasing by more than 250 million per year. Nevertheless, this checkered ancestry
has led to an architecture that is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section with the
care you would need to write x86 programs; the goal instead is to give you familiarity
with the strengths and weaknesses of the world's most popular desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we
concentrate on the 32-bit subset that originated with the 80386, as this portion of
the architecture is what is used today. We start our explanation with the registers
and addressing modes, move on to the integer operations, and conclude with an
examination of instruction encoding.

x86 Registers and Data Addressing Modes

The registers of the 80386 show the evolution of the instruction set (Figure 2.36). The
80386 extended all 16-bit registers (except the segment registers) to 32 bits, prefixing
an E to their name to indicate the 32-bit version. We'll refer to them generically as
GPRs (general-purpose registers). The 80386 contains only eight GPRs. This means
MIPS programs can use four times as many and ARM twice as many.

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-
operand instructions. There are two important differences here. The x86 arith-
metic and logical instructions must have one operand act as both a source and a
destination; ARM and MIPS allow separate registers for source and destination.
This restriction puts more pressure on the limited registers, since one source regis-
ter must be modified. The second important difference is that one of the operands
can be in memory. Thus, virtually any instruction may have one operand in mem-
ory, unlike ARM and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of
addresses within the instruction. These so-called displacements can be 8 bits or 32 bits.

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.38 shows the x86 address-
ing modes and which GPRs cannot be used with each mode, as well as how to get
the same effect using MIPS instructions.

x86 Integer Operations
The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-bit
addresses and data, called quad words; we'll stick to the 80386 in this section.) The
data type distinctions apply to register operations as well as memory accesses.

2.16 Real Stuff: ARM Instructions 169

N a m e U s e

31

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended
to 32 bits and could also be used as general-purpose registers.

Source/dest inat ion operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions.
The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36
(not EIP or EFLAGS).

170 Chapter 2 Instructions: Language of the Computer

Mode Description
Register

restrictions M I P S equivalent

Register indirect Address is in a register. Not ESP or EBP l w S s O . O (S s l)

Based mode with 8- or 32-bit
displacement

Address is contents of base register plus
displacement.

Not ESP l w S s 0 , 1 0 0 ($ s l) # < = 1 6 - b i t
// di s p l a cement

Base plus scaled index The address is
Base + (2S c a l e x Index)

where Scale has the value 0 , 1 , 2, or 3.

Base: any GPR
Index: not ESP

mul S t O , $ s 2 , 4
add S t O , S t O . S s l
l w S s O . O (S t O)

Base plus scaled index with
8- or 32-bit displacement

The address is
Base + (2 S c a l e x Index) + displacement

where Scale has the value 0 , 1 , 2, or 3.

Base: any GPR
Index: not ESP

mul S t O , $ s 2 , 4
add S t O , S t O , S s l
l w SsO, 100($t0)// 0 1 6 - b i t

// di s p l ace inent

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent M I P S code. The Base plus Scaled
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode
would need two more instructions: a 1 ui to load the upper 16 bits of the displacement and an add to sum the upper address with the base
register S s l . (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are essentially identical
and we combine them here.)

Almost every operation works on both 8-bit data and on one longer data size. That
size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386
architects provided a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominates
most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus to support synchronization (see Section 2.11), or repeat
the following instruction until the register ECX counts down to 0. This last prefix
was intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal arith-
metic operations

3. Control flow, including conditional branches, unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare

2.16 Real Stuff: ARM Instructions 171

The first two categories are unremarkable, except that the arithmetic and logic
instruction operations allow the destination to be either a register or a memory
location. Figure 2.39 shows some typical x86 instructions and their functions.

Instruction Function

j e name i f equal (c o n d i ti on code) 1EIP=name1:
E IP -128 <= name< EIP+128

jmp name EIP=name

ca l 1 name S P = S P - 4 ; H [S P] = E I P + 5 ; E lP -name:

movw E B X . [E D I + 4 5] EBX-HCEDI+45]

push ESI S P = S P - 4 : M [S P] = E S I

pop EDI EDI=M[SP] ; SP-SP+4

add EAX.//6765 EAX= EAX+6765

t e s t EDX.//42 Set condition code (flags) with EDX and 42

mov s i H[E D I] = M [E S I] ;
E D I - E D I T 4 ; ESI=ES1+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations
appears in Figure 2.40. The CALL saves the E1P of the next instruction on the stack. (EIP is the Intel PC.)

Conditional branches on the x86 are based on condition codes or flags, like
ARM. Condition codes are set as a side effect of an operation; most are used to
compare the value of a result to 0. Branches then test the condition codes. PC-
relative branch addresses must be specified in the number of bytes, since unlike
ARM and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not com-
monly executed in most programs. They are often slower than equivalent software
routines (see the fallacy on page 174).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions
are available in both byte and word formats.

xS6 Instruction Encoding
Saving the worst for last, the encoding of instructions in the 80386 is complex,
with many different instruction formats. Instructions for the 80386 may vary from
I byte, when there are no operands, up to 15 bytes.

Figure 2.41 shows the instruction format for several of the example instructions in
Figure 2.39. The opcode byte usually contains a bit saying whether the operand is 8
bits or 32 bits. For some instructions, the opcode may include the addressing mode
and the register; this is true in many instructions that have the form "register =
register op immediate." Other instructions use a "postbyte" or extra opcode byte,
labeled "mod, reg, r/m," which contains the addressing mode information. This
postbyte is used for many of the instructions that address memory. The base plus
scaled index mode uses a second postbyte, labeled "sc, index, base."

172 Chapter 2 Instructions: Language of the Computer

Instruction Meaning

Control Conditional and unconditional brandies

j n z . j z Jump if condition to EIP + 8-bit offset; JNE (for JNZ) , JE (for J Z) are
alternative names

jmp Unconditional jump—8-bi t or 16-bit offset

c a l l Subroutine call—16-bit offset; return address pushed onto stack

r e t Pops return address from stack and jumps to it

1 oop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX * 0

Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

p u s h , pop Push source operand on stack; pop operand from stack top to a register

l e s Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

a d d , sub Add source to destination; subtract source from destination; register-memory
format

cinp Compare source and destination; register-memory format

s h l , s h r , r c r Shift left; shift logical right; rotate right with carry condition code as fill

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

t e s t Logical AND of source and destination sets condition codes

i n c , dec Increment destination, decrement destination

o r , x o r Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

1 ods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 S o m e typical operations on the x86. Many operations use register-memory format,
where either the source or the destination may be memory and the other may be a register or immediate
operand.

Figure 2.42 shows the encoding of the two postbyte address specifiers for both
16-bit and 32-bit mode. Unfortunately, to understand fully which registers and
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

x86 Conclusion
Intel had a 16-bit microprocessor two years before its competitors' more elegant
architectures, such as the Motorola 68000, and this head start led to the selection
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that
the x86 is more difficult to build than computers like ARM and MIPS, but the large

2.16 Real Stuff : ARM Instructions 173

a. JE E I P + displacement

4 4 8

J E
Cond i -

tion
Displacement

b . C A L L

8 32

C A L L Offset

c. M O V E B X , [EDI + 45]

6 1 1 8
MOV

r/m
Postbyte

Displacement

d . P U S H E S I

5 3

PUSH R e g

e . A D D E A X , #6765

4 3 1 32

ADD Reg w Immediate

f . T E S T E D X , #42

7 1 8 32

T E S T w Postbyte Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many
instructions contain the 1 -bit field w, which says whether the operation is a byte or a double word. The d field in
HOV is used in instructions that may move to or from memory and shows the direction of the move. The ADD
instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are either 8 bits or
32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit
mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-byte
prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and
using the scaled index mode specifier, which adds another byte.

market means AMD and Intel can afford more resources to help overcome the
added complexity. What the x86 lacks in style, it makes up for in quantity, making
it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural compo-
nents are not too difficult to implement, as AMD and Intel have demonstrated
by rapidly improving performance of integer programs since 1978. To get that
performance, compilers must avoid the portions of the architecture that are hard
to implement fast.

174 Chapter 2 Instructions: Language of the Computer

reg W = O w = 1 r / m m o d = O m o d = 1 m o d = 2 m o d = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL c x ECX 1 addr=BX+DI =ECX addras addr as addr as addras as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + displ6 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) Sl+disp8 (s/ty+dispS Sl+disp8 (s/bj+disp32 u

5 CH BP EBP 5 addr=DI =disp32 Dl+disp8 EBP+disp8 Dl+disp l6 EBP+disp32

6 DH SI ESI 6 addr=displ6 =ESI BP+disp8 ESI+disp8 BP+disp l6 ESI+disp32

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp l6 EDI+disp32

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386).
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m = 6
when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in
Figure 2.38. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

r ^ l j j Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel x86 is the prefixes that can modify the execution of
the following instruction. One prefix can repeat the following instruction until
a counter counts down to 0. Thus, to move data in memory, it would seem that
the natural instruction sequence is to use move with the repeat prefix to perform
32-bit memory-to-memory moves.

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to
memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times faster. A third version, which uses the
larger floating-point registers instead of the integer registers of the x86, copies at
about 2.0 times faster than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to understand
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory
hierarchy).

2.18 Fallacies and Pitfalls 175

This battle between compilers and assembly language coders is one situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some old C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today's C compilers
generally ignore such hints, because the compiler does a better job at allocation
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly
language are the longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axioms
of software engineering is that coding takes longer if you write more lines, and
it clearly takes many more lines to write a program in assembly language than
in C or Java. Moreover, once it is coded, the next danger is that it will become a
popular program. Such programs always live longer than expected, meaning that
someone will have to update the code over several years and make it work with new
releases of operating systems and new models of machines. Writing in higher-level
language instead of assembly language not only allows future compilers to tailor
the code to future machines, it also makes the software easier to maintain and
allows the program to run on more brands of computers.

Fallacy: The importance of commercial binary compatibility means successful
instruction sets don't change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86
architecture has grown dramatically. The average is more than one instruction per
month over its 30-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing
do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word can be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure that
includes a pointer to an array that is local to that procedure. Following the stack
discipline in Figure 2.12, the memory that contains the local array will be reused as
soon as the procedure returns. Pointers to automatic variables can lead to chaos.

176 Chapter 2 Instructions: Language of the Computer

Less is more.

Robert Browning,
Andrea del Sarto, 1855

i i i—i—i i i i i i i—i i i i i i i i—i i i i i i i
<&> <& oh c£> c$> csU <£> C? 5V J& K^ K^ ^ .5? ^ <£> c£> ncP n<S>

Year

FIGURE 2.43 Growth of x86 instruction set over time. While There is clear technical value to
some of these extensions, this rapid change also increases The difficulty for other companies to try to build
compatible processors.

2.19 Concluding Remarks

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for programs.
These principles allow a single machine to aid environmental scientists, financial
advisers, and novelists in their specialties. The selection of a set of instructions that
the machine can understand demands a delicate balance among the number of
instructions needed to execute a program, the number of clock cycles needed by
an instruction, and the speed of the clock. As illustrated in this chapter, four design
principles guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 registers
rather than many more.

2.19 Concluding Remarks 177

3. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and immediate
addressing for larger constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length.

Above this machine level is assembly language, a language that humans can read.
The assembler translates it into the binary numbers that machines can understand,
and it even "extends" the instruction set by creating symbolic instructions that
aren't in the hardware. For instance, constants or addresses that are too big are
broken into properly sized pieces, common variations of instructions are given
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered
so far, both real and pseudoinstructions.

Each category of MIPS instructions is associated with constructs that appear in
programming languages:

• The arithmetic instructions correspond to the operations found in assign-
ment statements.

• Data transfer instructions are most likely to occur when dealing with data
structures like arrays or structures.

• The conditional branches are used in if statements and in loops.

• The unconditional jumps are used in procedure calls and returns and for
case/switch statements.

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.45 shows the popularity of each class of instructions
for SPEC2006. The varying popularity of instructions plays an important role in
the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter 3, we reveal the rest of the
MIPS instruction set architecture.

178 Chapter 2 Instructions: Language of the Computer

MIPS instructions N a m e Format Pseudo M I P S N a m e Format

add add R move move R

subtract sub R multiply mul t R

add immediate a d d i multiply immediate mu 11 i

load word l w load immediate l i

store word sw branch less than b i t

load half l h branch less than
or equal b l e

load half unsigned l h u

branch less than
or equal b l e

store half sh branch greater than b g t

load byte l b branch greater than
or equal bge

load byte unsigned l b u

branch greater than
or equal bge

store byte sb

load linked 11

store conditional sc

load upper immediate l u i

and and R

or o r R

nor n o r R

and immediate a n d i 1

or immediate o r i 1

shift left logical sll R

shift right logical srl R

branch on equal beq 1

branch on not equal bne 1

set less than s i t R

set less than immediate s i t i 1

set less than immediate
unsigned

s i t i u 1

jump j J

jump register j r R

jump and link j a l J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions
on the left and the pseudoinstructions on the right. Appendix B (Section B.10) describes the
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. The
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of
the book.

2.21 Exercises 179

MIPS examples HLL correspondence

Frequency

MIPS examples HLL correspondence Integer Ft. pt.

Arithmetic add . sub , addi Operations in assignment statements 16% 48%

Data transfer l w , sw, l b , l b u , l h .
1 hu , sb , l u i

References to data structures, such as arrays 35% 36%

Logical and , or , n o r , andi , o r i .
s l l , s r1

Operations in assignment statements 12% 4%

Conditional branch beq. bne, s i t , s i t i ,
s 11 i u

//•statements and loops 34% 8%

- Jump j . j r . j a l Procedure calls, returns, and case/switch statements 2% 0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and
percentage of MIPS instructions executed by category for the average SPEC2006 benchmarks. Figure 3.26 in Chapter 3
shows average percentage of the individual MIPS instructions executed.

Historical Perspective and!
Further Reading

This section surveys the history of instruction set architectures (ISAs) over
time, and we give a short history of programming languages and compilers.
ISAs include accumulator architectures, general-purpose register architectures,
stack architectures, and a brief history of ARM and the x86. We also review the
controversial subjects of high-level-language computer architectures and reduced
instruction set computer architectures. The history of programming languages
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C T T , and Java,
and the history of compilers includes the key milestones and the pioneers who
achieved them. The rest of this section is on the CD.

Exercises
Contributed by John Oliver of Cal Poly, San Luis Obispo, with contributions from Nicole
Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

Appendix B describes the MIPS simulator, which is helpful for these exercises.
Although the simulator accepts pseudoinstructions, try not to use pseudo-
instructions for any exercises that ask you to produce MIPS code. Your goal should
be to learn the real MIPS instruction set, and if you are asked to count instructions,
your count should reflect the actual instructions that will be executed and not the
pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example, the
1 a instruction when an actual value is not known at assembly time). In many cases,

180 Chapter 2 Instructions: Language of the Computer

they are quite convenient and result in more readable code (for example, the 1 i
and move instructions). If you choose to use pseudoinstructions for these reasons,
please add a sentence or two to your solution stating which pseudoinstructions
you have used and why.

Exercise 2.1
The following problems deal with translating from C to MIPS. Assume that the
variables g, h, i, and j are given and could be considered 32-bit integers as declared
in a C program.

a. f = g + h + i + j ;

b. f = g T (h + 5) :

2 . 1 . 1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2 . 1 . 2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2 . 1 . 3 [5] <2.2> If the variables f, g, h, i, and j have values 1, 2, 3, 4, and 5,
respectively, what is the end value of f ?

The following problems deal with translating from MIPS to C. Assume that the
variables g, h, i, and j are given and could be considered 32-bit integers as declared
in a C program.

a. add f , g , h

b. addi f . f , 1
add f . g . h

2 . 1 . 4 [5] <2.2> For the MIPS statements above, what is a corresponding
C statement?

2 . 1 . 5 [5] <2.2> If the variables f, g, h, and i have values I, 2 ,3 , and 4, respectively,
what is the end value of f ?

Exercise 2.2
The following problems deal with translating from C to MIPS. Assume that the
variables g, h, i, and j are given and could be considered 32-bit integers as declared
in a C program.

2.21 Exercises 181

a. f - f T f + 1 ;

b. f - g T (j + 2) ;

2 . 2 . 1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2 . 2 . 2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2 . 2 . 3 [5] <2.2> If the variables f, g, h, and i have values 1 ,2 ,3 , and 4, respectively,
what is the end value of f ?

The following problems deal with translating from MIPS to C. For the following
exercise, assume that the variables g, h, i, and j are given and could be considered
32-bit integers as declared in a C program.

a. add f , f . h

b. sub f , $ 0 . f
addi f . f . 1

2 . 2 . 4 [5] <2.2> For the MIPS statements above, what is a corresponding C
statement?

2 . 2 . 5 [5] <2.2> If the variables f, g, h, and 1 have values 1 ,2 ,3 , and 4, respectively,
what is the end value of f ?

Exercise 2.3
The following problems deal with translating from C to MIPS. Assume that the
variables g, h, i, and j are given and could be considered 32-bit integers as declared
in a C program.

a. f = f + g + h + i + j + 2 ;

b. f = g - (f + 5) ;

2 . 3 . 1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2 . 3 . 2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

182 Chapter 2 Instructions: Language of the Computer

2 . 3 . 3 [5] <2.2> If the variables f, g, h, i, and j have values 1, 2, 3, 4, and 5,
respectively, what is the end value of f ?

The following problems deal with translating from MIPS to C. Assume that the
variables g, h, i, and j are given and could be considered 32-bit integers as declared
in a C program.

a. add f . - g . h

b. addi h . f . 1
sub f , g , h

2 . 3 . 4 [5] <2.2> For the MIPS statements above, what is a corresponding
C statement?

2 . 3 . 5 [5] <2.2> If the variables f, g,h,and i have values 1,2 ,3 , and 4, respectively,
what is the end value of f ?

Exercise 2.4
The following problems deal with translating from C to MIPS. Assume that the
variables f, g, h, i, and j are assigned to registers $s0, $ s l , $s2, $s3 , and $s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7 , respectively.

a. f - g + h + B [4] ;

b. f - g - A [B [4]] ;

2 . 4 . 1 [1 Oj <2.2 ,2 .3> For the C statements above, what is the corresponding MIPS
assembly code?

2 . 4 . 2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly
instructions are needed to perform the C statement?

2 . 4 . 3 [5] <2.2 ,2 .3> For the C statements above, how many different registers are
needed to carry out the C statement?

The following problems deal with translating from MIPS to C. Assume that the
variables f, g, h, i, and j are assigned to registers $s0 , $ s l , $s2 , $s3 , and $s4 ,
respectively. Assume that the base address of the arrays A and B are in registers $ s 6
and $s7 , respectively.

2.21 Exercises 183

a. add SsO SsO. S s l
add SsO SsO. Ss2
add SsO SsO. Ss3
add SsO SsO. Ss4

b. lw SsO. 4($s6

2 . 4 . 4 [10] <2.2, 2.3> For the MIPS assembly instructions above, what is the
corresponding C statement?

2 . 4 . 5 [5] <2.2, 2.3> For the MIPS assembly instructions above, rewrite the
assembly code to minimize the number of MIPS instructions (if possible) needed
to carry out the same function.

2 . 4 . 6 [5] <2.2 ,2 .3> How many registers are needed to carry out the MIPS assem-
bly as written above? If you could rewrite the code above, what is the minimal
number of registers needed?

Exercise 2.5
In the following problems, we will be investigating memory operations in the
context of a MIPS processor. The table below shows the values of an array stored
in memory.

a. Address Data
12 1

8 6
4 4
o 2

b. Address Data
16 1
12 2

8 3
4 4
o 5

2 . 5 . 1 [10] <2.2, 2.3> For the memory locations in the table above, write C code
to sort the data from lowest-to-highest, placing the lowest value in the smallest
memory location shown in the figure. Assume that the data shown represents the
C variable called Ar ray, which is an array of type i n t . Assume that this particular
machine is a byte-addressable machine and a word consists of 4 bytes.

2 . 5 . 2 [10] <2.2, 2.3> For the memory locations in the table above, write MIPS
code to sort the data from lowest-to-highest, placing the lowest value in the small-
est memory location. Use a minimum number of MIPS instructions. Assume the
base address of Array is stored in register $ s 6 .

184 Chapter 2 Instructions: Language of the Computer

2 . 5 . 3 [5] <2.2, 2.3> To sort the array above, how many instructions are required
for the MIPS code? If you are not allowed to use the immediate field in 1 w and sw
instructions, how many MIPS instructions do you need?

The following problems explore the translation of hexadecimal numbers to other
number formats.

a. 0x12345678

b. OxbeadfOOd

2 . 5 . 4 [5] <2.3> Translate the hexadecimal numbers above into decimal.

2 . 5 . 5 [5] <2.3> Show how the data in the table would be arranged in memory
of a little-endian and a big-endian machine. Assume the data is stored starting at
address 0.

Exercise 2.6
The following problems deal with translating from C to MIPS. Assume that the
variables f, g, h, i, and j are assigned to registers $s0 , $s 1, $s2 , $ s 3 , and $s4 ,
respectively. Assume that the base address of the arrays A and B are in registers $ s 6
and $s7 , respectively.

a. f = - g T h T B[1] :

b. f = A [B [g] + l] :

2 . 6 . 1 [10] <2.2,2.3> For the C statements above, what is the corresponding MIPS
assembly code?

2 . 6 . 2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly
instructions are needed to perform the C statement?

2 . 6 . 3 [5] <2.2, 2.3> For the C statements above, how many registers are needed
to carry out the C statement using MIPS assembly code?

The following problems deal with translating from MIPS to C. Assume that the
variables f, g, h, i, and j are assigned to registers $s0 , $ s l , $s2 , $s3 , and $s4 ,
respectively. Assume that the base address of the arrays A and B are in registers $ S 6
and $s7 , respectively.

2.21 Exercises 185

a. add $s0, $s0, S s l
add SsO, Ss3, Ss2
add SsO. SsO. Ss3

b. addi Ss6, Ss6. -20
add Ss6, Ss6, Ss l
lw SsO. 8 (S s 6)

2 . 6 . 4 [5] <2.2, 2.3> For the MIPS assembly instructions above, what is the
corresponding C statement?

2 . 6 . 5 [5] <2 .2 ,2 .3> For the MIPS assembly above, assume that the registers $s0 ,
S s l , $s2 , $ s 3 , contain the values 10, 20, 30, and 40, respectively. Also, assume
that register $s6 contains the value 256, and that memory contains the following
values:

Address Value

256 100

260 200

264 300

Find the value of $ sO at the end of the assembly code.

2 . 6 . 6 [10] <2.3 ,2 .5> For each MIPS instruction, show the value of the op, rs, and
rt fields. For I-type instructions, show the value of the immediate field, and for the
R-type instructions, show the value of the rd field.

Exercise 2.7
The following problems explore number conversions from signed and unsigned
binary number to decimal numbers.

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1011 0011 0101 0011 lwo

2 . 7 . 1 [5] <2.4> For the patterns above, what base 10 number does it represent,
assuming that it is a two's complement integer?

2 . 7 . 2 [5] <2.4> For the patterns above, what base 10 number does it represent,
assuming that it is an unsigned integer?

186 Chapter 2 Instructions: Language of the Computer

2 . 7 . 3 [5] <2.4> For the patterns above, what hexadecimal number does it
represent?

The following problems explore number conversions from decimal to signed and
unsigned binary numbers.

a. 214 748364 7 t f j n

b. 1000 ten

2 . 7 . 4 [5] <2.4> For the base ten numbers above, convert to two's complement
binary.

2 . 7 . 5 [5] <2.4> For the base ten numbers above, convert to two's complement
hexadecimal.

2 . 7 . 6 [5] <2.4> For the base ten numbers above, convert the negated values from
the table to two's complement hexadecimal.

Exercise 2.8
The following problems deal with sign extension and overflow. Registers $ s 0 and
$ s 1 hold the values as shown in the table below. You will be asked to perform a
MIPS operation on these registers and show the result.

a. SsO = 70000000s,xteen. S s l = 0 x 0 F F F F F F F s i x t e e . i

b. SsO = 0x40000000 s j x t e e n , Ss l = 0x40000000 s j x t e e n

2 . 8 . 1 [5] <2.4> For the contents of registers $ s 0 and $ s 1 as specified above, what
is the value of $ tO for the following assembly code:

add $ t 0 , $ s 0 , $s1

Is the result in $ t 0 the desired result, or has there been overflow?

2 . 8 . 2 [5] <2.4> For the contents of registers $ s 0 and $ s 1 as specified above, what
is the value of StO for the following assembly code:

sub StO, SsO, Ssl

Is the result in StO the desired result, or has there been overflow?

2.21 Exercises 187

2 . 8 . 3 [5] <2 .4> For the contents of registers $ s 0 and $ s 1 as specified above, what
is the value of StO for the following assembly code:

add S t O , SsO, S s l
add S t O , S t O , SsO

Is the result in StO the desired result, or has there been overflow?

In the following problems, you will perform various MIPS operations on a pair of
registers, SsO and S s l . Given the values of SsO and S s l in each of the questions
below,.state if there will be overflow.

a. add SsO. SsO. S s l

b. sub SsO, SsO. S s l
sub SsO. SsO. S s l

2 . 8 . 4 [5] <2 .4> Assume that register SsO = 0x70000000 and S s l = 0x10000000.
For the table above, will there be overflow?

2 . 8 . 5 [5] <2 .4> Assume that register SsO = 0x40000000 and S s l = 0x20000000.
For the table above, will there be overflow?

2 . 8 . 6 [5] <2 .4> Assume that register $ s 0 = 0x8FFFFFFF and S s l = OxDOOOOOOO.
For the table above, will there be overflow?

Exercise 2.9
The table below contains various values for register S s l . You will be asked to
evaluate if there would be overflow for a given operation.

a. 2147483647 t e n

b. OxDOOOOOOO s i x t e e n

2 . 9 . 1 [5] <2 .4> Assume that register S S 0 = 0x70000000 and $ s 1 has the value as
given in the table. If the instruction: add SsO, SsO, S s l is executed, will there be
overflow?

2 . 9 . 2 [5] <2 .4> Assume that register S s 0 = 0x80000000 and S s l has the value as
given in the table. If the instruction: sub SsO, SsO, S s l is executed, will there be
overflow?

188 Chapter 2 Instructions: Language of the Computer

2 . 9 . 3 [5] <2.4> Assume that register SsO = 0x7FFFFFFF and $ s l has the value
as given in the table. If the instruction: sub $sO,$sO, $ s 1 is executed, will there be
overflow?

The table below contains various values for register S s l . You will be asked to
evaluate if there would be overflow for a given operation.

a. 1010 1101 0001 0000 0000 0000 0000 0010.wo

b. 1111 1111 1111 1111 1011 0011 0101 0011two

2 . 9 . 4 [5] <2.4> Assume that register $s0 - 0x70000000 and $s 1 has the value as
given in the table. If the instruction: add $s0, $s0, Ssl is executed, will there be
overflow?

2 . 9 . 5 [5] <2.4> Assume that register $s0 = 0x70000000 and Ssl has the value
as given in the table. If the instruction: add SsO, SsO, Ssl is executed, what is the
result in hex?

2 . 9 . 6 [5] <2.4> Assume that register SsO = 0x70000000 and Ssl has the value as
given in the table. If the instruction: add $ s 0 , S S 0 , Ssl is executed, what is the result
in base ten?

Exercise 2.10
In the following problems, the data table contains bits that represent the opcode
of an instruction. You will be asked to translate the entries into assembly code and
determine what format of MIPS instruction the bits represent.

a. 1010 1110 0000 1011 0000 0000 0000 0100two

b. 1000 1101 0000 1000 0000 0000 0100 0000two

2 . 1 0 . 1 [5] <2.5> For the binary entries above, what instruction do they
represent?

2 . 1 0 . 2 [5] <2.5> What type (I-type, R-type) instruction do the binary entries
above represent?

2 . 1 0 . 3 [5] <2.4, 2.5> If the binary entries above were data bits, what number
would they represent in hexadecimal?

2.21 Exercises 189

In the following problems, the data table contains MIPS instructions. You will be
asked to translate the entries into the bits of the opcode and determine what is the
MIPS instruction format.

a. add $ t 0 , $10. Szero

b. l w S t l . 4 (S s 3)

2 . 1 0 . 4 [5] <2.4, 2.5> For the instructions above, show the hexadecimal
representation of these instructions.

2 . 1 0 . 5 [51 <2.5> What type (I-type, R-type) instruction do the instructions
above represent?

2 . 1 0 . 6 [5] <2.5> What is the hexadecimal representation of the opcode, rs,
and rt fields in this instruction? For R-type instructions, what is the hexadecimal
representation of the rd and funct fields? For I-type instructions, what is the
hexadecimal representation of the immediate field?

Exercise 2.11
In the following problems, the data table contains bits that represent the opcode
of an instruction. You will be asked to translate the entries into assembly code and
determine what format of MIPS instruction the bits represent.

a. OxAEOBFFFC

b. 0x8D08FFC0

2 . 1 1 . 1 [5j <2.4, 2.5> What binary number does the above hexadecimal number
represent?

2 . 1 1 . 2 [5] <2.4,2.5> What decimal number does the above hexadecimal number
represent?

2 . 1 1 . 3 [5] <2.5> What instruction does the above hexadecimal number
represent?

In the following problems, the data table contains the values of various fields of
MIPS instructions. You will be asked to determine what the instruction is, and
find the MIPS format for the instruction.

190 Chapter 2 Instructions: Language of the Computer

a. op=0, rs=l , rt=2, rd=3, shamt=0, funct=32

b. op=0x2B, rs=0xl0, rt=0x5, const=0x4

2 . 1 1 . 4 [5] <2.5> What type (I-type, R-type) instruction do the instructions
above represent?

2 . 1 1 . 5 [5] <2.5> What is the MIPS assembly instruction described above?

2 . 1 1 . 6 [5] <2.4, 2.5> What is the binary representation of the instructions
above?

Exercise 2.12
In the following problems, the data table contains various modifications that could
be made to the MIPS instruction set architecture. You will investigate the impact of
these changes on the instruction format of the MIPS architecture.

a. 8 registers

b. 10 bit immediate constants

2 . 1 2 . 1 [5] <2.5> If the instruction set of the MIPS processor is modified, the
instruction format must also be changed. For each of the suggested changes above,
show the size of the bit fields of an R-type format instruction. What is the total
number of bits needed for each instruction?

2 . 1 2 . 2 [5] <2.5> If the instruction set of the MIPS processor is modified, the
instruction format must also be changed. For each of the suggested changes above,
show the size of the bit fields of an I-type format instruction. What is the total
number of bits needed for each instruction?

2 . 1 2 . 3 [5] <2.5, 2.10> Why could the suggested change in the table above
decrease the size of a MIPS assembly program? Why could the suggested change
in the table above increase the size of a MIPS assembly program?

In the following problems, the data table contains hexadecimal values. You will be
asked to determine what MIPS instruction the value represents, and find the MIPS
instruction format.

a. 0x01090010

b. Ox8D090012

2 . 1 2 . 4 [5] <2.5> For the entries above, what is the value of the number in
decimal?

2.21 Exercises 191

2 . 1 2 . 5 [5] <2.5> For the hexadecimal entries above, what instruction do they
represent?

2 . 1 2 . 6 [5] <2.4,2.5> What type (I-type, R-type) instruction do the binary entries
above represent? What is the value of the op field and the rt field?

Exercise 2.13
In the following problems, the data table contains the values for registers StO
and S t l . You will be asked to perform several MIPS logical operations on these
registers.

a. $10 = 0x55555555, S t l = 0x12345678

b. $t0 = OxBEADFEED, $ t l = OxDEADFADE

2 . 1 3 . 1 [5] <2.6> For the lines above, what is the value of S t2 for the following
sequence of instructions:

S l l S t 2 , StO, 4
or S t 2 , S t 2 , S t l

2 . 1 3 . 2 [5] <2.6> For the values in the table above, what is the value of S t 2 for the
following sequence of instructions:

s l l $ 1 2 , StO, 4
andi S t 2 , S t 2 , - 1

2 . 1 3 . 3 [5] <2.6> For the lines above, what is the value of S t 2 for the following
sequence of instructions:

s r l S t 2 , StO, 3
andi S t 2 , S t 2 , OxFFEF

In the following exercise, the data table contains various MIPS logical operations.
You will be asked to find the result of these operations given values for registers
StO and S t l .

a. s l l $ t2 , $ t0 , 1
or $ t2 , $ t2 , $ t l

b. s r l $12, $ t0 , 1
andi S t 2 , $ t 2 , OxOOFO

2 . 1 3 . 4 [5] <2.6> Assume that StO = 0x0000A5A5 and St 1 = 00005A5A. What is
the value of S12 after the two instructions in the table?

1 9 2 Chapter 2 Instructions: Language of the Computer

2 . 1 3 . 5 [5] <2.6> Assume that $ t 0 = 0xA5A50000 and $ t l = A5A50000. What is
the value of $ 12 after the two instructions in the table?

2 . 1 3 . 6 [5] <2.6> Assume that StO = 0xA5A5FFFF and S t l = A5A5FFFF. What is
the value of S t2 after the two instructions in the table?

Exercise 2.14
The following figure shows the placement of a bit field in register StO.

31 i j o

Field

31 - i bits i - j b i t s j bits

In the following problems, you will be asked to write MIPS instructions to extract
the bits "Field" from register StO and place them into register S t l at the location
indicated in the following table.

2 . 1 4 . 1 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts
a field from StO for the constant values i = 22 and j = 5 and places the field into
S t l in the format shown in the data table.

2 . 1 4 . 2 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from StO for the constant values i = 4 and j = 0 and places the field into S t l
in the format shown in the data table.

2 . 1 4 . 3 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from StO for the constant values i = 31 and j = 28 and places the field into S t l
in the format shown in the data table.

In the following problems, you will be asked to write MIPS instructions to extract
the bits "Field" from register StO shown in the figure and place them into register
S t l at the location indicated in the following table. The bits shown as "XXX" are to
remain unchanged.

2.21 Exercises 193

2 . 1 4 . 4 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts
a field from StO for the constant values i = 17 and j = 11 and places the field into
S t l in the format shown in the data table.

2 . 1 4 . 5 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from StO for the constant values i = 5 and j = 0 and places the field into S t l
in the format shown in the data table.

2 . 1 4 . 6 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from StO for the constant values i = 31 and j = 29 and places the field into S t l
in the format shown in the data table.

Exercise 2.15
For these problems, the table holds some logical operations that are not included in
the MIPS instruction set. How can these instructions be implemented?

a. andn Stl. $ 12, S13 // bit-wise AND of St2, !St3

b. xnor Stl. St2, S13 // bit-wise exclusive-NOR

2 . 1 5 . 1 [5] <2.6> The logical instructions above are not included in the MIPS
instruction set, but are described above. If the value of $ 12 = 0x00FFA5A5 and the
value of S t 3 = 0xFFFF003C, what is the result in S t l ?

2 . 1 5 . 2 [10] <2.6> The logical instructions above are not included in the
MIPS instruction set, but can be synthesized using one or more MIPS assembly
instructions. Provide a minimal set of MIPS instructions that maybe used in place
of the instructions in the table above.

2 . 1 5 . 3 [5] <2.6> For your sequence of instructions in 2.15.2, show the bit-level
representation of each instruction.

Various C-level logical statements are shown in the table below. In this exercise, you
will be asked to evaluate the statements and implement these C statements using
MIPS assembly instructions.

194 Chapter 2 Instructions: Language of the Computer

a. A = B & C[0];

b. A = A ? B : C[0]

2 . 1 5 . 4 [5] <2.6> The table above shows different C statements that use logical
operators. If the memory location at C[0] contains the integer value 0x00001234,
and the initial integer value of A and B are 0x00000000 and 0x00002222, what is
the result value of A?

2 . 1 5 . 5 [5] <2.6> For the C statements in the table above, write a minimal sequence
of MIPS assembly instructions that does the identical operation.

2 . 1 5 . 6 [5] <2.6> For your sequence of instructions in 2.15.5, show the bit-level
representation of each instruction.

Exercise 2.16
For these problems, the table holds various binary values for register $ t 0 . Given the
value of StO, you will be asked to evaluate the outcome of different branches.

a. 1010 1101 0001 0000 0000 0000 0000 0010 t w o

b. 1111 1111 1111 1111 1111 1111 1111 llll t w 0

2 . 1 6 . 1 [5] <2.7> Suppose that register StO contains a value from above and Stl
has the value

0011 1111 1111 1000 0000 0000 0000 0000 t w o

What is the value of St2 after the following instructions?

sit St2, StO, Stl

beq $12, Szero, ELSE

j DONE

ELSE: addi St2, Szero, 2

DONE:

2 . 1 6 . 2 [5] <2.7> Suppose that register StO contains a value from the table above
and is compared against the value X, as used in the MIPS instruction below. For
what values of X, if any, will $ 12 be equal to 1?

slti $12, StO, X

2 . 1 6 . 3 [5] <2.7> Suppose the program counter (PC) is set to 0x0000 0020. Is
it possible to use the jump (j) MIPS assembly instruction to set the PC to the

2.21 Exercises 195

address as shown in the data table above? Is it possible to use the branch-on-equal
(beq) MIPS assembly instruction to set the PC to the address as shown in the data
table above?

For these problems, the table holds various binary values for register StO. Given the
value of StO, you will be asked to evaluate the outcome of different branches.

a. 0x00001000

b. 0x20001400

2 . 1 6 . 4 [5] <2.7> Suppose that register StO contains a value from above. What is
the value of $ 12 after the following instructions?

sit $t2, StO, StO

bne St2, Szero. ELSE

j DONE

ELSE: addi St2, St2, 2

DONE:

2 . 1 6 . 5 [5] <2.6, 2.7> Suppose that register StO contains a value from above.
What is the value of $ 12 after the following instructions?

sll StO, StO, 2

sit St2, StO, Szero

2 . 1 6 . 6 [5] <2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it
possible to use the jump (j) MIPS assembly instruction to set the PC to the address
as shown in the data table above? Is it possible to use the branch-on-equal (beq)
MIPS assembly instruction to set the PC to the address as shown in the data table
above?

Exercise 2.17
For these problems, several instructions that are not included in the MIPS
instruction set are shown.

a. abs $t2, St3 it R[rd] = |R[rt] |

b. sgt Stl , t2. St3 it R[rd] = (R[rs] > R[rt]) ? 1:0

2 . 1 7 . 1 [5] <2.7> The table above contains some instructions not included in
the MIPS instruction set and the description of each instruction. Why are these
instructions not included in the MIPS instruction set.

196 Chapter 2 Instructions: Language of the Computer

2 . 1 7 . 2 [5] <2.7> The table above contains some instructions not included in the
MIPS instruction set and the description of each instruction. If these instructions
were to be implemented in the MIPS instruction set, what is the most appropriate
instruction format?

2 . 1 7 . 3 [5] <2.7> For each instruction in the table above, find the shortest
sequence of MIPS instructions that performs the same operation.

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. LOOP: sit $t2, so . Stl
bne $ t2, Szero, ELSE

j DONE
ELSE: addi Ss2, Ss2 2

sub i Stl . Stl 1

j LOOP
DONE:

b. LOOP: addi St 2. so, OxA

L00P2: addi Ss2, Ss2 2
s u b i St2. St2 1
bne St2, SO. L00P2
subi Stl . Stl 1
bne Stl . so , LOOP

DONE:

2 . 1 7 . 4 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register $ 11 is initialized to the value 10. What is the value in register $ s 2 assuming
the $ s 2 is initially zero?

2 . 1 7 . 5 [5] <2.7> For each of the loops above, write the equivalent C code routine.
Assume that the registers $ s l , $s2 , S t l , and $12 are integers A, B, i, and temp,
respectively.

2 . 1 7 . 6 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register S t l is initialized to the value N. How many MIPS instructions are executed?

Exercise 2.1S
For these problems, the table holds some C code. You will be asked to evaluate these
C code statements in MIPS assembly code.

a. for(i=0: i <10: i++)
a += b:

b. while (a < 10)1
D[a] = b + a;

a +=

1

1;

2.21 Exercises 1 9 7

2 . 1 3 . 1 [5] <2.7> For the table above, draw a control-flow graph of the C code.

2 . 1 8 . 2 [5] <2.7> For the table above, translate the C code to MIPS assembly code.
Use a minimum number of instructions. Assume that the value a, b, i, j are in
registers $s0, $sl,$tO, $tl, respectively. Also, assume that register $s2 holds the
base address of the array D.

2 . 1 8 . 3 [51 <2.7> How many MIPS instructions does it take to implement the
C code? If the variables a and b are initialized to 10 and 1 and all elements of D
are initially 0, what is the total number of MIPS instructions that is executed to
complete the loop?

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. addi Stl, SO. 100

LOOP: lw Ssl, 0C SsO)
add $s2. Ss2. Ssl
add i SsO, SsO, 4

subi Stl. Stl. 1

bne Stl, SO. LOOP

b. addi Stl, SsO. 400

LOOP: lw Ssl. 0(Ss0)
add Ss2, Ss2, Ssl
lw Ssl, 4(SsO)

add Ss2, Ss2, Ssl
addi SsO. SsO. 8

bne Stl, SsO. LOOP

2 . 1 8 . 4 [5] <2.7> What is the total number of MIPS instructions executed?

2 . 1 8 . 5 [5] <2.7> Translate the loops above into C. Assume that the C-Ievel integer
i is held in register Stl, Ss2 holds the C-level integer called result, and SsO
holds the base address of the integer MemArray.

2 . 1 8 . 6 [5] <2.7> Rewrite the loop in MIPS assembly to reduce the number of
MIPS instructions executed.

Exercise 2.19
For the following problems, the table holds C code functions. Assume that the first
function listed in the table is called first. You will be asked to translate these C code
routines into MIPS Asembly.

198 Chapter 2 Instructions: Language of the Computer

a. int compare(int a, int b) 1 ,
if (sub(a, b) >= 0)

return 1 ;

el se

return 0;

1
int sub (int a. int b) I

return a-b;
1

b. int fib_i te r (int a, int b. int n)|

If(n — 0)

return b;

el se

return fib iter(a+b, a. n-1):

1

2 . 1 9 . 1 [15] <2.8> Implement the C code in the table in MIPS assembly. What is
the total number of MIPS instructions needed to execute the function?

2 . 1 9 . 2 [5] <2.8> Functions can often be implemented by compilers "in-line".
An in-line function is when the body of the function is copied into the program
space, allowing the overhead of the function call to be eliminated. Implement an
"in-line" version of the C code in the table in MIPS assembly. What is the reduction
in the total number of MIPS assembly instructions needed to complete the function?
Assume that the C variable n is initialized to 5.

2 . 1 9 . 3 [5] <2.8> For each function call, show the contents of the stack after the
function call is made. Assume the stack pointer is originally at addresss 0x7ffffffc,
and follow the register conventions as specified in Figure 2.11.

The following three problems in this exercise refer to a function f that calls another
function f unc. The code for C function f unc is already compiled in another module
using the MIPS calling convention from Figure 2.14. The function declaration for f unc
is " i n t f u n c (i n t a , i n t b) ; " . The code for function f is as follows:

a. int f(int a, int b. int c)(

return func(func(a,b),c):

1

b. int f(int a, int b, int c)l

return func(a,b)+func(b.c);

1

2 . 1 9 . 4 [10] <2.8> Translate function f into MIPS assembler, also using the MIPS
calling convention from Figure 2.14. If you need to use registers StO through St 7,
use the lower-numbered registers first.

2 . 1 9 . 5 [5] <2.8> Can we use the tail-call optimization in this function? If no,
explain why not. If yes, what is the difference in the number of executed instructions
in f with and without the optimization?

2.21 Exercises 199

2 . 1 9 - 6 [5] <2.8> Right before your function f from Problem 2.19.4 returns, what
do we know about contents of registers $t 5, $s3, $ra , and Ssp? Keep in mind that
we know what the entire function f looks like, but for function func we only know
its declaration.

Exercise 2.20
This exercise deals with recursive procedure calls. For the following problems,
the table has an assembly code fragment that computes the factorial of a number.
However, the entries in the table have errors, and you will be asked to fix these
errors.

a. FACT: addi Ssp, Ssp. -8
sw Sra. 4(Ssp)

sw SaO. O(Ssp)

si ti StO. SaO, 1

beq StO. SO, LI

addi SvO, SO. 1

addi Ssp, Ssp, 8

jr Sra

LI: addi SaO, SaO. -1

jal FACT

lw SaO. 4(Ssp)

lw Sra, 0(Ssp)

addi Ssp, Ssp, 8

mul SvO, SaO. SvO

j r Sra

b. FACT: addi Ssp, Ssp. -8

sw Sra, 4(Ssp)

sw SaO. 0(Ssp)

si ti StO. SaO. 1

beq StO. SO. LI

addi SvO. SO. 1

addi Ssp, Ssp. 8

jr Sra

LI: addi StO. StO. -1

jal FACT

lw SaO, 4 ($ s p)

lw Sra. 0 (Ssp)

addi Ssp. Ssp. 8
mul SvO. SaO. SvO

jr Sra

2 . 2 0 . 1 [5] <2.8> The MIPS assembly program above computes the factorial of
a given input. The integer input is passed through register SaO, and the result is
returned in register SvO. In the assembly code, there are a few errors. Correct the
MIPS errors.

2 . 2 0 . 2 [10] <2.S> For the recursive factorial MIPS program above, assume that
the input is 4. Rewrite the factorial program to operate in a nonrecursive manner.

200 Chapter 2 Instructions: Language of the Computer

Restrict your register usage to registers $ s 0 - $ s 7 . What is the total number of
instructions used to execute your solution from 2.20.2 versus the recursive version
of the factorial program?

2 . 2 0 . 3 [5] <2.8> Show the contents of the stack after each function call, assuming
that the input is 4.

For the following problems, the table has an assembly code fragment that computes
a Fibonacci number. However, the entries in the table have errors, and you will be
asked to fix these errors.

a. FIB: addi $ s p,Ssp, -12
sw Sra. O(Ssp)
sw Ssl. 4(Ssp)
sw SaO. 8(Ssp)

si ti StO. SaO. 1
beq StO. SO. LI
addi SvO.SaO, SO

j EXIT

LI: addi SaO.SaO. -1

jal FIB
addi Ssl.SvO, $0
addi SaO.SaO, -1

jal FIB

add SvO, SvO, Ssl

EXIT: lw Sra. O(Ssp)

lw SaO, 8(Ssp)

lw Ssl. 4(Ssp)
addi Ssp, Ssp, 12

jr Sra

b. FIB: addi Ssp,Ssp, -12
sw Sra, O(Ssp)

sw Ssl, 4(Ssp)

sw SaO, 8(Ssp)

si ti StO. SaO. 1
beq StO, SO, LI
addi SvO.SaO, SO

j EXIT

LI: addi SaO.SaO. -1

jal FIB

addi Ssl.SvO. SO
addi SaO,SaO, -1

jal FIB
add SvO. SvO, Ssl

EXIT: lw Sra. 0(Ssp)
lw SaO. 8(Ssp)

lw Ssl. 4($sp)
addi Ssp, Ssp. 12

jr Sra

2.21 Exercises 201

2 . 2 0 . 4 [5] <2.8> The MIPS assembly program above computes the Fibonacci of
a given input. The integer input is passed through register SaO, and the result is
returned in register SvO. In the assembly code, there are a few errors. Correct the
MIPS errors.

2 . 2 0 . 5 [10] <2.8> For the recursive Fibonacci MIPS program above, assume that
the input is 4. Rewrite the Fibonacci program to operate in a nonrecursive manner.
Restrict your register usage to registers S s 0 - $ s 7 . What is the total number of
instructions used to execute your solution from 2.20.2 versus the recursive version
of the factorial program?

2 . 2 0 . 6 [5] <2.S> Show the contents of the stack after each function call, assuming
that the input is 4.

Exercise 2.21
Assume that the stack and the static data segments are empty and that the stack and
global pointers start at address 0x7fff fffc and 0x1000 8000, respectively. Assume
the calling conventions as specified in Figure 2.11 and that function inputs are
passed using registers SaO and returned in register SvO. Assume that leaf functions
may only use saved registers.

a. main()
i i

1eaf_functi on(1);
i i
int 1eaf_function (int f)
i i

int result;
result = f + 1;

if (f > 5)
return result:

1eaf_function(result);

1

b. int my_global = 100;
main()

i
int x = 10;
int y = 20;
int z;

z = my_function(x, my_global)
l
int my_function(int x. int y)
i

return x - y;

1

202 Chapter 2 Instructions: Language of the Computer

2 . 2 1 . 1 [5] <2.8> Show the contents of the stack and the static data segments after
each function call.

2 . 2 1 . 2 [5] <2.8> Write MIPS code for the code in the table above.

2 . 2 1 . 3 [5] <2.8> If the leaf function could use temporary registers (StO, S t l ,
etc.), write the MIPS code for the code in the table above.

The following three problems in this exercise refer to this function, written in MIPS
assembler following the calling conventions from Figure 2.14:

a. f: sub SsO,SaO.Sa3

sll SvO,SsO.0x1

add SvO, Sa2 , SvO
sub SvO.SvO.Sal

jr Sra

b. f: addi Ssp.Ssp,8
sw Sra,4(Ssp)
sw SsO,0(Ssp)

move SsO, Sa2

jal 9
add SvO,SvO,SsO

lw Sra,4(Ssp)

lw Ss0,0(Ssp)
addi Ssp , Ssp,-8

jr Sra

2 . 2 1 . 4 [10] <2.8> This code contains a mistake that violates the MIPS calling
convention. What is this mistake and how should it be fixed?

2 . 2 1 . 5 [10] <2.8> What is the C equivalent of this code? Assume that the
function's arguments are named a, b, c, etc. in the C version of the function.

2 . 2 1 . 6 [10] <2.8> At the point where this function is called register SaO, S a l ,
Sa2, and $ a 3 have values 1, 100, 1000, and 30, respectively. What is the value
returned by this function? If another function g is called from f, assume that the
value returned from g is always 500.

Exercise 2.22
This exercise explores ASCII and Unicode conversion. The following table shows
strings of characters.

a. A byte

b. computer

2.21 Exercises 203

2 . 2 2 . 1 [5] <2.9> Translate the strings into decimal ASCII byte values.

2 . 2 2 . 2 [5] <2.9> Translate the strings into 16-bit Unicode (using hex notation
and the Basic Latin character set).

The following table shows hexadecimal ASCII character values.

a. 61 64 64

b. 73 68 69 66 74

2 . 2 2 . 3 [5] <2.5,2.9> Translate the hexadecimal ASCII values to text.

Exercise 2.23
In this exercise, you will be asked to write a MIPS assembly program that converts
strings into the number format as specified in the table.

a. positive integer decimal strings

b. two's complement hexadecimal integers

2 . 2 3 . 1 [10] <2.9> Write a program in MIPS assembly language to convert an
ASCII number string with the conditions listed in the table above, to an integer.
Your program should expect register SaO to hold the address of a null-terminated
string containing some combination of the digits 0 through 9. Your program
should compute the integer value equivalent to this string of digits, then place the
number in register $v0. If a nondigit character appears anywhere in the string,
your program should stop with the value -1 in register SvO. For example, if register
SaO points to a sequence of three bytes 50 tcn, 52 ten, 0ten (the null-terminated string
"24"), then when the program stops, register SvO should contain the value 24,cn.

Exercise 2-24
Assume that the register S t l contains the address 0x1000 0000 and the register
St2 contains the address 0x1000 0010.

a. lb StO. 0(Stl)

sw StO, 0 ($ 12)

b. lb StO, O(Stl)

sb StO. 0(St2)

2 . 2 4 . 1 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 oooo 12 34 56 78

2 0 4 Chapter 2 Instructions: Language of the Computer

What value is stored at the address pointed to by register $12? Assume that the
memory location pointed to $ 12 is initialized to OxFFFF FFFF.

2 . 2 4 . 2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 80 80 80 80

What value is stored at the address pointed to by register $ t2? Assume that the
memory location pointed to $ 12 is initialized to 0x0000 0000.

2 . 2 4 . 3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 11 00 00 FF

What value is stored at the address pointed to by register $ t2? Assume that the
memory location pointed to $ 12 is initialized to 0x5555 5555.

Exercise 2.25
In this exercise, you will explore 32-bit constants in MIPS. For the following
problems, you will be using the binary data in the table below.

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1111 1111 1111 1111 two

2 . 2 5 . 1 [10] <2.10> Write the MIPS code that creates the 32-bit constants listed
above and stores that value to register S t l

2 . 2 5 . 2 [5] <2.6,2.10> If the current value of the PC is 0x00000000, can you use a
single jump instruction to get to the PC address as shown in the table above?

2 . 2 5 . 3 [5] <2.6,2.10> If the current value of the PC is 0x00000600, can you use a
single branch instruction to get to the PC address as shown in the table above?

2 . 2 5 . 4 [5] <2.6,2.10> If the current value of the PC is 0x00400600, can you use a
single branch instruction to get to the PC address as shown in the table above?

2 . 2 5 . 5 [10] <2.10> If the immediate field of a MIPS instruction was only 8 bits
wide, write the MIPS code that creates the 32-bit constants listed above and stores
that value to register S t l . Do not use the 1 ui instruction.

For the following problems, you will be using the MIPS assembly code as listed in
the table.

2.21 Exercises 205

a. lui $t0. 0x1234
ori StO. StO. 0x5678

b. ori StO, StO. 0x5678
lui StO. 0x1234

2 . 2 5 . 6 [5] <2.6,2.10> What is the value of register $ t 0 after the sequence of code
in the table above?

2 . 2 5 . 7 [5] <2.6,2.10> Write C code that is equivalent to the assembly code in the
table. Assume that the largest constant that you can load into a 32-bit integer is 16
bits.

Exercise 2.26
For this exercise, you will explore the range of branch and jump instructions in
MIPS. For the following problems, use the hexadecimal data in the table below.

a. 0x00001000

b. OxFFFCOOOO

2 . 2 6 . 1 [10] <2.6,2.10> If the PC is at address 0x00000000, how many branch (no
jump instructions) do you need to get to the address in the table above?

2 . 2 6 . 2 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many jump
instructions (no jump register instructions or branch instructions) are required to
get to the target address in the table above?

2 . 2 6 . 3 [10] <2.6, 2.10> In order to reduce the size of MIPS programs, MIPS
designers have decided to cut the immediate field of I-type instructions from
16 bits to 8 bits. If the PC is at address 0x0000000, how many branch instructions
are needed to set the PC to the address in the table above?

For the following problems, you will be using making modifications to the MIPS
instruction set architecture.

a. 8 registers

b. 10 bit immediate/address field

2 . 2 6 . 4 [10) <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses in a beq instruction? Assume
that all instructions remain 32 bits long and any changes made to the instruction

206 Chapter 2 Instructions: Language of the Computer

format of I-type instructions only increase/decrease the immediate field of the beq
instruction.

2 . 2 6 . 5 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses a jump instruction? Assume that
instructions remain 32 bits long and any changes made to the instruction format of
J-type instructions only impact the address field of the jump instruction.

2 . 2 6 . 6 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses a jump register instruction,
assuming that each instruction must be 32 bits.

Exercise 2.27
In the following problems, you will be using exploring different addressing modes
in the MIPS instruction set architecture. These different addressing modes are
listed in the table below.

a. Register Addressing

b. PC-relative Addressing

2 . 2 7 . 1 [5] <2.10> In the table above are different addressing modes of the MIPS
instruction set. Give an example MIPS instructions that shows the MIPS addressing
mode.

2 . 2 7 . 2 [5] <2.10> For the instructions in 2.27.1, what is the instruction format
type used for the given instruction?

2 . 2 7 . 3 [5] <2.10> List benefits and drawbacks of a particular MIPS addressing
mode. Write MIPS code that shows these benefits and drawbacks.

In the following problems, you will be using the MIPS assembly code as listed below
to explore the tradeoffs of the immediate field in the MIPS I-type instructions.

a. 0x00000000 lui SsO. 100
0x00000004 ori SsO, SsO, 40

b. 0x00000100 addi StO. SO, 0x0000
0x00000104 lw Stl, 0x4000($10)

2 . 2 7 . 4 [15] <2.10> For the MIPS statements above, show the bit-level instruction
representation of each of the instructions in hexadecimal.

2.21 Exercises 207

2 . 2 7 . 5 [10] <2.10> By reducing the size of the immediate fields of the I-type
and J-type instructions, we can save on the number of bits needed to represent
instructions. If the immediate field of I-type instructions were 8 bits and the
immediate field of I-type instructions were 18 bits, rewrite the MIPS code above to
reflect this change. Avoid using the 1 ui instruction.

2 . 2 7 . 6 [5] <2.10> How many extra instructions are needed to execute your code
in 2.27.5 MIPS statements in the table versus the code shown in the table above?

Exercise 2.28
The following table contains MIPS assembly code for a lock.

try: MOV R3.R4

MOV R6.R7

LL R2.0(R2)

LL R5.0CR1)
SC R3.0(R1)
SC R6,0(R1)

BEQZ R3,try

MOV R4. R2

MOV R7.R5

2 . 2 8 . 1 [5] <2.11> For each test and fail of the store conditional, how many
instructions need to be executed?

2 . 2 8 . 2 [5] <2.11> For the load locked/store conditional code above, explain why
this code may fail.

2 . 2 8 . 3 [15] <2.11> Rewrite the code above so that the code may operate correct.
Be sure to avoid any race conditions.

Each entry in the following table has code and also shows the contents of various
registers. The notation, " ($ s l) " shows the contents of a memory location pointed
to by register $s 1. The assembly code in each table is executed in the cycle shown
on parallel processors with a shared memory space.

a.

Processor 1 CZJ Processor 2

Processor 1 Processor 2 Cycle $tl StO us Stl $to

o 1 2 99 30 40

11 Stl. OC$51) 11 Stl. O(Ssl) 1

sc StO. O(Ssl) 2

sc StO. O(Ssl) 3

208 Chapter 2 Instructions: Language of the Computer

b.

Processor 1 E s a
Processor 1 Processor 2 Cycle E 1 E 3 E 3 m

0 2 3 4 99 10 20 30

try: add StO. SO. Ss4 1

try: add StO. SO. Ss4 11 Stl. O(Ssl) 2

11 Stl. 0(Ssl) 3

sc SCO, O(Ssl) 4

beqz StO, try sc StO. O(Ssl) 5

add Ss4, SO. St! beqz StO. try 6

2 . 2 8 . 4 [5] <2.11> Fill out the table with the value of the registers for each given
cycle.

Exercise 2.29
The first three problems in this exercise refer to a critical section of the form

l o c k (l k) :
o p e r a t i on
u n l o c k (1 k) ;

where the "operation" updates the shared variable S h va r using the local (nonshared)
variable x as follows:

Operation

a. shva r=shvar+x;

b. shvar=min(shvar . x) ;

2 . 2 9 . 1 [10] <2.11> Write the MIPS assembler code for this critical section,
assuming that the address of the 1 k variable is in $a0, the address of the shva r
variable is in $ a 1, and the value of variable x is in $ a 2. Your critical section should
not contain any function calls, i.e., you should include the MIPS instructions
for l o c k (), u n l o c k () , max() , and m in t) operations. Use 11/sc instructions
to implement the l o c k () operation, and the un lock () operation is simply an
ordinary store instruction.

2 . 2 9 . 2 [10] <2.11> Repeat problem 2.29.1, but this time use 1 1 /sc to perform an
atomic update of the shva r variable directly, without using 1 ock () and unl OCk().
Note that in this problem there is no variable 1 k.

2.21 Exercises 209

2 . 2 9 . 3 [10] <2.11> Compare the best-case performance of your code from
2.29.1 and 2.29.2, assuming that each instruction takes one cycle to execute. Note:
best-case means that 11 /sc always succeeds, the lock is always free when we want
to 1 o c k (), and if there is a branch we take the path that completes the operation
with fewer executed instructions.

2 . 2 9 . 4 [10] <2.11> Using your code from 2.29.2 as an example, explain what
happens when two processors begin to execute this critical section at the same
time, assuming that each processor executes exactly one instruction per cycle.

2 . 2 9 . 5 [10] <2.11> Explain why in your code from 2.29.2 register $ a 1 contains
the address of variable shva r and not the value of that variable, and why register
$ a 2 contains the value of variable x and not its address.

2 . 2 9 . 6 [10] <2.11> If we want to atomically perform the same operation on two
shared variables (e.g., shvarl and s h v a r2) in the same critical section, we can do
this easily using the approach from 2.29.1 (simply put both updates between the
lock operation and the corresponding unlock operation). Explain why we cannot
do this using the approach from 2.29.2., i.e., why we cannot use 11 /sc to access
both shared variables in a way that guarantees that both updates are executed
together as a single atomic operation.

Exercise 2.30
Assembler pseudoinstructions are not a part of the MIPS instruction set, but often
appear in MIPS programs. The table below contains some MIPS pseudoinstructions
that ,when assembled, are translated to other MIPS assembly instructions.

a. move Stl. $t2

b. beq Stl, small. LOOP

2 . 3 0 . 1 [5] <2.12> For each pseudo instruction in the table above, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing. You
may need to use temporary registers in some cases. In the table 1 a rge refers to a
number that requires 32 bits to represent and smal 1 to a number that can fit into
16 bits.

The table below contains some MIPS pseudoinstructions, that when assembled, are
translated to other MIPS assembly instructions.

a. la SsO, v

b. bit SaO, SvO, Loop

210 Chapter 2 Instructions: Language of the Computer

2 . 3 0 . 2 [5] <2.12> Does the instruction in the table above need to be edited
during the link phase? Why?

Exercise 2.31
The table below contains the link-level details of two different procedures. In this
exercise, you will be taking the place of the linker. , Procedure A Procedure B

Text
Segment

Address Instruction Text
Segment

Address Instruction Text
Segment

0 lw $aO, 0($gp)

Text
Segment

0 sw Sal, 0(Sgp)

Text
Segment

4 jal 0

Text
Segment

4 jal 0

Text
Segment

Text
Segment

_
Data
Segment

0 (X) Data
Segment

0 (Y) Data
Segment

...

Data
Segment

Relocation
Info

Address Instruction Type Dependency Relocation
Info

Address Instruction Type Dependency Relocation
Info

0 lw X

Relocation
Info

0 sw Y

Relocation
Info

4 jai B

Relocation
Info

4 jal A

Symbol
Table

Address Symbol Symbol
Table

Address Symbol Symbol
Table

- X

Symbol
Table

- Y

Symbol
Table

- B

Symbol
Table

- A

b. Procedure A Procedure B

Text
Segment

Address Instruction Text
Segment

Address Instruction Text
Segment

0 lui $at. 0

Text
Segment

0 sw SaO. 0(Sgp)

Text
Segment

4 ori $aO, Sat, 0

Text
Segment

4 jmp 0

Text
Segment

8 jal 0

Text
Segment

Text
Segment

...

Text
Segment

0x180 jr Sra

Text
Segment

Text
Segment

Data
Segment

0 (X) Data
Segment

0 (Y) Data
Segment

-

Data
Segment

Relocation
Info

Address Instruction Type Dependency Relocation
Info

Address Instruction Type Dependency Relocation
Info

0 lui X

Relocation
Info

0 sw Y

Relocation
Info

4 ori X

Relocation
Info

4 jmp F00

Relocation
Info

8 jal B

Relocation
Info

Symbol
Table

Address Symbol Symbol
Table

Address Symbol Symbol
Table

- X

Symbol
Table

- Y

Symbol
Table

- B

Symbol
Table

0x180 F00

2.21 Exercises 211

2 . 3 1 . 1 [5] <2.12> Link the object files above to form the executable file header.
Assume that Procedure A has a text size of 0x140, data size of 0x40 and Procedure B
has a text size of 0x300 and data size of 0x50. Also assume the memory allocation
strategy as shown in Figure 2.13.

2 . 3 1 . 2 [5] <2.12> What limitations, if any, are there on the size of an executable?

2 . 3 1 . 3 [5] <2.12> Given your understanding of the limitations of branch and
jump instructions, why might an assembler have problems directly implementing
branch'and jump instructions in an object file?

Exercise 2.32
The first three problems in this exercise assume that function swap, instead of the
code in Figure 2.24, is defined in C as follows:

a. void swap(int v[], int k. int j)l

int temp:
temp=v[k];

v[k]=v[j];

v[j]=temp;

1

b. void s w a p d n t *p)l

int temp:
temp=*p;

p=(p+l):
*(p+l)=*p:

1

2 . 3 2 . 1 [10] <2.13> Translate this function into MIPS assembler code.

2 . 3 2 . 2 [5] <2.13> What needs to change in the s o r t function?

2 . 3 2 . 3 [5] <2.13> If we were sorting 8-bit bytes, not 32-bit words, how would
your MIPS code for swap in 2.32.1 change?

For the remaining three problems in this exercise, we assume that the s o r t function
from Figure 2.27 is changed in the following way:

a. Use s-registers instead of t-registers.

b. Use the bltz (branch on less than zero) instruction instead of sit and bne at the for2tst label.

2 . 3 2 . 4 [5] <2.13> Does this change affect the code for saving and restoring
registers in Figure 2.27?

212 Chapter 2 Instructions: Language of the Computer

2 . 3 2 . 5 [10] <2.13> When sorting a 10-element array that was already sorted,
how many more (or fewer) instructions are executed as a result of this change?

2 . 3 2 . 6 [10] <2.13> When sorting a 10-element array that was sorted in descending
order (opposite of the order that s o r t () creates), how many more (or fewer)
instructions are executed as a result of this change?

Exercise 2.33
The problems in this exercise refer to the following function, given as array code:

a. int find (int a[], int n, int x)|
i nt i;
for(i=0;i!=n;i++)

if(a[i]==x)
return i;

return -1:

1

b. int count(int a[], int n, int x)|
int res=0;
i nt i:

for(i=0:i!=n;i++)
if(a[i]==x)

res=res+l:
return res:

1

2 . 3 3 . 1 [10] <2.14> Translate this function into MIPS assembly.

2 . 3 3 . 2 [10] <2.14> Convert this function into pointer-based code (in C).

2 . 3 3 . 3 [10] <2.14> Translate your pointer-based C code from 2.33.2 into MIPS
assembly.

2 . 3 3 . 4 [5] <2.14> Compare the worst-case number of executed instructions per
nonlast loop iteration in your array-based code from 2.33.1 and your pointer-based
code from 2.33.3. Note: the worst-case occurs when branch conditions are such
that the longest path through the code is taken, i.e., if there is an if statement, the
result of the condition check is such that the path with more instructions is taken.
However, if the result of the condition check would cause the loop to exit, then we
assume that the path that keeps us in the loop is taken.

2 . 3 3 . 5 [5] <2.14> Compare the number of temporary registers (t-registers)
needed for your array-based code from 2.33.1 and for your pointer-based code
from 2.33.3.

2.21 Exercises 213

2 . 3 3 . 6 [5] <2.14> What would change in your answer from 2.33.4 if registers
$ t 0 - $ t7 and S a 0 - $ a 3 in the MIPS calling convention were all callee-saved, just
like $ s 0 - $ s 7 ?

Exercise 2.34
The table below contains ARM assembly code. In the following problems, you will
translate ARM assembly code to MIPS.

a. - MOV rO. ,710 ;init loop counter to 10
LOOP: ADD rO. rl :add rl to rO

SUBS rO. 1 ;decrement counter
BNE LOOP ;if Z=0 repeat loop

b. ROR rl, r2, #4 : r 1 = r23:0 concatenated with r 2 3 1 : 4

2 . 3 4 . 1 [5] <2.16> For the table above, translate this ARM assembly code to MIPS
assembly code. Assume that ARM registers rO, rl , and r2 hold the same values as
MIPS registers $s0, S s l , and $s2 , respectively. Use MIPS temporary registers
(StO, etc.) where necessary.

2 . 3 4 . 2 [5] <2.16> For the ARM assembly instructions in the table above, show
the bit fields that represent the ARM instructions.

The table below contains MIPS assembly code. In the following problems, you will
translate MIPS assembly code to ARM.

a. sit StO, SsO. Ssl
bit StO. SO, FARAWAY

b. add SsO, Ssl. Ss2

2 . 3 4 . 3 [5] <2.16> For the table above, find the ARM assembly code that
corresponds to the sequence of MIPS assembly code.

2 . 3 4 . 4 [5] <2.16> Show the bit fields that represent the ARM assembly code.

Exercise 2.35
The ARM processor has a few different addressing modes that are not supported in
MIPS. The following problems explore these new addressing modes.

a. LDR rO. [rl] : rO = memory[rl]

b. LDMIA rO. Irl. r2, r41 : rl = memory[r0], r2 = memory[r0+4]

; r4 = memory[r0+8]

214 Chapter 2 Instructions: Language of the Computer

2 . 3 5 . 1 [5] <2.16> Identify the type of addressing mode of the ARM assembly
instructions in the table above.

2 . 3 5 . 2 [5] <2.16> For the ARM assembly instructions above, write a sequence of
MIPS assembly instructions to accomplish the same data transfer.

In the following problems, you will compare code written using the ARM and MIPS
instruction sets. The following table shows code written in the ARM instruction

a. LDR rO. =Tab1 el ;load base address of table

LDR n , #100 :initialize loop counter
EOR r 2. r2, r2 ;clear r2

ADDLP: LDR r4. [rO] :get first addition operand

ADD r2, r2. r4 :add to r2

ADD rO. rO. #4 ;increment to next table element

SUBS r 1. rl. #1 ;decrement loop counter
BNE ADDLP :if loop counter != 0. go to ADDLP

b. ROR rl r2. m ;rl = r2 3 : 0 concatenated with r 2 3 1 : 4

2 . 3 5 . 3 [10] <2.16> For the ARM assembly code above, write an equivalent MIPS
assembly code routine.

2 . 3 5 . 4 [5] <2.16> What is the total number of ARM assembly instructions
required to execute the code? What is the total number of MIPS assembly
instructions required to execute the code?

2 . 3 5 . 5 [5] <2.16> Assuming that the average CPI of the MIPS assembly routine is
the same as the average CPI of the ARM assembly routine, and the MIPS processor
has an operation frequency that is 1.5 times the ARM processor, how much faster
is the ARM processor than the MIPS processor?

Exercise 2.36
The ARM processor has an interesting way of supporting immediate constants.
This exercise investigates those differences. The following table contains ARM
instructions.

a. ADD, r3, r2, rl. LSL //3 ;r3 = r2 + (rl << 3)

b. ADD. r3, r2, rl. ROR //3 ;r3 = r2 + (rl, rotated_right 3 bits)

2 . 3 6 . 1 [5] <2.16> Write the equivalent MIPS code for the ARM assembly code
above.

2.21 Exercises 215

2 . 3 6 . 2 [5] <2.16> If the register Rl had the constant value of 8, rewrite your
MIPS code to minimize the number of MIPS assembly instructions needed.

2 . 3 6 . 3 [5] <2.16> If the register Rl had the constant value of 0x06000000, rewrite
your MIPS code to minimize the number of MIPS assembly instructions needed.

The following table contains MIPS instructions.

a. addi r3. r2, 0x1

b. a-ddi r3, r2, 0x8000

2 . 3 6 . 4 [5] <2.16> For the MIPS assembly code above, write the equivalent ARM
assembly code.

Exercise 2„37
This exercise explores the differences between the MIPS and x86 instruction sets.
The following table contains x86 assembly code.

a. mov edx, [esi+4*ebx]

b. START: mov ax, 00101100b

mov cx. 00000011b

mov bx. 11110000b
and ax. bx
or ax. cx

2 . 3 7 . 1 [10] <2.I7> Write pseudo code for the given routine.

2 . 3 7 . 2 [10] <2.17> What is the equivalent MIPS for the given routine?

The following table contains x86 assembly instructions.

a. mov edx, [esi-t-4*ebx]

b. add eax, 0x12345678

2 . 3 7 . 3 [5] <2.17> For each assembly instruction, show the size of each of the
bit fields that represent the instruction. Treat the label MY_FUNCT 10N as a 32-bit
constant.

2 . 3 7 . 4 [10] <2.17> Write equivalent MIPS assembly statements.

2 1 6 Chapter 2 Instructions: Language of the Computer

Exercise 2.38
The x86 instruction set includes the REP prefix that causes the instruction to be
repeated a given number of times or until a condition is satisfied. The first three
problems in this exercise refer to the following x86 instruction:

Instruction Interpretation

a. REP MOVSB Repeat until ECX is zero:

Mem8[EDI]=Mem8[ESI]. EDI=EDItl, ESI-ESI+1. ECX=ECX-1

b. REP MOVSO Repeat until ECX is zero:
Mem32[EDI]=Mem32[ESI], EDI-EDI+4. ESI=ESI+4, ECX=ECX-1

2 . 3 8 . 1 [5] <2.17> What would be a typical use for this instruction?

2 . 3 8 . 2 [5] <2.17> Write MIPS code that performs the same operation, assuming
that $a0 corresponds to ECX, S a l to EDI, $a2 to ESI, and $a3 to EAX.

2 . 3 8 . 3 [5] <2.17> If the x86 instruction takes one cycle to read memory, one
cycle to write memory, and one cycle for each register update, and if MIPS takes
one cycle per instruction, what is the speed-up of using this x86 instruction instead
of the equivalent MIPS code when ECX is very large? Assume that the clock cycle
time for x86 and MIPS is the same.

The remaining three problems in this exercise refer to the following function, given
in both C and x86 assembly. For each x86 instruction, we also show its length in the
x86 variable-length instruction format and the interpretation (what the instruction
does). Note that the x86 architecture has very few registers compared to MIPS, and
as a result the x86 calling convention is to push all arguments onto the stack. The
return value of an x86 function is passed back to the caller in the EAX register.

C code x86 code

a. int f(int a, int b)| f: push %ebp IB. push Sebp to stack
return a+b; mov %esp,£ebp 2B, move %esp to %ebp

1 mov Oxc(%ebp),%eax 3B, load 2
n d
 arg to %eax

add 0x8Uebp).%eax 3B, add l
s l
 arg to %eax

pop %ebp IB, restore %ebp

ret IB, return

b. void f(int *a, int *b)l f: push %ebp IB. push Xebp to stack
*a=*a+*b; mov %esp,%ebp 2B, move %esp to %ebp
*b=*a: mov 8(%ebp),%eax 3B. load 1 s t arg into Xeax

1 mov 12(%ebp).Xecx 3B, load 2',(J arg into %ecx
mov (%eax),%edx 2B, load *a into %edx
add (%ecx),%edx 2B, add *b to IKedx
mov %edx,(%eax) 2B. store %edx to *a
mov Xedx,(%ecx) 2B, store Xedx to *b
pop %ebp IB. restore %ebp
ret IB. return

2.21 Exercises 217

2 . 3 8 . 4 [5] <2.17> Translate this function into MIPS assembly. Compare the size
(how many bytes of instruction memory are needed) for this x86 code and for your
MIPS code.

2 . 3 8 . 5 [5] <2.17> If the processor can execute two instructions per cycle, it must
at least be able to read two consecutive instructions in each cycle. Explain how it
would be clone in MIPS and how it would be done in xS6.

2 . 3 8 . 6 [5] <2.17> If each MIPS instruction takes one cycle, and if each x86
instruction takes one cycle plus a cycle for each memory read or write it has to
perform, what is the speed-up of using x86 instead of MIPS? Assume that the clock
cycle time is the same in both x86 and MIPS, and that the execution takes the
shortest possible path through the function (i.e., every loop is exited immediately
and every if statement takes the direction that leads toward the return from the
function). Note that x86 ret instruction reads the return address from the stack.

Exercise 2.39
The CPI of the different instruction types is given in the following table.

Arithmetic Load/Store Branch

a. 2 10 3

b. 1 10 4

2 . 3 9 . 1 [5] <2.18> Assume the following instruction breakdown given for
executing a given program:

Instructions (in millions)

Arithmetic 500

Load/Store 300

Branch 100

What is the execution time for the processor if the operation frequency is 5 GHz?

2 . 3 9 . 2 [5] <2.18> Suppose that new, more powerful arithmetic instructions are
added to the instruction set. On average, through the use of these more powerful
arithmetic instructions, we can reduce the number of arithmetic instructions
needed to execute a program by 25%, and the cost of increasing the clock cycle
time by only 10%. Is this a good design choice? Why?

218 Chapter 2 Instructions: Language of the Computer

2 . 3 9 . 3 [5] <2.18> Suppose that vve find a way to double the performance of
arithmetic instructions? What is the overall speed-up of our machine? What if we
find a way to improve the performance of arithmetic instructions by 10 times!?

The following table shows the proportions of instruction execution for the different
instruction types.

Arithmetic Load/Store Branch

a. 60% 20% 20%

b. 80% 15% 5%

2 . 3 9 . 4 [5] <2.18> Given the instruction mix above and the assumption that an
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and
a branch instruction takes 3 cycles, find the average CPI.

2 . 3 9 . 5 [5] <2.1 S> For a 25% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

2 . 3 9 . 6 [5] <2.18> For a 50% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

Exercise 2.40
The first three problems in this exercise refer to the following function, given in
MIPS assembly. Unfortunately, the programmer of this function has fallen prey to
the pitfall of assuming that MIPS is a word-addressed machine, but in fact MIPS
is byte addressed.

a. int f(int a[], int n. int x);
f move SvO,Szero ret=0

move StO.Szero i =0

L add Stl .StO.SaO &(a[i])

lw Stl.O(Stl) read a[i]

bne Stl ,Sa2,S if(a[i]==x)

addi SvO , SvO, 1 ret++;

S addi StO.StO.1 i ++

bne StO.Sal,L repeat if i!=n

jr Sra return ret

2.21 Exercises 219

b. ; void f(int *a. int *b, int n);
f: move StO,SaO p=a

move Stl, Sal q=b

add $t2,$a2.$a0 &(a[n])

L: lw $t3.0(St0) read *p

lw St4 ,0($11) read *q
add St3.St3.St4 *p+*q
sw $t3,0($tO) *p=*p+*q

addi StO.StO.1 p=p+l

addi Stl,Stl,1 q=q+l

bne StO.St2, L repeat if pl=&(a[n])
jr Sra return

Note that in MIPS assembly the ";" character denotes that the remainder of the line
is a comment.

2 . 4 0 . 1 [5] <2.1S> The MIPS architecture requires word-sized accesses (Iw and
sw) to be word-aligned, i.e. the lowermost 2 bits of the address must both be zero. If
an address is not word-aligned, the processor raises a "bus error" exception. Explain
how this alignment requirement affects the execution of this function.

2 . 4 0 . 2 [5] <2.18> If "a" was a pointer to the beginning of an array of one-byte
elements, and if we replaced lw and sw with lb (load byte) and sb (store byte),
respectively, would this function be correct? Note: lb reads a byte from memory,
sign-extends it, and places it into the destination register, while sb stores the least-
significant byte of the register into memory.

2 . 4 0 . 3 [5] <2.18> Change this code to make it correct for 32-bit integers.

The remaining three problems in this exercise refer to a program that allocates
memory for an array, fills the array with some numbers, calls the sort function
from Figure 2.27, and then prints out the array. The main function of the program
is as follows (given as both C and MIPS code):

main code in C MIPS version of the main code

ma i n() 1 ma i n:

int *v; li SsO,5

int n=5; move SaO,SsO

v=my_al1oc(5); jal my_alloc
my_i n i t(v.n); move Ssl.SvO

sort(v . n); move SaO.Ssl
move Sal,SsO

jal my_i nit

move SaO,Ssl

move Sal, SsO

jal sort

220 Chapter 2 Instructions: Language of the Computer

The my_al 1 oc function is defined as follows (given as both C and MIPS code).
Note that the programmer of this function has fallen prey to the pitfall of using a
pointer to an automatic variable a rr outside the function in which it is defined.

my_al1oc in C MIPS code for my_al 1 oc

int *my_al1oc(int n)| my_al1oc;

int a r r[n1; addu Ssp,$sp. -4 Push

return arr; sw Sfp.O(Ssp) Sfp to stack

1 move Sfp. Ssp Save Ssp in Sfp

sll StO.SaO,2 We need 4*n bytes
sub Ssp.Ssp.StO Make room for arr

move SvO.Ssp Return address of arr

move Ssp,Sfp Restore Ssp from Sfp

lw Sfp.O(sp) Pop Sfp
addi u Ssp.Ssp.4 from stack

jr ra

The my_i ni t function is defined as follows (MIPS code):

a. my_i nit:

move StO,Szero i =0

move Stl.SaO

L: sw Szero,0(Stl) v[i]=0
addi u Stl .Stl ,4

addi u StO.StO,1 i = i+l
bne StO. Sal , L until i==n

jr Sra

b. my_init:
move StO.Szero 1-0
move Stl .SaO

L: sub St2 , Sal. StO
sw St2,0(Stl) a[i]=n-i

addi u Stl.Stl .4

addi u StO.StO.1 i-i+1:
bne StO.Sal .L until i==n

jr Sra

2 . 4 0 . 4 [5] <2.18> What are the contents (values of all five elements) of array v
right before the " j a l so rt" instruction in the main code is executed?

2 . 4 0 . 5 [15] <2.18, 2.13> What are the contents of array v right before the sort
function enters its outer loop for the first time? Assume that registers $ s p, $ s 0, $ S1,
$s2, and $s3 have values of 0x1000, 20,40, 7, and 1, respectively, at the beginning
of the main code (right before"! i SsO , 5" is executed).

2 . 4 0 . 6 [10] <2.18,2.13> What are the contents of the 5-element array pointed by
v right after " j a l s o r t " returns to the main code?

2.21 Exercises 221

§2.2, page 80: MIPS, C, Java
§2.3, page 87: 2) Very slow

Answers to
Check Yourself

§2.4, page 9 3 : 3) - 8 t e n

§2.5, page 101:4) sub $ s 2 , $ s 0 , $ s l
§2.6, page 104: Both. AND with a mask pattern of Is will leaves Os everywhere but
the desired field. Shifting left by the right amount removes the bits from the left of
the field. Shifting right by the appropriate amount puts the field into the rightmost
bits of the word, with Os in the rest of the word. Note that AND leaves the field
where it was originally, and the shift pair moves the field into the rightmost part
of the.word.
§2.7, page 111:1. All are true. II. 1).
§2.8, page 122: Both are true.
§2.9, page 127:1 .2) II. 3)
§2.10, page 136:1 .4) T-128K. II. 6) a block of 256M. III. 4) s 11
§2.11, page 139: Both are true.
§2.12, page 148: 4) Machine independence.

Numerical precision
is the very soul
of science.
Sir D'arcy Wentworth Thompson
On Growth and Form, 1917

Arithmetic for
Computers
3 . 1 Introduction 224

3 .2 Addition and Subtraction 224

3 .3 Multiplication 230

3 . 4 Division 236

3 . 5 Floating Point 242

3 . 6 Parallelism and Computer Arithmetic:

Associativity 270

3.7 Real Stuff: Floating Point in the x 8 6 272

3 .8 Fallacies and Pitfalls 275

3.9
@ 3.10

3.11

Concluding Remarks 2S0

Historical Perspective and Further Reading 283

Exercises 283

224 Chapter 3 Arithmetic for Computers

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal
or binary form, but what about the other numbers that commonly occur? For
example:

• What about fractions and other real numbers?

• What happens if an operation creates a number bigger than can be
represented?

• And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries including representation of
real numbers, arithmetic algorithms, hardware that follows these algorithms, and
the implications of all this for instruction sets. These insights may explain quirks
that you have already encountered with computers.

Subtraction: Addition's
Tricky Pal

No. 10, Top Ten Courses
for Athletes at a Football
Factory, David Letterman
et al„ Book of Top Ten
Lists, 1990

3.2 A d d i t i o u i aiandl SfuMract i idDBi i

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

EXAMPLE

Binary Addition and Subtraction

Let's try adding 6ten to 7 ten in binary and then subtracting 6 t c n from 7 ten in
binary.

0000 0000 0000 0000 0000 0000 0000 0111 two = 7 t e n

+ 0000 0000 0000 0000 0000 0000 0000 0110 t w o = 6 t e n

= 0000 0000 0000 0000 0000 0000 0000 1 1 0 1 t w o = 1 3 t e n

The 4 bits to the right have all the action; Figure 3.1 shows the sums and carries.
The carries are shown in parentheses, with the arrows showing how they are
passed.

3.2 Addition and Subtraction 225

Subtracting 6ten from 7 ten can be done directly:

0000 0000 0000 0000 0000 0000 0000 0111
0000 0000 0000 0000 0000 0000 0000 0110

two

two

= 7
= 6

ten

ten

0000 0000 0000 0000 0000 0000 0000 0001 t w o = l t e n

or via addition using the two's complement representation o f - 6 :

0000 0000 0000 0000 0000 0000 0000 0111 two = 7 t e n

T 1111 1111 1111 1111 1111 1111 1111 1010 two = - 6 t e n

0000 0000 0000 0000 0000 0000 0000 0001 t w o = l t e n

ANSWER

(0) \ (0) \ 1 (') \ , rn \ (0) \ (Carries)

0
0 0

1 \ 1
0 U - U - U — U — I 0

. . . (0) o (0) 0 (0) 1 (1) 1 (1) 0 (0) 1

FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds
1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1.
The third digit is the sum of i + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is
1 + 0 + 0, yielding a 1 sum and no carry.

Recall that overflow occurs when the result from an operation cannot be
represented with the available hardware, in this case a 32-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example,-10 T 4 = - 6 . Since the operands fit in 32 bits and the sum is no larger
than an operand, the sum must fit in 32 bits as well. Therefore, no overflow can
occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it's just the opposite principle: when the signs of the operands are the same, overflow
cannot occur. To see this, remember that x - y = x + (—y) because we subtract by
negating the second operand and then add. Therefore, when we subtract operands
of the same sign we end up by adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Knowing when overflow cannot occur in addition and subtraction is all well and
good, but how do we detect it when it does occur? Clearly, adding or subtracting
two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.

226 Chapter 3 Arithmetic for Computers

The lack of a 33rd bit means that when overflow occurs, the sign bit is set with the
value of the result instead of the proper sign of the result. Since we need just one
extra bit, only the sign bit can be wrong. ITence, overflow occurs when adding two
positive numbers and the sum is negative, or vice versa. This means a carry out
occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. This means a borrow occurred ,
from the sign bit. Figure 3.2 shows the combination of operations, operands, and
results that indicate an overflow.

We have just seen how to detect overflow for two's complement numbers in
a computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

• Add (add), add immediate (addi) , and subtract (sub) cause exceptions on
overflow.

• Add unsigned (addu), add immediate unsigned (addi Li), and subtract
unsigned (s u b u) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu, no
matter what the type of the variables. The MIPS Fortran compilers, however, pick
the appropriate arithmetic instructions, depending on the type of the operands.

Arithmetic Logic Unit
(ALU) Hardware that
performs addition,
subtraction, and usually
logical operations such as
AND and OR.

Operation Operand A Operand B
Result

indicating overflow

A + B > 0 > 0 < 0
A + B < 0 < 0 > 0
A-B > 0 < 0 < 0
A-B < 0 > 0 > 0

FIGURE 3.2 Overflow conditions for addition and subtraction.

US Appendix C describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.

3.2 Addition and Subtraction 227

The computer designer must decide how to handle arithmetic overflows. Although
some languages like C and Java ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the programming
environment must then decide what to do when overflow occurs.

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unscheduled procedure
call. The address of the instruction that overflowed is saved in a register, and the
computer jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
can continue after corrective code is executed. (Section 4.9 covers exceptions in
more detail; Chapters 5 and 6 describe other situations where exceptions and
interrupts occur.)

MIPS includes a register called the exception program counter (EPC) to contain
the address of the instruction that caused the exception. The instruction move from
system control (mfcO) is used to copy EPC into a general-purpose register so that
MIPS software has the option of returning to the offending instruction via a jump
register instruction.

Hardware/
Software
Interface
exception Also
called interrupt. An
unscheduled event
that disrupts program
execution; used to detect
overflow.

interrupt An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all
exceptions.)

Arithmetic ffoir R/lulltiinniedia
Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9), but due to the infrequency
of arithmetic operations on these data sizes in typical integer programs, there is
little support beyond data transfers. Architects recognized that many graphics
and audio applications would perform the same operation on vectors of this
data. By partitioning the carry chains within a 64-bit adder, a processor could
perform simultaneous operations on short vectors of eight 8-bit operands, four
16-bit operands, or two 32-bit operands. The cost of such partitioned adders was
small. These extensions have been called vector or SIMD, for single instruction,
multiple data (see Section 2.17 and Chapter 7).

One feature not generally found in general-purpose microprocessors is saturating
operations. Saturation means that when a calculation overflows, the result is set

228 Chapter 3 Arithmetic for Computers

to the largest positive number or most negative number, rather than a modulo
calculation as in two's complement arithmetic. Saturation is likely what yoti want
for media operations. For example, the volume knob on a radio set would be
frustrating if, as you turned, it would get continuously louder for a while and then
immediately very soft. A knob with saturation would stop at the highest volume no
matter how far you turned it. Figure 3.3 shows arithmetic and logical operations
found in many multimedia extensions to modern instruction sets.

Instruction category Operands

Unsigned add/subtract Eight 8-bit or Four 16-bit

Saturating add/subtract Eight 8-bit or Four 16-bit

Max/min/minimum Eight 8-bit or Four 16-bit

Average Eight 8-bit or Four 16-bit

Shift right/left Eight 8-bit or Four 16-bit

FIGURE 3.3 Summary of multimedia support for
desktop computers.

Elaboration: MIPS can trap on overflow, but unlike many other computers, there is
no conditional branch to test overflow. A sequence of MIPS instructions can discover
overflow. For signed addition, the sequence is the following (see the Elaboration on
page 104 in Chapter 2 for a description of the xor instruction):

$t3, Szero # $t3 = 1 if signs differ

$zero, No_overflow # $tl, $t2 signs

so no overflow

$tO, $tl # signs =; sign of sum match too?

$13 negative if sum sign different

$13, $zero # $t3 = 1 if sum sign different

$ z e r o , Overflow # All 3 signs go to overflow

For unsigned addition ($t0 = Stl + $t2), the test is

addu StO,

xor $ 1 3 ,
S i t $ 13,
bne St3,

xor $ 1 3 .

S i t $ 1 3 ,
bne $ 13,

addu $t0. Stl, $12

nor $ 13, Stl, Szero

situ St3, St3, $12

bne $t3, Szero .Overflow

StO = sum

$ 13 = NOT

(2's comp

(2 3 2 - Stl

=> 2 3 2 - 1

Stl

- 1

<

2 3 2 - Stl - 1)

1) < St2

Stl + $ 12

i f(2 3 2 - l < S t l + S t 2) goto overflow

3.2 Addition and Subtraction 229

Summary
A major point of this section is that, independent of the representation, the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It's easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don't want to
detect overflow for address arithmetic, the most common use of natural numbers.
Two's complement presents a greater challenge, yet some software systems require
detection of overflow, so today all computers have a way to detect it.

The rising popularity of multimedia applications led to arithmetic instructions
that support narrower operations that can easily operate in parallel.

Some programming languages allow two's complement integer arithmetic on Check
variables declared byte and half. What MIPS instructions would be used? Yourself

1. Load with 1 bu, 1 hu; arithmetic with add, sub, mul t, di v; then store using
sb, sh.

2. Load with 1 b, 1 h; arithmetic with add, sub, mul t, di v; then store using
sb, sh.

3. Load with 1 b, 1 h; arithmetic with add, sub, mul t, di v, using AND to mask
result to 8 or 16 bits after each operation; then store using sb, sll.

E laboration: In the preceding text, we said that you copy EPC into a register via mf cO and
then return to the interrupted code via jump register. This leads to an interesting question:
since you must first transfer EPC to a register to use with jump register, how can jump
register return to the interrupted code and restore the original values of all registers? Either
you restore the old registers first, thereby destroying your return address from EPC, which
you placed in a register for use in jump register, or you restore all registers but the one with
the return address so that you can jump—meaning an exception would result in changing
that one register at anytime during program execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $k0 and $k 1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler
can use it as a temporary register (see Hardware/Software Interface in Section 2.10),
compilers also abstain from using registers $k0 and $ k 1 to make them available for the
operating system. Exception routines place the return address in one of these registers
and then use jump register to restore the instruction address.

E laboration: The speed of addition is increased by determining the carry in to the
high-order bits sooner. There are a variety of schemes to anticipate the carry so that
the worst-case scenario is a function of the log2 of the number of bits in the adder.
These anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. The most popular is carry
lookahead, which Section C.6 in Appendix C on the CD describes.

230 Chapter 3 Arithmetic for Computers

Multiplication is
vexation, Division is
as bad; The rule of
three doth puzzle me,
And practice drives
me mad.

Anonymous,
Elizabethan manuscript,
1570

3.3 f l i i B f l f t i p f e a f t i o i f l i

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let's review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons
that will become clear shortly, we limit this decimal example to using only the
digits 0 and 1. Multiplying 1000tcn by 1001tcn:

Multiplicand lOOOten
Multiplier x 1001 ten

1000

0000
0000

1000

Product lOOlOOOten

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right to
left, multiplying the multiplicand by the single digit of the multiplier, and shifting
the intermediate product one digit to the left of the earlier intermediate products.

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplicand or the multiplier. In fact, if we
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and
an m-bit multiplier is a product that is n T m bits long. That is, n T m bits are
required to represent all possible products. Hence, like add, multiply must cope with
overflow because we frequently want a 32-bit product as the result of multiplying
two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 x multiplicand) in the proper place
if the multiplier digit is a 1, or

2. Place 0 (0 x multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication
of binary numbers must always use 0 and 1, and thus always offers only these two
choices.

3.3 Multiplication 231

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tradition
in the belief that you will gain a better understanding by seeing the evolution of
the multiply hardware and algorithm through multiple generations. For now, let's
assume that we are multiplying only positive numbers.

Sequential Version of the SVOuStiplication ADgornthm
and Hardware
This design mimics the algorithm we learned in grammar school; Figure 3.4 shows
the hardware. We have drawn the hardware so that data flows from top to bottom
to resemble more closely the paper-and-pencil method.

Let's assume that the multiplier is in the 32-bit Multiplier register and that the
64-bit Product register is initialized to 0. From the paper-and-pencil example
above, it's clear that we will need to move the multiplicand left one digit each step,
as it may be added to the intermediate products. Over 32 steps, a 32-bit multipli-
cand would move 32 bits to the left. ITence, we need a 64-bit Multiplicand register,
initialized with the 32-bit multiplicand in the right half and zero in the left half.
This register is then shifted left 1 bit each step to align the multiplicand with the
sum being accumulated in the 64-bit Product register.

FIGURE 3.4 First version of the multiplication hardware. The Multiplicand register, ALU, and
Product register are ail 64 bits wide, with only the Multiplier register containing 32 bits. Appendix C
describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted
left 1 bit on cach step. The multiplier is shifted in the opposite direction at each step. The algorithm starts
with the product initialized to 0. Control decides w h e n to shift the Multiplicand and Multiplier registers and
when to write new values into the Product register.

Figure 3.5 shows the three basic steps needed for each bit. The least significant
bit of the multiplier (MultiplierO) determines whether the multiplicand is added to

232 Chapter 3 Arithmetic for Computers

the Product register. The left shift in step 2 has the effect of moving the intermediate
operands to the left, just as when multiplying with paper and pencil. Th<? shift
right in step 3 gives us the next bit of the multiplier to examine in the following
iteration. These three steps are repeated 32 times to obtain the product. If each step
took a clock cycle, this algorithm would require almost 100 clock cycles to multiply

FIGURE 3.5 The first multiplication algorithm, using the hardware shown in Figure 3.4. If the
least significant bit of the multiplier is I, add the multiplicand to the product. If not, go to the next step. Shift
the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32 times.

3.3 Multiplication 233

two 32-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program, but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Accordingly, in many applications, multiply
can take multiple clock cycles without significantly affecting performance. Yet
Amdahl's law (see Section 1.8) reminds us that even a moderate frequency for a
slow operation can limit performance.

This algorithm and hardware are easily refined to take 1 clock cycle per step.
The speed-up comes from performing the operations in parallel: the multiplier
and multiplicand are shifted while the multiplicand is added to the product if the
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.6 shows the
revised hardware.

Replacing arithmetic by shifts can also occur when multiplying by constants. Some
compilers replace multiplies by short constants with a series of shifts and adds.
Because one bit to the left represents a number twice as large in base 2, shifting
the bits left has the same effect as multiplying by a power of 2. As mentioned in
Chapter 2, almost every compiler will perform the strength reduction optimization
of substituting a left shift for a multiply by a power of 2.

Hardware/
Software
Interface

Multiplicand

FIGURE 3.6 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.4. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register left at 64 bits. N o w the product is shifted right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
(The Product register should really be 65 bits to hold the carry out of the adder, but it's shown here as 64 bits
to highlight the evolution from Figure 3.4.)

234 Chapter 3 Arithmetic for Computers

EXAMPLE

ANSWER

A Multiply Algor i thm

Using 4-bit numbers to save space, multiply 2 t e n x 3 t en , or 0010 t w o x 001 l t w o .

Figure 3.7 shows the value of each register for each of the steps labeled
according to Figure 3.5, with the final value of 0000 0110 t w o or 6 t e n . Color is
used to indicate the register values that change on that step, and the bit circled
is the one examined to determine the operation of the next step.

Signed Multiplication!
So far, we have dealt with positive numbers. The easiest way to understand how
to deal with signed numbers is to first convert the multiplier and multiplicand to
positive numbers and then remember the original signs. The algorithms should
then be run for 31 iterations, leaving the signs out of the calculation. As we learned
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that
we remember that we are dealing with numbers that have infinite digits, and we are
only representing them with 32 bits. Hence, the shifting steps would need to extend
the sign of the product for signed numbers. When the algorithm completes, the
lower word would have the 32-bit product.

Iteration Step Multiplier Multiplicand Product

o Initial values o o i @ o o o o o o i o o o o o o o o o

1 l a : 1 => Prod = Prod + Mcand 0 0 1 1 o o o o o o i o o o o o o o i o

2: Shift left Multiplicand 0 0 1 1 o o o o o i o o o o o o o o i o

3: Shift right Multiplier o o c ® o o o o o i o o o o o o o o i o

2 l a : 1 => Prod = Prod + Mcand 0 0 0 1 o o o o o i o o o o o o 0 1 1 0

2: Shift left Multiplicand o o o i o o o o 1 0 0 0 o o o o 0 1 1 0

3: Shift right Multiplier 0 0 0 © o o o o 1 0 0 0 o o o o 0 1 1 0

3 1: 0 => No operation o o o o o o o o 1 0 0 0 o o o o 0 1 1 0

2: Shift left Multiplicand o o o o o o o i o o o o o o o o 0 1 1 0

3: Shift right Multiplier o o o © o o o i o o o o o o o o 0 1 1 0

4 1: 0 => No operation o o o o o o o i o o o o o o o o 0 1 1 0

2: Shift left Multiplicand o o o o o o i o o o o o o o o o 0 1 1 0

3: Shift right Multiplier o o o o o o i o o o o o o o o o 0 1 1 0

F I G U R E 3 . 7 M u l t i p l y e x a m p l e u s i n g a l g o r i t h m in F i g u r e 3 . 5 . The bit examined to determine the
next step is circled in color.

3.3 Multiplication 235

Faster R/IufltipDiication
Moore's law has provided so much more in resources that hardware designers can
now build much faster multiplication hardware. Whether the multiplicand is to be
added or not is known at the beginning of the multiplication by looking at each of
the 32 multiplier bits. Faster multiplications are possible by essentially providing
one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the
right to the inputs of adders on the left, making a stack of adders 32 high. An
alternative way to organize these 32 additions is in a parallel tree, as Figure 3.8
shows. Instead of waiting for 32 add times, we wait just the log2 (32) or five 32-bit
add times. Figure 3.8 shows how this is a faster way to connect them.

In fact, multiply can go even faster than five add times because of the use of
carry save adders (see Section C.6 in @ Appendix C) and because it is easy to
pipeline such a design to be able to support many multiplies simultaneously (see
Chapter 4).

Multiply in MIPS
MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has
two instructions: multiply (mul t) and multiply unsigned (mul tu) . To fetch the
integer 32-bit product, the programmer uses move from lo (mf lo) . The MIPS
assembler generates a pseudoinstruction for multiply that specifies three general-
purpose registers, generating mf 1 o and mf h i instructions to place the product into
registers.

Summary
Multiplication hardware is simply shifts and add, derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions
for multiplications by powers of 2.

Both MIPS multiply instructions ignore overflow, so it is up to the software to check HcHTCfWcHTG/
to see if the product is too big to fit in 32 bits. There is no overflow if Hi is 0 for § o f t w a i * ©
mul tu or the replicated sign of Lo for mul t. The instruction move from hi (mf h i)
can be used to transfer Hi to a general-purpose register to test for overflow. I l l t © r f S l G ©

236 Chapter 3 Arithmetic for Computers

Mplior31 • Mcand MplierSO • Mcand Mplier29 • Mcand Mp!ior28 • Mcand Mplior3 • Mcand Mplier2 • Mcand Mplier! • Mcand MplierO • Mcand

Product63 Product62 ••• Product47..16 . . . Productl ProductO

F I G U R E 3 . 8 Fast m u l t i p l i c a t i o n h a r d w a r e . Rather Than use a single 32-bit adder 31 times, this hardware "unrolls the loop" to use 31
adders and then organizes them to minimize delay.

Divide et tmpera.

Latin for "Divide and
rule," ancient political
m a x i m cited by
Machiavelli, 1532

Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even more quirky. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let's start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010 ten by 1000 l cn:

1001,

Divisor 1000 tcn 11001010
- 1000

10
101
1010

-1000
10 ten

Quotient

Dividend

Remainder

3.4 Division 237

Divide's two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend = Quotient x Divisor T Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the
divide instruction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our carefully
selected decimal example uses only the numbers 0 and 1, so it's easy to figure out
how many times the divisor goes into the portion of the dividend: it's either 0 times
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to
these two choices, thereby simplifying binary division.

Let's assume that both the dividend and the divisor are positive and hence the
quotient and the remainder are nonnegative. The division operands and both
results are 32-bit values, and we will ignore the sign for now.

A Division! Algorithm andi Hardware
Figure 3.9 shows hardware to mimic our grammar school algorithm. We start with
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.

dividend A number
being divided.

divisor A number that
the dividend is divided by.

quotient The primary
result of a division;
a number that when
multiplied by the
divisor and added to the
remainder produces the
dividend.

remainder The secondary
result of a division; a
number that when added
to the product of the
quotient and the divisor
produces the dividend.

-t-

FIGURE 3.9 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with
the dividend. Control decides w h e n to shift the Divisor and Quotient registers and w h e n to write the new
value into the Remainder register.

238 Chapter 3 Arithmetic for Computers

FIGURE 3.10 A division algorithm, using the hardware in Figure 3.9. If the remainder is
positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder
after step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and
adds the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns
the divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times.

3.4 Division 239

Figure 3.10 shows three steps of the first division algorithm. Unlike a human,
the computer isn't smart enough to know in advance whether the divisor is smaller
than the dividend. It must first subtract the divisor in step 1; remember that this is
how we performed the comparison in the set on less than instruction. If the result
is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in
the quotient (step 2a). If the result is negative, the next step is to restore the original
value by adding the divisor back to the remainder and generate a 0 in the quotient
(step 2b). The divisor is shifted right and then we iterate again. The remainder
and quotient will be found in their namesake registers after the iterations are
complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let's try dividing 7 ten by
2 tcn, or 0000 011 l t w o by 0010 two. EXAMPLE

Figure 3.11 shows the value of each register for each of the steps, with the
quotient being 3ten and the remainder l t c n . Notice that the test in step 2 of
whether the remainder is positive or negative simply tests whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes n T 1 steps to get the proper quotient and remainder.

ANSWER

This algorithm and hardware can be refined to be faster and cheaper. The speed-
up comes from shifting the operands and the quotient simultaneously with the
subtraction. This refinement halves the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.12 shows the
revised hardware.

Signed Division
So far, we have ignored signed numbers in division. The simplest solution is to
remember the signs of the divisor and dividend and then negate the quotient if the
signs disagree.

Elaboration: The one complication of signed division is that we must also set the
sign of the remainder. Remember that the following equation must always hold:

Dividend = Quotient x Divisor + Remainder

To understand how to set the sign of the remainder, let's look at the example of
dividing all the combinations of ±7ten by ±2 len. The first case is easy:

+7 + +2: Quotient = +3, Remainder = +1

240 Chapter 3 Arithmetic for Computers

Iteration Step Quotient Divisor Remainder

0 Initial values oooo 0010 oooo
r

OOOO 0111

1

1: Rem = Rem - Div oooo 0010 oooo © n o o i n

1 2b: Rem < 0 +Div, sll Q, QO = 0 oooo 0010 oooo 0000 0111 1
3: Shift Div right oooo 0001 oooo OOOO 0111

2

1: Rem = Rem - Div oooo 0001 oooo © 1 1 1 0 -111

2 2b : Rem < 0 +Div, sll Q, QO = 0 oooo 0001 oooo OOOO 0111 2
3: Shift Div right oooo OOOO 1000 OOOO 0111

3

1 : Rem = Rem - Div oooo OOOO 1000 ©111 1 1 1 1

3 2b : Rem < 0 => +Div, sll Q, QO = 0 oooo OOOO 1000 OOOO 0111 3
3: Shift Div right oooo OOOO 0100 OOOO 0111

4

1: Rem = Rem - Div oooo OOOO 0100 ©000 0011
4 2 a : Rem > 0 sll Q, QO = 1 0001 OOOO 0100 OOOO 0011 4

3: Shift Div right 0 0 0 1 OOOO 0010 OOOO 0011

5
1: Rem = Rem - Div 0 0 0 1 OOOO 0010 © 0 0 0 0 0 0 1

5 2 a : Rem > 0 = > sll Q, QO = 1 0 0 1 1 OOOO 0010 OOOO 0001 5
3: Shift Div right 0 0 1 1 OOOO 0001 OOOO 0001

FIGURE 3.11 Division example using the algorithm in Figure 3.10. The bit examined to
determine the next step is circled in color.

FIGURE 3.12 An improved version of the division hardware. The Divisor register, ALU, and
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to Figure 3.9,
the A L U and Divisor registers are halved and the remainder is shifted left. This version also combines the
Quotient register with the right half of the Remainder register. (As in Figure 3.6, the Remainder register
should really be 65 bits to make sure the carry out of the adder is not lost.)

Checking the results:

7 = 3 x 2 + (+1) = 6 + 1

If we change the sign of the dividend, the quotient must change as well :

-7 + +2: Quot ient = -3

3.4 Division 241

Rewriting our basic formula to calculate the remainder:

Remainder = (Dividend - Quotient x Divisor) = -7 - (-3 x +2) = - 7 - (- 6) = -1

So,

-7 -s- +2: Quotient = - 3 , Remainder = -1

Checking the results again:

- 7 = - 3 x 2 + (-1) = - 6 - 1

The reason the answer isn't a quotient o f - 4 and a remainder of T l , which would also
fit this formula, is that the absolute value of the quotient would then change depending
on the sign of the dividend and the divisor! Clearly, if

- (x + y) * {-x) + y

programming would be an even greater challenge. This anomalous behavior is avoided
by following the rule that the dividend and remainder must have the same signs, no
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

+7 -r- - 2 : Quotient = - 3 , Remainder = +1
-7 t - 2 : Quotient = +3, Remainder = -1

Thus the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division
We used many adders to speed up multiply, but we cannot do the same trick for
divide. The reason is that we need to know the sign of the difference before we can
perform the next step of the algorithm, whereas with multiply we could calculate
the 32 partial products immediately.

There are techniques to produce more than one bit of the quotient per step.
The SRT division technique tries to guess several quotient bits per step, using a
table lookup based on the upper bits of the dividend and remainder. It relies on
subsequent steps to correct wrong guesses. A typical value today is 4 bits. The key
is guessing the value to subtract. With binary division, there is only a single choice.
These algorithms use 6 bits from the remainder and 4 bits from the divisor to index
a table that determines the guess for each step.

The accuracy of this fast method depends on having proper values in the lookup
table. The fallacy on page 276 in Section 3.8 shows what can happen if the table is
incorrect.

Divide in SV1BPS
You may have already observed that the same sequential hardware can be used for
both multiply and divide in Figures 3.6 and 3.12. The only requirement is a 64-bit
register that can shift left or right and a 32-bit ALU that adds or subtracts. Hence,
MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide.

2 4 2 Chapter 3 Arithmetic for Computers

As we might expect from the algorithm above, Hi contains the remainder, and Lo
contains the quotient after the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two instruc-
tions: divide (di v) and divide unsigned (di vu). The MIPS assembler allows divide
instructions to specify three registers, generating the mf 1 o or mf h i instructions to
place the desired result into a general-purpose register.

Summary
The common hardware support for multiply and divide allows MIPS to provide a
single pair of 32-bit registers that are used both for multiply and divide. Figure 3.13
summarizes the additions to the MIPS architecture for the last two sections.

Hardware/
Software
Interface

MIPS divide instructions ignore overflow, so software must determine whether the
quotient is too large. In addition to overflow, division can also result in an improper
calculation: division by 0. Some computers distinguish these two anomalous events.
MIPS software must check the divisor to discover division by 0 as well as overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back if
the remainder is negative. It simply adds the dividend to the shifted remainder in the
following step, since (r+ d) x 2- d= rx 2 + dx2- d = rx 2 + d.This nonrestoringdivision
algorithm, which takes 1 clock cycle per step, is explored further in the exercises; the
algorithm here is called restoring division. A third algorithm that doesn't save the result
of the subtract if its negative is called a nonperforming division algorithm. It averages
one-third fewer arithmetic operations.

Speed gets you nowhere
if you're headed the
wrong way y y Floating Point
American proverb

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265 . . . t e n (pi)

2.71828 .. . tcn (e)

0.00000000l t e n or 1.0ten x 10 - 9 (seconds in a nanosecond)

3,155,760,000 ten or 3.15576 ten x 109 (seconds in a typical century)

3.5 Floating Point 243

MIPS assembly language

1 Category Instruction Example Meaning Comments

add add S s l . $ s 2 , S s 3 S s l = Ss2 + Ss3 Three operands; overflow detected
subtract sub S s l , S s 2 , $ s 3 S s l = Ss2 - Ss3 Three operands; overflow detected
add immediate add i S s l , $ s 2 , 1 0 0 S s l = Ss2 + 1 0 0 + constant; overflow detected
add unsigned addu S s l , S s 2 . $ s 3 S s l = Ss2 + S s 3 Three operands; overflow undetected
subtract unsigned subu S s l . $ s 2 . S s 3 S s l = $52 - S s 3 Three operands; overflow undetected
add immediate unsigned addi u S s l , S s 2 . 1 0 0 S s l = $s2 + 1 0 0 + constant; overflow undetected

Arithmetic

move from coprocessor
register

infcO S s l , S e p c S s l = Sepc Copy Exception PC + special regs

Arithmetic multiply mul t S s 2 . S s 3 Hi, Lo = Ss2 x Ss3 64-bit signed product in Hi, Lo
multiply unsigned mu 1 tu S s 2 . S s 3 Hi, Lo = $ s 2 x $ s 3 64-bit unsigned product in Hi, Lo
divide di v S s 2 , Ss3 Lo = Ss2 / S s 3 ,

Hi = $s2 mod S s 3
Lo = quotient. Hi = remainder

divide unsigned di vu S s 2 , S s 3 Lo = Ss2 / S s 3 .
Hi = Ss2 mod S s 3

Unsigned quotient and remainder

move from Hi mf hi S s l S s l = Hi Used to get copy of Hi
move from Lo mflo S s l S s l = Lo Used to get copy of Lo

load word lw S s l , 2 0 (S s 2) S s l = Memory[$s2 + 2 0] Word from memory to register

store word sw S s l , 2 0 (S s 2) Memory[$s2 + 2 0] = S s l Word from register to memory

load half unsigned lhu S s l , 2 0 (S s 2) S s l = Memory[$s2 + 20] Halfword memory to register

store half sh S s l , 2 0 (S s 2) Memory[Ss2 + 2 0] = S s l Halfword register To memory

Data load byte unsigned l b u S s l , 2 0 (S s 2) S s l = Memory[$s2 + 20] Byte from memory to register
Transfer store byte sb S s l , 2 0 (S s 2) Memory[$s2 + 2 0] = S s l Byte from register To memory

load linked word 11 S s l , 2 0 (S s 2) $ s l = Memory[$s2 + 20] Load word as 1st half of atomic swap

store conditional word s c S s l , 2 0 (S s 2) Memory!Ss2+20]=$si : S s 1=0
or 1

Store word as 2nd half atomic swap

load upper immediate l u i S s l , 1 0 0 S s l = 1 0 0 * 2 1 5 Loads constant in upper 16 bits

AND AND S s l , S s 2 . S s 3 S s l = Ss2 & Ss3 Three reg. operands; blt-by-bit AND

OR OR S s l , S s 2 , S s 3 S s l = Ss2 | $ s 3 Three reg. operands; bit-by-bit OR

NOR NOR S s l , Ss2 , S s 3 S s l = ~ (S s 2 | $ s 3) Three reg. operands; bit-by-bit NOR

Logical AND immediate ANDi S s l , S s 2 , 1 0 0 S s l = $s2 & 100 Bit-by-bit AND with constant

OR immediate ORi S s l , S s 2 , 1 0 0 S s l = Ss2 | 100 Bit-by-bit OR with constant

shift left logical S l l S s l , $ s 2 , 1 0 S s l = Ss2 « 10 Shift left by constant

shift right logical s r l S s l . S s 2 . 1 0 S s l = Ss2 » 10 Shift right by constant
branch on equal beq S s l , S s 2 , 2 5 if (Ss l == $s2) go to PC + 4 + 1 0 0 Equal test; PC-relative branch

branch on not equal bne S s l , S s 2 , 2 5 if (S s l != Ss2) go to PC + 4 + 1 0 0 Not equal test; PC-relative

Condi-
tional
branch

set on less than s i t S s l . S s 2 . S s 3 if (Ss2 < Ss3) S s l = 1 ;
else S s l = 0

Compare less than; two's
complement

Condi-
tional
branch

set less than immediate s i t i S s l . S s 2 . 1 0 0 if (Ss2 < 100) S s l = 1;
else S s l = 0

Compare < constant; two's
complement

Condi-
tional
branch

set less than unsigned s 1 tu S s l , S s 2 , S s 3 if (Ss2 < $s3) S s l = 1;
else Ss 1=0

Compare less than; natural numbers

set less than immediate
unsigned

s 11 i u S s 1 , S s 2 , 1 0 0 if (Ss2 < 100) S s l = 1;
else S s l = 0

Compare < constant; natural numbers

Uncondi- jump j 2 5 0 0 go to 1 0 0 0 0 Jump to target address

tional jump register j r S ra go to Sra For switch, procedure return
jump jump and link j a l 2 5 0 0 Sra = PC + 4; go to 1 0 0 0 0 For procedure call

F I G U R E 3 . 1 3 M I P S c o r e a r c h i t e c t u r e . The m e m o r y and registers of the MIPS architecture are not included for space reasons, but this
section added the Hi and Lo registers to support multiply and divide. M I P S machine language is listed in the M I P S Reference Data Card at the
front of this book.

2 4 4 Chapter 3 Arithmetic for Computers

scientific notation
A notation that renders
numbers with a single
digit to the left of the
decimal point.

normalized A number
in floating-point notation
that has no leading Os.

floating point Computer
arithmetic that represents
numbers in which the
binary point is not fixed.

Notice that in the last case, the number didn't represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading Os is called a normalized number, which is the usual way to write it. For
example, 1.0tcn x 10~9 is in normalized scientific notation, but 0.1 ten x 10~8 and
10.0ten x 10 " 1 0 are not.

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1 . 0 n v o x 2 - '

To keep a binary number in normalized form, we need a base that we can increase
or decrease by exactly the number of bits the number must be shifted to have one
nonzero digit to the left of the decimal point. Only a base of 2 fulfills our need.
Since the base is not 10, we also need a new name for decimal point; binary point
will do fine.

Computer arithmetic that supports such numbers is called floating point
because it represents numbers in which the binary point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation, numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

1 .xxxxxvxcx^wo x 2my

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in normalized form offers three advantages.
It simplifies exchange of data that includes floating-point numbers; it simplifies the
floating-point arithmetic algorithms to know that numbers will always be in this
form; and it increases the accuracy of the numbers that can be stored in a word, since
the unnecessary leading Os are replaced by real digits to the right of the binary point.

fraction The value,
generally between 0 and 1
placed in the fraction
field.

exponent In the
numerical representation
system of floating-point
arithmetic, the value that
is placed in the exponent
field.

FBoating-Point Representation
A designer of a floating-point representation must find a compromise between the
size of the fraction and the size of the exponent, because a fixed word size means
you must take a bit from one to add a bit to the other. This tradeoff is between
precision and range: increasing the size of the fraction enhances the precision
of the fraction, while increasing the size of the exponent increases the range of
numbers that can be represented. As our design guideline from Chapter 2 reminds
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a MIPS floating-point number is shown below, where 5 is the
sign of the floating-point number (1 meaning negative), exponent is the value of
the 8-bit exponent field (including the sign of the exponent), and fraction is the

3.5 Floating Point 2 4 5

23-bit number. This representation is called sign and magnitude, since the sign is a
separate bit from the rest of the number.

3 1 3 0 2 9 2 8 27 2 6 2 5 24 2 3 2 2 2 1 2 0 19 18 17 1 6 15 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 o

s exponent fraction

1 bit 8 bits 23 bits

In general, floating-point numbers are of the form

(- 1) s X F X 2 e

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer arithmetic
an extraordinary range. Fractions almost as small as 2.0 t c n x 10~38 and numbers
almost as large as 2.0 l c n x 1038 can be represented in a computer. Alas, extraordinary
differs from infinite, so it is still possible for numbers to be too large. Thus, overflow
interrupts can occur in floating-point arithmetic as well as in integer arithmetic.
Notice that overflow here means that the exponent is too large to be represented
in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as programmers
will want to know when they have calculated a number that is too large to be
represented, they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in
a program giving incorrect answers. To distinguish it from overflow, we call this
event underflow. This situation occurs when the negative exponent is too large to
fit in the exponent field.

One way to reduce chances of underflow or overflow is to offer another format
that has a larger exponent. In C this number is called double, and operations on
doubles are called double precision floating-point arithmetic; single precision
floating point is the name of the earlier format.

The representation of a double precision floating-point number takes two MIPS
words, as shown below, where s is still the sign of the number, exponent is the value
of the 11-bit exponent field, and fraction is the 52-bit number in the fraction field.

3 1 3 0 2 9 2 8 27 2 6 2 5 2 4 2 3 2 2 2 1 2 0 19 18 17 1 6 1 5 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 o

s exponent fraction

1 bit 11 bits 20 bits

fraction (continued)

32 bits

MIPS double precision allows numbers almost as small as 2.0 t c n x 10~308 and
almost as large as 2.0 t en x 103 0 8 . Although double precision does increase the

overf low (f loa t ing-
p o i n t) A situation in
which a positive exponent
becomcs too large to fit in
the exponent field.

u n d e r f l o w (f loat ing-
p o i n t) A situation in
which a negative exponent
becomes too large to fit in
the exponent field.

d o u b l e prec i s ion
A floating-point value
represented in two 32-bit
words.

s ingle prec i s ion
A floating-point value
represented in a single
32-bit word.

246 Chapter 3 Arithmetic for Computers

exponent range, its primary advantage is its greater precision because of the much
larger significand.

These formats go beyond MIPS. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard has
greatly improved both the ease of porting floating-point programs and the quality
of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1-bit
of normalized binary numbers implicit. Hence, the number is actually 24 bits long
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double
precision (1 T 52). To be precise, we use the term significand to represent the 24- or
53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so
that the hardware won't attach a leading 1 to it.

Thus 0 0 . . . 00 t w o represents 0; the representation of the rest of the numbers uses
the form from before with the hidden 1 added:

(- 1) S X (1 T Fraction) X 2e

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s i , s2, s 3 , . . . , then the value is

(—1)S X (1 T (si X 2~ l) T (s2 X 2~ 2) T (s3 X 2" 3) T (s4 X 2 - ' 1) T . . .) X 2 E

Figure 3.14 shows the encodings of IEEE 754 floating-point numbers. Other
features of IEEE 754 are special symbols to represent unusual events. For example,
instead of interrupting on a divide by 0, software can set the result to a bit pattern
representing T°° or the largest exponent is reserved for these special symbols.
When the programmer prints the results, the program will print an infinity symbol.
(For the mathematically trained, the purpose of infinity is to form topological
closure of the reals.)

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 Nonzero 0 Nonzero ± denormalized number

1 - 2 5 4 Anything 1 - 2 0 4 6 Anything ± floating-point number

2 5 5 0 2 0 4 7 0 ± infinity

2 5 5 Nonzero 2 0 4 7 Nonzero NaN (Not a Number)

F I G U R E 3 . 1 4 I E E E 7 5 4 e n c o d i n g of f loat ing -point n u m b e r s . A separate sign bit determines the
sign. Denormalized numbers arc described in The Elaboration on page 270. This information is also found in
Column 4 of the M I P S Reference Data Card at the front of this book.

3.5 Floating Point 247

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0
or subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNs is to allow programmers to postpone some tests and decisions to
a later time in the program when they are convenient.

The designers of IEEE 754 also wanted a floating-point representation that could
be easily processed by integer comparisons, especially for sorting. This desire is why
the sign is in the most significant bit, allowing a quick test of less than, greater than,
or equal to 0. (It's a little more complicated than a simple integer sort, since this
notation is essentially sign and magnitude rather than two's complement.)

Placing the exponent before the significand also simplifies the sorting of
floating-point numbers using integer comparison instructions, since numbers with
bigger exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two's
complement or any other notation in which negative exponents have a 1 in the
most significant bit of the exponent field, a negative exponent will look like a big
number. For example, I .0 t w o x 2 - 1 would be represented as

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

o 1 1 1 1 1 1 1 1 o . . .

(Remember that the leading 1 is implicit in the significand.) The value 1.0two x 2+1

would look like the smaller binary number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

o o o o o o o o i o . . .

The desirable notation must therefore represent the most negative exponent as
00 . . . 00 l w o and the most positive as 11 . . . l l t w o . This convention is called biased
notation, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is
represented by the bit pattern of the value -1 T 127 l cn, or 126 tcn = 0111 1110 two,
and Tl is represented by 1 T 127, or 128 ten = 1000 0000 t w o . The exponent bias for
double precision is 1023. Biased exponent means that the value represented by a
floating-point number is really

(- l) s x (1 T Fraction) x 2 (E x P o n c m " B i a s)

The range of single precision numbers is then from as small as
±1.0000 0000 0000 0000 0000 000 t w o x 2" 1 2 6

to as large as
±1.1111 1111 1111 1111 1111 11 l , W f) x 2 + 1 2 7 .

248 Chapter 3 Arithmetic for Computers

Let's show the representation.

EXAMPLE

ANSWER

Floating-Point Representation

Show the IEEE 754 binary representation of the number-0.75 t c l l in single and
double precision.

The number -0 .75 t c n is also

-3/4 t c n or-3/2 2 t c n

It is also represented by the binary fraction

- H t w o ^ t e n O ! " " 0 - 1 1 Two

In scientific notation, the value is

- 0 . 1 1 t w o x 2 °

and in normalized scientific notation, it is

- l . l t w o x 2

The general representation for a single precision number is

(- l) s x (1 T Fraction) x 2 (E x P o n c n t " 1 2 7)

Subtracting the bias 127 from the exponent of—l.l l w o x 2_1 yields

(- 1) 1 x (1 T .1000 0000 0000 0000 0000 000 two) x 2 (l 2 6 " l 2 7)

The single precision binary representation of -0 .75 t c n is then

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0

1 bit 8 bits 23 bits

3.5 Floating Point 249

The double precision representation is

(- 1) ' x (1 T .1000 0000 0000 0000 0000 0000 0000 0000 OOOO OOOO OOOO OOOO OOOOtwo) x 2 (1 0 2 2 - 1 0 2 3)

3 1 3 0 2 9 2 8 27 2 6 2 5 2 4 2 3 22 2 1 2 0 1 9

oo T-l 17 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 o

1 o 1 1 1 1 1 1 1 1 1 o 1 o o o o o o o o o o o o o o o o o o o

1 bit ' 11 bits 20 bits

o

32 bits

Now let's try going the other direction.

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?
EXAMPLE

3 1 3 0 2 9 2 8 27 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 17 1 6 1 5 1 4 1 3 12 1 1 1 0 9 8 7 6 5 4 3 2 1 o

1 i o o o o o o i o i o o o o o o o o o o o o o o o o o o . . .

The sign bit is 1, the exponent field contains 129, and the fraction field contains
1 x 2 - 2 = 1/4, or 0.25. Using the basic equation,

(- l) s x (1 T Fraction) x 2 (E xPo n e n t" Bii,s) = (—1)' x (1 T 0.25) x 2 (l 2 9 " 1 2 7)

= - 1 x 1.25 x 2 2

= - 1 . 2 5 x 4
= - 5 . 0

In the next subsections, we will give the algorithms for floating-point addition
and multiplication. At their core, they use the corresponding integer operations

ANSWER

250 Chapter 3 Arithmetic for Computers

on the significands, but extra bookkeeping is necessary to handle the exponents
and normalize the result. We first give an intuitive derivation of the algorithms in
decimal and then give a more detailed, binary version in the figures.

Elaboration: In an attempt to increase range without removing bits from the signifi-
cand, some computers before the IEEE 754 standard used a base other than 2. For
example, the IBM 360 and 370 mainframe computers use base 16. Since changing
the IBM exponent by one means shifting the significand by 4 bits, "normalized" base
16 numbers can have up to 3 leading bits of Os! Hence, hexadecimal digits mean that
up to 3 bits must be dropped from the significand, which leads to surprising problems
in the accuracy of floating-point arithmetic. Recent IBM mainframes support IEEE 754
as well as the hex format.

Ffloatinng-Poiinit Addition
Let's add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999 tcn x 101 T 1.610tcn x 10 - 1 . Assume that we can
store only four decimal digits of the significand and two decimal digits of the
exponent.

Step 1. To be able to add these numbers properly, we must align the decimal point
of the number that has the smaller exponent. Hence, we need a form of
the smaller number, 1.610ten x 10 -1, that matches the larger exponent.
We obtain this by observing that there are multiple representations of an
unnormalized floating-point number in scientific notation:

1.610ten X 10"1 = 0.1610tenx 10° = 0.01610ten x 101

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999ten x 101. Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is really

0.016ten x 101

Step 2. Next comes the addition of the significands:

9.999tcn

T 0.016ten

1 0 . 0 1 5 t c n

The sum is 10.015 t c nx 101

3.5 Floating Point 251

Step 3. This sum is not in normalized scientific notation, so we need to adjust it:

1 0 . 0 1 5 t e n x 1 0 1 = 1 . 0 0 1 5 t e n x 1 0 2

Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the other
were negative, it would be possible for the sum to have many leading Os,
requiring left shifts. Whenever the exponent is increased or decreased, we
must check for overflow or underflow—that is, we must make sure that
the exponent still fits in its field.

Step 4. Since we assumed that the significand can be only four digits long
(excluding the sign), we must round the number. In our grammar school
algorithm, the rules truncate the number if the digit to the right of the
desired point is between 0 and 4 and add 1 to the digit if the number to the
right is between 5 and 9. The number

1.0015ten x 102

is rounded to four digits in the significand to

since the fourth digit to the right of the decimal point was between 5 and 9.
Notice that if we have bad luck on rounding, such as adding 1 to a string of
9s, the sum may no longer be normalized and we would need to perform
step 3 again.

Figure 3.15 shows the algorithm for binary floating-point addition that
follows this decimal example. Steps 1 and 2 are similar to the example just
discussed: adjust the significand of the number with the smaller exponent and
then add the two significands. Step 3 normalizes the results, forcing a check for
overflow or underflow. The test for overflow and underflow in step 3 depends
on the precision of the operands. Recall that the pattern of all 0 bits in the
exponent is reserved and used for the floating-point representation of zero.
Moreover, the pattern of all 1 bits in the exponent is reserved for indicating
values and situations outside the scope of normal floating-point numbers (see
the Elaboration on page 270). Thus, for single precision, the maximum exponent
is 127, and the minimum exponent is - 1 2 6 . The limits for double precision are
1023 a n d - 1 0 2 2 .

2 5 2 Chapter 3 Arithmetic for Computers

y

^Exception

F I G U R E 3 . 1 5 F l o a t i n g - p o i n t a d d i t i o n . The normal path is To execute steps 3 and 4 once, but if

rounding causes the s u m to be unnormalized, we must repeat step 3.

3.5 Floating Point 253

Binary Floating-Point Addition

Try adding the numbers 0.5ten and -0.4375 t c n in binary using the algorithm in
Figure 3.15. EXAMPLE

0.5,en = 1/2,en
= 1/7' 11 - ten

= 0.1 two = 0.1 two X

•0.4375 t c n = - 7 / 1 6 t e n = - 7 PA
ten

= - 0 - 0 1 H t w o = - 0 . 0 1 1 1

Let's first look at the binary version of the two numbers in normalized scien-
tific notation, assuming that we keep 4 bits of precision:

= 1.000two x 2~l

1 two X 2 = - 1 . 1 1 0 t w o x 2

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent (-1 .1 l t w o x
2~2) is shifted right until its exponent matches the larger number:

-1 .110 U V O X2" 2 = -0 .1 l l l w o x 2 - 1

Step 2. Add the significands:

1.000lWH x 2 - ' T (-0.11 l t w o x 2 _ 1) = 0 .00l l w o x 2"1

Step 3. Normalize the sum, checking for overflow or underflow:

0.001 two x 2"1 = 0.010UVO x 2"2 = 0.100 lwo x 2"3

= 1 . 0 0 0 ^ X 2 " 4

Since 127 > -4 > -126 , there is no overflow or underflow. (The biased
exponent would be -4 T 127, or 123, which is between 1 and 254, the
smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

1.000 t w ox2"4

The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding.

This sum is then

1.000lwox 2~4 = 0.0001000two = 0.0001 two

= l/2'llcn = l/16tcn = 0.0625ten

ANSWER

This sum is what we would expect from adding 0.5 lcn to -0 .4375 ten'

254 Chapter 3 Arithmetic for Computers

Many computers dedicate hardware to run floating-point operations as fast as
possible. Figure 3.16 sketches the basic organization of hardware for floating-point
addition.

FIGURE 3.16 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.15 correspond
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small A L U to determine which is
larger and by h o w much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the
smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together
using the big ALU. The normalization step then shifts The s u m left or right and increments or decrements the exponent. Rounding then creates
the final result, which m a y require normalizing again to produce the final result.

3.5 Floating Point 255

Floating-Point MuDtipDication
Now that we have explained floating-point addition, let's try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110tcn x 1010 x 9.200 ten x 10"3. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by simply
adding the exponents of the operands together:

New exponent = 10 T (- 5) = 5

Let's do this with the biased exponents as well to make sure we obtain
the same result: 10 T 127= 137, and -5 T 127 = 122, so

New exponent = 137 T 122 = 259

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases
as well as the exponents:

New exponent = (10 T 127) T (- 5 T 127) = (5 T 2 x 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers,
we must subtract the bias from the sum:

New exponent = 137 T 1 2 2 - 127 = 2 5 9 - 1 2 7 = 132 = (5 T 127)

and 5 is indeed the exponent we calculated initially.

Step 2. Next comes the multiplication of the significands:
1.110ten

x 9.200,
0000

0000
2220

9990
10212000tcn

There are three digits to the right of the decimal point for each
operand, so the decimal point is placed six digits from the right in the
product significand:

10.212000ten

256 Chapter 3 Arithmetic for Computers

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 x 105.

Step 3. This product is unnormalized, so we need to normalize it:

10.212, c nx 10 5= 1.0212,en X 106

Thus, after the multiplication, the product can be shifted right one
digit to put it in normalized form, adding 1 to the exponent. At this
point, we can check for overflow and underflow. Underflow may
occur if both operands are small—that is, if both have large negative
exponents.

Step 4. We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

1.0212ten X 106

is rounded to four digits in the significand to

1.021 tcn x 106

Step 5. The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise, it's negative.
Hence, the product is

Tl.021 t e n x 106

The sign of the sum in the addition algorithm was determined by
addition of the significands, but in multiplication, the sign of the
product is determined by the signs of the operands.

Once again, as Figure 3.17 shows, multiplication of binary floating-point
numbers is quite similar to the steps we have just completed. We start with
calculating the new exponent of the product by adding the biased exponents,
being sure to subtract one bias to get the proper result. Next is multiplication
of significands, followed by an optional normalization step. The size of the
exponent is checked for overflow or underflow, and then the product is
rounded. If rounding leads to further normalization, we once again check for
exponent size. Finally, set the sign bit to 1 if the signs of the operands were
different (negative product) or to 0 if they were the same (positive product).

Binary Floating-Point Multiplication

EXAMPLE
Let's try multiplying the numbers 0.5tcn and -0.4375 t e n , using the steps in
Figure 3.17.

3.5 Floating Point 257

In binary, the task is multiplying 1.000two x 2 1 by - 1.110two x 2 2.

Step 1. Adding the exponents without bias:

- 1 T (- 2) = - 3

or, using the biased representation:

(-1 T 127) T (- 2 T 127) - 127 = (- 1 - 2) T (127 T 127 - 127)
= - 3 T 127= 124

Step 2. Multiplying the significands:
1.000two

x l . l lOtwo
0000

1000
1000

1000

1110000two

The product is 1.110000 lwo x 2 - 3 , but we need to keep it to 4 bits, so
it is 1.110two x 2 - 3 .

Step 3. Now we check the product to make sure it is normalized, and then
check the exponent for overflow or underflow. The product is already
normalized and, since 127 > -3 > -126 , there is no overflow or
underflow. (Using the biased representation, 254 > 124 > 1, so the
exponent fits.)

Step 4. Rounding the product makes no change:

1 .110 t w o x2" 3

Step 5. Since the signs of the original operands differ, make the sign of the
product negative. Hence, the product is

1.110two x 2~3

Converting to decimal to check our results:

-1.110two x2~3 =-0.001110 two = -0.00111 two

= —7/25tcn = —7/32tcn = -0.21875 t o n

The product of 0.5tcn and - 0.4375t(.n is indeed - 0.21875 t c t r

ANSWER

i

258 Chapter 3 Arithmetic for Computers

()
v

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum

to get the new biased exponent

u

2. Multiply the significands

1

3. Normalize the product if necessary, shifting
it right and incrementing the exponent

fN° (J
1

4. Round the significand to the appropriate
number of bits

^ Exception^

1
Yes

r
5. Set the sign of the product to positive if the
signs of the original operands are the same;

if they differ make the sign negative

^ Done)

F I G U R E 3 . 1 7 F l o a t i n g - p o i n t m u l t i p l i c a t i o n . The normal path is to execute steps 3 and 4 once, but if
rounding causes the s u m to be unnormalized, we must repeat step 3.

3.5 Floating Point 259

Filoating-Poiint Instructions in R/liPS
MIPS supports the IEEE 754 single precision and double precision formats with
these instructions:

• Floating-point addition, single (add . s) and addition, double (add . d)

0 Floating-point subtraction, single (sub . s) and subtraction, double (sub . d)

• Floating-point multiplication, single (mul.s) and multiplication, double
(mul.d)

• Floating-point division, single (di v . s) and division, double (di v . d)

• Floating-point comparison, single (c . x . s) and comparison, double (c . x . d),
where x may be equal (eq), not equal (neq), less than (I t) , less than or equal
(1 e), greater than (g t) , or greater than or equal (ge)

• Floating-point branch, true (belt) and branch, false (bclf)

Floating-point comparison sets a bit to true or false, depending on the comparison
condition, and a floating-point branch then decides whether or not to branch,
depending on the condition.

The MIPS designers decided to add separate floating-point registers—called
$ f 0 , $f 1, $ f 2 , . . .—used either for single precision or double precision. ITence,
they included separate loads and stores for floating-point registers: lwcl and
swcl. The base registers for floating-point data transfers remain integer registers.
The MIPS code to load two single precision numbers from memory, add them, and
then store the sum might look like this:

lwcl $f4,x($sp) # Load 32-bit F.P. number into F4

lwcl $f6,y($sp) # Load 32-bit F.P. number into F6

add.s $f2,$f4,$f6 # F2 = F4 + F6 single precision

swcl $f2,z($sp) # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers,
using the even register number as its name. Thus, the pair of single precision
registers $f 2 and $ f 3 also form the double precision register named $ f 2 .

Figure 3.18 summarizes the floating-point portion of the MIPS architecture
revealed in this chapter, with the additions to support floating point shown in
color. Similar to Figure 2.19 in Chapter 2, Figure 3.19 shows the encoding of these
instructions.

260 Chapter 3 Arithmetic for Computers

MIPS floating-point operands

Name Example Comments

32 floating-
point registers

S f O . $ f l . S f 2 $ f 3 1 MIPS floating-point registers are used in pairs for double precision numbers.

2 3 0 memory words Memory[0],
Memory[4] , . . . ,
M e m o r y [4 2 9 4 9 6 7 2 9 2]

Accessed only by data transfer instructions. MIPS u s e s byte addresses , so
sequential word a d d r e s s e s differ by 4. Memory holds data structures, such
as arrays, and spilled registers, such as those saved on procedure cal ls .

MIPS floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single a d d . s S f 2 , S f 4 , S f 6 $ f 2 = S f 4 + $ f 6 FP add (single precision)

Arithmetic

FP subtract single s u b . s $ f 2 , $ f 4 , $ f 6 S f 2 = S f 4 - $ f 6 FP sub (single precision)

Arithmetic

FP multiply single m u l . s S f 2 , S f 4 , S f 6 $ f 2 = S f 4 x $ f 6 FP multiply (single precision)

Arithmetic
FP divide single d i v . s S f 2 , $ f 4 . $ f 6 $ f 2 = S f 4 / S f 6 FP divide (single precision)

Arithmetic FP add double a d d . d S f 2 . S f 4 . S f 6 S f 2 = S f 4 + S f 6 FP add (double precision) Arithmetic

FP subtract double s u b . d S f 2 . S f 4 . S f 6 $ f 2 = S f 4 - S f 6 FP sub (double precision)

Arithmetic

FP multiply double m u l . d S f 2 . S f 4 . S f 6 S f 2 = S f 4 x $ f 6 FP multiply (double
precision)

Arithmetic

FP divide double d i v . d S f 2 . S f 4 . S f 6 S f 2 = S f 4 / S f 6 FP divide (double precision)

Data
transfer

load word copr. 1 l w c l S f 1 , 1 0 0 (S s 2) S f l = Memory[Ss2 + 1 0 0] 32-bit data to FP register Data
transfer store word copr. 1 s w c l S f 1 , 1 0 0 (S s 2) Memory[$s2 + 1 0 0] = S f l 32-bit data to memory

Condi-
tional
branch

branch on FP true b e l t 2 5 if (cond = 1) go to PC + 4
+ 1 0 0

PC-relative branch if FP
cond.

Condi-
tional
branch

branch on FP false b c l f 2 5 if (cond == 0) go to PC + 4
+ 1 0 0

PC-relative branch if not
cond. Condi-

tional
branch

FP compare single
(eq,ne,lt,le,gt,ge)

c . l t . s S f 2 , S f 4 if (S f 2 < $ f 4)
cond = 1; e lse cond = 0

FP compare less than
single precision

Condi-
tional
branch

FP compare double
(eq,ne,lt,le,gt,ge)

c . l t . d $ f 2 , $ f 4 if (S f 2 < S f 4)
cond = 1; e lse cond = 0

FP compare less than
double precision

MIPS floating-point machine language

Name Format Example Comments

a d d . s R 1 7 1 6 6 4 2 0 a d d . s S f 2 , $ f 4 . $ f 6

s u b . s R 1 7 1 6 6 4 2 1 s u b . s S f 2 . $ f 4 , $ f 6

m u l . s R 1 7 1 6 6 4 2 2 m u l . s S f 2 . S f 4 . S f 6

d i v . s R 1 7 1 6 6 4 2 3 d i v . s S f 2 . S f 4 . S f 6

a d d . d R 1 7 1 7 6 4 2 0 a d d . d S f 2 , $ f 4 . S f 6

s u b . d R 1 7 1 7 6 4 2 1 s u b . d S f 2 , $ f 4 , $ f 6

mul .d R 1 7 1 7 6 4 2 2 m u l . d S f 2 . S f 4 . S f 6

d i v . d R 1 7 1 7 6 4 2 3 d i v . d S f 2 . S f 4 . S f 6

l w c l 1 4 9 2 0 2 1 0 0 l w c l S f 2 . 1 0 0 ($ s 4)

s w c l 1 5 7 2 0 2 1 0 0 s w c l S f 2 . 1 0 0 ($ s 4)

b e l t 1 1 7 8 1 2 5 b e l t 2 5

b c l f 1 1 7 8 0 2 5 b c l f 2 5

c . l t . s R 1 7 1 6 4 2 0 6 0 c . l t . s S f 2 . S f 4

c . l t . d R 1 7 1 7 4 2 0 6 0 c . l t . d S f 2 . $ f 4

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

F I G U R E 3 . 1 8 M I P S f loat ing -point a r c h i t e c t u r e r e v e a l e d t h u s far. See Appendix B, Section B.10, for more detail. This information
is also found in column 2 of the MIPS Reference Data Card at the front of This book.

3.5 Floating Point 261

op(31:26):

28-26

31-29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) Rfmt Rl t.z/aez j jal beq bne blez bgtz

1(001) addi addi u si ti si tin ANDi ORi xORi lui

2(010) lift FlPt.

3(011)

4(100) lb lh lwl lw 1 lbu 1 hu lwr

5(101) sb sh swl sw swr

6(110) lwcO lwcl

7(111) swcO swcl

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 => c = f, rt(16:18) = 1 => C = t), rs(25:21):

23-21

25-24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfel cfcl intel ctcl

1(01) b c l . C

2(10) f = single f = d o u b l e

3(11)

op(31:26) = 010001 (FlPt), (f above: 10000 => f = s, 10001 => f - d), funct(5:0):

2-0

5-3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) a d d . f sub./ mul .f d i v . f abs .f mov .f n e g . f

1(001)

2(010)

3(011)

4(100) cvt. s .f c v t . d . f cvt .w.f

5(101)

6(110) c . f . f c.un.f c . e q . f c.ueq .f c . o l t . f c. u l t . f c.ol e . f c . u l e . f

7(111) c . s f . f c. ngl e . f c.seq .f c.ngl .f c.1t ./ c . n g e . f c . l e . f c.ngt .f

F I G U R E 3 . 1 9 M I P S f l o a t i n g - p o i n t i n s t r u c t i o n e n c o d i n g . This notation gives the value of a field by row and by column. For example,

in the top portion of the figure, 1 w is found in row number 4 (100lw) for bits 31-29 of the instruction) and column number 3 (01 lUvi) for bits

28-26 of the instruction), so the corresponding value of the op field (bits 31-26) is 100011,W). Underscore means the field is used elsewhere.

For example. FlPt in row 2 and column 1 (op = 010001,, vo) is defined in the bottom part of the figure. Hence sub.f in row 0 and column 1 of

the bottom section means that the funct field (bits 5-0) of the instruction) is00000ltW() and the op field (bits 31-26) is 010001two. Note that the

5-bit rs field, specified in the middle portion of the figure, determines whether the operation is single precision (/= s, so rs = 10000) or double

precision (/= d, so rs = 10001). Similarly, bit 16 of the instruction determines if the bcl . C instruction tests for true (bit 16 = 1 = > b c l . t)

or false (bit 16 = 0 = > b c l . f). Instructions in color are described in Chapter 2 or this chapter, with Appendix B covering all instructions. This

information is also found in column 2 of the M I P S Reference Data Card at the front of this book.

262 Chapter 3 Arithmetic for Computers

Hardware/
Software
Interface

One issue that architects face in supporting floating-point arithmetic is whe'ther
to use the same registers used by the integer instructions or to add a special set
for floating point. Because programs normally perform integer operations and
floating-point operations on different data, separating the registers will only
slightly increase the number of instructions needed to execute a program. The
major impact is to create a separate set of data transfer instructions to move data
between floating-point registers and memory.

The benefits of separate floating-point registers are having twice as many
registers without using up more bits in the instruction format, having twice the
register bandwidth by having separate integer and floating-point register sets, and
being able to customize registers to floating point; for example, some computers
convert all sized operands in registers into a single internal format.

EXAMPLE

ANSWER

Compiling a Floating-Point C Program into MIPS Assembly Code

Let's convert a temperature in Fahrenheit to Celsius:

f l o a t f 2 c (f l o a t f a h r)
(

r e t u r n ((5 . 0 / 9 . 0) * (f a h r - 3 2 . 0)) :
1

Assume that the floating-point argument f a h r is passed in $ f l 2 and the
result should go in $ f 0 . (Unlike integer registers, floating-point register 0 can
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three floating-point constants in
memory within easy reach of the global pointer $gp. The first two instruc-
tions load the constants 5.0 and 9.0 into floating-point registers:

f 2 c :

l w c l $ f 1 6 . c o n s t 5 ($ g p) # $ f 1 6 = 5 . 0 (5 . 0 i n m e m o r y)
l w c l $ f 1 8 , c o n s t 9 ($ g p) # $ f 1 8 = 9 . 0 (9 . 0 i n m e m o r y)

They are then divided to get the fraction 5.0/9.0:

d i v . s $ f 1 6 , $ f 1 6 , $ f 1 8 # $ f 1 6 = 5 . 0 / 9 . 0

3.5 Floating Point 263

(Many compilers would divide 5.0 by 9.0 at compile time and save the single
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we
load the constant 32.0 and then subtract it from f a h r ($ f 1 2) :

l w c l $ f 1 8 , c o n s t 3 2 ($ g p) # $ f 1 8 = 3 2 . 0
s u b . s $ f 1 8 , $ f 1 2 , $ f 1 8 # $ f 1 8 = f a h r - 3 2 . 0

Finally, we multiply the two intermediate results, placing the product in $ f 0
as the return result, and then return

m u l . s $ f 0 , $ f 1 6 , $ f 1 8 # $ f 0 = (5 / 9) * (f a h r - 3 2 . 0)

j r $ r a # r e t u r n

Now let's perform floating-point operations on matrices, code commonly found
in scientific programs.

Compiling Floating-Point C Procedure with Two-Dimensional
Matrices into MIPS

Most floating-point calculations are performed in double precision. Let's per-
form matrix multiply of X = XT Y * Z. Let's assume X, Y, and Z are all square
matrices with 32 elements in each dimension.

v o i d m m (d o u b l e x [] [] , d o u b l e y [] [] , d o u b l e z [] [])
I

i n t i , j , k ;

EXAMPLE

f o r (i = 0 : i ! = 3 2 ; i = i + 1)
f o r (j = 0 ; j ! = 3 2 ; j = j + 1)
f o r (k = 0 ; k ! = 3 2 ; k = k t 1)

x [i] [j] = x [i] [j] + y [i] [k] * z [k] [j]

The array starting addresses are parameters, so they are in $a0, $a 1, and $a2.
Assume that the integer variables are in $s0, $ s l , and $s2, respectively. What
is the MIPS assembly code for the body of the procedure?

Note that x [i] [j] is used in the innermost loop above. Since the loop index
is k, the index does not affect x[i] [j], so we can avoid loading and storing
x [i][j] each iteration. Instead, the compiler loads x [i] [j] into a register
outside the loop, accumulates the sum of the products of y [i] [k] and
z [k] [j] in that same register, and then stores the sum into x [i] [j] upon
termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstructions
li (which loads a constant into a register), and 1 .d and s . d (which the
assembler turns into a pair of data transfer instructions, l w c l or s w c l , to a
pair of floating-point registers).

ANSWER

264 Chapter 3 Arithmetic for Computers

The body of the procedure starts with saving the loop termination value of
32 in a temporary register and then initializing the three for loop variables:

m m : . . .
1 1 S t l , 3 2 # S t l = 3 2 (r o w s i z e / l o o p e n d)
l i S s O . 0 # i = 0 ; i n i t i a l i z e 1 s t f o r l o o p

L I : T i S s l , 0 # j = 0 ; r e s t a r t 2 n d f o r l o o p
L 2 : l i $ s 2 , 0 # k = 0 ; r e s t a r t 3 r d f o r l o o p

To calculate the address of x [i] [j], we need to know how a 32 x 32, two-
dimensional array is stored in memory. As you might expect, its layout is the same
as if there were 32 single-dimension arrays, each with 32 elements. So the first
step is to skip over the i "single-dimensional arrays," or rows, to get the one
we want. Thus, we multiply the index in the first dimension by the size of the
row, 32. Since 32 is a power of 2, we can use a shift instead:

s l l $ 1 2 , S s O , 5 # $ 1 2 = i * 2 5 (s i z e o f r o w o f x)

Now we add the second index to select the j th element of the desired row:

a d d u $ 1 2 , $ 1 2 , S s l # $ t 2 = i * s i z e (r o w) + j

To turn this sum into a byte index, we multiply it by the size of a matrix
element in bytes. Since each element is 8 bytes for double precision, we can
instead shift left by 3:

s l l $ t 2 . $ 1 2 , 3 # $ 1 2 = b y t e o f f s e t o f [i] [j]

Next we add this sum to the base address of x, giving the address of
x [i] [j], and then load the double precision number x [i] [j] into $ f 4:

a d d u $ 1 2 , S a O , S t 2 # S t 2 = b y t e a d d r e s s o f x [i] [j]
l . d $ f 4 , 0 ($ 1 2) # $ f 4 = 8 b y t e s o f x [i] [j]

The following five instructions are virtually identical to the last five: calcu-
late the address and then load the double precision number z [k] [j].

L3 : s l l S t O , S s 2 , 5 # S t O = k * 2 5 (s i z e o f r o w o f z)
a d d u S t O , S t O , S s l # S t O = k * s i z e (r o w) + j
s l l S t O , S t O , 3 # S t O = b y t e o f f s e t o f [k] [j]
a d d u S t O . S a 2 , S t O # S t O = b y t e a d d r e s s o f z [k] [j]
l . d $ f 1 6 , 0 ($ t 0) # S f 1 6 = 8 b y t e s o f z [k] [j]

Similarly, the next five instructions are like the last five: calculate the address
and then load the double precision number y [i] [k].

3.5 Floating Point 265

s l l $ t 0 , $ s 0 , 5 # $ t 0 = i * 2 5 (s i z e o f r o w o f y)
a d d u S t O . $ t O , $ s 2 # $ t 0 = i * s i z e (r o w) t k
s l l S t O , S t O , 3 # S t O = b y t e o f f s e t o f [i] [k]
a d d u S t O . S a l , S t O # S t O = b y t e a d d r e s s o f y [i] [k]
l . d S f 1 8 , 0 ($ t 0) / / S f 1 8 = 8 b y t e s o f y [i] [k]

Now that we have loaded all the data, we are finally ready to do some
floating-point operations! We multiply elements of y and z located in registers
$f 18 and S f l 6, and then accumulate the sum in S f 4 .

• m u l . d S f 1 6 , S f 1 8 , $ f 1 6 # $ f 1 6 = y [i] [k] * z [k] [j]
a d d . d S f 4 , $ f 4 , $ f l 6 # f 4 = x [i] [j] + y [i] [k] * z [k] [j]

The final block increments the index k and loops back if the index is not 32.
If it is 32, and thus the end of the innermost loop, we need to store the sum
accumulated in $ f 4 into x [i] [j].

a d d i u S s 2 , S s 2 , 1 # $ k k t 1
b n e S s 2 , S t l , L 3 # i f (k ! = 3 2) g o t o L 3
s . d S f 4 . 0 (S t 2) # x [i] [j] = $ f 4

Similarly, these final four instructions increment the index variable of the
middle and outermost loops, looping back if the index is not 32 and exiting if
the index is 32.

a d d i u S s l . S s l , 1 # $ j = J + 1
b n e S s l , S t l . L 2 # i f (j 1 = 3 2) g o t o L 2
a d d i u S s O , S s O , 1 # S i = i T 1
b n e S s O , S t l , L I # i f (i ! = 3 2) g o t o L I

Elaboration: The array layout discussed in the example, called row-major order, is
used by C and many other programming languages. Fortran instead uses column-major
order, whereby the array is stored column by column.

Elaboration: Only 16 of the 32 MIPS fioating-point registers could originally be used
for double precision operations: $ f 0 , $ f 2 , $ f 4 $f 30. Double precision is
computed using pairs of these single precision registers. The odd-numbered floating-
point registers were used only to load and store the right half of 64-bit floating-point
numbers. MIPS-32 added 1 . d and s. d to the instruction set. MIPS-32 also added
"paired single" versions of all floating-point instructions, where a single instruction
results in two parallel floating-point operations on two 32-bit operands inside 64-bit
registers. For example, add . ps S f O , $ f 2 , Sf 4 is equivalent to a d d . s S f O . S f 2 .
$f 4 followed by a d d . s S f l , S f 3 , $f 5.

2 6 6 Chapter 3 Arithmetic for Computers

Elaboration: Another reason for separate integers and floating-point registers is that
microprocessors in the 1980s didn't have enough transistors to put the floating-point unit
on the same chip as the integer unit. Hence, the floating-point unit, including the floating-
point registers, was optionally available as a second chip. Such optional accelerator
chips are called coprocessors, and explain the acronym for floating-point loads in MIPS:
l w c l means load word to coprocessor 1, the floating-point unit. (Coprocessor 0 deals
with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors
have integrated floating point (and just about everything else) on chip, and hence the
term coprocessor joins accumulator and core memory as quaint terms that date the
speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging
than multiplication. In addition to SRT, another technique to leverage a fast multiplier
is Newton's iteration, where division is recast as finding the zero of a function to find
the reciprocal 1/x, which is then multiplied by the other operand. Iteration techniques
cannot be rounded properly without calculating many extra bits. A TI chip solves this
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations. Thus, the code in the first example could have well been
generated for a class method that converted Fahrenheit to Celsius.

The second example uses multiple dimensional arrays, which are not explicitly
supported in Java. Java allows arrays of arrays, but each array may have its own length,
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version
of this second example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row access. It would also need to check
that the object reference is not null.

Accurate Arithmetic

guard The first of two
extra bits kept on the
right during intermediate
calculations of floating-
point numbers; used
to improve rounding
accuracy.

round Method to
make the intermediate
floating-point result fit the
floating-point format; the
goal is typically to find
the nearest number that
can be represented in the
format.

Unlike integers, which can represent exactly every number between the smallest and
largest number, floating-point numbers are normally approximations for a number
they can't really represent. The reason is that an infinite variety of real numbers
exists between, say, 0 and 1, but no more than 253 can be represented exactly in
double precision floating point. The best we can do is getting the floating-point
representation close to the actual number. Thus, IEEE 754 offers several modes of
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware
to include extra bits in the calculation. In the preceding examples, we were vague
on the number of bits that an intermediate representation can occupy, but clearly,
if every intermediate result had to be truncated to the exact number of digits, there
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits
on the right during intermediate additions, called guard and round, respectively.
Let's do a decimal example to illustrate their value.

3.5 Floating Point 2 6 7

Rounding with Guard Digits

Add 2.56,en x 10° to 2.34ten x 102, assuming that we have three significant
decimal digits. Round to the nearest decimal number with three significant
decimal digits, first with guard and round digits, and then without them.

EXAMPLE

First we must shift the smaller number to the right to align the exponents, so
2.56 t c n x 10° becomes 0.0256 t e n x 10 2. Since we have guard and round digits,
we are able to represent the two least significant digits when we align expo-
nents. The guard digit holds 5 and the round digit holds 6. The sum is

2.3400 t c n

T 0.0256 t e n

2.3656 ten

Thus the sum is 2.3656ten x 102. Since we have two digits to round, we want values
0 to 49 to round down and 51 to 99 to round up, with 50 being the tiebreaker.
Rounding the sum up with three significant digits yields 2.37ten x 102.

Doing this without guard and round digits drops two digits from the
calculation. The new sum is then

2.34tcn

T 0.02
2.36,„

The answer is 2.36,cn x 102, off by 1 in the last digit from the sum above.

ANSWER

Since the worst case for rounding would be when the actual number is halfway
between two floating-point representations, accuracy in floating point is normally
measured in terms of the number of bits in error in the least significant bits of the
significand; the measure is called the number of units in the last place, or ulp. If
a number were off by 2 in the least significant bits, it would be called off by 2 ulps.
Provided there is no overflow, underflow, or invalid operation exceptions, IEEE 754
guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply
can need two. A binary product may have one leading 0 bit; hence, the normalizing step
must shift the product one bit left. This shifts the guard digit into the least significant bit
of the product, leaving the round bit to help accurately round the product.

units in the last placc
(ulp) The number of
bits in error in the least
significant bits of the
significand between
the actual number and
the number that can be
represented.

2 6 8 Chapter 3 Arithmetic for Computers

sticky bit A bit used in
rounding in addition to
guard and round that is
set whenever there are
nonzero bits to the right
of the round bit.

IEEE 754 has four rounding modes: always round up (toward +«) . always round down
(toward truncate, and round to nearest even. The final mode determines what to
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS)
always rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way
would be to round up this case half the time and round down the other half. IEEE 754
says that if the least significant bit retained in a halfway case would be odd, add one;
if it's even, truncate. This method always creates a 0 in the least significant bit in the
tie-breaking case, giving the rounding mode its name. This mode is the most commonly
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results
as if the intermediate results were calculated to infinite precision and then rounded. To
support this goal and round to the nearest even, the standard has a third bit in addition
to guard and round; it is set whenever there are nonzero bits to the right of the round
bit. This sticky bit allows the computer to see the difference between 0.50 . . . 00 ten

and 0.50 . . . 01ten when rounding.
The sticky bit may be set, for example, during addition, when the smaller number is

shifted to the right. Suppose we added 5.01ten x 10_1 to 2.34ten x 102 in the example
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the
sticky bit to remember whether any Is were shifted off, we would assume the number is
equal to 2.345000 . . . 00 and round to the nearest even of 2.34. With the sticky bit to
remember that the number is larger than 2.345000 . . . 00, we round instead to 2.35.

fused multiply add
A floating-point
instruction that performs
both a multiply and an
add, but rounds only once
after the add.

Elaboration: PowerPC, SPARC64, and AMD SSE5 architectures provide a single
instruction that does a multiply and add on three registers: a = a + (b x c). Obviously, this
instruction allows potentially higher floating-point performance for this common operation.
Equally important is that instead of performing two roundings—after the multiply and then
after the add—which would happen with separate instructions, the multiply add instruction
can perform a single rounding after the add. A single rounding step increases the precision
of multiply add. Such operations with a single rounding are called fused multiply add. It
was added to the revised IEEE 754 standard (see Section 3.10 on the CD).

Summary
The Big Picture that follows reinforces the stored-program concept from Chapter 2;
the meaning of the information cannot be determined just by looking at the bits, for
the same bits can represent a variety of objects. This section shows that computer
arithmetic is finite and thus can disagree with natural arithmetic. For example, the
IEEE 754 standard floating-point representation

(- l) s x (1 T Fraction) x 2 (E xPo n e n t" Bias)

is almost always an approximation of the real number. Computer systems must
take care to minimize this gap between computer arithmetic and arithmetic in the
real world, and programmers at times need to be aware of the implications of this
approximation.

3.5 Floating Point 269

Bit patterns have no inherent meaning. They may represent signed integers,
unsigned integers, floating-point numbers, instructions, and so on. What
is represented depends on the instruction that operates on the bits in
the word.

The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size and hence limited
precision; it's possible to calculate a number too big or too small to be
represented in a word. Programmers must remember these limits and
write programs accordingly.

The BIG
Picture

C type Java type Data transfers Operations

int int lw, sw, lui a d d u , addiu, subu, m u l t , div,
A N D , A N D i , OR. O R i , NOR. sit, slti

u n s i g n e d int — lw, sw, lui addu. addiu, subu, m u l t u , d i v u ,
AND. A N D i . OR, ORi, NOR. situ, sltiu

char
— lb, sb, lui add, addi. sub, m u l t , div

A N D . ANDi, OR, O R i . NOR, sit. slti

—
char 1 h. s h. lui addu. addiu, subu, m u l t u . d i v u .

A N D . ANDi, OR, O R i , NOR. situ, sltiu

float float lwcl, swcl add.s, sub.s, m u l t . s , d i v . s ,
c . e q . s , c . U . s . c . l e . s

d o u b l e d o u b l e 1.d, s.d add.d, s u b . d . m u l t . d , d i v . d ,
c . e q . d , c . l t . d , c . l e . d

In the last chapter, we presented the storage classes of the programming language C
(see the Hardware/Software Interface section in Section 2.7). The table above
shows some of the C and Java data types, the MIPS data transfer instructions, and
instructions that operate on those types that appear in Chapter 2 and this chapter.
Note that Java omits unsigned integers.

Hardware/
Software
Interface

Suppose there was a 16-bit IEEE 754 floating-point format with five exponent bits. Check
What would be the likely range of numbers it could represent? Youirseflf

1. 1.0000 0000 0 0 x 2 ° to 1.1111 1111 I l x 2 3 1 , 0

2. ±1.0000 0000 Ox 2~]4 to ±1.1111 1111 1 x 21 5 , ±0, ±°o, NaN

3. ±1.0000 0000 00 x 2 ~ 1 4 to ±1.1111 1111 11 x 2 1 5 , ±0, ±°o, NaN

4. ±1.0000 0000 00 x 2 ~ 1 5 to ±1.1 111 1111 11 x 21'1, ±0, ±°°, NaN

270 Chapter 3 Arithmetic for Computers

Elaboration: To accommodate comparisons that may include NaNs, the standard includes
ordered and unordered as options for compares. Hence, the full MIPS instruction set has
many flavors of compares to support NaNs. (Java does not support unordered compares.)

In an attempt to squeeze every last bit of precision from a floating-point operation,
the standard allows some numbers to be represented in unnormalized form. Rather than
having a gap between 0 and the smallest normalized number, IEEE allows denormalized
numbers (also known as denorms or subnormals). They have the same exponent as
zero but a nonzero significand. They allow a number to degrade in significance until it
becomes 0, called gradual underflow. For example, the smallest positive single precision
normalized number is

1.0000 0000 0000 0000 0000 000 two x 2~126

but the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 001 lwo x 2~126, or 1.0two x 2~149

For double precision, the denorm gap goes from 1.0 x 2"1022 to 1.0 x 2~1074.
The possibility of an occasional unnormalized operand has given headaches to floating-

point designers who are trying to build fast floating-point units. Hence, many computers
cause an exception if an operand is denormalized, letting software complete the operation.
Although software implementations are perfectly valid, their lower performance has
lessened the popularity of denorms in portable floating-point software. Moreover, if
programmers do not expect denorms, their programs may surprise them.

H V Parallelism and Computer Arithmetic:
if i l Associativity

Programs have typically been written first to run sequentially before being rewritten
to run concurrently, so a natural question is, "do the two versions get the same
answer?" If the answer is no, you presume there is a bug in the parallel version that
you need to track down.

This approach assumes that computer arithmetic does not affect the results when
going from sequential to parallel.That is, ifyou were to add a million numbers together,
you would get the same results whether you used 1 processor or 1000 processors. This
assumption holds for two's complement integers, even if the computation overflows.
Another way to say this is that integer addition is associative.

Alas, because floating-point numbers are approximations of real numbers and
because computer arithmetic has limited precision, it does not hold for floating-
point numbers. That is, floating-point addition is not associative.

Testing Associativity of Floating-Point Addition

EXAMPLE
See if x T (yTz) = (x T y) T z. For example, suppose x = — 1.5 t c n x 10
y= 1 .5 (C I 1 x 10 3 8 , and z = 1.0, and that these are all single precision numbers.

