

Preface

This book is a general introduction to computability and complexity theory. It should
be of interest to beginning programming language researchers who are interested in

computability and complexity theory, or vice versa.

The view from Olympus

Unlike most fields within computer science, computability and complexity theory deals
with analysis as much as with synthesis and with some concepts of an apparently absolute

nature. Work in logic and recursive function theory spanning nearly the whole

century has quite precisely delineated the concepts and nature of effective procedures,
and decidable and semi-decidable problems, and has established them to be essentially
invariant with respect to the computational device or logical theory used.

Surprisingly , a few similarly invariant concepts have also arisen with respect to computations
within bounded resources: polynomial time (as a function of a decision prob-

lem's input size), polynomial storage, computation with or without nondeterminism :
the ability to "guess,

" and computation with " read-only
" data access.

Computability and complexity theory is, and should be, of central concern for practitioners
as well as theorists. For example,

" lower complexity bounds"
playa role analogous

to channel capacity in engineering: No matter how clever a coding (in either sense
of the word) is used, the bound cannot be overcome.

Unfortunately , the field is well -known for impenetrability of fundamental definitions

, proofs of theorems, and even statements of theorems and definitions of problems.

My thesis is that this owes to some extent to the history of the field , and that a shift away
from the Turing machine- and G Odel number -oriented classical approach es toward a

greater use of concepts familiar from programming languages will render classical computability
and complexity results more accessible to the average computer scientist, and

can make its very strong theorems more visible and applicable to practical problems.
This book covers classical models of computation and central results in computability
and complexity theory. However , it aims to differ from traditional texts in two respects

:

To be significantly more accessible, without

by presenting the theory of computability
sacrificing precision. This is achieved
and complexity using programming

techniques and motivated by programming language theory.1

To relieve some tensions long felt between certain results in complexity theory
and daily programming practice. A better fit is achieved by using a novel model
of computation , differing from traditional ones in certain crucial respects.

Further, many of the sometimes baroque constructions of the classical theory become

markedly simpler in a programming context, and sometimes even lead to stronger theorems
. A side effect is that many constructions that are normally only sketched in a

loose way can be done more precisely and convincingly .

The perspective of the book

For those already familiar with computability and complexity theory, the two points
above can be somewhat elaborated.

As for the first point , I introduce a simple programming language called WHILE,
in essence a small subset of Pascal or LISP. The WHILE language seems to have just
the right mix of expressive power and simplicity . Expressive power is important when

dealing with programs as data objects. The data structures of WHILE are particularly
well suited to this, since they avoid the need for nearly all the technically messy tasks of

assigning C Odel numbers to encode program texts and fragments (used in most if not all
earlier texts), and of devising code to build and decompose G Odel numbers. Simplicity is
also essential to prove theorems about programs and their behavior . This rules out the
use of larger, more powerful languages, since proofs about them would be too complex
to be easily understood .

More generally, I maintain that each of the fields of computability and complexity
theory, and programming languages and semantics has much to offer the other. In the
one direction , computability and complexity theory has a breadth , depth, and generality
not often seen in programming languages, and a tradition for posing precisely defined
and widely known open problems of community -wide interest. Also, questions concerning

the intrinsic impossibility or infeasibility of programs solving certain problems regarding

programs should interest programming language researchers. For instance,

many problems that turn up in the field of analysis and transformation of programs
turn out to be undecidable or of intractably high complexity .

In the other direction , the programming language community has a firm grasp of algorithm

design , presentation and implementation , and several well - developed frameworks
for making precise semantic concepts over a wide range of programming language

concepts , e.g., functional , logic , and imperative programming , control operators ,
communication and con currency , and object - orientation . Moreover programming languages

constitute computation models some of which are more realistic in certain crucial

aspects than traditional models .

A concrete connection between computability and programming languages : the dryas
-dust " s-m -n theorem " has been known in computability since the 1930s, but seemed

Xl- -

2The tension arises because the " trick " used for the Turing machine consb" uction turns out to be useless
when attempting to speed up real computer programs .

only a technical curiosity useful in certain proofs . Nonetheless, and to the surprise of

many people, the s-m-n theorem has proven its worth under the alias partial evaluation or

program specialization in practice over the past 10 years: when implemented efficiently ,
it can be used for realistic compiling, and when self-applied it can be used to generate
program generators as well .

Another cornerstone of computability , the "universal machine,
" is nothing but a selfinterpreter

in programming languages. Further, the " simulations " seen in introductory
computability and complexity texts are mostly achieved by informal compilers or, sometimes

, interpreters .