38

3.6 Parallelism and Computer Arithmetic: Associativity 271

Given the great range of numbers that can be represented in floating point,
problems occur when adding two large numbers of opposite signs plus a small
number, as we shall see:

x T (y T z) = - 1 . 5 t c n x 1 0 3 8 T (1 . 5 t e n x l 0 3 8 T 1.0)
= - 1 . 5 t e n x 10 3 8 T (1 . 5 t c n x 1 0 3 8) = 0 . 0

(x T y) T z = (—1.5 t c n x 10 3 8 T 1 .5 t e n x 1 0 3 8) T 1.0
= (O.O l e n)Tl .O
= 1 . 0

Therefore x T (y T z) (x T y) T z, so floating-point addition is not
associative.

Since floating-point numbers have limited precision and result in
approximations of real results, 1.5ten x 1038 is so much larger than 1.0ten that
1.5tcn x 1038 T 1.0 is still 1.5ten x 1038. That is why the sum of x, y, and z is
0.0 or 1.0, depending on the order of the floating-point additions, and hence
floating-point add is not associative.

A more vexing version of this pitfall occurs on a parallel computer where the
operating system scheduler may use a different number of processors depending
on what other programs are running on a parallel computer. The unaware parallel
programmer may be flummoxed by his or her program getting slightly different
answers each time it is run for the same identical code and the same identical input,
as the varying number of processors from each run would cause the floating-point
sums to be calculated in different orders.

Given this quandary, programmers who write parallel code with floating-point
numbers need to verify whether the results are credible even if they don't give the
same exact answer as the sequential code. The field that deals with such issues is
called numerical analysis, which is the subject of textbooks in its own right. Such
concerns are one reason for the popularity of numerical libraries such as LAPACK
and SCALAPAK, which have been validated in both their sequential and parallel
forms.

Elaboration: A subtle version of the associativity issue occurs when two processors
perform a redundant computation that is executed in different order so they get slightly
different answers, although both answers are considered accurate. The bug occurs if
a conditional branch compares to a floating-point number and the two processors take
different branches when common sense reasoning suggests they should take the same
branch.

272 Chapter 3 Arithmetic for Computers

Real Stuff: Floating [Point in the xSS

The x86 has regular multiply and divide instructions that operate entirely on
registers, unlike the reliance on Hi and Lo in MIPS. (In fact, later versions of the
MIPS instruction set have added similar instructions.)

The main differences are found in floating-point instructions. The x86 floating-
point architecture is different from all other computers in the world.

The x@6 Floating-Point Architecture
The Intel 8087 floating-point coprocessor was announced in 1980. This architecture
extended the S086 with about 60 floating-point instructions.

Intel provided a stack architecture with its floating-point instructions: loads
push numbers onto the stack, operations find operands in the two top elements of
the stacks, and stores can pop elements off the stack. Intel supplemented this stack
architecture with instructions and addressing modes that allow the architecture
to have some of the benefits of a register-memory model. In addition to finding
operands in the top two elements of the stack, one operand can be in memory or in
one of the seven registers on-chip below the top of the stack. Thus, a complete stack
instruction set is supplemented by a limited set of register-memory instructions.

This hybrid is still a restricted register-memory model, however, since loads
always move data to the top of the stack while incrementing the top-of-stack pointer,
and stores can only move the top of stack to memory. Intel uses the notation ST
to indicate the top of stack, and ST (i) to represent the ith register below the top
of stack.

Another novel feature of this architecture is that the operands are wider in the
register stack than they are stored in memory, and all operations are performed at this
wide internal precision. Unlike the maximum of 64 bits on MIPS, the x86 floating-
point operands on the stack are 80 bits wide. Numbers are automatically converted
to the internal 80-bit format on a load and converted back to the appropriate size on
a store. This double extended precision is not supported by programming languages,
although it has been useful to programmers of mathematical software.

Memory data can be 32-bit (single precision) or 64-bit (double precision)
floating-point numbers. The register-memory version of these instructions will
then convert the memory operand to this Intel 80-bit format before perform-
ing the operation. The data transfer instructions also will automatically convert
16- and 32-bit integers to floating point, and vice versa, for integer loads and stores.

3.7 Real Stuff: Floating Point in the x86 273

The x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store

2. Arithmetic instructions, including add, subtract, multiply, divide, square
root, and absolute value

3. Comparison, including instructions to send the result to the integer processor
so that it can branch

4. Transcendental instructions, including sine, cosine, log, and exponentiation

Figure'3.20 shows some of the 60 floating-point operations. Note that we get even
more combinations when we include the operand modes for these operations.
Figure 3.21 shows the many options for floating-point add.

Data transfer Arithmetic Compare Transcendental

F I I I L D m e m / S T (i) F111 ADD 1P 1 m e m / S T (i) F11 ICOMIPI FPATAN

F|i ISTIPI m e m /
ST C i)

F I I I S U B I R U P) m e m / S T (i) F{ I IUC0MI PM PI F2XM1

FLDP1 F I I I M U L I P I m e m / S T (i) FSTSW A X / m e m FC0S

FLD1 F | 1 I D I V I R I (PI m e m / S T (i) FPTAN

FLDZ FS0RT FPREM

FABS FSIN

F R N D I N T FYL2X

FIGURE 3.20 The floating-point instructions of the x86. We use The curly brackets 11 to show
optional variations of the basic operations: (I) means There is an integer version of the instruction, (P)
means This variation will pop one operand off the stack after the operation, and |R} means reverse the order
of the operands in this operation. The first column shows the data transfer instructions, which move data
to m e m o r y or to one of the registers below the top of the stack. The last three operations in the first column
push constants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described
above. Note that the last three operate only on the top of stack. The third column is the compare instructions.
Since there are no special floating-point branch instructions, the result of the compare must be transferred
to the integer C P U via the FSTSW instruction, either into the AX register or into memory, followed by an
SAHF instruction to set the condition codes. The floating-point comparison can then be tested using integer
branch instructions. The final column gives the higher-level floating-point operations. Not all combinations
suggested by the notation are provided. I lencc, F I I I SUB I R I i P I operations represent these instructions
found in the x86: FSUB, FISUB, FSUBR, FISUBR, FSUBP, FSUBRP. For the integer subtract instructions,
there is no pop (FISUBP) or reverse pop (F1 SUBRP).

The floating-point instructions are encoded using the ESC opcode of the 8086
and the postbyte address specifier (see Figure 2.47). The memory operations reserve
2 bits to decide whether the operand is a 32- or 64-bit floating point or a 16- or
32-bit integer. Those same 2 bits are used in versions that do not access memory to
decide whether the stack should be popped after the operation and whether the top
of stack or a lower register should get the result.

274 Chapter 3 Arithmetic for Computers

Instruction Operands Comment

FADD Both operands in stack; result replaces top of stack.

FADD ST(i) One source operand is ith register below the top of stack; result
replaces the top of stack.

FADD ST(i). ST One source operand is the top of stack; result replaces ith register
below the top of s tack.

FADD mem32 One source operand is a 32-bit location in memory; result replaces the
top of s tack.

FADD mem64 One source operand is a 64-bit location in memory; result replaces the
top of stack.

FIGURE 3.21 The variations of operands for floating-point add in the x86.

In the past, floating-point performance of the x86 family lagged far behind other
computers. As a result, Intel created a more traditional floating-point architecture
as part of SSE2.

The BnteD Streaming SI MID Extension 2 (SSE2)
Floating-Point Architecture
Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture,
including double precision floating-point registers and operations. It includes eight
64-bit registers that can be used for floating-point operands, giving the compiler
a different target for floating-point operations than the unique stack architecture.
Compilers can choose to use the eight SSE2 registers as floating-point registers like
those found in other computers. AMD expanded the number to 16 registers as part
of AMD64, which Intel relabeled EM64T for its use. Figure 3.22 summarizes the
SSE and SSE2 instructions.

In addition to holding a single precision or double precision number in a register,
Intel allows multiple floating-point operands to be packed into a single 128-bit
SSE2 register: four single precision or two double precision. Thus, the 16 floating-
point registers for SSE2 are actually 128 bits wide. If the operands can be arranged
in memory as 128-bit aligned data, then 128-bit data transfers can load and store
multiple operands per instruction. This packed floating-point format is supported
by arithmetic operations that can operate simultaneously on four singles (PS) or
two doubles (PD). This architecture more than doubles performance over the stack
architecture.

3.8 Fallacies and Pitfalls 2 7 5

Data transfer I Arithmetic Compare

M O V I A / U I I S S / P S / S D /
PDI xmm, m e m / x m m

A D D I S S / P S / S D / P D 1 xmm,
m e m / x m m

C M P { S S / P S / S D /
PDI

M O V I A / U I I S S / P S / S D /
PDI xmm, m e m / x m m

S U B { S S / P S / S D / P D } xmm,
m e m / x m m

MOV (H/LI IPS/PDI
x m m , m e m / x m m

M U L 1 S S / P S / S D / P D 1 xmm.
m e m / x m m

MOV (H/LI IPS/PDI
x m m , m e m / x m m

DIV I S S / P S / S D / P D 1 xmm,
m e m / x m m
S Q R T I S S / P S / S D / P D 1 m e m / x m m

MAX 1 S S / P S / S D / P D 1 mem/xmin

M I N I S S / P S / S D / P D I m e m / x m m

FIGURE 3.22 The SSE/SSE2 floating-point instructions of the x86. x m m means one operand is
a 128-bit SSF2 register, and m e m / x m m means the other operand is either in m e m o r y or it is an SSE2 register.
We use the curly brackets |) to show optional variations of the basic operations: |SS| stands for Scalar Single
precision floating point, or one 32-bit operand in a 128-bit register; (PS) stands for Packed Single precision
floating point, or four 32-bit operands in a 128-bit register; {SD| stands for Scalar Double precision floating
point, or one 64-bit operand in a 128-bit register; (PD) stands for Packed Double precision floating point, or
two 64-bit operands in a 128-bit register; |A) means the 128-bit operand is aligned in memory; |U| means
the 128-bit operand is unaligned in memory; |H| means m o v e the high half of the 128-bit operand; and (L)
means move the low half of the 128-bit operand.

3.8 Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the
limited precision of computer arithmetic and the unlimited precision of natural
arithmetic.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power of
2, a right shift is the same as an integer division by a power of 2.

Recall that a binary number x, where xi means the ith bit, represents the number

. . . T (x3 x 23) T (x2 x 22) T (xl x 2 1) T (xO x 2°)

Shifting the bits of x right by n bits would seem to be the same as dividing by 2".
And this is true for unsigned integers. The problem is with signed integers. For
example, suppose we want to divide - 5 t e n by 4 ten; the quotient should be - l t c n . The
two's complement representation o f - 5 t e n is

Thus mathematics
may be defined as the
subject in which we
never know what
we are talking about,
nor whether what we
are saying is true.

Bertrand Russell, Rccent
Words on the Principles
of Mathematics, 1901

276 Chapter 3 Arithmetic for Computers

1 0 1 1 t w o

According to this fallacy, shifting right by two should divide by 4 ten (2):

0 0 1 0 t w o

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift
right is actually 1,073,741,822 ten instead o f - l t c n .

A solution would be to have an arithmetic right shift that extends the sign bit
instead of shifting in Os. A 2-bit arithmetic shift right o f - 5 t c n produces

1 0 t w o

The result is - 2 t c n instead of—1 tcn; close, but no cigar.

Pitfall: The MIPS instruction add immediate unsigned (addiu) sign-extends its
16-bit immediate field.

Despite its name, add immediate unsigned (a d d i u) is used to add constants to
signed integers when we don't care about overflow. MIPS has no subtract immediate
instruction, and negative numbers need sign extension, so the MIPS architects
decided to sign-extend the immediate field.

Fallacy: Only theoretical mathematicians care about floating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see
Figure 3.23). The following is the inside story behind the headlines.

The Pentium uses a standard floating-point divide algorithm that generates
multiple quotient bits per step, using the most significant bits of divisor and
dividend to guess the next 2 bits of the quotient. The guess is taken from a lookup
table containing - 2 , - 1 , 0 , T l , or T 2 . The guess is multiplied by the divisor and
subtracted from the remainder to generate a new remainder. Like nonrestoring
division, if a previous guess gets too large a remainder, the partial remainder is
adjusted in a subsequent pass.

Evidently, there were five elements of the table from the 80486 that Intel thought
could never be accessed, and they optimized the PLA to return 0 instead of 2 in
these situations on the Pentium. Intel was wrong: while the first 11 bits were always
correct, errors would show up occasionally in bits 12 to 52, or the 4th to 15th
decimal digits.

The following is a timeline of the Pentium bug morality play.

• July 1994: Intel discovers the bug in the Pentium. The actual cost to fix the bug
was several hundred thousand dollars. Following normal bug fix procedures, it
will take months to make the change, reverify, and put the corrected chip into
production. Intel planned to put good chips into production in January 1995,
estimating that 3 to 5 million Pentiums would be produced with the bug.

3.8 Fallacies and Pitfalls 277

BUSINESS.
u.i£r.rri* iti c.. • i cnvour

to work on software patch for Pentium bug
Pbulili5i/l/f//(ti(i./i I'll,Until,w,ml,h-s Sp

saysl I'u tuw i' [jug D o d g e Booed

Flawed C h i p
Bn-ySses lintel
Investors react, stock plunges

luh,iniii\m,,.

' S H S r
.... ^ (hnlk« ui I'i i.liuni

IT Jull.ll.-lt l:.l„.i„

Efts-

IS}

IW,.I. rums. I •• Is
tss: • i. •> i ~ .;'-.r—:

jr, r. r..j. , (T^.r z. - r.

Pentium woes continue
Ssjjc^r Faulty FPU dubs math Multithreading gels
yjsaryj in certain equations loslonPIOOsysiems

el's P e n t i u m P i r o b f l e m P e r s r * " - — •

DntinuT ~ ~ IBM to Stop fe^lfcpll
., ,. n • o <*»riW/urrK, == ~

shipping i rs|=a
Ppntinm PCs

- — |

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994,
i n c l u d i n g t h e New York Times, Snn Jose Mercury News, Sou Francisco Chronicle, a n d hifoworld.
The Pentium floating-point divide bug even made the "Top 10 List" of the David Letter/nan Late Show on
television. Intel eventually took a $300 million write-off to replace the buggy chips.

• September 1994: A math professor at Lynchburg College in Virginia, Thomas
Nicely, discovers the bug. After calling Intel technical support and getting
no official reaction, he posts his discovery on the Internet. It quicldy gained
a following, and some pointed out that even small errors become big when
multiplied by big numbers: the fraction of people with a rare disease times
the population of Europe, for example, might lead to the wrong estimate of
the number of sick people.

• November 7, 1994: Electronic Engineering Times puts the story on its front
page, which is soon picked up by other newspapers.

• November 22,1994: Intel issues a press release, calling it a "glitch." The Pentium
"can make errors in the ninth digit. . . . Even most engineers and financial
analysts require accuracy only to the fourth or fifth decimal point. Spreadsheet

278 Chapter 3 Arithmetic for Computers

and word processor users need not worry. . . . There are maybe several dozen
people that this would affect. So far, we've only heard from one..".. [Only]
theoretical mathematicians (with Pentium computers purchased before the
summer) should be concerned." What irked many was that customers were told
to describe their application to Intel, and then Intel would decide whether or
not their application merited a new Pentium without the divide bug.

• December 5, 1994: Intel claims the flaw happens once in 27,000 years for the
typical spreadsheet user. Intel assumes a user does 1000 divides per day and
multiplies the error rate assuming floating-point numbers are random, which
is one in 9 billion, and then gets 9 million days, or 27,000 years. Things begin
to calm down, despite Intel neglecting to explain why a typical customer
would access floating-point numbers randomly.

• December 12, 1994: IBM Research Division disputes Intel's calculation of the
rate of errors (you can access this article by visiting www.mkp.com/books_
catalog/cod/links.htm). IBM claims that common spreadsheet programs,
recalculating for 15 minutes a day, could produce Pentium-related errors
as often as once every 24 days. IBM assumes 5000 divides per second, for
15 minutes, yielding 4.2 million divides per day, and does not assume
random distribution of numbers, instead calculating the chances as one in
100 million. As a result, IBM immediately stops shipment of all IBM personal
computers based on the Pentium. Things heat up again for Intel.

• December 21, 1994: Intel releases the following, signed by Intel's president,
chief executive officer, chief operating officer, and chairman of the board:

"We at Intel wish to sincerely apologize for our handling of the recently
publicized Pentium processor flaw. The Intel Inside symbol means that
your computer has a microprocessor second to none in quality and
performance. Thousands of Intel employees work very hard to ensure that
this is true. But no microprocessor is ever perfect. What Intel continues to
believe is technically an extremely minor problem has taken on a life of its
own. Although Intel firmly stands behind the quality of the current version
of the Pentium processor, we recognize that many users have concerns.
We want to resolve these concerns. Intel will exchange the current version
of the Pentium processor for an updated version, in which this floating-
point divide flaw is corrected, for any owner who requests it, free of charge
anytime during the life of their computer."

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not
get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fix the bug in July 1994? What was the cost to repair the
damage to Intel's reputation? And what is the corporate responsibility in disclosing
bugs in a product so widely used and relied upon as a microprocessor?

http://www.mkp.com/books_

3.8 Fallacies and Pitfalls 2 7 9

MIPS core instructions Name Format MIPS arithmetic core Name Format

add add R multiply mul t R

add immediate addi 1 multiply unsigned mul tu R

add unsigned addu R divide di v R

add immediate unsigned addi u I divide unsigned d i vu R

subtract sub R move from Hi mf hi R

subtract unsigned subu R move from Lo mflo R

A N D AND R move from system control (EPO) m f c O R

A N D immediate ANDi 1 floating-point add single add. s R

O R - OR R floating-point add double add .d R

OR immediate ORi 1 floating-point subtract single sub. s R

N O R NOR R floating-point subtract double sub.d R

shift left logical sll R floating-point multiply single mul . s R

shift right logical srl R floating-point multiply double m u l . d R

load upper immediate lui 1 floating-point divide single d i v. s R

load word lw 1 floating-point divide double d i v . d R

store word sw 1 load word to floating-point single lwcl

load halfword unsigned Ihu 1 store word to floating-point single swcl

store halfword sh 1 load word to floating-point double 1 del

load byte unsigned lbu 1 store word to floating-point double sdcl

store byte sb 1 branch on floating-point true belt

load linked (atomic update) 11 1 branch on floating-point false bclf 1

store cond. (atomic update) sc 1 floating-point compare single c. x. s R

branch on equal beq 1 (x = eq, neq, It, 1 e, gt, ge)

branch on not equal bne 1 floating-point compare double c . x . d R

jump j J (x = eq, neq, It, 1 e, gt, ge)

jump and link jal J

jump register j r R

set less than si t R

set less than immediate si ti 1

set less than unsigned situ R

set less than immediate unsigned s 11 i u 1

F I G U R E 3 . 2 4 T h e M I P S i n s t r u c t i o n s e t . This book concentrates on The instructions in the left column. This information is also found
in columns 1 and 2 of the M I P S Reference Data Card at the front of This book.

In April 1997, another floating-point bug was revealed in the Pentium Pro and
Pentium II microprocessors. When the floating-point-to-integer store instructions
(f i s t , f i s t p) encounter a negative floating-point number that is too large to fit
in a 16- or 32-bit word after being converted to integer, they set the wrong bit in
the FPO status word (precision exception instead of invalid operation exception).
To Intel's credit, this time they publicly acknowledged the bug and offered a software
patch to get around it—quite a different reaction from what they did in 1994.

280 Chapter 3 Arithmetic for Computers

Concluding Remarks

A side effect of the stored-program computer is that bit patterns have no inherent
meaning. The same bit pattern may represent a signed integer, unsigned integer,
floating-point number, instruction, and so on. It is the instruction that operates on
the word that determines its meaning.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the
constraints of limited precision. This limit may result in invalid operations through
calculating numbers larger or smaller than the predefined limits. Such anomalies,
called "overflow" or "underflow," may result in exceptions or interrupts, emergency
events similar to unplanned subroutine calls. Chapter 4 discusses exceptions in
more detail.

Floating-point arithmetic has the added challenge of being an approximation
of real numbers, and care needs to be taken to ensure that the computer num-
ber selected is the representation closest to the actual number. The challenges of
imprecision and limited representation are part of the inspiration for the field of
numerical analysis. The recent switch to parallelism will shine the searchlight on
numerical analysis again, as solutions that were long considered safe on sequential
computers must be reconsidered when trying to find the fastest algorithm for par-
allel computers that still achieves a correct result.

Over the years, computer arithmetic has become largely standardized, greatly
enhancing the portability of programs. Two's complement binary integer arithme-
tic and IEEE 754 binary floating-point arithmetic are found in the vast majority of
computers sold today. For example, every desktop computer sold since this book
was first printed follows these conventions.

With the explanation of computer arithmetic in this chapter comes a description
of much more of the MIPS instruction set. One point of confusion is the instructions
covered in these chapters versus instructions executed by MIPS chips versus the
instructions accepted by MIPS assemblers. Two figures try to make this clear.

Figure 3.24 lists the MIPS instructions covered in this chapter and Chapter 2.
We call the set of instructions on the left-hand side of the figure the MIPS core.
The instructions on the right we call the MIPS arithmetic core. On the left of
Figure 3.25 are the instructions the MIPS processor executes that are not found
in Figure 3.24. We call the full set of hardware instructions MIPS-32. On the right
of Figure 3.25 are the instructions accepted by the assembler that are not part of
MIPS-32. We call this set of instructions Pseudo MIPS.

Figure 3.26 gives the popularity of the MIPS instructions for SPEC2006 integer
and floating-point benchmarks. All instructions are listed that were responsible for
at least 0 .3% of the instructions executed.

Note that although programmers and compiler writers may use MIPS-32 to
have a richer menu of options, MIPS core instructions dominate integer SPEC2006

3.9 Concluding Remarks 2 8 1

Remaining MIPS-32 Name Format Pseudo MIPS Name Format

exclusive or (rs © rt) xor R absolute value abs rd,rs

exclusive or immediate xor i 1 negate (signed or unsigned) neos rd,rs

shift right arithmetic sra R rotate left rol rd,rs,rt

shift left logical variable si lv R rotate right ror rd,rs,rt

shift right logical variable srl v R multiply and don't check oflw (signed or uns.) mills rd,rs,rt

shift right arithmetic variable srav R multiply and check oflw (signed or uns.) mul os rd,rs,rt

move to Hi mt hi R divide and check overflow di v rd,rs,rt

move to Lo lilt 1 0 R divide and don't check overflow di vu rd,rs,rt

load halfword lh remainder (signed or unsigned) rems rd,rs,rt

load byte lb load immediate 1 i rd,imm

load word left (unaligned) lwl load address la rd.addr

load word right (unaligned) lwr load double Id rd.addr

store word left (unaligned) swl store double sd rd.addr

store word right (unaligned) swr unaligned load word ul w rd.addr

load linked (atomic update) 11 unaligned store word usw rd.addr

store cond. (atomic update) sc unaligned load halfword (signed or uns.) ul hs rd.addr

move if zero m o v z R unaligned store halfword ush rd.addr

move if not zero movn R branch b Label

multiply and add (S or unsj madds R branch on equal zero b e q z rs,L

multiply and subtract (S or uns.) in subs 1 branch on compare (signed or unsigned) bxs rs,rt,L

branch on > zero and link bgezal 1 (x = 11,1 e, gt, ge)

branch on < zero and link bltzal 1 set equal seq rd,rs,rt

jump and link register jal r R set not equal sne rd,rs,rt

branch compare to zero bxz 1 set on compare (signed or unsigned) sxs rd,rs,rt

branch compare to zero likely bxzl 1 (x = 11,1 e, gt, ge)

(x = It, le, gt, ge) load to floating point (s or d) >•/ rd.addr

branch compare reg likely bxl 1 store from floating point (s or d) s . / rd.addr

trap if compare reg tx R

trap if compare immediate txi 1

(x = eq, neq, 11,1 e, gt, ge)

return from exception r fe R

system call syscal 1 1

break (cause exception) break 1

move from FP to integer mfcl R

move to FP from integer mtcl R

FP move (s or d) mov .f R

FP move if zero (s or d) movz .J R

FP move if not zero (s or d) m o v n . f R

FP square root fs or d) s q r t . f R

FP absolute value (s or d) abs./ R

FP negate (s or d) neg.f R

FP convert (w, s, or d) c v t . / / R

FP compare un (s or d) c. xn./ R

FIGURE 3.25 Remaining MIPS-32 and Pseudo MIPS instruction sets, /means single (S) or double (d) precision floating-point
instructions, and 5 means signed and unsigned (U) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd .//msub ./),
ceiling (cei 1 ./), truncate (trunc./), round (round./), and reciprocal (recip./). The underscore represents the letter to include to
represent that datatype.

Chapter 3 Arithmetic for Computers

Core MIPS Name Integer Fl.pt. Arithmetic core + MIPS-32 Name Integer Fl.pt.

add add o.o% 0.0% FP add double add.d 0.0% 10.6%

add immediate addi o.o% 0.0% FP subtract double sub.d 0.0% 4.9%

add unsigned a d d u 5.2% 3.5% FP multiply double m u l . d o.o% 15.0%

add immediate unsigned add i u 9.0% 7.2% FP divide double d i v . d o.o% 0.2%

subtract unsigned subu 2.2% 0.6% FP add single add. s o.o% 1.5%

A N D AND 0.2% 0.1% FP subtract single sub. s o.o% 1.8%

A N D immediate ANDi 0.7% 0.2% FP multiply single mul . s o.o% 2.4%

O R OR 4.0% 1.2% FP divide single d i v . s o.o% 0.2%

OR immediate ORi 1.0% 0.2% load word to FP double 1 .d 0.0% 17.5%

N O R NOR 0.4% 0.2% store word to FP double s.d o.o% 4.9%

shift left logical sll 4.4% 1.9% load word to FP single 1 .s o.o% 4.2%

shift right logical srl 1.1% 0.5% store word to FP single s. s o.o% 1.1%

load upper immediate 1 ui 3.3% 0.5% branch on floating-point true belt o.o% 0.2%

load word lw 18.6% 5.8% branch on floating-point false bclf o.o% 0.2%

store word sw 7.6% 2.0% floating-point compare double c . x . d o.o% 0.6%

load byte lbu 3.7% 0.1% multiply mu 1 o.o% 0.2%

store byte sb 0.6% 0.0% shift right arithmetic sra 0.5% 0.3%

branch on equal (zero) beq 8.6% 2.2% load half 1 hu 1.3% 0.0%

branch on not equal (zero) bne 8.4% 1.4% store half sh 0.1% 0.0%

jump and link jal 0.7% 0.2%

jump register jr 1.1% 0.2%

set less than sit 9.9% 2.3%

set less than immediate si ti 3.1% 0.3%

set less than unsigned si tu 3.4% 0.8%

set less than imm. uns. sltiu 1.1% 0.1%

FIGURE 3.26 The frequency of the MIPS instructions for SPEC2006 integer and floating point. All instructions that
accounted for at least 1% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and
hence do not appear here.

execution, and the integer core plus arithmetic core dominate SPEC2006 floating
point, as the table below shows.

Instruction subset Integer Fl.pt.

MIPS core 9 8 % 3 1 %

MIPS arithmetic core 2 % 6 6 %

Remaining MIPS-32 0 % 3 %

For the rest of the book, we concentrate on the MIPS core instructions—the
integer instruction set excluding multiply and divide—to make the explanation
of computer design easier. As you can see, the MIPS core includes the most popu-
lar MIPS instructions; be assured that understanding a computer that runs the
MIPS core will give you sufficient background to understand even more ambitious
computers.

282

3.11 Exercises 283

Historical! [Perspective and Further
Reading

This section surveys the history of the floating point going back to von Neumann,
including the surprisingly controversial IEEE standards effort, plus the rationale

Greshom's Law ("Bad
money drives out
Good") for computers
would say, "The Fast
drives out the Slow
even if the Fast is
wrong."

for the 80-bit stack architecture for floating point in the x86. See ® Section 3.10. W. Kahan, 1992

3.11 Exercises
Contributed by Matthew Farrcns, UC Davis

Exercise 3.1
The book shows how to add and subtract binary and decimal numbers. However,
other numbering systems were also very popular when dealing with computers.
Octal (base 8) numbering system was one of these. The following table shows pairs
of octal numbers.

Never give in, never
give in, never, never,
never—in nothing,
great or small, large or
petty—never give in.

Winston Churchill,
address at Harrow
School, 1941

a. 5323 2275

b. 0147 3457

3.1 .1 [5] <3.2> What is the sum of A and B if they represent unsigned 12-bit
octal numbers? The result should be written in octal. Show your work.

3.1 .2 [5] <3.2> What is the sum of A and B if they represent signed 12-bit octal
numbers stored in sign-magnitude format? The result should be written in octal.
Show your work.

3.1 .3 [10] <3.2> Convert A into a decimal number, assuming it is unsigned.
Repeat assuming it stored in sign-magnitude format. Show your work.

The following table also shows pairs of octal numbers.

284 Chapter 3 Arithmetic for Computers

3.1 .4 [5] <3.2> What is A - B if they represent unsigned 12-bit octal numbers?
The result should be written in octal. Show your work.

3.1 .5 [5] <3.2> What is A - B if they represent signed 12-bit octal numbers stored
in sign-magnitude format? The result should be written in octal. Show your work.

3.1 .6 [10] <3.2> Convert A into a binary number. What makes base 8 (octal) an
attractive numbering system for representing values in computers?

Exercise 3.2
Hexadecimal (base 16) is also a commonly used numbering system for representing
values in computers. In fact, it has become much more popular than octal. The
following table shows pairs of hexadecimal numbers.

a. 0 D 3 4 D D 1 7

b. B A 1 D 3 6 1 7

3.2.1 [5] <3.2> What is the sum of A and B if they represent unsigned 16-bit
hexadecimal numbers? The result should be written in hexadecimal. Show your
work.

3.2 .2 [5] <3.2> What is the sum of A and B if they represent signed 16-bit hexa-
decimal numbers stored in sign-magnitude format? The result should be written
in hexadecimal. Show your work.

3.2 .3 [10] <3.2> Convert A into a decimal number, assuming it is unsigned.
Repeat assuming it stored in sign-magnitude format. Show your work.

The following table also shows pairs of hexadecimal numbers.

A B

a. B A 7 C 2 4 1 A

b. A A D F 4 7 B E

3.2 .4 [5] <3.2> What is A - B if they represent unsigned 16-bit hexadecimal
numbers? The result should be written in hexadecimal. Show your work.

3.2 .5 [5] <3.2> What is A - B if they represent signed 16-bit hexadecimal numbers
stored in sign-magnitude format? The result should be written in hexadecimal.
Show your work.

3.11 Exercises 285

3 . 2 . 6 [10] <3.2> Convert A into a binary number. What makes base 16 (hexa-
decimal) an attractive numbering system for representing values in computers?

Exercise 3.3
Overflow occurs when a result is too large to be represented accurately given a
finite word size. Underflow occurs when a number is too small to be represented
correctly—a negative result when doing unsigned arithmetic, for example. (The
case when a positive result is generated by the addition of two negative integers is
also referred to as underflow by many, but in this textbook, that is considered an
overflow). The following table shows pairs of decimal numbers.

3.3 .1 [5] <3.2> Assume A and B are unsigned 8-bit decimal integers. Calculate
A - B. Is there overflow, underflow, or neither?

3 . 3 . 2 [5] <3.2> Assume A and B are signed 8-bit decimal integers stored in sign-
magnitude format. Calculate A T B. Is there overflow, underflow, or neither?

3.3 .3 [5] <3.2> Assume A and B are signed 8-bit decimal integers stored in sign-
magnitude format. Calculate A - B. Is there overflow, underflow, or neither?

The following table also shows pairs of decimal numbers.

3 . 3 . 4 [10] <3.2> Assume A and B are signed 8-bit decimal integers stored in
twos-complement format. Calculate A T B using saturating arithmetic. The result
should be written in decimal. Show your work.

3.3 .5 [10] <3.2> Assume A and B are signed 8-bit decimal integers stored in
two's-complement format. Calculate A - B using saturating arithmetic. The result
should be written in decimal. Show your work.

3.3 .6 [10] <3.2> Assume A and B are unsigned 8-bit integers. Calculate A T B using
saturating arithmetic. The result should be written in decimal. Show your work.

286 Chapter 3 Arithmetic for Computers

Exercise 3.4
Let's look in more detail at multiplication. We will use the numbers in the following
table.

3.4.1 [201 <3.3> Using a table similar to that shown in Figure 3.7, calculate the
product of the octal unsigned 6-bit integers A and B using the hardware described
in Figure 3.4. You should show the contents of each register on each step.

3.4 .2 [20] <3.3> Using a table similar to that shown in Figure 3.7, calculate the
product of the hexadecimal unsigned 8-bit integers A and B using the hardware
described in Figure 3.6. You should show the contents of each register on each
step.

3.4 .3 [60] <3.3> Write a MIPS assembly language program to calculate the
product of unsigned integers A and B, using the approach described in Figure 3.4.

The following table shows pairs of octal numbers.

A B

a. 54 67

b. 30 07

3.4 .4 [30] <3.3> When multiplying signed numbers, one way to get the correct
answer is to convert the multiplier and multiplicand to positive numbers, save the
original signs, and then adjust the final value accordingly. Using a table similar
to that shown in Figure 3.7, calculate the product of A and B using the hardware
described in Figure 3.4. You should show the contents of each register on each step,
and include the step necessary to produce the correctly signed result. Assume A and
B are stored in 6-bit sign-magnitude format.

3.4.5 [30] <3.3> When shifting a register one bit to the right, there are several
ways to decide what the new entering bit should be. It can always be a 0, or always
a 1, or the incoming bit could be the one that is being pushed out of the right side
(turning a shift into a rotate), or the value that is already in the leftmost bit can

3.11 Exercises 287

simply be retained (called an arithmetic shift right, because it preserves the sign of
the number that is being shifted.) Using a table similar to that shown in Figure 3.7,
calculate the product of the 6-bit two's-complement numbers A and B using
the hardware described in Figure 3.6. The right shifts should be done using an
arithmetic shift right. Note that the algorithm described in the text will need to be
modified slightly to make this work—in particular, things must be done differently
if the multiplier is negative. You can find details by searching the Web. Show the
contents of each register on each step.

3.4 .6 [60] <3.3> Write a MIPS assembly language program to calculate the
product of the signed integers A and B. State if you are using the approach given in
Exercise 3.4.4 or Exercise 3.4.5.

Exercise 3.S
For many reasons, we would like to design multipliers that require less time. Many
different approaches have been taken to accomplish this goal. In the following
table, A represents the bit width of an integer, and B represents the number of time
units (tu) taken to perform a step of an operation.

A (bit width) B (time units)

a. 4 3 tu

b. 3 2 7 tu

3.5 .1 [10] <3.3> Calculate the time necessary to perform a multiply using the
approach given in Figures 3.4 and 3.5 if an integer is A bits wide and each step
of the operation takes B time units. Assume that in step la an addition is always
performed—either the multiplicand will be added, or a 0 will be. Also assume that
the registers have already been initialized (you are just counting how long it takes
to do the multiplication loop itself). If this is being done in hardware, the shifts of
the multiplicand and multiplier can be done simultaneously. If this is being done in
software, they will have to be done one after the other. Solve for each case.

3.5 .2 [10] <3.3> Calculate the time necessary to perform a multiply using the
approach described in the text (31 adders stacked vertically) if an integer is A bits
wide and an adder takes B time units.

3.5.3 [20] <3.3> Calculate the time necessary to perform a multiply using the
approach given in Figure 3.8, if an integer is A bits wide and an adder takes B time
units.

288 Chapter 3 Arithmetic for Computers

Exercise 3.6
In this exercise we will look at a couple of other ways to improve the performance
of multiplication, based primarily on doing more shifts and fewer arithmetic
operations. The following table shows pairs of hexadecimal numbers.

• L fS? &
a. 24 c9

b. 4 1 18

3.6.1 [2 0] <3.3> As discussed in the text, one possible performance enhancement
is to do a shift and add instead of an actual multiplication. Since 9 x 6 , for example,
can be written (2 x 2 x 2 T 1) x 6, we can calculate 9 x 6 by shifting 6 to the left three
times and then adding 6 to that result. Show the best way to calculate A x B using
shifts and adds/subtracts. Assume that A and B are 8-bit unsigned integers.

3.6 .2 [20] <3.3> Show the best way to calculate A x B using shift and adds, if A
and B are 8-bit signed integers stored in sign-magnitude format.

3.6.3 [60] <3.3> Write a MIPS assembly language program that performs a
multiplication on signed integers using shift and adds, as described in 3.6.1.

The following table shows further pairs of hexadecimal numbers.

• • ^ • I H I H I H H
a. 4 2 36

b. 9F 8 E

3.6.4 [30] <3.3> Booth's algorithm is another approach to reducing the number
of arithmetic operations necessary to perform a multiplication. This algorithm has
been around for years, and details about how it works are available on the Web.
Basically, it assumes that a shift takes less time than an add or subtract, and uses
this fact to reduce the number of arithmetic operations necessary to perform a
multiply. It works by identifying runs of Is and Os, and performing shifts during
the runs. Find a description of the algorithm and explain in detail how it works.

3.6.5 [30] <3.3> Show the step-by-step result of multiplying A and B, using
Booth's algorithm. Assume A and B are 8-bit two's-complement integers, stored in
hexadecimal format.

3.6.6 [60] <3.3> Write a MIPS assembly language program to perform the
multiplication of A and B using Booth's algorithm.

3.11 Exercises 289

Exercise 3.7
Let's look in more detail at division. We will use the octal numbers in the following
table.

3.7.1 [20] <3.4> Using a table similar to that shown in Figure 3.11, calculate
A divided by B using the hardware described in Figure 3.9. You should show
the contents of each register on each step. Assume A and B are unsigned 6-bit
integers.

3.7.2 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using the hardware described in Figure 3.12. You should show the
contents of each register on each step. Assume A and B are unsigned 6-bit integers.
This algorithm requires a slightly different approach than that shown in Figure 3.10.
You will want to think hard about this, do an experiment or two, or else go to the
Web to figure out how to make this work correctly. (Hint: one possible solution
involves using the fact that Figure 3.12 implies the remainder register can be shifted
either direction).

3.7.3 [60] <3.4> Write a MIPS assembly language program to calculate A divided
by B, using the approach described in Figure 3.9. Assume A and B are unsigned
6-bit integers.

The following table shows further pairs of octal numbers.

3.7.4 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate
A divided by B using the hardware described in Figure 3.9. You should show the
contents of each register on each step. Assume A and B are 6-bit signed integers in
sign-magnitude format. Be sure to include how you are calculating the signs of the
quotient and remainder.

3.7.5 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using the hardware described in Figure 3.12. You should show the

290 Chapter 3 Arithmetic for Computers

contents of each register on each step. Assume A and B are 6-bit signed integers in
sign-magnitude format. Be sure to include how you are calculating the signs of the
quotient and remainder.

3.7.6 [60] <3.4> Write a MIPS assembly language program to calculate A divided
by B, using the approach described in Figure 3.12. Assume A and B are signed
integers.

Exercise 3.8
Figure 3.10 describes a restoring division algorithm, because when subtracting the
divisor from the remainder produces a negative result, the divisor is added back to
the remainder (thus restoring the value). However, there are other algorithms that
have been developed that eliminate the extra addition. Many references to these
algorithms are easily found on the Web. We will explore these algorithms using the
pairs of octal numbers in the following table.

3.8.1 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using nonrestoring division. You should show the contents of each
register on each step. Assume A and B are 6-bit unsigned integers.

3.8 .2 [60] <3.4> Write a MIPS assembly language program to calculate A
divided by B using nonrestoring division. Assume A and B are 6-bit signed (two's-
complement) integers.

3.8.3 [60] <3.4> How does the performance of restoring and nonrestoring
division compare? Demonstrate by showing the number of steps necessary to
calculate A divided by B using each method. Assume A and B are 6-bit signed
(sign-magnitude) integers. Writing a program to perform the restoring and non-
restoring divisions is acceptable.

The following table shows further pairs of octal numbers.

3.11 Exercises 291

3.3.4 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using nonperforming division. You should show the contents of each
register on each step. Assume A and B are 6-bit unsigned integers.

3.5.5 [60] <3.4> Write a MIPS assembly language program to calculate A divided
by B using nonperforming division. Assume A and B are 6-bit two's complement
signed integers.

3.8.6 [60] <3.4> How does the performance of nonrestoring and nonperforming
division compare? Demonstrate by showing the number of steps necessary to
calculate A divided by B using each method. Assume A and B are signed 6-bit
integers, stored in sign-magnitude format. Writing a program to perform the
nonperforming and nonrestoring divisions is acceptable.

Exercise 3.9
Division is so time-consuming and difficult that the CRAY T3E Fortran Optimiza-
tion guide states, "The best strategy for division is to avoid it whenever possible."
This exercise looks at the following different strategies for performing divisions.

a. restoration division

b. SRT division

3.9.1 [30] <3.4> Describe the algorithm in detail.

3.9.2 [60] <3.4> Use a flow chart (or a high-level code snippet) to describe how
the algorithm works.

3.9.3 [60] <3.4> Write a MIPS assembly language program to perform a division
using the algorithm.

Exercise 3.10
In a Von Neumann architecture, groups of bits have no intrinsic meanings by
themselves. What a bit pattern represents depends entirely on how it is used. The
following table shows bit patterns expressed in hexademical notation.

a. 0 x 2 4 A 6 0 0 0 4

b. OxAFBFOOOO

3.10.1 [5] <3.5> What decimal number does the bit pattern represent if it is a
twos-complement integer? An unsigned integer?

3.10.2 [10] <3.5> If this bit pattern is placed into the Instruction Register, what
MIPS instruction will be executed?

292 Chapter 3 Arithmetic for Computers

3.10.3 [101 <3.5> What decimal number does the bit pattern represent if it is a
floating-point number? Use the IEEE 754 standard.

The following table shows decimal numbers.

a. -1609.5

b. -938.8125

3.10.4 [10] <3.5> Write down the binary representation of the decimal number,
assuming the IEEE 754 single precision format.

3.10.5 [10] <3.5> Write down the binary representation of the decimal number,
assuming the IEEE 754 double precision format.

3.10.6 [10] <3.5> Write down the binary representation of the decimal number
assuming it was stored using the single precision IBM format (base 16, instead of
base 2, with 7 bits of exponent).

Exercise 3.11
In the IEEE 754 floating point standard the exponent is stored in "bias" (also known
as "Excess-N") format. This approach was selected because we want an all-zero
pattern to be as close to zero as possible. Because of the use of a hidden 1, if we were
to represent the exponent in two's-complement format an all-zero pattern would
actually be the number 1! (Remember, anything raised to the zeroth power is 1, so
1.0° = 1.) There are many other aspects of the IEEE 754 standard that exist in order
to help hardware floating-point units work more quickly. However, in many older
machines floating-point calculations were handled in software, and therefore other
formats were used. The following table shows decimal numbers.

a. 5.00736125 x 1 0 5

b. - 2 . 6 9 1 6 5 0 3 9 0 6 2 5 x 10" 2

3.11.1 [20] <3.5> Write down the binary bit pattern assuming a format similar
to that employed by the DEC PDP-8 (leftmost 12 bits are the exponent stored as a
two's-complement number, and the rightmost 24 bits are the mantissa stored as a
two's-complement number.) No hidden 1 is used. Comment on how the range and
accuracy of this 36-bit pattern compares to the single and double precision IEEE
754 standards.

3.11.2 [20] <3.5> NVIDIA has a "half" format, which is similar to IEEE 754 except
that it is only 16 bits wide. The leftmost bit is still the sign bit, the exponent is 5 bits
wide and stored in excess-16 format, and the mantissa is 10 bits long. A hidden 1

3.11 Exercises 293

is assumed. Write down the bit pattern assuming this format. Comment on how
the range and accuracy of this 16-bit pattern compares to the single precision IEEE
754 standard.

3 . 1 1 . 3 [20] <3.5> The Hewlett-Packard 2114, 2115, and 2116 used a format
with the leftmost 16 bits being the mantissa stored in two's-complement format,
followed by another 16-bit field which had the leftmost 8 bits an extension of the
mantissa (making the mantissa 24 bits long), and the rightmost 8 bits representing
the exponent. However, in an interesting twist, the exponent was stored in sign-
magnitude format with the sign bit on the far right! Write down the bit pattern
assuming this format. No hidden 1 is used. Comment on how the range and accuracy
of this 32-bit pattern compares to the single precision IEEE 754 standard.

The following table shows pairs of decimal numbers.

3 . 1 1 . 4 [20] <3.5> Calculate the sum of A and B by hand, assuming A and B are
stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also described
in the text). Assume one guard, one round bit and one sticky bit, and round to the
nearest even. Show all the steps.

3 . 1 1 . 5 [60] <3.5> Write a MIPS assembly language program to calculate the sum
of A and B, assuming they are stored in the 16-bit NVIDIA format described in
Exercise 3.11.2 (and also described in the text). Assume one guard, one round and
one sticky bit, and round to the nearest even.

3 . 1 1 . 6 [60] <3.5> Write a MIPS assembly language program to calculate the sum of
A and B, assuming they are stored using the format described in Exercise 3.11.1. Now
modify the program to calculate the sum assuming the format described in Exercise
3.11.3. Which format is easier for a programmer to deal with? How do they each
compare to the IEEE 754 format? (Do not worry about sticky bits for this question.)

Exercise 3.12
Floating-point multiplication is even more complicated and challenging than
floating-point addition, and both pale in comparison to floating-point division.

a. 5 . 6 6 0 1 5 6 2 5 x 1 0 ° 8 . 5 9 3 7 5 x 1 0 °

b. 6 . 1 8 x 1 0 2 5 . 7 9 6 8 7 5 x 1 0 1

294 Chapter 3 Arithmetic for Computers

3 . 1 2 . 1 [30] <3.5> Calculate the product of A and B by hand, assuming A and
B are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps; however, as is done in the example in
the text, you can do the multiplication in human-readable format instead of using
the techniques described in Exercises 3.4 through 3.6. Indicate if there is overflow
or underflow. Write your answer as a 16-bit pattern, and also as a decimal number.
Mow accurate is your result? How does it compare to the number you get if you do
the multiplication on a calculator?

3 . 1 2 . 2 [60] <3.5> Write a MIPS assembly language program to calculate the
product of A and B, assuming they are stored in IEEE 754 format. Indicate if there
is overflow or underflow. (Remember, IEEE 754 assumes one guard, one round and
one sticky bit, and rounds to the nearest even.)

3 . 1 2 . 3 [60] <3.5> Write a MIPS assembly language program to calculate the
product of A and B, assuming they are stored using the format described in
Exercise 3.11.1. Now modify the program to calculate the sum assuming the format
described in Exercise 3.11.3. Which format is easier for a programmer to deal with?
How do they each compare to the IEEE 754 format? (Do not worry about sticky
bits for this question.)

The following table shows further pairs of decimal numbers.

3 . 1 2 . 4 [30] <3.5> Calculate by hand A divided by B. Show all the steps necessary to
achieve your answer. Assume there is a guard, round, and sticky bit, and use them if
necessary. Write the final answer in both 16-bit floating-point format and in decimal
and compare the decimal result to that which you get if you use a calculator.

The Livermore Loops are a set of floating-point intensive kernels taken from
scientific programs run at Lawrence Livermore Laboratory. The following table
identifies individual kernels from the set.

You can find them at http://www.netlib.org/benchmark/livermore.

a. Livermore Loop 1

b. Livermore Loop 7

3 . 1 2 . 5 [60] <3.5> Write the loop in MIPS assembly language.

http://www.netlib.org/benchmark/livermore

3.11 Exercises 295

3 . 1 2 . 6 [60] <3.5> Describe in detail one technique for performing floating-point
division in a digital computer. Be sure to include references to the sources you used.

Exercise 3.13
Operations performed on fixed-point integers behave the way one expects—the
commutative, associative, and distributive laws all hold. This is not always the case
when working with floating-point numbers, however. Let's first look at the associative
law. The following table shows sets of decimal numbers.

A B C

a. - 1 . 6 3 6 0 x 10'1 1 . 6 3 6 0 x 10'1 1 . 0 x 1 0 °

b. 2 . 8 6 5 6 2 5 x 1 0 1 4 . 1 4 0 6 2 5 x 1 0 " 1 1 . 2 1 4 0 6 2 5 x 1 0 1

3 . 1 3 . 1 [20] <3.2, 3.5, 3.6> Calculate (A T B) T C by hand, assuming A, B, and
C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps, and write your answer both in 16-bit
floating-point format and in decimal.

3 . 1 3 . 2 [20] <3.2, 3.5, 3.6> Calculate A T (B T C) by hand, assuming A, B, and
C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps, and write your answer both in 16-bit
floating-point format and in decimal.

3 . 1 3 . 3 [10] <3.2, 3.5, 3.6> Based on your answers to Exercise 3.13.1 and Exercise
3.13.2, does (A T B) T C = A T (B T C) ?

The following table shows further sets of decimal numbers.

a. 4 . 8 8 2 8 1 2 5 x 1 0 " 4 1 . 7 6 8 x 1 0 3 2 . 5 0 1 2 5 x 1 0 2

b. 4 . 7 2 1 8 7 5 x l O 1 2 . 8 0 9 3 7 5 x 1 0 1 3 . 5 7 5 x 1 0 1

3 . 1 3 . 4 [30] <3.3, 3.5, 3.6> Calculate (A x B) x C by hand, assuming A, B, and
C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps, and write your answer both in 16-bit
floating-point format and in decimal.

296 Chapter 3 Arithmetic for Computers

3 . 1 3 . 5 [30] <3.3, 3.5, 3.6> Calculate A x (B x C) by hand, assuming A, B, and
C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps, and write your answer both in 16-bit
floating-point format and in decimal.

3 . 1 3 . 6 [10] <3.3 ,3 .5 ,3 .6> Based on your answers to Exercise 3.13.4 and Exercise
3.13.5, does (A x B) x C = A x (B x C)?

Exercise 3.14
The associative law is not the only one that does not always hold in dealing with
floating-point numbers. There are other oddities that occur as well. The following
table shows sets of decimal numbers.

3 . 1 4 . 1 [30] <3.2,3.3,3.5,3.6> Calculate A x (B T C) by hand, assuming A, B, and
C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2 (and also
described in the text). Assume one guard, one round bit and one sticky bit, and
round to the nearest even. Show all the steps, and write your answer both in 16-bit
floating-point format and in decimal.

3 . 1 4 . 2 [30] <3.2, 3.3, 3.5, 3.6> Calculate (A x B) T (A x C) by hand, assuming
A, B, and C are stored in the 16-bit NVIDIA format described in Exercise 3.11.2
(and also described in the text). Assume one guard, one round bit and one sticky
bit, and round to the nearest even. Show all the steps, and write your answer both
in 16-bit floating-point format and in decimal.

3 . 1 4 . 3 [10] <3.2, 3.3, 3.5, 3.6> Based on your answers to Exercise 3.14.1 and
Exercise 3.14.2, does (A x B) T (A x C) = A x (B T C)?

The following table shows pairs, each consisting of a fraction and an integer.

3 . 1 4 . 4 [10] <3.5> Using the IEEE 754 floating-point format, write down the bit
pattern that would represent A. Can you represent A exactly?

3.11 Exercises 297

3 . 1 4 . 5 [10] <3.2, 3.3, 3.5, 3.6> What do you get if you add A to itself B times?
What is A x B? Are they the same? What should they be?

3 . 1 4 . 6 [60] <3.2, 3.3, 3.4, 3.5, 3.6> What do you get if you take the square root
of B and then multiply that value by itself? What should you get? Do for both
single and double precision floating-point numbers. (Write a program to do these
calculations).

Exercise 3.15
Binary numbers are used in the mantissa field, but they do not have to be. IBM used
base 16 numbers, for example, in some of their floating-point formats. There are
other approaches that are possible as well, each with their own particular advantages
and disadvantages. The following table shows fractions to be represented in various
floating-point formats.

a. 1/2

b. 1/9

3 . 1 5 . 1 [10] <3.5, 3.6> Write down the bit pattern in the mantissa assuming a
floating-point format that uses binary numbers in the mantissa (essentially what
you have been doing in this chapter). Assume there are 24 bits, and you do not need
to normalize. Is this representation exact?

3 . 1 5 . 2 [10] <3.5, 3.6> Write down the bit pattern in the mantissa assuming a
floating-point format that uses Binary Coded Decimal (base 10) numbers in
the mantissa instead of base 2. Assume there are 24 bits, and you do not need to
normalize. Is this representation exact?

3 . 1 5 . 3 [10] <3.5,3.6> Write down the bit pattern assuming that we are using base
15 numbers in the mantissa instead of base 2. (Base 16 numbers use the symbols
0 - 9 and A-F. Base 15 numbers would use 0 - 9 and A-E.) Assume there are 24 bits,
and you do not need to normalize. Is this representation exact?

3 . 1 5 . 4 [20] <3.5,3.6> Write down the bit pattern assuming that we are using base
30 numbers in the mantissa instead of base 2. (Base 16 numbers use the symbols
0 - 9 and A-F. Base 30 numbers would use 0 - 9 and A-T.) Assume there are 20 bits,
and you do not need to normalize. Is this representation exact? Do you see any
advantage to using this approach?

§3.2, page 229: 3.
§3.4, page 269: 3.

Answers to
Check Yourself

T T D b © \ P m © (& s > m m

In a major matter;
no details are small
French Proverb

4 . 1 Introduction 300

4 . 2 Logic Design Conventions 303

4 . 3 Building a Datapath 307

4 . 4 A Simple Implementation S c h e m e 316

4 . 5 An Overview of Pipelining 330

4 . 6 Pipelined Datapath and Control 344

4 . 7 Data Hazards: Forwarding versus

Stalling 363

4 . 8 Control Hazards 375

4 . 9 Exceptions 384

4 .10 Parallelism and Advanced Instruction-Level Parallelism 391

4 . 1 1 [Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404

H 4 .12 Advanced Topic: an Introduction to Digital Design Using a

Hardware Design Language to Describe and Model a Pipeline

and More Pipelining Illustrations 406

4 . 1 3 Fallacies and Pitfalls 407

4 . 1 4 Concluding Remarks 408

|§S 4 . 1 5 ' Historical Perspective and Further Reading 409

4 .16 Exercises 409

The Five Classic Components of a Computer

Compiler

Interlace
vy

Evaluating
performance

318 Chapter 4 The Processor

^ J J J Introduction

Chapter 1 explains that the performance of a computer is determined by three key
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).
Chapter 2 explains that the compiler and the instruction set architecture determine
the instruction count required for a given program. However, the implementation
of the processor determines both the clock cycle time and the number of clock
cycles per instruction. In this chapter, we construct the datapath and control unit
for two different implementations of the MIPS instruction set.

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section. It is followed by a section that builds up a datapath and constructs a
simple version of a processor sufficient to implement an instruction set like MIPS.
The bulk of the chapter covers a more realistic pipelined MIPS implementation,
followed by a section that develops the concepts necessary to implement more
complex instruction sets, like the x86.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section and
Section 4.5 present the basic concepts of pipelining. Recent trends are covered in
Section 4.10, and Section 4.11 describes the recent AMD Opteron X4 (Barcelona)
microprocessor. These sections provide enough background to understand the
pipeline concepts at a high level.

For the reader interested in understanding the processor and its performance
in more depth, Sections 4.3, 4.4, and 4.6 will be useful. Those interested in learn-
ing how to build a processor should also cover 4.2, 4.7, 4.8, and 4.9. For readers
with an interest in modern hardware design, Section 4 .12 on the CD describes
how hardware design languages and CAD tools are used to implement hardware,
and then how to use a hardware design language to describe a pipelined imple-
mentation. It also gives several more illustrations of how pipelining hardware
executes.

A Basic MIPS Implementation
We will be examining an implementation that includes a subset of the core MIPS
instruction set:

• The memory-reference instructions load word (1 w) and store word (sw)

• The arithmetic-logical instructions a d d , sub, A M D , O R , and s 11

• The instructions branch equal (beq) and jump (j) , which we add last

4.1 Introduction 301

This subset does not include all the integer instructions (for example, shift, multiply,
and divide are missing), nor does it include any floating-point instructions. How-
ever, the key principles used in creating a datapath and designing the control are
illustrated. The implementation of the remaining instructions is similar.

In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and
how the choice of various implementation strategies affects the clock rate and CPI
for the computer. Many of the key design principles introduced in Chapter 1 can
be illustrated by looking at the implementation, such as the guidelines Make the
common case fast and Simplicity favors regularity. In addition, most concepts used
to implement the MIPS subset in this chapter are the same basic ideas that are used
to construct a broad spectrum of computers, from high-performance servers to
general-purpose microprocessors to embedded processors.

An Overview of the Implementation
In Chapter 2, we looked at the core MIPS instructions, including the integer
arithmetic-logical instructions, the memory-reference instructions, and the branch
instructions. Much of what needs to be done to implement these instructions is the
same, independent of the exact class of instruction. For every instruction, the first
two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the registers
to read. For the load word instruction, we need to read only one register, but
most other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend
on the instruction class. Fortunately, for each of the three instruction classes
(memory-reference, arithmetic-logical, and branches), the actions are largely the
same, independent of the exact instruction. The simplicity and regularity of the
MIPS instruction set simplifies the implementation by making the execution of
many of the instruction classes similar.

For example, all instruction classes, except jump, use the arithmetic-logical unit
(ALU) after reading the registers. The memory-reference instructions use the ALU
for an address calculation, the arithmetic-logical instructions for the operation
execution, and branches for comparison. After using the ALU, the actions required
to complete various instruction classes differ. A memory-reference instruction will
need to access the memory either to read data for a load or write data for a store.
An arithmetic-logical or load instruction must write the data from the ALU or
memory back into a register. Lastly, for a branch instruction, we may need to change
the next instruction address based on the comparison; otherwise, the PC should be
incremented by 4 to get the address of the next instruction.

302 Chapter 4 The Processor

Figure 4.1 shows the high-level view of a MIPS implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution.

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the
major funct ional units and the major c o n n e c t i o n s b e t w e e n t h e m . All instructions start by using
the program counter to supply the instruction address to the instruction memory. After the instruction is
fetched, the register operands used by an instruction are specified by fields of that instruction. Once the
register operands have been fetched, they can be operated on to compute a memory address (for a load or
store), to compute an arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a
branch). If the instruction is an arithmetic-logical instruction, the result from the ALU must be written to
a register. If the operation is a load or store, the ALU result is used as an address to cither store a value from
the registers or load a value from memory into the registers. The result from the ALU or memory is written
back into the register file. Branches require the use of the ALU output to determine the next instruction
address, which comes either from the ALU (where the PC and branch offset are summed) or from an adder
that increments the current PC by 4. The thick lines interconnecting the functional units represent buses,
which consist of multiple signals. The arrows are used to guide the reader in knowing how information flows.
Since signal lines may cross, we explicitly show when crossing lines arc connected by the presence of a dot
where the lines cross.

First, in several places, Figure 4.1 shows data going to a particular unit as coming
from two different sources. For example, the value written into the PC can come
from one of two adders, the data written into the register file can come from either
the ALU or the data memory, and the second input to the ALU can come from
a register or the immediate field of the instruction. In practice, these data lines
cannot simply be wired together; we must add a logic element that chooses from
among the multiple sources and steers one of those sources to its destination. This
selection is commonly done with a device called a multiplexor., although this device

4.2 Logic Design Conventions 303

might better be called a data selector. ^ Appendix C describes the multiplexor,
which selects from among several inputs based on the setting of its control lines.
The control lines are set based primarily on information taken from the instruction
being executed.

The second omission in Figure 4.1 is that several of the units must be controlled
depending on the type of instruction. For example, the data memory must read
on a load and write on a store. The register file must be written on a load and an
arithmetic-logical instruction. And, of course, the ALU must perform one of several
operations, as we saw in Chapter 2. ((§] Appendix C describes the detailed design
of the-ALU.) Like the multiplexors, these operations are directed by control lines
that are set on the basis of various fields in the instruction.

Figure 4.2 shows the datapath of Figure 4.1 with the three required multiplexors
added, as well as control lines for the major functional units. A control unity which
has the instruction as an input, is used to determine how to set the control lines
for the functional units and two of the multiplexors. The third multiplexor,
which determines whether PC T 4 or the branch destination address is written
into the PC, is set based on the Zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the MIPS
instruction set means that a simple decoding process can be used to determine how
to set the control lines.

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, enhance a control unit to control what actions are
taken for different instruction classes. Sections 4.3 and 4.4 describe a simple imple-
mentation that uses a single long clock cycle for every instruction and follows the
general form of Figures 4.1 and 4.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge.

While easier to understand, this approach is not practical, since the clock cycle
must be stretched to accommodate the longest instruction. After designing the
control for this simple computer, we will look at pipelined implementation with all
its complexities, including exceptions.

How many of the five classic components of a computer—shown on page 299—do Check
Figures 4.1 and 4.2 include? Yourself

Logic Design Conventions

To discuss the design of a computer, we must decide how the logic implementing
the computer will operate and how the computer is clocked. This section reviews
a few key ideas in digital logic that we will use extensively in this chapter. If

3 0 4 Chapter 4 The Processor

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
The top multiplexor ("Mux") controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is controlled
by the gate that "ANDs" together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
multiplexor, whose output returns to the register file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction)
or the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to
determine whether the second ALU input is from the registers (for an arithmetic-logical instruction OR a branch) or from the offset field of
the instruction (for a load or store). The added control lines are straightforward and determine the operation performed at the ALU, whether
the data memory should read or write, and whether the registers should perform a write operation. The control lines are shown in color to
make them easier to see.

you have little or no background in digital logic, you will find it helpful to read
Appendix C before continuing.

The datapath elements in the MIPS implementation consist of two different
types of logic elements: elements that operate on data values and elements that

c o m b i n a t i o n a l e l e m e n t contain state. The elements that operate on data values are all combinational,
An operational element, which means that their outputs depend only on the current inputs. Given the same
such as an AND gate or input, a combinational element always produces the same output. The ALU shown
an ALU. j n Figure 4.1 and discussed in (§8 Appendix C is an example of a combinational

4.2 Logic Design Conventions 3 0 5

element. Given a set of inputs, it always produces the same output because it has
no internal storage.

Other elements in the design are not combinational, but instead contain state.
An element contains state if it has some internal storage. We call these elements
state elements because, if we pulled the power plug on the computer, we could
restart it by loading the state elements with the values they contained before we
pulled the plug. Furthermore, if we saved and restored the state elements, it would
be as if the computer had never lost power. Thus, these state elements completely
characterize the computer. In Figure 4.1, the instruction and data memories, as
well as. the registers, are all examples of state elements.

A state element has at least two inputs and one output. The required inputs
are the data value to be written into the clement and the clock, which determines
when the data value is written. The output from a state element provides the
value that was written in an earlier clock cycle. For example, one of the logically
simplest state elements is a D-type flip-flop (see @ Appendix C), which has
exactly these two inputs (a value and a clock) and one output. In addition to
flip-flops, our MIPS implementation also uses two other types of state elements:
memories and registers, both of which appear in Figure 4.1. The clock is used to
determine when the state element should be written; a state element can be read
at any time.

Logic components that contain state are also called sequential, because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in ® Appendix C.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deasserted
to represent logically low.

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes, because if a signal
is written at the same time it is read, the value of the read could correspond to
the old value, the newly written value, or even some mix of the two! Computer
designs cannot tolerate such unpredictability. A clocking methodology is designed
to ensure predictability.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge. Because only state elements can
store a data value, any collection of combinational logic must have its inputs come
from a set of state elements and its outputs written into a set of state elements.

state c lement A memory
element, such as a register
or a memory.

asserted The signal is
logically high or true.

deasserted The signal is
logically low or false.

clocking methodology
The approach used to
determine when data is
valid and stable relative to
the clock.

edge-triggered clocking
A clocking scheme in
which all state changes
occur on a clock edge.

306 Chapter 4 The Processor

The inputs are values that were written in a previous clock cycle, while the outputs
are values that can be used in a following clock cycle.

Figure 4.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: all signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle.

State
element

1

State
element

2

Clock cycle

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which they
will not change until after the clock edge) before the active clock edge causes the state to be updated. All state
elements in this chapter, including memory, are assumed to be edge-triggered.

c o n t r o l s ignal A signal
used for multiplexor
selection or for directing
the operation of a
functional unit; contrasts
with a data s ignal , which
contains information
that is operated on by a
functional unit.

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only when
the write control signal is asserted and a clock edge occurs.

An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle. Figure 4.4 gives a generic example. It doesn't matter whether we
assume that all writes take place on the rising clock edge or on the falling clock
edge, since the inputs to the combinational logic block cannot change except on

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within one clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge-triggered timing methodology and on structures like the one shown
in this figure.

4.3 Building a Datapath 3 0 7

the chosen clock edge. With an edge-triggered timing methodology, there is no
feedback within a single clock cycle, and the logic in Figure 4.4 works correctly. In
(igl Appendix C, we briefly discuss additional timing constraints (such as setup and
hold times) as well as other timing methodologies.

For the 32-bit MIPS architecture, nearly all of these state and logic elements will
have inputs and outputs that are 32 bits wide, since that is the width of most of the
data handled by the processor. We will make it clear whenever a unit has an input
or output that is other than 32 bits in width. The figures will indicate buses, which
are signals wider than 1 bit, with thicker lines. At times, we will want to combine
several-buses to form a wider bus; for example, we may want to obtain a 32-bit bus
by combining two 16-bit buses. In such cases, labels on the bus lines will make it
clear that we are concatenating buses to form a wider bus. Arrows are also added
to help clarify the direction of the flow of data between elements. Finally, color
indicates a control signal as opposed to a signal that carries data; this distinction
will become clearer as we proceed through this chapter.

True or false: Because the register file is both read and written on the same clock Check
cycle, any MIPS datapath using edge-triggered writes must have more than one Y o U f S e l f
copy of the register file.

E laboration: There is also a 64-bit version of the MIPS architecture, and, naturally
enough, most paths in its implementation would be 64 bits wide. Also, we use the terms
assert and deassert because at times 1 represents logically high and at times it can
represent logically low.

BaaMiiinig a D a t a p a t h

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instructions. Let's start by looking at which
datapath elements each instruction needs. When we show the datapath elements,
we will also show their control signals.

Figure 4.5a shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure 4.5b
also shows the program counter (PC), which as we saw in Chapter 2 is a register
that holds the address of the current instruction. Lastly, we will need an adder
to increment the PC to the address of the next instruction. This adder, which is
combinational, can be built from the ALU described in detail in ® Appendix C
simply by wiring the control lines so that the control always specifies an add

datapath element A unit
used to operate on
or hold data within a
processor. In the MIPS
implementation, the
datapath elements include
the instruction and data
memories, the register file,
the ALU, and adders.

program counter (PC)
The register containing the
address of the instruction
in the program being
executed.

3 0 8 Chapter 4 The Processor

Instruction
address

Instruction PC \ Add Sum

Instruct ion
memory

a. Instruction memory b. Program counter c. Adder

register file A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.

operation. We will draw such an ALU with the label Add, as in Figure 4.5, to indicate
that it has been permanently made an adder and cannot perform the other ALU
functions.

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment the
program counter so that it points at the next instruction, 4 bytes later. Figure 4.6
shows how to combine the three elements from Figure 4.5 to form a datapath
that fetches instructions and increments the PC to obtain the address of the next
sequential instruction.

Now let's consider the R-format instructions (see Figure 2.20 on page 136). They
all read two registers, perform an ALU operation on the contents of the registers,
and write the result to a register. We call these instructions either R-type instruc-
tions or arithmetic-logical instructions (since they perform arithmetic or logical
operations). This instruction class includes a d d , sub, A N D , OR, and s i t , which
were introduced in Chapter 2. Recall that a typical instance of such an instruction
is a d d $ t l , $ t 2 , $ t 3 , which reads $ t 2 and $ 1 3 and writes $ t l .

The processor's 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be
read or written by specifying the number of the register in the file. The register file
contains the register state of the computer. In addition, we will need an ALU to
operate on the values read from the registers.

R-format instructions have three register operands, so we will need to read
two data words from the register file and write one data word into the register file
for each instruction. For each data word to be read from the registers, we need an

4.3 Building a Datapath 3 0 9

\ Add

4

PC Read
address

Instruction

Instruction
memory

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.

input to the register file that specifies the register number to be read and an output
from the register file that will carry the value that has been read from the registers.
To write a data word, we will need two inputs: one to specify the register number to
be written and one to supply the data to be written into the register. The register file
always outputs the contents of whatever register numbers are on the Read register
inputs. Writes, however, are controlled by the write control signal, which must be
asserted for a write to occur at the clock edge. Figure 4.7a shows the result; we
need a total of four inputs (three for register numbers and one for data) and two
outputs (both for data). The register number inputs are 5 bits wide to specify one
of 32 registers (32 = 23), whereas the data input and two data output buses are each
32 bits wide.

Figure 4.7b shows the ALU, which takes two 32-bit inputs and produces a 32-bit
result, as well as a 1-bit signal if the result is 0. The 4-bit control signal of the ALU is
described in detail in [§8 Appendix C; we will review the ALU control shortly when
we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which have
the general form 1 w $t 1, of f s e t _ v a 1 lie($ t 2) or sw $ 1 1 , o f f s e t _ v a l ue
($ t 2) . These instructions compute a memory address by adding the base register,
which is $ 12, to the 16-bit signed offset field contained in the instruction. If the
instruction is a store, the value to be stored must also be read from the register file
where it resides in S t l . If the instruction is a load, the value read from memory
must be written into the register file in the specified register, which is $ 11. Thus, we
will need both the register file and the ALU from Figure 4.7.

3 1 0 Chapter 4 The Processor

Register
numbers

Data

Read
register 1 Read
Read data 1
register 2
Write Registers
register Read
Write data 2
Data

> Data

RegWrite

a. Registers b. ALU

FIGURE 4.7 The t w o elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section C.8 of ^ Appendix C. The register file-
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that ail the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes to
the register file are edge-triggered, our design can legally read and write the same register within a clock cycle:
the read will get the value written in an earlier clock cycle, while the value written will be available to a read in
a subsequent clock cycle. The inputs carrying the register number to the register file are all 5 bits wide, whereas
the lines carrying data values are 32 bits wide. The operation to be performed by the ALU is controlled with
the ALU operation signal, which will be 4 bits wide, using the ALU designed in ^ Appendix C. We will
use the Zero detection output of the ALU shortly to implement branches. The overflow output will not be
needed until Section 4.9, when we discuss exceptions; we omit it until then.

s i g n - e x t e n d To increase
the size of a data item by
replicating the high-order
sign bit of the original
data item in the high-
order bits of the larger,
destination data item.

b r a n c h target address
T h e address specified in
a branch, which becomes
the new program counter
(P C) if the branch is
taken. In the M I P S
architecture the branch
target is given by the
sum of the offset f ie ld of
the instruction and the
address of the instruction
following the branch.

In addition, we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, data memory
has read and write control signals, an address input, and an input for the data to be
written into memory. Figure 4.8 shows these two elements.

The beq instruction has three operands, two registers that are compared
for equality, and a 16-bit offset used to compute the branch target address
relative to the branch instruction address. Its form is beq S t l , $ t 2 , o f f s e t . To
implement this instruction, we must compute the branch target address by adding
the sign-extended offset field of the instruction to the PC. There are two details
in the definition of branch instructions (see Chapter 2) to which we must pay
attention:

• The instruction set architecture specifies that the base for the branch address
calculation is the address of the instruction following the branch. Since we
compute PC T 4 (the address of the next instruction) in the instruction fetch
datapath, it is easy to use this value as the base for computing the branch
target address.

ALU operation

4.3 Building a Datapath 3 1 1

MemWrile

Data
Write memory
data

Address Read
data

16 32

MemRead

a. Data memory unit b. Sign extension unit

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit input that
is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the data memory is
edge-triggered for writes. Standard memory chips actually have a write enable signal that is used for writes.
Although the write enable is not edge-triggered, our edge-triggered design could easily be adapted to work
with real memory chips. See Section C.8 of ^ Appendix C for further discussion of how real memory
chips work.

• The architecture also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of 4.

To deal with the latter complication, we will need to shift the offset field by 2.
As well as computing the branch target address, we must also determine whether

the next instruction is the instruction that follows sequentially or the instruction
at the branch target address. When the condition is true (i.e., the operands are
equal), the branch target address becomes the new PC, and we say that the branch
is taken. If the operands are not equal, the incremented PC should replace the
current PC (just as for any other normal instruction); in this case, we say that the
branch is not taken.

Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Figure 4.9 shows the
structure of the datapath segment that handles branches. To compute the branch
target address, the branch datapath includes a sign extension unit, from Figure 4.8
and an adder. To perform the compare, we need to use the register file shown in
Figure 4.7a to supply the two register operands (although we will not need to write
into the register file). In addition, the comparison can be done using the ALU we
designed in [IS Appendix C. Since that ALU provides an output signal that indicates
whether the result was 0, we can send the two register operands to the ALU with the

b r a n c h taken A branch
where the branch
condition is satisfied and
the program counter (P C)
becomes the branch target.
All unconditional branches
are taken branches.

b r a n c h n o t taken or
(u n t a k e n b r a n c h)
A branch where the
branch condition is false
and the program counter
(P C) becomes the address
of the instruction that
sequentially follows the
branch.

3 1 2 Chapter 4 The Processor

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition
and a separate adder to compute the branch target as the sum of the incremented PC
and the sign-extended, lower 16 bits of the instruction (the branch displacement), shifted
left 2 bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that
adds 00 twu to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since
the amount of the "shift" is constant. Since we know that the offset was sign-extended from 16 bits, the shift
will throw away only "sign bits." Control logic is used to decide whether the incremented PC or branch target
should replace the PC, based on the Zero output of the ALU.

control set to do a subtract. If the Zero signal out of the ALU unit is asserted, we
know that the two values are equal. Although the Zero output always signals if the
result is 0, we will be using it only to implement the equal test of branches. Later,
we will show exactly how to connect the control signals of the ALU for use in the
datapath.

The jump instruction operates by replacing the lower 28 bits of the PC with
the lower 26 bits of the instruction shifted left by 2 bits. This shift is accomplished
simply by concatenating 00 to the jump offset, as described in Chapter 2.

4.3 Building a Datapath 3 1 3

Elaboration: In the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed, independent of whether
the branch condition is true or false. When the condition is false, the execution looks
like a normal branch. When the condition is true, a delayed branch first executes the
instruction immediately following the branch in sequential instruction order before
jumping to the specified branch target address. The motivation for delayed branches
arises from how pipelining affects branches (see Section 4.8). For simplicity, we generally
ignore delayed branches in this chapter and implement a nondelayed beq instruction.

delayed branch A type
of branch where the
instruction immediately
following the branch is
always executed, inde-
pendent of whether the
branch condition is true
or false.

Creating a Single Datapath
Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the control
to complete the implementation. This simplest datapath will attempt to execute
all instructions in one clock cycle. This means that no datapath resource can be
used more than once per instruction, so any element needed more than once must
be duplicated. We therefore need a memory for instructions separate from one for
data. Although some of the functional units will need to be duplicated, many of the
elements can be shared by different instruction flows.

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multiplexor
and control signal to select among the multiple inputs.

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

• The arithmetic-logical instructions use the ALU, with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-
extended 16-bit offset field from the instruction.

• The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory-
reference and arithmetic-logical instructions that uses a single register file
and a single ALU to handle both types of instructions, adding any necessary
multiplexors.

314 Chapter 4 The Processor

ANSWER
To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two different
sources for the data stored into the register file. Thus, one multiplexor is placed
at the ALU input and another at the data input to the register file. Figure 4.10
shows the operational portion of the combined datapath.

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two multiplexors are needed,
as described in the example.

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for instruction fetch (Figure 4.6), the datapath
from R-type and memory instructions (Figure 4.10), and the datapath for branches
(Figure 4.9). Figure 4.11 shows the datapath we obtain by composing the separate
pieces. The branch instruction uses the main ALU for comparison of the register
operands, so we must keep the adder from Figure 4.9 for computing the branch
target address. An additional multiplexor is required to select either the sequen-
tially following instruction address (PC T 4) or the branch target address to be
written into the PC.

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The

4.3 Building a Datapath 315

FIGURE 4.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store word, ALU
operations, and branches) in a single clock cycle. An additional multiplexor is needed to integrate branches. The support for jumps will be
added later.

ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit.

I. Which of the following is correct for a load instruction? Refer to Figure 4.10. Check
a. MemtoReg should be set to cause the data from memory to be sent to the Yourself

register file.

b. MemtoReg should be set to cause the correct register destination to be sent to
the register file.

c. We do not care about the setting of MemtoReg for loads.

II. The single-cycle datapath conceptually described in this section must have sepa-
rate instruction and data memories, because

a. the formats of data and instructions are different in MIPS, and hence different
memories are needed.

316 Chapter 4 The Processor

b. having separate memories is less expensive.

c. the processor operates in one cycle and cannot use a single-ported memory
for two different accesses within that cycle

k Simple Implementation Scheme

In this section, we look at what might be thought of as the simplest possible imple-
mentation of our MIPS subset. We build this simple implementation using the
datapath of the last section and adding a simple control function. This simple
implementation covers load word (1 w), store word (s w) , branch equal (b e q) , and
the arithmetic-logical instructions a d d , s u b , A N D , O R , and s e t o n l e s s t h a n . We
will later enhance the design to include a jump instruction (j) .

The ALU Control
The MIPS ALU in S3 Appendix C defines the 6 following combinations of four
control inputs:

ALU control lines Function

0 0 0 0 AND

0 0 0 1 OR

0 0 1 0 add

0 1 1 0 subtract

0 1 1 1 set on less than

1 1 0 0 NOR

Depending on the instruction class, the ALU will need to perform one of these
first five functions. (NOR is needed for other parts of the MIPS instruction set
not found in the subset we are implementing.) For load word and store word
instructions, we use the ALU to compute the memory address by addition. For
the R-type instructions, the ALU needs to perform one of the five actions (AND,
OR, subtract, add, or set on less than), depending on the value of the 6-bit funct
(or function) field in the low-order bits of the instruction (see Chapter 2). For
branch equal, the ALU must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the function field of the instruction and a 2-bit control field, which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (01) for beq, or determined by the operation
encoded in the funct field (10). The output of the ALU control unit is a 4-bit signal

4.4 A Simple Implementation Scheme 317

that directly controls the ALU by generating one of the 4-bit combinations shown
previously.

In Figure 4.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. Later in this chapter we will see how
the ALUOp bits are generated from the main control unit.

Instruction Instruction Desired ALU control
opcode ALUOp operation Funct field ALU action input

LW oo load word x x x x x x add o o i o
SW oo store word x x x x x x add o o i o
Branch equal 01 branch equal x x x x x x subtract 0110
R-type 10 add iooooo add o o i o
R-type 10 subtract i o o o i o subtract 0110
R-type 10 AND ioo ioo AND oooo
R-type 10 OR 100101 OR o o o i
R-type 10 set on less than 101010 set on less than 0111

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and
the different funct ion c o d e s for the R-type instruct ion. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this
case, we say that we "don't care" about the value of the function code, and the funct field is shown as
XXXXXX. When the ALUOp value is 10, then the function codc is used to set the ALU control input.
See (§] Appendix C.

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementation
technique. Using multiple levels of control can reduce the size of the main control
unit. Using several smaller control units may also potentially increase the speed of
the control unit. Such optimizations are important, since the speed of the control
unit is often critical to clock cycle time.

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the four ALU operation control bits.
Because only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits.

As a step in designing this logic, it is useful to create a truth table for the inter-
esting combinations of the function code field and the ALUOp bits, as we've done
in Figure 4.13; this truth table shows how the 4-bit ALU control is set depending
on these two input fields. Since the full truth table is very large (28 = 256 entries)
and we don't care about the value of the ALU control for many of these input

t ruth table From logic,
a representation of a
logical operation by listing
all the values of the inputs
and then in each case
showing what the resulting
outputs should be.

318 Chapter 4 The Processor

ALUOp Funct field

Operation ALUOpl ALUOpO F5 F4 F3 F2 F1 FO Operation

0 0 X X X X X X 0 0 1 0

0 1 x X X X X X 0 1 1 0

1 0 x X 0 0 0 0 0 0 1 0

1 x x X 0 0 1 0 0 1 1 0

1 0 x X 0 1 0 0 0 0 0 0

1 0 X X 0 1 0 1 0 0 0 1

1 x X X 1 0 1 0 0 1 1 1

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are
the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown. Some
don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the truth table
can contain entries IX and XI , rather than 10 and 01. Note that when the function field is used, the first
2 bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced with XX
in the truth table.

d o n ' t - c a r e t e r m An
element of a logical
function in which the
output does not depend
on the values of all the
inputs. Don't -care terms
may be specified in
different ways.

combinations, we show only the truth table entries for which the ALU control must
have a specific value. Throughout this chapter, we will use this practice of showing
only the truth table entries for outputs that must be asserted and not showing
those that are all deasserted or don't care. (This practice has a disadvantage, which
we discuss in Section D.2 of Appendix D.)

Because in many instances we do not care about the values of some of the inputs,
and because we wish to keep the tables compact, we also include don't-care terms.
A don't-care term in this truth table (represented by an X in an input column)
indicates that the output does not depend on the value of the input corresponding
to that column. For example, when the ALUOp bits are 00, as in the first row of
Figure 4.13, we always set the ALU control to 0010, independent of the function
code. In this case, then, the function code inputs will be don't cares in this line of
the truth table. Later, we will see examples of another type of don't-care term. If
you are unfamiliar with the concept of don't-care terms, see @ Appendix C for
more information.

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section D.2 of US Appendix D.

Designing the Main Control Unit
Now that we have described how to design an ALU that uses the function code and
a 2-bit signal as its control inputs, we can return to looking at the rest of the control.
To start this process, let's identify the fields of an instruction and the control lines
that are needed for the datapath we constructed in Figure 4.11. To understand
how to connect the fields of an instruction to the datapath, it is useful to review
the formats of the three instruction classes: the R-type, branch, and load-store
instructions. Figure 4.14 shows these formats.

4.4 A Simple Implementation S c h e m e 3 1 9

Field o rs rt rd shamt funct

Bit positions

a . R - t y p e

3 1 : 2 6

i n s t r u c t i on

2 5 : 2 1 2 0 : 1 6 1 5 : 1 1 1 0 : 6 5 : 0

Field 3 5 or 4 3 rs rt address

Bit positions

b. Load or

3 1 : 2 6 2 5 : 2 1

s t o r e i n s t r u c t i o n

2 0 : 1 6 1 5 : 0

Field 4 rs rt address

Bit positions

c . Branch

3 1 : 2 6

i n s t r u c t i o n

2 5 : 2 1 2 0 : 1 6 15 :0

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use t w o
different instruction formats. The jump instructions use another format, which we will discuss shortly,
(a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions have three
register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU function is
in the funct field and is decoded by the ALU control design in the previous section. The R-type instructions
that we implement are add, Sub, AND, OR, and S 11. The shamt field is used only for shifts; we will ignore
it in this chapter, (b) Instruction format for load (opcode = 35 tc l l) and store (opcode = 43|C11) instructions.
The register rs is the base register that is added to the 16-bit address field to form the memory address. For
loads, rt is the destination register for the loaded value. For stores, rt is the source register whose value should
be stored into memory, (c) Instruction format for branch equal (opcode = 4). The registers rs and rt arc the
source registers that arc compared for equality. The 16-bit address field is sign-extended, shifted, and added
to the PC to compute the branch target address.

There are several major observations about this instruction format that we will
rely on:

• The op field, also called the opcode, is always contained in bits 31:26. We will opcode The field that
refer to this field as Op[5:0]. denotes the operation and

format of an instruction.
• The two registers to be read are always specified by the rs and rt fields, at

positions 25:21 and 20:16. This is true for the R-type instructions, branch
equal, and store.

• The base register for load and store instructions is always in bit positions
25:21 (rs).

• The 16-bit offset for branch equal, load, and store is always in positions
15:0.

• The destination register is in one of two places. For a load it is in bit positions
20:16 (rt), while for an R-type instruction it is in bit positions 15:11 (rd).
Thus, we will need to add a multiplexor to select which field of the instruction
is used to indicate the register number to be written.

The first design principle from Chapter 2—simplicity favors regularity—pays off
here in specifying control.

320 Chapter 4 The Processor

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register file) to the simple datapath.
Figure 4.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line.

Figure 4.15 shows seven single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the seven other control signals do informally before we deter-
mine how to set these control signals during instruction execution. Figure 4.16
describes the function of these seven control lines.

FIGURE 4.15 The datapath of Figure 4.12 with all necessary multiplexors and all control lines identified. The control
lines are shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end
of every clock cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address.

4.4 A Simple Implementation Scheme 321

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the
Write register comes from the rt field
(bits 2 0 : 1 6) .

The register destination number for the Write
register comes from the rd field (bits 1 5 : 1 1) .

RegWrite None. The register on the Write register input is
written with the value on the Write data input.

ALUSrc The second ALU operand comes from the
second register file output (Read data 2).

The second ALU operand is the sign-
extended, lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the
adder that computes the value of PC + 4.

The PC is replaced by the output of the adder
that computes the branch target.

MemRead None. Data memory contents designated by the
address input are put on the Read data output.

MemWrite None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write data
input comes from the ALU.

The value fed to the register Write data input
comes from the data memory.

FIGURE 4.16 The effect of each of the seven control signals. When The 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control
is deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. Gating the clock externally to a state element
can create timing problems. (See Appendix C for further discussion of this problem.)

Now that we have looked at the function of each of the control signals, we can
look at how to set them. The control unit can set all but one of the control signals
based solely on the opcode field of the instruction. The PCSrc control line is the
exception. That control line should be asserted if the instruction is branch on equal
(a decision that the control unit can make) and the Zero output of the ALU, which
is used for equality comparison, is asserted. To generate the PCSrc signal, we will
need to AND together a signal from the control unit, which we call Branch, with
the Zero signal out of the ALU.

These nine control signals (seven from Figure 4.16 and two for ALUOp) can
now be set on the basis of six input signals to the control unit, which are the opcode
bits 31 to 26. Figure 4.17 shows the datapath with the control unit and the control
signals.

Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don't care (X) for each of the opcode values. Figure 4.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 4.12,4.16, and 4.17.

Operation of the Datapath
With the information contained in Figures 4.16 and 4.18, we can design the
control unit logic, but before we do that, let's look at how each instruction uses the

322 Chapter 4 The Processor

FIGURE 4 . 1 7 T h e simple datapath wi th the control unit . The input to the control unit is the 6-bit opcode field from the instruction.
The outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three
signals for controlling reads and writes in the register file and data memory (RcgWrite, MemRead, and MemWrite), a 1-bit signal used in
determining whether to possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the
branch control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now
a derived signal, rather than one coming directly from the control unit. Thus, we drop the signal name in subsequent figures.

datapath. In the next few figures, we show the flow of three different instruction
classes through the datapath. The asserted control signals and active datapath
elements are highlighted in each of these. Note that a multiplexor whose control
is 0 has a definite action, even if its control line is not highlighted. Multiple-bit
control signals are highlighted if any constituent signal is asserted.

4.4 A Simple Implementation Scheme 323

Memto- Reg- Mem- Mem-
Instruction RegDst ALUSrc Reg Write Read Write Branch ALUOpl ALUOpO

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first
row of the table corresponds to the R-format instructions (add, sub, AMD, OR, and si t). For all these instructions, the source register fields
are rs and rt, and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction
writes a register (RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally
replaced with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type
instructions is set to 10 to indicate that the ALU control should be generated from the funct field. The second and third rows of this tabic
give the control signal settings for 1 w and sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and
MemWrite are set to perform the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt
register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch
is set for a subtract (ALU control = 01), which is used to test for equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal
is 0: since the register is not being written, the value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last
two rows of the table is replaced with X for don't care. Don't cares can also be added to RegDst when RegWrite is 0. This type of don't care must
be added by the designer, since it depends on knowledge of how the datapath works.

Figure 4.19 shows the operation of the datapath for an R-type instruction, such
as add $ t l , $ t 2 , $ t 3 . Although everything occurs in one clock cycle, we can
think of four steps to execute the instruction; these steps are ordered by the flow
of information:

1. The instruction is fetched, and the PC is incremented.

2. Two registers, St2 and $ t 3 , are read from the register file; also, the main
control unit computes the setting of the control lines during this step.

3. The ALU operates on the data read from the register file, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function.

4. The result from the ALU is written into the register file using bits 15:11 of
the instruction to select the destination register (S t l) .

Similarly, we can illustrate the execution of a load word, such as

l w S t l , o f f s e t ' ($ t 2)

in a style similar to Figure 4.19. Figure 4.20 shows the active functional units and
asserted control lines for a load. We can think of a load instruction as operating in
five steps (similar to the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. A register (S t 2) value is read from the register file.

324 Chapter 4 The Processor

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add S t l . S t2 . $ t 3 . The control lines, datapath
units, and connections that are active are highlighted.

3. The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (o f fset).

4. The sum from the ALU is used as the address for the data memory.

5. The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($ t l) .

4.4 A Simple Implementation Scheme 325

FIGURE 4 .20 The datapath in operat ion for a load instruct ion. The control lines, datapath units, and connections that are active
are highlighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write
rather than a read, the second register value read would be used for the data to store, and the operation of writing the data memory value to
the register file would not occur.

Finally, we can show the operation of the branch-on-equal instruction, such as
beq $ 1 1 , $12 . o f f s e t , in the same fashion. It operates much like an R-format
instruction, but the ALU output is used to determine whether the PC is written
with PC T 4 or the branch target address. Figure 4.21 shows the four steps in
execution:

1. An instruction is fetched from the instruction memory, and the PC is
incremented.

2. Two registers, $ t l and $ t 2 , are read from the register file.

326 Chapter 4 The Processor

FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units, and connections
that are active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program
counter from between the two candidates.

3. The ALU performs a subtract on the data values read from the register
file. The value of PC T 4 is added to the sign-extended, lower 16 bits of
the instruction (o f f s e t) shifted left by two; the result is the branch target
address.

4. The Zero result from the ALU is used to decide which adder result to store
into the PC.

4.4 A Simple Implementation S c h e m e 3 2 7

F i n a l i z i n g C o n t r o l

N o w t h a t w e h a v e s e e n h o w t h e i n s t r u c t i o n s o p e r a t e i n s teps , let's c o n t i n u e w i t h t h e

c o n t r o l i m p l e m e n t a t i o n . T h e c o n t r o l f u n c t i o n c a n b e p r e c i s e l y d e f i n e d u s i n g t h e

c o n t e n t s o f F i g u r e 4 . 1 8 . T h e o u t p u t s a r e t h e c o n t r o l l ines , a n d t h e i n p u t i s t h e 6 - b i t

o p c o d e field, O p [5 : 0] . T h u s , w e c a n c r e a t e a t r u t h t a b l e f o r e a c h o f t h e o u t p u t s

b a s e d o n t h e b i n a r y e n c o d i n g o f t h e o p c o d e s .

F i g u r e 4 . 2 2 s h o w s t h e l o g i c i n t h e c o n t r o l u n i t a s o n e l a r g e t r u t h t a b l e t h a t

c o m b i n e s all t h e o u t p u t s a n d t h a t u s e s t h e o p c o d e bi ts a s i n p u t s . I t c o m p l e t e l y

spec i f ies t h e c o n t r o l f u n c t i o n , a n d w e c a n i m p l e m e n t i t d i r e c t l y i n g a t e s i n a n

a u t o m a t e d f a s h i o n . W e s h o w this f i n a l s t e p i n S e c t i o n D . 2 i n @ A p p e n d i x D .

N o w t h a t w e h a v e a s i n g l e - c y c l e i m p l e m e n t a t i o n o f m o s t o f t h e M I P S c o r e

i n s t r u c t i o n set , let's a d d t h e j u m p i n s t r u c t i o n t o s h o w h o w t h e b a s i c d a t a p a t h a n d

c o n t r o l c a n b e e x t e n d e d t o h a n d l e o t h e r i n s t r u c t i o n s i n t h e i n s t r u c t i o n set .

Input or output Signal name R-format lw sw beq

Inputs 0p5 0 1 1 0
0p4 0 0 0 0
0p3 0 0 1 0
0p2 0 0 0 1
Opl 0 1 1 0
OpO 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0

MemtoReg 0 1 X X
RegWrite 1 1 0 0

MemRead 0 1 0 0
MemWrite 0 0 1 0

Branch 0 0 0 1
ALUOpl 1 0 0 0
ALUOpO 0 0 0 1

FIGURE 4.22 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of The Table gives the combinations of input signals
that correspond to the four opcodes, one per column, that determine the control output settings. (Remem-
ber that Op [5:0J corresponds to bits 31:26 of the instruction, which is the op field.) The bottom portion
of the table gives the outputs for each of the four opcodes. Thus, the output RegWrite is asserted for two
different combinations of the inputs. If we consider only the four opcodes shown in this table, then we can
simplify the truth table by using don't cares in the input portion. For example, we can detect an R-format
instruction with the expression Op5 • Op2, since this is sufficient to distinguish the R-format instructions
from 1 w, SW, and beq. We do not take advantage of this simplification, since the rest of the MIPS opcodes
are used in a full implementation.

s ingle -cyc le
i m p l e m e n t a t i o n Also
called single clock cycle
implementat ion. An
implementat ion in which
an instruction is executed
in one clock cycle.

328 Chapter 4 The Processor

EXAMPLE

ANSWER

Implementing Jumps

Figure 4.17 shows the implementation of many of the instructions we looked at
in Chapter 2. One class of instructions missing is that of the jump instruction.
Extend the datapath and control of Figure 4.17 to include the jump instruction.
Describe how to set any new control lines.

The jump instruction, shown in Figure 4.23, looks somewhat like a branch
instruction but computes the target PC differently and is not conditional. Like
a branch, the low-order 2 bits of a jump address are always 0 0 t w The next
lower 26 bits of this 32-bit address come from the 26-bit immediate field in
the instruction. The upper 4 bits of the address that should replace the PC
come from the PC of the jump instruction plus 4. Thus, we can implement a
jump by storing into the PC the concatenation of

n the upper 4 bits of the current PC T4 (these are bits 31:28 of the sequen-
tially following instruction address)

• the 26-bit immediate field of the jump instruction

H the bits 00 two

Figure 4 . 2 4 shows the addition of the control for jump added to Figure 4 . 1 7 .
An additional multiplexor is used to select the source for the new PC value,
which is either the incremented PC (PC T 4) , the branch target PC, or the jump
target PC. One additional control signal is needed for the additional multi-
plexor. This control signal, called Jump, is asserted only when the instruction is
a jump—that is, when the opcode is 2.

Field

Bit positions

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination address
for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address
field in the jump instruction and adding 00 as the 2 low-order bits.

0 0 0 0 1 0 a d d r e s s
3 1 : 2 6 2 5 : 0

Why a Single-Cycle Implementation Is Not Used Today
Although the single-cycle design will work correctly, it would not be used in modern
designs because it is inefficient. To see why this is so, notice that the clock cycle must
have the same length for every instruction in this single-cycle design. Of course,

4.4 A S i m p l e Implementat ion S c h e m e 3 2 9

FIGURE 4 . 2 4 The s imple control and datapath are e x t e n d e d to handle the j u m p instruct ion. An additional multiplexor
(at the upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This
multiplexor is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction
left 2 bits, effectively adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a
32-bit address.

t h e c l o c k c y c l e i s d e t e r m i n e d b y t h e l o n g e s t p o s s i b l e p a t h i n t h e p r o c e s s o r . T h i s p a t h

i s a l m o s t c e r t a i n l y a l o a d i n s t r u c t i o n , w h i c h u s e s five f u n c t i o n a l u n i t s i n s e r i e s : t h e

i n s t r u c t i o n m e m o r y , t h e r e g i s t e r f i l e , t h e A L U , t h e d a t a m e m o r y , a n d t h e r e g i s t e r

f i l e . A l t h o u g h t h e C P I i s 1 (s e e C h a p t e r 1) , t h e o v e r a l l p e r f o r m a n c e o f a s i n g l e - c y c l e

i m p l e m e n t a t i o n i s l ikely t o b e p o o r , s i n c e t h e c l o c k c y c l e i s t o o l o n g .

3 3 0 Chapter 4 The Processor

The penalty for using the single-cycle design with a fixed clock cycle is significant,
but might be considered acceptable for this small instruction set. Historically, early
computers with very simple instruction sets did use this implementation technique.
However, if we tried to implement the floating-point unit or an instruction set with
more complex instructions, this single-cycle design wouldn't work well at all.

Because we must assume that the clock cycle is equal to the worst-case delay for
all instructions, it's useless to try implementation techniques that reduce the delay
of the common case but do not improve the worst-case cycle time. A single-cycle
implementation thus violates our key design principle from Chapter 2 of making
the common case fast.

In next section, we'll look at another implementation technique, called pipelin-
ing, that uses a datapath very similar to the single-cycle datapath but is much more
efficient by having a much higher throughput. Pipelining improves efficiency by
executing multiple instructions simultaneously.

Check
Yourself

Never waste time.

American proverb

Look at the control signals in Figure 4.22. Can you combine any together? Can any
control signal output in the figure be replaced by the inverse of another? (Hint: take
into account the don't cares.) If so, can you use one signal for the other without
adding an inverter?

An Overview of Pipelining

pipelining An
implementation
technique in which
multiple instructions are
overlapped in execution,
much like an assembly
line.

Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is nearly universal.

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concen-
trate on this section and then skip to Sections 4.10 and 4.11 to see an introduction
to the advanced pipelining techniques used in recent processors such as the
AMD Opteron X4 (Barcelona) or Intel Core. If you are interested in exploring the
anatomy of a pipelined computer, this section is a good introduction to Sections 4.6
through 4.9.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold.

4. When folding is finished, ask your roommate to put the clothes away.

When your roommate is done, then start over with the next dirty load.

4.5 An Overview of Pipelining 331

The pipelined approach takes much less time, as Figure 4.25 shows. As soon
as the washer is finished with the first load and placed in the dryer, you load the
washer with the second dirty load. When the first load is dry, you place it on the
table to start folding, move the wet load to the dryer, and the next dirty load into
the washer. Next you have your roommate put the first load away, you start fold-
ing the second load, the dryer has the third load, and you put the fourth load into
the washer. At this point all steps—called stages in pipelining—are operating con-
currently. As long as we have separate resources for each stage, we can pipeline the
tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the reason
pipelining is faster for many loads is that everything is working in parallel, so more
loads are finished per hour. Pipelining improves throughput of our laundry system.
Hence, pipelining would not decrease the time to complete one load of laundry,
but when we have many loads of laundry to do, the improvement in throughput
decreases the total time to complete the work.

FIGURE 4 .25 The laundry a n a l o g y for pipel ining. Ann, Brian, Cathy, and Don each have dirty clothes
to be washed, dried, folded, and put away. The washer, dryer, "folder," and "storer" each take 30 minutes for
their task. Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours.
We show the pipeline stage of different loads over time by showing copies of the four resources on this
two-dimensional time line, but we really have just one of each resource.

3 3 2 Chapter 4 The Processor

If all the stages take about the same amount of time and there is enough work
to do, then the speed-up due to pipelining is equal to the number of stages in
the pipeline, in this case four: washing, drying, folding, and putting away. There-
fore, pipelined laundry is potentially four times faster than nonpipelined: 20 loads
would take about 5 times as long as 1 load, while 20 loads of sequential laundry
takes 20 times as long as 1 load. It's only 2.3 times faster in Figure 4.25, because
we only show 4 loads. Notice that at the beginning and end of the workload in the
pipelined version in Figure 4.25, the pipeline is not completely full; this start-up
and wind-down affects performance when the number of tasks is not large com-
pared to the number of stages in the pipeline. If the number of loads is much larger
than 4, then the stages will be full most of the time and the increase in throughput
will be very close to 4.

The same principles apply to processors where we pipeline instruction execution.
MIPS instructions classically take five steps:

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The regular format of MIPS
instructions allows reading and decoding to occur simultaneously.

3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following
example shows that pipelining speeds up instruction execution just as it speeds up
the laundry.

Single-Cycle v e r s u s Pipelined Performance

To make this discussion concrete, let's create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to eight instructions: load
word (1 w), store word (sw), add (add), subtract (sub), AND (and), OR (or),
set less than (s 11), and branch on equal (beq).

Compare the average time between instructions of a single-cycle imple-
mentation, in which all instructions take one clock cycle, to a pipelined imple-
mentation. The operation times for the major functional units in this example
are 200 ps for memory access, 200 ps for ALU operation, and 100 ps for register
file read or write. In the single-cycle model, every instruction takes exactly one
clock cycle, so the clock cycle must be stretched to accommodate the slowest
instruction.

4.5 An Overview of Pipelining 333

ANSWER
Figure 4.26 shows the time required for each of the eight instructions. The
single-cycle design must allow for the slowest instruction—in Figure 4.26 it is
1 w—so the time required for every instruction is 800 ps. Similarly to Figure
4.25, Figure 4.27 compares nonpipelined and pipelined execution of three load
word instructions. Thus, the time between the first and fourth instructions in
the nonpipelined design is 3 x 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation. Just as the single-cycle
design must take the worst-case clock cycle of 800 ps, even though some
instructions can be as fast as 500 ps, the pipelined execution clock cycle must
have the worst-case clock cycle of 200 ps, even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 x 200 ps or 600 ps.

Instruction class
Instruction

fetch
Register

read
ALU

operation
Data

access
Register

write
Total
time

Load word (1 w) 2 0 0 ps 1 0 0 ps 2 0 0 ps 2 0 0 ps 1 0 0 ps 8 0 0 ps

Store word (sw) 2 0 0 ps 1 0 0 ps 2 0 0 ps 2 0 0 ps 7 0 0 ps

R-format {add, sub, AND,
OR, s i t)

2 0 0 ps 1 0 0 ps 2 0 0 ps 1 0 0 ps 6 0 0 ps

Branch(beq) 2 0 0 ps 1 0 0 ps 2 0 0 ps 5 0 0 ps

FIGURE 4.26 Total time for each instruction calculated from the time for each component.
This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no
delay.

We can turn the pipelining speed-up discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Time between instructionsnonpipeIined

Time between instructions-.:,,,,.;.,,^ = 77—7 T~. 7 pipennea Number of pipe stages

Under ideal conditions and with a large number of instructions, the speed-up from
pipelining is approximately equal to the number of pipe stages; a five-stage pipeline
is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. In addition,
pipelining involves some overhead, the source of which will be more clear shortly.
Thus, the time per instruction in the pipelined processor will exceed the minimum
possible, and speed-up will be less than the number of pipeline stages.

334 Chapter 4 The Processor

Program
execution 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0

Time 1 1 1 1 1 1 1 1 i—-order
(in instructions)

lw S1, 100($0) Instruction
fetch Reg ALU Data

access Reg

Iw $2, 200($0) 800 ps Instruction
fetch Reg ALU Data

access Reg

Iw $3, 300($0) 800 ps Instruction
fetch

800 ps

Program
execution . 200 400 600 800 1000 1200 1400 Time 1 1 1 1 1 1 1— order
(in instructions)

Iw $1, 100(S0) Instruction
fetch Reg ALU Data

access Reg

Iw $2, 200($0) 200 ps Instruction
fetch Reg ALU Data

access Reg

Iw $3, 300($0) 200 ps Instruction
fetch Reg ALU Data

access Reg

200 ps 200 ps 200 ps 200 ps 200 ps

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in
b o t t o m . Both use the same hardware components, whose time is listed in Figure 4.26. In this case, we see a
fourfold speed-up on average time between instructions, from 800 ps down to 200 ps. Compare this figure
to Figure 4.25. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer
stage would set the stage time. The pipeline stage times of a computer are also limited by the slowest resource,
either the ALU operation or the memory access. We assume the write to the register file occurs in the first
half of the clock cycle and the read from the register file occurs in the second half. We use this assumption
throughout this chapter.

Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it's 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of instructions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined example; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 x 200 ps T 1400 ps, or 200,001,400
ps. In the nonpipelined example, we would add 1,000,000 instructions, each tak-
ing 800 ps, so total execution time would be 1,000,000 x 800 ps T 2400 ps, or
800,002,400 ps. Under these conditions, the ratio of total execution times for real
programs on nonpipelined to pipelined processors is close to the ratio of times
between instructions:

800,002,400 ps _ 800 ps
200,001,400 ps " 200 ps " 4 , 0 0

4.5 An Overview of Pipelining 3 3 5

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruction
throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining
Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution.

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the
second stage. In an instruction set like the x86, where instructions vary from 1 byte
to 17 bytes, pipelining is considerably more challenging. Recent implementations
of the x86 architecture actually translate x86 instructions into simple operations
that look like MIPS instructions and then pipeline the simple operations rather
than the native x86 instructions! (See Section 4.10.)

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline stages.
We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restric-
tion means we can use the execute stage to calculate the memory address and
then access memory in the following stage. If we could operate on the operands in
memory, as in the x86, stages 3 and 4 would expand to an address stage, memory
stage, and then execute stage.

Fourth, as discussed in Chapter 2, operands must be aligned in memory. Hence,
we need not worry about a single data transfer instruction requiring two data
memory accesses; the requested data can be transferred between processor and
memory in a single pipeline stage.

Pipeline Hazards
There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different
types.

Structural Hazards

The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn't put clothes away. Our carefully scheduled
pipeline plans would then be foiled.

structural hazard When
a planned instruction
cannot execute in the
proper clock cycle because
the hardware does not
support the combination
of instructions that are set
to execute.

3 3 6 Chapter 4 The Processor

As we said above, the MIPS instruction set was designed to be pipelined, making
it fairly easy for designers to avoid structural hazards when designing a pipeline.
Suppose, however, that we had a single memory instead of two memories. If the
pipeline in Figure 4.27 had a fourth instruction, we would see that in the same
clock cycle the first instruction is accessing data from memory while the fourth
instruction is fetching an instruction from that same memory. Without two mem-
ories, our pipeline could have a structural hazard.

data hazard Also
called a pipeline data
hazard. When a planned
instruction cannot exe-
cute in the proper clock
cycle because data that
is needed to execute the
instruction is not yet
available.

forwarding Also called
bypassing. A method of
resolving a data hazard
by retrieving the missing
data element from
internal buffers rather
than waiting for it to
arrive from programmer-
visible registers or
memory.

Data Hazards

Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for which
no match existed. One possible strategy is to run down to your room and search
through your clothes bureau to see if you can find the match. Obviously, while you
are doing the search, loads that have completed drying and are ready to fold and
those that have finished washing and are ready to dry must wait.

In a computer pipeline, data hazards arise from the dependence of one instruc-
tion on an earlier one that is still in the pipeline (a relationship that does not really
exist when doing laundry). For example, suppose we have an add instruction fol-
lowed immediately by a subtract instruction that uses the sum ($s0) :

add $ s 0 , $ t 0 , S t l
sub $12 , SsO , St3

Without intervention, a data hazard could severely stall the pipeline. The add
instruction doesn't write its result until the fifth stage, meaning that we would have
to waste three clock cycles in the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and the
delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don't need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it as
an input for the subtract. Adding extra hardware to retrieve the missing item early
from the internal resources is called forwarding or bypassing.

Forwarding with Two Instructions

EXAMPLE
For the two instructions above, show what pipeline stages would be connected
by forwarding. Use the drawing in Figure 4.28 to represent the datapath during
the five stages of the pipeline. Align a copy of the datapath for each instruction,
similar to the laundry pipeline in Figure 4.25.

4.5 An Overview of Pipelining 337

200 400 600 800 1000
Time i , i i i—

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the
laundry pipel ine in F igure 4 .25 . Here we use symbols representing the physical resources with the
abbreviations for pipeline stages used throughout the chapter. The symbols for the five stages: IF for the
instruction fetch stage, with the box representing instruction memory; ID for the instruction decode/register
file read stage, with the drawing showing the register file being read; EX for the execution stage, with the
drawing representing the ALU; MEM for the memory access stage, with the box representing data memory;
and WB for the write-back stage, with the drawing showing the register file being written. The shading
indicates the element is used by the instruction. Hence, MEM has a white background because add does not
access the data memory. Shading on the right half of the register file or memory means the element is read
in that stage, and shading of the left half means it is written in that stage. Hence the right half of ID is shaded
in the second stage because the register file is read, and the left half of WB is shaded in the fifth stage because
the register file is written.

Figure 4.29 shows the connection to forward the value in $ s 0 after the execu-
tion stage of the add instruction as input to the execution stage of the sub
instruction.

Program
execution
order Time
(in instructions)

add SsO, StO, St1

sub St2, SsO, $t3

FIGURE 4 .29 Graphical representat ion of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from register
SsO read in the second stage of sub.

In this graphical representation of events, forwarding paths are valid only if the
destination stage is later in time than the source stage. For example, there cannot
be a valid forwarding path from the output of the memory access stage in the first
instruction to the input of the execution stage of the following, since that would
mean going backward in time.

Forwarding works very well and is described in detail in Section 4.7. It cannot
prevent all pipeline stalls, however. For example, suppose the first instruction was a

338 Chapter 4 The Processor

Program
execution 2QQ 4 0 Q 6 Q 0 8 0 0 1 0 Q 0 1 2 Q 0 1 4 Q 0
order Time • i 1 i 1 1 1—
(in instructions)

Iw SsO, 20(St1)

sub $t2, SsO, $t3

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following
a load tries to use the data. Without the stall, the path from memory access stage output to execution
stage input would be going backward in time, which is impossible. This figure is actually a simplification,
since we cannot know until after the subtract instruction is fetched and decoded whether or not a stall will be
necessary. Section 4 . 7 shows the details of what really happens in the case of a hazard.

l o a d - u s e data hazard
A specific form of data
hazard in which the data
being loaded by a load
instruction has not yet
become available when
it is needed by another
instruction.

p ipe l ine stall Also called

bubb le . A stall initiated in

order to resolve a hazard.

EXAMPLE

load of $s0 instead of an add. As we can imagine from looking at Figure 4.29, the
desired data would be available only after the fourth stage of the first instruction
in the dependence, which is too late for the input of the third stage of sub. Hence,
even with forwarding, we would have to stall one stage for a load-use data hazard,
as Figure 4.30 shows. This figure shows an important pipeline concept, officially
called a pipeline stall, but often given the nickname bubble. We shall see stalls
elsewhere in the pipeline. Section 4.7 shows how we can handle hard cases like
these, using either hardware detection and stalls or software that reorders code to
try to avoid load-use pipeline stalls, as this example illustrates.

Reordering Code to Avoid Pipeline Sta l ls

Consider the following code segment in C:

a = b T e ;
c = b T f ;

Here is the generated MIPS code for this segment, assuming all variables are in
memory and are addressable as offsets from $ tO:

bubble/ (/bubble/ Cbubble/\ C b u b b , e r Cbubble,

4.5 An Overview of Pipelining 3 3 9

1 w $ t l . 0 ($ t 0)
l w $ t 2 , 4 ($ t 0)
a d d $ 1 3 , S t l . S t 2
SW $ t 3 , 1 2 ($ t 0)
1 w $ t 4 , 8 ($ t 0)
a d d $ 1 5 , $ t l , $ t 4
s w $ t 5 , 1 6 ($ 1 0)

Find the hazards in the following code segment and reorder the instructions to
avoid any pipeline stalls.

Both add instructions have a hazard because of their respective dependence
on the immediately preceding 1 w instruction. Notice that bypassing eliminates
several other potential hazards, including the dependence of the first add on
the first 1 w and any hazards for store instructions. Moving up the third 1 w
instruction to become the third instruction eliminates both hazards:

ANSWER

1 w S t l . 0 ($ t 0)
1 w $ t 2 , 4 ($ t 0)
1 w $ 1 4 , 8 ($ t 0)
a d d $ t 3 . $ t l , $ t 2
SW $ t 3 , 1 2 (S t O)
a d d $ t 5 , S t 1 , $ t 4
SW $ 1 5 , 1 6 (S t O)

On a pipelined processor with forwarding, the reordered sequence will com-
plete in two fewer cycles than the original version.

Forwarding yields another insight into the MIPS architecture, in addition to the
four mentioned on page 335. Each MIPS instruction writes at most one result and
does this in the last stage of the pipeline. Forwarding is harder if there are multiple
results to forward per instruction or they need to write a result early on in instruc-
tion execution.

Elaboration: The name "forwarding" comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. "Bypassing" comes from pass-
ing the result around the register file to the desired unit.

Control Hazards

The third type of hazard is called a control hazard, arising from the need to make a
decision based on the results of one instruction while others are executing.

Suppose our laundry crew was given the happy task of cleaning the uniforms
of a football team. Given how filthy the laundry is, we need to determine whether
the detergent and water temperature setting we select is strong enough to get the
uniforms clean but not so strong that the uniforms wear out sooner. In our laundry

control hazard Also
called branch hazard.
When the proper
instruction cannot
execute in the proper
pipeline clock cycle
because the instruction
that was fetched is not the
one that is needed; that
is, the flow of instruction
addresses is not what the
pipeline expected.

340 Chapter 4 The Processor

pipeline, we have to wait until the second stage to examine the dry uniform to see
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula.

This conservative option certainly works, but it is slow.
The equivalent decision task in a computer is the branch instruction. Notice that

we must begin fetching the instruction following the branch on the very next clock
cycle. Nevertheless, the pipeline cannot possibly know what the next instruction
should be, since it only just received the branch instruction from memory! Just as
with laundry, one possible solution is to stall immediately after we fetch a branch,
waiting until the pipeline determines the outcome of the branch and knows what
instruction address to fetch from.

Let's assume that we put in enough extra hardware so that we can test registers,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 4.8 for details). Even with this extra hardware, the pipeline
involving conditional branches would look like Figure 4.31. The lw instruction,
executed if the branch fails, is stalled one extra 200 ps clock cycle before starting.

Program
execution
order
(in instructions)

Time 200 400 600 800 1000 1200 1400

add $4, $5, S6

beq $1, $2, 40

or $7, $8, $9

Instruction
fetch

200 ps

Reg

Instruction
fetch

ALU

Reg

Data
access

ALU

Reg

Data
access Reg

bubble^bubble/CbubbleALbubble/Cbubble^

400 ps
Instruction

fetch Reg ALU Data
access Reg

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control
h a z a r d s . This example assumes the conditional branch is taken, and the instruction at the destination of
the branch is the OR instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the
process of creating a stall is slightly more complicated, as we will see in Section 4.8. T h e effect on performance,
however, is the same as would occur if a bubble were inserted.

4.5 An Overview of Pipelining 3 4 1

Performance of "Stall on Branch"

Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1. EXAMPLE

Figure 3.27 in Chapter 3 shows that branches are 17% of the instructions
executed in SPECint2006. Since the other instructions run have a CPI of 1, and
branches took one extra clock cycle for the stall, then we would see a CPI of
1.17 and hence a slowdown of 1.17 versus the ideal case.

ANSWER

If we cannot resolve the branch in the second stage, as is often the case for longer
pipelines, then we'd see an even larger slowdown if we stall on branches. The cost of
this option is too high for most computers to use and motivates a second solution
to the control hazard:

Predict: If you're pretty sure you have the right formula to wash uniforms, then
just predict that it will work and wash the second load while waiting for the first
load to dry.

This option does not slow down the pipeline when you are correct. When you are
wrong, however, you need to redo the load that was washed while guessing the
decision.

Computers do indeed use prediction to handle branches. One simple approach
is to predict always that branches will be untaken. When you're right, the pipeline
proceeds at full speed. Only when branches are taken does the pipeline stall.
Figure 4.32 shows such an example.

A more sophisticated version of branch prediction would have some branches
predicted as taken and some as untaken. In our analogy, the dark or home uni-
forms might take one formula while the light or road uniforms might take another.
In the case of programming, at the bottom of loops are branches that jump back to
the top of the loop. Since they are likely to be taken and they branch backward, we
could always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior and
don't account for the individuality of a specific branch instruction. Dynamic hard-
ware predictors, in stark contrast, make their guesses depending on the behavior of
each branch and may change predictions for a branch over the life of a program.
Following our analogy, in dynamic prediction a person would look at how dirty the
uniform was and guess at the formula, adjusting the next guess depending on the
success of recent guesses.

branch prediction
A method of resolving
a branch hazard that
assumes a given outcome
for the branch and
proceeds from that
assumption rather than
waiting to ascertain the
actual outcome.

342 Chapter 4 The Processor

Program
execution -r- 20° 40° 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

Time 1 1 ; 1 1 ; 1— order
(in instructions)

add $4, $5, $6 Instruction
fetch Reg ALU Data

access Reg

beq $1, $2, 40 Instruction Reg ALU Data Reg beq $1, $2, 40
200 ps letch Reg ALU access Reg
200 ps

Instruction
fetch

Data
access Iw S3, 300($0) 200 ps

Instruction
fetch Reg ALU Data

access Reg

Program
execution -r- 200 400 600 800 1000 1200 1400 Time 1 1 1 1 1 1 1— order
(in instructions)

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details.

One popular approach to dynamic prediction of branches is keeping a history
for each branch as taken or untaken, and then using the recent past behavior to
predict the future. As we will see later, the amount and type of history kept have
become extensive, with the result being that dynamic branch predictors can cor-
rectly predict branches with more than 90% accuracy (see Section 4.S). When the
guess is wrong, the pipeline control must ensure that the instructions following
the wrongly guessed branch have no effect and must restart the pipeline from the
proper branch address. In our laundry analogy, we must stop taking new loads so
that we can restart the load that we incorrectly predicted.

As in the case of all other solutions to control hazards, longer pipelines exacer-
bate the problem, in this case by raising the cost of misprediction. Solutions to
control hazards are described in more detail in Section 4.8.

4.5 An Overview of Pipelining 343

Elaborat ion: There is a third approach to the control hazard, called delayed decision
mentioned above. In our analogy, whenever you are going to make such a decision about
laundry, just place a load of nonfootball clothes in the washer while waiting for football
uniforms to dry. As long as you have enough dirty clothes that are not affected by the
test, this solution works fine.

Called the delayed branch in computers, this is the solution actually used by the
MIPS architecture. The delayed branch always executes the next sequential instruc-
tion, with the branch taking place after that one instruction delay. It is hidden from the
MIPS assembly language programmer because the assembler can automatically arrange
the instructions to get the branch behavior desired by the programmer. MIPS software
will place an instruction immediately after the delayed branch instruction that is not
affected by the branch, and a taken branch changes the address of the instruction that
follows this safe instruction. In our example, the add instruction before the branch in
Figure 4.31 does not affect the branch and can be moved after the branch to fully hide
the branch delay. Since delayed branches are useful when the branches are short, no
processor uses a delayed branch of more than one cycle. For longer branch delays,
hardware-based branch prediction is usually used.

Pipeline Overview Summary
Pipelining is a technique that exploits parallelism among the instructions in a
sequential instruction stream. It has the substantial advantage that, unlike pro-
gramming a multiprocessor, it is fundamentally invisible to the programmer.

In the next sections of this chapter, we cover the concept of pipelining using the
MIPS instruction subset from the single-cycle implementation in Section 4.4 and
show a simplified version of its pipeline. We then look at the problems that pipe-
lining introduces and the performance attainable under typical situations.

If you wish to focus more on the software and the performance implications
of pipelining, you now have sufficient background to skip to Section 4.10. Section
4.10 introduces advanced pipelining concepts, such as superscalar and dynamic
scheduling, and Section 4.11 examines the pipelines of recent microprocessors.

Alternatively, if you are interested in understanding how pipelining is imple-
mented and the challenges of dealing with hazards, you can proceed to examine the
design of a pipelined datapath and the basic control, explained in Section 4.6. You
can then use this understanding to explore the implementation of forwarding and
stalls in Section 4.7. You can then read Section 4.8 to learn more about solutions to
branch hazards, and then see how exceptions are handled in Section 4.9.

For each code sequence below, state whether it must stall, can avoid stalls using Check
only forwarding, or can execute without stalling or forwarding. Yourself

Sequence 1 Sequence 2 Sequence 3

lw StO.O(StO)
add Stl. St0.$t0

add Stl,StO.StO
addi S12, S10, // 5
addi $t4,$tl,#5

addi Stl.StO,//I
addi $t2,$t0,#2
addi St3.$t0 ,//2
addi $t3, StO ,//4
addi St5,$t0.#5

344 Chapter 4 The Processor

Understanding
Program

Performance

Outside the memory system, the effective operation of the pipeline is usually
the most important factor in determining the CPI of the processor and hence its
performance. As we will see in Section 4.10, understanding the performance of a
modern multiple-issue pipelined processor is complex and requires understanding
more than just the issues that arise in a simple pipelined processor. Nonetheless,
structural, data, and control hazards remain important in both simple pipelines
and more sophisticated ones.

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually more
of a problem in integer programs, which tend to have higher branch frequencies
as well as less predictable branches. Data hazards can be performance bottlenecks
in both integer and floating-point programs. Often it is easier to deal with data
hazards in floating-point programs because the lower branch frequency and more
regular memory access patterns allow the compiler to try to schedule instructions
to avoid hazards. It is more difficult to perform such optimizations in integer
programs that have less regular memory access, involving more use of pointers.
As we will see in Section 4.10, there are more ambitious compiler and hardware
techniques for reducing data dependences through scheduling.

The BIG
Picture

latency (pipeline) The
number of stages in a
pipeline or the number
of stages between two
instructions during
execution.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction, also
called the latency. For example, the five-stage pipeline still takes 5 clock
cycles for the instruction to complete. In the terms used in Chapter 1,
pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data hazards.
Branch prediction and forwarding help make a computer fast while still
getting the right answers.

There is less in this
than meets the eye.

Tallulah Banldiead,
remark to Alexander
Woollcott, 1922

Pipelined Datapath and Control

Figure 4.33 shows the single-cycle datapath from Section 4.4 with the pipeline
stages identified. The division of an instruction into five stages means a five-stage

4.6 Pipelined Datapath and Control 3 4 5

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction can be mapped onto
the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either the ALU
result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.)

pipeline, which in turn means that up to five instructions will be in execution
during any single clock cycle. Tims, we must separate the datapath into five pieces,
with each piece named corresponding to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Writeback

In Figure 4.33, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the
five stages as they complete execution. Returning to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they never
move backward.

346 Chapter 4 The Processor

There are, however, two exceptions to this left-to-right flow of instructions:

• The write-back stage, which places the result back into the register file in the
middle of the datapath

• The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; only later
instructions in the pipeline are influenced by these reverse data movements. Note
that the first right-to-left flow of data can lead to data hazards and the second leads
to control hazards.

One way to show what happens in pipelined execution is to pretend that each
instruction has its own datapath, and then to place these datapaths on a time-
line to show their relationship. Figure 4.34 shows the execution of the instructions
in Figure 4.27 by displaying their private datapaths on a common timeline. We
use a stylized version of the datapath in Figure 4.33 to show the relationships in
Figure 4.34.

Program
execution
order

(in instructions)

lw$1, 100(50)

Iw $2, 200(S0)

Iw S3, 300(50)

Time (in clock cycles)

CC 1 C C 7

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33,
a s s u m i n g pipelined e x e c u t i o n . Similar to Figures 4.28 through 4.30, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in
Figure 4.33. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands
for the register file and sign extender in the instruction decode/register file read stage (ID), and so on. To
maintain proper time order, this stylized datapath breaks the register file into two logical parts: registers
read during register fetch (ID) and registers written during write back (WB). This dual use is represented
by drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being
written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before,
we assume the register file is written in the first half of the clock cycle and the register file is read during the
second half.

4.6 Pipelined Datapath and Control 347

Figure 4.34 seems to suggest that three instructions need three datapaths.
Instead, we add registers to hold data so that portions of a single datapath can be
shared during instruction execution.

For example, as Figure 4.34 shows, the instruction memory is used during
only one of the five stages of an instruction, allowing it to be shared by following
instructions during the other four stages. To retain the value of an individual
instruction for its other four stages, the value read from instruction memory must
be saved in a register. Similar arguments apply to every pipeline stage, so we must
place registers wherever there are dividing lines between stages in Figure 4.33.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step.

Figure 4.35 shows the pipelined datapath with the pipeline registers highlighted.
All instructions advance during each clock cycle from one pipeline register to the
next. The registers are named for the two stages separated by that register. For
example, the pipeline register between the IF and ID stages is called IF/ID.

FIGURE 4 .35 T h e pipel ined v e r s i o n of the datapath in Figure 4 .33. The pipeline registers, in color, separate each pipeline stage.
They are labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction
decode stages. The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID
register must be 64 bits wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address.
We will expand these registers over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 bits,
respectively.

348 Chapter 4 The Processor

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor—the register file, memory,
or the PC—so a separate pipeline register is redundant to the state that is updated.
For example, a load instruction will place its result in 1 of the 32 registers, and any
later instruction that needs that data will simply read the appropriate register.

Of course, every instruction updates the PC, whether by incrementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline
registers in Figure 4.35, however, the PC is part of the visible architectural state;
its contents must be saved when an exception occurs, while the contents of the
pipeline registers can be discarded. In the laundry analogy, you could think of
the PC as corresponding to the basket that holds the load of dirty clothes before
the wash step.

To show how the pipelining works, throughout this chapter we show sequences
of figures to demonstrate operation over time. These extra pages would seem to
require much more time for you to understand. Fear not; the sequences take much
less time than it might appear, because you can compare them to see what changes
occur in each clock cycle. Section 4.7 describes what happens when there are data
hazards between pipelined instructions; ignore them for now.

Figures 4.36 through 4.38, our first sequence, show the active portions of the
datapath highlighted as a load instruction goes through the five stages of pipe-
lined execution. We show a load first because it is active in all five stages. As in
Figures 4.28 through 4.30, we highlight the right half of registers or memory when
they are being read and highlight the left half when they are being written.

We show the instruction abbreviation 1 w with the name of the pipe stage that is
active in each figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 4.36 shows the instruction being
read from memory using the address in the PC and then being placed in the
IF/ID pipeline register. The PC address is incremented by 4 and then written
back into the PC to be ready for the next clock cycle. This incremented
address is also saved in the IF/ID pipeline register in case it is needed later
for an instruction, such as beq. The computer cannot know which type of
instruction is being fetched, so it must prepare for any instruction, passing
potentially needed information down the pipeline.

2. Instruction decode and register file read: The bottom portion of Figure 4.36
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later clock
cycle.

4 . 6 P i p e l i n e d D a t a p a t h a n d C o n t r o l 3 4 9

Instruction fetch

Iw
Instruction decode

F I G U R E 4 . 3 6 I F a n d ID: F i r s t a n d s e c o n d p i p e s t a g e s o f a n i n s t r u c t i o n , w i t h t h e a c t i v e p o r t i o n s o f t h e d a t a p a t h i n
F i g u r e 4 . 3 5 h i g h l i g h t e d . The highlighting convention is the same as that used in Figure 4.28. As in Section 4.2, there is no confusion when
reading and writing registers, because the contents change only on the clock edge. Although the load needs only the top register in stage 2,
the processor doesn't know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX
pipeline register. We don't need all three operands, but it simplifies control to keep all three.

350 Chapter 4 The Processor

lw

Exocu t i an

FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 4.35
u s e d in t h i s p i p e s t a g e . The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.

3. Execute or address calculation: Figure 4.37 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.38 shows the load instruction
reading the data memory using the address from the E X / M E M pipeline
register and loading the data into the M E M / W B pipeline register.

5. Write-back: The bottom portion of Figure 4.38 shows the final step: reading
the data from the M E M / W B pipeline register and writing it into the register
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Walking
through a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:

4 . 6 P i p e l i n e d D a t a p a t h a n d C o n t r o l 3 5 1

Memory

—
M
U PC

v J
Instruction

memory

Road Road legslof 1 Cats 1
flea:!
register 2 Flcglstcra Head VVnto data 2 register
VVnto
tiata •vJ

F I G U R E 4 . 3 8 M E M a n d W B : T h e f o u r t h a n d f ifth p ipe s t a g e s o f a l o a d i n s t r u c t i o n , h i g h l i g h t i n g t h e p o r t i o n s o f t h e
d a t a p a t h in F i g u r e 4 . 3 5 u s e d in t h i s p ipe s t a g e . Data memory is read using The address in the EX/MEM pipeline registers, and the
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in the
middle of the datapath. Note: there is a bug in this design that is repaired in Figure 4.41.

352 Chapter 4 The Processor

1. Instruction fctch: The instruction is read from memory using the address
in the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figure 4.36 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipeline
register supplies the register numbers for reading two registers and extends
the sign of the 16-bit immediate. These three 32-bit values are all stored
in the ID/EX pipeline register. The bottom portion of Figure 4.36 for load
instructions also shows the operations of the second stage for stores. These
first two stages are executed by all instructions, since it is too early to know
the type of the instruction.

3. Execute and address calculation: Figure 4.39 shows the third step; the effective
address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 4.40 shows the data being written
to memory. Note that the register containing the data to be stored was read in
an earlier stage and stored in ID/EX. The only way to make the data available
during the MEM stage is to place the data into the EX/MEM pipeline register
in the EX stage, just as we stored the effective address into EX/MEM.

5. Write-back: The bottom portion of Figure 4.40 shows the final step of the
store. For this instruction, nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way to
accelerate those instructions. Hence, an instruction passes through a stage
even if there is nothing to do, because later instructions are already progress-
ing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data was first placed
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register.

Load and store illustrate a second key point: each logical component of the
datapath—such as instruction memory, register read ports, ALU, data memory,
and register write port—can be used only within a single pipeline stage. Otherwise,
we would have a structural hazard (see page 335). Hence these components, and
their control, can be associated with a single pipeline stage.

Now we can uncover a bug in the design of the load instruction. Did you see it?
Which register is changed in the final stage of the load? More specifically, which
instruction supplies the write register number? The instruction in the IF/ID pipe-
line register supplies the write register number, yet this instruction occurs consid-
erably after the load instruction!

4.6 Pipelined Datapath and Control 353

FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike The Third stage of the load instruction in Figure 4.37, the
second register value is loaded into the EX/MEM pipeline register To be used in the next stage. Although it wouldn't hurt to always write this
second register into the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to
understand.

Hence, we need to preserve the destination register number in the load instruc-
tion. Just as store passed the register contents from the ID/EX to the EX/MEM
pipeline registers for use in the MEM stage, load must pass the register number
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in the
WB stage. Another way to think about the passing of the register number is that to
share the pipelined datapath, we need to preserve the instruction read during the
IF stage, so each pipeline register contains a portion of the instruction needed for
that stage and later stages.

Figure 4.41 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify the
register to be written. Figure 4.42 is a single drawing of the corrected datapath,
highlighting the hardware used in all five stages of the load word instruction in
Figures 4.36 through 4.38. See Section 4.8 for an explanation of how to make the
branch instruction work as expected.

3 5 4 C h a p t e r 4 T h e P r o c e s s o r

sw

Memory

Wrile-back

F I G U R E 4 . 4 0 M E M a n d W B : T h e f o u r t h a n d f ifth p i p e s t a g e s of a s t o r e i n s t r u c t i o n . In the fourth stage, the data is written into
data memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline
register. Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.

4.6 Pipelined Datapath and Control 355

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register number now
comes from the MEM/WB pipeline register along with The data. The register number is passed from the ID pipe stage until it reaches the
MEM/WB pipeline register, adding five more bits to the last three pipeline registers. This new path is shown in color.

FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction.

356 Chapter 4 The Processor

Graphically Representing Pipelines
Pipelining can be difficult to understand, since many instructions are simulta-
neously executing in a single datapath in every clock cycle. To aid understanding,
there are two basic styles of pipeline figures: multiple-clock-cycle pipeline diagrams,
such as Figure 4.34 on page 346, and single-clock-cycle pipeline diagrams, such as
Figures 4.36 through 4.40. The multiple-clock-cycle diagrams are simpler but do
not contain all the details. For example, consider the following five-instruction
sequence:

l w $ 1 0 , 2 0 ($ 1)
s u b $ 1 1 , $ 2 , $ 3
a d d $ 1 2 , $ 3 , $4
l w $ 1 3 . 2 4 ($ 1)
a d d $ 1 4 . $ 5 , $6

Figure 4.43 shows the multiple-clock-cycle pipeline diagram for these instruc-
tions. Time advances from left to right across the page in these diagrams, and
instructions advance from the top to the bottom of the page, similar to the laundry
pipeline in Figure 4.25. A representation of the pipeline stages is placed in each
portion along the instruction axis, occupying the proper clock cycles. These stylized
datapaths represent the five stages of our pipeline graphically, but a rectangle
naming each pipe stage works just as well. Figure 4.44 shows the more tradi-
tional version of the multiple-clock-cycle pipeline diagram. Note that Figure 4.43
shows the physical resources used at each stage, while Figure 4.44 uses the name of
each stage.

Single-clock-cycle pipeline diagrams show the state of the entire datapath during
a single clock cycle, and usually all five instructions in the pipeline are identified by
labels above their respective pipeline stages. We use this type of figure to show the
details of what is happening within the pipeline during each clock cycle; typically,
the drawings appear in groups to show pipeline operation over a sequence of
clock cycles. We use multiple-clock-cycle diagrams to give overviews of pipelining
situations. (f £ Sect ion 4.12 gives more illustrations of single-clock diagrams
if you would like to see more details about Figure 4.43.) A single-clock-cycle
diagram represents a vertical slice through a set of multiple-clock-cycle diagrams,
showing the usage of the datapath by each of the instructions in the pipeline at
the designated clock cycle. For example, Figure 4.45 shows the single-clock-cycle
diagram corresponding to clock cycle 5 of Figures 4.43 and 4.44. Obviously, the
single-clock-cycle diagrams have more detail and take significantly more space
to show the same number of clock cycles. The exercises ask you to create such
diagrams for other code sequences.

4.6 Pipelined Datapath and Control 357

Time (in clock cycles) »
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Program
execution
order

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete
execution of instructions in a single figure, instructions arc listed in instruction execution order from top to bottom, and clock cycles move
from left to right. Unlike Figure 4.28, here we show the pipeline registers between each stage. Figure 4.44 shows the traditional way to draw
this diagram.

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Program
execution
order
(in instructions)

Iw $ 1 0 , 2 0 (5 1)
Instruction

fetch
Instruction

decode Execution Data
access

Write-back

sub $ 1 1 , $2 , $ 3
Instruction

fetch
Instruction

decode
Execution Data

access
Write-back

add $ 1 2 , 53 , $ 4
Instruction

fetch
Instruction

decode
Execution Data

access
Write-back

Iw $ 1 3 , 2 4 ($ 1)
Instruction

fetch
Instruction

decode Execution
Data

access Write-back

add $ 1 4 , 5 5 , 5 6
Instruction

fetch
Instruction

decode Execution Data
access

Write-back

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43.

358 Chapter 4 The Processor

add S14, S5, S6 Iw S13, 24 (51) add S12, S3, S4 sub S11, S2, S3 | Iw S10, 20(S1) |

Inslruction (etch Instruction decode Execution Memory I Write-back |

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and 4.44.
As you can see, a single-clock-cycle figure is a vertical slice Through a multiple-clock-cycle diagram.

Check A group of students were debating the efficiency of the five-stage pipeline when
Yourself one student pointed out that not all instructions are active in every stage of the

pipeline. After deciding to ignore the effects of hazards, they made the following
five statements. Which ones are correct?

1. Allowing jumps, branches, and ALU instructions to take fewer stages than
the five required by the load instruction will increase pipeline performance
under all circumstances.

2. Trying to allow some instructions to take fewer cycles does not help, since
the throughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput.

3. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is
some opportunity for improvement.

4. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance.

4.6 Pipelined Datapath and Control 359

Pipelined Counter©!
Just as we added control to the single-cycle datapath in Section 4.3, we now add
control to the pipelined datapath. We start with a simple design that views the
problem through rose-colored glasses; in Sections 4.7 through 4.9, we remove these
glasses to reveal the pipeline hazards of the real world.

The first step is to label the control lines on the existing datapath. Figure 4.46
shows those lines. We borrow as much as we can from the control for the simple
datapath in Figure 4.17. In particular, we use the same ALU control logic, branch
logic, destination-register-number multiplexor, and control lines. These functions
are defined in Figures 4.12, 4.16, and 4.18. We reproduce the key information in
Figures 4.47 through 4.49 on a single page to make the following discussion easier
to follow.

In the 6600 Computer,
perhaps even more
than in any previous
computer, the control
system is the difference.

James Thornton,
Design of a Computer:
The Control Data 6600,
1970

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows the control
logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now need the 6-bit funct field (function
code) of the instruction in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that
these 6 bits are also the 6 least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the
immediate field since sign extension leaves these bits unchanged.

360 Chapter 4 The Processor

Instruction Instruction Desired ALU control
opcode ALUOp operation Function code ALU action input

LW 0 0 load word XXXXXX add 0 0 1 0

SW oo store word x x x x x x add 0 0 1 0

Branch equal 0 1 branch equal xxxxxx subtract 0 1 1 0

R-type 1 0 add 1 0 0 0 0 0 add 0 0 1 0

R-type 1 0 subtract 1 0 0 0 1 0 subtract 0 1 1 0

R-type 1 0 AND 1 0 0 1 0 0 AND o o o o

R-type 1 0 OR 1 0 0 1 0 1 OR 0 0 0 1

R-type 1 0 set on less than 1 0 1 0 1 0 set on less than 0 1 1 1

F I G U R E 4 . 4 7 A copy of Figure 4 .12 . This figure shows how the ALU control bits are set depending on the ALUOp control bits and the
different function codes for the R-type instruction.

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write
register comes from the rt field (bits 2 0 : 1 6) .

The register destination number for the Write register comes
from the rd field (bits 15 :11) .

RegWrite None. The register on the Write register input is written with the value
on the Write data input.

ALUSrc The second ALU operand comes from the second
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of
the instruction.

PCSrc The PC is replaced by the output of the adder that
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes
the branch target.

MemRead None. Data memory contents designated by the address input are
put on the Read data output.

MemWrite None. Data memory contents designated by the address input are
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input
comes from the ALU.

The value fed to the register Write data input comes from the
data memory.

F I G U R E 4 . 4 8 A copy of F igure 4 .16 . The function of each of seven control signals is defined. The ALU control lines (ALUOp) are
defined in the second column of Figure 4.47. When a 1 -bit control to a 2-way multiplexor is asserted, the multiplexor selects the input corre-
sponding to I. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in
Figure 4.46. If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only
during a beq instruction; otherwise, PCSrc is set to 0.

Instruction

Execution/address calculation stage
control lines

Memory access stage
control lines

Write-back stage
control lines

Instruction RegDst ALUOpl ALUOpO ALUSrc Branch
Mem-
Read

Mem-
Write

Reg-
Write

Memto-
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into three
groups corresponding to the last three pipeline stages.

4.6 Pipelined Datapath and Control 361

As was the case for the single-cycle implementation, we assume that the PC
is written on each clock cycle, so there is no separate write signal for the PC. By
the same argument, there are no separate write signals for the pipeline registers
(IF/ID, ID/EX, EX/MEM, and MEM/WB) , since the pipeline registers are also
written during each clock cycle.

To specify control for the pipeline, we need only set the control values during
each pipeline stage. Because each control line is associated with a component active
in only a single pipeline stage, we can divide the control lines into five groups
according to the pipeline stage.

1. Instruction fetch: The control signals to read instruction m e m o r y and to
write the PC are always asserted, so there is nothing special to control in this
pipeline stage.

2. Instruction decode/register file rend: As in the previous stage, the same thing
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp, and
ALUSrc (see Figures 4.47 and 4.48). The signals select the Result register,
the ALU operation, and either Read data 2 or a sign-extended immediate for
the ALU.

IF/ID ID/EX EX/MEM MEM/WB

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines
are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register
extended to hold the control lines; three are used during the MEM stage, and the last two are passed to
MEM/WB for use in the WB stage.

362 Chapter 4 The Processor

4. Memory access: The control lines set in this stage are Branch, MemRead,
and Mem Write. These signals are set by the branch equal, load, and store
instructions, respectively. Recall that PCSrc in Figure 4.48 selects the next
sequential address unless control asserts Branch and the ALU result was 0.

5. Write-back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the register file, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines unchanged,
we can use the same control values. Figure 4.49 has the same values as in Section 4.4,
but now the nine control lines are grouped by pipeline stage.

FCSrc

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions of the
pipeline registers . The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX
pipeline register. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.

4.7 Data Hazards: Forwarding versus Stalling 3 6 3

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the pipeline
registers to include control information.

Since the control lines start with the EX stage, we can create the control infor-
mation during instruction decode. Figure 4.50 above shows that these control
signals are then used in the appropriate pipeline stage as the instruction moves
down the pipeline, just as the destination register number for loads moves down
the pipeline in Figure 4.41. Figure 4.51 above shows the full datapath with the
extended pipeline registers and with the control lines connected to the proper
stage. ([§j Sect ion 4.12 gives more examples of MIPS code executing on pipelined
hardware using single-clock diagrams, if you would like to see more details.)

Data Hazards: Forwarding versus Stalling

The examples in the previous section show the power of pipelined execution and
how the hardware performs the task. It's now time to take off the rose-colored
glasses and look at what happens with real programs. The instructions in Figures
4.43 through 4.45 were independent; none of them used the results calculated by
any of the others. Yet in Section 4.5, we saw that data hazards are obstacles to pipe-
lined execution.

Let's look at a sequence with many dependences, shown in color:
s u b $ 2 , $ 1 , $ 3 # R e g i s t e r $ 2 w r i t t e n b y s u b
a n d $ 1 2 , $ 2 , $ 5 # 1 s t o p e r a n d ($ 2) d e p e n d s o n s u b
o r $ 1 3 , $ 6 , $ 2 # 2 n d o p e r a n d ($ 2) d e p e n d s o n s u b
a d d $ 1 4 , $ 2 , $ 2 # 1 s t ($ 2) & 2 n d ($ 2) d e p e n d o n s u b
SW $ 1 5 , 1 0 0 ($ 2) # B a s e ($ 2) d e p e n d s o n s u b

The last four instructions are all dependent on the result in register $2 of the first
instruction. If register $2 had the value 10 before the subtract instruction and
- 2 0 afterwards, the programmer intends that - 2 0 will be used in the fol lowing
instructions that refer to register $2.

H o w would this sequence perform with our pipeline? Figure 4.52 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representation.
To demonstrate the execution of this instruction sequence in our current pipeline,
the top of Figure 4.52 shows the value of register $2, which changes during the
middle of clock cycle 5, when the sub instruction writes its result.

The last potential hazard can be resolved by the design of the register file
hardware: What happens when a register is read and written in the same clock
cycle? We assume that the write is in the first half of the clock cycle and the read
is in the second half, so the read delivers what is written. As is the case for many
implementations of register files, we have no data hazard in this case.

What do you mean,
why's it got to be built?
It's a bypass. You've got
to build bypasses.

Douglas Adams, The
Hitchhiker's Guide to
the Galaxy, 1 9 7 9

364 Chapter 4 The Processor

Time (in clock cycles)

Value o f c c 1 c c 2 c c 3 c c 4 c c 5 c c 6 c c 7 c c 8 c c 9

register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the dependences.
All the dependent actions are shown in color, and "CC 1" at the top of the figure means clock cycle 1. The first instruction writes into $2, and
all the following instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a
register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from
the top datapath to the lower ones show the dependences. Those that must go backward in time arc pipeline data hazards.

Figure 4.52 shows that the values read for register $2 would not be the result of
the s u b instruction unless the read occurred during clock cycle 5 or later. Thus, the
instructions that would get the correct value o f - 2 0 are add and sw; the AND and
OR instructions would get the incorrect value 10! Using this style of drawing, such
problems become apparent when a dependence line goes backward in time.

As ment ioned in Section 4.5, the desired result is available at the end of the
EX stage or clock cycle 3. When is the data actually needed by the AND and OR
instructions? At the beginning of the EX stage, or clock cycles 4 and 5, respectively.
Thus, we can execute this segment without stalls if we simply forward the data as
soon as it is available to any units that need it before it is available to read from the
register file.

H o w does forwarding work? For simplicity in the rest of this section, we consider
only the challenge of forwarding to an operation in the EX stage, which may be
either an ALU operation or an effective address calculation. This means that when

4.7 Data Hazards: Forwarding versus Stalling 365

an instruction tries to use a register in its EX stage that an earlier instruction intends
to write in its WB stage, we actually need the values as inputs to the ALU.

A notation that names the fields of the pipeline registers allows for a more pre-
cise notation of dependences. For example, "ID/EX.RegisterRs" refers to the n u m -
ber of one register whose value is found in the pipeline register ID/EX; that is, the
one from the first read port of the register file. The first part of the name, to the left
of the period, is the name of the pipeline register; the second part is the name of the
field in that register. Using this notation, the two pairs of hazard conditions are

la. EX/MEM.RegisterRd = ID/EX.RegisterRs
lb. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt
The first hazard in the sequence on page 363 is on register $2, between the result

of S u b $ 2 , $ 1, $ 3 and the first read operand o f a n d $ 1 2 , $ 2 , $ 5 . This hazard can
be detected when the and instruction is in the EX stage and the prior instruction is
in the MEM stage, so this is hazard la:

EX/MEM. RegisterRd = ID/EX.RegisterRs = $2

Dependence Detection

Classify the dependences in this sequence from page 363:
R e g i s t e r $ 2 s e t b y s u b
1 s t o p e r a n d ($ 2) s e t b y s u b
2 n d o p e r a n d ($ 2) s e t b y s u b
1 s t ($ 2) & 2 n d ($ 2) s e t b y s u b

1 0 0 ($ 2) # I n d e x ($ 2) s e t b y s u b

s u b $ 2 , $ 1 , $ 3
a n d $ 1 2 , $ 2 , $ 5
o r $ 1 3 , $ 6 , $ 2
a d d $ 1 4 , $ 2 , $ 2
SW $ 1 5 , 1 0 0 ($ 2)

EXAMPLE

As mentioned above, the s u b - a n d is a type la hazard. The remaining hazards
are as follows:

• The s ub-o r is a type 2b hazard:
MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

• The two dependences on s u b - a d d are not hazards because the register
file supplies the proper data during the ID stage of add.

• There is no data hazard between sub and sw because sw reads $2 the
clock cycle after s u b writes $2.

ANSWER

366 Chapter 4 The Processor

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forward when it shouldn't. One solution is simply to check
to see if the RegWrite signal will be active: examining the WB control field of the
pipeline register during the EX and MEM stages determines whether RegWrite is
asserted. Recall that MIPS requires that every use of $0 as an operand must yield
an operand value of 0. In the event that an instruction in the pipeline has $0 as
its destination (for example, s l l $0, $1, 2), we want to avoid forwarding its pos-
sibly nonzero result value. Not forwarding results destined for $ 0 frees the assembly
programmer and the compiler of any requirement to avoid using $ 0 as a destination.
The conditions above thus work properly as long we add EX/MEM.RegisterRd * 0
to the first hazard condition and MEM/WB.RegisterRd ^ 0 to the second.

N o w that we can detect hazards, half of the problem is resolved—but we must
still forward the proper data.

Figure 4.53 shows the dependences between the pipeline registers and the inputs
to the ALU for the same code sequence as in Figure 4.52. The change is that the
dependence begins from a pipeline register, rather than waiting for the WB stage to
write the register file. Thus, the required data exists in t ime for later instructions,
with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just
ID/EX, then we can forward the proper data. By adding multiplexors to the input
of the ALU, and with the proper controls, we can run the pipeline at full speed in
the presence of these data dependences.

For now, we will assume the only instructions we need to forward are the four
R-format instructions: add, sub, AND, and OR. Figure 4.54 shows a close-up of the
ALU and pipeline register before and after adding forwarding. Figure 4.55 shows
the values of the control lines for the ALU multiplexors that select either the register
file values or one of the forwarded values.

This forwarding control will be in the EX stage, because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/EX pipeline register to determine whether
to forward values. We already have the rt field (bits 20 -16) . Before forwarding, the
ID/EX register had no need to include space to hold the rs field. ITence, rs (bits
25 -21) is added to ID/EX.

Let's now write both the conditions for detecting hazards and the control signals
to resolve them:

1. EX hazard:

i f (E X / M E M . R e g W r i t e
a n d (E X / M E M . R e g i s t e r R d
a n d (E X / M E M . R e g i s t e r R d

i f (E X / M E M . R e g W r i t e
a n d (E X / H E M . R e g i s t e r R d
a n d (E X / M E M . R e g i s t e r R d

* 0)
= I D / E X . R e g i s t e r R s)) F o r w a r d A = 1 0

± 0)
= I D / E X . R e g i s t e r R t)) F o r w a r d B = 1 0

4.7 Data Hazards: Forwarding versus Stalling 367

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EX/MEM: X X x -20 x X X X x

Value of MEM/WB: X x x x -20 x x x x

Program
execution
order

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline
registers. The values in the pipeline registers show that the desired value is available before it is written into the register file. We assume that
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the
register file instead of a pipeline register. Register file "forwarding"—that is, the read gets the value of the write in that clock cycle—is why clock
cycle 5 shows register $2 having the value 10 at the beginning and - 2 0 at the end of the clock cycle. As in the rest of this section, we handle all
forwarding except for the value to be stored by a store instruction.

Note that the EX/MEM.RegisterRd field is the register destination for either
an ALU instruction (which comes from the Rd field of the instruction) or a load
(which comes from the Rt field).

This case forwards the result from the previous instruction to either input of the
ALU. If the previous instruction is going to write to the register file, and the write
register number matches the read register number of ALU inputs A or B, provided

368 Chapter 4 The Processor

ID/EX EX/MEM MEM/WB

a. No forwarding

ID/EX EX/MEM MEM/WB

R e g i s t e r s

r\
M
u
X w
| ForwardA

r\
M
u
X

ForwardB

M
u
x

Forwarding
unit

EX/MEM.RegisterRd

\

' M
u -
X

MEM/WB.RegisterRd

b. With forwarding

FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have
been expanded to add the forwarding paths, and we show the forwarding unit. The new hardware is shown in color. This figure is a stylized
drawing, however, leaving out details from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown
twice, once to connect to the mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding
of a store value to a store instruction. Also note that this mechanism works for s 11 instructions as well.

4.7 Data Hazards: Forwarding versus Stalling 3 6 9

it is not register 0, then steer the multiplexor to pick the value instead from the
pipeline register EX/MEM.

2. MEM hazard:

i f (M E M / W B . R e g W r i t e
a n d (M E M / W B . R e g i s t e r R d * 0)
a n d (M E M / W B . R e g i s t e r R d = I D / E X . R e g i s t e r R s)) F o r w a r d A = 0 1

i f (M E M / W B . R e g W r i t e
a n d (M E M / W B . R e g i s t e r R d * 0)
a n d (M E M / W B . R e g i s t e r R d = I D / E X . R e g i s t e r R t)) F o r w a r d B = 0 1

As ment ioned above, there is no hazard in the WB stage, because we assume that
the register file supplies the correct result if the instruction in the ID stage reads
the same register written by the instruction in the WB stage. Such a register file
performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruction
in the WB stage, the result of the instruction in the MEM stage, and the source
operand of the instruction in the ALU stage. For example, when summing a vector
of numbers in a single register, a sequence of instructions will all read and write to
the same register:

a d d $ 1 , $ 1 , $ 2
a d d $ 1 , $ 1 , $ 3
a d d $ 1 , $ 1 , $ 4

In this case, the result is forwarded from the MEM stage because the result in the
MEM stage is the more recent result. Thus, the control for the MEM hazard would
be (with the additions highlighted):

i f (M E M / W B . R e g W r i t e
a n d (M E M / W B . R e g i s t e r R d * 0)
a n d n o t (E X / M E M . R e g W r i t e a n d (E X / M E M . R e g i s t e r R d * 0)

a n d (E X / M E M . R e g i s t e r R d * I D / E X . R e g i s t e r R s)
a n d (M E M / W B . R e g i s t e r R d = I D / E X . R e g i s t e r R s)) F o r w a r d A = 0 1

i f (M E M / W B . R e g W r i t e
a n d (M E M / W B . R e g i s t e r R d * 0)
a n d n o t (E X / M E M . R e g W r i t e a n d (E X / M E M . R e g i s t e r R d * 0)

a n d (E X / M E M . R e g i s t e r R d * I D / E X . R e g i s t e r R t)
a n d (M E M / W B . R e g i s t e r R d = I D / E X . R e g i s t e r R t)) F o r w a r d B = 0 1

Figure 4.56 shows the hardware necessary to support forwarding for operations
that use results during the EX stage. Note that the EX/MEM.RegisterRd field is the

370 Chapter 4 The Processor

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed
immediate that is another input to the ALU is described in the Elaboration at the end of this section.

register destination for either an ALU instruction (which comes from the Rd field
of the instruction) or a load (which comes from the Rt field).

@ Section 4.12 on the CD shows two pieces of MIPS code with hazards that
cause forwarding, if you would like to see more illustrated examples using single-
cycle pipeline drawings.

ID/EX

FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 4.51, the additions
are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath, such
as the branch hardware and the sign extension hardware.

4.7 Data Hazards: Forwarding versus Stalling 371

Elaborat ion: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. However, consider loads immediately followed by stores, useful
when performing memory-to-memory copies in the MIPS architecture. Since copies are
frequent, we need to add more forwarding hardware to make them run faster. If we were
to redraw Figure 4.53, replacing the sub and AND instructions with lw and sw,we would
see that it is possible to avoid a stall, since the data exists in the MEM/WB register of
a load instruction in time for its use in the MEM stage of a store instruction. We would
need to add forwarding into the memory access stage for this option. We leave this
modification as an exercise to the reader.

In addition, the signed-immediate input to the ALU, needed by loads and stores,
is missing from the datapath in Figure 4.56. Since central control decides between
register and immediate, and since the forwarding unit chooses the pipeline register for
a register input to the ALU, the easiest solution is to add a 2:1 multiplexor that chooses
between the ForwardB multiplexor output and the signed immediate. Figure 4.57 shows
this addition.

ID/EX EX/MEM MEM/WB

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to select the
signed immediate as an ALU input.

372 Chapter 4 The Processor

If at first you don't
succeed, redefine
success.

Anonymous

Data Hazards and Stalls
As we said in Section 4.5, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes
the same register. Figure 4.58 illustrates the problem. The data is still being read
from memory in clock cycle 4 while the ALU is performing the operation for the
following instruction. Something must stall the pipeline for the combination of
load followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and its
use. Checking for load instructions, the control for the hazard detection unit is this
single condition:

i f (I D / E X . M e m R e a d a n d
((I D / E X . R e g i s t e r R t = I F / I D . R e g i s t e r R s) o r

(I D / E X . R e g i s t e r R t = I F / I D . R e g i s t e r R t)))
s t a l l t h e p i p e l i n e

Time (in clock cycles)

C C 1 C C 2 C C 3 CC 4 CC 5 CC 6 CC 7 C C 8 C C 9

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, 82, $5

or $8, $2, $6

add $9, $4, $2

sit $1, $6, $7

IM

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and The following instruction (and) goes
backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.

4.7 Data Hazards: Forwarding versus Stalling 3 7 3

The first line tests to see if the instruction is a load: the only instruction that reads
data m e m o r y is a load. The next two lines check to see if the destination register
field of the load in the EX stage matches either source register of the instruction
in the ID stage. If the condit ion holds, the instruction stalls one clock cycle. After
this 1-cycle stall, the forwarding logic can handle the dependence and execution
proceeds. (If there were no forwarding, then the instructions in Figure 4.58 would
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by prevent-
ing the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be read using
the same PC, and the registers in the ID stage will continue to be read using the
same instruction fields in the IF/ID pipeline register. Returning to our favorite
analogy, it's as if you restart the washer with the same clothes and let the dryer
continue tumbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
i n s t r u c t i o n s that h a v e n o ef fec t : nops . nop An instruction that

H o w can we insert these nops, which act like bubbles, into the pipeline? In does no operation to
Figure 4.49, we see that deasserting all nine control signals (setting them to 0) in change state,
the EX, MEM, and WB stages will create a "do nothing" or nop instruction. By
identifying the hazard in the ID stage, we can insert a bubble into the pipeline by
changing the EX, MEM, and WB control fields of the ID/EX pipeline register to
0. These benign control values are percolated forward at each clock cycle with the
proper effect: no registers or memories are written if the control values are all 0.

Figure 4.59 shows what really happens in the hardware: the pipeline execution
slot associated with the AND instruction is turned into a nop and all instructions
beginning with the AND instruction are delayed one cycle. Like an air bubble in
a water pipe, a stall bubble delays everything behind it and proceeds down the
instruction pipe one stage each cycle until it exits at the end. In this example, the
hazard forces the A N D and 0 R instructions to repeat in clock cycle 4 what they did in
clock cycle 3: AND reads registers and decodes, and OR is refetched from instruction
memory. Such repeated work is what a stall looks like, but its effect is to stretch the
time of the AMD and OR instructions and delay the fetch of the add instruction.

Figure 4.60 highlights the pipeline connect ions for both the hazard detection
unit and the forwarding unit. As before, the forwarding unit controls the ALU
multiplexors to replace the value from a general-purpose register with the value
from the proper pipeline register. The hazard detection unit controls the writing
of the PC and IF/ID registers plus the multiplexor that chooses between the real
control values and all Os. The hazard detection unit stalls and deasserts the control
fields if the load-use hazard test above is true, [gj Section 4 .12 on the CD gives an
example of MIPS code with hazards that causes stalling, illustrated using single-
clock pipeline diagrams, if you would like to see more details.

374 Chapter 4 The Processor

Time (in clock cycles) *-
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10

Program
execution
order

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed
until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no
further hazards occur.

_ ^^ Although the compiler generally relies upon the hardware to resolve hazards
T h e E S I VI a n c ' hereby ensure correct execution, the compiler must understand the

PictllVe pipeline to achieve the best performance. Otherwise, unexpected stalls will
reduce the performance of the compiled code.

4.8 Control Hazards 3 7 5

ID/EX.MemRead

FIGURE 4.60 Pipelined control overview, showing the t w o mult iplexors for forwarding, the hazard detection unit, and
the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—
this drawing gives the essence of the forwarding hardware requirements.

E l a b o r a t i o n : Regarding the remark earlier about setting control lines to 0 to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while
the other control signals can be don't cares.

4.8 Control Hazards

Thus far, we have limited our concern to hazards involving arithmetic operations
and data transfers. However, as we saw in Section 4.5, there are also pipeline
hazards involving branches. Figure 4.61 shows a sequence of instructions and indi-
cates when the branch would occur in this pipeline. An instruction must be fetched

There are a thousand

hacking at die branches

of evil to one who is

striking at the root.

H e n r y David T h o r e a u ,

Walden, 1 8 5 4

376 Chapter 4 The Processor

Time (in clock cycles) -
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Program
execution
order

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, . . .)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before beq branches to 1 w at location 72. (Figure 4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)

at every clock cycle to sustain the pipeline, yet in our design the decision about
whether to branch doesn't occur until the MEM pipeline stage. As ment ioned
in Section 4.5, this delay in determining the proper instruction to fetch is called
a control hazard or branch hazard, in contrast to the data hazards we have just
examined.

This section on control hazards is shorter than the previous sections on data
hazards. The reasons are that control hazards are relatively simple to understand,
they occur less frequently than data hazards, and there is nothing as effective
against control hazards as forwarding is against data hazards. Hence, we use
simpler schemes. We look at two schemes for resolving control hazards and one
optimization to improve these schemes.

4.8 Control Hazards 3 7 7

Assume Branch Not Taken
As we saw in Section 4.5, stalling until the branch is complete is too slow. A com-
m o n improvement over branch stalling is to assume that the branch will not be
taken and thus continue execution down the sequential instruction stream. If the
branch is taken, the instructions that are being fetched and decoded must be dis-
carded. Execution continues at the branch target. If branches are untaken half the
time, and if it costs little to discard the instructions, this optimization halves the
cost of control hazards.

To discard instructions, we merely change the original control values to Os, much
as we did to stall for a load-use data hazard. The difference is that we must also
change the three instructions in the IF, ID, and EX stages when the branch reaches
the MEM stage; for load-use stalls, we just changed control to 0 in the ID stage and
let them percolate through the pipeline. Discarding instructions, then, means we
must be able to f lush instructions in the IF, ID, and EX stages of the pipeline.

Reducing the Delay of Branches
One way to improve branch performance is to reduce the cost of the taken branch.
Thus far, we have assumed the next PC for a branch is selected in the MEM stage,
but if we move the branch execution earlier in the pipeline, then fewer instruc-
tions need be flushed. The MIPS architecture was designed to support fast single-
cycle branches that could be pipelined with a small branch penalty. The designers
observed that many branches rely only on simple tests (equality or sign, for exam-
ple) and that such tests do not require a full ALU operation but can be done with
at most a few gates. When a more complex branch decision is required, a separate
instruction that uses an ALU to perform a comparison is required—a situation
that is similar to the use of condition codes for branches (see Chapter 2).

Moving the branch decision up requires two actions to occur earlier: computing
the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the ID stage; of course, the branch target address
calculation will be performed for all instructions, but only used when needed.

The harder part is the branch decision itself. For branch equal, we would compare
the two registers read during the ID stage to see if they are equal. Equality can be
tested by first exclusive ORing their respective bits and then ORing all the results.
Moving the branch test to the ID stage implies additional forwarding and hazard
detection hardware, since a branch dependent on a result still in the pipeline must
still work properly with this optimization. For example, to implement branch on
equal (and its inverse), we will need to forward results to the equality test logic that
operates during ID. There are two complicating factors:

flush To discard
instructions in a pipeline,
usually due to an
unexpected event.

378 Chapter 4 The Processor

1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if the
instruction is a branch, we can set the PC to the branch target address. For-
warding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in ID will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or M E M / W B pipeline latches.

2. Because the values in a branch comparison are needed during ID but may
be produced later in time, it is possible that a data hazard can occur and a
stall will be needed. For example, if an ALU instruction immediately pre-
ceding a branch produces one of the operands for the comparison in the
branch, a stall will be required, since the EX stage for the ALU instruction
will occur after the ID cycle of the branch. By extension, if a load is immedi-
ately followed by a conditional branch that is on the load result, two stall
cycles will be needed, as the result from the load appears at the end of the
MEM cycle but is needed at the beginning of ID for the branch.

Despite these difficulties, moving the branch execution to the ID stage is an
improvement, because it reduces the penalty of a branch to only one instruction if
the branch is taken, namely, the one currently being fetched. The exercises explore
the details of implementing the forwarding path and detecting the hazard.

To flush instructions in the IF stage, we add a control line, called IF.Flush,
that zeros the instruction field of the IF/ID pipeline register. Clearing the register
transforms the fetched instruction into a nop, an instruction that has no action
and changes no state.

EXAMPLE

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches that are not taken and that we
moved the branch execution to the ID stage:

3 6 s u b $ 1 0 , $ 4 , $ 8
4 0 b e q $ 1 , $ 3 , 7 # P C - r e l a t i v e b r a n c h t o 4 0 + 4 + 7 * 4 = 7 2
4 4 a n d $ 1 2 , $ 2 , $ 5
4 8 o r $ 1 3 , $ 2 , $ 6
5 2 a d d $ 1 4 , $ 4 , $ 2
5 6 s i t $ 1 5 , $ 6 , $ 7

ANSWER

7 2 l w $ 4 , 5 0 ($ 7)

Figure 4.62 shows what happens when a branch is taken. Unlike Figure 4.61,
there is only one pipeline bubble on a taken branch.

4.8 Control Hazards 379

FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC
address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows The instruction at location 72 being
fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really s l l $0, $0, 0, it's
arguable whether or not the ID stage in clock 4 should be highlighted.)

3 8 0 Chapter 4 The Processor

dynamic branch
prediction Prediction of
branches at runtime using
runtime information.

branch prediction buffer
Also called branch
history table. A small
memory that is indexed
by the lower portion of
the address of the branch
instruction and that
contains one or more bits
indicating whether the
branch was recently taken
or not.

Dynamic Branch Prediction
Assuming a branch is not taken is one simple form of branch prediction. In that case,
we predict that branches are untaken, flushing the pipeline when we are wrong. For the
simple five-stage pipeline, such an approach, possibly coupled with compiler-based
prediction, is probably adequate. With deeper pipelines, the branch penalty increases
when measured in clock cycles. Similarly, with multiple issue (see Section 4.10), the
branch penalty increases in terms of instructions lost. This combination means
that in an aggressive pipeline, a simple static prediction scheme will probably waste
too much performance. As we mentioned in Section 4.5, with more hardware it is
possible to try to predict branch behavior during program execution.