As for the second point above, a tension has long been felt between computability
and complexity theory, and " real computing ." This is at least in part bacause one of the
first results proven in complexity is the Turing machine speedup theorem, which asserts a
counterintuitive (but hue) fact: that any Turing machine program running in superlinear

time can be replaced by another running twice as fast in the limit .2 The existence of

efficient self-interpreters in programming language theory leads to the opposite result :
a hierarchy theorem showing, for a more realistic computing model than the Turing machine

, that constant time factors do matter. More precisely, given time bound f (n), where
n measures the size of a problem input , there are problems solvable in time 249f (n)
which cannot be solved in time f (n). Thus multiplying the available computing time by
a constant properly increases the class of problems that can be solved.

This and other examples using programming language concepts lead (at least for

computer scientists) to more understandable statements of theorems and proofs in computability
and complexity , and to stronger results. Further new results include " intrinsic

" characterizations of the well -known problem classes LOGSPACE and PTIME on the

basis of program syntax alone, without any externally imposed space or time bounds.

Finally, a number of old computability and complexity questions take on new life

and natural new questions arise. An important class of new questions (not yet fully
resolved) is: what is the effect of the programming styles we employ, i .e., functional style,

imperative style, etc., on the efficiency of the programs we write ?

Introduction to computability (1 semester): chapters 1 through 8, chapter 10, perhaps

just skimming chapter 6; and as much of chapters 9, and 11 through 14, as time
and interest allow .

Introduction to complexity (1 semester): Quickly through chapters 1, 2, 3, 4, 7, 8; then

chapters 15 through 19, chapters 21 through 23, and 25 through 27; and as much

of the remainder as time and interest allow .

Computability and complexity (2 semesters): the whole book.

Exercises. Numerous exercises are included , some theoretical and some more oriented

toward programming . An asterisk . marks ones that are either difficult or long (or both).

Correction of errors and misprints. Reports of errors and misprints may be sent to the

author bye -mail , at neil Gdiku . dk. A current list may be found on the World Wide Web

athttp :/ / wvw.diku .dk/ users / neil / .

Overall comments . Practically minded students may find chapter 6 of particular interest

, since it describes application of the s-m-n theorem, widely called partial evaluation,
to compiling and compiler generation. Theoretically or philosophically minded students

may find chapter 12 of particular interest because of its connections with G Odel's

theorem. Chapter 20 clarifies the question of the existence of "best " or optimal programs :

Levin 's theorem proves that search problems whose solutions can be efficiently checked

possess near-optimal algorithms . In contrast, Blum 's speedup theorem shows that there
exist problems which possess, in a very strong sense, no optimal algorithm at all .

How to read this book

If used as an inb' oduction to computability (recursive function) theory, parts I- ill are

relevant . If used as an inb' oduction to complexity theory, the relevant parts are I, IV, and
V, and chapters 6 through 8. The book contains approximately two semesters' worth of

material which one can "mix and match" to form several courses, for instance:

Novel aspects, in a nutshell

Classical computability results in this book include unsolvability of the halting problem
and several other natural problems, including context-free ambiguity and Hilbert' s

Tenth Problem; Rice's result that all nontrivial extensional program properties are undecidable
; characterizations of the recursive functions, and recursive and recursively

Goals, and chapters that can be touched lightly on first reading. The book's overall computability

goals are first : to argue that the class of all computably solvable problems is
well -defined and independent of the computing devices used to define it , and second:
carefully to explore the boundary zone between computability and uncomputability . Its
complexity goals are analogous, given naturally defined classes of problems solvable
within time or memory resource bounds.

The Church-Turing thesis states that all natural computation models are of equivalent
power . Powerful evidence for it is the fact that any two among a substantial class of
computation models can simulate each other. Unfortunately , proving this fact is un-

avoidably complex since the various computation models must be precisely defined,
and consb"uctions given to show how an arbitrary program in one model can be simulated

by programs in each of the other models.

Chapters 7 and 8 do just this: they argue for the Church-Turing thesis without considering
the time or memory required to do the simulations . Chapters 16, 17 and 18 go

farther, showing that polynomial time-bounded or space-bounded computability are
similarly robust concepts.

Once the Church-Turing thesis has been convincingly demonstrated, a more casual
attitude is quite often taken: algorithms are just sketched, using whichever model is
most convenient for the task at hand . The reader may wish to anticipate this, and at
first encounter only to skim chapters 7, 8, 16, 17 and 18.

Prereq uisi tea

The reader is expected to be at the beginning graduate level having studied some theory
, or a student at the senior undergraduate level with good mathematical maturity .

Specifically, the book uses sets, functions , graphs, induction , and recursive definitions
freely. These concepts are all explained in an appendix , but the appendix may be too
terse to serve as a first introduction to these notions . Familiarity with some programming

language is a necessity; just which language is much less relevant .

enumerable sets; Kleene's s-m-n, second recursion, and normal form theorems; recursion

by fixpoints ; Rogers
'
isomorphism theorem; and GO Oel's incompleteness theorem.

Classical complexity results include study of the hierarchy of classes of problems:

LOGSPACE, NLOGSPACE, PTIME, NPTIME, PSPACE; the robustness of PTIME, PSPACE and

LOGSPACE; complete problems for all these classes except the smallest; the speedup and

gap theorems from Blum 's machine-independent complexity theory.

In contrast with traditional textbooks on computability and complexity , this treatment

also features:

1. A language of WHILE programs with LISP-like data. Advantages: programming
convenience and readability in constructions involving programs as data; and
freedom from storage management problems.

2. Stronger connections with familiar computer science concepts: compilation (simulation

), interpretation (universal programs), program specialization (the s-m-n

theorem), existence or nonexistence of optimal programs .

3. Relation of self-application to compiler bootsrapping .

4. Program specialization in the form of partial evaluation to speed programs up, or

to compile and to generate compilers by specialising interpreters .

5. Speedups from self-application of program specializers.

6. Simpler constructions for " robustness" of fundamental concepts, also including
functional languages and the lambda calculus.

7. An construction to prove Kleene's second recursion theorem that gives more efficient

programs than those yielded by the classical proof .

8. Proof that "constant time factors do matter " for a computation model more realistic

than the Turing machine, by an unusually simple and understandable diago-

nalization proof .
.

9. A new and much more comprehensible proof of Levin 's important result on the

existence of optimal algorithms ;

10. Intrinsic characterizations of the problem classes LOGSPACE and PTIME by restricted

WHILE programs .

11. The use of programs manipulating boolean values to identify
"
complete

" or hardest

problems for the complexity classes mentioned above.

Items 7 through 11 above appear here for the first time in book form .

xiv Preface-- - - ---- --

What is not considered

There are numerous things in the enormous realm of complexity and computability
theory that I have chosen not to include at all in the present text. A list of some of the
most obvious omissions:

xv- - -

xvi Preface

Acknowledgments

Many have helped with the preparation of the manuscript . Three in particular have

made outstanding contributions to its content, style, and editorial and pedagogical matters

: Morten Heine Sorensen, Amir Ben-Amram , and Arne John Glenstrup . DIKU (the

Computer Science Department at the University of Copenhagen) helped significantly
with many practical matters involving secretarial help, computing, and printing facilities

. The idea of using list structures with only one atom is due to Klaus Grue [54].

From outside DIKU I have received much encouragement from Henk Barendregt,

Jim Royer, and Yuri Gurevich . Invaluable feedback was given by the students attending

the courses at which earlier versions of the manuscript were used, and many have

helped by reading various parts, including Nils Andersen, Kristi an Nielsen, and Jakob
Rehof from DIKU , Antanas Zilinskas from Vilnius , and anonymous referees from the

MIT Press and Addison -Wesley Publishing Co. Chapter 11 and the Appendix were

written by Morten Heine Sorensen, chapter 20 was written by Amir Ben-Amram , and

sections 9.3 and 9.4 were written by Torben lEe Mogensen.

z
otations

-
I

;
t ~ 2 ! . e

ro

~ . ! . . ! . o ~

V
I

, ! r <

>

it . 2 ; ~

' 4 - . ' 4 - . " a t

~
~ ~ ~ ~ ~ ~ ~ ~ ' ~ = = E

E

E
aa

aa

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

N

, - 1 -

,
. . . . , . . . "

.
an

,
. . . . , . . .

L(r) (r a regularexpression)

List of
~

~

-
I - + + - ~ Q ' ~ ~

~~

- I
O

S
] } ,

"
f ' . ~

 I
V

I
V

I
V

I
V

I
~

 V
I

" , :
Q

.
~

~ ~ ~

~

~

; ; ; ; ; 5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 55
55

5e
e

~ ee ~ ~

.
- 4 ' N

~

~

~
I . L

,,
~

~
*

~
tt

~
~

~

!
. L . L

III
: : : ~ ~ J . - +

'
- L .

8 - ~

~ . - ' (~

 V
I

~

Y
It

-
I

-

.

- 1

z

" S

~

~

I ~ ca

-

~
 . . ; ~

-

~

~ -

~
~ ~ ~ ~
 ; * +
 11

6

II
. 9 0 : a ~

' 0 ' ~

H

H

" (" (" (I) t II : - ~

~

 * . .