One approach is to look up the address of the instruction to see if a branch
was taken the last t ime this instruction was executed, and, if so, to begin fetching
new instructions from the same place as the last time. This technique is called
dynamic branch predict ion.

One implementation of that approach is a branch predict ion buffer or branch
his tory table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The m e m o r y contains a bit that
says whether the branch was recently taken or not.

This is the simplest sort of buffer; we don't know, in fact, if the prediction is the
right one—it may have been put there by another branch that has the same low-
order address bits. However, this doesn't affect correctness. Prediction is just a hint
that we hope is correct, so fetching begins in the predicted direction. If the hint turns
out to be wrong, the incorrectly predicted instructions are deleted, the prediction bit
is inverted and stored back, and the proper sequence is fetched and executed.

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we can predict incorrectly twice, rather than once,
when it is not taken. The following example shows this di lemma.

EXAMPLE

ANSWER

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken
once. What is the prediction accuracy for this branch, assuming the prediction
bit for this branch remains in the prediction buffer?

The steady-state prediction behavior will mispredict on the first and last loop
iterations. Mispredicting the last iteration is inevitable since the prediction bit
will indicate taken, as the branch has been taken nine times in a row at that point.
The misprediction on the first iteration happens because the bit is flipped on
prior execution of the last iteration of the loop, since the branch was not taken on
that exiting iteration. Thus, the prediction accuracy for this branch that is taken
90% of the time is only 80% (two incorrect predictions and eight correct ones).

4.8 Control Hazards 3 8 1

Ideally, the accuracy of the predictor would match the taken branch frequency for
these highly regular branches. To remedy this weakness, 2-bit prediction schemes
are often used. In a 2-bit scheme, a prediction must be wrong twice before it is
changed. Figure 4.63 shows the finite-state machine for a 2-bit prediction scheme.

A branch prediction buffer can be implemented as a small, special buffer accessed
with the instruction address during the IF pipe stage. If the instruction is predicted
as taken, fetching begins from the target as soon as the PC is known; as ment ioned
on page 377, it can be as early as the ID stage. Otherwise, sequential fetching and
executing continue. If the prediction turns out to be wrong, the prediction bits are
changed as shown in Figure 4.63.

Not taken

Taken

Not taken

Taken

Not taken Taken

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used
to encode the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor,
which is incremented when the prediction is accurate and decremented otherwise, and uses the midpoint of
its range as the division between taken and not taken.

Elaboration: As we described in Section 4.5, in a five-stage pipeline we can make the
control hazard a feature by redefining the branch. A delayed branch always executes the
following instruction, but the second instruction following the branch will be affected by
the branch.

Compilers and assemblers try to place an instruction that always executes after
the branch in the branch delay slot. The job of the software is to make the successor
instructions valid and useful. Figure 4.64 shows the three ways in which the branch
delay slot can be scheduled.

The limitations on delayed branch scheduling arise from (1) the restrictions on the
instructions that are scheduled into the delay slots and (2) our ability to predict at
compile time whether a branch is likely to be taken or not.

b r a n c h delay slot The
slot directly after a delayed
branch instruction, which
in the MIPS architecture is
filled by an instruction that
does not affect the branch.

382 Chapter 4 The Processor

Delayed branching was a simple and effective solution for a five-stage pipeline
issuing one instruction each clock cycle. As processors go to both longer pipelines
and issuing multiple instructions per clock cycle (see Section 4.10), the branch delay
becomes longer, and a single delay slot is insufficient. Hence, delayed branching has
lost popularity compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available transistors per chip has made dynamic prediction
relatively cheaper.

Elaboration: A branch predictortells us whether or not a branch is taken, but still requires
the calculation of the branch target. In the five-stage pipeline, this calculation takes one
cycle, meaning that taken branches will have a 1-cycle penalty. Delayed branches are

a. From before b. From target c. From fall-through

FIGURE 4.64 Scheduling the branch delay slot. The Top box in each pair shows the code before
scheduling; the bottom box shows The scheduled code. In (a), The delay slot is scheduled with an independent
instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not
possible. In the code sequences for (b) and (c), the use of S s l in the branch condition prevents the add
instruction (whose destination is S s l) from being moved into the branch delay slot. In (b) the branch delay
slot is scheduled from the target of the branch; usually the target instruction will need to be copied because
it can be reached by another path. Strategy (b) is preferred when the branch is taken with high probability,
such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as in (c). To
make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the branch
goes in the unexpected direction. By "OK" we mean that the work is wasted, but the program will still execute
correctly. This is the case, for example, if $ t 4 were an unused temporary register when the branch goes in
the unexpected direction.

4.8 Control Hazards 383

one approach to eliminate that penalty. Another approach is to use a cache to hold the
destination program counter or destination instruction using a branch target buffer.

The 2-bit dynamic prediction scheme uses only information about a particular branch.
Researchers noticed that using information about both a local branch, and the global
behavior of recently executed branches together yields greater prediction accuracy for
the same number of prediction bits. Such predictors are called correlating predictors.
A typical correlating predictor might have two 2-bit predictors for each branch, with the
choice between predictors made based on whether the last executed branch was taken
or not taken. Thus, the global branch behavior can be thought of as adding additional
index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors.
A tournament predictor uses multiple predictors, tracking, for each branch, which pre-
dictor yields the best results. A typical tournament predictor might contain two predic-
tions for each branch index: one based on local information and one based on global
branch behavior. A selector would choose which predictor to use for any given prediction.
The selector can operate similarly to a 1- or 2-bit predictor, favoring whichever of the two
predictors has been more accurate. Some recent microprocessors use such elaborate
predictors.

Elaborat ion : One way to reduce the number of conditional branches is to add
conditional move instructions. Instead of changing the PC with a conditional branch, the
instruction conditionally changes the destination register of the move. If the condition
fails, the move acts as a nop. For example, one version of the MIPS instruction set
architecture has two new instructions called movn (move if not zero) and movz (move
if zero). Thus, movn $8, $11, $4 copies the contents of register 11 into register 8,
provided that the value in register 4 is nonzero; otherwise, it does nothing.

The ARM instruction set has a condition field in most instructions. Hence, ARM
programs could have fewer conditional branches than in MIPS programs.

Pipeline Summary
We started in the laundry room, showing principles of pipelining in an everyday
setting. Using that analogy as a guide, we explained instruction pipelining step-
by-step, starting with the single-cycle datapath and then adding pipeline registers,
forwarding paths, data hazard detection, branch prediction, and flushing instruc-
tions on exceptions. Figure 4.65 shows the final evolved datapath and control. We
now are ready for yet another control hazard: the sticky issue of exceptions.

Consider three branch prediction schemes: branch not taken, predict taken, and
dynamic prediction. Assume that they all have zero penalty when they predict
correctly and two cycles when they are wrong. Assume that the average predict
accuracy of the dynamic predictor is 90%. Which predictor is the best choice for
the following branches?

1. A branch that is taken with 5% frequency
2. A branch that is taken with 95% frequency
3. A branch that is taken with 70% frequency

branch target buffer
A structure that caches
the destination PC or
destination instruction
for a branch. It is usually
organized as a cache with
tags, making it more
costly than a simple
prediction buffer.

correlating predictor
A branch predictor that
combines local behavior
of a particular branch
and global information
about the behavior of
some recent number of
executed branches.

tournament branch
predictor A branch
predictor with multiple
predictions for each
branch and a selection
mechanism that chooses
which predictor to enable
for a given branch.

Check
Yourself

384 Chapter 4 The Processor

FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a detailed datapath, so
it's missing the ALUsrc mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

To make a computer
with automatic
program-interruption
facilities behave
[sequentially] was
not an easy matter,
because the number of
instructions in various
stages of processing
when an interrupt
signal occurs may be
large.

Fred Brooks, Jr.,
Planning a Computer
System: Project Stretch,
1962

Exceptions

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol is implementing except ions and interrupts—events other than branches or
jumps that change the normal flow of instruction execution. They were initially
created to handle unexpected events from within the processor, like arithmetic
overflow. The same basic mechanism was extended for I/O devices to c o m m u n i -
cate with the processor, as we will see in Chapter 6.

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
For example, the Intel x86 uses interrupt. We follow the MIPS convention, using

4.9 Exceptions 3 8 5

the term exception to refer to any unexpected change in control flow without
distinguishing whether the cause is internal or external; we use the term interrupt
only when the event is externally caused. Here are five examples showing whether
the situation is internally generated by the processor or externally generated:

type of event From where? MIPS terminology

I/O device request External Interrupt
Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt

e x c e p t i o n Also
called in te r rupt . An
unscheduled event
that disrupts program
execution; used to detect
overflow.

i n t e r r u p t An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all
exceptions.)

Many of the requirements to support exceptions come from the specific situation
that causes an exception to occur. Accordingly, we will return to this topic in
Chapter 5, when we discuss m e m o r y hierarchies, and in Chapter 6, when we discuss
I/O, and we will better understand the motivation for additional capabilities in the
exception mechanism. In this section, we deal with the control implementation for
detecting two types of exceptions that arise from the portions of the instruction set
and implementation that we have already discussed.

Detecting exceptional conditions and taldng the appropriate action is often on the
critical timing path of a processor, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled in the MIPS Architecture
The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. We'll use arith-
metic overflow in the instruction add $ 1 , $ 2 , $1 as the example exception in
the next few pages. The basic action that the processor must perform when an
exception occurs is to save the address of the offending instruction in the exception
program counter (EPC) and then transfer control to the operating system at some
specified address.

The operating system can then take the appropriate action, which may involve
providing some service to the user program, taking some predefined action in
response to an overflow, or stopping the execution of the program and reporting
an error. After performing whatever action is required because of the exception, the
operating system can terminate the program or may continue its execution, using
the EPC to determine where to restart the execution of the program. In Chapter 5,
we will look more closely at the issue of restarting the execution.

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main

3 8 6 Chapter 4 The Processor

vectored i n t e r r u p t An
interrupt for which
the address to which
control is transferred is
determined by the cause
of the exception.

methods used to communicate the reason for an exception. The m e t h o d used
in the MIPS architecture is to include a status register (called the Cause register),

which holds a field that indicates the reason for the exception.
A second method, is to use vectored interrupts . In a vectored interrupt, the

address to which control is transferred is determined by the cause of the exception.
For example, to accommodate the two exception types listed above, we might
define the following two exception vector addresses:

Exception t y p e Exception v e c t o r a d d r e s s (in h e x)

Undefined instruction 8 0 0 0 0 0 0 0 h e x

Arithmetic overflow 8 0 0 0 0180,1CX

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or eight instructions, and the
operating system must record the reason for the exception and may perform s o m e
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operat ing system decodes the
status register to find the cause.

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementat ion and by slightly extend-
ing control. Let's assume that we are implement ing the exception system used in
the MIPS architecture, with the single entry point being the address 8000 0 1 8 0 h e x .
(Implementing vectored exceptions is no more difficult.) We will need to add two
additional registers to the MIPS implementation:

• EPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

• Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although s o m e bits are currently unused.
Assume there is a five-bit field that encodes the two possible exception
sources ment ioned above, with 10 representing an undef ined instruction and
12 representing arithmetic overflow.

Exceptions in a PipeDined Implementation
A pipelined implementation treats exceptions as another form of control hazard.
For example, suppose there is an arithmetic overflow in an add instruction. Just as
we did for the taken branch in the previous section, we must flush the instructions
that follow the add instruction from the pipeline and begin fetching instructions
from the new address. We will use the same mechanism we used for taken branches,
but this time the exception causes the deasserting of control lines.

When we dealt with branch mispredict, we saw h o w to flush the instruction
in the IF stage by turning it into a nop. To flush instructions in the ID stage, we
use the multiplexor already in the ID stage that zeros control signals for stalls.

i

4.9 Exceptions 387

FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the value 8000 01SO^
in the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save
the address of the instruction that caused the exception. The 8000 0180|KX input to the multiplexor is the initial address to begin fetching
instructions in the event of an exception. Although not shown, the ALU overflow signal is an input to the control unit.

A new control signal, called ID.Flush, is ORed with the stall signal from the hazard
detection unit to flush during ID. To flush the instruction in the EX phase, we use
a new signal called EX.Flush to cause new multiplexors to zero the control lines. To
start fetching instructions from location 8000 01 S 0 l l c x , which is the MIPS exception
address, we simply add an additional input to the PC multiplexor that sends 8000
0180j l c x to the PC. Figure 4.66 shows these changes.

This example points out a problem with exceptions: if we do not stop execution
in the middle of the instruction, the programmer will not be able to see the original
value of register $ 1 that helped cause the overflow because it will be clobbered as
the Destination register of the add instruction. Because of careful planning, the
overflow exception is detected during the EX stage; hence, vve can use the EX.Flush
signal to prevent the instruction in the EX stage from writing its result in the WB
stage. Many exceptions require that we eventually complete the instruction that
caused the exception as if it executed normally. The easiest way to do this is to flush
the instruction and restart it from the beginning after the exception is handled.

388 Chapter 4 The Processor

The final step is to save the address of the offending instruction in the exception
program counter (EPC). In reality, we save the address T 4, so the exception handling
routine must first subtract 4 from the saved value. Figure 4.66 shows a stylized version
of the datapath, including the branch hardware and necessary accommodations to
handle exceptions.

EXAMPLE

Exception in a Pipelined Computer

Given this instruction sequence,
4 0 „ e x s u b $ 1 1 , $ 2 , $4
4 4 h e x and $ 1 2 , $ 2 , $5 co o r $ 1 3 , $ 2 , $6
4C add $ 1 , $ 2 , $1
5 0 h e x S i t $ 1 5 , $ 6 , $7
5 4 h e x 1 w $ 1 6 , 50 ($ 7)

assume the instructions to be invoked on an exception begin like this:
8 0 0 0 0 1 8 0 h e x

8 0 0 0 0 1 8 4 h e x

sw
sw

$ 2 5 , 1 0 0 0 ($ 0
$ 2 6 , 1 0 0 4 ($ 0

Show what happens in the pipeline if an overflow exception occurs in the add
instruction.

ANSWER
Figure 4.67 shows the events, starting with the add instruction in the EX stage.
The overflow is detected during that phase, and 8000 0 1 8 0 h e x is forced into the
PC. Clock cycle 7 shows that the add and following instructions are flushed,
and the first instruction of the exception code is fetched. Note that the address
of the instruction folio wing the add is saved: 4 C l l c x T 4 = 5 0] i e x .

We mentioned five examples of exceptions on page 385, and we will see others
in Chapters 5 and 6. With five instructions active in any clock cycle, the challenge
is to associate an exception with the appropriate instruction. Moreover, multiple
exceptions can occur simultaneously in a single clock cycle. The solution is to
prioritize the exceptions so that it is easy to determine which is serviced first. In
most MIPS implementations, the hardware sorts exceptions so that the earliest
instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a specific
instruction, so the implementation has some flexibility as to when to interrupt the
pipeline. Hence, the mechanism used for other exceptions works just fine.

4.9 Exceptions 389

FIGURE 4.67 The result of an exception due to arithmetic overflow in the add instruction. The overflow is detected during
the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50|lcx). Overflow causes all the Flush signals to be
set near the end of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted
to bubbles in the pipeline plus the fetching of the first instruction of the exception routine—sw $25 . 1 0 0 0 ($0)—from instruction location
8000 0180|1(rx. Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown, the ALU overflow signal
is an input to the control unit.

3 9 0 Chapter 4 The Processor

The EPC captures the address of the interrupted instructions, and the MIPS
Cause register records all possible exceptions in a clock cycle, so the exception
software must match the exception to the instruction. An important clue is know-
ing in which pipeline stage a type of exception can occur. For example, an unde-
fined instruction is discovered in the ID stage, and invoicing the operating system
occurs in the EX stage. Exceptions are collected in the Cause register in a pending
exception field so that the hardware can interrupt based on later exceptions, once
the earliest one has been serviced.

Hardware/
Software
Interface

The hardware and the operating system must work in conjunction so that exceptions
behave as you would expect. The hardware contract is normally to stop the offending
instruction in midstream, let all prior instructions complete, flush all following
instructions, set a register to show the cause of the exception, save the address of
the offending instruction, and then jump to a prearranged address. The operating
system contract is to look at the cause of the exception and act appropriately. For
an undefined instruction, hardware failure, or arithmetic overflow exception, the
operating system normally lulls the program and returns an indicator of the reason.
For an I/O device request or an operating system service call, the operating system
saves the state of the program, performs the desired task, and, at some point in the
future, restores the program to continue execution. In the case of I/O device requests,
we may often choose to run another task before resuming the task that requested
the I/O, since that task may often not be able to proceed until the I/O is complete.
This is why the ability to save and restore the state of any task is critical. One of the
most important and frequent uses of exceptions is handling page faults and TLB
exceptions; Chapter 5 describes these exceptions and their handling in more detail.

imprecise interrupt
Also called imprecise
exception. Interrupts or
exceptions in pipelined
computers that are not
associated with the exact
instruction that was the
cause of the interrupt or
exception.

precise interrupt Also
called precise exception.
An interrupt or exception
that is always associated
with the correct
instrucion in pipelined
computers.

Elaboration: The difficulty of always associating the correct exception with the correct
instruction in pipelined computers has led some computer designers to relax this
requirement in noncritical cases. Such processors are said to have imprecise interrupts
or imprecise exceptions. In the example above, PC would normally have 58hex at the
start of the clock cycle after the exception is detected, even though the offending
instruction is at address 4Chex. A processor with imprecise exceptions might put 58hex

into EPC and leave it up to the operating system to determine which instruction caused
the problem. MIPS and the vast majority of computers today support precise interrupts
or precise exceptions. (One reason is to support virtual memory, which we shall see in
Chapter 5.)

Elaboration: Although MIPS uses the exception entry address 8000 0180hex for
almost all exceptions, it uses the address 8000 0000hexto improve performance of the
exception handler for TLB-miss exceptions (see Chapter 5).

4.10 Parallelism and Advanced Instruction-Level Parallelism 3 9 1

Which exception should be recognized first in this sequence?
1. add $ 1 , $ 2 , $1 # arithmetic overflow
2. XXX $ 1 , $ 2 , $1 # undefined instruction
3. sub $ 1 , $ 2 , $1 #hardware error

Check
Yourself

4.10 Parallelism and Advanced Instruction-
Level Parallelism

Be forewarned: this section is a brief overview of fascinating but advanced
topics. If you want to learn more details, you should consult our more advanced
book, Computer Architecture: A Quantitative Approach, fourth edition, where the
material covered in the next 13 pages is expanded to almost 200 pages (including
Appendices)!

Pipelining exploits the potential parallelism among instructions. This parallelism
is called instruct ion- level parallel ism (ILP). There are two primary methods
for increasing the potential amount of instruction-level parallelism. The first is
increasing the depth of the pipeline to overlap more instructions. Using our laundry
analogy and assuming that the washer cycle was longer than the others were, we
could divide our washer into three machines that perform the wash, rinse, and spin
steps of a traditional washer. We would then move from a four-stage to a six-stage
pipeline. To get the full speed-up, we need to rebalance the remaining steps so they
are the same length, in processors or in laundry. The amount of parallelism being
exploited is higher, since there are more operations being overlapped. Performance
is potentially greater since the clock cycle can be shorter.

Another approach is to replicate the internal components of the computer so
that it can launch multiple instructions in every pipeline stage. The general name
for this technique is mul t ip le issue. A multiple-issue laundry would replace our
household washer and dryer with, say, three washers and three dryers. You would
also have to recruit more assistants to fold and put away three times as much laun-
dry in the same amount of time. The downside is the extra work to keep all the
machines busy and transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction execution
rate to exceed the clock rate or, stated alternatively, the CPI to be less than 1. It
is sometimes useful to flip the metric and use IPC, or instructions per clock cycle.
Hence, a 4 GHz four-way multiple-issue microprocessor can execute a peak rate
of 16 billion instructions per second and have a best-case CPI of 0.25, or an IPC
of 4. Assuming a five-stage pipeline, such a processor would have 20 instructions
in execution at any given time. Today's high-end microprocessors attempt to issue
from three to six instructions in every clock cycle. There are typically, however,
many constraints on what types of instructions may be executed simultaneously
and what happens when dependences arise.

instruction-level
parallelism The
parallelism among
instructions.

multiple issue
A scheme whereby
multiple instructions are
launched in one clock
cycle.

3 9 2 Chapter 4 The Processor

static multiple issue
An approach to
implementing a multiple-
issue processor where
many decisions are made
by the compiler before
execution.

dynamic multiple
issue An approach to
implementing a multiple-
issue processor where
many decisions are made
during execution by the
processor.

issue slots The positions
from which instructions
could issue in a given
clock cycle; by analogy,
these correspond to
positions at the starting
blocks for a sprint.

There are two major ways to implement a multiple-issue processor, with the
major difference being the division of work between the compiler and the hardware.
Because the division of work dictates whether decisions are being made statically
(that is, at compile time) or dynamically (that is, during execution), the approaches
are sometimes called static mult ip le i ssue and dynamic mult ip le issue. As we will
see, both approaches have other, more commonly used names, which may be less
precise or more restrictive.

There are two primary and distinct responsibilities that must be dealt with in a
multiple-issue pipeline:

1. Packaging instructions into i ssue slots: how does the processor determine
how many instructions and which instructions can be issued in a given
clock cycle? In most static issue processors, this process is at least partially
handled by the compiler; in dynamic issue designs, it is normally dealt with
at runtime by the processor, although the compiler will often have already
tried to help improve the issue rate by placing the instructions in a beneficial
order.

2. Dealing with data and control hazards: in static issue processors, some or
all of the consequences of data and control hazards are handled statically by
the compiler. In contrast, most dynamic issue processors attempt to allevi-
ate at least some classes of hazards using hardware techniques operating at
execution time.

Although we describe these as distinct approaches, in reality techniques from one
approach are often borrowed by the other, and neither approach can claim to be
perfectly pure.

speculation An
approach whereby the
compiler or processor
guesses the outcome of an
instruction to remove it as
a dependence in executing
other instructions.

The Concept of Speculation
One of the most important methods for finding and exploiting more ILP is
speculation. Speculat ion is an approach that allows the compiler or the processor
to "guess" about the properties of an instruction, so as to enable execution to begin
for other instructions that may depend on the speculated instruction. For example,
we might speculate on the outcome of a branch, so that instructions after the
branch could be executed earlier. Another example is that we might speculate that
a store that precedes a load does not refer to the same address, which would allow
the load to be executed before the store. The difficulty with speculation is that it
may be wrong. So, any speculation mechanism must include both a method to
check if the guess was right and a method to unroll or back out the effects of the
instructions that were executed speculatively. The implementation of this back-out
capability adds complexity.

Speculation may be done in the compiler or by the hardware. For example, the
compiler can use speculation to reorder instructions, moving an instruction across

4.10 Parallelism and Advanced Instruction-Level Parallelism 3 9 3

a branch or a load across a store. The processor hardware can perform the same
transformation at runtime using techniques we discuss later in this section.

The recovery mechanisms used for incorrect speculation are rather different. In
the case of speculation in software, the compiler usually inserts additional instruc-
tions that check the accuracy of the speculation and provide a fix-up routine to use
when the speculation is incorrect. In hardware speculation, the processor usually
buffers the speculative results until it knows they are no longer speculative. If the
speculation is correct, the instructions are completed by allowing the contents of
the buffers to be written to the registers or memory. If the speculation is incorrect,
the hardware flushes the buffers and re-executes the correct instruction sequence.

Speculation introduces one other possible problem: speculating on certain
instructions may introduce exceptions that were formerly not present. For exam-
ple, suppose a load instruction is moved in a speculative manner, but the address
it uses is not legal when the speculation is incorrect. The result would be that an
exception that should not have occurred will occur. The problem is complicated by
the fact that if the load instruction were not speculative, then the exception must
occur! In compiler-based speculation, such problems are avoided by adding spe-
cial speculation support that allows such exceptions to be ignored until it is clear
that they really should occur. In hardware-based speculation, exceptions are simply
buffered until it is clear that the instruction causing them is no longer speculative
and is ready to complete; at that point the exception is raised, and normal excep-
tion handling proceeds.

Since speculation can improve performance when done properly and decrease
performance when done carelessly, significant effort goes into deciding when it
is appropriate to speculate. Later in this section, we will examine both static and
dynamic techniques for speculation.

Static Multiple issue
Static multiple-issue processors all use the compiler to assist with packaging instruc-
tions and handling hazards. In a static issue processor, you can think of the set of
instructions issued in a given clock cycle, which is called an issue packet, as one
large instruction with multiple operations. This view is more than an analogy. Since
a static multiple-issue processor usually restricts what mix of instructions can be
initiated in a given clock cycle, it is useful to think of the issue packet as a single
instruction allowing several operations in certain predefined fields. This view led to
the original name for this approach: Very Long Instruction Word (VLIW).

Most static issue processors also rely on the compiler to take on some respon-
sibility for handling data and control hazards. The compiler's responsibilities may
include static branch prediction and code scheduling to reduce or prevent all
hazards. Let's look at a simple static issue version of a MIPS processor, before we
describe the use of these techniques in more aggressive processors.

issue packet The set of
instructions that issues
together in one clock
cycle; the packet may be
determined statically by
the compiler or dynami-
cally by the processor.

Very Long Instruction
Word (V L I W) A style
of instruction set archi-
tecture that launches
many operations that are
defined to be independent
in a single wide instruc-
tion, typically with many
separate opcode fields.

394 Chapter 4 The Processor

An Example : Stat ic Mult iple Issue with the M I P S ISA

To give a flavor of static multiple issue, we consider a simple two-issue MIPS pro-
cessor, where one of the instructions can be an integer ALU operation or branch
and the other can be a load or store. Such a design is like that used in some
embedded MIPS processors. Issuing two instructions per cycle will require fetch-
ing and decoding 64 bits of instructions. In many static multiple-issue processors,
and essentially all VLIW processors, the layout of simultaneously issuing instruc-
tions is restricted to simplify the decoding and instruction issue. Hence, we will
require that the instructions be paired and aligned on a 64-bit boundary, with the
ALU or branch portion appearing first. Furthermore, if one instruction of the pair
cannot be used, we require that it be replaced with a nop. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 4.68 shows how the
instructions look as they go into the pipeline in pairs.

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

FIGURE 4.68 Static two-issue pipeline in operation. The ALU and data transfer instructions
arc issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise
exception model, which become more difficult in multiple-issue processors.

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for remov-
ing all hazards, scheduling the code and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others,
the hardware detects data hazards and generates stalls between two issue packets,
while requiring that the compiler avoid all dependences within an instruction pair.
Even so, a hazard generally forces the entire issue packet containing the dependent
instruction to stall. Whether the software must handle all hazards or only try to
reduce the fraction of hazards between separate issue packets, the appearance of
having a large single instruction with multiple operations is reinforced. We will
assume the second approach for this example.

To issue an ALU and a data transfer operation in parallel, the first need for
additional hardware—beyond the usual hazard detection and stall logic—is extra
ports in the register file (see Figure 4.69). In one clock cycle we may need to read

4.10 Parallelism and Advanced Instruction-Level Parallelism 3 9 5

FIGURE 4.69 A static two- issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction
memory, two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address
calculations for data transfers and the top ALU handles everything else.

two registers for the ALU operation and two more for a store, and also one write
port for an ALU operation and one write port for a load. Since the ALU is tied
up for the ALU operation, we also need a separate adder to calculate the effective
address for data transfers. Without these extra resources, our two-issue pipeline
would be hindered by structural hazards.

Clearly, this two-issue processor can improve performance by up to a factor
of 2. Doing so, however, requires that twice as many instructions be overlapped
in execution, and this additional overlap increases the relative performance loss
from data and control hazards. For example, in our simple five-stage pipeline,
loads have a use latency of one clock cycle, which prevents one instruction from
using the result without stalling. In the two-issue, five-stage pipeline the result of
a load instruction cannot be used on the next clock cycle. This means that the next
two instructions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline n o w have a

use l a t e n c y Number o f
clock cycles between a
load instruction and an
instruction that can use
the result of the load with-
out stalling the pipeline.

396 Chapter 4 The Processor

one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and static
multiple issue requires that the compiler take on this role.

EXAMPLE

ANSWER

S i m p l e M u l t i p l e - I s s u e C o d e S c h e d u l i n g

H o w would this loop be scheduled on a static two-issue pipeline for MIPS?
L o o p : l w $ t 0 , 0 ($ s 1) # $ t O = a r r a y e l e m e n t

a d d u $ t 0 , $ t 0 , $ s 2 # a d d s c a l a r i n $ s 2
s w $ t O , 0 ($ s 1) # s t o r e r e s u l t
a d d i $ s l , $ s l , - 4 # d e c r e m e n t p o i n t e r
b n e $ s l , $ z e r o , L o o p # b r a n c h $ s 1 1 = 0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware.

The first three instructions have data dependences, and so do the last two.
Figure 4.70 shows the best schedule for these instructions. Notice that just
one pair of instructions has both issue slots used. It takes four clocks per loop
iteration; at four clocks to execute five instructions, we get the disappointing
CPI of 0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice
that in computing CPI or IPC, we do not count any nops executed as useful
instructions. Do ing so would improve CPI, but not performance!

ALU or branch instruction Data transfer instruction Clock cycle

Loop: lw StO, O (S s l) 1

addi $ s l . $ s l . - 4 2

addu St0 ,$t0 .Ss2 3

bne Ss l .Szero .Loop sw StO, 4 (S s l) 4

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. The empty
slots are nops.

4.10 Parallelism and Advanced Instruction-Level Parallelism 3 9 7

An important compiler technique to get more performance from loops is l o o p
unrolling, where multiple copies of the loop body are made. After unrolling, there
is more ILP available by overlapping instructions from different iterations.

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above. For
simplicity assume that the loop index is a multiple of four.

To schedule the loop without any delays, it turns out that we need to make
four copies of the loop body. After unrolling and eliminating the unnecessary
loop overhead instructions, the loop will contain four copies each of 1 w, add,
and sw, plus one add i and one bne. Figure4.71 shows the unrolled and
scheduled code.

During the unrolling process, the compiler introduced additional registers
(S t l , S t 2 , S t 3) . The goal of this process, called register renaming, is to elim-
inate dependences that are not true data dependences, but could either lead to
potential hazards or prevent the compiler from flexibly scheduling the code.
Consider how the unrolled code would look using only StO. There would be
repeated instances of 1 w StO , 0 ($ $ s l) , a d d u StO, S tO, S s 2 followed by sw
tO , 4 (Ss 1) , but these sequences, despite using StO, are actually completely
independent—no data values flow between one pair of these instructions and
the next pair. This is what is called an ant idependence or n a m e dependence,
which is an ordering forced purely by the reuse of a name, rather than a real
data dependence which is also called a true dependence.

Renaming the registers during the unrolling process allows the compiler to
move these independent instructions subsequently so as to better schedule the
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as pairs. It
takes 8 clocks for 4 loop iterations, or 2 clocks per iteration, which yields a
CPI of 8 / 1 4 = 0.57. Loop unrolling and scheduling with dual issue gave us
an improvement factor of almost 2, partly from reducing the loop control
instructions and partly from dual issue execution. The cost of this performance
improvement is using four temporary registers rather than one, as well as a
significant increase in code size.

Dynamic Multiple-issue Processors
Dynamic multiple-issue processors are also known as superscalar processors, or
simply superscalars. In the simplest superscalar processors, instructions issue in
order, and the processor decides whether zero, one, or more instructions can issue

loop unrolling
A technique to get more
performance from loops
that access arrays, in
which multiple copies of
the loop body are made
and instructions from
different iterations are
scheduled together.

EXAMPLE

ANSWER

register renaming The
renaming of registers
by the compiler or
hardware to remove
antidependences.

antidependence Also
called name dependence.
An ordering forced by the
reuse of a name, typically
a register, rather than by
a true dependence that
carries a value between
two instructions.

superscalar An advanced
pipelining technique that
enables the processor to
execute more than one
instruction per clock cycle
by selecting them during
execution.

398 Chapter 4 The Processor

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi Ssl,$sl.-16 lw StO. O(Ssl) 1

lw Stl ,12(Ssl) 2

addu StO , StO , Ss2 lw St2 , 8(Ssl) 3

addu Stl.Stl.Ss2 lw St3, 4($sl) 4

addu St2.St2.Ss2 sw StO, 16(Ssl) 5

addu St3.St3.Ss2 sw Stl ,12(Ssl) 6

sw $12 , 8(Ssl) 7

bne Ssl.Szero.Loop sw St3 , 4(Ssl) 8

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static
two-issue MIPS pipeline. The empty slots are nops. Since the first instruction in the loop decrements S s l
by 16, the addresses loaded are the original value of Ss 1, then that address minus 4, minus 8, and minus 12.

d y n a m i c p ipe l ine
schedul ing Hardware
support for reordering
die order of instruction
execution so as to avoid
stalls.

in a given clock cycle. Obviously, achieving good performance on such a processor
still requires the compiler to try to schedule instructions to move dependences
apart and thereby improve the instruction issue rate. Even with such compiler
scheduling, there is an important difference between this simple superscalar and
a VLIW processor: the code, whether scheduled or not, is guaranteed by the hard-
ware to execute correctly. Furthermore, compiled code will always run correctly
independent of the issue rate or pipeline structure of the processor. In some VLIW
designs, this has not been the case, and recompilation was required when moving
across different processor models; in other static issue processors, code would run
correctly across different implementations, but often so poorly as to make compi-
lation effectively required.

Many superscalars extend the basic framework of dynamic issue decisions to
include dynamic p ipe l ine schedul ing. Dynamic pipeline scheduling chooses
which instructions to execute in a given clock cycle while trying to avoid hazards
and stalls. Let's start with a simple example of avoiding a data hazard. Consider the
following code sequence:

l w $ t 0 , 2 0 ($ s 2)
addu $ t l . $ t 0 , $ 1 2
sub $ s 4 , $ s 4 , $ t 3
s i t i $ 1 5 , $ s 4 , 2 0

Even though the sub instruction is ready to execute, it must wait for the lw and
addu to complete first, which might take many clock cycles if m e m o r y is slow.
(Chapter 5 explains cache misses, the reason that m e m o r y accesses are somet imes
very slow.) Dynamic pipeline scheduling allows such hazards to be avoided either
fully or partially.

4.10 Parallelism and Advanced Instruction-Level Parallelism 3 9 9

D y n a m i c P i p e l i n e S c h e d u l i n g

Dynamic pipeline scheduling chooses which instructions to execute next, possibly
reordering them to avoid stalls. In such processors, the pipeline is divided into
three major units: an instruction fetch and issue unit, multiple functional units
(a dozen or more in high-end designs in 2008), and a c o m m i t unit . Figure 4.72
shows the model. The first unit fetches instructions, decodes them, and sends each
instruction to a corresponding functional unit for execution. Each functional
unit has buffers, called reservation stat ions, which hold the operands and the
operation. (In the next section, we will discuss an alternative to reservation stations
used by many recent processors.) As soon as the buffer contains all its operands
and the functional unit is ready to execute, the result is calculated. When the result
is completed, it is sent to any reservation stations waiting for this particular result
as well as to the commit unit, which buffers the result until it is safe to put the
result into the register file or, for a store, into memory. The buffer in the commit
unit, often called the reorder buffer, is also used to supply operands, in much the
same way as forwarding logic does in a statically scheduled pipeline. Once a result
is committed to the register file, it can be fetched directly from there, just as in a
normal pipeline.

c o m m i t uni t T h e unit
in a dynamic or out-
of-order execution
pipeline that decides
when it is safe to release
the result of an operation
to programmer-visible
registers and memory.

r e s e r v a t i o n s ta t ion
A buffer within a
functional unit that holds
the operands and the
operation.

r e o r d e r b u f f e r T h e
buffer that holds results in
a dynamically scheduled
processor until it is safe
to store the results to
m e m o r y or a register.

Instruction fetch
and decode unit

Funct ional
units

Integer

In -order issue

;
Reservat ion

station
Reservat ion

station
Reservat ion

station
Reservat ion

station

Load -
store

Out -o f -o rder execute

Commi t
unit

In -order commit

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. The final step of
updating the state is also called retirement or graduation.

4 0 0 Chapter 4 The Processor

out-of-order execution
A situation in pipelined
execution when an instruc-
tion blocked from executing
does not cause die follow-
ing instructions to wait.

in-order commit
A commit in which
the results of pipelined
execution are written to
the programmer-visible
state in the same order
that instructions are
fetched.

The combination of buffering operands in the reservation stations and results
in the reorder buffer provides a form of register renaming, just like that used by
the compiler in our earlier loop-unroll ing example on page 397. To see how this
conceptually works, consider the following steps:

1. When an instruction issues, it is copied to a reservation station for the
appropriate functional unit. Any operands that are available in the register
file or reorder buffer are also immediately copied into the reservation sta-
tion. The instruction is buffered in the reservation station until all the oper-
ands and the functional unit are available. For the issuing instruction, the
register copy of the operand is no longer required, and if a write to that
register occurred, the value could be overwritten.

2. If an operand is not in the register file or reorder buffer, it must be waiting to
be produced by a functional unit. The name of the functional unit that will
produce the result is tracked. When that unit eventually produces the result,
it is copied directly into the waiting reservation station from the functional
unit bypassing the registers.

These steps effectively use the reorder buffer and the reservation stations to imple-
ment register renaming.

Conceptually, you can think of a dynamically scheduled pipeline as analyzing
the data flow structure of a program. The processor then executes the instructions
in some order that preserves the data flow order of the program. This style of
execution is called an out -of -order execution, since the instructions can be
executed in a different order than they were fetched.

To make programs behave as if they were running on a simple in-order pipeline,
the instruction fetch and decode unit is required to issue instructions in order,
which allows dependences to be tracked, and the commit unit is required to write
results to registers and memory in program fetch order. This conservative m o d e is
called in-order commit . Hence, if an exception occurs, the computer can point to
the last instruction executed, and the only registers updated will be those written
by instructions before the instruction causing the exception. Although, the front
end (fetch and issue) and the back end (commit) of the pipeline run in order,
the functional units are free to initiate execution whenever the data they need is
available. Today, all dynamically scheduled pipelines use in-order commit .

Dynamic scheduling is often extended by including hardware-based specula-
tion, especially for branch outcomes. By predicting the direction of a branch, a
dynamically scheduled processor can continue to fetch and execute instructions
along the predicted path. Because the instructions are committed in order, we know
whether or not the branch was correctly predicted before any instructions from the
predicted path are committed. A speculative, dynamically scheduled pipeline can
also support speculation on load addresses, allowing load-store reordering, and
using the commit unit to avoid incorrect speculation. In the next section, we will
look at the use of dynamic scheduling with speculation in the A M D Opteron X4
(Barcelona) design.

4.10 Parallelism and Advanced Instruction-Level Parallelism 401

Given that compilers can also schedule code around data dependences , you might
ask why a superscalar processor would use dynamic scheduling. There are three
major reasons. First, not all stalls are predictable. In particular, cache misses (see
Chapter 5) cause unpredictable stalls. Dynamic scheduling allows the processor to
hide s o m e of those stalls by cont inuing to execute instructions while waiting for
the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch
prediction, it cannot k n o w the exact order of instructions at compi le time, since
it depends on the predicted and actual behavior of branches. Incorporating
dynamic speculation to exploit more instruction-level parallelism (ILP) wi thout
incorporating dynamic scheduling would significantly restrict the benefits of
speculation.

Third, as the pipeline latency and issue width change from one implementat ion
to another, the best way to compi le a code sequence also changes. For example, h o w
to schedule a sequence of dependent instructions is affected by both issue width
and latency. The pipeline structure affects both the number of t imes a l oop must be
unrolled to avoid stalls as well as the process of compiler-based register renaming.
Dynamic schedul ing allows the hardware to hide most of these details. Thus, users
and software distributors do not need to worry about having multiple versions of
a program for different implementat ions of the same instruction set. Similarly, old
legacy code will get m u c h of the benefit of a new implementat ion without the need
for recompilation.

Understanding
Program
Performance

Both pipelining and multiple-issue execution increase peak instruction
throughput and attempt to exploit instruction-level parallelism (ILP).
Data and control dependences in programs, however, offer an upper limit
on sustained performance because the processor must sometimes wait for
a dependence to be resolved. Software-centric approaches to exploiting p i A
ILP rely on the ability of the compiler to find and reduce the effects of The D I U
such dependences, while hardware-centric approaches rely on extensions P i c t u r e
to the pipeline and issue mechanisms. Speculation, performed by the }'
compiler or the hardware, can increase the amount of ILP that can be
exploited, although care must be taken since speculating incorrectly is
likely to reduce performance.

402 Chapter 4 The Processor

Hardware/
Software
Interface

Modern, high-performance microprocessors are capable of issuing several
instructions per clock; unfortunately, sustaining that issue rate is very difficult. For
example, despite the existence of processors with four to six issues per clock, very
few applications can sustain more than two instructions per clock. There are two
primary reasons for this.

First, within the pipeline, the major performance bottlenecks arise from depen-
dences that cannot be alleviated, thus reducing the parallelism among instruc-
tions and the sustained issue rate. Although little can be done about true data
dependences, often the compiler or hardware does not know precisely whether a
dependence exists or not, and so must conservatively assume the dependence exists.
For example, code that makes use of pointers, particularly in ways that may lead to
aliasing, will lead to more implied potential dependences. In contrast, the greater
regularity of array accesses often allows a compiler to deduce that no dependences
exist. Similarly, branches that cannot be accurately predicted whether at runtime
or compile time will limit the ability to exploit ILP. Often, additional ILP is avail-
able, but the ability of the compiler or the hardware to find ILP that may be widely
separated (sometimes by the execution of thousands of instructions) is limited.

Second, losses in the m e m o r y system (the topic of Chapter 5) also limit the
ability to keep the pipeline full. Some memory system stalls can be hidden, but
limited amounts of ILP also limit the extent to which such stalls can be hidden.

Power Efficiency and Advanced Pipelining
The downside to the increasing exploitation of instruction-level parallelism via
dynamic multiple issue and speculation is power efficiency. Each innovation
was able to turn more transistors into performance, but they often did so very
inefficiently. N o w that we have hit the power wall, we are seeing designs with
multiple processors per chip where the processors are not as deeply pipelined or as
aggressively speculative as the predecessors.

The belief is that while the simpler processors are not as fast as their sophisti-
cated brethren, they deliver better performance per watt, so that they can deliver
more performance per chip when designs are constrained more by power than they
are by number of transistors.

Figure 4.73 shows the number of pipeline stages, the issue width, speculation
level, clock rate, cores per chip, and power of several past and recent microproces-
sors. Note the drop in pipeline stages and power as companies switch to multicore
designs.

Elaboration: A commit unit controls updates to the register file and memory. Some
dynamically scheduled processors update the register file immediately during execution,
using extra registers to implement the renaming function and preserving the older copy

4.10 Parallelism and Advanced Instruction-Level Parallelism 403

Microprocessor Year Clock Rate
Pipeline
Stages

Issue
Width

0ut-of-0rder/
Speculation

Cores/
Chip Power

Intel 4 8 6 1 9 8 9 2 5 MHz 5 1 No 1 5 W

Intel Pentium 1 9 9 3 6 6 MHz 5 2 No 1 1 0 W

Intel Pentium Pro 1 9 9 7 2 0 0 MHz 1 0 3 Yes 1 2 9 W

Intel Pentium 4 Willamette 2 0 0 1 2 0 0 0 MHz 2 2 3 Yes 1 7 5 W

Intel Pentium 4 Prescott 2 0 0 4 3 6 0 0 MHz 3 1 3 Yes 1 1 0 3 W

Intel Core 2 0 0 6 2 9 3 0 MHz 1 4 4 Yes 2 7 5 W

Sun UltraSPARC III 2 0 0 3 1 9 5 0 MHz 14 4 No 1 9 0 W

Sun UltraSPARC Tl (Niagara) 2 0 0 5 1 2 0 0 MHz 6 1 No 8 7 0 W

FIGURE 4.73 Record of Intel and Sun Microprocessors in terms of pipeline complexity, number of cores, and power.
The Pentium -I pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines would be even deeper.

of a register until the instruction updating the register is no longer speculative. Other
processors buffer the result, typically in a structure called a reorder buffer, and the
actual update to the register file occurs later as part of the commit. Stores to memory
must be buffered until commit time either in a store buffer (see Chapter 5) or in the
reorder buffer. The commit unit allows the store to write to memory from the buffer when
the buffer has a valid address and valid data, and when the store is no longer dependent
on predicted branches.

Elaboration: Memory accesses benefit from nonblocking caches, which continue
servicing cache accesses during a cache miss (see Chapter 5). Out-of-order execution
processors need the cache design to allow instructions to execute during a miss.

State whether the following techniques or components are associated primarily Check
with a software- or hardware-based approach to exploiting ILP. In some cases, the Yourself
answer may be both.

1. Branch prediction
2. Multiple issue
3. VLIW
4. Superscalar
5. Dynamic scheduling
6. Out-of-order execution
7. Speculation
8. Reorder buffer
9. Register renaming

4 0 4 Chapter 4 The Processor

microarchitecture The
organization of the
processor, including the
major functional units,
their interconnection, and
control.

4.11
Real Stuff: the AMD Opteron X4
(Barcelona) Pipeline

Like most modern computers, x86 microprocessors employ sophisticated
pipelining approaches. These processors, however, are still faced with the challenge
of implementing the complex x86 instruction set, described in Chapter 2. Both
A M D and Intel fetch x86 instructions and translate them internal to MlPS-like
instructions, which A M D calls RISC operations (Rops) and Intel calls micro-
operations. The RISC operations are then executed by a sophisticated, dynamically
scheduled, speculative pipeline capable of sustaining an execution rate of three
RISC operations per clock cycle in the A M D Opteron X4 (Barcelona). This section
focuses on that RISC operation pipeline.

When we consider the design of sophisticated, dynamically scheduled proces-
sors, the design of the functional units, the cache and register file, instruction issue,
and overall pipeline control become intermingled, making it difficult to separate the
datapath from the pipeline. Because of this, many engineers and researchers have
adopted the term microarchitecture to refer to the detailed internal architecture
of a processor. Figure 4.74 shows the microarchitecture of the X4, focusing on the
structures for executing the RISC operations.

Another way to look at the X4 is to see the pipeline stages that a typical instruc-
tion goes through. Figure 4.75 shows the pipeline structure and the typical number
of clock cycles spent in each; of course, the number of clock cycles varies due to
the nature of dynamic scheduling as well as the requirements of individual RISC
operations.

a rchitectu ral registers
The instruction set of
visible registers of a
processor; for example,
in MIPS, these are the 32
integer and 16 floating-
point registers.

Elaboration: Opteron X4 uses a scheme for resolving antidependences and incorrect
speculation that uses a reorder buffer together with register renaming. Register
renaming explicitly renames the architectural registers in a processor (16 in the case of
the 64-bit version of the x86 architecture) to a larger set of physical registers (72 in the
X4). X4 uses register renaming to remove antidependences. Register renaming requires
the processor to maintain a map between the architectural registers and the physical
registers, indicating which physical register is the most current copy of an architectural
register. By keeping track of the renamings that have occurred, register renaming offers
another approach to recovery in the event of incorrect speculation: simply undo the
mappings that have occurred since the first incorrectly speculated instruction. This will
cause the state of the processor to return to the last correctly executed instruction,
keeping the correct mapping between the architectural and physical registers.

Check
Yourself

Are the following statements true or false?
1. The Opteron X4 multiple-issue pipeline directly executes xS6 instructions.
2. X4 uses dynamic scheduling but no speculation.

4.11 Real Stuff: The AMD Opteron X4 (Barcelona) Pipeline 405

FIGURE 4 .74 T h e microarchi tecture of A M D O p t e r o n X 4 . The extensive queues allow up to 106 RISC operations to be outstanding,
including 24 integer operations, 36 floating point/SSE operations, and 44 loads and stores. The load and store units are actually separated into
two parts, with the first part handling address calculation in the Integer ALU units and the second part responsible for the actual memory
reference. There is an extensive bypass network among the functional units; sincc the pipeline is dynamic rather than static, bypassing is done
by tagging results and tracking source operands, so as to allow a match when a result is produced for an instruction in one of the queues that
needs the result.

3. The X4 microarchitecture has many more registers than x86 requires.
4. X4 uses less than half the pipeline stages of the earlier Pentium 4 Prescott

(see Figure 4.73).

406 Chapter 4 The Processor

RISC-operation
] queue Reorder
i] r - j - 1 buffer
— *. allocation +
I register

renaming

Reorder
buffer

Decode
and

translate

Scheduling
+ dispatch

unit

Data Cache/
Commit

Instruction
Fetch Execution

Number of
clock cycles

FIGURE 4.75 The Opteron X4 pipeline showing the pipeline flow for a typical instruction and the number of clock
cycles for the major steps in the 12-stage pipeline for integer RISC-operations. The floating point execution queue is 17 stages
long. The major buffers where RISC-operations wait are also shown.

Understanding
Program

Performance

The Opteron X4 combines a 12-stage pipeline and aggressive mult iple issue to
achieve high performance. By keeping the latencies for back-to-back operations
low, the impact of data dependences is reduced. What are the most serious potential
performance bottlenecks for programs running on this processor? The fol lowing
list includes s o m e potential performance problems, the last three of which can
apply in some form to any high-performance pipelined processor.

• The use of xS6 instructions that do not map to a few s imple RISC
operations

• Branches that are difficult to predict, causing mispredict ion stalls and restarts
when speculation fails

• Long dependences—typical ly caused by long-running instructions or data
cache misses—that lead to stalls

• Performance delays arising in accessing m e m o r y (see Chapter 5) that cause
the processor to stall

Advanced Topic: an Introduction to
Digital Design Using a Hardware Design
Language to Describe and Model a
Pipeline and More Pipelining Illustrations

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears on the
CD, gives a brief introduct ion and shows h o w a hardware design language, Verilog
in this case, can be used to describe the MIPS control both behaviorally and in a

4.13 Fallacies and Pitfalls 407

form suitable for hardware synthesis. It then provides a series of behavioral models
in Verilog of the MIPS five-stage pipeline. The initial model ignores hazards, and
additions to the mode l highlight the changes for forwarding, data hazards, and
branch hazards.

We then provide about a dozen illustrations using the single-cycle graphical
pipeline representation for readers who want to see more detail on how pipelines
work for a few sequences of MIPS instructions.

L f f j J Fallacies and Pitfalls

Fallacy: Pipelining is easy.

Our books testify to the subtlety of correct pipeline execution. Our advanced
book had a pipeline bug in its first edition, despite its being reviewed by more
than 100 people and being class-tested at 18 universities. The bug was uncovered
only when someone tried to build the computer in that book. The fact that the
Verilog to describe a pipeline like that in Opteron X4 will be thousands of lines is
an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology.

When the number of transistors on-chip and the speed of transistors made a five-
stage pipeline the best solution, then the delayed branch (see the first Elaboration
on page 381) was a simple solution to control hazards. With longer pipelines,
superscalar execution, and dynamic branch prediction, it is n o w redundant. In
the early 1990s, dynamic pipeline scheduling took too many resources and was
not required for high performance, but as transistor budgets continued to double
and logic became much faster than memory, then multiple functional units and
dynamic pipelining made more sense. Today, concerns about power are leading to
less aggressive designs.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficulties of pipelining arise because of instruction set complications.
Here are some examples:

• Widely variable instruction lengths and running times can lead to imbalance
among pipeline stages and severely complicate hazard detection in a design
pipelined at the instruction set level. This problem was overcome, initially in
the DEC VAX 8500 in the late 1980s, using the micropipelined scheme that
the Opteron X4 employs today. Of course, the overhead of translation and
maintaining correspondence between the micro-operations and the actual
instructions remains.

• Sophisticated addressing modes can lead to different sorts of problems.
Addressing modes that update registers complicate hazard detection. Other

4 0 8 Chapter 4 The Processor

addressing modes that require multiple memory accesses substantially
complicate pipeline control and make it difficult to keep the pipeline flowing
smoothly.

Perhaps the best example is the DEC Alpha and the DEC NVAX. In comparable
technology, the newer instruction set architecture of the Alpha allowed an imple-
mentation whose performance is more than twice as fast as NVAX. In another
example, Bhandarkar and Clark [19911 compared the MIPS M/2000 and the DEC
VAX 8700 by counting clock cycles of the SPEC benchmarks; they concluded
that although the MIPS M/2000 executes more instructions, the VAX on average
executes 2.7 times as many clock cycles, so the MIPS is faster.

Nine-tenths of wisdom
consists of being wise
in time.

American proverb

instruction latency The
inherent execution time
for an instruction.

4.14 Concluding Remarks

As we have seen in this chapter, both the datapath and control for a processor can
be designed starting with the instruction set architecture and an understanding of
the basic characteristics of the technology. In Section 4.3, we saw how the datapath
for a MIPS processor could be constructed based on the architecture and the deci-
sion to build a single-cycle implementation. Of course, the underlying technology
also affects many design decisions by dictating what components can be used in the
datapath, as well as whether a single-cycle implementation even makes sense.

Pipelining improves throughput but not the inherent execution time, or
instruct ion latency, of instructions; for some instructions, the latency is similar
in length to the single-cycle approach. Multiple instruction issue adds additional
datapath hardware to allow multiple instructions to begin every clock cycle, but at
an increase in effective latency. Pipelining was presented as reducing the clock cycle
t ime of the simple single-cycle datapath. Multiple instruction issue, in comparison,
clearly focuses on reducing clock cycles per instruction (CPI).

Pipelining and multiple issue both attempt to exploit instruction-level parallel-
ism. The presence of data and control dependences, which can become hazards, are
the primary limitations on how much parallelism can be exploited. Scheduling and
speculation, both in hardware and in software, are the primary techniques used to
reduce the performance impact of dependences.

The switch to longer pipelines, multiple instruction issue, and dynamic sched-
uling in the mid-1990s has helped sustain the 60% per year processor performance
increase that started in the early 1980s. As ment ioned in Chapter 1, these micro-
processors preserved the sequential programming model, but they eventually ran
into the power wall. Thus, the industry has been forced to try multiprocessors,
which exploit parallelism at much coarser levels (the subject of Chapter 7). This
trend has also caused designers to reassess the power-performance implications

4.16 Exercises 409

of s o m e of the inventions since the mid-1990s , resulting in a simplif ication of
pipelines in the more recent versions of microarchitectures.

To sustain the advances in processing performance via parallel processors,
Amdahl's law suggests that another part of the system will b e c o m e the bottleneck.
That bottleneck is the topic of the next chapter: the m e m o r y system.

Historical Perspective and Further
Reading

This section, which appears on the CD, discusses the history of the f irst pipel ined
processors, the earliest superscalars, and the deve lopment of out -of -order and
speculative techniques, as well as important deve lopments in the accompanying
compiler technology.

4.16 Exercises
Contributed by Milos Frvulovic of Georgia Tech

Exercise 4.1
Different instructions utilize different hardware blocks in the basic single-cycle
implementat ion. The next three problems in this exercise refer to the fol lowing
instruction:

Instruction Interpretation

a. add Rd.Rs.Rt Reg[Rd]=Reg[Rs]+Reg[Rt]

b. lw Rt.Offs(Rs) Reg[Rt]-Mem[Reg[Rs]TOffs]

4.1.1 [5] < 4 . 1 > What are the values of control signals generated by the control in
Figure 4.2 for this instruction?

4.1.2 [5] < 4 . 1 > Which resources (blocks) perform a useful funct ion for this
instruction?

4.1.3 [10] < 4 . 1 > Which resources (blocks) produce outputs, but their outputs
are not used for this instruction? Which resources produce no outputs for this
instruction?

410 Chapter 4 The Processor

Different execution units and blocks of digital logic have different latencies (t ime
needed to do their work). In Figure 4.2 there are seven kinds of major blocks.
Latencies of blocks along the critical (longest-latency) path for an instruction
determine the m i n i m u m latency of that instruction. For the remaining three
problems in this exercise, assume the fol lowing resource latencies: m I-Mem Add Mux ALU Regs Control

a. 4 0 0 p s lOOps 3 0 p s 1 2 0 p s 2 0 0 p s 3 5 0 p s lOOps

b. 5 0 0 p s 1 5 0 p s lOOps 1 8 0 p s 2 2 0 p s lOOOps 6 5 p s

4.1.4 [5] <4 .1> What is the critical path for a MIPS A N D instruction?

4.1.5 [5] <4 .1> What is the critical path for a MIPS load (LD) instruction?

4.1.6 [10] <4.1 > What is the critical path for a MIPS BEQ instruction?

Exercise 4.2
The basic single-cycle MIPS implementat ion in Figure 4.2 can only implement
s o m e instructions. N e w instructions can be added to an existing ISA, but the
decis ion whether or not to do that depends, a m o n g other things, on the cost and
complexi ty such an addition introduces into the processor datapath and control.
The first three problems in this exercise refer to this new instruction:

Instruction Interpretation

a. adc!3 Rd.Rs ,Rt.Rx Reg[Rd]=Reg[Rs]+Reg[Rt]+Reg[Rx]

b. sll Rt.Rd.Shift R e g [R d] = R e g C R t] << S h i f t (shift left by Shift bits)

4.2.1 [10] < 4 . 1 > Which existing blocks (if any) can be used for this instruction?

4.2.2 [10] <4 .1> Which new functional blocks (if any) do we need for this
instruction?

4.2.3 [10] < 4 . 1 > What n e w signals do we need (if any) from the control unit to
support this instruction?

W h e n processor designers consider a possible improvement to the processor
datapath, the decision usually depends on the cost /performance tradeoff. In
the fol lowing three problems, assume that we are starting with a datapath from
Figure 4.2, where I -Mem, Add, Mux, ALU, Regs, D - M e m , and Control blocks have
latencies of 400ps, lOOps, 30ps, 120ps, 200ps, 350ps, and lOOps, respectively, and
costs of 1000, 30, 10, 100, 200, 2000, and 500, respectively. The remaining three
problems in this exercise refer to the fol lowing processor improvement:

4.16 Exercises 411

Improvement Latency Cost Benefit

a. Faster Add - 2 0 p s for Add units + 2 0 per Add unit Replaces existing Add units with
faster ones.

b. Larger Registers +lOOps for Regs + 2 0 0 for Regs Fewer loads and stores needed
to save and restore register
values. This results in 5% fewer
instructions.

4.2.4 [10] <4 .1> What is the clock cycle t ime with and wi thout this
improvement?

4.2.5 [10] < 4 . 1 > What is the speed-up achieved by adding this improvement?

4.2.6 [10] < 4 . 1 > Compare the cost /performance ratio with and wi thout this
improvement .

Exercise 4.3
Problems in this exercise refer to the fo l lowing logic block:

Logic Block

a. Small l-Memory with four 8-bit words

b. Small Registers unit with two 8-bit registers

4.3.1 [5] < 4 . 1 , 4 . 2 > D o e s this block contain logic only, flip-flops only, or both?

4.3.2 [20] <4.1 , 4 .2> Show h o w this block can be implemented . Use only A N D ,
OR, NOT, and D-e lements .

4.3.3 [10] <4.1 , 4 . 2> Repeat Exercise 4.3.2, but the A N D and OR gates you use
must all be 2- input gates.

Cost and latency of digital logic depends on the kinds of basic logic e lements
(gates) that are available and on the properties of these gates. The remaining three
problems in this exercise refer to these gates, latencies, and costs:

• NOT
2-input

AND or OR
Each additional

input for AND/OR
D-element

Latency Cost Latency Cost Latency Cost Latency Cost

a. 2 0 p s 1 3 0 p s 2 +0ps + 1 4 0 p s 6

b. 5 0 p s 1 lOOps 2 +40ps + 1 1 6 0 p s 2

412 Chapter 4 The Processor

4.3.4 [5] <4.1 , 4 .2> What is the latency of your implementat ion from Exercise
4.3.2?

4.3.5 [5] < 4 . 1 , 4 . 2 > What is the cost of your implementat ion from Exercise 4.3.2?

4.3.6 [20] <4.1, 4 .2> Change your design to min imize the latency, then to
min imize the cost. Compare the cost and latency of these two opt imized designs.

Exercise 4.4
W h e n implement ing a logic expression in digital logic, one must use the available
logic gates to implement an operator for which a gate is not available. Problems in
this exercise refer to the fo l lowing logic expressions:

Control signal 1 Control signal 2

a. (((A OR B) OR C) OR
(A AND O) OR (A AND B)

(A OR B) OR C

b. (((A OR B) XOR B) OR
(A OR C)) OR (A AND B)

A AND B

4.4.1 [5] < 4 . 2 > Implement the logic for the Control signal 1. Your circuit should
directly implement the given expression (do not reorganize the expression to
"optimize" it), using N O T gates and 2- input AND, OR, and XOR gates.

4.4.2 [10] Assuming that all gates have equal latencies, what is the length (in
gates) of the critical path in your circuit from Exercise 4.4.1?

4.4.3 [10] < 4 . 2 > W h e n multiple logic expressions are implemented , it is possible
to reduce implementat ion cost by using the s o m e signals in more than one
expression. Repeat Exercise 4.4.1, but implement both Control signal 1 and Control
signal 2, and try to "share" circuitry between expressions whenever possible.

For the remaining three problems in this exercise, we assume that the fol lowing basic
digital logic elements are available, and that their latency and cost are as follows:

NOT 2-input AND 2-input OR 2-input XOR

Latency Cost Latency Cost Latency Cost Latency Cost

a. 2 0 p s 1 3 0 p s 2 34ps 3 4 0 p s 6

b. 5 0 p s 1 lOOps 2 1 2 0 p s 2 1 5 0 p s 2

4.4.4 [10] <4 .2> What is the length of the critical path in your circuit from 4.4.3?

4.4.5 [10] < 4 . 2 > What is the cost of your circuit from Exercise 4.4.3?

4.16 Exercises 413

4.4.6 [10] <4 .2> What fraction of the cost was saved in your circuit from Exercise
4.4.3 by implementing these two control signals together instead of separately?

Exercise 4a5
The goal of this exercise is to help you familiarize yourself with the design and
operation of sequential logical circuits. Problems in this exercise refer to this ALU
operation:

ALU operation

a. | Add-one (X+l)

b. | Shift left by 2 bits (X « 2)

4.5.1 [20] <4 .2> Design a circuit with 1-bit data inputs and a 1-bit data output
that accomplishes this operation serially, starting with the least-significant bit. In a
serial implementation, the circuit is processing input operands bit by bit, generating
output bits one by one. For example, a serial A N D circuit is simply an A N D gate; in
cycle N we give it the Nth bit from each of the operand and we get the Nth bit of the
result. In addition to data inputs, the circuit has a Clk (clock) input and a "Start"
input that is set to 1 only in the very first cycle of the operation. In your design, you
can use D-elements and NOT, AND, OR, and XOR gates.

4.5.2 [20] <4 .2> Repeat Exercise 4.5.1, but now design a circuit that accomplishes
this operation 2 bits at a time.
In the rest of this exercise, we assume that the following basic digital logic elements
are available, and that their latency and cost are as follows:

NOT AND OR XOR D-element

Latency Cost Latency Cost Latency Cost Latency Cost Latency Cost 1

a. 2 0 p s 1 3 0 p s 2 2 0 p s 2 3 0 p s 4 4 0 p s 6

b. 4 0 p s 1 5 0 p s 2 6 0 p s 2 8 0 p s 3 8 0 p s 1 2

The time given for a D-e lement is its setup time. The data input of a flip-flop must
have the correct value one setup-time before the clock edge (end of clock cycle)
that stores that value into the flip-flop.

4.5.3 [10] <4 .2> What is the cycle time for the circuit you designed in Exercise
4.5.1? H o w long does it take to perform the 32-bit operation?
4.5.4 [10] <4 .2> What is the cycle time for the circuit you designed in Exercise
4.5.2? What is the speed-up achieved by using this circuit instead of the one from
Exercise 4.5.1 for a 32-bit operation?

4 1 4 Chapter 4 The Processor

4.5.5 [10] < 4 . 2 > C o m p u t e the cost for the circuit you designed in Exercise 4.5.1,
and then for the circuit you designed in Exercise 4.5.2.

4.5.6 [5] < 4 . 2 > Compare cost /performance ratios for the two circuits you
designed in Exercises 4.5.1 and 4.5.2. For this problem, performance of a circuit is
the inverse of the t ime needed to perform a 32-bit operation.

Exercise 4,6
Problems in this exercise assume that logic blocks needed to implement a processors
datapath have the fo l lowing latencies:

A d d M u x A L U R e g s D-IVIem S i g n - e x t e n d Shift - Ieft -2

a. 4 0 0 p s lOOps 3 0 p s 1 2 0 p s 2 0 0 p s 3 5 0 p s 2 0 p s 2ps

b. 5 0 0 p s 1 5 0 ps lOOps 1 8 0 p s 2 2 0 p s lOOOps 9 0 p s 2 0 p s

4.6.1 [10] <4 .3> If the only thing we need to do in a processor is fetch consecutive
instructions (Figure 4.6) , what would the cycle t ime be?

4.6.2 [10] <4 .3> Consider a datapath similar to the one in Figure 4.11, but for a
processor that only has o n e type of instruction: uncondit ional PC-relative branch.
What would the cycle t ime be for this datapath?

4.6.3 [10] <4 .3> Repeat Exercise 4.6.2, but this t ime we need to support only
conditional PC-relative branches.

The remaining three problems in this exercise refer to the fol lowing logic block
(resource) in the datapath:

R e s o u r c e

a. Add 4 (to the PC)

Data Memory

4.6.4 [10] < 4 . 3 > Which kinds of instructions require this resource?

4.6.5 [20] <4 .3> For which kinds of instructions (if any) is this resource on the
critical path?

4.6.6 [10] <4 .3> Assuming that we only support beq and add instructions,
discuss h o w changes in the given latency of this resource affect the cycle t ime of the
processor. Assume that the latencies of other resources do not change.

4.16 Exercises 415

Exercise 4.7
In this exercise we examine h o w latencies of individual c o m p o n e n t s of the datapath
affect the clock cycle t ime of the entire datapath, and h o w these c o m p o n e n t s
are utilized by instructions. For problems in this exercise, assume the fo l lowing
latencies for logic blocks in the datapath:

Add Mux ALU Regs D-Mem Sign-extend Shift-left-2

a. 4 0 0 p s lOOps 3 0 p s 1 2 0 p s 2 0 0 p s 3 5 0 p s 2 0 p s Ops

b. 5 0 0 p s 1 5 0 p s lOOps 1 8 0 p s 2 2 0 p s lOOOps 9 0 p s 2 0 p s

4.7.1 [10] <4 .3> What is the clock cycle t ime if the only type of instructions we
need to support are ALU instructions (add , and, etc.)?

4.7.2 [10] <4 .3> What is the clock cycle t ime if we only had to support lw
instructions?

4.7.3 [20] <4 .3> What is the clock cycle t ime if we must support add, beq , 1 w,
and sw instructions?

For the remaining problems in this exercise, assume that there are no pipeline stalls
and that the breakdown of executed instructions is as follows:

'fill add addi not beq Iw sw

a. 30% 15% 5% 20% 20% 10%

b. 25% 5% 5% 15% 35% 15%

4.7.4 [10] < 4 . 3 > In what fraction of all cycles is the data m e m o r y used?

4.7.5 [10] < 4 . 3 > In what fraction of all cycles is the input of the s ign-extend
circuit needed? What is this circuit doing in cycles in which its input is not
needed?

4.7.6 [10] <4 .3> If we can improve the latency of one of the given datapath
c o m p o n e n t s by 10%, which c o m p o n e n t should it be? What is the speed-up from
this improvement?

Exercise 4.3
When silicon chips are fabricated, defects in materials (e.g., si l icon) and
manufacturing errors can result in defective circuits. A very c o m m o n defect is for
one wire to affect the signal in another. This is called a cross-talk fault. A special

416 Chapter 4 The Processor

class of cross-talk faults is when a signal is connected to a wire that has a constant
logical value (e.g., a power supply wire). In this case we have a stuck-at-0 or a stuck-
at-1 fault, and the affected signal always has a logical value of 0 or 1, respectively.

The following problems refer to the following signal from Figure 4.24:

Signal

a. Instruction Memory, output Instruction, bit 7

b. Control unit, output MemtoReg

4.8.1 [10] <4.3, 4 .4> Let us assume that processor testing is done by filling the
PC, registers, and data and instruction memories with some values (you can choose
which values), letting a single instruction execute, then reading the PC, memories ,
and registers. These values are then examined to determine if a particular fault is
present. Can you design a test (values for PC, memories, and registers) that would
determine if there is a stuck-at-0 fault on this signal?

4.8.2 [10] <4.3, 4.4> Repeat Exercise 4.8.1 for a stuck-at-1 fault. Can you use a
single test for both stuck-at-0 and stuck-at-1? If yes, explain how; if no, explain
why not.

4.8.3 [60] <4.3, 4 .4> If we know that the processor has a stuck-at-1 fault on this
signal, is the processor still usable? To be usable, we must be able to convert any
program that executes on a normal MIPS processor into a program that works on
this processor. You can assume that there is enough free instruction m e m o r y and
data memory to let you make the program longer and store additional data. Hint:
the processor is usable if every instruction "broken" by this fault can be replaced
with a sequence of "working" instructions that achieve the same effect.

The following problems refer to the following fault:

Fault

a. Stuck-at-1

b. Becomes 0 if Instruction [31-26] has all bits at 0, no fault otherwise

4.8.4 [10] <4 .3 ,4 .4> Repeat Exercise 4.8.1, but now the fault to test for is whether
the "MemRead" control signal has this fault.

4.8.5 [10] <4 .3 ,4 .4> Repeat Exercise 4.8.1, but now the fault to test for is whether
the "Jump" control signal has this fault.

4.16 Exercises 417

4.8.6 [40] <4.3, 4.4> Using a single test described Exercise 4.8.1, we can test for
faults in several different signals, but typically not all of them. Describe a series of
tests to look for this fault in all Mux outputs (every output bit from each of the five
Muxes)? Try to do this with as few single-instruction tests as possible.

Exercise 4.9
In this exercise we examine the operation of the single-cycle datapath for a particu-
lar instruction. Problems in this exercise refer to the following MIPS instruction:

Instruction

a. lw $1,40(56)

b. Label: bne $1,52.Label

4.9.1 [10] <4.4> What is the value of the instruction word?

4.9.2 [10] <4.4> What is the register number supplied to the register file's "Read
register 1" input? Is this register actually read? How about "Read register 2"?

4.9.3 [10] <4.4> What is the register number supplied to the register file's "Write
register" input? Is this register actually written?

Different instructions require different control signals to be asserted in the data-
path. The remaining problems in this exercise refer to the following two control
signals from Figure 4.24:

Control signal 1 Control signal 2

a. RegDst MemRead

b. RegWrite MemRead

4.9.4 [20] <4.4> What is the value of these two signals for this instruction?
4.9.5 [20] <4.4> For the datapath from Figure 4.24, draw the logic diagram for
the part of the control unit that implements just the first signal. Assume that we
only need to support 1 w, sw, beq, add, and j (jump) instructions.
4.9.6 [20] <4.4> Repeat Exercise 4.9.5, but now implement both of these signals.

418 Chapter 4 The Processor

Exercise 4.10
In this exercise we examine how the clock cycle time of the processor affects the
design of the control unit, and vice versa. Problems in this exercise assume that the
logic blocks used to implement the datapath have the following latencies:

Add Mux ALU Regs D-Mem Sign-extend Shift-left-2 ALU Ctrl

a. 4 0 0 p s lOOps 3 0 p s 1 2 0 p s 2 0 0 p s 3 5 0 p s 2 0 p s Ops 5 0 p s

b. 5 0 0 p s 1 5 0 p s lOOps 1 8 0 p s 2 2 0 p s lOOOps 9 0 p s 2 0 p s 5 5 p s

4 . 1 0 . 1 [10] <4.2, 4.4> To avoid lengthening the critical path of the datapath
shown in Figure 4.24, how much time can the control unit take to generate the
MemWrite signal.
4 . 1 0 . 2 [20] <4.2,4.4> Which control signal in Figure 4.24 has the most slack and
how much time does the control unit have to generate it if it wants to avoid being
on the critical path?
4 . 1 0 . 3 [20] <4.2,4.4> Which control signal in Figure 4.24 is the most critical to
generate quicldy and how much time does the control unit have to generate it if it
wants to avoid being on the critical path?
The remaining problems in this exercise assume that the time needed by the control
unit to generate individual control signals is as follows:

RegDst Jump Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite

a. 7 2 0 p s 7 3 0 p s eoops 4 0 0 p s 7 0 0 p s 2 0 0 p s 7 1 0 p s 2 0 0 p s 8 0 0 p s

b. 1 6 0 0 p s 1 6 0 0 p s 1 4 0 0 p s 5 0 0 p s 1 4 0 0 p s 4 0 0 p s 1 5 0 0 p s 4 0 0 p s 1 7 0 0 p s

4 . 1 0 . 4 [20] <4.4> What is the clock cycle time of the processor?
4 . 1 0 . 5 [20] <4.4> If you can speed up the generation of control signals, but
the cost of the entire processor increases by $1 for each 5ps improvement of a
single control signal, which control signals would you speed up and by how much
to maximize performance? What is the cost (per processor) of this performance
improvement?
4 . 1 0 . 6 [30] <4.4> If the processor is already too expensive, instead of paying to
speed it up as we did in 4.10.5, we want to minimize its cost without further slowing
it down. If you can use slower logic to implement control signals, saving $1 of the
processor cost for each 5ps you add to the latency of a single control signal, which
control signals would you slow down and by how much to reduce the processor's
cost without slowing it down?

4.16 Exercises 419

Exercise 4„3L1
In this exercise we examine in detail how an instruction is executed in a single-cycle
datapath. Problems in this exercise refer to a clock cycle in which the processor
fetches the following instruction word:

Instruction word • 1

a. looonoooioooonoooooooooooioooo

b. oooiooooooiooonoooooooooooonoo

4.11.1 [5] <4.4> What are the outputs of the sign-extend and the jump"Shift left 2"
unit (in the upper left of Figure 4.24) for this instruction word?
4.11.2 [10] <4.4> What are die values of ALU control unit's inputs for this instruction?
4.11.3 [10] <4.4> What is the new PC address after this instruction is executed?
Highlight the path through which this value is determined.
The remaining problems in this exercise assume that data memory is all-zeros and
that the processor's registers have the following values at the beginning of the cycle
in which the above instruction word is fetched:

$0 $1 $2 $3 $4 $5 $6 $8 $12 $31

a. 0 1 2 3 - 4 5 6 8 1 - 3 2

b. o - 1 6 - 2 - 3 4 - 1 0 - 6 - 1 8 - 4

4.11.4 [10] <4.4> For each Mux, show the values of its data output during the
execution of this instruction and these register values.
4.11.5 [10] <4.4> For die ALU and the two add units, what are their data input values?
4.11.6 [10] <4.4> What are the values of all inputs for the "Registers" unit?

Exercise 4,12
In this exercise, we examine how pipelining affects the clock cycle time of the
processor. Problems in this exercise assume that individual stages of the datapath
have the following latencies:

IF ID EX • Q S ^ H WB

a. 3 0 0 p s 4 0 0 p s 3 5 0 p s 5 0 0 p s lOOps

b. 2 0 0 p s 1 5 0 p s 1 2 0 p s 1 9 0 p s 1 4 0 p s

420 Chapter 4 The Processor

4.12.1 [5] <4.5> What is the clock cycle time in a pipelined and nonpipelined
processor?
4.12.2 [10] <4.5> What is the total latency of a 1 w instruction in a pipelined and
nonpipelined processor?
4.12.3 [10] <4.5> If we can split one stage of the pipelined datapath into two new
stages, each with half the latency of the original stage, which stage would you split
and what is the new clock cycle time of the processor?
The remaining problems in this exercise assume that instructions executed by the
processor are broken down as follows:

ALU beq Iw sw

a. 50% 25% 15% 10%

b. 30% 25% 30% 15%

4.12.4 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization
(% of cycles used) of the data memory?
4.12.5 [10] <4.5> Assuming there are no stalls or hazards, what is the utilization
of the write-register port of the "Registers" unit?
4.12.6 [30] <4.5> Instead of a single-cycle organization, we can use a multi-
cycle organization where each instruction takes multiple cycles but one instruction
finishes before another is fetched. In this organization, an instruction only goes
through stages it actually needs (e.g., ST only takes four cycles because it does not
need the WB stage). Compare clock cycle times and execution times with single-
cycle, multi-cycle, and pipelined organization.

Exercise 4.13
In this exercise, we examine how data dependences affect execution in the basic
five-stage pipeline described in Section 4.5. Problems in this exercise refer to the
following sequence of instructions:

4.16 Exercises 4 2 1

4 . 1 3 . 1 [10] <4.5> Indicate dependences and their type.
4 . 1 3 . 2 [10] <4.5> Assume there is no forwarding in this pipelined processor.
Indicate hazards and add nop instructions to eliminate them.
4 . 1 3 . 3 [10] <4.5> Assume there is full forwarding. Indicate hazards and add nop
instructions to eliminate them. The remaining problems in this exercise assume the
following clock cycle times:

Without forwarding With full forwarding With ALU-ALU forwarding only

a. 300ps 400ps 360ps

b. 200ps 250ps 220ps

4 . 1 3 . 4 [10] <4.5> What is the total execution time of this instruction sequence
without forwarding and with full forwarding? What is the speed-up achieved by
adding full forwarding to a pipeline that had no forwarding?
4 . 1 3 . 5 [10] <4.5> Add n o p instructions to this code to eliminate hazards if there
is ALU-ALU forwarding only (no forwarding from the MEM to the EX stage)?
4 . 1 3 . 6 [10] <4.5> What is the total execution time of this instruction sequence
with only ALU-ALU forwarding? What is the speed-up over a no-forwarding
pipeline?

Exercise 4.14
In this exercise, we examine how resource hazards, control hazards, and ISA design
can affect pipelined execution. Problems in this exercise refer to the following
fragment of MIPS code:

Instruction sequence

a. lw $ 1 , 4 0 ($ 6)

beq $2.50,Label ; A s s u m e $2 == $0

sw $ 6 . 5 0 ($ 2)

Label: add $2,$3,$4

sw $ 3 . 5 0 ($ 4)

b. lw $ 5 . - 1 6 ($ 5)

sw $ 4 . - 1 6 ($ 4)

lw $ 3 . - 2 0 ($ 4)

beq $2,$0,Label ; Assume $2 != $0

add $5 , $1, $4

4 . 1 4 . 1 [10] <4.5> For this problem, assume that all branches are perfectly
predicted (this eliminates all control hazards) and that no delay slots are used. If

4 2 2 C h a p t e r 4 The P r o c e s s o r

we only have one memory (for both instructions and data), there is a structural
hazard every time we need to fetch an instruction in the same cycle in which
another instruction accesses data. To guarantee forward progress, this hazard must
always be resolved in favor of the instruction that accesses data. What is the total
execution time of this instruction sequence in the five-stage pipeline that only has
one memory? We have seen that data hazards can be eliminated by adding nops to
the code. Can you do the same with this structural hazard? Why?
4.14.2 [20] <4.5> For this problem, assume that all branches are perfectly
predicted (this eliminates all control hazards) and that no delay slots are used.
If we change load/store instructions to use a register (without an offset) as the
address, these instructions no longer need to use the ALU. As a result, MEM and EX
stages can be overlapped and the pipeline has only four stages. Change this code to
accommodate this changed ISA. Assuming this change does not affect clock cycle
time, what speed-up is achieved this instruction sequence?
4.14.3 [10] <4.5> Assuming stall-on-branch and no delay slots, what speed-up is
achieved on this code if branch outcomes are determined in the ID stage, relative to
the execution where branch outcomes are determined in the EX stage?
The remaining problems in this exercise assume that individual pipeline stages
have the following latencies:

IF ID E X • B W B

a. lOOps 1 2 0 p s 9 0 p s 1 3 0 p s 6 0 p s

b. 1 8 0 p s lOOps 1 7 0 p s 2 2 0 p s 6 0 p s

4.14.4 [10] <4.5> Given these pipeline stage latencies, repeat the speed-up
calculation from 4.14.2, but take into account the (possible) change in clock cycle
time. When EX and MEM are done in a single stage, most of their work can be
done in parallel. As a result, the resulting EX/MEM stage has a latency that is
the larger of the original two, plus 20ps needed for the work that could not be done
in parallel.
4.14.5 [10] <4.5> Given these pipeline stage latencies, repeat the speed-up
calculation from Exercise 4.14.3, taking into account the (possible) change in clock
cycle time. Assume that the latency ID stage increases by 50% and the latency of
the EX stage decreases by lOps when branch outcome resolution is moved from
EX to ID.
4.14.6 [10] <4.5> Assuming stall-on-branch and no delay slots, what is the new
clock cycle time and execution time of this instruction sequence if beq address

4.16 Exercises 4 2 3

computation is moved to the MEM stage? What is the speed-up from this change?
Assume that the latency of the EX stage is reduced by 20ps and the latency of
the MEM stage is unchanged when branch outcome resolution is moved from EX
to MEM.

Exercise 4.15
In this exercise, we examine how the ISA affects pipeline design. Problems in this
exercise refer to the following new instruction:

a. bezi (Rs),Label if Mem[Rs] = 0 then PC=PC+0ffs

b. swi R d . R s (R t) Mem[Rs+Rt]=Rd

4 . 1 5 . 1 [20] <4.5> What must be changed in the pipelined datapath to add this
instruction to the MIPS ISA?
4 . 1 5 . 2 [10] <4.5> Which new control signals must be added to your pipeline
from Exercise 4.15.1?
4 . 1 5 . 3 [20] <4.5, 4.13> Does support for this instruction introduce any new
hazards? Are stalls due to existing hazards made worse?
4 . 1 5 . 4 [10] <4.5,4.13> Give an example of where this instruction might be useful
and a sequence of existing MIPS instruction that are replaced by this instruction.
4 . 1 5 . 5 [10] <4.5, 4.11, 4.13> If this instruction already exists in a legacy ISA,
explain how it would be executed in a modern processor like AMD Barcelona.
The last problem in this exercise assumes that each use of the new instruction
replaces the given number of original instructions, that the replacement can
be made once in the given number of original instructions, and that each time
the new instruction is executed the given number of extra stall cycles is added to
the program's execution time:

• Replaces O n c e in every Extra Stall Cycles

a. 2 2 0 1

b. 3 6 0 o

4 . 1 5 . 6 [10] <4.5> What is the speed-up achieved by adding this new instruction?
In your calculation, assume that the CPI of the original program (without the new
instruction) is 1.

4 2 4 Chapter 4 The Processor

Exercise 4.16
The first three problems in this exercise refer to the following MIPS instruction:

Instruction

a. lw $1,40(56)

b. add 55.55.55

4.16.1 [5] <4.6> As this instruction executes, what is kept in each register located
between two pipeline stages?
4.16.2 [5] <4.6> Which registers need to be read, and which registers are actually
read?
4.16.3 [5] <4.6> What does this instruction do in EX and MEM stages?
The remaining three problems in this exercise refer to the following loop. Assume
that perfect branch prediction is used (no stalls due to control hazards), that there
are no delay slots, and that the pipeline has full forwarding support. Also assume
that many iterations of this loop are executed before the loop exits.

Loop

a. Loop: lw $1.40(56)
add $5,55.58

add 56.56,58
sw 51,20(55)
beq 51,50,Loop

b. Loop: add 51,52.53
sw 50,0(51)
sw 50,4(51)
add 52.52,54
beq 52.50,Loop

4.16.4 [10] <4.6> Show a pipeline execution diagram for the third iteration of
this loop, from the cycle in which we fetch the first instruction of that iteration up
to (but not including) the cycle in which we can fetch the first instruction of the
next iteration. Show all instructions that are in the pipeline during these cycles (not
just those from the third iteration).
4.16.5 [10] <4.6> How often (as a percentage of all cycles) do we have a cycle in
which all five pipeline stages are doing useful work?
4.16.6 [10] <4.6> At the start of the cycle in which we fetch the first instruction
of the third iteration of this loop, what is stored in the IF/ID register?

4.16 Exercises 425

Exercise 4.17
Problems in this exercise assume that instructions executed by a pipelined processor
are broken down as follows:

a d d b e q Iw SW

a. 50% 25% 15% 10%

b. 30% 15% 35% 20%

4.17.1 [5] <4.6> Assuming there are no stalls and that 60% of all conditional
branches are taken, in what percentage of clock cycles does the branch adder in the
EX stage generate a value that is actually used?
4.17.2 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we actually need to use all three register ports (two reads and a write) in the
same cycle?
4.17.3 [5] <4.6> Assuming there are no stalls, how often (percentage of all cycles)
do we use the data memory?
Each pipeline stage in Figure 4.33 has some latency. Additionally, pipelining
introduces registers between stages (Figure 4.35), and each of these adds an
additional latency. The remaining problems in this exercise assume the following
latencies for logic within each pipeline stage and for each register between two
stages:

IF ID EX WB Pipeline register 1

a. lOOps 1 2 0 p s 9 0 p s 1 3 0 p s 6 0 p s lOps

b. 1 8 0 p s lOOps 1 7 0 p s 2 2 0 p s 6 0 p s lOps

4.17.4 [5] <4.6> Assuming there are no stalls, what is the speed-up achieved by
pipelining a single-cycle datapath?
4.17.5 [10J <4.6> We can convert all load/store instructions into register-basecl
(no offset) and put the memory access in parallel with the ALU. What is the clock
cycle time if this is done in the single-cycle and in the pipelined datapath? Assume
that the latency of the new EX/MEM stage is equal to the longer of their latencies.
4.17.6 [10] <4.6> The change in Exercise 4.17.5 requires many existing lw/sw
instructions to be converted into two-instruction sequences. If this is needed for 50%
of these instructions, what is the overall speed-up achieved by changing from the five-
stage pipeline to the four-stage pipeline where EX and MEM are done in parallel?

4 2 6 Chapter 4 The Processor

Exercise 4.13
The first three problems in this exercise refer to the execution of the following
instruction in the pipelined datapath from Figure 4.51, and assume the following
clock cycle time, ALU latency, and Mux latency:

Instruction Clock cycle time ALU Latency Mux Latency

a. add $1.$2,$3 lOOps 80ps lOps

b. sit $2.$1.53 80ps 50ps 20ps

4 . 1 8 . 1 [10] <4.6> For each stage of the pipeline, what are the values of control
signals asserted by this instruction in that pipeline stage?
4 . 1 8 . 2 [10] <4.6,4.7> How much time does the control unit have to generate the
ALUSrc control signal? Compare this to a single-cycle organization.
4 . 1 8 . 3 What is the value of the PCSrc signal for this instruction? This signal
is generated early in the MEM stage (only a single AND gate). What would be a
reason in favor of doing this in the EX stage? What is the reason against doing it in
the EX stage?
The remaining problems in this exercise refer to the following signals from
Figure 4.48:

Signal 1 Signal 2

a. RegDst RegWrite

b. MemRead RegWrite

4 . 1 8 . 4 [5] <4.6> For each of these signals, identify the pipeline stage in which it
is generated and the stage in which it is used.
4 . 1 8 . 5 [5] <4.6> For which MIPS instruction(s) are both of these signals set to 1?
4 . 1 8 . 6 [10] <4.6> One of these signals goes back through the pipeline. Which
signal is it? Is this a time-travel paradox? Explain.

Exercise 4.19
This exercise is intended to help you understand the cost/complexity/perfor-
mance tradeoffs of forwarding in a pipelined processor. Problems in this exercise
refer to pipelined datapaths from Figure 4.45. These problems assume that, of all
instructions executed in a processor, the following fraction of these instructions

4.16 Exercises 4 2 7

has a particular type of RAW data dependence. The type of RAW data dependence
is identified by the stage that produces the result (EX or MEM) and the instruction
that consumes the result (1 s t instruction that follows the one that produces the
result, 2 n d instruction that follows, or both). We assume that the register write is
done in the first half of the clock cycle and that register reads are done in the second
half of the cycle, so "EX to 3 r d " and "MEM to 2 n d " dependences are not counted
because they can not result in data hazards. Also, assume that the CPI of the pro-
cessor is 1 if there are no data hazards.

EX to l 8 t only EX to 1 s t and 2 n d EX to 2 n d only MEM to 1 s t

a. 10% 10% 5% 25%

b. 15% 5% 10% 20%

4.19.1 [10] <4.7> If we use no forwarding, what fraction of cycles are we stalling
due to data hazards?
4.19.2 [5] <4.7> If we use full forwarding (forward all results that can be
forwarded), what fraction of cycles are we stalling due to data hazards?
4.19.3 [10] <4.7> Let us assume that we can not afford to have three-input Muxes
that are needed for full forwarding. We have to decide if it is better to forward
only from the EX/MEM pipeline register (next-cycle forwarding) or only from
the MEM/WB pipeline register (two-cycle forwarding). Which of the two options
results in fewer data stall cycles?
The remaining three problems in this exercise refer to the following latencies for
individual pipeline stages. For the EX stage, latencies are given separately for
a processor without forwarding and for a processor with different kinds of
forwarding. I IF D EX

(no FW)
EX (full FW)

EX (FW from
EX/MEM only)

EX (FW from
MEM/WB only) Q

a. lOOps 50ps 75ps llOps lOOps lOOps lOOps 60ps

b. 250ps 300ps 200ps 350ps 320ps 310ps 300ps 200ps

4.19.4 [10] <4.7> For the given hazard probabilities and pipeline stage latencies,
what is the speed-up achieved by adding full forwarding to a pipeline that had no
forwarding?
4.19.5 [10] <4.7> What would be the additional speed-up (relative to a processor
with forwarding) if we added time-travel forwarding that eliminates all data

428 Chapter 4 The Processor

hazards? Assume that the yet-to-be-invented time-travel circuitry adds lOOps to
the latency of the full-forwarding EX stage.
4.19.6 [20] <4.7> Repeat Exercise 4.19.3 but this time determine which of the
two options results in shorter time per instruction.

Exercise 4.20
Problems in this exercise refer to the following instruction sequences:

I n s t r u c t i o n s e q u e n c e

a . lw $ 1 , 4 0 (S 2)
add $ 2 . $ 3 . S 3
add S 1 . S 1 . S 2
sw $ 1 . 2 0 (5 2)

b. add S I . $ 2 . S 3
sw $ 2 , 0 ($ 1)
lw $ 1 , 4 ($ 2)
add S 2 . S 2 . S 1

4.20.1 [5] <4.7> Find all data dependences in this instruction sequence.
4.20.2 [10] <4.7> Find all hazards in this instruction sequence for a five-stage
pipeline with and then without forwarding.
4.20.3 [10] <4.7> To reduce clock cycle time, we are considering a split of the
MEM stage into two stages. Repeat Exercise 4.20.2 for this six-stage pipeline.
The remaining three problems in this exercise assume that, before any of the above
is executed, all values in data memory are 0s and that registers $0 through $3 have
the following initial values:

® $ 0 $ 1 $ 2 $ 3

a . 0 1 3 1 1 0 0 0

b. 0 - 2 6 3 2 5 0 0

4.20.4 [5] <4.7> Which value is the first one to be forwarded and what is the
value it overrides?
4.20.5 [10] <4.7> If we assume forwarding will be implemented when we design
the hazard detection unit, but then we forget to actually implement forwarding,
what are the final register values after this instruction sequence?

4.16 Exercises 4 2 9

4.20.6 [10] <4.7> For the design described in Exercise 4.20.5, add nops to this
instruction sequence to ensure correct execution in spite of missing support for
forwarding.

Exercise 4.21
This exercise is intended to help you understand the relationship between
forwarding, hazard detection, and ISA design. Problems in this exercise refer to the
following sequences of instructions, and assume that it is executed on a five-stage
pipelined datapath:

Instruction sequence

a. lw $1,40(56)
add $2,$3.$1
add $1,$6, $4
sw $2.20(54)
and $ 1,$ 1,$4

b. add $1.55.$3
sw $1,0(52)
lw 51,4(52)
add $5,$5,51
sw $1,0(52)

4.21.1 [5] <4.7> If there is no forwarding or hazard detection, insert nops to
ensure correct execution.
4.21.2 [10] <4.7> Repeat Exercise 4.21.1 but now use nops only when a hazard
cannot be avoided by changing or rearranging these instructions. You can assume
register R7 can be used to hold temporary values in your modified code.
4.21.3 [10] <4.7> If the processor has forwarding, but we forgot to implement
the hazard detection unit, what happens when this code executes?
4.21.4 [20] <4.7> If there is forwarding, for the first five cycles during the
execution of this code, specify which signals are asserted in each cycle by hazard
detection and forwarding units in Figure 4.60.

4.21.5 [10] <4.7> If there is no forwarding, what new inputs and output signals
do we need for the hazard detection unit in Figure 4.60? Using this instruction
sequence as an example, explain why each signal is needed.
4.21.6 [20] <4.7> For the new hazard detection unit from Exercise 4.21.5, specify
which output signals it asserts in each of the first five cycles during the execution
of this code.

4 3 0 Chapter 4 The Processor

Exercise 4.22
This exercise is intended to help you understand the relationship between delay
slots, control hazards, and branch execution in a pipelined processor. In this exer-
cise, we assume that the following MIPS code is executed on a pipelined processor
with a five-stage pipeline, full forwarding, and a predict-taken branch predictor:

a. Label 1: lw $1,40($6)
beq $2,$3. Label 2 ; Taken
add 51.$6.$4

Label2: beq $1.S2,Label 1 ; Not taken
sw $2.20(54)
and $1, $ 1, $4

b. add $1,$5.$3
Label 1: sw $1,0($2)

add $2,52,53

beq $2,$4,Label 1 ; Not taken
add $5, $5, $1
sw $1,0($2)

4.22.1 [10] <4.8> Draw the pipeline execution diagram for this code, assuming
there are no delay slots and that branches execute in the EX stage.
4.22.2 [10] <4.8> Repeat Exercise 4.22.1, but assume that delay slots are used. In
the given code, the instruction that follows the branch is now the delay slot instruc-
tion for that branch.
4.22.3 [20] <4.8> One way to move the branch resolution one stage earlier is
to not need an ALU operation in conditional branches. The branch instructions
would be " b e z Rd , L a b e l " and " b n e z Rd , L a b e l " , and it would branch if the
register has and does not have a 0 value, respectively. Change this code to use these
branch instruction instead of beq. You can assume that register $8 is available for
you to use as a temporary register, and that a seq (set if equal) R-type instruction
can be used.
Section 4.8 describes how the severity of control hazards can be reduced by moving
branch execution into the ID stage. This approach involves a dedicated comparator
in the ID stage, as shown in Figure 4.62. However, this approach potentially adds
to the latency of the ID stage, and requires additional forwarding logic and hazard
detection.
4.22.4 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the hazard detection logic needed to support branch execution
in the ID stage as in Figure 4.62. Which type of hazard is this new logic supposed
to detect?

4.16 Exercises 431

4.22.5 [10] <4.8> For the given code, what is the speed-up achieved by moving
branch execution into the ID stage? Explain your answer. In your speed-up
calculation, assume that the additional comparison in the ID stage does not affect
clock cycle time.
4.22.6 [10] <4.8> Using the first branch instruction in the given code as an
example, describe the forwarding support that must be added to support branch
execution in the ID stage. Compare the complexity of this new forwarding unit to
the complexity of the existing forwarding unit in Figure 4.62.

Exercise 4„23
The importance of having a good branch predictor depends on how often
conditional branches are executed. Together with branch predictor accuracy, this
will determine how much time is spent stalling due to mispredicted branches. In
this exercise, assume that the breakdown of dynamic instructions into various
instruction categories is as follows:

R-Type beq J'mp Iw sw

a. 50% 15% 10% 15% 10%

b. 30% 10% 5% 35% 20%

Also, assume the following branch predictor accuracies:
Always-taken Always not-taken 2-bit j

a. 40% 60% 80%

b. 60% 40% 95%

4.23.1 [10] <4.8> Stall cycles due to mispredicted branches increase the CPI.
What is the extra CPI due to mispredicted branches with the always-taken predictor?
Assume that branch outcomes are determined in the EX stage, that there are no
data hazards, and that no delay slots are used.
4.23.2 [10] <4.8> Repeat Exercise 4.23.1 for the "always not-taken" predictor.
4.23.3 [10] <4.8> Repeat Exercise 4.23.1 for the 2-bit predictor.
4.23.4 [10] <4.8> With the 2-bit predictor, what speed-up would be achieved if
we could convert half of the branch instructions in a way that replaces a branch
instruction with an ALU instruction? Assume that correctly and incorrectly
predicted instructions have the same chance of being replaced.

4 3 2 Chapter 4 The Processor

4 . 2 3 . 5 [10] <4.8> With the 2-bit predictor, what speed-up would be achieved if
we coulcl convert half of the branch instructions in a way that replaced each branch
instruction with two ALU instructions? Assume that correctly and incorrectly
predicted instructions have the same chance of being replaced.
4 . 2 3 . 6 [10] <4.8> Some branch instructions are much more predictable than
others. If we know that 80% of all executed branch instructions are easy-to-predict
loop-back branches that are always predicted correctly, what is the accuracy of the
2-bit predictor on the remaining 20% of the branch instructions?

Exercise 4.24
This exercise examines the accuracy of various branch predictors for the following
repeating pattern (e.g., in a loop) of branch outcomes:

Branch outcomes

a. T, T, NT, T

b. T, T, T, NT, NT

4 . 2 4 . 1 [5] <4.8> What is the accuracy of always-taken and always-not-taken
predictors for this sequence of branch outcomes?
4 . 2 4 . 2 [5] <4.8> What is the accuracy of the two-bit predictor for the first four
branches in this pattern, assuming that the predictor starts off in the bottom left
state from Figure 4.63 (predict not taken).
4 . 2 4 . 3 [10] <4.8> What is the accuracy of the two-bit predictor if this pattern is
repeated forever?
4 . 2 4 . 4 [30] <4.8> Design a predictor that would achieve a perfect accuracy if
this pattern is repeated forever. Your predictor should be a sequential circuit with
one output that provides a prediction (1 for taken, 0 for not taken) and no inputs
other than the clock and the control signal that indicates that the instruction is a
conditional branch.
4 . 2 4 . 5 [10] <4.8> What is the accuracy of your predictor from Exercise 4.24.4 if
it is given a repeating pattern that is the exact opposite of this one?
4 . 2 4 . 6 [20] <4.8> Repeat Exercise 4.24.4, but now your predictor should be able
to eventually (after a warm-up period during which it can make wrong predictions)
start perfectly predicting both this pattern and its opposite. Your predictor should
have an input that tells it what the real outcome was. Hint: this input lets your
predictor determine which of the two repeating patterns it is given.

4.16 Exercises 4 3 3

Exercise 4.25
This exercise explores how exception handling affects pipeline design. The first
three problems in this exercise refer to the following two instructions:

Instruction 1 Instruction 2

a. add $0,$1. $2 bne $1,$2.Label

b. lw $2,40($3) nand $1.$2,$3

4.25.1 [5] <4.9> Which exceptions can each of these instructions trigger? For
each of these exceptions, specify the pipeline stage in which it is detected.
4.25.2 [10] <4.9> If there is a separate handler address for each exception, show
how the pipeline organization must be changed to be able to handle this exception.
You can assume that the addresses of these handlers are known when the processor
is designed.
4.25.3 [10] <4.9> If the second instruction from this table is fetched right after the
instruction from the first table, describe what happens in the pipeline when the first
instruction causes the first exception you listed in Exercise 4.25.1.
Show the pipeline execution diagram from the time the first instruction is fetched
until the time the first instruction of the exception handler is completed.
The remaining three problems in this exercise assume that exception handlers are
located at the following addresses:
• Invalid data Undefined Invalid instruction Hardware • Overflow address instruction address malfunction

a. | OxFFFFFOOO OxFFFFFlOO 0xFFFFF200 0xFFFFF300 0xFFFFF400

|~bT| 0x00000008 OxOOOOOOlO 0x00000018 0x00000020 0x00000028

4.25.4 [5] <4.9> What is the address of the exception handler in Exercise 4.25.3?
What happens if there is an invalid instruction at that address in instruction
memory?
4.25.5 [20] <4.9> In vectored exception handling, the table of exception handler
addresses is in data memory at a known (fixed) address. Change the pipeline to
implement this exception handling mechanism. Repeat Exercise 4.25.3 using this
modified pipeline and vectored exception handling.
4.25.6 [15] <4.9> We want to emulate vectored exception handling (described
in Exercise 4.25.5) on a machine that has only one fixed handler address. Write the
code that should be at that fixed address. Hint: this code should identify the excep-
tion, get the right address from the exception vector table, and transfer execution
to that handler.

4 3 4 C h a p t e r 4 The P r o c e s s o r

Exercise 4.26
This exercise explores how exception handling affects control unit design and
processor clock cycle time. The first three problems in this exercise refer to the
following MIPS instruction that triggers an exception:

Instruct ion E x c e p t i o n

a. add $ 0 , $ 1 , $ 2 Arithmetic overflow

b. l w $ 2 , 4 0 ($ 3) Invalid data memory address

4.26.1 [10] <4.9> For each stage of the pipeline, determine the values of
exception-related control signals from Figure 4.66 as this instruction passes
through that pipeline stage.
4.26.2 [5] <4.9> Some of the control signals generated in the ID stage are stored
into the ID/EX pipeline register, and some go directly into the EX stage. Explain
why, using this instruction as an example.
4.26.3 [10] <4.9> We can make the EX stage faster if we check for exceptions
in the stage after the one in which the exceptional condition occurs. Using this
instruction as an example, describe the main disadvantage of this approach.
The remaining three problems in this exercise assume that pipeline stags have the
following latencies:

IF ID E X W B

a. 3 0 0 p s 3 2 0 p s 3 5 0 p s 3 5 0 p s lOOps

b. 2 0 0 p s 1 7 0 p s 2 1 0 p s 2 1 0 p s 1 5 0 p s

4.26.4 [10] <4.9> If an overflow exception occurs once for every 100,000 instruc-
tions executed, what is the overall speed-up if we move overflow checking into the
MEM stage? Assume that this change reduces EX latency by 30ns and that the IPC
achieved by the pipelined processor is 1 when there are no exceptions.
4.26.5 [20] <4.9> Can we generate exception control signals in EX instead of in ID?
Explain how this will work or why it will not work, using the "bne $4, $5 ,Labe l"
instruction and these pipeline stage latencies as an example.
4.26.6 [10] <4.9> Assuming that each Mux has a latency of 40ps, determine how
much the control unit has to generate the flush signals? Which signal is the most
critical?

4.16 Exercises 4 3 5

Exercise 4.27
This exercise examines how exception handling interacts with branch and load/store
instructions. Problems in this exercise refer to the following branch instruction and
the corresponding delay slot instruction:

Branch and delay slot

a. beq $1.$0.Label

sw $6,50($1)

b. beq $5.$0,Label
nor $5,$4.$3

4.27.1 [20] <4.9> Assume that this branch is correctly predicted as taken, but
then the instruction at "Label" is an undefined instruction. Describe what is done
in each pipeline stage for each cycle, starting with the cycle in which the branch is
decoded up to the cycle in which the first instruction of the exception handler is
fetched.
4.27.2 [10] <4.9> Repeat Exercise 4.27.1, but this time assume that the instruction
in the delay slot also causes a hardware error exception when it is in MEM stage.
4.27.3 [10] <4.9> What is the value in the EPC if the branch is taken but the
delay slot causes an exception? What happens after the execution of the exception
handler is completed?
The remaining three problems in this exercise also refer to the following store
instruction:

Store instruction

a. sw S6.50($l)

b. sw $5.60(53)

4.27.4 [10] <4.9> What happens if the branch is taken, the instruction at "Label"
is an invalid instruction, the first instruction of the exception handler is the sw
instruction given above, and this store accesses an invalid data address?
4.27.5 [10] <4.9> If load/store address computation can overflow, can we delay
overflow exception detection into the MEM stage? Use the given store instruction
to explain what happens.
4.27.6 [10] <4.9> For debugging, it is useful to be able to detect when a particular
value is written to a particular memory address. We want to add two new registers,
WADDR and WVAL. The processor should trigger an exception when the value

4 3 6 Chapter 4 The Processor

equal to WVAL is about to be written to address WADDR. Mow would you change
the pipeline to implement this? How would this sw instruction be handled by your
modified datapath?

Exercise 4.28
In this exercise we compare the performance of 1-issue and 2-issue processors,
taking into account program transformations that can be made to optimize for
2-issue execution. Problems in this exercise refer to the following loop (written in C):

C code

a. for(i=0;!=j;it+)
b[i]=a[i];

b. f o r (i =0; a [i] I =a [i +1]: i ++)
a[i1=0;

When writing MIPS code, assume that variables are kept in registers as follows, and
that all registers except those indicated as Free are used to keep various variables,
so they cannot be used for anything else.

i j a b c Free

E $1 $2 $3 $4 $5 $6,$7,$8

b. j $4 $5 $6 $7 $8 $1 ,$2 ,$3

4.28.1 [10] <4.10> Translate this C code into MIPS instructions. Your translation
should be direct, without rearranging instructions to achieve better performance.
4.28.2 [10] <4.10> If the loop exits after executing only two iterations, draw
a pipeline diagram for your MIPS code from Exercise 4.28.1 executed on a
2-issue processor shown in Figure 4.69. Assume the processor has perfect branch
prediction and can fetch any 2 instructions (not just consecutive instructions) in
the same cycle.
4.28.3 [10] <4.10> Rearrange your code from Exercise 4.28.1 to achieve better
performance on a 2-issue statically scheduled processor from Figure 4.69.
4.28.4 [10] <4.10> Repeat Exercise 4.28.2, but this time use your MIPS code from
Exercise 4.28.3.
4.28.5 [10] <4.10> What is the speed-up of going from a 1-issue processor to a
2-issue processor from Figure 4.69. Use your code from Exercise 4.28.1 for both

4.16 Exercises 437

1-issue and 2-issue, and assume that 1,000,000 iterations of the loop are executed.
As in Exercise 4.28.2, assume that the processor has perfect branch predictions, and
that a 2-issue processor can fetch any 2 instructions in the same cycle.
4 . 2 8 . 6 [10] <4.10> Repeat Exercise 4.28.5, but this time assume that in the
2-issue processor one of the instructions to be executed in a cycle can be of any
kind, and the other must be a non-memory instruction.

Exercise 4=29
In this exercise, we consider the execution of a loop in a statically scheduled
superscalar processor. To simplify the exercise, assume that any combination of
instruction types can execute in the same cycle, e.g., in a 3-issue superscalar, the
three instructions can be three ALU operations, three branches, three load/store
instruction, or any combination of these instructions. Note that this only removes
a resource constraint, but data and control dependences must still be handled
correctly. Problems in this exercise refer to the following loop:

Loop

a. Loop: l w $ 1 . 4 0 ($ 6)
add $ 5 . $ 5 . $ 1
sw $ 1 , 2 0 ($ 5)
addi $ 6 . $ 6 . 4
addi $ 5 , $ 5 , - 4
beq $ 5 , $ 0 , L o o p

b. Loop: add $ 1 , $ 2 , $3
sw $ 0 , 0 ($ 1)
addi $ 2 , $ 2 . 4
beq $ 2 . $ 0 . L o o p

4 . 2 9 . 1 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed,
determine the fraction of all register reads that are useful in a 2-issue static superscalar
processor?
4 . 2 9 . 2 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed,
determine the fraction of all register reads that are useful in a 3-issue static
superscalar processor? Compare this to your result for a 2-issue processor from
Exercise 4.29.1.
4 . 2 9 . 3 [10] <4.10> If many (e.g., 1,000,000) iterations of this loop are executed,
determine the fraction of cycles in which two or three register write ports are used
in a 3-issue static superscalar processor?

438 Chapter 4 The Processor

4.29.4 [20] <4.10> Unroll this loop once and schedule it for a 2-issue static
superscalar processor. Assume that the loop always executes an even number of
iterations. You can use registers $10 through $20 when changing the code to
eliminate dependences.
4.29.5 [20] <4.10> What is the speed-up of using your code from Exercise 4.29.4
instead of the original code with a 2-issue static superscalar processor. Assume that
the loop has many (e.g., 1,000,000) iterations.
4.29.6 [10] <4.10> What is the speed-up of using your code from Exercise 4.29.4
instead of the original code with a pipelined (1-issue) processor. Assume that the
loop has many (e.g., 1,000,000) iterations.

Exercise 4.30
In this exercise, we make several assumptions. First, we assume that an N-issue
superscalar processor can execute any N instructions in the same cycle, regardless
of their types. Second, we assume that every instruction is independently chosen,
without regard for the instruction that precedes or follows it. Third, we assume that
there are no stalls due to data dependences, that no delay slots are used, and that
branches execute in the EX stage of the pipeline. Finally, we assume that instructions
executed in the program are distributed as follows:

ALU Correctly predicted beq Incorrectly predicted beq Iw s w

a . 50% 18% 2% 2 0 % 10%

b. 40% 10% 5% 35% 10%

4.30.1 [5] <4.10> What is the CPI achieved by a 2-issue static superscalar
processor on this program?
4.30.2 [10] <4.10> In a 2-issue static superscalar whose predictor can only
handle one branch per cycle, what speed-up is achieved by adding the ability to
predict two branches per cycle? Assume a stall-on-branch policy for branches that
the predictor can not handle.
4.30.3 [10] <4.10> In a 2-issue static superscalar processor that only has one
register write port, what speed-up is achieved by adding a second register write
port?
4.30.4 [5] <4.10> For a 2-issue static superscalar processor with a classic five-stage
pipeline, what speed-up is achieved by making the branch prediction perfect?
4.30.5 [10] <4.10> Repeat Exercise 4.30.4, but for a 4-issue processor. What
conclusion can you draw about the importance of good branch prediction when
the issue width of the processor is increased?

4.16 Exercises 4 3 9

4.30.6 <4.10> Repeat Exercise 4.30.5, but now assume that the 4-issue processor
has 50 pipeline stages. Assume that each of the original five stages is broken into
ten new stages, and that branches are executed in the first of ten new EX stages.
What conclusion can you draw about the importance of good branch prediction
when the pipeline depth of the processor is increased?

Exercise 4.31
Problems in this exercise refer to the following loop, which is given as x86 code
and also as a MIPS translation of that code. You can assume that this loop executes
many iterations before it exits. When determining performance, this means that
you only need to determine what the performance would be in the "steady state",
not for the first few and the last few iterations of the loop. Also, you can assume full
forwarding support and perfect branch prediction without delay slots, so the only
hazards you have to worry about are resource hazards and data hazards. Note that
most x86 instructions in this problem have two operands each. The last (usually
second) operand of the instruction indicates both the first source data value and
the destination. If the operation needs a second source data value, it is indicated
by the other operand of the instruction. For example, "sub (edx),eax" reads the
memory location pointed by register edx, subtracts that value from register eax,
and puts the result back in register eax.

x86 Instructions MlPS-like translation

a. Label: mov -4(esp). eax

add (edx), eax

mov eax, -4(esp)
add 1. ecx
add 4, edx
cmp esi, ecx
jl Label

Label: lw $2,-4($sp)
lw $ 3,0 ($ 4)
add $2,$2,$3
sw $2,-4(Ssp)
addi $6.$6.1
addi $4, $4,4
sit $1, $6 . $5
bne $1,$0,Label

b. Label: add eax, (edx)

mov eax. edx
add 1. eax
jl Label

Label: lw $2,0(54)
add $2.$2,$5
sw $ 2,0($ 4)
add $4,$5,$0
addi $5,$5.1
sit $1.$5 . $0
bne $1,S0,Label

4.31.1 [20] <4.11> What CPI would be achieved if the MIPS version of this loop
is executed on a 1-issue processor with static scheduling and a five-stage pipeline?
4.31.2 [20] <4.11> What CPI would be achieved if the x86 version of this loop
is executed on a 1-issue processor with static scheduling and a 7-stage pipeline?
The stages of the pipeline are IF, ID, ARD, MRD, EXE, and WB. Stages IF and ID
are similar to those in the five-stage MIPS pipeline. ARD computes the address of
the memory location to be read, MRD performs the memory read, EXE executes

440 Chapter 4 The Processor

the operation, and WB writes the result to register or memory. The data memory
has a read port (for instructions in the MRD stage) and a separate write port (for
instructions in the WB stage).
4.31.3 [201 <4.11> What CPI would be achieved if the x86 version of this loop
is executed on a processor that internally translates these instructions into MIPS-
like micro-operations, then executes these micro-operations on a 1-issue five-
stage pipeline with static scheduling. Note that the instruction count used in CPI
computation for this processor is the x86 instruction count.
4.31.4 [20] <4.11> What CPI would be achieved if the MIPS version of this
loop is executed on a 1-issue processor with dynamic scheduling? Assume that our
processor is not doing register renaming, so you can only reorder instructions that
have no data dependences.
4.31.5 [30] <4.10, 4.11> Assuming that there are many free registers available,
rename the MIPS version of this loop to eliminate as many data dependences as
possible between instructions in the same iteration of the loop. Now repeat Exercise
4.31.4, using your new renamed code.
4.31.6 [20] <4.10, 4.11> Repeat Exercise 4.31.4, but this time assume that the
processor assigns a new name to the result of each instruction as that instruction is
decoded, and then renames registers used by subsequent instructions to use correct
register values.

Exercise 4.32
Problems in this exercise assume that branches represent the following fraction of
all executed instructions, and the following branch predictor accuracy. Assume that
the processor is never stalled by data and resource dependences, i.e., the processor
always fetches and executes the maximum number of instructions per cycle if
there are no control hazards. For control dependences, the processor uses branch
prediction and continues fetching from the predicted path. If the branch has been
mispredicted, when the branch outcome is resolved the instructions fetched after
the mispredicted branch are discarded, and in the next cycle the processor starts
fetching from the correct path.

Branches as a % of all executed instructions Branch prediction accuracy

a. 2 0 9 0 %

b. 2 0 9 9 . 5 %

4.32.1 [5] <4.11> How many instructions are expected to be executed between
the time one branch misprediction is detected and the time the next branch
misprediction is detected?

4.16 Exercises 441

The remaining problems in this exercise assume the following pipeline depth and
that the branch outcome is determined in the following pipeline stage (counting
from stage 1):

Pipeline depth Branch outcome known in stage

a. 1 2 1 0

b. 2 5 1 8

4.32.2 [5] <4.11> In a 4-issue processor with these pipeline parameters, how
many branch instructions can be expected to be "in progress" (already fetched but
not yet committed) at any given time?
4.32.3 [5] <4.11> How many instructions are fetched from the wrong path for
each branch misprediction in a 4-issue processor?
4.32.4 [10] <4.11> What is the speed-up achieved by changing the processor
from 4-issue to 8-issue? Assume that the 8-issue and the 4-issue processor differ
only in the number of instructions per cycle, and are otherwise identical (pipeline
depth, branch resolution stage, etc.).
4.32.5 [10] <4.11> What is the speed-up of executing branches 1 stage earlier in
a 4-issue processor?
4.32.6 [10] <4.11> What is the speed-up of executing branches 1 stage earlier in
a 8-issue processor? Discuss the difference between this result and the result from
Exercise 4.32.5.

Exercise 4.33
This exercise explores how branch prediction affects performance of a deeply
pipelined multiple-issue processor. Problems in this exercise refer to a processor
with the following number of pipeline stages and instructions issued per cycle:

Pipeline depth Issue width

a. 1 0 4

b. 2 5 2

4.33.1 [10] <4.11> How many register read ports should the processor have to
avoid any resource hazards due to register reads?
4.33.2 [10] <4.11 > If there are no branch mispredictions and no data dependences,
what is the expected performance improvement over a 1-issue processor with
the classical five-stage pipeline? Assume that the clock cycle time decreases in
proportion to the number of pipeline stages.

4 4 2 Chapter 4 The Processor

4.33.3 [10] <4.11> Repeat Exercise 4.33.2, but this time every executed instruc-
tion has a RAW data dependence to the instruction that executes right after it.
You can assume that no stall cycles are needed, i.e., forwarding allows consecutive
instructions to execute in back-to-back cycles.
For the remaining three problems in this exercise, unless the problem specifies
otherwise, assume the following statistics about what percentage of instructions are
branches, predictor accuracy, and performance loss due to branch mispredictions:

I Branches as a fraction of
all executed instructions

Branches execute
in stage

Predictor accuracy Performance
loss

a. 30% 7 95% 10%

b. 15% 8 97% 2%

4.33.4 [10] <4.11> If we have the given fraction of branch instructions and
branch prediction accuracy, what percentage of all cycles are entirely spent fetching
wrong-path instructions? Ignore the performance loss number.
4.33.5 [20] <4.11> If we want to limit stalls due to mispredicted branches to no
more than the given percentage of the ideal (no stalls) execution time, what should
be our branch prediction accuracy? Ignore the given predictor accuracy number.
4.33.6 [10] <4.11> What should the branch prediction accuracy be if we are
willing to have a speed-up of 0.5 (one half) relative to the same processor with an
ideal branch predictor?

Exercise 4.34
This exercise is designed to help you understand the discussion of the "Pipelining is
easy" fallacy from Section 4.13. The first four problems in this exercise refer to the
following MIPS instruction:

Instruction Interpretation

a. add Rd.Rs.Rt Reg[Rd]=Reg[Rs]+Reg[Rt]

b. lw Rt.Offs(Rs) Reg[Rt]-Mem[Reg[Rs]+0ffs]

4.34.1 [10] <4.13> Describe a pipelined datapath needed to support only this
instruction. Your datapath should be designed with the assumption that the only
instructions that will ever be executed are instances of this instruction.
4.34.2 [10] <4.13> Describe the requirements of forwarding and hazard detection
units for your datapath from Exercise 4.34.1.

4.16 Exercises 4 4 3

4.34.3 [10] <4.13> What needs to be done to support undefined instruction
exceptions in your datapath from Exercise 4.34.1. Note that the undefined instruc-
tion exception should be triggered whenever the processor encounters any other
kind of instruction.
The remaining two problems in this exercise also refer to this MIPS instruction:

Instruction Interpretation

a. beq Rs. Rt. Label if RegCRs] == RegCRtl PC=PC+0ffs

b. ahd Rd, Rs, Rt Reg[Rd]=Reg[Rsl&Reg[Rt]

4.34.4 [10] <4.13> Describe how to extend your datapath from Exercise 4.34.1
so it can also support this instruction. Your extended datapath should be designed
to only support instances these two instructions.
4.34.5 [10] <4.13> Repeat Exercise 4.34.2 for your extended datapath from
Exercise 4.34.4.
4.34.6 [10] <4.13> Repeat Exercise 4.34.2 for your extended datapath from Exercise
4.34.4.

Exercise 4.35
This exercise is intended to help you better understand the relationship between
ISA design and pipelining. Problems in this exercise assume that we have a
multiple-issue pipelined processor with the following number of pipeline stages,
instructions issued per cycle, stage in which branch outcomes are resolved, and
branch predictor accuracy:

1 Pipeline
depth

Issue
width

Branches execute
in stage

Branch predictor
accuracy

Branches as a % of
instructions

a. 10 4 7 80% 20%

b. 25 2 17 92% 25%

4.35.1 [5] <4.8,4.13> Control hazards can be eliminated by adding branch delay
slots. How many delay slots must follow each branch if we want to eliminate all
control hazards in this processor?
4.35.2 [10] <4.8,4.13> What is the speed-up that would be achieved by using four
branch delay slots to reduce control hazards in this processor? Assume that there are
no data dependences between instructions and that all four delay slots can be filled
with usefiil instructions without increasing the number of executed instructions. To
make your computations easier, you can also assume that the mispredicted branch
instruction is always the last instruction to be fetched in a cycle, i.e., no instructions
that are in the same pipeline stage as the branch are fetched from the wrong path.

4 4 4 Chapter 4 The Processor

4.35.3 [10] <4.8, 4.13> Repeat Exercise 4.35.2, but now assume that 10% of
executed branches have all four delay slots filled with useful instruction, 20% have
only three useful instructions in delay slots (the fourth delay slot is a nop), 30%
have only two useful instructions in delay slots, and 40% have no useful instructions
in their delay slots.
The remaining four problems in this exercise refer to the following C loop:

a. for(i=0:i!=j i+T) (

b [i] = a [i] ;
I

b. for(i =0;a[i] = a [i + l] ; i + +) 1
C++;

1

4.35.4 [10] <4.8, 4.13> Translate this C loop into MIPS instructions, assuming
that our ISA requires one delay slot for every branch. Try to fill delay slots with
non-nop instructions when possible. You can assume that variables a ,b , c , i ,
and j are kept in registers $1, $2 , $3 , $4 .and $5.
4.35.5 [10] <4.7, 4.13> Repeat Exercise 4.35.4 for a processor that has two delay
slots for every branch.
4.35.6 [10] <4.10, 4.13> ITow many iterations of your loop from Exercise 4.35.4
can be "in flight" within this processor's pipeline? We say that an iteration is "in
flight" when at least one of its instructions has been fetched and has not yet been
committed.

Exercise 4.36
This exercise is intended to help you better understand the last pitfall from
Section 4.13—failure to consider pipelining in instruction set design. The first four
problems in this exercise refer to the following new MIPS instruction:

Instruction Interpretation

a. lwinc Rt.Offset(Rs) Reg[Rt]=Mem[Reg[Rs]+0ffset]
Reg[Rs]=Reg[Rs]+4

b. addr Rt,0ffset(Rs) Reg[Rt]=Mem[Reg[Rs]+Offset]+Reg[Rt]

4.36.1 [10] <4.11,4.13> Translate this instruction into MIPS micro-operations.
4.36.2 [10] <4.11,4.13> How would you change the five-stage MIPS pipeline to
add support for micro-op translation needed to support this new instruction?

4.16 Exercises 4 4 5

4.36.3 [20] <4.13> If we want to add this instruction to the MIPS ISA, discuss
the changes to the pipeline (which stages, which structures in which stage) that are
needed to directly (without micro-ops) support this instruction.
4.36.4 [10] <4.13> How often do you expect this instruction can be used. Do you
think that we would be justified if we added this instruction to the MIPS ISA?
The remaining two problems in this exercise are about adding a new addm
instruction to the ISA. In a processor to which addm has been added, these
problems assume the following breakdown of clock cycles according to which
instruction is completed in that cycle (or which stall is preventing an instruction
from completing):

add beq Iw sw addm Control Stalls Data Stalls

a. 35% 20% 20% 10% 5% 5% 5%

b. 25% 10% 25% 10% 10% 10% 10%

4.36.5 [10] <4.13> Given this breakdown of execution cycles in the processor
with direct support for the addm instruction, what speed-up is achieved by
replacing this instruction with a 3-instruction sequence (lw, add, and then sw)?
Assume that the addm instruction is somehow (magically) supported with a
classical five-stage pipeline without creating resource hazards.
4.36.6 [10] <4.13> Repeat Exercise 4.36.5, but now assume that addm was sup-
ported by adding a pipeline stage. When addm is translated, this extra stage can be
removed and, as a result, half of the existing data stalls are eliminated. Note that the
data stall elimination applies only to stalls that existed before addm translation, not
to stalls added by the addm translation itself.

Exercise 4.37
This exercise explores some of the tradeoffs involved in pipelining, such as clock
cycle time and utilization of hardware resources. The first three problems in this
exercise refer to the following MIPS code. The code is written with an assumption
that the processor does not use delay slots.

a. lw $ 1,40($ 6)

beq SI.$0.Label ; Assume $1 == SO
sw S6,50($ 1)

Label : add S2.S3.S1
sw S2,50($1)

b. lw $5,-16(S5)
sw S5,-16($5)
lw $5,-20(55)

beq 55.SO.Label ; Assume 551=50
add $5.55,55

446 Chapter 4 The Processor

4.37.1 [5] <4.3,4.14> Which parts of the basic single-cycle datapath are used by
all of these instructions? Which parts are the least utilized?
4.37.2 [10] <4.6,4.14> What is the utilization for the read and for the write port
of the data memory unit?
4.37.3 [10] <4.6, 4.14> Assume that we already have a single-cycle design. How
many bits in total do we need for pipeline registers to implement the pipelined
design?
The remaining three problems in this exercise assume that components of the
datapath have the following latencies:

I-Mem Add Mux ALU Regs D-Mem Sign-extend Shift! eft-2

a . 4 0 0 p s lOOps 3 0 p s 120ps 200ps 350ps 20ps Ops

b. 500ps 1 5 0 p s lOOps 1 8 0 p s 2 2 0 p s lOOOps 9 0 p s 2 0 p s

4.37.4 [10] <4.3, 4.5, 4.14> Given these latencies for individual elements of the
datapath, compare clock cycle times of the single-cycle and the five-stage pipelined
datapath.
4.37.5 [10] <4.3,4.5,4.14> Repeat Exercise 4.37.4, but now assume that we only
want to support ADD instructions.
4.37.6 [20] <4.3,4.5,4.14> If it costs $1 to reduce the latency of a single compo-
nent of the datapath by lps, what would it cost to reduce the clock cycle time by
20% in the single-cycle and in the pipelined design?

Exercise 4.38
This exercise explores energy efficiency and its relationship with performance.
Problems in this exercise assume the following energy consumption for activity in
Instruction Memory, Registers, and Data Memory. You can assume that the other
components of the datapath spend a negligible amount of energy.

W W 1 Register Read Register Write D-Mem Read D-Mem Write 1

a . lOOpJ 60pJ 70pJ 120pJ lOOpJ

b. 2 0 0 p J 90pJ 80pJ 3 0 0 p J 2 8 0 p J

4.38.1 [10] <4.3, 4.6, 4.14> How much energy is spent to execute an add
instruction in a single-cycle design and in the five-stage pipelined design?

4.16 Exercises 447

4.38.2 [10] <4.6, 4.14> What is the worst-case MIPS instruction in terms of
energy consumption, and what is the energy spent to execute it?
4.38.3 [10] <4.6,4.14> If energy reduction is paramount, how would you change
the pipelined design? What is the percentage reduction in the energy spent by a 1 w
instruction after this change?
The remaining three problems in this exercise assume that components in the
datapath have the following latencies. You can assume that the other components
of the datapath have negligible latencies.

Control Register Read or Write ALU D-Mem Read or Write

a. 4 0 0 p s 3 0 0 p s 2 0 0 p s 1 2 0 p s 3 5 0 p s

b. 5 0 0 p s 4 0 0 p s 2 2 0 p s 1 8 0 p s lOOOps

4.38.4 [10] <4.6, 4.14> What is the performance impact of your changes from
Exercise 4.38.3?
4.38.5 [10] <4.6, 4.14> We can eliminate the MemRead control signal and have
the data memory be read in every cycle, i.e., we can permanently have MemRead=l.
Explain why the processor still functions correctly after this change. What is the
effect of this change on clock frequency and energy consumption?
4.38.6 [10] <4.6, 4.14> If an idle unit spends 10% of the power it would spend
if it were active, what is the energy spent by the instruction memory in each cycle?
What percentage of the overall energy spent by the instruction memory does this
idle energy represent?

Exercise 4.39
Problems in this exercise assume that, during an execution of the program,
processor cycles are spent in the following way. A cycle is "spent" on an instruction
if the processor completes that type of instruction in that cycle; a cycle is "spent"
on a stall if the processor could not complete an instruction in that cycle because
of a stall.

add beq Iw sw Control Stalls Data Stalls

a. 35% 2 0 % 20% 10% 10% 5%

b. 25% 10% 25% 10% 20% 10%

Problems in this exercise also assume that individual pipeline stages have the
following latency and energy consumption. The stage expends this energy in order

448 Chapter 4 The Processor

to do its work within the given latency. Note that no energy is spent in the MEM
stage during a cycle in which there is no memory access. Similarly, no energy is
spent in the WB stage in a cycle in which there is no register write. In several of
the following problems, we make assumptions about how energy consumption
changes if a stage performs its work slower or faster than this.

IF ID EX WB

a. 3 0 0 p s / 1 2 0 p J 400ps/60pJ 350ps/75pJ 500ps/130pJ 100ps/20pJ

b. 2 0 0 p s / 1 5 0 p J 150ps/60pJ 120ps/50pJ 190ps/150pJ 140ps/20pJ

4.39.1 [10] <4.14> What is the performance (in instructions per second)?
4.39.2 [10] <4.14> What is the power dissipated in watts (joules per second)?
4.39.3 [10] <4.6, 4.14> Which pipeline stages can you slow down and by how
much, without affecting the clock cycle time?
4.39.4 [20] <4.6, 4.14> It is often possible to sacrifice some speed in a circuit
in order to reduce its energy consumption. Assume that we can reduce energy
consumption by a factor of X (new energy is 1/X times the old energy) if we
increase the latency by a factor of X (new latency is X times the old latency). Now
we can adjust latencies of pipeline stages to minimize energy consumption without
sacrificing any performance. Repeat Exercise 4.39.2 for this adjusted processor.
4.39.5 [10] <4.6,4.14> Repeat Exercise 4.39.4, but this time the goal is to minimize
energy spent per instruction while increasing the clock cycle time by no more
than 10%.
4.39.6 [10] <4.6, 4.14> Repeat Exercise 4.39.5, but now assume that energy
consumption is reduced by a factor of X2 when latency is made X times longer.
What are the power savings compared to what you computed for Exercise 4.39.2?

Answers to §4.1, page 303: 3 of 5: Control, Datapath, Memory. Input and Output are missing.
Check Yourself §4.2, page 307: false. Edge-triggered state elements make simultaneous reading and

writing both possible and unambiguous.
§4.3, page 315:1. A. II. C.
§4.4, page 330: Yes, Branch and ALUOpO are identical. In addition, MemtoReg and
RegDst are inverses of one another. You don't need an inverter; simply use the other
signal and flip the order of the inputs to the multiplexor!
§4.5, page 343: 1. Stall on the LW result. 2. Bypass the first ADD result written into
$ 11. 3. No stall or bypass required.
§4.6, page 358: Statements 2 and 4 are correct; the rest are incorrect.
§4.8, page 383: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.

4.16 Exercises 449

§4.9, page 391: The first instruction, since it is logically executed before the others.
§4.10, page 403:1. Both. 2. Both. 3. Software. 4. Hardware. 5. Hardware. 6. Hardware.
7. Both. S. Hardware. 9. Both.
§4.11, page 404: First two are false and last two are true.
§4.12, @ page 6.7-3: Statements 1 and 3 are both true.
§4.12, H8 page 6.7-7: Only statement 3 is completely accurate.

c

Ideally one would desire an
indefinitely large memory
capacity such that any
particular... word would be
immediately available.... We
are... forced to recognize the
possibility of constructing a
hierarchy of memories, each
of which has greater capacity
than the preceding but which
is less quickly accessible.
A. W. Burks , H. H. Goldstine, and J . v o n
N e u m a n n
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, 1946

Large and Fast:
Exploiting
Memory Hierarchy
5.1 Introduction 4 5 2

5.2 The Basics of Caches 4 5 7

5.3 Measuring and Improving Cache

Performance 4 7 5
5.4 Virtual Memory 4 9 2

5.5 A Common Framework for Memory

Hierarchies 5 1 8

5.6 Virtual Machines 5 2 5

5.7 Using a Finite-State Machine to Control a Simple Cache 5 2 9
5.8 Parallelism and Memory Hierarchies: Cache Coherence 5 3 4

@ 5.9 Advanced Material: Implementing Cache Controllers 5 3 8

5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and Intel Nehalem

Memory Hierarchies 5 3 9
5.11 Fallacies and Pitfalls 5 4 3
5.12 Concluding Remarks 5 4 7

SS 5.13 ' Historical Perspective and Further Reading 5 4 8
5.14 Exercises 5 4 8

The Five Classic Components of a Computer

Compiler

Interface

Evaluating
performance

4 5 2 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

temporal locality The
principle stating that if a
data location is referenced
then it will tend to be
referenced again soon.

spatial locality The
locality principle stating
that if a data location is
referenced, data locations
with nearby addresses
will tend to be referenced

Introduction

From the earliest days of computing, programmers have wanted unlimited
amounts of fast memory. The topics in this chapter aid programmers by creating
that illusion. Before we look at creating the illusion, let's consider a simple analogy
that illustrates the key principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical develop-
ments in computer hardware. You are sitting at a desk in a library with a collection
of books that you have pulled from the shelves and are examining. You find that
several of the important computers that you need to write about are described in
the books you have, but there is nothing about the EDSAC. Therefore, you go back
to the shelves and look for an additional book. You find a book on early British
computers that covers the EDSAC. Once you have a good selection of books on the
desk in front of you, there is a good probability that many of the topics you need
can be found in them, and you may spend most of your time just using the books
on the desk without going back to the shelves. Having several books on the desk
in front of you saves time compared to having only one book there and constantly
having to go back to the shelves to return it and take out another.

The same principle allows us to create the illusion of a large memory that we
can access as fast as a very small memory. lust as you did not need to access all the
books in the library at once with equal probability, a program does not access all
of its code or data at once with equal probability. Otherwise, it would be impossible
to make most memory accesses fast and still have large memory in computers, just
as it would be impossible for you to fit all the library books on your desk and still
find what you wanted quickly.

This principle of locality underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library's collection. There are
two different types of locality:

• Temporal locality (locality in time): if an item is referenced, it will tend to be
referenced again soon. If you recently brought a book to your desk to look at,
you will probably need to look at it again soon.

• Spatial locality (locality in space): if an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when

5.1 Introduction 4 5 3

you brought out the book on early English computers to find out about the
EDSAC, you also noticed that there was another book shelved next to it about
early mechanical computers, so you also brought back that book and, later
on, found something useful in that book. Libraries put books on the same
topic together on the same shelves to increase spatial locality. We'll see how
memory hierarchies use spatial locality in a little later in this chapter.

Just as accesses to books on the desk naturally exhibit locality, locality in pro-
grams arises from simple and natural program structures. For example, most
programs contain loops, so instructions and data are likely to be accessed repeat-
edly, showing high amounts of temporal locality. Since instructions are normally
accessed sequentially, programs also show high spatial locality. Accesses to data also
exhibit a natural spatial locality. For example, sequential accesses to elements of an
array or a record will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory
of a computer as a memory hierarchy. A memory hierarchy consists of multiple
levels of memory with different speeds and sizes. The faster memories are more
expensive per bit than the slower memories and thus are smaller.

Today, there are three primary technologies used in building memory hierar-
chies. Main memory is implemented from DRAM (dynamic random access
memory), while levels closer to the processor (caches) use SRAM (static random
access memory). DRAM is less costly per bit than SRAM, although it is substan-
tially slower. The price difference arises because DRAM uses significantly less area
per bit of memory, and DRAMs thus have larger capacity for the same amount of
silicon; the speed difference arises from several factors described in Section C.9 of
© Appendix C. The third technology, used to implement the largest and slowest
level in the hierarchy, is usually magnetic disk. (Flash memory is used instead of
disks in many embedded devices; see Section 6.4.) The access time and price per
bit vary widely among these technologies, as the table below shows, using typical
values for 2008:

m e m o r y h i e r a r c h y
A structure that uses
multiple levels of
memories ; as the distance
from the processor
increases, the size of the
memories and the access
time both increase.

M e m o r y technology Typical access t ime $ per GB in 2008 |

SRAM 0 . 5 - 2 . 5 ns $ 2 0 0 0 - $ 5 0 0 0

DRAM 5 0 - 7 0 ns S 2 0 - S 7 5

Magnetic disk 5 , 0 0 0 , 0 0 0 - 2 0 , 0 0 0 , 0 0 0 ns $ 0 . 2 0 - $ 2

Because of these differences in cost and access time, it is advantageous to build
memory as a hierarchy of levels. Figure 5.1 shows the faster memory is close to the
processor and the slower, less expensive memory is below it. The goal is to present
the user with as much memory as is available in the cheapest technology, while
providing access at the speed offered by the fastest memory.

4 5 4 Chapter 5 Large and Fast: Exploiting M e m o r y Hierarchy

Speed Processor
Current

S i ze C o s t (S/bit) t echno logy

Fastest Memory Smallest Highest SRAM

Memory DRAM

Slowest Memory Biggest Lowest Magnetic disk

b l o c k (or l ine) T h e
m i n i m u m unit o f
information that can
be either present or not
present in a cache.

hit rate T h e fraction of
m e m o r y accesses found
in a level of the m e m o r y
hierarchy.

miss rate T h e fraction
of m e m o r y accesses not
found in a level of the
m e m o r y hierarchy.

FIGURE 5.1 The basic structure of a m e m o r y hierarchy. By implementing the memory system
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many
embedded devices, and may lead to a new level in the storage hierarchy for desktop and server computers;
see Section 6.4.

The data is similarly hierarchical: a level closer to the processor is generally a
subset of any level further away, and all the data is stored at the lowest level. By
analogy, the books on your desk form a subset of the library you are working in,
which is in turn a subset of all the libraries on campus. Furthermore, as we move
away from the processor, the levels take progressively longer to access, just as we
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.
The upper level—the one closer to the processor—is smaller and faster than the
lower level, since the upper level uses technology that is more expensive. Figure 5.2
shows that the minimum unit of information that can be either present or not
present in the two-level hierarchy is called a block or a line; in our library analogy,
a block of information is one book.

If the data requested by the processor appears in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a miss.
The lower level in the hierarchy is then accessed to retrieve the block containing the
requested data. (Continuing our analogy, you go from your desk to the shelves to
find the desired book.) The hit rate, or hit ratio, is the fraction of memory accesses
found in the upper level; it is often used as a measure of the performance of the
memory hierarchy. The miss rate (1 - hit rate) is the fraction of memory accesses
not found in the upper level.

5.1 Introduction 4 5 5

Processor

1

Data is transferred

FIGURE 5.2 Every pair of levels in the m e m o r y hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block
or a line. Usually we transfer an entire block when we copy something between levels.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether
the access is a hit or a miss (that is, the time needed to look through the books
on the desk). The miss penalty is the time to replace a block in the upper level with
the corresponding block from the lower level, plus the time to deliver this block to
the processor (or the time to get another book from the shelves and place it on the
desk). Because the upper level is smaller and built using faster memory parts, the
hit time will be much smaller than the time to access the next level in the hierarchy,
which is the major component of the miss penalty. (The time to examine the books
on the desk is much smaller than the time to get up and get a new book from the
shelves.)

As we will see in this chapter, the concepts used to build memory systems affect
many other aspects of a computer, including how the operating system manages
memory and I/O, how compilers generate code, and even how applications
use the computer. Of course, because all programs spend much of their time
accessing memory, the memory system is necessarily a major factor in determining
performance. The reliance on memory hierarchies to achieve performance has
meant that programmers, who used to be able to think of memory as a flat,
random access storage device, now need to understand that memory is a hierarchy
to get good performance. We show how important this understanding is in later
examples, such as Figure 5.18 on page 490.

Since memory systems are critical to performance, computer designers devote a
great deal of attention to these systems and develop sophisticated mechanisms for
improving the performance of the memory system. In this chapter, we discuss the
major conceptual ideas, although we use many simplifications and abstractions to
keep the material manageable in length and complexity.

hit t i m e The time
required to access a level
of the m e m o r y hierarchy,
including the time needed
to determine whether the
access is a hit or a miss.

miss pena l ty The time
required to fetch a block
into a level of the memory
hierarchy from the lower
level, including the t ime to
access the block, transmit
it from one level to the
other, insert it in the level
that experienced the miss,
and then pass the block to
the requestor.

4 5 6 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The BIG
Picture

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take advantage of temporal locality by keeping more recently accessed
data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster
memory technologies close to the processor. Thus, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an effective access time
close to that of the highest (and fastest) level and a size equal to that of the
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data
cannot be present in level i unless it is also present in level IT 1.

CPU

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a m e m o r y hierarchy: as the distance
from the processor increases, so does the size. This structure, with the appropriate operating
mechanisms, allows the processor to have an access time that is determined primarily by level I of the hier-
archy and yet have a memory as large as level ». Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

5.2 The Basics of Caches 4 5 7

Which of the following statements are generally true? Check
1. Caches take advantage of temporal locality. Yourself
2. On a read, the value returned depends on which blocks are in the cache.
3. Most of the cost of the memory hierarchy is at the highest level.
4. Most of the capacity of the memory hierarchy is at the lowest level.

Tine Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the first
commercial computer to have this extra level. The memories in the datapath in
Chapter 4 are simply replaced by caches. Today, although this remains the dominant
use of the word cache, the term is also used to refer to any storage managed to take
advantage of locality of access. Caches first appeared in research computers in the
early 1960s and in production computers later in that same decade; every general-
purpose computer built today, from servers to low-power embedded processors,
includes caches.

In this section, we begin by looking at a very simple cache in which the processor
requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 5.3.) Figure 5.4
shows such a simple cache, before and after requesting a data item that is not
initially in the cache. Before the request, the cache contains a collection of recent
references Xj, X 2 , . . . , X„_ ,, and the processor requests a word X„ that is not in
the cache. This request results in a miss, and the word X„ is brought from memory
into the cache.

In looking at the scenario in Figure 5.4, there are two questions to answer: How
do we know if a data item is in the cache? Moreover, if it is, how do we find it? The
answers are related. If each word can go in exactly one place in the cache, then it is
straightforward to find the word if it is in the cache. The simplest way to assign a
location in the cache for each word in memory is to assign the cache location based
on the address of the word in memory. This cache structure is called direct mapped,
since each memory location is mapped directly to exactly one location in the cache.
The typical mapping between addresses and cache locations for a direct-mapped
cache is usually simple. For example, almost all direct-mapped caches use this
mapping to find a block:

Cache: a safe place
for hiding or storing
th i tigs.

Webster's New World
Dictionary of the
American Language,
Third College Edition,
1988

direct-mapped cache
A cache structure in which
each memory location is
mapped to exactly one
location in the cache.

(Block address) modulo (Number of blocks in the cache)

4 5 8 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

XT

Xn- 2

X„-1
x2

XT
X n -2

X n-1
x2

a. Before the reference to X„ b. After the reference to X,

FIGURE 5.4 The cache just before and just after a reference to a word X„ that is not
initially in the cache. This reference causes a miss that forces the cache to fetch X„ from memory and
insert it into the cache.

tag A field in a table used
for a memory hierarchy
that contains the address
information required
to identify whether the
associated block in the
hierarchy corresponds to
a requested word.

valid bit A field in the
tables of a memory
hierarchy that indicates
that the associated block
in the hierarchy contains
valid data.

If the number of entries in the cache is a power of 2, then modulo can be computed
simply by using the low-order log 2 (cache size in blocks) bits of the address.
Thus, an 8-block cache uses the three lowest bits (S = 2 3) of the block address.
For example, Figure 5.5 shows how the memory addresses between I l o n (00001 t w o)
and 2 9 t e n (1 1 1 0 l t w o) map to locations l t e n (001 t w o) and 5 t c n (101 t w o) in a direct-
mapped cache of eight words.

Because each cache location can contain the contents of a number of different
memory locations, how do we know whether the data in the cache corresponds
to a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The tags
contain the address information required to identify whether a word in the cache
corresponds to the requested word. The tag needs only to contain the upper por-
tion of the address, corresponding to the bits that are not used as an index into the
cache. For example, in Figure 5.5 we need only have the upper 2 of the 5 address
bits in the tag, since the lower 3-bit index field of the address selects the block.
Architects omit the index bits because they are redundant, since by definition the
index field of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid infor-
mation. For instance, when a processor starts up, the cache does not have good
data, and the tag fields will be meaningless. Even after executing many instructions,
some of the cache entries may still be empty, as in Figure 5.4. Thus, we need to
know that the tag should be ignored for such entries. The most common method
is to add a valid bit to indicate whether an entry contains a valid address. If the bit
is not set, there cannot be a match for this block.

5.2 T h e Basics of C a c h e s 4 5 9

Cache
O T~ O T~ O T-o O t- i- o o
o o o O t - T-

00001 00101 01001 01101 10001 10101 11001 11101
Memory

FIGURE 5.5 A direct -mapped cache with eight entries showing the addresses of m e m o r y
words b e t w e e n 0 and 31 that m a p to the s a m e cache locations. Because there are eight words in
the cache, an address X maps to the direct-mapped cache word X modulo 8. That is, the low-order log iW =
3 bits are used as the cache index. Thus, addresses 00001 t w o , 01001 U v 0 ,10001 n v o , and 11001 t w o all map to entry
001 t w o of the cache, while addresses 00101,w n , 01101 t w o , 10l01 t w o , and 11101,wo all map to entry 101 t w o of
the cache.

For the rest of this section, we will focus on explaining how a cache deals with
reads. In general, handling reads is a little simpler than handling writes, since reads
do not have to change the contents of the cache. After seeing the basics of how
reads work and how cache misses can be handled, we'll examine the cache designs
for real computers and detail how these caches handle writes.

Accessiirog a Cache
Below is a sequence of nine memory references to an empty eight-block cache,
including the action for each reference. Figure 5.6 shows how the contents of the
cache change on each miss. Since there are eight blocks in the cache, the low-order
three bits of an address give the block number:

4 6 0 Chapter 5 Large and Fast: Exploit ing M e m o r y Hierarchy

D e c i m a l address Binary a d d r e s s Hit or miss A s s i g n e d c a c h e b lock
o f reference of reference in cache (w h e r e f o u n d o r p laced)

2 2 1 0 1 1 0 t w o miss (7.6b) (1 0 1 1 0 t w o mod 8) = 1 1 0 t w o

2 6 HOlOTwo miss (7.6c) (1 1 0 1 0 t w o mod 8) = 0 1 0 t w o

2 2 1 0 1 1 0 t w o hit (1 0 1 1 0 t w o mod 8) = 1 1 0 t w o

2 6 1 1 0 1 0 t w o hit (1 1 0 1 0 t w o mod 8) = 0 1 0 t w o

1 6 i o o o o t w D miss (7.6d) (1 0 0 0 0 t w o mod 8) = 0 0 0 l w o

3 0 0 0 1 1 t w o miss (7 .6e) (0 0 0 1 1 t w o mod 8) = 0 1 1 t w o

1 6 i o o o o t W D hit (1 0 0 0 0 t w o mod 8) = 0 0 0 t w o

1 8 1 0 0 1 0 t w o miss (7.6f) (1 0 0 1 0 l w o mod 8) = 0 1 0 t w o

1 6 1 0 0 0 0 l w o hit (1 0 0 0 0 t w o mod 8) = 0 0 0 t w o

Since the cache is empty, several of the first references are misses; the caption
of Figure 5.6 describes the actions for each memory reference. On the eighth refer-
ence we have conflicting demands for a block. The word at address 18 (10010 t w o)
should be brought into cache block 2 (010 t w o) . Hence, it must replace the word at
address 26 (11010 l w o) , which is already in cache block 2 (010 t w o) . This behavior
allows a cache to take advantage of temporal locality: recently referenced words
replace less recently referenced words.

This situation is directly analogous to needing a book from the shelves and
having no more space on your desk—some book already on your desk must be
returned to the shelves. In a direct-mapped cache, there is only one place to put the
newly requested item and hence only one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits
of an address can be used to find the unique cache entry to which the address could
map. Figure 5.7 shows how a referenced address is divided into

• A tag field, which is used to compare with the value of the tag field of the
cache

• A cache index, which is used to select the block
The index of a cache block, together with the tag contents of that block, uniquely
specifies the memory address of the word contained in the cache block. Because
the index field is used as an address to reference the cache, and because an //-bit
field has 2" values, the total number of entries in a direct-mapped cache must be
a power of 2. In the MIPS architecture, since words are aligned to multiples of
four bytes, the least significant two bits of every address specify a byte within a
word. Hence, the least significant two bits are ignored when selecting a word in
the block.

The total number of bits needed for a cache is a function of the cache size and
the address size, because the cache includes both the storage for the data and the
tags. The size of the block above was one word, but normally it is several. For the
following situation:

5.2 The Basics of Caches 461

Index V Tag Data

0 0 0 N

0 0 1 N

0 1 0 N

O i l N

1 0 0 N

1 0 1 N

1 1 0 N

1 1 1 N

a. The initial state of the cache after power-on

Index D Tag Data

0 0 0 N

0 0 1 N

0 1 0 N

O i l N

1 0 0 N

1 0 1 N

1 1 0 Y 10 t w o Memory (10110 , w 0)

1 1 1 N

b. After handling a miss of address (10110 t v / o)

Index a Tag Data

0 0 0 N

0 0 1 N

0 1 0 Y l lftro Memory (11010 t w o)

O i l N

1 0 0 N

1 0 1 N

1 1 0 Y lOnvo Memory (10110 t w o)

1 1 1 N

c. After handling a miss of address (11010 t w o)

Index V Tag Data

0 0 0 Y i o t w o Memory (10000 t w o)

0 0 1 N

0 1 0 Y HtWO Memory (11010 t w o)

O i l Y 00 t w o Memory (00011 t w o)

1 0 0 N

1 0 1 N

1 1 0 Y 10 t w o Memory (10110 t w o)

1 1 1 N

Index D Tag Data

0 0 0 Y l O t w o Memory (10000 , w 0)

0 0 1 N

0 1 0 Y two Memory (11010 t w o)

O i l N

1 0 0 N

1 0 1 N

1 1 0 Y l O t w o Memory (10110 t w o)

1 1 1 N

d. After handling a miss of address (10000 t w o)

Index V Tag Data

0 0 0 Y 10 , w o Memory (10000 , w o)

0 0 1 N

0 1 0 Y l O t w o Memory (10010 , w o)

O i l Y 00 t w o Memory (00011 t w o)

1 0 0 N

1 0 1 N

1 1 0 Y 10.WO Memory (10110 t w o)

1 1 1 N

e. After handling a miss of address (00011 t w o) f. After handling a miss of address (10010 t v / o)

FIGURE 5.6 The cache contents are shown after each reference request that misses, with the index and tag fields
s h o w n in binary for the s e q u e n c e of a d d r e s s e s on page 461. The cache is initially empty, with all valid bits (V entry in cache)
turned off (N). The processor requests the following addresses: 10110 t w o (miss), 11010,wo (miss), 10110IWO (hit), 11010 t w o (hit), 10000 t w o

(miss), 00011 t w o (miss), 10000,w o (hit), 10010 twu (miss), and I0000 t w o (hit). The figures show the cache contents after each miss in the
sequence has been handled. When address 10010,wo (18) is referenced, the entry for address 110 L0two (26) must be replaced, and a reference to
11010 t w o will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full address of a word contained in
cache block i with tag field ; for this cache is jx 8 + i, or equivalents the concatenation of the tag field; and the index i. For example, in cache /
above, index 010 t w o has tag 10 l w o and corresponds to address 100l0 t w o .

4 6 2 Chapter 5 Large and Fast: Exploiting M e m o r y Hierarchy

A d d r e s s (s how ing bit pos i t i ons)

31 30 ••• 13 12 11- • -2 10
Byte
offset

Hit 20 10
Tag

Index Data

Index Valid Tag Data
0

1021
1022
1023

20 32

FIGURE 5.7 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. This cache holds 1024 words or 4 KB. We assume 32-bit
addresses in this chapter. The tag from the cache is compared against the upper portion of the address to
determine whether the entry in the cache corresponds to the requested address. Because the cache has 2 1 0

(or 1024) words and a block size of one word, 10 bits are used to index the cache, leaving 3 2 - 10 -2 = 20 bits
to be compared against the tag. If the tag and upper 20 bits of the address are equal and the valid bit is on,
then the request hits in the cache, and the word is supplied to the processor. Otherwise, a miss occurs.

• 32-bit byte addresses
• A direct-mapped cache
• The cache size is 2" blocks, so n bits are used for the index
• The block size is 2"' words (2" 1 + 2 bytes), so m bits are used for the word within

the block, and two bits are used for the byte part of the address
the size of the tag field is

3 2 - (n+ m + 2).

5.2 The Basics of Caches 463

The total number of bits in a direct-mapped cache is
2" x (block size T tag size T valid field size).

Since the block size is 2"' words (2 " H o bits), and we need 1 bit for the valid field, the
number of bits in such a cache is

2" x (2"' X 32 T (32 - n - m - 2) T 1) = 2" x (2"' x 32 T 31 - n - m).

Although this is the actual size in bits, the naming convention is to exclude the size
of the tag and valid field and to count only the size of the data. Thus, the cache in
Figure 5.7 is called a 4 KB cache.

Bits in a Cache

ITow many total bits are required for a direct-mapped cache with 16 KB of data
and 4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K (2 1 2) words. With a block size of 4 words (2 2), there
are 1024 (2 1 0) blocks. Each block has 4 x 32 or 128 bits of data plus a tag, which
is 32 - 10 - 2 - 2 bits, plus a valid bit. Thus, the total cache size is

2 1 0 x (4 x 3 2 T (3 2 - 1 0 - 2 - 2) T 1) = 2 , 0 x 147= 147 Kbits
or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the
cache is about 1.15 times as many as needed just for the storage of the data.

EXAMPLE

ANSWER

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block
number does byte address 1200 map?

We saw the formula on page 457. The block is given by

(Block address) modulo (Number of blocks in the cache)

EXAMPLE

ANSWER

464 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

where the address of the block is
Byte address

Bytes per block
Notice that this block address is the block containing all addresses between

Byte address
Bytes per block x Bytes per block

and
Byte address x Bytes per block T (Bytes per block - 1) Bytes per block

Thus, with 16 bytes per block, byte address 1200 is block address
1200 = 75

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

Larger blocks exploit spatial locality to lower miss rates. As Figure 5.8 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significant fraction of the cache size, because
the number of blocks that can be held in the cache will become small, and there will
be a great deal of competition for those blocks. As a result, a block will be bumped
out of the cache before many of its words are accessed. Stated alternatively, spatial
locality among the words in a block decreases with a very large block; consequently,
the benefits in the miss rate become smaller.

A more serious problem associated with just increasing the block size is that the
cost of a miss increases. The miss penalty is determined by the time required to fetch
the block from the next lower level of the hierarchy and load it into the cache. The
time to fetch the block has two parts: the latency to the first word and the transfer
time for the rest of the block. Clearly, unless we change the memory system, the
transfer time—and hence the miss penalty—will likely increase as the block size
increases. Furthermore, the improvement in the miss rate starts to decrease as the
blocks become larger. The result is that the increase in the miss penalty overwhelms
the decrease in the miss rate for blocks that are too large, and cache performance
thus decreases. Of course, if we design the memory to transfer larger blocks more
efficiently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

5.2 The Basics of Caches 4 6 5

FIGURE 5.8 IVliss rate versus block size. Note that The miss rate actually goes up if the block size is
too large relative to the cache size. Each line represents a cache of different size. (This figure is independent
of associativity, discussed soon.) Unfortunately, SPEC2000 traces would take too long if block size were
included, so this data is based on SPEC92.

Elaboration: Although it is hard to do anything about the longer latency component of
the miss penalty for large blocks, we may be able to hide some of the transfer time so
that the miss penalty is effectively smaller. The simplest method for doing this, called
early restart, is simply to resume execution as soon as the requested word of the block
is returned, rather than wait for the entire block. Many processors use this technique
for instruction access, where it works best. Instruction accesses are largely sequential,
so if the memory system can deliver a word every clock cycle, the processor may be
able to restart operation when the requested word is returned, with the memory system
delivering new instruction words just in time. This technique is usually less effective
for data caches because it is likely that the words will be requested from the block in a
less predictable way, and the probability that the processor will need another word from
a different cache block before the transfer completes is high. If the processor cannot
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested
word is transferred from the memory to the cache first. The remainder of the block
is then transferred, starting with the address after the requested word and wrapping
around to the beginning of the block. This technique, called requested word first or
critical word first, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart.

HamdllDinig Cache Misses
Before we look at the cache of a real system, let's see how the control unit deals
with cache misses. (We describe a cache controller in detail in Section 5.7). The
control unit must detect a miss and process the miss by fetching the requested data

cache miss A request for
data from the cache that
cannot be filled because
the data is not present in
the cache.

466 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

from memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done in collaboration with
the processor control unit and with a separate controller that initiates the memory
access and refills the cache. The processing of a cache miss creates a pipeline stall
(Chapter 4) as opposed to an interrupt, which would require saving the state of
all registers. For a cache miss, we can stall the entire processor, essentially freezing
the contents of the temporary and programmer-visible registers, while we wait
for memory. More sophisticated out-of-order processors can allow execution of
instructions while waiting for a cache miss, but we'll assume in-order processors
that stall on cache misses in this section.

Let's look a little more closely at how instruction misses are handled; the same
approach can be easily extended to handle data misses. If an instruction access
results in a miss, then the content of the Instruction register is invalid. To get
the proper instruction into the cache, we must be able to instruct the lower level
in the memory hierarchy to perform a read. Since the program counter is incre-
mented in the first clock cycle of execution, the address of the instruction that
generates an instruction cache miss is equal to the value of the program counter
minus 4. Once we have the address, we need to instruct the main memory to per-
form a read. We wait for the memory to respond (since the access will take multi-
ple clock cycles), and then write the words containing the desired instruction into
the cache.

We can now define the steps to be taken on an instruction cache miss:
1. Send the original PC value (current PC - 4) to the memory.
2. Instruct main memory to perform a read and wait for the memory to com-

plete its access.
3. Write the cache entry, putting the data from memory in the data portion of

the entry, writing the upper bits of the address (from the ALU) into the tag
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction, this time finding it in the cache.

The control of the cache on a data access is essentially identical: on a miss, we
simply stall the processor until the memory responds with the data.

HaBidMiimg Writes
Writes work somewhat differently. Suppose on a store instruction, we wrote the
data into only the data cache (without changing main memory); then, after the
write into the cache, memory would have a different value from that in the cache.
In such a case, the cache and memory are said to be inconsistent. The simplest way

5.2 The Basics of Caches 4 6 7

to keep the main memory and the cache consistent is always to write the data into
both the memory and the cache. This scheme is called write-through.

The other key aspect of writes is what occurs on a write miss. We first fetch the
words of the block from memory. After the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. We also
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good
performance. With a write-through scheme, every write causes the data to be written
to main memory. These writes will take a long time, likely at least 100 processor clock
cycles, and could slow down the processor considerably. For example, suppose 10%
of the instructions are stores. If the CPI without cache misses was 1.0, spending 100
extra cycles on every write would lead to a CPI of 1.0 T 100 x 10% =11, reducing
performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the
data while it is waiting to be written to memory. After writing the data into the
cache and into the write buffer, the processor can continue execution. When a write
to main memory completes, the entry in the write buffer is freed. If the write buffer
is full when the processor reaches a write, the processor must stall until there is an
empty position in the write buffer. Of course, if the rate at which the memory can
complete writes is less than the rate at which the processor is generating writes, no
amount of buffering can help, because writes are being generated faster than the
memory system can accept them.

The rate at which writes are generated may also be less than the rate at which the
memory can accept them, and yet stalls may still occur. This can happen when the
writes occur in bursts. To reduce the occurrence of such stalls, processors usually
increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back or
copy back. In a write-back scheme, when a write occurs, the new value is written
only to the block in the cache. The modified block is written to the lower level of
the hierarchy when it is replaced. Write-back schemes can improve performance,
especially when processors can generate writes as fast or faster than the writes can
be handled by main memory; a write-back scheme is, however, more complex to
implement than write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 5.5, we will describe
the handling of writes in more detail.

write-through A scheme
in which writes always
update both the cache
and the next lower level
of the memory hierarchy,
ensuring that data is
always consistent between
the two.

write buffer A queue
that holds data while
the data is waiting to be
written to memory.

write-back A scheme
that handles writes by
updating values only to
the block in the cache,
then writing the modified
block to the lower level
of the hierarchy when the
block is replaced.

Elaboration: Writes introduce several complications into caches that are not present
for reads. Here we discuss two of them: the policy on write misses and efficient
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate a
block in the cache, called write allocate. The block is fetched from memory and then the
appropriate portion of the block is overwritten. An alternative strategy is to update the portion
of the block in memory but not put it in the cache, called no write allocate. The motivation is

468 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

that sometimes programs write entire blocks of data, such as when the operating system
zeros a page of memory. In such cases, the fetch associated with the initial write miss may
be unnecessary. Some computers allow the write allocation policy to be changed on a per
page basis.

Actually implementing stores efficiently in a cache that uses a write-back strategy is
more complex than in a write-through cache. A write-through cache can write the data
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the
cache is write-through, the overwriting of the block in the cache is not catastrophic, since
memory has the correct value. In a write-back cache, we must first write the block back
to memory if the data in the cache is modified and we have a cache miss. If we simply
overwrote the block on a store instruction before we knew whether the store had hit in
the cache (as we could for a write-through cache), we would destroy the contents of the
block, which is not backed up in the next lower level of the memory hierarchy.

In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or
require a write buffer to hold that data—effectively allowing the store to take only one
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup
and places the data in the store buffer during the normal cache access cycle. Assuming
a cache hit, the new data is written from the store buffer into the cache on the next
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle.
We read the tag and write the data portion of the selected block. If the tag matches
the address of the block being written, the processor can continue normally, since the
correct block has been updated. If the tag does not match, the processor generates a
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a modified block. In such a case, the modified block is
moved to a write-back buffer associated with the cache while the requested block is read
from memory. The write-back buffer is later written back to memory. Assuming another
miss does not occur immediately, this technique halves the miss penalty when a dirty
block must be replaced.

Ann Example Cache: The Intrinsity FastMATH Processor
The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache design of the AMD Opteron X4 (Barcelona),
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.9
shows the organization of the Intrinsity FastMATH data cache.

This processor has a 12-stage pipeline, similar to that discussed late in Chapter 4.
When operating at peak speed, the processor can request both an instruction word
and a data word on every clock. To satisfy the demands of the pipeline without
stalling, separate instruction and data caches are used. Each cache is 16 KB, or 4I<
words, with 16-word blocks.

Read requests for the cache are straightforward. Because there are separate
data and instruction caches, we need separate control signals to read and write

5.2 The Basics of Caches 4 6 9

A d d r e s s (s how ing bit pos i t i ons)

31 ••• 14 13 ••• 6 5 ••• 2 1 0

Hit Tag
18

Index

4 Byte
offset

18 bits 512 bits

V Tag Data

18 32 32

P 9 f Mux J -

32

Data

Block offset

256
entries

32

FIGURE 5.9 The 16 KB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. The tag field
is 18 bits wide and the index field is 8 bits wide, while a 4-bit field (bits 5 -2) is used to index the block and select the word from the block using
a 16-10-1 multiplexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags,
with the block offset supplying the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 times
as many words as blocks in the cache.

each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right one.
A block index field is used to control the multiplexor (shown at the bottom
of the figure), which selects the requested word from the 16 words in the
indexed block.

4 7 0 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

3. If the cache signals miss, we send the address to the main memory. When the
memory returns with the data, we write it into the cache and then read it to
fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back,
leaving it up to the operating system to decide which strategy to use for an appli-
cation. It has a one-entry write buffer.

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 5.10 Approximate instruction and data miss rates for the Intrinsity FastMATH
processor for SPEC2000 benchmarks. The combined miss rate is the effective miss rate seen for the
combination of the 16 KB instruction cache and 16 KB data cache, it is obtained by weighting the instruction
and data individual miss rates by the frequency of instruction and data references.

What cache miss rates are attained with a cache structure like that used by the
Intrinsity FastMATH? Figure 5.10 shows the miss rates for the instruction and
data caches. The combined miss rate is the effective miss rate per reference for
each program after accounting for the differing frequency of instruction and data
accesses.

Although miss rate is an important characteristic of cache designs, the ultimate
measure will be the effect of the memory system on program execution time; we'll
see how miss rate and execution time are related shortly.

split cache A scheme
in which a level of the
memory hierarchy
is composed of two
independent caches that
operate in parallel with
each other, with one
handling instructions and
one handling data.

Elaboration: A combined cache with a total size equal to the sum of the two split
caches will usually have a better hit rate. This higher rate occurs because the combined
cache does not rigidly divide the number of entries that may be used by instructions from
those that may be used by data. Nonetheless, many processors use a split instruction
and data cache to increase cache bandwidth. {There may also be fewer conflict misses;
see Section 5.5.)