...~

]]

t

I I
tt*

I I

-
= - I III

O
' ! ! - - ! ! - - - - . -

E
_ E _ _ -

-
- ~

- . : ~

~

~

.
. . ~ : : ~ : : : : : :

:
3 . . 9 - ~
 ~
 Y
I

Y
I

III

III

Y
I

III

-:
s

IiIe
~ ~ ~

1 Introduction

This book is about computability theory and complexity theory. In this first chapter we
try to convey what the scope and techniques of computability and complexity theory
are. We are deliberately informal in this chapter; in some cases we will even introduce
a definition or a proposition which is not rigorous , relying on certain intuitive notions .
In these cases, the definition or proposition is marked with the symbol

" <>." In the
subsequent chapters all such definitions and propositions are reintroduced in a rigorous
manner before they occur in any development .

Section 1.1 explains the scope and goals of computability theory. Sections 1.2- 1.3
concern questions that arise in that connection, and Section 1.4 gives examples of techniques

and results of computability theory. Section 1.5 describes the scope and goals of
complexity theory. Section 1.6 reviews the historical origins of the two research fields .
Section 1.6 contains exercises; in g.eneral the reader is encouraged to try all the exercises.
Section 1.6 gives more references to background material .

A small synopsis like this appears in the beginning of every chapter, but from now
on we will not mention the two sections containing exercises and references.

1.1 The scope and goals of computability theory

Computability theory asks questions such as: do there exist problems unsolvable by any
effective procedure - unsolvable by any program in any conceivable programming language

on any computer ?
Our programming intuitions may indicate a no answer, based on the experience that

once a problem is made precise in the form of a specification, it is a more or less routine
task to write a program to satisfy the specification. Indeed, a related intuition predominated

the work of Hilbert on the foundations of mathematics, as explained in section 1.6:
they conjectured that all of mathematics could be axiomatized . However , we shall see
that both of these intuitions are disasb"ously wrong . There are certain problems that
cannot be solved by effective procedures.

To prove this, we must make precise what is meant by an effective procedure and
what is meant by a problem. It is not a priori obvious that any single fonnalization of
effective procedure could be adequate; it might seem that any specific choice would be
too narrow because it would exclude computing devices with special capabilities . Thus,

4 Introduction

different formalizations might lead to different theories of computability . However , one

of the great insights of computability theory was the gradual realization in the 1930's

that any reasonable choice of formalization of the notion of effective procedure leads, in

a certain sense, to the same theory. This has been called the Church-Turing thesis, since

Alonzo Church and Alan M . Turing first formulated and substantiated versions of this

insight . Explaining why different formalizations lead to the same theory is itself one of

the topics of computability theory ; we thus devote considerable effort to the matter.

Granted precise definitions of the notions of problem and effective procedure, computability

theory is concerned with the boundary between computability and uncomputability

, and address es questions such as:

. Can every precisely stated problem be solved by some effective procedure?

. What is the class of problems that can be solved by effective procedures and its

basic properties?
. What is the relationship between various problems that cannot be solved by effective

procedures?

If a problem can be solved by an effective procedure we shall say that is effectively solvable

, or sometimes just solvable. The result that a certain computational problem is unsolvable

is not a purely negative fact; for instance, it conveys the important knowledge
that searching for an effective procedure to solve the problem is futile . This may indicate

that one should try to find an approximate , solvable, solution to the problem at

hand instead of trying to solve the exact, but unsolvable, problem .

In the next two sections we discuss formalization of the notions of effective procedure
and problem . After this, we present, informally , some of the elementary results of

computability theory, including two precisely stated problems which are unsolvable.

1.2 What is an effective procedure ?

There are various strategies one can employ in formalizing the notion of effective procedure
. Of course, we are free to define notions as we please, but the definitions should

capture the intuitive notion of effective procedure; for example, it should not be the case

that some problem is unsolvable according to our theory, but nevertheless can be solved

on a real-world computer .
Therefore it will be useful to try and analyze the notion of effective procedure and

devise a formalization so that every intuitively effective procedure can be carried out in

the formalism , and such that all the formalism 's computations are effective.

I If we regard a symbol as literally printed on a square we may suppose that the square is 0 :$ x :$ 1, 0 :$
y :$ 1. The symbol is defined as a set of points in this square, viz . the set occupied by printer

's ink . If these sets
are restricted to be measurable, we can define the "distance" between two symbols as the cost of transforming
one symbol into the other if the cost of moving a unit area of printer

's ink unit distance is toward unity , and
there is an ~ te

sufply
of ink at x = 2, Y = O. With this topology the symbols form a conditionally compact

space. [Tunng
's note .

Alan Turing
's analysis attempting to formalize the class of all effective procedures was carried

out in 1936 [162], resulting in the notion of a Turing machine. Its importance is that
it was the first really general analysis to understand how it is that computation takes

place, and that it led to a convincing and widely accepted abstraction of the concept of
effective procedure.

It is worth noting that Turing
's analysis was done before any computers more powerful

than desk calculators had been invented . His insights led, more or less directly , to
John von Neumann 's invention in the 1940's of the stored program digital computer, a
machine with essentially the same underlying architecture as today

's computers.
We give the floor to Turing . Note that by a "computer

"
Turing means a human who

is solving a computational problem in a mechanical way, not a machine.

Computing is normally done by writing certain symbols on paper. We may suppose
this paper is divided into squares like a child 's arithemetic book. In elementary
arithmetic the two-dimensional character of the paper is sometimes used.

But such a use is always avoidable, and I think that it will be agreed that the
two-dimensional character of paper is no essential of computation . I assume then
that the computation is carried out on one-dimensional paper, i .e., on a tape divided

into squares. I shall also suppose that the number of symbols which may
be printed is finite . If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent1. The effect of this restriction of
the number of symbols is not very serious. It is always possible to use sequences
of symbols in the place of single symbols. Thus an Arabic numeral such as 17
or 999999999999999 is normally treated as a single symbol . Similarly in any European

language words are treated as single symbols (Chinese, however, attempts to
have an enumerable infinity of symbols). The differences from our point of view
between the single and compound symbols is that the compound symbols, if they
are too lengthy, cannot be observed at one glance. This is in accordance with experience

. We cannot tell at a glance whether 9999999999999999 and 999999999999999
are the same.

6 mtroduction

The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his "state of mind " at that moment . We may suppose
that there is a bound B to the number of symbols or squares which the computer
can observe at one moment . If he wishes to observe more, he must use successive

observations. We will also suppose that the number of states of mind which need

be taken into account is finite . The reasons for this are of the same character as

those which restrict the number of symbols. If we admitted an infinity of states of

mind , some of them will be "arbitrarily close" and will be confused. Again , the

restriction is not one which seriously affects computation , since the use of more

complicated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up into "simple

operations
" which are so elementary that it is not easy to imagine them further

divided . Every such operation consists of some change of the physical system consisting

of the computer and his tape. We know the state of the system if we know.
the sequence of symbols on the tape, which of these are observed by the computer
(possible with a special order), and the state of mind of the computer. We may suppose

that in a simple operation not more than one symbol is altered. Any other

changes can be split up into simple changes of this kind . The situation in regard to

the squares whose symbols may be altered in this way is the same as in regard to

the observed squares. We may, therefore, without loss of generality, assume that

the squares whose symbols are changed are always
" observed"

squares.

Besides these changes of symbols, the simple operations must include changes of

distribution of observed squares. The new observed squares must be immediately

recognizable by the computer. I think it is reasonable to suppose that they can

only be squares whose distance from the closest of the immediately previously
observed squares does not exceed a certain fixed amount . Let us say that each

of the new observed squares is within L squares of an immediately previously
observed square.
In connection with " immediate recognizability ,

" it may be thought that there are

other kinds of squares which are immediately recognizable. In particular , squares
marked by special symbols might be taken as immediately recognizable. Now

if these squares are marked only by single symbols there can be only a
"
finite

number of them, and we should not upset our theory by adjoining these marked

squares to the observed squares. If , on the other hand, they are marked by a

sequence of symbols, we cannot regard the process of recognition as a simple

process. This is a fundamental point and should be illustrated . In most mathe-

What is an eRective procedure? 7-

matical papers the equations and theorems are numbered . Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognize a theorem at a
glance by its number. But if the paper was very long, we might reach Theorem
157767733443477; then, further on in the paper, we might find " ... hence (applying

Theorem 157767733443477) we have ..." In order to make sure which was the
relevant theorem we should have to compare the two numbers figure by figure ,
possible ticking the figures off in pencil to make sure of their not being counted
twice . If in spite of this it is still thought that there are other " immediately recognizable"

squares, it does not upset my contention so long as these squares can be
found by some process of which my type of machine is capable.
The simple operations must therefore include :

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within L squares of
one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of mind .
The most general single operation must therefore be taken to be one of the following

:

(A) A possible change (a) of symbol together with a possible change of state of
mind .

(B) A possible change (b) of observed squares, together with a possible change of
state of mind .

The operation actually performed is determined , as has been suggested [above] by
the state of mind of the computer and the observed symbols. In particular , they
determine the state of mind of the computer after the operation .
We may now construct a machine to do the work of this computer. To each state
of mind of the computer corresponds an " m-configuration

" of the machine. The
machine scans B squares corresponding to the B squares observed by the computer

. In any move the machine can change a symbol on a scanned square or
can change anyone of the scanned squares to another square distant not more
than L squares from one of the other scanned squares. The move which is done,
and the succeeding configuration , are determined by the scanned symbol and the
m-configuration . The machines just described do not differ very essentially from
computing machines as defined (previously) and corresponding to any machine of

1.2.2 The Church -Turing thesis

The machines mentioned in Turing
's analysis are called Turing machines. The wide-

ranging identification of the intuitive notion of effective procedure with the mathematical

concept of Turing machine (and related identifications) has become well -known as
the Church-Turing thesis, named after Church and Turing, two pioneers of computability
[162, 21, 22].