Here are miss rates for caches the size of those found in the Intrinsity FastMATH
processor, and for a combined cache whose size is equal to the sum of the two caches:

• Total cache size: 32 KB

• Split cache effective miss rate: 3.24%

• Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse.
The advantage of doubling the cache bandwidth, by supporting both an instruction and

data access simultaneously, easily overcomes the disadvantage of a slightly increased
miss rate. This observation cautions us that we cannot use miss rate as the sole
measure of cache performance, as Section 5.3 shows.

5.2 The Basics of Caches 471

OesiiginiiBiig the Memory System to Support Caches
Cache misses are satisfied from main memory, which is constructed from DRAMs.
In Section 5.1, we saw that the primary emphasis with DRAMs is on cost and
density. Although it is difficult to reduce the latency to fetch the first word from
memory, we can reduce the miss penalty if we increase the bandwidth from the
memory to the cache. This reduction allows larger block sizes to be used while still
maintaining a low miss penalty, similar to that for a smaller block.

The processor is traditionally connected to memory over a bus. (As we'll see
in Chapter 6, that tradition is changing, but the actual interconnect technology
doesn't matter in this chapter, so we'll use the term bus.) The clock rate of the bus
is usually much slower than the processor. The speed of this bus affects the miss
penalty.

To understand the impact of different organizations of memory, let's define a set
of hypothetical memory access times. Assume

• 1 memory bus clock cycle to send the address
• 15 memory bus clock cycles for each DRAM access initiated
• 1 memory bus clock cycle to send a word of data
If we have a cache block of four words and a one-word-wide bank of DRAMs,

the miss penalty would b e l T 4 x l 5 T 4 x l = 6 5 memory bus clock cycles. Thus,
the number of bytes transferred per bus clock cycle for a single miss would be

Figure 5.11 shows three options for designing the memory system. The first
option follows what we have been assuming: memory is one word wide, and all
accesses are made sequentially. The second option increases the bandwidth to
memory by widening the memory and the buses between the processor and mem-
ory; this allows parallel access to multiple words of the block. The third option
increases the bandwidth by widening the memory but not the interconnection
bus. Thus, we still pay a cost to transmit each word, but we can avoid paying the
cost of the access latency more than once. Let's look at how much these other two
options improve the 65-cycle miss penalty that we would see for the first option in
Figure 5.11(a).

Increasing the width of the memory and the bus will increase the memory
bandwidth proportionally, decreasing both the access time and transfer time
portions of the miss penalty. With a main memory width of two words, the miss
penalty drops from 65 memory bus clock cycles to 1 T (2 x 15) T 2 x 1 = 33 memory
bus clock cycles. The bandwidth for a single miss is then 0.48 (almost twice as high)
bytes per bus clock cycle for a memory that is two words wide. The major costs of
this enhancement are the wider bus and the potential increase in cache access time
due to the multiplexor and control logic between the processor and cache.

4 7 2 Chapter 5 Large and Fast: Exploit ing M e m o r y Hierarchy

P r o c e s s o r

^^fl/iult iplexor

C a c h e

Bus

Memory Memory Memory Memory

bank 0 bank 1 bank 2 bank 3

b. Wider memory organization c. Interleaved memory organization

a. One-word-wide
memory organization

F I G U R E 5.11 T h e pr imary m e t h o d of achieving higher m e m o r y bandwidth is to increase the physical or logical width
of the m e m o r y system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all
components are one word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved
memory. In (b), the logic between the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate
words of the cache on writes.

Instead of making the entire path between the memory and cache wider, the
memory chips can be organized in banks to read or write multiple words in one
access time rather than reading or writing a single word each time. Each bank could
be one word wide so that the width of the bus and the cache need not change,
but sending an address to several banks permits them all to read simultaneously.
This scheme, which is called interleaving, retains the advantage of incurring the
full memory latency only once. For example, with four banks, the time to get a
four-word block would consist of 1 cycle to transmit the address and read request
to the banks, 15 cycles for all four banks to access memory, and 4 cycles to send the
four words back to the cache. This yields a miss penalty of 1 T (1 x 15) T 4 x 1 = 20
memory bus clock cycles. This is an effective bandwidth per miss of 0.80 bytes per
clock, or about three times the bandwidth for the one-word-wide memory and bus.

5.2 The Basics of Caches 473

Banks are also valuable on writes. Each bank can write independently, quadrupling
the write bandwidth and leading to fewer stalls in a write-through cache. As we will
see, an alternative strategy for writes makes interleaving even more attractive.

Because of the ubiquity of caches and the desire for larger block sizes, DRAM
manufacturers provide for a burst access to data from a series of sequential loca-
tions in the DRAM. The newest development is Double Data Rate (DDR) DRAMs.
The name means data transfers on both the leading and falling edge of the clock,
thereby getting twice as much bandwidth as you might expect based on the clock
rate and the data width. To deliver such high bandwidth, the internal DRAM is
organized as interleaved memory banks.

The advantage of such optimizations is that they use the circuitry already
largely on the DRAMs, adding little cost to the system while achieving a significant
improvement in bandwidth. Section C.9 of £S Appendix C describes the internal
architecture of DRAMs and how these optimizations are implemented.

Elaboration: Memory chips are organized to produce a number of output bits, usually
4 to 32, with 16 being the most popular in 2008. We describe the organization of a RAM
as dx w, where d is the number of addressable locations (the depth) and w is the output
(or width of each location). DRAMs are logically organized as rectangular arrays, and
access time is divided into row access and column access. DRAMs buffer a row. Burst
transfers allow repeated accesses to the buffer without a row access time. The buffer
acts like an SRAM; by changing column address, random bits can be accessed in the
buffer until the next row access. This capability changes the access time significantly,
since the access time to bits in the row is much lower. Figure 5.12 shows how the
density, cost, and access time of DRAMs have changed over the years.

To improve the interface to processors, DRAMs added clocks and are properly called
Synchronous DRAMs or SDRAMs. The advantage of SDRAMs is that the use of a clock
eliminates the time for the memory and processor to synchronize.

Elaboration: One way to measure the performance of the memory system behind the
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of long
vector operations. They have no temporal locality and they access arrays that are larger
than the cache of the computer being tested.

Elaboration: The burst mode for DDR memory is also found on memory buses, such
as the Intel Duo Core Front Side Bus.

474 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Year introduced Chip size $ per GB
Total access time to
a new row/column

Column access
time to existing row

1 9 8 0 64 Kbit 5 1 , 5 0 0 , 0 0 0 2 5 0 ns 1 5 0 ns

1 9 8 3 2 5 6 Kbit $ 5 0 0 , 0 0 0 1 8 5 ns 1 0 0 ns

1 9 8 5 1 Mbit $ 2 0 0 , 0 0 0 1 3 5 ns 4 0 ns

1 9 8 9 4 Mbit $ 5 0 , 0 0 0 1 1 0 ns 4 0 ns

1 9 9 2 16 Mbit $ 1 5 , 0 0 0 9 0 ns 3 0 ns

1 9 9 6 64 Mbit $ 1 0 , 0 0 0 6 0 ns 12 ns

1 9 9 8 1 2 8 Mbit S 4 , 0 0 0 6 0 ns 1 0 ns

2 0 0 0 2 5 6 Mbit $ 1 , 0 0 0 5 5 ns 7 ns

2 0 0 4 5 1 2 Mbit $ 2 5 0 5 0 ns 5 ns

2 0 0 7 1 Gbit $ 5 0 4 0 ns 1 . 2 5 ns

FIGURE 5.12 DRAM size increased by multiples of four approximately once every three
years until 1996, and thereafter considerably slower. The improvements in access time have been
slower but continuous, and cost roughly tracks density improvements, although cost is often affected by
other issues, such as availability and demand. The cost per gigabyte is not adjusted for inflation.

Summary
We began the previous section by examining the simplest of caches: a direct-mapped
cache with a one-word block. In such a cache, both hits and misses are simple, since
a word can go in exactly one location and there is a separate tag for every word. To
keep the cache and memory consistent, a write-through scheme can be used, so
that every write into the cache also causes memory to be updated. The alternative
to write-through is a write-back scheme that copies a block back to memory when
it is replaced; we'll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than
one word. The use of a larger block decreases the miss rate and improves the effi-
ciency of the cache by reducing the amount of tag storage relative to the amount of
data storage in the cache. Although a larger block size decreases the miss rate, it can
also increase the miss penalty. If the miss penalty increased linearly with the block
size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to
transfer cache blocks more efficiently. Common methods for increasing bandwidth
external to the DRAM are making the memory wider and interleaving. DRAM
designers have steadily improved the interface between the processor and memory
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache
block sizes.

5.3 Measuring and Improving Cache Performance 475

The speed of the memory system affects the designer's decision on the size of the
cache block. Which of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block
2. The shorter the memory latency, the larger the cache block
3. The higher the memory bandwidth, the smaller the cache block
4. The higher the memory bandwidth, the larger the cache block

In this section, we begin by examining ways to measure and analyze cache perfor-
mance. We then explore two different techniques for improving cache performance.
One focuses on reducing the miss rate by reducing the probability that two differ-
ent memory blocks will contend for the same cache location. The second tech-
nique reduces the miss penalty by adding an additional level to the hierarchy. This
technique, called multilevel caching, first appeared in high-end computers selling
for more than $100,000 in 1990; since then it has become common on desktop
computers selling for less than $500!

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles T Memory-stall clock cycles)

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

Check
Yourself

Measuring and Improving Cache
[peufoirBinaince

x Clock cycle time

Memory-stall clock cycles = Read-stall cycles T Write-stall cycles

476 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Reads Read-stall cycles = — x Read miss rate x Read miss penalty Program
Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continu-
ing the write (see the Elaboration on page 467 for more details on dealing with
writes), and write buffer stalls, which occur when the write buffer is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

Write-stall cycles = | p^gmm X m ' s s r a t e x ^ n i ^ s s Penalty j

T Write buffer stalls
Because the write buffer stalls depend on the proximity of writes, and not just

the frequency, it is not possible to give a simple equation to compute such stalls.
Fortunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly exceeds
the average write frequency in programs (e.g., by a factor of 2), the write buffer
stalls will be small, and we can safely ignore them. If a system did not meet these
criteria, it would not be well designed; instead, the designer should have used either
a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 5.5.

In most write-through cache organizations, the read and write miss penalties
are the same (the time to fetch the block from memory). If vve assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

Memory accesses Memory-stall clock cycles = x Miss rate x Miss penalty ' ' Program '
We can also factor this as

Memory-stall clock cycles = ^t iuc t ions x Misses— x ^ j s s p e n a j { y Program Instruction
Let's consider a simple example to help us understand the impact of cache perfor-
mance on processor performance.

5.3 Measuring and Improving Cache Performance 477

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the
data cache is 4%. If a processor has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles for all misses, determine how much faster a pro-
cessor would run with a perfect cache that never missed. Assume the frequency
of all loads and stores is 36%.

EXAMPLE

The number of memory miss cycles for instructions in terms of the Instruc-
tion count (I) is

Instruction miss cycles = I x 2% x 100 = 2.00 x I
As the frequency of all loads and stores is 36%, we can find the number of
memory miss cycles for data references:

Data miss cycles = I x 36% x 4% x 100 = 1.44 x I
The total number of memory-stall cycles is 2.00 I T 1.44 I = 3.44 I. This is
more than three cycles of memory stall per instruction. Accordingly, the total
CPI including memory stalls is 2 T 3.44 = 5.44. Since there is no change in
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls 1 x CPI s t a l I x Clock cycle

ANSWER

CPU time with perfect cache I x CPI p e r f c c t x Clock cycle
c p i s t a l l _ 5 . 4 4

PPT • 1 'perfect

The performance with the perfect cache is better by = 2.72.

What happens if the processor is made faster, but the memory system is not? The
amount of time spent on memory stalls will take up an increasing fraction of the
execution time; Amdahl's law, which we examined in Chapter 1, reminds us of this
fact. A few simple examples show how serious this problem can be. Suppose we
speed-up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of I T 3.44 = 4.44, and the
system with the perfect cache would be

478 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

^ y ^ = 4.44 times faster.
The amount of execution time spent on memory stalls would have risen from

3 44 = 63% 5.44
to

3.44
4.44 = 77%.

Similarly, increasing the clock rate without changing the memory system also
increases the performance lost due to cache misses.

The previous examples and equations assume that the hit time is not a factor in
determining cache performance. Clearly, if the hit time increases, the total time to
access a word from the memory system will increase, possibly causing an increase
in the processor cycle time. Although we will see additional examples of what
can increase hit time shortly, one example is increasing the cache size. A larger
cache could clearly have a longer access time, just as, if your desk in the library
was very large (say, 3 square meters), it would take longer to locate a book on the
desk. An increase in hit time likely adds another stage to the pipeline, since it may
take multiple cycles for a cache hit. Although it is more complex to calculate the
performance impact of a deeper pipeline, at some point the increase in hit time for
a larger cache could dominate the improvement in hit rate, leading to a decrease in
processor performance.

To capture the fact that the time to access data for both hits and misses affects
performance, designers sometime use average memory access time (AMAT) as a way
to examine alternative cache designs. Average memory access time is the average
time to access memory considering both hits and misses and the frequency of
different accesses; it is equal to the following:

AMAT = Time for a hit T Miss rate x Miss penalty

Calculating Average Memory A c c e s s Time

EXAMPLE
Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access
time (including hit detection) of 1 clock cycle. Assume that the read and write
miss penalties are the same and ignore other write stalls.

5.3 Measuring and Improving Cache Performance 4 7 9

The average memory access time per instruction is

AMAT = Time for a hit T Miss rate x Miss penalty

= 1 T 0 . 0 5 x 2 0

= 2 clock cycles

or 2 ns.

ANSWER

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in
Section 5.11, Fallacies and Pitfalls.

Reducing Cache Misses by Move Flexibfle Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it is
called direct mapped because there is a direct mapping from any block address in
memory to a single location in the upper level of the hierarchy. However, there is
actually a whole range of schemes for placing blocks. Direct mapped, where a block
can be placed in exactly one location, is at one extreme.

At the other extreme is a scheme where a block can be placed in any location
in the cache. Such a scheme is called fully associative, because a block in memory
may be associated with any entry in the cache. To find a given block in a fully asso-
ciative cache, all the entries in the cache must be searched because a block can be
placed in any one. To make the search practical, it is done in parallel with a com-
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively making fully associative placement practical only for
caches with small numbers of blocks.

The middle range of designs between direct mapped and fully associative is called
set associative. In a set-associative cache, there are a fixed number of locations
where each block can be placed. A set-associative cache with n locations for a block
is called an n-way set-associative cache. An n-way set-associative cache consists of a
number of sets, each of which consists of n blocks. Each block in the memory maps
to a unique set in the cache given by the index field, and a b lock can be placed in
any element of that set. Thus, a set-associative placement combines direct-mapped

fully associative cachc
A cache structure in
which a block can be
placed in any location in
the cache.

set-associative cache
A cache that has a fixed
number of locations (at
least two) where each
block can be placed.

480 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

placement and fully associative placement: a block is directly mapped into a set,
and then all the blocks in the set are searched for a match. For example, Figure 5.13
shows where block 12 may be placed in a cache with eight blocks total, according
to the three block placement policies.

Direct mapped

Block # 0 1 2 3 4 5 6 7

Set associative

Set # 0 1 2 3

Fully associative

Data Data Data I
Tag 1

2
Tag 1

2
Tag 1

2

Search t Search j I Search , | j j j , II
FIGURE 5.13 The location of a memory block whose address is 12 in a cache with eight blocks varies for direct-
mapped, set-associative, and fully associative placement. In direct-mapped placement, there is only one cache block where
memory block 12 can be found, and that block is given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets,
and memory block 12 must be in set (12 mod 4) =0 ; the memory block could be in either element of the set. In a fully associative placement,
the memory block for block address 12 can appear in any of the eight cache blocks.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of blocks in the cache)

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements
of the sef must be searched. In a fully associative cache, the block can go anywhere,
and all tags of all the blocks in the cache must be searched.

5.3 Measuring and Improving Cache Performance 4 8 1

We can also think of all block placement strategies as a variation on set
associativity. Figure 5.14 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is simply a one-way set-associative cache:
each cache entry holds one block and each set has one element. A fully associative
cache with m entries is simply an m-way set-associative cache; it has one set with
m blocks, and an entry can reside in any block within that set.

One-way set a s soc ia t i ve

(direct mapped)

Block Tag Data

Two-way set a s soc ia t i ve

Set Tag Data Tag Data
0 n
1

2
3

Four -way set a s soc ia t i ve

Set Tag Data Tag Data Tag Data Tag Data
0 | | | | | | | |

1

E ight -way set a s soc ia t i ve (fully as soc iat ive)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

F IGURE 5.14 An eight-block c a c h e conf igured a s direct mapped, two-way s e t a s s oc i a t i ve , four-way s e t a s soc i a t i ve ,
and fully a s soc i a t i ve . The total size of the cache in blocks is equal to the number of sets times the associativity. Thus, for a fixed cache
size, increasing the associativity decreases the number of sets while increasing the number of elements per set. With eight blocks, an eight-way
set-associative cache is the same as a fully associative cache.

0
1

2

3

4

5

6

7

The advantage of increasing the degree of associativity is that it usually decreases
the miss rate, as the next example shows. The main disadvantage, which we discuss
in more detail shortly, is a potential increase in the hit time.

482 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

EXAMPLE

ANSWER

M i s s e s and Assoc ia t iv i ty in C a c h e s

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set-associative, and the third
is direct-mapped. Find the number of misses for each cache organization given
the following sequence of block addresses: 0, 8 , 0 , 6 , and 8.

The direct-mapped case is easiest. First, let's determine to which cache block
each block address maps:

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored text to show a new entry added to
the cache for the associated reference, and plain text to show an old entry in
the cache:

Address of memory
block accessed

Hit Contents of cache blocks after reference Address of memory
block accessed or miss 0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

The direct-mapped cache generates five misses for the five accesses.
The set-associative cache has two sets (with indices 0 and 1) with two

elements per set. Let's first determine to which set each block address maps:

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0

5.3 Measuring and Improving Cache Performance 483

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past
is replaced. (We will discuss other replacement rules in more detail shortly.)
Using this replacement rule, the contents of the set-associative cache after each
reference looks like this:

Address ofmemory Hit Contents of cache blocks after reference

block accessed or miss SetO SetO Set 1 Set 1

o miss Memory[0]

8 miss Memory[0] Memory[8]

o hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache.

The fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. The fully associative cache has
the best performance, with only three misses:

Address of memory
block accessed

Hit Contents of cache blocks after reference Address of memory
block accessed or miss Block 0 Block 1 Block 2 Block 3

o miss Memory[0]

8 miss Memory[0] Memory[8]

o hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because
three unique block addresses are accessed. Notice that if we had eight blocks
in the cache, there would be no replacements in the two-way set-associative
cache (check this for yourself), and it would have the same number of misses
as the fully associative cache. Similarly, if we had 16 blocks, all 3 caches would
have the same number of misses. Even this trivial example shows that cache
size and associativity are not independent in determining cache performance.

484 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

How much of a reduction in the miss rate is achieved by associativity? Figure 5.15
shows the improvement for a 64 KB data cache with a 16-word block, and associa-
tivity ranging from direct mapped to eight-way. Going from one-way to two-
way associativity decreases the miss rate by about 15%, but there is little further
improvement in going to higher associativity.

Associativity Data miss rate

1 10 .3%

2 8 .6%

4 8 .3%

8 8 .1%

FIGURE 5.15 The data cache miss rates for an organization like the Intensity FastMATH
processor for SPEC2000 benchmarks with associativity varying from one-way to eight-
way. These results for 10 SPHC2000 programs are from Hennessy and Patterson 12003].

Locatimig a Bflock Dim the Cache
Now, let's consider the task of finding a block in a cache that is set associative.
Just as in a direct-mapped cache, each block in a set-associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it matches the block address from the proces-
sor. Figure 5.16 decomposes the address. The index value is used to select the set
containing the address of interest, and the tags of all the blocks in the set must be
searched. Because speed is of the essence, all the tags in the selected set are searched
in parallel. As in a fully associative cache, a sequential search would make the hit
time of a set-associative cache too slow.

T a g Index Block offset

FIGURE 5.16 The three portions of an address in a set-associative or direct-mapped
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

If the total cache size is kept the same, increasing the associativity increases the
number of blocks per set, which is the number of simultaneous compares needed
to perform the search in parallel: each increase by a factor of 2 in associativity
doubles the number of blocks per set and halves the number of sets. Accordingly,
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit. In a fully associative cache, there is effectively
only one set, and all the blocks must be checked in parallel. Thus, there is no index,
and the entire address, excluding the block offset, is compared against the tag of
every block. In other words, we search the entire cache without any indexing.

5.3 Measuring and Improving Cache Performance 4 8 5

In a direct-mapped cache, only a single comparator is needed, because the entry
can be in only one block, and we access the cache simply by indexing. Figure 5.17
shows that in a four-way set-associative cache, four comparators are needed,
together with a 4-to-l multiplexor to choose among the four potential members
of the selected set. The cache access consists of indexing the appropriate set and
then searching the tags of the set. The costs of an associative cache are the extra
comparators and any delay imposed by having to do the compare and select from
among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware.

Elaboration: A Content Addressable Memory {CAM) is a circuit that combines compari-
son and storage in a single device. Instead of supplying an address and reading a word
like a RAM, you supply the data and the CAM looks to see if it has a copy and returns the
index of the matching row. CAMs mean that cache designers can afford to implement
much higher set associativity than if they needed to build the hardware out of SRAMs and
comparators. In 2008, the greater size and power of CAM generally leads to 2-way and
4-way set associativity being built from standard SRAMs and comparators, with 8-way
and above built using CAMs.

Choosing Which BOock to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme, the block replaced is the one that has
been unused for the longest time. The set associative example on page 482 uses
LRU, which is why we replaced Memory(O) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a
set was used relative to the other elements in the set. For a two-way set-associative
cache, tracking when the two elements were used can be implemented by keeping
a single bit in each set and setting the bit to indicate an element whenever that
element is referenced. As associativity increases, implementing LRU gets harder; in
Section 5.5, we will see an alternative scheme for replacement.

least recently used
(L R U) A replacement
scheme in which the block
replaced is the one that
has been unused for the
longest time.

486 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

A d d r e s s

31 30 ••• 12 11 1 0 9 8 - - 3 2 1 0

FIGURE 5.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-l
mult iplexor . The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators
is used to select the data from one of the four blocks of the indexed set, using a multiplexor with a decoded select signal, in some
implementations, the Output enable signals on the data portions of the cache RAMs can be used to select the entry in the set that drives
the output. The Output enable signal comes from the comparators, causing the element that matches to drive the data outputs. This
organization eliminates the need for the multiplexor.

Size off Tags v e r s u s S e t Associat iv i ty

EXAMPLE
Increasing associativity requires more comparators and more tag bits per
cache block. Assuming a cache of 4K blocks, a 4-word block size, and a 32-bit
address, find the total number of sets and the total number of tag bits for
caches that are direct mapped, two-way and four-way set associative, and fully
associative.

5.3 Measuring and Improving Cache Performance 487

Since there are 16 (= 2'1) bytes per block, a 32-bit address yields 32 - 4 = 28 bits
to be used for index and tag. The direct-mapped cache has the same number of
sets as blocks, and hence 12 bits of index, since log2(4K) = 12; hence, the total
number is (28 - 12) x 4K = 16 x 4K = 64 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and
thus decreases the number of bits used to index the cache by 1 and increases the
number of bits in the tag by 1. Thus, for a two-way set-associative cache, there
are 2K sets, and the total number of tag bits is (28 - 1 1) x 2 x 2K = 34 x 2K = 68
Kbits. For a four-way set-associative cache, the total number of sets is IK, and
the total number is (28 - 10) x 4 x IK = 72 X IK = 72 IC tag bits.

For a fully associative cache, there is only one set with 4K blocks, and the tag
is 28 bits, leading to 28 X 4K x 1 = 112K tag bits.

Reducing the IMlSss Penalty Using Muitillevel Caches
All modern computers make use of caches. To close the gap further between the
fast clock rates of modern processors and the increasingly long time required to
access DRAMs, most microprocessors support an additional level of caching. This
second-level cache is usually on the same chip and is accessed whenever a miss
occurs in the primary cache. If the second-level cache contains the desired data,
the miss penalty for the first-level cache will be essentially the access time of the
second-level cache, which will be much less than the access time of main memory.
If neither the primary nor the secondary cache contains the data, a main memory
access is required, and a larger miss penalty is incurred.

How significant is the performance improvement from the use of a secondary
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 4 GFIz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the processor
be if we add a secondary cache that has a 5 ns access time for either a hit or a
miss and is large enough to reduce the miss rate to main memory to 0.5%?

EXAMPLE

The miss penalty to main memory is

100 ns
ANSWER

0.25 ns = 400 clock cycles

clock cycle

488 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The effective CPI with one level of caching is given by

Total CPI = Base CPI T Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI = 1.0 T Memory-stall cycles per instruction = 1.0 T 2% x 400 = 9

With two levels of caching, a miss in the primary (or first-level) cache can be
satisfied either by the secondary cache or by main memory. The miss penalty
for an access to the second-level cache is

5 n i L = 20 clock cycles
0.25 li*

clock cycle

If the miss is satisfied in the secondary cache, then this is the entire miss penalty.
If the miss needs to go to main memory, then the total miss penalty is the sum
of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI:

Total CPI = 1 T Primary stalls per instruction
T Secondary stalls per instruction

= 1 T 2% x 20 T 0.5% x 400 = 1 T 0.4 T 2.0 = 3.4

Thus, the processor with the secondary cache is faster by

3.4
Alternatively, we could have computed the stall cycles by summing the stall
cycles of those references that hit in the secondary cache ((2 % - 0 .5%) x 20 =
0.3). Those references that go to main memory, which must include the cost to
access the secondary cache as well as the main memory access time, is (0 .5% x
(20 T 400) = 2.1). The sum, 1 .0 T 0.3 T 2.1, is again 3.4.

The design considerations for a primary and secondary cache are significantly
different, because the presence of the other cache changes the best choice versus
a single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce
the penalty of long memory access times.

5.3 Measuring and Improving Cache Performance 4 8 9

The effect of these changes on the two caches can be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore,
the primary cache may use a smaller block size, to go with the smaller cache size
and reduced miss penalty. In comparison, the secondary cache will be much larger
than in a single-level cache, since the access time of the secondary cache is less
critical. With a larger total size, the secondary cache may use a larger block size
than appropriate with a single-level cache. It often uses higher associativity than
the primary cache given the focus of reducing miss rates.

multilevel cache
A memory hierarchy with
multiple levels of caches,
rather than just a cache
and main memory.

Sorting has been exhaustively analyzed to find better algorithms: Bubble Sort,
Quicksort, Radix Sort, and so on. Figure 5.18(a) shows instructions executed
by item searched for Radix Sort versus Quicksort. As expected, for large arrays,
Radix Sort has an algorithmic advantage over Quicksort in terms of number of
operations. Figure 5.18(b) shows time per key instead of instructions executed. We
see that the lines start on the same trajectory as Figure 5.18(a), but then the Radix
Sort line diverges as the data to sort increases. What is going on? Figure 5.18(c)
answers by looking at the cache misses per item sorted: Quicksort consistently has
many fewer misses per item to be sorted.

Alas, standard algorithmic analysis often ignores the impact of the memory
hierarchy. As faster clock rates and Moore's law allow architects to squeeze all of
the performance out of a stream of instructions, using the memory hierarchy well
is critical to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today's computers.

Understanding
Program
Performance

Elaboration: Multilevel caches create several complications. First, there are now several
different types of misses and corresponding miss rates. In the example on page 482, we
saw the primary cache miss rate and the global miss rate—the fraction of references that
missed in all cache levels. There is also a miss rate for the secondary cache, which is the
ratio of all misses in the secondary cache divided by the number of accesses to it. This
miss rate is called the local miss rate of the secondary cache. Because the primary cache
filters accesses, especially those with good spatial and temporal locality, the local miss
rate of the secondary cache is much higher than the global miss rate. For the example
on page 482, we can compute the local miss rate of the secondary cache as 0.5%/2% =
25%! Luckily, the global miss rate dictates how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more
complex, since they execute instructions during the miss penalty. Instead of instruction
miss rates and data miss rates, we use misses per instruction, and this formula:

global miss rate The
fraction of references
that miss in all levels of a
multilevel cachc.

local miss rate The
fraction of references to
one level of a cache that
miss; used in multilevel
hierarchies.

Memory-stall cycles Misses
Instruction Instruction

x (Total miss latency - Overlapped miss latency)

490 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

1200

1000

| 800
1/5

.2 600
o

| 400

200

0

a.

2000

\ Radix Sort

Quicksort x

— o
1 ; i i 1 i : 1 i :

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

1600

1200

800

400

0

b.

Size (K items to sort)

FIGURE 5.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c) cache misses per item sorted. This data is from a
paper by LaiVIarca and Ladner [1996). Although the numbers would change for newer computers, the idea
still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierarchy
into account, to regain its algorithmic advantages (see Section 5.11). The basic idea of cache optimizations is
to use all the data in a block repeatedly before it is replaced on a miss.

4 8 16 32 64 128 256 512 1024 2048 4096

Size (K items to sort)

Radix Sort

Quicksort

5.3 Measuring and Improving Cache Performance 491

There is no general way to calculate overlapped miss latency, so evaluations of memory
hierarchies for out-of-order processors inevitably require simulation of the processor and
memory hierarchy. Only by seeing the execution of the processor during each miss can we
see if the processor stalls waiting for data or simply finds other work to do. A guideline is
that the processor often hides the miss penalty for an Ll cache miss that hits in the L2
cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy
varies between different implementations of the same architecture in cache size,
associativity, block size, and number of caches. To cope with such variability, some
recent numerical libraries parameterize their algorithms and then search the parameter
space at runtime to find the best combination for a particular computer. This approach
is called autotuning.

Check
Yourself

2. First-level caches are more concerned about miss rate, and second-level
caches are more concerned about hit time.

Summary
In this section, we focused on three topics: cache performance, using associativity
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss
penalties.

The memory system has a significant effect on program execution time. The
number of memory-stall cycles depends on both the miss rate and the miss penalty.
The challenge, as we will see in Section 5.5, is to reduce one of these factors without
significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.
Such schemes can reduce the miss rate of a cache by allowing more flexible place-
ment of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to
satisfy a request. The higher costs make large fully associative caches impractical.
Set-associative caches are a practical alternative, since we need only search among
the elements of a unique set that is chosen by indexing. Set-associative caches
have higher miss rates but are faster to access. The amount of associativity that
yields the best performance depends on both the technology and the details of the
implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss penalty
by allowing a larger secondary cache to handle misses to the primary cache.
Second-level caches have become commonplace as designers find that limited
silicon and the goals of high clock rates prevent primary caches from becoming

Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second-level
caches are more concerned about miss rate.

4 9 2 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

large. The secondary cache, which is often ten or more times larger than the primary
cache, handles many accesses that miss in the primary cache. In such cases, the miss
penalty is that of the access time to the secondary cache (typically < 10 processor
cycles) versus the access time to memory (typically > 100 processor cycles). As with
associativity, the design tradeoffs between the size of the secondary cache and its
access time depend on a number of aspects of the implementation.

. . . a system has been
devised to make the
core drum combina-
tion appear to the
programmer as a single
level store, the requisite
transfers taking place
automatically.

Kilburn ct al., One-level
storage system, 1962

virtual m e m o r y
A technique that uses
main memory as a "cache"
for secondary storage.

physical address An
address in main memory.

protection A set
of mechanisms for
ensuring that multiple
processes sharing the
processor, memory,
or I/O devices cannot
interfere, intentionally
or unintentionally, with
one another by reading
or writing each other's
data. These mechanisms
also isolate the operating
system from a user
process.

Virtual Memory

In the previous section, we saw how caches provided fast access to recently used
portions of a program's code and data. Similarly, the main memory can act as a
"cache" for the secondary storage, usually implemented with magnetic disks. This
technique is called virtual memory. Historically, there were two major motivations
for virtual memory: to allow efficient and safe sharing of memory among multiple
programs, and to remove the programming burdens of a small, limited amount of
main memory. Four decades after its invention, it's the former reason that reigns
today.

Consider a collection of programs running all at once on a computer. Of course,
to allow multiple programs to share the same memory, we must be able to protect
the programs from each other, ensuring that a program can only read and write
the portions of main memory that have been assigned to it. Main memory need
contain only the active portions of the many programs, just as a cache contains
only the active portion of one program. Thus, the principle of locality enables vir-
tual memory as well as caches, and virtual memory allows us to efficiently share the
processor as well as the main memory.

We cannot know which programs will share the memory with other pro-
grams when we compile them. In fact, the programs sharing the memory change
dynamically while the programs are running. Because of this dynamic interaction,
we would like to compile each program into its own address space—a separate
range of memory locations accessible only to this program. Virtual memory
implements the translation of a program's address space to physical addresses.
This translation process enforces protection of a program's address space from
other programs.

The second motivation for virtual memory is to allow a single user program to
exceed the size of primary memory. Formerly, if a program became too large for
memory, it was up to the programmer to make it fit. Programmers divided pro-
grams into pieces and then identified the pieces that were mutually exclusive. These
overlays were loaded or unloaded under user program control during execution,
with the programmer ensuring that the program never tried to access an overlay
that was not loaded and that the overlays loaded never exceeded the total size of
the memory. Overlays were traditionally organized as modules, each containing

5.4 Virtual Memory 493

both code and data. Calls between procedures in different modules would lead to
overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on pro-
grammers. Virtual memory, which was invented to relieve programmers of this
difficulty, automatically manages the two levels of the memory hierarchy repre-
sented by main memory (sometimes called physical memory to distinguish it from
virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same,
their differing historical roots have led to the use of different terminology. A virtual
memory block is called a page, and a virtual memory miss is called a page fault.
With virtual memory, the processor produces a virtual address, which is translated
by a combination of hardware and software to a physical address, which in turn can
be used to access main memory. Figure 5.19 shows the virtually addressed memory
with pages mapped to main memory. This process is called address mapping or
address translation. Today, the two memory hierarchy levels controlled by virtual
memory are usually DRAMs and magnetic disks (see Chapter 1, pages 2 2 - 2 3) . If
we return to our library analogy, we can think of a virtual address as the title of
a book and a physical address as the location of that book in the library, such as
might be given by the Library of Congress call number.

Virtual addresses Physical addresses
Address translation ,, Address translation ,,

— — — -
0

— - 1 o _ _ _ — - 1

or

Disk addresses
y

Disk addresses Disk addresses

page fault An event that
occurs when an accessed
page is not present in
main memory.

v i r t u a l address An
address that corresponds
to a location in virtual
spacc and is translated
by address mapping to
a physical address when
m e m o r y is accessed.

address t r a n s l a t i o n Also
called address mapping.
T h e process by which a
virtual address is mapped
to an address used to
access memory.

FIGURE 5.19 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed using physical addresses. Doth the
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share
data or code.

4 9 4 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Virtual memory also simplifies loading the program for execution by providing
relocation. Relocation maps the virtual addresses used by a program to different
physical addresses before the addresses are used to access memory. This relocation
allows us to load the program anywhere in main memory. Furthermore, all virtual
memory systems in use today relocate the program as a set of fixed-size blocks
(pages), thereby eliminating the need to find a contiguous block of memory to
allocate to a program; instead, the operating system need only find a sufficient
number of pages in main memory.

In virtual memory, the address is broken into a virtual page number and a page
offset. Figure 5.20 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the
physical address, while the page offset, which is not changed, constitutes the lower
portion. The number of bits in the page offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory.

Virtual a d d r e s s

31 30 29 28 27 15 14 13 12 11 10 9 8 32 1 0

Phy s i ca l a d d r e s s

FIGURE 5.20 Mapping from a virtual to a physical address. The page size is 2|: =4 KB. The
number of physical pages allowed in memory is 2IK, since The physical page number has 18 bits in it. Thus,
main memory can have at most 1 GB, while the virtual address space is 4 GB.

Many design choices in virtual memory systems are motivated by the high cost
of a miss, which in virtual memory is traditionally called a page fault. A page fault
will take millions of clock cycles to process. (The table on page 453 shows that main
memory latency is about 100,000 times quicker than disk.) This enormous miss

5.4 Virtual Memory 495

penalty, dominated by the time to get the first word for typical page sizes, leads to
several key decisions in designing virtual memory systems:

• Pages should be large enough to try to amortize the high access time. Sizes
from 4 KB to 16 KB are typical today. New desktop and server systems are
being developed to support 32 KB and 64 KB pages, but new embedded sys-
tems are going in the other direction, to 1 KB pages.

• Organizations that reduce the page fault rate are attractive. The primary tech-
nique used here is to allow fully associative placement of pages in memory.

• Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use
clever algorithms for choosing how to place pages because even small reduc-
tions in the miss rate will pay for the cost of such algorithms.

• Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than
physical addresses, the opposite can occur when the processor address size is small
relative to the state of the memory technology. No single program can benefit, but a
collection of programs running at the same time can benefit from not having to be
swapped to memory or by running on parallel processors. For servers and desktop
computers, 32-bit address processors are problematic.

Elaboration: The discussion of virtual memory in this book focuses on paging, which
uses fixed-size blocks. There is also a variable-size block scheme called segmentation.
In segmentation, an address consists of two parts: a segment number and a segment
offset. The segment register is mapped to a physical address, and the offset is added
to find the actual physical address. Because the segment can vary in size, a bounds
check is also needed to make sure that the offset is within the segment. The major
use of segmentation is to support more powerful methods of protection and sharing in
an address space. Most operating system textbooks contain extensive discussions of
segmentation compared to paging and of the use of segmentation to logically share the
address space. The major disadvantage of segmentation is that it splits the address
space into logically separate pieces that must be manipulated as a two-part address:
the segment number and the offset. Paging, in contrast, makes the boundary between
page number and offset invisible to programmers and compilers.

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful because
of the awkwardness and performance penalties inherent in a two-part address, of which
programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that simplify
protection between the operating system and user programs and increase the efficiency
of implementing paging. Although these divisions are often called "segments," this
mechanism is much simpler than variable block size segmentation and is not visible to
user programs; we discuss it in more detail shortly.

segmentation
A variable-size address
mapping scheme in which
an address consists of two
parts: a segment number,
which is mapped to a
physical address, and a
segment offset.

4 9 6 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

page table The tabic
containing the virtual
to physical address
translations in a virtual
memory system. The table,
which is stored in memory,
is typically indexed by the
virtual page number; each
entry in the table contains
the physical page number
for that virtual page if
the page is currently in
memory.

Pflaciimg a Page amid Poinidliirog lit Agaomi
Because of the incredibly high penalty for a page fault, designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page
it wants when a page fault occurs. For example, the operating system can use a
sophisticated algorithm and complex data structures that track page usage to try
to choose a page that will not be needed for a long time. The ability to use a Clevel-
and flexible replacement scheme reduces the page fault rate and simplifies the use
of fully associative placement of pages.

As mentioned in Section 5.3, the difficulty in using fully associative placement
is in locating an entry, since it can be anywhere in the upper level of the hierarchy.
A full search is impractical. In virtual memory systems, we locate pages by using a
table that indexes the memory; this structure is called a page table, and it resides in
memory. A page table is indexed with the page number from the virtual address to
discover the corresponding physical page number. Each program has its own page
table, which maps the virtual address space of that program to main memory. In
our library analogy, the page table corresponds to a mapping between book titles
and library locations. Just as the card catalog may contain entries for books in
another library on campus rather than the local branch library, we will see that the
page table may contain entries for pages not present in memory. To indicate the
location of the page table in memory, the hardware includes a register that points
to the start of the page table; we call this the page table register. Assume for now that
the page table is in a fixed and contiguous area of memory.

Hardware/
Software
Interface

The page table, together with the program counter and the registers, specifies the
state of a program. If we want to allow another program to use the processor, we
must save this state. Later, after restoring this state, the program can continue exe-
cution. We often refer to this state as a process. The process is considered active
when it is in possession of the processor; otherwise, it is considered inactive. The
operating system can make a process active by loading the process's state, includ-
ing the program counter, which will initiate execution at the value of the saved
program counter.

The process's address space, and hence all the data it can access in memory, is
defined by its page table, which resides in memory. Rather than save the entire
page table, the operating system simply loads the page table register to point to
the page table of the process it wants to make active. Each process has its own page
table, since different processes use the same virtual addresses. The operating system
is responsible for allocating the physical memory and updating the page tables, so
that the virtual address spaces of different processes do not collide. As we will see
shortly, the use of separate page tables also provides protection of one process from
another.

5.4 Virtual Memory 497

Figure 5.21 uses the page table register, the virtual address, and the indicated
page table to show how the hardware can form a physical address. A valid bit is
used in each page table entry, just as we did in a cache. If the bit is off, the page is
not present in main memory and a page fault occurs. If the bit is on, the page is in
memory and the entry contains the physical page number.

Physical address

FIGURE 5.21 The page table is indexed with the virtual page number to obtain the corresponding portion of the
physical address. We assume a 32-bit address. The starting address of the page table is given by the page table pointer. In this figure, the
page size is 212 bytes, or 4 KB. The virtual address space is 232 bytes, or 4 GB, and the physical address space is 2 3" bytes, which allows main
memory of up to 1 GB. The number of entries in the page table is 220, or 1 million entries. The valid bit for each entry indicates whether the
mapping is legal. If it is off, then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide, it
would typically be rounded up to 32 bits for ease of indexing. The extra bits would be used to store additional information that needs to be
kept on a per-page basis, such as protection.

4 9 8 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Because the page table contains a mapping for every possible virtual page, no
tags are required. In cache terminology, the index that is used to access the page
table consists of the full block address, which is the virtual page number.

Page FauDts
If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we discuss later in this section. Once the operating system gets control, it must find
the page in the next level of the hierarchy (usually magnetic disk) and decide where
to place the requested page in main memory.

The virtual address alone does not immediately tell us where the page is on disk.
Returning to our library analogy, we cannot find the location of a library book on
the shelves just by knowing its title. Instead, we go to the catalog and look up the
book, obtaining an address for the location on the shelves, such as the Library of
Congress call number. Likewise, in a virtual memory system, we must keep track of
the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be
replaced, the operating system usually creates the space on disk for all the pages

swap space The space on of a process when it creates the process. This disk space is called the swap space,
the disk reserved for the At that time, it also creates a data structure to record where each virtual page is
full virtual memory space stored on disk. This data structure may be part of the page table or may be an aux-
of a piocess. iliary data structure indexed in the same way as the page table. Figure 5.22 shows

the organization when a single table holds either the physical page number or the
disk address.

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs, if all
the pages in main memory are in use, the operating system must choose a page to
replace. Because we want to minimize the number of page faults, most operating
systems try to choose a page that they hypothesize will not be needed in the near
future. Using the past to predict the future, operating systems follow the least
recently used (LRU) replacement scheme, which we mentioned in Section 5.3. The
operating system searches for the least recently used page, assuming that a page
that has not been used in a long time is less likely to be needed than a more recently
accessed page. The replaced pages are written to swap space on the disk. In case
you are wondering, the operating system is just another process, and these tables
controlling memory are in memory; the details of this seeming contradiction will
be explained shortly.

5.4 Virtual Memory 499

Virtual page
numbe r

FIGURE 5.22 The page table maps each page in virtual memory to either a page in main
memory or a page stored on disk, which is the next level in the hierarchy. The virtual page
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number
(i.e., The starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page-
addresses and disk page addresses, while logically one Table, is stored in Two separate data structures. Dual
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

Implementing a completely accurate LRU scheme is too expensive, since it requires
updating a data structure on every memory reference. Instead, most operating
systems approximate LRU by keeping track of which pages have and which pages
have not been recently used. To help the operating system estimate the LRU pages,
some computers provide a reference bit or use bit, which is set whenever a page
is accessed. The operating system periodically clears the reference bits and later
records them so it can determine which pages were touched during a particular
time period. With this usage information, the operating system can select a page
that is among the least recently referenced (detected by having its reference bit off).
If this bit is not provided by the hardware, the operating system must find another
way to estimate which pages have been accessed.

Hardware/
Software
Interface

re fe rence b i t Also called
use b i t . A field that is
set whenever a page
is accessed and that is
used to implement LRU
or other replacement
schemes.

500 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table
entry, we can compute the total page table size:

Q32
Number of page table entries = —— = 220

2

on o bytes Size of page table = 2~u page table entries x 2Z -rrr. — = 4 MB 1 page table entry

That is, we would need to use 4 MB of memory for each program in execution at any
time. This amount is not so bad for a single program. What if there are hundreds of
programs running, each with their own page table? And how should we handle 64-bit
addresses, which by this calculation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page
table. The five techniques below aim at reducing the total maximum storage required as
well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the page
table for a given process. If the virtual page number becomes larger than the con-
tents of the limit register, entries must be added to the page table. This technique
allows the page table to grow as a process consumes more space. Thus, the page
table will only be large if the process is using many pages of virtual address space.
This technique requires that the address space expand in only one direction.

2. Allowing growth in only one direction is not sufficient, since most languages require
two areas whose size is expandable: one area holds the stack and the other area
holds the heap. Because of this duality, it is convenient to divide the page table and
let it grow from the highest address down, as well as from the lowest address up.
This means that there will be two separate page tables and two separate limits. The
use of two page tables breaks the address space into two segments. The high-order
bit of an address usually determines which segment and thus which page table to
use for that address. Since the segment is specified by the high-order address bit,
each segment can be as large as one-half of the address space. A limit register for
each segment specifies the current size of the segment, which grows in units of
pages. This type of segmentation is used by many architectures, including MIPS.
Unlike the type of segmentation discussed in the second elaboration on page 495,
this form of segmentation is invisible to the application program, although not to the
operating system. The major disadvantage of this scheme is that it does not work
well when the address space is used in a sparse fashion ratherthan as a contiguous
set of virtual addresses.

3. Another approach to reducing the page table size is to apply a hashing function to
the virtual address so that the page table need be only the size of the number of
physical pages in main memory. Such a structure is called an inverted page table.
Of course, the lookup process is slightly more complex with an inverted page table,
because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of page
table storage. The first level maps large fixed-size blocks of virtual address space,
perhaps 64 to 256 pages in total. These large blocks are sometimes called segments,
and this first-level mapping table is sometimes called a segment table, though the

5.4 Virtual Memory 501

segments are again invisible to the user. Each entry in the segment table indicates
whether any pages in that segment are allocated and, if so, points to a page table for
that segment. Address translation happens by first looking in the segment table,
using the highest-order bits of the address. If the segment address is valid, the next
set of high-order bits is used to index the page table indicated by the segment table
entry. This scheme allows the address space to be used in a sparse fashion (multiple
noncontiguous segments can be active) without having to allocate the entire page
table. Such schemes are particularly useful with very large address spaces and in
software systems that require noncontiguous allocation. The primary disadvantage
of this two-level mapping is the more complex process for address translation.

5. To reduce the actual main memory tied up in page tables, most modern systems
also allow the page tables to be paged. Although this sounds tricky, it works by using
the same basic ideas of virtual memory and simply allowing the page tables to
reside in the virtual address space. In addition, there are some small but critical
problems, such as a never-ending series of page faults, which must be avoided. How
these problems are overcome is both very detailed and typically highly processor
specific. In brief, these problems are avoided by placing all the page tables in the
address space of the operating system and placing at least some of the page tables
for the operating system in a portion of main memory that is physically addressed
and is always present and thus never on disk.

What about Writes?
The difference between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes can be used, although we need a
write buffer to hide the latency of the write from the processor. In a virtual memory
system, writes to the next level of the hierarchy (disk) take millions of processor
clock cycles; therefore, building a write buffer to allow the system to write-through
to disk would be completely impractical. Instead, virtual memory systems must use
write-back, performing the individual writes into the page in memory, and copying
the page back to disk when it is replaced in the memory.

A write-back scheme has another major advantage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying back
an entire page is much more efficient than writing individual words back to the
disk. A write-back operation, although more efficient than transferring individual
words, is still costly. Thus, we would like to know whether a page needs to be copied
back when we choose to replace it. To track whether a page has been written since
it was read into the memory, a dirty bit is added to the page table. The dirty bit is
set when any word in a page is written. If the operating system chooses to replace
the page, the clirty bit indicates whether the page needs to be written out before its
location in memory can be given to another page. Hence, a modified page is often
called a dirty page.

Hardware/
Software
Interface

502 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Making Address Tramisialtiomi Fasts the TLB
Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address
and a second access to get the data. The key to improving access performance is to
rely on locality of reference to the page table. When a translation for a virtual page
number is used, it will probably be needed again in the near future, because the
references to the words on that page have both temporal and spatial locality.

Accordingly, modern processors include a special cache that keeps track of recently
used translations. This special address translation cache is traditionally referred to
as a translation-lookaside buffer (TLB), although it would be more accurate to call
it a translation cache. The TLB corresponds to that little piece of paper we typically
use to record the location of a set of books we look up in the card catalog; rather
than continually searching the entire catalog, we record the location of several books
and use the scrap of paper as a cache of Library of Congress call numbers.

Figure 5.23 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number. Because

T L B

Virtual page Physical page
number Valid Dirty Ref Tag address

FIGURE 5.23 The TLB acts as a cache of the page table for the entries that map to physical pages only. The TLB contains
a subset of the virtual-lo-physical page mappings that are in the page table. The TLB mappings are shown in color. Because the TLB is a cache,
it must have a tag field. If there is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies
a physical page number for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a
page fault occurs. Since the page table has an entry for every virtual page, no tag field is needed; in other words, unlike a TLB, a page table is
not a cache.

t r a n s l a t i o n - l o o k a s i d e
b u f f e r (T L B) A cache
that keeps track of
recently used address
mappings to try to avoid
an access to the page table.

5.4 Virtual Memory 503

we access the TLB instead of the page table on every reference, the TLB will need to
include other status bits, such as the dirty and the reference bits.

On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the corresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is also
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates
only that the translation is missing. In such cases, the processor can handle the
TLB miss by loading the translation from the page table into the TLB and then
trying'the reference again. If the page is not present in memory, then the TLB miss
indicates a true page fault. In this case, the processor invokes the operating system
using an exception. Because the TLB has many fewer entries than the number of
pages in main memory, TLB misses will be much more frequent than true page
faults.

TLB misses can be handled either in hardware or in software. In practice, with
care there can be little performance difference between the two approaches, because
the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from the
page table, we will need to select a TLB entry to replace. Because the reference and
dirty bits are contained in the TLB entry, we need to copy these bits back to the page
table entry when we replace an entry. These bits are the only portion of the TLB
entry that can be changed. Using write-back—that is, copying these entries back at
miss time rather than when they are written—is very efficient, since we expect the
TLB miss rate to be small. Some systems use other techniques to approximate the
reference and dirty bits, eliminating the need to write into the TLB except to load
a new table entry on a miss.

Some typical values for a TLB might be

• TLB size: 16-512 entries

• Block size: 1-2 page table entries (typically 4 - 8 bytes each)

• Hit time: 0.5-1 clock cycle

• Miss penalty: 10-100 clock cycles

• Miss rate: 0.01 % - l %

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping
is not too high. Other systems use large TLBs, often with small associativity. With
a fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page

504 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

faults. As a result, many systems provide some support for randomly choosing
an entry to replace. We'll examine replacement schemes in a little more detail in
Section 5.5.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let's take a closer look at the TLB of the
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32-bit address
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.24.
The physical address is the same size as the virtual address. The TLB contains 16
entries, it is fully associative, and it is shared between the instruction and data
references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual
page number for that TLB entry), the corresponding physical page number (also
20 bits), a valid bit, a dirty bit, and other bookkeeping bits.

Figure 5.24 shows the TLB and one of the caches, while Figure 5.25 shows the
steps in processing a read or write request. When a TLB miss occurs, the MIPS
hardware saves the page number of the reference in a special register and generates
an exception. The exception invokes the operating system, which handles the miss
in software. To find the physical address for the missing page, the TLB miss rou-
tine indexes the page table using the page number of the virtual address and the
page table register, which indicates the starting address of the active process page
table. Using a special set of system instructions that can update the TLB, the oper-
ating system places the physical address from the page table into the TLB. A TLB
miss takes about 13 clock cycles, assuming the code and the page table entry are
in the instruction cache and data cache, respectively. (We will see the MIPS TLB
code on page 513.) A true page fault occurs if the page table entry does not have a
valid physical address. The hardware maintains an index that indicates the recom-
mended entry to replace; the recommended entry is chosen randomly.

There is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. This bit prevents the program from writing into pages
for which it has only read access. If the program attempts a write and the write
access bit is off, an exception is generated. The write access bit forms part of the
protection mechanism, which we will discuss shortly.

iGntegiratiinig VirtuaD Memoiry, TLBs, amid Caches
Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
helps maintain this hierarchy by flushing the contents of any page from the cache
when it decides to migrate that page to disk. At the same time, the OS modifies
the page tables and TLB, so that an attempt to access any data on the migrated page
will generate a page fault.

5.4 Virtual Memory 505

31 30 29
Virtual a d d r e s s

14 13 12 11 10 9 3 2 1 0

Virtual page number

Valid Dirty

T L B

TLB hit

Page offset

20 12

Tag Physical page number

20

Physical page number I Page offset
-Phy s i ca l a d d r e s s

Physical address tag Cache index

C a c h e

18

Block
offset

v 4 . 2

Byte
offset

Valid Tag

Cache hit (3 -

12 Data

32

Data

FIGURE 5.24 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity
FastMATH. This figure shows the organization of The TLB and the data cache, assuming a 4 KB page size. This diagram focuses on a read;
Figure 5.25 describes how to handle writes. Note that unlike Figure 5.9, the tag and data RAMs are split. By addressing the long but narrow
data RAM with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While
the cache is direct mapped, the TLB is fully associative. Implementing a hilly associative TLB requires that every TLB tag be compared against
the virtual page number, since the entry of interest can be anywhere in the TLB. (See content addressable memories in the Elaboration on
page 485.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page number together with bits from
the page offset form the index that is used to access the cache.

506 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Virtual address

FIGURE 5.25 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the
cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to
the write buffer if we assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory.
Write-back requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit arc independent events, but a cache hit can only occur after a TLB
hit occurs, which means that the data must be present in memory. The relationship between TLB misses and cache misses is examined further
in the following example and the exercises at the end of this chapter.

5.4 Virtual Memory 5 0 7

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of the
memory hierarchy: the TLB, the page table, and the cache. The following example
illustrates these interactions in more detail.

Overall Operat ion of a M e m o r y Hierarchy

In a memory hierarchy like that of Figure 5.24, which includes a TLB and a
cache organized as shown, a memory reference can encounter three different
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the
combinations of these three events with one or more occurring (seven possi-
bilities). For each possibility, state whether this event can actually occur and
under what circumstances.

EXAMPLE

Figure 5.26 shows all combinations and whether each is possible in practice.

TLB
Page
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.26 The possible combinations of events in the TLB, virtual memory system, and
cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, cache
miss) but never detected.

Elaboration: Figure 5.26 assumes that all memory addresses are translated to
physical addresses before the cache is accessed. In this organization, the cache is
physically indexed and physically tagged (both the cache index and tag are physical,
rather than virtual, addresses). In such a system, the amount of time to access memory,

508
Chapter 5 Large and Fast: Exploiting Memory Hierarchy

virtually addressed
cache A cache that is
accessed with a virtual
address rather than a
physical address.

aliasing A situation in
w h i c h t h e same object is
lCcessed by two addresses;
can occur in virtual
memory when there are
{ W 0 virtual addresses for
t he same physical page.

physically addressed

cache A cache that ,s
addressed by a physical
address.

assuming a cache hit, must accommodate both a TLB access and a cache access;
of course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a virtually addressed cache, and it uses tags that
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged.
In such caches, the address translation hardware (TLB) is unused during the normal
cache access, since the cache is accessed with a virtual address that has not been
translated to a physical address. This takes the TLB out of the critical path, reducing
cache latency. When a cache miss occurs, however, the processor needs to translate
the address to a physical address so that it can fetch the cache block from main
memory.

When the cache is accessed with a virtual address and pages are shared between
programs (which may access them with different virtual addresses), there is the possibility
of aliasing. Aliasing occurs when the same object has two names—in this case, two
virtual addresses for the same page. This ambiguity creates a problem, because a word
on such a page may be cached in two different locations, each corresponding to different
virtual addresses. This ambiguity would allow one program to write the data without the
other program being aware that the data had changed. Completely virtually addressed
caches either introduce design limitations on the cache and TLB to reduce aliases or
require the operating system, and possibly the user, to take steps to ensure that aliases
do not occur.

A common compromise between these two design points is caches that are virtually
indexed—sometimes using just the page offset portion of the address, which is really
a physical address since it is not translated—but use physical tags. These designs,
which are virtually indexed but physically tagged, attempt to achieve the performance
advantages of virtually indexed caches with the architecturally simpler advantages of
a physically addressed cache. For example, there is no alias problem in this case.
Figure 5.24 assumed a 4 KB page size, but it's really 16 KB, so the Intrinsity FastMATH
can use this trick. To pull it off, there must be careful coordination between the minimum
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory is to allow sharing of a
single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or
into the operating system either intentionally or unintentionally. The write access
bit in the TLB can protect a page from being written. Without this level of protec-
tion, computer viruses would be even more widespread.

5.4 Virtual Memory 5 0 9

To enable the operating system to implement protection in the virtual memory
system, the hardware must provide at least the three basic capabilities summarized
below.

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but
not write. This includes the user/supervisor mode bit, which dictates
whether the processor is in user or supervisor mode, the page table
pointer, and the TLB. To write these elements, the operating system uses
special instructions that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to
supervisor mode and vice versa. The first direction is typically accom-
plished by a system call exception, implemented as a special instruction
(syscall'm the MIPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception, the
program counter from the point of the system call is saved in the
exception PC (EPC), and the processor is placed in supervisor mode. To
return to user mode from the exception, use the return from exception
(ERET) instruction, which resets to user mode and jumps to the address
in EPC.

By using these mechanisms and storing the page tables in the operating systems
address space, the operating system can change the page tables while preventing a
user process from changing them, ensuring that a user process can access only the
storage provided to it by the operating system.

Hardware/
Software
Interface
supervisor mode Also
called kernel mode. A
mode indicating that a
running process is an
operating system process.

system call A special
instruction that transfers
control from user mode
to a dedicated location
in supervisor code space,
invoking the exception
mechanism in the process.

We also want to prevent a process from reading the data of another process.
For example, we wouldn't want a student program to read the grades while they
were in the processor's memory. Once we begin sharing main memory, we must
provide the ability for a process to protect its data from both reading and writing
by another process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access another's
data. Of course, this also requires that a user process be unable to change the page
table mapping. The operating system can assure safety if it prevents the user process
from modifying its own page tables. However, the operating system must be able to
modify the page tables. Placing the page tables in the protected address space of the
operating system satisfies both requirements.

5 1 0 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

When processes want to share information in a limited way, the operating system
must assist them, since accessing the information of another process requires
changing the page table of the accessing process. The write access bit can be used
to restrict the sharing to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say, PI,
to read a page owned by process P2, P2 would ask the operating system to create
a page table entry for a virtual page in Pi's address space that points to the same
physical page that P2 wants to share. The operating system could use the write
protection bit to prevent PI from writing the data, if that was P2's wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB, because the page table is accessed only on a TLB miss.

context switch A
changing of the internal
state of the processor to
allow a different process
to use the processor
that includes saving the
state needed to return to
the currently executing
process.

Elaboration: When the operating system decides to change from running process
PI to running process P2 (called a context switch or process switch), it must ensure
that P2 cannot get access to the page tables of PI because that would compromise
protection. If there is no TLB, it suffices to change the page table register to point to P2's
page table (rather than to Pi 's); with a TLB, we must clear the TLB entries that belong to
P I—both to protect the data of PI and to force the TLB to load the entries for P2. If the
process switch rate were high, this could be quite inefficient. For example, P2 might load
only a few TLB entries before the operating system switched back to P I . Unfortunately,
PI would then find that all its TLB entries were gone and would have to pay TLB misses
to reload them. This problem arises because the virtual addresses used by PI and P2
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID)
field for this purpose. This small field identifies the currently running process; it is kept
in a register loaded by the operating system when it switches processes. The process
identifier is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if
both the page number and the process identifier match. This combination eliminates the
need to clear the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will
contain data from the running process. These problems arise in different ways for
physically addressed and virtually addressed caches, and a variety of different solutions,
such as process identifiers, are used to ensure that a process gets its own data.

Manndling TLB Misses aud Page FauDts
Although the translation of virtual to physical addresses with a TLB is straightfor-
ward when we get a TLB hit, handling TLB misses and page faults is more complex.
A TLB miss occurs when no entry in the TLB matches a virtual address. A TLB miss
can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry.

2. The page is not present in memory, and we need to transfer control to the
operating system to deal with a page fault.

5.4 Virtual Memory 511

How do we know which of these two circumstances has occurred? When we process
the TLB miss, we will look for a page table entry to bring into the TLB. If the
matching page table entry has a valid bit that is turned off, then the corresponding
page is not in memory and we have a page fault, rather than just a TLB miss. If the
valid bit is on, we can simply retrieve the desired entry.

A TLB miss can be handled in software or hardware because it will require only
a short sequence of operations to copy a valid page table entry from memory into
the TLB. MIPS traditionally handles a TLB miss in software. It brings in the page
table entry from memory and then re-executes the instruction that caused the TLB
miss. .Upon re-executing, it will get a TLB hit. If the page table entry indicates the
page is not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism
to interrupt the active process, transferring control to the operating system, and
later resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruction
after the page fault is handled, the program counter of the instruction that caused
the page fault must be saved, just as in Chapter 4, the exception program counter
(EPC) is used to hold this value.

In addition, a TLB miss or page fault exception must be asserted by the end of
the same clock cycle that the memory access occurs, so that the next clock cycle
will begin exception processing rather than continue normal instruction execu-
tion. If the page fault was not recognized in this clock cycle, a load instruction
could overwrite a register, and this could be disastrous when we try to restart the
instruction. For example, consider the instruction 1 w $ 1 , 0 ($ 1) : the computer
must be able to prevent the write pipeline stage from occurring; otherwise, it could
not properly restart the instruction, since the contents of $1 would have been
destroyed. A similar complication arises on stores. We must prevent the write into
memory from actually completing when there is a page fault; this is usually done
by deasserting the write control line to the memory.

Register CPO register number Description

EPC 14 Where to restart after exception

Cause 1 3 Cause of exception

BadVAddr 8 Address that caused exception

Index o Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and Hags

EntryHi 1 0 Virtual page address

Context 4 Page table address and page number

FIGURE 5.27 M I P S contro l registers. These arc considered to be in coprocessor 0, and hence are
read using mfcO and written using mtcO.

5 1 2 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Hardware/
Software
Interface

exception enable Also
called interrupt enable.
A signal or action that
controls whether the
process responds to
an exception or not;
necessary for preventing
the occurrence of
exceptions during
intervals before the
processor has safely saved
the state needed to restart.

Between the time we begin executing the exception handler in the operating system
and the time that the operating system has saved all the state of the process, the
operating system is particularly vulnerable. For example, if another exception
occurred when we were processing the first exception in the operating system, the
control unit would overwrite the exception program counter, making it impossible
to return to the instruction that caused the page fault! We can avoid this disaster
by providing the ability to disable and enable exceptions. When an exception first
occurs, the processor sets a bit that disables all other exceptions; this could happen
at the same time the processor sets the supervisor mode bit. The operating system
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause
are two of the special control registers that help with exceptions, TLB misses, and
page faults; Figure 5.27 shows the rest. The operating system can then re-enable
exceptions. These steps make sure that exceptions will not cause the processor
to lose any state and thereby be unable to restart execution of the interrupting
instruction.

Once the operating system knows the virtual address that caused the page fault,
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ-
ten out to disk before we can bring a new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical
page.

Of course, this last step will take millions of processor clock cycles (so will the sec-
ond if the replaced page is dirty); accordingly, the operating system will usually
select another process to execute in the processor until the disk access completes.
Because the operating system has saved the state of the process, it can freely give
control of the processor to another process.

When the read of the page from disk is complete, the operating system can
restore the state of the process that originally caused the page fault and execute the
instruction that returns from the exception. This instruction will reset the proces-
sor from kernel to user mode, as well as restore the program counter. The user
process then re-executes the instruction that faulted, accesses the requested page
successfully, and continues execution.

5.4 Virtual Memory 5 1 3

Page fault exceptions for data accesses are difficult to implement properly in a
processor because of a combination of three characteristics:

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing
had occurred.

Making instructions restartable, so that the exception can be handled and the
instruction later continued, is relatively easy in an architecture like the MIPS.
Because each instruction writes only one data item and this write occurs at the end
of the instruction cycle, we can simply prevent the instruction from completing (by
not writing) and restart the instruction at the beginning.

Let's look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware
saves the page number of the reference in a special register called B a d V A d d r and
generates an exception.

The exception invokes the operating system, which handles the miss in software.
Control is transferred to address 8000 0000 [iex, the location of the TLB miss handler.
To find the physical address for the missing page, the TLB miss routine indexes the
page table using the page number of the virtual address and the page table register,
which indicates the starting address of the active process page table. To make this
indexing fast, MIPS hardware places everything you need in the special C o n t e x t
register: the upper 12 bits have the address of the base of the page table, and the
next 18 bits have the virtual address of the missing page. Each page table entry is
one word, so the last 2 bits are 0. Thus, the first two instructions copy the Context
register into the kernel temporary register $ kl and then load the page table entry
from that address into $ k l . Recall that $ k 0 and $ k 1 are reserved for the operating
system to use without saving; a major reason for this convention is to make the TLB
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

restartable instruction
An instruction that can
resume execution after
an exception is resolved
without the exception's
affecting the result of the
instruction.

handler Name of a
software routine invoked
to "handle" an exception
or interrupt.

T L B m i s s :
m f c O $ k l , C o n t e x t
l w $ k l , 0 ($ k 1)
m t c O $ k l , E n t r y L o
t l b w r
e r e t

c o p y a d d r e s s o f P T E i n t o t e m p $ k l
p u t P T E i n t o t e m p $ k l
p u t P T E i n t o s p e c i a l r e g i s t e r E n t r y L o
p u t E n t r y L o i n t o T L B e n t r y a t R a n d o m
r e t u r n f r o m T L B m i s s e x c e p t i o n

As shown above, MIPS has a special set of system instructions to update the
TLB. The instruction t l bwr copies from control register E n t r y L o into the TLB
entry selected by the control register Random. Random implements random
replacement, so it is basically a free-running counter. A TLB miss takes about a
dozen clock cycles.

5 1 4 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Note that the TLB miss handler does not check to see if the page table entry is
valid. Because the exception for TLB entry missing is much more frequent than a
page fault, the operating system loads the TLB from the page table without exam-
ining the entry and restarts the instruction. If the entry is invalid, another and
different exception occurs, and the operating system recognizes the page fault. This
method makes the frequent case of a TLB miss fast, at a slight performance penalty
for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers
control to 8000 0180[iex, a different address than the TLB miss handler. This is
the general address for exception; TLB miss has a special entry point to lower the
penalty for a TLB miss. The operating system uses the exception Cause register
to diagnose the cause of the exception. Because the exception is a page fault, the
operating system knows that extensive processing will be required. Thus, unlike a
TLB miss, it saves the entire state of the active process. This state includes all the
general-purpose and floating-point registers, the page table address register, the
EPC, and the exception Cause register. Since exception handlers do not usually use
the floating-point registers, the general entry point does not save them, leaving that
to the few handlers that need them.

Figure 5.28 sketches the MIPS code of an exception handler. Note that we save
and restore the state in MIPS code, taking care when we enable and disable excep-
tions, but we invoke C code to handle the particular exception.

The virtual address that caused the fault depends on whether the fault was an
instruction or data fault. The address of the instruction that generated the fault is
in the EPC. If it was an instruction page fault, the EPC contains the virtual address
of the faulting page; otherwise, the faulting virtual address can be computed by
examining the instruction (whose address is in the EPC) to find the base register
and offset field.

Elaboration: This simplified version assumes that the stack pointer (sp) is valid.
To avoid the problem of a page fault during this low-level exception code, MIPS sets

unmapped A portion aside a portion of its address space that cannot have page faults, called unmapped,
of the address space that The operating system places the exception entry point code and the exception stack
cannot have page faults. in unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to

BFFF FFFFhex to physical addresses simply by ignoring the upper bits of the virtual
address, thereby placing these addresses in the low part of physical memory. Thus,
the operating system places exception entry points and exception stacks in unmapped
memory.

Elaboration: The code in Figure 5.28 shows the MIPS-32 exception return sequence.
The older MIPS-I architecture uses r f e and j r instead of e r e t .

5.4 Virtual Memory 5 1 5

Save state

Save GPR add i Ski, Ssp, -XCPSIZE it save space on stack for state
sw Ssp, XCT_SP(Ski) It save Ssp on stack
sw SvO, XCT_V0(Ski) it save SvO on stack

It save Svl. Sai, Ssi, $ti.... on stack
sw Sra, XCT RA(Skl) it save Sra on stack

Save hi, lo tnfhi SvO it copy Hi
mflo S v 1 it copy Lo
sw SvO, XCT HI(Ski) it save Hi value on stack
sw S v 1, XCT_L0(Ski) it save Lo value on stack

Save exception mf cO SaO, Scr It copy cause regi ster
registers sw SaO. XCT_CR(Ski) it save Scr value on stack

it save Svl
mf cO Sa3, Ssr It copy status reg i ster
sw Sa3, XCT_SR(Ski) it save Ssr on stack

Set sp move Ssp, Ski it sp = sp - XCPSIZE

Enable nested exceptions

andi SvO, Sa3. MASK1 It SvO = Ssr & MASK1, enable exceptions
mtcO SvO. Ssr it Ssr = value that enables exceptions

Call C exception handler

Set $gp move Sgp. GPI NIT it set Sgp to point to heap area

move SaO, Ssp it argl = pointer to exception stack
jal xcpt. _deli ver It call C code to handle exception

Restoring state

Restore most move Sat, Ssp it temporary value of Ssp
GPR, hi, lo lw Sra, XCT RA(Sat) it restore Sra from stack GPR, hi, lo

It restore StO Sal
lw SaO, XCT_A0(Ski) if restore SaO from stack

Restore status lw SvO. XCT SR(Sat) It load old Ssr from stack
register 1 i Svl, MASK2 It mask to disable exceptions register

and SvO. SvO, Svl it SvO = Ssr & MASK2, disable exceptions
mtcO SvO. Ssr It set status regi ster

Exception return

Restore Ssp Ssp, XCT_SP(Sat) it restore Ssp from stack
and rest; of SvO. XCT_V0(Sat) it restore SvO from stack
GPR used as

it restore SvO from stack

teinporary Svl, XCT_V1(Sat) it restore Svl from stack

regi sters Ski , XCT_EPC(Sat) it copy old Sepc from stack

Sat. XCT_AT(Sat) it restore Sat from stack

Restore ERC mtcO Ski, Sepc It restore Sepc
and return eret Sra it return to interrupted instruction

FIGURE 5.28 MIPS code to save and restore state on an exception.

Elaboration: For processors with more complex instructions that can touch many
memory locations and write many data items, making instructions restartable is much
harder. Processing one instruction may generate a number of page faults in the middle
of the instruction. For example, x86 processors have block move instructions that touch
thousands of data words. In such processors, instructions often cannot be restarted

516 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

from the beginning, as we do for MIPS instructions. Instead, the instruction must be
interrupted and later continued midstream in its execution. Resuming an instruction in
the middle of its execution usually requires saving some special state, processing the
exception, and restoring that special state. Making this work properly requires careful
and detailed coordination between the exception-handling code in the operating system
and the hardware.

SuinnmaEry

Virtual memory is the name for the level of memory hierarchy that manages cach-
ing between the main memory and disk. Virtual memory allows a single program
to expand its address space beyond the limits of main memory. More importantly,
virtual memory supports sharing of the main memory among multiple, simulta-
neously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging
because of the high cost of page faults. Several techniques are used to reduce the
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the
miss rate.

2. The mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a write-back scheme and also
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged
pages back to disk.

The virtual memory mechanism provides address translation from a virtual
address used by the program to the physical address space used for accessing
memory. This address translation allows protected sharing of the main memory
and provides several additional benefits, such as simplifying memory allocation.
Ensuring that processes are protected from each other requires that only the
operating system can change the address translations, which is implemented by
preventing user programs from changing the page tables. Controlled sharing of
pages among processes can be implemented with the help of the operating system
and access bits in the page table that indicate whether the user program has read or
write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would be too expensive, as caches would be pointless!
Instead, a TLB acts as a cache for translations from the page table. Addresses are
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. The next section discusses this common framework.

5.4 Virtual Memory 5 1 7

Although virtual memory was invented to enable a small memory to act as a large
one, the performance difference between disk and memory means that if a program
routinely accesses more virtual memory than it has physical memory, it will run
very slowly. Such a program would be continuously swapping pages between
memory and disk, called thrashing. Thrashing is a disaster if it occurs, but it is rare.
If your program thrashes, the easiest solution is to run it on a computer with more
memory or buy more memory for your computer. A more complex choice is to
re-examine your algorithm and data structures to see if you can change the locality
and thereby reduce the number of pages that your program uses simultaneously.
This set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might handle
only 32-64 page entries at a time, a program could easily see a high TLB miss rate,
as the processor may access less than a quarter megabyte directly: 64 x 4 KB =
0.25 MB. For example, TLB misses are often a challenge for Radix Sort. To try
to alleviate this problem, most computer architectures now support variable page
sizes. For example, in addition to the standard 4 KB page, MIPS hardware supports
16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages. Hence, if
a program uses large page sizes, it can access more memory directly without TLB
misses.

The practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing
TLB misses is to re-examine the algorithm and data structures to reduce the work-
ing set of pages; given the importance of memory accesses to performance and
the frequency of TLB misses, some programs with large working sets have been
redesigned with that goal.

Understanding
Program
Performance

Match the memory hierarchy element on the left with the closest phrase on the Check
right: Yourself

1. LI cache
2. L2 cache

3. Main memory
4. TLB

a. A cache for a cache
b. A cache for disks
c. A cache for a main memory

d. A cache for page table entries

518 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

• • • A Common Framework for Memory
K j A f l I n l D e r a i r e l l i i i e s

By now, you've recognized that the different types of memory hierarchies share a
great deal in common. Although many of the aspects of memory hierarchies differ
quantitatively, many of the policies and features that determine how a hierarchy
functions are similar qualitatively. Figure 5.29 shows how some of the quantitative
characteristics of memory hierarchies can differ. In the rest of this section, we will
discuss the common operational alternatives for memory hierarchies, and how
these determine their behavior. We will examine these policies as a series of four
questions that apply between any two levels of a memory hierarchy, although for
simplicity we will primarily use terminology for caches.

Feature
Typical values
for Ll caches

Typical values
for L2 caches

Typical values for
paged memory

Typical values
for a TLB

Total size in blocks 250-2000 15,000-50,000 16,000-250,000 40-1024

Total size in kilobytes 16-64 500-4000 i ,ooo,ooo-i,ooo,ooo,ooo 0.25-16

Block size in bytes 16-64 64-128 4000-64,000 4 - 3 2

Miss penalty in clocks 10-25 100-1000 io,ooo,ooo-ioo,ooo,ooo 10-1000

Miss rates (global for L2) 2%-5% 0.1%-2% 0.00001%-0.0001% 0.01%-2%

FIGURE 5.29 The key quantitative design parameters that characterize the major elements of memory hierarchy in a
computer. These are typical values for these levels as of 2008. Although the range of values is wide, this is partially because many of the values
that have shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow.

Question 1: Where Can a Block Be PDacedl?
We have seen that block placement in the upper level of the hierarchy can use a
range of schemes, from direct mapped to set associative to fully associative. As
mentioned above, this entire range of schemes can be thought of as variations on
a set-associative scheme where the number of sets and the number of blocks per
set varies:

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative Number of blocks in the cache
Associativity

Associativity (typically 2 -16)

Fully associative 1 Number of blocks in the cache

The advantage of increasing the degree of associativity is that it usually decreases
the miss rate. The improvement in miss rate comes from reducing misses that com-
pete for the same location. We will examine these in more detail shortly. First, let's

5.5 A Common Framework for Memory Hierarchies 519

look at how much improvement is gained. Figure 5.30 shows the miss rates for
several cache sizes as associativity varies from direct mapped to eight-way set asso-
ciative. The largest gains are obtained in going from direct mapped to two-way
set associative, which yields between a 2 0 % and 3 0 % reduction in the miss rate.
As cache sizes grow, the relative improvement from associativity increases only
slightly; since the overall miss rate of a larger cache is lower, the opportunity for
improving the miss rate decreases and the absolute improvement in the miss rate
from associativity shrinks significantly. The potential disadvantages of associativ-
ity, as we mentioned earlier, are increased cost and slower access time.

FIGURE 5.30 The data cache miss rates for each of eight cache sizes improve as the
associat iv i ty increases. While the benefit of going from one-way (direct mapped) to two-way set
associative is significant, the benefits of further associativity are smaller (e.g., 1 % - 1 0 % improvement going
from two-way to four-way versus 2 0 % - 3 0 % improvement going from one-way to two-way). There is even
less improvement in going from four-way to eight-way set associative, which, in Turn, comes very close
to the miss rates of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit
from associativity because the base miss rate of a small cache is larger. Figure 5.15 explains how this data
was collected.

Question 2: How Is a Block Found?
The choice of how we locate a block depends on the block placement scheme, since
that dictates the number of possible locations. We can summarize the schemes as
follows:

1 5 % T

64KB .. ^128 KB
0

One-way Two-way Four-way Eight-way
Associativity

5 2 0 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Associativity Location method Comparisons required

Direct mapped Index 1

Set associative Index the set, search among elements Degree of associativity

Full Search all cache entries Size of the cache Full
Separate lookup table 0

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware. Including the L2
cache on the chip enables much higher associativity, because the hit times are not
as critical and the designer does not have to rely on standard SRAM chips as the
building blocks. Fully associative caches are prohibitive except for small sizes, where
the cost of the comparators is not overwhelming and where the absolute miss rate
improvements are greatest.

In virtual memory systems, a separate mapping table—the page table—is kept
to index the memory. In addition to the storage required for the table, using an
index table requires an extra memory access. The choice of full associativity for
page placement and the extra table is motivated by these facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes
that are designed to reduce the miss rate.

3. The full map can be easily indexed with no extra hardware and no searching
required.

Therefore, virtual memory systems almost always use fully associative placement.
Set-associative placement is often used for caches and TLBs, where the access

combines indexing and the search of a small set. A few systems have used direct-
mapped caches because of their advantage in access time and simplicity. The
advantage in access time occurs because finding the requested block does not
depend on a comparison. Such design choices depend on many details of the
implementation, such as whether the cache is on-chip, the technology used for
implementing the cache, and the critical role of cache access time in determining
the processor cycle time.

Question 3: Which BDock Should Be RepDaced
on a Cache Moss?
When a miss occurs in an associative cache, we must decide which block to replace.
In a fully associative cache, all blocks are candidates for replacement. If the cache is
set associative, we must choose among the blocks in the set. Of course, replacement
is easy in a direct-mapped cache because there is only one candidate.

5.5 A Common Framework for Memory Hierarchies 521

There are the two primary strategies for replacement in set-associative or fully
associative caches:

• Random: Candidate blocks are randomly selected, possibly using some
hardware assistance. For example, MIPS supports random replacement for
TLB misses.

a Least recently used (LRU): The block replaced is the one that has been unused
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more
than a small degree of associativity (two to four, typically), since tracking the
usage information is costly. Even for four-way set associativity, LRU is often
approximated—for example, by keeping track of which of a pair of blocks is LRU
(which requires 1 bit), and then tracking which block in each pair is LRU (which
requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is
used. In caches, the replacement algorithm is in hardware, which means that the
scheme should be easy to implement. Random replacement is simple to build in
hardware, and for a two-way set-associative cache, random replacement has a miss
rate about 1.1 times higher than LRU replacement. As the caches become larger, the
miss rate for both replacement strategies falls, and the absolute difference becomes
small. In fact, random replacement can sometimes be better than the simple LRU
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny
reduction in the miss rate can be important when the cost of a miss is enormous.
Reference bits or equivalent functionality are often provided to make it easier for
the operating system to track a set of less recently used pages. Because misses are
so expensive and relatively infrequent, approximating this information primarily
in software is acceptable.

Question] 4: What happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have
already seen the two basic options:

• Write-through: The information is written to both the block in the cache and
the block in the lower level of the memory hierarchy (main memory for a
cache). The caches in Section 5.2 used this scheme.

• Write-back: The information is written only to the block in the cache. The
modified block is written to the lower level of the hierarchy only when it
is replaced. Virtual memory systems always use write-back, for the reasons
discussed in Section 5.4.

522 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Both write-back and write-through have their advantages. The key advantages
of write-back are the following:

• Individual words can be written by the processor at the rate that the cache,
rather than the memory, can accept them.

• Multiple writes within a block require only one write to the lower level in the
hierarchy.

• When blocks are written back, the system can make effective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:

• Misses are simpler and cheaper because they never require a block to be
written back to the lower level.

B Write-through is easier to implement than write-back, although to be prac-
tical, a write-through cache will still need to use a write buffer.

In virtual memory systems, only a write-back policy is practical because of the
long latency of a write to the lower level of the hierarchy (disk). The rate at which
writes are generated by a processor generally exceed the rate at which the memory
system can process them, even allowing for physically and logically wider memories
and burst modes for DRAM. Consequently, today lowest-level caches typically use
write-back.

The BIG
Picture

Caches, TLBs, and virtual memory may initially look very different, but
they rely on the same two principles of locality, and they can be under-
stood by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative),

or any place (fully associative).

Question 2: How is a block found?
Answer: There are four methods: indexing (as in a direct-mapped

cache), limited search (as in a set-associative cache), full
search (as in a fully associative cache), and a separate
lookup table (as in a page table).

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through or

write-back.

5.5 A Common Framework for Memory Hierarchies 5 2 3

The Three Cs: Abu [intuitive Model for Understanding the
Behavior of Memory Hierarchies
In this section, we look at a model that provides insight into the sources of misses
in a memory hierarchy and how the misses will be affected by changes in the hier-
archy. We will explain the ideas in terms of caches, although the ideas carry over
directly to any other level in the hierarchy. In this model, all misses are classified
into one of three categories (the three Cs):

• Compulsory misses: These are cache misses caused by the first access to
a block that has never been in the cache. These are also called cold-start
misses.

• Capacity misses: These are cache misses caused when the cache cannot con-
tain all the blocks needed during execution of a program. Capacity misses
occur when blocks are replaced and then later retrieved.

• Conflict misses: These are cache misses that occur in set-associative or
direct-mapped caches when multiple blocks compete for the same set. Con-
flict misses are those misses in a direct-mapped or set-associative cache that
are eliminated in a fully associative cache of the same size. These cache misses
are also called collision misses.

Figure 5.31 shows how the miss rate divides into the three sources. These sources
of misses can be directly attacked by changing some aspect of the cache design. Since
conflict misses arise directly from contention for the same cache block, increasing
associativity reduces conflict misses. Associativity, however, may slow access time,
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we
make the cache larger, we must also be careful about increasing the access time,
which could lead to lower overall performance. Thus, first-level caches have been
growing slowly, if at all.

Because compulsory misses are generated by the first reference to a block, the
primary way for the cache system to reduce the number of compulsory misses is to
increase the block size. This will reduce the number of references required to touch
each block of the program once, because the program will consist of fewer cache
blocks. As mentioned above, increasing the block size too much can have a negative
effect on performance because of the increase in the miss penalty.

The decomposition of misses into the three Cs is a useful qualitative model. In
real cache designs, many of the design choices interact, and changing one cache
characteristic will often affect several components of the miss rate. Despite such
shortcomings, this model is a useful way to gain insight into the performance of
cache designs.

three Cs model A cache
model in which all cache
misses are classified into
one of three categories:
compulsory misses,
capacity misses, and
conflict misses.

compulsory miss Also
called cold-start miss.
A cache miss caused by
the first access to a block
that has never been in the
cache.

capacity iniss A cache
miss that occurs because
the cache, even with
full associativity, cannot
contain all the blocks
needed to satisfy the
request.

conflict miss Also called
collision miss. A cache
miss that occurs in a
set-associative or direct-
mapped cache when
multiple blocks compete
for the same set and that
are eliminated in a fully
associative cache of the

524 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Miss rate
per type

-i 1 1 1 1 1 1 1
8 16 32 64 128 256 512 1024

Capacity

One-way

Two-way

Four-way

Cache size (KB)

FIGURE 5.31 The miss rate can be broken into three sources of misses. This graph shows
The total miss rate and its components for a range of cache sizes. This data is for the SPEC2000 integer and
floating-point benchmarks and is from the same source as the data in Figure 5.30. The compulsory miss
component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate, which
depends on cache size. The conflict portion, which depends both on associativity and on cache size, is shown
for a range of associativities from one-way to eight-way. In each case, the labeled section corresponds to
the increase in the miss rate that occurs when the associativity is changed from the next higher degree to
the labeled degree of associativity. For example, the section labeled two-way indicates the additional misses
arising when the cache has associativity of two rather than four. Thus, the difference in the miss rate incurred
by a direct-mapped cache versus a fully associative cache of the same size is given by the sum of the sections
marked eight-way, four-way, two-way, and one-way. The difference between eight-way and four-way is so
small that it is difficult to see on this graph.

The BIG
Picture

The challenge in designing memory hierarchies is that every change that
potentially improves the miss rate can also negatively affect overall perfor-
mance, as Figure 5.32 summarizes. This combination of positive and nega-
tive effects is what makes the design of a memory hierarchy interesting.

5.6 Virtual Machines 525

Design change Effect on miss rate
Possible negative

performance effect

Increase cache size Decreases capacity misses May increase access time

Increase associativity Decreases miss rate due to conflict
misses

May increase access time

Increase block size Decreases miss rate for a wide range of
block sizes due to spatial locality

Increases miss penalty. Very large
block could increase miss rate

FIGURE 5.32 Memory hierarchy design challenges.

Which of the following statements (if any) are generally true?

1. There is no way to reduce compulsory misses.

2. Fully associative caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

t n ^ f l Virtual EVIacBiiiraes

An idea related to virtual memory that is almost as old is Virtual Machines (VM).
They were first developed in the mid-1960s, and they have remained an important
part of mainframe computing over the years. Although largely ignored in the
domain of single-user computers in the 19S0s and 1990s, they have recently gained
popularity due to

• The increasing importance of isolation and security in modern systems

• The failures in security and reliability of standard operating systems

• The sharing of a single computer among many unrelated users

• The dramatic increases in raw speed of processors over the decades, which
makes the overhead of VMs more acceptable

The broadest definition of VMs includes basically all emulation methods that
provide a standard software interface, such as the lava VM. In this section, we are
interested in VMs that provide a complete system-level environment at the binary
instruction set architecture (ISA) level. Although some VMs run different ISAs in
the VM from the native hardware, we assume they always match the hardware.
Such VMs are called (Operating) System Virtual Machines. IBM VM/370, VMvvare
ESX Server, and Xen are examples.

Check
Yourself

526

I

Chapter 5 Large and Fast: Exploiting Memory Hierarchy

System virtual machines present the illusion that the users have an entire
computer to themselves, including a copy of the operating system. A single com-
puter runs multiple VMs and can support a number of different operating systems
(OSes). On a conventional platform, a single OS "owns" all the hardware resources,
but with a VM, multiple OSes all share the hardware resources.

The software that supports VMs is called a virtual machine monitor (VMM) or
hypervisor; the VMM is the heart of virtual machine technology. The underlying
hardware platform is called the host, and its resources are shared among the guest
VMs. The VMM determines how to map virtual resources to physical resources:
a physical resource may be time-shared, partitioned, or even emulated in software.
The VMM is much smaller than a traditional OS; the isolation portion of a VMM
is perhaps only 10,000 lines of code.

Although our interest here is in VMs for improving protection, VMs provide
two other benefits that are commercially significant:

1. Managing software. VMs provide an abstraction that can run the complete
software stack, even including old operating systems like DOS. A typical
deployment might be some VMs running legacy OSes, many running the
current stable OS release, and a few testing the next OS release.

2. Managing hardware. One reason for multiple servers is to have each appli-
cation running with the compatible version of the operating system on sep-
arate computers, as this separation can improve dependability. VMs allow
these separate software stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a different computer, either
to balance load or to evacuate from failing hardware.

In general, the cost of processor visualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads
are generally also OS-intensive, executing many system calls and privileged
instructions that can result in high virtualization overhead. On the other hand, if
the I/O-intensive worldoad is also I/O-bound, the cost of processor virtualization
can be completely hidden, since the processor is often idle waiting for I/O.

The overhead is determined by both the number of instructions that must be
emulated by the VMM and by how much time each takes to emulate. Hence, when
the guest VMs run the same ISA as the host, as we assume here, the goal of the
architecture and the VMM is to run almost all instructions directly on the native
hardware.

5.6 Virtual Machines 527

Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a software interface to guest software,
it must isolate the state of guests from each other, and it must protect itself from
guest software (including guest OSes). The qualitative requirements are:

• Guest software should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fixed resources shared by multiple VMs.

• Guest software should not be able to change allocation of real system resources
directly.

To "virtualize" the processor, the VMM must control just about everything—access
to privileged state, address translation, I/O, exceptions, and interrupts—even though
the guest VM and OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the cur-
rently running guest VM, save its state, handle the interrupt, determine which guest
VM to run next, and then load its state. Guest VMs that rely on a timer interrupt
are provided with a virtual timer and an emulated timer interrupt by the VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of
any privileged instruction will be handled by the VMM. The basic requirements
of system virtual machines are almost identical to those for paged virtual memory
listed above:

• At least two processor modes, system and user

• A privileged subset of instructions that is available only in system mode,
resulting in a trap if executed in user mode; all system resources must be
controllable only via these instructions

(Lack of) instruction Set Architecture Support for
Virtual Machines
If VMs are planned for during the design of the ISA, its relatively easy to reduce
both the number of instructions that must be executed by a VMM and their
emulation speed. An architecture that allows the VM to execute directly on the
hardware earns the title virtualizable, and the IBM 370 architecture proudly bears
that label.

Alas, since VMs have been considered for desktop and PC-based server applica-
tions only fairly recently, most instruction sets were created without visualization
in mind. These culprits include x86 and most RISC architectures, including ARM
and MIPS.

528 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Because the VMM must ensure that the guest system only interacts with virtual
resources, a conventional guest OS runs as a user mode program on top of the
VMM. Then, if a guest OS attempts to access or modify information related to
hardware resources via a privileged instruction—for example, reading or writing
the page table pointer—it will trap to the VMM. The VMM can then effect the
appropriate changes to corresponding real resources.

ITence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complexity
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint effort of architecture and operating systems, but architects
had to modify some awkward details of existing instruction set architectures when
virtual memory became popular. For example, to support virtual memory in the
IBM 370, architects had to change the successful IBM 360 instruction set architec-
ture that had been announced just six years before. Similar adjustments are being
made today to accommodate virtual machines.

For example, the xS6 instruction POPF loads the flag registers from the top of
the stack in memory. One of the flags is the Interrupt Enable (IE) flag. If you run
the POPF instruction in user mode, rather than trap it, it simply changes all the
flags except IE. In system mode, it does change the IE. Since a guest OS runs in user
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve
performance of virtual machines:

1. Reduce the cost of processor visualization

2. Reduce interrupt overhead cost due to the visualization

3. Reduce interrupt cost by steering interrupts to the proper VM without
invoking VMM

In 2006, new proposals by AMD and Intel try to address the first point, reducing
the cost of processor visualization. It will be interesting to see how many genera-
tions of architecture and VMM modifications it will take to address all three points,
and how long before virtual machines of the 21st century will be as efficient as the
IBM mainframes and VMMs of the 1970s.

5.7 Using a Finite-State Machine to Control a Simple Cache 529

Elaboration: In addition to virtualizing the instruction set, another challenge is
virtualization of virtual memory, as each guest OS in every VM manages its own set of
page tables. To make this work, the VMM separates the notions of real and physical
memory {which are often treated synonymously), and makes real memory a separate,
intermediate level between virtual memory and physical memory. (Some use the terms
virtual memory, physical memory, and machine memory to name the same three levels.)
The guest OS maps virtual memory to real memory via its page tables, and the VMM
page tables map the guest's real memory to physical memory. The virtual memory
architecture is specified either via page tables, as in IBM VM/370 and the x86, or via
the TLB structure, as in MIPS.

Rather than pay an extra level of indirection on every memory access, the VMM
maintains a shadow page table that maps directly from the guest virtual address space
to the physical address space of the hardware. By detecting all modifications to the
guest's page table, the VMM can ensure the shadow page table entries being used by
the hardware for translations correspond to those of the guest OS environment, with
the exception of the correct physical pages substituted for the real pages in the guest
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table
or to access the page table pointer. This is commonly done by write protecting the guest
page tables and trapping any access to the page table pointer by a guest OS. As noted
above, the latter happens naturally if accessing the page table pointer is a privileged
operation.

The final portion of the architecture to virtualize is I/O. This is by far the most difficult
part of system virtualization because of the increasing number of I/O devices attached
to the computer and the increasing diversity of I/O device types. Another difficulty is the
sharing of a real device among multiple VMs, and yet another comes from supporting
the myriad of device drivers that are required, especially if different guest OSes are
supported on the same VM system. The VM illusion can be maintained by giving each
VM generic versions of each type of I/O device driver, and then leaving it to the VMM to
handle real I/O.

[Using a Finite-State Machine to Control
a Simple Cache

We can now implement control for a cache, just as we implemented control for
the single-cycle and pipelined datapaths in Chapter 4. This section starts with a
definition of a simple cache and then a description of finite-state machines (FSM).
It finishes with the FSM of a controller for this simple cache. ® Section 5.9 on the
CD goes into more depth, showing the cache and controller in a new hardware
description language.

A Simple Cache
We're going to design a controller for a simple cache. Here are the key charateristics
of the cache:

530 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

• Direct-mapped cache

• Write-back using write allocate

• Block size is 4 words (16 bytes or 128 bits)

• Cache size is 16 KB, so it holds 1024 blocks

• 32-bit byte addresses

• The cache includes a valid bit and dirty bit per block

From Section 5.2, we can now calculate the fields of an address for the cache:

• Cache index is 10 bits

• Block offset is 4 bits

• Tag size is 32 - (10 T 4) or 18 bits

The signals between the processor to the cache are

• 1-bit Read or Write signal

• 1 -bit Valid signal, saying whether there is a cache operation or not

• 32-bit address

• 32-bit data from processor to cache

• 32-bit data from cache to processor

• 1-bit Ready signal, saying the cache operation is complete

Note that this is a blocking cache, in that the processor must wait until the cache
has finished the request.

The interface between the memory and the cache has the same fields as between
the processor and the cache, except that the data fields are now 128 bits wide. The
extra memory width in generally found microprocessors today, which deal with
either 32-bit or 64-bit words in the processor while the DRAM controller is often
128 bits. Making the cache block match the width of the DRAM simplified the
design. Here are the signals:

• 1-bit Read or Write signal

• 1 -bit Valid signal, saying whether there is a memory operation or not

• 32-bit address

a 128-bit data from cache to memory

• 128-bit data from memory to cache

El 1 -bit Ready signal, saying the memory operation is complete

5.7 Using a Finite-State Machine to Control a Simple Cache 5 3 1

Note that the interface to memory is not a fixed number of cycles. We assume a
memory controller that will notify the cache via the Ready signal when the mem-
ory read or write is finished.

Before describing the cache controller, we need to review finite-state machines,
which allow us to control an operation that can take multiple clock cycles.

Finite-State Machines
To design the control unit for the single-cycle datapath, we used a set of truth tables
that specified the setting of the control signals based on the instruction class. For a
cache, the control is more complex because the operation can be a series of steps.
The control for a cache must specify both the signals to be set in any step and the
next step in the sequence.

The most common multistep control method is based on finite-state machines,
which are usually represented graphically. A finite-state machine consists of a set
of states and directions on how to change states. The directions are defined by a
next-state function, which maps the current state and the inputs to a new state.
When we use a finite-state machine for control, each state also specifies a set of
outputs that are asserted when the machine is in that state. The implementation
of a finite-state machine usually assumes that all outputs that are not explicitly
asserted are deasserted. Similarly, the correct operation of the datapath depends on
the fact that a signal that is not explicitly asserted is deasserted, rather than acting
as a don't care.

Multiplexor controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus, in the finite-state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement
the finite-state machine with logic, setting a control to 0 may be the default and
thus may not require any gates. A simple example of a finite-state machine appears
in Appendix C, and if you are unfamiliar with the concept of a finite-state
machine, you may want to examine IS Appendix C before proceeding.

A finite-state machine can be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the data-
path signals to be asserted and the next state. Figure 5.33 shows how such an imple-
mentation might look. US Appendix D describes in detail how the finite-state
machine is implemented using this structure. In Section C.3, the combinational
control logic for a finite-state machine is implemented both with a ROM (read-
only memory) and a PLA (programmable logic array). (Also see Appendix C
for a description of these logic elements.)

f inite-state machine
A sequential logic
function consisting of a
set of inputs and outputs,
a next-state function
that maps the current
state and the inputs to a
new state, and an output
function that maps the
current state and possibly
the inputs to a set of
asserted outputs.

next-state function
A combinational function
that, given the inputs
and the current state,
determines the next state
of a finite-state machine.

532 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Combinational
control logic

r

Outputs •<

Inputs
A f

Datapath control outputs

Inputs from cache
datapath

State register
Next state

FIGURE 5.33 Finite-state machine controllers are typically implemented using a block
of combinational logic and a register to hold the current state. The outputs of the combina-
tional logic are the next-state number and the control signals to be asserted for the current state. The inputs
to the combinational logic are the current state and any inputs used to determine the next state. In this
case, the inputs are the instruction register opcode bits. Notice that in the finite-state machine used in this
chapter, the outputs depend only on the current state, not on the inputs. The Elaboration explains this in
more detail.

Elaborat ion : The style of finite-state machine in this book is called a Moore machines,
after Edward Moore. Its identifying characteristic is that the output depends only on the
current state. For a Moore machine, the box labeled combinational control logic can be
split into two pieces. One piece has the control output and only the state input, while the
other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine
the output. Moore machines have potential implementation advantages in speed and
size of the control unit. The speed advantages arise because the control outputs, which
are needed early in the clock cycle, do not depend on the inputs, but only on the current
state. In @ Appendix C, when the implementation of this finite-state machine is taken
down to logic gates, the size advantage can be clearly seen. The potential disadvantage
of a Moore machine is that it may require additional states. For example, in situations
where there is a one-state difference between two sequences of states, the Mealy
machine may unify the states by making the outputs depend on the inputs.

5.7 Using a Finite-State Machine to Control a Simple Cache 533

FSR/fl for a Simple Cache Controller
Figure 5.34 shows the four states of our simple cache controller:

• Idle: This state waits for a valid read or write request from the processor,
which moves the FSM to the Compare Tag state.

• Compare Tag: As the name suggests, this state tests to see if the requested read
or write is a hit or a miss. The index portion of the address selects the tag to
be compared. If its valid and the tag portion of the address matches the tag,
it is a hit. Either the data is read from the selected word or the written to the
selected word, and then the Cache Ready signal is set. If it is a write, the dirty
bit is set to 1. Note that a write hit also sets the valid bit and the tag field; while
it seems unnecessary, it is included because the tag is a single memory, so to
change the dirty bit we also need to change the valid and tag fields. If it is a hit
and the block is valid, the FSM returns to the idle state. A miss first updates
the cache tag and then goes either to the Write-Back state, if the block at this
location has dirty bit value of 1, or to the Allocate state if it is 0.

534 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

• Write-Back: This state writes the 128-bit block to memory using the address
composed from the tag and cache index. We remain in this state waiting for
the Ready signal from memory. When the memory write is complete, the
FSM goes to the Allocate state.

• Allocate: The new block is fetched from memory. We remain in this state
waiting for the Ready signal from memory. When the memory read is com-
plete, the FSM goes to the Compare Tag state. Although we could have gone
to a new state to complete the operation instead of reusing the Compare Tag
state, there is a good deal of overlap, including the update of the appropriate
word in the block if the access was a write.

This simple model could easily be extended with more states to try to improve
performance. For example, the Compare Tag state does both the compare and the
read or write of the cache data in a single clock cycle. Often the compare and cache
access are done in separate states to try to improve the clock cycle time. Another
optimization would be to add a write buffer so that we could save the dirty block
and then read the new block first so that the processor doesn't have to wait for two
memory accesses on a dirty miss. The cache would then write the dirty block from
the write buffer while the processor is operating on the requested data.

Section 5.9, on the CD, goes into more detail about the FSM, showing the
full controller in a hardware description language and a block diagram of this
simple cache.

Parallelism and Memory Hierarchies;
Kf i j j f l Cache Coherence

Given that a multicore multiprocessor means multiple processors on a single
chip, these processors very likely share a common physical address space. Caching
shared data introduces a new problem, because the view of memory held by
two different processors is through their individual caches, which, without any
additional precautions, could end up seeing two different values. Figure 5.35
illustrates the problem and shows how two different processors can have two
different values for the same location. This difficulty is generally referred to as the
cache coherence problem.

Informally, we could say that a memory system is coherent if any read of a data
item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared memory programs.
The first aspect, called coherence, defines what values can be returned by a read.

5.8 Parallelism and Memory Hierarchies: Cache Coherence 535

Time Cache contents for Cache contents
Memory

contents for
step Event CPU A for CPU B location X

o o

1 CPU A reads X o o

2 CPU B reads X o o o

3 CPU A stores 1 into X 1 o 1

FIGURE 5.35 The cache coherence problem for a single memory location (X), read and
written by t w o processors (A and B) . We initially assume that neither cache contains the variable and
that X has the value 0. We also assume a write-through cache; a write-back cache adds some additional but
similar complications. After the value of X has been written by A, A's cache and the memory both contain the
new value, bul B's cache does not, and if 13 reads the value of X, it will receive 0!

The second aspect, called consistency, determines when a written value will be
returned by a read.

Let's look at coherence first. A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read
by P, always returns the value written by P. Thus, in Figure 5.35 above, if CPU
A were to read X after time step 3, it should see the value 1.

2. A read by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses. Thus, in
Figure 5.35, we need a mechanism so that the value 0 in the cache of CPU B
is replaced by the value 1 after CPU A stores 1 into memory at address X in
time step 3.

3. Writes to the same location are serialized; that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if CPU B stores 2 into memory at address X after time step 3,
processors can never read the value at location X as 2 and then later read
it as 1.

The first property simply preserves program order—we certainly expect this
property to be true in uniprocessors, for example. The second property defines
the notion of what it means to have a coherent view of memory: if a processor
could continuously read an old data value, we would clearly say that memory was
incoherent.

The need for write serialization is more subtle, but equally important. Suppose
we did not serialize writes, and processor PI writes location X followed by P2
writing location X. Serializing the writes ensures that every processor will see the

536 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

write done by P2 at some point. If we did not serialize the writes, it might be the
case that some processor could see the write of P2 first and then see the write of
PI, maintaining the value written by PI indefinitely. The simplest way to avoid
such difficulties is to ensure that all writes to the same location are seen in the same
order; this property is called write serialization.

Basic Schemes for Enforcing Coherence
In a cache coherent multiprocessor, the caches provide both migration and replica-
tion of shared data items:

• Migration: A data item can be moved to a local cache and used there in a
transparent fashion. Migration reduces both the latency to access a shared
data item that is allocated remotely and the bandwidth demand on the shared
memory.

m Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both
latency of access and contention for a read shared data item.

Supporting this migration and replication is critical to performance in accessing
shared data, so many multiprocessors introduce a hardware protocol to maintain
coherent caches. The protocols to maintain coherence for multiple processors are
called cache coherence protocols. Key to implementing a cache coherence protocol is
tracking the state of any sharing of a data block.

The most popular cache coherence protocol is snooping. Every cache that has a
copy of the data from a block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept. The caches are all accessible via
some broadcast medium (a bus or network), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as imple-
mented with a shared bus, but any communication medium that broadcasts cache
misses to all processors can be used to implement a snooping-based coherence
scheme. This broadcasting to all caches makes snooping protocols simple to
implement but also limits their scalability.

Snooping Protocofls
One method of enforcing coherence is to ensure that a processor has exclusive
access to a data item before it writes that item. This style of protocol is called a write
invalidate protocol because it invalidates copies in other caches on a write. Exclusive
access ensures that no other readable or writable copies of an item exist when the
write occurs: all other cached copies of the item are invalidated.

5.8 Parallelism and Memory Hierarchies: Cache Coherence 537

Figure 5.36 shows an example of an invalidation protocol for a snooping bus with
write-back caches in action. To see how this protocol ensures coherence, consider
a write followed by a read by another processor: since the write requires exclu-
sive access, any copy held by the reading processor must be invalidated (hence the
protocol name). Thus, when the read occurs, it misses in the cache, and the cache
is forced to fetch a new copy of the data. For a write, we require that the writing
processor have exclusive access, preventing any other processor from being able to
write simultaneously. If two processors do attempt to write the same data simulta-
neously, one of them wins the race, causing the other processor's copy to be invali-
dated..For the other processor to complete its write, it must obtain a new copy of
the data, which must now contain the updated value. Therefore, this protocol also
enforces write serialization.

Processor activity Bus activity
Contents of

CPU A's cache
Contents of

CPU B's cache

Contents of
memory

location X

o

CPU A reads X Cache miss forX o o

CPU B reads X Cache miss forX o o 0

CPU A writes a 1 to X Invalidation forX 1 o

CPU B reads X Cache miss forX 1 1 1

FIGURE 5.36 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume That neither cache initially holds X and
that the value of X in memory is 0. The CPU and memory contents show the value after the processor and
bus activity have both completed. A blank indicates no activity or no copy cached. When the second miss
by B occurs, CPU A responds with the value canceling the response from memory. In addition, both the
contents of B's cache and the memory contents of X are updated. This update of memory, which occurs
when a block becomes shared, simplifies the protocol, but it is possible to track the ownership and force the
write-back only if the block is replaced. This requires the introduction of an additional state called "owner,"
which indicates that a block may be shared, but the owning processor is responsible for updating any other
processors and memory when it changes the block or replaces it.

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. Most protocols
exchange full blocks between processors, thereby increasing coherency bandwidth
demands.

Large blocks can also cause what is called false sharing: when two unrelated
shared variables are located in the same cache block, the full block is exchanged
between processors even though the processors are accessing different variables.
Programmers and compilers should lay out data carefully to avoid false
sharing.

Hardware/
Software
Interface

false s h a r i n g When two
unrelated shared variables
are located in the same
cache block and the
full block is exchanged
between processors even
though the processors
are accessing different
variables.

538 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: Although the three properties on page 535 are sufficient to ensure
coherence, the question of when a written value will be seen is also important. To see
why, observe that we cannot require that a read of X in Figure 5.35 instantaneously
sees the value written for X by some other processor. If, for example, a write of X on
one processor precedes a read of X on another processor very shortly beforehand, it
may be impossible to ensure that the read returns the value of the data written, since
the written data may not even have left the processor at that point. The issue of exactly
when a written value must be seen by a reader is defined by a memory consistency
model.

We make the following two assumptions. First, a write does not complete (and allow
the next write to occur) until all processors have seen the effect of that write. Second,
the processor does not change the order of any write with respect to any other memory
access. These two conditions mean that if a processor writes location X followed by
location Y, any processor that sees the new value of Y must also see the new value
of X. These restrictions allow the processor to reorder reads, but forces the processor
to finish a write in program order.

Elaboration: The cache coherence problem for multiprocessors and I/O (see
Chapter 6), although similar in origin, has different characteristics that affect the
appropriate solution. Unlike I/O, where multiple data copies are a rare event—one to
be avoided whenever possible—a program running on multiple processors will normally
have copies of the same data in several caches.

Elaboration: In addition to the snooping cache coherence protocol where the status
of shared blocks is distributed, a directory-based cache coherence protocol keeps the
sharing status of a block of physical memory in just one location, called the directory.
Directory-based coherence has slightly higher implementation overhead than snooping,
but it can reduce traffic between caches and thus scale to larger processor counts.

Advanced EVHaterlaH: implementing
Cache OomitroBlers

This section on the CD shows how to implement control for a cache, just as we
implemented control for the single-cycle and pipelined datapaths in Chapter 4. This
section starts with a description of finite-state machines and the implemention of
a cache controller for a simple data cache, including a description of the cache
controller in a hardware description langauge. It then goes into details of an
example cache coherence protocol and the difficulties in implementing such a
protocol.

5.10 Real Stuff 539

Reafl Stuff: the AMD ©pteromi X4
(Barcelona) and Intel (Mehalem iemoiry
Hierarchies

In this section, we will look at the memory hierarchy in two modern microprocessors:
the AMD Opteron X4 (Barcelona) processor and the Intel Nehalem. Figure 5.37
shows the Intel Nehalem die photo, and Figure 1.9 in Chapter 1 shows the AMD
Opteron X4 die photo. Both have secondary and tertiary caches on the main
processor die. Such integration reduces access time to the lower-level caches and
also reduces the number of pins on the chip, since there is no need for a bus to an
external secondary cache. Both have on-chip memory controllers, which reduces
the latency to main memory.

! \ms B
s a r a ®
M B |
i l l !

FIGURE 5.37 An Intel Nehalem die processor photo with the components labeled. This
13.5 by 19.6 mm die has 731 million transistors. It contains four processors that each have private 32-KB
instruction and 32-LKB instruction caches and a 512-KB L2 cache. The four cores share an 8-MB L3 cache.
The two 128-bit memory channels are to DDR3 DRAM. Each core also has a two-level TLB. The memory
controller is now on the die, so there is no separate north bridge chip as in Intel Clovertown.

540 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Memory Hierarchies of the Nehaiem and Opteron
Figure 5.38 summarizes the address sizes and TLBs of the two processors. Note that
the AMD Opteron X4 (Barcelona) has four TLBs and that the virtual and physical
addresses do not have to match the word size. The X4 implements only 48 of the
potential 64 bits of its virtual space and 48 of the potential 64 bits of its physical
address space. Nehaiem has three TLBs, and the virtual address is 48 bits and the
physical address is 44 bits.

Characteristic Intel Nehaiem AMD Opteron X4 (Barcelona)

Virtual address 48 bits 48 bits

Physical address 44 bits 48 bits

Page size 4 KB, 2/4 MB 4 KB, 2/4 MB

TLB organization 1 TLB for instructions and 1 TLB for
data per core

Both Ll TLBs are four-way set
associative, LRU replacement

The L2 TLB is four-way set
associative, LRU replacement

Ll l-TLB has 128 entries for small
pages, 7 per thread for large pages

Ll D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB has 512 entries

TLB misses handled in hardware

1 Ll TLB tor instructions and 1 Ll TLB for
data per core

Both Ll TLBs fully associative, LRU
replacement

1 L2 TLB for instructions and 1 L2 TLB for
data per core

Both L2 TLBs are four-way set associative,
round-robin

Both Ll TLBs have 48 entries

Both L2 TLBs have 512 entries

TLB misses handled in hardware

FIGURE 5.38 Address translation and TLB hardware for the Intel Nehaiem and AMD
Opteron X4. The word size sets the maximum size of the virtual address, but a processor need not use all
bits. Both processors provide support for large pages, which are used for things like the operating system
or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a single
object that is always present. Nehaiem supports two hardware-supported threads per core (see Section 7.5
in Chapter 7).

Figure 5.39 shows their caches. Each processor in the X4 has its own Ll 64-KB
instruction and data caches and its own 512-KB L2 cache. The four processors
share a single 2 - M B L3 cache. Nehaiem has a similar structure, with each processor
having its own Ll 32-KB instruction and data caches and its own 512-KB L2 cache,
and the four processors share a single 8 - M B L3 cache.

Figure 5.40 shows the CPI, miss rates per thousand instructions for the Ll and
L2 caches, and DRAM accesses per thousand instructions for Opteron X4 running
the SPECint 2006 benchmarks. Note that the CPI and cache miss rates are highly
correlated. The correlation coefficient of the set of CPIs and the set of Ll misses
per 1000 instructions is 0.97. Although we don't have the actual L3 misses, we can
infer the effectiveness of L3 by the reduction in DRAM accesses versus L2 misses.
While a few programs benefit significantly from the 2 -MB L3 cache—h264avc,
hmmer, and bzip2—most do not.

5.10 Real Stuff 541

Characteristic Intel Nehaiem AMD Opteron X4 (Barcelona)

Ll cache organization Split instruction and data caches Split instruction and data caches

Ll cache size 32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

Ll cache associativity 4-way (1), 8-way (D) set associative 2-way set associative

Ll replacement Approximated LRU replacement LRU replacement

Ll block size 64 bytes 64 bytes

Ll write policy Write-back, Write-allocate Write-back, Write-allocate

Ll hit time (load-use) Not Available 3 clock cycles

L2 cache organization Unified (instruction and data) per core Unified (instruction and data) per core

L2 cache size 2 5 6 KB (0 . 2 5 MB) 5 1 2 KB (0 .5 MB)

L2 cache associativity 8-way set associative 16-way set associative

L2 replacement Approximated LRU replacement Approximated LRU replacement

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time Not Available 9 clock cycles

L3 cache organization Unified (instruction and data) Unified (instruction and data)

L3 cache size 8 1 9 2 KB (8 MB), shared 2 0 4 8 KB (2 MB), shared

L3 cache associativity 16-way set associative 32-way set associative

L3 replacement Not Available Evict block shared by fewest cores

L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time Not Available 38 (?)clock cycles

FIGURE 5.39 First-level, second-level, and third-level caches in the Intel Nehaiem and
AMD Opteron X4 2356 (Barcelona).

Techniques to Reduce Miss Penalities
Both the Nehaiem and the Opteron X4 have additional optimizations that allow
them to reduce the miss penalty. The first of these is the return of the requested
word first on a miss, as described in the Elaboration on page 473. Both allow the
processor to continue to execute instructions that access the data cache during
a cache miss. This technique, called a nonblocking cache, is commonly used by
designers who are attempting to hide the cache miss latency by using out-of-order
processors. They implement two flavors of nonblocking. Hit under miss allows addi-
tional cache hits during a miss, while miss under miss allows multiple outstanding
cache misses. The aim of the first of these two is hiding some miss latency with
other work, while the aim of the second is overlapping the latency of two different
misses.

Overlapping a large fraction of miss times for multiple outstanding misses
requires a high-bandwidth memory system capable of handling multiple misses
in parallel. In desktop systems, the memory may only be able to take limited advan-
tage of this capability, but large servers and multiprocessors often have memory
systems capable of handling more than one outstanding miss in parallel.

nonblocking cache
A cache that allows
the processor to make
references to the cache
while the cache is
handling an earlier miss.

542 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Name CPI
Ll D cache

misses/1000 instr
L2 D cache

misses/1000 instr
DRAM

accesses/1000 instr

perl 0 . 7 5 3 . 5 1 . 1 1 . 3

bzip2 0 . 8 5 11.0 5 . 8 2 . 5

gcc 1 . 7 2 2 4 . 3 1 3 . 4 1 4 . 8

mcf 1 0 . 0 0 1 0 6 . 8 8 8 . 0 8 8 . 5

go 1 . 0 9 4 . 5 1 . 4 1 . 7

hmmer 0 . 8 0 4 . 4 2 . 5 0 . 6

s jeng 0 . 9 6 1 . 9 0 . 6 0 . 8

libquantum 1 . 6 1 3 3 . 0 3 3 . 1 4 7 . 7

I i264avc 0 . 8 0 8 . 8 1 . 6 0 . 2

omnetpp 2 . 9 4 3 0 . 9 2 7 . 7 2 9 . 8

astar 1 . 7 9 1 6 . 3 9 . 2 8 . 2

xalancbmk 2 . 7 0 3 8 . 0 1 5 . 8 1 1 . 4

Median 1 . 3 5 1 3 . 6 7 . 5 5 . 4

FIGURE 5.40 CPI, miss rates, and DRAM accesses for the Opteron model X4 2356
(Barcelona) memory hierarchy running SPECint2006. Alas, the L3 miss counters did not work on
this chip, so we only have D R A M accesses to infer the effectiveness of the L3 cache. Note that this figure is for
the same systems and benchmarks as Figure 1.20 in Chapter 1.

Both microprocessors prefetch instructions and have a built-in hardware prefetch
mechanism for data accesses. They look at a pattern of data misses and use this
information to try to predict the next address to start fetching the data before the
miss occurs. Such techniques generally work best when accessing arrays in loops.

A significant challenge facing cache designers is to support processors like the
Nehaiem and Opteron X4, which can execute more than one memory instruction
per clock cycle. Multiple requests can be supported in the first-level cache by two
different techniques. The cache can be multiported, allowing more than one simul-
taneous access to the same cache block. Multiported caches, however, are often
too expensive, since the RAM cells in a multiported memory must be much larger
than single-ported cells. The alternative scheme is to break the cache into banks
and allow multiple, independent accesses, provided the accesses are to different
banks. The technique is similar to interleaved main memory (see Figure 5.11).The
Opteron X4 Ll data cache supports two 128-bit reads per clock cycle and has eight
banks.

Nehaiem and most other processors follow the policy of inclusion in their mem-
ory hierarchy. This means that a copy of all data in the higher level caches can also
be found in the lower-level caches. In contrast, the AMD processors follow the
policy of exclusion in their first- and second-level cache, meaning that a cache block
can only be found in the first- or second-level caches, but not both. Hence, on an
Ll miss when a block is fetched from L2 to Ll , the block replaced is sent back to
the L2 cache.

5.11 Fallacies and Pitfalls 543

The sophisticated memory hierarchies of these chips and the large fraction of
the dies dedicated to caches and TLBs show the significant design effort expended
to try to close the gap between processor cycle times and memory latency.

Elaboration: The shared L3 cache of Opteron X4 does not always follow exclusion.
Since the data blocks can be shared between several processors in the L3 cache, it
only removes the cache block from L3 if no other processors are sharing it. Hence, the
L3 cache protocol recognizes whether or not the cache block is being shared or only
used by a single processor.

Elaboration: Just as Opteron X4 does not follow the conventional inclusion property,
it also has a novel relationship between the levels of the memory hierarchy. Instead of
the memory feeding the L2 cache that in turn feeds the LI cache, the L2 cache only
holds data that has been evicted from the LI cache. Thus, the L2 cache can be called a
victim cache, since it only holds blocks displaced from LI ("victims"). Similarly, L3 cache
is a victim cache for the L2 cache, only containing blocks that spill over from L2. If an
LI miss is not found in the L2 cache but found in the L3 cache, the L3 cache supplies
the data directly to LI cache. Hence, an LI miss can be serviced by an L2 hit or an L3
hit or memory.

t j l l Fallacies and Pitfalls

As one of the most naturally quantitative aspects of computer architecture, the
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not
only have there been many fallacies propagated and pitfalls encountered, but some
have led to major negative outcomes. We start with a pitfall that often traps students
in exercises and exams.

Pitfall: Forgetting to account for byte addressing or the cache block size in simu-
lating a cache.

When simulating a cache (by hand or by computer), we need to make sure we
account for the effect of byte addressing and multiword blocks in determining
into which cache block a given address maps. For example, if we have a 32-byte
direct-mapped cache with a block size of 4 bytes, the byte address 36 maps into
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1.

544 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

On the other hand, if address 36 is a word address, then it maps into block
(36 mod 8) = 4. Make sure the problem clearly states the base of the address.

In like fashion, we must account for the block size. Suppose we have a cache
with 256 bytes and a block size of 32 bytes. Into which block does the byte address
300 fall? If we break the address 300 into fields, we can see the answer:

3 1 3 0 2 9 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

Cache block
number

Block offset

Block address

Byte address 300 is block address

300

The number of blocks in the cache

L 32 J "

Block number 9 falls into cache block number (9 modulo 8) = 1.
This mistake catches many people, including the authors (in earlier drafts) and

instructors who forget whether they intended the addresses to be in words, bytes,
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Ignoring memory system behavior when writing programs or when gener-
ating code in a compiler.

This could easily be written as a fallacy: "Programmers can ignore memory hierar-
chies in writing code." We illustrate with an example using matrix multiply, to
complement the sort comparison in Figure 5.18.

Here is the inner loop of the version of matrix multiply from Chapter 3:

f o r (i = 0 ; i ! = 5 0 0 ; i = i + l)
f o r (j = 0 ; j 1 = 5 0 0 ; j = j + l)

f o r (k = 0 ; k ! = 5 0 0 ; k = k + l)
x [i] [j] = x [i] [j] t y [i] [k] * z [k] [j] ;

When run with inputs that are 500 x 500 double precision matrices, the CPU
runtime of the above loop on a MIPS CPU with a 1-MB secondary cache was
about half the speed compared to when the loop order is changed to k , j , i (so i
is innermost)! The only difference is how the program accesses memory and the
ensuing effect on the memory hierarchy. Further compiler optimizations, using a
technique called blocking, can result in a runtime that is another four times faster
for this code!

L 32

is

256

5.11 Fallacies and Pitfalls 545

Pitfall: Having less set associativity for a shared cache than the number of cores or
threads sharing that cache.

Without extra care, a parallel program running on 2" processors or threads can
easily allocate data structures to addresses that would map to the same set of a
shared L2 cache. If the cache is at least 2"-way associative, then these accidental
conflicts are hidden by the hardware from the program. If not, programmers
could face apparently mysterious performance bugs—actually due to L2 conflict
misses—when migrating from, say, a 16-core design to 32-core design if both use
16-way associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the
memory-stall time and the processor execution time, and hence evaluate the mem-
ory hierarchy independently using average memory access time (see page 478).

If the processor continues to execute instructions, and may even sustain more
cache misses during a cache miss, then the only accurate assessment of the mem-
ory hierarchy is to simulate the out-of-order processor along with the memory
hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented
address space.

During the 1970s, many programs grew so large that not all the code and data
could be addressed with just a 16-bit address. Computers were then revised to
offer 32-bit addresses, either through an unsegmented 32-bit address space (also
called a flat address space) or by adding 16 bits of segment to the existing 16-bit
address. From a marketing point of view, adding segments that were programmer-
visible and that forced the programmer and compiler to decompose programs into
segments could solve the addressing problem. Unfortunately, there is trouble any
time a programming language wants an address that is larger than one segment,
such as indices for large arrays, unrestricted pointers, or reference parameters.
Moreover, adding segments can turn every address into two words—one for the
segment number and one for the segment offset—causing problems in the use of
addresses in registers.

Pitfall: Implementing a virtual machine monitor on an instruction set architecture
that wasn't designed to be virtualizable.

Many architects in the 1970s and 1980s weren't careful to make sure that all instruc-
tions reading or writing information related to hardware resource information

546 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

were privileged. This laissez-faire attitude causes problems for V M M s for all of
these architectures, including the x86, which we use here as an example.

Figure 5.41 describes the 18 instructions that cause problems for virtualization
[Robin and Irvine, 2000] . The two broad classes are instructions that

• Read control registers in user mode that reveals that the guest operating sys-
tem is running in a virtual machine (such as POPF, mentioned earlier)

• Check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level

Problem category Problem x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When access ing virtual memory
mechanisms in user mode, instructions
fail the x 8 6 protection checks

Load a c c e s s rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP S S , . . .)
Push segment register (PUSH CS, PUSH S S , . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

FIGURE 5.41 Summary of 18 x86 instructions that cause problems for virtualization
[Robin and Irvine, 2000], The first five instructions in the top group allow a program in user m o d e to
read a control register, such as a descriptor table registers, without causing a trap. The pop flags instruction
modifies a control register with sensitive information but fails silently when in user mode. The protection
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these
instructions checks the privilege level implicitly as part of instruction execution when reading a control
register. The checking assumes that the OS must be at the highest privilege level, which is not the case for
guest V M s . Only the Move to segment register tries to modify control state, and protection checking foils it
as well.

To simplify implementations of V M M s on the x86, both AMD and Intel have
proposed extensions to the architecture via a new mode. Intel's VT-x provides
a new execution mode for running VMs, an architected definition of the VM
state, instructions to swap VMs rapidly, and a large set of parameters to select
the circumstances where a V M M must be invoked. Altogether, VT-x adds 11 new
instructions for the x86. AMD's Pacifica makes similar proposals.

An alternative to modifying the hardware is to make small modifications to the
operating system to avoid using the troublesome pieces of the architecture. This

5.12 Concluding Remarks 547

technique is called paravirtualization, and the open source Xen VMM is a good
example. The Xen VMM provides a guest OS with a virtual machine abstraction
that uses only the easy-to-virtualize parts of the physical x86 hardware on which
the VMM runs.

5.12 Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors is
underscored by the fact that the raw material for main memory, DRAMs, is essen-
tially the same in the fastest computers as it is in the slowest and cheapest.

It is the principle of locality that gives us a chance to overcome the long
latency of memory access—and the soundness of this strategy is demonstrated at
all levels of the memory hierarchy. Although these levels of the hierarchy look
quite different in quantitative terms, they follow similar strategies in their opera-
tion and exploit the same properties of locality.

Multilevel caches make it possible to use more cache optimizations more easily
for two reasons. First, the design parameters of a lower-level cache are different
from a first-level cache. For example, because a lower-level cache will be much
larger, it is possible to use larger block sizes. Second, a lower-level cache is not
constantly being used by the processor, as a first-level cache is. This allows us to
consider having the lower-level cache do something when it is idle that may be
useful in preventing future misses.

Another trend is to seek software help. Efficiently managing the memory hier-
archy using a variety of program transformations and hardware facilities is a major
focus of compiler enhancements. Two different ideas are being explored. One idea
is to reorganize the program to enhance its spatial and temporal locality. This
approach focuses on loop-oriented programs that use large arrays as the major
data structure; large linear algebra problems are a typical example. By restructuring
the loops that access the arrays, substantially improved locality—and, therefore,
cache performance—can be obtained. The discussion on page 544 showed how
effective even a simple change of loop structure could be.

Another approach is prefetching. In prefetching, a block of data is brought
into the cache before it is actually referenced. Many microprocessors use hardware
prefetching to try to predict accesses that may be difficult for software to notice.

A third approach is special cache-aware instructions that optimize memory
transfer. For example, the microprocessors in Section 7.10 in Chapter 7 use an
optimization that does not fetch the contents of a block from memory on a write
miss because the program is going to write the full block. This optimization
significantly reduces memory traffic for one kernel.

prefetching A technique
in which data blocks
needed in the future are
brought into the cache
early by the use of special
instructions that specify
the address of the block.

548 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

As we will see in Chapter 7, memory systems are a central design issue for parallel
processors. The growing importance of the memory hierarchy in determining
system performance means that this important area will continue to be a focus of
both designers and researchers for some years to come.

historical (Perspective and] Farther
Reading

This history section @ gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the memory hierarchy, protection mech-
anisms, and virtual machines, and concludes with a brief history of operating
systems, including CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and
Linux.

Exercises
Contributed by Jichunn Chang, Jacob Lcvcrich, Kevin Lim, and Parlhasarathy Kanganathan
(all of Hewlett-Packard)

Exercise 5.1
In this exercise we consider memory hierarchies for various application, listed in
the following table.

a. Web browsing

b. Online banking

5.1.1 [10] <5.1> Assuming both client and server are involved in the process, first
name the client and server systems. Where can caches be placed to speed-up the
process?

5.1 .2 [10] <5.1 > Design a memory hierarchy for the system. Show the typical size
and latency at various levels of the hierarchy. What's the relationship between cache
size and its access latency?

5.1 .3 [15] <5.1> What are the units of data transfers between hierarchies? What's
the relationship between the data location, data size, and transfer latency.

5.14 Exercises 549

5 . 1 . 4 [10] <5.1, 5 .2> Communication bandwidth and server processing band-
width are two important factors to consider when designing a memory hierarchy.
Which bandwidths can be the limiting factor here? How to improve and what's the
cost?

5 . 1 . 5 [5] <5.1, 5 .8> Now consider multiple clients simultaneously access the
server, will such scenarios improve the spatial and temporal locality?

5 . 1 . 6 [10] <5.1, 5 .8> Give an example where the cache can provide out-of-date
data. How to mitigate or avoid such issues?

Exerc ise 5.2
In this exercise we look at memory locality properties of matrix computation. The
following code is written in C, where elements within the same row are stored
contiguously.

a. for (1=0: I<8000; I++)
for (J=0; J<8; J++)
A[I][J]-B[J][0]+A[J][I]:

b. for (J=0; J<8; J++)
for (1=0; I<8000; I++)

A[I][J]=B[J][0]+A[J][I];

5 . 2 . 1 [5] <5 .1> How many 32-bit integers can be stored in a 16-byte cache line?

5 . 2 . 2 [5] <5 .1> References to which variables exhibit temporal locality?

5 . 2 . 3 [5] <5 .1> References to which variables exhibit spatial locality?

Locality is affected by both the reference order and data layout. The same computa-
tion can also be written below in Matlab, which differs from C by contiguously
storing matrix elements within the same column.

a. for 1=1:8000
for J=1:8
A(I.J)=B(J,0)+A(J.I):

end
end

b. for J=1:8
for 1=1:8000
A(I,J) = B(J ,0) + A(J,I);

end
end

550 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5 . 2 . 4 [10] <5 .1> How many 16-byte cache lines are needed to store all 32-bit
matrix elements being referenced?

5 . 2 . 5 [5] <5.1> References to which variables exhibit temporal locality?

5 . 2 . 6 [5] <5.1> References to which variables exhibit spatial locality?

Exercise 5.3
Caches are important to providing a high performance memory hierarchy to
processors. Below is a list of 32-bit memory address references, given as word
addresses.

a. 1 , 1 3 4 , 2 1 2 , 1 , 1 3 5 , 2 1 3 , 1 6 2 , 1 6 1 , 2 , 4 4 , 4 1 , 2 2 1

b. 6 , 2 1 4 , 1 7 5 , 2 1 4 , 6 , 84 , 6 5 , 1 7 4 , 6 4 , 1 0 5 , 85 , 2 1 5

5 . 3 . 1 [10] <5.2> For each of these references, identify the binary address, the tag,
and the index given a direct-mapped cache with 16 one-word blocks. Also list if
each reference is a hit or a miss, assuming the cache is initially empty.

5 . 3 . 2 [10] <5 .2> For each of these references, identify the binary address, the tag,
and the index given a direct-mapped cache with two-word blocks and a total size
of eight blocks. Also list if each reference is a hit or a miss, assuming the cache is
initially empty.

5 . 3 . 3 [20] <5.2, 5 .3> You are asked to optimize a cache design for the given
references. There are three direct-mapped cache designs possible, all with a total of
eight words of data: CI has one-word blocks, C2 has two-word blocks, and C3 has
four-worcl blocks. In terms of miss rate, which cache design is the best? If the miss
stall time is 25 cycles, and CI has an access time of 2 cycles, C2 takes 3 cycles, and
C3 takes 5 cycles, which is the best cache design?

There are many different design parameters that are important to a cache's overall
performance. The table below lists parameters for different direct-mapped cache
designs.

Cache data size Cache block size Cache access time

a. 6 4 KB 1 word 1 cycle

b. 6 4 KB 2 word 2 cycle

5 . 3 . 4 [15] <5 .2> Calculate the total number of bits required for the cache listed
in the table, assuming a 32-bit address. Given that total size, find the total size

5.14 Exercises 551

of the closest direct-mapped cache with 16-word blocks of equal size or greater.
Explain why the second cache, despite its larger data size, might provide slower
performance than the first cache.

5 . 3 . 5 [20] <5 .2 ,5 .3> Generate a series of read requests that have a lower miss rate
on a 2 KB two-way set associative cache than the cache listed in the table. Identify
one possible solution that would make the cache listed in the table have an equal
or lower miss rate than the 2 KB cache. Discuss the advantages and disadvantages
of such a solution.

5 . 3 . 6 [15] <5 .2> The formula shown on page 457 shows the typical method
to index a direct-mapped cache, specifically (Block address) modulo (Number
of blocks in the cache). Assuming a 32-bit address and 1024 blocks in the cache,
consider a different indexing function, specifically (Block address[31:27] XOR
Block address[26:22]). Is it possible to use this to index a direct-mapped cache? If
so, explain why and discuss any changes that might need to be made to the cache.
If it is not possible, explain why.

Exercise 5.4
For a direct-mapped cache design with 32-bit address, the following bits of the
address are used to access the cache.

Tag Index Offset

a. 3 1 - 1 0 9 - 4 3 - 0

b. 3 1 - 1 2 1 1 - 1 5 4 - 0

5 . 4 . 1 [5] <5 .2> What is the cache line size (in words)?

5 . 4 . 2 [5] <5.2> How many entries does the cache have?

5 . 4 . 3 [5] <5 .2> What is the ratio between total bits required for such a cache
implementation over the data storage bits?

Starting from power on, the following byte-addressed cache references are
recorded.

O 4 1 6 1 3 2 2 3 2 1 6 0 1 0 2 4 3 0 1 4 0 3 1 0 0 1 8 0 2 1 8 0

5 . 4 . 4 [10] <5 .2> How many blocks are replaced?

5 . 4 . 5 [10] <5 .2> What is the hit ratio?

552 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5 . 4 . 6 [20] <5 .2> List the final state of the cache, with each valid entry represented
as a record of Cindex, tag, data>.

Exercise 5.5
Recall that we have two write policies and write allocation policies, their combina-
tions can be implemented at either in Ll or L2 cache.

L l L2

a. Write-back, write allocate Write-through, non write allocate

b. Write-back, write allocate Write-through, write allocate

5 . 5 . 1 [5] <5.2, 5.5> Buffers are employed between different levels of memory
hierarchy to reduce access latency. For this given configuration, list the possible
buffers needed between Ll and L2 caches, as well as L2 cache and memory.

5 . 5 . 2 [20] <5.2, 5 .5> Describe the procedure of handling an Ll write miss, con-
sidering the component involved and the possibility of replacing a dirty block.

5 . 5 . 3 [20] <5.2, 5 .5> For a multilevel exclusive cache (a block can only reside in
one of the Ll and L2 caches) configuration, describe the procedure of handling an
Ll write miss, considering the component involved and the possibility of replacing
a dirty block.

Consider the following program and cache behaviors.

1 Data reads per
1000 instructions

Data writes per
1000 instructions

Instruction
cache miss rate

Data cache
miss rate

Block size
(byte)

a . 2 0 0 1 6 0 0 . 2 0 % 2% 8

b. 1 8 0 1 2 0 0 .20% 2% 1 6

5 . 5 . 4 [5] <5.2, 5.5> For a write-through, write-allocate cache, what's the mini-
mum read and write bandwidths (measured by byte-per-cycle) needed to achieve
a CPI of 2?

5 . 5 . 5 [5] <5.2, 5 .5> For a write-back, write-allocate cache, assuming 3 0 % of
replaced data cache blocks are dirty, what's the minimal read and write bandwidths
needed for a CPI of 2?

5 . 5 . 6 [5] <5.2, 5.5> What are the minimal bandwidths needed to achieve the
performance of CPI = 1.5?

5.14 Exercises 553

Exercise S.6
Media applications that play audio or video files are part of a class of workloads
called "streaming" worldoads; i.e., they bring in large amounts of data but do not
reuse much of it. Consider a video streaming workload that accesses a 512 KB
working set sequentially with the following address stream:

0, 4, 8 , 1 2 , 16 , 20 , 2 4 , 2 8 , 3 2 , . . .

5.6.1 [5] <5.5, 5.3> Assume a 64 KB direct-mapped cache with a 32-byte line.
What is the miss rate for the address stream above. How is this miss rate sensitive
to the size of the cache or the working set? How would you categorize the misses
this worldoad is experiencing, based on the 3C model.

5.6 .2 [5] <5.5, 5.1> Recompute the miss rate when the cache line size is 16 bytes,
64 bytes, and 128 bytes? What kind of locality is this worldoad exploiting?

5.6.3 [10] <5.10> "Prefetching" is a technique that leverages predictable address
patterns to speculatively bring in additional cache lines when a particular cache
line is accessed. One example of prefetching is a stream buffer that prefetches
sequentially adjacent cache lines into a separate buffer when a particular cache line
is brought in. If the data is found in the prefetch buffer, it is considered as a hit and
moved into the cache and the next cache line is prefetched. Assume a two-entry
stream buffer and assume that the cache latency is such that a cache line can be
loaded before the computation on the previous cache line is completed. What is the
miss rate for the address stream above?

Cache block size (B) can affect both miss rate and miss latency. Assuming the
following miss rate table, assuming a 1-CPI machine with an average of 1.35
references (both instruction and data) per instruction, help find the optimal block
size given the following miss rates for various block sizes.

8 16 32 64 128

a. 8% 3% 1 .8% 1 .5% 2%

b. 4% 4% 3% 1 .5% 2%

5.6.4 [10] <5.2> What's the optimal block size for a miss latency of 20 x B cycles?

5.6.5 [10] <5.2> What's the optimal block size for a miss latency of 24 T B cycles?

5.6 .6 [10] <5.2> For constant miss latency, what's the optimal block size?

554 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Exercise 5„7
In this exercise, we will look at the different ways capacity affects overall perfor-
mance. In general, cache access time is proportional to capacity. Assume that main
memory accesses take 70 ns and that memory accesses are 3 6 % of all instructions.
The following table shows data for Ll caches attached to each of two processors,
PI and P2.

Ll size Ll miss rate Ll hit time

a. P I 1 KB 11 .4% 0 . 6 2 ns a.

P2 2 KB 8 .0% 0 . 6 6 ns

b. P I 8 KB 4 .3% 0 . 9 6 ns b.

P2 1 6 KB 3 .4% 1 . 0 8 ns

5 . 7 . 1 [5] <5 .3> Assuming that the Ll hit time determines the cycle times for PI
and P2, what are their respective clock rates?

5 . 7 . 2 [5] <5 .3> What is the AMAT for each of PI and P2?

5 . 7 . 3 [5] <5.3> Assuming a base CPI of 1.0, what is the total CPI for each of PI
and P2? Which processor is faster?

For the next three problems, we will consider the addition of an L2 cache to PI to
presumably make up for its limited Ll cache capacity. Use the Ll cache capacities
and hit times from the previous table when solving these problems. The L2 miss
rate indicated is its local miss rate.

L2 size L2 miss rate L2 hit time

a. 5 1 2 KB 98% 3 . 2 2 ns

b. 4 MB 73% 1 1 . 4 8 ns

5 . 7 . 4 [10] <5 .3> What is the AMAT for PI with the addition of an L2 cache? Is
the AMAT better or worse with the L2 cache?

5 . 7 . 5 [5] <5 .3> Assuming a base CPI of 1.0, what is the total CPI for PI with the
addition of an L2 cache?

5 . 7 . 6 [10] <5 .3> Which processor is faster, now that PI has an L2 cache? If PI is
faster, what miss rate would P2 need in its Ll cache to match Pi 's performance?
If P2 is faster, what miss rate would PI need in its Ll cache to match P2's
performance?

5.14 Exercises 555

Exercise 5„8
This exercise examines the impact of different cache designs, specifically comparing
associative caches to the direct-mapped caches from Section 5.2. For these exercises,
refer to the table of address streams shown in Exercise 5.3.

5 . 8 . 1 [10] <5 .3> Using the references from Exercise 5.3, show the final cache
contents for a three-way set-associative cache with two-word blocks and a total size
of 24 words. Use LRU replacement. For each reference identify the index bits, the
tag bits, the block offset bits, and if it is a hit or a miss.

5 . 8 . 2 [10] <5 .3> Using the references from Exercise 5.3, show the final cache con-
tents for a fully associative cache with one-word blocks and a total size of eight
words. Use LRU replacement. For each reference identify the index bits, the tag bits,
and if it is a hit or a miss.

5 . 8 . 3 [15] <5.3> Using the references from Exercise 5.3, what is the miss rate
for a fully associative cache with two-word blocks and a total size of eight words,
using LRU replacement? What is the miss rate using MRU (most recently used)
replacement? Finally what is the best possible miss rate for this cache, given any
replacement policy?

Multilevel caching is an important technique to overcome the limited amount of
space that a first level cache can provide while still maintaining its speed. Consider
a processor with the following parameters:

1 Ba
se

 C
PI

, n
o

m
em

or
y

st
al

ls

Pr
oc

es
so

r
sp

ee
d

M
ai

n
m

em
or

y
ac

ce
ss

 ti
m

e

Fi
rs

t-l
ev

el
 c

ac
he

 m
is

s
ra

te
 p

er
 in

st
ru

ct
io

n

Se
co

nd
-le

ve
l c

ac
he

,
di

re
ct

-m
ap

pe
d

sp
ee

d

G
lo

ba
l m

is
s

ra
te

 w
it

h
se

co
nd

-le
ve

l c
ac

he
,

di
re

ct
-m

ap
pe

d

Se
co

nd
-le

ve
l c

ac
he

,
ei

gh
t-w

ay
 s

et
 a

ss
oc

ia
ti

ve

sp
ee

d

G
lo

ba
l m

is
s

ra
te

 w
it

h
se

co
nd

-le
ve

l c
ac

he
,

ei
gh

t-w
ay

 s
et

 a
ss

oc
ia

ti
ve

a. 2 . 0 3 GHz 1 2 5 ns 5% 15 cycles 3 .0% 25 cycles 1 .8%

b. 2 . 0 1 GHz 1 0 0 ns 4% 10 cycles 4 .0% 20 cycles 1 .6%

5 . 8 . 4 [10] <5.3> Calculate the CPI for the processor in the table using: 1) only
a first-level cache, 2) a second-level direct-mapped cache, and 3) a second-level
eight-way set-associative cache. How do these numbers change if main memory
access time is doubled? If it is cut in half?

556 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5 . 8 . 5 [10] <5 .3> It is possible to have an even greater cache hierarchy than two
levels. Given the processor above with a second-level, direct-mapped cache, a
designer wants to add a third-level cache that takes 50 cycles to access and will
reduce the global miss rate to 1.3%. Would this provide better performance? In
general, what are the advantages and disadvantages of adding a third-level cache?

5 . 3 . 6 [20] <5 .3> In older processors such as the Intel Pentium or Alpha 21264,
the second level of cache was external (located on a different chip) from the main
processor and the first-level cache. While this allowed for large second-level caches,
the latency to access the cache was much higher, and the bandwidth was typically
lower because the second-level cache ran at a lower frequency. Assume a 512 KB off-
chip second-level cache has a global miss rate of 4%. If each additional 512 KB of
cache lowered global miss rates by 0.7%, and the cache had a total access time of
50 cycles, how big would the cache have to be to match the performance of the second-
level direct-mapped cache listed in the table? Of the eight-way set-associative cache?

Exercise 5.9
For a high-performance system such as a B-tree index for database, the page size is
determined mainly by the data size and disk performance. Assume that on average
a B-tree index page is 7 0 % full with fix-sized entries. The utility of a page is its
B-tree depth, calculated as log2 (entries). The following table shows for 16-byte
entries, and a 10-year old disk with a 10ms latency and 10 MB/s transfer rate, the
optimal page size is 16K.

Page size (KB)
Page utility or B-tree depth

(number of disk accesses saved)
Index page Access

Cost (ms) Utility/cost

2 6 . 4 9 (or Iog 2 (2048/16x0 .7)) 1 0 . 2 0 . 6 4

4 7 . 4 9 1 0 . 4 0 . 7 2

8 8 . 4 9 1 0 . 8 0 . 7 9

1 6 9 . 4 9 1 1 . 6 0 . 8 2

3 2 1 0 . 4 9 1 3 . 2 0 . 7 9

6 4 1 1 . 4 9 1 6 . 4 0 . 7 0

1 2 8 1 2 . 4 9 2 2 . 8 0 . 5 5

2 5 6 1 3 . 4 9 3 5 . 6 0 . 3 8

5 . 9 . 1 [10] <5 .4> What is the best page size if entries now become 128 bytes?

5 . 9 . 2 [10] <5 .4> Based on Exercise 5.9.1, what is the best page size if pages are
half full?

5 . 9 . 3 [20] < 5 . 4 > Based on Exercise 5.9.2, what is the best page size if using a
modern disk with 3ms latency and 100 MB/s transfer rate? Explain why future
servers are likely to have larger pages?

5.14 Exercises 5 5 7

Keeping "frequently used" (or "hot") pages in DRAM can save disk accesses, but
how do we determine the exact meaning of "frequently used" for a given system?
Data engineers use the cost ratio between DRAM and disk access to quantify the
reuse time threshold for hot pages. The cost of a disk access is $Disk/accesses_per_
sec, while the cost of keep a page in DRAM is $DRAM_MB/page_size. The typical
DRAM and disk costs, and typical database page sizes at several time points are
listed below:

Year
DRAM cost

($/MB) Page size (KB)
Disk cost
($/disk)

Disk access rate
(access/sec)

1 9 8 7 5 0 0 0 1 1 5 0 0 0 1 5

1 9 9 7 1 5 8 2 0 0 0 6 4

2 0 0 7 0 . 0 5 6 4 8 0 8 3

5 . 9 . 4 [10] <5.1, 5 .4> What are the reuse time thresholds for these three technology
generations?

5 . 9 . 5 [10] <5.4> What are the reuse time thresholds if we keep using the same
4K page size? What's the trend here?

5 . 9 . 6 [20] <5.4> What other factors can be changed to keep using the same
page size (thus avoiding software rewrite)? Discuss their likeliness with current
technology and cost trends.

Exercise 5.10
As described in Section 5.4, virtual memory uses a page table to track the mapping
of virtual addresses to physical addresses. This exercise shows how this table must
be updated as addresses are accessed. The following table is a stream of virtual
addresses as seen on a system. Assume 4 KB pages, a four-entry fully associative
TLB, and true LRU replacement. If pages must be brought in from disk, increment
the next largest page number.

a. 4 0 9 5 , 3 1 2 7 2 , 1 5 7 8 9 , 1 5 0 0 0 , 7 1 9 3 , 4 0 9 6 , 8 9 1 2

b. 9 4 5 2 , 3 0 9 6 4 , 1 9 1 3 6 , 4 6 5 0 2 , 3 8 1 1 0 , 1 6 6 5 3 , 4 8 4 8 0

TLB

Valid Tag Physical Page Number

1 1 1 12

1 7 4

1 3 6

o 4 9

558 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Page table

Valid Physical page or in disk

1 5

0 Disk

0 Disk

1 6

1 9

1 1 1

0 Disk

1 4

0 Disk

0 Disk

1 3

1 12

5 . 1 0 . 1 [10] <5 .4> Given the address stream in the table, and the shown initial
state of the TLB and page table, show the final state of the system. Also list for each
reference if it is a hit in the TLB, a hit in the page table, or a page fault.

5 . 1 0 . 2 [15) <5 .4> Repeat Exercise 5.10.1, but this time use 16 KB pages instead
of 4 KB pages. What would be some of the advantages of having a larger page size?
What are some of the disadvantages?

5 . 1 0 . 3 [15] <5.3, 5.4> Show the final contents of the TLB if it is two-way set-
associative. Also show the contents of the TLB if it is direct-mapped? Discuss the
importance of having a TLB to high performance. How would virtual memory
accesses be handled if there were no TLB?

There are several parameters that impact the overall size of the page table. Listed
below are several key page table parameters.

m Virtual address size Page size Page table entry size

a. 32 bits 4 KB 4 bytes

b. 64 bits 1 6 KB 8 bytes

5 . 1 0 . 4 [5] <5.4> Given the parameters in the table above, calculate the total page
table size for a system running five applications that utilize half of the memory
available.

5.14 Exercises 559

5 . 1 0 . 5 [10] <5 .4> Given the parameters in the table above, calculate the total
page table size for a system running five applications that utilize half of the memory
available, given a two-level page table approach with 256 entries. Assume each entry
of the main page table is 6 bytes. Calculate the minimum and maximum amount
of memory required.

5 . 1 0 . 6 [10] <5 .4> A cache designer wants to increase the size of a 4 KB virtually
indexed, physically tagged cache. Given the page size listed in the table above, is it
possible to make a 16 KB direct-mapped cache, assuming two words per block?
ITow would the designer increase the data size of the cache?

Exercise 5.11
In this exercise, we will examine space/time optimizations for page tables. The
following table shows parameters of a virtual memory system.

Virtual address (bits) Physical DRAM installed Page size PTE size (byte)

a. 3 2 4 GB 8 KB 4

b. 6 4 1 6 GB 4 KB 8

5 . 1 1 . 1 [10] <5.4> For a single-level page table, how many page table entries (PTE)
are needed? Flow much physical memory is needed for storing the page table?

5 . 1 1 . 2 [10] <5.4> Using a multilevel page table can reduce the physical memory
consumption of page tables by only keeping active PTEs in physical memory. How
many levels of page tables will be needed in this case? And how many memory
references are needed for address translation if missing in TLB?

5 . 1 1 . 3 [15] <5.4> An inverted page table can be used to further optimize space
and time. How many PTEs are needed to store the page table? Assuming a hash
table implementation, what are the common-case and worse-case numbers of
memory references needed for servicing a TLB miss?

The following table shows the contents of a four-entry TLB.

Entry-ID Valid VA page Modified Protection PA page

1 1 1 4 0 1 RW 3 0

2 o 4 0 o RX 3 4

3 1 2 0 0 1 R0 3 2

4 1 2 8 0 o RW 3 1

560 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5 . 1 1 . 4 [5] <5.4> Under what scenarios would entry 2's valid bit be set to 0?

5 . 1 1 . 5 [5] <5.4> What happens when an instruction writes to VA page 30? When
would a software-managed TLB be faster than a hardware-managed TLB?

5 . 1 1 . 6 [5] <5.4> What happens when an instruction writes to VA page xxx?

Exeorcnse 5.12
In this exercise, we will examine how replacement policies impact miss rate.
Assume a two-way set-associative cache with four blocks. You may find it helpful
to draw a table like those found on page 483 to solve the problems in this exercise,
as demonstrated below on the address sequence "0, 1 , 2 , 3 , 4 " .

Address of memory
block accessed

Hit or
miss

Contents of cache blocks after reference
Address of memory

block accessed
Hit or
miss block SetO SetO Set 1 Set 1

0 Miss Mem[0]

1 Miss Mem[0] Mem[l]

2 Miss Mem[0] Mem[2] Mem[l]

3 Miss Mem[0] Mem[2] Mem[l] Mem[3]

4 Miss 0 Mem[4] Mem[2] Mem[l] Mem[3]

The following table shows address sequences.

Address sequence

5 . 1 2 . 1 [5] <5.3, 5.5> Assuming an LRU replacement policy, how many hits does
this address sequence exhibit?

5 . 1 2 . 2 [5] <5 .3 ,5 .5> Assuming an MRU (most recently used) replacement policy,
how many hits does this address sequence exhibit?

5 . 1 2 . 3 [5] <5.3, 5 .5> Simulate a random replacement policy by flipping a
coin. For example, "heads" means to evict the first block in a set and "tails" means
to evict the second block in a set. How many hits does this address sequence
exhibit?

5.14 Exercises 561

5 . 1 2 . 4 [10] <5.3, 5 .5> Which address should be evicted at each replacement to
maximize the number of hits? How many hits does this address sequence exhibit if
you follow this "optimal" policy?

5 . 1 2 . 5 [10] <5.3, 5 .5> Describe why it is difficult to implement a cache replace-
ment policy that is optimal for all address sequences.

5 . 1 2 . 6 [10] <5.3, 5 .5> Assume you could make a decision upon each memory
reference whether or not you want the requested address to be cached. What impact
could-this have on miss rate?

Exeircise 5=13
To support multiple virtual machines, two levels of memory virtualization are
needed. Each virtual machine still controls the mapping of virtual address (VA) to
physical address (PA), while the hypervisor maps the physical address (PA) of each
virtual machine to the actual machine address (MA). To accelerate such mappings,
a software approach called "shadow paging" duplicates each virtual machine's page
tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies
consistent. To remove the complexity of shadow page tables, a hardware approach
called nested page table (or extended page table) explicitly support two classes of
page tables (VAOPA and PAOMA) and can walk such tables purely in hardware.

Consider the following sequence of operations:

(1) Create process; (2) TLB miss; (3) page fault; (4) context switch;

5 . 1 3 . 1 [10] <5.4, 5.6> What would happen for the given operation sequence, for
shadow page table, and nested page table respectively?

5 . 1 3 . 2 [10] <5 .4 ,5 .6> Assuming an x86-based four-level page table in both guest
and nested page table, how many memory references are needed to service a TLB
miss for native versus nested page table?

5 . 1 3 . 3 [15] <5.4, 5 .6> Among TLB miss rate, TLB miss latency, page fault rate,
and page fault handler latency, which metrics are more important for shadow page
table? Which are important for nested page table?

The following table shows parameters for a shadow paging system.

TLB misses per 1000
instruction

NPT TLB miss
latency

Page faults per
1000 instruction

Shadowing page
fault overhead

0 .2 2 0 0 cycles o . o o i 3 0 0 0 0 cycles

562 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5 . 1 3 . 4 [10] <5 .6> For a benchmark with native execution CPI of 1, what are the
CPI numbers if using shadow page tables versus NPT (assuming only page table
virtualization overhead)?

5 . 1 3 . 5 [10] <5 .6> What techniques can be used to reduce page table shadowing
induced overhead?

5 . 1 3 . 6 [10] <5.6> What techniques can be used to reduce NPT induced overhead?

Exercise 5.14
One of the biggest impediments to widespread use of virtual machines is the
performance overhead incurred by running a virtual machine. The table below
lists various performance parameters and application behavior. 1 Base CPI

Priviliged
O/S

accesses
per 10,000

instructions

Performance
impact to

trap to the
guest O/S

Performance
impact to trap

to VMM

I/O
accesses

per 10,000
instructions

I/O access
time

(includes
time to trap

to guest
O/S)

a. 2 1 0 0 20 cycles 1 5 0 cycles 2 0 1 0 0 0 cycles

b. 1 . 5 1 1 0 25 cycles 1 6 0 cycles 1 0 1 0 0 0 cycles

5 . 1 4 . 1 [10] <5 .6> Calculate the CP I for the system listed above assuming that
there are no accesses to I / O . What is the CPI if the V M M performance impact
doubles? If it is cut in half? If a virtual machine software company wishes to obtain
a 10% performance degradation, what is the longest possible penalty to trap to the
VMM?

5 . 1 4 . 2 [10] <5 .6> I/O accesses often have a large impact on overall system
performance. Calculate the CPI of a machine using the performance characteristics
above, assuming a nonvirtualized system. Calculate the CPI again, this time
using a virtualized system. How do these CPIs change if the system has half the
I / O accesses? Explain why I / O bound applications have a smaller impact from
virtualization.

5 . 1 4 . 3 [30] <5.4, 5 .6> Compare and contrast the ideas of virtual memory and
virtual machines. How do the goals of each compare? What are the pros and cons
of each? List a few cases where virtual memory is desired, and a few cases where
virtual machines are desired.

5.14 Exercises 563

5.14.4 [20] <5.6> Section 5.6 discusses virtualization under the assumption that
the virtualized system is running the same ISA as the underlying hardware. However,
one possible use of virtualization is to emulate non-native ISAs. An example of this
is QEMU, which emulates a variety of ISAs such as MIPS, SPARC, and PowerPC.
What are some of the difficulties involved in this kind of virtualization? Is it possible
for an emulated system to run faster than on its native ISA?

Exercise 5.15
In this exercise, we will explore the control unit for a cache controller for a pro-
cessor with a write buffer. Use the finite-state machine found in Figure 5.34 as a
starting point for designing your own finite-state machines. Assume that the cache
controller is for the simple direct-mapped cache described on page 530, but you
will add a write buffer with a capacity of one block.

Recall that the purpose of a write buffer is to serve as temporary storage so that
the processor doesn't have to wait for two memory accesses on a dirty miss. Rather
than writing back the dirty block before reading the new block, it buffers the dirty
block and immediately begins reading the new block. The dirty block can then be
written to main memory while the processor is working.

5.15.1 [10] <5.5, 5.7> What should happen if the processor issues a request that
hits in the cache while a block is being written back to main memory from the write
buffer?

5.15.2 [10] <5.5, 5.7> What should happen if the processor issues a request that
misses in the cache while a block is being written back to main memory from the
write buffer?

5.15.3 [30] <5.5, 5.7> Design a finite-state machine to enable the use of a write
buffer.

Exercise 5.16
Cache coherence concerns the views of multiple processors on a given cache block.
The following table shows two processors and their read/write operations on two
different words of a cache block X (initially X[0] = X[1] = 0).

P I P2

a. X[0] ++; X[l] = 4; X[0] = 2: X[l] ++;

b. X[0] ++; X[l] += 3: X[0] = 5; X[l] =2:

564 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.16.1 [15] <5.8> List the possible values of the given cache block for a correct
cache coherence protocol implementation. List at least one more possible value of
the block if the protocol doesn't ensure cache coherency.

5.16.2 [15] <5.8> For a snooping protocol, list a valid operation sequence on
each processor/cache to finish the above read/write operations.

5.16.3 [10] <5.8> What are the best-case and worst-case numbers of cache misses
needed to finish the listed read/write instructions.

Memory consistency concerns the views of multiple data items. The following table
shows two processors and their read/write operations on different cache blocks
(A and B initially 0).

PI P2

a. A = 1; B = 2; A++: B++: C = B; D = A:

b. A = 1; B + = 2; A++; B=4; C = B; D = A;

5.16.4 [151 <5.8> List the possible values of C and D for an implementation that
ensures the consistency assumptions on page 535.

5.16.5 [15] <5.8> List at least one more possible pair of values for C and D if
such assumptions are not maintained.

5.16.6 [15] <5.2, 5.8> For various combinations of write policies and write allo-
cation policies, which combinations make the protocol implementation simpler?

Exercise 5-17
Both Barcelona and Nehaiem are chip multiprocessors (CMPs), having multiple
cores and their caches on a single chip. CMP on-chip L2 cache design has interest-
ing tradeoffs. The following table shows the miss rates and hit latencies for two
benchmarks with private versus shared L2 cache designs. Assume Ll cache misses
once every 32 instructions.

Private Shared

Benchmark A misses-per-instruction 0 . 3 0 % 0 . 1 2 %

Benchmark B misses-per-instruction 0 . 0 6 % 0 . 0 3 %

5.14 Exercises 565

The next table shows hit latencies.

Private cache Shared cache Memory

a. 6 12 120

b. 8 20 120

5.17.1 [15] <5.10> Which cache design is better for each of these benchmarks?
Use data to support your conclusion.

5.17.2 [15] <5.10> Shared cache latency increases with the CMP size. Choose the
best design if the shared cache latency doubles. Off-chip bandwidth becomes the
bottleneck as the number of CMP cores increase, choose the best design if off-chip
memory latency doubles.

5.17.3 [10] <5.10> Discuss the pros and cons of shared versus private L2 caches
for both single-threaded, multithreaded, and multiprogrammed worldoads, and
reconsider them if having on-chip L3 caches.

5.17.4 [15] <5.10> Assume both benchmarks have a base CPI of 1 (ideal L2
cache). If having nonblocking cache improves the average number of concurrent
L2 misses from 1 to 2, how much performance improvement does this provide over
a shared L2 cache? How much improvement can be achieved over private L2?

5.17.5 [10] <5.10> Assuming new generations of processors double the number
of cores every 18 months. To maintain the same level of per-core performance, how
much more off-chip memory bandwidth is needed for a 2012 processor?

5.17.6 [15] <5.10> Consider the entire memory hierarchy, what kinds of optimi-
zations can improve the number of concurrent misses?

Exercise 5.18
In this exercise we show the definition of a web server log and examine code
optimizations to improve log processing speed. The data structure for the log is
defined as follows:

s t r u c t e n t r y {
i n t s r c I P ; / / r e m o t e I P a d d r e s s
c h a r U R L [1 2 8] ; / / r e q u e s t U R L (e . g . , " G E T i n d e x . h t m l ")
l o n g l o n g r e f T i m e ; / / r e f e r e n c e t i m e
i n t s t a t u s : / / c o n n e c t i o n s t a t u s
c h a r b r o w s e r [6 4] ; / / c l i e n t b r o w s e r name

1 l o g [N U M _ E N T R I E S] :

566 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Some processing functions on a log are:

a. topK_sourceIP ():

b. peak_hour (int status): // peak hours of a given status

5 . 1 8 . 1 [5] <5 .11> Which fields in a log entry will be accessed for the given log
processing function? Assuming 64-byte cache blocks and no prefetching, how
many cache misses per entry does the given function incur on average?

5 . 1 8 . 2 [10] <5 .11> How can you reorganize the data structure to improve cache
utilization and access locality? Show your structure definition code.

5 . 1 8 . 3 [10] <5 .11> Give an example of another log processing function that
would prefer a different data structure layout. If both functions are important, how
would you rewrite the program to improve the overall performance? Supplement
the discussion with code snippet and data.

For the problems below, use data from "Cache Performance for SPEC CPU2000
Benchmarks" (www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the pairs
of benchmarks shown in the following table.

a. apsi/facerec

b. perlbmk/ammp

5 . 1 8 . 4 [10] <5 .11> For 64 KB data caches with varying set associativities, what
are the miss rates broken down by miss types (cold, capacity, and conflict misses)
for each benchmark?

5 . 1 8 . 5 [10] <5 .11> Select the set associativity to be used by a 64 KB LI data cache
shared by both benchmarks. If the LI cache has to be directly mapped, select the set
associativity for the 1 MB L2 cache.

5 . 1 8 . 6 [20] <5 .11> Give an example in the miss rate table where higher set-
associativity actually increases miss rate. Construct a cache configuration and
reference stream to demonstrate this.

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/

5.14 Exercises 567

§5.1, page 457: 1 and 4. (3 is false because the cost of the memory hierarchy varies Answers to
per computer, but in 200S the highest cost is usually the DRAM.) Check Yourself
§5.2, page 475: 1 and 4: A lower miss penalty can enable smaller blocks, since you
don't have that much latency to amortize, yet higher memory bandwidth usually
leads to larger blocks, since the miss penalty is only slightly larger.
§5.3, page 491: 1.
§5.4, page 517: 1-a, 2-c, 3-b, 4-d.
§5.5, page 525: 2. (Both large block sizes and prefetching may reduce compulsory
misses, so 1 is false.)

Combining bandwidth
and storage... enables
swift and reliable access
to the ever-expanding
troves of content on the
proliferating disks and
... repositories of the
Internet.
George Gilder
The End Is Drawing Nigh, 2000

Storage and Other
I/O Topics
6.1 Introduction 570

6.2 Dependability, Reliability, and

Availability 573

6.3 Disk Storage 575

6.4 Flash Storage 580

6.5 Connecting Processors, Memory, and I/O

Devices 582

6.6 Interfacing I/O Devices to the Processor,

Memory, and Operating System 586

6.7 I/O Performance Measures: Examples from Disk and File Systems 5 9 6
6.8 Designing an I/O System 5 9 8
6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 5 9 9

6.10 Real Stuff: Sun Fire x415Q Server 6 0 6
H 6.11 Advanced Topics: Networks 6 1 2

6.12 Fallacies and Pitfalls 6 1 3
6.13 Concluding Remarks 6 1 7

H 6.14 Historical Perspective and Further Reading 6 1 8
6.15 Exercises 6 1 9

The Five Classic Components of a Computer

5 7 0 Chapter 6 Storage and Other I/O Topics

HI DiratfcirodliLQctDora

Although users can get frustrated if their computer hangs and must be rebooted,
they become apoplectic if their storage system crashes and they lose information.
Thus, the standard for dependability is much higher for storage than for computa-
tion. Networks also plan for failures in communication, including several mecha-
nisms to detect and recover from such failures. Hence, I/O systems generally place
much greater emphasis on dependability and cost, while processors and memory
focus on performance and cost.

I/O systems must also plan for expandability and for diversity of devices, which
is not a concern for processors. Expandability is related to storage capacity, which
is another design parameter for I/O systems; systems may need a lower bound of
storage capacity to fulfill their role.