The thesis is not amenable to mathematical proof since it identifies an intuitive notion
with a mathematical concept; however we shall provide various kinds of evidence

supporting it . In one direction this is easy: the Turing machine (as well as other com-

putational models we will introduce) is sufficiently simple that its computations are

certainly effective in any reasonable sense. In the other direction , Turing
's analysis is a

rather convincing argument for the Turing machine's generality.
There are many other notions of effective procedure than Turing machines, e.g.,

. Recursivefunctions as defined by Kleene [93]

. The lambda calculus approach to function definitions due to Church [21, 22].

. Random access machines [155]

. Markov algorithms [110]

Despite considerable differences in formalism , some common characteristics of these
notions are [147] :

1. An effective procedure is given by means of a set of instructions of finite size.
There are only finitely many different instructions .

2. The computation is carried out in a discrete stepwise fashion, without the use of
continuous methods or analogue devices.

3. The computation is carried out deterministically , without resort to random methods
or devices, e.g., dice.

4. There is no a priori fixed bound on the amount of "memory
"

storage space or time
available, although a terminating computation must not rely on an infinite amount
of space or time .

5. Each computational step involves only a finite amount of data.

8 futrodudion

this type a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

1.2.3 Are algorithms hardware or software ?

Discussions of the question whether algorithms are hardware of software resemble
those of whether the chicken or the egg came first , but are nonetheless worthwhile since
much literature on computability , and especially on complexity theory, is implicitly biased

toward one or the other viewpoint . For example, the phrase
"
Turing machine"

carries overtones of hardware , and the "states of mind " of Turing
's argument seem to

correspond to machine states.
The hardware viewpoint states that an algorithm is a piece of machinery to realize the

desired computations . The " set of insb"uctions" is a specification of its architecture. At
anyone point in time a total machine state comprises the insb"uction it is currently executing

and its memory state. Larger algorithms correspond to larger pieces of hardware .
The problem of not limiting the amount of storage can be handled several ways:

. Assume given an infinite separate storage unit , e.g., Turing
's " tape

"
;

. Assume an idealized hardware which is indefinitely expandable, though always
finite at anyone point in time; or

. Work with an infinite family of finite machines Mt , M2, . . ., so larger input data is

processed by larger machines.

The last way corresponds to what is often called circuit complexity. One usually requires
the sequence Mt , M2, . . . to be unifi Jrm, so progressively larger data are not processed by
completely disparate machines.

The software viewpoint states that the algorithm is a set or sequence of instructions .
For instance an algorithm can simply be a program in one's favorite programming
language. The "computing agent

" then interprets the algorithm ; it can be a piece of

What is an effective procedure? 9-

All of the above notions of effective procedure have turned out to be equivalent . In view
of this, the Church-Turing thesis is sometimes expressed in the following form :

1. All reasonable formalizations of the intuitive notion of effective computability are

equivalent ;
2. Turing machine computability is a reasonable formalization of effective computability

.

In support of this, later chapters will consider a number of formalizations and prove
them equivalent . For the remainder of this chapter the notion of an effective procedure,
or algorithm, will remain intuitive .

10 Introduction

In this book, a total function is written f : A -+ B. A partial function is written g : A -+ B.L.

For a E A, if g(a) is defined or convergent we write g(a)1., and if g(a) is undefined or

divergent we write g(a)t or g(a) = .1. If both f (a) and g(a) are undefined we also allow

the notation f (a) = g(a). Total and partial functions are explained in greater detail in

Subsections A .3.1- A .3.4 in Appendix A . We use the symbol ~ to denote equivalence of

partial functions , see Subsection A .3.5.

1.3 What is a problem ?

1.3.1 Effectively computable functions

hardware , or it can be software: an interpreter program written in a lower -level programming
language. Operationally , an interpreter maintains a pointer to the current

instruction within the algorithm
's instruction set, together with a representation of that

algorithm
's current storage state. Larger algorithms correspond to larger interpreted

programs, but the interpreter itself remains fixed , either as a machine or as a program .

The first fully automatic computer was von Neumann 's "stored program
" machine.

It consisted of a piece of hardware , the central processing unit (CPU), specifically designed
to interpret the program stored in its memory ; and this memory was physically

decoupled from the CPU. Thus the software viewpoint was present from hardware 's
first days and characterizes most of today

's computers. Nonetheless the distinction is

becoming yet less clear because today
's "chip

"
technology allows relatively easy construction

of special-purpose digital hardware for rather complex problems, something
which was impractical only a few years ago. Further, even though Turing

's machine
is described in hardware terms, it was Alan Turing himself who proved the existence
of a "universal machine" : a single Turing machine capable of simulating any arbitrary
Turing machine, when given its input data and an encoding of its instruction set.

This book mostly takes the viewpoint of algorithm as software, though the " random

access machine" model will come closer to hardware .

By a problem we have in mind some uniform , in general unbounded , class of questions
each of which can be given a definite , finite answer. Thus we consider two concrete
instances of the abstract notion of solving a problem : computing a function and deciding

membership in a set.

1.3.2 On data representation

It might seem that the definition of an effectively computable function depends on the
notation used to represent the arguments. For instance, the addition procedure above
uses the decimal representation of natural numbers.

However , this makes no difference as long as there is an effective procedure that
translates from one notation to another and back. Suppose we have an effective procedure

p which will compute f if the argument is expressed in notation B. The following
effective procedure will then compute f in notation A :

What is a problem ? 11-

Definition 1.3.1 <> Let DE be sets. A partial mathematical function f : D -+ E.L is effectively
computable if there is an effective procedure such that for any XED :

1. The procedure eventually halts, yielding f (x) E E, if f (x) is defined;

2. The procedure never halts if f (x) is undefined . 0

The function { : N x N -+ N where { (x, y) = x + y is effectively computable by the effective
procedure, known from elementary school, for digit -by-digit addition , assuming x, y,
and x + y are expressed in decimal notation . As another example, the function gcd :
N x N -+ N which maps two natural numbers into their greatest common divisor can be
computed by Euclid 's algorithm .

The effective procedure for computing { must give the conoect answer to each question
which is within its set of applicabilityD . In particular , if { is total, the effective

procedure must halt for all arguments in D. Its behavior when applied to questions
outside this set is not of interest; it may fail to terminate, or may terminate in a nonstandard

way. For instance, Euclid 's algorithm can fail to terminate when applied to
negative numbers.

1. Given x in notation A , translate it into notation B, yielding y.

2. Apply procedure p to y, giving z = f (y), in notation B.

3. Translate z back into notation A, giving the result .

In the remainder of this chapter we shall be informal about data representations.

The relationship between algorithms and functions is a bit subtle . Consider , for instance ,

the function f : N -+- N, defined by:

f (n) =
{

0 if Gold~
ach's conjecture is b"ue

1 otherwIse

(Goldbach's conjecture states that every even number greater than 2 is the sum of two
prime numbers. Whether the conjecture is b"ue, is not known [147]). There is an algorithm

computing f ; either it is the algorithm which always return the representation of
0, or it is the algorithm which always returns the representation of 1 - but we do not
know which of the two yet it is.

12 Introduction

{ l[pD I p is an L-program }

Iff the reader is not comfortable with the notion of a function simply being a certain set, Subsection A .3.t

may be consulted.

1.3.3 Algorithms versus functions

We stress the important distinction between an algorithm and the mathematical function

it computes. A mathematical function is a set. For instance, the unary number-

theoretic function which returns its argument doubled is:

.
{ (1,2), (2,4),(3,6), . . .}

For convenience one always writes this function thus: f (n) = 2n. So, a function associates

a result with each input , but does not say anything about how the result can be

computed
1.

On the other hand, an algorithm is a text, giving instructions on how to proceed
from inputs to result . We can write algorithms which , when fed a representation of a

number as input , will compute the representation of another number as output , and the

connection between input and output can be described by a mathematical function . For

instance, an algorithm p may, from the representation of n, compute the representation
of 2n. In this case we say that p computes the function f (n) = 2n, and we write ([pD = f .

We pronounce ([pD
" the meaning of p."

Given a formalization of effective procedure, that is, given a programming language
L, we may ask: what mathematical functions can be computed by algorithms in the language

? We say that the programming language defines the class of all such mathematical

functions :

Thus there are functions for which it is has been proved that an algorithm exists, and
yet no concrete algorithm computing the function is known2 . There are also examples of
functions where it is not yet known whether corresponding algorithms exist at all, and
there are functions for which it is known that there definitely do not exist any algorithms
that compute them. We shall soon see an example of the last kind of function .

1.3.4 Effectively decidable and enumerable sets

How can we apply the idea of an effective procedure to the problem of definition of
sets? For example the set of prime numbers seems intuitively effective, in that given an
arbitrary number we can decide whether or not it is a prime .

Note that the procedure eventually halts for any input x .

The problem of deciding some set S can sometimes equally naturally be phrased as
the problem of computing a certain function , and vice versa , as we shall see later on . An
alternative notion is to call a set effective if its elements can be listed in an effective way .