Although performance plays a smaller role for I/O, it is more complex. For
example, with some devices we may care primarily about access latency, while

FIGURE 6.1 A typical collection of I/O devices. T he connections between the I/O devices,
processor, and m e m o r y are historically called buses, although the term means shared parallel wires and most
I/O connections today are closer to dedicated serial lines. Communication a m o n g the devices and the pro-
cessor uses both interrupts and protocols on the interconnect, as we will see in this chapter. Figure 6.9 shows
the organization for a desktop PC.

6.1 Introduction 571

with others throughput is crucial. Furthermore, performance depends on many
aspects of the system: the device characteristics, the connection between the device
and the rest of the system, the memory hierarchy, and the operating system. All of
the components, from the individual I/O devices to the processor to the system
software, will affect the dependability, expandability, and performance of tasks that
include I/O. Figure 6.1 shows the structure of a simple system with its I/O.

I/O devices are incredibly diverse. Three characteristics are useful in organizing
this wide variety:

o Behavior: Input (read once), output (write only, cannot be read), or storage
(can be reread and usually rewritten).

E Partner: Either a human or a machine is at the other end of the I/O device,
either feeding data on input or reading data on output.

• Data rate: The peak rate at which data can be transferred between the I/O
device and the main memory or processor. It is useful to know the maximum
demand the device may generate when designing an I/O system.

For example, a keyboard is an input device used by a human with a peak data rate
of about 10 bytes per second. Figure 6.2 shows some of the I/O devices connected
to computers.

Device Behavior Partner Data rate (Mbit/sec)

Keyboard Input Human 0 . 0 0 0 1

Mouse Input Human 0 . 0 0 3 8

Voice input Input Human 0 . 2 6 4 0

Sound input Input Machine 3 . 0 0 0 0

Scanner Input Human 3 . 2 0 0 0

Voice output Output Human 0 . 2 6 4 0

Sound output Output Human 8 . 0 0 0 0

Laser printer Output Human 3 . 2 0 0 0

Graphics display Output Human 8 0 0 . 0 0 0 0 - 8 0 0 0 . 0 0 0 0

Cable modem Input or output Machine 0 . 1 2 8 0 - 6 . 0 0 0 0

Network/LAN Input or output Machine 1 0 0 . 0 0 0 0 - 1 0 0 0 0 . 0 0 0 0

Network/wireless LAN Input or output Machine 1 1 . 0 0 0 0 - 5 4 . 0 0 0 0

Optical disk Storage Machine 8 0 . 0 0 0 0 - 2 2 0 . 0 0 0 0

Magnetic tape Storage Machine 5 . 0 0 0 0 - 1 2 0 . 0 0 0 0

Flash memory Storage Machine 3 2 . 0 0 0 0 - 2 0 0 . 0 0 0 0

Magnetic disk Storage Machine 8 0 0 . 0 0 0 0 - 3 0 0 0 . 0 0 0 0

FIGURE 6.2 The diversity of I/O devices. I/O devices can be distinguished by whether they serve as
input, output, or storage devices; their communication partner (people or other computers); and their peak
communication rates. The data rates span eight orders of magnitude. Note that a network can be an input or
an output device, but cannot be used for storage. Transfer rates for devices are always quoted in base 10, so
that 10 Mbit/sec = 10,000,000 bits/sec.

572 Chapter 6 Storage and Other I/O Topics

In Chapter 1, we briefly discussed four important I/O devices: mice, graphics
displays, disks, and networks. In this chapter we go into much more depth on
storage and related items. On the CD, there is an advanced topics section on
networks, which are well covered in other books.

How we should assess I/O performance often depends on the application. In
some environments, we may care primarily about system throughput. In these
cases, I/O bandwidth will be most important. Even I/O bandwidth can be mea-
sured in two different ways:

1. How much data can we move through the system in a certain time?

2. How many I/O operations can we do per unit of time?

Which performance measurement is best may depend on the environment.
For example, in many multimedia applications, most I/O requests are for long
streams of data, and transfer bandwidth is the important characteristic. In another
environment, we may wish to process a large number of small, unrelated accesses
to an I/O device. An example of such an environment might be a tax-processing
office of the U.S. National Income Tax Service (NITS). NITS mostly cares about
processing a large number of forms in a given time; each tax form is stored sepa-
rately and is fairly small. A system oriented toward large file transfer may be satis-
factory, but an I/O system that can support the simultaneous transfer of many
small files may be cheaper and faster for processing millions of tax forms.

In other applications, we care primarily about response time, which you will
I/O requests Reads or recall is the total elapsed time to accomplish a particular task. If the I/O requests
writes to I/O devices. are extremely large, response time will depend heavily on bandwidth, but in many

environments, most accesses will be small, and the I/O system with the lowest
latency per access will deliver the best response time. On single-user machines
such as desktop computers and laptops, response time is the key performance
characteristic.

A large number of applications, especially in the vast commercial market for
computing, require both high throughput and short response times. Examples
include automatic teller machines (ATMs), order entry and inventory tracking
systems, file servers, and Web servers. In such environments, we care about both
how long each task takes and how many tasks we can process in a second. The
number of ATM requests you can process per hour doesn't matter if each one takes
15 minutes—you won't have any customers left! Similarly, if you can process each
ATM request quickly but can only handle a small number of requests at once, you
won't be able to support many ATMs, or the cost of the computer per ATM will be
very high.

In summary, the three classes of desktop, server, and embedded computers are
sensitive to I/O dependability and cost. Desktop and embedded systems are more
focused on response time and diversity of I/O devices, while server systems are
more focused on throughput and expandability of I/O devices.

6.2 Dependability, Reliability, and Availability 5 7 3

Dependability, RefliafoS Bitty, and Avaolability

Users crave dependable storage, but how do you define it? In the computer indus-
try, it is harder than looking it up in the dictionary. After considerable debate, the
following is considered the standard definition [Laprie, 1985]:

Computer system dependability is the quality of delivered service such that
reliance can justifiably he placed on this service. The service delivered by a
system is its observed actual behavior as perceived by other system(s) interacting
with this system's users. Each module also has an ideal specified behavior, where
a service specification is an agreed description of the expected behavior. A system
failure occurs when the actual behavior deviates from the specified behavior.

Thus, you need a reference specification of expected behavior to be able to
determine dependability. Users can then see a system alternating between two
states of delivered service with respect to the service specification:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the speci-
fied service

Transitions from state 1 to state 2 are caused by failures, and transitions from state 2
to state 1 are called restorations. Failures can be permanent or intermittent. The
latter is the more difficult case; it is harder to diagnose the problem when a system
oscillates between the two states. Permanent failures are far easier to diagnose. This
definition leads to two related terms: reliability and availability.

Reliability is a measure of the continuous service accomplishment—or, equiva-
lently, of the time to failure—from a reference point. Hence, the mean time to
failure (MTTF) of disks in Figure 6.5 below is a reliability measure. A related term
is annual failure rate (AFR), which is just the percentage of devices that would be
expected to fail in a year for a given MTTF. Service interruption is measured as
mean time to repair (MTTR). Mean time between failures (MTBF) is simply the
sum of MTTF T MTTR. Although MTBF is widely used, MTTF is often the more
appropriate term.

Availability is a measure of service accomplishment with respect to the alter-
nation between the two states of accomplishment and interruption. Availability is
statistically quantified as

Availability = M T T F
(M T T F + M T T R)

574 Chapter 6 Storage and Other I/O Topics

Note that reliability and availability are actually quantifiable measures, rather than
just synonyms for dependability.

What is the cause of failures? Figure 6.3 summarizes many papers that have col-
lected data on reasons for computer systems and telecommunications systems to
fail. Clearly, human operators are a significant source of failures.

Operator Software Hardware System Year data collected

4 2 % 2 5 % 1 8 % Datacenter (Tandem) 1 9 8 5

1 5 % 5 5 % 1 4 % Datacenter (Tandem) 1 9 8 9

1 8 % 4 4 % 3 9 % Datacenter (DEC VAX) 1 9 8 5

5 0 % 2 0 % 3 0 % Datacenter (DEC VAX) 1 9 9 3

5 0 % 1 4 % 1 9 % U.S. public telephone network 1 9 9 6

5 4 % 7% 3 0 % U.S. public telephone network 2 0 0 0

6 0 % 2 5 % 1 5 % Internet services 2 0 0 2

FIGURE 6.3 Summary of studies of reasons for failures. Although it is difficult to collect data
to determine whether operators are the cause of errors, since operators often record the reasons for failures,
these studies did capture that data. There were often other categories, such as environmental reasons for
outages, but they were generally small. The top two rows come from a classic paper by Jim Gray 11990], which
is still widely quoted almost 20 years after the data was collected. The next two rows are from a paper by
Murphy and Gent, w h o studied causes of outages in V A X systems over time ("Measuring system and software
reliability using an automated data collection process," Quality and Reliability Engineering International 11:5,
September-October 1995, 341-53]. The fifth and sixth rows are studies of F C C failure data about the U.S.
public switched telephone network by Kuhn ("Sources of failure in the public switched telephone network,"
IEEE Computer 30:4, April 1997, 31-36] and by Patty Enriquez. The study of three Internet services is from
Oppenheimer, Ganapath, and Patterson [2003].

To increase MTTF, you can improve the quality of the components or design
systems to continue operation in the presence of components that have failed.
Hence, failure needs to be defined with respect to a context. A failure in a compo-
nent may not lead to a failure of the system. To make this distinction clear, the
term fault is used to mean failure of a component. Here are three ways to improve
M T T F :

1. Fault avoidance: Preventing fault occurrence by construction.

2. Fault tolerance: Using redundancy to allow the service to comply with the
service specification despite faults occurring, which applies primarily to
hardware faults. Section 6.9 describes the RAID approaches to making storage
dependable via fault tolerance.

3. Fault forecasting: Predicting the presence and creation of faults, which
applies to hardware and software faults, allowing the component to be
replaced before it fails.

Shrinking M T T R can help availability as much as increasing MTTF. For
example, tools for fault detection, diagnosis, and repair can help reduce the time
to repair faults by people, software, and hardware.

6.4 Flash Storage 575

Which of the following are true about dependability? Check
1. If a system is up, then all its components are accomplishing their expected YoufSelf

service.

2. Availability is a quantitative measure of the percentage of time a system is
accomplishing its expected service.

3. Reliability is a quantitative measure of continuous service accomplishment
by a system.

4. -The major source of outages today is software.

6.3 Disk Storage

As mentioned in Chapter 1, magnetic disks rely on a rotating platter coated with a
magnetic surface and use a moveable read/write head to access the disk. Disk stor-
age is nonvolatile—the data remains even when power is removed. A magnetic
disk consists of a collection of platters (1-4) , each of which has two recordable disk
surfaces. The stack of platters is rotated at 5400 to 15,000 RPM and has a diameter
from 1-inch to just over 3.5 inches. Each disk surface is divided into concentric
circles, called tracks. There are typically 10,000 to 50,000 tracks per surface. Each
track is in turn divided into sectors that contain the information; each track may
have 100 to 500 sectors. Sectors are typically 512 bytes in size, although there is an
initiative to increase the sector size to 4096 bytes. The sequence recorded on the
magnetic media is a sector number, a gap, the information for that sector including
error correction code (see Appendix C, page C-66), a gap, the sector number of
the next sector, and so on.

Originally, all tracks had the same number of sectors and hence the same num-
ber of bits. With the introduction of zone bit recording (ZBR) in the early 1990s,
disk drives changed to a varying number of sectors (and hence bits) per track,
instead keeping the spacing between bits constant. ZBR increases the number of
bits on the outer tracks and thus increases the drive capacity.

As we saw in Chapter 1, to read and write information the read/write heads
must be moved so that they are over the correct location. The disk heads for each
surface are connected together and move in conjunction, so that every head is over
the same track of every surface. The term cylinder is used to refer to all the tracks
under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a three-stage
process. The first step is to position the head over the proper track. This operation
is called a seek, and the time to move the head to the desired track is called the
seek time.

nonvolatile Storage
dcvicc where data retains
its value even when power
is removed.

track One of thousands
of concentric circles that
makes up the surface of a
magnetic disk.

sector One of the
segments that make up a
track on a magnetic disk;
a sector is the smallest
amount of information
that is read or written on
a disk.

seek The process of
positioning a read/write
head over the proper track
on a disk.

576 Chapter 6 Storage and Other I/O Topics

rotational latency Also
called rotational delay.
The time required for
the desired sector of a
disk to rotate under the
read/write head; usually
assumed to be half the
rotation time.

Disk manufacturers report minimum seek time, maximum seek time, and
average seek time in their manuals. The first two are easy to measure, but the aver-
age is open to wide interpretation because it depends on the seek distance. The
industry has decided to calculate average seek time as the sum of the time for all
possible seeks divided by the number of possible seeks. Average seek times are
usually advertised as 3 ms to 13 ms, but, depending on the application and sched-
uling of disk requests, the actual average seek time may be only 25% to 33% of the
advertised number because of locality of disk references. This locality arises both
because of successive accesses to the same file and because the operating system
tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sec-
tor to rotate under the read/write head. This time is called the rotational latency
or rotational delay. The average latency to the desired information is halfway
around the disk. Because the disks rotate at 5400 RPM to 15,000 RPM, the average
rotational latency is between

. . i i ^ 0.5 rotation 0.5 rotation Average rotational latency = _)rtrt . = —
• 5400 RPM 5 4 0 0 R p M / 6 0 seconds

\ minute /

= 0.0056 seconds = 5.6 ms

and
0.5 rotation 0.5 rotation Average rotational latency =
1 5 ' 0 0 0 R P M 15,000 RPM/(60 S e C O I l d s l

minute I

= 0.0020 seconds = 2.0 ms

The last component of a disk access, transfer time, is the time to transfer a
block of bits. The transfer time is a function of the sector size, the rotation speed,
and the recording density of a track. Transfer rates in 2008 were between 70 and
125MB/sec. The one complication is that most disk controllers have a built-in
cache that stores sectors as they are passed over; transfer rates from the cache are
typically higher and may be up to 375 MB/sec (3 Gbit/sec) in 2008. Today, most
disk transfers are multiple sectors in length.

A disk controller usually handles the detailed control of the disk and the transfer
between the disk and the memory. The controller adds the final component of
disk access time, controller time, which is the overhead the controller imposes in
performing an I/O access. The average time to perform an I/O operation will con-
sist of these four times plus any wait time incurred because other processes arc
using the disk.

6.4 Flash Storage 5 7 7

Disk Read Time

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 15,000 RPM? The advertised average seek time is 4 ms, the transfer
rate is 100 MB/sec, and the controller overhead is 0.2 ms. Assume that the disk
is idle so that there is no waiting time.

EXAMPLE

Average disk access time is equal to average seek time T average rotational
delay T transfer time T controller overhead. Using the advertised average seek
time, the answer is

. n , 0.5 rotation . 4.0 ms T - - , T
0.5 KB

15,000 RPM 100 MB/sec
T 0.2 ms = 4.0 T 2.0 T 0.005 T 0.2 = 6.2 ms

If the measured average seek time is 25% of the advertised average time, the
answer is

1.0 ms T 2.0 ms T 0.005 ms T 0.2 ms = 3.2 ms

Notice that when we consider measured average seek time, as opposed to
advertised average seek time, the rotational latency can be the largest compo-
nent of the access time.

ANSWER

Disk densities have continued to increase for more than 50 years. The impact
of this compounded improvement in density and the reduction in physical size
of a disk drive has been amazing, as Figure 6.4 shows. The aims of different disk
designers have led to a wide variety of drives being available at any particular
time. Figure 6.5 shows the characteristics of four magnetic disks. In 2008, these
disks from a single manufacturer cost between $0.30 and $5.00 per gigabyte. In
the broader market, prices generally range between $0.20 and $2.00 per gigabyte,
depending on size, interface, and performance.

While disks will remain viable for the foreseeable future, the conventional
wisdom about where block numbers are found has not. The assumptions of the
sector-track-cylinder model are that nearby blocks are on the same track, blocks
in the same cylinder take less time to access since there is no seek time, and some
tracks are closer than others. The reason for the breakdown was the raising of the
level of the interfaces. Higher-level intelligent interfaces like ATA and SCSI required
a microprocessor inside a disk, which lead to performance optimizations.

To speed-up sequential transfers, these higher-level interfaces organize disks
more like tapes than like random access devices. The logical blocks are ordered
in serpentine fashion across a single surface, trying to capture all the sectors that
are recorded at the same bit density. ITence, sequential blocks may be on different
tracks. We will see an example in Figure 6.19 of the pitfall of assuming the
conventional sector-track-cylinder model.

Advanced Technology
Attachment (ATA)
A command set used as a
standard for I/O devices
that is popular in the PC.

Small Computer
Systems Interface (SCSI)
A command set used as a
standard for I/O devices.

596 Chapter 6 Storage and Other I/O Topics

FIGURE 6.4 Six magnetic disks, varying in diameter from 14 inches down to 1.8 inches.
The pictured disks were introduced over more than 15 years ago and hence arc not intended to be represen-
tative of the best capacity of modern disks of these diameters. This photograph does, however, accurately
portray their relative physical sizes. The widest disk is the D E C R81, containing four 14-inch diameter plat-
ters and storing 456 M B . It was manufactured in 1985. The 8-inch diameter disk comes from Fujitsu, and this
1984 disk stores 130 MB on six platters. The Micropolis R D 5 3 has five 5.25-inch platters and stores 85 M B .
The I B M 0361 also has five platters, but these are just 3.5 inches in diameter. This 1988 disk holds 320 M B .
In 2008, the most dense 3.5-inch disk had 2 platters and held 1 TB in the same space, yielding an increase
in density of about 3000 times! The Conner CP 2045 has two 2.5-inch platters containing 40 MB and was
m a d e in 1990. The smallest disk in this photograph is the Integral 1820. This single 1.8-inch platter contains
20 MB and was made in 1992.

Elaboration: These high-level interfaces let disk controllers add caches, which allow
for fast access to data that was recently read between transfers requested by the
processor. They use write-through and do not update on a write miss, and often also
include prefetch algorithms to try to anticipate demand. Controllers also use a com-
mand queue that allow the disk to decide in what order to perform the commands to
maximize performance while maintaining correct behavior. Of course, such capabilities
complicate the measurement of disk performance and increase the importance of
workload choice when comparing disks.

6.4 Flash Storage 579

Characteristics
Seagate

ST33000655SS
Seagate

ST31000340NS
Seagate

ST973451SS
Seagate

ST9160821AS

Disk diameter (inches) 3.50 3.50 2.50 2.50

Formatted data
capacity (GB) 147 1000 73 160

Number of disk
surfaces (heads) 2 4 2 2

Rotation speed (RPM) 15,000 7200 15,000 5400

Internal disk cache
size (MB)

16 32 16 8

External interface,
bandwidth (MB/sec) SAS,375 SATA, 375 SAS,375 SATA, 150

Sustained transfer
rate (MB/sec)

73-125 105 79-112 44

Minimum seek
(read/write) (ms)

0.2/0.4 0.8/1.0 0.2/0.4 1.5/2.0

Average seek
read/write (ms)

3.5/4.0 8.5/9.5 2.9/3.3 12.5/13.0

M e a n time to failure
(MTTF) (hours)

1,400,000 @ 25°C 1,200,000 @ 25°C 1,600,000 @ 25°C —

Annual failure rate
(AFR) (percent)

0.62% 0.73% 0.55% -

Contact start-stop cycles — 50,000 — >600,000

Warranty (years) 5 5 5 5

Nonrecoverable read
errors per bits read

<1 sector per 10 1 6 <1 sector per 1 0 1 5 <1 sector per 10 i e <1 sector per 10 1 4

Temperature, shock
(operating) 5°-55°C, 60 G 5°-55°C, 63 G 5°-55°C, 60 G 0°-60°C, 350 G

Size: dimensions (in.),
weight (pounds) 1.0" x 4.0" x 5.8", 1.5 lbs 1.0" x 4.0" x 5.8", 1.4 lbs 0.6" x 2.8" x 3.9", 0.5 lbs 0.4" x 2.8" x 3.9", 0.2 lbs

Power: operating/idle/
standby (watts)

1 5 / 1 1 / — 11/8/1 8/5.8/— 1.9/0.6/0.2

GB/cu. in., GB/watt 6 GB/cu.in., 10 G B / W 43 GB/cu.in., 91 G B / W 11 GB/cu.in., 9 G B / W 37 GB/cu.in., 84 G B / W

Price in 2008, $/GB ~ $250, ~ $1.70/GB ~ $275, - S0.30/GB ~ $350, ~ $5.00/GB - $100, ~ $0.60/GB

FIGURE 6.5 Characteristics of four magnetic disks by a single manufacturer in 2008. The three leftmost drives are for servers
and desktops while the rightmost drive is for laptops. Note that the third drive is only 2.5 inches in diameter, but it is a high performance drive
with the highest reliability and fastest seek time. The disks shown here are either serial versions of the interface to SCSI (SAS), a standard I/O
bus for many systems, or serial version of A T A (SATA), a standard I/O bus for PCs. The transfer rates from the caches is 3-5 times faster than
the transfer rate from the disk surface. The m u c h lower cost per gigabyte of the SATA 3.5-inch drive is primarily due to the hyper-competitive
PC market, although there are differences in performance in I/Os per second due to faster rotation and faster seek times for SAS. The service
life for these disks is five years. Note that the quoted M T T F assumes nominal power and temperature. Disk lifetimes can be m u c h shorter if
temperature and vibration are not controlled. See the link to Seagate at www.seagatc.com for more information on these drives.

Which of the following are true about disk drives?

1. 3.5-inch disks perform more IOs per second than 2.5-inch disks.

2. 2.5-inch disks offer the highest gigabytes per watt.

3. It takes hours to read the contents of a high capacity disk sequentially.

4. It takes months to read the contents of a high capacity disk using random
512-byte sectors.

Check
YourseOf

http://www.seagatc.com

580 Chapter 6 Storage and Other I/O Topics

j j j j Fflasfti Storage

Many have tried to invent a technology to replace disks, and many have failed: CCD
memory, bubble memory, and holographic memory were all found wanting. By
the time a new technology would ship, disks made advances as predicted earlier,
costs dropped accordingly, and the challenging product would be unattractive in
the marketplace.

The first credible challenger is flash memory. This semiconductor memory is
nonvolatile like disks, but latency is 100-1000 times faster than disk, and it is smaller,
more power efficient, and more shock resistant. Equally important, because of the
popularity of flash memory in cell phones, digital cameras, and MP3 players, there
is a large market to pay for the investment in improving flash memory technology.
Recently, flash memory cost per gigabyte has been falling 5 0 % per year. In 2008,
the price per gigabyte of flash was $4 to $10 per gigabyte, or about 2 to 40 times
higher than disk and 5 to 10 times lower than DRAM. Figure 6.6 compares three
flash-based products.

Characteristics

Kingston
SecureDigital

(SD)
SD4/8 GB

Transend Type 1
CompactFlash
TS16GCF133

RiDATA
Solid State Disk

2.5 inch SATA

Formatted data capacity (GB) 8 16 32

Bytes per sector 512 512 512

Data transfer rate (read/write MB/sec) 4 20/18 68/50

Power operating/standby (W) 0.66/0.15 0.66/0.15 2 . 1 / —

Size: height x width x depth (inches) 0.94 x 1.26 x 0.08 1.43 x 1.68 x 0.13 0.35 x 2.75 x 4.00

Weight in grams (454 grams/pound) 2.5 11.4 52

M e a n time between failures (hours) > 1,000,o o o > 1,ooo,ooo > 4,000,000

GB/cu. in., GB/watt 84 GB/cu.in.,
12 G B / W

51 GB/cu.in.,
24 G B / W

8 GB/cu.in.,
16 G B / W

Best price (2008) ~ $30 ~ $70 ~ $300

FIGURE 6.6 Characteristics of three flash storage products. The CompactFlash standard
package was proposed by Sandisk Corporation in 1994 for the P C M C I A - A T A cards of portable PCs. Because
it follows the ATA interface, it simulates a disk interface, including seek commands, logical tracks, and so on.
The RiDATA product imitates an SATA 2.5-inch disk interface.

Although its cost per gigabyte is higher than disks, flash memory is popular in
mobile devices in part because it comes in smaller capacities. As a result, the 1 -inch

6.4 Flash Storage 581

diameter hard disks are disappearing from some embedded markets. For example,
in 2008 the Apple iPod Shuffle MP3 player sold for $50 and held 1 GB, while the
smallest disk holds 4 GB and sells for more than the whole MP3 player.

Flash memory is a type of electrically erasable programmable read-only mem-
ory (EEPROM). The first flash memory, called NOR flash because of the similarity
of the storage cell to a standard NOR gate, was a direct competitor with other
EEPROMs and is randomly addressable like any memory. A few years later, NAND
flash memory offered greater storage density, but memory could only be read and
written in blocks as wiring needed for random accesses was removed. NAND flash
is much less expensive per gigabyte and much more popular than NOR flash;
all of the products in Figure 6.6 use NAND flash. Figure 6.7 compares the key
characteristics of NOR versus NAND flash memory.

NOR Hash NAND Hash
Characteristics Memory Memory

Typical use BIOS m e m o r y U S B key

Minimum access size (bytes) 512 bytes 2 0 4 8 bytes

Read time (microseconds) 0.08 2 5

Write time (microseconds) 10.00 1 5 0 0 to erase +

2 5 0

Read bandwidth (MBytes/second) 10 40

Write bandwidth (MBytes/second) 0.4 8

Wearout (writes per cell) 100,000 10,000 to 100,000

Best price/GB (2008) $65 $4

FIGURE 6.7 Characteristics of NOR versus NAND flash memory in 2008. These devices can
read bytes and 16-bit words despite their large access sizes.

Unlike disks and DRAM, but like other EEPROM technologies, flash memory
bits wear out (see Figure 6.7). To cope with such limits, most NAND flash products
include a controller to spread the writes by remapping blocks that have been written
many times to less trodden blocks. This technique is called wear leveling. With
wear leveling, consumer products like cell phones, digital cameras, MP3 players,
or memory keys are very unlikely to exceed the write limits in the flash. Such
controllers lower the potential performance of flash, but they are needed unless
higher-level software monitors block wear. However, controllers can also improve
yield by mapping out memory cells that were manufactured incorrectly.

Write limits are one reason flash memory is not popular in desktop and server
computers. However, in 2008 the first laptops are being sold with flash memory
instead of hard disks at a considerable price premium to offer faster boot times,
smaller size, and longer battery life. There are also flash memories available in
standard disk form factors, as Figure 6.6 shows. Combining both ideas, hybrid hard
disks include, say, a gigabyte of flash memory so that laptops can boot more quickly
and save energy by allowing the disks to remain idle more frequently.

In the coming years, it appears that flash will compete successfully with hard
disks for many battery-operated devices. As capacity increases and the cost per

582 Chapter 6 Storage and Other I/O Topics

gigabyte continues to decline, it will be interesting to see whether the higher
performance and energy efficiency of flash memory will yield opportunities in the
desktop and server markets as well.

Check Which of the following are true about flash memory?

1. Like DRAM, flash is a semiconductor memory.

2. Like disks, flash does not lose information if it loses power.

3. The read access time of NOR flash is similar to DRAM.

4. The read bandwidth of NAND flash is similar to disk.

6.5

processor-memory bus
A bus that connects
processor and memory
and that is short, generally
high speed, and matched
to the memory system so
as to maximize memory-
processor bandwidth.

backplane bus A bus
that is designed to allow
processors, memory, and
I/O devices to coexist on a
single bus.

Connecting Processors, Memory, and
I/O Pevices

In a computer system, the various subsystems must have interfaces to one another.
For example, the memory and processor need to communicate, as do the proces-
sor and the I/O devices. For many years, this has been done with a bus. A bus is a
shared communication link, which uses one set of wires to connect multiple sub-
systems. The two major advantages of the bus organization are versatility and low
cost. By defining a single connection scheme, new devices can easily be added, and
peripherals can even be moved between computer systems that use the same kind
of bus. Furthermore, buses are cost-effective, because a single set of wires is shared
in multiple ways.

The major disadvantage of a bus is that it creates a communication bottleneck,
possibly limiting the maximum I/O throughput. When I/O must pass through
a single bus, the bandwidth of that bus limits the maximum I/O throughput.
Designing a bus system capable of meeting the demands of the processor as well
as connecting large numbers of I/O devices to the machine presents a major
challenge.

Buses are traditionally classified as processor-memory buses or I/O buses.
Processor-memory buses are short, generally high speed, and matched to the
memory system so as to maximize memory-processor bandwidth. I/O buses, by
contrast, can be lengthy, can have many types of devices connected to them, and
often have a wide range in the data bandwidth of the devices connected to them. I/O
buses do not typically interface directly to the memory but use either a processor-
memory or a backplane bus to connect to memory. Other buses with different
characteristics have emerged for special functions, such as graphics buses.

One reason bus design is so difficult is that the maximum bus speed is largely
limited by physical factors: the length of the bus and the number of devices. These
physical limits prevent us from running the bus arbitrarily fast. In addition, the

6.5 Connecting Processors, Memory, and I/O Devices 5 8 3

need to support a range of devices with widely varying latencies and data transfer
rates also makes bus design challenging.

As it became difficult to run many parallel wires at high speed due to clock skew
and reflection (see @ Appendix C), the industry transitioned from parallel shared
buses to high-speed serial point-to-point interconnections with switches. Thus,
such I/O networks have generally replaced I/O buses in our systems.

As a result of this transition, this section has been revised in this edition to
emphasize the general problem of connecting I/O devices, processors, and mem-
ory, rather than focusing exclusively on buses.

Conimection Basics
Let's consider a typical I/O transaction. A transaction includes two parts: sending
the address and receiving or sending the data. Bus transactions are typically
defined by what they do to memory. A read transaction transfers data from mem-
ory (to either the processor or an I/O device), and a write transaction writes data
to the memory. Clearly, this terminology is confusing. To avoid this, we'll try to
use the terms input and output, which are always defined from the perspective of
the processor: an input operation is inputting data from the device to memory,
where the processor can read it, and an output operation is outputting data to a
device from memory where the processor wrote it.

The I/O interconnect serves as a way of expanding the machine and connecting
new peripherals. To make this easier, the computer industry has developed several
standards. The standards serve as a specification for the computer manufacturer
and for the peripheral manufacturer. A standard assures the computer designer
that peripherals will be available for a new machine, and it ensures the peripheral
builder that users will be able to hook up their new equipment. Figure 6.S sum-
marizes the key characteristics of the five popular I/O standards: Firewire, USB, PCI
Express (PCIe), Serial ATA (SATA), and Serial Attached SCSI (SAS). They connect a
variety of devices to the desktop computer, from keyboards to cameras to disks.

Traditional buses are synchronous. That means the bus includes a clock in
the control lines and a fixed protocol for communicating that is relative to the
clock. For example, for performing a read from memory, we might have a protocol
that transmits the address and read command on the first clock cycle, using the
control lines to indicate the type of request. The memory might then be required
to respond with the data word on the fifth clock. This type of protocol can be
implemented easily in a small finite-state machine. Because the protocol is predeter-
mined and involves little logic, the bus can run fast, and the interface logic will
be small. Synchronous buses have two major disadvantages, however. First, every
device on the bus must run at the same clock rate. Second, because of clock skew
problems, synchronous buses cannot be long if they are fast (see !§! Appendix C).

These problems led to asynchronous interconnects, which are not clocked.
Because they are not clocked, asynchronous interconnects can accommodate a
wide variety of devices, and the bus can be lengthened without worrying about

I/O transaction
A sequence of operations
over the interconnect that
includes a request and may
include a response, either
of which may carry data.
A transaction is initiated
by a single request and
may take many individual
bus operations.

synchronous bus A bus
that includes a clock in
the control lines and
a fixed protocol for
communicating that is
relative to the clock.

asynchronous
interconnect Uses a
handshaking protocol
for coordinating usage
rather than a clock; can
accommodate a wide
variety of devices of
differing speeds.

584 Chapter 6 Storage and Other I/O Topics

Characteristic Firewire (1394) USB 2.0 PCI Express
Serial

ATA
Serial

Attached SCSI

Intended use External External Internal Internal External

Devices per
channel

6 3 1 2 7 1 1 4

Basic data
width (signals)

4 2 2 per lane 4 4

Theoretical peak
bandwidth

50 M B / s e c (Firewire 400)
or 1 0 0 M B / s e c (Firewire

800)

0.2 M B / s e c (low speed),
1.5 M B / s e c (full speed),

or 60 M B / s e c (high
speed)

2 5 0 M B / s e c per lane (lx);
PCIe cards c o m e as

lx, 2x, 4x, 8x, 16x, or 32x

3 0 0 M B /
sec

3 0 0 M B / s e c

Hot pluggable Yes Yes Depends on form factor Yes Yes

M a x i m u m bus
length (copper
wire)

4.5 meters 5 meters 0.5 meters 1 meter 8 meters

Standard n a m e IEEE 1 3 9 4 , 1 3 9 4 b
U S B Irnplementors

Forum
PCI-SIG SATA-10 T10 committee

FIGURE 6.8 Key characteristics of five dominant I/O standards. The intended use column indicates whether it is designed to be
used with cables external to the computer or just inside the computer with short cables or wire on printed circuit boards. PCIe can support
simultaneous reads and writes, so some publications double the bandwidth per lane assuming a 50/50 split of read versus write bandwidth.

clock skew or synchronization problems. All the examples in Figure 6.8 are
asynchronous.

To coordinate the transmission of data between sender and receiver, an asyn-
chronous bus uses a handshaking protocol . A handshaking protocol consists of a
series of steps in which the sender and receiver proceed to the next step only when
both parties agree. The protocol is implemented with an additional set of control
lines.

The I/O Interconnects of the x86 Processors
Figure 6.9 shows the I/O system of a traditional PC. The processor connects to
peripherals via two main chips. The chip next to the processor is the memory
controller hub, commonly called the north bridge, and the one connected to it is
the I/O controller hub, called the south bridge.

The north bridge is basically a D M A controller, connecting the processor to
memory, possibly a graphics card, and the south bridge chip. The south bridge
connects the north bridge to a cornucopia of I/O buses. Intel, AMD, NVIDIA, and
others offer a wide variety of these chip sets to connect the processor to the outside
world.

Figure 6.10 shows three examples of the chip sets. Note that AMD swallowed
the north bridge chip in the Opteron and later products, thereby reducing the chip
count and the latency to memory and graphics cards by skipping a chip crossing.

As Moore's law continues, an increasing number of I/O controllers that were
formerly available as optional cards that connected to I/O buses have been co-opted
into these chip sets. For example, the AMD Opteron X4 and the Intel Nehaiem

handshaking protocol
A series of steps used to
coordinate asynchronous
bus transfers in which
the sender and receiver
proceed to the next step
only when both parties
agree that the current step
has been completed.

6.5 Connecting Processors, Memory, and I/O Devices 5 8 5

Disk

Disk

Keyboard,-
mouse,...

Intel X e o n 5 3 0 0
processor

Main
m e m o r y
D I M M s

F B D D R 2 6 6 7
(5.3 G B / s e c)

Serial A T A
(300 M B / s e c)

L P C
(1 M B / s e c)

U S B 2.0
(60 M B / s e c)

| Intel X e o n 5 3 0 0 J
i processor 1

! - _ - _ - - r J

Front Side B u s (1333 M H z , 10.5 G B / s e c)

Memory
controller

hub
(north bridge)

5000P

ESI
(2 G B / s e c)

PCIe x16 (or 2 PCIe x8)
(4 G B / s e c)

PCIe x8
(2 G B / s e c)

I/O
controller

hub
(south bridge)

Entreprise South
Bridge 2

PCIe x4
(1 G B / s e c)
PCIe x4

(1 G B / s e c)

PCI-X bus
(1 G B / s e c)

P C I - X bus
(1 G B / s e c)

Parallel A T A
(100 M B / s e c)

FIGURE 6.9 Organization of the I/O system on an Intel server using the Intel 5000P chip
s e t . If you assume reads and writes are each half the traffic, you can double the bandwidth per link for
PCIe.

include the north bridge inside the microprocessor, and the south bridge chip of
the Intel 975 includes a RAID controller (see Section 6.9).

These I/O interconnects provide electrical connectivity among I/O devices,
processors, and memory, and also define the lowest-level protocol for commu-
nication. Above this basic level, we must define hardware and software protocols
for controlling data transfers between I/O devices and memory, and for the pro-
cessor to specify commands to the I/O devices. These topics are covered in the next
section.

Both networks and buses connect components together. Which of the following Check
are true about them? Yourself

1. I/O networks and I/O buses are almost always standardized.

2. I/O networks and I/O buses are almost always synchronous.

586 Chapter 6 Storage and Other I/O Topics

Intel 5000P chip set Intel 975X chip set AMD 580X CrossFiret

Target segment Server Performance PC Server/Performance PC

Front Side Bus (64 bit) 1 0 6 6 / 1 3 3 3 M H z 8 0 0 / 1 0 6 6 M H z

Memory controller hub ("north bridge")

Product n a m e Blackbird 5 0 0 0 P M C H 975X M C H

Pins 1 4 3 2 1 2 0 2

M e m o r y type, speed D D R 2 F B D I M M 6 6 7 / 5 3 3 D D R 2 8 0 0 / 6 6 7 / 5 3 3

M e m o r y buses, widths 4 x 72 1 x 72

Number of DIMMs, D R A M / D I M M 16, 1 G B / 2 G B / 4 G B 4 , 1 G B / 2 G B

M a x i m u m m e m o r y capacity 6 4 G B 8 G B

M e m o r y error correction available? Yes No

PCIe/External Graphics Interface 1 PCIe xl6 or 2 PCIe x 1 PCIe xl6 or 2 PCIe x8

South bridge interface PCIe x8, ESI PCIe x8

I/O controller hub ("south bridge")

Product n a m e 6 3 2 1 E S B ICH7 580X CrossFire

Package size, pins 1 2 8 4 6 5 2 5 4 9

PCI-bus: width, speed Two 64-bit, 133 M H z 32-bit, 33 MHz, 6 masters —

PCI Express ports Three PCIe x4 Two PCIe xl6. Four PCI xl

Ethernet M A C controller, interface — 1 0 0 0 / 1 0 0 / 1 0 Mbit —

U S B 2.0 ports, controllers 6 8 10

ATA ports, speed One 100 Two 100 One 1 3 3

Serial ATA ports 6 2 4

AC-97 audio controller, interface — Yes Yes

1/0 management S M b u s 2.0, GPIO S M b u s 2.0, GPIO ASF 2.0, GPIO

FIGURE 6.10 Two I/O chip sets from Intel and one from AMD. Note that the north bridge functions are included on the A M D
microprocessor, as they are on the more recent Intel Nehaiem.

• V M Interfacing I/O (Devices to the Processor,
• A j f l Memory, and Operating System

A bus or network protocol defines how a word or block of data should be commu-
nicated on a set of wires. This still leaves several other tasks that must be performed
to actually cause data to be transferred from a device and into the memory address
space of some user program. This section focuses on these tasks and will answer
such questions as the following:

• How is a user I/O request transformed into a device command and commu-
nicated to the device?

• How is data actually transferred to or from a memory location?

• What is the role of the operating system?

6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 587

As we will see in answering these questions, the operating system plays a major role
in handling I/O, acting as the interface between the hardware and the program that
requests I/O.

The responsibilities of the operating system arise from three characteristics of
I/O systems:

1. Multiple programs using the processor share the I/O system.

2. I/O systems often use interrupts (externally generated exceptions) to com-
municate information about I/O operations. Because interrupts cause a
transfer to kernel or supervisor mode, they must be handled by the operat-
ing system (OS).

3. The low-level control of an I/O device is complex, because it requires man-
aging a set of concurrent events and because the requirements for correct
device control are often very detailed.

The three characteristics of I/O systems above lead to several different functions
the OS must provide:

• The OS guarantees that a user's program accesses only the portions of an
I/O device to which the user has rights. For example, the OS must not allow a
program to read or write a file on disk if the owner of the file has not granted
access to this program. In a system with shared I/O devices, protection could
not be provided if user programs could perform I/O directly.

• The OS provides abstractions for accessing devices by supplying routines that
handle low-level device operations.

• The OS handles the interrupts generated by I/O devices, just as it handles the
exceptions generated by a program.

• The OS tries to provide equitable access to the shared I/O resources, as well as
schedule accesses to enhance system throughput.

To perform these functions on behalf of user programs, the operating system
must be able to communicate with the I/O devices and to prevent the user program
from communicating with the I/O devices directly. Three types of communication
are required

1. The OS must be able to give commands to the I/O devices. These commands
include not only operations like read and write, but also other operations to
be done on the device, such as a disk seek.

Hardware/
Software
Interface

588 Chapter 6 Storage and Other I/O Topics

2. The device must be able to notify the OS when the I/O device has completed
an operation or has encountered an error. For example, when a disk completes
a seek, it will notify the OS.

3. Data must be transferred between memory and an I/O device. For example,
the block being read on a disk read must be moved from disk to memory.

In the next few subsections, we will see how these communications are performed.

memory-mapped I/O
An I/O scheme in which
portions of address space
are assigned to I/O devices,
and reads and writes to
those addresses are
interpreted as commands
to the I/O device.

Giving Commands to I/O Devices
To give a command to an I/O device, the processor must be able to address the
device and to supply one or more command words. Two methods are used to
address the device: memory-mapped I/O and special I/O instructions. In memory-
mapped I/O, portions of the address space are assigned to I/O devices. Reads and
writes to those addresses are interpreted as commands to the I/O device.

For example, a write operation can be used to send data to an I/O device where
the data will be interpreted as a command. When the processor places the address
and data on the memory bus, the memory system ignores the operation because
the address indicates a portion of the memory space used for I/O. The device
controller, however, sees the operation, records the data, and transmits it to the
device as a command. User programs are prevented from issuing I/O operations
directly, because the OS does not provide access to the address space assigned to
the I/O devices, and thus the addresses are protected by the address translation.
Memory-mapped I/O can also be used to transmit data by writing or reading to
select addresses. The device uses the address to determine the type of command,
and the data may be provided by a write or obtained by a read. In any event, the
address encodes both the device identity and the type of transmission between
processor and device.

Actually performing a read or write of data to fulfill a program request usually
requires several separate I/O operations. Furthermore, the processor may have to
interrogate the status of the device between individual commands to determine
whether the command completed successfully. For example, a simple printer has
two I/O device registers—one for status information and one for data to be printed.
The Status register contains a done bit, set by the printer when it has printed a
character, and an error bit, indicating that the printer is jammed or out of paper.
Each byte of data to be printed is put into the Data register. The processor must
then wait until the printer sets the done bit before it can place another character in
the buffer. The processor must also check the error bit to determine if a problem
has occurred. Each of these operations requires a separate I/O device access.

6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 589

Elaboration: The alternative to memory-mapped l/Oistousededicated I/O instructions
in the processor. These I/O instructions can specify both the device number and the
command word (or the location of the command word in memory). The processor
communicates the device address via a set of wires normally included as part of the I/O
bus. The actual command can be transmitted over the data lines in the bus. Examples
of computers with I/O instructions are the Intel x86 and the IBM 370 computers. By
making the I/O instructions illegal to execute when not in kernel or supervisor mode,
user programs can be prevented from accessing the devices directly.

Commuinincatiinig with the Processor
The process of periodically checking status bits to see if it is time for the next
I/O operation, as in the previous example, is called polling. Polling is the simplest
way for an I/O device to communicate with the processor. The I/O device simply
puts the information in a Status register, and the processor must come and get the
information. The processor is totally in control and does all the work.

Polling can be used in several different ways. Real-time embedded applications
poll the I/O devices, since the I/O rates are predetermined and it makes I/O over-
head more predictable, which is helpful for real time. As we will see, this allows
polling to be used even when the I/O rate is somewhat higher.

The disadvantage of polling is that it can waste a lot of processor time, because
processors are so much faster than I/O devices. The processor may read the Status
register many times, only to find that the device has not yet completed a compara-
tively slow I/O operation, or that the mouse has not budged since the last time it
was polled. When the device completes an operation, we must still read the status
to determine whether it was successful.

The overhead in a polling interface was recognized long ago, leading to the
invention of interrupts to notify the processor when an I/O device requires atten-
tion from the processor. Interrupt-driven I/O, which is used by almost all systems
for at least some devices, employs I/O interrupts to indicate to the processor that
an I/O device needs attention. When a device wants to notify the processor that
it has completed some operation or needs attention, it causes the processor to be
interrupted.

An I/O interrupt is just like the exceptions we saw in Chapters 4 and 5, with two
important distinctions:

1. An I/O interrupt is asynchronous with respect to the instruction execution.
That is, the interrupt is not associated with any instruction and does not
prevent the instruction completion. This is very different from either page
fault exceptions or exceptions such as arithmetic overflow. Our control
unit need only check for a pending I/O interrupt at the time it starts a new
instruction.

I/O instruction
A dedicated instruction
that is used to give a
command to an I/O
device and that specifies
both the device number
and the command word
(or the location of the
command word in
memory).

polling The process of
periodically checking the
status of an I/O device
to determine the need to
service the device.

interrupt-driven I/O An
I/O scheme that employs
interrupts to indicate to
the processor that an I/O
device needs attention.

590 Chapter 6 Storage and Other I/O Topics

2. In addition to the fact that an I/O interrupt has occurred, we would like to
convey further information, such as the identity of the device generating the
interrupt. Furthermore, the interrupts represent devices that may have dif-
ferent priorities and whose interrupt requests have different urgencies asso-
ciated with them.

To communicate information to the processor, such as the identity of the device
raising the interrupt, a system can use either vectored interrupts or an exception
Cause register. When the processor recognizes the interrupt, the device can send
either the vector address or a status field to place in the Cause register. As a result,
when the OS gets control, it knows the identity of the device that caused the
interrupt and can immediately interrogate the device. An interrupt mechanism
eliminates the need for the processor to poll the device and instead allows the
processor to focus on executing programs.

Interrupt Priority Levels
To deal with the different priorities of the I/O devices, most interrupt mechanisms
have several levels of priority; UNIX operating systems use four to six levels. These
priorities indicate the order in which the processor should process interrupts.
Both internally generated exceptions and external I/O interrupts have priorities;
typically, I/O interrupts have lower priority than internal exceptions. There may
be multiple I/O interrupt priorities, with high-speed devices associated with the
higher priorities.

To support priority levels for interrupts, MIPS provides the primitives that let
the operating system implement the policy, similar to the way that MIPS handles
TLB misses. Figure 6.11 shows the key registers, and Section B.7 in Appendix B
gives more details.

The Status register determines who can interrupt the computer. If the interrupt
enable bit is 0, then none can interrupt. A more refined blocking of interrupts is
available in the interrupt mask field. There is a bit in the mask corresponding to
each bit in the pending interrupt field of the Cause register. To enable the corre-
sponding interrupt, there must be a 1 in the mask field at that bit position. Once
an interrupt occurs, the operating system can find the reason in the exception code
field of the Status register: 0 means an interrupt occurred, with other values for the
exceptions mentioned in Chapter 5.

Here are the steps that must occur in handling an interrupt:

1. Logically AND the pending interrupt field and the interrupt mask field to
see which enabled interrupts could be the culprit. Copies are made of these
two registers using the mf cO instruction.

2. Select the higher priority of these interrupts. The software convention is that
the leftmost is the highest priority.

6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 591

= Q. q. 3 Q>
<1> -=r ,—Q>—

S n <-> 9? a> ro w o x > c D E q3

Interrupt
mask

31 15 8 6 2

Branch Pending Exception
delay interrupts code

FIGURE 6.11 The Cause and Status registers. This version of the Cause register corresponds to
the MIPS-32 architecture. The earlier M I P S I architecture had three nested sets of kernel/user and interrupt
enable bits to support nested interrupts. Section B.7 in Appendix B has more details about these registers.

3. Save the interrupt mask field of the Status register.

4. Change the interrupt mask field to disable all interrupts of equal or lower
priority.

5. Save the processor state needed to handle the interrupt.

6. To allow higher-priority interrupts, set the interrupt enable bit of the Cause
register to 1.

7. Call the appropriate interrupt routine.

8. Before restoring state, set the interrupt enable bit of the Cause register to 0.
This allows you to restore the interrupt mask field.

Appendix B shows an exception handler for a simple I/O task on pages B-36 to
B-37.

How do the interrupt priority levels (IPLs) correspond to these mechanisms?
The IPL is an operating system invention. It is stored in the memory of the process,
and every process is given an IPL. At the lowest IPL, all interrupts are permitted.
Conversely, at the highest IPL, all interrupts are blocked. Raising and lowering the
IPL involves changes to the interrupt mask field of the Status register.

592 Chapter 6 Storage and Other I/O Topics

Elaboration: The two least significant bits of the pending interrupt and interrupt mask
fields are for software interrupts, which are lower priority. These are typically used by
higher-priority interrupts to leave work for lower-priority interrupts to do once the immedi-
ate reason for the interrupt is handled. Once the higher-priority interrupt is finished, the
lower-priority tasks will be noticed and handled.

direct memory access
(D M A) A mechanism
that provides a device
controller with the ability
to transfer data directly
to or from the memory
without involving the
processor.

Transferring the Data between a Device and Memory
We have seen two different methods that enable a device to communicate with
the processor. These two techniques—polling and I/O interrupts—form the basis
for two methods of implementing the transfer of data between the I/O device and
memory. Both these techniques work best with lower-bandwidth devices, where
we are more interested in reducing the cost of the device controller and interface
than in providing a high-bandwidth transfer. Both polling and interrupt-driven
transfers put the burden of moving data and managing the transfer on the proces-
sor. After looking at these two schemes, we will examine a scheme more suitable for
higher-performance devices or collections of devices.

We can use the processor to transfer data between a device and memory based
on polling. In real-time applications, the processor loads data from I/O device
registers and stores them into memory.

An alternative mechanism is to make the transfer of data interrupt driven.
In this case, the OS would still transfer data in small numbers of bytes from or
to the device. But because the I/O operation is interrupt driven, the OS simply
works on other tasks while data is being read from or written to the device. When
the OS recognizes an interrupt from the device, it reads the status to check for
errors. If there are none, the OS can supply the next piece of data, for example, by
a sequence of memory-mapped writes. When the last byte of an I/O request has
been transmitted and the I/O operation is completed, the OS can inform the pro-
gram. The processor and OS do all the work in this process, accessing the device
and memory for each data item transferred.

Interrupt-driven I/O relieves the processor from having to wait for every I/O
event, although if we used this method for transferring data from or to a hard disk,
the overhead could still be intolerable, since it could consume a large fraction of
the processor when the disk was transferring. For high-bandwidth devices like hard
disks, the transfers consist primarily of relatively large blocks of data (hundreds
to thousands of bytes). Thus, computer designers invented a mechanism for
offloading the processor and having the device controller transfer data directly to
or from the memory without involving the processor. This mechanism is called
direct memory access (DMA). The interrupt mechanism is still used by the device
to communicate with the processor, but only on completion of the I/O transfer or
when an error occurs.

DMA is implemented with a specialized controller that transfers data between
an I/O device and memory independent of the processor. The DMA controller

6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 593

becomes the master and directs the reads or writes between itself and memory, master A unit on the
There are three steps in a DMA transfer: I/O interconnect that can

initiate transfer requests.
1. The processor sets up the DMA by supplying the identity of the device, the

operation to perform on the device, the memory address that is the source
or destination of the data to be transferred, and the number of bytes to
transfer.

2. The DMA starts the operation on the device and arbitrates for the
interconnect. When the data is available (from the device or memory), it

•transfers the data. The DMA device supplies the memory address for the
read or the write. If the request requires more than one transfer, the DMA
unit generates the next memory address and initiates the next transfer. Using
this mechanism, a DMA unit can complete an entire transfer, which may
be thousands of bytes in length, without bothering the processor. Many
DMA controllers contain some memory to allow them to deal flexibly either
with delays in transfer or with those incurred while waiting to become the
master.

3. Once the DMA transfer is complete, the controller interrupts the processor,
which can then determine by interrogating the DMA device or examining
memory whether the entire operation completed successfully.

There may be multiple DMA devices in a computer system. For example, in a
system with a single processor-memory bus and multiple I/O buses, each I/O bus
controller will often contain a DMA processor that handles any transfers between
a device on the I/O bus and the memory.

Unlike either polling or interrupt-driven I/O, DMA can be used to interface a
hard disk without consuming all the processor cycles for a single I/O. Of course, if
the processor is also contending for memory, it will be delayed when the memory
is busy doing a DMA transfer. By using caches, the processor can avoid having to
access memory most of the time, thereby leaving most of the memory bandwidth
free for use by I/O devices.

Elaboration: To further reduce the need to interrupt the processor and occupy it in
handling an I/O request that may involve doing several actual operations, the I/O con-
troller can be made more intelligent. Intelligent controllers are often called I/O proces-
sors (as well as I/O controllers or channel controllers). These specialized processors
basically execute a series of I/O operations, called an I/O program. The program may
be stored in the I/O processor, or it may be stored in memory and fetched by the I/O
processor. When using an I/O processor, the operating system typically sets up an I/O
program that indicates the I/O operations to be done as well as the size and transfer
address for any reads or writes. The I/O processor then takes the operations from the
I/O program and interrupts the processor only when the entire program is completed.
DMA processors are essentially special-purpose processors (usually single-chip and
nonprogrammable), while I/O processors are often implemented with general-purpose
microprocessors, which run a specialized I/O program.

594 Chapter 6 Storage and Other I/O Topics

Direct Memory Access and the Memory System
When DMA is incorporated into an I/O system, the relationship between the
memory system and processor changes. Without DMA, all accesses to the memory
system come from the processor and thus proceed through address translation and
cache access as if the processor generated the references. With DMA, there is another
path to the memory system—one that does not go through the address translation
mechanism or the cache hierarchy. This difference generates some problems in
both virtual memory systems and systems with caches. These problems are usually
solved with a combination of hardware techniques and software support.

The difficulties in having DMA in a virtual memory system arise because pages
have both a physical and a virtual address. DMA also creates problems for systems
with caches, because there can be two copies of a data item: one in the cache and
one in memory. Because the DMA processor issues memory requests directly to the
memory rather than through the processor cache, the value of a memory location
seen by the DMA unit and the processor may differ. Consider a read from disk that
the DMA unit places directly into memory. If some of the locations into which the
DMA writes are in the cache, the processor will receive the old value when it does a
read. Similarly, if the cache is write-back, the DMA may read a value directly from
memory when a newer value is in the cache, and the value has not been written
back. This is called the stale data problem or coherence problem (see Chapter 5).

We have looked at three different methods for transferring data between an I/O
device and memory. In moving from polling to an interrupt-driven to a DMA
interface, we shift the burden for managing an I/O operation from the processor to
a progressively more intelligent I/O controller. These methods have the advantage
of freeing up processor cycles. Their disadvantage is that they increase the cost of
the I/O system. Because of this, a given computer system can choose which point
along this spectrum is appropriate for the I/O devices connected to it.

Before discussing the design of I/O systems, let's look briefly at performance
measures of them in the next section.

ranking the three ways of doing I/O, which statements are true?

If we want the lowest latency for an I/O operation to a single I/O device, the
order is polling, DMA, and interrupt driven.

In terms of lowest impact on processor utilization from a single I/O device,
the order is DMA, interrupt driven, and polling.

Check In
Yourself j

2.

6.6 Interfacing I/O Devices to the Processor, Memory, and Operating System 595

In a system with virtual memory, should DMA work with virtual addresses or
physical addresses? The obvious problem with virtual addresses is that the DMA
unit will need to translate the virtual addresses to physical addresses. The major
problem with the use of a physical address in a DMA transfer is that the transfer
cannot easily cross a page boundary. If an I/O request crossed a page boundary,
then the memory locations to which it was being transferred would not necessarily
be contiguous in the virtual memory. Consequently, if we use physical addresses,
we must constrain all DMA transfers to stay within one page.

One method to allow the system to initiate DMA transfers that cross page
boundaries is to make the DMA work on virtual addresses. In such a system, the
DMA unit has a small number of map entries that provide virtual-to-physical
mapping for a transfer. The operating system provides the mapping when the I/O
is initiated. By using this mapping, the DMA unit need not worry about the loca-
tion of the virtual pages involved in the transfer.

Another technique is for the operating system to break the DMA transfer into
a series of transfers, each confined within a single physical page. The transfers are
then chained together and handed to an I/O processor or intelligent DMA unit that
executes the entire sequence of transfers; alternatively, the operating system can
individually request the transfers.

Whichever method is used, the operating system must still cooperate by not
remapping pages while a DMA transfer involving that page is in progress.

Hardware/
Software
Interface

The coherency problem for I/O data is avoided by using one of three major tech-
niques. One approach is to route the I/O activity through the cache. This ensures
that reads see the latest value while writes update any data in the cache. Routing
all I/O through the cache is expensive and potentially has a large negative perfor-
mance impact on the processor, since the I/O data is rarely used immediately and
may displace useful data that a running program needs. A second choice is to have
the OS selectively invalidate the cache for an I/O read or force write-backs to occur
for an I/O write (often called cache flashing). This approach requires some small
amount of hardware support and is probably more efficient if the software can
perform the function easily and efficiently. Because this flushing of large parts of
the cache need only happen on DMA block accesses, it will be relatively infrequent.
The third approach is to provide a hardware mechanism for selectively flushing
(or invalidating) cache entries. Hardware invalidation to ensure cache coherence
is typical in multiprocessor systems, and the same technique can be used for I/O;
Chapter 5 discusses this topic in detail.

Hardware/
Software
Interface

596 Chapter 6 Storage and Other I/O Topics

transaction processing
A type of application
that involves handling
small short operations
(called transactions) that
typically require both
I/O and computation.
Transaction processing
applications typically
have both response time
requirements and a perfor-
mance measurement
based on the throughput
of transactions.

I/O rate Performance
measure of I/Os per unit
time, such as reads per
second.

data rate Performance
measure of bytes per unit
time, such as GB/second.

I/O Performance Measures: Examples
from Disk and! File Systems

How should we compare I/O systems? This is a complex question, because I/O
performance depends on many aspects of the system, and different applications
stress different aspects of the I/O system. Furthermore, a design can make com-
plex tradeoffs between response time and throughput, making it impossible to
measure just one aspect in isolation. For example, handling a request as early as
possible generally minimizes response time, although greater throughput can be
achieved if we try to handle related requests together. Accordingly, we may increase
throughput on a disk by grouping requests that access locations that are close
together. Such a policy will increase the response time for some requests, probably
leading to a larger variation in response time. Although throughput will be higher,
some benchmarks constrain the maximum response time to any request, making
such optimizations potentially problematic.

In this section, we give some examples of measurements proposed for deter-
mining the performance of storage systems. These benchmarks are affected by a
variety of system features, including the disk technology, the way disks are con-
nected, the memory system, the processor, and the file system provided by the
operating system.

Before we discuss these benchmarks, we need to address a confusing point
about terminology and units. The performance of I/O systems depends on the
rate at which the system transfers data. The transfer rate depends on the clock
rate, which is typically given in GHz = 109 cycles per second. The transfer rate is
usually quoted in GB/sec. In I/O systems, GBs are measured using base 10 (i.e.,
1 GB = 109 = 1,000,000,000 bytes), unlike main memory where base 2 is used (i.e.,
1 GB = 2 3 0 = 1,073,741,824 bytes). In addition to adding confusion, this difference
introduces the need to convert between base 10 (IK = 1000) and base 2 (I K =
1024), because many I/O accesses are for data blocks that have a size that is a power
of 2. Rather than complicate all our examples by accurately converting one of the
two measurements, we make note here of this distinction and the fact that treating
the two measures as if the units were identical introduces a small error. We illus-
trate this error in Section 6.12.

Transaction Processing fl/O Benchmarks
Transaction processing (TP) applications involve both a response time require-
ment and a performance measurement based on throughput. Furthermore, most
of the I/O accesses are small. Because of this, TP applications are chiefly concerned
with I/O rate, measured as the number of accesses per second, as opposed to data
rate, measured as bytes of data per second. TP applications generally involve changes
to a large database, with the system meeting some response time requirements

6.7 I/O Performance Measures: Examples from Disk and File Systems 597

as well as gracefully handling certain types of failures. These applications are
extremely critical and cost-sensitive. For example, banks normally use TP systems
because they are concerned about a range of characteristics. These include making
sure transactions aren't lost, handling transactions quicldy, and minimizing the
cost of processing each transaction. Although dependability in the face of failure is
an absolute requirement in such systems, both response time and throughput are
critical to building cost-effective systems.

A number of transaction processing benchmarks have been developed. The
best-known set of benchmarks is a series developed by the Transaction Processing
Council (TPC).

TPC-C, initially created in 1992, simulates a complex query environment. TPC-FI
models ad hoc decision support—the queries are unrelated, and knowledge of past
queries cannot be used to optimize future queries; the result is that query execution
times can be very long. TPC-W is a Web-based transaction benchmark that
simulates the activities of a business-oriented transactional Web server. It exercises
the database system as well as the underlying Web server software. TPC-App is
an application server and Web services benchmark. The most recent is TPC-E,
which simulates the transaction processing workload of a brokerage firm. The TPC
benchmarks are described at www.tpc.org.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-world
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the size of the database to which the transactions are applied.
Hence, storage capacity must scale with performance. Finally, the system cost for a
benchmark system must also be included, allowing accurate comparisons of cost/
performance.

File System and Web I/O Benchmarks
In addition to processor benchmarks, SPEC offers both a file server benchmark
(SPECSFS) and a Web server benchmark (SPECWeb). SPECSFS is a benchmark
for measuring NFS (Network File System) performance using a script of file server
requests; it tests the performance of the I/O system, including both disk and net-
work I/O, as well as the processor. SPECSFS is a throughput-oriented benchmark
but with important response time requirements. SPECWeb is a Web server bench-
mark that simulates multiple clients requesting both static and dynamic pages from
a server, as well as clients posting data to the server (see Chapter 1).

The most recent SPEC effort is to measure power. SPECPower measures power
and performance characteristics of small servers.

Sun recently announced filebench, a file system benchmark framework. Instead
of a standard workload, it provides a language that lets you describe the workload
you'd like to run on your file systems. However, there are examples of file workloads
that are supposed to emulate common applications of file systems.

http://www.tpc.org

598 Chapter 6 Storage and Other I/O Topics

Are the following true or false? Unlike processor benchmarks, I/O benchmarks

1. concentrate on throughput rather than latency

2. can require that the data set scale in size or number of users to achieve per-
formance milestones

3. often report cost performance

Designing an D/O Systemra

There are two primary types of specifications that designers encounter in I/O sys-
tems: latency constraints and bandwidth constraints. In both cases, knowledge of
the traffic pattern affects the design and analysis.

Latency constraints involve ensuring that the latency to complete an I/O opera-
tion is bounded by a certain amount. In the simple case, the system maybe unloaded,
and the designer must ensure that some latency bound is met either because it is
critical to the application or because the device must receive certain guaranteed
service to prevent errors. Likewise, determining the latency on an unloaded system
is relatively easy, since it involves tracing the path of the I/O operation and summing
the individual latencies.

Finding the average latency (or distribution of latency) under a load is much
harder. Such problems are tackled either by queuing theory (when the behavior
of the worldoad requests and I/O service times can be approximated by simple
distributions) or by simulation (when the behavior of I/O events is complex). Both
topics are beyond the limits of this text.

Designing an I/O system to meet a set of bandwidth constraints given a work-
load is the other typical problem designers face. Alternatively, the designer may be
given a partially configured I/O system and be asked to balance the system to main-
tain the maximum bandwidth achievable, as dictated by the preconfigured portion
of the system. This latter design problem is a simplified version of the first.

The general approach to designing such a system is as follows:

1. Find the weakest link in the I/O system, which is the component in the I/O
path that will constrain the design. Depending on the workload, this com-
ponent can be anywhere, including the processors, the memory system, the
I/O controllers, or the devices. Both the workload and configuration limits
may dictate where the weakest link is located.

2. Configure this component to sustain the required bandwidth.

3. Determine the requirements for the rest of the system and configure them to
support this bandwidth.

Check
Yourself

6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 599

The easiest way to understand this methodology is with an example. We'll do a
simple analysis of the I/O system of the Sun Fire x4150 server in Section 6.10 to
show how this methodology works.

Paralleflosomi atmd S/©s f^edumdanf Arrays of
[Inexpensive Pisks

Amdahl's law in Chapter 1 reminds us that neglecting I/O in this parallel revolu-
tion is foolhardy. A simple example demonstrates this.

Impact of I/O on S y s t e m Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time, of
which 90 seconds is CPU time and the rest is I/O time. Suppose the number of
processors doubles every two years, but the processors remain the same speed,
and I/O time doesn't improve. ITovv much faster will our program run at the
end of six years?

We know that

Elapsed time = CPU time T I/O time

100 = 90 T I/O time

I/O time = 10 seconds

EXAMPLE

ANSWER

The new CPU times and the resulting elapsed times are computed in the fol-
lowing table.

After n years CPU time I/O time Elapsed time % I/O time

0 years 90 seconds 10 seconds 100 seconds 1 0 %

2 years ^ = 45 seconds 10 seconds 55 seconds 1 8 %

4 years
4 5
~ = 23 seconds 10 seconds 33 seconds 3 1 %

6 years 2 3
— = 11 seconds 10 seconds 21 seconds 4 7 %

600 Chapter 6 Storage and Other I/O Topics

redundant arrays of
inexpensive disks
(RAID) An organization
of disks that uses an array
of small and inexpensive
disks so as to increase
both performance and
reliability.

The improvement in CPU performance after sLx years is

However, the improvement in elapsed time is only

and the I/O time has increased from 10% to 4 7 % of the elapsed time.

Hence, the parallel revolution needs to come to I/O as well as to computation, or
the effort spent in parallelizing could be squandered whenever programs do I/O,
which they all must do.

Accelerating I/O performance was the original motivation of disk arrays (see
US Section 6.14 on the CD). In the late 1980s, the high performance storage of
choice was large, expensive disks, such as the larger ones in Figure 6.4. The argument
was that by replacing a few large disks with many small disks, performance would
improve because there would be more read heads. This shift is a good match for
multiple processors as well, since many read/write heads mean the storage system
could support many more independent accesses as well as large transfers spread
across many disks. That is, you could get both high I/Os per second and high data
transfer rates. In addition to higher performance, there could be advantages in cost,
power, and floor space, since smaller disks are generally more efficient per gigabyte
than larger disks.

The flaw in the argument was that disk arrays could make reliability much
worse. These smaller, inexpensive drives had lower MTTF ratings than the large
drives, but more importantly, by replacing a single drive with, say, 50 small drives,
the failure rate would go up by at least a factor of 50!

The solution was to add redundancy so that the system could cope with disk
failures without losing information. By having many small disks, the cost of extra
redundancy to improve dependability is small, relative to the solutions for a few
large disks. Thus, dependability was more affordable if you constructed a redundant
array of inexpensive disks. This observation led to its name: redundant arrays of
inexpensive disks, abbreviated RAID.

In retrospect, although its invention was motivated by performance, depen-
dability was the key reason for the widespread popularity of RAID. The parallel
revolution has resurfaced the original performance side of the argument for RAID.
The rest of this section surveys the options for dependability and their impacts on
cost and performance.

How much redundancy do you need? Do you need extra information to
find the faults? Does it matter how you organize the data and the extra check
information on these disks? The paper that coined the term gave an evolutionary
answer to these questions, starting with the simplest but most expensive solution.

6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 601

Data disks Redundant check disks

RAID 0
(No redundancy)
Widely used

RAID 1
(Mirroring)

EMC, HP(Tandem), IBM

RAID 2
(Error detection and
correction code) Unused
RAID 3
(Bit-interleaved parity)
Storage concepts

RAID 4
(Block-interleaving parity)
Network appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used
RAID 6
(P + Q redundancy)
Recently popular

FIGURE 6.12 RAID for an example of four data disks showing extra check disks per RAID
level and companies that use each level. Figures 6.13 and 6.14 explain the difference between
R A I D 3, R A I D 4, and R A I D 5.

Figure 6.12 shows the evolution and example cost in number of extra check disks.
To keep track of the evolution, the authors numbered the stages of RAID, and they
are still used today.

No (Redundancy (R A I D 0)

Simply spreading data over multiple disks, called striping, automatically forces
accesses to several disks. Striping across a set of disks makes the collection appear
to software as a single large disk, which simplifies storage management. It also
improves performance for large accesses, since many disks can operate at once.
Video-editing systems, for example, often stripe their data and may not worry
about dependability as much as, say, databases.

RAID 0 is something of a misnomer, as there is no redundancy. However, RAID
levels are often left to the operator to set when creating a storage system, and RAID 0 is
often listed as one of the options. Hence, the term RAID 0 has become widely used.

striping Allocation of
logically sequential blocks
to separate disks to allow
higher performance than
a single disk can deliver.

602 Chapter 6 Storage and Other I/O Topics

mirroring Writing the
identical data to multiple
disks to increase data
availability.

Mirroring (RAID 1)

This traditional scheme for tolerating disk failure, called mirroring or shadowing,
uses twice as many disks as does RAID 0. Whenever data is written to one disk,
that data is also written to a redundant disk, so that there are always two copies
of the information. If a disk fails, the system just goes to the "mirror" and reads
its contents to get the desired information. Mirroring is the most expensive RAID
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)

RAID 2 borrows an error detection and correction scheme most often used for
memories (see @ Appendix C). Since RAID 2 has fallen into disuse, we'll not
describe it here.

protection group The
group of data disks
or blocks that share a
common check disk or
block.

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1 In, where n is the number of
disks in a protection group. Rather than have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one extra
disk to hold the check information in case there is a failure. RAID 3 is popular in
applications with large data sets, such as multimedia and some scientific codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the
redundant disk as having the sum of all the data in the other disks. When a disk
fails, then you subtract all the data in the good disks from the parity disk; the
remaining information must be the missing information. Parity is simply the sum
modulo two.

Unlike RAID 1, many disks must be read to determine the missing data. The
assumption behind this technique is that taking longer to recover from failure but
spending less on redundant storage is a good tradeoff.

Block-Interleaved Parity (RAID 4)

RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they access
data differently. The parity is stored as blocks and associated with a set of data
blocks.

In RAID 3, every access went to all disks. However, some applications prefer
smaller accesses, allowing independent accesses to occur in parallel. That is the
purpose of the RAID levels 4 to 6. Since error detection information in each sector
is checked on reads to see if the data is correct, such "small reads" to each disk can
occur independently as long as the minimum access is one sector. In the RAID
context, a small access goes to just one disk in a protection group while a large
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to

6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 6 0 3

FIGURE 6.13 Small write update on RAID 3 versus RAID 4. This optimization for small writes
reduces the number of disk accesses as well as the number of disks occupied. This figure assumes we have
four blocks of data and one block of parity. T h e straightforward RAID 3 parity calculation in the left of
the figure reads blocks D I , D2, and D3 before adding block DO' to calculate the new parity I3'. (In case you
were wondering, the new data DO' comes directly from the CPU, so disks arc not involved in reading it.) T h e
RAID 4 shortcut on the right reads the old value DO and compares it to the new value DO' to see which bits
will change. You then read the old parity P and then change the corresponding bits to form P'. T h e logical
function exclusive OR does exactly what we want. This example replaces three disk reads (D I , D2, D 3) and
two disk writes (DO', P') involving all the disks for two disk reads (DO, P) and two disk writes (DO', P ') , which
involve just two disks. Increasing the size of the parity group increases the savings of the shortcut. RAID 5
uses the same shortcut.

recalculate the new parity, as in the left in Figure 6.13. A "small write" would require
reading the old data and old parity, adding the new information, and then writing
the new parity to the parity disk and the new data to the data disk.

The key insight to reduce this overhead is that parity is simply a sum of infor-
mation; by watching which bits change when we write the new information, we
need only change the corresponding bits on the parity disk. The right of Figure 6.13
shows the shortcut. We must read the old data from the disk being written, compare
old data to the new data to see which bits change, read the old parity, change
the corresponding bits, then write the new data and new parity. Thus, the small
write involves four disk accesses to two disks instead of accessing all disks. This
organization is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)

RAID 4 efficiently supports a mixture of large reads, large writes, and small reads,
plus it allows small writes. One drawback to the system is that the parity disk must
be updated on every write, so the parity disk is the bottleneck for back-to-back
writes.

To fix the parity-write bottleneck, the parity information can be spread through-
out all the disks so that there is no single bottleneck for writes. The distributed
parity organization is RAID 5.

6 0 4 Chapter 6 Storage and Other I/O Topics

0 0
nn
12

16

20

0 0 0
0 0
15

19

23

0
0

0 0
9

P3

16

21

0 0
P2

13

17

22

H
l | i

10

14

18

23

RAID 4 RAID 5

FIGURE 6.14 Block-interleaved parity (RAID 4) versus distributed block-interleaved parity
(R A I D 5) . By distributing parity blocks to all disks, some small writes can be performed in parallel.

Figure 6.14 shows how data is distributed in RAID 4 versus RAID 5. As the
organization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. This organization allows multiple
writes to occur simultaneously as long as the parity blocks are not located on the
same disk. For example, a write to block 8 on the right must also access its parity
block P2, thereby occupying the first and third disks. A second write to block 5 on
the right, implying an update to its parity block PI, accesses the second and fourth
disks and thus could occur concurrently with the write to block 8. Those same
writes to the organization on the left result in changes to blocks PI and P2, both on
the fifth disk, which is a bottleneck.

P + Q Redundancy (RADD 6)

Parity-based schemes protect against a single self-identifying failure. When a single
failure correction is not sufficient, parity can be generalized to have a second calcu-
lation over the data and another check disk of information. This second check
block allows recovery from a second failure. Thus, the storage overhead is twice
that of RAID 5. The small write shortcut of Figure 6.13 works as well, except now
there are six disk accesses instead of four to update both P and Q information.

RAID Summary

RAID 1 and RAID 5 are widely used in servers; one estimate is that 80% of disks in
servers are found in a RAID organization.

One weakness of the RAID systems is repair. First, to avoid making the data
unavailable during repair, the array must be designed to allow the failed disks to be

6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 6 0 5

replaced without having to turn off the system. RAIDs have enough redundancy to
allow continuous operation, but hot-swapping disks place demands on the physical
and electrical design of the array and the disk interfaces. Second, another failure
could occur during repair, so the repair time affects the chances of losing data: the
longer the repair time, the greater the chances of another failure that will lose data.
Rather than having to wait for the operator to bring in a good disk, some systems
include standby spares so that the data can be reconstructed immediately upon
discovery of the failure. The operator can then replace the failed disks in a more
leisurely fashion. Note that a human operator ultimately determines which disks
to remove. As Figure 6.3 shows, operators are only human, so they occasionally
remove the good disk instead of the broken disk, leading to an unrecoverable disk
failure.

In addition to designing the RAID system for repair, there are questions about
how disk technology changes over time. Although disk manufacturers quote very
high MTTF for their products, those numbers are under nominal conditions. If a
particular disk array has been subject to temperature cycles due to, say, the failure
of the air conditioning system, or to shaking due to a poor rack design, construc-
tion, or installation, the failure rates can be three to six times higher (see the fallacy
on page 613). The calculation of RAID reliability assumes independence between
disk failures, but disk failures could be correlated, because such damage due to the
environment would likely happen to all the disks in the array. Another concern is
that since disk bandwidth is growing more slowly than disk capacity, the time to
repair a disk in a RAID system is increasing, which in turn increases the chances of a
second failure. For example, a 1000 GB SATA disk could take almost three hours to
read sequentially, assuming no interference. Given that the damaged RAID is likely
to continue to serve data, reconstruction could be stretched considerably. Besides
increasing that time, another concern is that reading much more data during
reconstruction means increasing the chance of an uncorrectable read media failure,
which would result in data loss. Other arguments for concern about simultaneous
multiple failures are the increasing number of disks in arrays and the use of SATA
disks, which are slower and have higher capacity than traditional enterprise disks.

Flence, these trends have led to a growing interest in protecting against more
than one failure, and so RAID 6 is increasingly being offered as an option and being
used in the field.

hot-swapping Replacing
a hardware component
while the system is
running.

standby spares Reserve
hardware resources that
can immediately take
the place of a failed
component.

Which of the following are true about RAID levels 1, 3 ,4 , 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Check
Yourself

6 0 6 Chapter 6 Storage and Other I/O Topics

Elaboration: One issue is how mirroring interacts with striping. Suppose you had, say,
four disks' worth of data to store and eight physical disks to use. Would you create four
pairs of disks—each organized as RAID 1—and then stripe data across the four RAID 1
pairs? Alternatively, would you create two sets of four disks—each organized as RAID
0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call
the former RAID 1 + 0 or RAID 10 ("striped mirrors") and the latter RAID 0 + 1 or RAID
01 ("mirrored stripes").

" U l Real Stuff: Sun Fire x4150 Server

In addition to the revolution in how microprocessors are constructed, we are see-
ing a revolution in how software is delivered. Instead of the traditional model of
software sold on a CD or shipped over the Internet to be installed in your com-
puter, the alternative is software as a service. That is, you go over the Internet to
do your work on a computer that runs the software you want to use to provide
the service that you desire. The most popular example is likely Web searching, but
there are services for photo editing and storage, document processing, database
storage, virtual worlds, and so on. If you looked hard, you can probably find service
version of almost every program you use on your desktop computer.

This shift has led to the construction of large data centers to hold the comput-
ers and disks to run the services used by millions of external users. What should
computers look like if they are designed to be placed in these large data centers?
They certainly all don't need displays and keyboards. Clearly, space efficiency and
power efficiency will be important if you have 10,000 of them in a datacenter, in
addition to the traditional concerns of cost and performance.

The related question is what should storage look like in a datacenter? While
there are many options, one popular version is to include disks with the processor
and memory, and make this whole unit the building block. To overcome concerns
about reliability, the application itself makes redundant copies and is responsible
for keeping them consistent and recovering from failures.

The IT industry has largely agreed to some standards in the physical design
of computers for the datacenter, specifically the rack used to hold the computers
in the datacenter. The most popular is the 19-inch rack, which is 19 inches wide
(482.6 mm). Computers designed for the rack are labeled, naturally enough,
rack mount, but are also called a subrack or simply a shelf Because the traditional
placement of holes in which to attach the shelves is 1.75 inches (44.45 mm) apart,
this distance is commonly called a rack unit or simply unit (U) . The most popular
19-inch rack is 42 U high, which is 42 x 1.75 or 73.5 inches high. The depth of the
shelf varies.

6.10 Real Stuff: Sun Fire x4150 Server 6 0 7

FIGURE 6.15 A standard 19-inch rack populated with 42 1U servers. This rack has 42 1U
"pizza b o x " servers. Source: http://gchelpdesk.ualberta.ca/news/07mar06/cbhd_news_07mar06.pbp.

ITence, the smallest rack mount computer is 19 inches wide and 1.75 inches tall,
often called 1U computers or 1U servers. Because of their dimensions, they have
earned the nickname pizza boxes. Figure 6.15 shows an example of a standard rack
populated with 42 1U servers.

http://gchelpdesk.ualberta.ca/news/07mar06/cbhd_news_07mar06.pbp

608 Chapter 6 Storage and Other I/O Topics

!
I

i O l M H SI 1 ' : r — H L T 1

• O mam • O warn I • 'e

2 Redundant
Power Supplies

3 PCI Express Slots

System Status LEDs

Management NIC

Management
Serial

2 USB Ports

4 Gigabit NICs Video

FIGURE 6.16 The front and rear of the Sun Fire x41501U server. T h e dimensions are 1.75 inches
high by 19 inches wide. T h e eight 2 .5- inch disks drives can be replaced from the front. In the upper right is a
D V D and two USB ports. T h e picture below labels the items at the rear of the server. It has redundant power
supplies and fans to allow the server to continue operating despite failures of one of these components .

Figure 6.16 shows the Sun Fire x4150, an example of a 1U server. Maximally
configured, this 1U box contains:

• 8 2.66 GHz processors, spread across two sockets (2 Intel Xeon 5345)

• 64 GB of DDR2-667 DRAM, spread across 16 4GB FBDIMMs

• 8 15,000 RPM 73 GB SAS 2.5-inch disk drives

• 1 RAID controller (Supporting RAID 0, RAID 1, RAID 5, and RAID 6)

• 4 10/100/1000 Ethernet ports

• 3 PCI Express x8 ports

B 4 external and 1 internal USB 2.0 ports

6.10 Real Stuff: Sun Fire x4150 Server 609

DIMMs

FIGURE 6.17 Logical connections and bandwidths of components in the Sun Fire x4150. The three PCIe connectors allow
x l 6 boards to be plugged in, but it only provides eight lanes of bandwidth to the M C H . Source: Figure 5 o f ' S U N FIRE™ X 4 1 5 0 AND X 4 4 5 0 .
SERVER A R C H I T E C T U R E " (see www.sun.com/servers/x64/x4150/).

Figure 6.17 shows the connectivity and bandwidths of the chips on the mother-
board. Figures 6.9 and 6.10 describe the I/O chip set for the Intel 5345, and
Figure 6.5 describes the SAS disks in the Sun Fire x4150.

To clarify the advice on designing an I/O system in Section 6.8, let's perform
a simple performance evaluation to see where the bottlenecks might be for a
hypothetical application.

I/O System Design

Make the following assumptions about the Sun Fire x4150:

• The user program uses 200,000 instructions per I/O operation

• The operating system averages 100,000 instructions per I/O operation

EXAMPLE

http://www.sun.com/servers/x64/x4150/

6 1 0 Chapter 6 Storage and Other I/O Topics

• The workload consists of 64 KB reads

• Each processor sustains 1 billion instructions per second

Find the maximum sustainable I/O rate for a fully loaded Sun Fire x4150 for
random reads and sequential reads. Assume that the reads can always be done
on an idle disk if one exists (i.e., ignore disk conflicts) and that the RAID
controller is not the bottleneck.

ANSWER
Let's first find the I/O rate of a single processor. Each I/O takes 200,000 user
instructions and 100,000 OS instructions, so

Maximum I/O rate of 1 processor =

Instruction execution rate 1 x 109 I/Os
=

Instructions per I/O (200 T 100) x 103 second

As a single Intel 5345 socket has four processors, it can perform 13,333 IOPS.
Two sockets with eight processors can perform 26,667 IOPS.

Let's determine IOPS per disks for random and sequential reads for the 2.5-inch
SAS disk described in Figure 6.5. Rather than use the average seek time from the
disk manufacturer, let's assume that it is only a quarter of that time, as is often the
case (see Section 6.3). The time per random read of a single disk:

Time per I/O at disk = Seek T rotational time T Transfer time

2.9 , 64 KB , ,
= —— ms T 2.0 ms T ——R-R—— = 3.3 ms 4 112 MB/sec

Thus, each disk can complete 1000 ms/3.3 ms or 303 I/Os per second, and
eight disks perform 2424 random reads per second.

For sequential reads, it's just the transfer size divided by the disk bandwidth:

112 MB/sec
6 4 K B ' ^ i u ^

Eight disks can perform 14,000 sequential 64 KB reads.
We need to see if the paths from the disks to memory and the processors are

a bottleneck. Let's start with the PCI Express interconnect from the RAID card
to the north bridge chip. Each lane of a PCIe is 250 MB/second, so eight lanes
can perform 2 GB/second.

\a iir\ cnz-T o PCI bandwidth 2 x l 0 9 - c n I/Os Max I/O rate of PCIe xS = — 7 7 — = = 31,250 Bytes per I/O 6 4 x l 0 3 second

Even eight disks transferring sequentially use less than half the PCIe x8 link.

6.10 Real Stuff: Sun Fire x4150 Server 6 1 1

Once the data gets to the MCB, it needs to be written into the DRAM. The
bandwidth of a DDR2 667 MHz FBDIMM is 5336 MB/second. A single DIMM
can perform

5336 MB/sec ___ T/~DC

64KB = 8 ^ ' 3 7 5 I 0 P S

The memory is not a bottleneck even with one DIMM, and we have 16 in a
fully configured Sun Fire x4150.

The final link in the chain is the Front Side Bus that connects north bridge
hub to the Intel 5345 socket. Its peak bandwidth is 10.6 GB/sec, but Section 7.10
suggests you get no more than half peak. Each I/O transfers 64 KB, so

** i /r\ ^ fircTD Bus bandwidth 5.3xlOy OJ c i r . I/Os Max I/O rate of FSB = — r—- = 7 = 81,540 Bytes per I/O 6 4 x l 0 3 second

There is one Front Side Bus per socket, so the dual FSB peak is over 150,000
IOPS, and once again, the FSB is not a bottleneck.

Flence, a fully configured Sun Fire x4150 can sustain the peak bandwidth of
the eight disks, which is 2424 random reads per second or 14,000 sequential
reads per second.

Notice the significant number of simplifying assumptions that are needed to do
this example. In practice, many of these simplifications might not hold for critical
I/O-intensive applications. For this reason, running a realistic workload or relevant
benchmark is often the only plausible way to evaluate I/O performance.

As mention at the beginning of this section, these new datacenters are concerned
about power and space as well as cost and performance. Figure 6.18 shows the idle
and peak power required by a fully configured Sun Fire x4150, with a breakdown
by each component. Let's look at the alternative configurations of the Sun Fire
x4150 to conserve power.

I/O System Power Evaluation

Reconfigure a Sun Fire x4150 to minimize power, assuming that the workload
in the example above is the only activity on this 1U server. EXAMPLE

To achieve the 2424 random 64 KB reads per second from the prior example,
we need all eight disks and the PCI RAID controller. From the calculations
above, a single DIMM can support over 80,000 IOPS, so we can save power
in memory. The Sun Fire x4150 minimum memory is two DIMMs, so we can

ANSWER

6 1 2 Chapter 6 Storage and Other I/O Topics

Components System

Item Idle Peak Number Idle Peak

Single Intel 2.66 GHz E5345 socket,
Intel 5000 MCB/IOH chip set, Ethernet
controllers, power supplies, fans,. . .

154 W 215 W 1 154 W 37% 215 W 39%

Additional Intel 2.66 GHz E5345 socket 22 W 79 W 1 22 W 5% 79 W 14%

4 GB DDR2-667 5300 FBDIMM 10 W 11 W 16 160 W 39% 176 W 32%

73 GB SAS 15K Disk drives 8 W 8 W 8 64 W 15% 64 W 12%

PCIe x8 RAID Disk controller 15 W 15 W 1 15 W 4% 15 W 3%

Total — — — 415 W 100% 549 W 100%

FIGURE 6.18 Idle and peak power of a fully configured Sun Fire x4150. These experiments came while running S P E C J B B with
29 different configurations, so the peak power could be different when running different applications (source: www.sun.com/servcrs/x64/
x4150/calc).

save the power (and cost) of 14 4GB DIMMs. A single socket can support
13,333 IOPS, so we can also reduce the number of Intel E5345 sockets by one.
Using the numbers in Figure 6.18, the total system power is now:

Idle Power r a n d o m r c a d s = 154 T 2 X 10 T 8 X 8 T 15 = 253 watts

Peak Power r a n d o m r e a d s = 2 1 5 T 2 X 1 1 T S X 8 T 1 5 = 316 watts

or a reduction in power by a factor of 1.6 to 1.7.
The original system can performance 14,000 64 KB sequential reads per

second. We still need all the disks and the disk controller, and the same number
of DIMMs can handle this higher load. This workload exceeds a processing
power of the single Intel E5345 socket, so we need to add a second one.

Idle Powersequent ia] reads = 1 5 4 T 2 2 T 2 X 1 0 T 8 X 8 T 1 5 = 275 watts

Peak Powers c q u c n t i a l r c a d s = 2 1 5 T 7 9 T 2 X 1 1 T 8 X 8 T 1 5 = 395 watts

or a reduction in power by a factor of 1.4 to 1.5.

Advanced Topics: Networks

Networks are growing in popularity over time, and unlike other I/O devices, there
are many books and courses on them. For readers who have not taken courses or

http://www.sun.com/servcrs/x64/

6.12 Fallacies and Pitfalls 6 1 3

read books on networking, [j££ Section 6.11 on the CD gives a quick overview of
the topics and terminology, including Internetworking, the OSI model, protocol
families such as TCP/IP, long-haul networks such as ATM, local area networks such
as Ethernet, and wireless networks such as IEEE 802.11.

Fallacy: The rated mean time to failure of disks is 1,200,000 hours or almost 140 years,
so disks practically never fail.

Marketing practices of disk manufacturers have misled users. ITow is such an
MTTF calculated? Early in the process, manufacturers will put thousands of disks
in a room, run them for a few months, and count the number that fail. They com-
pute MTTF as the total number of hours that the disks were cumulatively available
divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be five years or 43,800 hours. For this large MTTF to
make some sense, disk manufacturers argue that the calculation corresponds to
a user who buys a disk, and then keeps replacing the disk every five years—the
planned lifetime of the disk. The claim is that if many customers (and their great-
grandchildren) did this for the next century, on average they would replace a disk
27 times before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail in a year, called
annual failure rate (AFR). Assume 1000 disks with a 1,200,000-hour MTTF and
that the disks are used 24 hours a day. If you replaced failed disks with a new one
having the same reliability characteristics, the number that would fail per year
(8,760 hours) is

Stated alternatively, the AFR is 0.73%. Disk manufacturers are starting to quote
AFR as well as MTTB to give users better intuition about what to expect about
their products.

Fallacy: Disk failure rates in the field match their specifications.

Two recent studies evaluated large collections of disks to check the relationship
between results in the field compared to specifications. One study was of almost
100,000 ATA and SCSI disks that had quoted MTTF of 1,000,000 to 1,500,000
hours, or AFR of 0 .6% to 0.8%. They found AFRs of 2% to 4% to be common, often
three to five times higher than the specified rates [Schroeder and Gibson, 2007].

Fallacies and Pitfalls

Failed disks =
1000 drives x 8760 hours/drive

1,200,000 hours/failure
= 7.3

6 1 4 Chapter 6 Storage and Other I/O Topics

A second study of more than 100,000 ATA disks, which had a quoted AFR of about
1.5%, saw failure rates of 1.7% for drives in their first year rise to 8 .6% for drives in
their third year, or about five to six times the specified rate [Pinheiro, Weber, and
Barroso, 2007].

Fallacy: A GB/sec interconnect can transfer 1 GB of data in 1 second.

First, you generally cannot use 100% of any computer resource. For a bus, you
would be fortunate to get 70% to 80% of the peak bandwidth. Time to send the
address, time to acknowledge the signals, and stalls while waiting to use a busy bus
are among the reasons you cannot use 100% of a bus.

Second, the definition of a gigabyte of storage and a gigabyte per second of
bandwidth do not agree. As we discussed on page 596, I/O bandwidth measures
are usually quoted in base 10 (i.e., 1 GB/sec = 109 bytes/sec), while 1 GB of data
is typically a base 2 measure (i.e., 1 GB = 230bytes). How significant is this distinc-
tion? If we could use 100% of the bus for data transfer, the time to transfer 1 GB of
data on a 1 GB/sec interconnect is actually

93 0 1 07 3 74 1 8 ?4
t ^ = T m i f e i = L 0 7 3 7 4 1 8 2 4 = 1 -07 s«onds

Pitfall: Trying to provide features only within the network versus end to end.

The concern is providing at a lower-level features that can only be accomplished at
the highest level, thus only partially satisfying the communication demand. Saltzer,
Reed, and Clark [1984] give the end-to-end argument, as follows:

The function in question can completely and correctly be specified only with the
knowledge and help of the application standing at the endpoints of the commu-
nication system. Therefore, providing that questioned function as a feature of the
communication system itself is not possible.

Their example of the pitfall was a network at MIT that used several gateways,
each of which added a checksum from one gateway to the next. The programmers
of the application assumed the checksum guaranteed accuracy, incorrectly believ-
ing that the message was protected while stored in the memory of each gateway.
One gateway developed a transient failure that swapped one pair of bytes per mil-
lion bytes transferred. Over time the source code of one operating system was
repeatedly passed through the gateway, thereby corrupting the code. The only
solution was to correct the infected source files by comparing to paper listings and
repairing the code by hand! Had the checksums been calculated and checked by the
application running on the end systems, safety would have been assured.

There is a useful role for intermediate checks, however, provided that end-to-end
checking is available. End-to-end checking may show that something is broken between

6.12 Fallacies and Pitfalls 6 1 5

two nodes, but it doesn't point to where the problem is. Intermediate checks can
discover which component is broken. You need both for repair.

Pitfall: Moving functions from the CPU to the I/O processor, expecting to improve
performance without a careful analysis.

There are many examples of this pitfall trapping people, although I/O processors,
when properly used, can certainly enhance performance. A frequent instance of
this fallacy is the use of intelligent I/O interfaces, which, because of the higher
overhead to set up an I/O request, can turn out to have worse latency than a
processor-directed I/O activity (although if the processor is freed up sufficiently,
system throughput may still increase). Frequently, performance falls when the I/O
processor has much lower performance than the main processor. Consequently, a
small amount of main processor time is replaced with a larger amount of I/O pro-
cessor time. Workstation designers have seen both these phenomena repeatedly.

Myer and Sutherland [1968] wrote a classic paper on the tradeoff of complex-
ity and performance in I/O controllers. Borrowing the religious concept of the
"wheel of reincarnation," they eventually noticed they were caught in a loop of
continuously increasing the power of an I/O processor until it needed its own
simpler coprocessor:

We approached the task by starting with a simple scheme and then adding
commands and features that we felt would enhance the power of the machine.
Gradually the [display] processor became more complex Finally the display
processor came to resemble a full-fledged computer with some special graphics
features. And then a strange thing happened. We felt compelled to add to the
processor a second, subsidiary processor, which, itself began to grow in
complexity. It was then that we discovered the disturbing truth. Designing a
display processor can become a never-ending cyclical process. In fact, we found the
process so frustrating that we have come to call it the "wheel of reincarnation."

Pitfall: Using magnetic tapes to back up disks.

This is both a fallacy and a pitfall. Magnetic tapes have been part of computer
systems as long as disks because they use similar technology as disks, and hence
historically have followed the same density improvements. The historic cost/
performance difference between disks and tapes is based on a sealed, rotating disk
having lower access time than sequential tape access; but removable spools of
magnetic tape mean many tapes can be used per reader, and they can be very long
and so have high capacity. Hence, in the past a single magnetic tape could hold the
contents of many disks, and since it was 10 to 100 times cheaper per gigabyte than
disks, it was a useful backup medium.

The claim was that magnetic tapes must track disks since innovations in disks
must help tapes. This claim was important because tapes were a small market and
could not afford a separate large research and development effort. One reason the
market is small is that desktop owners generally do not back up disks onto tape,

6 1 6 Chapter 6 Storage and Other I/O Topics

and so while desktops are by far the largest market for disks, desktops are a small
market for tapes.

Alas, the larger market has led disks to improve much more quickly than tapes.
Starting in 2000 to 2002, the largest popular disk was larger than the largest popular
tape. In that same time frame, the price per gigabyte of ATA disks dropped below
that of tapes. Tape advocates claim that tapes have compatibility requirements that
are not imposed on disks; tape readers must read or write the current and previous
generation of tapes, and must read the last four generations of tapes. As disks are
closed systems, disk heads need only read the platters enclosed with them, and this
advantage explains why disks are improving much more rapidly.

Today, some organizations have dropped tapes altogether, using networks and
remote disks to replicate the data geographically. Indeed, many companies offering
software as a service use inexpensive components but replicate data at an applica-
tion level across multiples sites. The sites are picked so that disasters would not take
out both sites, enabling instantaneous recovery time. (Long recovery time for site
disasters is another serious drawback to the serial nature of magnetic tapes.) Such
a solution depends on advances in disk capacity and network bandwidth to make
economic sense, but these two are getting much greater investment and hence have
better recent records of accomplishment than tape.

Fallacy: Operating systems are the best place to schedule disk accesses.

As mentioned in Section 6.3, higher-level interfaces like ATA and SCSI offer logical
block addresses to the host operating system. Given this high-level abstraction, the
best an OS can do to try to help performance is to sort the logical block addresses
into increasing order. However, since the disk knows the actual mapping of the
logical addresses onto the physical geometry of sectors, tracks, and surfaces, it can
reduce the rotational and seek latencies by rescheduling.

For example, suppose the worldoad is four reads [Anderson, 2003] :

Operation Starting LBA Length

Read 724 8

Read 100 16

Read 9987 1

Read 26 128

The host might reorder the four reads into logical block order:

Operation Starting LBA Length

Read 26 128

Read 100 16

Read 724 8

Read 9987 1

6.13 Concluding Remarks 6 1 7

—>• Host-ordered queue
—Drive-ordered queue

FIGURE 6.19 Example showing OS versus disk schedule accesses, labeled host-ordered
versus drive-ordered. T h e former takes three revolutions to complete the four reads, while the latter
completes them in just three-fourths of a revolution (from Anderson [2003]) .

Depending on the relative location of the data on the disk, reordering could make
it worse, as Figure 6.19 shows. The disk-scheduled reads complete in three-quarters
of a disk revolution, but the OS-scheduled reads take three revolutions.

Pitfall: Using the peak transfer rate of a portiofi of the I/O system to make perfor-
mance projections or performance comparisons.

Many of the components of an I/O system, from the devices to the controllers to
the buses, are specified using their peak bandwidths. In practice, these peak band-
width measurements are often based on unrealistic assumptions about the system
or are unattainable because of other system limitations. For example, in quoting
bus performance, the peak transfer rate is sometimes specified using a memory
system that is impossible to build. For networked systems, the software overhead
of initiating communication is ignored.

The 32-bit, 33MFIz PCI bus has a peak bandwidth of about 133 MB/sec. In
practice, even for long transfers, it is difficult to sustain more than about 80 MB/sec
for realistic memory systems.

Amdahl's law also reminds us that the throughput of an I/O system will be
limited by the lowest-performance component in the I/O path.

I/O systems are evaluated on several different characteristics: dependability; the
variety of I/O devices supported; the maximum number of I/O devices; cost; and
performance, measured both in latency and in throughput. These goals lead to

Concluding Remarks

618 Chapter 6 Storage and Other I/O Topics

widely varying schemes for interfacing I/O devices. In the low-end and midrange
systems, buffered DMA is likely to be the dominant transfer mechanism. In the
high-end systems, latency and bandwidth may both be important, and cost may
be secondary. Multiple paths to I/O devices with limited buffering often charac-
terize high-end I/O systems. Typically, being able to access the data on an I/O
device at any time (high availability) becomes more important as systems grow.
As a result, redundancy and error correction mechanisms become more and more
prevalent as we enlarge the system.

Storage and networking demands are growing at unprecedented rates, in part
because of increasing demands for all information to be at your fingertips. One
estimate is that the amount of information created in 2002 was 5 exabytes—
equivalent to 500,000 copies of the text in the U.S. Library of Congress—and
that the total amount of information in the world was doubling every three years
[Lyman and Varian, 2003].

Future directions of I/O include expanding the reach of wired and wireless net-
works, with nearly every device potentially having an IP address, and the expanding
role of flash memory in storage systems.

Understanding
Program

Performance

The performance of an I/O system, whether measured by bandwidth or latency,
depends on all the elements in the path between the device and memory, includ-
ing the operating system that generates the I/O commands. The bandwidth of the
interconnect, the memory, and the device determine the maximum transfer rate
from or to the device. Similarly, the latency depends on the device latency, together
with any latency imposed by the memory system or buses. The effective bandwidth
and response latency also depend on other I/O requests that may cause contention
for some resource in the path. Finally, the operating system is a bottleneck. In some
cases, the OS takes a long time to deliver an I/O request from a user program to an
I/O device, leading to high latency. In other cases, the operating system effectively
limits the I/O bandwidth because of limitations in the number of concurrent I/O
operations it can support.

Keep in mind that while performance can help sell an I/O system, users over-
whelmingly demand capacity and dependability from their I/O systems.

Historical Perspective and Further
Reading

The history of I/O systems is a fascinating one. ® Section 6.14 gives a brief history
of magnetic disks, RAID, flash memory, databases, the Internet, the World Wide
Web, and how Ethernet continues to triumph over its challengers.

6.15

6.15 Exercises 619

Exercises
Contributed by Perry Alexander of the University of Kansas

Exerc ise 6.1
Figure 6.2 describes numerous I/O devices in terms of their behavior, partner, and
data rate. However, these classifications often do not provide a complete picture of
data flow within a system. Explore device classifications for the following devices.

a. Video Game

b. Handheld GPS

6 . 1 . 1 [5] <6 .1> For the devices listed in the table, identify I/O interfaces and
classify them in terms of their behavior and partner.

6 . 1 . 2 [5] <6 .1> For the interfaces identified in the previous problem, estimate
their data rate.

6 . 1 . 3 [5] <6 .1> For the interfaces identified in the previous problem, determine
whether data rate or operation rate is the best performance measurement.

Exerc ise 6.2
Mean Time Between Failures (MTBF) , Mean Time To Replacement (MTTR) , and
Mean Time To Failure (M T T F) are useful metrics for evaluating the reliability and
availability of a storage resource. Explore these concepts by answering the questions
about devices with the following metrics.

MTTF MTTR

a. 5 Years 1 Week

b. 10 Years 5 Days

6 . 2 . 1 [5] <6.1, 6.2> Calculate the M T B F for each of the devices in the table.

6 . 2 . 2 [5] < 6 . 1 , 6 . 2 > Calculate the availability for each of the devices in the table.

6 . 2 . 3 [5] <6.1, 6.2> What happens to availability as the M T T R approaches 0. Is
this a realistic situation?

6 . 2 . 4 [5] < 6 1 , 6 . 2 > What happens to availability as the M T T R gets very high, i.e.,
a device is difficult to repair? Does this imply the device has low availability?

620 Chapter 6 Storage and Other I/O Topics

Exercise 6.3
Average and minimum times for reading and writing to storage devices are common
measurements used to compare devices. Using techniques from Chapter 6, calculate
values related to read and write time for disks with the following characteristics.

• Average Seek Time • 3 2 9 Disk Transfer Rate Controller Transfer Rate

a. 11 ms 7200 34 MBytes/s 480 MBits/s

b. 9 ms 7200 30 MBytes/s 500 MBits/s

6 . 3 . 1 [10] <6.2, 6 .3> Calculate the average time to read or write a 1024-byte
sector for each disk listed in the table.

6 . 3 . 2 [10] <6.2, 6 .3> Calculate the minimum time to read or write a 2048-byte
sector for each disk listed in the table.

6 . 3 . 3 [10] <6.2, 6 .3> For each disk in the table, determine the dominant factor
for performance. Specifically, if you could make an improvement to any aspect of
the disk, what would you choose? If there is no dominant factor, explain why.

Exercise 6.4
Ultimately, storage system design requires consideration of usage scenarios as
well as disk parameters. Different situations require different metrics. Let's try to
systematically evaluate disk systems. Explore differences in how storage systems
should be evaluated by answering the questions about the following applications.

a. Online NASA Satellite Database

b. Video Gaming System

6 . 4 . 1 [5] < 6 . 2 , 6 . 3 > For each application, would decreasing the sector size during
reads and writes improve performance? Explain your answer.

6 . 4 . 2 [5] <6.2, 6 .3> For each application, would increasing disk rotation speed
improve performance? Explain your answer.

6 . 4 . 3 [5] <6.2, 6 .3> For each application, would increasing disk rotation
speed improve system performance given that M T T F is decreased? Explain your
answer.

6.15 Exercises 621

Exercise 6.5

Flash memory is one of the first true competitors for traditional disk drives. Explore
the implications of Flash memory by answering questions about the following
applications.

a. Online NASA Satellite Database

b. Video Gaming System

6 . 5 . 1 [5] <6.2, 6.3, 6 .4> As we move toward solid state drives constructed from
Flash memory, what will change about disk read times assuming that the data
transfer rate stays constant?

6 . 5 . 2 [10] <6.2, 6.3, 6 .4> Would each application benefit from a solid state Flash
drive given that cost is a design factor?

6 . 5 . 3 [10] <6.2, 6.3, 6 .4> Would each application be inappropriate for a solid
state Flash drive given that cost is N O T a design factor?

Exercise 6.6
Explore the nature of Flash memory by answering the questions related to perfor-
mance for Flash memories with the following characteristics.

Data Transfer Rate Controller Transfer Rate

a. 34 MB/s 480 MB/s

b. 30 MB/s 500 MB/s

6 . 6 . 1 [10] <6.2, 6.3, 6 .4> Calculate the average time to read or write a 1024-byte
sector for each Flash memory listed in the table.

6 . 6 . 2 [10] < 6 . 2 , 6 . 3 , 6 . 4 > Calculate the minimum time to read or write a 512-byte
sector for each Flash memory listed in the table.

6 . 6 . 3 [5[<6.2, 6.3, 6 .4> Figure 6.6 shows that Flash memory read and write
access times increase as Flash memory gets larger. Is this unexpected? What factors
cause this?

622 Chapter 6 Storage and Other I/O Topics

Exercise 6.7
I/O can be performed either synchronously or asynchronously. Explore the differ-
ences by answering performance questions about the following peripherals.

a. Mouse

b. Memory Controller

6 . 7 . 1 [5] <6.5> What would be the most appropriate bus type (synchronous or
asynchronous) for handling communications between a CPU and the peripherals
listed in the table?

6 . 7 . 2 [5] <6.5> What problems would long, synchronous buses cause for
connections between a CPU and the peripherals listed in the table?

6 . 7 . 3 [5] <6.5> What problems would asynchronous buses cause for connections
between a CPU and the peripherals listed in the table?

Exercise 6.8
Among the most common bus types used in practice today are FireWire (IEEE
1394), USB, PCI, and SATA. Although all four are asynchronous, they are imple-
mented in different ways giving them different characteristics. Explore different bus
structures by answering questions about the buses and the following peripherals.

a. External Hard Drive

b. Keyboard

6 . 8 . 1 [5] <6.5> Select an appropriate bus (FireWire, USB, PCI, or SATA) for the
peripherals listed in the table. Explain why the bus selected is appropriate. (See
Figure 6.8 for key characteristics of each bus.)

6 . 5 . 2 [20] <6 .5> Use online or library resources and summarize the communi-
cation structure for each bus type. Identify what the bus controller does and where
the control physically is.

6 . 5 . 3 [15] <6 .5> Outline limitations of each of the bus types. Explain why those
limitations must be taken into consideration when using the bus.

Exercise 6.9
Communicating with I/O devices is achieved using combinations of polling, inter-
rupt handling, memory mapping, and special I/O commands. Answer the questions

6.15 Exercises 6 2 3

about communicating with I/O subsystems for the following applications using
combinations of these techniques.

a. Video Game Controller

b. Computer Monitor

6 . 9 . 1 [5] <6 .6> Describe device polling. Would each application in the table be
appropriate for communication using polling techniques? Explain.

6 . 9 . 2 [5] <6.6> Describe interrupt-driven communication. For each application
in the table, if polling is inappropriate, explain interrupt-driven techniques that
could be used.

6 . 9 . 3 [10] <6.6> For the applications listed in the table, outline a design for
memory-mapped communication. Identify reserved memory locations and outline
their contents.

6 . 9 . 4 [10] <6.6> For the applications listed in the table, outline a design for
commands implementing command-driven communication. Identify commands
and their interaction with the device.

6 . 9 . 5 [5] <6 .6> Does it make sense to define I/O subsystems that use a combi-
nation of memory mapping and command-driven communication? Explain your
answer.

Exercise 6.10
Section 6.6 defines an eight-step process for handling interrupts. The Cause and
Status registers together provide information on the cause of the interrupt and the
status of the interrupt handling system. Explore interrupt handling by answering
the questions about the following combinations of interrupts.

a. Power Down Overheat Ethernet Controller Data

b. Overheat Reboot Mouse Controller

6 . 1 0 . 1 [5] <6.6> When an interrupt is detected, the Status register is saved and
all but the highest priority interrupt is disabled. Why are low-priority interrupts
disabled? Why is the Status register saved prior to disabling interrupts?

6 . 1 0 . 2 [10] <6.6> Prioritize interrupts from the devices listed in each table row.

6 . 1 0 . 3 [10] <6.6> Outline how an interrupt from each of the devices listed in the
table would be handled.

6 2 4 Chapter 6 Storage and Other I/O Topics

6.10.4 [5] <6.6> What happens if the interrupt enable bit of the Cause register
is not set when handling an interrupt? What value could the interrupt mask value
take to accomplish the same thing?

6.10.5 [5] <6.6> Most interrupt-handling systems are implemented in the
operating system. What hardware support could be added to make interrupt
handling more efficient? Contrast your solution to potential hardware support for
function calls.

6.10.6 [5] <6.6> In some interrupt-handling implementations, an interrupt
causes an immediate jump to an interrupt vector. Instead of a Cause register
where each interrupt sets a bit, each interrupt has its own interrupt vector. Can the
same priority interrupt system be implemented using this approach? Is there any
advantage to this approach?

Exercise 6.11
Direct Memory Access (DMA) allows devices to access memory directly rather
than working through the CPU. This can dramatically speed-up the performance
of peripherals, but adds complexity to memory system implementations. Explore
DMA implications by answering the questions about the following peripherals.

a. Graphics Card

b. Sound Card

6.11.1 [5] <6.6> Does the CPU relinquish control of memory when DMA is
active? For example, can a peripheral simply communicate with memory directly,
avoiding the CPU completely?

6.11.2 [10] <6.6> Of the peripherals listed in the table, which would benefit from
DMA? What criteria determine if DMA is appropriate?

6.11.3 [10] <6.6> Of the peripherals listed in the table, which could cause
coherency problems with cache contents? What criteria determine if coherency
issues must be addressed?

6.11.4 [5] <6.6> Describe what problems could occur when mixing DMA
and virtual memory. Which of the peripherals in the table could introduce such
problems? How can they be avoided?

Exercise 6.12
Metrics for I/O performance may vary dramatically from application to application.
Where the number of transactions processed dominates performance in some

6.15 Exercises 6 2 5

situations, data throughput dominates in others. Explore I/O performance evaluation
by answering the questions for the following applications.

a. Web Browsing

b. Sound Editing

6.12.1 [10] <6.7> For each application in the table, does I/O performance domi-
nate system performance?

6.12.2 [10] <6.7> For each application in the table, is I/O performance best mea-
sured using raw data throughput?

6.12.3 [5] <6.7> For each application in the table, is I/O performance best
measured using the number of transactions processed?

6.12.4 [5] <6.7> Is there a relationship between the performance measures from
the previous two problems and choosing whether to use polling or interrupt-driven
communication? What about the choice of using memory-mapped or command-
driven I/O?

Exercise 6-13
Benchmarks play an important role in evaluating and selecting peripheral devices.
For benchmarks to be useful, they must exhibit properties similar to those experi-
enced by a device under normal use. Explore benchmarks and device selection by
answering questions about the following applications.

a. Web Browsing

b. Sound Editing

6.13.1 [5] <6.7> For each application in the table, define characteristics that a set
of benchmarks should exhibit when evaluating an I/O subsystem?

6.13.2 [15] <6.7> Using online or library resources, identify a set of standard
benchmarks for applications in the table. Why do standard benchmarks help?

6.13.3 [5] <6.7> Does it make sense to evaluate an I/O subsystem outside the
larger system of which it is a part? Flow about evaluating a CPU?

Exercise 6.14
RAID is among the most popular approaches to parallelism and redundancy in
storage systems. The name Redundant Arrays of Inexpensive Disks implies several

6 2 6 Chapter 6 Storage and Other I/O Topics

things about RAID arrays that we will explore in the context of the following
activities.

a. Online Database Services

b. Sound Editing

6 . 1 4 . 1 [10] <6.9> RAID 0 uses striping to force parallel access among many disks.
Why does striping improve disk performance? For each of the activities listed in the
table, will striping help better achieve their goals?

6 . 1 4 . 2 [5] <6 .9> RAID 1 mirrors data among several disks. Assuming that
inexpensive disks have lower M T B F than expensive disks, how can redundancy
using inexpensive disks result in a system with lower MTBF? Use the mathematical
definition of M T B F to explain your answer. For each of the activities listed in the
table, will RAID 1 help better achieve their goals?

6 . 1 4 . 3 [5] <6.9> Like RAID 1, RAID 3 provides higher data availability. Explain
the tradeoff between RAID 1 and RAID 3. Would each of the applications listed in
the table benefit from RAID 3 over RAID 1?

Exercise S»15
RAID 3, RAID 4, and RAID 5 all use parity system to protect blocks of data. Spe-
cifically, a parity block is associated with a collection of data blocks. Each row in
the following table shows the values of the data and parity blocks, as described in
Figure 6.13.

New DO DO DI D2 D3 P

a. FEFE OOFF A387 F345 FF00 4582

b. AB9C F457 0098 OOFF 2FFF A387

6 . 1 5 . 1 [10] <6.9> Calculate the new parity P' for RAID 3.

6 . 1 5 . 2 [10] <6 .9> Calculate the new parity P' for RAID 4.

6 . 1 5 . 3 [5] <6.9> Is RAID 3 or RAID 4 more efficient? Are there reasons why
RAID 3 would be preferable to RAID 4?

6 . 1 5 . 4 [5] <6 .9> RAID 4 and RAID 5 use roughly the same mechanism to
calculate and store parity for data blocks. ITow does RAID 5 differ from RAID 4
and for what applications would RAID 5 be more efficient?

6 . 1 5 . 5 [5] <6.9> RAID 4 and RAID 5 speed improvements grow with respect
to RAID 3 as the size of the protected block grows. Why is this the case? Is there a
situation where RAID 4 and RAID 5 would be no more efficient than RAID 3?

6.15 Exercises 627

Exercise 6.16
The emergence of Web servers for ecommerce, online storage, and communication
has made disk servers critical applications. Availability and speed are well-known
metrics for disk servers, but power consumption is becoming increasingly important.
Answer the questions about configuration and evaluation of disk servers with the
following parameters.

1 Program
Instructions/I/O

Operation

OS Instructions/I/O
Operation

Workload
(KB reads)

Processor
Speed (Instructions/

Second)

1 a ' 250,000 50,000 128 4 Billion

[b. 1 ioo,ooo 50,000 64 4 Billion

6 . 1 6 . 1 [10] <6.8, 6 .10> Find the maximum sustained I/O rate for random
reads and writes. Ignore disk conflicts and assume the RAID controller is not the
bottleneck. Follow the same approach as outlined in Section 6.10 making similar
assumptions where necessary.

6 . 1 6 . 2 [10] <6.8, 6 .10> Assume we are configuring a Sun Fire x4150 server as
described in section 6.10. Determine if a configuration of 8 disks presents an I/O
bottleneck. Repeat for configurations of 16,4 , and 2 disks.

6 . 1 6 . 3 [10] <6.8, 6 .10> Determine if the PCI bus, D I M M , or the Front Side Bus
presents an I/O bottleneck. Use the same parameters and assumptions used in
section 6.10.

6 . 1 6 . 4 [5] <6.8, 6 .10> Explain why real systems tend to use benchmarks or real
applications to assess actual performance.

Exercise 6.17
Determining the performance of a single server with relatively complete data is
an easy task. However, when comparing servers from different vendors providing
different data, choosing among alternatives can be difficult. Explore the process
of finding and evaluating servers by answering questions about the following
application.

Web server

6 . 1 7 . 1 [15] <6.8, 6 .10> For the application listed above, identify runtime
characteristics for an operational system. Choose characteristics that will support
evaluation similar to that performed for Exercise 6.16.

628 Chapter 6 Storage and Other I/O Topics

6.17.2 [15] <6.8, 6.10> For the application listed above, find a server available
in the marketplace that you feel would be appropriate for running the application.
Before evaluating the server, identify reasons why it was selected.

6.17.3 [20] <6.8, 6.10> Using metrics similar to those used in Chapter 6 and
Exercise 6.16, assess the server you identified in Exercise 6.17.2 in comparison to the
Sun Fire x4150 server evaluated in Exercise 6.16. Which would you choose? Did the
results of your analysis surprise you? Specifically, would you choose differently?

6.17.4 [15] <6.8, 6.10> Identify a standard benchmark set that would be useful
for comparing the server you identified in Exercise 6.17.2 with the Sun Fire x4150.

Exerc ise 6.18
Measurements and statistics provided by storage vendors must be carefully inter-
preted to gain meaningful predictions about their system behavior. The following
table provides data for various disk drives.

of Drives Hours/Drive Hours/Failure

a. 1000 8,760 1,000,000

b. 1000 10,512 1,500,000

6.18.1 [10] <6.12> Calculate annual failure rate (AFR) for disks in the table.

6.18.2 [10] <6.12> Assume that annual failure rate varies over the lifetime of
disks in the previous table. Specifically, assume that AFR is three times as high in
the first month of operation and doubles every year starting in the fifth year. How
many disks would be replaced after 7 years of operation? What about 10 years?

6.18.3 [10] <6.12> Assume that disks with lower failure rates are more expensive.
Specifically, disks are available at a higher cost that will start doubling their failure
rate in year 8 rather than year 5. How much more would you pay for disks if your
intent is to keep them for 7 years? What about 10 years?

Exerc ise 6.19
For disks in the table in Exercise 6.18, assume that your vendor offers a RAID 0
configuration that will increase storage system throughput by 70% and a RAID 1
configuration that will drop AFR of disk pairs by 2. Assume that the cost of each
solution is 1.6 times the original solution cost.

6.19.1 [5] <6.9, 6.12> Given only the original problem parameters, would you
recommend upgrading to either RAID 0 or RAID 1 assuming individual disk
parameters remain the same in the previous table?

6.15 Exercises 6 2 9

6.19.2 [5] <6.9, 6.12> Given that your company operates a global search engine
with a large disk farm, does upgrading to either RAID 0 or RAID 1 make economic
sense given that your income model is based on the number of advertisements
served?

6.19.3 [5] <6.9, 6.12> Repeat Exercise 6.19.2 for a large disk farm operated by
an online backup company. Does upgrading to either RAID 0 or RAID 1 make
economic sense given that your income model is based on the availability of your
server?

Exercise 6.20
Day-to-day evaluation and maintenance of operational computer systems involves
many of the concepts discussed in Chapter 6. Explore the intricacies of evaluating
systems by exploring the following questions.

6.20.1 [20] <6.10, 6.12> Configure the Sun Fire x4150 to provide 10 terabytes of
storage for a processor array of 1000 processors running bioinformatics simula-
tions. Your configuration should minimize power consumption while addressing
throughput and availability concerns for the disk array. Make sure you consider the
properties of large simulations when performing your configuration.

6.20.2 [20] <6.10,6.12> Recommend a backup and data archiving system for the
disk array from Exercise 6.20.1. Compare and contrast disk, tape, and online backup
capabilities. Use Internet and library resources to identify potential servers. Assess
cost and suitability for the application using parameters described in Chapter 6.
Select parameters for comparison using properties of the application as well as
specified requirements.

6.20.3 [15] <6.10, 6.12> Competing vendors for the systems you identified
in Exercise 6.20.2 have offered to allow you to evaluate their systems on site.
Identify the benchmarks you will use to determine which system is best for your
application. Determine how long it will take you to gather enough data to make
your determination.

Answers to
Check Yourself

§6.2, page 575: 2 and 3 are true.
§6.3, page 579: 3 and 4 are true.
§6.4, page 582: All are true (assuming 40 MB/s is comparable to 100 MB/s).
§6.5, page 585: 1 is true.
§6.6, page 594: 1 and 2.
§6.7, page 598: 1 and 2. 3 is false, since most TPC benchmarks include cost.
§6.9, page 605: All are true.

— i

There are finer fish in
the sea than have ever
been caught.
Irish proverb

Multicores,
Multiprocessors,
and Clusters
7.1 Introduction 6 3 2

7.2 The Difficulty of Creating Parallel Processing

Programs 6 3 4

7.3 Shared Memory Multiprocessors 6 3 8

7.4 Clusters and Other Message-Passing

Multiprocessors 6 4 1

7.5 Hardware Multithreading 6 4 5

7.6 SHSD, MDN1D, SIMD, SPMD, and Vector 6 4 8

7.7 Introduction to Graphics Processing Units 6 5 4

7.8 Introduction to Multiprocessor Network Topologies 6 6 0

7.9 Multiprocessor Benchmarks 6 6 4

7.10 Roofline: A Simple Performance Model 6 6 7

7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 6 7 5

7.12 Fallacies and Pitfalls 6 8 4

7.13 Concluding Remarks 686

7.14 Historical Perspective and Further Reading 688

7.15 Exercises 6 8 8

Multiprocessor or Cluster Organization

Computer Computer

Computer

6 3 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

"Over the Mountains
Of the Moon, Down
the Valley of the
Shadow, Ride, boldly
ride" The shade
replied,— "If you seek
for El Dorado!"
Edgar Allan Poe,
"El Dorado," stanza 4,
1849

multiprocessor A
computer system with at
least two processors. This
is in contrast to a
uniprocessor, which has
one.

job-level parallelism or
process-level parallelism
Utilizing multiple
processors by running
independent programs
simultaneously.

parallel processing
program A single
program that runs on
multiple processors
simultaneously.

cluster A set of
computers connected
over a local area
network (LAN) that
functions as a single large
multiprocessor.

multicore
microprocessor
A microprocessor
containing multiple
processors ("cores") in a
single integrated circuit.

Dnntlradiiuictiioini

Computer architects have long sought the El Dorado of computer design: to create
powerful computers simply by connecting many existing smaller ones. This golden
vision is the fountainhead of multiprocessors. Ideally, customers order as many
processors as they can afford and receive a commensurate amount of performance.
Thus, multiprocessor software must be designed to work with a variable number
of processors. As mentioned in Chapter 1, power has become the overriding issue
for both datacenters and microprocessors. Replacing large inefficient processors
with many smaller, efficient processors can deliver better performance per watt
or per joule both in the large and in the small, if software can efficiently use them.
Thus, improved power efficiency joins scalable performance in the case for multi-
processors.

Since multiprocessor software must scale, some designs support operation in
the presence of broken hardware; that is, if a single processor fails in a multipro-
cessor with n processors, these system would continue to provide service with n - 1
processors. Hence, multiprocessors can also improve availability (see Chapter 6).

High performance can mean high throughput for independent jobs, called job-
level parallelism or process-level parallelism. These parallel jobs are independent
applications, and they are an important and popular use of parallel computers. This
approach is in contrast to running a single job on multiple processors. We use the
term parallel processing program to refer to a single program that runs on multi-
ple processors simultaneously.

There have long been scientific problems that have needed much faster com-
puters, and this class of problems has been used to justify many novel parallel
computers over the past decades. We will cover several of them in this chapter.
Some of these problems can be handled simply, using a cluster composed of
microprocessors housed in many independent servers or PCs. In addition, clus-
ters can serve equally demanding applications outside the sciences, such as search
engines, Web servers, email servers, and databases.

As described in Chapter 1, multiprocessors have been shoved into the spot-
light because the power problem means that future increases in performance
will apparently come from more processors per chip rather than higher clock
rates and improved CPI. They are called multicore microprocessors instead of
multiprocessor microprocessors, presumably to avoid redundancy in naming.
Hence, processors are often called cores in a multicore chip. The number of
cores is expected to double every two years. Thus, programmers who care about
performance must become parallel programmers, for sequential programs mean
slow programs.

7.1 Introduction 6 3 3

The tall challenge facing the industry is to create hardware and software that will
make it easy to write correct parallel processing programs that will execute efficiently
in performance and power as the number of cores per chip scales geometrically.

This sudden shift in microprocessor design has caught many off guard, so there
is a great deal of confusion about the terminology and what it means. Figure 7.1
tries to clarify the terms serial, parallel, sequential, and concurrent. The columns
of this figure represent the software, which is either inherently sequential or
concurrent. The rows of the figure represent the hardware, which is either serial or
parallel. For example, the programmers of compilers think of them as sequential
programs: the steps are lexical analysis, parsing, code generation, optimization,
and so on. In contrast, the programmers of operating systems normally think of
them as concurrent programs: cooperating processes handling I/O events due to
independent jobs running on a computer.

Software

Sequential Concurrent

Serial
Matrix Multiply written in MatLab
running on an Intel Pentium 4

Windows Vista Operating System
running on an Intel Pentium 4

Hardware
Parallel

Matrix Multiply written in MATLAB
running on an Intel Xeon e5345
(Clovertown)

Windows Vista Operating System
running on an Intel Xeon e5345
(Clovertown)

FIGURE 7.1 Hardware/software categorization and examples of application perspective
on concurrency versus hardware perspective on parallelism.

The point of these two axes of Figure 7.1 is that concurrent software can run on
serial hardware, such as operating systems for the Intel Pentium 4 uniprocessor,
or on parallel hardware, such as an OS on the more recent Intel Xeon e5345
(Clovertown). The same is true for sequential software. For example, the MATLAB
programmer writes a matrix multiply thinking about it sequentially, but it could run
serially on Pentium 4 hardware or in parallel on Xeon e5345 hardware. You might
guess that the only challenge of the parallel revolution is figuring out how to make
naturally sequential software have high performance on parallel hardware, but it is
also to make concurrent programs have high performance on multiprocessors as
the number of processors increases. With this distinction made, in the rest of this
chapter we will use parallel processing program or parallel software to mean either
sequential or concurrent software running on parallel hardware.

The next section describes why it is hard to create efficient parallel processing
programs. Sections 7.3 and 7.4 describe the two alternatives of a fundamental
parallel hardware characteristic, which is whether or not all the processors in the
systems rely upon a single physical address. The two popular versions of these
alternatives are called shared memory multiprocessors and clusters. Section 7.5 then

6 3 4 Chapter 7 IVluIticores, Multiprocessors, and Clusters

describes multithreading, a term often confused with multiprocessing, in part
because it relies upon similar concurrency in programs. Section 7.6 describes an
older classification scheme than in Figure 7.1. In addition, it describes two styles
of instruction set architectures that support running of sequential applications on
parallel hardware, namely SIMD and vector. Section 7.7 describes a relatively new
style of computer from the graphics hardware community, called a graphics pro-
cessing unit (GPU). Appendix A describes GPUs in more detail. We next discuss the
difficulty of finding parallel benchmarks in Section 7.9. This section is followed by
a description of a new, simple, yet insightful performance model that helps in the
design of applications as well as architectures. We use this model in Section 7.11
to evaluate four recent multicore computers on two application kernels. We close
with fallacies and pitfalls and our conclusions for parallelism.

Before proceeding further down the path to parallelism, don't forget our initial
incursions from the prior chapters:

• Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization

• Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Associativity

• Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism

• Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence

• Chapter 6, Section 6.9: Parallelism and I/O: Redundant Arrays of Inexpensive
Disks

Check Yourself True or false: To benefit from a multiprocessor, an application must be concurrent.

The Difficulty of Creating Parallel
Processing Programs

The difficulty with parallelism is not the hardware; it is that too few important
application programs have been rewritten to complete tasks sooner on multi-
processors. It is difficult to write software that uses multiple processors to complete
one task faster, and the problem gets worse as the number of processors increases.

Why has this been so? Why have parallel processing programs been so much
harder to develop than sequential programs?

The first reason is that you must get better performance and efficiency from
a parallel processing program on a multiprocessor; otherwise, you would just
use a sequential program on a uniprocessor, as programming is easier. In fact,
uniprocessor design techniques such as superscalar and out-of-order execution
take advantage of instruction-level parallelism (see Chapter 4), normally without
the involvement of the programmer. Such innovations reduced the demand for
rewriting programs for multiprocessors, since programmers could do nothing and
yet their sequential programs would run faster on new computers.

7.2 The Difficulty of Creating Parallel Processing Programs 6 3 5

Why is it difficult to write parallel processing programs that are fast, especially
as the number of processors increases? In Chapter I, we used the analogy of eight
reporters trying to write a single story in hopes of doing the work eight times faster.
To succeed, the task must be broken into eight equal-sized pieces, because otherwise
some reporters would be idle while waiting for the ones with larger pieces to finish.
Another performance danger would be that the reporters would spend too much
time communicating with each other instead of writing their pieces of the story.
For both this analogy and parallel programming, the challenges include scheduling,
load balancing, time for synchronization, and overhead for communication between
the parties. The challenge is stiffer with the more reporters for a newspaper story
and the more processors for parallel programming.

Our discussion in Chapter 1 reveals another obstacle, namely Amdahl's law. It
reminds us that even small parts of a program must be parallelized if the program
is to make good use of many cores.

Speed-up Challenge

Suppose you want to achieve a speed-up of 90 times faster with 100 processors.
What percentage of the original computation can be sequential? EXAMPLE

Amdahl's law (Chapter 1) says

Execution time after improvement =

Execution time affected by improvement
Amount of improvement

+ Execution time unaffected

We can reformulate Amdahl's in terms of speed-up versus the original execu-
tion time:

ANSWER

Speed-up = Execution time before

(Execution time before - Execution time affected) T Execution time affected
100

This formula is usually rewritten assuming that the execution time before is
1 for some unit of time, and the execution time affected by improvement is
considered the fraction of the original execution time:

Speed-up =- 1

(1 - Fraction time affected) T Fraction time affected
100

6 3 6 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Substituting for the goal of a speed-up of 90 into the formula above:

1 90 =
/, t: . • ff , , Fraction time affected (1 - Fraction time affected) -I 100

Then simplifying the formula and solving for fraction time affected:

90 x (1 - 0.99 x Fraction time affected) = 1

90 - (90 x 0.99 x Fraction time affected) = 1
90 - 1 = 90 x 0.99 x Fraction time affected

Fraction time affected = 89/89.1 = 0.999

Thus, to achieve a speed-up of 90 from 100 processors, the sequential percent-
age can only be 0.1%.

Yet, there are applications with substantial parallelism.

EXAMPLE

ANSWER

Speed-up Challenge: Bigger Problem

Suppose you want to perform two sums: one is a sum of 10 scalar variables,
and one is a matrix sum of a pair of two-dimensional arrays, with dimensions
10 by 10. What speed-up do you get with 10 versus 100 processors? Next, cal-
culate the speed-ups assuming the matrices grow to 100 by 100.

If we assume performance is a function of the time for an addition, t, then
there are 10 additions that do not benefit from parallel processors and 100
additions that do. If the time for a single processor is 110/, the execution time
for 10 processors is

Execution time after improvement =
Execution time affected by improvement

Amount of improvement
]

" 1 0

T Execution time unaffected

Execution time affected improvement = - ^ f p T lOf = 20f

so the speed-up with 10 processors is 110f/20f = 5.5. The execution time for
100 processors is

Execution time after improvement = - y ^ T 10/ = 111

so the speed-up with 100 processors is llOf/llf = 10.

7.2 The Difficulty of Creating Parallel Processing Programs 6 3 7

Thus, for this problem size, we get about 55% of the potential speed-up with
10 processors, but only 10% with 100. Look what happens when we increase
the matrix. The sequential program now takes 10IT 10,000t= 10,01 Of. The
execution time for 10 processors is

Execution time after improvement = ^ ^ ^ + i o t = 10101

so the speed-up with 10 processors is 10,010f/1010f = 9.9. The execution time
for 100 processors is

r • 10,000 f in Execution time after improvement = — j - ^ — b 101= 1 lOt

so the speed-up with 100 processors is I0,010f/1 lOf = 91. Thus, for this larger
problem size, we get about 99% of the potential speed-up with 10 processors
and more than 90% with 100.

These examples show that getting good speed-up on a multiprocessor while
keeping the problem size fixed is harder than getting good speed-up by increasing
the size of the problem. This allows us to introduce two terms that describe ways
to scale up. Strong scaling means measuring speed-up while keeping the problem
size fixed. Weak scaling means that the program size grows proportionally to the
increase in the number of processors. Let's assume that the size of the problem, M,
is the working set in main memory, and we have P processors. Then the memory
per processor for strong scaling is approximately M/P, and for weak scaling, it is
approximately M.

Depending on the application, you can argue for either scaling approach. For
example, the TPC-C debit-credit database benchmark (Chapter 6) requires that
you scale up the number of customer accounts to achieve higher transactions per
minute. The argument is that it's nonsensical to think that a given customer base
is suddenly going to start using ATMs 100 times a day just because the bank gets a
faster computer. Instead, if you're going to demonstrate a system that can perform
100 times the numbers of transactions per minute, you should run the experiment
with 100 times as many customers.

This final example shows the importance of load balancing.

strong scaling Speed-up
achieved on a multi-
processor w i t h o u t
increasing the size of the
problem.

weak scaling Speed-up
achieved on a multi-
processor while increasing
the size of the problem
proportionally to the
increase in the number of
processors.

Speed-up Challenge: Balancing Load

To achieve the speed-up of 91 on the previous larger problem with 100 proces-
sors, we assumed the load was perfectly balanced. That is, each of the 100
processors had 1% of the work to do. Instead, show the impact on speed-up if
one processor's load is higher than all the rest. Calculate at 2% and 5%.

EXAMPLE

6 3 8 Chapter 7 IVluIticores, Multiprocessors, and Clusters

• • • • • • • • I If one processor has 2% of the parallel load, then it must do 2% x 10,000 or 200
additions, and the other 99 will share the remaining 9800. Since they are operating
simultaneously, we can just calculate the execution time as a maximum

Execution time after improvement = Max (^ p , ^ p) T lOf = 210f

The speed-up drops to 10,01 Or/21 Of = 48. If one processor has 5% of the load,
it must perform 500 additions:

Execution time after improvement = Max - ^ p) T lOf = 510f

The speed-up drops even further to 10,010f/510f = 20. This example dem-
onstrates the value of balancing load, for just a single processor with twice the
load of the others cuts speed-up almost in half, and five times the load on one
processor reduces the speed-up by almost a factor of five.

Check Yourself True or false: Strong scaling is not bound by Amdahl's law.

shared m e m o r y
multiprocessor
(S M P) A parallel
processor with a single
address space, implying
implicit communication
with loads and stores.

uniform m e m o r y access
(U M A) A multiprocessor
in which accesses to main
memory take about the
same amount of time no
matter which processor
requests the access and
no matter which word is
asked.

Shared Memory Mmultiprocessors

Given the difficulty of rewriting old programs to run well on parallel hardware, a
natural question is what computer designers can do to simplify the task. One answer
was to provide a single physical address space that all processors can share, so that
programs need not concern themselves with where they are run, merely that they
may be executed in parallel. In this approach, all variables of a program can be made
available at any time to any processor. The alternative is to have a separate address space
per processor that requires diat sharing must be explicit; we'll describe this option in
the next section. When the physical address space is common—which is usually the
case for multicore chips—then the hardware typically provides cache coherence to
give a consistent view of the shared memory (see Section 5.8 of Chapter 5).

A shared memory multiprocessor (SMP) is one that offers the programmer a
single physical address space across all processors, although a more accurate term
would have been shared-address multiprocessor. Note that such systems can still
run independent jobs in their own virtual address spaces, even if they all share
a physical address space. Processors communicate through shared variables in
memory, with all processors capable of accessing any memory location via loads
and stores. Figure 7.2 shows the classic organization of an SMP.

Single address space multiprocessors come in two styles. The first takes about
the same time to access main memory no matter which processor requests it and
no matter which word is requested. Such machines are called uniform memory
access (UMA) multiprocessors. In the second style, some memory accesses are

7.3 Shared Memory Multiprocessors 6 3 9

Interconneclion Network

FIGURE 7.2 Classic organization of a shared memory multiprocessor.

much faster than others, depending on which processor asks for which word. Such
machines are called nonuniform memory access (NUMA) multiprocessors. As you
might expect, the programming challenges are harder for a NUMA multiprocessor
than for a UMA multiprocessor, but NUMA machines can scale to larger sizes and
NUMAs can have lower latency to nearby memory.

As processors operating in parallel will normally share data, they also need to
coordinate when operating on shared data; otherwise, one processor could start
working on data before another is finished with it. This coordination is called
synchronization. When sharing is supported with a single address space, there
must be a separate mechanism for synchronization. One approach uses a lock for
a shared variable. Only one processor at a time can acquire the lock, and other
processors interested in shared data must wait until the original processor unlocks
the variable. Section 2.11 of Chapter 2 describes the instructions for locking in
MIPS.

nonuni form memory
access (N U M A) A type
of single address space
multiprocessor in which
some memory accesses
are much faster than
others depending on
which processor asks for
which word.

synchronization The
process of coordinating
the behavior of two or
more processes, which
may be running on
different processors.

lock A synchronization
device that allows access
to data to only one
processor at a time.

A Simple Parallel Processing Program for a Shared Address Space

Suppose we want to sum 100,000 numbers on a shared memory multipro-
cessor computer with uniform memory access time. Let's assume we have 100
processors.

EXAMPLE

The first step again would be to split the set of numbers into subsets of the
same size. We do not allocate the subsets to a different memory space, since
there is a single memory space for this machine; we just give different starting
addresses to each processor. Pn is the number that identifies the processor,
between 0 and 99. All processors start the program by running a loop that
sums their subset of numbers:

ANSWER

6 4 0 Chapter 7 IVluIticores, Multiprocessors, and Clusters

reduction A function
that processes a data
structure and returns
a single value.

sum[Pn] = 0;
f o r (i = 1 0 0 0 * P n : i < 1 0 0 0 * (P n + l) ; i = i + 1)

sum[Pn] = sum [Pn] T A [i] ; /* sum the a s s i g n e d a r e a s * /

The next step is to add these many partial sums. This step is called a
reduction. We divide to conquer. Half of the processors add pairs of partial
sums, and then a quarter add pairs of the new partial sums, and so on until we
have the single, final sum. Figure 7.3 illustrates the hierarchical nature of this
reduction.

In this example, the two processors must synchronize before the "consumer"
processor tries to read the result from the memory location written by the
"producer" processor; otherwise, the consumer may read the old value of
the data. We want each processor to have its own version of the loop counter
variable i, so we must indicate that it is a "private" variable. Here is the code
(ha 1 f is private also):

h a l f =
r e p e a t

1 0 0 ; /* 100 p r o c e s s o r s in m u l t i p r o c e s s o r * /

s y n c h O : /* wai t f o r p a r t i a l sum c o m p l e t i o n * /
i f (ha 1f%2 i= 0 && Pn — 0)

sum[0] = sum[0] + s u m [h a l f - l] ;
/* C o n d i t i o n a l sum needed when h a l f is
odd; P r o c e s s o r O g e t s m i s s i n g e l e m e n t */

h a l f = h a l f / 2 ; /* d i v i d i n g l i n e on who sums */
if (Pn < h a l f) sum[Pn] = sum[Pn] + sum[Pn+half] ;

u n t i l (h a l f = = 1) : /* e x i t with final sum in Sum[0] */

Check Yourself True or false: Shared memory multiprocessors cannot take advantage of job-
level parallelism.

(half = 4)

FIGURE 7.3 The last four levels of a reduction that sums results from each processor,
from bottom to top. For all processors whose number i is less than half, add the sum produced by
processor number (i + ha 1 f) to its sum.

Elaboration: An alternative to sharing the physical address space would be to have
separate physical address spaces but share a common virtual address space, leaving it up
to the operating system to handle communication. This approach has been tried, but it has
too high an overhead to offer a practical shared memory abstraction to the programmer.

7.4 Clusters and Other Message-Passing Multiprocessors 6 4 1

Clusters and Other Message-Passing
Multiprocessors

The alternative approach to sharing an address space is for the processors to each
have their own private physical address space. Figure 7.4 shows the classic organi-
zation of a multiprocessor with multiple private address spaces. This alternative
multiprocessor must communicate via explicit message passing, which tradition-
ally is the name of such style of computers. Provided the system has routines to
send and receive messages, coordination is built in with message passing, since one
processor knows when a message is sent, and the receiving processor knows when a
message arrives. If the sender needs confirmation that the message has arrived, the
receiving processor can then send an acknowledgment message back to the sender.

Processor Processor

:
Cache Cache

! :
Memory Memory

Processor

Cache

message passing
Communicating between
multiple processors by
explicitly sending and
receiving information.

send message routine
A routine used by a
processor in machines
with private memories to
pass to another processor.

receive message
routine A routine
used by a processor in
machines with private
memories to accept a
message from another
processor.

Memory

Interconnection Network

FIGURE 7.4 Classic organization of a multiprocessor with multiple private address spaces,
traditionally called a message-passing multiprocessor. Note that unlike the SMP in Figure 7.2, the
interconnection network is not between the caches and memory but is instead between processor-memory
nodes.

Some concurrent applications run well on parallel hardware, independent of
whether it offers shared addresses or message passing. In particular, job-level par-
allelism and applications with little communication—like Web search, mail serv-
ers, and file servers—do not require shared addressing to run well.

There were several attempts to build high-performance computers based on high-
performance message-passing networks, and they did offer better absolute commu-
nication performance than clusters built using local area networks. The problem
was that they were much more expensive. Few applications could justify the higher
communication performance, given the much higher costs. Hence, clusters have
become the most widespread example today of the message-passing parallel com-
puter. Clusters are generally collections of commodity computers that are connected
to each other over their I/O interconnect via standard network switches and cables.
Each runs a distinct copy of the operating system. Virtually every Internet service
relies on clusters of commodity servers and switches.

clusters Collections of
computers connected
via I/O over standard
network switches to
form a message-passing
multiprocessor.

6 4 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

One drawback of clusters has been that the cost of administering a cluster of n
machines is about the same as the cost of administering n independent machines,
while the cost of administering a shared memory multiprocessor with n processors
is about the same as administering a single machine.

This weakness is one of the reasons for the popularity of virtual machines
(Chapter 5), since VMs make clusters easier to administer. For example, VMs make
it possible to stop or start programs atomically, which simplifies software upgrades.
VMs can even migrate a program from one computer in a cluster to another without
stopping the program, allowing a program to migrate from failing hardware.

Another drawback to clusters is that the processors in a cluster are usually
connected using the I/O interconnect of each computer, whereas the cores in a
multiprocessor are usually connected on the memory interconnect of the computer.
The memory interconnect has higher bandwidth and lower latency, allowing much
better communication performance.

A final weakness is the overhead in the division of memory: a cluster of n machi-
nes has n independent memories and n copies of the operating system, but a shared
memory multiprocessor allows a single program to use almost all the memory in the
computer, and it only needs a single copy of the OS.

EXAMPLE

ANSWER

Memory Efficiency

Suppose a single shared memory processor has 20 GB of main memory, five
clustered computers each have 4 GB, and the OS occupies 1 GB. How much
more space is there for users with shared memory?

The ratio of memory available for user programs on the shared memory
computer versus the cluster would be

2 0 - 1 ^ = L 2 5

5 x (4 - 1) 15

so shared memory computers have about 25% more space.

Let's redo the summing example from the prior section to see the impact of
multiple private memories and explicit communication.

A Simple Parallel Processing Program for Message Passing

EXAMPLE
Suppose we want to sum 100,000 numbers in a message-passing multiprocessor
with 100 processors, each with multiple private memories.

7.4 Clusters and Other Message-Passing Multiprocessors 6 4 3

Since this computer has multiple address spaces, the first step is distributing
the 100 subsets to each of the local memories. The processor containing the
100,000 numbers sends the subsets to each of the 100 processor-memory
nodes.

The next step is to get the sum of each subset. This step is simply a loop that
every processor follows: read a word from local memory and add it to a local
variable:

sum = 0 :
f o r (i = 0; i < 1 0 0 0 ; i = i + 1) /* loop over each a r r a y */

sum = sum T A N [i] ; /* sum t h e l o c a l a r r a y s */

The last step is the reduction that adds these 100 partial sums. The hard part
is that each partial sum is located in a different processor. Hence, we must use
the interconnection network to send partial sums to accumulate the final sum.
Rather than sending all the partial sums to a single processor, which would
result in sequentially adding the partial sums, we again divide to conquer.

First, half of the processors send their partial sums to the other half of the
processors, where two partial sums are added together. Then one-quarter of
the processors (half of the half) send this new partial sum to the other quarter
of the processors (the remaining half of the half) for the next round of sums.
This halving, sending, and receiving continue until there is a single sum of all
numbers. Let Pn represent the number of the processor, send (x , y) be a rou-
tine that sends over the interconnection network to processor number x the
value y, and r e c e i ve() be a function that accepts a value from the network
for this processor. Here is the code:

l i m i t = 1 0 0 : h a l f = 1 0 0 ; / * 100 p r o c e s s o r s */
r e p e a t

h a l f = (h a l f + D / 2 ; / * send v s . r e c e i v e d i v i d i n g l i n e * /

if (Pn >= h a l f && Pn < l i m i t) send(Pn - h a l f , sum);
if (Pn < (l i m i t / 2)) sum = sum + r e c e i v e O ;
l i m i t = h a l f : / * upper l i m i t o f s e n d e r s * /

u n t i l (h a l f == 1) ; /* e x i t wi th final sum */

This code divides all processors into senders or receivers, and each receiving
processor gets only one message, so we can presume that a receiving processor
will stall until it receives a message. Thus, send and receive can be used as
primitives for synchronization as well as for communication, as the processors
are aware of the transmission of data.

If there is an odd number of nodes, the middle node does not participate in
send/receive. The limit is then set so that this node is the highest node in the
next iteration.

6 4 4 Chapter 7 IVluIticores, Multiprocessors, and Clusters

E laboration: This example assumes implicitly that message passing is about as fast
as addition. In reality, message sending and receiving is much slower. An optimization to
better balance computation and communication might be to have fewer nodes receive
many sums from other processors.

Hardware/
Software
Interface

Computers that rely on message passing for communication rather than cache-
coherent shared memory are much easier for hardware designers (see Section 5.8
of Chapter 5). The advantage for programmers is that communication is explicit,
which means there are fewer performance surprises than with the implicit com-
munication in cache-coherent shared memory computers. The downside for pro-
grammers is that it's harder to port a sequential program to a message-passing
computer, since every communication must be identified in advance or the pro-
gram doesn't work. Cache-coherent shared memory allows the hardware to figure
out what data needs to be communicated, which makes porting easier. There are
differences of opinion as to which is the shortest path to high performance, given
the pros and cons of implicit communication.

A weakness of separate memories for user memory turns into a strength in system
availability. Since a cluster consists of independent computers connected through
a local area network, it is much easier to replace a machine without bringing down
the system in a cluster than in an SMP. Fundamentally, the shared address means
that it is difficult to isolate a processor and replace a processor without heroic work
by the operating system. Since the cluster software is a layer that runs on top of
local operating systems running on each computer, it is much easier to disconnect
and replace a broken machine.

Given that clusters are constructed from whole computers and independent,
scalable networks, this isolation also makes it easier to expand the system without
bringing down the application that runs on top of the cluster.

Lower cost, high availability, improved power efficiency, and rapid, incremental
expandability make clusters attractive to service providers for the World Wide Web.
The search engines that millions of us use every day depend upon this technology.
eBay, Google, Microsoft, Yahoo, and others all have multiple datacenters each with
clusters of tens of thousands of processors. Clearly, the use of multiple processors
in Internet service companies has been hugely successful.

Elaboration: Another form of large scale computing is grid computing, where the comput-
ers are spread across large areas, and then the programs that run across them must
communicate via long haul networks. The most popular and unique form of grid computing
was pioneered by the SETI@home project. It was observed that millions of PCs are idle
at any one time doing nothing useful, and they could be harvested and put to good uses

7.5 Hardware Multithreading 6 4 5

if someone developed software that could run on those computers and then gave each
PC an independent piece of the problem to work on. The first example was the Search
for ExtraTerrestrial Intelligence (SETI). Over 5 million computer users in more than 200
countries have signed up for SETI@home and have collectively contributed over 19 billion
hours of computer processing time. By the end of 2006, the SETI@home grid operated at
257 TeraFLOPS.

1. True or false: Like SMPs, message-passing computers rely on locks for Check Yourself
synchronization.

2. True or false: Unlike SMPs, message-passing computers need multiple copies
of the parallel processing program and the operating system.

Hardware Multithreading

Hardware multithreading allows multiple threads to share the functional units of
a single processor in an overlapping fashion. To permit this sharing, the processor
must duplicate the independent state of each thread. For example, each thread
would have a separate copy of the register file and the PC. The memory itself can
be shared through the virtual memory mechanisms, which already support multi-
programming. In addition, the hardware must support the ability to change to a
different thread relatively quickly. In particular, a thread switch should be much
more efficient than a process switch, which typically requires hundreds to thou-
sands of processor cycles while a thread switch can be instantaneous.

There are two main approaches to hardware multithreading. Fine-grained
multithreading switches between threads on each instruction, resulting in inter-
leaved execution of multiple threads. This interleaving is often done in a round-
robin fashion, skipping any threads that are stalled at that time. To make fine-grained
multithreading practical, the processor must be able to switch threads on every
clock cycle. One key advantage of fine-grained multithreading is that it can hide
the throughput losses that arise from both short and long stalls, since instructions
from other threads can be executed when one thread stalls. The primary disadvan-
tage of fine-grained multithreading is that it slows down the execution of the indi-
vidual threads, since a thread that is ready to execute without stalls will be delayed
by instructions from other threads.

Coarse-grained multithreading was invented as an alternative to fine-grained
multithreading. Coarse-grained multithreading switches threads only on costly
stalls, such as second-level cache misses. This change relieves the need to have
thread switching be essentially free and is much less likely to slow down the execu-
tion of an individual thread, since instructions from other threads will only be
issued when a thread encounters a costly stall. Coarse-grained multithreading
suffers, however, from a major drawback: it is limited in its ability to overcome

hardware multithreading
Increasing utilization of a
processor by switching to
another thread when one
thread is stalled.

fine-grained
multithreading
A version of hardware
multithreading that
suggests switching
between threads after
every instruction.

coarse-grained
multithreading
A version of hardware
multithreading that
suggests switching
between threads only after
significant events, such as
a cache miss.

6 4 6 Chapter 7 IVluIticores, Multiprocessors, and Clusters

simultaneous
multithreading (S M T)
A version of multi-
threading that lowers the
cost of multithreading
by utilizing the resources
needed for multiple issue,
dynamically schedule
microarchitecture.

throughput losses, especially from shorter stalls. This limitation arises from the
pipeline start-up costs of coarse-grained multithreading. Because a processor with
coarse-grained multithreading issues instructions from a single thread, when a
stall occurs, the pipeline must be emptied or frozen. The new thread that begins
executing after the stall must fill the pipeline before instructions will be able to
complete. Due to this start-up overhead, coarse-grained multithreading is much
more useful for reducing the penalty of high-cost stalls, where pipeline refill is
negligible compared to the stall time.

Simultaneous multithreading (SMT) is a variation on hardware multithread-
ing that uses the resources of a multiple-issue, dynamically scheduled processor
to exploit thread-level parallelism at the same time it exploits instruction-level
parallelism. The key insight that motivates SMT is that multiple-issue processors
often have more functional unit parallelism available than a single thread can effec-
tively use. Furthermore, with register renaming and dynamic scheduling, multiple
instructions from independent threads can be issued without regard to the depen-
dences among them; the resolution of the dependences can be handled by the
dynamic scheduling capability.

Since you are relying on the existing dynamic mechanisms, SMT does not switch
resources every cycle. Instead, SMT is always executing instructions from multiple
threads, leaving it up to the hardware to associate instruction slots and renamed
registers with their proper threads.

Figure 7.5 conceptually illustrates the differences in a processor's ability to
exploit superscalar resources for the following processor configurations. The top
portion shows how four threads would execute independently on a superscalar
with no multithreading support. The bottom portion shows how the four threads
could be combined to execute on the processor more efficiently using three multi-
threading options:

• A superscalar with coarse-grained multithreading

• A superscalar with fine-grained multithreading

• A superscalar with simultaneous multithreading

In the superscalar without hardware multithreading support, the use of issue slots
is limited by a lack of instruction-level parallelism. In addition, a major stall, such
as an instruction cache miss, can leave the entire processor idle.

In the coarse-grained multithreaded superscalar, the long stalls are partially
hidden by switching to another thread that uses the resources of the processor.
Although this reduces the number of completely idle clock cycles, the pipeline
start-up overhead still leads to idle cycles, and limitations to ILP means all issue
slots will not be used. In the fine-grained case, the interleaving of threads mostly
eliminates fully empty slots. Because only a single thread issues instructions in a
given clock cycle, however, limitations in instruction-level parallelism still lead to
idle slots within some clock cycles.

7.5 Hardware Multithreading 6 4 7

Issue slots
Thread A Thread B

Time

Thread C
• • •

Thread D

• • ••

Issue slots
Coarse MT Fine MT SMT

Time

•

FIGURE 7.5 How four threads use the issue slots of a superscalar processor in different
approaches. T h e four threads at the top show how each would execute running alone on a standard
superscalar processor without multithreading support. T h e three examples at the bottom show how they
would execute running together in three multithreading options. T h e horizontal dimension represents the
instruction issue capability in each clock cycle. The vertical dimension represents a sequence of clock cycles.
An empty (white) box indicates that the corresponding issue slot is unused in that clock cycle. T h e shades of
gray and color correspond to four different threads in the multithreading processors. T h e additional pipeline
start-up effects for coarse multithreading, which are not illustrated in this figure, would lead to further loss
in throughput for coarse multithreading.

In the S M T case, thread-level parallelism and instruction-level parallelism are
both exploited, with multiple threads using the issue slots in a single clock cycle.
Ideally, the issue slot usage is limited by imbalances in the resource needs and
resource availability over multiple threads. In practice, other factors can restrict
how many slots are used. Although Figure 7.5 greatly simplifies the real operation
of these processors, it does illustrate the potential performance advantages of
multithreading in general and S M T in particular. For example, the recent Intel
Nehaiem multicore supports S M T with two threads to improve core utilization.

Let us conclude with three observations. First, from Chapter 1, we know that the
power wall is forcing a design toward simpler and more power-efficient processors on
a chip. It may well be that the under-utilized resources of out-of-order processors may
be reduced, and so simpler forms of multithreading will be used. For example, the Sun
UltraSPARC T2 (Niagara 2) microprocessor in Section 7.11 is an example of a return
to simpler microarchitectures and hence the use of fine-grained multithreading.

6 4 8 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Second, a key performance challenge is tolerating latency due to cache misses.
Fine-grained computers like the UltraSPARC T2 switch to another thread on a
miss, which is probably more effective in hiding memory latency than trying to fill
unused issue slots as in SMT.

A third observation is that the goal of hardware multithreading is to use hardware
more efficiently by sharing components between different tasks. Multicore designs
share resources as well. For example, two processors might share a floating-point
unit or an L3 cache. Such sharing reduces some of the benefits of multithreading
compared with providing more non-multithreaded cores.

Check Yourself 1- True or false: Both multithreading and multicore rely on parallelism to get
more efficiency from a chip.

2. True or false: Simultaneous multithreading uses threads to improve resource
utilization of a dynamically scheduled, out-of-order processor.

SISD, MIMD, SIMD, SPMD, and Vector

SISD or Single
Instruction stream,
Single Data stream.
A uniprocessor.

M I M D or Multiple
Instruction streams,
Multiple Data streams.
A multiprocessor.

Another categorization of parallel hardware proposed in the 1960s is still used
today. It was based on the number of instruction streams and the number of data
streams. Figure 7.6 shows the categories. Thus, a conventional uniprocessor has a
single instruction stream and single data stream, and a conventional multiproces-
sor has multiple instruction streams and multiple data streams. These two cate-
gories are abbreviated SISD and MIMD, respectively.

Data Streams

Single Multiple

Instruction
Streams

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86 Instruction
Streams Multiple MISD: No examples today MIMD: Intel Xeon e5345 (Clovertown)

FIGURE 7.6 Hardware categorization and examples based on number of instruction streams
and data streams: SISD, SIMD, MISD, and MIMD.

S P M D Single Program,
Multiple Data streams.
The conventional MIMD
programming model,
where a single program
runs across all processors.

While it is possible to write separate programs that run on different processors
on a M I M D computer and yet work together for a grander, coordinated goal, pro-
grammers normally write a single program that runs on all processors of an M I M D
computer, relying on conditional statements when different processors should
execute different sections of code. This style is called Single Program Multiple
Data (SPMD), but it is just the normal way to program a M I M D computer.

7.6 SISD, MIMD, SIMD, SPMD, and Vector 6 4 9

While it is hard to provide examples of useful computers that would be classified
as multiple instruction streams and single data stream (MISD), the inverse makes
much more sense. SIMD computers operate on vectors of data. For example, a
single SIMD instruction might add 64 numbers by sending 64 data streams to 64
ALUs to form 64 sums within a single clock cycle.

The virtues of SIMD are that all the parallel execution units are synchronized
and they all respond to a single instruction that emanates from a single program
counter (PC). From a programmer's perspective, this is close to the already famil-
iar SISD. Although every unit will be executing the same instruction, each execu-
tion unit has its own address registers, and so each unit can have different data
addresses. Thus, in terms of Figure 7.1, a sequential application might be compiled
to run on serial hardware organized as a SISD or in parallel hardware that was
organized as an SIMD.

The original motivation behind SIMD was to amortize the cost of the control
unit over dozens of execution units. Another advantage is the reduced size of pro-
gram memory—SIMD needs only one copy of the code that is being simultaneously
executed, while message-passing MIMDs may need a copy in every processor, and
shared memory MIMD will need multiple instruction caches.

SIMD works best when dealing with arrays in for loops. Hence, for parallel-
ism to work in SIMD, there must be a great deal of identically structured data,
which is called data-level parallelism. SIMD is at its weakest in ease or switch state-
ments, where each execution unit must perform a different operation on its data,
depending on what data it has. Execution units with the wrong data are disabled so
that units with proper data may continue. Such situations essentially run at 1 /nth
performance, where ti is the number of cases.

The so-called array processors that inspired the SIMD category faded into his-
tory (see Section 7.14 on the CD), but two current interpretations of SIMD
remain active today.

S I M D or Single
Instruction stream,
Multiple Data streams.
A multiprocessor. The
same instruction is
applied to many data
streams, as in a vector pro-
cessor or array processor.

data-level parallelism
Parallelism achieved by
operating on independent
data.

SIMD in x86: Multimedia Extensions
The most widely used variation of SIMD is found in almost every microproces-

sor today, and is the basis of the hundreds of MMX and SSE instructions of the
x86 microprocessor (see Chapter 2). They were added to improve performance of
multimedia programs. These instructions allow the hardware to have many ALUs
operate simultaneously or, equivalently, to partition a single, wide ALU into many
parallel smaller ALUs that operate simultaneously. For example, you could con-
sider a single hardware component to be one 64-bit ALU or two 32-bit ALUs or
four 16-bit ALUs or eight 8-bit ALUs. Loads and stores are simply as wide as the
widest ALU, so the programmer can think of the same data transfer instruction as
transferring either a single 64-bit data element or two 32-bit data elements or four
16-bit data elements or eight 8-bit data elements.

6 5 0 Chapter 7 IVluIticores, Multiprocessors, and Clusters

This very low cost parallelism for narrow integer data was the original inspiration
of the MMX instructions of the x86. As Moore's law continued, more hardware was
added to these multimedia extensions, and now SSE2 supports the simultaneous
execution of a pair of 64-bit floating-point numbers.

The width of the operation and the registers is encoded in the opcode of these
multimedia instructions. As the data width of the registers and operations grew,
the number of opcodes for multimedia instructions exploded, and now there are
hundreds of SSE instructions to perform the useful combinations (see Chapter 2).

Vector
An older and more elegant interpretation of SIMD is called a vector architecture,
which has been closely identified with Cray Computers. It is again a great match to
problems with lots of data-level parallelism. Rather than having 64 ALUs perform
64 additions simultaneously, like the old array processors, the vector architectures
pipelined the ALU to get good performance at lower cost. The basic philosophy of
vector architecture is to collect data elements from memory, put them in order into a
large set of registers, operate on them sequentially in registers, and then write the results
back to memory. A key feature of vector architectures is a set of vector registers. Thus,
a vector architecture might have 32 vector registers, each with 64 64-bit elements.

Comparing Vector to Conventional Code

Suppose we extend the MIPS instruction set architecture with vector instruc-
tions and vector registers. Vector operations use the same names as MIPS
operations, but with the letter "V" appended. For example, addv.d adds two
double-precision vectors. The vector instructions take as their input either a pair
of vector registers (addv . d) or a vector register and a scalar register (addvs . d).
In the latter case, the value in the scalar register is used as the input for all
operations—the operation add vs . d will add the contents of a scalar register to
each element in a vector register. The names 1 v and s v denote vector load and
vector store, and they load or store an entire vector of double-precision data.
One operand is the vector register to be loaded or stored; the other operand,
which is a MIPS general-purpose register, is the starting address of the vector in
memory. Given this short description, show the conventional MIPS code versus
the vector MIPS code for

Y=axXT Y

where Xand Tare vectors of 64 double precision floating-point numbers, initially
resident in memory, and a is a scalar double precision variable. (This example is
the so-called DAXPY loop that forms the inner loop of the Unpack benchmark;
DAXPY stands for double precision a xX plus X) . Assume that the starting
addresses of X and Y are in $ S 0 and $ s 1, respectively.

7.6 SISD, MIMD, SIMD, SPMD, and Vector 6 5 1

Here is the conventional MIPS code for DAXPY:

Here is the vector MIPS code for DAXPY:

1 .d
1 v
mulvs .d
1 v
addv. d
sv

S f O , a (S s p)
$ v l , 0 ($ s 0)
Sv2 , S v l , S f O
$v3 , 0 ($ s l)
$ v 4 , $ v 2 , $ v 3
$ v 4 , 0 ($ s l)

ANSWER
1 .d $ f 0 , a (S s p) load s c a l a r a
addi u r 4 , $ s 0 ,#512 upper bound of what to load

1 oop: 1 . d $ f 2 , 0 ($ s 0) load x (i)
mul .d $ f 2 , $ f 2 , $ f 0 a x x (i)
1 .d $ f 4 , 0 ($ s l) 1oad y (i)
add.d $ f 4 , $ f 4 , $ f 2 a x x (i) + y (i)
s . d $ f 4 , 0 ($ s l) s t o r e i n t o y (i)
addi u $ s 0 , $ s 0 , # 8 i n c r e m e n t i n d e x t o X
addi u $ s l , $ s l , # 8 i n c r e m e n t i n d e x t o y
subu $ t 0 , r 4 , $ s 0 compute bound
bne S t O , S z e r o , 1 o o p c h e c k i f done

load s c a l a r a
load v e c t o r x
v e c t o r - s e a l a r m u l t i p l y
load v e c t o r y
add y to p r o d u c t
s t o r e t h e r e s u l t

There are some interesting comparisons between the two code segments in
this example. The most dramatic is that the vector processor greatly reduces the
dynamic instruction bandwidth, executing only six instructions versus almost 600
for MIPS. This reduction occurs both because the vector operations work on 64
elements and because the overhead instructions that constitute nearly half the loop
on MIPS are not present in the vector code. As you might expect, this reduction in
instructions fetched and executed saves power.

Another important difference is the frequency of pipeline hazards (Chapter 4).
In the straightforward MIPS code, every add.d must wait for a mul . d, and every
S . d must wait for the add.d . On the vector processor, each vector instruction will
only stall for the first element in each vector, and then subsequent elements will
flow smoothly down the pipeline. Thus, pipeline stalls are required only once per
vector operation, rather than once per vector element. In this example, the pipeline
stall frequency on MIPS will be about 64 times higher than it is on VMIPS. The
pipeline stalls can be reduced on MIPS by using loop-unrolling (see Chapter 4).
However, the large difference in instruction bandwidth cannot be reduced.

6 5 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

E laboration: The loop in the example above exactly matched the vector length. When
loops are shorter, vector architectures use a register that reduces the length of vector
operations. When loops are larger, we add bookkeeping code to iterate full-length vector
operations and to handle the leftovers. This latter process is called strip mining.

Vector versus ScaDar
Vector instructions have several important properties compared to conventional
instruction set architectures, which are called scalar architectures in this context:

• A single vector instruction specifies a great deal of work—it is equivalent to
executing an entire loop. The instruction fetch and decode bandwidth needed
is dramatically reduced.

• By using a vector instruction, the compiler or programmer indicates that the
computation of each result in the vector is independent of the computation
of other results in the same vector, so hardware does not have to check for
data hazards within a vector instruction.

• Vector architectures and compilers have a reputation of making it much eas-
ier than MIMD multiprocessors to write efficient applications when they
contain data-level parallelism.

• Hardware need only check for data hazards between two vector instructions
once per vector operand, not once for every element within the vectors.
Reduced checking can save power as well.

• Vector instructions that access memory have a known access pattern. If the
vector's elements are all adjacent, then fetching the vector from a set of heavily
interleaved memory banks works very well. Thus, the cost of the latency to
main memory is seen only once for the entire vector, rather than once for
each word of the vector.

• Because an entire loop is replaced by a vector instruction whose behavior
is predetermined, control hazards that would normally arise from the loop
branch are nonexistent.

• The savings in instruction bandwidth and hazard checking plus the efficient
use of memory bandwidth give vector architectures advantages in power and
energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of sca-
lar operations on the same number of data items, and designers are motivated to
include vector units if the application domain can use them frequently.

7.6 SISD, MIMD, SIMD, SPMD, and Vector 6 5 3

Vector versus MuDtiimiedlia Extensions
Like multimedia extensions found in the x86 SSE instructions, a vector instruction
specifies multiple operations. However, multimedia extensions typically specify
a few operations while vector specifies dozens of operations. Unlike multimedia
extensions, the number of elements in a vector operation is not in the opcode but
in a separate register. This means different versions of the vector architecture can
be implemented with a different number of elements just by changing the contents
of that register and hence retain binary compatibility. In contrast, a new large set of
opcodes is added each time the "vector" length changes in the multimedia exten-
sion architecture of the x86.

Also unlike multimedia extensions, the data transfers need not be contiguous.
Vectors support both strided accesses, where the hardware loads every nth data
element in memory, and indexed accesses, where hardware finds the addresses of
the items to be loaded in a vector register.

Like multimedia extensions, vector easily captures the flexibility in data widths,
so it is easy to make an operation work on 32 64-bit data elements or 64 32-bit data
elements or 128 16-bit data elements or 256 8-bit data elements.

Generally, vector architectures are a very efficient way to execute data parallel
processing programs; they are better matches to compiler technology than multi-
media extensions; and they are easier to evolve over time than the multimedia
extensions to the x86 architecture.

True or false: As exemplified in the x86, multimedia extensions can be thought of Check
as a vector architecture with short vectors that supports only sequential vector data Yourself
transfers.

Elaboration: Given the advantages of vector, why aren't they more popular outside high-
performance computing? There were concerns about the larger state for vector registers
increasing context switch time and the difficulty of handling page faults in vector loads
and stores, and SIMD instructions achieved some of the benefits of vector instructions.
However, recent announcements from Intel suggest that vectors will play a bigger role.
Intel's Advanced Vector Instructions (AVI), to arrive in 2010, will expand the width of the
SSE registers from 128 bits to 256 bits immediately and allow eventual expansion to
1024 bits. This latter width is equivalent to 16 double-precision floating-point numbers.
Whether there will be vector load and store instructions are unclear. In addition, Intel's
entry into the discrete GPU market for 2010—code named "Larrabee"—is reputed to
have vector instructions.

Elaboration: Another advantage of vector and multimedia extensions is that it is
relatively easy to extend a scalar instruction set architecture with these instructions to
improve performance of data parallel operations.

6 5 4 Chapter 7 IVluIticores, Multiprocessors, and Clusters

B introduction to Graphics Processing Units

A major justification for adding SIMD instructions to existing architectures was
that many microprocessors were connected to graphics displays in PCs and work-
stations, so an increasing fraction of processing time was used for graphics. Hence,
as Moore's law increased the number of transistors available to microprocessors, it
made sense to improve graphics processing.

Just as Moore's law allowed the CPU to improve graphics processing, it also
enabled video graphics controller chips to add functions to accelerate 2D and 3D
graphics. Moreover, at the very high end were expensive graphics cards typically
from Silicon Graphics, that could be added to workstations, to enable the creation
of photographic quality images. These high-end graphics cards were popular for
creating computer-generated images that later found their way into television
advertisements and then into movies. Thus, video graphics controllers had a target
to shoot for as processing resources increased, much as supercomputers provided
a rich resource of ideas for microprocessors to borrow in the quest for greater
performance.

A major driving force for improving graphics processing was the computer game
industry, both on PCs and in dedicated game consoles such as the Sony PlayStation.
The rapidly growing game market encouraged many companies to make increasing
investments in developing faster graphics hardware, and this positive feedback led
graphics processing to improve at a faster rate than general-purpose processing in
mainstream microprocessors.

Given that the graphics and game community had different goals than the
microprocessor development community, it evolved its own style of processing and
terminology. As the graphics processors increased in power, they earned the name
Graphics Processing Units or GPUs to distinguish themselves from CPUs. Here are
some of the key characteristics as to how GPUs vary from CPUs:

• GPUs are accelerators that supplement a CPU, so they do not need be able
to perform all the tasks of a CPU. This role allows them to dedicate all their
resources to graphics. It's fine for GPUs to perform some tasks poorly or not
at all, given that in a system with both a CPU and a GPU, the CPU can do
them if needed. Thus, the CPU-GPU combination is one example of hetero-
geneous multiprocessing, where not all the processors are identical. (Another
example is the IBM Cell architecture in Section 7.11, which was also designed
to accelerate 2D and 3D graphics.)

• The programming interfaces to GPUs are high-level application pro-
gramming interfaces (APIs), such as OpenGL and Microsoft's DirectX,
coupled with high-level graphics shading languages, such as NVIDIA's C
for Graphics (Cg) and Microsoft's High Level Shader Language (ITLSL).

7.7 Introduction to Graphics Processing Units 6 5 5

The language compilers target industry-standard intermediate languages
instead of machine instructions. GPU driver software generates optimized
GPU-specific machine instructions. While these APIs and languages evolve
rapidly to embrace new GPU resources enabled by Moore's law, the freedom
from backward binary instruction compatibility enables GPU designers to
explore new architectures without the fear that they will be saddled with
implementing failed experiments forever. This environment leads to more
rapid innovation in GPUs than in CPUs.

• Graphics processing involves drawing vertices of 3D geometry primitives
such as lines and triangles and shading or rendering pixel fragments of geo-
metric primitives. Video games, for example, draw 20 to 30 times as many
pixels as vertices.

• Each vertex can be drawn independently, and each pixel fragment can be
rendered independently. To render millions of pixels per frame rapidly, the
GPU evolved to execute many threads from vertex and pbcel shader programs
in parallel.

• The graphics data types are vertices, consisting of (x, y, z, w) coordinates,
and pixels, consisting of (red, green, blue, alpha) color components. (See
Appendix A to learn more about vertices and pixels.) GPUs represent each
vertex component as a 32-bit floating-point number. Each of the four pixel
components was originally an 8-bit unsigned integer, but recent GPUs
now represent each component as single-precision floating-point number
between 0.0 and 1.0.

• The working set can be hundreds of megabytes, and it does not show the
same temporal locality as data does in mainstream applications. Moreover,
there is a great deal of data-level parallelism in these tasks.

These differences led to different styles of architecture:

• Perhaps the biggest difference is that GPUs do not rely on multilevel caches
to overcome the long latency to memory, as do CPUs. Instead, GPUs rely on
having enough threads to hide the latency to memory. That is, between the
time of a memory request and the time that data arrives, the GPU executes
hundreds or thousands of threads that are independent of that request.

• GPUs rely on extensive parallelism to obtain high performance, implement-
ing many parallel processors and many concurrent threads.

• The GPU main memory is thus oriented toward bandwidth rather than
latency. There are even separate DRAM chips for GPUs that are wider and
have higher bandwidth than DRAM chips for CPUs. In addition, GPU
memories have traditionally had smaller main memories than conventional
microprocessors. In 2008, GPUs typically have 1 GB or less, while CPUs have

6 5 6 Chapter 7 IVluIticores, Multiprocessors, and Clusters

2 to 32 GB. Finally, keep in mind that for general-purpose computation, you
must include the time to transfer the data between CPU memory and GPU
memory, since the GPU is a coprocessor.

a Given the reliance on many threads to deliver good memory bandwidth,
GPUs can accommodate many parallel processors as well as many threads.
Hence, each GPU processor is highly multithreaded.

• In the past, GPUs relied on heterogeneous special purpose processors to
deliver the performance needed for graphics applications. Recent GPUs are
heading toward identical general-purpose processors to give more flexibil-
ity in programming, making them more like the multicore designs found in
mainstream computing.

• Given the four-element nature of the graphics data types, GPUs historically
have SIMD instructions, like CPUs. However, recent GPUs are focusing more
on scalar instructions to improve programmability and efficiency.

n Unlike CPUs, there has been no support for double precision floating-point
arithmetic, since there has been no need for it in the graphics applications.
In 2008, the first GPUs to support double precision in hardware were
announced. Nevertheless, single precision operations will still be eight to ten
times faster than double precision, even on these new GPUs, while the differ-
ence in performance for CPUs is limited to benefits in transferring fewer
bytes in the memory system due to using narrow data.

Although GPUs were designed for a narrower set of applications, some pro-
grammers wondered if they could specify their applications in a form that would
let them tap the high potential performance of GPUs. To distinguish this style of
using GPUs, some called it General Purpose GPUs or GPGPUs. After tiring of try-
ing to specify their problems using the graphics APIs and graphics shading lan-
guages, they developed C-inspired programming languages to allow them to write
programs directly for the GPUs. An example is Brook, a streaming language for
GPUs. The next step in programmability of both the hardware and the program-
ming language is NVIDIA's CUDA (Compute Unified Device Architecture), which
enables the programmer to write C programs to execute on GPUs, albeit with
some restrictions. The use of GPUs for parallel computing is growing with their
increasing programmability.

Ami Introduction to the NVIDIA GPU Architecture
Appendix A goes into much more depth on GPUs and presents in detail the most
recent NVIDIA GPU architecture, called Tesla. Since GPUs evolved in their own
environment, they not only have different architectures, as suggested above, but
they also have a different set of terms. Once you learn the GPU terms, you will

T
7.7 Introduction to Graphics Processing Units 675

see the similarities to approaches presented in prior sections, such as fine-grained
multithreading and vectors.

To help you with that transition to the new vocabulary, we present a quick
introduction to the terms and ideas in the Tesla GPU architecture and the CUDA
programming environment.

A discrete GPU chip sits on a separate card that plugs into a standard PC over
the PCI-Express interconnect. So-called motherboard GPUs are integrated into the
motherboard chip set, such as a north bridge or a south bridge (Chapter 6).

GPUs are generally offered as a family of chips at different price performance points,
with all being software compatible. Tesla-based GPUs chips are offered with between
1 and 16 nodes, which NVIDIA calls multiprocessors. In early 2008, the largest version
is called the GeForce 8800 GTX, which has 16 multiprocessors and a clock rate of
1.35 GHz. Each multiprocessor contains eight multithreaded single-precision floating-
point units and integer processing units, which NVIDIA calls streaming processors.

Since the architecture includes a single-precision floating-point multiply-add
instruction, the peak single precision multiply-add performance of the 8800 GTX
chip is:

16 MPs x 8 5 P s x 2 FLOPs/instr x 1 instr x 1.35 x 10<j clocks
MP SP clock second

= 1 6 x 8 x 2 x 1.35 GFLOPs
second

= 345.6 GFLOPs
second

Each of the 16 multiprocessors of the GeForce 8800 GTX has a software-managed
local store with a capacity of 16 KB plus 8192 32-bit registers. The memory system
of the 8800 GTX consists of six partitions of 900 MHz Graphics DDR3 DRAM, each
8 bytes wide and with 128 MB of capacity. The total memory size is thus 768 MB.
The peak GDDR3 memory bandwidth is

3 Bytes ^ i transfers 0.9 x 109 clocks _ 6 x 8 x 2 x 0.9GB = 86.4 GB
transfer clock second second second

To hide memory latency, each streaming processor has hardware-supported
threads. Each group of 32 threads is called a warp. A warp is the unit of schedul-
ing, and the active threads in a warp—up to 32—execute in parallel in SIMD fash-
ion. The multithreaded architecture copes with conditions, however, by allowing
threads to take different branch paths. When threads of a warp take diverging paths,
the warp sequentially executes both code paths with some inactive threads, which
makes the active threads run more slowly. The hardware joins the threads back into
a fully active warp as soon as the conditional paths are completed. To get the best
performance, all 32 threads of a warp need to execute together in parallel. In simi-
lar style, the hardware also looks at the address streams coming from the different
threads to try to merge the individual requests into fewer but larger memory block
transfers to increase memory performance.

658 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Figure 7.7 combines all these features together and compares a Tesla multiprocessor
to a Sun UltraSPARC T2 core, which is described in Sections 7.5 and 7.11. Both are
hardware multithreaded by scheduling threads over time, shown on the vertical axis.
Each Tesla multiprocessor consists of eight streaming processors, which execute
eight parallel threads per clock showing horizontally. As mentioned above, the best
performance comes when all 32 threads of a warp execute together in a SIMD-like
fashion, which the Tesla architecture calls single-instruction multiple-thread (SIMT).
SIMT dynamically discovers which threads of a warp can execute the same instruction
together, and which independent threads are idle diat cycle. The T2 core contains just a
single multithreaded processor. Each cycle it executes one instruction for one thread.

The Tesla multiprocessor uses fine-grained hardware multithreading to sched-
ule 24 warps over time, which are shown vertically in blocks of four clock cycles.
Similarly, the UltraSPARC T2 schedules eight hardware-supported threads over
time, one thread per cycle, shown vertically. Thus, just as the T2 hardware switches
between threads to keep the T2 core busy, the Tesla hardware switches between
warps to keep the Tesla multiprocessor busy. The major difference is that the T2
core has one processor that can switch threads every clock cycle, while the minimum
unit of switching warps in the Tesla microprocessor is two clock cycles across eight
streaming cores. Since Tesla is aimed at programs with a great deal of data-level
parallelism, the designers believed there is little performance difference between

Processors

Hardware
Supported
Threads

UltraSPARC T2
] ThreadO
J Thread 1
[] Thread2
[~| Thread3

Thread4
Threads

| Thread6
; | Thread7

Tesla Multiprocessor

WarpO

Warpl

Warp23

FIGURE 7.7 Comparing single core of a Sun UltraSPARC T2 (Niagara 2) to a single Tesla
multiprocessor. T h e T 2 core is a single processor and uses hardware-supported multithreading with
eight Threads. T h e Tesla multiprocessor contains eight streaming processors and uses hardware-supported
multithreading with 24 warps of 32 threads (eight processors times four clock cycles). T h e T2 can switch
every clock cycle, while the Tesla can switch only every two or four clock cycles. One way to compare the two
is that the T2 can only multithread the processor over time, while Tesla can multithread over time and over
space; that is, across the eight streaming processors as well as segments of four clock cycles.

7.7 Introduction to Graphics Processing Units 6 5 9

switching every two or four clock cycles versus every clock cycle, and the hardware
was much simpler by restricting the frequency of switching.

The CUDA programming environment has its own terminology as well.
A CUDA program is a unified C/CTT program for a heterogeneous CPU and GPU
system. It executes on the CPU and dispatches parallel work to the GPU. This work
consists of a data transfer from main memory and a thread dispatch. A thread is a
piece of the program for the GPU. Programmers specify the number of threads in
a thread block, and the number of thread blocks they wish to start executing on the
GPU. The reason the programmers care about thread blocks is that all the threads
in the thread block are scheduled to run on the same multiprocessor so they all
share the same local memory. Thus, they can communicate via loads and stores
instead of messages. The CUDA compiler allocates registers to each thread, under
the constraint that the registers per thread times threads per thread block does not
exceed the 8192 registers per multiprocessor.

A thread block can be up to 512 threads. Each group of 32 threads in a thread
block is packed into warps. Large thread blocks have better efficiency than small
ones, and they can be as small as a single thread. As mentioned above, thread blocks
and warps with fewer than 32 threads operate less efficiently than full ones.

A hardware scheduler tries to schedule multiple thread blocks per multiproces-
sor when possible. If it does, the scheduler also partitions the 16 KB local store
dynamically between the different thread blocks.

Putting GPUs into Perspective
GPUs like the NVIDIA Tesla architecture do not fit neatly into prior classifications
of computers, such Figure 7.6 on page 648. Clearly, the GeForce 8800 GTX, with
16 Tesla multiprocessors, is an MIMD. The question is how to classify each of the
Tesla multiprocessors and the eight streaming processors that make up a Tesla
multiprocessor.

Recall that we earlier said that SIMD was at its best with for loops and was at its
weakest in case and switch statements. Tesla aims at the high performance for data-
level parallelism while making it easy for programmers to deal with independent
thread-level parallel cases. Tesla allows the programmer to think the multiprocessor
is a multithreaded MIMD of eight streaming processors, but the hardware tries to
gang together the eight streaming processors to act in SIMT fashion when multi-
ple threads of the same warp can execute together. When the threads do operate
independently and follow an independent execution path, they execute more
slowly than in SIMT fashion, for all 32 threads of a warp share a single instruction
fetch unit. If all 32 threads of a warp were executing independent instructions, each
thread would operate at 1/16th the peak performance of a full warp of 32 threads
executing on eight streaming processors over four clocks.

Thus, each independent thread has its own effective PC, so programmers can
think of the Tesla multiprocessor as MIMD, but programmers need to take care
to write control flow statements that allow the SIMT hardware to execute CUDA
programs in SIMD fashion to deliver the desired performance.

6 6 0 Chapter 7 IVluIticores, Multiprocessors, and Clusters

In contrast to vector architectures, which rely on a vectorizing compiler to
recognize data-level parallelism at compile time and generate vector instructions,
hardware implementations of Tesla architecture discovers data-level parallelism
among threads at runtime. Thus, Tesla GPUs do not need vectorizing compilers, and
they make it easier for the programmer to handle the portions of the program that
do not have data-level parallelism. To put this unique approach into perspective,
Figure 7.8 places GPUs in a classification that looks at instruction-level parallelism
versus data-level parallelism and whether it is discovered at compile time or
runtime. This categorization is one indication that the Tesla GPU is breaking new
ground in computer architecture.

Static: Discovered at Compile
Time

Dynamic: Discovered at
Runtime

Instruction-Level Parallelism VLIW Superscalar

Data-Level Parallelism SIMD or Vector Tesla Multiprocessor

FIGURE 7.8 Hardware categorization of processor architectures and examples based on
static versus dynamic and ILP versus DLP.

Check Yourself True or false: GPUs rely on graphics DRAM chips to reduce memory latency and
thereby increase performance on graphics applications.

• • Introduction t o Multiprocessor Network
P-Sifl Topologaes

Multicore chips require networks on chips to connect cores together. This section
reviews the pros and cons of different multiprocessor networks.

Network costs include the number of switches, the number of links on a switch to
connect to the network, the width (number of bits) per link, and length of the links
when the network is mapped into chip. For example, some cores may be adjacent and
others may be on the other side of the chip. Network performance is multifaceted as
well. It includes the latency on an unloaded network to send and receive a message, the
throughput in terms of the maximum number of messages that can be transmitted
in a given time period, delays caused by contention for a portion of the network,
and variable performance depending on the pattern of communication. Another
obligation of the network may be fault tolerance, since systems may be required to
operate in the presence of broken components. Finally, in this era of power-limited
chips, the power efficiency of different organizations may trump other concerns.

Networks are normally drawn as graphs, with each arc of the graph representing
a link of the communication network. The processor-memory node is shown as a

7.8 Introduction to Multiprocessor Network Topologies 6 6 1

black square, and the switch is shown as a colored circle. In this section, all links are
bidirectional; that is, information can flow in either direction. All networks consist of
switches whose links go to processor-memory nodes and to other switches. The first
improvement over a bus is a network that connects a sequence of nodes together:

This topology is called a ring. Since some nodes are not directly connected, some
messages will have to hop along intermediate nodes until they arrive at the final
destination.

Unlike a bus, a ring is capable of many simultaneous transfers. Because there
are numerous topologies to choose from, performance metrics are needed to dis-
tinguish these designs. Two are popular. The first is total network bandwidth,
which is the bandwidth of each link multiplied by the number of links. This repre-
sents the very best case. For the ring network above, with P processors, the total
network bandwidth would be P times the bandwidth of one link; the total network
bandwidth of a bus is just the bandwidth of that bus, or two times the bandwidth
of that link.

To balance this best case, we include another metric that is closer to the worst
case: the bisection bandwidth. This is calculated by dividing the machine into two
parts, each with half the nodes. Then you sum the bandwidth of the links that cross
that imaginary dividing line. The bisection bandwidth of a ring is two times the
link bandwidth, and it is one times the link bandwidth for the bus. If a single link
is as fast as the bus, the ring is only twice as fast as a bus in the worst case, but it is
P times faster in the best case.

Since some network topologies are not symmetric, the question arises of where
to draw the imaginary line when bisecting the machine. This is a worst-case met-
ric, so the answer is to choose the division that yields the most pessimistic network
performance. Stated alternatively, calculate all possible bisection bandwidths and
pick the smallest. We take this pessimistic view because parallel programs are often
limited by the weakest link in the communication chain.

At the other extreme from a ring is a fully connected network, where every
processor has a bidirectional link to every other processor. For fully connected
networks, the total network bandwidth is Px (P - l)/2, and the bisection band-
width is (P/2)2.

The tremendous improvement in performance of fully connected networks is
offset by the tremendous increase in cost. This inspires engineers to invent new
topologies that are between the cost of rings and the performance of fully con-
nected networks. The evaluation of success depends in large part on the nature of
the communication in the worldoad of parallel programs run on the machine.

The number of different topologies that have been discussed in publications
would be difficult to count, but only a handful have been used in commercial parallel
processors. Figure 7.9 illustrates two of the popular topologies. Real machines

network bandwidth
Informally, the peak
transfer rate of a network;
can refer to the speed
of a single link or the
collective transfer rate of
all links in the network.

bisection bandwidth
The bandwidth between
two equal parts of
a multiprocessor.
This measure is for a
worst case split of the
multiprocessor.

fully connected network
A network that connects
processor-memory nodes
by supplying a dedicated
communication link
between every node.

c

6 6 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

c,
c

n n D

Vjw^vli

3

¥

U i
a. 2-D grid or mesh of 16 nodes b. n-cube tree of 8 nodes (8 = 23 so n = 3)

FIGURE 7.9 Network topologies that have appeared in commercial parallel processors.
T h e colored circles represent switches and the black squares represent processor-memory nodes. Even
Though a switch has many links, generally only one goes To the processor. T h e Boolean /i-cube topology is
an //-dimensional interconnect with 2" nodes, requiring n links per switch (plus one for the processor) and
thus u nearest-neighbor nodes. Frequently, these basic topologies have been supplemented with extra arcs to
improve performance and reliability.

multistage network
A network that supplies a
small switch at each node.

fully connected network
A network that connects
processor-memory nodes
by supplying a dedicated
communication link
between every node.

crossbar network
A network that allows any
node to communicate
with any other node in
one pass through the
network.

frequently add extra links to these simple topologies to improve performance and
reliability.

An alternative to placing a processor at every node in a network is to leave
only the switch at some of these nodes. The switches are smaller than processor-
memory-switch nodes, and thus may be packed more densely, thereby lessening
distance and increasing performance. Such networks are frequently called
multistage networks to reflect the multiple steps that a message may travel. Types
of multistage networks are as numerous as single-stage networks; Figure 7.10
illustrates two of the popular multistage organizations. A fully connected or
crossbar network allows any node to communicate with any other node in one
pass through the network. An Omega network uses less hardware than the crossbar
network (2n log, n versus rr switches), but contention can occur between messages,
depending on the pattern of communication. For example, the Omega network in
Figure 7.10 cannot send a message from P() to P6 at the same time that it sends a
message from P, to P?.

Implementing Network Topologies
This simple analysis of all the networks in this section ignores important practical
considerations in the construction of a network. The distance of each link affects
the cost of communicating at a high clock rate—generally, the longer the distance,
the more expensive it is to run at a high clock rate. Shorter distances also make

7.8 Introduction to Multiprocessor Network Topologies 6 6 3

a. Crossbar b. Omega network

A C A r r C
B r r D

c. Omega network switch box

FIGURE 7.10 Popular multistage network topologies for eight nodes. The switches in these
drawings are simpler than in earlier drawings because the links arc unidirectional; data comes in at the
bottom and exits out the right link. T h e switch box in c c a n pass A to C and B to D or B to C and A to D.
T h e crossbar uses if switches, where // is the number of processors, while the Omega network uses 2// log,//
of the large switch boxes, each of which is logically composed of four of the smaller switches. In this case,
the crossbar uses 64 switches versus 12 switch boxes, or 48 switches, in the Omega network. The crossbar,
however, can support any combinat ion of messages between processors, while the Omega network cannot .

it easier to assign more wires to the link, as the power to drive many wires from
a chip is less if the wires are short. Shorter wires are also cheaper than longer
wires. Another practical limitation is that the three-dimensional drawings must be
mapped onto chips that are essentially two-dimensional media. The final concern is
power. Power concerns may force multicore chips to rely on simple grid topologies,
for example. The bottom line is that topologies that appear elegant when sketched
on the blackboard may be impractical when constructed in silicon.

6 6 4 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Multiprocessor Benchmarks

As we saw in Chapter 1, benchmarking systems is always a sensitive topic, because
it is a highly visible way to try to determine which system is better. The results
affect not only the sales of commercial systems, but also the reputation of the
designers of those systems. Hence, the participants want to win the competition,
but they also want to be sure that if someone else wins, they deserve to win because
they have a genuinely better system. This desire leads to rules to ensure that the
benchmark results are not simply engineering tricks for that benchmark, but are
instead advances that improve performance of real applications.

To avoid possible tricks, a typical rule is that you can't change the benchmark.
The source code and data sets are fixed, and there is a single proper answer. Any
deviation from those rules makes the results invalid.

Many multiprocessor benchmarks follow these traditions. A common exception
is to be able to increase the size of the problem so that you can run the benchmark
on systems with a widely different number of processors. That is, many bench-
marks allow weak scaling rather than require strong scaling, even though you must
take care when comparing results for programs running different problem sizes.

Figure 7.11 is a summary of several parallel benchmarks, also described below:

• Unpack is a collection of linear algebra routines, and the routines for per-
forming Gaussian elimination constitute what is known as the Linpack
benchmark. The DAXPY routine in the example on page 650 represents a
small fraction of the source code of the Linpack benchmark, but it accounts
for most of the execution time for the benchmark. It allows weak scaling,
letting the user pick any size problem. Moreover, it allows the user to rewrite
Linpack in any form and in any language, as long as it computes the proper
result. Twice a year, the 500 computers with the fastest Linpack performance
are published at www.top500.org. The first on this list is considered by the
press to be the worlds fastest computer.

• SPECrate is a throughput metric based on the SPEC CPU benchmarks, such
as SPEC CPU 2006 (see Chapter 1). Rather than report performance of the
individual programs, SPECrate runs many copies of the program simulta-
neously. Thus, it measures job-level parallelism, as there is no communica-
tion between the jobs. You can run as many copies of the programs as you
want, so this is again a form of weak scaling.

• SPLASH and SPLASH 2 (Stanford Parallel Applications for Shared Memory)
were efforts by researchers at Stanford University in the 1990s to put together

http://www.top500.org

7.9 Multiprocessor Benchmarks 665

Benchmark Scal ing? Reprogram? Description

Unpack Weak Yes Dense matrix linear algebra [Dongarra, 1979]

SPECrate Weak No Independent job parallelism [Henning, 2 0 0 7]

Stanford Parallel
Applications for
Shared Memory
SPLASH 2 [Woo

et al., 1 9 9 5]

Strong
(although

offers
two problem

sizes)

No

Complex ID FFT
Blocked LU Decomposition
Blocked Sparse Cholesky Factorization
Integer Radix Sort
Barnes-Hut
Adaptive Fast Multipole
Ocean Simulation
Hierarchical Radiosity
Ray Tracer
Volume Renderer
Water Simulation with Spatial Data Structure
Water Simulation without Spatial Data Structure

NAS Parallel
Benchmarks
[Bailey et al.,

1 9 9 1]

Weak
Yes

(C or
Fortran only)

EP: embarrassingly parallel
MG: simplified multigrid

CG: unstructured grid for a conjugate gradient method
FT: 3-D partial differential equation solution using FFTs
IS: large integer sort

PARSEC
Benchmark Suite

[Bienia et al.,
2 0 0 8]

Weak No

Blackscholes—Option pricing with Black-Scholes PDE
Bodytrack—Body tracking of a person
Canneal—Simulated cache-aware annealing to optimize routing
Dedup—Next-generation compression with data deduplication
Facesim—Simulates the motions of a human face
Ferret—Content similarity search server
Fluidanimate—Fluid dynamics for animation with SPH method
Freqmine—Frequent itemset mining
Streamcluster—Online clustering of an input stream
Swaptions—Pricing of a portfolio of swaptions
Vips—Image processing
x264—H.264 video encoding

Berkeley
Design

Patterns
[Asanovic et al.,

2 0 0 6]

Strong or
Weak

Yes

Finite-State Machine
Combinational Logic
Graph Traversal
Structured Grid
Dense Matrix
Sparse Matrix
Spectral Methods (FFT)
Dynamic Programming
N-Body
MapReduce

Backtrack/Branch and Bound
Graphical Model Inference
Unstructured Grid

FIGURE 7.11 Examples of parallel benchmarks.

666 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Pthreads A UNIX
API for creating and
manipulating threads. It
comes with a library.

Open MP An API
for shared memory
multiprocessing in C,
C++, or Fortran that runs
on UNIX and Microsoft
platforms. It includes
compiler directives, a
library, and runtime
directives.

a parallel benchmark suite similar in goals to the SPEC CPU benchmark
suite. It includes both kernels and applications, including many from the
high-performance computing community. This benchmark requires strong
scaling, although it comes with two data sets.

• The NAS (NASA Advanced Supercomputing) parallel benchmarks were
another attempt from the 1990s to benchmark multiprocessors. Taken from
computational fluid dynamics, they consist of five kernels. They allow weak
scaling by defining a few data sets. Like Linpack, these benchmarks can be
rewritten, but the rules require that the programming language can only be
C or Fortran.

M The recent PARSEC (Princeton Application Repository for Shared Memory
Computers) benchmark suite consists of multithreaded programs that use
Pthreads (POSIX threads) and OpenMP (Open Multiprocessing). They
focus on emerging markets and consist of nine applications and three ker-
nels. Eight rely on data parallelism, three rely on pipelined parallelism, and
one on unstructured parallelism.

The downside of such traditional restrictions to benchmarks is that innovation
is chiefly limited to the architecture and compiler. Better data structures, algo-
rithms, programming languages, and so on often can not be used, since that would
give a misleading result. The system could win because of, say, the algorithm, and
not because of the hardware or the compiler.

While these guidelines are understandable when the foundations of computing
are relatively stable—as they were in the 1990s and the first half of this decade—
they are undesirable at the beginning of a revolution. For this revolution to succeed,
we need to encourage innovation at all levels.

One recent approach has been advocated by researchers at the University of
California at Berkeley. They have identified 13 design patterns that they claim will
be part of applications of the future. These design patterns are implemented by
frameworks or kernels. Examples are sparse matrices, structured grid, finite-state
machines, map reduce, and graph traversal. By keeping the definitions at a high
level, they hope to encourage innovations at any level of the system. Thus, the
system with the fastest sparse matrix solver is welcome to use any data structure,
algorithm, and programming language, in addition to novel architectures and
compilers. We'll see examples of such benchmarks in Section 7.11.

Check
Yourself

True or false: The main drawback with conventional approaches to bench-
marks for parallel computers is that the rules that ensure fairness also suppress
innovation.

7.10 Roofline: A Simple Performance Model 667

Roofline: A Simple Performance Model

This section is based on a paper by Williams and Patterson [2008]. In the recent
past, conventional wisdom in computer architecture led to similar microproces-
sor designs. Nearly every desktop and server computer used caches, pipelining,
superscalar instruction issue, branch prediction, and out-of-order execution. The
instruction sets varied, but the microprocessors were all from the same school of

The switch to multicore likely means that microprocessors will become more
diverse, since there is no conventional wisdom as to which architecture will make it
easiest to write correct parallel processing programs that run efficiently and scale as
the number of cores increases over time. Moreover, as the number of cores per chip
does increase, a single manufacturer will likely offer different numbers of cores per
chip at different price points at the same time.

Given the increasing diversity, it would be especially helpful if we had a simple
model that offered insights into the performance of different designs. It need not
be perfect, just insightful.

The 3Cs model from Chapter 5 is an analogy. It is not a perfect model, since
it ignores potentially important factors like block size, block allocation policy,
and block replacement policy. Moreover, it has quirks. For example, a miss can be
ascribed due to capacity in one design and to a conflict miss in another cache of
the same size. Yet 3Cs model has been popular for 20 years, because it offers insight
into the behavior of programs, helping both architects and programmers improve
their creations based on insights from that model.

To find such a model, let's start with the 13 Berkeley design patterns in Figure 7.9.
The idea of the design patterns is that the performance of a given application is
really the weighted sum of several kernels that implement those design patterns.
We'll evaluate individual kernels here, but keep in mind that real applications are
combinations of many kernels.

While there are versions with different data types, floating point is popular in
several implementations. Hence, peak floating-point performance is a limit on the
speed of such kernels on a given computer. For multicore chips, peak floating-
point performance is the collective peak performance of all the cores on the chip.
If there were multiple microprocessors in the system, you would multiply the peak
per chip by the total number of chips.

The demands on the memory system can be estimated by dividing this peak
floating-point performance by the average number of floating-point operations
per byte accessed:

design.

Floating-Point Operations/Sec
= Bytes/Sec Floating-Point Operations/Byte

668 Chapter 7 IVluIticores, Multiprocessors, and Clusters

arithmetic intensity
The ratio of floating-point
operations in a program to
the number of data bytes
accessed by a program
from main memory.

The ratio of floating-point operations per byte of memory accessed is called the
arithmetic intensity. It can be calculated by taking the total number of floating-
point operations for a program divided by the total number of data bytes transferred
to main memory during program execution. Figure 7.12 shows the arithmetic
intensity of several of the Berkeley design patterns from Figure 7.11.

0(1) 0(log(N)) 0(N)

"N

A r i t h m e t i c I n t e n s i t y * • •

Sparse
Matrix
(SpMV)

Structured
Grids

Spectral
Methods
(FFTs)

Structured
Grids

Dense
Matrix
(BLAS3)

(Stencils, (Lattice
PDEs) Methods)

N-body
(Particle
Methods)

FIGURE 7.12 Arithmetic intensity, specified as the number of float-point operations to
run the program divided by the number of bytes accessed in main m e m o r y [Will iams,
Patterson, 2008] . Some kernels have an arithmetic intensity that scales with problem size, such as Dense
Matrix, but there are many kernels with arithmetic intensities independent of problem size. For kernels in
this former case, weak scaling can lead to different results, since it puts much less demand on the memory
system.

The Rooffline Model
The proposed simple model ties floating-point performance, arithmetic intensity,
and memory performance together in a two-dimensional graph [Williams,
Patterson, 2008]. Peak floating-point performance can be found using the hardware
specifications mentioned above. The working set of the kernels we consider here
do not fit in on-chip caches, so peak memory performance may be defined by the
memory system behind the caches. One way to find the peak memory performance
is the Stream benchmark. (See the Elaboration on page 473 in Chapter 5).

Figure 7.13 shows the model, which is done once for a computer, not for each
kernel. The vertical Y-axis is achievable floating-point performance from 0.5 to
64.0 GFLOPs/second. The horizontal X-axis is arithmetic intensity, varying from
1/8 FLOPs/DRAM byte accessed to 16 FLOPs/DRAM byte accessed. Note that the
graph is a log-log scale.

For a given kernel, we can find a point on the X-axis based on its arithmetic
intensity. If we drew a vertical line through that point, the performance of the ker-
nel on that computer must lie somewhere along that line. We can plot a horizontal
line showing peak floating-point performance of the computer. Obviously, the

7.10 Roofline: A Simple Performance Model 6 6 9

64.0

32.0

16.0

8.0

4.0

2 .0

1.0

0.5

|

^peak fl oating-point p erforms ince

;
ince

/ I
: ;
•

f
j :

: Kernel 1
i (Memory

Bandwidth

: Kernel 2
: (Computatio
S l imi tpr iV .

n

i limited) :
-#

1/8 1/4 1/2 1 2 4 8
Arithmetic Intensity: FLOPs/Byte Ratio

16

FIGURE 7.13 Roofline Model [Will iams, Patterson, 2008] . This example has a peak floating-point
performance of 16 GFLOPS/sec and a peak memory bandwidth of 16 GB/sec from the Stream benchmark.
(Since stream is actually four measurements, this line is the average of the four.) The dotted vertical line in
color on the left represents Kernel 1, which has an arithmetic intensity of 0.5 FLOPs/byte. It is limited by
memory bandwidth to no more than 8 GFLOPS/sec on this Opteron X2. The dotted vertical line to the right
represents Kernel 2, which has an arithmetic intensity of 4 FLOPs/byte. It is limited only computationally to
16 GFLOPS/s. (This data is based on the AMD Opteron X2 (Revision F) using dual cores running at 2 GHz
in a dual socket system.)

actual floating-point performance can be no higher than the horizontal line, since
that is a hardware limit.

How could we plot the peak memory performance? Since X-axis is FLOPs/
byte and the Y-axis is FLOPs/second, bytes/second is just a diagonal line at a
45-degree angle in this figure. Hence, we can plot a third line that gives the
maximum floating-point performance that the memory system of that computer
can support for a given arithmetic intensity. We can express the limits as a formula
to plot the line in the graph in Figure 7.13:

Attainable GFLOPs/sec = Min (Peak Memory BW x Arithmetic Intensity,
Peak Floating-Point Performance)

The horizontal and diagonal lines give this simple model its name and indicates
its value. The "roofline" sets an upper bound on performance of a kernel depend-
ing on its arithmetic intensity. If we think of arithmetic intensity as a pole that
hits the roof, either it hits the flat part of the roof, which means performance is
computationally limited, or it hits the slanted part of the roof, which means perfor-
mance is ultimately limited by memory bandwidth. In Figure 7.13, kernel 2 is an
example of the former and kernel 1 is an example of the latter. Given a roofline of
a computer, you can apply it repeatedly, since it doesn't vary by kernel.

670 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Note that the "ridge point," where the diagonal and horizontal roofs meet, offers
an interesting insight into the computer. If it is far to the right, then only kernels
with very high arithmetic intensity can achieve the maximum performance of
that computer. If it is far to the left, then almost any kernel can potentially hit the
maximum performance. We'll see examples of both shortly.

Comnpariinig Two Generations of ©pterons
The AMD Opteron X4 (Barcelona) with four cores is the successor to the Opteron
X2 with two cores. To simplify board design, they use the same socket. Hence, they
have the same DRAM channels and thus the same peak memory bandwidth. In
addition to doubling the number of cores, the Opteron X4 also has twice the peak
floating-point performance per core: Opteron X4 cores can issue two floating-point
SSE2 instructions per clock cycle, while Opteron X2 cores issue at most one. As the
two systems we're comparing have similar clock rates—2.2 GHz for Opteron X2
versus 2.3 GHz for Opteron X4—the Opteron X4 has more than four times the peak
floating-point performance of the Opteron X2 with the same DRAM bandwidth.
The Opteron X4 also has a 2MB L3 cache, which is not found in the Opteron X2.

Figure 7.14 compares the roofline models for both systems. As we would expect,
the ridge point moves from 1 in the Opteron X2 to 5 in the Opteron X4. Hence, to
see a performance gain in the next generation, kernels need an arithmetic intensity
higher than 1 or their working sets must fit in the caches of the Opteron X4.

o

128.0
64 .0

32 .0

16.0

8.0

4 .0

2.0

1.0

0.5
V„ V4 % 1 2 4 8 16

Actual FLOPbyte ratio

FIGURE 7.14 Roofline models of t w o generations of Opterons. The Opteron X2 roofline, which
is the same as Figure 7.11, is in black, and The Opteron X4 roofline is in color. The bigger ridge point of
Opteron X4 means that kernels that where computationally bound on the Opteron X2 could be memory-
performance bound on the Opteron X4.

7.10 Roofline: A Simple Performance Model 671

The roofline model gives an upper bound to performance. Suppose your program
is far below that bound. What optimizations should you perform, and in what
order?

To reduce computational bottlenecks, the following two optimizations can help
almost any kernel:

1. Floating-point operation mix. Peak floating-point performance for a com-
puter typically requires an equal number of nearly simultaneous additions
and multiplications. That balance is necessary either because the computer
supports a fused multiply-add instruction (see the Elaboration on page 268
in Chapter 3) or because the floating-point unit has an equal number of
floating-point adders and floating-point multipliers. The best performance
also requires that a significant fraction of the instruction mix is floating-
point operations and not integer instructions.

2. Improve instruction-level parallelism and apply SIMD. For superscalar archi-
tectures, the highest performance comes when fetching, executing, and
committing three to four instructions per clock cycle (see Chapter 4). The
goal here is to improve the code from the compiler to increase ILP. One way
is by unrolling loops. For the x86 architectures, a single SIMD instruction
can operate on pairs of double precision operands, so they should be used
whenever possible.

To reduce memory bottlenecks, the following two optimizations can help:

1. Software prefetching. Usually the highest performance requires keeping
many memory operations in flight, which is easier to do by performing
software prefetch instructions rather than waiting until the data is required
by the computation.

2. Memory affinity. Most microprocessors today include a memory controller
on the same chip with the microprocessor. If the system has multiple chips,
this means that some addresses go to the DRAM that is local to one chip, and
the rest require accesses over the chip interconnect to access the DRAM that
is local to another chip. The latter case lowers performance. This optimiza-
tion tries to allocate data and the threads tasked to operate on that data to
the same memory-processor pair, so that the processors rarely have to access
the memory of the other chips.

The roofline model can help decide which of these optimizations to perform and
the order in which to perform them. We can think of each of these optimizations as
a "ceiling" below the appropriate roofline, meaning that you cannot break through
a ceiling without performing the associated optimization.

6 7 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

A M D Opteron

6 4 . 0

3 2 . 0

16.0

8.0

4 .0

2.0

1.0

0 .5

peak floating- Doint pc rforma nee

• f j
1. Fl. Pt. imbalance

V

f f /
—

V 2. Without ILP or SIMD

—

VB i/4 \ 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

A M D Opteron

CL o
—I
LL-
CS
CD

6 4 . 0

32 .0

16.0

8 . 0

4 .0

2 .0

1.0

0 .5

i

peak floating- Doint pE >rformahce

At/
/

A w

K y
V

M
/ y

v <v

d v /
— —

Va 1/4 1/2 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 7.15 Roofline model with ceilings. The Top graph shows the computational "ceilings" of
8 GFLOPs/sec if the floating-point operation mix is unbalanced and 2 GFLOPs/sec if the optimizations
to increase ILP and SIMD are also missing. The bottom graph shows the memory bandwidth ceilings of
11 GB/sec without software prefetching and 4.8 GB/sec if memory affinity optimizations are also missing.

7.10 Roofline: A Simple Performance Model 673

The computational roofline can be found from the manuals, and the memory
roofline can be found from running the stream benchmark. The computational
ceilings, such as floating-point balance, also come from the manuals for that com-
puter. The memory ceiling requires running experiments on each computer to
determine the gap between them. The good news is that this process only need be
done once per computer, for once someone characterizes a computer's ceilings,
everyone can use the results to prioritize their optimizations for that computer.

Figure 7.15 adds ceilings to the roofline model in Figure 7.13, showing the
computational ceilings in the top graph and the memory bandwidth ceilings on
the bottom graph. Although the higher ceilings are not labeled with both opti-
mizations, that is implied in this figure; to break through the highest ceiling, you
need to have already broken through all the ones below.

The thickness of the gap between the ceiling and the next higher limit is the
reward for trying that optimization. Thus, Figure 7.15 suggests that optimization
2, which improves ILP, has a large benefit for improving computation on that
computer, and optimization 4, which improves memory affinity, has a large benefit
for improving memory bandwidth on that computer.

Figure 7.16 combines the ceilings of Figure 7.15 into a single graph. The arith-
metic intensity of a kernel determines the optimization region, which in turn sug-
gests which optimizations to try. Note that the computational optimizations and
the memory bandwidth optimizations overlap for much of the arithmetic inten-
sity. Three regions are shaded differently in Figure 7.16 to indicate the different
optimization strategies. For example, Kernel 2 falls in the blue trapezoid on the
right, which suggests working only on the computational optimizations. Kernel 1
falls in the blue-gray parallelogram in the middle, which suggests trying both types
of optimizations. Moreover, it suggests starting with optimizations 2 and 4. Note
that the Kernel 1 vertical lines fall below the floating-point imbalance optimization,
so optimization 1 may be unnecessary. If a kernel fell in the gray triangle on the
lower left, it would suggest trying just memory optimizations.

. Thus far, we have been assuming that the arithmetic intensity is fixed, but that is
not really the case. First, there are kernels where the arithmetic intensity increases
with problem size, such as for Dense Matrix and N-body problems (see Figure
7.12). Indeed, this can be a reason that programmers have more success with weak
scaling than with strong scaling. Second, caches affect the number of accesses that
go to memory, so optimizations that improve cache performance also improve
arithmetic intensity. One example is improving temporal locality by unrolling loops
and then grouping together statements with similar addresses. Many computers
have special cache instructions that allocate data in a cache but do not first fill the
data from memory at that address, since it will soon be overwritten. Both these
optimizations reduce memory traffic, thereby moving the arithmetic intensity pole
to the right by a factor of, say, 1.5. This shift right could put the kernel in a different
optimization region.

7 4 Chapter 7 IVluIticores, Multiprocessors, and Clusters

The next section uses the roofline model to demonstrate the difference for
four recent multicore microprocessors for two real application kernels. While the
examples above show how to help programmers improve performance, the model
can also be used by architects to decide where they optimize hardware to improve
performance of the kernels that they think will be important.

Elaboration: The ceilings are ordered so that lower ceilings are easier to optimize.
Clearly, a programmer can optimize in any order, but following this sequence reduces the
chances of wasting effort on an optimization that has no benefit due to other constraints.
Like the 3Cs model, as long as the roofline model delivers on insights, a model can have
quirks. For example, it assumes the program is load balanced between all processors.

Arithmetic Intensity: FLOPs/Byte Ratio

FIGURE 7.16 Roofline model with ceilings, overlapping areas shaded, and the t w o ker-
nels from Figure 7.13. Kernels whose arithmetic intensity land in the blue trapezoid on the right should
focus on computation optimizations, and kernels whose arithmetic intensity land in the gray Triangle in the
lower left should focus on memory bandwidth optimizations. Those that land in the blue-gray parallelogram
in the middle need to worry about both. As Kernel 1 falls in the parallelogram in the middle, try optimizing
ILP and SIMD, memory affinity, and software prefetching. Kernel 2 falls in the trapezoid on the right, so try
optimizing ILP and SIMD and the balance of floating-point operations.

7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 675

Elaboration: An alternative to the Stream benchmark is to use the raw DRAM
bandwidth as the roofline. While the DRAMs definitely set a hard bound, actual memory
performance is often so far from that boundary that it's not that useful as an upper bound.
That is, no program can go close to that bound. The downside to using Stream is that
very careful programming may exceed the Stream results, so the memory roofline may
not be as hard a limit as the computational roofline. We stick with Stream because few
programmers will be able to deliver more memory bandwidth than Stream discovers.

Elaboration: The two axes used above were floating-point operations per second and
arithmetic intensity of accesses to main memory. The roofline model could be used
for other kernels and computers where the performance was a function of different
performance metrics.

For example, if the working set fits in the L2 cache of the computer, the bandwidth
plotted on the diagonal roofline could be L2 cache bandwidth instead of main memory
bandwidth, and the arithmetic intensity on the X-axis would be based on FLOPs per L2
cache byte accessed. The diagonal L2 performance line would move up, and the ridge
point would likely move to the left.

As a second example, if the kernel was sort, records sorted per second could replace
floating-point operations per instruction on the Y-axis and arithmetic intensity would
become records per DRAM byte accessed.

The roofline model could even work for an I/O intensive kernel. The Y-axis would be
I/O operations per second, the X-axis would be the average number of instructions per
I/O operation, and the roofline would show peak I/O bandwidth.

Elaboration: Although the roofline model shown is for multicore processors, it clearly
would work for a uniprocessor as well.

B B B H Heal Stuff: Benchmarking Four EVSulficores
U | 1 Using the Roofline Model

Given the uncertainty about the best way to proceed in this parallel revolution, it's
not surprising that we see as many different designs as there are multicore chips.
In this section, we'll examine four multicore systems for two kernels of the design
patterns in Figure 7.11: sparse matrix and structured grid. (The information in
this section is from [Williams, Oliker, et al, 2007], [Williams, Carter, et al., 2008],
[Williams and Patterson, 2008].)

6 7 6 C h a p t e r 7 I V l u I t i c o r e s , M u l t i p r o c e s s o r s , a n d C l u s t e r s

Four (Vlultacore Systems
Figure 7.17 shows the basic organization of the four systems, and Figure 7.18 lists
the key characteristics of the examples of this section. These are all dual socket
systems. Figure 7.19 shows the roofline performance model for each system.

4MB
Shared L2

Coro | Cote

4MB
Shared L2

1

Coro Core

4MB
Shared L2

Coro Core

4MB
Snared L2

1
FSB FSB

10.66 GB/s 110.66 GB/s

Chipset (4x64 b controllers) I
21.33 GB/s(read)' Ml 10.66 GB/s(write)

667 MHl FBDIMMs

MT '.parc MT
ipat

UT
Korc

MT
Kurc

MT
ware

MT
H>*IC

MT
iparc

MT
IBKU 'SKLI 8K LI eNLI^KlVflKLIbKLI

Crossbar Switch (16 Byto reads 0 Byte writes
90 GB/s (writolhm)

.IMO Shared L211t»»v)
faMnta «tr!iu»vTj wi On"J 0 Ontafr
4 Coherency Hubs (2 banks oach)

2x120 b memory controllers (4 banks ooch)
21.33 GB/S (road) 10.66 GB/s (write)

667 MHl FBOIMMs

a R 13

1 MT
MMUC

MT
•pvc MT tparc

MT
«»rc

MT
Kurc

MT MT MT
Ipafcjiptrc sturc

iBKLI 6K LljBK LI flKLt •8KL1 BKL18KLI
Crossbar Switch (16 Byto roads 0 Byle writes

173 GB/s (till) | } 90 GB/s (Wrttothru)
CxJdreti wttiflt «>'»! w» 8»«4 B &«*»)
4 Coherency Hubs (2 bonks oach)

2x128 b memory controllers (4 banks oach)
10 66 GB/s (write) | 21.33 GB/s (road)

GC7 MHi FBDIMMs

(a) Intel Xeon e5345 (Clovcrtown) (c) Sun UltraSPARC T2 5140 (Niagara 2)

lOr.iaron Of-toron OpMronjoptoron

octm
512KB
wton

512KB j 512KB
xctn i victm

12 MO SrwwJ qatv-\ict«i (32 o*v)
SRI/crossbar

2x04 b memory controllers
n n

O;'—' Optrrcn OpSorcnlOftforon
1512KB 512KB 512 KB I 512KB

tnccm wcun vW«n 1 vtctm
12 UB Sh*> ml qiaiivelm 132 w«y)

SRI/crossbar
ti

2x6-1 b memory controllers

667 MHz DDF12 OlMMs {.67MH.-D0R? DIM'.'s

SPE SPE SPE SFE VMT
PPE

VMT
PPE SPE SPE SPE SPE

256K|256K 256 K 256 K
VMT
PPE

VMT
PPE 256 K 256 K 256 K 256 K

MFC MFC MFC MFC L7 L2 MFC MFC MFC MFC
i » 1 i H H i 1 _ t H If H

L EIB (Ring Network)
a -3 1 EIB (Ring Network)

ii + t i T i» + i t a -3 t it it it it i t
MFC MFC MFC MFC E e a a 3 O

MFC MFC MFC MFC
256 K 25'jK 250 K 256 K -t =g BIF i BIF

e a a 3 O 256 K 256 K 2V.K 256 K 256 K 25'jK 250 K 256 K BIF BIF •r c 256 K 256 K 2V.K 256 K
SPE SPE SPE SPE u 8 •r c SPE SPE SPE SPE

iili uu
25.6 GB/s till ill! 25 6 GB/s

«32 GB <100 MHi DDF12 DIMMs <32 GB i<00 MH .* ODR2 DIMMs

(b) A M D Opteron X4 2356 (Barcelona) (d) IBM Cell QS20

F I G U R E 7 . 1 7 F o u r r e c e n t m u l t i p r o c e s s o r s , e a c h u s i n g t w o s o c k e t s f o r t h e p r o c e s s o r s . Starting from the upper left
hand corner, the computers are: (a) Intel Xeon e5345 (Clovertown), (b) A M D Opteron X4 2356 (Barcelona), (c) Sun UltraSPARC T2 5140
(Niagara 2), and (d) IBM Cell QS20. Note that the Intel Xeon e5345 (Clovertown) has a separate north bridge chip not found in the other
microprocessors.

7.11 Real Stuff : Benchmarking Four Multicores Using the Roofline Model 6 7 7

Number N u m b e r Number Clock Peak D R A M : Peak G B / s , Clock Rate,
M P U TVpe ISA Threads Cores S o c k e t s GHz G F L O P / s Type

Intel Xeon e 5 3 4 5
(Clovertown)

X86/64 8 8 2 2 . 3 3 75 FSB: 2 x 1 0 . 6
6 6 7 MHz
FBDIMM

AMD Opteron X4
2 3 5 6 (Barcelona)

X86/64 8 8 2 2 . 3 0 74 2 x 10 .6
667 MHz

DDR2

Sun UltraSPARC T2
5 1 4 0 (Niagara 2)

Sparc 1 2 8 16 2 1 .17 22
2 x 2 1 . 3 (read)
2 x 10 .6 (write)

667 MHz
FBDIMM

IBM Cell QS20 Cell 16 16 2 3 . 2 0 2 9 2 x 2 5 . 6 XDR

FIGURE 7.18 Characteristics of the four recent multicores. Although the Xeon e5345 and Opteron X4 have the same speed
DRAMs, the Stream benchmark shows a higher practical memory bandwidth due to the inefficiencies of the front side bus on the Xeon e5345.

The Intel Xeon e5345 (code-named "Clovertown") contains four cores pet-
socket by packaging two dual core chips into a single socket. These two chips share
a front side bus that is attached to a separate north bridge chip set (see Chapter 6).
This north bridge chip set supports two front side buses and hence two sockets. It
includes the memory controller for the 667 MITz Fully Buffered DRAM DIMMs
(FBDIMMs). This dual-socket system uses a processor clock rate of 2.33 GFIz and
has the highest peak performance of the four examples: 75 GFLOPS. However, the
roofline model in Figure 7.19 shows that this can be achieved only with arithmetic
intensities of 8 and above. The reason is that the dual front side buses interfere with
each other, yielding relatively low memory bandwidth to programs.

The AMD Opteron X4 2356 (Barcelona) contains four cores per chip, and each
socket has a single chip. Each chip has a memory controller on board and its own
path to 667 MFIz DDR2 DRAM. These two sockets communicate over separate,
dedicated Flypertransport links, which makes it possible to build a "glueless"
multichip system. This dual-socket system uses a processor clock rate of 2.30 GFIz
and has a peak performance of about 74 GFLOPS. Figure 7.19 shows that the ridge
point in the roofline model is to the left of the Xeon e5345 (Clovertown), at an
arithmetic intensity of about 5 FLOPS per byte.

The Sun UltraSPARC T2 5140 (code named "Niagara 2") is quite different from
the two x86 microarchitectures. It uses eight relatively simple cores per chip with
a much lower clock rate. It also provides fine-grained multithreading with eight
threads per core. A single chip has four memory controllers that could drive four
sets of 667 MHz FBDIMMs. To join two UltraSPARC T2 chips together, two of the
four memory channels are connected, leaving two memory channels per chip. This
dual-socket system has a peak performance of about 22 GFLOPS, and the ridge
point is an amazingly low arithmetic intensity of just 1/3 FLOPS per byte.

678 Chapter 7 IVluIticores, Multiprocessors, and Clusters

a.

128

64
tn
cl 32
O
u! 16
O
u 8

L

Peak DP

///^X . ̂25% issued = FP

/ v T / i
A y i

i
A i

' !
i
i

1 1
• i
i «

i
i

— 42
Hi o
_i
LL
CD
_<D
.Q
03
C

' r a

V V V '8 '4 '2 1 2 4 8 16

Actual FLOPbyte ratio

c. Sun UltraSPARC T2 5140 (Niagara 2)

128.0

64.0

32.0

16.0
8.0

4.0

2.0

1.0

0.5

3eak DP
/ /

A *

w/out FMA

w/out SIMD

7
/ / \ % v\ //out ILP

y
i

i
i

- i —

i

j i
i

- i —

i

i

V 1/ V 1 '8 '4 '2 1 2 4 8 16

Actual FLOPbyte ratio

d. IBM Cell QS20

FIGURE 7.19 Roofline model for multicore mult iprocessors in Figure 7.15. The ceilings are the same as in Figure 7.13. Starting
from the upper left hand corner, the computers are: (a) Intel Xeon e5345 (Clovertown), (b) AMD Opteron X4 2356 (Barcelona), (c) Sun
UltraSPARC T2 5140 (Niagara 2), and (d) IBM Cell QS20. Note the ridge points for the four microprocessors intersect the X-axis at the
arithmetic intensities of 6, 4, 1/3, and 3/4, respectively. The dashed vertical lines are for the two kernels of this section and the stars mark
the performance achieved for these kernels after all the optimizations. SpMV is the pair of dashed vertical lines on the left. It has two lines
because its arithmetic intensity improved from 0.166 to 0.255 based on register blocking optimizations. LBHMD is the dashed vertical lines
on the right. It lias a pair of lines in (a) and (b) because a cache optimization skips filling the cache block on a miss when the processor would
write new data into the entire block. That optimization increases the arithmetic intensity from 0.70 to 1.07. It's a single line in (c) at 0.70
because UltraSPARC T2 does not offer the cache optimization. It is a single line at 1.07 in (d) because Cell has local store loaded by DMA, so
the program doesn't fetch unnecessary data as do caches.

128.0

64.0

w 32.0
CL
3 16.0
o 8-0
-Q
| 4.0
'ra

§ 2.0
1.0
0.5

V8 1/4 1/2 1 2 4 B 16
Actual FLOPbyte ratio b. AMD Opteron X4 2356 (Barcelona)

128.0

64.0

32.0

16.0
8.0
4.0

2.0

1.0

0.5
VB V4 V2 1 2 4 8

Actual FLOPbyte ratio
Intel Xeon e5345 (Clovertown)

7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 679

The IBM Cell QS20 is again different from the two xS6 microarchitectures
and from UltraSPARC T2. It is a heterogeneous design, with a relatively simple
PowerPC core and with eight SPEs (Synergistic Processing Elements) that have their
own unique SIMD-style instruction set. Each SPE also has its own local memory
instead of a cache. An SPE must transfer data from main memory into the local
memory to operate on it and then back to main memory when it is completed. It
uses DMA, which has some similarity to software prefetching. The two sockets are
connected via links dedicated to multichip communications. The clock rate of this
system is highest of the four multicores at 3.2 GITz, and it uses XDR DRAM chips,
which are typically found in game consoles. They have high bandwidth but low
capacity. Given that the Cell's main application was graphics, it has much higher
single precision performance than double precision performance. The peak double
precision performance of the SPEs in the dual socket system is 29 GFLOPS, and the
ridge point of arithmetic intensity is 0.75 FLOPs per byte.

While the two xS6 architectures have many fewer cores per chip than the IBM
and Sun offerings in early 2008, that is just where they are today. As the number
of cores is expected to double every technology generation, it will be interesting to
see whether the x86 architectures will close the "core gap" or if IBM and Sun can
sustain a larger number of cores, given that their primary focus is on servers versus
the desktop.

Note that these machines take very different approaches to the memory system.
The Xeon e5345 uses a conventional private LI cache and then pairs of processors
each share an L2 cache. These are connected through an off-chip memory controller
to a common memory over two buses. In contrast, Opteron X4 has a separate
memory controller and memory per chip, and each core has private LI and L2
caches. UltraSPARC T2 has the memory controller on-chip and four separate
DRAM channels per chip, and the cores all share the L2 cache, which has four banks
to improve bandwidth. Its fine-grained multithreading on top of its multicore
design allows it to keep many memory accesses in flight. The most radical is the
Cell. It has local private memories per SPE and uses DMA to transfer data between
the DRAM attached to each chip and local memory. It sustains many memory
accesses in flight by having many cores and then many DMA transfers per core.

Let's see how these four contrasting multicores perform on two kernels.

Sparse Matrix
The first example kernel of the Sparse Matrix computational design pattern is
Sparse Matrix-Vector multiply (SpMV). SpMV is popular in scientific computing,
economic modeling, and information retrieval. Alas, conventional implementa-
tions often run at less than 10% of peak performance of uniprocessors. One reason
is the irregular access to memory, which you might expect from a kernel working
with sparse matrices. The computation is

680 Chapter 7 IVluIticores, Multiprocessors, and Clusters

y= Ax x

where A is a sparse matrix and xand y are dense vectors. Fourteen sparse matrices
taken from a variety of real applications were used to evaluate SpMV performance,
but only the median performance is reported here. The arithmetic intensity varies
from 0.166 before a register blocking optimization to 0.250 FLOPS per byte
afterward.

The code was first parallelized to utilize all the cores. Given that the low arithmetic
intensity of SpMV was below the ridge point of all four multicores in Figure 7.19,
most of the optimizations involved the memory system:

• Prefetching. To get the most out of the memory systems, both software and
hardware prefetching were used.

• Memory Affinity. This optimization reduces accesses to the DRAM memory
connected to the other socket in the three systems that have local DRAM
memory.

• Compressing Data Structures. Since memory bandwidth likely limits per-
formance, this optimization uses smaller data structures to increase
performance—for example, using a 16-bit index instead of a 32-bit index,
and using more space efficient representations of the nonzeros in the rows
of a sparse matrix.

Figure 7.20 shows the performance on SpMV for the four systems versus the
number of cores. (The same results are found in Figure 7.19, but it's hard to
compare performance when on a log scale.) Note that despite having the highest
peak performance in Figure 7.18 and the highest single core performance, the
Intel Xeon e5345 has the lowest delivered performance of the four multicores.
Opteron X4 doubles its performance. The Xeon e5345 bottleneck is the dual front
side buses. Despite the lowest clock rate, the larger number of simple cores of the
Sun UltraSPARC T2 outperforms the two x86 processors. The IBM Cell has the
highest performance of the four. Note that all but the Xeon e5345 scale well with
the number of cores, although the Opteron X4 scales more slowly with four or
more cores.

Structured Grid
The second kernel is an example of the structured grid design pattern. Lattice-
Boltzmann Magneto-Hydrodynamics (LBMHD) is popular for computational
fluid dynamics; it is a structured grid code with a series of time steps.

7.11 Real Stuff: Benchmarking Four Multicores Using the Roofline Model 6 8 1

Cores

FIGURE 7.20 Performance of SpMV on the four multicores.

Each point involves reading and writing about 75 double precision floating-
point numbers and about 1300 floating-point operations. Like SpMV, LBMHD
tends to get a small fraction of peak performance on uniprocessors because of the
complexity of the data structures and the irregularity of memory access patterns.
The FLOPS to byte ratio is a much higher 0.70 versus less than 0.25 in SpMV. By
not filling the cache block from memory on a write miss when the program is
going to overwrite the whole block, the intensity rises to 1.07. All multicores but
UltraSPARC T2 (Niagara 2) offer this cache optimization.

Figure 7.19 shows that the arithmetic intensity of LBMITD is high enough
that both computational and memory bandwidth optimizations make sense on
all multicores but UltraSPARC T2, whose roofline ridge point is below that of
LBMFID. UltraSPARC T2 can reach the roofline using only the computational
optimizations.

In addition to parallelizing the code so that it could use all the cores, the following
optimizations were used for LBMITD:

• Memory Affinity: This optimization is again useful for the same reasons
mentioned above.

• TLB Miss Minimization: To reduce TLB misses significantly in LBMITD, use
a structure of arrays and combine some loops together rather than the con-
ventional approach of using an array of structures.

6 8 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

• Loop Unrolling and Reordering: To expose sufficient parallelism and improve
cache utilization, the loops were unrolled and then reordered to group state-
ments with similar addresses.

• "SIMD-ize": The compilers of the two x86 systems could not generate good
SSE code, so these had to be written by hand in assembly language.

Figure 7.21 shows the performance for the four systems versus the number of
cores for LBMITD. Like the SpMV, the Intel Xeon e5345 has the worst scalability.
This time the more powerful cores of Opteron X4 outperform the simple cores of
UltraSPARC T2 despite having half the number of cores. Once again, the IBM Cell
is the fastest system. All but Xeon e5345 scale with the number of cores, although
T2 and Cell scale more smoothly than the Opteron X4.

Cores

FIGURE 7.21 Performance of LBMHD on the four multicores.

Productivity
In addition to performance, another important issue for the parallel computing
revolution is productivity, or the programming difficulty of achieving perfor-
mance. To illustrate the differences, Figure 7.22 compares na'ive performance to
fully optimized performance for the four cores on the two kernels.

7.11 Real Stuff : Benchmarking Four Multicores Using the Roofline Model 6 8 3

M P U Type Kernel
Base

G F L O P s / s
Optimized
G F L O P s / s

Naive % of
Opt imized

Intel Xeon e 5 3 4 5
(Clovertown)

SpMV
LBMHD

1.0
4 . 6

1 .5
5 .6

64%
82%

AMD Opteron X4 2 3 5 6
(Barcelona)

SpMV
LBMHD

1.4
7 . 1

3 . 6
1 4 . 1

38%
50%

Sun UltraSPARC T2
(Niagara 2)

SpMV
LBMHD

3 .5
9 .7

4 . 1
10 .5

86%
93%

IBM Cell QS20 SpMV
LBMHD _

6.4
16 .7

0%
0%

FIGURE 7.22 Base versus fully optimized performance of the four cores on the two kernels.
Note the high fraction of fully optimized performance delivered by the Sun UltraSPARC T2 (Niagara 2). There
is no base performance column for the IBM Cell because there is no way to port the code to the SPEs without
caches. While you could run the code on the Power core, it has an order of magnitude lower performance than
the SPES, so we ignore it in this figure.

The easiest was UltraSPARC T2, due to its large memory bandwidth and its
easy-to-understand cores. The advice for these two kernels in UltraSPARC T2 is
simply to try to get good performing code from the compiler and then use as many
threads as possible. The one caution for other kernels is that UltraSPARC T2 can
come afoul of the pitfall about making sure set associativity matches the number
of hardware threads (see page 545 of Chapter 5). Each chip supports 64 hardware
threads, while the L2 cache is four-way set associative. This mismatch can require
restructuring loops to reduce conflict misses.

The Xeon e5346 was difficult because it was hard to understand the memory
behavior of the dual front side buses, it was hard to understand how hardware
prefetching worked, and it was difficult to get good SIMD code from the compiler.
The C code for it and for the Opteron X4 are liberally sprinlded with intrinsic
statements involving SIMD instructions to get good performance.

The Opteron X4 benefited from the most types of optimizations, so it needed
more effort than the Xeon e5345, although the memory behavior of the Opteron X4
was easier to understand than that of the Xeon e5345.

Cell provided two types of challenges. First, the SIMD instructions of the
SPE were awkward to compile for, so at times you needed to help the compiler
by inserting intrinsic statements with assembly language instructions into the C
code. Second, the memory system was more interesting. Since each SPE has local
memory in a separate address space, you could not simply port the code and start

684 Chapter 7 IVluIticores, Multiprocessors, and Clusters

running on the SPE. Hence, there is no base code column for the IBM Cell in
Figure 7.22, and you needed to change the program to issue DMA commands to
transfer data back and forth between local store and memory. The good news is
that DMA played the role of software prefetch in caches, and DMA is much easier
to use and achieve good memory performance. Cell was able to deliver almost 90%
of the memory bandwidth "roofline" to these kernels, compared to 50% or less for
the other multicores.

For over a decade
prophets have voiced
the contention that
the organization of a
single computer has
reached its limits and
that truly significant
advances can he made
only by interconnec-
tion of a multiplicity
of computers in such
a maimer as to permit
cooperative solution
Demonstration is made
of the continued validit)'
of the single processor
approach...

Gene Amdahl, "Validity
of the single processor
approach to achieving
large scale computing
capabilities," Spring
Joint Computer
Conference, 1967

7.12 Fallacies and Pitfalls

The many assaults on parallel processing have uncovered numerous fallacies and
pitfalls. We cover three here.

Fallacy: Amdahl's law doesn't apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl's law had been
broken by a multiprocessor machine. To try to understand the basis of the media
reports, let's see the quote that gave us Amdahl's law [1967, p. 483]:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in seqttential processing rates of very nearly the
same magnitude.

This statement must still be true; the neglected portion of the program must limit
performance. One interpretation of the law leads to the following lemma: por-
tions of every program must be sequential, so there must be an economic upper
bound to the number of processors—say, 100. By showing linear speed-up with
1000 processors, this lemma is disproved; hence the claim that Amdahl's law was
broken.

The approach of the researchers was to use weak scaling: rather than going
1000 times faster on the same data set, they computed 1000 times more work in
comparable time. For their algorithm, the sequential portion of the program was
constant, independent of the size of the input, and the rest was fully parallel—
hence, linear speed-up with 1000 processors.

Amdahl's law obviously applies to parallel processors. What this research does
point out is that one of the main uses of faster computers is to run larger problems,
but to beware how the algorithm scales as you increase problem size.

Fallacy: Peak performance tracks observed performance.

For example, Section 7.11 shows that the Intel Xeon e5345, the microprocessor
with the highest peak performance, was the slowest of the four multicore micro-
processors for two kernels.

7.12 Fallacies and Pitfalls 685

The supercomputer industry used this metric in marketing, and the fallacy
is exacerbated with parallel machines. Not only are marketers using the nearly
unattainable peak performance of a uniprocessor node, but also they are then
multiplying it by the total number of processors, assuming perfect speed-up!
Amdahl's law suggests how difficult it is to reach either peak; multiplying the two
together multiplies the sins. The roofline model helps put peak performance in
perspective.

Pitfall: Not developing the soft ware to take advantage of or optimize for, a multi-
processor architecture.

There is a long history of software lagging behind on parallel processors, possibly
because the software problems are much harder. We give one example to show the
subtlety of the issues, but there are many examples we could choose!

One frequently encountered problem occurs when software designed for a
uniprocessor is adapted to a multiprocessor environment. For example, the SGI
operating system originally protected the page table with a single lock, assum-
ing that page allocation is infrequent. In a uniprocessor, this does not represent
a performance problem. In a multiprocessor, it can become a major performance
bottleneck for some programs. Consider a program that uses a large number of
pages that are initialized at start-up, which UNIX does for statically allocated pages.
Suppose the program is parallelized so that multiple processes allocate the pages.
Because page allocation requires the use of the page table, which is locked when-
ever it is in use, even an OS kernel that allows multiple threads in the OS will be
serialized if the processes all try to allocate their pages at once (which is exactly
what we might expect at initialization time!).

This page table serialization eliminates parallelism in initialization and
has significant impact on overall parallel performance. This performance
bottleneck persists even for job-level parallelism. For example, suppose we split
the parallel processing program apart into separate jobs and run them, one job
per processor, so that there is no sharing between the jobs. (This is exactly what
one user did, since he reasonably believed that the performance problem was
due to unintended sharing or interference in his application.) Unfortunately,
the lock still serializes all the jobs—so even the independent job performance
is poor.

This pitfall indicates the kind of subtle but significant performance bugs that
can arise when software runs on multiprocessors. Like many other key software
components, the OS algorithms and data structures must be rethought in a multi-
processor context. Placing locks on smaller portions of the page table effectively
eliminates the problem.

686 Chapter 7 IVluIticores, Multiprocessors, and Clusters

We are dedicating all
of our future product
development to
multicore designs.
We believe this is a
key inflection point
for the industry....
This is not a race.
This is a sea change
in computing..."

Paul Otellini, Intel
President, Intel
Developers Forum,
2004.

7.13 Concluding Remarks

software as a
service Rather than
selling software that
is installed and run
on customers own
computers, software
is run at a remote site
and made available over
the Internet typically
via a Web interface to
customers. Customers are
charged based on use.

The dream of building computers by simply aggregating processors has been
around since the earliest days of computing. Progress in building and using effec-
tive and efficient parallel processors, however, has been slow. This rate of progress
has been limited by difficult software problems as well as by a long process of evolv-
ing the architecture of multiprocessors to enhance usability and improve efficiency.
We have discussed many of the software challenges in this chapter, including the
difficulty of writing programs that obtain good speed-up due to Amdahl's law. The
wide variety of different architectural approaches and the limited success and short
life of many of the parallel architectures of the past have compounded the software
difficulties. We discuss the history of the development of these multiprocessors in
@ Section 7.14 on the CD.

As we said in Chapter 1, despite this long and checkered past, the information
technology industry has now tied its future to parallel computing. Although it is
easy to make the case that this effort will fail like many in the past, there are reasons
to be hopeful:

• Clearly, software as a service is growing in importance, and clusters have
proven to be a very successful way to deliver such services. By providing redun-
dancy at a higher-level, including geographically distributed datacenters,
such services have delivered 24 x 7 x 365 availability for customers around
the world. It's hard not to imagine that both the number of servers per
datacenter and the number of datacenters will continue to grow. Certainly,
such datacenters will embrace multicore designs, since they can already use
thousands of processors in their applications.

• The use of parallel processing in domains such as scientific and engineering
computation is popular. This application domain has an almost limitless thirst
for more computation. It also has many applications that have lots of natural
concurrency. Once again, clusters dominate this application area. For example,
using the 2007 Linpack report, clusters represent more than 80% of the 500
fastest computers. Nonetheless, it has not been easy: programming parallel
processors even for these applications remains challenging. Yet this group too
will surely embrace multicore chips, since again they have experience with
hundreds to thousand of processors.

• All desktop and server microprocessor manufacturers are building multi-
processors to achieve higher performance, so unlike the past, there is no easy

7.13 Concluding Remarks 6 8 7

path to higher performance for sequential applications. Hence, programmers
who need higher performance must parallelize their codes or write new
parallel processing programs.

• Multiple processors on the same chip allow a very different speed of commu-
nication than multiple chip designs, offering both much lower latency and
much higher bandwidth. These improvements may make it easier to deliver
good performance.

• In the past, microprocessors and multiprocessors were subject to different
definitions of success. When scaling uniprocessor performance, micropro-
cessor architects were happy if single thread performance went up by the
square root of the increased silicon area. Thus, they were happy with sublin-
ear performance in terms of resources. Multiprocessor success used to be
defined as linear speed-up as a function of the number of processors, assum-
ing that the cost of purchase or cost of administration of n processors was n
times as much as one processor. Now that parallelism is happening on-chip
via multicore, we can use the traditional microprocessor of being successful
with sublinear performance improvement.

• The success of just-in-time runtime compilation makes it feasible to think
of software adapting itself to take advance of the increasing number of cores
per chip, which provides flexibility that is not available when limited to static
compilers.

• Unlike in the past, the open source movement has become a critical portion
of the software industry. This movement is a meritocracy, where better engi-
neering solutions can win the mind share of the developers over legacy
concerns. It also embraces innovation, inviting change to old software and
welcoming new languages and software products. Such an open culture could
be extremely helpful in this time of rapid change.

This revolution in the hardware/software interface is perhaps the greatest chal-
lenge facing the field in the last 50 years. It will provide many new research and
business opportunities inside and outside the IT field, and the companies that
dominate the multicore era may not be the same ones that dominated the unipro-
cessor era. Perhaps you will be one of the innovators who will seize the opportunities
that are sure to appear in the uncertain times ahead.

688 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Historical Perspective and Further
Reading

This section on the CD gives the rich and often disastrous history of multiproces-
sors over the last 50 years.

Exercise 7.1
First, write down a list of your daily activities that you typically do on a weekday.
For instance, you might get out of bed, take a shower, get dressed, eat breakfast, dry
your hair, brush your teeth, etc. Make sure to break down your list so you have a
minimum of 10 activities.

7.1.1 [5] <7.2> Now consider which of these activities is already exploiting some
form of parallelism (e.g., brushing multiple teeth at the same time versus one at
a time, carrying one book at a time to school versus loading them all into your
backpack, and then carry them "in parallel"). For each of your activities, discuss if
they are already working in parallel, but if not, why they are not.

7.1.2 [5] <7.2> Next, consider which of the activities could be carried out
concurrently (e.g., eating breakfast and listening to the news). For each of your
activities, describe which other activity could be paired with this activity.

7.1.3 [5] <7.2> For Exercise 7.1.2, what could we change about current
systems (e.g., showers, clothes, TVs, cars) so that we could perform more tasks
in parallel?

7.1.4 [5] <7.2> Estimate how much shorter time it would take to carry out these
activities if you tried to carry out as many tasks in parallel as possible.

Exercise 7.2
Many computer applications involve searching through a set of data and sorting the
data. A number of efficient searching and sorting algorithms have been devised in
order to reduce the runtime of these tedious tasks. In this problem we will consider
how best to parallelize these tasks.

Exercises
Contributed by David Kaeli of Northeastern University

7.15 Exercises 6 8 9

7.2.1 [10] <7.2> Consider the following binary search algorithm (a classic divide
and conquer algorithm) that searches for a value X in a sorted N-element array
A and returns the index of the matched entry:

B i n a r y S e a r c h (A [0 . . N - l] . X) (
1 o w = 0
h i g h - N - l
w h i 1 e (1 o w < = h i g h) I

m i d = (l o w T h i g h) / 2
i f (A [m i d] > X)

h i g h = m i d - 1
e l s e i f (A [m i d] < X)

l o w = m i d T l
e l s e

r e t u r n m i d / / f o u n d
1
r e t u r n - 1 / / n o t f o u n d

Assume that you have Y cores on a multicore processor to run BinarySearch.
Assuming that Y is much smaller than N, express the speed-up factor you might
expect to obtain for values of Y and N. Plot these on a graph.

7.2.2 [5] <7.2> Next, assume that Y is equal to N. ITow would this affect your
conclusions in your previous answer? If you were tasked with obtaining the best
speed-up factor possible (i.e., strong scaling), explain how you might change this
code to obtain it.

Exercise 7.3
Consider the following piece of C code:

f o r (J = 2 ; J < 1 0 0 0 ; J T T)

D C j] = D [j - l] T D [j - 2] ;

The MIPS code corresponding to the above fragment is:

D A D D I U r 2 , r 2 , 9 9 9
l o o p : L . D f l , - 1 6 (f 1)

L . D f 2 , - 8 (f l)
A D D . D f 3 , f l , f 2
S . D f 3 , 0 (r l)
D A D D I U r l . r l . 8
B N E r l , r 2 , l o o p

690 Chapter 7 IVluIticores, Multiprocessors, and Clusters

Instructions have the following associated latencies (in cycles):

7.3.1 [10] <7.2> How many cycles does it take for all instructions in a single
iteration of the above loop to execute?

7.3.2 [10] <7.2> When an instruction in a later iteration of a loop depends upon
a data value produced in an earlier iteration of the same loop, we say that there is
a loop-carried dependence between iterations of the loop. Identify the loop-carried
dependences in the above code. Identify the dependent program variable and
assembly-level registers. You can ignore the loop induction variable j.

7.3.3 [10] <7.2> Loop unrolling was described in Chapter 4. Apply loop unrolling
to this loop and then consider running this code on a 2-node distributed memory
message-passing system. Assume that we are going to use message passing as described
in Section 7.4, where we introduce a new operation send (x, y) that sends to node
x the value y, and an operation receive() that waits for the value being sent to it.
Assume that send operations take a cycle to issue (i.e., later instructions on the same
node can proceed on the next cycle), but take 4 cycles to be received on the receiving
node. Receive instructions stall execution on the node where they are executed until
they receive a message. Produce a schedule for the two nodes; assume an unroll
factor of 4 for the loop body (i.e., the loop body will appear 4 times). Compute the
number of cycles it will take for the loop to run on the message-passing system.

7.3.4 [10] <7.2> The latency of the interconnect network plays a large role in
the efficiency of message-passing systems. How fast does the interconnect need to
be in order to obtain any speed-up from using the distributed system described in
Exercise 7.3.3?

Exercise 7,4
Consider the following recursive mergesort algorithm (another classic divide and
conquer algorithm). Mergesort was first described by John von Neumann in 1945.
The basic idea is to divide an unsorted list x of m elements into two sublists of about
half the size of the original list. Repeat this operation on each sublist, and continue
until we have lists of size 1 in length. Then starting with sublists of length 1, "merge"
the two sublists into a single sorted list.

M e r g e s o r t (m)
v a r list l e f t , r i g h t , r e s u l t
i f l e n g t h (m) < 1

r e t u r n m

7.15 Exercises 691

e l s e
v a r m i d d l e = l e n g t h (m) / 2
f o r e a c h x i n m u p t o m i d d l e

a d d x t o l e f t
f o r e a c h x i n m a f t e r m i d d l e

a d d x t o r i g h t
l e f t = M e r g e s o r t (1 e f t)
r i g h t = M e r g e s o r t (r i g h t)
r e s u l t = M e r g e O e f t , r i g h t)
r e t u r n r e s u l t

The merge step is carried out by the following code:

M e r g e d e f t , r i g h t)
v a r list r e s u l t
w h i l e l e n g t h (l e f t) > 0 a n d l e n g t h (r i g h t) > 0

i f f i r s t (1 e f t) < f i r s t (r i g h t)
a p p e n d f i r s t (l e f t) t o r e s u l t
l e f t = r e s t (1 e f t)

e l s e
a p p e n d f i r s t (r i g h t) t o r e s u l t
r i g h t = r e s t (r i g h t)

i f l e n g t h (l e f t) > 0
a p p e n d r e s t (l e f t) t o r e s u l t

i f l e n g t h (r i g h t) > 0
a p p e n d r e s t (r i g h t) t o r e s u l t

r e t u r n r e s u l t

7.4.1 [10] <7.2> Assume that you have Y cores on a multicore processor to run
MergeSort. Assuming that Y is much smaller than length(m), express the speed-up
factor you might expect to obtain for values of Y and length(m). Plot these on a graph.

7.4.2 [10] <7.2> Next, assume that Y is equal to length(m). How would this affect
your conclusions in your previous answer? If you were tasked with obtaining the
best speed-up factor possible (i.e., strong scaling), explain how you might change
this code to obtain it.

Exercise 7.S
You are trying to bake three blueberry pound cakes. Cake ingredients are as follows:

1 cup butter, softened
1 cup sugar

692 Chapter 7 IVluIticores, Multiprocessors, and Clusters

4 large eggs
1 teaspoon vanilla extract
1/2 teaspoon salt
1/4 teaspoon nutmeg
1 1/2 cups flour
1 cup blueberries

The recipe for a single cake is as follows:

Preheat oven to 325°F (160°C). Grease and flour your cake pan.

In large bowl, beat together with a mixer butter and sugar at medium speed until
light and fluffy. Add eggs, vanilla, salt, and nutmeg. Beat until thoroughly blended.
Reduce mixer speed to low and add flour, 1/2 cup at a time, beating just until
blended.

Gently fold in blueberries. Spread evenly in prepared baking pan. Bake for 60
minutes.

7.5.1 [5] <7.2> Your job is to cook 3 cakes as efficiently as possible. Assuming
that you only have 1 oven large enough to hold 1 cake, 1 large bowl, 1 cake pan,
and 1 mixer, come up with a schedule to make three cakes as quickly as possible.
Identify the bottlenecks in completing this task.

7.5.2 [5] <7.2> Assume now that you have 3 bowls, 3 cake pans, and 3 mixers.
ITow much faster is the process now that you have additional resources?

7.5.3 [5] <7.2> Assume now that you have 2 friends that will help you cook, and
that you have a large oven that can accommodate all 3 cakes. How will this change
the schedule you arrived at in Exercise 7.5.1 above?

7.5.4 15] <7.2> Compare the cake-making task to computing three iterations
of a loop on a parallel computer. Identify data-level parallelism and task-level
parallelism in the cake-making loop.

Exercise 7.6
Matrix multiplication plays an important role in a number of applications. Two
matrices can only be multiplied if the number of columns of the first matrix is
equal to the number of rows in the second.

Let's assume we have an m x n matrix A and we want to multiply it by an n x p
matrix B. We can express their product as an m x p matrix denoted by AB{or A-B).
If we assign C=AB, and c.. denotes the entry in Cat position (/',;'), then

7.15 Exercises 693

for each element i and j with 1 < i < m and 1 < ; < p. Now we want to see if we can
parallelize the computation of C. Assume that matrices are laid out in memory
sequentially as follows: a , , , a , , , a3 , , a(. . . , etc.

7.6.1 [10] <7.3> Assume that we are going to compute C on both a single core
shared memory machine and a 4-core shared memory machine. Compute the speed-
up we would expect to obtain on the 4-core machine, ignoring any memory issues.

7.6.2 [10] <7.3> Repeat Exercise 7.6.1, assuming that updates to C incur a cache
miss due to false sharing when consecutive elements are in a row (i.e., index i) are
updated.

7.6.3 [10] <7.3> How would you fix the false sharing issue that can occur?

Exercise 7.7
Consider the following portions of two different programs running at the same
time on four processors in a symmetric multicore processor (SMP). Assume that
before this code is run, both x and y are 0.

Core 1: x = 2;

Core 2: y = 2:

Core 3: w = x + y + 1;

Core 4: z = x + y;

7.7.1 [10] <7.3> What are all the possible resulting values of w, x, y, and z? For
each possible outcome, explain how we might arrive at those values. You will need
to examine all possible interleavings of instructions.

7.7.2 [5] <7.3> Flow could you make the execution more deterministic so that
only one set of values is possible?

Exercise 7.8
In a cache-coherent, nonuniform-memory access (CC-NUMA) shared memory
system, CPUs and physical memory are divided across compute nodes. Each CPU
has local caches. To maintain the coherency of memory, we can add status bits
into each cache block, or we can introduce dedicated memory directories. Using
directories, each node provides a dedicated hardware table for managing the status
of every block of memory that is "local" to that node. The size of each directory is
a function of the size of the CC-NUMA shared space (an entry is provided for each
block of memory local to a node). If we store coherency information in the cache,
we add this information to every cache in every system (i.e., the amount of storage
space is a function of the number of cache blocks available in all caches).

694 Chapter 7 IVluIticores, Multiprocessors, and Clusters

In the following problems, assume that all nodes have the same number of CPUs
and the same amount of memory (i.e., CPUs and memory are evenly divided
between the nodes of the CC-NUMA machine).

7 . 8 . 1 [15] <7.3> If we have P CPUs spread across T nodes in the CC-NUMA
system, with each CPU having C memory blocks, and we maintain a byte of
coherency information in each cache block, provide an equation that expresses the
amount of memory that will be present in the caches in a single node of the system
to maintain coherency. Do not include the actual data storage space consumed in
this equation, only account for space used to store coherency information.

7 . 8 . 2 [15] <7.3> If each directory entry maintains a byte of information for each
CPU, if our CC-NUMA system has a total of S memory blocks, and the system has
T nodes, provide an equation that expresses the amount of memory that will be
present in each directory.

Exercise 7,9
Considering the CC-NUMA system described in Exercise 7.8, assume that the
system has four nodes, each with a single-core CPU (each CPU has its own LI data
cache and L2 data cache). The LI data cache is store-through, though the L2 data
cache is write-back. Assume that system has a worldoad where one CPU writes to
an address, and the other CPUs all read the data that is written. Also assume that
the address written to is initially only in memory and not in any local cache. Also,
after the write, assume that the updated block is only present in the LI and L2
caches of the core performing the write.

7 . 9 . 1 [10] <7.3> For a system that maintains coherency using cache-based block
status, describe the internode traffic that will be generated as each of the four cores
writes to a unique address, after which each address written to is read from by each
of the remaining three cores.

7 . 9 . 2 [10] <7.3> For a directory-based coherency mechanism, describe the inter-
node traffic generated when executing the same code pattern.

7 . 9 . 3 [20] <7.3> Repeat Exercises 7.9.1 and 7.9.2 assuming that each CPU is now
a multicore CPU, with four cores per CPU, each maintaining an LI data cache, but
provided with a shared L2 data cache across the four cores. Each core will perform
the write, followed by reads by each of the 15 other cores.

7 . 9 . 4 [10] <7.3> Consider the system described in Exercise 7.9.3, now assuming
that each core writes to two different bytes stored in the same cache block. How
does this impact bus traffic? Explain.

7.15 Exercises 6 9 5

Exercise 7.10
On a CC-NUMA system, the cost of accessing nonlocal memory can limit our
ability to utilize multiprocessing effectively. The following table shows the costs
associated with access data in local memory versus nonlocal memory and the
locality of our application expresses as the proportion of access that are local.

Local load/store (cycle) Nonlocal load/store (cycles) % local accesses

20 100 50

Answer the following questions. Assume that memory accesses are evenly distri-
buted through the application, and that we can continue processing when a mem-
ory access is active (no true dependencies). Also, assume that only a single memory
operation can be active during any cycle. State all assumptions about the ordering
of local versus nonlocal memory operations.

7.10.1 [10] <7.3> If on average we need to access memory once every 75 cycles,
what is impact on our application?

7.10.2 [10] <7.3> If on average we need to access memory once every 50 cycles,
what is impact on our application?

7.10.3 [10] <7.3> If on average we need to access memory once every 100 cycles,
what is impact on our application?

Exercise 7.13L
The dining philosopher's problem is a classic problem of synchronization and
concurrency. The general problem is stated as philosophers sitting at a round table
doing one of two things: eating or thinking. When they are eating, they are not
thinking, and when they are thinking, they are not eating. There is a bowl of pasta
in the center. A fork is placed in between each philosopher. The result is that each
philosopher has one fork to her left and one fork to her right. Given the nature of
eating pasta, the philosopher needs two forks to eat, and can only use the forks on
her immediate left and right. The philosophers do not speak to one another.

7.11.1 [10] <7.4> Describe the scenario where none of philosophers ever eats (i.e.,
starvation). What is the sequence of events that lead up to this problem?

7.11.2 [10] <7.4> Describe how we can solve this problem by introducing the
concept of a priority? But can we guarantee that we will treat all the philosophers
fairly? Explain.

Now assume we hire a waiter who is in charge of assigning forks to philosophers.
Nobody can pick up a fork until the waiter says they can. The waiter has global

696 Chapter 7 IVluIticores, Multiprocessors, and Clusters

knowledge of all forks. Further, if we impose the policy that philosophers will
always request to pick up their left fork before requesting to pick up their right
fork, then we can guarantee to avoid deadlock.

7.11.3 [10] <7.4> We can implement requests to the waiter as either a queue of
requests or as a periodic retry of a request. With a queue, requests are handled in
the order they are received. The problem with using the queue is that we may not
always be able to service the philosopher whose request is at the head of the queue
(due to the unavailability of resources). Describe a scenario with five philosophers
where a queue is provided, but service is not granted even though there are forks
available for another philosopher (whose request is deeper in the queue) to eat.

7.11.4 [10] <7.4> If we implement requests to the waiter by periodically repeat-
ing our request until the resources become available, will this solve the problem
described in Exercise 7.11.3? Explain.

Exercise 7.12
Consider the following three CPU organizations:

CPU SS: A 2-core superscalar microprocessor that provides out-of-order issue
capabilities on two functional units (FUs). Only a single thread can run on each
core at a time. '

CPU MT: A fine-grained multithreaded processor that allows instructions from
two threads to be run concurrently (i.e., there are two functional units), though
only instructions from a single thread can be issued on any cycle.

CPU SMT: An SMT processor that allows instructions from two threads to be run
concurrently (i.e., there are two functional units), and instructions from either or
both threads can be issued to run on any cycle.

Assume we have two threads X and Y to run on these CPUs that include the
following operations:

Thread X Thread Y

Al - takes 2 cycles to execute

A2 - depends on the result of Al

A3 - conflicts for a functional unit with A2

A4 - depends on the result of A2

B1 - no dependencies

B2 - conflicts for a functional unit with B1

B3 - no dependencies

B4 - depends on the result of B2

Assume all instructions take a single cycle to execute unless noted otherwise or they
encounter a hazard.

7.12.1 [10] < 7.5> Assume that you have one SS CPU. How many cycles will it take
to execute these two threads? How many issue slots are wasted due to hazards?

7.15 Exercises 6 9 7

7.12.2 110] < 7.5> Now assume you have 1 MT CPU. How many cycles will it take
to execute these two threads? How many issue slots are wasted due to hazards?

7.12.3 [10] < 7.5> Assume that you have 1 SMT CPU. How many cycles will it
take to execute these two threads? How many issue slots are wasted due to hazards?

Exercise 7.13
Virtualization software is being aggressively deployed to reduce the costs of
managing today's high performance servers. Companies like VMWare, Microsoft,
and IBM have all developed a range of virtualization products. The general concept,
described in Chapter 5, is that a hypervisor layer can be introduced between the
hardware and the operating system to allow multiple operating systems to share
the same physical hardware. The hypervisor layer is then responsible for allocating
CPU and memory resources, as well as handling services typically handled by the
operating system (e.g., I/O).

Virtualization provides an abstract view of the underlying hardware to the hosted
operating system and application software. This will require us to rethink how
multicore and multiprocessor systems will be designed in the future to support the
sharing of CPUs and memories by a number of operating systems concurrently.

7.13.1 [30] <7.5> Select two hypervisors on the market today, and compare
and contrast how they virtualize and manage the underlying hardware (CPUs and
memory).

c

7.13.2 [15] <7.5> Discuss what changes may be necessary in future multicore
CPU platforms in order to better match the resource demands placed on these
systems. For instance, can multithreading play an effective role in alleviating the
competition for computing resources?

Exercise 7.14
We would like to execute the loop below as efficiently as possible. We have two
different machines, an MIMD machine and an SIMD machine.

f o r (i = 0 ; i < 2 0 0 0 ; i + +)
f o r (j = 0 ; J < 3 0 0 0 ; J ' T T)

X _ a r r a y [i] [j] = Y _ a r r a y [j] [i] + 2 0 0 ;

7.14.1 [10] <7.6> For a four CPU MIMD machine, show the sequence of MIPS
instructions that you would execute on each CPU. What is the speed-up for this
MIMD machine?

6 9 8 Chapter 7 IVluIticores, Multiprocessors, and Clusters

7.14.2 [20J <7.6> For an 8-wide SIMD machine (i.e., 8 parallel SIMD functional
units), write an assembly program using your own SIMD extensions to MIPS to
execute the loop. Compare the number of instructions executed on the SIMD
machine to the MIMD machine.

Exercise 7-15
A systolic array is an example of an MISD machine. A systolic array is a pipeline
network or "wavefront" of data processing elements. Each of these elements does
not need a program counter since execution is triggered by the arrival of data.
Clocked systolic arrays compute in "lock-step" with each processor undertaking
alternate compute and communication phases.

7.15.1 [10] <7.6> Consider proposed implementations of a systolic array (you
can find these on the Internet or in technical publications). Then attempt to
program the loop provided in Exercise 7.14 using this MISD model. Discuss any
difficulties you encounter.

7.15.2 [10] <7.6> Discuss the similarities and differences between an MISD and
SIMD machine. Answer this question in terms of data-level parallelism.

Exercise 7.16
Assume we want to execute the DAXP loop show on page 651 in MIPS assembly
on the NVIDIA 8800 GTX GPU described in this chapter. In this problem, we
will assume that all math operations are performed on single precision floating-
point numbers (we will rename the loop SAXP). Assume that instructions take the
following number of cycles to execute.

Loads Stores Add.S Mult.S

• • • 1

7.16.1 [20] <7.7> Describe how you will construct warps for the SAXP loop to
exploit the eight cores provided in a single multiprocessor.

Exercise 7.17
Download the CUDA Toolkit and SDK from www.nvidia.com/object/cuda_get.html.
Make sure to use the "emurelease" (Emulation Mode) version of the code (you will
not need actual NVIDIA hardware for this assignment). Build the example programs
provided in the SDK, and confirm that they run on the emulator.

http://www.nvidia.com/object/cuda_get.html

7.15 Exercises 699

7.17.1 [90] <7.7> Using the "template" SDK sample as a starting point, write a
CUDA program to perform the following vector operations:

1) a - b (vector-vector subtraction)

2) a • b (vector dot product)

The dot product of two vectors a= [a,, a2 , . . . , an] and b= [b]5 hi,..., bn] is defined as:

Submit code for each program that demonstrates each operation and verifies the
correctness of the results.

7.17.2 [90] <7.7> If you have GPU hardware available, complete a performance
analysis of your program, examining the computation time for the GPU and a CPU
version of your program for a range of vector sizes. Explain any results you see.

Exercise 7.13
AMD has recently announced that they will be integrating a graphics processing
unit with their xS6 cores in a single package, though with different clocks for each
of the cores. This is an example of a heterogeneous multiprocessor system which
we expect to see produced commericially in the near future. One of the key design
points will be to allow for fast data communication between the CPU and the GPU.
Presently communication must be performed between discrete CPU and GPU
chips. But this is changing in AMD's Fusion architecture. Presently the plan is to
use multiple (at least 16) PCI express channels to facilitate intercommunication.
Intel is also jumping into this arena with their Larrabee chip. Intel is considering
using their QuickPath interconnect technology.

7.18.1 [25] <7.7> Compare the bandwidth and latency associated with these two
interconnect technologies.

Exercise 7.19
Refer to Figure 7.9b that shows an n-cube interconnect topology of order 3 that
interconnects eight nodes. One attractive feature of an //-cube interconnection net-
work topology is its ability to sustain broken links and still provide connectivity.

7.19.1 [10] <7.8> Develop an equation that computes how many links in the
//-cube (where n is the order of the cube) can fail and we can still guarantee an
unbroken link will exist to connect any node in the //-cube.

n

/= i

7 0 0 Chapter 7 IVluIticores, Multiprocessors, and Clusters

7.19.2 [10 j <7.8> Compare the resiliency to failure of n-cube to a fully-connected
interconnection network with the same number of nodes. Plot a comparison of
reliability as a function of the number of links that can fail for the two topologies.

Exercise 7.20
Benchmarking is a field of study that involves identifying representative workloads
to run on specific computing platforms in order to be able to objectively compare
performance of one system to another. In this exercise we will compare two classes
of benchmarks: the Whetstone CPU benchmark and the PARSEC benchmark
suite. Select one program from PARSEC. All programs should be freely available
on the Internet. Consider running multiple copies of Whetstone versus running
the PARSEC benchmark on any of the systems described in Section 7.11.

7.20.1 [60] <7.9> What is inherently different between these two classes of work-
load when run on these multicore systems?

7.20.2 [60] <7.9, 7.10> In terms of the Roofline Model, how dependent will the
results you obtain be when running these benchmarks be on the amount of sharing
and synchronization present in the workload used?

Exercise 7.21 ,
When performing computations on sparse matrices, latency in the memory hierar-
chy becomes much more of a factor. Sparse matrices lack the spatial locality in the
data stream typically found in matrix operations. As a result, new matrix represen-
tations have been proposed.

One of the earliest sparse matrix representations is the Yale Sparse Matrix Format.
It stores an initial sparse m x n matrix, M in row form using three one-dimensional
arrays. Let R denote the number of nonzero entries in M; we can construct an array
A of length R that contains all nonzero entries of M(in left-to-right top-to-bottom
order). We also construct a second array IA of length m T 1 (i.e., one entry per row,
plus one). IA(i) contains the index in A of the first nonzero element of row i. Row i
of the original matrix extends from A(IA(i)) to A(IA{i T 1)-1) . The third array, /A,
contains the column index of each element of A, so it also is of length R.

7.21.1 [15] <7.9> Consider the sparse matrix X below and write C code that
would store this code in Yale Sparse Matrix Format.

R o w 1 [0 , 0 , 0 , 0 . 1 0]
R o w 2 [0 , 0 , 0 , 0 , 0]
R o w 3 [8 , 0 , 0 , 0 , 6]
R o w 4 [0 , 1 , 8 , 7 , 0]
R o w 5 [7 , 0 , 0 , 0 , 0]

7.15 Exercises 7 0 1

7.21.2 110] <7.9> In terms of storage space, assuming that each element in matrix
X is single precision floating-point format, compute the amount of storage used to
store the matrix above in Yale Sparse Matrix Format.

7.21.3 [15] <7.9> Perform matrix multiplication of Matrix X by Matrix Y shown
below.

[9 . 8 , 7 , 1 0 0 , 2]

Put this computation in a loop, and time its execution. Make sure to increase
the number of times this loop is executed to get good resolution in your timing
measurement. Compare the runtime of using a naive representation of the matrix
and the Yale Sparse Matrix Format.

7.21.4 [15] <7.9> Can you find a more efficient sparse matrix representation (in
terms of space and computational overhead)?

Exercise 7.22
In future systems, we expect to see heterogeneous computing platforms con-
structed out of heterogeneous CPUs. We have begun to see some appear in the
embedded processing market in systems that contain both floating-point DSPs and
microcontroller CPUs in a multichip module package.

Assume that you have three classes of CPU:

CPU A—A moderate speed multicore CPU (with a floating-point unit) that can
execute multiple instructions per cycle.

CPU B—A.fast single-core integer CPU (i.e., no floating-point unit) that can
execute a single instruction per cycle.

CPU C—A slow vector CPU (with floating-point capability) that can execute
multiple copies of the same instruction per cycle.

Assume that our processors run at the following frequencies:

CPU A CPU B C P U C

1.5 GHz 3 GHz 500 MHz

CPU A can execute 2 instructions per cycle, CPU B can execute 1 instruction per
cycle, and CPU C can execute 8 instructions (though the same instruction) per
cycle. Assume all operations can complete execution in a single cycle of latency
without any hazards.

7 0 2 Chapter 7 IVluIticores, Multiprocessors, and Clusters

All three CPUs have the ability to perform integer arithmetic, though CPU B cannot
perform floating-point arithmetic directly. CPUs A and B have an instruction set
similar to a MIPS processor. CPU C can only perform floating-point add and
subtract operations, as well as memory loads and stores. Assume all CPUs have
access to shared memory and that synchronization has zero cost.

The task at hand is to compare two matrices X and Y that each contain 1024 x 1024
floating-point elements. The output should be a count of the number indices where
the value in X was larger than the value in Y.

7.22.1 [10] <7.11> Describe how you would partition the problem on the three
different CPUs to obtain the best performance.

7.22.2 [10] <7.11> What kind of instruction would you add to the vector CPU C
to obtain better performance?

Exercise 7.23
Assume a quad-core computer system can process database transactions at a
steady state rate of requests per second. Also assume that each transaction takes,
on average, a fixed amount of time to process. The following table shows pairs of
transaction latency and processing rate.

Average transaction latency Maximum transaction processing rate

1 ms 5000/sec

2 ms 5000/sec

1 ms 10,000/sec

2 ms 10,000/sec

For each of the pairs in the table, answer the following questions:

7.23.1 [10] <7.11> On average, how many requests are being processed at any
given instant?

7.23.2 [10] <7.11> If moved to an 8-core system, ideally, what will happen to
the system throughput (i.e., how many transactions/second will the computer
process)?

7.23.3 [10] <7.11> Discuss why we rarely obtain this kind of speed-up by simply
increasing the number of cores.

7.15 Exercises 703

§7.1, page 634: False. lob-level parallelism can help sequential applications and Answers to
sequential applications can be made to run on parallel hardware, although it is Check Yoursellir
more challenging.
§7.2, page 638: False. Weak scaling can compensate for a serial portion of the
program that would otherwise limit scalability.
§7.3, page 640: False. Since the shared address is a physical address, multiple jobs
each in their own virtual address spaces can run well on a shared memory multi-
processor.
§7.4, page 645: 1. False. Sending and receiving a message is an implicit synchroni-
zation, as well as a way to share data. 2. True.
§7.5, page 648: 1. True. 2. True.
§7.6, page 653: True.
§7.7, page 660: False. Graphics DRAM DIMMs are prized for their higher band-
width.
§7.9, page 666: True. We likely need innovation at all levels of the hardware and
software stack to win the industry's bet on parallel computing.

A P P E N D I X

Imagination is more
important than
knowledge.
Albert Einstein
On Scicncc, 1930s

Graphics and
Computing GPUs
John Nickolls
Director of Architecture
NVIDIA

David Kirk
Chief Scientist
NVIDIA

A . l Introduction A-3

A.2 GPU System Architectures A-7

A.3 Programming GPUs A-12

A.4 Multithreaded Multiprocessor Architecture A-25

A.5 Parallel Memory System A-36

A.6 Floating-point Arithmetic A-41

A.7 Real Stuff: The NVIDIA GeForce 8800 A-46

A.8 Real Stuff: Mapping Applications to GPUs A-55

A.9 Fallacies and Pitfalls A-72

A.10 Concluding Remarks A-76

Wj A . l l Historical Perspective and Further Reading A-77

Introduction

This appendix focuses on the GPU—the ubiquitous graphics processing unit
in every PC, laptop, desktop computer, and workstation. In its most basic form,
the GPU generates 2D and 3D graphics, images, and video that enable window-
based operating systems, graphical user interfaces, video games, visual imaging
applications, and video. The modern GPU that we describe here is a highly
parallel, highly multithreaded multiprocessor optimized for visual computing.
To provide real-time visual interaction with computed objects via graphics,
images, and video, the GPU has a unified graphics and computing architecture
that serves as both a programmable graphics processor and a scalable parallel
computing platform. PCs and game consoles combine a GPU with a CPU to form
heterogeneous systems.

A Brief History of GPU Evolution
Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were
performed by a video graphics array (VGA) controller. A VGA controller was
simply a memory controller and display generator connected to some DRAM. In
the 1990s, semiconductor technology advanced sufficiently that more functions
could be added to the VGA controller. By 1997, VGA controllers were beginning
to incorporate some three-dimensional (3D) acceleration functions, including

graphics processing
unit (G P U) A processor
optimized for 2D and 3D
graphics, video, visual
computing, and display.

visual computing A mix
of graphics processing
and computing that lets
you visually interact with
computed objects via
graphics, images, and
video.

heterogeneous system
A system combining
different processor types.
A PC is a heterogeneous
CPU-GPU system.

A-4 Appendix A Graphics and Computing GPUs

hardware for triangle setup and rasterization (dicing triangles into individual
pixels) and texture mapping and shading (applying "decals" or patterns to pixels
and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail
of the traditional high-end workstation graphics pipeline and therefore, deserved
a new name beyond VGA controller. The term GPU was coined to denote that
the graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors
replaced fixed function dedicated logic while maintaining the basic 3D graphics
pipeline organization. In addition, computations became more precise over time,
progressing from indexed arithmetic, to integer and fixed point, to single precision
floating-point, and recently to double precision floating-point. GPUs have become
massively parallel programmable processors with hundreds of cores and thousands
of threads.

Recently, processor instructions and memory hardware were added to support
general purpose programming languages, and a programming environment was
created to allow GPUs to be programmed using familiar languages, including C
and CTT. This innovation makes a GPU a fully general-purpose, programmable,
manycore processor, albeit still with some special benefits and limitations.

GPU Graphics Trends

GPUs and their associated drivers implement the OpenGL and DirectX models of
graphics processing. OpenGL is an open standard for 3D graphics programming
available for most computers. DirectX is a series of Microsoft multimedia pro-
gramming interfaces, including Direct3D for 3D graphics. Since these application
programming interfaces (APIs) have well-defined behavior, it is possible to build
effective hardware acceleration of the graphics processing functions defined by the
APIs. This is one of the reasons (in addition to increasing device density) that new
GPUs are being developed every 12 to 18 months that double the performance of
the previous generation on existing applications.

Frequent doubling of GPU performance enables new applications that were
not previously possible. The intersection of graphics processing and parallel
computing invites a new paradigm for graphics, known as visual computing. It
replaces large sections of the traditional sequential hardware graphics pipeline
model with programmable elements for geometry, vertex, and pixel programs.
Visual computing in a modern GPU combines graphics processing and parallel
computing in novel ways that permit new graphics algorithms to be implemented,
and open the door to entirely new parallel processing applications on pervasive
high-performance GPUs.

Heterogeneous System
Although the GPU is arguably the most parallel and most powerful processor in
a typical PC, it is certainly not the only processor. The CPU, now multicore and

application programming
interface (API) A set of
function and data structure
definitions providing an
interface to a library of
functions.

A . l Introduction A-5

soon to be manycore, is a complementary, primarily serial processor companion
to the massively parallel manycore GPU. Together, these two types of processors
comprise a heterogeneous multiprocessor system.

The best performance for many applications comes from using both the CPU
and the GPU. This appendix will help you understand how and when to best split
the work between these two increasingly parallel processors.

GPU Evolves imto ScaOable Parallel Processor
GPUs have evolved functionally from hardwired, limited capability VGA controllers
to programmable parallel processors. This evolution has proceeded by changing
the logical (API-based) graphics pipeline to incorporate programmable elements
and also by making the underlying hardware pipeline stages less specialized and
more programmable. Eventually, it made sense to merge disparate programmable
pipeline elements into one unified array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel
processing all run on the same type of processor. This unification allows for
dramatic scalability. More programmable processor cores increase the total system
throughput. Unifying the processors also delivers very effective load balancing,
since any processing function can use the whole processor array. At the other end
of the spectrum, a processor array can now be built with very few processors, since
all of the functions can be run on the same processors.

Why CUDA and GPU Computing?
This uniform and scalable array of processors invites a new model of programming
for the GPU. The large amount of floating-point processing power in the GPU
processor array is very attractive for solving nongraphics problems. Given the large
degree of parallelism and the range of scalability of the processor array for graphics
applications, the programming model for more general computing must express
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a
parallel programming language and API, without using the traditional graphics
API and graphics pipeline model. This is in contrast to the earlier General Purpose
computation on GPU (GPGPU) approach, which involves programming the GPU
using a graphics API and graphics pipeline to perform nongraphics tasks.

Compute Unified Device Architecture (CUDA) is a scalable parallel program-
ming model and software platform for the GPU and other parallel processors that
allows the programmer to bypass the graphics API and graphics interfaces of the
GPU and simply program in C or CTT. The CUDA programming model has an
SPMD (single-program multiple data) software style, in which a programmer
writes a program for one thread that is instanced and executed by many threads
in parallel on the multiple processors of the GPU. In fact, CUDA also provides a
facility for programming multiple CPU cores as well, so CUDA is an environment
for writing parallel programs for the entire heterogeneous computer system.

GPU computing Using
a GPU for computing via
a parallel programming
language and API.

GPGPU Using a GPU
for general-purpose
computation via a
traditional graphics API
and graphics pipeline.

CUDA A scalable parallel
programming model
and language based on
C/C-I-+. It is a parallel
programming platform
for GPUs and multicore
CPUs.

A-6 Appendix A Graphics and Computing GPUs

GPU Unifies Graphics and Computing
With the addition of CUDA and GPU computing to the capabilities of the GPU,
it is now possible to use the GPU as both a graphics processor and a computing
processor at the same time, and to combine these uses in visual computing
applications. The underlying processor architecture of the GPU is exposed in two
ways: first, as implementing the programmable graphics APIs, and second, as a
massively parallel processor array programmable in C / C T T with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary
that all of the SPMD thread programs are the same. The GPU can run graphics
shader programs for the graphics aspect of the GPU, processing geometry, vertices,
and pixels, and also run thread programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of
processing tasks. GPUs are excellent at graphics and visual computing as they were
specifically designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are "first cousins" of graphics, in that they
perform a lot of parallel work, as well as having a lot of regular problem structure.
In general, they are a good match to data-parallel problems (see Chapter 7),
particularly large problems, but less so for less regular, smaller problems.

GPU VisuaB Computing Applications
Visual computing includes the traditional types of graphics applications plus many
new applications. The original purview of a GPU was "anything with pixels," but it
now includes many problems without pixels but with regular computation and/or
data structure. GPUs are effective at 2D and 3D graphics, since that is the purpose
for which they are designed. Failure to deliver this application performance would
be fatal. 2D and 3D graphics use the GPU in its "graphics mode," accessing the pro-
cessing power of the GPU through the graphics APIs, OpenGL1 M, and DirectX I M .
Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important applica-
tions for GPUs. These can be implemented using the graphics APIs or as compu-
tational programs, using CUDA to program the GPU in computing mode. Using
CUDA, image processing is simply another data-parallel array program. To the
extent that the data access is regular and there is good locality, the program will
be efficient. In practice, image processing is a very good application for GPUs.
Video processing, especially encode and decode (compression and decompression
according to some standard algorithms) is quite efficient.

The greatest opportunity for visual computing applications on GPUs is to "break
the graphics pipeline." Early GPUs implemented only specific graphics APIs, albeit
at very high performance. This was wonderful if the API supported the operations
that you wanted to do. If not, the GPU could not accelerate your task, because early
GPU functionality was immutable. Now, with the advent of GPU computing and
CUDA, these GPUs can be programmed to implement a different virtual pipeline
by simply writing a CUDA program to describe the computation and data flow

A.2 GPU System Architectures A-ll

that is desired. So, all applications are now possible, which will stimulate new visual
computing approaches.

©PU S y s t e m ArchStectyres

In this section, we survey GPU system architectures in common use today. We
discuss system configurations, GPU functions and services, standard programming
interfaces, and a basic GPU internal architecture.

Heterogeneous CPU-GPU System Architecture
A heterogeneous computer system architecture using a GPU and a CPU can be
described at a high level by two primary characteristics: first, how many functional
subsystems and/or chips are used and what are their interconnection technologies
and topology; and second, what memory subsystems are available to these functional
subsystems. See Chapter 6 for background on the PC I/O systems and chip sets.

The Historical PC (circa 1990)

Figure A.2.1 is a high-level block diagram of a legacy PC, circa 1990. The north
bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU,
memory, and PCI bus. The south bridge contains legacy interfaces and devices:
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In
this system, the display was driven by a simple framebuffer subsystem known

FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory.

A-8 Appendix A Graphics and Computing GPUs

PCI-Express (PCIe)
A standard system I/O
interconnect that uses
point-to-point links.
Links have a configurable
number of lanes and
bandwidth.

as a VGA (video graphics array) which was attached to the PCI bus. Graphics
subsystems with built-in processing elements (GPUs) did not exist in the PC
landscape of 1990.

Figure A.2.2 illustrates two configurations in common use today. These are
characterized by a separate GPU (discrete GPU) and CPU with respective memory
subsystems. In Figure A.2.2a, with an Intel CPU, we see the GPU attached via a
16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate, (peak of
8 GB/s in each direction). Similarly, in Figure A.2.2b, with an AMD CPU, the GPU

FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. Sec Chapter 6 for an explanation of
the components and interconnects in this figure.

A.2 GPU System Architectures A-ll

is attached to the chipset, also via PCI-Express with the same available bandwidth.
In both cases, the GPUs and CPUs may access each other's memory, albeit with
less available bandwidth than their access to the more directly attached memories.
In the case of the AMD system, the north bridge or memory controller is integrated
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA)
system, uses only CPU system memory, omitting GPU memory from the system.
These systems have relatively low performance GPUs, since their achieved
performance is limited by the available system memory bandwidth and increased
latency of memory access, whereas dedicated GPU memory provides high
bandwidth and low latency.

A high performance system variation uses multiple attached GPUs, typically
two to four working in parallel, with their displays daisy-chained. An example is
the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for high
performance gaining and workstations.

The next system category integrates the GPU with the north bridge (Intel) or
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space.
With CPUs and GPUs, there are multiple address spaces. GPUs can access their
own physical local memory and the CPU system's physical memory using virtual
addresses that are translated by an MMU on the GPU. The operating system kernel
manages the GPU's page tables. A system physical page can be accessed using either
coherent or noncoherent PCI-Express transactions, determined by an attribute
in the GPU's page table. The CPU can access GPU's local memory through an
address range (also called aperture) in the PCI-Express address space.

unified memory
architecture (UMA)
A system architecture in
which the CPU and GPU
share a common system
memory.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360
resemble the PC system architectures previously described. Console systems
are designed to be shipped with identical performance and functionality over
a lifespan that can last five years or more. During this time, a system may be
reimplemented many times to exploit more advanced silicon manufacturing
processes and thereby to provide constant capability at ever lower costs. Console
systems do not need to have their subsystems expanded and upgraded the way PC
systems do, so the major internal system buses tend to be customized rather than
standardized.

GPU Interfaces and Drivers
In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or
Dircct3D [Microsoft DirectX Specification] API functions that use the GPU as
a coprocessor. The APIs send commands, programs, and data to the GPU via a
graphics device driver optimized for the particular GPU.

AGP An extended
version of the original PCI
I/O bus, which provided
up to eight times the
bandwidth of the original
PCI bus to a single card
slot. Its primary purpose
was to connect graphics
subsystems into PC
systems.

A-10 Appendix A Graphics and Computing GPUs

Graphics Logical Pipeline
The graphics logical pipeline is described in Section A.3. Figure A.2.3 illustrates
the major processing stages, and highlights the important programmable stages
(vertex, geometry, and pixel shader stages).

Input Vertex Geometry Setup & Pixel
Assembler Shader Shader Rasterizer Shader

Raster Operations/
Output Merger

FIGURE A.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks arc white.

Mapping Graphics Pipeline to Unified] GPU Processors
Figure A.2.4 shows how the logical pipeline comprising separate independent
programmable stages is mapped onto a physical distributed array of processors.

Basic Unified GPU Architecture
Unified GPU architectures are based on a parallel array of many programmable
processors. They unify vertex, geometry, and pixel shader processing and parallel
computing on the same processors, unlike earlier GPUs which had separate
processors dedicated to each processing type. The programmable processor array is
tightly integrated with fixed function processors for texture filtering, rasterization,
raster operations, anti-aliasing, compression, decompression, display, video
decoding, and high-definition video processing. Although the fixed-function
processors significantly outperform more general programmable processors in
terms of absolute performance constrained by an area, cost, or power budget, we
will focus on the programmable processors here.

Compared with multicore CPUs, manycore GPUs have a different architectural
design point, one focused on executing many parallel threads efficiently on many

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader
stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates
through the processors.

A.2 GPU System Architectures A - l l

processor cores. By using many simpler cores and optimizing for data-parallel
behavior among groups of threads, more of the per-chip transistor budget is
devoted to computation, and less to on-chip caches and overhead.

Processor Array

A unified GPU processor array contains many processor cores, typically organized
into multithreaded multiprocessors. Figure A.2.5 shows a GPU with an array of
112 streaming processor (SP) cores, organized as 14 multithreaded streaming
multiprocessors (SM). Each SP core is highly multithreaded, managing 96
concurrent threads and their state in hardware. The processors connect with
four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant
caches, a multithreaded instruction unit, and a shared memory. This is the basic
Tesla architecture implemented by the NVIDIA GeForce 8S00. It has a unified
architecture in which the traditional graphics programs for vertex, geometry, and
pixel shading run on the unified SMs and their SP cores, and computing programs
run on the same processors.

jgjO^j'fflO.Pj— Bridge —| System Memory

Input Assembler

GPU
I

Viewport/Clip/
Solup/Raslor/

ZCull

Vertex Work
Distribution

I
Pixel Work
Distribution

VdooProcMMn

Computo Work
Distribution

TPC TPC TPC TPC TPC TPC TPC /
1 1 1 1 I I I I 1 1 1 / 1

I I I I 1 1 1 /
SM SM SM SM SM SM SM SM SM SM SM SM SM SM

1 1 1 1 1 1 I I I I I I I I 1 1 1 _J 1 1 rH 1 1 1 1 1 1 I I I I I I I I I I 1 1 1 1 1. _J rH 1 i 1 1 1 1 I I I I I I 1 1 r—i r i i i
H mm • • j mm US mm mm mm mm BB •B EL': HE BB SB mm s e mm mm bb BB! BB HB mm BB SB HE BB 9i§fl mm MM a s mm mm mm mm mm BB mm BB mm\

mm mm mm BH.IEH F I R BE • a mm BB, BB i n •• •••• WiPfl, •• •• p n p n •• •• n n ••
I'- "rll I-li Eica II-li ̂ ii I-ll II-:; ll 1 ^ 1 T.r&jl • Una Te.tu • Una I rmtj D U". t Torture Urv Tmv.ro Urn! ToxSi-i, Ural 1 T«A,ret%J

TrxLl | | 1c, L1 || | Tex Lt I Tc«L1 I I Tox L1 | 1 Tc* LI || 1 ToxL1 Nl
I I I I I I I I I I I

Interconnection Network

| L2 | ROP | | L2 | 1 12 | L2 j | Display Interface

1
DRAM DRAM DRAM DRAM ! Display

SM

l-Cache

MT Issue

C-Cache

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared
Memory

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors
connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM lias eight SP cores, two special function units
(SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory.

A-12 Appendix A Graphics and Computing GPUs

The processor array architecture is scalable to smaller and larger GPU configu-
rations by scaling the number of multiprocessors and the number of memory
partitions. Figure A.2.5 shows seven clusters of two SMs sharing a texture unit and
a texture Ll cache. The texture unit delivers filtered results to the SM given a set of
coordinates into a texture map. Because filter regions of support often overlap for
successive texture requests, a small streaming Ll texture cache is effective to reduce
the number of requests to the memory system. The processor array connects with
raster operation (ROP) processors, L2 texture caches, external DRAM memories,
and system memory via a GPU-wide interconnection network. The number of
processors and number of memories can scale to design balanced GPU systems for
different performance and market segments.

Programming dPUs

Programming multiprocessor GPUs is qualitatively different than programming
other multiprocessors like multicore CPUs. GPUs provide two to three orders
of magnitude more thread and data parallelism than CPUs, scaling to hundreds
of processor cores and tens of thousands of concurrent threads in 200S. GPUs
continue to increase their parallelism, doubling it about every 12 to 18 months,
enabled by Moore's law [1965] of increasing integrated circuit density and by
improving architectural efficiency. To span the wide price and performance range
of different market segments, different GPU products implement widely varying
numbers of processors and threads. Yet users expect games, graphics, imaging,
and computing applications to work on any GPU, regardless of how many parallel
threads it executes or how many parallel processor cores it has, and they expect
more expensive GPUs (with more threads and cores) to run applications faster.
As a result, GPU programming models and application programs are designed to
scale transparently to a wide range of parallelism.

The driving force behind the large number of parallel threads and cores in a
GPU is real-time graphics performance—the need to render complex 3D scenes
with high resolution at interactive frame rates, at least 60 frames per second.
Correspondingly, the scalable programming models of graphics shading languages
such as Cg (C for graphics) and FILSL (high-level shading language) are designed
to exploit large degrees of parallelism via many independent parallel threads and to
scale to any number of processor cores. The CUDA scalable parallel programming
model similarly enables general parallel computing applications to leverage large
numbers of parallel threads and scale to any number of parallel processor cores,
transparently to the application.

In these scalable programming models, the programmer writes code for a single
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale
transparently over a wide range of hardware parallelism. This simple paradigm
arose from graphics APIs and shading languages that describe how to shade one

A.3 Programming GPUs A-13

vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly
increased their parallelism and performance since the late 1990s.

This section briefly describes programming GPUs for real-time graphics
applications using graphics APIs and programming languages. It then describes
programming GPUs for visual computing and general parallel computing
applications using the C language and the CUDA programming model.

Programming Real-Time Graphics
APIs have played an important role in the rapid, successful development of GPUs
and processors. There are two primary standard graphics APIs: OpenGL and
Direct3D, one of the Microsoft DirectX multimedia programming interfaces.
OpenGL, an open standard, was originally proposed and defined by Silicon
Graphics Incorporated. The ongoing development and extension of the OpenGL
standard [Segal and Akeley, 2006], [Kessenich, 2006] is managed by Khronos,
an industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined
and evolved forward by Microsoft and partners. OpenGL and Direct3D are
similarly structured, and continue to evolve rapidly with GPU hardware advances.
They define a logical graphics processing pipeline that is mapped onto the GPU
hardware and processors, along with programming models and languages for the
programmable pipeline stages.

OpenGL An opcn-
siandard graphics API.

Direct3D A graphics API
defined by Microsoft and
partners.

Logical! Graphics Pipeline
Figure A.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a
similar graphics pipeline structure. The API and logical pipeline provide a streaming
dataflow infrastructure and plumbing for the programmable shader stages, shown in
blue. The 3D application sends the GPU a sequence ofvertices grouped into geometric
primitives—points, lines, triangles, and polygons. The input assembler collects
vertices and primitives. The vertex shader program executes per-vertex processing,

FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable
shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex, geometric primitive, or pixel
in a streaming dataflow fashion.

A-14 Appendix A Graphics and Computing GPUs

texture A ID, 2D, or
3D array that supports
sampled and filtered
lookups with interpolated
coordinates.

including transforming the vertex 3D position into a screen position and lighting the
vertex to determine its color. The geometry shader program executes per-primitive
processing and can add or drop primitives. The setup and rasterizer unit generates
pixel fragments (fragments are potential contributions to pixels) that are covered by
a geometric primitive. The pixel shader program performs per-fragment processing,
including interpolating per-fragment parameters, texturing, and coloring. Pixel
shaders make extensive use of sampled and filtered lookups into large 1D, 2D, or
3D arrays called textures, using interpolated floating-point coordinates. Shaders use
texture accesses for maps, functions, decals, images, and data. The raster operations
processing (or output merger) stage performs Z-buffer depth testing and stencil
testing, which may discard a hidden pixel fragment or replace the pixel's depth with
the fragment's depth, and performs a color blending operation that combines the
fragment color with the pixel color and writes the pixel with the blended color.

The graphics API and graphics pipeline provide input, output, memory objects,
and infrastructure for the shader programs that process each vertex, primitive, and
pixel fragment.

shader A program that
operates on graphics data
such as a vertex or a pixel
fragment.

shading language
A graphics rendering
language, usually having
a dataflow or streaming
programming model.

Graphics Shadier Programs
Real-time graphics applications use many different shader programs to model
how light interacts with different materials and to render complex lighting and
shadows. Shading languages are based on a dataflow or streaming programming
model that corresponds with the logical graphics pipeline. Vertex shader programs
map the position of triangle vertices onto the screen, altering their position, color,
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w)
vertex position and computes a floating-point (x, y, z) screen position. Geometry
shader programs operate on geometric primitives (such as lines and triangles)
defined by multiple vertices, changing them or generating additional primitives.
Pixel fragment shaders each "shade" one pixel, computing a floating-point red,
green, blue, alpha (RGBA) color contribution to the rendered image at its pixel
sample (x, y) image position. Shaders (and GPUs) use floating-point arithmetic
for all pixel color calculations to eliminate visible artifacts while computing the
extreme range of pixel contribution values encountered while rendering scenes with
complex lighting, shadows, and high dynamic range. For all three types of graphics
shaders, many program instances can be run in parallel, as independent parallel
threads, because each works on independent data, produces independent results,
and has no side effects. Independent vertices, primitives, and pixels further enable
the same graphics program to run on differently sized GPUs that process different
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale
transparently to GPUs with different amounts of parallelism and performance.

Users program all three logical graphics threads with a common targeted high-
level language. ITLSL (high-level shading language) and Cg (C for graphics) are
commonly used. They have C-like syntax and a rich set of library functions for
matrix operations, trigonometry, interpolation, and texture access and filtering,
but are far from general computing languages: they currently lack general memory

A.3 Programming GPUs A-15

access, pointers, file I/O, and recursion. ITLSL and Cg assume that programs live
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel
fragment shader may expect the geometric normal and multiple texture coordinates
to have been interpolated from vertex values by upstream fixed-function stages and
can simply assign a value to the COLOR output parameter to pass it downstream
to be blended with a pixel at an implied (x, y) position.

The GPU hardware creates a new independent thread to execute a vertex, geometry,
or pixel shader program for every vertex, every primitive, and every pixel fragment. In
video games, the bulk of threads execute pixel shader programs, as there are typically
10 to 20 times or more pixel fragments than vertices, and complex lighting and
shadows require even larger ratios of pixel to vertex shader threads. The graphics
shader programming model drove the GPU architecture to efficiently execute
thousands of independent fine-grained threads on many parallel processor cores.

PixeO Shader Example
Consider the following Cg pixel shader program that implements the "environment
mapping" rendering technique. For each pixel thread, this shader is passed five
parameters, including 2D floating-point texture image coordinates needed to
sample the surface color, and a 3D floating-point vector giving the reflection of
the view direction off the surface. The other three "uniform" parameters do not
vary from one pixel instance (thread) to the next. The shader looks up color in
two texture images: a 2D texture access for the surface color, and a 3D texture
access into a cube map (six images corresponding to the faces of a cube) to obtain
the external world color corresponding to the reflection direction. Then the final
four-component (red, green, blue, alpha) floating-point color is computed using a
weighted average called a "lerp" or linear interpolation function.

v o i d r e f l e c t i o n (
f l o a 1 2
f l o a 1 3
o u t f l o a t 4
u n i f o r m f l o a t
u n i f o r m s a m p l e r 2 D
u n i f o r m s a m p l e r C U B E

(
/ / F e t c h t h e s u r f a c e c o l o r f r o m a t e x t u r e

f l o a t 4 s u r f a c e C o l o r = t e x 2 D (s u r f a c e M a p , t e x C o o r d) ;

/ / F e t c h r e f l e c t e d c o l o r b y s a m p l i n g a c u b e m a p
f l o a t 4 r e f l e c t e d C o l o r = t e x C U B E (e n v i r o n m e n t M a p , r e f l e c t i o n _ d i r) ;

/ / O u t p u t i s w e i g h t e d a v e r a g e o f t h e t w o c o l o r s
c o l o r = 1 e r p (s u r f a c e C o l o r , r e f l e c t e d C o l o r , s h i n y) ;

t e x C o o r d
r e f l e c t i o n _ d i r
c o l o r
s h i n y ,
s u r f a c e M a p ,
e n v M a p)

: T E X C 0 0 R D 0 ,
: T E X C 0 0 R D 1 ,
: C O L O R ,

A - 1 6 Appendix A Graphics and Computing GPUs

Although this shader program is only three lines long, it activates a lot of GPU
hardware. For each texture fetch, the GPU texture subsystem makes multiple
memory accesses to sample image colors in the vicinity of the sampling coordinates,
and then interpolates the final result with floating-point filtering arithmetic. The
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads
in parallel, deeply interleaving them to hide texture fetch and memory latency.

Cg focuses the programmer's view to a single vertex or primitive or pixel, which
the GPU implements as a single thread; the shader program transparently scales to
exploit thread parallelism on the available processors. Being application-specific, Cg
provides a rich set of useful data types, library functions, and language constructs
to express diverse rendering techniques.

Figure A.3.2 shows skin rendered by a fragment pixel shader. Real skin appears
quite different from flesh-color paint because light bounces around a lot before
re-emerging. In this complex shader, three separate skin layers, each with unique
subsurface scattering behavior, are modeled to give the skin a visual depth and
translucency. Scattering can be modeled by a blurring convolution in a flattened
"texture" space, with red being blurred more than green, and blue blurred less.

FIGURE A.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.

A.3 Programming GPUs A-17

The compiled Cg shader executes 1400 instructions to compute the color of one
skin pixel.

As GPUs have evolved superior floating-point performance and very high
streaming memory bandwidth for real-time graphics, they have attracted highly
parallel applications beyond traditional graphics. At first, access to this power
was available only by couching an application as a graphics-rendering algorithm,
but this GPGPU approach was often awkward and limiting. More recently,
the CUDA programming model has provided a far easier way to exploit the
scalable high-performance floating-point and memory bandwidth of GPUs with
the C programming language.

Programming Parallel Computing Applications
CUDA, Brook, and CAL are programming interfaces for GPUs that are focused on
data parallel computation rather than on graphics. CAL (Compute Abstraction
Layer) is a low-level assembler language interface for AMD GPUs. Brook is a
streaming language adapted for GPUs by Buck, et. al. [2004], CUDA, developed by
NVIDIA [2007], is an extension to the C and CT+ languages for scalable parallel
programming of manycore GPUs and multicore CPUs. The CUDA programming
model is described below, adapted from an article by Nickolls, Buck, Garland, and
Skadron [2008].

With the new model the GPU excels in data parallel and throughput computing,
executing high performance computing applications as well as graphics applications.

Data Parallel Problem Decomposition

To map large computing problems effectively to a highly parallel processing
architecture, the programmer or compiler decomposes the problem into many
small problems that can be solved in parallel. For example, the programmer par-
titions a large result data array into blocks and further partitions each block into
elements, such that the result blocks can be computed independently in parallel,
and the elements within each block are computed in parallel. Figure A.3.3 shows
a decomposition of a result data array into a 3 x 2 grid of blocks, where each
block is further decomposed into a 5 x 3 array of elements. The two-level parallel
decomposition maps naturally to the GPU architecture: parallel multiprocessors
compute result blocks, and parallel threads compute result elements.

The programmer writes a program that computes a sequence of result data
grids, partitioning each result grid into coarse-grained result blocks that can be
computed independently in parallel. The program computes each result block with
an array of fine-grained parallel threads, partitioning the work among threads so
that each computes one or more result elements.

Scalable Parallel Programming with CUDA
The CUDA scalable parallel programming model extends the C and CTT
languages to exploit large degrees of parallelism for general applications on highly
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows

A-18 Appendix A Graphics and Computing GPUs

Sequence

Step 1:

Step 2:

Result Data Grid 1

Block
(0, 0)

Block
(1.0)

Block
(2, 0)

Block,
(0 . 1 /

Block
(1.1)

Block
\ (2 . 1)

Result Data Grid 2

O n
Block (1.1)

Elem
(0, 0)

Elem
(1.0)

Elem
(2. 0)

Elem
(3, 0)

Elem
(4, 0)

Elem
(0.1)

Elem
(1.1)

Elem
(2,1)

Elem
(3,1)

Elem
(4.1)

Elem
(0. 2)

Elem
(1.2)

Elem
(2. 2)

Elem
(3, 2)

Elem
(4,2)

FIGURE A.3.3 Decomposing result data into a grid of blocks of elements to be computed
in parallel.

that many sophisticated programs can be readily expressed with a few easily
understood abstractions. Since NVIDIA released CUDA in 2007, developers have
rapidly developed scalable parallel programs for a wide range of applications,
including seismic data processing, computational chemistry, linear algebra, sparse
matrix solvers, sorting, searching, physics models, and visual computing. These
applications scale transparently to hundreds of processor cores and thousands of
concurrent threads. NVIDIA GPUs with the Tesla unified graphics and computing
architecture (described in sections A.4 and A.7) run CUDA C programs, and are
widely available in laptops, PCs, workstations, and servers. The CUDA model is
also applicable to other shared memory parallel processing architectures, including
multicore CPUs [Stratton, 2008].

CUDA provides three key abstractions—a hierarchy of thread groups, shared
memories, and barrier synchronization—that provide a clear parallel structure to con-
ventional C code for one thread of the hierarchy. Multiple levels of threads, memory,
and synchronization provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. The abstractions
guide the programmer to partition the problem into coarse subproblems that can
be solved independently in parallel, and then into finer pieces that can be solved in
parallel. The programming model scales transparently to large numbers of proces-
sor cores: a compiled CUDA program executes on any number of processors, and
only the runtime system needs to know the physical processor count.

A.3 Programming GPUs A-19

The CUDA Paradigm

CUDA is a minimal extension of the C and CTT programming languages. The
programmer writes a serial program that calls parallel kernels, which maybe simple
functions or full programs. A kernel executes in parallel across a set of parallel
threads. The programmer organizes these threads into a hierarchy of thread blocks
and grids of thread blocks. A thread block is a set of concurrent threads that can
cooperate among themselves through barrier synchronization and through shared
access to a memory space private to the block. A grid is a set of thread blocks that
may each be executed independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the number of threads per
block and the number of blocks comprising the grid. Each thread is given a unique
thread ID number t h r e a d I dx within its thread block, numbered 0 , 1 , 2 ,
bl o c k D i m-1, and each thread block is given a unique block ID number bl o c k I d x
within its grid. CUDA supports thread blocks containing up to 512 threads. For
convenience, thread blocks and grids may have 1, 2, or 3 dimensions, accessed via
. x , . y , and . z index fields.

As a very simple example of parallel programming, suppose that we are given
two vectors xand y of n floating-point numbers each and that we wish to compute
the result of y = a x T y for some scalar value a. This is the so-called S A X P Y kernel
defined by the BLAS linear algebra library. Figure A.3.4 shows C code for perform-
ing this computation on both a serial processor and in parallel using CUDA.

The gl obal declaration specifier indicates that the procedure is a kernel
entry point. CUDA programs launch parallel kernels with the extended function
call syntax:

k e r n e l < < < d i m G r i d , d i m B l o c k > > > (. . . p a r a m e t e r l i s t)

where di mGri d and di mBl o c k are three-element vectors of type d i m3 that specify
the dimensions of the grid in blocks and the dimensions of the blocks in threads,
respectively. Unspecified dimensions default to one.

In Figure A.3.4, we launch a grid of n threads that assigns one thread to each
element of the vectors and puts 256 threads in each block. Each individual thread
computes an element index from its thread and block IDs and then performs the
desired calculation on the corresponding vector elements. Comparing the serial and
parallel versions of this code, we see that they are strikingly similar. This represents
a fairly common pattern. The serial code consists of a loop where each iteration is
independent of all the others. Such loops can be mechanically transformed into
parallel kernels: each loop iteration becomes an independent thread. By assigning
a single thread to each output element, we avoid the need for any synchronization
among threads when writing results to memory.

The text of a CUDA kernel is simply a C function for one sequential thread.
Thus, it is generally straightforward to write and is typically simpler than writing
parallel code for vector operations. Parallelism is determined clearly and explicitly
by specifying the dimensions of a grid and its thread blocks when launching a
kernel.

kernel A program or
function for one thread,
designed to be executed
by many threads.

thread block A set
of concurrent threads
that execute the same
thread program and may
cooperate to compute a
result.

grid A set of thread
blocks that execute the
same kernel program.

A-20 Appendix A Graphics and Computing GPUs

Computing y = ax + y with a serial loop:

v o i d s a x p y _ s e r i a l (i n t n , f l o a t a l p h a , f l o a t * x , f l o a t * y)
(

f o r d n t 1 = 0 : i < n ; + + i)
y [i] = a l p h a * x [i] + y [i] ;

/ / I n v o k e s e r i a l S A X P Y k e r n e l
s a x p y _ s e r i a l (n , 2 . 0 , x , y) ;

Computing y = ax + y in parallel using CUDA:

g l o b a l
v o i d s a x p y _ p a r a l 1 e l (i n t n , f l o a t a l p h a , f l o a t * x , f l o a t * y)
I

i n t i = b l o c k I d x . x * b l o c k D i m . x + t h r e a d l d x . x ;

i f (i < n) y [i] = a l p h a * x [i] + y [i] ;
)

/ / I n v o k e p a r a l l e l S A X P Y k e r n e l (2 5 6 t h r e a d s p e r b l o c k)
i n t n b l o c k s = (n + 2 5 5) / 2 5 6 ;
s a x p y _ p a r a l 1 e l < < < n b l o c k s , 2 5 6 > > > (n , 2 . 0 , x , y) ;

FIGURE A.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY
(see Chapter 7). CUDA parallel Threads replace The C serial loop—each Thread computes the same result as
one loop iteration. The parallel code computes n results with n threads organized in blocks of 256 threads.

synchronization barrier
Threads wait at a synchro-
nization barrier until
all threads in the thread
block arrive at the barrier.

Parallel execution and thread management is automatic. All thread creation,
scheduling, and termination is handled for the programmer by the underlying sys-
tem. Indeed, a Tesla architecture GPU performs all thread management directly in
hardware. The threads of a block execute concurrently and may synchronize at a
synchronization barrier by calling the s y n c t h r e a d s () intrinsic. This guar-
antees that no thread in the block can proceed until all threads in the block have
reached the barrier. After passing the barrier, these threads are also guaranteed to
see all writes to memory performed by threads in the block before the barrier.
Thus, threads in a block may communicate with each other by writing and reading
per-block shared memory at a synchronization barrier.

Since threads in a block may share memory and synchronize via barriers, they
will reside together on the same physical processor or multiprocessor. The number
of thread blocks can, however, greatly exceed the number of processors. The CUDA
thread programming model virtualizes the processors and gives the programmer the
flexibility to parallelize at whatever granularity is most convenient. Virtualization

A.3 Programming GPUs A-21

into threads and thread blocks allows intuitive problem decompositions, as the
number of blocks can be dictated by the size of the data being processed rather
than by the number of processors in the system. It also allows the same CUDA
program to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA
requires that thread blocks be able to execute independently. It must be possible to
execute blocks in any order, in parallel or in series. Different blocks have no means of
direct communication, although they may coordinate their activities using atomic
memory operations on the global memory visible to all threads—by atomically
incrementing queue pointers, for example. This independence requirement allows
thread blocks to be scheduled in any order across any number of cores, making
the CUDA model scalable across an arbitrary number of cores as well as across a
variety of parallel architectures. It also helps to avoid the possibility of deadlock.
An application may execute multiple grids either independently or dependency.
Independent grids may execute concurrently, given sufficient hardware resources.
Dependent grids execute sequentially, with an implicit interkernel barrier between
them, thus guaranteeing that all blocks of the first grid complete before any block
of the second, dependent grid begins.

Threads may access data from multiple memory spaces during their execution.
Each thread has a private local memory. CUDA uses local memory for thread-
private variables that do not fit in the thread's registers, as well as for stack frames
and register spilling. Each thread block has a shared memory, visible to all threads
of the block, which has the same lifetime as the block. Finally, all threads have
access to the same global memory. Programs declare variables in shared and
global memory with the s h a r e d and d e v i c e type qualifiers. On a
Tesla architecture GPU, these memory spaces correspond to physically separate
memories: per-block shared memory is a low-latency on-chip RAM, while global
memory resides in the fast DRAM on the graphics board.

Shared memory is expected to be a low-latency memory near each processor,
much like an Ll cache. It can therefore provide high-performance communication
and data sharing among the threads of a thread block. Since it has the same lifetime
as its corresponding thread block, kernel code will typically initialize data in
shared variables, compute using shared variables, and copy shared memory results
to global memory. Thread blocks of sequentially dependent grids communicate
via global memory, using it to read input and write results.

Figure A.3.5 diagrams the nested levels of threads, thread blocks, and grids of
thread blocks. It further shows the corresponding levels of memory sharing: local,
shared, and global memories for per-thread, per-thread-block, and per-application
data sharing.

A program manages the global memory space visible to kernels through calls
to the CUDA runtime, such as c u d a M a l l o c () and c u d a F r e e (). Kernels may
execute on a physically separate device, as is the case when running kernels on
the GPU. Consequently, the application must use c u d a M e m c p y () to copy data
between the allocated space and the host system memory.

atomic memory
operation A memory
read, modify, write
operation sequence that
completes without any
intervening access.

local memory Per-thread
local memory private to
the thread.

shared memory Per-
block memory shared by
all threads of the block.

global memory Per-
application memory
shared by all threads.

A - 2 2 Appendix A Graphics and Computing GPUs

Thread

per-Thread Local Memory

Thread Block

— — — Inter-Grid Synchronization — — —
Grid 1

Sequence

Global Memory

FIGURE A.3.5 Nested granularity levels—thread, thread block, and grid—have corresponding
memory sharing levels—local, shared, and global. Per-Thread local memory is private to the thread.
Per-block shared memory is shared by all threads of the block. Per-application global memory is shared by all
threads.

single-program multiple
data (S P M D) A style
of parallel programming
model in which all
threads execute the same
program. SPMD threads
typically coordinate with
barrier synchronization.

The CUDA programming model is similar in style to the familiar single-program
multiple data (SPMD) model—it expresses parallelism explicitly, and each kernel
executes on a fixed number of threads. However, CUDA is more flexible than most
realizations of SPMD, because each kernel call dynamically creates a new grid with
the right number of thread blocks and threads for that application step. The pro-
grammer can use a convenient degree of parallelism for each kernel, rather than
having to design all phases of the computation to use the same number of threads.
Figure A.3.6 shows an example of an SPMD-like CUDA code sequence. It first
instantiates kernel F on a 2D grid of 3 x 2 blocks where each 2D thread block con-
sists of 5 x 3 threads. It then instantiates kernel G on a ID grid of four ID thread
blocks with six threads each. Because kernel G depends on the results of kernel F,
they are separated by an interkernel synchronization barrier.

The concurrent threads of a thread block express fine-grained data paral-
lelism and thread parallelism. The independent thread blocks of a grid express

A.3 Programming GPUs A - 2 3

Sequence kernelF 2D Grid is 3 x 2 thread blocks; each block is 5 x 3 threads

k e r n e l F < < < (3 . 2) , (5 . 3)>>>(pa rams) :

Block 1.1

Thread 0. 0 Throad 1, 0 Throad 2. 0 Throad 3. 0 Thread 4, 0

Thread 0, 1 Thread 1, 1 Throad 2, 1 Thread 3. 1 Throad 4, 1

Thread 0. 2 Throad 1, 2 Throad 2. 2 Throad 3. 2 Thread 4, 2

Block 0, 0 Block 1, 0 Block 2, 0

Block 0,-1 Block 1, 1 . Block 2, 1

Interkernel Synchronization Barrier

kerneIG 1D Grid is 4 thread blocks, each block is 6 threads

kernelG<<<4. 6>>>(parains) ;

Block 2

Thread 0
f

Thread 2 Thread 3 Thread 4 Thread 5

F IGURE A.3.6 S e q u e n c e of kerne l F instantiated on a 2D grid of 2D thread blocks, an interkernel
synchronization barrier, followed by kernel G on a ID grid of ID thread blocks.

coarse-grained data parallelism. Independent grids express coarse-grained task
parallelism. A kernel is simply C code for one thread of the hierarchy.

Restrictions
For efficiency, and to simplify its implementation, the CUDA programming model
has some restrictions. Threads and thread blocks may only be created by invoking
a parallel kernel, not from within a parallel kernel. Together with the required
independence of thread blocks, this makes it possible to execute CUDA programs

A-24 Appendix A Graphics and Computing GPUs

with a simple scheduler that introduces minimal runtime overhead. In fact, the
Tesla GPU architecture implements hardware management and scheduling of
threads and thread blocks.

Task parallelism can be expressed at the thread block level but is difficult to
express within a thread block because thread synchronization barriers operate on
all the threads of the block. To enable CUDA programs to run on any number of
processors, dependencies among thread blocks within the same kernel grid are not
allowed—blocks must execute independently. Since CUDA requires that thread
blocks be independent and allows blocks to be executed in any order, combining
results generated by multiple blocks must in general be done by launching a second
kernel on a new grid of thread blocks (although thread blocks may coordinate their
activities using atomic memory operations on the global memory visible to all
threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion
is unattractive in a massively parallel kernel, because providing stack space for the
tens of thousands of threads that maybe active would require substantial amounts
of memory. Serial algorithms that are normally expressed using recursion, such as
quicksort, are typically best implemented using nested data parallelism rather than
explicit recursion.

To support a heterogeneous system architecture combining a CPU and a
GPU, each with its own memory system, CUDA programs must copy data and
results between host memory and device memory. The overhead of CPU-GPU
interaction and data transfers is minimized by using DMA block transfer engines
and fast interconnects. Compute-intensive problems large enough to need a GPU
performance boost amortize the overhead better than small problems.

loiripflncaitiorDs for Architecture
The parallel programming models for graphics and computing have driven
GPU architecture to be different than CPU architecture. The key aspects of GPU
programs driving GPU processor architecture are:

• Extensive use of fitie-grained data parallelism: Shader programs describe how
to process a single pixel or vertex, and CUDA programs describe how to
compute an individual result.

• Highly threaded programming model: A shader thread program processes a
single pixel or vertex, and a CUDA thread program may generate a single
result. A GPU must create and execute millions of such thread programs per
frame, at 60 frames per second.

• Scalability: A program must automatically increase its performance when
provided with additional processors, without recompiling.

• Intensive floating-point (or integer) computation.

• Support of high throughput computations.

A.4 Multithreaded Multiprocessor Architecture A-25

H H Multithreaded Multiprocessor
Architecture

To address different market segments, GPUs implement scalable numbers of
multiprocessors—in fact, GPUs are multiprocessors composed of multiprocessors.
Furthermore, each multiprocessor is highly multithreaded to execute many fine-
grained vertex and pixel shader threads efficiently. A quality basic GPU has two to
four multiprocessors, while a gaming enthusiast's GPU or computing platform has
dozens of them. This section looks at the architecture of one such multithreaded
multiprocessor, a simplified version of the NVIDIA Tesla streaming multiprocessor
(SM) described in Section A.7.

Why use a multiprocessor, rather than several independent processors? The
parallelism within each multiprocessor provides localized high performance and
supports extensive multithreading for the fine-grained parallel programming
models described in Section A.3. The individual threads of a thread block execute
together within a multiprocessor to share data. The multithreaded multiprocessor
design we describe here has eight scalar processor cores in a tightly coupled archi-
tecture, and executes up to 512 threads (the SM described in Section A.7 executes
up to 768 threads). For area and power efficiency, the multiprocessor shares large
complex units among the eight processor cores, including the instruction cache,
the multithreaded instruction unit, and the shared memory RAM.

Massive Multithreading
GPU processors are highly multithreaded to achieve several goals:

• Cover the latency of memory loads and texture fetches from DRAM

• Support fine-grained parallel graphics shader programming models

• Support fine-grained parallel computing programming models

• Virtualize the physical processors as threads and thread blocks to provide
transparent scalability

• Simplify the parallel programming model to writing a serial program for one
thread

Memory and texture fetch latency can require hundreds of processor clocks,
because GPUs typically have small streaming caches rather than large working-set
caches like CPUs. A fetch request generally requires a full DRAM access latency
plus interconnect and buffering latency. Multithreading helps cover the latency
with useful computing—while one thread is waiting for a load or texture fetch
to complete, the processor can execute another thread. The fine-grained parallel
programming models provide literally thousands of independent threads that can
keep many processors busy despite the long memory latency seen by individual
threads.

A-6 6 Appendix A Graphics and Computing GPUs

A graphics vertex or pixel shader program is a program for a single thread that
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a
single thread that computes a result. Graphics and computing programs instantiate
many parallel threads to render complex images and compute large result arrays.
To dynamically balance shifting vertex and pixel shader thread workloads, each
multiprocessor concurrently executes multiple different thread programs and
different types of shader programs.

To support the independent vertex, primitive, and pixel programming model of
graphics shading languages and the single-thread programming model of CUDA
C/CTT, each GPU thread has its own private registers, private per-thread memory,
program counter, and thread execution state, and can execute an independent code
path. To efficiently execute hundreds of concurrent lightweight threads, the GPU
multiprocessor is hardware multithreaded—it manages and executes hundreds
of concurrent threads in hardware without scheduling overhead. Concurrent
threads within thread blocks can synchronize at a barrier with a single instruction.
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier
synchronization efficiently support very fine-grained parallelism.

Multiprocessor Architecture
A unified graphics and computing multiprocessor executes vertex, geometry, and
pixel fragment shader programs, and parallel computing programs. As Figure A.4.1
shows, the example multiprocessor consists of eight scalar processor (SP) cores
each with a large multithreaded register file (RF), two special function units (SFU),
a multithreaded instruction unit, an instruction cache, a read-only constant cache,
and a shared memory.

The 16 KB shared memory holds graphics data buffers and shared computing
data. CUDA variables declared as s h a r e d reside in the shared memory. To
map the logical graphics pipeline workload through the multiprocessor multiple
times, as shown in Section A.2, vertex, geometry, and pixel threads have independent
input and output buffers, and worldoads arrive and depart independently of thread
execution.

Each SP core contains scalar integer and floating-point arithmetic units that
execute most instructions. The SP is hardware multithreaded, supporting up to
64 threads. Each pipelined SP core executes one scalar instruction per thread per
clock, which ranges from 1.2 GHz to 1.6 GHz in different GPU products. Each
SP core has a large register file (RF) of 1024 general-purpose 32-bit registers,
partitioned among its assigned threads. Programs declare their register demand,
typically 16 to 64 scalar 32-bit registers per thread. The SP can concurrently run
many threads that use a few registers or fewer threads that use more registers. The
compiler optimizes register allocation to balance the cost of spilling registers versus
the cost of fewer threads. Pixel shader programs often use 16 or fewer registers,
enabling each SP to run up to 64 pixel shader threads to cover long-latency texture
fetches. Compiled CUDA programs often need 32 registers per thread, limiting
each SP to 32 threads, which limits such a kernel program to 256 threads per thread
block on this example multiprocessor, rather than its maximum of 512 threads.

A.4 Multithreaded Multiprocessor Architecture A-27

S F U
S P

R F

C

Multithreaded Multiprocessor

Instruction Cache

Multithreaded Instruction Unit

Constant Cache

S P

RF

S P

RF

S P

RF

S P

RF

S P

RF

S P

RF

S P

RF

S F U

Interconnection Network

Shared Memory

Multiprocessor
Controller

Work Interface

Input
Interface 1

Input
Interface

Output
Interface

Texture
Interface

Memory
Interface

FIGURE A.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. The
eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded
instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a
multibank shared memory.

The pipelined SFUs execute thread instructions that compute special functions
and interpolate pixel attributes from primitive vertex attributes. These instructions
can execute concurrently with instructions on the SPs. The SFU is described later.

The multiprocessor executes texture fetch instructions on the texture unit via the
texture interface, and uses the memory interface for external memory load, store,
and atomic access instructions. These instructions can execute concurrently with
instructions on the SPs. Shared memory access uses a low-latency interconnection
network between the SP processors and the shared memory banks.

Sfiinigfle-linistructDOin) Multiple-Thread (SIMT)
To manage and execute hundreds of threads running several different programs
efficiently, the multiprocessor employs a single-instruction multiple-thread
(S IMT) architecture. It creates, manages, schedules, and executes concurrent
threads in groups of parallel threads called warps. The term warp originates from
weaving, the first parallel thread technology. The photograph in Figure A.4.2 shows
a warp of parallel threads emerging from a loom. This example multiprocessor
uses a S IMT warp size of 32 threads, executing four threads in each of the eight

single-instruction
multiple-thread (S I M T)
A processor architecture
that applies one
instruction to multiple
independent threads in
parallel.

warp The set of parallel
threads that execute the
same instruction together
in a SIMT architecture.

A-6 6 Appendix A Graphics and Computing GPUs

i i i i i i i i i i i i i i i i
warp 1 instruction 42

7 T T T T T T T T T T T T T T 7

FIGURE A.4.2 SIMT multithreaded warp scheduling. The scheduler selects n ready warp and issues
an instruction synchronously to the parallel threads composing the warp. Because warps are independent,
the scheduler m a y select a different warp each time.

SP cores over four clocks. The Tesla SM multiprocessor described in Section A.7
also uses a warp size of 32 parallel threads, executing four threads per SP core for
efficiency on plentiful pixel threads and computing threads. Thread blocks consist
of one or more warps.

This example S IMT multiprocessor manages a pool of 16 warps, a total of 512
threads. Individual parallel threads composing a warp are the same type and start
together at the same program address, but are otherwise free to branch and execute
independently. At each instruction issue time, the S IMT multithreaded instruction
unit selects a warp that is ready to execute its next instruction, then issues that
instruction to the active threads of that warp. A SIMT instruction is broadcast
synchronously to the active parallel threads of a warp; individual threads may be
inactive due to independent branching or predication. In this multiprocessor, each
SP scalar processor core executes an instruction for four individual threads of a
warp using four clocks, reflecting the 4:1 ratio of warp threads to cores.

SIMT processor architecture is akin to single-instruction multiple data (S IMD)
design, which applies one instruction to multiple data lanes, but differs in that
SIMT applies one instruction to multiple independent threads in parallel, not just

A.4 Multithreaded Multiprocessor Architecture A-29

to multiple data lanes. An instruction for a SIMD processor controls a vector of
multiple data lanes together, whereas an instruction for a SIMT processor controls
an individual thread, and the SIMT instruction unit issues an instruction to a warp
of independent parallel threads for efficiency. The SIMT processor finds data-level
parallelism among threads at runtime, analogous to the way a superscalar processor
finds instruction-level parallelism among instructions at runtime.

A SIMT processor realizes full efficiency and performance when all threads
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and
when all paths complete, the threads converge to the same execution path. For equal
length paths, a divergent if-else code block is 5 0 % efficient. The multiprocessor uses
a branch synchronization stack to manage independent threads that diverge and
converge. Different warps execute independently at full speed regardless of whether
they are executing common or disjoint code paths. As a result, SIMT GPUs are
dramatically more efficient and flexible on branching code than earlier GPUs, as
their warps are much narrower than the SIMD width of prior GPUs.

In contrast with SIMD vector architectures, SIMT enables programmers to write
thread-level parallel code for individual independent threads, as well as data-parallel
code for many coordinated threads. For program correctness, the programmer can
essentially ignore the SIMT execution attributes of warps; however, substantial
performance improvements can be realized by taking care that the code seldom
requires threads in a warp to diverge. In practice, this is analogous to the role of
cache lines in traditional codes: cache line size can be safely ignored when designing
for correctness but must be considered in the code structure when designing for
peak performance.

SIMT Warp Execution and Divergence
The SIMT approach of scheduling independent warps is more flexible than the
scheduling of previous GPU architectures. A warp comprises parallel threads
of the same type: vertex, geometry, pixel, or compute. The basic unit of pixel
fragment shader processing is the 2-by-2 pixel quad implemented as four pixel
shader threads. The multiprocessor controller packs the pixel quads into a warp. It
similarly groups vertices and primitives into warps, and packs computing threads
into a warp. A thread block comprises one or more warps. The SIMT design shares
the instruction fetch and issue unit efficiently across parallel threads of a warp, but
requires a full warp of active threads to get full performance efficiency.

This unified multiprocessor schedules and executes multiple warp types
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp
scheduler operates at less than the processor clock rate, because there are four thread
lanes per processor core. During each scheduling cycle, it selects a warp to execute
a SIMT warp instruction, as shown in Figure A.4.2. An issued warp-instruction
executes as four sets of eight threads over four processor cycles of throughput. The
processor pipeline uses several clocks of latency to complete each instruction. If the
number of active warps times the clocks per warp exceeds the pipeline latency, the

A-6 6 Appendix A Graphics and Computing GPUs

programmer can ignore the pipeline latency. For this multiprocessor, a round-robin
schedule of eight warps has a period of 32 cycles between successive instructions
for the same warp. If the program can keep 256 threads active per multiprocessor,
instruction latencies up to 32 cycles can be hidden from an individual sequential
thread. However, with few active warps, the processor pipeline depth becomes
visible and may cause processors to stall.

A challenging design problem is implementing zero-overhead warp scheduling
for a dynamic mix of different warp programs and program types. The instruction
scheduler must select a warp every four clocks to issue one instruction per clock
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are
independent, the only dependencies are among sequential instructions from the
same warp. The scheduler uses a register dependency scoreboard to qualify warps
whose active threads are ready to execute an instruction. It prioritizes all such ready
warps and selects the highest priority one for issue. Prioritization must consider
warp type, instruction type, and the desire to be fair to all active warps.

cooperative thread
array (CTA) A set
of concurrent threads
that executes the same
thread program and may
cooperate to compute
a result. A GPU CTA
implements a CUDA
thread block.

Managing Threads and Thread Blocks
The multiprocessor controller and instruction unit manage threads and thread
blocks. The controller accepts work requests and input data and arbitrates access
to shared resources, including the texture unit, memory access path, and I/O paths.
For graphics workloads, it creates and manages three types of graphics threads
concurrently: vertex, geometry, and pbcel. Each of the graphics work types have
independent input and output paths. It accumulates and packs each of these input
work types into SIMT warps of parallel threads executing the same thread program.
It allocates a free warp, allocates registers for the warp threads, and starts warp
execution in the multiprocessor. Every program declares its per-thread register
demand; the controller starts a warp only when it can allocate the requested register
count for the warp threads. When all the threads of the warp exit, the controller
unpacks the results and frees the warp registers and resources.

The controller creates cooperative thread arrays (CTAs) which implement
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA
when it can create all CTA warps and allocate all CTA resources. In addition to
threads and registers, a CTA requires allocating shared memory and barriers. The
program declares the required capacities, and the controller waits until it can
allocate those amounts before launching the CTA. Then it creates CTA warps at the
warp scheduling rate, so that a CTA program starts executing immediately at full
multiprocessor performance. The controller monitors when all threads of a CTA
have exited, and frees the CTA shared resources and its warp resources.

Thread Instructions
The SP thread processors execute scalar instructions for individual threads, unlike
earlier GPU vector instruction architectures, which executed four-component
vector instructions for each vertex or pixel shader program. Vertex programs

A.4 Multithreaded Multiprocessor Architecture A-31

generally compute (x, y, z, w) position vectors, while pixel shader programs
compute (red, green, blue, alpha) color vectors. However, shader programs are
becoming longer and more scalar, and it is increasingly difficult to fully occupy
even two components of a legacy GPU four-component vector architecture. In
effect, the SIMT architecture parallelizes across 32 independent pixel threads,
rather than parallelizing the four vector components within a pixel. CUDA C/CT+
programs have predominantly scalar code per thread. Previous GPUs employed
vector packing (e.g., combining subvectors of work to gain efficiency) but that
complicated the scheduling hardware as well as the compiler. Scalar instructions
are simpler and compiler friendly. Texture instructions remain vector based, taking
a source coordinate vector and returning a filtered color vector.

To support multiple GPUs with different binary microinstruction formats,
high-level graphics and computing language compilers generate intermediate
assembler-level instructions (e.g., Direct3D vector instructions or PTX scalar
instructions), which are then optimized and translated to binary GPU microin-
structions. The NVIDIA PTX (parallel thread execution) instruction set definition
[2007] provides a stable target ISA for compilers, and provides compatibility over
several generations of GPUs with evolving binary microinstruction-set architec-
tures. The optimizer readily expands Direct3D vector instructions to multiple sca-
lar binary microinstructions. PTX scalar instructions translate nearly one to one
with scalar binary microinstructions, although some PTX instructions expand to
multiple binary microinstructions, and multiple PTX instructions may fold into
one binary microinstruction. Because the intermediate assembler-level instruc-
tions use virtual registers, the optimizer analyzes data dependencies and allocates
real registers. The optimizer eliminates dead code, folds instructions together when
feasible, and optimizes S IMT branch diverge and converge points.

Instruction Set Architecture (ISA)
The thread ISA described here is a simplified version of the Tesla architecture PTX
ISA, a register-based scalar instruction set comprising floating-point, integer, logical,
conversion, special functions, flow control, memory access, and texture operations.
Figure A.4.3 lists the basic PTX GPU thread instructions; see the NVIDIA PTX
specification [2007] for details. The instruction format is:

o p c o d e . t y p e d , a , b , c ;

where d is the destination operand, a, b, c are source operands, and . t y p e is one of:

Type .type Specifier

Untyped bits 8 , 1 6 , 3 2 , and 64 bits .b8 , , b l 6 , . b 3 2 , . b 6 4

Unsigned integer 8 , 1 6 , 3 2 , and 64 bits .u8, , u l 6 , .u32 , . u 6 4

Signed integer 8 , 1 6 , 3 2 , and 6 4 bits . s 8 , . s l 6 , . s 3 2 , . s 6 4

Floating-point 1 6 , 3 2 , and 64 bits . f l 6 , , f32 , . f 64

A-6 6 Appendix A Graphics and Computing GPUs

Basic PTX GPU Thread Instructions

Group Instruction Example Meaning Comments

Arithmetic

arithmetic .type = .s32. .u32. . f 32 . . s64, .u64. . f 64

Arithmetic

add. type add.f32 d, a. b d = a + b;

Arithmetic

sub. type sub.f32 d. a, b d = a - b;

Arithmetic

mul .type mul.f32 d. a , b d = a * b;

Arithmetic

mad .type inad. f 32 d, a, b, c d = a * b + c; multiply-add

Arithmetic

di v. type div.f32 d, a. b d = a / b; multiple microinstructions

Arithmetic

rem .type rem.u32 d, a, b d = a % b: integer remainder

Arithmetic
abs .type abs.f32 d, a

i i i
d = | a | :

Arithmetic
neg .type neg.f32 d, a d = 0 - a;

Arithmetic

min .type min.f32 d, a, b d = (a < b)? a:b; floating selects non-NaN

Arithmetic

max. type max.f32 d, a, b d - (a > b)? a:b; floating selects non-NaN

Arithmetic

setp .cmp.type setp.lt.f32 p. a, b p = (a < b); compare and set predicate

Arithmetic

numeric .cmp = eq. ne, It. le, gt. ge; unordered cmp = equ. neu, ltu, leu, gtu, geu, num. nan

Arithmetic

mov. type mov.b32 d, a d = a: move

Arithmetic

selp .type selp.f32 d, a. b. p d = p? a: b; select with predicate

Arithmetic

cvt.dtype.atype cvt.f32.s32 d. a d = convert(a); convert atype to dtype

Special

Function

special ,type = . f 32 (some . f 64)

Special

Function

rep. type rep.f32 d, a d - 1/a; reciprocal

Special

Function

sqrt. type sqrt.f32 d , a d = sqrt(a); square root

Special

Function

rsqrt. type rsqrt.f32 d , a d = 1/sqrt(a); reciprocal square root Special

Function sin .type sin.f32 d, a d = s i n (a); sine /

Special

Function

cos .type cos.f32 d, a d = cos(a); cosine

Special

Function

Ig2. type 1g2.f32 d. a d = log(a)/log(2) binary logarithm

Special

Function

ex2 .type ex2.f32 d. a d = 2 ** a; binary exponential

Logical

logic.type = . pred ,. b32 , . b64

Logical

and. type and.b32 d, a, b d = a & b

Logical

or.type or.b32 d, a, b d = a | b

Logical
xor.type xor.b32 d, a, b d = a

 A
 b

Logical
not. type not.b32 d. a, b d = -a; one's complement

Logical

cnot. type cnot.b32 d, a, b d = (a—0)? 1:0: C logical not

Logical

shl. type shl.b32 d, a, b d = a << b; shift left

Logical

shr.type shr.s32 d, a, b d = a >> b: shift right

Memory

Access

memory .space =. gl obal , .shared, .local, . const: .type =. b8, .u8, .s8. .b!6, .b32, .b64

Memory

Access

Id. space, type Id.global.b32 d, [a+off] d = *(a+off); load from memory space

Memory

Access

st .space, type st.shared.b32 [d+offl, a *(d+off) = a; store to memory space
Memory

Access
t ex.nd.dtyp.btype tex.2d.v4.f32.f32 d. a, b d = tex2d(a, b); texture lookup

Memory

Access
atom, spc.op.type atom.global.add.u32 d,[a], b

atom.global.cas.b32 d,[a], b, c

atomic 1 d = *a;

*a = op(*a, b); 1

atomic read-modify-write

operation

Memory

Access

atom .op = and, or, xor, add, min, max, exch, cas ; .spc = . gl obal : .type = .b32

Control

Flow

branch @p bra target if (p) goto

target;

conditional branch

Control

Flow

call call (ret), func. (params) ret = func(params); call function Control

Flow ret ret return; return from function call
Control

Flow

bar.sync bar.sync d wait for threads barrier synchronization

Control

Flow

exit exi t exi t; terminate thread execution

FIGURE A.4.3 Basic PTX GPU thread instructions.

A.4 Multithreaded Multiprocessor Architecture A-33

Source operands are scalar 32-bit or 64-bit values in registers, an immediate
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are
registers, except for store to memory. Instructions are predicated by prefixing them
with @p or @! p, where p is a predicate register. Memory and texture instructions
transfer scalars or vectors of two to four components, up to 128 bits total. PTX
instructions specify the behavior of one thread.

The PTX arithmetic instructions operate on 32-bit and 64-bit floating-point,
signed integer, and unsigned integer types. Recent GPUs support 64-bit double
precision floating-point; see Section A.6. On current GPUs, PTX 64-bit integer
and logical instructions are translated to two or more binary microinstructions
that perform 32-bit operations. The GPU special function instructions are limited
to 32-bit floating-point. The thread control flow instructions are conditional
b r a n c h , funct ion c a l l and r e t u r n , thread e x i t , and b a r . s y n c (barr ie r
synchronization). The conditional branch instruction @p b r a t a r g e t uses a
predicate register p (or ! p) previously set by a compare and set predicate s e t p
instruction to determine whether the thread takes the branch or not. Other
instructions can also be predicated on a predicate register being true or false.

Memory Access Instructions

The t e x instruction fetches and filters texture samples from ID, 2D, and 3D
texture arrays in memory via the texture subsystem. Texture fetches generally use
interpolated floating-point coordinates to address a texture. Once a graphics pixel
shader thread computes its pixel fragment color, the raster operations processor
blends it with the pixel color at its assigned (x, y) pixel position and writes the final
color to memory.

To support computing and C/CTT language needs, the Tesla PTX ISA implements
memory load/store instructions. They use integer byte addressing with register plus
offset address arithmetic to facilitate conventional compiler code optimizations.
Memory load/store instructions are common in processors, but are a significant
new capability in the Tesla architecture GPUs, as prior GPUs provided only the
texture and pixel accesses required by the graphics APIs.

For computing, the load/store instructions access three read/write memory
spaces that implement the corresponding CUDA memory spaces in Section A.3:

• Local memory for per-thread private addressable temporary data (imple-
mented in external DRAM)

• Shared memory for low-latency access to data shared by cooperating threads
in the same CTA/thread block (implemented in on-chip SRAM)

• Global memory for large data sets shared by all threads of a computing
application (implemented in external DRAM)

The memory load/store instructions I d . g l o b a l , S t . g l o b a l , I d . s h a r e d ,
s t . s h a r e d , I d . l o c a l , and s t . 1 o c a l access the global, shared, and local mem-
ory spaces. Computing programs use the fast barrier synchronization instruction
b a r . s y n c to synchronize threads within a CTA/thread block that communicate
with each other via shared and global memory.

A-6 6 Appendix A Graphics and Computing GPUs

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT
warp together into a single memory block request when the addresses fall in the
same block and meet alignment criteria. Coalescing memory requests provides a
significant performance boost over separate requests from individual threads. The
multiprocessor's large thread count, together with support for many outstanding
load requests, helps cover load-to-use latency for local and global memory imple-
mented in external DRAM.

The latest Tesla architecture GPUs also provide efficient atomic memory opera-
tions on memory with the a t o m . op. u 3 2 instructions, including integer operations
a d d , m i n , max, a n d , o r , x o r , e x c h a n g e , and c a s (compare-and-swap) opera-
tions, facilitating parallel reductions and parallel data structure management.

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently
via shared memory and global memory by simply calling sy n c t h r e a d s () ; as
part of each interthread communication step. The synchronization intrinsic func-
tion generates a single ba r . sync instruction. I-Iowever, implementing fast barrier
synchronization among up to 512 threads per CUDA thread block is a challenge.

Grouping threads into SIMT warps of 32 threads reduces the synchronization
difficulty by a factor of 32. Threads wait at a barrier in the SIMT thread scheduler
so they do not consume any processor cycles while waiting. When a thread executes
a ba r . sync instruction, it increments the barrier's thread arrival counter and the
scheduler marks the thread as waiting at the barrier. Once all the CTA threads
arrive, the barrier counter matches the expected terminal count, and the scheduler
releases all the threads waiting at the barrier and resumes executing threads.

Streaming Processor (SP)
The multithreaded streaming processor (SP) core is the primary thread instruction
processor in the multiprocessor. Its register file (RF) provides 1024 scalar
32-bit registers for up to 64 threads. It executes all the fundamental floating-point
operations, including a d d . f 32, m u l . f 32, mad. f 32 (floating multiply-add),
m i n . f 3 2 , max. f 32, and s e t p . f 3 2 (floating compare and set predicate). The
floating-point add and multiply operations are compatible with the IEEE 754
standard for single precision FP numbers, including not-a-number (NaN) and
infinity values. The SP core also implements all of the 32-bit and 64-bit integer
arithmetic, comparison, conversion, and logical PTX instructions in Figure A.4.3.

The floating-point add and mul operations employ IEEE round-to-nearest-even
as the default rounding mode. The mad . f 32 floating-point multiply-add operation
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. The SP flushes input denormal operands to sign-preserved-zero.
Results that underflow the target output exponent range are flushed to sign-
preserved-zero after rounding.

A.4 Multithreaded Multiprocessor Architecture A-35

Special Function Unit (SFU)
Certain thread instructions can execute on the SFUs, concurrently with other
thread instructions executing on the SPs. The SFU implements the special function
instructions of Figure A.4.3, which compute 32-bit floating-point approximations
to reciprocal, reciprocal square root, and key transcendental functions. It also
implements 32-bit floating-point planar attribute interpolation for pixel shaders,
providing accurate interpolation of attributes such as color, depth, and texture
coordinates.

Each pipelined SFU generates one 32-bit floating-point special function result
per cycle; the two SFUs per multiprocessor execute special function instructions
at a quarter the simple instruction rate of the eight SPs. The SFUs also execute the
mul . f 32 multiply instruction concurrently with the eight SPs, increasing the peak
computation rate up to 5 0 % for threads with a suitable instruction mixture.

For functional evaluation, the Tesla architecture SFU employs quadratic
interpolation based on enhanced minimax approximations for approximating the
reciprocal, reciprocal square-root, log2x, 2\ and sin/cos functions. The accuracy of
the function estimates ranges from 22 to 24 mantissa bits. See Section A.6 for more
details on SFU arithmetic.

Comparing with Other Multiprocessors
Compared with SIMD vector architectures such as x86 SSE, the SIMT multipro-
cessor can execute individual threads independently, rather than always executing
them together in synchronous groups. SIMT hardware finds data parallelism among
independent threads, whereas SIMD hardware requires the software to express data
parallelism explicitly in each vector instruction. A SIMT machine executes a warp
of 32 threads synchronously when the threads take the same execution path, yet
can execute each thread independently when they diverge. The advantage is signi-
ficant because SIMT programs and instructions simply describe the behavior of a
single independent thread, rather than a SIMD data vector of four or more data
lanes. Yet the SIMT multiprocessor has SIMD-like efficiency, spreading the area
and cost of one instruction unit across the 32 threads of a warp and across the eight
streaming processor cores. SIMT provides the performance of SIMD together with
the productivity of multithreading, avoiding the need to explicitly code SIMD vec-
tors for edge conditions and partial divergence.

The SIMT multiprocessor imposes little overhead because it is hardware
multithreaded with hardware barrier synchronization. That allows graphics
shaders and CUDA threads to express very fine-grained parallelism. Graphics and
CUDA programs use threads to express fine-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector
instructions. It is simpler and more productive to develop scalar single-thread code
than vector code, and the SIMT multiprocessor executes the code with SIMD-like
efficiency.

A-6 6 Appendix A Graphics and Computing GPUs

Coupling eight streaming processor cores together closely into a multiprocessor
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. The CUDA programming model
exploits the two-level hierarchy by providing individual threads for fine-grained
parallel computations, and by providing grids of thread blocks for coarse-grained
parallel operations. The same thread program can provide both fine-grained and
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must
use two different programming models to provide fine-grained and coarse-grained
operations: coarse-grained parallel threads on different cores, and SIMD vector
instructions for fine-grained data parallelism.

Multithreaded Multiprocessor Conclusion
The example GPU multiprocessor based on the Tesla architecture is highly
multithreaded, executing a total of up to 512 lightweight threads concurrently to
support fine-grained pixel shaders and CUDA threads. It uses a variation on SIMD
architecture and multithreading called SIMT (single-instruction multiple-thread)
to efficiently broadcast one instruction to a warp of 32 parallel threads, while
permitting each thread to branch and execute independently. Each thread executes
its instruction stream on one of the eight streaming processor (SP) cores, which are
multithreaded up to 64 threads.

The PTX ISA is a register-based load/store scalar ISA that describes the execution
of a single thread. Because PTX instructions are optimized and translated to binary
microinstructions for a specific GPU, the hardware instructions can evolve rapidly
without disrupting compilers and software tools that generate PTX instructions.

^ J U Parallel SViemory System]

Outside of the GPU itself, the memory subsystem is the most important determiner
of the performance of a graphics system. Graphics workloads demand very high
transfer rates to and from memory. Pixel write and blend (read-modify-write)
operations, depth buffer reads and writes, and texture map reads, as well as
command and object vertex and attribute data reads, comprise the majority of
memory traffic.

Modern GPUs are highly parallel, as shown in Figure A.2.5. For example, the
GeForce 8800 can process 32 pLxels per clock, at 600 MFIz. Each pixel typically
requires a color read and write and a depth read and write of a 4-byte pixel. Usually
an average of two or three texels of four bytes each are read to generate the pixels
color. So for a typical case, there is a demand of 28 bytes times 32 pLxels = 896 bytes
per clock. Clearly the bandwidth demand on the memory system is enormous.

A.5 Parallel Memory System A-37

To supply these requirements, GPU memory systems have the following
characteristics:

• They are wide, meaning there are a large number of pins to convey data
between the GPU and its memory devices, and the memory array itself
comprises many DRAM chips to provide the full total data bus width.

• They are fast, meaning aggressive signaling techniques are used to maximize
the data rate (bits/second) per pin.

• GPUs seek to use every available cycle to transfer data to or from the memory
array. To achieve this, GPUs specifically do not aim to minimize latency
to the memory system. High throughput (utilization efficiency) and short
latency are fundamentally in conflict.

• Compression techniques are used, both lossy, of which the programmer
must be aware, and lossless, which is invisible to the application and
opportunistic.

• Caches and work coalescing structures are used to reduce the amount of
off-chip traffic needed and to ensure that cycles spent moving data are used
as fully as possible.

DRAM Considerations
GPUs must take into account the unique characteristics of DRAM. DRAM chips
are internally arranged as multiple (typically four to eight) banks, where each bank
includes a power-of-2 number of rows (typically around 16,384), and each row
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of
timing requirements on their controlling processor. For example, dozens of cycles
are required to activate one row, but once activated, the bits within that row are
randomly accessible with a new column address every four clocks. Double-data
rate (DDR) synchronous DRAMs transfer data on both rising and falling edges
of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have
32 bidirectional data pins, so eight bytes can be read or written from the DRAM
per clock.

GPUs internally have a large number of generators of memory traffic.
Different stages of the logical graphics pipeline each have their own request
streams: command and vertex attribute fetch, shader texture fetch and load/
store, and pixel depth and color read-write. At each logical stage, there are often
multiple independent units to deliver the parallel throughput. These are each
independent memory requestors. When viewed at the memory system, there
are an enormous number of uncorrelated requests in flight. This is a natural
mismatch to the reference pattern preferred by the DRAMs. A solution is for
the GPU's memory controller to maintain separate heaps of traffic bound for

A-6 6 Appendix A Graphics and Computing GPUs

different DRAM banks, and wait until enough traffic for a particular DRAM
row is pending before activating that row and transferring all the traffic at once.
Note that accumulating pending requests, while good for DRAM row locality
and thus efficient use of the data bus, leads to longer average latency as seen by
the requestors whose requests spend time waiting for others. The design must
take care that no particular request waits too long, otherwise some processing
units can starve waiting for data and ultimately cause neighboring processors to
become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of
which comprises a fully independent memory controller and one or two DRAM
devices that are fully and exclusively owned by that partition. To achieve the best
load balance and therefore approach the theoretical performance of n partitions,
addresses are finely interleaved evenly across all memory partitions. The partition
interleaving stride is typically a block of a few hundred bytes. The number of
memory partitions is designed to balance the number of processors and other
memory requesters.

Caches
GPU workloads typically have very large working sets—on the order of hundreds
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not
practical to construct caches on chips large enough to hold anything close to the
full working set of a graphics application. Whereas CPUs can assume very high
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must
therefore cope with many misses in flight. While a CPU can reasonably be designed
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and
hits intermingled. We call this a streaming cache architecture.

GPU caches must deliver very high-bandwidth to their clients. Consider the case
of a texture cache. A typical texture unit may evaluate two bilinear interpolations
for each of four pixels per clock cycle, and a GPU may have many such texture
units all operating independently. Each bilinear interpolation requires four
separate texels, and each texel might be a 64-bit value. Four 16-bit components
are typical. Thus, total bandwidth is 2 x 4 x 4 x 64 = 2048 bits per clock. Each
separate 64-bit texel is independently addressed, so the cache needs to handle
32 unique addresses per clock. This naturally favors a multibank and/or multiport
arrangement of SRAM arrays.

rvarvflu

Modern GPUs are capable of translating virtual addresses to physical addresses.
On the GeForce 8800, all processing units generate memory addresses in a
40-bit virtual address space. For computing, load and store thread instructions use
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a
40-bit offset. A memory management unit performs virtual to physical address

A.5 Parallel Memory System A-39

translation; hardware reads the page tables from local memory to respond to misses
on behalf of a hierarchy of translation lookaside buffers spread out among the
processors and rendering engines. In addition to physical page bits, GPU page table
entries specify the compression algorithm for each page. Page sizes range from 4 to
128 kilobytes.

Memory Spaces
As introduced in Section A.3, CUDA exposes different memory spaces to allow the
programmer to store data values in the most performance-optimal way. For the
following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory
Global memory is stored in external DRAM; it is not local to any one physical
streaming multiprocessor (SM) because it is meant for communication among
different CTAs (thread blocks) in different grids. In fact, the many CTAs that
reference a location in global memory may not be executing in the GPU at the
same time; by design, in CUDA a programmer does not know the relative order
in which CTAs are executed. Because the address space is evenly distributed
among all memory partitions, there must be a read/write path from any streaming
multiprocessor to any DRAM partition.

Access to global memory by different threads (and different processors) is not
guaranteed to have sequential consistency. Thread programs see a relaxed memory
ordering model. Within a thread, the order of memory reads and writes to the same
address is preserved, but the order of accesses to different addresses may not be
preserved. Memory reads and writes requested by different threads are unordered.
Within a CTA, the barrier synchronization instruction b a r . s y n c can be used
to obtain strict memory ordering among the threads of the CTA. The membar
thread instruction provides a memory barrier/fence operation that commits prior
memory accesses and makes them visible to other threads before proceeding.
Threads can also use the atomic memory operations described in Section A.4 to
coordinate work on memory they share.

Shared! memory
Per-CTA shared memory is only visible to the threads that belong to that CTA,
and shared memory only occupies storage from the time a CTA is created to the
time it terminates. Shared memory can therefore reside on-chip. This approach has
many benefits. First, shared memory traffic does not need to compete with limited
off-chip bandwidth needed for global memory references. Second, it is practical to
build very high-bandwidth memory structures on-chip to support the read/write
demands of each streaming multiprocessor. In fact, the shared memory is closely
coupled to the streaming multiprocessor.

A-6 6 Appendix A Graphics and Computing GPUs

Each streaming multiprocessor contains eight physical thread processors.
During one shared memory clock cycle, each thread processor can process two
threads' worth of instructions, so 16 threads' worth of shared memory requests
must be handled in each clock. Because each thread can generate its own addresses,
and the addresses are typically unique, the shared memory is built using 16
independently addressable SRAM banks. For common access patterns, 16 banks are
sufficient to maintain throughput, but pathological cases are possible; for example,
all 16 threads might happen to access a different address on one SRAM bank. It
must be possible to route a request from any thread lane to any bank of SRAM, so
a 16-by-16 interconnection network is required.

Local Memory
Per-thread local memory is private memory visible only to a single thread. Local
memory is architecturally larger than the thread's register file, and a program
can compute addresses into local memory. To support large allocations of local
memory (recall the total allocation is the per-thread allocation times the number
of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off-chip, they are well-
suited to being cached on-chip.

Constamit Memory /
Constant memory is read-only to a program running on the SM (it can be written
via commands to the GPU). It is stored in external DRAM and cached in the SM.
Because commonly most or all threads in a SIMT warp read from the same address
in constant memory, a single address lookup per clock is sufficient. The constant
cache is designed to broadcast scalar values to threads in each warp.

Texture Memory
Texture memory holds large read-only arrays of data. Textures for computing have
the same attributes and capabilities as textures used with 3D graphics. Although
textures are commonly two-dimensional images (2D arrays of pixel values), ID
(linear) and 3D (volume) textures are also available.

A compute program references a texture using a t e x instruction. Operands
include an identifier to name the texture, and 1, 2, or 3 coordinates based on the
texture dimensionality. The floating-point coordinates include a fractional portion
that specifies a sample location often in between texel locations. Noninteger
coordinates invoke a bilinear weighted interpolation of the four closest values (for
a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize
throughput of texture fetches from thousands of concurrent threads. Some programs
use texture fetches as a way to cache global memory.

A.6 Floating-point A-41

Surfaces
Surface is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats
are defined; for example, a pixel may be defined as four 8-bit RGBA integer
components, or four 16-bit floating-point components. A program kernel does
not need to know the surface type. A t e x instruction recasts its result values as
floating-point, depending on the surface format.

Load/Store Access
Load/store instructions with integer byte addressing enable the writing and com-
piling of programs in conventional languages like C and C-H-. CUDA programs use
load/store instructions to access memory.

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp
together into a single memory block request when the addresses fall in the same
block and meet alignment criteria. Coalescing individual small memory requests
into large block requests provides a significant performance boost over separate
requests. The large thread count, together with support for many outstanding load

- requests, helps cover load-to-use latency for local and global memory implemented
in external DRAM.

ROP
As shown in Figure A.2.5, NVIDIA Tesla architecture GPUs comprise a scalable
streaming processor array (SPA), which performs all of the GPUs programmable
calculations, and a scalable memory system, which comprises external DRAM
control and fixed function Raster Operation Processors (ROPs) that perform color
and depth framebuffer operations directly on memory. Each ROP unit is paired
with a specific memory partition. ROP partitions are fed from the SMs via an
interconnection network. Each ROP is responsible for depth and stencil tests and
updates, as well as color blending. The ROP and memory controllers cooperate
to implement lossless color and depth compression (up to 8:1) to reduce external
bandwidth demand. ROP units also perform atomic operations on memory.

Floating-point Arithmetic

GPUs today perform most arithmetic operations in the programmable processor
cores using IEEE 754-compatible single precision 32-bit floating-point operations
(see Chapter 3). The fixed-point arithmetic of early GPUs was succeeded by 16-bit,
24-bit, and 32-bit floating-point, then IEEE 754-compatible 32-bit floating-point.

A-6 6 Appendix A Graphics and Computing GPUs

Some fixed-function logic within a GPU, such as texture-filtering hardware,
continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754
compatible double precision 64-bit floating-point instructions.

half precision A 16-bit
binary floating-point
format, with 1 sign bit,
5-bit exponent, 10-bit
fraction, and an implied
integer bit.

Supported Formats
The IEEE 754 standard for floating-point arithmetic [2008] specifies basic and
storage formats. GPUs use two of the basic formats for computation, 32-bit and
64-bit binary floating-point, commonly called single precision and double pre-
cision. The standard also specifies a 16-bit binary storage floating-point format,
half precision. GPUs and the Cg shading language employ the narrow 16-bit
half data format for efficient data storage and movement, while maintaining high
dynamic range. GPUs perform many texture filtering and pixel blending computa-
tions at half precision within the texture filtering unit and the raster operations
unit. The OpenEXR high dynamic-range image file format developed by Industrial
Light and Magic [2003] uses the identical half format for color component values
in computer imaging and motion picture applications.

Basic Arithmetic

multiply-add (MAD)
A single floating-point
instruction that performs
a compound operation:
multiplication followed
by addition.

Common single precision floating-point operations in GPU programmable cores
include addition, multiplication, multiply-add, minimum, maximum, compare,
set predicate, and conversions between integer and floating-point numbers.
Floating-point instructions often provide source operand modifiers for negation
and absolute value.

The floating-point addition and multiplication operations of most GPUs today
are compatible with the IEEE 754 standard for single precision FP numbers, includ-
ing not-a-number (NaN) and infinity values. The FP addition and multiplica-
tion operations use IEEE round-to-nearest-even as the default rounding mode.
To increase floating-point instruction throughput, GPUs often use a compound
multiply-add instruction (mad). The multiply-add operation performs FP multipli-
cation with truncation, followed by FP addition with round-to-nearest-even. It
provides two floating-point operations in one issuing cycle, without requiring the
instruction scheduler to dispatch two separate instructions, but the computation
is not fused and truncates the product before the addition. This makes it different
from the fused multiply-add instruction discussed in Chapter 3 and later in this
section. GPUs typically flush denormalized source operands to sign-preserved zero,
and they flush results that underflow the target output exponent range to sign-
preserved zero after rounding.

Specialized Arithmetic
GPUs provide hardware to accelerate special function computation, attribute
interpolation, and texture filtering. Special function instructions include cosine,

A.6 Floating-point A-43

sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root.
Attribute interpolation instructions provide efficient generation of pixel attributes,
derived from plane equation evaluation. The special function unit (SFU)
introduced in Section A.4 computes special functions and interpolates planar
attributes [Oberman and Siu, 2005].

Several methods exist for evaluating special functions in hardware. It has been
shown that quadratic interpolation based on Enhanced Minimax Approximations
is a very efficient method for approximating functions in hardware, including
reciprocal, reciprocal square-root, log2x, 2\ sin, and cos.

We can summarize the method of SFU quadratic interpolation. For a binary
input operand X with n-bit significand, the significand is divided into two parts:
Xu is the upper part containing m bits, and Xt is the lower part containing n-m bits.
The upper m bits Xu are used to consult a set of three lookup tables to return three
finite-word coefficients C0 , Cp and C 2 . Each function to be approximated requires
a unique set of tables. These coefficients are used to approximate a given function
f(X) in the range Xu <= X < Xu T 2 - m by evaluating the expression:

f(X) = C 0 T C 1 X , T C 2 X f

The accuracy of each of the function estimates ranges from 22 to 24 significand
bits. Example function statistics are shown in Figure A.6.1.

The IEEE 754 standard specifies exact-rounding requirements for division
and square root, however, for many GPU applications, exact compliance is not
required. Rather, for those applications, higher computational throughput is more
important than last-bit accuracy. For the SFU special functions, the CUDA math
library provides both a full accuracy function and a fast function with the SFU
instruction accuracy.

Another specialized arithmetic operation in a GPU is attribute interpolation.
Key attributes are usually specified for vertices of primitives that make up a scene
to be rendered. Example attributes are color, depth, and texture coordinates. These
attributes must be interpolated in the (x,y) screen space as needed to determine the

spccial function unit
(SFU) A hardware unit
that computes special
functions and interpolates
planar attributes.

Input Accuracy ULP* % exactly
Function interval (good bits) error rounded Monotonic

1/x [1,2) 24.02 0.98 8 7 Yes

1/ sqrt(x) [1,4) 23.40 1.52 78 Yes

2* [0,1) 22.51 1.41 74 Yes

log2x [1,2) 22.57 N / A " N/A Yes

sin/cos [0, 77/2) 22.47 N/A N/A No

*ULP: unit in the last place. " N / A : not applicable.

FIGURE A.6.1 Special function approximation statistics. For the N V I D I A GeForce 8800 spccial
function unit (SFU).

A-6 6 Appendix A Graphics and Computing GPUs

values of the attributes at each pixel location. The value of a given attribute U in an
(x,y) plane can be expressed using plane equations of the form:

U(x,y) = Aux T Buy T Cu

where /\, B, and C are interpolation parameters associated with each attribute U.
The interpolation parameters A, B, and C are all represented as single precision
floating-point numbers.

Given the need for both a function evaluator and an attribute interpolator in a
pLxel shader processor, a single SFU that performs both functions for efficiency can
be designed. Both functions use a sum of products operation to interpolate results,
and the number of terms to be summed in both functions is very similar.

MlP-map A Latin phrase
multum in parvo, or
much in a small space.
A MlP-map contains
precalculated images of
different resolutions, used
to increase rendering
speed and reduce artifacts.

Texture Operations

Texture mapping and filtering is another key set of specialized floating-point
arithmetic operations in a GPU. The operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and t
are single precision floating-point numbers.

2. Compute the level of detail to identify the correct texture MlP-map level.

3. Compute the trilinear interpolation fraction.

4. Scale texture address (s, t) for the selected MlP-map level.

5. Access memory and retrieve desired texels (texture elements).

6. Perform filtering operation on texels.

Texture mapping requires a significant amount of floating-point computation
for full-speed operation, much of which is done at 16-bit half precision. As an
example, the GeForce 8S00 Ultra delivers about 500 GFLOPS of proprietary format
floating-point computation for texture mapping instructions, in addition to its
conventional IEEE single precision floating-point instructions. For more details on
texture mapping and filtering, see Foley and van Dam [1995].

Performance
The floating-point addition and multiplication arithmetic hardware is fully
pipelined, and latency is optimized to balance delay and area. While pipelined, the
throughput of the special functions is less than the floating-point addition and
multiplication operations. Quarter-speed throughput for the special functions
is typical performance in modern GPUs, with one SFU shared by four SP cores.
In contrast, CPUs typically have significantly lower throughput for similar
functions, such as division and square root, albeit with more accurate results. The
attribute interpolation hardware is typically fully pipelined to enable full-speed
pixel shaders.

A.6 Floating-point A-45

Double precision
Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double precision
operations in hardware. Standard floating-point arithmetic operations in double
precision include addition, multiplication, and conversions between different
floating-point and integer formats. The 2008 IEEE 754 floating-point standard
includes specification for the fused-multiply-add operation (FMA), as discussed in
Chapter 3. The FMA operation performs a floating-point multiplication followed
by an addition, with a single rounding. The fused multiplication and addition
operations retain full accuracy in intermediate calculations. This behavior enables
more accurate floating-point computations involving the accumulation of prod-
ucts, including dot products, matrix multiplication, and polynomial evaluation.
The FMA instruction also enables efficient software implementations of exactly
rounded division and square root, removing the need for a hardware division or
square root unit.

A double precision hardware FMA unit implements 64-bit addition, multipli-
cation, conversions, and the FMA operation itself. The architecture of a double

FIGURE A.6.2 Double precision fused-multiply-add (FMA) unit. Hardware To implement floating-
point A x B + C for double precision.

A-6 6 Appendix A Graphics and Computing GPUs

precision FMA unit enables full-speed denormalized number support on both
inputs and outputs. Figure A.6.2 shows a block diagram of an FMA unit.

As shown in Figure A.6.2, the significands of A and B are multiplied to form
a 106-bit product, with the results left in carry-save form. In parallel, the 53-bit
addend C is conditionally inverted and aligned to the 106-bit product. The sum and
carry results of the 106-bit product are summed with the aligned addend through a
16 l-bit-widecarry-saveadder(CSA).Thecarry-saveoutput is thensummed together
in a carry-propagate adder to produce an unrounded result in nonredundant, two's
complement form. The result is conditionally recomplemented, so as to return a
result in sign-magnitude form. The complemented result is normalized, and then
it is rounded to fit within the target format.

j j ^ J Real Stuff : Tine NVIDIA GeForce 8 8 0 0

The NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unified vertex
and pixel processor design that also supports parallel computing applications
written in C using the CUDA parallel programming model. It is the first imple-
mentation of the Tesla unified graphics and computing architecture described in
Section A.4 and in Lindholm, Nickolls, Oberman, and Montrym [2008]. A family
of Tesla architecture GPUs addresses the different needs of laptops, desktops,'work-
stations, and servers.

Streaming Processor Array (SPA)
The GeForce 8800 GPU shown in Figure A.7.1 contains 128 streaming processor
(SP) cores organized as 16 streaming multiprocessors (SMs). Two SMs share
a texture unit in each texture/processor cluster (TPC). An array of eight TPCs
makes up the streaming processor array (SPA), which executes all graphics shader
programs and computing programs.

The host interface unit communicates with the host CPU via the PCI-Express
bus, checks command consistency, and performs context switching. The input
assembler collects geometric primitives (points, lines, triangles). The work distri-
bution blocks dispatch vertices, pixels, and compute thread arrays to the TPCs in
the SPA. The TPCs execute vertex and geometry shader programs and computing
programs. Output geometric data is sent to the viewport/clip/setup/raster/zcull
block to be rasterized into pixel fragments that are then redistributed back into the
SPA to execute pixel shader programs. Shaded pixels are sent across the intercon-
nection network for processing by the ROP units. The network also routes tex-
ture memory read requests from the SPA to DRAM and reads data from DRAM
through a level-2 cache back to the SPA.

A.7 Real Stuff: The NVIDIA GeForce 8800 A-47

Ho'.! CPU [—| Bridge ~ [— [System Memory

FIGURE A.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8800 has 128 streaming processor
(SP) cores in 16 streaming multiprocessors (SM), arranged in eight texture/processor clusters (TPC). The processors connect with six 64-bit-wide
D l l A M partitions via an interconnection network. Other G P U s implementing the Tesla architecture vary the number of SP cores, SMs, D R A M
partitions, and other units.

Texture/Processor Cluster (TPC)
Each T P C contains a geometry controller, an SM controller (SMC), two streaming
multiprocessors (SMs), and a texture unit as shown in Figure A.7. 2.

The geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and
topology flow in the TPC.

The SMC controls multiple SMs, arbitrating the shared texture unit, load/store
path, and I/O path. The SMC serves three graphics workloads simultaneously:
vertex, geometry, and pixel.

The texture unit processes a texture instruction for one vertex, geometry, or pixel
quad, or four compute threads per cycle. Texture instruction sources are texture
coordinates, and the outputs are weighted samples, typically a four-component
(RGBA) floating-point color. The texture unit is deeply pipelined. Although it

A-6 6 Appendix A Graphics and Computing GPUs

TPC

Geometry Controller

SMC

SM SM
l-Cache l-Cache

MT Issue MT Issue

C-Cache C-Cache
i

S F U S F U [s Fu|

Shared
Memory

Shared
Memory

Texture Unit

Tex L1

SM

l -Cache

MT Issue

C - C a c h e

H

0
SFU SFU

Shared
Memory

FIGURE A.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each S M has eight streaming processor
(SP) cores, two SFUs, and a shared memory.

contains a streaming cache to capture filtering locality, it streams hits mixed with
misses without stalling.

Streaming Multiprocessor (SM)
The SM is a unified graphics and computing multiprocessor that executes vertex,
geometry, and pixel-fragment shader programs and parallel computing programs.
The SM consists of eight SP thread processor cores, two SFUs, a multithreaded
instruction fetch and issue unit (MT issue), an instruction cache, a read-only constant
cache, and a 16 KB read/write shared memory. It executes scalar instructions for
individual threads.

The GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GITz, for a peak of
36 GFLOPS per SM. To optimize power and area efficiency, some SM nondatapath
units operate at half the SP clock rate.

A.7 Real Stuff: The NVIDIA GeForce 8800 A-49

To efficiently execute hundreds of parallel threads while running several
different programs, the SM is hardware multithreaded. It manages and executes up
to 768 concurrent threads in hardware with zero scheduling overhead. Each thread
has its own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel,
or compute. The SIMT design, previously described in Section A.4, shares the SM
instruction fetch and issue unit efficiently across 32 threads but requires a full warp
of active threads for full performance efficiency.

The SM schedules and executes multiple warp types concurrently. Each issue
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction.
An issued warp instruction executes as four sets of 8 threads over four processor
cycles. The SP and SFU units execute instructions independently, and by issuing
instructions between them on alternate cycles, the scheduler can keep both fully
occupied. A scoreboard qualifies each warp for issue each cycle. The instruction
scheduler prioritizes all ready warps and selects the one with highest priority for
issue. Prioritization considers warp type, instruction type, and "fairness" to all
warps executing in the SM.

The SM executes cooperative thread arrays (CTAs) as multiple concurrent
warps which access a shared memory region allocated dynamically for the CTA.

Instruction Set
Threads execute scalar instructions, unlike previous GPU vector instruction
architectures. Scalar instructions are simpler and compiler friendly. Texture
instructions remain vector based, taking a source coordinate vector and returning
a filtered color vector.

The register-based instruction set includes all the floating-point and integer
arithmetic, transcendental, logical, flow control, memory load/store, and texture
instructions listed in the PTX instruction table of Figure A.4.3. Memory load/store
instructions use integer byte addressing with register-plus-offset address arithmetic.
For computing, the load/store instructions access three read-write memory spaces:
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for
data shared by all threads. Computing programs use the fast barrier synchroniza-
tion b a r . s y n c instruction to synchronize threads within a CTA that communicate
with each other via shared and global memory. The latest Tesla architecture GPUs
implement PTX atomic memory operations, which facilitate parallel reductions
and parallel data structure management.

Streaming Processor (SP)
The multithreaded SP core is the primary thread processor, as introduced in
Section A.4. Its register file provides 1024 scalar 32-bit registers for up to 96
threads (more threads than the example SP of Section A.4). Its floating-point

A-6 6 Appendix A Graphics and Computing GPUs

add and multiply operations are compatible with the IEEE 754 standard for
single precision FP numbers, including not-a-number (NaN) and infinity. The
add and multiply operations use IEEE round-to-nearest-even as the default
rounding mode. The SP core also implements all of the 32-bit and 64-bit integer
arithmetic, comparison, conversion, and logical PTX instructions in Figure A.4.3.
The processor is fully pipelined, and latency is optimized to balance delay
and area.

Special Function? Unit (SFU)
The SFU supports computation of both transcendental functions and planar
attribute interpolation. As described in Section A.6, it uses quadratic interpola-
tion based on enhanced minimax approximations to approximate the reciprocal,
reciprocal square root, log-,x, 2"v, and sin/cos functions at one result per cycle. The
SFU also supports pixel attribute interpolation such as color, depth, and texture
coordinates at four samples per cycle.

Rasterization
Geometry primitives from the SMs go in their original round-robin input order
to the viewport/clip/setup/raster/zcull block. The viewport and clip units clip
the primitives to the view frustum and to any enabled user clip planes, and then
transform the vertices into screen (pixel) space. I

Surviving primitives then go to the setup unit, which generates edge equations
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at
least partially inside the primitive. The zcull unit maintains a hierarchical z surface,
rejecting pixel tiles if they are conservatively known to be occluded by previously
drawn pixels. The rejection rate is up to 256 pixels per clock. Pixels that survive
zcull then go to a fine-rasterization stage that generates detailed coverage informa-
tion and depth values.

The depth test and update can be performed ahead of the fragment shader, or
after, depending on current state. The SMC assembles surviving pixels into warps
to be processed by an SM running the current pixel shader. The SMC then sends
surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System
Each ROP is paired with a specific memory partition. For each pixel fragment
emitted by a pixel shader program, ROPs perform depth and stencil testing and
updates, and in parallel, color blending and updates. Lossless color compression (up
to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth.
Each ROP has a peak rate of four pixels per clock and supports 16-bit floating-
point and 32-bit floating-point ITDR formats. ROPs support double-rate-depth
processing when color writes are disabled.

A.7 Real Stuff: The NVIDIA GeForce 8800 A-51

Antialiasing support includes up to 16x multisampling and supersampling. The
coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean
coverage at up to 16 samples and compresses redundant color, depth, and stencil
information into the memory footprint and a bandwidth of four or eight samples
for improved performance.

The DRAM memory data bus width is 384 pins, arranged in six independent
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and
graphics-oriented GDDR3 protocols at up to 1.0 GITz, yielding a bandwidth of
about 16 GB/s per partition, or 96 GB/s.

The memory controllers support a wide range of DRAM clock rates, protocols,
device densities, and data bus widths. Texture and load/store requests can occur
between any TPC and any memory partition, so an interconnection network routes
requests and responses.

Scalability
The Tesla unified architecture is designed for scalability. Varying the number of
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for
different performance and cost targets in GPU market segments. Scalable link
interconnect (SLI) connects multiple GPUs, providing further scalability.

Performance
The GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz,
for a theoretical operation peak of 576 GFLOPS. The GeForce 8800 GTX has a
1.35 GHz processor clock and a corresponding peak of 518 GFLOPS.

The following three sections compare the performance of a GeForce 8800 GPU
with a multicore CPU on three different applications—dense linear algebra, fast
Fourier transforms, and sorting. The GPU programs and libraries are compiled
CUDA C code. The CPU code uses the single precision multithreaded Intel MKL
10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance
Dense linear algebra computations are fundamental in many applications. Volkov
and Demmel [2008] present GPU and CPU performance results for single precision
dense matrix-matrix multiplication (the SGEMM routine) and LU, QR, and
Cholesky matrix factorizations. Figure A.7.3 compares GFLOPS rates on SGEMM
dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a quad-core
CPU. Figure A.7.4 compares GFLOPS rates on matrix factorization for a GPU with
a quad-core CPU.

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the
bulk of the work in matrix factorization, their performance sets an upper bound on
factorization rate. As the matrix order increases beyond 200 to 400, the factorization

A-6 6 Appendix A Graphics and Computing GPUs

A:NxN, B:NxN A:Nx64, B:64xN

FIGURE A.7.3 SGEMM dense matrix-matrix multiplication performance rates. The graph
shows single precision G F L O P S rates achieved in multiplying square N x N matrices (solid lines) and thin
Nx64 and 6 4 x N matrices (dashed lines). Adapted from Figure 6 of Volkov and D e m m e l [2008|. The black
lines are a 1.35 G H z GeForce 8800 G T X using Volkov's S G E M M code (now in N V I D I A C U B L A S 2.0) on
matrices in G P U memory. The blue lines are a quad-core 2.4 G H z Intel Core2 Q u a d Q6600, 64-bjt Linux,
Intel M K L 10.0 on matrices in C P U memory.

LU Cholesky QR

FIGURE A.7.4 Dense matrix factorization performance rates. The graph shows G F L O P S rates
achieved in matrix factorizations using the G P U and using the C P U alone. Adapted from Figure 7 of Volkov
and D e m m e l [2008|. The black lines are a 1.35 G H z N V I D I A GeForce 8800 G T X , C U D A 1.1, W i n d o w s XP
attached to a 2.67 G H z Intel Core2 D u o E6700 W i n d o w s XP, including all C P U - G P U data transfer times. The
blue lines are a quad-core 2.4 G H z Intel Core2 Q u a d Q6600,64-bit Linux, Intel M K L 10.0.

A.7 Real Stuff: The NVIDIA GeForce 8800 A-53

problem becomes large enough that SGEMM can leverage the GPU parallelism and
overcome the C P U - G P U system and copy overhead. Volkov's SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 6 0 % of the GeForce 8S00 G T X
peak multiply-add rate, while the QR factorization reached 192 GFLOPS, about
4.3 times the quad-core CPU.

FFT Pe&formamice
Fast Fourier Transforms are used in many applications. Large transforms and
multidimensional transforms are partitioned into batches of smaller ID transforms.

Figure A.7.5 compares the in-place ID complex single precision FFT perfor-
mance of a 1.35 GHz GeForce 8800 G T X (dating from late 2006) with a 2.8 GHz
quad-Core Intel Xeon E5462 series (code named "Harpertown," dating from late
2007) . CPU performance was measured using the Intel Math Kernel Library (MKL)
10.0 FFT with four threads. GPU performance was measured using the NVIDIA
CUFFT 2.1 library and batched ID radix-16 decimation-in-frequency FFTs. Both
CPU and GPU throughput performance was measured using batched FFTs, batch
size was 22'!/n, where n is the transform size. Thus, the worldoad for every trans-
form size was 128 MB. To determine GFLOPS rate, the number of operations per
transform was taken as 5/; log2 n.

- a - GeForce 8800GTX - • - Xeon 5462

8 0

70'

60

5 0 -

40

u.
O 30 T

20

1 0 ;

<#> ^ ^ ^ & ^ ^ & & ^ ^ V ^ <&. ^ ty, <£>- ^ ^

Number of Elements in One Transform

FIGURE A.7.5 Fast Fourier Transform throughput performance. The graph compares the
performance of batched one-dimensional in-place complex FFTs on a 1.35 G H z GeForce 8800 G T X with
a quad-core 2.8 G H z Intel Xeon E5462 series (code n a m e d "Harpertown"), 6 M B L2 Cache, 4 G B Memory,
1600 FSB, Red Hat Linux, Intel M K L 10.0.

. ,„ore substantia
, correspondingly
d L algorithms Qn

IT j [20081 detail t]le
''' far radix sort are

f GeForce 8800 Ultra

Wt t0 early 2007. phQ

socket contains a

-1MB 12 cache. Ail
fZijoth keys and values
Sf l rfldix sort, althoUgh
f j by Intel's Threading

yU-based radix sort
f^'tion set and the other
f^t take advantage of the

.j as the number of c/e_
^ »./?ce sizes. It is apparent

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

from this graph that the GPU radix sort achieved the highest sorting rate for all
sequences of 8K-elements and larger. In this range, it is on average 2.6 times faster
than the quicksort-based routine and roughly 2 times faster than the radix sort rou-
tines, all of which were using the eight available CPU cores. The CPU radix sort per-
formance varies widely, likely due to poor cache locality of its global permutations.

m j Real Stuff: Mapping Applications t o GPUs

The advent of multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. Furthermore, their parallelism continues
to scale with Moore's law. The challenge is to develop mainstream visual computing
and high-performance computing applications that transparently scale their
parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to GPUs with widely
varying numbers of cores.

This section presents examples of mapping scalable parallel computing
applications to the GPU using CUDA.

Sparse Matrices
A wide variety of parallel algorithms can be written in CUDA in a fairly
straightforward manner, even when the data structures involved are not simple
regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of
an important numerical building block that can be parallelized quite directly using
the abstractions provided by CUDA. The kernels we discuss below, when combined
with the provided CUBLAS vector routines, make writing iterative solvers such as
the conjugate gradient method straightforward.

A sparse 11 x n matrix is one in which the number of nonzero entries m is only
a small fraction of the total. Sparse matrix representations seek to store only the
nonzero elements of a matrix. Since it is fairly typical that a sparse n x n matrix will
contain only m = O(n) nonzero elements, this represents a substantial savings in
storage space and processing time.

One of the most common representations for general unstructured sparse
matrices is the compressed sparse row (CSR) representation. The tn nonzero
elements of the matrix A are stored in row-major order in an array A v. A second
array Aj records the corresponding column index for each entry of Av. Finally, an
array Ap of n T 1 elements records the extent of each row in the previous arrays; the
entries for row i in Aj and Av extend from index Ap[i] up to, but not including,
index Ap [i + 1]. This implies that Ap [0] will always be 0 and Ap [n] will always
be the number of nonzero elements in the matrix. Figure A.8.1 shows an example
of the CSR representation of a simple matrix.

A-6 6 Appendix A Graphics and Computing GPUs

Row 0 Row 2 Row 3

3 0 1 0
0 0 0 0

A v [7] = i C r " T) (2 ~ T ~ D (T ~ T) l

A = 0 2 4 1
1 0 0 1

Aj [7] = l (0 ~ T) (l 2 3) (0 3) I

Ap['5] = 1 0 2 2 5 7

a. Sample matrix A b. CSR representation of matrix

FIGURE A.8.1 Compressed sparse row (CSR) matrix.

f l o a t m u l t i p l y _ r o w (u n s i g n e d i n t r o w s i z e ,
u n s i g n e d i n t * A j , / / c o l u m n i n d i c e s f o r r o w
f l o a t * A v ,
f l o a t * x)

/ / n o n z e r o e n t r i e s f o r r o w
/ / t h e RHS v e c t o r

f 1 o a t sum = 0 ;

f o r (u n s i g n e d i n t c o l u m n = 0 ; c o l u m n < r o w s i z e ; T + c o l u m n)
sum + = A v f c o l u m n] * x [A j [c o l u m n]] ;

r e t u r n s u m ;

FIGURE A.8.2 Serial C code for a single row of sparse matrix-vector multiply.

Given a matrix A in CSR form and a vector x, we can compute a single row of
the product y = Ax using the mul ti pi y_row () procedure shown in Figure A.8.2.
Computing the full product is then simply a matter of looping over all rows and
computing the result for that row using mul t i pi y_row() , as in the serial C code
shown in Figure A.8.3.

This algorithm can be translated into a parallel CUDA kernel quite easily. We
simply spread the loop in c s r m u l _ s e r i al () over many parallel threads. Each
thread will compute exactly one row of the output vector y. The code for this kernel
is shown in Figure A.8.4. Note that it looks extremely similar to the serial loop
used in the c s r m u l _ s e r i al () procedure. There are really only two points of
difference. First, the row index for each thread is computed from the block and
thread indices assigned to each thread, eliminating the for-loop. Second, we have a
conditional that only evaluates a row product if the row index is within the bounds
of the matrix (this is necessary since the number of rows n need not be a multiple
of the block size used in launching the kernel).

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

v o i d c s r m u l _ s e r i a l (u n s i g n e d i n t * A p , u n s i g n e d i n t * A j ,
f l o a t * A v , u n s i g n e d i n t n u m _ r o w s ,
f l o a t * x , f l o a t * y)

(
f o r (u n s i g n e d i n t r o w = 0 : r o w < n u m _ r o w s ; + + r o w)
(

u n s i g n e d i n t r o w _ b e g i n = A p [r o w] ;
u n s i g n e d i n t r o w _ e n d = A p [r o w + l] ;

y [r o w] = m u l t i p l y _ r o w (r o w _ e n d - r o w _ b e g i n , A j + r o w _ b e g i n
A v + r o w _ b e g i n , x) ;

FIGURE A.8.3 Serial code for sparse matrix-vector multiply.

g l o b a l
v o i d c s r m u l _ k e r n e l (u n s i g n e d i n t * A p , u n s i g n e d i n t * A j .

f l o a t * A v , u n s i g n e d i n t n u m _ r o w s ,
f l o a t * x , f l o a t * y)

1

u n s i g n e d i n t r o w = b l o c k l d x . x * b l o c k D i m . x + t h r e a d l d x . x ;

i f (r o w < n u m _ r o w s)
I

u n s i g n e d i n t r o w _ b e g i n = A p [r o w] ;
u n s i g n e d i n t r o w _ e n d = A p [r o w + l] ;

y [r o w] = m u l t i p l y _ r o w (r o w _ e n d - r o w _ b e g i n , A j + r o w _ b e g i n
A v + r o w _ b e g i n , x) ;

FIGURE A.8.4 CUDA version of sparse matrix-vector multiply.

Assuming that the matr ix data structures have already been copied to the G P U
device memory, launching this kernel will look like:

u n s i g n e d i n t b l o c k s i z e = 1 2 8 ; / / o r a n y s i z e u p t o 5 1 2
u n s i g n e d i n t n b l o c k s = (n u m _ r o w s T b l o c k s i z e - 1) / b l o c k s i z e ;
c s r m u l _ k e r n e l < < < n b l o c k s , b l o c k s i z e > > > (A p , A j , A v , n u m _ r o w s , x , y) ;

A-6 6 Appendix A Graphics and Computing GPUs

The pattern that we see here is a very common one. The original serial
algorithm is a loop whose iterations are independent of each other. Such loops
can be parallelized quite easily by simply assigning one or more iterations of the
loop to each parallel thread. The programming model provided by CUDA makes
expressing this type of parallelism particularly straightforward.

This general strategy of decomposing computations into blocks of independent
work, and more specifically breaking up independent loop iterations, is not unique
to CUDA. This is a common approach used in one form or another by various
parallel programming systems, including OpenMP and Intel's Threading Building
Blocks.

Caching in Shared memory
The SpMV algorithms outlined above are fairly simplistic. There are a number of
optimizations that can be made in both the CPU and GPU codes that can improve
performance, including loop unrolling, matrix reordering, and register blocking.
The parallel kernels can also be reimplemented in terms of data parallel scan
operations presented by Sengupta, et al. [2007],

One of the important architectural features exposed by CUDA is the presence
of the per-block shared memory, a small on-chip memory with very low latency.
Taking advantage of this memory can deliver substantial performance improve-
ments. One common way of doing this is to use shared memory as a software-
managed cache to hold frequently reused data. Modifications using shared memory
are shown in Figure A.8.5.

In the context of sparse matrix multiplication, we observe that several rows of
A may use a particular array element x [i]. In many common cases, and particularly
when the matrix has been reordered, the rows using x [i] will be rows near row i.
We can therefore implement a simple caching scheme and expect to achieve some
performance benefit. The block of threads processing rows i through j will load
x [i] through x [j] into its shared memory. We will unroll the mul t i pi y _ r o w ()
loop and fetch elements of x from the cache whenever possible. The resulting
code is shown in Figure A.8.5. Shared memory can also be used to make other
optimizations, such as fetching A p [r o w + l] from an adjacent thread rather than
refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared
memory, rather than an implicitly active hardware cache, it is fairly common to add
this sort of optimization. Although this can impose some additional development
burden on the programmer, it is relatively minor, and the potential performance
benefits can be substantial. In the example shown above, even this fairly simple
use of shared memory returns a roughly 20% performance improvement on
representative matrices derived from 3D surface meshes. The availability of an
explicitly managed memory in lieu of an implicit cache also has the advantage
that caching and prefetching policies can be specifically tailored to the application
needs.

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

g l o b a l
v o i d c s r m u l _ c a c h e d (u n s i g n e d i n t * A p , u n s i g n e d i n t * A j ,

f l o a t * A v , u n s i g n e d i n t n u m _ r o w s ,
c o n s t f l o a t * x , f l o a t * y)

1

/ / C a c h e t h e r o w s o f x [] c o r r e s p o n d i n g t o t h i s b l o c k .
s h a r e d f l o a t c a c h e [b l o c k s i z e] :

u n s i g n e d i n t b l o c k _ b e g i n = b l o c k l d x . x * b l o c k D i m . x ;
u n s i g n e d i n t b l o c k _ e n d = b l o c k _ b e g i n + b l o c k D i m . x ;
u n s i g n e d i n t r o w = b l o c k _ b e g i n T t h r e a d L d x . x ;

/ / F e t c h a n d c a c h e o u r w i n d o w o f x [] .
i f (r o w < n u m _ r o w s) c a c h e f t h r e a d l d x . x] = x [r o w] ;

s y n c t h r e a d s () ;

i f (r o w < n u m _ r o w s)
(

u n s i g n e d i n t r o w _ b e g i n = A p f r o w] ;
u n s i g n e d i n t r o w _ e n d = A p [r o w + l] ;
f 1 o a t s u m = 0 , x _ j ;

f o r (u n s i g n e d i n t c o l = r o w _ b e g i n ; c o l < r o w _ e n d ; TTCOI)
(

u n s i g n e d i n t j = A j C c o l] ;

/ / F e t c h x _ j f r o m o u r c a c h e w h e n p o s s i b l e
i f (j > = b l o c k _ b e g i n & & j < b l o c k _ e n d)

x _ j = c a c h e [j - b l o c k _ b e g i n] ;
e l s e

x _ j = x [j] ;

s u m + = A v [c o l] * x _ j ;

y [r o w] = s u m ;

FIGURE A.8.5 Shared memory version of sparse matrix-vector multiply.

A-6 6 Appendix A Graphics and Computing GPUs

These are fairly simple kernels whose purpose is to illustrate basic techniques
in writing CUDA programs, rather than how to achieve maximal performance.
Numerous possible avenues for optimization are available, several of which are
explored by Williams, et al. [2007] on a handful of different multicore architectures.
Nevertheless, it is still instructive to examine the comparative performance of
even these simplistic kernels. On a 2 GHz Intel Core2 Xeon E5335 processor,
the c s r m u l _ s e r i al () kernel runs at roughly 202 million nonzeros processed
per second, for a collection of Laplacian matrices derived from 3D triangulated
surface meshes. Parallelizing this kernel with the pa ra 1 1 el _f or construct
provided by Intel's Threading Building Blocks produces parallel speed-ups of 2.0,
2.1, and 2.3 running on two, four, and eight cores of the machine, respectively.
On a GeForce 8800 Ultra, the c s r m u l _ k e r n e l () and c s r m u l _ c a c h e d ()
kernels achieve processing rates of roughly 772 and 920 million nonzeros per
second, corresponding to parallel speed-ups of 3.8 and 4.6 times over the serial
performance of a single CPU core.

Scan and Reduction
Parallel scan, also known as parallel prefix sum, is one of the most important
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a
of n elements:

[a0, a , , . . . , a„_,]

and a binary associative operator ©, the scan function computes the sequence:

scan(a , ©) = [a(), (a0 © a ,) , . . (a 0 © a, © . . . © a„_,)]

As an example, if we take © to be the usual addition operator, then applying scan
to the input array

a= [3 1 7 0 4 1 6 3]

will produce the sequence of partial sums:

scan (a, T) = [3 4 11 11 15 16 22 25)

This scan operator is an inclusive scan, in the sense that element i of the output
sequence incorporates element ax of the input. Incorporating only previous
elements would yield an exclusive scan operator, also known as a prefix-sum
operation.

The serial implementation of this operation is extremely simple. It is simply a
loop that iterates once over the entire sequence, as shown in Figure A.8.6.

At first glance, it might appear that this operation is inherently serial. However,
it can actually be implemented in parallel efficiently. The key observation is that

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

t e m p i a t e < c l a s s T >
h o s t T p l u s _ s c a n (T * x , u n s i g n e d i n t n)

I

f o r (u n s i g n e d i n t i = l ; i < n ; + + i)
x [i] - x [i - l] + x [i] ;

FIGURE A.8.6 Template for serial plus-scan.

t e m p i a t e < c l a s s T >

d e v i c e T p l u s _ s c a n (T * x)

(
u n s i g n e d i n t i = t h r e a d l d x . x ;

u n s i g n e d i n t n = b l o c k D i m . x :

f o r (u n s i g n e d i n t o f f s e t = l ; o f f s e t < n ; o f f s e t * = 2)

I

T t :

i f (i > = o f f s e t) t = x [i - o f f s e t] :

s y n c t h r e a d s () :

i f (i > = o f f s e t) x [i] = t T x [i] ;

s y n c t h r e a d s () ;

1

• . r e t u r n x [i] ;

FIGURE A.8.7 CUDA template for parallel plus-scan.

because addition is associative, we are free to change the order in which elements are
added together. For instance, we can imagine adding pairs of consecutive elements
in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An
implementation of their algorithm in CUDA is shown in Figure A.8.7. It assumes
that the input array x [] contains exactly one element per thread of the thread
block. It performs log2 n iterations of a loop collecting partial sums together.

To understand the action of this loop, consider Figure A.8.8, which illustrates
the simple case for n = 8 threads and elements. Each level of the diagram represents
one step of the loop. The lines indicate the location from which the data is being
fetched. For each element of the output (i.e., the final row of the diagram) we are
building a summation tree over the input elements. The edges highlighted in blue
show the form of this summation tree for the final element. The leaves of this tree
are all the initial elements. Tracing back from any output element shows that it
incorporates all input values up to and including itself.

A-6 6 Appendix A Graphics and Computing GPUs

FIGURE A.8.8 Tree-based parallel scan data references.

While simple, this algorithm is not as efficient as we would like. Examining
the serial implementation, we see that it performs O(n) additions. The parallel
implementation, in contrast, performs 0(n log n) additions. For this reason, it
is not work efficient, since it does more work than the serial implementation to
compute the same result. Fortunately, there are other techniques for implementing
s c a n that are work efficient. Details on more efficient implementation techniques
and the extension of this per-block procedure to multiblock arrays are provided by
Sengupta, et al. [2007].

In some instances, we may only be interested in computing the sum of all elements
in an array, rather than the sequence of all prefix sums returned by s c a n . This is the
parallel reduction problem. We could simply use a scan algorithm to perform this
computation, but reduction can generally be implemented more efficiently than scan.

Figure A.8.9 shows the code for computing a reduction using addition. In
this example, each thread simply loads one element of the input sequence (i.e.,
it initially sums a subsequence of length 1). At the end of the reduction, we want
thread 0 to hold the sum of all elements initially loaded by the threads of its block.
The loop in this kernel implicitly builds a summation tree over the input elements,
much like the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this
block. If we want the final value of the location pointed to by t o t a l to contain the
total of all elements in the array, we must combine the partial sums of all the blocks
in the grid. One strategy to do this would be to have each block write its partial
sum into a second array and then launch the reduction kernel again, repeating
the process until we had reduced the sequence to a single value. A more attractive
alternative supported by the Tesla GPU architecture is to use the a t o m i c A d d ()

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

g l o b a l
v o i d p i u s _ r e d u c e (i n t * i n p u t , u n s i g n e d i n t N , i n t * t o t a l)
I

u n s i g n e d i n t t i d = t h r e a d l d x . x ;
u n s i g n e d i n t i = b l o c k I d x . x * b l o c k D i m . x + t h r e a d l d x . x :

/ / E a c h b l o c k l o a d s i t s e l e m e n t s i n t o s h a r e d m e m o r y , p a d d i n g
/ / w i t h 0 i f N i s n o t a m u l t i p l e o f b l o c k s i z e

s h a r e d i n t x [b l o c k s i z e] :
x [t i d] = (i < N) ? i n p u t t i] : 0 :

s y n c t h r e a d s () ;

/ / E v e r y t h r e a d n o w h o l d s 1 i n p u t v a l u e i n x []
//
/ / B u i l d s u m m a t i o n t r e e o v e r e l e m e n t s ,
f o r d ' n t s = b l o c k D i m . x / 2 ; s > 0 ; s - s / 2)
I

i f (t i d < s) x [t i d] + = x [t i d + s] ;
s y n c t h r e a d s () ;

/ / T h r e a d 0 n o w h o l d s t h e s u m o f a l l i n p u t v a l u e s
/ / t o t h i s b l o c k . H a v e i t a d d t h a t s u m t o t h e r u n n i n g t o t a l
i f (t i d = = 0) a t o m i c A d d (t o t a l , x [t i d]) ;

FIGURE A.8.9 CUDA implementation of plus-reduction.

primitive, an efficient atomic read-modify-write primitive supported by the
memory subsystem. This eliminates the need for additional temporary arrays and
repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and
highlights the importance of per-block shared memory and low-cost barriers in
making cooperation among threads efficient. This degree of data shuffling among
threads would be prohibitively expensive if done in off-chip global memory.

Radix Sort
One important application of scan primitives is in the implementation of sorting
routines. The code in Figure A.8.10 implements a radix sort of integers across a
single thread block. It accepts as input an array v a l u e s containing one 32-bit
integer for each thread of the block. For efficiency, this array should be stored in
per-block shared memory, but this is not required for the sort to behave correctly.

This is a fairly simple implementation of radix sort. It assumes the availability
of a procedure p a r t i ti o n _ b y _ b i t () that will partition the given array such that

A-6 6 Appendix A Graphics and Computing GPUs

d e v i c e v o i d r a d i x _ s o r t (u n s i g n e d i n t * v a l u e s)

f o r (i n t b i t = 0 ; b i t < 3 2 : + + b i t)
(

p a r t i t i o n _ b y _ b i t (v a l u e s , b i t) ;
s y n c t h r e a d s () ;

FIGURE A.8.10 CUDA code for radix sort.

d e v i c e v o i d p a r t i t i o n _ b y _ b i t (u n s i g n e d i n t * v a l u e s ,
u n s i g n e d i n t b i t)

(
u n s i g n e d i n t i = t h r e a d l d x . x ;
u n s i g n e d i n t s i z e = b l o c k D i m . x ;
u n s i g n e d i n t x _ i = v a l u e s C i] ;
u n s i g n e d i n t p _ i = (x _ i > > b i t) & 1 ;

v a l u e s [i] = p _ i ;
s y n c t h r e a d s () :

i
I I C o m p u t e n u m b e r o f I b i t s u p t o a n d i n c l u d i n g p _ i .
/ / R e c o r d t h e t o t a l n u m b e r o f F b i t s a s w e l l ,
u n s i g n e d i n t T _ b e f o r e = p i u s _ s c a n (v a l u e s) ;
u n s i g n e d i n t T _ t o t a l = v a l u e s [s i z e - 1] ;
u n s i g n e d i n t F _ t o t a l = s i z e - T _ t o t a l ;

s y n c t h r e a d s () ;

/ / W r i t e e v e r y x _ i t o i t s p r o p e r p l a c e
i f (p _ i)

v a l u e s [T _ b e f o r e - 1 + F _ t o t a l] = x _ i ;
e l s e

v a l u e s f i - T _ b e f o r e] = x _ i ;

FIGURE A.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort.

all values with a 0 in the designated bit will c o m e before all values with a 1 in that
bit. To produce the correct output, this partit ioning must be stable.

Implement ing the part i t ioning procedure is a simple application of scan. Thread
i holds the value x,- and must calculate the correct output index at which to write
this value. To do so, it needs to calculate (1) the n u m b e r of threads j < i for which
the designated bit is 1 and (2) the total n u m b e r of bits for which the designated bit
i s 0 . T h e C U D A code for p a r t i t i o n _ b y _ b i t () i s shown i n Figure A.8 .11 .

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

A similar strategy can be applied for implementing a radix sort kernel that sorts
an array of large length, rather than just a one-block array. The fundamental step
remains the scan procedure, although when the computation is partitioned across
multiple kernels, we must double-buffer the array of values rather than doing the
partitioning in place. Details on performing radix sorts on large arrays efficiently
are provided by Satish, Harris, and Garland [2008].

N-Body Applications on a GPU1

Nyland, Harris, and Prins [2007] describe a simple yet useful computational
kernel with excellent GPU performance—the all-pairs N-body algorithm. It is a
time-consuming component of many scientific applications. N-body simulations
calculate the evolution of a system of bodies in which each body continuously
interacts with every other body. One example is an astrophysical simulation in
which each body represents an individual star, and the bodies gravitationally attract
each other. Other examples are protein folding, where N-body simulation is used
to calculate electrostatic and van der Waals forces; turbulent fluid flow simulation;
and global illumination in computer graphics.

The all-pairs N-body algorithm calculates the total force on each body in the
system by computing each pair-wise force in the system, summing for each body.
Many scientists consider this method to be the most accurate, with the only loss of
precision coming from the floating-point hardware operations. The drawback is its
0 (n 2) computational complexity, which is far too large for systems with more than
106 bodies. To overcome this high cost, several simplifications have been proposed
to yield 0 (n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm,
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast
methods still rely on the all-pairs method as a kernel for accurate computation of
short-range forces; thus it continues to be important.

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary
physics. Between two bodies indexed by i and j, the 3D force vector is:

f C ^ x ^ L
'> l!r„ll2 Mr,,II

The force magnitude is calculated in the left term, while the direction is computed
in the right (unit vector pointing from one body to the other).

Given a list of interacting bodies (an entire system or a subset), the calculation
is simple: for all pairs of interactions, compute the force and sum for each body.
Once the total forces are calculated, they are used to update each body's position
and velocity, based on the previous position and velocity. The calculation of the
forces has complexity 0(/r), while the update is O(n).

1 Adapted from Nyland, Harris and Prins [2007], "Fast N-Body Simulation with CUDA,"
Chapter 31 o (G P U Gems3.

A-6 6 Appendix A Graphics and Computing GPUs

The serial force-calculation code uses two nested for-loops iterating over pairs
of bodies. The outer loop selects the body for which the total force is being calcu-
lated, and the inner loop iterates over all the bodies. The inner loop calls a function
that computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the
calculation of force on each body is independent of the calculation on all other
bodies. Once all of the forces are computed, the positions and velocities of the
bodies can be updated.

The code for the serial and parallel versions is shown in Figure A.8.12 and
Figure A.8.13. The serial version has two nested for-loops. The conversion to CUDA,
like many other examples, converts the serial outer loop to a per-thread kernel
where each thread computes the total force on a single body. The CUDA kernel
computes a global thread ID for each thread, replacing the iterator variable of the
serial outer loop. Both kernels finish by storing the total acceleration in a global
array used to compute the new position and velocity values in a subsequent step.

v o i d a c c e l _ o n _ a l l _ b o d i e s ()
I

i n t i , j ;
f 1 o a t 3 a c c (0 . 0 f , O . O f , O . O f) ;

f o r (i = 0 ; i < N ; i + +) I ,
f o r (j = 0 ; j < N : j + +) (

a c c = b o d y _ b o d y _ i n t e r a c t i o n (a c c , b o d y [i] , b o d y f j]) ;
1

a c c e l [i] = a c c ;

FIGURE A.8.12 Serial code to compute all pair-wise forces on N bodies.

g l o b a l v o i d a c c e l _ o n _ o n e _ b o d y ()
I

i n t i = t h r e a d l d x . x + b l o c k D i m . x * b l o c k l d x . x ;
i n t j ;
f l o a t 3 a c c (0 . O f , O . O f , O . O f) :

f o r (j = 0 ; j < N; J T T) |
a c c = b o d y _ b o d y _ i n t e r a c t i o n (a c c , b o d y [i D , b o d y [j]) ;

I

a c c e l [i] = a c c ;

FIGURE A.8.13 CUDA thread code to compute the total force on a single body.

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

The outer loop is replaced by a CUDA kernel grid that launches N threads, one for
each body.

Optimizat ion for G P U Execut ion

The CUDA code shown is functionally correct, but is not efficient, as it ignores
key architectural features. Better performance can be achieved with three main
optimizations. First, shared memory can be used to avoid identical memory reads
between threads. Second, using multiple threads per body improves performance
for small values of N. Third, loop unrolling reduces loop overhead.

Using S h a r e d m e m o r y

Shared memory can hold a subset of body positions, much like a cache, eliminating
redundant global memory requests between threads. We optimize the code shown
above to have each of p threads in a thread-block load one position into shared
memory (for a total of p positions). Once all the threads have loaded a value into
shared memory, ensured by s y n c t h r e a d s (), each thread can then perform p
interactions (using the data in shared memory). This is repeated N/p times to
complete the force calculation for each body, which reduces the number of requests
to memory by a factor of p (typically in the range 32 -128) .

The function called a c c e l _ o n _ o n e _ b o d y () requires a few changes to support
this optimization. The modified code is shown in Figure A.8.14.

s h a r e d f l o a t 4 s h P o s i t i o n [2 5 6] ;

g l o b a l v o i d a c c e l _ o n _ o n e _ b o d y ()
(

i n t i = t h r e a d l d x . x + b l o c k D i m . x * b l o c k l d x . x ;
i n t j , k ;
i n t p = b l o c k D i m . x :
f 1 o a t 3 a c c (0 . 0 f , O . O f , O . O f) ;
f l o a t 4 m y B o d y = b o d y C i] ;

f o r (j = 0 ; j < N ; j + = p) I / / O u t e r l o o p s j u m p s b y p e a c h t i m e
s h P o s i t i o n [t h r e a d I d x . x] = b o d y [j + t h r e a d l d x . x] ;

s y n c t h r e a d s () ;
f o r (k = 0 ; k < p ; k + +) ! / / I n n e r l o o p a c c e s s e s p p o s i t i o n s

a c c = b o d y _ b o d y _ i n t e r a c t i o n (a c c , m y B o d y , s h P o s i t i o n [k]) ;
I

s y n c t h r e a d s () ;
1

a c c e l [i] = a c c ;

FIGURE A.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance.

A-6 6 Appendix A Graphics and Computing GPUs

The loop that formerly iterated over all bodies now jumps by the block
dimension p. Each iteration of the outer loop loads p successive positions into
shared memory (one position per thread). The threads synchronize, and then
p force calculations are computed by each thread. A second synchronization is
required to ensure that new values are not loaded into shared memory prior to all
threads completing the force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than
10% of the total bandwidth that the GPU can sustain (using less than 5 GB/s).
This optimization keeps the application busy performing computation rather than
waiting on memory accesses, as it would have without the use of shared memory.
The performance for varying values of N is shown in Figure A.8.15.

Using Multiple Threads per Body

Figure A.8.15 shows performance degradation for problems with small values of N
{ N < 4096) on the GeForce 8800 GTX. Many research efforts that rely on N-body
calculations focus on small N (for long simulation times), making it a target of
our optimization efforts. Our presumption to explain the lower performance was
that there was simply not enough work to keep the GPU busy when N is small.
The solution is to allocate more threads per body. We change the thread-block
dimensions from (p, 1 ,1) to (p, qy 1), where q threads divide the work of a single body
into equal parts. By allocating the additional threads within the same thread block,
partial results can be stored in shared memory. When all the force calculations are

N-Body Performance on G P U s

w 150
O

a 100

50

CVI CO CD CD CM CD TJ- CM co CO oo CD IM CO !-- cn T 03 CO CO N CD
LO O LD o O o CM CO in r» T~ C\J CO CD co CM CD CM CM CO

Number of Bodies

— 1 thread, 8800

- C — 2 threads, 8800

— 4 threads, 8800

1 thread, 9600

2 threads, 9600

— f — 4 threads, 9600

FIGURE A.8.15 Performance measurements of the N-body application on a GeForce 8800
GTX and a GeForce 9600. The 8800 has 128 stream processors at 1.35 G H z , while the 9600 has 64 at
0.80 G H z (about 3 0 % of the 8800). The peak performance is 242 GFLOPS. For a G P U with more processors,
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the
8800 doesn't reach its peak until 16,384 bodies). For small N, more than one thread per body can significantly
improve performance, but eventually incurs a performance penalty as N grows.

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

done, the q partial results can be collected and summed to compute the final result.
Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 G T X jumps by 110% when N= 1024
(one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS). Performance
degrades slightly on large N, so we only use this optimization for N smaller than
4096. The performance increases are shown in Figure A.8.15 for a GPU with 128
processors and a smaller GPU with 64 processors clocked at two-thirds the speed.

Performance C o m p a r i s o n

The performance of the N-body code is shown in Figure A.8.15 and Figure A.8.16.
In Figure A.8.15, performance of high- and medium-performance GPUs is shown,
along with the performance improvements achieved by using multiple threads
per body. The performance on the faster GPU ranges from 90 to just under 250
GFLOPS.

Figure A.8.16 shows nearly identical code (C-H- versus CUDA) running on Intel
Core2 CPUs. The CPU performance is about 1% of the GPU, in the range of 0.2 to
2 GFLOPS, remaining nearly constant over the wide range of problem sizes.

2
1 . 8

1.6

1.4
1.2

1

0.8 T
0.6

N-Body Performance on Intel C P U s

A A

cv 00 CD co CM CO CM CO CD co
CD CM CO r- CD CD CD co CO

in O in o o O ,— CM CD i n
cvj <D co CM CD

CM
CM
CO

T2400

- o - E8200

A X9775

© X9775-Cuda

Number of Bodies

FIGURE A.8.16 Performance measurements on the N-body code on a CPU. The graph shows
single precision N-body performance using Intel Core2 CPUs, denoted by their C P U model number. Note
the dramatic reduction in G F L O P S performance (shown in G F L O P S on the y-axis), demonstrating h o w
m u c h faster the G P U is compared to the C P U . The performance on the C P U is generally independent of
problem size, except for an anomalously low performance w h e n N=16,384 on the X9775 C P U . The graph
also shows the results of running the C U D A version of the code (using the C U D A - f o r - C P U compiler) on a
single C P U core, where it outperforms the C + + code by 24%. As a programming language, C U D A exposes
parallelism and locality that a compiler can exploit. The Intel C P U s are a 3.2 GFIz Extreme X9775 (code
n a m e d "Penryn"), a 2.66 G H z E8200 (code named "Wolfdale"), a desktop, pre-Penryn C P U , and a 1.83 G H z
T2400 (code n a m e d "Yonah"), a 2007 laptop C P U . The Penryn version of the Core 2 architecture is particu-
larly interesting for N-body calculations with its 4-bit divider, allowing division and square root operations
to execute four times faster than previous Intel CPUs.

A-6 6 Appendix A Graphics and Computing GPUs

The graph also shows the results of compiling the CUDA version of the code
for a CPU, where the performance improves by 24%. CUDA, as a programming
language, exposes parallelism, allowing the compiler to make better use of the SSE
vector unit on a single core. The CUDA version of the N-body code naturally maps
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect
scaling on an eight-core system with N = 4096 (ratios of 2.0,3.97, and 7.94 on two,
four, and eight cores, respectively).

Results

With a modest effort, we developed a computational kernel that improves GPU
performance over multicore CPUs by a factor of up to 157. Execution time for
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz,
single core) took more than 3 seconds per frame to run the same code that runs at a
44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires
6 -16 seconds, and on older Core2 processors and Pentium IV processor, the time
is about 25 seconds. We must divide the apparent increase in performance in half,
as the CPU requires only half as many calculations to compute the same result
(using the optimization that the forces on a pair of bodies are equal in strength and
opposite in direction).

How can the GPU speed up the code by such a large amount? The answer
requires inspecting architectural details. The pair-wise force calculation requires
20 floating-point operations, comprised mostly of addition and multiplication
instructions (some of which can be combined using a multiply-add instruction),
but there are also division and square root instructions for vector normaliza-
tion. Intel CPUs take many cycles for single precision division and square root
instructions,2 although this has improved in the latest Penryn CPU family with
its faster 4-bit divider.3 Additionally, the limitations in register capacity leads to
many MOV instructions in the x86 code (presumably to/from Ll cache). In con-
trast, the GeForce 8800 executes a reciprocal square-root thread instruction in four
clocks; see Section A.6 for special function accuracy. It has a larger register file (per
thread) and shared memory that can be accessed as an instruction operand. Finally,
the CUDA compiler emits 15 instructions for one iteration of the loop, compared
with more than 40 instructions from a variety of x86 CPU compilers. Greater
parallelism, faster execution of complex instructions, more register space, and an
efficient compiler all combine to explain the dramatic performance improvement
of the N-body code between the CPU and the GPU.

2 The x86 SSE instructions reciprocal-square-rool (RSQRT*) and reciprocal (RCP*) were not
considered, as their accuracy is too low to be comparable.
J Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual November
2007. Order Number: 248966-016. Also available at www3.intel.com/design/processor/manuals/
248966.pdf.

A.8 Real Stuff: Mapping Applications to GPUs A-6 7

On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential
processors. Compiling and executing the CUDA version of the code on a CPU
demonstrates that the problem scales well to multicore CPUs, but is still significantly
slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion,
and can interactively display 16K bodies interacting at 44 frames per second.
This allows astrophysical and biophysical events to be displayed and navigated at
interactive rates. Additionally, we can parameterize many settings, such as noise
reduction, damping, and integration techniques, immediately displaying their
effects on the dynamics of the system. This provides scientists with stunning
visual imagery, boosting their insights on otherwise invisible systems (too large
or small, too fast or too slow), allowing them to create better models of physical
phenomena.

Figure A.8.17 shows a time-series display of an astrophysical simulation
of 16K bodies, with each body acting as a galaxy. The initial configuration is a

FIGURE A.8.17 12 images captured during the evolution of an N-body system with 16,384 bodies.

A-6 6 Appendix A Graphics and Computing GPUs

spherical shell of bodies rotating about the z-axis. One phenomenon of interest
to astrophysicists is the clustering that occurs, along with the merging of galaxies
over time. For the interested reader, the CUDA code for this application is available
in the CUDA SDK from www.nvidia.com/CUDA.

Fallacies and Pitfalls

evolved and changed so rapidly that many fallacies and pitfalls have
arisen. We cover a few here.

Fallacy: GPUs are just SIMD vector multiprocessors. It is easy to draw the false
conclusion that GPUs are simply SIMD vector multiprocessors. GPUs do have a
SPMD-style programming model, in that a programmer can write a single pro-
gram that is executed in multiple thread instances with multiple data. The execu-
tion of these threads is not purely SIMD or vector, however; it is single-instruction
multiple-thread (SIMT), described in Section A.4. Each GPU thread has its own
scalar registers, thread private memory, thread execution state, thread ID, indepen-
dent execution and branch path, and effective program counter, and can address
memory independently. Although a group of threads (e.g., a warp of 32 threads)
executes more efficiently when the PCs for the threads are the same, this is not
necessary. So, the multiprocessors are not purely SIMD. The thread execution
model is MIMD with barrier synchronization and SIMT optimizations. Execution
is more efficient if individual thread load/store memory accesses can be coalesced
into block accesses, as well. However, this is not strictly necessary. In a purely SIMD
vector architecture, memory/register accesses for different threads must be aligned
in a regular vector pattern. A GPU has no such restriction for register or mem-
ory accesses; however, execution is more efficient if warps of threads access local
blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute
more than one warp of threads concurrently. In graphics applications, there may
be multiple groups of vertex programs, pixel programs, and geometry programs
running in the multiprocessor array concurrently. Computing programs may also
execute different programs concurrently in different warps.

Fallacy: GPU performance cannot grow faster than Moore's law. Moore's law
is simply a rate. It is not a "speed of light" limit for any other rate. Moore's law
describes an expectation that over time, as semiconductor technology advances
and transistors become smaller, the manufacturing cost per transistor will decline

GPUs have

http://www.nvidia.com/CUDA

A.9 Fallacies and Pitfalls A-73

exponentially. Put another way, given a constant manufacturing cost, the number
of transistors will increase exponentially. Gordon Moore [1965] predicted that
this progression would provide roughly two times the number of transistors for
the same manufacturing cost every year, and later revised it to doubling every
two years. Although Moore made the initial prediction in 1965 when there were
just 50 components per integrated circuit, it has proved remarkably consistent. The
reduction of transistor size has historically had other benefits, such as lower power
per transistor and faster clock speeds at constant power.

This increasing bounty of transistors is used by chip architects to build proces-
sors, memory, and other components. For some time, CPU designers have used
the extra transistors to increase processor performance at a rate similar to Moore's
law, so much so that many people think that processor performance growth of two
times every 18-24 months is Moore's law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores,
improving the architecture and design, and pipelining for more clock speed. The
rest of the new transistors are used for providing more cache, to make memory
access faster. In contrast, GPU designers use almost none of the new transistors to
provide more cache; most of the transistors are used for improving the processor
cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore's law
bounty directly by applying exponentially more transistors to building more parallel,
and thus faster, processors. Second, GPU designers can improve on the architecture
over time, increasing the efficiency of the processing. Third, Moore's law assumes
constant cost, so the Moore's law rate can clearly be exceeded by spending more for
larger chips with more transistors. Fourth, GPU memory systems have increased
their effective bandwidth at a pace nearly comparable to the processing rate, by
using faster memories, wider memories, data compression, and better caches. The
combination of these four approaches has historically allowed GPU performance
to double regularly, roughly every 12 to 18 months. This rate, exceeding the rate
of Moore's law, has been demonstrated on graphics applications for approximately
ten years and shows no sign of significant slowdown. The most challenging rate
limiter appears to be the memory system, but competitive innovation is advancing
that rapidly too.

Fallacy: GPUs only render 3D graphics; they can't do general computation.
GPUs are built to render 3D graphics as well as 2D graphics and video. To meet
the demands of graphics software developers as expressed in the interfaces and
performance/feature requirements of the graphics APIs, GPUs have become mas-
sively parallel programmable floating-point processors. In the graphics domain,
these processors are programmed through the graphics APIs and with arcane
graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and Direct3D).

A-6 6 Appendix A Graphics and Computing GPUs

However, there is nothing preventing GPU architects from exposing the parallel
processor cores to programmers without the graphics API or the arcane graphics
languages.

In fact, the Tesla architecture family of GPUs exposes the processors through
a software environment known as CUDA, which allows programmers to develop
general application programs using the C language and soon CTT. GPUS are
Turing-complete processors, so they can run any program that a CPU can run,
although perhaps less well. And perhaps faster.

Fallacy: GPUs cannot run double precision floating-point programs fast. In the
past, GPUs could not run double precision floating-point programs at all, except
through software emulation. And that's not very fast at all. GPUs have made the
progression from indexed arithmetic representation (lookup tables for colors) to
8-bit integers per color component, to fixed-point arithmetic, to single precision
floating-point, and recently added double precision. Modern GPUs perform
virtually all calculations in single precision IEEE floating-point arithmetic, and are
beginning to use double precision in addition.

For a small additional cost, a GPU can support double precision floating-point
as well as single precision floating-point. Today, double precision runs more slowly
than the single precision speed, about five to ten times slower. For incremental
additional cost, double precision performance can be increased relative to single
precision in stages, as more applications demand it. 1

Fallacy: GPUs don't do floating-point correctly. GPUs, at least in the Tesla archi-
tecture family of processors, perform single precision floating-point processing at
a level prescribed by the IEEE 754 floating-point standard. So, in terms of accuracy,
GPUs are the equal of any other IEEE 754-compliant processors.

Today, GPUs do not implement some of the specific features described in the
standard, such as handling denormalized numbers and providing precise floating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full
IEEE rounding, fused-multiply-add, and denormalized number support for double
precision.

Pitfall: Just use more threads to cover longer memory latencies. CPU cores are
typically designed to run a single thread at full speed. To run at full speed, every
instruction and its data need to be available when it is time for that instruction to
run. If the next instruction is not ready or the data required for that instruction is
not available, the instruction cannot run and the processor stalls. External memory
is distant from the processor, so it takes many cycles of wasted execution to fetch
data from memory. Consequently, CPUs require large local caches to keep running

A.9 Fallacies and Pitfalls A-75

without stalling. Memory latency is long, so it is avoided by striving to run in the
cache. At some point, program working set demands may be larger than any cache.
Some CPUs have used multithreading to tolerate latency, but the number of threads
per core has generally been limited to a small number.

The GPU strategy is different. GPU cores are designed to run many threads
concurrently, but only one instruction from any thread at a time. Another way to
say this is that a GPU runs each thread slowly, but in aggregate runs the threads
efficiently. Each thread can tolerate some amount of memory latency, because
other threads can run.

The downside of this is that multiple—many multiple threads—are required
to cover the memory latency. In addition, if memory accesses are scattered or not
correlated among threads, the memory system will get progressively slower in
responding to each individual request. Eventually, even the multiple threads will
not be able to cover the latency. So, the pitfall is that for the "just use more threads"
strategy to work for covering latency, you have to have enough threads, and the
threads have to be well-behaved in terms of locality of memory access.

Fallacy: O («) algorithms are difficult to speed up. No matter how fast the GPU is
at processing data, the steps of transferring data to and from the device may limit
the performance of algorithms with O(n) complexity (with a small amount of work
per datum). The highest transfer rate over the PCIe bus is approximately 48 GB/
second when DMA transfers are used, and slightly less for nonDMA transfers. The
CPU, in contrast, has typical access speeds of 8 -12 GB/second to system memory.
Example problems, such as vector addition, will be limited by the transfer of the
inputs to the GPU and the returning output from the computation.

There are three ways to overcome the cost of transferring data. First, try to leave
the data on the GPU for as long as possible, instead of moving the data back and
forth for different steps of a complicated algorithm. CUDA deliberately leaves data
alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and
computation, so data can be streamed in and out of the device while it is computing.
This model is useful for any data stream that can be processed as it arrives. Examples
are video processing, network routing, data compression/decompression, and even
simpler computations such as large vector mathematics.

The third suggestion is to use the CPU and GPU together, improving performance
by assigning a subset of the work to each, treating the system as a heterogeneous
computing platform. The CUDA programming model supports allocation of work
to one or more GPUs along with continued use of the CPU without the use of
threads (via asynchronous GPU functions), so it is relatively simple to keep all
GPUs and a CPU working concurrently to solve problems even faster.

A-6 6 Appendix A Graphics and Computing GPUs

Concluding Remarks

GPUs are massively parallel processors and have become widely used, not only
for 3D graphics, but also for many other applications. This wide application
was made possible by the evolution of graphics devices into programmable
processors. The graphics application programming model for GPUs is usually an
API such as DirectX IM or OpenGL [M . For more general-purpose computing, the
CUDA programming model uses an SPMD (single-program multiple data) style,
executing a program with many parallel threads.

GPU parallelism will continue to scale with Moore's law, mainly by increasing
the number of processors. Only the parallel programming models that can readily
scale to hundreds of processor cores and thousands of threads will be successful
in supporting manycore GPUs and CPUs. Also, only those applications that have
many largely independent parallel tasks will be accelerated by massively parallel
manycore architectures.

Parallel programming models for GPUs are becoming more flexible, for both
graphics and parallel computing. For example, CUDA is evolving rapidly in the
direction of full C/C-FT functionality. Graphics APIs and programming models will
likely adapt parallel computing capabilities and models from CUDA. Its SPMD-
style threading model is scalable, and is a convenient, succinct, and easily learned
model for expressing large amounts of parallelism.

Driven by these changes in the programming models, GPU architecture is in
turn becoming more flexible and more programmable. GPU fixed-function units
are becoming accessible from general programs, along the lines of how CUDA
programs already use texture intrinsic functions to perform texture lookups using
the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics
and other application programmers. GPUs will continue to expand to include more
processing power through additional processor cores, as well as increasing the thread
and memory bandwidth available for programs. In addition, the programming
models must evolve to include programming heterogeneous manycore systems
including both GPUs and CPUs.

Acknowledgments
This appendix is the work of several authors at NVIDIA. We gratefully acknowledge
the significant contributions of Michael Garland, John Montrym, Doug Voorhies,
Lars Nyland, Erik Lindholm, Paulius Micikevicius, Massimiliano Fatica, Stuart
Oberman, and Vasily Volkov.

T
A . l l Historical Perspective and Further Reading A-77

Historical Perspective and Further
Reading

This section, which appears on the CD, surveys the history of programmable real-
time graphics processing units (GPUs) from the early 1980s through today as
they declined in price by two orders of magnitude and increased in performance
by two orders of magnitude. It traces the evolution of the GPU from fixed func-
tion pipelines to programmable graphics processors, with perspectives on GPU
computing, unified graphics and computing processors, visual computing, and
scalable GPUs.

Fear of serious injury
cannot alone justify
suppression of free
speech and assembly.

Assemblers, Linkers,
and the SPIM
Simulator
James R. Larus
Microsoft Research
Microsoft

Louis Brandeis
Whitney v. California, 1927

B . l Introduction B-3

B.2 Assemblers B-10

B.3 Linkers B-18

B.4 Loading B-19

B.5 Memory Usage B-20

B.6 Procedure Call Convention B-22

B.7 Exceptions and Interrupts B-33

B.S Input and Output B-3S

B.9 SPIM B-40

B.10 MIPS R2000 Assembly Language B-45

B . l l Concluding Remarks B-Sl

B.12 Exercises B-S2

Introduction

Encoding instructions as binary numbers is natural and efficient for computers.
Humans, however, have a great deal of difficulty understanding and manipulating
these numbers. People read and write symbols (words) much better than long
sequences of digits. Chapter 2 showed that we need not choose between numbers
and words, because computer instructions can be represented in many ways.
Humans can write and read symbols, and computers can execute the equivalent
binary numbers. This appendix describes the process by which a human-readable
program is translated into a form that a computer can execute, provides a few hints
about writing assembly programs, and explains how to run these programs on
SPIM, a simulator that executes MIPS programs. UNIX, Windows, and Mac OS X
versions of the SPIM simulator are available on the CD.

Assembly language is the symbolic representation of a computer's binary
encoding—the machine language. Assembly language is more readable than
machine language, because it uses symbols instead of bits. The symbols in assembly
language name commonly occurring bit patterns, such as opcodes and register
specifiers, so people can read and remember them. In addition, assembly language

machine language
Binary representation
used for communication
within a computer
system.

B-4 Appendix B Assemblers, Linkers, and the SPIM Simulator

FIGURE B.l.l The process that produces an executable file. A n assembler translates a (Tie of
assembly language into an object file, which is linked with other files and libraries into an executable file.

assembler A program
that translates a symbolic
version of instruction into
the binary version.

macro A pattern-
matching and replacement
facility that provides a
simple mechanism to name
a frequently used sequence
of instructions.

unresolved reference
A reference that requires
more information from
an outside source to be
complete.

linker Also called
link editor. A systems
program that combines
independently assembled
machine language
programs and resolves all
undefined labels into an
executable file.

permits programmers to use labels to identify and name particular memory words
that hold instructions or data.

A tool called an assembler translates assembly language into binary instruc-
tions. Assemblers provide a friendlier representation than a computer's Os and
Is, which simplifies writing and reading programs. Symbolic names for opera-
tions and locations are one facet of this representation. Another facet is program-
ming facilities that increase a program's clarity. For example, macros, discussed in
Section B.2, enable a programmer to extend the assembly language by defining new
operations.

An assembler reads a single assembly language source file and produces an
object file containing machine instructions and bookkeeping information that
helps combine several object files into a program. Figure B. l . l illustrates how a
program is built. Most programs consist of several files—also called modules—
that are written, compiled, and assembled independently A program may also use
prewritten routines supplied in a program library. A module typically contains ref-
erences to subroutines and data defined in other modules and in libraries. The code
in a module cannot be executed when it contains unresolved references to labels
in other object files or libraries. Another tool, called a linker, combines a collection
of object and library files into an executable file, which a computer can run.

To see the advantage of assembly language, consider the following sequence of
figures, all of which contain a short subroutine that computes and prints the sum of
the squares of integers from 0 to 100. Figure B.1.2 shows the machine language that
a MIPS computer executes. With considerable effort, you could use the opcode and
instruction format tables in Chapter 2 to translate the instructions into a symbolic
program similar to that shown in Figure B.1.3. This form of the routine is much

B . l Introduction B-5

00100111101111011111111111100000
10101111101111110000000000010100
1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
10101111101001010000000000100100
1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
10101111101000000000000000011100
10001111101011100000000000011100
1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000001000000000000
10001111101001010000000000011000
00001100000100000000000011101100
0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
10001111101111110000000000010100
00100111101111010000000000100000
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00000000000000000001000000100001

FIGURE B.1.2 MIPS machine language code for a routine to compute and print the sum
of the squares of integers between 0 and 100.

easier to read, because operations and operands are written with symbols rather
than with bit patterns. However, this assembly language is still difficult to follow,
because memory locations are named by their address rather than by a symbolic
label.

Figure B.1.4 shows assembly language that labels memory addresses with mne-
monic names. Most programmers prefer to read and write this form. Names that
begin with a period, for e x a m p l e . d a t a and . g l o b l , are assembler directives
that tell the assembler how to translate a program but do not produce machine
instructions. Names followed by a colon, such as s t r : or mai n :, are labels that
name the next memory location. This program is as readable as most assembly
language programs (except for a glaring lack of comments), but it is still difficult
to follow, because many simple operations are required to accomplish simple tasks
and because assembly language's lack of control flow constructs provides few hints
about the program's operation.

By contrast, the C routine in Figure B. l .5 is both shorter and clearer, since vari-
ables have mnemonic names and the loop is explicit rather than constructed with
branches. In fact, the C routine is the only one that we wrote. The other forms of
the program were produced by a C compiler and assembler.

In general, assembly language plays two roles (see Figure B.1.6). The first role
is the output language of compilers. A compiler translates a program written in a

assembler directive
An operation that tells the
assembler how to translate
a program but docs not
produce machine instruc-
tions; always begins with
a period.

B-6 Appendix B Assemblers, Linkers, and the SPIM Simulator

addiu $29. $29, -32
sw $31, 20($29)
sw $<1. 32($29)
sw $5. 36($29)
sw $0. 24($29)
sw $0, 28($29)
lw $14. 28($29)
lw $24, 24($29)
mul tu $14, $14
add i u $8. $14. 1
slti $1. $8. 101
sw $8, 28($29)
mflo $15
addu $25. $24. $15
bne $1. $0, -9
sw $25. 24($29)
lui $4. 4096
lw $5. 24($29)
jal 1048812
addiu $4. $4, 1072
lw $31. 20($29)
addi u $29. $29. 32
jr $31
move $2. $0

FIGURE B.1.3 The same routine written in assembly language. However, The code for the
routine does not label registers or m e m o r y locations nor include comments.

source language The
high-level language
in which a program is
originally written.

high-level language (such as C or Pascal) into an equivalent program in machine or
assembly language. The high-level language is called the source language, ahd the
compiler's output is its target language.

Assembly language's other role is as a language in which to write programs. This
role used to be the dominant one. Today, however, because of larger main memo-
ries and better compilers, most programmers write in a high-level language and
rarely, if ever, see the instructions that a computer executes. Nevertheless, assembly
language is still important to write programs in which speed or size is critical or to
exploit hardware features that have no analogues in high-level languages.

Although this appendix focuses on MIPS assembly language, assembly pro-
gramming on most other machines is very similar. The additional instructions and
address modes in CISC machines, such as the VAX, can make assembly programs
shorter but do not change the process of assembling a program or provide assembly
language with the advantages of high-level languages, such as type-checking and
structured control flow.

B.l Introduction

. text

.align 2

.globi ma i n

subu Ssp, Ssp. 32
sw Sra. 2 0 (S s p)
sd SaO, 3 2 (S s p)
sw SO, 2 4 (S s p)
sw SO, 2 8 (S s p)

lw $ 16, 2 8 (S s p)
mul $17. St6 , $16
lw St8, 2 4 (S s p)
addu $19. St8, $17
sw $ 19, 2 4 (S s p)
addu StO, St6, 1
sw StO, 2 8 (S s p)
ble StO. 100, loop
la SaO, str
lw Sal. 2 4 (S s p)
jal pri ntf
m o v e SvO. $0
lw Sra, 2 0 (S s p)
addu Ssp, Ssp, 32
jr Sra

.data

.align 0
str:

.asciiz "The sum from 0 .. 100 is % d \ n "

FIGURE B.1.4 The same routine written in assembly language with labels, but no com-
ments. The c o m m a n d s that start with periods are assembler directives (seepages B-47—<19). .text indicates
that succeeding lines contain instructions, .data indicates that they contain data, .align n indicates that
the items on the succeeding lines should be aligned on a 2" byte boundary. Hence, .align 2 means the next
item should be on a word boundary. . gl obi ma i n declares that ma i n is a global symbol that should be
visible to code stored in other files. Finally, .asciiz stores a null-terminated string in memory.

When to Use Assembly Language
The primary reason to program in assembly language, as opposed to an available
high-level language, is because the speed or size of a program is critically important.
For example, consider a computer that controls a piece of machinery, such as a
car's brakes. A computer that is incorporated in another device, such as a car, is
called an embedded computer. This type of computer needs to respond rapidly
and predictably to events in the outside world. Because a compiler introduces

B-8 Appendix B Assemblers, Linkers, and the SPIM Simulator

//include <stdio.h>

int

main (int argc, char *argv[])
I

int i ;
int sum = 0:

for (i = 0 ; i <= 100: i = i + 1) sum = sum + i * i;
printf ("The sum from 0 .. 100 is Xd\n". sum);

FIGURE B.1.5 The routine written in the C programming language.

High-level language program

Assembly language program

FIGURE B.1.6 Assembly language either is written by a programmer or is the output of
a compiler.

uncertainty about the time cost of operations, programmers may find it difficult
to ensure that a high-level language program responds within a definite time
interval—say, 1 millisecond after a sensor detects that a tire is skidding. An assembly
language programmer, on the other hand, has tight control over which instruc-
tions execute. In addition, in embedded applications, reducing a program's size, so
that it fits in fewer memory chips, reduces the cost of the embedded computer.

A hybrid approach, in which most of a program is written in a high-level lan-
guage and time-critical sections are written in assembly language, builds on the
strengths of both languages. Programs typically spend most of their time executing
a small fraction of the program's source code. This observation is just the principle
of locality that underlies caches (see Section 5.1 in Chapter 5).

Program profiling measures where a program spends its time and can find the
time-critical parts of a program. In many cases, this portion of the program can
be made faster with better data structures or algorithms. Sometimes, however, sig-
nificant performance improvements only come from recoding a critical portion of
a program in assembly language.

B. l Introduction B-9

This improvement is not necessarily an indication that the high-level language's
compiler has failed. Compilers typically are better than programmers at produc-
ing uniformly high-quality machine code across an entire program. Programmers,
however, understand a program's algorithms and behavior at a deeper level than
a compiler and can expend considerable effort and ingenuity improving small
sections of the program. In particular, programmers often consider several proce-
dures simultaneously while writing their code. Compilers typically compile each
procedure in isolation and must follow strict conventions governing the use of
registers at procedure boundaries. By retaining commonly used values in regis-
ters, even across procedure boundaries, programmers can make a program run
faster.

Another major advantage of assembly language is the ability to exploit special-
ized instructions—for example, string copy or pattern-matching instructions.
Compilers, in most cases, cannot determine that a program loop can be replaced
by a single instruction. However, the programmer who wrote the loop can replace
it easily with a single instruction.

Currently, a programmer's advantage over a compiler has become difficult to
maintain as compilation techniques improve and machines' pipelines increase in
complexity (Chapter 4).

The final reason to use assembly language is that no high-level language is
available on a particular computer. Many older or specialized computers do not
have a compiler, so a programmer's only alternative is assembly language.

Drawbacks of AssembDy Language
Assembly language has many disadvantages that strongly argue against its wide-
spread use. Perhaps its major disadvantage is that programs written in assembly
language are inherently machine-specific and must be totally rewritten to run on
another computer architecture. The rapid evolution of computers discussed in
Chapter 1 means that architectures become obsolete. An assembly language pro-
gram remains tightly bound to its original architecture, even after the computer is
eclipsed by new, faster, and more cost-effective machines.

Another disadvantage is that assembly language programs are longer than the
equivalent programs written in a high-level language. For example, the C program
in Figure B.l.5 is 11 lines long, while the assembly program in Figure B.1.4 is
31 lines long. In more complex programs, the ratio of assembly to high-level lan-
guage (its expansion factor) can be much larger than the factor of three in this exam-
ple. Unfortunately, empirical studies have shown that programmers write roughly
the same number of lines of code per day in assembly as in high-level languages.
This means that programmers are roughly x times more productive in a high-level
language, where x is the assembly language expansion factor.

B-10 Appendix B Assemblers, Linkers, and the SPIM Simulator

To compound the problem, longer programs are more difficult to read and
understand, and they contain more bugs. Assembly language exacerbates the prob-
lem because of its complete lack of structure. Common programming idioms,
such as if-then statements and loops, must be built from branches and jumps. The
resulting programs are hard to read, because the reader must reconstruct every
higher-level construct from its pieces and each instance of a statement may be
slightly different. For example, look at Figure B. 1.4 and answer these questions:
What type of loop is used? What are its lower and upper bounds?

Elaboration: Compilers can produce machine language directly instead of relying on
an assembler. These compilers typically execute much faster than those that invoke
an assembler as part of compilation. However, a compiler that generates machine lan-
guage must perform many tasks that an assembler normally handles, such as resolv-
ing addresses and encoding instructions as binary numbers. The tradeoff is between
compilation speed and compiler simplicity.

Elaboration: Despite these considerations, some embedded applications are written
in a high-level language. Many of these applications are large and complex programs that
must be extremely reliable. Assembly language programs are longer and more difficult
to write and read than high-level language programs. This greatly increases the cost
of writing an assembly language program and makes it extremely difficult to verify the
correctness of this type of program. In fact, these considerations led the Department of
Defense, which pays for many complex embedded systems, to develop Ada, a new high-
level language for writing embedded systems.

B.2 Assemblers

external label Also called
global label. A label
referring to an object that
can be referenced from
files other than the one in
which it is defined.

An assembler translates a file of assembly language statements into a file of binary
machine instructions and binary data. The translation process has two major
parts. The first step is to find memory locations with labels so that the relationship
between symbolic names and addresses is known when instructions are translated.
The second step is to translate each assembly statement by combining the numeric
equivalents of opcodes, register specifiers, and labels into a legal instruction. As
shown in Figure B . l . l , the assembler produces an output file, called an object file,
which contains the machine instructions, data, and bookkeeping information.

An object file typically cannot be executed, because it references procedures or
data in other files. A label is external (also called global) if the labeled object can

B.2 Assemblers B - l l

be referenced from files other than the one in which it is defined. A label is local
if the object can be used only within the file in which it is defined. In most assem-
blers, labels are local by default and must be explicitly declared global. Subroutines
and global variables require external labels since they are referenced from many
files in a program. Local labels hide names that should not be visible to other
modules—for example, static functions in C, which can only be called by other
functions in the same file. In addition, compiler-generated names—for example, a
name for the instruction at the beginning of a loop—are local so that the compiler
need not produce unique names in every file.

local label A label
referring to an object that
can be used only within
the file in which it is
defined.

Local and Global Labels

Consider the program in Figure B.1.4. The subroutine has an external (global)
label main. It also contains two local l a b e l s — loop and s t r — t h a t are only
visible with this assembly language file. Finally, the routine also contains an
unresolved reference to an external label pri ntf, which is the library routine
that prints values. Which labels in Figure B.1.4 could be referenced from
another file?

EXAMPLE

Only global labels are visible outside a file, so the only label that could be
referenced from another file is ma i n. ANSWER

Since the assembler processes each file in a program individually and in isolation,
it only knows the addresses of local labels. The assembler depends on another tool,
the linker, to combine a collection of object files and libraries into an executable
file by resolving external labels. The assembler assists the linker by providing lists
of labels and unresolved references.

However, even local labels present an interesting challenge to an assembler.
Unlike names in most high-level languages, assembly labels may be used before
they are defined. In the example, in Figure B.1.4, the label Str is used by the 1 a
instruction before it is defined. The possibility of a forward reference, like this one,
forces an assembler to translate a program in two steps: first find all labels and then
produce instructions. In the example, when the assembler sees the 1 a instruction,
it does not know where the word labeled s t r is located or even whether str labels
an instruction or datum.

forward reference
A label that is used
before it is defined.

B - 1 2 Appendix B Assemblers, Linkers, and the SPIM Simulator

symbol table A table
that matches names of
labels to the addresses of
the memory words that
instructions occupy.

An assembler's first pass reads each line of an assembly file and breaks it into
its component pieces. These pieces, which are called lexemes, are individual words,
numbers, and punctuation characters. For example, the line

b l e $ t 0 , 1 0 0 , l o o p
contains six lexemes: the opcode bl e, the register specifier $ t 0 , a comma, the
number 100, a comma, and the symbol 1 oop.

If a line begins with a label, the assembler records in its symbol table the name
of the label and the address of the memory word that the instruction occupies.
The assembler then calculates how many words of memory the instruction on the
current line will occupy. By keeping track of the instructions' sizes, the assembler
can determine where the next instruction goes. To compute the size of a variable-
length instruction, like those on the VAX, an assembler has to examine it in detail.
However, fixed-length instructions, like those on MIPS, require only a cursory
examination. The assembler performs a similar calculation to compute the space
required for data statements. When the assembler reaches the end of an assembly
file, the symbol table records the location of each label defined in the file.

The assembler uses the information in the symbol table during a second pass
over the file, which actually produces machine code. The assembler again exam-
ines each line in the file. If the line contains an instruction, the assembler com-
bines the binary representations of its opcode and operands (register specifiers or
memory address) into a legal instruction. The process is similar to the one used in
Section 2.5 in Chapter 2. Instructions and data words that reference an external
symbol defined in another file cannot be completely assembled (they are unre-
solved), since the symbol's address is not in the symbol table. An assembler does
not complain about unresolved references, since the corresponding label is likely to
be defined in another file.

Assemblv language is a programming language. Its principal difference
T h e D I U from high-level languages such as BASIC, Java, and C is that assembly lan-

Picture guage provides only a few, simple types of data and control flow. Assembly
language programs do not specify the type of value held in a variable.
Instead, a programmer must apply the appropriate operations (e.g., integer
or floating-point addition) to a value. In addition, in assembly language,
programs must implement all control flow with go tos. Both factors make
assembly language programming for any machine—MIPS or x 8 6 — m o r e
difficult and error-prone than writing in a high-level language.

B.2 Assemblers B-ll

Elaboration: If an assembler's speed is important, this two-step process can be done
in one pass over the assembly file with a technique known as backpatching. In its
pass over the file, the assembler builds a (possibly incomplete) binary representation
of every instruction. If the instruction references a label that has not yet been defined,
the assembler records the label and instruction in a table. When a label is defined, the
assembler consults this table to find all instructions that contain a forward reference to
the label. The assembler goes back and corrects their binary representation to incorpo-
rate the address of the label. Backpatching speeds assembly because the assembler
only reads its input once. However, it requires an assembler to hold the entire binary rep-
resentation of a program in memory so instructions can be backpatched. This require-
ment can limit the size of programs that can be assembled. The process is complicated
by machines with several types of branches that span different ranges of instructions.
When the assembler first sees an unresolved label in a branch instruction, it must either
use the largest possible branch or risk having to go back and readjust many instructions
to make room for a larger branch.

backpatching A
method for translating
from assembly language
to machine instructions
in which the assembler
builds a (possibly
incomplete) binary
representation of every
instruction in one pass
over a program and then
returns to fill in previ-
ously undefined labels.

Object File Format
Assemblers produce object files. An object file on UNIX contains six distinct
sections (see Figure B.2.1):

• The objcct file header describes the size and position of the other pieces of
the file.

• The text s egment contains the machine language code for routines in the
. source file. These routines may be unexecutable because of unresolved

references.
• The data s egment contains a binary representation of the data in the source

file. The data also may be incomplete because of unresolved references to
labels in other files.

• The relocat ion in format ion identifies instructions and data words that
depend on absolute addresses. These references must change if portions of
the program are moved in memory.

• The symbol table associates addresses with external labels in the source file
and lists unresolved references.

• The debugging information contains a concise description of the way the
program was compiled, so a debugger can find which instruction addresses
correspond to lines in a source file and print the data structures in readable
form.

The assembler produces an object file that contains a binary representation of
the program and data and additional information to help link pieces of a program.

text segment The
segment of a UNIX
object file that contains
the machine language
code for routines in the
source file.

data segment The
segment of a UNIX object
or executable file that
co n t a i n s a b i n a r y rep resen -
tation of the initialized
data used by the program.

relocation information
The segment of a U N I X
object file that identifies
instructions and data
words that depend on
absolute addresses.

absolute address
A variable's or routine's
actual address in memory.

B - 1 4 Appendix B Assemblers, Linkers, and the SPIM Simulator

Object file Text Data Relocation Symbol Debugging
header segment segment information table information

FIGURE B.2.1 Object file. A UNIX assembler produces an object file with six distinct sections.

This relocation information is necessary because the assembler does not know
which memory locations a procedure or piece of data will occupy after it is linked
with the rest of the program. Procedures and data from a file are stored in a con-
tiguous piece of memory, but the assembler does not know where this m e m o r y will
be located. The assembler also passes some symbol table entries to the linker. In
particular, the assembler must record which external symbols are defined in a file
and what unresolved references occur in a file.

Elaboration: For convenience, assemblers assume each file starts at the same address
(for example, location 0) with the expectation that the linker will relocate the code and
data when they are assigned locations in memory. The assembler produces relocation
information, which contains an entry describing each instruction or data word in the file
that references an absolute address. On MIPS, only the subroutine call, load, and store
instructions reference absolute addresses. Instructions that use PC-relative addressing,
such as branches, need not be relocated.

/

Additional Facilities
Assemblers provide a variety of convenience features that help make assembler
programs shorter and easier to write, but do not fundamentally change assembly
language. For example, data layout directives allow a programmer to describe data
in a more concise and natural manner than its binary representation.

In Figure B.l .4, the directive
. a s c i i z " T h e s u m f r o m 0 . . 1 0 0 i s % d \ n "

stores characters from the string in memory. Contrast this line with the alternative
of writing each character as its ASCII value (Figure 2.15 in Chapter 2 describes the
ASCII encoding for characters):

. b y t e 8 4 , 1 0 4 , 1 0 1 , 3 2 , 1 1 5 , 1 1 7 , 1 0 9 , 3 2

. b y t e 1 0 2 , 1 1 4 , 1 1 1 , 1 0 9 , 3 2 , 4 8 , 3 2 , 4 6

. b y t e 4 6 , 3 2 , 4 9 , 4 8 , 4 8 , 3 2 , 1 0 5 , 1 1 5

. b y t e 3 2 , 3 7 , 1 0 0 , 1 0 , 0

The . a s c i i z directive is easier to read because it represents characters as letters,
not binary numbers. An assembler can translate characters to their binary repre-
sentation much faster and more accurately than a human can. Data layout directives

B.2 Assemblers B-ll

specify data in a human-readable form that the assembler translates to binary. Other
layout directives are described in Section B.10.

String Directive

Define the sequence of bytes produced by this directive:
. a s c i i z " T h e q u i c k b r o w n f o x j u m p s o v e r t h e l a z y d o g "

. b y t e 8 4 , 1 0 4 . 1 0 1 , 3 2 , 1 1 3 , 1 1 7 , 1 0 5 , 9 9

. b y t e 1 0 7 , 3 2 , 9 8 , 1 1 4 , 1 1 1 , 1 1 9 , 1 1 0 , 3 2

. b y t e 1 0 2 , 1 1 1 . 1 2 0 , 3 2 , 1 0 6 . 1 1 7 , 1 0 9 , 1 1 2

. b y t e 1 1 5 , 3 2 , 1 1 1 , 1 1 8 , 1 0 1 , 1 1 4 , 3 2 , 1 1 6

. b y t e 1 0 4 , 1 0 1 . 3 2 . 1 0 8 . 9 7 . 1 2 2 . 1 2 1 . 3 2

. b y t e 1 0 0 , 1 1 1 . 1 0 3 . 0

Macro is a pattern-matching and replacement facility that provides a simple
mechanism to name a frequently used sequence of instructions. Instead of repeat-
edly typing the same instructions every time they are used, a programmer invokes
the macro and the assembler replaces the macro call with the corresponding
sequence of instructions. Macros, like subroutines, permit a programmer to create
and name a new abstraction for a c o m m o n operation. Unlike subroutines, how-
ever, macros do not cause a subroutine call and return when the program runs,
since a macro call is replaced by the macros body when the program is assembled.
After this replacement, the resulting assembly is indistinguishable from the equiv-
alent program written without macros.

EXAMPLE

ANSWER

Macros

As an example, suppose that a programmer needs to print many numbers. The
library routine p r i n t f accepts a format string and one or more values to print
as its arguments. A programmer could print the integer in register $7 with the
following instructions:

. d a t a
i n t _ s t r : . a s c i i z " % d "

. t e x t
l a S a O , i n t _ s t r # L o a d s t r i n g a d d r e s s

i n t o f i r s t a r g

EXAMPLE

B-16 Appendix B Assemblers, Linkers, and the SPIM Simulator

formal parameter
A variable that is the
argument to a procedure
or macro; replaced by that
argument once the macro
is expanded.

m o v J a l , $ 7

j a l p r i n t f

L o a d v a l u e i n t o
s e c o n d a r g
C a l l t h e p r i n t f r o u t i n e

The . d a t a directive tells the assembler to store the string in the program's
data segment, and the . t e x t directive tells the assembler to store the instruc-
tions in its text segment.

However, printing many numbers in this fashion is tedious and produces a
verbose program that is difficult to understand. An alternative is to introduce
a macro, pri nt_i nt, to print an integer:

. d a t a
i n t _ s t r : . a s c i i z " % d "

. t e x t

. m a c r o p r i n t _ i n t ($ a r g)
l a $ a 0 , i n t _ s t r # L o a d s t r i n g a d d r e s s i n t o

f i r s t a r g
L o a d m a c r o ' s p a r a m e t e r
($ a r g) i n t o s e c o n d a r g
C a l l t h e p r i n t f r o u t i n e

m o v S a l , $ a r g

j a l p r i n t f
. e n d _ m a c r o

p r i n t _ i n t ($ 7)

The macro has a formal parameter , $ a r g , that n a m e s the argument to the
macro. When the macro is expanded, the argument from a call is substituted
for the formal parameter throughout the macro's body. Then the assembler
replaces the call with the macro's newly expanded body. In the first call on
pri nt_i nt, the argument is $7, so the macro expands to the code

l a $ a 0 , i n t _ s t r
m o v S a l , $ 7
j a l p r i n t f

In a second call on pri nt_i nt , say, pri nt_i nt (StO), the argument is StO,
so the macro expands to

l a S a O , i n t _ s t r
m o v S a l , S t O
j a l p r i n t f

What does the call p r i n t_i n t ($ a 0) expand to?

B.2 Assemblers B-ll

l a $ a O , i n t _ s t r
m o v S a l , S a O
j a l p r 1 n t f

ANSWER

This example illustrates a drawback of macros. A programmer who uses
this macro must be aware that p r i n t _ i n t uses register SaO and so cannot
correctly print the value in that register.

Some assemblers also implement pseudoinstructions, which are instructions pro-
vided by an assembler but not implemented in hardware. Chapter 2 contains
many examples of how the MIPS assembler synthesizes pseudoinstructions
and addressing modes from the spartan MIPS hardware instruction set. For
example, Section 2.7 in Chapter 2 describes how the assembler synthesizes the
bl t instruction from two other instructions: si t and b n e . By extending the
instruction set, the MIPS assembler makes assembly language programming
easier without complicating the hardware. Many pseudoinstructions could also
be simulated with macros, but the MIPS assembler can generate better code for
these instructions because it can use a dedicated register ($ a t) and is able to
optimize the generated code.

Hardware/
Software
Interface

Elaboration: Assemblers conditionally assemble pieces of code, which permits a
programmer to include or exclude groups of instructions when a program is assembled.
This feature is particularly useful when several versions of a program differ by a small
amount. Rather than keep these programs in separate files—which greatly complicates
fixing bugs in the common code—programmers typically merge the versions into a sin-
gle file. Code particular to one version is conditionally assembled, so it can be excluded
when other versions of the program are assembled.

If macros and conditional assembly are useful, why do assemblers for UNIX systems
rarely, if ever, provide them? One reason is that most programmers on these systems
write programs in higher-level languages like C. Most of the assembly code is produced
by compilers, which find it more convenient to repeat code rather than define macros.
Another reason is that other tools on UNIX—such as cpp, the C preprocessor, or m4, a
general macro processor—can provide macros and conditional assembly for assembly
language programs.

B - 1 8 Appendix B Assemblers, Linkers, and the SPIM Simulator

B.3 Linkers

separate compilation
Splitting a program across
many files, each of which
can be compiled without
knowledge of what is in
the other files.

Separate compilation permits a program to be split into pieces that are stored in
different files. Each file contains a logically related collection of subroutines and
data structures that form a module in a larger program. A file can be compiled and
assembled independently of other files, so changes to one module do not require
recompiling the entire program. As we discussed above, separate compilation neces-
sitates the additional step of linking to combine object files from separate modules
and fix their unresolved references.

The tool that merges these files is the linker (see Figure B.3.1). It performs three
tasks:

• Searches the program libraries to find library routines used by the program
• Determines the memory locations that code from each module will occupy

and relocates its instructions by adjusting absolute references
• Resolves references among files
A linker's first task is to ensure that a program contains no undefined labels. The

linker matches the external symbols and unresolved references from a program's
files. An external symbol in one file resolves a reference from another file if both
refer to a label with the same name. Unmatched references mean a symbol was used
but not defined anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily
mean a programmer made a mistake. The program could have referenced a library
routine whose code was not in the object files passed to the linker. After matching
symbols in the program, the linker searches the system's program libraries to
find predefined subroutines and data structures that the program references. The
basic libraries contain routines that read and write data, allocate and deallocate
memory, and perform numeric operations. Other libraries contain routines to
access a database or manipulate terminal windows. A program that references an
unresolved symbol that is not in any library is erroneous and cannot be linked.
When the program uses a library routine, the linker extracts the routine's code
from the library and incorporates it into the program text segment. This new
routine, in turn, may depend on other library routines, so the linker continues to
fetch other library routines until no external references are unresolved or a routine
cannot be found.

If all external references are resolved, the linker next determines the memory
locations that each module will occupy. Since the files were assembled in isolation,

B.4 Loading B-19

Object file

FIGURE B.3.1 The linker searches a collection of object files and program libraries to
find nonlocal routines used in a program, combines them into a single executable file, and
resolves references between routines in different files.

the assembler could not know where a m o d u l e s instructions or data would be
placed relative to other modules. When the linker places a module in memory, all
absolute references must be relocated to reflect its true location. Since the linker has
relocation information that identifies all relocatable references, it can efficiently
find and backpatch these references.

The linker produces an executable file that can run on a computer. Typically,
this file has the same format as an object file, except that it contains no unresolved
references or relocation information.

W j K m L o a d i n g

A program that links without an error can be run. Before being run, the program
resides in a file on secondary storage, such as a disk. On UNIX systems, the operating

B-20 Appendix B Assemblers, Linkers, and the SPIM Simulator

static data The portion
of memory that contains
data whose size is known
to the compiler and whose
lifetime is the program's
entire execution.

system kernel brings a program into memory and starts it running. To start a program,
the operating system performs the following steps:

1. It reads the executable file's header to determine the size of the text and data
segments.

2. It creates a new address space for the program. This address space is large
enough to hold the text and data segments, along with a stack segment (see
Section B.5).

3. It copies instructions and data from the executable file into the new address
space.

4. It copies arguments passed to the program onto the stack.
5. It initializes the machine registers. In general, most registers are cleared, but

the stack pointer must be assigned the address of the first free stack location
(see Section B.5).

6. It jumps to a start-up routine that copies the program's arguments from the
stack to registers and calls the program's main routine. If the mai n routine
returns, the start-up routine terminates the program with the exit system call.

j ^ j j j j iMlem©B,y Osage

The next few sections elaborate the description of the MIPS architecture presented
earlier in the book. Earlier chapters focused primarily on hardware and its relationship
with low-level software. These sections focus primarily on how assembly language
programmers use MIPS hardware. These sections describe a set of conventions
followed on many MIPS systems. For the most part, the hardware does not impose
these conventions. Instead, they represent an agreement among programmers to
follow the same set of rules so that software written by different people can work
together and make effective use of MIPS hardware.

Systems based on MIPS processors typically divide memory into three parts
(see Figure B.5.1). The first part, near the bottom of the address space (starting at
address 400000 [l L , x) , is the text segment, which holds the program's instructions.

The second part, above the text segment, is the data segment, which is further
divided into two parts. Static data (starting at address 1 0 0 0 0 0 0 0 h e x) contains
objects whose size is known to the compiler and whose l i fet ime—the interval
during which a program can access them—is the program's entire execution. For
example, in C, global variables are statically allocated, since they can be referenced

B.5 Memory Usage B-21

7ffffffchex

10000000hex

400000 h e x

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

FIGURE B.5.1 Layout of memory.

anytime during a program's execution. The linker both assigns static objects to
locations in the data segment and resolves references to these objects.

Immediately above static data is dynamic data. This data, as its name implies, is
allocated by the program as it executes. In C programs, the ma 11 oc library routine

Because the data segment begins far above the program at address 10000000] i e x ,
load and store instructions cannot directly reference data objects with their 16-bit
offset fields (see Section 2.5 in Chapter 2). For example, to load the word in the
data segment at address 1 0 0 1 0 0 2 0 h e x into register SvO requires two instructions:

l u i $ s 0 , 0 x 1 0 0 1 # 0 x 1 0 0 1 m e a n s 1 0 0 1 b a s e 1 6
l w ' $ v 0 , 0 x 0 0 2 0 ($ s 0) # 0 x 1 0 0 1 0 0 0 0 t 0 x 0 0 2 0 = 0 x 1 0 0 1 0 0 2 0

(The Ox before a number means that it is a hexadecimal value. For example, 0 x 8 0 0 0
is 8000, 1 C X or 32 ,768 t e n .)

To avoid repeating the 1 ui instruction at every load and store, MIPS systems
typically dedicate a register ($gp) as a global pointer to the static data segment. This
register contains address 10008000| l c x so load and store instructions can use their
signed 16-bit offset fields to access the first 64 KB of the static data segment. With
this global pointer, we can rewrite the example as a single instruction:

l w S v O , 0 x 8 0 2 0 (S g p)

Of course, a global pointer register makes addressing locations 1 0 0 0 0 0 0 0] l c x -
1 0 0 1 0 0 0 0 h e x faster than other heap locations. The MIPS compiler usually stores
global variables in this area, because these variables have fixed locations and fit bet-
ter than other global data, such as arrays.

Hardware/
Software
Interface

B - 2 2 Appendix B Assemblers, Linkers, and the SPIM Simulator

stack segment The
portion of memory used
by a program to hold
procedure call frames.

finds and returns a new block of memory. Since a compiler cannot predict how
much memory a program will allocate, the operating system expands the dynamic
data area to meet demand. As the upward arrow in the figure indicates, mal 1 oc
expands the dynamic area with the s b r k system call, which causes the operating
system to add more pages to the program's virtual address space (see Section 5.4 in
Chapter 5) immediately above the dynamic data segment.

The third part, the program stack segment , resides at the top of the virtual
address space (starting at address 7 f f f f f f f h c x) . Like dynamic data, the m a x i m u m size
of a program's stack is not known in advance. As the program pushes values on to
the stack, the operating system expands the stack segment down toward the data
segment.

This three-part division of memory is not the only possible one. However, it has
two important characteristics: the two dynamically expandable segments are as far
apart as possible, and they can grow to use a program's entire address space.

register use convention
Also called procedure
call convention.
A software protocol
governing the use of
registers by procedures.

[P i r d D c e d l i u i c r e © @ 0 Q © © u w e u n i t i O T

Conventions governing the use of registers are necessary when procedures in a pro-
gram are compiled separately. To compile a particular procedure, a compiler'must
know which registers it may use and which registers are reserved for other proce-
dures. Rules for using registers are called register use or procedure call conven-
tions. As the name implies, these rules are, for the most part, conventions followed
by software rather than rules enforced by hardware. However, most compilers and
programmers try very hard to follow these conventions because violating them
causes insidious bugs.

The calling convention described in this section is the one used by the gcc com-
piler. The native MIPS compiler uses a more complex convention that is slightly
faster.

The MIPS CPU contains 32 general-purpose registers that are numbered 0 - 3 1 .
Register $0 always contains the hardwired value 0.

m Registers S a t (1), $k0 (26), and $ kl (27) are reserved for the assembler and
operating system and should not be used by user programs or compilers.

El Registers $ a 0 - $ a 3 (4 - 7) are used to pass the first four arguments to routines
(remaining arguments are passed on the stack). Registers SvO and S v l (2, 3)
are used to return values from functions.

B.6 Procedure Call Convention B-23

• Registers $ tO—$t9 (8 -15 , 24, 25) are caller-saved registers that are used
to hold temporary quantities that need not be preserved across calls (see
Section 2.8 in Chapter 2).

• Registers $ s 0 - $ s 7 (16 -23) are callee-saved registers that hold long-lived
values that should be preserved across calls.

• Register $gp (28) is a global pointer that points to the middle of a 64K block
of memory in the static data segment.

0 Register $sp (29) is the stack pointer, which points to the last location on
the stack. Register $ f p (30) is the frame pointer. The j a l instruction writes
register Sra (31), the return address from a procedure call. These two regis-
ters are explained in the next section.

The two-letter abbreviations and names for these registers—for example Ssp
for the stack pointer—reflect the registers' intended uses in the procedure call
convention. In describing this convention, we will use the names instead of register
numbers. Figure B.6.1 lists the registers and describes their intended uses.

caller-savcd register
A register saved by the
routine being called.

callee-saved register
A register saved by
the routine making a
procedure call.

Procedure Calls
This section describes the steps that occur when one procedure (the caller) invokes
another procedure (the callee). Programmers who write in a high-level language
(like C or Pascal) never see the details of how one procedure calls another, because
the compiler takes care of this low-level bookkeeping. However, assembly language
programmers must explicitly implement every procedure call and return.

Most of the bookkeeping associated with a call is centered around a block
of memory called a procedure call frame. This memory is used for a variety of
purposes:

• To hold values passed to a procedure as arguments
• To save registers that a procedure may modify, but which the procedure's

caller does not want changed
• To provide space for variables local to a procedure
In most programming languages, procedure calls and returns follow a strict

last-in, first-out (LIFO) order, so this memory can be allocated and deallocated on
a stack, which is why these blocks of memory are sometimes called stack frames.

Figure B.6.2 shows a typical stack frame. The frame consists of the memory
between the frame pointer (Sfp), which points to the first word of the frame,
and the stack pointer (Ssp), which points to the last word of the frame. The stack
grows down from higher memory addresses, so the frame pointer points above the

procedure call frame
A block of memory that
is used to hold values
passed lo a procedure
as arguments, to save
registers that a procedure
may modify but that
the procedure's caller
does not want changed,
and to provide space
for variables local to a
procedure.

B-24 Appendix B Assemblers, Linkers, and the SPIM Simulator

Register name Number Usage

$zero 0 constant 0
$at 1 reserved for assembler
$ vO 2 expression evaluation and results of a function
Svl 3 expression evaluation and results of a function
SaO 4 argument 1
Sal 5 argument 2
Sa2 6 argument 3
Sa3 7 argument 4
StO 8 temporary (not preserved across call)
Stl 9 temporary (not preserved across call)
St2 10 temporary (not preserved across call)
St3 11 temporary (not preserved across call)
St4 12 temporary (not preserved across call)
$ 15 13 temporary (not preserved across call)
St6 14 temporary (not preserved across call)
$ 17 15 temporary (not preserved across call)
SsO 16 saved temporary (preserved across call)
Ssl 17 saved temporary (preserved across call)
Ss2 18 saved temporary (preserved across call)
Ss3 19 saved temporary (preserved across call)
$s4 20 saved temporary (preserved across call)
Ss5 21 saved temporary (preserved across call)
Ss6 22 saved temporary (preserved across call)
Ss7 23 saved temporary (preserved across call)
St8 24 temporary (not preserved across call)
$t9 25 temporary (not preserved across call)
SkO 26 reserved for OS kernel
Ski 27' reserved for OS kernel

5gp 28 pointer to global area
Ssp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address (used by function call)

FIGURE B.6.1 MIPS registers and usage convention.

stack pointer. The executing procedure uses the frame pointer to quickly access
values in its stack frame. For example, an argument in the stack frame can be loaded
into register $v0 with the instruction

l w S v O , 0 ($ f p)

B.6 Procedure Call Convention B-25

$fp

Ssp

Argument 6
Argument 5

Saved registers

Local variables

Higher memory addresses

Stack
grows

Lower memory addresses

FIGURE B.6.2 Layout of a stack frame. The frame pointer (S f p) points to the first word in the
currently executing procedure's stack frame. The stack pointer (S s p) points to the last word of the frame.
The first four arguments are passed in registers, so the fifth argument is the first one stored on the stack.

A stack frame may be built in many different ways; however, the caller and callee
must agree on the sequence of steps. The steps below describe the calling convention
used on most MIPS machines. This convention comes into play at three points
during a procedure call: immediately before the caller invokes the callee, just as the
callee starts executing, and immediately before the callee returns to the caller. In
the first part, the caller puts the procedure call arguments in standard places and
invokes the callee to do the following:

1. Pass arguments. By convention, the first four arguments are passed in regis-
ters $ a 0 - $ a 3. Any remaining arguments are pushed on the stack and appear
at the beginning of the called procedure's stack frame.

2. Save caller-saved registers. The called procedure can use these registers
($ a 0 - $ a 3 and $ 1 0 - $ 19) without first saving their value. If the caller expects
to use one of these registers after a call, it must save its value before the call.

3. Execute a j a 1 instruction (see Section 2.8 of Chapter 2), which jumps to the
callee's first instruction and saves the return address in register $ ra.

B - 2 6 Appendix B Assemblers, Linkers, and the SPIM Simulator

Before a called routine starts running, it must take the following steps to set up
its stack frame:

1. Allocate memory for the frame by subtracting the frame's size from the stack
pointer.

2. Save callee-savecl registers in the frame. A callee must save the values in these
registers ($ s 0 - $ s 7 , S f p , and Sra) before altering them, since the caller
expects to find these registers unchanged after the call. Register S f p is saved
by every procedure that allocates a new stack frame. However, register Sra
only needs to be saved if the callee itself makes a call. The other callee-saved
registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame's size minus 4 to Ssp
and storing the sum in register S f p .

Hardware/
Software
Interface

The MIPS register use convention provides callee- and caller-saved registers,
because both types of registers are advantageous in different circumstances. Callee-
saved registers are better used to hold long-lived values, such as variables from a
user's program. These registers are only saved during a procedure call if the callee
expects to use the register. On the other hand, caller-saved registers are better used
to hold short-lived quantities that do not persist across a call, such as immediate
values in an address calculation. During a call, the callee can also use these registers
for short-lived temporaries.

Finally, the callee returns to the caller by executing the following steps:
1. If the callee is a function that returns a value, place the returned value in

register SvO.
2. Restore all callee-saved registers that were saved upon procedure entry.
3. Pop the stack frame by adding the frame size to S s p.
4. Return by jumping to the address in register Sra .

recursive procedures
Procedures that call
themselves either directly
or indirectly through a
chain of calls.

Elaboration: A programming language that does not permit recursive procedures—
procedures that call themselves either directly or indirectly through a chain of calls—need
not allocate frames on a stack. In a nonrecursive language, each procedure's frame
may be statically allocated, since only one invocation of a procedure can be active at a
time. Older versions of Fortran prohibited recursion, because statically allocated frames
produced faster code on some older machines. However, on load store architectures like
MIPS, stack frames may be just as fast, because a frame pointer register points directly

B.6 Procedure Call Convention B-27

to the active stack frame, which permits a single load or store instruction to access
values in the frame. In addition, recursion is a valuable programming technique.

Procedure Call Example
As an example, consider the C routine

m a i n ()
I

p r i n t f (" T h e f a c t o r i a l o f 1 0 i s % d \ n " , f a c t (1 0)) :
1

i n t f a c t (i n t n)
(

i f (n < 1)
r e t u r n (1) :

e l s e
r e t u r n (n * f a c t (n - 1)) :

I
which computes and prints 10! (the factorial of 10,10! = 10 x 9 x . . . x 1). f a c t is
a recursive routine that computes n! by multiplying n times (n - 1)!. The assembly
code for this routine illustrates how programs manipulate stack frames.

Upon entry, the routine mai n creates its stack frame and saves the two callee-
saved registers it will modify: $fp and Sra. The frame is larger than required for
these two register because the calling convention requires the m i n i m u m size of a
stack frame to be 24 bytes. This m i n i m u m frame can hold four argument registers
(S a 0 - $ a 3) and the return address S r a , padded to a double-word boundary
(24 bytes). Since ma i n also needs to save $f p, its stack frame must be two words
larger (remember: the stack pointer is kept doublevvord aligned).

. t e x t

. g l o b i m a i n
m a i n :

s u b u S s p , $ s p , 3 2 # S t a c k f r a m e i s 3 2 b y t e s l o n g
s w S r a , 2 0 ($ s p) # S a v e r e t u r n a d d r e s s
s w $ f p , 1 6 ($ s p) # S a v e o l d f r a m e p o i n t e r
a d d i u $ f p , $ s p , 2 8 # S e t u p f r a m e p o i n t e r

The routine ma i n then calls the factorial routine and passes it the single argument
10. After f a c t returns, mai n calls the library routine p r i n t f and passes it both
a format string and the result returned from f a c t :

B-28 Appendix B Assemblers, Linkers, and the SPIM Simulator

l l S a O , 1 0 # Put a r g u m e n t (1 0) in SaO
j a l f a c t # C a l l f a c t o r i a l f u n c t i o n

l a SaO.SLC # Put f o r m a t s t r i n g i n SaO
move S a l , SvO # Move f a c t r e s u l t t o S a l
j a l p r i n t f # C a l l t h e p r i n t f u n c t i o n

Finally, after printing the factorial, main returns. But first, it must restore the
registers it saved and pop its stack frame:

l w $ r a , 2 0 ($ s p) # R e s t o r e r e t u r n a d d r e s s
l w $ f p , 1 6 ($ s p) # R e s t o r e f r a m e p o i n t e r
a d d i u $ s p , $ s p , 3 2 # Pop s t a c k f r a m e
j r Sra # R e t u r n t o c a l l e r

. r d a t a
SLC:'

. a s c i i 'The f a c t o r i a l o f 1 0 i s % d \ n \ 0 0 0 '
The factorial routine is similar in structure to ma i n. First, it creates a stack frame
and saves the callee-saved registers it will use. In addition to saving Sra and S f p ,
f a c t also saves its argument (SaO), which it will use for the recursive call:

. t e x t

subu S s p , S s p , 3 2 # S t a c k f r a m e i s 3 2 b y t e s l o n g
SW Sra , 2 0 ($ s p) # S a v e r e t u r n a d d r e s s
S W S f p , 16 ($ s p) # S a v e f r a m e p o i n t e r
add i u S f p , S s p , 2 8 # S e t u p f r a m e p o i n t e r
S W SaO , 0 (S f p) # S a v e a r g u m e n t (n)

The heart of the f a c t routine performs the computation from the C program.
It tests whether the argument is greater than 0. If not, the routine returns the
value 1. If the argument is greater than 0, the routine recursively calls itself to
compute f a c t (n - 1) and multiplies that value times n;

lw S v O , 0 ($ f p) # Load n
b g t z SvO,SL2 # Branch if n > 0
li SvO. l // Return 1
jr SL1 # Jump to c o d e to r e t u r n

$ L 2:
lw
subu
move

$ v l , 0 ($ f p)
SvO,Sv l ,1
SaO,SvO

Load n
Compute n - 1
Move v a l u e to SaO

B.6 Procedure Call Convention B-29

j a l f a c t / / C a l l f a c t o r i a l f u n c t i o n

l w $ v l , 0 ($ f p) # L o a d n
mul $vO , $ v O , $ v l # Compute f a c t (n - l) * n

Finally, the factorial routine restores the callee-saved registers and returns the
value in register SvO:

$ L l : # R e s u l t i s in SvO
1 w S r a , 20 ($ s p) # R e s t o r e Sra
1 w S f p , 16 ($ s p) # R e s t o r e S f p
add i u S s p , S s p , 32 # Pop s t a c k
j r Sra # R e t u r n t o c a l l e r

Stack in Recursive Procedure

Figure B.6.3 shows the stack at the call f a c t (7). ma i n runs first, so its frame
is deepest on the stack, ma i n calls f a ct (1 0), whose stack frame is next on the
stack. Each invocation recursively invokes f a c t to compute the next-lowest
factorial. The stack frames parallel the LIFO order of these calls. What does the
stack look like when the call to f a c t (1 0) returns?

EXAMPLE

Stack

Old Sra
Old Sfp

Old SaO
Old Sra
Old Sfp

Old SaO
Old Sra
Old Sfp

Old SaO
Old Sra
Old Sfp

Old SaO
Old Sra
Old Sfp

main

fact (10)

fact (9)

fact (8)

fact (7)
Stack grows

FIGURE B.6.3 S tack frames during the call of f a c t (7).

B-30 Appendix B Assemblers, Linkers, and the SPIM Simulator

Old $ra
Old Sfp

Stack

main Stack grows

Elaboration: The difference between the MIPS compiler and the gcc compiler is that
the MIPS compiler usually does not use a frame pointer, so this register is available as
another callee-saved register, Ss8. This change saves a couple of instructions in the
procedure call and return sequence. However, it complicates code generation, because
a procedure must access its stack frame with $sp, whose value can change during a
procedure's execution if values are pushed on the stack.

Another Procedure Gafll Example
As another example, consider the following routine that computes the tak func-
tion, which is a widely used benchmark created by Ikuo Takeuchi. This function
does not compute anything useful, but is a heavily recursive program that illustrates
the MIPS calling convention.

i n t t a k (i n t x , i n t y , i n t z)
1 '

i f (y < x)
r e t u r n 1 + t a k (t a k (x - 1 , y , z) ,

t a k (y - 1 , z , x) ,
t a k (z - 1 , x , y)) :

e l s e
r e t u r n z ;

I
i n t m a i n ()
1

t a k (1 8 . 1 2 , 6) ;
)

The assembly code for this program is shown below. The t a k function first saves
its return address in its stack frame and its arguments in callee-saved registers,
since the routine may make calls that need to use registers $ a 0 - $ a 2 and Sra . The
function uses callee-saved registers, since they hold values that persist over the

B.6 Procedure Call Convention B-31

lifetime of the function, which includes several calls that could potentially modi fy
registers.

. t e x t

. g l o b i t a k

t a k :
s u b u S s p . S s p , . 4 0
sw S r a , 32(5 i - s p)

sw S s O , 1 6 (1 S s p) # x
m o v e S s O , S a O
s w S s l , 2 0 (1 S s p) # y
m o v e S s l , S a l
sw S s 2 , 2 4 (1 S s p) # z
m o v e S s 2 , S a 2
sw S s 3 , 2 8 (1 S s p) # t e m p o

The routine then begins execution by testing if y < x. If not, it branches to label
Ll, which is shown below.

b g e $ s l , $ s 0 , L l # i f (y < x)

If y < x, then it executes the body of the routine, which contains four recursive
calls. The first call uses almost the same arguments as its parent:

a d d i u S a O , S s O , - 1
m o v e S a l , S s l
m o v e S a 2 , S s 2
j - a l t a k # t a k (x - 1 . y , z)
m o v e S s 3 , S v O

Note that the result from the first recursive call is saved in register S s 3 , so that it
can be used later.

The function now prepares arguments for the second recursive call.
a d d i u S a O , S s l , - 1
m o v e S a l , S s 2
m o v e S a 2 , S s O
j a l t a k # t a k (y - 1 , z , x)

In the instructions below, the result from this recursive call is saved in register
SsO. But first we need to read, for the last time, the saved value of the first argu-
ment from this register.

B-32 Appendix B Assemblers, Linkers, and the SPIM Simulator

a d d i u $ a 0 , $ s 2 , - 1
m o v e S a l , S s O
m o v e S a 2 , S s l
m o v e S s O , S v O
j a l t a k # t a k (z - 1 , x , y)

After the three inner recursive calls, we are ready for the final recursive call. After the
call, the function's result is in SvO and control jumps to the function's epilogue.

m o v e S a O , S s 3
m o v e S a l , S s O
m o v e S a 2 , S v O
j a l t a k # t a k (t a k () . t a k () . t a k (—))
a d d i u S v O , S v O , 1
j L 2

This code at label L1 is the consequent of the if-then-else statement. It just moves
the value of argument z into the return register and falls into the function epilogue.

L l :
m o v e S v O , S s 2

The code below is the function epilogue, which restores the saved registers and
returns the function's result to its caller. ,

L 2 :
1 w S r a , 3 2 ($ s p)
1 w S s O , 1 6 ($ • s p)
1 w S s l , 2 0 ($ • s p)
1 w S s 2 , 2 4 ($; s p)
l w S s 3 , 2 8 ($ s p)
a d d i u S s p , S s p , 4 0
j r S r a

The mai n routine calls the tak function with its initial arguments, then takes the
computed result (7) and prints it using SPIM's system call for printing integers.

. g l o b l ma i n
ma i n :

s u b u S s p , S s p . 2 4
SW S r a , 1 6 (S s p)

l i S a O , 1 8
1 i S a l , 1 2

B.7 Exceptions and Interrupts B-33

l i $ a 2 , 6
j a l t a k

m o v e $ a 0 , S v O
l i $ v 0 , 1
s y s c a l 1

1 w $ r a , 1 6 ($ s p)
a d d i u S s p , S s p , 2 4
j r S r a

t a k (1 8 , 1 2 , 6)

p r i n t _ i n t s y s c a l l

Exceptions and Interrupts

Section 4.9 of Chapter 4 describes the MIPS exception facility, which responds both
to exceptions caused by errors during an instruction's execution and to external
interrupts caused by I/O devices. This section describes exception and i n t e r r u p t
h a n d l i n g in more detail. 1 In MIPS processors, a part of the CPU called coprocessor 0
records the information the software needs to handle exceptions and interrupts.
The MIPS simulator SPIM does not implement all of coprocessor O's registers,
since many are not useful in a simulator or are part of the memory system, which
SPIM does not implement. However, SPIM does provide the following coprocessor
0 registers:

interrupt handler A piece
of code that is run as a
result of an exception or an
interrupt.

Register
name

Register
number Usage

BadVAddr 8 memory address at which an offending memory reference occurred

Count 9 timer
Compare 11 value compared against timer that causes interrupt when they match

Status 12 interrupt mask and enable bits
Cause 13 exception type and pending interrupt bits

EPC 14 address of instruction that caused exception

Config 16 configuration of machine

1. This section discusses exceptions in the MIPS-32 architecture, which is what SPIM implements
in Version 7.0 and later. Earlier versions of SPIM implemented the MIPS-1 architecture, which
handled exceptions slightly differently. Converting programs from these versions to run on
MIPS-32 should not be difficult, as the changes are limited to the Status and Cause register fields
and the replacement of the r f e instruction by the e r e t instruction.

B-34 Appendix B Assemblers, Linkers, and the SPIM Simulator

These seven registers are part of coprocessor O's register set. They are accessed
by the m f c O a n d m t c O instructions. After an exception, register EPC contains
the address of the instruction that was executing when the exception occurred. If
the exception was caused by an external interrupt, then the instruction will not
have started executing. All other exceptions are caused by the execution of the
instruction at EPC, except when the offending instruction is in the delay slot of a
branch or jump. In that case, EPC points to the branch or jump instruction and
the BD bit is set in the Cause register. When that bit is set, the exception handler
must look at EPC T 4 for the offending instruction. However, in either case, an
exception handler properly resumes the program by returning to the instruction
at EPC.

If the instruction that caused the exception made a m e m o r y access, register
BadVAddr contains the referenced memory location's address.

The Count register is a timer that increments at a fixed rate (by default, every
10 milliseconds) while SPIM is running. When the value in the Count register
equals the value in the Compare register, a hardware interrupt at priority level 5
occurs.

Figure B.7.1 shows the subset of the Status register fields implemented by the
MIPS simulator SPIM. The i n t e r r u p t m a s k field contains a bit for each of the
six hardware and two software interrupt levels. A mask bit that is 1 allows inter-
rupts at that level to interrupt the processor. A mask bit that is 0 disables inter-
rupts at that level. When an interrupt arrives, it sets its interrupt pending bit in the
Cause register, even if the mask bit is disabled. When an interrupt is pending, it will
interrupt the processor when its mask bit is subsequently enabled.

The user mode bit is 0 if the processor is running in kernel m o d e and 1 if it is
running in user mode. On SPIM, this bit is fixed at 1, since the SPIM processor does
not implement kernel mode. The exception level bit is normally 0, but is set to 1
after an exception occurs. When this bit is 1, interrupts are disabled and the EPC
is not updated if another exception occurs. This bit prevents an exception handler
from being disturbed by an interrupt or exception, but it should be reset when the
handler finishes. If the i n t e r r u p t e n a b l e bit is 1 , interrupts are allowed. If it is
0, they are disabled.

Figure B.7.2 shows the subset of Cause register fields that SPIM implements.
The branch delay bit is 1 if the last exception occurred in an instruction executed in
the delay slot of a branch. The interrupt pending bits become 1 when an interrupt

B.7 Exceptions and Interrupts B-35

c
-2 Q. <u Q- E-2 >- Q) — t: xi Q)^ o gj (d ra 2 2 x c D ElJJffl£ a)

Interrupt
mask

FIGURE B.7.1 The Status register.

Branch
delay

Pending
interrupts

Exception
code

FIGURE B.7.2 The Cause register.

is raised at a given hardware or software level. The exception code register describes
the cause of an exception through the following codes:

Number Name Cause of exception

. 0 Int interrupt (hardware)
4 AdEL address error exception (load or instruction fetch)
5 AdES address error exception (store)
6 IBE bus error on instruction fetch
7 DBE bus error on data load or store
8 Sys syscall exception
9 Bp breakpoint exception
10 Rl reserved instruction exception
11 CpU coprocessor unimplemented
12 Ov arithmetic overflow exception
13 Tr trap
15 FPE floating point

Exceptions and interrupts cause a MIPS processor to jump to a piece of code,
at address 800001 S 0) l c x (in the kernel, not user address space), called an exception
handler. This code examines the exception's cause and jumps to an appropriate
point in the operating system. The operating system responds to nn exception
either by terminating the process that caused the exception or by performing
some action. A process that causes an error, such as executing an unimplemented
instruction, is killed by the operating system. On the other hand, other exceptions

B-36 Appendix B Assemblers, Linkers, and the SPIM Simulator

such as page faults are requests from a process to the operating system to perform a
service, such as bringing in a page from disk. The operating system processes these
requests and resumes the process. The final type of exceptions are interrupts from
external devices. These generally cause the operating system to move data to or
from an I/O device and resume the interrupted process.

The code in the example below is a simple exception handler, which invokes
a routine to print a message at each exception (but not interrupts). This code is
similar to the exception handler (e x c e p t i o n s . s) used by the SPIM simulator.

Exception handler

The exception handler first saves register S a t , which is used in pseudo-
instructions in the handler code, then saves SaO and $ a 1, which it later uses to
pass arguments. The exception handler cannot store the old values from these
registers on the stack, as would an ordinary routine, because the cause of the
exception might have been a m e m o r y reference that used a bad value (such
as 0) in the stack pointer. Instead, the exception handler stores these registers
in an exception handler register (S k i , since it can't access memory without
using S a t) and two m e m o r y locations (s a v e O and s a v e l) . If the exception
routine itself could be interrupted, two locations would not be enough since
the second exception would overwrite values saved during the first exception.
However, this simple exception handler finishes running before it enables
interrupts, so the problem does not arise.
. k t e x t 0 x 8 0 0 0 0 1 8 0

m o v S k i , S a t # S a v e S a t r e g i s t e r
s w S a O , s a v e O # H a n d l e r i s n o t r e - e n t r a n t a n d c a n ' t u s e
s w S a l , s a v e l # s t a c k t o s a v e S a O , S a l

D o n ' t n e e d t o s a v e S k O / S k l

The exception handler then moves the Cause and EPC registers into CPU
registers. The Cause and EPC registers are not part of the CPU register set.
Instead, they are registers in coprocessor 0, which is the part of the CPU that
handles exceptions. The instruction mfcO SkO, $13 moves coprocessor O's
register 13 (the Cause register) into CPU register SkO. Note that the exception
handler need not save registers SkO and S k i , because user programs are not
supposed to use these registers. The exception handler uses the value from the
Cause register to test whether the exception was caused by an interrupt (see
the preceding table). If so, the exception is ignored. If the exception was not an
interrupt, the handler calls pr i n t _ e x c p to print a message.

B.7 Exceptions and Interrupts B-37

m f c O S k O , $ 1 3 # M o v e C a u s e i n t o S k O

s r l S a O , S k O , 2 # E x t r a c t E x c C o d e f i e l d
a n d i S a O , S a O , O x f

b g t z S a O , d o n e # B r a n c h i f E x c C o d e i s I n t (0)

m o v S a O , S k O # M o v e C a u s e i n t o S a O
m f c o S a l , $ 1 4 # M o v e E P C i n t o S a l
j a l p r i n t _ e x c p # P r i n t e x c e p t i o n e r r o r m e s s a g e

Before returning, the exception handler clears the Cause register; resets
the Status register to enable interrupts and clear the EXL bit, which allows
subsequent exceptions to change the EPC register; and restores registers SaO,
Sal, and Sat. It then executes the e ret (exception return) instruction, which
returns to the instruction pointed to by EPC. This exception handler returns
to the instruction following the one that caused the exception, so as to not
re-execute the faulting instruction and cause the same exception again.

d o n e : m f c O S k O , $ 1 4 # B u m p E P C
a d d i u S k O , S k O , 4 # D o n o t r e - e x e c u t e

f a u l t i n g i n s t r u c t i o n
m t c O S k O , $ 1 4 # E P C

m t c O $ 0 , $ 1 3 # C l e a r C a u s e r e g i s t e r

m f c O $ k 0 , $ 1 2 # F i x S t a t u s r e g i s t e r
a n d i S k O , O x f f f d # C l e a r E X L b i t
o r i S k O , 0 x 1 # E n a b l e i n t e r r u p t s
m t c O S k O , $ 1 2

1 w S a O , s a v e O # R e s t o r e r e g i s t e r s
1 w S a l , s a v e l
m o v S a t , S k i

e r e t # R e t u r n t o E P C

. k d a t a
s a v e O : . w o r d 0
s a v e l : . w o r d 0

B-38 Appendix B Assemblers, Linkers, and the SPIM Simulator

Elaboration: On real MIPS processors, the return from an exception handler is more
complex. The exception handler cannot always jump to the instruction following E P C . For
example, if the instruction that caused the exception was in a branch instruction's delay
slot (see Chapter 4), the next instruction to execute may not be the following instruction
in memory.

M i j l Input and Output

SPIM simulates one I/O device: a memory-mapped console on which a program
can read and write characters. When a program is running, SPIM connects its
own terminal (or a separate console window in the X-window version x s p i m or
the Windows version PCSpim) to the processor. A MIPS program running on
SPIM can read the characters that you type. In addition, if the MIPS program
writes characters to the terminal, they appear on SPIM's terminal or console win-
dow. One exception to this rule is control-C: this character is not passed to the
program, but instead causes SPIM to stop and return to c o m m a n d mode. When
the program stops running (for example, because you typed control-C or because
the program hit a breakpoint), the terminal is reconnected to SPIM so you can type
SPIM commands.

To use memory-mapped I/O (see below), s p i m or x s p i m must be started
with the - m a p p e d _ i o flag. PCSpim can enable memory-mapped I/O through a
command line flag or the "Settings" dialog.

The terminal device consists of two independent units: a receiver and a trans-
mitter. The receiver reads characters from the keyboard. The transmitter displays
characters on the console. The two units are completely independent. This means,
for example, that characters typed at the keyboard are not automatically echoed on
the display. Instead, a program echoes a character by reading it from the receiver
and writing it to the transmitter.

A program controls the terminal with four memory-mapped device registers,
as shown in Figure B.8.1. "Memory-mapped" means that each register appears as
a special memory location. The Receiver Control register is at location f f f f 0 0 0 0 h c x .
Only two of its bits are actually used. Bit 0 is called "ready": if it is 1, it means
that a character has arrived from the keyboard but has not yet been read from the
Receiver Data register. The ready bit is read-only: writes to it are ignored. The ready
bit changes from 0 to 1 when a character is typed at the keyboard, and it changes
from 1 to 0 when the character is read from the Receiver Data register.

B.8 Input and Output B-39

Unused 1 1
Receiver control
(OxffffOOOO)

Interrupt J L Ready
enable

Unused 8
Receiver data
(0xffff0004)

Received byte

Unused 1 1
Transmitter control
(OxffffOOOB)

Interrupt
enable

J 1 Ready

Unused
Transmitter data
(OxffffOOOc)

Transmitted byte

FIGURE B.8.1 The terminal is controlled by four device registers, each of which appears
as a memory location at the given address. Only a few bits of these registers are actually used. The
others always read as Os and arc ignored on writes.

Bit 1 of the Receiver Control register is the keyboard "interrupt enable." This bit
may be both read and written by a program. The interrupt enable is initially 0. If
it is set to Tby a program, the terminal requests an interrupt at hardware level 1
whenever a character is typed, and the ready bit becomes 1. However, for the inter-
rupt to affect the processor, interrupts must also be enabled in the Status register
(see Section B.7). All other bits of the Receiver Control register are unused.

The second terminal device register is the Receiver Data register (at address
f f f f0004 | i e x) . The low-order eight bits of this register contain the last character typed
at the keyboard. All other bits contain Os. This register is read-only and changes
only when a new character is typed at the keyboard. Reading the Receiver Data
register resets the ready bit in the Receiver Control register to 0. The value in this
register is undefined if the Receiver Control register is 0.

The third terminal device register is the Transmitter Control register (at address
f f f f 0 0 0 8 h e x) . Only the low-order two bits of this register are used. They behave much
like the corresponding bits of the Receiver Control register. Bit 0 is called "ready"

B - 4 0 Appendix B Assemblers, Linkers, and the SPIM Simulator

and is read-only. If this bit is 1, the transmitter is ready to accept a new character
for output. If it is 0, the transmitter is still busy writing the previous character.
Bit 1 is "interrupt enable" and is readable and writable. If this bit is set to 1, then
the terminal requests an interrupt at hardware level 0 whenever the transmitter is
ready for a new character, and the ready bit becomes 1.

The final device register is the Transmitter Data register {at address ffff000c l l L > x) .
When a value is written into this location, its low-order eight bits (i.e., an ASCII
character as in Figure 2.15 in Chapter 2) are sent to the console. When the Trans-
mitter Data register is written, the ready bit in the Transmitter Control register is
reset to 0. This bit stays 0 until enough time has elapsed to transmit the character
to the terminal; then the ready bit becomes 1 again. The Transmitter Data register
should only be written when the ready bit of the Transmitter Control register is 1.
If the transmitter is not ready, writes to the Transmitter Data register are ignored
(the write appears to succeed but the character is not output) .

Real computers require t ime to send characters to a console or terminal. These
time lags are simulated by SPIM. For example, after the transmitter starts to write a
character, the transmitter's ready bit becomes 0 for a while. SPIM measures time in
instructions executed, not in real clock time. This means that the transmitter does
not become ready again until the processor executes a fixed number of instructions.
If you stop the machine and look at the ready bit, it will not change. However, if you
let the machine run, the bit eventually changes back to 1.

^ ^ ^ spim

SPIM is a software s imulator that runs assembly language programs written for
processors that implement the MIPS-32 architecture, specifically Release 1 of this
architecture with a fixed m e m o r y mapping, no caches, and only coprocessors 0
and l . 2 SPIM's name is just MIPS spelled backwards. SPIM can read and immedi-
ately execute assembly language files. SPIM is a self-contained system for running

2. Earlier versions of SPIM (before 7.0) implemented the MIPS-1 architecture used in the original
MIPS R2000 processors. This architecture is almost a proper subset of the MIPS-32 architecture,
with the difference being the manner in which exceptions are handled. MIPS-32 also introduced
approximately 60 new instructions, which arc supported by SPIM. Programs that ran on the
earlier versions of SPIM and did not use exceptions should run unmodified on newer versions of
SPIM. Programs that used exceptions will require minor changes.

B.9 SPIM B-41

MIPS programs. It contains a debugger and provides a few operating system-like
services. SPIM is much slower than a real computer (100 or more times). However,
its low cost and wide availability cannot be matched by real hardware!

An obvious question is, "Why use a simulator when most people have PCs that
contain processors that run significantly faster than SPIM?" One reason is that
the processor in PCs are Intel 80x86s, whose architecture is far less regular and
far more complex to understand and program than MIPS processors. The MIPS
architecture may be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for assembly pro-
gramming than an actual machine because they can detect more errors and provide
a better interface than an actual computer.

Finally, simulators are useful tools in studying computers and the programs that
run on them. Because they are implemented in software, not silicon, simulators can
be examined and easily modified to add new instructions, build new systems such
as multiprocessors, or simply collect data.

Simulation of a Virtual Machine
The basic MIPS architecture is difficult to program directly because of delayed
branches, delayed loads, and restricted address modes. This difficulty is tolerable
since these computers were designed to be programmed in high-level languages
and present an interface designed for compilers rather than assembly language
programmers. A good part of the programming complexity results from delayed
instructions. A delayed branch requires two cycles to execute (see the Elaborations
on pages 343 and 381 of Chapter 4). In the second cycle, the instruction imme-
diately following the branch executes. This instruction can perform useful work
that normally would have been done before the branch. It can also be a nop (no
operation) that does nothing. Similarly, delayed loads require two cycles to bring
a value from'memory, so the instruction immediately following a load cannot use
the value (see Section 4.2 of Chapter 4).

MIPS wisely chose to hide this complexity by having its assembler implement
a virtual machine . This virtual computer appears to have nondelayed branches
and loads and a richer instruction set than the actual hardware. The assembler
reorganizes (rearranges) instructions to fill the delay slots. The virtual computer
also provides pseudoinstructions, which appear as real instructions in assembly
language programs. The hardware, however, knows nothing about pseudoinstruc-
tions, so the assembler must translate them into equivalent sequences of actual
machine instructions. For example, the MIPS hardware only provides instructions
to branch when a register is equal to or not equal to 0. Other conditional branches,
such as one that branches when one register is greater than another, are synthesized
by comparing the two registers and branching when the result of the comparison
is true (nonzero).

virtual machine
A virtual computer
that appears to have
nondelayed branches
and loads and a richer
instruction set than the
actual hardware.

B-42 Appendix B Assemblers, Linkers, and the SPIM Simulator

By default, SPIM simulates the richer virtual machine, since this is the machine
that most programmers will find useful. However, SPIM can also simulate the
delayed branches and loads in the actual hardware. Below, we describe the virtual
machine and only ment ion in passing features that do not belong to the actual
hardware. In doing so, we follow the convention of MIPS assembly language pro-
grammers (and compilers) , who routinely use the extended machine as if it was
implemented in silicon.

Getting Started with SPIM
The rest of this appendix introduces SPIM and the MIPS R2000 Assembly lan-
guage. Many details should never concern you; however, the sheer vo lume of
information can somet imes obscure the fact that SPIM is a simple, easy-to-use
program. This section starts with a quick tutorial on using SPIM, which should
enable you to load, debug, and run simple MIPS programs.

SPIM comes in different versions for different types of computer systems. The
one constant is the simplest version, called s p i m , which is a command- l ine-dr iven
program that runs in a console window. It operates like most programs of this type:
you type a line of text, hit the r e t u r n key, and s p i m executes your c o m m a n d .
Despite its lack of a fancy interface, s p i m can do everything that its fancy cousins
can do.

There are two fancy cousins to s p i m . The version that runs in the X-windows
environment of a U N I X or Linux system is called x s p i m. x s p i m is an easier pro-
gram to learn and use than sp im, because its commands are always visible on the
screen and because it continually displays the machine's registers and memory. The
other fancy version is called PCs pi m and runs on Microsoft Windows. The UNIX
and Windows versions of SPIM US are on the CD (click on Tutorials). Tutorials on
x s p i m, p c S p i m , s p i m, and SPIM c o m m a n d-l i n e o p t i o n s gjg are on the C D (click
on Software).

If you are going to run SPIM on a PC running Microsoft Windows, you should
first look at the tutorial on PCSpim [fjjj on the CD. If you are going to run SPIM
on a computer running U N I X or Linux, you should read the tutorial on x s p i m H£
(click on Tutorials).

Surprising Features
Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator, and
certain things are not identical to an actual computer. The most obvious differ-
ences are that instruction timing and the m e m o r y systems are not identical.
SPIM does not simulate caches or m e m o r y latency, nor does it accurately reflect
floating-point operation or multiply and divide instruction delays. In addition,
the floating-point instructions do not detect many error conditions, which would
cause exceptions on a real machine.

B.9 SPIM B-43

Another surprise (which occurs on the real machine as well) is that a pseudo-
instruction expands to several machine instructions. When you single-step or exam-
ine memory, the instructions that you see are different from the source program.
The correspondence between the two sets of instructions is fairly simple, since
SPIM does not reorganize instructions to fill delay slots.

Byte Oirdler
Processors can number bytes within a word so the byte with the lowest number is
either the leftmost or rightmost one. The convention used by a machine is called
its byte order. MIPS processors can operate with either big-endian or little-endian
byte order. For example, in a big-endian machine, the directive . by te 0 , 1 , 2, 3
would result in a m e m o r y word containing

Byte #

o 1 2 3

while in a little-endian machine, the word would contain

Byte #

3 2 | 1 o

SPIM operates with both byte orders. SPIM s byte order is the same as the byte
order of the underlying machine that runs the simulator. For example, on an Intel
80x86, SPIM is little-endian, while on a Macintosh or Sun SPARC, SPIM is big-
endian.

System CaDDs
SPIM provides a small set of operating system-like services through the system
call (s y s c a l 1) instruction. To request a service, a program loads the system call
code (see Figure B.9.1) into register SvO and arguments into registers S a 0 - $ a 3 (or
Sf 12 for floating-point values). System calls that return values put their results in
register SvO (or SfO for floating-point results). For example, the following code
prints " t h e a n s w e r = 5":

. d a t a
s t r :

. a s c i iz " t h e a n s w e r = "

. t e x t

B-44 Appendix B Assemblers, Linkers, and the SPIM Simulator

Service System call code Arguments Result

pri nt_int 1 SaO = integer
print_float 2 $f 12 = float
pri nt_double 3 Sf 12 = double
print_string 4 SaO = string
read_i nt 5 integer (in SvO)
read_float 6 float (in SfO)
read_double 7 double (in SfO)
read_stri ng 8 S a 0 = buffer, S a 1 = length
sbrk 9 SaO = amount address (in SvO)
exi t 10
pri nt_char 11 SaO = char
read_char 12 char (in SvO)
open

13
SaO = filename (string),
Sal = flags, $a2 = mode

file descriptor (in SaO)

read
14

SaO = file descriptor,
Sal = buffer, $a2 = length

num chars read (in
SaO)

w rite
15

SaO = file descriptor,
Sal = buffer, $a2 = length

num chars written (in
SaO)

cl ose 16 SaO = file descriptor
exi t2 17 SaO = result

FIGURE B.9.1 System services.
I

1 i $ v O , 4 # s y s t e m c a l l c o d e f o r p r i n t _ s t r
l a $ a O , s t r # a d d r e s s o f s t r i n g t o p r i n t
s y s c a 1 1 # p r i n t t h e s t r i n g

1 i S v O , 1 # s y s t e m c a l 1 c o d e f o r p r i n t _ i n t
l i S a O , 5 i n t e g e r t o p r i n t
s y s c a l 1 # p r i n t i t

The pri nt_i nt system call is passed an integer and prints it on the console.
p r i n t _ f l o a t prints a single floating-point number; p r i n t _ d o u b l e prints a
double precision number; and p r i n t _ s t r i n g is passed a pointer to a null-
terminated string, which it writes to the console.

The system calls r e a d _ i n t , r e a d _ f l o a t , and r e a d _ d o u b l e to read an entire
line of input up to and including the newline. Characters following the number
are ignored. r e a d _ s t r i n g has the same semantics as the U N I X library routine
f g e t s . It reads up to n - 1 characters into a buffer and terminates the string with
a null byte. If fewer than n - 1 characters are on the current line, r e a d _ s t r i n g
reads up to and including the newline and again null-terminates the string.

B.10 MIPS R2000 Assembly Language B-6 3

Warning: Programs that use these syscalls to read from the terminal should not use
memory-mapped I/O (see Section B.8).

s b r k returns a pointer to a block of memory containing n additional bytes,
exi t stops the program SPIM is running, exi t2 terminates the SPIM program,
and the argument to exi t2 becomes the value returned when the SPIM simulator
itself terminates.

p r i n t _ c h a r and r e a d _ c h a r write and read a single character, o p e n , r e a d ,
w r i t e , and c l o s e are the standard UNIX library calls.

MIPS S1200® Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-
tion of coprocessors that perform ancillary tasks or operate on other types of
data, such as floating-point numbers (see Figure B. 10.1). SPIM simulates two
coprocessors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is
the floating-point unit. SPIM simulates most aspects of this unit.

Addressing IVIodes
MIPS is a load store architecture, which means that only load and store instructions
access memory. Computat ion instructions operate only on values in registers. The
bare machine provides only one memory-addressing mode: c(rx), which uses
the sum of the immediate c and register rx as the address. The virtual machine
provides the following addressing modes for load and store instructions:

Format Address computation

(register) contents of register
imm immediate
imm (register) immediate + contents of register
label address of label
label ± imm address of label + or - immediate
label ± imm (register) address of label + or - (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is
aligned if its memory address is a multiple of its size in bytes. Therefore, a halfword

B-46 Appendix B Assemblers, Linkers, and the SPIM Simulator

1 11 11
Memory Memory

FIGURE B.10.1 MIPS R2000 CPU and FPU.

object must be stored at even addresses, and a full word object must be stored at
addresses that are a multiple of four. However, MIPS provides some instructions to
manipulate unaligned data (l w l . l w r , s w l , a n d s w r) .

Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex address-
ing modes by producing one or more instructions before the load or store to compute a
complex address. For example, suppose that the label table referred to memory loca-
tion 0x10000004 and a program contained the instruction

I d $ a 0 , t a b l e + 4 ($ a 1)

The assembler would translate this instruction into the instructions

B.10 MIPS R2000 Assembly Language B-6 3

l u i $ a t , 4 0 9 6
a d d u $ a t , S a t , S a l
l w S a O . 8 (S a t)

The first instruction loads the upper bits of the label's address into register Sat , which
is the register that the assembler reserves for its own use. The second instruction adds
the contents of register Sa l to the label's partial address. Finally, the load instruction
uses the hardware address mode to add the sum of the lower bits of the label's address
and the offset from the original instruction to the value in register Sat .

Assemblies Syntax
Comments in assembler files begin with a sharp sign (#) . Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots
(.) that do not begin with a number. Instruction opcodes are reserved words that
cannot be used as identifiers. Labels are declared by putting them at the beginning
of a line followed by a colon, for example:

. d a t a
i t e m : . w o r d 1

. t e x t

Numbers are base 10 by default. If they are preceded by Ox, they are interpreted
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in double quotes ("). Special characters in strings follow the
C convention:

. g l o b i m a i n # M u s t b e g l o b a l
m a i n : l w S t O , i t e m

E3 newline \n
• tab \ t
• quote \ "

SPIM supports a subset of the MIPS assembler directives:
. a l i g n n Align the next datum on a 2" byte boundary. For

example, . a 1 i gn 2 aligns the next value on a word
boundary. . al i gn 0 turns off automatic alignment
of . h a l f , . w o r d , . f l o a t , and . d o u b l e directives
until the next . d a t a o r . k d a t a directive.

. a s c i i s t r Store the string str in memory, but do not null-
terminate it.

B-48 Appendix B Assemblers, Linkers, and the SPIM Simulator

. a s c i i z s t r

. b y t e b l b n

. d a t a < a d d r >

. d o u b l e d l d n

. e x t e r n s y m s i z e

. f l o a t f l f n

. g l o b i s y m

. h a l f h i , . . . , h n

. k d a t a < a d d r >

. k t e x t < a d d r >

. s e t n o a t a n d . s e t a t

. s p a c e n

Store the string str in memory and null-terminate it.
Store the n values in successive bytes of memory.
Subsequent items are stored in the data segment.
If the optional argument addr is present, subse-
quent items are stored starting at address addr.
Store the n floating-point double precision num-
bers in successive memory locations.
Declare that the datum stored at sym is size bytes
large and is a global label. This directive enables
the assembler to store the datum in a portion of
the data segment that is efficiently accessed via
register $gp.
Store the n floating-point single precision num-
bers in successive memory locations.
Declare that label sym is global and can be refer-
enced from other files.
Store the n 16-bit quantities in successive m e m o r y
halfwords.

i
Subsequent data items are stored in the kernel
data segment. If the optional argument addr is
present, subsequent items are stored starting at
address addr.
Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the . word directive below). If
the optional argument addr is present, subsequent
items are stored starting at address addr.
The first directive prevents SPIM from complain-
ing about subsequent instructions that use register
$ a t . The second directive re-enables the warning.
Since pseudoinstructions expand into code that
uses register $ a t, programmers must be very care-
ful about leaving values in this register.
Allocates n bytes of space in the current segment
(which must be the data segment in SPIM).

B.10 MIPS R2000 Assembly Language B-6 3

. t e x t <addr> Subsequent items are put in the user text segment.
In SPIM, these items may only be instructions
or words (see the .word directive below). If the
optional argument addr is present, subsequent
items are stored starting at address addr.

. w o r d wl wn Store t h e n 32-bit quantities in successive m e m o r y
words.

SPIM does not distinguish various parts of the data segment (. d a t a , . r d a t a , and
. s d a t a) .

Encoding MIPS {Instructions
Figure B.10.2 explains how a MIPS instruction is encoded in a binary number.
Each column contains instruction encodings for a field (a contiguous group of
bits) from an instruction. The numbers at the left margin are values for a field.
For example, the j opcode has a value of 2 in the opcode field. The text at the top
of a co lumn names a field and specifies which bits it occupies in an instruction.
For example, the op field is contained in bits 26-31 of an instruction. This field
encodes most instructions. However, some groups of instructions use additional
fields to distinguish related instructions. For example, the different floating-point
instructions are specified by bits 0 - 5 . The arrows from the first column show which
opcodes use these additional fields.

Instruction Format
The rest of this appendix describes both the instructions implemented by actual
MIPS hardware and the pseudoinstructions provided by the MIPS assembler. The
two types of instructions are easily distinguished. Actual instructions depict the
fields in their binary representation. For example, in

Addition (with overflow)

add rd. rs, rt

o rs rt rd o 0x20

the add instruction consists of six fields. Each field's size in bits is the small number
below the field. This instruction begins with six bits of Os. Register specifiers begin
with an r, so the next field is a 5-bit register specifier called r s . This is the same
register that is the second argument in the symbolic assembly at the left of this
line. Another c o m m o n field is i mm 1 6 , which is a 16-bit immediate number.

B-50 Appendix B Assemblers, Linkers, and the SPIM Simulator

00131:26)

(16:16)

mov) movt
(16:16)

movl I
movt./

10 (uncl(5:0) 10 luncl(5:0) 1
nil add ./

sub./
mul /

nil add ./
sub./
mul /

1
2 srl

1
2

add ./
sub./
mul /

1
2

3 sra 3 div/ 3
4 TillV 4 sqrl / 4
5 5 ab. / 5
6 r.rtv 6 mov / 6
7 ttrav 7 nei / 7
8 If 8 8
9 |alr 9 9

10 movz 10 10
11 movn 11 11
12 syscnll 12 round iv / 12
13 break 13 trunc wt 13
14 14 coll. IV / 14
15 sync 15 lloor iv 1 15
18
17

mlhi
mlhl

16
17

16
17

18
17

mlhi
mlhl

16
17

16
17

18 m(lo 18 movz / 18
19 mllo 19 movn / 19
20 20 20
21 21 21
22 22 22
23 23 23
24 mull 24 24
25 rnullu 25 25
26 div 26 26
27 divu 27 27
28 28 28
29 29 29

(unci rl 30 30 30
(•(:0) (20:16) 31 31 31

0 o bit.- 32 add 32 cvt.s / 32
1 llbr 1 bgez 33 ;iddu 33 evi d / 33
2 llbwi 2 DIM 34 sub 34 34
3 3 bguzl 35 subu 35 35
-1 4 36 and 36 cvt w / 36
5 5 37 or 37 37
6 tlbwr C 38 xor 38 38
7 7 39 nor 39 39
B
9

tlbp 8
9

igei
Igplu

40
41

40
41

40
41

10 10 tlti 42 sll 42 42
11 11 tltiu 43 lIIu 43 43
12 12 tDQl 44 44 44
13 13 45 45 45
14 14 tnei 46 46 46
15 15 47 47 47

i 16 18 bltzal 48 tgu 48 cf / 48
17 17 bgeznl 49 tgou 49 c un / 49
18 18 bit. -'I 50 tit 50 C t'Q / 50
19 19 bgczall 51 tltu 51 c u n ' 51
20 20 52 toq 52 coll / 52
21 21 53 53 cull / 53
22 22 54 tno 54 c olo / 54
23 23 55 55 c.ulc./ 55
24 orot 24 56 56 C.Sf / 56
25 25 57 57 c nglu / 57
2G 26 58 58 c.sua / 58
27 27 59 59 c ngl / 59
28 28 60 60 c.lt./ 60
29 29 61 61 c ngo / 61
30 30 62 62 c.le / 62

,, 31 deret 31 63 63 c.ngt./ 63

lunct(5:0)
madd
maddu
mul

msub
rnsubu

FIGURE B.10.2 MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10, and the
second shows base 16 for the op field (bits 31 To 26) in the Third column. This op field completely specifies The MIPS operation except for six
op values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses " / " to
mean "s" if rs = 16 and o p = 17 o r " d " if rs = 17 and o p = 17. The second field (rs) uses "2" to mean " 0 " , " 1", "2", or " 3 " if op = 16, 17, 18, or 19,
respectively. If rs = 16, the operation is specified elsewhere: if 2 = 0, the operations are specified in the fourth field (bits 4 to 0); if 2= 1, then the
operations are in the last field with /= s. If rs = 17 and z = I, then the operations are in the last field with /= d.

B.10 MIPS R2000 Assembly Language B-6 3

Pseudoinstructions follow roughly the same conventions, but omit instruction
encoding information. For example:

Multiply (without overflow)

mul r d e s t , r s r c l , s r c 2 psauhitistruction

In pseudoinstructions, r d e s t and r s r c l are registers and s r c 2 is either a regis-
ter or an immediate value. In general, the assembler and SPIM translate a more
general form of an instruction (e.g., add $ v 1, SaO , 0 x 5 5) to a specialized form
(e.g., add i S v l , SaO, 0 x 5 5) .

Arithmetic and Logical Instructions

Absolute value

a b s r d e s t . r s r c psctuloinstruction

Put the absolute value of register rs rc in register r d e s t .

Addition (with overflow)

add r d , r s , r t
0 rs rt rd 0 0 x 2 0

add r d , r s , r t
6 5 5 5 5 6

Addition (without overflow)

addu r d . r s . r t
0 rs rt rd 0 0 x 2 1

6 5 5 5 5

Put the sum of registers rs and rt into register rd

Addition immediate (with overflow)

6

addi r t , r s , imm
8 rs rt imm

Addition immediate (without overflow)

a d d i u r t . r s . imm
9 rs rt imm

Put the sum of register rs and the sign-extended immediate into register r t .

B-52 Appendix B Assemblers, Linkers, and the SPIM Simulator

AND

and rcl, r s . r t
0 rs rt rd 0 0x24

Put the logical A N D of registers rs and rt into register rd.

AND immediate

andi r t . r s
Oxc rs rt imm

16

Put the logical A N D of register rs and the zero-extended immediate into reg-
ister r t .

Count leading ones

Oxlc rs 0 rd 0 0x21

Count leading zeros

c l z r d . r s
Oxlc rs 0 rd 0 0x20

Count the number of leading ones (zeros) in the word in register rs and put
the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overflow)

0 rs rt 0 Oxla
6 5 5 10 6

Divide (without overflow)

0 rs rt 0 Oxlb
6 5 5 10 6

Divide register rs by register r t . Leave the quotient in register 1 o and the remain-
der in register h i . Note that if an operand is negative, the remainder is unspecified
by the MIPS architecture and depends on the convention of the machine on which
SPIM is run.

B.10 MIPS R2000 Assembly Language B-6 3

Divide (with overflow)

d i v r d e s t . r s r c l , s r c 2 pseiuloiiistntctiou

Divide (without overflow)

d i v u r d e s t , r s r c l . s r c 2 pscudoinstntction

Put the quotient of register r s r c l and s r c 2 into register r d e s t .

Multiply

mult r s , r t

Unsigned multiply

multu r s , r t

0 r s r t 0 0x18
6 5 5 10 6

0 r s r t 0 0x19

Multiply registers rs and r t . Leave the low-order word of the product in register
1 o and the high-order word in register h i .

Multiply (without overflow)

mul r d , r s , r t
Oxlc r s r t rd 0 2

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overflow)

muIo r d e s t , r s r c l , s r c 2 pscudoinstriictioti

Unsigned multiply (with overflow)

mulou r d e s t , r s r c l . s r c 2 pseudoinstructioii

Put the low-order 32 bits of the product of register rs rcl and s rc2 into register
r d e s t .

B-54 Appendix B Assemblers, Linkers, and the SPIM Simulator

Multiply add

madd r s , r t
Oxlc rs rt 0 0

Unsigned multiply add

maddu r s . r t
Oxlc rs rt 0 1

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit
value in the concatenated registers 1 o and h i .

Multiply subtract

msub rs . rt Oxlc i rs rt 0 4

Unsigned multiply subtract

msub r s . r t
Oxlc rs rt 0 5

Multiply registers rs and rt and subtract the resulting 64-bit product from the
64-bit value in the concatenated registers 1 o and hi.

Negate value (with overflow)

neg r d e s t , r s r c psauioiiistructioii

Negate value (without overflow)

negu r d e s t , r s r c psaitloiiistruction

Put the negative of register r s r c into register r d e s t .

NOR

nor r d . r s . r t
0 rs rt rd 0 0x27

Put the logical NOR of registers rs and rt into register rd.

B.10 M I P S R 2 0 0 0 A s s e m b l y L a n g u a g e B-6 3

N O T

n o t r d e s t , r s r c pscudoiust ruction

Put the bitwise logical negation of register r s r c into register r d e s t .

O R

o r r d , r s , r t
0 1 rs rt rd 0 0 x 2 5

5 5 5 5 6

Put the logical OR of registers rs and rt into register rd.

OR i m m e d i a t e

o r i r t , r s , imm
Oxcl rs rt i m m

5 5 16

Put the logical OR of register rs and the zero-extended immediate into register r t .

Remainder

rem r d e s t , r s r c l , r s r c 2 psaitloiiistruction

Unsigned remainder

remu r d e s t . r s r c l , r s r c 2 pscudoiustruction

Put the remainder of register r s r c l divided by register r s r c 2 into register
r d e s t . Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the convention of the machine on which SPIM
is run.

Shift left logical

s l l r d , r t , shamt
0 rs rt rd shamt 0

Shift left logical variable

s i 1 v r d , r t . r s
0 rs rt rd 0 4

B-56 Appendix B Assemblers, Linkers, and the SPIM Simulator

Shift right arithmetic

s r a r d . r t , shamt
0 rs rt rd shamt 3

Shift right arithmetic variable

0 rs rt rd 0 7
6 5 5 5 5 6

Shift right logical

s r l r d , r t , shamt
0 rs rt rd shamt 2

Shift right logical variable

s r l v r d , r t , r s
0 | rs rt rd 0 6

Shift register r t left (right) by the distance indicated by immediate s h a m t or the
register rs and put the result in register rd. Note that argument rs is ignored for
s l l , s r a , and s r l .

i

Rotate left

ro 1 r d e s t , r s r c l , r s r c 2 pscudoinstruction

Rotate right

r o r r d e s t , r s r c l , r s r c 2 pscudoinstruction

Rotate register r s r c l left (right) by the distance indicated by r s r c 2 and put the
result in register r d e s t .

Subtract (with overflow)

0 rs rt rd 0 0x22
6 5 5 5 5 6

B.10 MIPS R2000 Assembly Language B-6 3

Subtract (without overflow)

subu r d . r s , r t
0 rs rt rd 0 0x23

Put the difference of registers rs and rt into register rd.

Exclusive OR

x o r r d , r s . r t
0 rs rt rd 0 0x26

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

x o r i r t . r s . itnm
Oxe rs rt Imm

16

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister r t .

Constant-IVIanipuBating Instructions

Load upper immediate

l u i ' r t , iinm
Oxf 0 rt imm

Load the lower halfword of the immediate i mm into the upper halfword of reg-
ister r t . The lower bits of the register are set to 0.

Load immediate

l i r d e s t . imtn pscudoinstniction

Move the immediate i mm into register r d e s t .

Comparison instructions

Set less than

s i t r d , r s , r t
0 rs rt rd 0 0x2a

B - 5 8 Appendix B A s s e m b l e r s , Linkers, and the S P I M Simulator

S e t less t h a n unsigned

s i t u r d . r s . r t
0 r s r t rd 0 0 x 2 b

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

S e t less than immediate

s 1 1 i r t , r s . i mm
Oxa r s rt i m m

S e t less than unsigned i m m e d i a t e

s i t i n r t , r s . imm
Oxb r s rt i m m

5 5 16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to
0 otherwise.

S e t equal

seq r d e s t . r s r c l , r s r c 2 pseudoinstruction
i

Set register r d e s t to 1 if register r s r c l equals r s r c 2 , and to 0 otherwise.

S e t greater than equal

s g e r d e s t , r s r c l , r s r c 2 pscudoinstniction

S e t greater than equal unsigned

sgeu r d e s t , r s r c l , r s r c 2 pscudoinstniction

Set register r d e s t to 1 if register rs r c l is greater than or equal to rs r c 2 , and to
0 otherwise.

S e t greater than

s g t r d e s t , r s r c l , r s r c 2 pscudoinstniction

B.10 MIPS R2000 Assembly Language B-6 3

Set greater than unsigned

s g t u r d e s t , r s r c l , r s r c 2 pscudoinstruction

Set register r d e s t to 1 if register r s r c l is greater than rs r c 2 , and to 0 otherwise.

Set less than equal

s i e r d e s t , r s r c l , r s r c 2 pscudoinstruction

Set less than equal unsigned

s i e u r d e s t , r s r c l , r s r c 2 pscudoinstruction

Set register r d e s t to 1 if register r s r c l is less than or equal to r s r c 2 , and to 0
otherwise.

Set not equal

s n e r d e s t , r s r c l , r s r c 2 pscudoinstruction

Set register r d e s t to 1 if register r s r c l is not equal to r s r c 2 , and to 0
otherwise.

Branch Binistiructions
Branch instructions use a signed 16-bit instruction offset field; hence, they can
jump 2 1 : 1 - 1 instructions (not bytes) forward or instructions backward. The
jump instruction contains a 26-bit address field. In actual MIPS processors, branch
instructions are delayed branches, which do not transfer control until the instruction
following the branch (its "delay slot") has executed (see Chapter 4). Delayed branches
affect the offset calculation, since it must be computed relative to the address of the
delay slot instruction (PC T 4), which is when the branch occurs. SPIM does not
simulate this delay slot, unless the - b a r e or - d e l a y e d _ b r a n c h flags are specified.

In assembly code, offsets are not usually specified as numbers. Instead, an
instructions branch to a label, and the assembler computes the distance between
the branch and the target instructions.

In MIPS-32, all actual (not pseudo) conditional branch instructions have a
"likely" variant (for example, beq's likely variant is b e q l) , which does not execute

B-60 Appendix B Assemblers, Linkers, and the SPIM Simulator

the instruction in the branch's delay slot if the branch is not taken. Do not use
these instructions; they may be removed in subsequent versions of the architecture.
SPIM implements these instructions, but they are not described further.

Branch instruction

b l a b e l psciuloinstructioii

Unconditionally branch to the instruction at the label.

Branch coprocessor false

b c l f c c 1abe l

Branch coprocessor true

b e l t c c l a b e l

O x l l 8 cc 0 Offset
6 5 3 2 16

0x11 8 cc 1 Offset

Conditionally branch the number of instructions specified by the offset if the
floating-point coprocessor's condition flag numbered cc is false (true). If cc is
omitted from the instruction, condition code flag 0 is assumed. '

Branch on equal

beq r s . r t . l a b e l
4 rs rt Offset

16

Conditionally branch the number of instructions specified by the offset if register
rs equals r t .

Branch on greater than equal zero

bgez r s . l a b e l
1 rs 1 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is greater than or equal to 0.

B.10 MIPS R2000 Assembly Language B-6 3

Branch on greater than equal zero and link

b g e z a l r s . l a b e l
1 rs 0x11 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is greater than or equal to 0. Save the address of the next instruction in reg-
ister 31.

Branch on greater than zero

b g t z r s . l a b e l
7 rs 0 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is greater than 0.

Branch on less than equal zero

b l e z r s . l a b e l
6 rs 0 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is less than or equal to 0.

Branch on less than and link

b l t z a l r s . l a b e l
1 rs 0x10 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

b l t z r s , l a b e l
1 rs 0 Offset

Conditionally branch the number of instructions specified by the offset if register
rs is less than 0.

B-62 Appendix B Assemblers, Linkers, and the SPIM Simulator

Branch on not equal

5 rs rt Offset
6 5 5 16

Conditionally branch the number of instructions specified by the offset if register
rs is not equal to r t .

Branch on equal zero

beqz r s r c . l a b e l psciuloinstructioii

Conditionally branch to the instruction at the label if r s r c equals 0.

Branch on greater than equal

bge r s r c l . r s r c 2 , l a b e l pscudoinstniction

Branch on greater than equal unsigned

bgeu r s r c l , r s r c 2 , l a b e l pscudoinstniction

i
Conditionally branch to the instruction at the label if register r s r c l is greater than
or equal to rs r c 2 .

Branch on greater than

b g t r s r c l , s r c 2 . l a b e l pscudoinstniction

Branch on greater than unsigned

b g t u r s r c l , s r c 2 , l a b e l pscudoinstructiou

Conditionally branch to the instruction at the label if register r s r c l is greater than
s r c 2 .

Branch on less than equal

b l e r s r c l . s r c 2 , l a b e l pseudoinstruction

B.10 MIPS R2000 Assembly Language B-6 3

Branch on less than equal unsigned

b l e u r s r c l . s r c 2, l a b e l pscudoinstruction

Conditionally branch to the instruction at the label if register r s r c l is less than
or equal to s r c 2 .

Branch on less than

b i t r s r c l . r s r c 2 , l a b e l pscudoinstruction

Branch on less than unsigned

b l t u r s r c l . r s r c 2 . l a b e l pscudoinstruction

Conditionally branch to the instruction at the label if register r s r c l is less than
r s r c 2 .

Branch on not equal zero

bnez r s r c . l a b e l pscudoinstruction

Conditionally branch to the instruction at the label if register rs rc is not equal to 0.

Jump Innstructioiins

Jump

t a r g e t
j t a r g e t

26

Unconditionally jump to the instruction at target.

Jump and link

j a l t a r g e t
t a r g e t
26

Unconditionally jump to the instruction at target. Save the address of the next
instruction in register $ r a .

B-64 Appendix B Assemblers, Linkers, and the SPIM Simulator

Jump and link register

j a l r r s , r d
0 1 rs 0 rd 0 9

Unconditionally jump to the instruction whose address is in register r s . Save the
address of the next instruction in register rd (which defaults to 31).

Jump register

0 rs 0 8
j r r s

6 5 15 6

Unconditionally jump to the instruction whose address is in register r s .

Trap Instructions

Trap if equal

t e q r s , r t
0 rs rt 0 0x34

If register rs is equal to register r t , raise a Trap exception.

Trap if equal immediate

t e q i r s . imm
1 rs Oxc imm

If register rs is equal to the sign-extended value i mm, raise a Trap exception.
Trap if not equal

t e q r s , r t
0 rs rt 0 0x36

10

If register rs is not equal to register r t , raise a Trap exception.

Trap if not equal immediate

t e q i r s , imm
1 rs Oxe imm

16

If register r s is not equal to the sign-extended value i mm, raise a Trap exception.

B.10 MIPS R2000 Assembly Language B-6 3

Trap if greater equal

t:ge r s , r t
0 rs rt 0 0x30

10

Unsigned trap if greater equal

tgeu rs, rt
0 rs rt 0 0x31

10

If register r s is greater than or equal to register r t, raise a Trap exception.

Trap if greater equal immediate

t g e i r s , imm
1 rs 8 imm

Unsigned trap if greater equal immediate

t g e i u r s . imm
1 rs 9 imm

If register rs is greater than or equal to the sign-extended value i mm, raise a Trap
exception.
Trap if less than

tl t' .rs, rt
0 rs rt 0 0x32

Unsigned trap if less than

t l t u r s , r t
0 rs rt 0 0x33
6 5 5 10 6

If register rs is less than register r t , raise a Trap exception.

Trap if less than immediate

111 i r s , i mm
1 rs a imm

B-66 Appendix B Assemblers, Linkers, and the SPIM Simulator

Unsigned trap if less than immediate

111 i u r s . i mm
1 rs b imm
6 5 5 16

If register rs is less than the sign-extended value i min, raise a Trap exception.

Load Instructions

Load address

l a r d e s t . a d d r e s s pscudoinstniction

Load computed address—not the contents of the locat ion—into register r d e s t .

Load byte

l b r t , a d d r e s s
0x20 rs rt Offset

Load unsigned byte

lbu r t , a d d r e s s
0x24 rs rt Offset

Load the byte at address into register r t . The byte is sign-extended by 1 b, but not
by 1 bu.

Load halfword

l h r t , a d d r e s s
0x21 rs rt Offset

Load unsigned halfword

Ihu r t , a d d r e s s
0x25 rs rt Offset

Load the 16-bit quantity (halfword) at address into register r t . The halfword is
sign-extended by 1 h, but not by 1 lui.

B.10 MIPS R2000 Assembly Language B-6 3

Load word

l w r t , a d d r e s s
0x23 rs rt Offset

Load the 32-bit quantity (word) at address into register r t

Load word coprocessor 1

1wcI f t , a d d r e s s
0x31 rs rt Offset

Load the word at address into register f t in the floating-point unit.

Load word left

lwl r t . a d d r e s s

Load word right

lwr r t , a d d r e s s

0x22 rs rt Offset
6 5 5 16

0x26 rs rt Offset
16

Load the left (right) bytes from the word at the possibly unaligned address into
register r t .

Load doubleword

Id r d e s t , a d d r e s s pscudoinstruction

Load the 64-bit quantity at address into registers r d e s t and r d e s t + 1.

Unaligned load halfword

u 1 h r d e s t , a d d r e s s pscudoinstruction

B-68 Appendix B Assemblers, Linkers, and the SPIM Simulator

Unaligned load halfword unsigned

u Ihu rdest, address pscudoinstniction

Load the 16-bit quantity (halfword) at the possibly unaligned address into register
r d e s t . The halfword is sign-extended by ul h, but not ul hu.

Unaligned load word

ulw r d e s t , a d d r e s s pscudoinstniction

Load the 32-bit quantity (word) at the possibly unaligned address into register
r d e s t .

Load linked

11 r t , a d d r e s s
0x30 rs rt Offset

16

Load the 32-bit quantity (word) at address into register r t and start an atomic
read-modify-write operation. This operation is completed by a store conditional
(s c) instruction, which will fail if another processor writes into the block contain-
ing the loaded word. Since SPIM does not simulate multiple processors, the store
conditional operation always succeeds.

Store instructions

Store byte

s b r t , a d d r e s s
0x28 rs Offset

16

Store the low byte from register r t at address.

Store halfword

s h r t , a d d r e s s
0x29 rs rt Offset

16

Store the low halfword from register r t at address.

B.10 MIPS R2000 Assembly Language B-6 3

Store word

s w r t , a d d r e s s
Ox2b rs rt Offset

Store the word from register r t at address.

Store word coprocessor 1

swcl f t . a d d r e s s
0x31 rs ft Offset

Store the floating-point value in register ft of floating-point coprocessor at
address.

Store double coprocessor 1

s d c l f t , a d d r e s s
0x3d rs ft Offset

Store the doublevvord floating-point value in registers ft and ft T 1 of floating-
point coprocessor at address. Register f t must be even numbered.

Store word left

swl r t , a d d r e s s

Store word right

swr r t , a d d r e s s

0x2a rs rt Offset
6 5 5 16

0x2e rs rt Offset
16

Store the left (right) bytes from register r t at the possibly unaligned address.

Store doubleword

sd r s r c , a d d r e s s pscudoinstniction

Store the 64-bit quantity in registers r s r c and r s r c + 1 at address.

B-70 Appendix B Assemblers, Linkers, and the SPIM Simulator

Unaligned store halfword

(ish r s r c , address psaitloiiistruction

Store the low halfword from register r s r c at the possibly unaligned address.

Unaligned store word

usw r s r c , address pscudoinstruction

Store the word from register r s r c at the possibly unaligned address.

Store conditional

0x38 rs rt Offset
6 5 5 16

Store the 32-bit quantity (word) in register r t into memory at address and complete
an atomic reacl-modify-write operation. If this atomic operation is successful, the
memory word is modified and register rt is set to 1. If the atomic operation fails
because another processor wrote to a location in the block containing the addressed
word, this instruction does not modify memory and writes 0 into register rt. Since
SPIM does not simulate multiple processors, the instruction always succeeds.

Data R/lovemesnt flmistiructioinis
Move

move r d e s t , r s r c psaitloiiistruction

Move register r s r c to r d e s t .

Move from hi

0 0 rd 0 0x10
6 1 0 5 5 6

B.10 MIPS R2000 Assembly Language B-6 3

Move from lo

mflo rd
0 0 rd 0 0x12

10

The multiply and divide unit produces its result in two additional registers, hi
and 1 o. These instructions move values to and from these registers. The multiply,
divide, and remainder pseudoinstructions that make this unit appear to operate on
the general registers move the result after the computation finishes.
Move the hi (1 o) register to register rd.

Move to hi

tnthi rs

Move to lo

mtlo rs

0 rs 0 0x11
6 5 15 6

0 rs 0 0x13

Move register rs to the hi (1 o) register.

Move from coprocessor 0

i n f c O r t , r d
0x10 0 rt rd 0

Move from coprocessor 1

0x11 0 rt fs 0
6 5 5 5 11

Coprocessors have their own register sets. These instructions move values between
these registers and the C P U s registers.
Move register rd in a coprocessor (register f s in the FPU) to CPU register r t . The
floating-point unit is coprocessor 1.

B-72 Appendix B Assemblers, Linkers, and the SPIM Simulator

Move double from coprocessor 1

m f c l . d r d e s t . f r s r c l pscudoinstruction

Move floating-point registers f r s r c l and f r s r c l + 1 to CPU registers r d e s t
a n d r d e s t + 1 .

Move to coprocessor 0

mtcO r d , r t
0x10 4 rt rd 0

Move to coprocessor 1

intc l r d , f s
0x11 4 rt fs | 0

Move CPU register rt to register rd in a coprocessor (register f s in the FPU).

Move conditional not zero

movn r d . r s , r t
0 rs rt rd Oxb

Move register rs to register rd if register rt is not 0.

Move conditional zero

movz r d , r s , r t

Move register rs to register rd if register rt is 0.

Move conditional on FP false

movf r d . r s , c c

0 rs rt rd Oxa

0 rs cc 0 rd O 1

Move CPU register rs to register rd if FPU condition code flag number cc is 0. If
cc is omitted from the instruction, condition code flag 0 is assumed.

B.10 MIPS R2000 Assembly Language B-6 3

Move conditional on FP true

movt r d . r s , c c
0 r s cc 1 rd 0 1

Move CPU register rs to register rd if FPU condition code flag number eeis 1. If cc
is omitted from the instruction, condition code bit 0 is assumed.

FOoating-Poiinit (Instructions
The MIPS has a floating-point coprocessor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) floating-point numbers. This
coprocessor has its own registers, which are numbered $ f 0—$ f 31 . Because these
registers are only 32 bits wide, two of them are required to hold doubles, so only
floating-point registers with even numbers can hold double precision values. The
floating-point coprocessor also has eight condition code (cc) flags, numbered 0 - 7 ,
which are set by compare instructions and tested by branch (b c l f or b c l t) and
conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by
1 w c l , s w c l , m t c l , and mf cl instructions or one double (64 bits) at a time by 1 d e l
and s d c l , described above, or by the l . s , l . d , s . s , and s . d pseudoinstructions
described below.

In the actual instructions below, bits 2 1 - 2 6 are 0 for single precision and 1
for double precision. In the pseudoinstructions below, f d e s t is a floating-point
register (e.g., $f 2).

Floating-point absolute value double

a b s . d f d , f s
O x l l f s fd

Floating-point absolute value single

a b s . s f d , f s
0 x 1 1 f s fd

Compute the absolute value of the floating-point double (single) in register f s and
put it in register f d.

Floating-point addition double

a d d . d f d , f s , f t
O x l l 0 x 1 1 ft f s fd 0

B-74 Appendix B Assemblers, Linkers, and the SPIM Simulator

Floating-point addition single

a d d . 5 f d . f s . f t
0x11 0x10 ft fs fd 0

Compute the sum of the floating-point doubles (singles) in registers fs and ft
and put it in register f d.

Floating-point ceiling to word

0x11 0x11 0 fs fd Oxe
6 5 5 5 5 6

0x11 0x10 0 fs fd Oxe

Compute the ceiling of the floating-point double (single) in register f S, convert to
a 32-bit fixed-point value, and put the resulting word in register f d.

Compare equal double

c . e q . d c c f s . f t
0x11 0x11 ft fs CC 0 FC 2

Compare equal single

0x11 0x10 ft fs CC 0 FC 2
6 5 5 5 3 2 2 4

Compare the f loating-point double (single) in register fs against the one in ft
and set the floating-point condition flag cc to 1 if they are equal. If cc is omitted,
condition code flag 0 is assumed.

Compare less than equal double

0x11 0x11 ft fs CC 0 FC Oxe
6 5 5 5 3 2 2 4

Compare less than equal single

c . l e . s c c f s . f t
0x11 0x10 ft fs CC 0 FC Oxe

B.10 MIPS R2000 Assembly Language B-6 3

Compare the floating-point double (single) in register f s against the one in ft and
set the floating-point condit ion flag cc to 1 if the first is less than or equal to the
second. If ccis omitted, condit ion code flag 0 is assumed.

Compare less than double

c . l t . d c c f s . f t
O x l l 0x11 ft fs cc 0 FC Oxc

Compare less than single

c . l t . s c c f s . f t
0x11 0x10 ft fs cc 0 FC Oxc

Compare the f loating-point double (single) in register fs against the one in ft
and set the condition flag cc to 1 if the first is less than the second. If cc is omitted,
condition code flag 0 is assumed.

Convert single to double

c v t . d . s f d , f s
O x l l 0x10 fs fd 0x21

Convert integer to double

c v t . d . w f d , f s
O x l l 0x14 fs fd 0x21

Convert the single precision floating-point number or integer in register f s to a
double (single) precision number and put it in register f d.

Convert double to single

c v t . s . d f d , f s
O x l l O x l l 0 fs fd 0x20

Convert integer to single

c v t . s . w f d , f s
O x l l 0x14 0 fs fd 0x20

Convert the double precision floating-point number or integer in register f s to a
single precision number and put it in register f d.

B-76 Appendix B Assemblers, Linkers, and the SPIM Simulator

Convert double to integer

c v t . w . d f d . f s
0 x 1 1 0 x 1 1 fs fd 0 x 2 4

Convert single to integer

c v t . w . s f d , f s
0 x 1 1 0 x 1 0 0 fs fd I 0 x 2 4

Convert the double or single precision floating-point number in register f s to an
integer and put it in register f d.

Floating-point divide double

d i v . d f d . f s , f t
0 x 1 1 0 x 1 1 ft fs fd 3

Floating-point divide single

d i v . s f d , f s , f t
0 x 1 1 0 x 1 0 ft fs fd 3

Compute the quotient of the floating-point doubles (singles) in registers f s ' a n d
ft and put it in register fd .

Floating-point floor to word

f l o o r . w . d f d . f s

f l o o r . w . s f d . f s

0 x 1 1 0 x 1 1 0 fs fd Oxf

6 5 5 5 5 6

0 x 1 1 0 x 1 0 0 fs fd Oxf

Compute the floor of the floating-point double (single) in register fs and put the
resulting word in register f d.

Load floating-point double

l . d f d e s t , a d d r e s s pscudoinstniction

B.10 MIPS R2000 Assembly Language B-6 3

Load floating-point single

l . s r d e s t . a d d r e s s psauloinstniction

Load the floating-point double (single) at a d d r e s s into register f d e s t .

Move floating-point double

mov.d fd, fs
O x l l O x l l 0 f s fd 6

Move floating-point single

niov.s f d . f s
O x l l 0 x 1 0 0 f s fd 6

Move the floating-point double (single) from register f s to register fd.

Move conditional floating-point double false

m o v f . d f d , f s , c c
O x l l O x l l c c f s fd O x l l

Move conditional floating-point single false

m o v f . s f d , f s , c c
O x l l 0 x 1 0 CC r s fd O x l l

Move the floating-point double (single) from register f s to register f d if condition
code flag cc is' 0. If cc is omitted, condition code flag 0 is assumed.

Move conditional floating-point double true

m o v t . d f d , f s . c c
0 x 1 1 0 x 1 1 c c f s fd O x l l

Move conditional floating-point single true

movL.s fd. fs. cc
O x l l 0 x 1 0 c c f s fd O x l l

B-78 Appendix B Assemblers, Linkers, and the SPIM Simulator

Move the floating-point double (single) from register f s to register f d if condit ion
code flag ccis 1. If ccis omitted, condition code flag 0 is assumed.

Move conditional floating-point double not zero

movn .d f d , fs , r
0 x 1 1 0 x 1 1 rt fs fd 0 x 1 3

Move conditional floating-point single not zero

movn.s f d . f s , r t
0 x 1 1 0 x 1 0 rt fs fd 0 x 1 3

Move the floating-point double (single) from register f s to register f d if processor
register rt is not 0.

Move conditional floating-point double zero

movz.d f d , f s , r t
0 x 1 1 0 x 1 1 rt fs fd 0 x 1 2

Move conditional floating-point single zero

m o v z . s f d , f s . r t
0x11 0x10 rt fs fd 0x12

Move the floating-point double (single) from register f s to register fd if processor
register rt is 0.

Floating-point multiply double

mul .d f d . f s , f t
0x11 0x11 ft fs fd 2

Floating-point multiply single

m u l . s f d , f s , f t
0x11 0x10 ft fs fd 2

Compute the product of the floating-point doubles (singles) in registers f s and ft
and put it in register f d.

Negate double

n e g . d f d , f s
0x11 0x11 0 fs fd 7
6 5 5 5 5 6

B.10 MIPS R2000 Assembly Language B-6 3

Negate single

n e g . s f d , f s
O x l l 0x10 0 fs fd 7

Negate the floating-point double (single) in register f s and put it in register fcl.

Floating-point round to word

r o u n d . w . d f d , f s
O x l l O x l l 0 fs fd Oxc
6 5 5 5 5 6

O x l l 0x10 0 fs fd Oxc

Round the floating-point double (single) value in register f s , convert to a 32-bit
fixed-point value, and put the resulting word in register f d.

Square root double

s q r t . d f d , f s

Square root single

s q r t . s f d . f s

O x l l O x l l 0 fs fd 4
6 5 5 5 5 6

O x l l 0x10 0 fs fd 4

Compute the square root of the floating-point double (single) in register f s and
put it in register f d .

Store floating-point double

s . d f d e s t . a d d r e s s pscudoinstniction

Store floating-point single

. s . s f d e s t , a d d r e s s pscudoinstniction

Store the floating-point double (single) in register f d e s t at address.

Floating-point subtract double

s u b . d f d . f s . f t
O x l l O x l l ft fs fd 1

B-80 Appendix B Assemblers, Linkers, and the SPIM Simulator

Floating-point subtract single

s u b . s f d . f s , f t
O x l l 0 x 1 0 ft fs fd 1

Compute the difference of the floating-point doubles (singles) in registers f s and
ft and put it in register f d .
Floating-point truncate to word

t r u n c . w . d f d , f s

t r u n c . w . s f d , f s

O x l l O x l l 0 fs fd Oxd

6 5 5 5 5 6

O x l l 0 x 1 0 0 fs fd Oxd

Truncate the floating-point double (single) value in register f s , convert to a 32-bit
fixed-point value, and put the resulting word in register f d.

Exception and Interrupt Instructions
Exception return

e r e t
0 x 1 0 1 0 0 x 1 8

Set the EXL bit in coprocessor O's Status register to 0 and return to the instruction
pointed to by coprocessor O's EPC register.

System call

s y s c a l 1
Oxc

20

Register SvO contains the number of the system call (see Figure B.9.1) provided
by SPIM.

Break

b r e a k c o d e
0 code Oxd

Cause exception code. Exception 1 is reserved for the debugger.

No operation

nop
0 0 0 0 0 0

Do nothing.

B . l l Concluding Remarks B-81

Concluding Remarks

Programming in assembly language requires a programmer to trade helpful fea-
tures of high-level languages—such as data structures, type checking, and control
constructs—for complete control over the instructions that a computer executes.
External constraints on some applications, such as response time or program size,
require a programmer to pay close attention to every instruction. However, the
cost of this level of attention is assembly language programs that are longer, more
t ime-consuming to write, and more difficult to maintain than high-level language
programs.

Moreover, three trends are reducing the need to write programs in assembly lan-
guage. The first trend is toward the improvement of compilers. Modern compilers
produce code that is typically comparable to the best handwritten code—and is
sometimes better. The second trend is the introduction of new processors that are
not only faster, but in the case of processors that execute multiple instructions
simultaneously, also more difficult to program by hand. In addition, the rapid
evolution of the modern computer favors high-level language programs that are
not tied to a single architecture. Finally, we witness a trend toward increasingly
complex applications, characterized by complex graphic interfaces and many more
features than their predecessors. Large applications are written by teams of pro-
grammers and require the modularity and semantic checking features provided by
high-level languages.

Alio, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, mid Tools, Reading, MA: Addison-Wesley.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

Sweetman, D. [1999], Sec MIPS Run, San Francisco, CA: Morgan Kaufmann Publishers.

A complete, detailed, and engaging introduction to the MIPS instruction set and assembly language programming
on these machines.

Detailed documentation on the MIPS-32 architecture is available on the Web:

MIPS32™ Architecture for Programmers Volume 1: Introduction to the MIPS32™ Architecture
(http://mips.coin/content/Documcntation/MIPSDocumentation/ProccssorArchitccturc/
ArchitecturcProgrammiugPnb!icationsforMIPS32/MD00082-2B-MIPS32INT-AFP-02.0U.pdf/
getDownload)

MIPS32™ Architecture for Programmers Volume II: The MIPS32™ Instruction Set
(http://mips.com/cotttent/Documctitation/MIPSDocumcntation/ProccssorArchitccturc/
ArchitccturcProgranuningPublicationsforMIPS32/MD00086-2B-MIPS32B!S-AFP-02.00.pdf/gctDo\vnload)

MIPS32™ Architecture for Programmers Volume III: The MIPS32™ Privileged Resource Architecture
(http://inips.coin/content/Docunicutation/MIPSDocuincntation/ProccssorArcliitccturc/
ArchitecturcProgranuniugPublicatioiisforMIPS32/MD00090-2B-MIPS32PRA-AFP-02.00.pdf/gctDownload)

Further Reading

http://mips.coin/content/Documcntation/MIPSDocumentation/ProccssorArchitccturc/
http://mips.com/cotttent/Documctitation/MIPSDocumcntation/ProccssorArchitccturc/
http://inips.coin/content/Docunicutation/MIPSDocuincntation/ProccssorArcliitccturc/

B-82 Appendix B Assemblers, Linkers, and the SPIM Simulator

Exercises

B . l [51 <§B.5> Section B.5 described how memory is partitioned on most MIPS
systems. Propose another way of dividing memory that meets the same goals.
B.2 [20] <§B.6> Rewrite the code for f a c t to use fewer instructions.
B.3 [5] <§B.7> Is it ever safe for a user program to use registers $ kO or $ kl?
B.4 [25] <§B.7> Section B.7 contains code for a very simple exxeption handler. One
serious problem with this handler is that it disables interrupts for a long time. This
means that interrupts from a fast I/O device may be lost. Write a better exception
handler that is interruptable and enables interrupts as quickly as possible.
B.5 [15] <§B.7> The simple exception handler always jumps back to the instruc-
tion following the exception. This works fine unless the instruction that causes the
exception is in the delay slot of a branch. In that case, the next instruction is the
target of the branch. Write a better handler that uses the EPC register to determine
which instruction should be executed after the exception.
B.6 [5] <§B.9> Using SPIM, write and test an adding machine program that
repeatedly reads in integers and adds them into a running sum. The program
should stop when it gets an input that is 0, printing out the sum at that point. Use
the SPIM system calls described on pages B-43 and B-45.
B.7 [5] <§B.9> Using SPIM, write and test a program that reads in three integers
and prints out the sum of the largest two of the three. Use the SPIM system calls
described on pages B-43 and B-45. You can break ties arbitrarily.
B.8 [5] <§B.9> Using SPIM, write and test a program that reads in a positive inte-
ger using the SPIM system calls. If the integer is not positive, the program should
terminate with the message "Invalid Entry"; otherwise the program should print
out the names of the digits of the integers, delimited by exactly one space. For
example, if the user entered "728," the output would be "Seven Two Eight."
B.9 [25] <§B.9> Write and test a MIPS assembly language program to compute
and print the first 100 prime numbers. A number n is prime if no numbers except
1 and n divide it evenly. You should implement two routines:

• t e s t _ p r i m e (n) Return 1 if n is prime and 0 if n is not prime.
• main () Iterate over the integers, testing if each is prime. Print the first

100 numbers that are prime.
Test your programs by running them on SPIM.

B.12 Exercises B-83

B . 1 0 [10] <§§B.6, B.9> Using SPIM, write and test a recursive program for solving
the classic mathematical recreation, the Towers of Hanoi puzzle. (This will require
the use of stack frames to support recursion.) The puzzle consists of three pegs
(1, 2, and 3) and n disks (the number n can vary; typical values might be in the
range from 1 to S). Disk 1 is smaller than disk 2, which is in turn smaller than disk
3, and so forth, with disk n being the largest. Initially, all the disks are on peg 1,
starting with disk n on the bot tom, disk n - 1 on top of that, and so forth, up to
disk 1 on the top. The goal is to move all the disks to peg 2. You may only move one
disk at a time, that is, the top disk from any of the three pegs onto the top of either
of the other two pegs. Moreover, there is a constraint: You must not place a larger
disk on top of a smaller disk.
The C program below can be used to help write your assembly language program.

/ * m o v e n s m a l l e s t d i s k s f r o m s t a r t t o f i n i s h u s i n g
e x t r a * /

v o i d h a n o i (i n t n , i n t s t a r t , i n t f i n i s h , i n t e x t r a))
i f (n != 0) 1

h a n o i (n - l , s t a r t , e x t r a , f i n i s h) ;
p r i n t _ s t r i n g (" M o v e d i s k ") ;
p r i n t _ i n t (n) ;
p r i n t _ s t r i n g (" f r o m p e g ") ;
p r i n t _ i n t (s t a r t) ;
p r i n t _ s t r i n g (" t o p e g ") ;
p r i n t _ i n t (f i n i s h) ;
p r i n t _ s t r i n g (" . \ n ") ;
h a n o i (n - l , e x t r a , f i n i s h , s t a r t) ;

m a i n () I
i n t n ;
p r i n t _ s t r i n g (" E n t e r n u m b e r o f d i s k s > ") ;
n = r e a d _ i n t () ;
h a n o i (n , 1 , 2 , 3) ;
r e t u r n 0 ;

CD information is listed by chap-
ter and section number followed
by page ranges (3.10:6-9) . Page
references preceded by a single
letter refer to appendixes.

1-bit ALU, C - 2 6 - 2 9
adder, C-27
CarryOut, C - 2 8
illustrated, C - 2 9
logical unit for AND/OR, C-27
for most significant bit, C - 3 3
performing AND, OR, and addition,

C - 3 1 , C - 3 3
See also Arithmetic logic unit (ALU)

32-bit ALU, C - 2 9 - 3 8

from 31 copies of 1-bit ALU, C-34
with 32 1-bit ALUs, C - 3 0
defining in Verilog, C - 3 5 - 3 8
illustrated, C - 3 6
ripple carry adder, C-29
tailoring to MIPS, C - 3 1 - 3 5
Sec also Arithmetic logic unit (ALU)

32-bit immediate operands, 128 -29
7090/7094 hardware, CD3.10 :6

A

Absolute references, 142
Abstractions

defined, 20

h a rd wa re/so ft wa re in terface,
2 0 - 2 1

principle, 21
Accumulator architectures, C D 2 . 2 0 : !
Accumulators, CD2.20:1
Acronyms, 8

Addition, 2 2 4 - 2 9
binary, 2 2 4 - 2 5
floating-point, 2 5 0 - 5 4 , 2 5 9 ,

B - 7 3 - 7 4
instructions, B-51
operands, 225
significands, 250
speed, 229
See also Arithmetic

Address-control lines, D-26
Addresses

32-bit immediates, 128-36
base, 83
byte, 84
defined, 82
memory, 91
virtual, 4 9 3 - 9 5 , 514

Addressing

32-bit immediates, 128 -36
base, 133
displacement, 133
intermediate, 132, 133
in jumps and branches, 129-32
MIPS modes, 132-33
PC-relative, 130, 133
pseudodirect, 133
register, 132, 133
x86 modes, 1 6 8 , 1 7 0

Addressing modes, B - 4 5 - 4 7
desktop architectures, E-6
embedded architectures, E-6

Address select logic, D-24, D-25
Address space, 4 9 2 , 4 9 6

extending, 545
f la t , 545
ID (ASID), 510
inadequate, CD5.13-.5
shared, 6 3 9 - 4 0
single physical, 638

unmapped, 514
virtual, 510

Address translation

A M D Opteron X 4 , 5 4 0
defined,493
fast, 502—4
Intel Nehaiem, 540
T L B for, 5 0 2 - 1

Add unsigned instruction, 226
Advanced Technology Attachment (ATA)

disks, 5 7 7 , 6 1 3 , 6 1 4
AGP, A-9
Algol-60, C D 2 . 2 0 : 6 - 7
Aliasing, 508
Alignment restriction, 84
All-pairs N-body algorithm, A-65
Alpha architecture

bit count instructions, E-29
def ined,527
floating-point instructions, 11-28
instructions, E - 2 7 - 2 9
no divide, E-28
PAL code, E-28
unaligned load-store, E-28
VAX floating-point formats, E-29

ALU control, 3 1 6 - 1 8
bits, 317
logic, D-6

mapping to gates, D - 4 - 7
truth tables, D-5
See also Arithmetic logic unit (ALU)

ALU control block, 320
defined, D-4

generating ALU control bits,
D-6

ALUOp, 316, D-6
b i t s , 3 1 7 , 3 1 8
control signal, 320

A M D 6 4 , 167, CD2.20 :5
1-1

1-2 Index

Amdahl's law, 4 7 7 , 6 3 5
corollary, 52
defined, 51
fallacy, 684

A M D Opteron X4 (Barcelona),
2 0 , 4 4 - 5 0 , 300

address translation, 540
architectural registers, 404
base versus fully optimized

performance, 683
caches, 541
characteristics, 677
CPI, miss rates, and DRAM accesses,

542
defined, 677
illustrated, 676
L B M H D performance, 682
memory hierarchies, 5 4 0 - 4 3
microarchitecture, 4 0 4 , 4 0 5
miss penalty reduction techniques,

541—43
pipeline, 4 0 4 - 6
pipeline illustration, 406
roofline model, 678
shared L3 cache, 543
SPEC CPU benchmark, 4 8 - 4 9
SPEC power benchmark,

4 9 - 5 0

S p M V performance, 681
TLB hardware, 540

American Standard Code for Information
Interchange. Set'ASCII

AND gates, C-12 , D-7
AND operation, 103-4 , B-52 , C-6
Annual failure rate (AFR), 5 7 3 , 6 1 3
Antidependence, 397
Antifuse, C - 7 8

Apple computer, CD 1.10:6-7
Application binary interface

(ABI), 21

Application programming interfaces
(APIs)

defined, A-4
graphics, A-14

Architectural registers, 404
Arithmetic, 2 2 2 - 8 3

addition, 2 2 4 - 2 9
division, 2 3 6 - 4 2
floating point, 2 4 2 - 7 0
for multimedia, 2 2 7 - 2 8
multiplication, 2 3 0 - 3 6

subtraction, 2 2 4 - 2 9
Arithmetic instructions

desktop RISC, Ii-11
embedded RISC, E-14
logical, 308
MIPS, B - 5 1 - 5 7
operands, 80
See also Instructions

Arithmetic intensity, 668
Arithmetic logic unit (ALU)

I-bit, C - 2 6 - 2 9
32-bit , C - 2 9 - 3 8
before forwarding, 368
branch datapath, 312
hardware, 226

memory-reference instruction
use, 301

for register values, 308
R-format operations, 310
signed-immediate input, 371
See also ALU control; Control units

ARM instructions, 161-65
12-bit immediate field, 164
addressing modes, 161-63
block loads and stores, 165
brief history, CD2.20:4
calculations, 161-63
compare and conditional branch,

163-64
condition field, 383
data transfer, 162
features, 164-65
formats, 164
logical, 165
MIPS similarities, 162
register-register, 162
unique, E - 3 6 - 3 7

ARPANET, CD6.14 :7
Arrays

logic elements, C - 1 8 - 1 9
multiple dimension, 266
pointers versus, 157-61
procedures for setting to zero,

158

ASCII
binary numbers versus, 123
character representation, 122
defined, 122
symbols, 126

Assembler directives, B-5
Assemblers, 140-42 , B - 1 0 - 1 7

conditional code assembly, B-17
defined, l l . B - 4
function, 141, B-10
macros, B-4, B - 1 5 - 1 7
microcode, D - 3 0
number acceptance, 141
object f i le , 141-12
pseudoinstructions, B-17
relocation information, B-13, B-14
speed, B-13
symbol table, B - I 2

Assembly language
d e f i n e d , 1 1 , 1 3 9
drawbacks, B - 9 - 1 0
floating-point, 260
high-level languages versus, B-12
illustrated, 12
MIPS, 7 8 , 9 8 - 9 9 , B - 4 5 - 8 0
production of, B - 8 - 9
programs, 139

translating into machine language,
9 8 - 9 9

when to use, B - 7 - 9
Asserted signals, 305, C-4
Associativity

in caches, 4 8 2 - 8 3
degree, increasing, 4 8 1 , 5 1 8
floating-point addition, testing,

270-71
increasing, 4 8 6 - 8 7
set, tag size versus, 4 8 6 - 8 7

Asynchronous interconnect, 583
Atomic compare and swap, 139
Atomic exchange, 137
Atomic fetch-and-increment, 139
Atomic memory operation, A-21
Attribute interpolation, A-43—14
Availability, 573

Average memory access time (AMAT), 478
calculating, 4 7 8 - 7 9
defined,478

Backpatching, B-13
Backplane bus, 582
Backups, 6 1 5 - 1 6
Bandwidth

bisection, 661
external to DRAM, 474
1/0,618

Index 1-3

L2 cache, 675
memory, 4 7 1 , 4 7 2
network, 661

Barrier synchronization, A-18
defined, A-20

for thread communication, A-34
Base addressing, 83, 133
Base registers, 83
Basic block, 108-9
Benchmarks

defined, 48
I/O, 5 9 6 - 9 8

Linpack, 664, CD3.10 :3
multicores, 6 5 7 - 8 4
multiprocessor, 6 6 4 - 6 6
NAS parallel, 666
parallel, 665
PARS EC suite, 666
SPEC CPU, 4 8 - 4 9
SPEC power, 4 9 - 5 0
SPECrate, 664

SPLASH/SPLASH 2 , 6 6 4 - 6 6
Stream, 675

Biased notation, 94, 247
Big-endian byte order, 84, B-43
Binary digits. See Bits
Binary numbers

ASCII versus, 123
conversion to decimal numbers, 90
conversion to hexadecimal numbers,

96

defined, 87 .
Bisection bandwidth, 661
Bit error rate (BER), CD6.11 :9
Bit-interleaved parity, 602
Bit maps, 17

defined, 16 ,87
goal, 17
storing, 17

Bits

ALUOp, 3 1 7 , 3 1 8
defined,11
dirty, 501
done, 588
error, 588
guard, 2 6 6 - 6 7
patterns, 269
reference, 499
rounding, 268
sign, 90
state, D-8

sticky, 268
valid, 458

Blocking assignment, C-24
Block-interleaved parity, 6 0 2 - 3
Blocks

combinational, C-4
defined,454
f i n d i n g , 5 1 9 - 2 0
flexible placement, 4 7 9 - 8 4
least recently used (LRU), 485
loads/stores, 165
locating in cache, 4 8 4 - 8 5
miss rate and, 465
multiword, mapping addresses

t o , 4 6 3 - 6 4
placement locations, 5 1 8 - 1 9
placement strategies, 481
replacement selection, 485
replacement strategies, 520 -21
spatial locality exploitation, 464
state, C-4
valid data, 458

Boolean algebra, C-6
Bounds check shortcut, 110
Branch datapath

ALU, 312
operations, 311

Branch delay slots
defined, 381
scheduling, 382

Branch equal, 377
Branches

addressing in, 129-32
compiler creation, 107
condition, 313
decision, moving up, 377
delayed, 111 ,313 , 3 4 3 , 3 7 7 - 7 9 , 381,

382
ending, 108

execution in ID stage, 378
pipelined, 378
target address, 378
unconditional, i06
See also Conditional branches

Branch hazards. See Control hazards
Branch history tables. See Branch

prediction, buffers
Branch instructions, B - 5 9 - 6 3

jump instruction versus, 328
list of, B - 6 0 - 6 3
pipeline impact, 376

Branch not taken
assumption, 377
defined,311

Branch-on-equal instruction, 326
Branch prediction

buffers, 380, 381
as control hazard solution, 342
defined,341

dynamic, 341, 342, 3 8 0 - 8 3
static, 393

Branch predictors
accuracy, 381
correlation, 383
information from, 382
tournament, 383

Branch taken

cost reduction, 377
defined,311

Branch target
addresses, 310
buffers, 383

Bubbles, 374
Bubble Sort, 156

Bus-based coherent multiprocessors,
CD7.14 :6

Buses, 584, 585
backplane, 582
defined, C-19
processor-memory, 582
synchronous, 583

Bytes

addressing, 84
order, 84, B-43

C

Cache-aware instructions, 547
Cache coherence, 5 3 4 - 3 8

coherence, 534
consistency, 535
enforcement schemes, 536
implementation techniques,

CD5.9.-10-11
migration, 536
problem, 5 3 4 , 5 3 5 , 538
protocol example, C D 5 . 9 : 1 1 - 1 5
protocols, 536
replication, 536

snooping protocol, 5 3 6 - 5 3 7 - 5 3 8
snoopy, CD5.9 :16
state diagram, CD5.9 :15

1-4 Index

Cache coherency protocol, C D 5 . 9 : 1 1 - 1 5
finite-state transition diagram,

CD5.9 :12 , CD5.9 :14
functioning, CD5.9 :12
mechanism, CD5.9 :13
state diagram, CD5.9 :15
states, C D 5 . 9 : 1 1 - 1 2
write-back cache, CD5.9 :12

Cache controllers, 538

cache coherency protocol,
C D 5 . 9 : 1 1 - 1 5

coherent cache implementation
techniques, CD5.9 :10 -11

implementing, C D 5 . 9 : 1 - 1 6
snoopy cache coherence, CD5.9 :16
System'Verilog, C D 5 . 9 : 1 - 9

Cache hits, 508
Cache misses

block replacement on, 520-21
capacity, 523
compulsory, 523
conflict, 523
defined, 465

direct-mapped cache, 482
fully associative cache, 483
handling, 4 6 5 - 6 6
memory-stall clock cycles, 475
reducing with flexible block

placement, 4 7 9 - 8 4
set-associative cache, 4 8 2 - 8 3
steps, 466
in write-through cache, 467

Cache performance, 4 7 5 - 9 2
calculating, 477
hit time and, 478
impact on processor

performance, 4 7 6 - 7 7
Caches, 4 5 7 - 7 5

accessing, 4 5 9 - 6 5
associativity in, 4 8 2 - 8 3
bits in, 463
bits needed for, 460
contents illustration, 461
defined,20, 457

direct-mapped, 4 5 7 , 4 5 9 , 4 6 3 , 4 7 9
disk controller, 578
empty, 460
flushing, 595

FSM for controlling, 5 2 9 - 3 9
fully associative, 479
GPU, A-38

inconsistent, 4 6 6
index, 460
Jntrinsity FastMATH example,

4 6 8 - 7 0
locating blocks in, 4 8 4 - 8 5
locations, 458

memory system design, 4 7 1 - 7 4
multilevel, 475, 4 8 7 - 9 1
nonblocking, 541
physically addressed, 508
physically indexed, 507
physically tagged, 507
primary, 4 8 8 , 4 8 9 , 4 9 2
secondary, 4 8 8 , 4 8 9 , 4 9 2
set-associative, 479
simulating, 5 4 3 - 4 4
size, 462
split, 470
summary, 47-1—75
tag field, 460
tags, CD5.9 :10 , CD5.9:11
virtually addressed, 508
virtually indexed, 508
virtually tagged, 508
virtual memory and TLB integration,

5 0 4 - 8

write-back, 4 6 7 , 4 6 8 , 5 2 1 , 522
writes, 4 6 6 - 6 8
write-through, 4 6 7 , 4 6 8 , 5 2 1 , 522
See also Blocks

Callee, 113, 116
Callec-saved register, B-23
Caller, 113

Caller-saved register, B-23
Capabilities, CD5.13 :7
Capacity misses, 523
Carry lookahead, C - 3 8 - 4 7

4-bit ALUs using, C - 4 5
adder, C - 3 9

fast, with first level of abstraction,
C - 3 9 - 4 0

fast, with "infinite" hardware,
C - 3 8 - 3 9

fast, with second level of abstraction,
C - 4 0 - 4 6

plumbing analogy, C-42 , C - 4 3
ripple carry speed versus, C - 4 6
summary, C - 4 6 - 4 7

Carry save adders, 235
Cause register, 590

defined, 386

f ie lds , B-34, B-35
illustrated, 591

C D C 6600, CD 1.10:6, CD4.15 :2
Central processor unit (C P U)

classic performance equation, 3 5 - 3 7
coprocessor 0, B - 3 3 - 3 4
defined, 19
execution time, 30, 31, 32
performance, 3 0 - 3 2
system, time, 30
time, 475
time measurements, 31
user, time, 30
See also Processors

Cg pixel shader program, A - 1 5 - 1 7
Channel controllers, 593
Characters

ASCII representation, 122
in Java, 126-27

Chips. See Integrated circuits (ICs)
C + + language, CD2.15:26, CD2.20 :7
C language

assignment, compiling into MIPS,
7 9 - 8 0

compiling, 161, C D 2 . 1 5 : 1 - 2 ;

compiling assignment with registers,
81-82

compiling while loops in, 1 0 7 - 8
sort algorithms, 157
translation hierarchy, 140
translation to MIPS assembly

language, 79
variables, 118

Classes
defined, CD2.15 :14
packages, CD2.15 :20

Clock cycles
defined, 31
memory-stall, 4 7 5 , 4 7 6
number of registers and, 81
worst-case delay and, 330

Clock cycles per instruction (CPI) , 3 3 - 3 4 ,
341

one level of caching, 488
two levels of caching, 488

Clocking methodology, 3 0 5 - 7 , C - 4 8
defined,305

edge-triggered, 305, 306, C - 4 8 ,
C - 7 3

level-sensitive, C-74 , C - 7 5 - 7 6
for predictability, 305

Index 1-5

Clock rale
defined, 31
frequency switched as

function of, 40
power and, 39

Clocks, C-4 8 - 5 0
edge, C-4 8, C-50
in edge-triggered design, C-73
skew, C-74
specification, C-57
synchronous system, C - 4 8 - 4 9

Clusters, C D 7 . 1 4 : 7 - 8

defined, 632, 641, CD7.14:7
drawbacks, 642
isolation, 644
organization, 631
overhead in division of memory, 642
scientific computing on, CD7.14:7

Cm* , C D 7 . 1 4 : 3 - 4
C.mmp, CD7.14 :3

Coarse-grained multithreading, 6 4 5 - 4 6
Cobol, CD2.20 :6
Code generation, CD2.15 :12
Code motion, CD2.15:6
Combinational blocks, C-4
Combinational control units, D - 4 - 8
Combinational elements, 304
Combinational logic, 306, C - 3 , C - 9 - 2 0

arrays, C - 1 8 - 1 9
decoders, C - 9
defined, C-5
don't cares, C - 1 7 - 1 8
multiplexors, C-IO
ROMs, C - 1 4 - 1 6
two-level, C - 1 1 - 1 4
Verilog, C - 2 3 - 2 6

Commands, to I/O devices, 5 8 8 - 8 9
Commercial computer development,

CD 1.10:3-9
Commit units

buffer, 399
defined, 399
in update control, 402

C o m m o n case fast, 177
C o m m o n subexpression elimination,

CD2.15 :5
Communicat ion, 2 4 - 2 5

overhead, reducing, 43
thread, A-34

Compact code, CD2.20 :3
Compact disks (CDs) , 23, 24

Comparison instructions, B - 5 7 - 5 9
floating-point, B - 7 4 - 7 5
list of, B - 5 7 - 5 9

Comparisons, 108-9

constant operands in, 109
signed versus unsigned, 110

Compilers, 139
branch creation, 107
brief history, CD2.20:8
conservative, C D 2 . 1 5 : 5 - 6
defined,11
front end, CD2.15:2
function, 13, 139, B - 5 - 6
high-level optimizations,

C D 2 . 1 5 : 3 - 4
ILP exploitation, C D 4 . 1 5 : 4 - 5
Just In T ime (J IT) , 148
machine language production, B - 8 - 9 ,

B-10

optimization, 160 ,CD2.20 :8
speculation, 3 9 2 - 9 3
structure, CD2.15:1

Compiling
C assignment statements, 7 9 - 8 0
C language, 107-8, 161, C D 2 . 1 5 : l - 2
floating-point programs, 2 6 2 - 6 5
if-thcn-else, 106
in Java, C D 2 . 1 5 : 1 8 - 1 9
procedures, 114, 117-18
recursive procedures, 117-18
while loops, 107 -8

Compressed sparse row (CSR) matrix,

A-55, A-56
Compulsory misses, 523
Computers

application classes, 5 - 7
applications, 4
arithmetic for, 2 2 2 - 8 3
characteristics, CD 1.10:12
commercial development,

CD 1 .10 :3-9
component organization, 14
components, 1 4 , 2 2 3 , 5 6 9
design measure, 55
desktop, 5, 15
embedded, 5 - 7 , B-7
f i r s t , CD 1.10:1-3
in information revolution, 4
instruction representation, 9 4 - 1 0 1
laptop, 18

performance measurement, CD 1.10:9

principles, 100
rack mount, 606
servers, 5

Compute Unified Device Architecture.
S t r CUDA programming
environment

Conditional branches
ARM, 163

changing program counter
with, 383

compiling if-then-elsc into, 106
defined,105
desktop RISC, E - I 6
embedded RISC, E-16
implementation, 112
in loops, 130
PA-RISC, E-34, E-35
PC-relative addressing, 130
RISC, E-10—16
SPARC, E - 1 0 - 1 2

Conditional move instructions,
383

Condition field, 383
Conflict misses, 523
Constant-manipulating

instructions, B-57
Constant memory, A-40
Constant operands, 8 6 - 8 7

in comparisons, 109
frequent occurrence, 87

Content Addressable Memory

(CAM), 485
Context switch, 510
Control

ALU, 3 1 6 - 1 8
challenge, 384
finishing, 327
forwarding, 366
FSM, D - 8 - 2 1

implementation, optimizing,
D - 2 7 - 2 8

for j u m p instruction, 329
mapping to hardware, D - 2 - 3 2
memory, D-26
organizing, to reduce logic,

D - 3 1 - 3 2
pipelined, 3 5 9 - 6 3

Control flow graphs, C D 2 . 1 5 : 8 - 9
defined, CD2.15 :8
illustrated examples, CD2.15:8 ,

CD2.15:9

1-6 Index

Control functions
ALU, mapping to gates, D - 4 - 7
defining, 321
PLA, implementation, D-7,

D - 2 0 - 2 1
ROM, encoding, D - 1 8 - 1 9
for single-cycle implementation,

327
Control hazards, 3 3 9 - 4 3 , 3 7 3 - 8 4

branch delay reduction, 3 7 7 - 7 9
branch not taken assumption, 377
branch prediction as solution, 342
defined, 339, 376
delayed decision approach, 343
dynamic branch prediction, 3 8 0 - 8 3
logic implementation in Verilog,

C D 4 . 1 2 : 7 - 9
pipeline stalls as solution, 340
pipeline summary, 3 8 3 - 8 4
simplicity, 376
solutions, 340
static multiple-issue processors and,

394
Control lines

asserted, 323
in datapath, 320

execution/address calculation, 361
final three stages, 361
instruction decode/register file read,

361

instruction fetch, 361
memory access, 362
setting of, 3 2 1 , 3 2 3
values, 360
write-back, 362

Control signals
ALUOp, 320
def ined,306
effect of, 321
multi-bit, 322

pipelined datapaths with, 359
truth tables, D-14

Control units, 303
address select logic, D-24, D-25
combinational, implementing,

D - 4 - 8

with explicit counter, D - 2 3
illustrated, 322
logic equations, D- l 1
main, designing, 3 1 8 - 2 6
as microcode, D-28

MIPS, D-10
next-state outputs, D-10, D - 1 2 - 1 3
output, 3 1 6 - 1 7 , D-10
See also Arithmetic logic unit (ALU)

Conversion instructions, 13-75-76
Cooperative thread arrays (CTAs),

A-30
Coprocessors

coprocessor 0, B - 3 3 - 3 4
defined, 266
move instructions, B - 7 1 - 7 2

Copy back. See Write-back
Core MIPS instruction set, 282

abstract view, 302
desktop RISC, E - 9 - 1 1
implementation, 3 0 0 - 3 0 3
implementation illustration, 304
overview, 3 0 1 - 3
subset, 300 -301
See also MIPS

Cores

defined,41
number per chip, 42

Correcting code, 602
Correlation predictor, 383
Cosmic Cube, CD7.14 :6
Count register, B-34
Cray computers, CD3.10:4 , CD3.10:5
Critical word first, 465
Crossbar networks, 662
CTSS (Compatible Time-Sharing

System), CD5.13:8
CUDA programming environment, 659,

A-5, CDA.l 1:5
barrier synchronization, A-18, A-34
defined, A-5

development, A-17, A-18
hierarchy of thread groups, A-18
kernels, A-19, A-24
key abstractions, A-18
paradigm, A - 1 9 - 2 3
parallel plus-scan template, A-61
per-block shared memory, A-58
plus-reduction implementation,

A-63

programs, A-6, A-24
scalable parallel programming with,

A - 1 7 - 2 3
SDK, 172
shared memories, A-18
threads, A-36

D

Databases
brief history, CD6.14:4
Integrated Data Store (IDS) , CD6.14:4
relational, CD6.14 :5

Datacenters, 5

Data flow analysis, CD2.15 :8
Data hazards, 3 3 6 - 3 9 , 3 6 3 - 7 5

defined, 336
forwarding, 336, 3 6 3 - 7 5
load-use, 338, 377
stalls and, 3 7 1 - 7 4
See also Hazards

Data layout directives, B-14
Data-level parallelism, 649
Data movement instructions, B - 7 0 - 7 3
Data parallel problem decomposition,

A-17, A-18
Datapath elements

def ined,307
sharing, 313

Datapaths

branch, 3 1 1 , 3 1 2
building, 3 0 7 - 1 6
control signal truth tables, D-14
control unit, 322
defined, 19
design, 307
exception handling, 387
for fetching instructions, 309
for hazard resolution via forwarding,

370

for jump instruction, 329
for memory instructions, 314
for MIPS architecture, 315
in operation for branch-on-equal

instruction, 326
in operation for load instruction, 325
in operation for R-type

instruction, 324
operation of, 3 2 1 - 2 6
pipelined, 3 4 4 - 5 8
for R-type instructions, 314, 323
single, creating, 3 1 3 - 1 6
single-cycle, 345
static two-issue, 395

Data race, 137
Data rate, 596
Data segment, B-13
Data selectors, 303

Index 1-7

Data structure compression, 680
Data transfer instructions

defined,82
load, 83
offset, 83
store, 85

Sec also Instructions
Deasserted signals, 305, C - 4
Debugging information, 13-13
DEC disk drive, CD6.14:3
Decimal numbers

binary number conversion to, 90
defined,87

Decision-making instructions, 105-12
Decoders, C-9

defined, C-9
two-level, C - 6 5

Decoding machine language, 134
DEC PDP-8, CD 1.10:5
Deep Web, CD6.14 :8
Delayed branches, 111

as control hazard solution, 343
defined,313
embedded RISCs and, E-23
for five-stage pipelines, 382
reducing, 3 7 7 - 7 9
scheduling limitations, 381
Sec also Branches

Delayed decision, 343
DeMorgan's theorems, C - l 1
Denormalized numbers, 270
Dependences •

bubble insertion and, 374
detection, 365
name, 397

between pipeline registers, 367
between pipeline registers and ALU

inputs, 366
sequence, 363

Design

compromises and, 177
datapath, 307
digital, 4 0 6 - 7
I/O system, 5 9 8 - 9 9
logic, 3 0 3 - 7 , C - l - 7 9
main control unit, 3 1 8 - 2 6
memory hierarchy, challenges, 525
pipelining instruction sets, 335

Desktop and server RISCs
addressing modes, E-6
architecture summary, E-4

arithmetic/logical instructions,
E - l l

conditional branches, E-16
constant extension summary, E-9
control instructions, E-11
conventions equivalent to MIPS core,

E-12

data transfer instructions, E-10
features added to, E-45
floating-point instructions, E-12
instruction formats, E-7
multimedia extensions, E - 1 6 - 1 8
multimedia support, E-18
types of, E-3

See also Reduced instruction set
computer (RISC) architectures

Desktop computers
defined,5
illustrated, 15

D flip-flops, C-51 , C-53
Dicing, 46
Dies, 46

Digital design pipeline, 4 0 6 - 7
Digital signal-processing (DSP)

extensions, E-19
Digital video disks (DVDs) , 23, 24
D I M M s (dual inline memory modules),

CD5.13:4
Direct3D, A-13
Direct-mapped caches

address portions, 484
choice of, 520
defined, 4 5 7 , 4 7 9
illustrated, 459
memory block location, 480
misses, 482

single comparator, 485
total number of bits, 463
See also Caches

Direct memory access (D M A)
defined,592
multiple devices, 593
setup, 593
transfers, 593, 595

Dirty bit, 501
Dirty pages, 501
Disk controllers

caches, 578
defined, 576
time, 576

Disk read time, 577

Disk storage, 5 7 5 - 7 9
characteristics, 579
densities, 577
history, CD6.14 :1 -4
interfaces, 5 7 7 - 7 8
as nonvolatile, 575
rotational latency, 576
sectors, 575
seek time, 575
tracks, 575
transfer time, 576

Displacement addressing, 133
Divide algorithm, 239
Dividend, 237
Division, 2 3 6 - 4 2

algorithm, 238
dividend, 237
divisor, 237
faster, 241

floating-point, 259, B-76
hardware, 2 3 7 - 3 9
hardware, improved version,

240

instructions, B - 5 2 - 5 3
in MIPS, 2 4 1 - 4 2
operands, 237
quotient, 237
remainder, 237
signed, 2 3 9 - 4 1
SRT, 241

See also Arithmetic
Divisor, 237
D latches, C-51 , C-52
Done bit, 588
Don't cares, C - l 7 - 1 8

example, C - l 7 - 1 8
term, 318

Double Data Rate RAMs (DDRRAMs) ,
473, C - 6 5

Double precision
defined,245
FMA, A - 4 5 - 4 6
GPU, A - 4 5 - 4 6 , A-74
representation, 249
See also Single precision

Double words, 168
Dynamically linked libraries (DLLs),

145 -46
defined,146

lazy procedure linkage version,
146 ,147

1-8 Index

Dynamic branch prediction, 3 8 0 - 8 3
branch prediction buffer, 380
def ined,380
loops and, 380
See also Control hazards

Dynamic hardware predictors, 3-11
Dynamic multiple-issue processors, 392,

3 9 7 - 4 0 0
pipeline scheduling, 398—<100
superscalar, 397
Sec also Multiple issue

Dynamic pipeline scheduling,
3 9 9 - 4 0 0

commit unit, 399
concept, 400
defined, 398

hardware-based speculation, 400
primary units, 399
reorder buffer, 399
reservation station, 399

Dynamic random access memory
(DRAM), 4 5 3 , 4 7 1 , C - 6 3 - 6 5

bandwidth external to, 474
cost, 23

def ined ,18-19 , C - 6 3
D I M M , CD5.13:4
Double Date Rate (DDR) , 473
early board, CD5.13:4
GPU, A - 3 7 - 3 8
growth of capacity, 27
history, C D 5 . 1 3 : 3 - 4
pass transistor, C - 6 3
S I M M , CD5.13 :4 , CD5.13 :5
single-transistor, C-64
size, 474
speed,23

synchronous (SDRAM), 473, C-60 ,
C - 6 5

two-level decoder, C-65

E

Early restart, 465
Edge-triggered clocking methodology,

305, 306, C-48 , C-73
advantage, C-49
clocks, C-73
defined, C-48
drawbacks, C-74
illustrated, C - 5 0
rising edge/falling edge, C - 4 8

EDSAC (Electronic Delay Storage
Automatic Calculator), CD 1.10:2,
CDS. 13 :1-2

Eispack, CD3.10:3
Electrically erasable programmable

read-only memory (EEPROM),
581

Elements

combinational, 304
datapath, 3 0 7 , 3 1 3
memory, C - 5 0 - 5 8
state, 305, 306, 308, C-48 , C-50

Embedded computers

application requirements, 7
defined, B-7
design, 6

growth, C D 1 . 1 0 : 1 1 - 1 2
Embedded Microprocessor

Benchmark Consortium
(E E M B C) , C D 1 . 1 0 : 1 1 - 1 2

Embedded RISCs
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-14
conditional branches, E-16
constant extension summary, E-9
control instructions, E-15
data transfer instructions, E-13
delayed branch and, E-23
DSP extensions, E-19
general purpose registers, E-5
instruction conventions, E-15
instruction formats, E-8
muhiply-accumulate approaches, E-19
types of, E-4

See also Reduced instruction set
computer (RISC) architectures

Encoding
defined, D-31
floating-point instruction, 261
MIPS instruction, 98, 135, B-49
ROM control function, D - 1 8 - 1 9
ROM logic function, C - 1 5
x86 instruction, 171 -72

ENIAC (Electronic Numerical Integrator
and Calculator), CD 1.10:1,
CD1.10:2 , CD1.10 :3 , CD5. I3 :1

EPIC, CD4.15:4
Error bit, 588
Error correction, C - 6 5 - 6 7
Error detection, 602, C-66

Ethernet, 2 4 , 2 5 , CD6.14 :8
defined, CD6.11 :5
multiple, CD6.11 :6
success, CD6.11 :5

Exception enable, 512
Exception handlers, B - 3 6 - 3 8

defined, B-35
return from, B-38

Exception program counters
(EPCs), 385

address capture, 390
copying, 227
defined,227, 386
in restart determination, 385
transferring, 229

Exceptions, 3 8 4 - 9 1 , B - 3 5 - 3 6
association, 390
datapath with controls for

handling, 387
defined,227, 385
detecting, 385
event types a n d , 3 8 5
imprecise, 390
instructions, B-80

interrupts versus, 3 8 4 - 8 5 >
in MIPS architecture, 3 8 5 - 8 6
overflow, 387
PC, 509, 511
pipelined computer example, 388
in pipelined implementation,

3 8 6 - 9 1
precise, 390
reasons for, 3 8 5 - 8 6
result due to overflow in add

instruction, 389
saving/restoring stage on, 515

Exclusive OR (XOR) instructions, B-57
Executable files, B-4

defined,142
linker production, B-19

Execute/address calculation
control line, 361
load instruction, 350
store instruction, 352

Execute or address calculation stage, 350,
352

Execution time
CPU, 30, 31, 32
pipelining and, 344
as valid performance measure, 54

Explicit counters, D-23 , D-26

Index 1-9

Exponents, 2 4 4 - 4 5
EX stage

load instructions, 350
overflow exception detection, 387
store instructions, 353

External labels, B-10

Facilities, 13-14-17
Failures

disk, rates, 6 1 3 - 1 4
mean time between (M T B F) , 573
mean time to (M T T F) , 573, 574,

6 1 3 , 6 3 0
reasons for, 574
synchronizer, C-77

Fallacies
add immediate unsigned, 276
Amdahl's law, 684

assembly language for performance,
174-75

commercial binary compatibility
importance, 175

defined, 51
disk failure rates, 6 1 3 - 1 4
GPUs, A - 7 2 - 7 4 , A-75
low utilization uses little power, 52
MTTF, 613
peak performance, 6 8 4 - 8 5
pipelining, 407
powerful instructions mean higher

performance, 174
right shift, 2 7 5 - 7 6
See also Pitfalls

'False sharing, 537
Fast carry

with first level of abstraction,
C - 3 9 - 4 0

with "infinite" hardware, C - 3 8 - 3 9
with second level of abstraction,

C - 4 0 - 1 6
Fast Fourier Transforms (FFT) , A-53
Fiber Distributed Data interface (FDDI) ,

CD6.14 :8
Fibre Channel Arbitrated Loop

(FC-AL), C D 6 . l l - . i l
Field programmable devices (FPDs) ,

C - 7 8
Field programmable gate arrays (FPGAs),

C - 7 8

Fields
Cause register, B-34, B-35
defined, 95
format, D-31
MIPS, 9 6 - 9 7
names, 97
Status register, B-34, B -35

Filebench, 597

Files, register, 308, 314, C-50 , C - 5 4 - 5 6
File server benchmark (SPECFS), 597
Fine-grained multithreading, 6 4 5 , 6 4 7
Finite-state machines (FSMs), 5 2 9 - 3 4 ,

C - 6 7 - 7 2
control, D - 8 - 2 2
controllers, 532
defined, 531, C-67
implementation, 531, C - 7 0
Mealy, 532
Moore, 532

for multicycle control, D-9
next-state function, 531, C-67
output function, C-67, C - 6 9
for simple cache controller, 533
state assignment, C-70
state register implementation, C - 7 I
style of, 532
synchronous, C-67
System Verilog, C D 5 . 9 : 6 - 9
traffic light example, C - 6 8 - 7 0

Fixed-function graphics pipelines,

CDA.l 1:1
Flash-based removable memory

cards, 23
Flash memory, 5 8 0 - 8 2

brief history, CD6.14:4
characteristics, 23, 580
defined, 22, 580
as EEPROM, 581
NAND, CD6.14:4
NOR, 581, CD6.14:4
wear leveling, 581

Flat address space, 545
Flip-flops

defined, C-51
D flip-flops, C-51 , C-53

Floatingpoint, 2 4 2 - 7 0
assembly language, 260
backward step, C D 3 . 1 0 : 3 - 4
binary to decimal conversion, 249
branch ,259
challenges, 280

def ined,244
diversity versus portability,

C D 3 . 1 0 : 2 - 3
division, 259
f irst dispute, C D 3 . 1 0 : 1 - 2
form, 245
fused multiply add, 268
guard digits, 2 6 6 - 6 7
history, C D 3 . I 0 : 1 - I 0
IEEE 754 standard, 2 4 6 , 2 4 7
immediate calculations, 266
instruction encoding, 261
machine language, 260
MIPS instruction frequency for, 282
MIPS instructions, 2 5 9 - 6 1
operands, 260

operands variation in x86, 274
overflow, 245
packed format, 274
precision, 271
procedure with two-dimensional

matrices, 2 6 3 - 6 5
programs, compiling, 2 6 2 - 6 5
registers, 265
reprcsen tat ion, 2 4 4 - 5 0
rounding, 2 6 6 - 6 7
sign and magnitude, 245
SSE2 architecture, 2 7 4 - 7 5
subtraction, 259
underflow, 245
units, 267
in x 8 6 , 2 7 2 - 7 4

Floating-point addition, 2 5 0 - 5 4
arithmetic unit block diagram, 254
associativity, testing, 2 7 0 - 7 1
binary, 251, 253
illustrated, 252
instructions, 259, B - 7 3 - 7 4
steps, 2 5 0 - 5 1

Floating-point arithmetic (GPUs) ,
A - 4 1 - 4 6

basic, A-42

double precision, A - 4 5 - 4 6 , A-74
performance, A-44
specialized, A - 4 2 - 4 4
supported formats, A-42
texture operations, A-44

Floating-point instructions, B - 7 3 - 8 0
absolute value, B-73
addition, B - 7 3 - 7 4
comparison, B - 7 4 - 7 5

1-10 Index

Floating-point instructions {continual)
conversion, B - 7 5 - 7 6
desktop RISC, E-12
division, B-76
load, B - 7 6 - 7 7
move, B - 7 7 - 7 8
multiplication, B-78
negation, B - 7 8 - 7 9
SPARC, E-31
square root, B-79
store, B-79
subtraction, B - 7 9 - 8 0
truncation, B-80

Floating-point multiplication,
2 5 5 - 3 9

binary, 2 5 6 - 5 7
illustrated, 258
instructions, 259
significands, 255
steps, 2 5 5 - 5 6

Floating vectors, CD3.10:2
Flow-sensitive information,

CD2.15:14
Flushing instructions, 377, 378

defined,377
exceptions and, 390

For loops, 157

inner, CD2.15 :25
S I M D and, CD7.14 :2

Formal parameters, B-16
Format f ields, D-31
Fortran, CD2.20 :6
Forwarding, 3 6 3 - 7 5

ALU before, 368
control, 366

datapath for hazard resolution, 370
defined, 336
functioning, 3 6 4 - 6 5
graphical representation, 337
illustrations, C D 4 . 1 2 : 2 5 - 3 0
multiple results and, 339
multiplexors, 370
pipeline registers before, 368
with two instructions, 3 3 6 - 3 7
Verilog implementation,

C D 4 . 1 2 : 3 - 5
Forward references, B- l 1
Fractions, 244, 245, 246
Frame buffer, 17
Frame pointers, 119
Front end, CD2.15:2

Fully associative caches
block replacement strategies, 521
choice of, 520
defined,479

memory block location, 480
misses, 483
See also Caches

Fully connected networks, 6 6 1 , 6 6 2
Function code, 97
Fused-multiply-add (FMA) operation,

268, A - 4 5 - 4 6

G
Game consoles, A-9
Gates, C-3 , C - 8

AND, C-12 , D-7
defined, C-8
delays, C-46

mapping ALU control function to,
D - 4 - 7

N A N D . C - 8
NOR, C-8 , C - 5 0

Gateways, CD6.11 :6
General Purpose GPUs (GPGPUs) , 656,

A-5, CDA. 11:3
General-pu rpose registers

architectures, C D 2 . 2 0 : 2 - 3
embedded RISCs, E-5

Generate

defined, C - 4 0
example, C-44
super, C-41

Gigabytes, 23

Global c o m m o n subexpression
elimination, CD2.15 :5

Global memory, A-21, A-39
Global miss rates, 489
Global optimization, C D 2 . 1 5 : 4 - 6

code, CD2.15 :6
defined, CD2.15 :4
implementing, C D 2 . 1 5 : 7 - 1 0

Global pointers, 118
GPU computing

defined, A-5

visual applications, A - 6 - 7
See also Graphics processing

units (GPUs)
GPU system architectures, A-7 -12

graphics logical pipeline, A-10
heterogeneous, A - 7 - 9

implications for, A-24
interfaces and drivers, A-9
unified, A - 1 0 - 1 2

Graph coloring, CD2.15:11
Graphics displays

computer hardware support, 17
LCD, 16

Graphics logical pipeline, A-10
Graphics processing units (GPUs),

6 5 4 - 6 0
as accelerators, 654
attribute interpolation, A - 4 3 - 4 4
computing, CDA. 11:4
defined,44, 634, A-3
driver software, 655
evolution, A-5, CDA. 11:2
fallacies and pitfalls, A - 7 2 - 7 5
floating-point arithmetic, A-17,

A-41—46, A-74
future trends, CDA.l 1:5
GeForce 8-series generation, A-5
general computation, A - 7 3 - 7 4
General Purpose (GPGPUs) , 656, A-5,

CDA.l 1:3
graphics mode, A-6 ,
graphics trends, A-4
history, A - 3 - 4
logical graphics pipeline, A - 1 3 - 1 4
main memory, 655
mapping applications to, A - 5 5 - 7 2
memory, 656

multilevel caches and, 655
N-body applications, A - 6 5 - 7 2
NVIDIA architecture, 6 5 6 - 5 9
parallelism, 655, A-76
parallel memory system, A-36—11
performance doubling, A-4
perspective, 6 5 9 - 6 0
programmable real-time, CDA.l 1 :2-3
programming, A-12 -24
programming interfaces to, 654, A-17
real-time graphics, A-13
scalable, CDA.l 1 :4-5
summary, A-76
Sec also GPU computing

Graphics shader programs, A - 1 4 - 1 5
Gresham's Law, 283, CD3.10:1
Grids, A-19
Guard digits

def ined,266
rounding with, 267

Index M l

H

Half precision, A-42
Halfwords, 126
Handlers

defined, 513
TLB miss, 514

Handshaking protocol, 584
Hard disks

access times, 23
defined,22
diameters, 23
illustrated, 22
read-write head, 22

Flardware

as hierarchical layer, 10
language of, 11-13
operations, 7 7 - 8 0
supporting procedures in, 1 1 2 - 2 2
synthesis, C-21

translating microprograms to, D - 2 8 - 3 2
virtualizable, 527

Hardware-based speculation, 400
Flardware description languages

defined, C - 2 0
using, C - 2 0 - 2 6
VHDL, C - 2 0 - 2 1
Set' also Verilog

Hardware multithreading, 6 4 5 - 4 8
coarse-grained, 6 4 5 - 4 6
def ined,645
f i n e - g r a i n e d , 6 4 5 , 6 4 7
options, 646
simultaneous, 6 4 6 - 4 8

Harvard architecture, CD1.10 :3
Hazard detection units, 372

functions, 373

pipeline connections for, 373
Hazards, 3 3 5 - 1 3

control, 339—13,375-84
data, 3 3 6 - 3 9 , 3 6 3 - 7 5
def ined,335
forwarding and, 371
structural, 3 3 5 - 3 6 , 3 5 2
Sec also Pipelining

Heap

allocating space on, 1 2 0 - 2 2
def ined,120

Heterogeneous systems, A-<F-5
architecture, A - 7 - 9
defined, A-3

Hexadecimal numbers, 9 5 - 9 6
binary number conversion to, 96
defined, 95

High-level languages, 11-13 , B -6
benefits, 13

computer architectures, CD2.20:4
defined,12
importance, 12

High-level optimizations, CD2.15:3—1
Hit rate, 454
Hit time

cache performance and, 478
defined, 455

Flit under miss, 541
Hold time, C-54
Horizontal microcode, D-32
Hot-swapping, 605
Hubs, C D 6 . 1 1 : 6 , C D 6 . 1 1 : 7
Hybrid hard disks, 581

i
IBM 360/85, CDS. 13:6
IBM 370, CD6.14:2
IBM 701, CD 1.10:4
IBM 7030, CD4.15:1
IBM A L O G , C D 3 . 1 0 : 6
IBM Blue Genie, C D 7 . 1 4 : 8 - 9
IBM Cell Q S 2 0

base versus fully optimized
performance, 683

characteristics, 677
defined,679
illustrated, 676
LBMITD performance, 682
roofline model, 678
SpMV performance, 681

IBM Personal Computer, CD 1.10:7,
CD2.20 :5

IBM System/360 computers, CD 1.10:5,
CD3.10:4 , CD3.10:5 , CDS. 13:5

IBM z/VM, CDS. 13:7
ID stage

branch execution in, 378
load instructions, 349
store instruction in, 349

IEEE 754 floating-point standard, 246,
247, C D 3 . 1 0 : 7 - 9

f irst chips, C D 3 . 1 0 : 7 - 9
in GPU arithmetic, A - 4 2 - 4 3
implementation, CD3.10 :9

rounding modes, 268
today, CD3.10 :9
See also Floating point

IEEE 8 0 2 . 1 1 , C D 6 . 1 1 : 8 - 1 0
with base stations, CD6.11 :9
cellular telephony versus, CD6.11 :10
defined, CD6.11 :8

Wired Equivalent privacy, CD6.11:10
IEEE 802.3, CD6.14 :8
1-format, 97
If statements, 130
If-then-else, 106
Immediate instructions, 86
Imprecise interrupts, 390, CD4.15 :3
Index-out-of-bouncls check, 110
Induction variable elimination, CD2.15:6
Inheritance, CD2.15 :14
In-order commit, 400
Input devices, 15
Inputs, 318
Instances, CD2.15:14
Instruction count, 35, 36
Instruction decode/register file read stage

control line, 361
load instruction, 348
store instruction, 352

Instruction execution illustrations,
C D 4 . 1 2 : 1 6 - 3 0

clock cycles 1 and 2, C D 4 . I 2 : 2 0
clock cycles 3 and 4, CD4.12:21
clock cycles 5 and 6, CD4.12:22
clock cycles 7 and 8, CD4.12 :23
clock cycle 9, CD4.12:24
examples, C D 4 . 1 2 : 1 9 - 2 4
fo rwa rd i ng, C D4.12:25,

C D 4 . 1 2 : 2 6 - 2 7
no hazard, C D 4 . 1 2 : 1 6 - 1 9
pipelines with stalls and forwarding,

CD4.12:25, C D 4 . 1 2 : 2 8 - 3 0
Instruction fetch stage

control line, 361
load instruction, 348
store instruction, 352

Instruction formats
ARM, 164
defined, 95

desktop/server RISC architectures,
E-7

embedded RISC architectures, E-8
I-type, 97
H y p e , 129

1-12 Index

Instruction formats (continued)
jump instruction, 328
MIPS, 164
R-type, 97, 319
\ 8 6 , 1 7 3

Instruction latency, 408
Instruction-level parallelism (ILP)

compiler exploitation, C D 4 . 1 5 : 4 - 5
defined, 4 1 , 3 9 1
exploitation, increasing, 402
See also Parallelism

Instruction mix, 37, CD 1.10:9
Instructions, 74 -221

add immediate, 86
addition, 226, B-51
Alpha, E - 2 7 - 2 9

arithmetic-logical, 308, B - 5 1 - 5 7
ARM, 161-65 , E - 3 6 - 3 7
assembly, 80
basic block, 108-9
branch, 15-59-63
cache-aware, 547
comparison, B - 5 7 - 5 9
conditional branch, 105
conditional move, 383
constant-manipulating, B-57
conversion, B - 7 5 - 7 6
core, 282

data movement, B - 7 0 - 7 3
data transfer, 82
decision-making, 105-12
de f ined ,11 ,76
desktop RISC conventions, E-12
division, B - 5 2 - 5 3
as electronic signals, 94
embedded RISC conventions, E-15
encoding, 98

exception and interrupt, B-80
exclusive OR, B-57
fetching, 309
fields, 95

floating-point, 2 5 9 - 6 1 , B - 7 3 - 8 0
floating-point (x 8 6) , 2 7 3
flushing, 3 7 7 , 3 7 8 , 3 9 0
immediate, 86
introduction to, 7 6 - 7 7
I/O, 589

jump, 111 ,113 , B - 6 3 - 6 4
left-to-right flow, 346
load, 83, B - 6 6 - 6 8
load linked, 138

logical operations, 102-5
M32R, E-40
memory access, A-33 -34
memory-reference, 301
MIPS-16 , E - 4 0 - 4 2
MIPS-64 , E - 2 5 - 2 7
multiplication, 235, B - 5 3 - 5 4
negation, B-54
nop, 373

PA-RISC, E - 3 4 - 3 6
performance, 3 3 - 3 4
pipeline sequence, 372
PowerPC, E - 1 2 - 1 3 , E - 3 2 - 3 4
PTX.A-31 , A-32
remainder, B-55

representation in computer, 9 4 - 1 0 1
restartable, 513
resuming, 516
R-type, 3 0 8 - 9
shift, B - 5 5 - 5 6
SPARC, E - 2 9 - 3 2
store, 85, B - 6 8 - 7 0
store conditional, 138-39
subtraction, 226, B - 5 6 - 5 7
SuperH, E - 3 9 - 4 0
thread, A - 3 0 - 3 1
Thumb, E-38
trap, B - 6 4 - 6 6
vector, 652
as words, 76
x86, 165-74
See nlso Arithmetic instructions;

MIPS; Operands
Instruction set architecture

ARM, 161-65

branch address calculation, 310
defined, 21, 54
history, 179
maintaining, 54
protection and, 5 2 8 - 2 9
thread, A - 3 1 - 3 4

virtual machine support, 5 2 7 - 2 8
Instruction sets

ARM, 383
design for pipelining, 335
MIPS, 77, 178, 279
M1PS-32, 281

NVIDIA GeForce 8800, A-49
Pseudo MIPS, 281
x86 growth, 176

Instructions per clock cycle (IPC), 391

Integrated circuits (ICs)
cost, 46
def ined,26
manufacturing process, 45
very large-scale (VLSIs), 26
See also specific chips

Integrated Data Store (IDS) , CD6.14:4
Intel IA-64 architecture, C D 4 . I 5 : 4
Intel Nehalem

address translation for, 540
caches, 541
die processor photo, 539
memory hierarchies, 5 4 0 - 4 3
miss penalty reduction techniques,

5 4 1 - 4 3
TLB hardware for, 540

Intel Paragon, CD7.14 :7
Intel Threading Building Blocks, A-60
Intel Xeon e5345

base versus fully optimized
performance, 683

characteristics, 677
defined, 677
illustrated, 677
L B M H D performance, 682
roofline model, 678
SpMV performance, 681

Interference graphs, CD2.15:11
Interleaving, 4 7 2 , 4 7 4
Intermediate addressing, 132, 133
Internetworking, C D 6 . 1 1 : 1 - 3
Intcrprocedural analysis, CD2.15 :13
Interrupt-driven I/O, 589
Interrupt enable, 512
Interrupt handlers, B-33
Interrupt priority levels (IPLs),

5 9 0 - 9 2
defined,591
higher, 592

Interrupts

defined, 227, 385
event types a n d , 3 8 5
exceptions versus, 3 8 4 - 8 5
imprecise, 390, CD4.15 :3
instructions, B-80
precise, 390
vectored, 386

Intrinsity FastMATH processor,
4 6 8 - 7 0

caches, 469

data miss rates, 4 7 0 , 4 8 4

Index 1-13

defined,468
read processing, 506
TLB, 504
write-through processing, 506

Inverted page tables, 500
I/O, B - 3 8 - 4 0 , C D 6 . 1 4 : 1 - 8

bandwidth, 618
chip sets, 586

coherence problem for, 595
controllers, 5 9 3 , 6 1 5
future directions, 618
instructions, 589
interrupt-driven, 589
memory-mapped, 588, B-38
parallelism and, 5 9 9 - 6 0 6
performance, 572
performance measures, 5 9 6 - 9 8
processor communicat ion,

5 8 9 - 9 0
rate, 5 9 6 , 6 1 0 , 6 1 1
requests, 572, 618
standards, 584
system performance impact,

5 9 9 - 6 0 0
systems, 570
transactions, 583

I/O benchmarks, 5 9 6 - 9 7
•file system, 5 9 7 - 9 8
transaction processing,

5 9 6 - 9 7
Web, 5 9 7 - 9 8
Sec also Benchmarks

I/O devices

characteristics, 571
commands to, 5 8 8 - 8 9
diversity, 571
expandability, 572
illustrated, 570
interfacing, 5 8 6 - 9 5
maximum number, 617
multiple paths to, 618
priorities, 5 9 0 - 9 2
reads/writes to, 572
transfers, 585, 5 9 2 - 9 3

I/O interconnects
function, 583
of x86 processors, 5 8 4 - 8 6

I/O systems

design, 5 9 8 - 9 9
design example, 6 0 9 - 1 1
history, 618

operating system responsibilities
a n d , 5 8 7 - 8 8

organization, 585
peak transfer rate, 617
performance, 618
power evaluation, 6 1 1 - 1 2
weakest link, 598

Issue packets, 393

J

Java
bytecode, 147
bytecode architecture, CD2.15 :16
characters in, 126-27
compiling in, C D 2 . 1 5 : 1 8 - 1 9
goals, 146

interpreting, 148, 161, C D 2 . 1 5 : 1 4 - 1 5
keywords, CD2.15 :20
method invocation in,

C D 2 . 1 5 : 1 9 - 2 0
pointers, CD2.15 :25
primitive types, CD2.15 :25
programs, starting, 146—18
reference types, CD2.15 :25
sort algorithms, 157
strings in, 126-27
translation hierarchy, 148
while loop compilation in,

C D 2 . 1 5 : 1 7 - 1 8
Java Virtual Machine (JVM) , 147,

CD2.15 :15
Job-level parallelism, 632
J-type instruction format, 129
Jump instructions, 312

branch instruction versus, 328
control and datapath for, 329
implementing, 328
instruction format, 328
list of, B - 6 3 - 6 4
MIPS-64 , E-26

Just In Time (J IT) compilers,
148 ,687

K

Karnaugh m a p s , C - l 8
Kernel mode, 509
Kernels

CUDA, A-19, A-24
defined, A-19

L

Labels
global, II-10, B - l l
local, B - l l

LA PACK, 271
Laptop computers, 18
Large-scale multiprocessors,

C D 7 . 1 4 : 6 - 7 , C D 7 . 1 4 : 8 - 9
Latches

defined, C-51
D latch, C-51 , C - 5 2

Latency
constraints, 598
instruction, 408
memory, A - 7 4 - 7 5
pipeline, 344
rotational, 576
use, 3 9 5 , 3 9 6

Lattice Boltzmann Magneto-
Hydrodynamics (L B M H D) ,
6 8 0 - 8 2

def ined,680
optimizations, 6 8 1 - 8 2
performance, 682

Leaf procedures
defined,116
example, 126
See also Procedures

Least recently used (LRU)

as block replacement strategy, 521
defined, 485
pages, 499

Least significant bits, C-32
defined, 88
SPARC, IZ-31

Left-to-right instruction flow, 346
Level-sensitive clocking, C-74 ,

C - 7 5 - 7 6
defined, C-74
two-phase, C-75

Lines. Sec Blocks
Linkers, 142-45 , B - 1 8 - 1 9

defined,142, B-4
executable files, 142, B-19
function illustration, B-19
steps, 142
using, 143-45

Linking object files, 1 4 3 - 4 5
Linpack, 664, CD3.10:3
Liquid crystal displays (LCDs), 16

1-14 Index

LISP, SPARC support, E-30
Little-endian byte order, B-43
Live range, CD2.15 :10
Livermore Loops, CD 1.10:10
Load balancing, 6 3 7 - 3 8
Loaders, 145
Loading, B - 1 9 - 2 0
Load instructions

access, A-41
base register, 319
block, 165
compiling with, 85
datapath in operation for, 325
defined, 83
details, B - 6 6 - 6 8
EX stage, 350
f l o a t i n g - p o i n t , B - 7 6 - 7 7
halfword unsigned, 126
ID stage, 349
IF stage, 349
linked, 138, 139
list of, B - 6 6 - 6 8
load byte unsigned, 124
load half, 126

load upper immediate, 128, 129
MEM stage, 351
pipelined datapath in, 355
signed, 124

unit for implementing, 311
unsigned, 124
WB stage, 351
Sl'c also Store instructions

Load-store architectures, CD2.20:2
Load-use data hazard, 338, 377
Load-use stalls, 377
Load word, 83, 85

Local area networks (LANs), CD6 .11 :5 -8 ,
CD6.14:8

defined, 25
Ethernet, C D 6 . 1 1 : 5 - 6
hubs, CD6.11 :6 , CD6.11-.7
routers, CD6.11:6
switches, C D 6 . 1 1 : 6 - 7
wireless, CD6 .11 :8 -11
Sec also Networks

Locality

principle, 452, 453
spatial, 4 5 2 - 5 3 , 4 5 6
temporal, 4 5 2 , 4 5 3 , 4 5 6

Local labels, B - l 1
Local memory, A-21, A-40

Local miss rates, 489
Local optimization, C D 2 . 1 5 : 4 - 6

defined, CD2.15:4
implementing, CD2.15 :7
Sec also Optimization

Locks, 639

Lock synchronization, 137
Logic

address select, D-24 , D-25
ALU control, D - 6
combinational, 306, C-5 , C - 9 - 2 0
components, 305
control unit equations, D - l 1
design, 3 0 3 - 7 , C - 1 - 7 9
equations, C-7
minimization, C - 1 8
programmable array (PAL), C - 7 8
sequential, C-5 , C - 5 6 - 5 8
two-level, C - 1 1 - 1 4

Logical operations, 102 -5
AND, 103-1 , B-52
ARM, 165
def ined ,102-5
desktop RISC, E-11
embedded RISC, E-14
MIPS, B - 5 1 - 5 7
NOR, 104—5, B -54
NOT, 104, B -55
OR, 104, B-55
shifts, 102

Long-haul networks, CD6.11 :5
Long instruction word (LIW),

CD4.15 :4
Lookup tables (LUTs), C-79
Loops, 107-8

conditional branches in, 130
defined, 107
for, 157, CD2.15 :25
prediction and, 380
test, 158, 159
while, compiling, 107-8

Loop unrolling

defined, 397, CD2.15:3
for multiple-issue pipelines, 397
register renaming and, 397

EV9

M32R, E-15, E-40
Machine code, 95
Machine instructions, 95

Machine language
branch offset in, 131-32
decoding, 134
def ined,11 ,95 , B-3
floating-point, 260
illustrated, 12
MIPS, 100
SRAM, 20

translating MIPS assembly language
into, 9 8 - 9 9

Macros
defined, B-4
example, B - l 5 - 1 7
use of, B - l 5

Magnetic disks. See Hard disks
Magnetic tapes, 6 1 5 - 1 6

defined,23
use history, 6 1 5 - 1 6

Main memory, 493
defined,21
page tables, 501
physical addresses, 4 9 2 , 4 9 3
See also Memory

Mapping applications, A - 5 5 - 7 2
Mark computers, CD1.10:3 ,
Mealy machine, 532, C-68 , C-71 , C - 7 2
Mean time between failures

(M T B F) , 573
Mean time to failure (M T T F) , 5 7 3 , 5 7 4

fallacies, 613
ratings, 600

Mean time to repair (M T T R) , 573, 574
Memory

addresses, 91
affinity, 6 8 0 , 6 8 1
atomic, A-21
bandwidth, 4 7 1 , 4 7 2
cache, 2 0 , 4 5 7 - 9 2
CAM, 485
constant, A-40
control, D-26
defined,17

DRAM, 1 8 - 1 9 , 4 5 3 , 471, 473, C - 6 3 - 6 5
efficiency, 642
f lash, 22, 23, 5 8 0 - 8 2 , CD6.14:4
global, A-21, A-39
GPU, 656
instructions, datapath for, 314
layout, B-21
local, A-21, A-40
main, 21

Index 1-15

nonvolatile, 21
operands, 8 2 - 8 3
parallel system, A-36-41
read-only (ROM) , C - l 4 - 1 6
SDRAM, 473
secondary, 22
shared, A-21, A - 3 9 - 4 0
spaces, A-39
SRAM, C - 5 8 - 6 2
stalls, 478

technologies for building, 2 5 - 2 6
texture, A-40
usage, B - 2 0 - 2 2
virtual, 4 9 2 - 5 1 7
volatile, 21

Memory access instructions, A - 3 3 - 3 4
Memory access stage

control line, 362
load instruction, 350
store instruction, 352

Memory consistency model, 538
Memory elements, C - 5 0 - 5 8

clocked, C-51
D flip-flop, C-51 , C - 5 3
D latch, C - 5 2
DRAMs, C - 6 3 - 6 7
flip-flop, C-51
hold time, C-54
latch, C-51

setup lime, C-53 , C-54
SRAMs, C - 5 8 - 6 2
unclocked, C-51

Memory hierarchies
block (or line), 454
cache performance, 4 7 5 - 9 2
caches, 4 5 7 - 7 5
common framework, 5 1 8 - 2 5
defined, 453
design challenges, 525
development, C D 5 . 1 3 : 5 - 7
exploiting, 4 5 0 - 5 4 8
inclusion, 542
level pairs, 455
multiple levels, 454
overall operation of, 507
parallelism and, 5 3 4 - 3 8
pitfalls, 5 4 3 - 4 7

program execution time and, 491
quantitative design parameters, 518
reliance on, 455
structure, 454

structure diagram, 456
variance, 491
virtual memory, 4 9 2 - 5 1 7

Memory-mapped I/O
defined, 588
use of, B -38

Memory-stall clock cycles, 4 7 5 , 4 7 6
Message passing

defined, 641

multiprocessors, 641—15
Metastability, C-76
Methods

defined, CD2.15:14
invoking in Java, C D 2 . 1 5 : 1 9 - 2 0
static, B-20

Microarchitectures
A M D Opteron X4 (Barcelona), 405
defined,404

Microcode

assembler, D-30
control unit as, D-28
defined, D-27
dispatch ROMs, D - 3 0 - 3 1
field translation, D-29
horizontal, D-32
vertical, D-32

Microinstructions, D-31
Microprocessors

design shift, 633
multicore, 8 , 4 1 , 632

Microprograms

as abstract control representation, D-30
translating to hardware, D - 2 8 - 3 2

Migration, 536

Million instructions per second (MIPS), 53
M in terms

defined, C-12 , D-20
in FLA implementation, D-20

M IP-map, A-44
MIPS, 78, 9 8 - 9 9 , B - 4 5 - 8 0

addressing for 32-bit immediates,
128-36

addressing modes, B-45—17
arithmetic core, 280
arithmetic instructions, 77, B - 5 1 - 5 7
ARM similarities, 162
assembler directive support, B-47—19
assembler syntax, B - 4 7 - 4 9
assembly instruction, mapping, 95
branch instructions, B - 5 9 - 6 3
comparison instructions, B - 5 7 - 5 9

compiling C assignment statements
into, 79

compiling complex C assignment
into, 7 9 - 8 0

constant-manipulating instructions,
B-57

control registers, 511
control unit, D-10
CPU, B-46
divide in, 2 4 1 - 4 2
exceptions in, 3 8 5 - 8 6
fields, 9 6 - 9 7

f loating-point instructions, 2 5 9 - 6 1
FPU, B-46
instruction classes, 179
instruction encoding, 98, 135,15-49
instruction formats, 136, 164, B -49-51
instruction set, 77, 178, 279
jump instructions, B - 6 3 - 6 6
logical instructions, B - 5 1 - 5 7
machine language, 100
memory addresses, 84
memory allocation for program and

data, 120
multiply in, 235
opcode map, B-50
operands, 78
Pseudo, 280, 281
register conventions, 121
static multiple issue with, 3 9 4 - 9 7

MIPS-16 , E - 1 5 - 1 6

16-bit instruction set, E - 4 I - 4 2
immediate fields, E-41
instructions, E - 4 0 - 4 2
MIPS core instruction changes, F-42
PC-relative addressing, E-41

MIPS-32 instruction set, 281
MIPS-64 instructions, E - 2 5 - 2 7

conditional procedure call

instructions, E-27
constant shift amount, E-25
jump/call not PC-relative, E-26
move to/from control registers, E-26
nonaligned data transfers, E-25
NOR, E-25

parallel single precision floating-point
operations, E-27

reciprocal and reciprocal square root,
E-27

SYSCALL, E-25
T L B instructions, E - 2 6 - 2 7

1-16 Index

MIPS core
architecture, 243
arithmetic/logical instructions

not in, E-21, E-23
common extensions to, E - 2 0 - 2 5
control instructions not in, E-21
data transfer instructions not in,

E-20, E-22
floating-point instructions

not in, E-22
instruction set, 2 8 2 , 3 0 0 - 3 0 3 ,

E - 9 - 1 0
Mirroring, 602
Miss penalty

defined, 455
determination, 464
multilevel caches, reducing, 487-91
reduction techniques, 541—13

Miss rates

block size versus, 465
data cache, 519
defined,454
global, 489
improvement, 464
Intrinsity FastMATH processor, 470
local, 489
miss sources, 524
split cache, 470

Miss under miss, 541
Modules, 13-4

Moore machines, 532, C-68 , C-71 , C-72
Moore's law, 654, A - 7 2 - 7 3
Most significant bit

I-bit ALU for, C-33
defined, 88

Motherboards, 17
Mouse anatomy, 16
Move instructions, 13-70-73

coprocessor, 13-71—72
details, 13-70-73
floating-point, 13-77-78

M S - D O S , CD5.13 :10 -11
Multicore multiprocessors, 41

benchmarking with roolline model,
6 7 5 - 8 4

characteristics, 677
defined, 8 , 6 3 2
system organization, 676
two sockets, 676

MULTICS (Multiplexed Information and
Computing Service), C D 5 . 1 3 : 8 - 9

Multilevel caches
complications, 489
defined,475, 489
miss penalty, reducing, 4 8 7 - 9 1
performance of, 4 8 7 - 8 8
summary, 4 9 1 - 9 2
See also Caches

Multimedia arithmetic, 2 2 7 - 2 8
Multimedia extensions

desktop/server RISCs, E - 1 6 - 1 8
vector versus, 653

Multiple-clock-cycle pipeline
diagrams, 356

defined, 356
five instructions, 357
illustrated, 357

Multiple dimension arrays, 266
Multiple instruction multiple data

(M I M D) , 659
defined,648

first multiprocessor, CD7.14 :3
Multiple instruction single data (M1SD),

649

Multiple issue, 3 9 1 - 1 0 0
code scheduling, 396
defined,391
dynamic, 3 9 2 , 3 9 7 - 4 0 0
issue packets, 393
loop unrolling and, 397
processors, 3 9 1 , 3 9 2
static, 3 9 2 , 3 9 3 - 9 7
throughput and,401

Multiplexors, C - 1 0
controls, 531
in datapath, 320
defined, 302

forwarding, control values, 370
selector control, 314
two-input, C - 1 0

Multiplicand, 230
Multiplication, 2 3 0 - 3 6

fast, hardware, 236
faster, 235
first algorithm, 232
floating-point, 255-58 ,13-78
hardware, 2 3 1 - 3 3
instructions, 235,13-53-54
in MIPS, 235
multiplicand, 230
multiplier, 230
operands, 230

product, 230
sequential version, 2 3 1 - 3 3
signed, 234
See also Arithmetic

Multiplier, 230
Multiply-add (M A D) , A - 4 2
Multiply algorithm, 234
Multiprocessors

benchmarks, 6 6 4 - 6 6
bus-based coherent, CD7.14 :6
defined, 632
historical perspective, 688
large-scale, C D 7 . 1 4 : 6 - 7 , C D 7 . 1 4 : 8 - 9
message-passing, 6 4 1 - 4 5
multithreaded architecture,

A-26 -27 , A - 3 5 - 3 6
organization, 6 3 1 , 6 4 1
for performance, 6 8 6 - 8 7
shared memory, 633, 6 3 8 - 4 0
software, 632
TFLOPS, CD7.14 :5
UMA, 639

Multistage networks, 662
Multithreaded multiprocessor

architecture, A - 2 5 - 3 6 ,
conclusion, A-36
ISA, A-31 -34

massive multithreading, A - 2 5 - 2 6
multiprocessor, A-26 -27
multiprocessor comparison,

A - 3 5 - 3 6
SIMT, A - 2 7 - 3 0
special function units (SFUs), A-35
streaming processor (SP), A-34
thread instructions, A-30-31
threads/thread blocks management,

A-30

Multithreading, A - 2 5 - 2 6
coarse-grained, 645—16
defined,634
fine-grained, 645, 647
hardware, 6 4 5 - 4 8
simultaneous (S M T) , 646—18

Must-information, C D 2 . 1 5 : I 4
Mutual exclusion, 137

N

Name dependence, 397
NAND flash memory, CD6.14:4
NAND gates, C - 8

Index 1-17

NAS (NASA Advanced Supcrcomputing),
666

N-body
all-pairs algorithm, A-65
GPU simulation, A-71
mathematics, A - 6 5 - 6 7
multiple threads per body, A - 6 8 - 6 9
optimization, A-67
performance comparison, A - 6 9 - 7 0
results, A - 7 0 - 7 2
shared memory use, A - 6 7 - 6 8

Negation instructions, B-54, B - 7 8 - 7 9
Negation shortcut, 9 1 - 9 2
Nested procedures, 116-18

compiling recursive procedure
showing, 117-18

defined, 116
Network of Workstations, C D 7 . 1 4 : 7 - 8
Networks, 2 4 - 2 5 , 6 1 2 - 1 3 , CD6.11 :1 -11

advantages, 24
bandwidth, 661
characteristics, CD6.11:1
crossbar, 662
fully connected, 661, 662
local area (LANs), 25, C D 6 . 1 1 : 5 - 8 ,

CD6.14 :8
long-haul, CD6.11 :5
multistage, 662
OS1 model layers, CD6.11 :2
peer-to-peer, CD6.11:2
performance, C D 6 . 1 1 : 7 - 8
protocol families/suites, CD6.11:1
switched, CD6.11 :5
wide area (WANs), 25, C D 6 . 1 4 : 7 - 8

Network topologies, 6 6 0 - 6 3
implementing, 6 6 2 - 6 3
multistage, 663

Newton's iteration, 266
Next state

nonsequential, D-24
sequential, D-23

Next-state function, 531, C-67
defined,531

implementing, with sequencer,
D - 2 2 - 2 8

Next-state outputs, D-10, D - 1 2 - 1 3
example, D - 1 2 - 1 3
implementation, D-12
logic equations, D - 1 2 - 1 3
truth tables, D - 1 5

Nonblocking assignment, C-24

Nonblocking caches, 403, 541
Nonuniform memory access

(NUMA), 639
Nonvolatile memory, 21
Nonvolatile storage, 575
Nops, 373
NOR flash memory, 581, CD6.14:4
NOR gates, C - 8

cross-coupled, C - 5 0
D latch implemented with, C - 5 2

NOR operation, 104-5 , B-54, E-25
North bridge, 584
NOT operation, 104, B-55 , C - 6
No write allocation, 467
Numbers

binary, 87

computer versus real-world, 269
decimal, 8 7 , 9 0
denormalized, 270
hexadecimal, 9 5 - 9 6
signed, 8 7 - 9 4
unsigned, 8 7 - 9 4

NVIDIA GeForce 3, CD A. 11:1
NVIDIA GeForce 8800, A - 4 6 - 5 5 ,

CDA. 11:3
all-pairs N-body algorithm, A-71
dense linear algebra computations,

A - 5 1 - 5 3
FFT performance, A-53
instruction set, A-49
performance, A-51
rasterization, A-50
ROP, A-50-51
scalability, A-51
sorting performance, A - 5 4 - 5 5
special function approximation

statistics, A-43
special function unit (SFU), A-50
streaming multiprocessor (SM) ,

A - 4 8 - 4 9
streaming processor, A - 4 9 - 5 0
streaming processor array (SPA), A-46
texture/processor cluster (TPC) ,

A - 4 7 - 4 8

NVIDIA GPU architecture, 6 5 6 - 5 9

O

Object files, 141, B-4
debugging information, 142
defined, B-10

format, B - 1 3 - 1 4
header, 141, B-13
linking, 143—15
relocation information, 141
static data segment, 141
symbol table, 141, 142
text segment, 141

Object-oriented languages
brief history, CD2.20:7
defined, 161, CD2.15 :14
See also Java

One's complement, 94, C - 2 9
Opcodes

control line setting and, 323
d e f i n e d , 9 7 , 3 1 9

OpenGL, A-13

O p e n M P (Open Multiprocessing), 666
Open Systems Interconnect (OSI) model,

CD6.11 :2
Operands, 8 0 - 8 7

32-bit immediate, 128-29
adding, 225
arithmetic instructions, 80
compiling assignment when in

memory, 83
constant, 8 6 - 8 7
division, 237
floating-point, 260
memory, 8 2 - 8 3
MIPS, 78

multiplication, 230
shifting, 164
See also Instructions

Operating systems

brief history, CDS. 13:8-11
def ined,10
disk access scheduling pitfall, 6 1 6 - 1 7
encapsulation, 21

Operations

atomic, implementing, 138
hardware, 7 7 - 8 0
logical, 102-5
x86 integer, 168-71

Optical disks
defined,23
technology, 24

Optimization

class explanation, C D 2 . 1 5 : I 3
compiler, 160
control implementation, D - 2 7 - 2 8
global, C D 2 . 1 5 : 4 - 6

1-18 Index

Optimization (continued)
high-level, CD2.15 :3
local, C D 2 . 1 5 : 4 - 6 , CD2.15:7
manual, 160

OR operation, 104, B-55, C - 6
Out-of-order execution

defined, 400

performance complexity, 489
processors, 403

Output devices, 15
Overflow

def ined ,89 ,245
detection, 226
exceptions, 387
floating point, 245
occurrence, 90
saturation and, 2 2 7 - 2 8
subtraction, 226

P

Packed floating-point format, 274
Page faults, 498

for data access, 513
def ined ,493 ,494
handling, 4 9 5 , 5 1 0 - 1 6
virtual address causing, 514
See also Virtual memory

Pages

defined, 493
dirty, 501
f inding , 496
LRU, 499
offset, 494

physical number, 494
placing, 496
size, 495

virtual number, 494
See also Virtual memory

Page tables, 520
def ined,496
illustrated, 499
indexing, 497
inverted, 500
levels, 5 0 0 - 5 0 1
main memory, 501
register, 497

storage reduction techniques,
5 0 0 - 5 0 1

updating, 496
V M M , 529

Parallelism, 41, 3 9 1 - 1 0 3
data-level, 649
debates, C D 7 . 1 4 : 4 - 6
GPUs and, 655, A-76
instruction-level, 4 1 , 3 9 1 , 4 0 2
I/O and, 5 9 9 - 6 0 6
job-level, 632

memory hierarchies and, 5 3 4 - 3 8
multicore and, 648
multiple issue, 3 9 1 - 1 0 0
multithreading and, 648
performance benefits, 43
process-level, 632
subword, E-17
task, A-24
thread, A-22

Parallel memory system, A-36—! 1
caches, A-38
constant memory, A-40
DRAM considerations, A - 3 7 - 3 8
global memory, A-39
load/store access, A-41
local memory, A-40
memory spaces, A-39
MMU, A - 3 8 - 3 9
ROP, A-41

shared memory, A-39—10
surfaces, A-41
texture memory, A-40
See also Graphics processing units

(GPUs)

Parallel processing programs, 6 3 4 - 3 8
creation difficulty, 6 3 4 - 3 8
defined,632

for message passing, 642—13
for shared address space, 639—10
use of, 686

Parallel reduction, A-62
Parallel scan, A - 6 0 - 6 3

CUDA template, A-61
defined, A-60
inclusive, A-60
tree-based, A-62

Parallel software, 633
Paravirtualization, 547
PA-RISC, E-14, E-17

branch vectored, E-35
conditional branches, E-34, E-35
debug instructions, E-36
decimal operations, E-35
extract and deposit, E-35

instructions, E - 3 4 - 3 6
load and clear instructions, E-36
multiply/add and multiply/

subtract, E-36
nullification, E-34
nullifying branch option, E-25
store bytes short, E-36
synthesized multiply and divide,

E-34—35
Parity, 602

bit-interleaved, 602
block-interleaved, 6 0 2 - 0 4
code, C - 6 5
disk, 603

distributed block-interleaved, 6 0 3 - 4
PARSEC (Princeton Application

Repository for Shared Memory
Computers) , 666

Pass transistor, C - 6 3
PCI-Express (PCle) ,A-8
PC-relative addressing, 130, 133
Peak floating-point performance, 668
Peak transfer rate, 617
Peer-to-peer networks, CD6.11 :2
Pentium bug morality play, 276-7))
Performance, 2 6 - 3 8

assessing, 2 6 - 2 7
classic CPU equation, 3 5 - 3 7
components, 37
CPU, 3 0 - 3 2
defining, 2 7 - 3 0
equation, using, 34
improving, 3 2 - 3 3
instruction, 3 3 - 3 4
measuring, 3 0 - 3 2 , G D I . 1 0 : 9
networks, C D 6 . 1 1 : 7 - 8
program, 38
ratio, 30
relative, 29
response time, 28, 29
sorting, A - 5 4 - 5 5
throughput, 28
time measurement, 30

Petabytes, 5
Physical addresses, 493

defined, 492
mapping to, 494
space, 6 3 8 , 6 4 0

Physically addressed caches, 508
Physical memory. See Main memory
Pipelined branches, 378

Index 1-19

Pipelined control, 3 5 9 - 6 3
control lines, 360, 361
overview illustration, 375
specifying, 361
See tilso Control

Pipelined datapaths, 3 4 4 - 5 8

with connected control signals, 362
with control signals, 359
corrected, 355
illustrated, 347
in load instruction stages, 355

Pipelined dependencies, 364
Pipeline registers

before forwarding, 368
dependences, 366, 367
forwarding unit selection, 371

Pipelines

AMD Opteron X4 (Barcelona), 4 0 4 - 6
branch instruction impact, 376
effectiveness, improving, CD4.15:3—1
execute and address calculation stage,

3 5 0 , 3 5 2
f ive -s tage , 3 3 3 , 3 4 8 - 5 0 , 358
fixed-function graphics, CDA. 11:1
graphic representation, 337,

3 5 6 - 5 8

instruction decode and register file
read stage, 3 4 8 , 3 5 2

instruction fetch stage, 348, 352
instructions sequence, 372
latency, 344

memory access stage, 3 5 0 , 3 5 2
multiple-clock-cycle diagrams, 356
performance bottlenecks, 402
single-clock-cycle diagrams, 356
stages, 333
static two-issue, 394
write-back stage, 3 5 0 , 3 5 2

Pipeline stalls, 3 3 8 - 3 9

avoiding with code reordering,
3 3 8 - 3 9

data hazards a n d , 3 7 1 - 7 4
defined, 338
insertion, 374
load-use, 377
as solution to control hazards, 340

Pipelining, 3 3 0 - 1 4
advanced, 4 0 2 - 3
benefits, 331
control hazards, 339—13
data hazards, 3 3 6 - 3 9

def ined,330
exceptions and, 386-91
execution time and, 344
fallacies, 407
hazards, 3 3 5 - 4 3
instruction set design for, 335
laundry analogy, 331
overview, 3 3 0 - 4 4
paradox, 331
performance improvement, 335
pitfall, 4 0 7 - 8
simultaneous executing instructions,

344
speed-up formula, 333
structural hazards, 3 3 5 - 3 6 , 3 5 2
summary, 343
throughput and ,344

Pitfalls
address space extension, 545
associativity, 545
defined,51
GPUs, A - 7 4 - 7 5
ignoring memory system

behavior, 544
magnetic tape backups, 6 1 5 - 1 6
memory hierarchies, 5 4 3 - 4 7
moving functions to I/O

processor, 615
network feature provision, 6 1 4 - 1 5
operating system disk accesses, 6 1 6 - 1 7
out-of-order processor

evaluation, 545
peak transfer rate performance, 617
performance equation subset, 5 2 - 5 3
pipelining, 4 0 7 - 8
pointer to automatic variables, 175
sequential word addresses, 175
simulating cache, 5 4 3 - 4 4
software development with

multiprocessors, 685
V M M implementation, 5 4 5 - 4 7
Sec also Fallacies

Pixel shader example, A - 1 5 - 1 7
Pizza boxes, 607
Pointers

arrays versus, 157-61
frame, 119
global, 118
incrementing, 159
Java, CD2.15 :25
stack, 114, 116

Polling, 589
Pop, 114
Power

clock rate and, 39
critical nature of, 55
efficiency, 4 0 2 - 3
relative, 40

PowerPC

algebraic right shift, E-33
branch registers, E - 3 2 - 3 3
condition codes, E-12
instructions, E - 1 2 - 1 3
instructions unique to, 12-31—33
load multiple/store multiple, E-33
logical shifted immediate, E-33
rotate with mask, E-33

P -t- Q redundancy, 604
Precise interrupts, 390
Prediction

2-bit scheme, 381
accuracy, 380 ,381
dynamic branch, 3 8 0 - 8 3
loops a n d , 3 8 0
steady-state, 380

Prefetching, 5 4 7 , 6 8 0
Primary memory. Sec Main memory
Primitive types, CD2.15 :25
Priority levels, 5 9 0 - 9 2
Procedure calls

convention, B - 2 2 - 3 3
examples, B - 2 7 - 3 3
frame, B-23
preservation across, 118

Procedures, 112-22
compiling, 114

compiling, showing nested procedure
linking, 117-18

defined,112
execution steps, 112
frames, 119
leaf, 116
nested, 116-18
recursive, 121, B - 2 6 - 2 7
for setting arrays to zero, 158
s o r t , 150-55
s t r c p y . 1 2 4 - 2 5 , 1 2 6
string copy, 124 -26
swap. 149-50

Process identifiers, 510
Process-level parallelism, 632
Processor-memory bus, 582

1-20 Index

Processors, 2 9 8 - 1 0 9
control, 19
as cores, 41
datapath, 19
defined,14, 19
dynamic multiple-issue, 392
I/O communication with, 5 8 9 - 9 0
multiple-issue, 3 9 1 , 3 9 2
out-of-order execution, 4 0 3 , 4 8 9
performance growth, 42
ROP, A-12, A-41
speculation, 3 9 2 - 9 3
static multiple-issue, 392, 3 9 3 - 9 7
streaming, 657, A-34
superscalar, 397, 398, 3 9 9 - 4 0 0 , 646,

CD4.15:4
technologies for building, 2 5 - 2 6
two-issue, 395
vector, 6 5 0 - 5 3
VLIW, 394

Product, 230
Product of sums, C - l 1
Program counters (PCs), 307

changing with conditional

branch, 383
de f ined ,113 ,307
exception, 5 0 9 , 5 1 1
incrementing, 3 0 7 , 3 0 9
instruction updates, 348

Program libraries, B-4
Programmable array logic (PAL), C - 7 8
Programmable logic arrays (PLAs)

component dots illustration, C - l 6
control function implementation,

D-7, D - 2 0 - 2 1
defined, C - l 2
example, C - l 3 - 1 4
illustrated, C - l 3
ROMs and, C - l 5 - 1 6
size, D-20

truth table implementation, C - 1 3
Programmable logic devices (PLDs),

C - 7 8
Programmable real-time graphics,

CDA.l 1 :2-3
Programmable ROMs (PROMs) , C - l 4
Programming languages

brief history of, C D 2 . 2 0 : 6 - 7
object-oriented, 161
variables, 81
See also specific languages

Program performance
elements affecting, 38
understanding, 9

Programs
assembly language, 139
Java, starting, 146—18
parallel processing, 6 3 4 - 3 8
starting, 139-48
translating, 1 3 9 - 4 8

Propagate

defined, C - 4 0
example, C-44
super, C-41

Protected keywords, CD2.15 :20
Protection

defined, 492
group, 602

implementing, 5 0 8 - 1 0
mechanisms, CD5.13:7
VMs for, 526

Protocol families/suites
analogy, C D 6 . 1 1 : 2 - 3
defined, CD6.11:1
goal, CD6.11:2

Protocol stacks, CD6.11 :3
Pseudodirect addressing, 133
Pseudoinstructions

defined, 140
summary, 141

Pseudo MIPS
defined,280
instruction set, 281

Pthreads (POS1X threads), 666
PTX instructions, A-31, A-32
Public keywords, CD2.15:20
Push

defined,114
using, 116

Quad words, 168
Quicksort, 4 8 9 , 4 9 0
Quotient, 237

R

Race, C - 7 3
Radix sort, 489, 490, A - 6 3 - 6 5

CUDA code, A-64
implementation, A - 6 3 - 6 5

RAID. See Redundant arrays of
inexpensive disks

RAM AC (Random Access Method
of Accounting and Control) ,
C D 6 . 1 4 : ! , CD6.14 :2

Rank units, 6 0 6 , 6 0 7
Rasterization, A-50
Raster operation (ROP) processors,

A-12, A-41
fixed function, A-41
GeForce 8800, A-50-51

Raster refresh buffer, 17
Read-only memories (ROMs) , C - 1 4 - 1 6

control entries, D - 1 6 - 1 7
control function encoding, D - 1 8 - 1 9
defined, C-14
dispatch, D-25
implementation, D - 1 5 - 1 9
logic function encoding, C - l 5
overhead, D-18
PLAs and, C - I 5 - 1 6
programmable (P R O M) , C-14
total size, D-16

Read-stall cycles, 476
Receive message routine, 641
Receiver Control register, B -39
Receiver Data register, B-38, B-39
Recursive procedures, 121, B - 2 6 - 2 7

clone invocation, 116
defined, B-26
stack in, B - 2 9 - 3 0
See also Procedures

Reduced instruction set computer (RISC)
architectures, E - 2 - 1 5 , CD2.20 :4 ,
CD4.15 :3

group types, E-3—1
instruction set lineage, E-44
See also Desktop and server RISCs;

Embedded RISCs
Reduction, 640

Redundant arrays of inexpensive disks
(RAID), 6 0 0 - 6 0 6

calculation of, 605
def ined,600

example illustration, 601
history, C D 6 . 1 4 : 6 - 7
PCI controller, 611
popularity, 600
RAID 0 , 6 0 1
RAID 1, 602, CD6.14:6
RAID 1 + 0 , 6 0 6

Index 1-21

RAID 2 , 6 0 2 , CD6.14 :6
RAID 3 , 6 0 2 , CD6.14 :6 , CD6.14 :7
RAID 4 , 6 0 2 - 3 , CD6.14 :6
RAID 5 , 6 0 3 - 4 , CD6.14:6 , CD6.14 :7
RAID 6 , 6 0 4
spread of, CD6.14:7
summary, 6 0 4 - 5
use statistics, CD6.14:7

Reference bit, 499
References

absolute, 142
forward, B - l l
types, CD2.15 :25
unresolved, B-4 , B - I 8

Register addressing, 132, 133
Register allocation, C D 2 . 1 5 : 1 0 - 1 2
Register f i les , C-50 , C - 5 4 - 5 6

in behavioral Verilog, C-57
defined,308, C-50 , C-54
single, 314

two read ports implementation,
C - 5 5

with two read ports/one write port,
C - 5 5

write port implementation, C - 5 6
Register-memory architecture, CD2.20 :2
Registers

architectural, 404
base, 83
callee-saved, B-23
caller-saved, B-23
Cause, 3 8 6 , 5 9 0 , 591, B-35
clock cycle time and, 81
compiling C assignment with, 8 1 - 8 2
Count, B-34
defined, 80
destination, 9 8 , 3 1 9
floating-point, 265
left half, 348
mapping, 94
MIPS conventions, 121
number specification, 309
page table, 497
pipeline, 366, 3 6 7 , 3 6 8 , 3 7 1
primitives, 80 -81
Receiver Control, B-39
Receiver Data, B-38, B-39
renaming, 397
right half, 348
spilling, 86
Status, 3 8 6 , 5 9 0 , 5 9 1 , B-35

temporary, 81, 115
Transmitter Control, B - 3 9 - 4 0
Transmitter Data, B-40
usage convention, B-24
use convention, B-22
variables, 81
x86, 168

Relational databases, CD6.14:5
Relative performance, 29
Relative power, 40
Reliability, 573

Relocation information, B-13, B-14
Remainder

defined,237
instructions, B-55

Reorder buffers, 3 9 9 , 4 0 2 , 4 0 3
Replication, 536
Requested word first, 465
Reservation stations

buffering operands in, 400
defined, 399

Response time, 2 8 , 2 9
Restartable instructions, 513
Restorations, 573
Return address, 113
Return from exception (ERET) , 509
R-format, 319

ALU operations, 310
defined, 97

Ripple carry
adder, C - 2 9

carry lookahead speed versus, C - 4 6
RISC. Sec Desktop and server RISCs;

Embedded RISCs; Reduced
instruction set computer (RISC)
architectures

Roofline model, 6 6 7 - 7 5

benchmarking multicores with,
6 7 5 - 8 4

with ceilings, 672, 674
computational roofline, 673
IBM Cell Q S 2 0 , 6 7 8
illustrated, 669
Intel Xeon e 5 3 4 5 , 6 7 8
I/O intensive kernel, 675
Opteron generations, 670
with overlapping areas shaded, 674
peak floating-point performance, 668
peak memory performance, 669
Sun UltraSPARC T 2 , 6 7 8
with two kernels, 674

Rotational latency, 576
Rounding

accurate, 266
hits, 268
def ined,266
with guard digits, 267
1EFF 754 modes, 268

Routers, CD6.11 :6
Row-major order, 265
R-type instructions, 3 0 8 - 9

datapath for, 323
datapath in operation for, 324

s

Saturation, 2 2 7 - 2 8
Scalable GPUs, CDA.l 1 :4-5
SCALAPAK, 271
Scaling

strong, 637, 638
weak, 637

Scientific notation
adding numbers in, 250
defined,244
for reals, 244

Secondary memory, 22
Sectors, 575
Seek time, 575
Segmentation, 495
Selector values, C - 1 0
Semiconductors, 45
Send message routine, 641
Sensitivity list, C-24
Sequencers

explicit, D-32

implementing next-state function
with, D - 2 2 - 2 8

Sequential logic, C - 5
Servers

cost and capability, 5
defined,5
See also Desktop and server RISCs

Set-associative caches, 4 7 9 - 8 0
address portions, 484
block replacement strategics,

521

choice of, 520
defined,479
four-way, 481, 486
memory-block location, 480
misses, 4 8 2 - 8 3

1-22 Index

Set-associative caches (continual)
11- way, 479
two-way, -181
Sly also Caches

Set instructions, 109
Setup time, C-53 , C-54
Shatters, CDA. 11:3

defined, A-14

floating-point arithmetic, A-14
graphics, A - 1 4 - 1 5
pixel example, A - 1 5 - 1 7

Shading languages, A-14
Shared memory

caching in, A - 5 8 - 6 0
CUDA, A-58
defined, A-21
as low-latency memory, A-21
N-bocly and, A - 6 7 - 6 8
per-CTA, A-39
SRAM banks, A-40
See also Memory

Shared memory multiprocessors (SMP) ,
638—40

defined,633, 638
single physical address

space, 638
synchronization, 639

Shift amount, 97
Shift instructions, 102, B - 5 5 - 5 6
Signals

asserted, 305, C-4
control, 306, 320, 321, 322
deasserted, 305, C-4

Sign and magnitude, 245
Sign bit, 90

Signed division, 239—11
Signed multiplication, 234
Signed numbers, 8 7 - 9 4

sign and magnitude, 89
treating as unsigned, 110

Sign extension, 310
defined,124
shortcut, 9 2 - 9 3

Signiftcands, 246
addition, 250
multiplication, 255

Silicon

crystal ingot, 45
defined, 45
as key hardware technology, 54
wafers, 45

S I M D (Single Instruction Multiple Data),
6 4 9 , 6 5 9

computers, C D 7 . 1 4 : l - 3
data vector, A-35
extensions, CD7.14 :3
for loops and, CD7.14:2
massively parallel multiprocessors,

CD7.14:1
small-scale, CD7.14 :3
vector architecture, 6 5 0 - 5 3
in x 8 6 , 6 4 9 - 5 0

S IMMs (single inline memory modules),

CD5.13:4 , CD5.13 :5
Simple programmable logic devices

(SPLDs), C - 7 8
Simplicity, 176
Simultaneous multithreading

(S M T) , 6 4 6 - 1 8
defined, 646
support, 647
thread-level parallelism, 647
unused issue slots, 648

Single-clock-cycle pipeline
diagrams, 356

def ined,356
illustrated, 358

Single-cycle datapaths
illustrated, 345
instruction execution, 346
See also Datapaths

Single-cycle implementation
control function for, 327
defined, 327

nonpipelined execution versus
pipelined execution, 334

non-use of, 3 2 8 - 3 0
penalty, 330

pipelined performance versus,
3 3 2 - 3 3

Single-instruction multiple-thread
(S I M T) , A - 2 7 - 3 0

defined, A-27
multithreaded warp scheduling, A-28
overhead, A-35
processor architecture, A-28
warp execution and divergence,

A - 2 9 - 3 0
Single instruction single data

(SISD), 648
Single precision

binary representation, 248

defined,245
See also Double precision

Single-program multiple data (SPMD) ,
648, A-22

Small Computer Systems Interface (SCSI)
disks, 577, 613

Smalltalk
Smalltalk-80, CD2.20:7
SPARC support, E-30

Snooping protocol, 5 3 6 - 3 7 , 5 3 8
Snoopy cache coherence, CD5.9 :16
Software

GPU driver, 655
layers, 10
multiprocessor, 632
parallel, 633
as service, 6 0 6 , 6 8 6
systems, 10

Sort algorithms, 157
Sorting performance, A - 5 4 - 5 5
S o r t procedure, 150-55

code for body, 151-53
defined, 150
full procedure, 154-55
passing parameters in, 154 i
preserving registers in, 154
procedure call, 153
register allocation for, 151
See also Procedures

Source files, B-4
Source language, B-6
South bridge, 584
Space allocation

on heap, 120-22
on stack, 119

SPARC

annulling branch, E-23
CASA.E-31
conditional branches, B- l 0 - 1 2
fast traps, E-30
floating-point operations, E-31
instructions, E - 2 9 - 3 2
least significant bits, E-31
multiple precision floating-point

results, E-32
nonfaulting loads, E-32
overlapping integer operations, E-31
quadruple precision floating-point

arithmetic, E-32
register windows, E - 2 9 - 3 0
support for LISP and Smalltalk, E-30

Index 1-23

Sparse matrices, A - 5 5 - 5 8
Sparse Matrix-Vector multiply (SpMV) ,

6 7 9 - 8 0 , 6 8 l . A - 5 5 ,
A-57, A-58

CUDA version, A-57
serial code, A-57
shared memory version, A-59

Spatial locality, 4 5 2 - 5 3
defined,452

large block exploitation of, 464
tendency, 456

SPEC, CD1.10 :10 -11

CPU benchmark, 4 8 - 4 9
defined, CD1.10 :10
power benchmark, 4 9 - 5 0
SPEC89, CD 1.10:10
SPEC92, CD 1.10:11
SPEC95, CD 1.10:11
SPEC2000, CD 1.10:11
S P E C 2 0 0 6 , 2 8 2 , CD1.10:11
SPECPower, 597
SPECrate, 664
SPECratio, 48

Special function units (SFUs), A-35
defined, A-43
GeForce 8800, A-50

Speculation, 3 9 2 - 9 3
•defined,392
hardware-based, 400
implementation, 392
performance and, 393
problems, 393
recovery mechanism, 393

Speed-up challenge, 6 3 5 - 3 8
balancing load, 6 3 7 - 3 8
bigger problem, 6 3 6 - 3 7

Spilling registers, 86, 115
SPIM, B - 4 0 - 4 5

byte order, B-43
defined, B-40
features, B - 4 2 - 4 3
getting started with, B-42
MIPS assembler directives support,

B - 4 7 - 4 9
speed, B-41
system calls, B-43—15
versions, B-42

virtual machine simulation, B - 4 1 - 4 2
SPLASH/SPLASH 2 (Stanford Parallel

Applications for Shared Memory) ,
6 6 4 - 6 6

Split caches, 470
Square root instructions, B-79
Stack architectures, CD2.20.-3
Stack pointers

adjustment, 116
defined,114
values, 116

Stacks

allocating space on, 119
for arguments, 156
defined, 114
pop, 114
push, 114, 116

recursive procedures, B - 2 9 - 3 0
Stack segment, B-22
Stalls, 3 3 8 - 3 9

avoiding with code reordering,
3 3 8 - 3 9

behavioral Verilog with detection,
C D 4 . 1 2 : 5 - 9

data hazards and, 3 7 1 - 7 4
defined,338

illustrations, CD4.12:25,
C D 4 . 1 2 : 2 8 - 3 0

insertion into pipeline, 374
load-use, 377
memory, 478
as solution to control hazard, 340
write-back scheme, 476
write buffer, 476

Standby spares, 605
State

in 2-bit prediction scheme, 381
assignment, C-70 , D-27
bits, D-8
exception, saving/restoring, 515
logic components, 305
specification of, 496

State elements
clock and, 306

combinational logic and, 306
defined,305, C - 4 8
inputs, 305
register file, C-50
in storing/accessing instructions,

308

Static branch prediction, 393
Static data

defined, B-20
as dynamic data, B-21
segment, 120

Static multiple-issue processors, 392,
3 9 3 - 9 7

control hazards and, 394
instruction sets, 393
with MIPS ISA, 3 9 4 - 9 7
See also Multiple issue

Static random access memories (SRAMs),
C - 5 8 - 6 2

array organization, C-62
basic structure, C-61
defined,20, C - 5 8
fixed access time, C - 5 8
large, C - 5 9

read/write initiation, C - 5 9
synchronous (SSRAMs), C-60
three-state buffers, C-59 , C-60

Static variables, 118
Status register, 590

f ie lds, B-34, B-35
illustrated, 591

Steady-state prediction, 380
Sticky bits, 268
Storage

disk, 5 7 5 - 7 9
flash, 5 8 0 - 8 2
nonvolatile, 575

Storage area networks (SANs),
CD6.11:11

Store buffers, 403
Stored program concept, 77

as computer principle, 100
illustrated, 101
principles, 176

Store instructions
access, A-41
base register, 319
b lock ,165
compiling with, 85
conditional, 138 -39
defined,85
details, B - 6 8 - 7 0
EX stage, 353
floating-point, B-79
ID stage, 349
IF stage, 349

instruction dependency, 371
list of, B - 6 8 - 7 0
MEM stage, 354
unit for implementing, 311
WB stage, 354
See also Load instructions

1-24 Index

Store word, 85
S t . rcpy procedure, 12*1-25

defined,124
as leaf procedure, 126
pointers, 126
See also Procedures

Stream benchmark, 675
Streaming multiprocessor (SM), A-48—19
Streaming processors, 657, A-34

array (SPA), A-41 .A-46
GeForce 8800, A - 4 9 - 5 0

Streaming S I M D Extension 2 (SSE2)
floating-point architecture,
2 7 4 - 7 5

Stretch computer, CD4.15:1
Strings

defined, 124
in Java, 126-27
representation, 124

Striping, 601
Strong scaling, 6 3 7 , 6 3 8
Structural hazards, 3 3 5 - 3 6 , 352
Structured Query Language (SQL),

CD6.14 :5
Subnormals, 270
Subtracks, 606
Subtraction, 2 2 4 - 2 9

binary, 2 2 4 - 2 5
f loat ing-point , 259, B - 7 9 - 8 0
instructions, B - 5 6 - 5 7
negative number, 226
overflow, 226
See also Arithmetic

Subword parallelism, E-17
Sum of products, C-11 , C-12
Sun Fire x4150 server, 6 0 6 - 1 2

front/rear illustration, 608
idle and peak power, 612
logical connections and bandwidths,

609

minimum memory, 611
Sun UltraSPARC T2 (Niagara 2),

647, 658
base versus fully optimized

performance, 683
characteristics, 677
defined,677
illustrated, 676
L B M H D performance, 682
roofline model, 678
SpMV performance, 681

Supercomputers, 5, CD4.15:1
SuperH, E-15, E - 3 9 - 4 0
Superscalars

defined, 397, CD4.15:4
dynamic pipeline scheduling,

3 9 8 , 3 9 9 - 4 0 0
multithreading options, 646

Surfaces, A-41
Swap procedure, 149-50

body code, 150
defined,149
full, 150, 151

register allocation, 149 -50
See also Procedures

Swap space, 498
Switched networks, CD6.11 :5
Switches, C D 6 . 1 1 : 6 - 7
Symbol tables, 141, B-12, B -13
Synchronization, 137 -39

barrier, A-18, A-20, A-34
defined, 639
lock, 137

overhead, reducing, 43
unlock, 137

Synchronizers
defined, C - 7 6
from D flip-flop, C - 7 6
failure, C - 7 7

Synchronous bus, 583
Synchronous DRAM (SRAM),

473, C-60 , C - 6 5
Synchronous SRAM (SSRAM),

C - 6 0

Synchronous system, C-48
Syntax tree, CD2.15 :3
System calls, B-43—15

code, B-43—14
defined,509
loading, B-43

System Performance Evaluation

Cooperative. See SPEC
Systems software, 10
System Verilog

cache controller, C D 5 . 9 : l - 9
cache data and tag modules,

CD5.9 :5
FSM, C D 5 . 9 : 6 - 9
simple cache block diagram,

CD5.9 :3
type declarations, CD5.9:1,

CD5.9 :2

T

Tags
def ined,458
in locating block, 484
page tables and, 498
size of, 4 8 6 - 8 7

Tail call, 121
Task identifiers, 510
Task parallelism, A-24
TCP/IP packet format, CD6.11 :4
'lelsa P T X ISA, A - 3 1 - 3 4

arithmetic instructions, A-33
barrier synchronization, A-34
GPU thread instructions, A-32
memory access instructions,

A-33-34
Temporal locality, 453

defined, 452
tendency, 456

Temporary registers, 81, 115
Terabytes, 5

Tesla multiprocessor, 658
Text segment, B-13
Texture memory, A-40 /

Texture/processor duster (T P C) ,
A - 4 7 - 1 8

T FLO PS multiprocessor, CD7.14 :5
Thrashing, 517
Thread blocks, 659

creation, A-23
defined, A-19
managing, A-30
memory sharing, A-20
synchronization, A-20

Thread dispatch, 659
Thread parallelism, A-22
Threads

creation, A-23
CUDA, A-36
ISA, A-31 -34
managing, A-30
memory latencies and, A - 7 4 - 7 5
multiple, per body, A - 6 8 - 6 9
warps, A-27

Three Cs model, 523
Three-state buffers, C-59, C-60
Throughput

defined, 28

multiple issue and, 401
pipelining and, 344, 401

Index 1-25

Thumb, E-15, E-38
l iming

asynchronous inputs, C - 7 6 - 7 7
level-sensitive, C - 7 5 - 7 6
methodologies, C - 7 2 - 7 7
two-phase, C-75

T L B misses, 503
entry point, 514
handler, 514
handling, 5 1 0 - 1 6
minimization, 681
occurrence, 510
problem, 517

See also Translation-lookaside buffer
(T L B)

Tomasulo's algorithm, CD4.15 :2
Tournament branch predicators,

383
Tracks, 575
Transaction Processing Council

(TPC) , 596
Transaction processing (T P)

def ined,596

I/O benchmarks, 5 9 6 - 9 7
Transfer time, 576
Transistors, 26
Translation-lookaside buffer (TLB) ,

•'• 5 0 2 - 1 , CD5.13 :5
associativities, 503
defined,502
illustrated, 502
integration, 5 0 4 - 8
Intrinsity FastMATH, 504
MIPS-64 , E - 2 6 - 2 7
typical values, 503
See also T L B misses

Transmitter Control register,

B-39—10
Transmitter Data register, B-40
Trap instructions, B - 6 4 - 6 6
Tree-based parallel scan, A-62
Truth tables, C-5

ALU control lines, D-5
for control bits, 318
datapath control outputs, D-17
datapath control signals, D-14
defined, 317
example, C-5

next-state output bits, D-15
PLA implementa t ion ,C- l3

Two-level logic, C - 1 1 - 1 4

Two-phase clocking, C - 7 5
Two's complement representation,

8 9 , 9 0
advantage, 90
defined, 89

negation shortcut, 9 1 - 9 2
rule, 93
sign extension shortcut, 9 2 - 9 3

T X - 2 computer, CD7.14:3

u

Unconditional branches, 106
Underflow, 245
Unicode

alphabets, 126
defined,126
example alphabets, 127

Unified GPU architecture,
A - 1 0 - 1 2

illustrated, A-11
processor array, A-11 - 1 2

Uniform memory access (UMA), 6 3 8 - 3 9 ,
A-9

defined,638
multiprocessors, 639

Units

commit , 3 9 9 , 4 0 2
control, 3 0 3 , 3 1 6 - 1 7 , D - 4 - 8 , D-10,

D - 1 2 - 1 3
defined, 267
floating point, 267
hazard detection, 372, 373
for load/store implementation, 311
rank, 6 0 6 , 6 0 7

special function (SFUs), A-35,
A-43, A-50

UNI VAC I, CD 1.10:4
UNIX, CD2.20-.7, CD5.13 :8 -11

AT&T, CD5.13:9

Berkeley version (BSD) , CD5.13 :9
genius, CD5.13.-11
history, CD5.13 :8 -11

Unlock synchronization, 137
Unresolved references

defined, B-4
linkers and, B - l 8

Unsigned numbers, 8 7 - 9 4
Use latency

defined,395
one-instruction, 396

v
Vacuum tubes, 26
Valid bit, 458
Variables

C language, 118
programming language, 81
register, 81
static, 118
storage class, 118
type, 118

VAX architecture, CD2.20 :3 , CD5.13 :6
Vectored interrupts, 386
Vector processors, 6 5 0 - 5 3

conventional code comparison,
6 5 0 - 5 1

instructions, 652
multimedia extensions and, 653
scalar versus, 652
Sec also Processors

Verilog

behavioral definition of MIPS
ALU, C-25

behavioral definition with bypassing,
C D 4 . 1 2 : 4 - 5

behavioral definition with stalls for
loads, C D 4 . 1 2 : 6 - 7 , C D 4 . 1 2 : 8 - 9

behavioral specification, C-21 ,

C D 4 . 1 2 : 2 - 3
behavioral specification of multicycle

MIPS design, C D 4 . 1 2 : 1 1 - 1 2
behavioral specification with simula-

tion, C D 4 . 1 2 : 1 - 5
behavioral specification with stall

detection, C D 4 . 1 2 : 5 - 9
behavioral specification with synthe-

sis, C D 4 . 1 2 : 1 0 - 1 6
blocking assignment, C-24
branch hazard logic implementation,

C D 4 . 1 2 : 7 - 9
combinational logic, C - 2 3 - 2 6
datatypes, C - 2 1 - 2 2
defined, C - 2 0

forwarding implementation,
CD4.12:3

MIPS ALU definition in, C - 3 5 - 3 8
modules, C-23

multicycle MIPS datapath, CD4.12.-13
nonblocking assignment, C-24
operators, C-22
program' structure, C-23

1-26 Index

Verilog {continued)
reg, C - 2 1 - 2 2
sensitivity list, C-24
sequential logic specification,

C - 5 6 - 5 8
structural specification, C-21
wire, C - 2 1 - 2 2

Vertical microcode, D-32
Very large-scale integrated (VLSI)

circuits, 26
Very Long Instruction Word (V L I W)

defined, 393

first generation computers, CD4.15:4
processors, 394

VHDL, C - 2 0 - 2 1
Video graphics array (VGA) controllers,

A - 3 - 4
Virtual addresses

causing page faults, 514
defined,493
mapping from, 494
size, 495

Virtualizable hardware, 527
Virtually addressed caches, 508
Virtual machine monitors (V M M s)

defined, 526
implementing, 5 4 5 - 4 7
laissez-faire attitude, 546
page tables, 529

in performance improvement, 528
requirements, 527

Virtual machines (VMs) , 5 2 5 - 2 9
benefits, 526
defined, 13-41
illusion, 529

instruction set architecture support,
5 2 7 - 2 8

performance improvement, 528
for protection improvement, 526
simulation of, 13-41-42

Virtual memory, 4 9 2 - 5 1 7

address translation, 493, 502—1
defined, 492
integration, 5 0 4 - 8
mechanism, 516
motivations, 4 9 2 - 9 3
page faults, 4 9 3 , 4 9 8
protection implementation, 5 0 8 - 1 0

segmentation, 495
summary, 516
visualization of, 529
writes, 501
See tilso Pages

Visual computing, A-3
Volatile memory, 21

w
Wafers, 46

defects, 46
defined, 45
dies, 46
yield, 46

Warps, 657, A-27
Weak scaling, 637
Wear leveling, 581
Web server benchmark

(SPECWeb), 597
While loops, 107 -8
Whirlwind, CDS. 13:1, CDS. 13:3
Wide area networks (WANs), C D 6 . 1 4 : 7 - 8

defined, 25

history of, C D 6 . 1 4 : 7 - 8
See also Networks

Winchester disk, C D 6 . 1 4 : 2 - 4
Wireless LANs, C D 6 . 1 1 : 8 - 1 0
Words

accessing, 82
defined,81
double, 168
l o a d , 8 3 , 8 5
quad, 168
store, 85

Working set, 517
Worst-case delay, 330
Write-back caches

advantages, 522
cache coherency protocol,

CD5.9 :12
complexity, 468
defined, 4 6 7 , 5 2 1
stalls, 476
write buffers, 468
See also Caches

Write-back stage
control line, 362

load instruction, 350
store instruction, 352

Write buffers
defined,467
stalls, 476

write-back cache, 468
Write invalidate protocols,

5 3 6 , 5 3 7
Writes

complications, 467
expense, 516
handling, 4 6 6 - 6 8
memory hierarchy handling of,

5 2 1 - 2 2
schemes, 467
virtual memory, 501
write-back cache, 4 6 7 , 4 6 8
write-through cache, 4 6 7 , 4 6 8

Write serialization, 5 3 5 - 3 6
Write-stali cycles, 476
Write-through caches

advantages, 522
defined,467, 521
tag mismatch, 468
See also Caches

i

X

X86, 165-74
brief history, CD2.20 :5
conclusion, 172
data addressing modes, 168, 170
evolution, 1 6 5 - 6 8
first address specifier encoding, 174
floating point, 2 7 2 - 7 4
floating-point instructions, 273
historical timeline, 166 -67
instruction encoding, 1 7 1 - 7 2
instruction formats, 173
instruction set growth, 176
instruction types, 169
integer operations, 168-71
I/O interconnects, 5 8 4 - 8 6
registers, 168
S I M D in, 6 4 9 - 5 0

typical instructions/functions, 171
typical operations, 172

Xerox Alto computer, CD 1 .10 :7-8

TAB

E L S E V I E R LICENSE AGREEMENT

P L E A S E R E A D T H E F O L L O W I N G A G R E E M E N T C A R E F U L L Y B E F O R E USING THIS E L E C T R O N I C

M E D I A PRODUCT. THIS E L E C T R O N I C M E D I A P R O D U C T I S L I C E N S E D U N D E R T H E T E R M S

C O N T A I N E D I N THIS E L E C T R O N I C M E D I A L I C E N S E A G R E E M E N T ("Agreement") . B Y USING

THIS E L E C T R O N I C MEDIA PRODUCT, Y O U , A N INDIVIDUAL O R E N T I T Y I N C L U D I N G E M P L O Y -

E E S , A G E N T S AND R E P R E S E N T A T I V E S ("You" or "Your"), A C K N O W L E D G E THAT Y O U HAVE

R E A D THIS A G R E E M E N T , T H A T Y O U U N D E R S T A N D IT, A N D T H A T Y O U A G R E E T O B E B O U N D

B Y T H E T E R M S AND CONDITIONS O F THIS A G R E E M E N T . E L S E V I E R . ("Elsevier") E X P R E S S L Y

D O E S NOT A G R E E T O L I C E N S E THIS E L E C T R O N I C M E D I A P R O D U C T T O Y O U U N L E S S Y O U

A S S E N T T O THIS A G R E E M E N T . I F Y O U D O NOT A G R E E W I T H A N Y O F T H E F O L L O W I N G

T E R M S . Y O U MAY, WITHIN T H I R T Y (30) DAYS A F T E R Y O U R R E C E I P T O F THIS E L E C T R O N I C

M E D I A P R O D U C T R E T U R N T H E U N U S E D E L E C T R O N I C M E D I A P R O D U C T A N D A L L A C C O M P A -

N Y I N G DOCUMENTATION TO E L S E V I E R F O R A F U L L R E F U N D .

D E F I N I T I O N S
As used in this Agreement, these terms shall have the following meanings:

"Proprietary Material" means the valuable and proprietary information content of this Electronic Media Product

including all indexes and graphic materials and software used to access, index, search and retrieve the informa-

tion content from litis Electronic Media Product developed or licensed by Elsevier and/or its affiliates, suppliers

and licensors.

"Electronic Media Product" means lite copy of the Proprietary Material and any other material delivered on

Electronic Media and any other human-readable or machine-readable materials enclosed with tills Agreement,

including without limitation documentation relating to the same.

O W N E R S H I P
This Electronic Media Product has been supplied by and is proprietary to Elsevier and/or its affiliates, sup-

pliers and licensors. The copyright in the Electronic Media Product belongs to Elsevier and/or its affiliates,

suppliers and licensors and is protected by the national and state copyright, trademark, trade secret and other

intellectual property laws of the United States and international treaty provisions, including without limita-

tion the Universal Copyright Convention and the Berne Copyright Convention. You have no ownership rights

in this Electronic Media Product. Except as expressly set forth herein, no part of this Electronic Media

Product, including without limitation the Proprietary Material, may be modified, copied or distributed in

hardcopy or machine-readable form without prior written consent from Elsevier. All rights not expressly

granted to You herein are expressly reserved. Any other use of this Electronic Media Product by any person

or entity is strictly prohibited and a violation of this Agreement.

S C O P E O F R I G H T S L I C E N S E D (P E R M I T T E D U S E S)

Elsevier is granting to You a limited, non-excIusivc, non-transferable license to use this Electronic Media

Product in accordance with the terms of this Agreement. You may use or provide access to this Electronic

Media Product on a single computer or terminal physically located at Your premises and in a secure network

or move this Electronic Medin Product to and use it on another single computer or terminal at the same loca-

tion for personal use only, but under no circumstances may You use or provide access to any part or parts of

this Electronic Media Product on more than one computer or terminal simultaneously.

You shall not (a) copy, download, or otherwise reproduce the Electronic Media Product in any medium,

including, without limitation, online transmissions, local area networks, wide area networks, intranets,

exlranets and the Internet, or in any way, in whole or in part, except that You may print or download limited

portions of the Proprietary Material that nre the results of discrete searches; (b) alter, modify, or adapt the

Electronic Media Product, including but not limited lo decompiling, disassembling, reverse engineering, or

creating derivative works, without the prior written approval of Elsevier, (c) sell, license or otherwise dis-

tribute lo third parties the Electronic Media Product or any part or parts thereof; or (d) alter, remove, obscure

or obstruct the display of any copyright, trademark or other proprietary notice on or in the Electronic Media

Product or on any printout or download of portions of the Proprietary Materials.

R E S T R I C T I O N S O N T R A N S F E R

Tliis License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this

Electronic Media Product, including without limitation the Proprietary Material, may be sold, assigned, trans-

ferred or sublicensed to any odter person, including without limitation by operation of law, without die prior

written consent of Elsevier. Any purported sale, assignment, transfer or sublicense without the prior written con-

sent of Elsevier will be void and will automatically terminate Ihe License granted hereunder.