Definition 1.3.3 <> Given a set D, and a subset 5 <; D. 5 is effectively enumerable iff there is
an effective procedure which , when given an object XED , will eventually answer "yes

"

if x E 5, and will answer "no" or never terminate if x ~ 5. 0

The collection of all subsets of any infinite set (for example N) is not countable (Exercise
1.3). This can be proven by diagonalization as introduced in the next section.

On the other hand, the collections of all effectively decidable (or effectivelyenumer -
able) subsets of N are each countable, since for each nonempty set there exists a program
computing a function that decides it (enumerates it), and there is only one empty set.

We will see that there exist effectively enumerable sets which are not effectively decidable
. This, too, can be proven by diagonalization ; a formal version will be seen later,

as Corollary 5.6.2.

2This can only happen if the proof is by classical logic ; in intuitionistic logic proofs of existence are always
constructive .

What is a problem? 13-

Definition 1.3.2 <> Given a set D, and a subset 5 ~ D. 5 is effectively decidable iff there is
an effective procedure which, when given an object XED , will eventually answer "yes

"

if x E 5, and will eventually answer "no" if x ~ 5. 0

an enumeration of s.
The sequence SO,SI, . . . is actually a function3 f : N -+ 5 defined by f (i) = Si. Thus a

set is countable if and only if it is empty, or there is a surjective4 total function from N to
s. Such a function is said to enumerates.

Note that the sequence above is allowed to have repetitions . This amounts to saying
that f is allowed to be non-injective . Examples include :

1. The set N is countable; an obvious sequence mentioning all elements is 0,1,2,

In other words , the required surjective function is the function f : N -+ N, f (i) = i .

2. The set of all integers is countable; a sequence is: 0,1, - 1,2, - 2,3,

3. N x N is countable; a sequence is: (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2),
(2,1), (3,0),

The preceding terminology in particular applies to sets of functions , partial or total . Let
A and B be sets and let S be a non-empty set of partial functions from A into B, i .e.,
S ~ A -+ B 1. . Then S is countable iff there is a sequence to, ft , . . . so that g eS if and only
if g ~ fi for some i .

1.4.2 The diagonal method and uncountable sets

Proposition 1.4.1 The set of all total functions f : N -+ N is uncountable. 0

Proof: We use Cantor's well-known diagonal argument. Suppose the set of all functions
f : N -+ N were countable. Then there would be an enumeration to, it , f2, . . . such that
for any total function f : N -+ N, there is an i such that fi = f , i.e., fi (X) = f (x) for all x EN.

Consider the function g defined by:

3More details appear in Subsection A .3.2.
4
Swjective and injective functions are explained in Subsection A.3.9.

1.4.1 Countable sets and enumeration functions

A set 5 is countable if 5 is empty or there is a sequence 80,81, . . . containing all and only
all the elements of 5, i.e., for all 8 E 5 there is an i such that 8 = 8i. This sequence is called

A taste of computability theory 15- - -

This is certainly a total function from N to N. Therefore some i. But this

g(x) = fx(x) + 1

g must be Ii for

1
2

�

is impossible, as it implies , in particular , that

fi (i) = g(i) = fi (i) + 1 (1.1)

and so 0 = 1 which is impossible .5 0

The proof technique above, called diagonalization, has many applications in computability
and complexity theory. To understand the name of the technique, imagine the values

of countably many functions to, ft , h , . . . listed in an " infinite table" for the arguments
0,1,2, . . .:

For instance, the first column defines 10. Given a countable set of total functions from N
to N, the diagonal method constructs a new function which differs from the ith function
on the argument i in the diagonal . Thus from any enumeration of total functions from
N to N, at least one total function from N to N must be absent.

Note that diagonalization does not directly imply the uncountability of the set of

partial functions from N to N, since the analog of (1.1) for partial functions is not a contradiction
in case ' i(i) is undefined .

Corollary 1.4.2 The following sets are also uncountable :

1. All partial functions I : N -+ N.l .

2. All total functions 1 : N -+ {O, 1 } .

3. All total functions 1 : A -+ B where A is infinite and B has at least two elements. 0

Proof See the Exercises. 0
5 Remark the similarity between this argument and Russell's Paradox: The class U = {A I A is a set and A ~

A} is not a set. The reasoning is that if U were a set, we would have U eU iff U ~ U.

Proof By the Church-Turing Thesis each effectively computable function is computed
by some Turing machine. A Turing machine can be represented as a finite sbing of symbols

over an alphabet consisting of English letters and mathematical and punctuation
symbols. The set of all finite sbings over any finite alphabet is countable, so the set of
all Turing machines is countable; hence the set of all effectively computable functions
must be countable as well . 0

Corollary 1.4.4 <> The set of all effectively computable total functions from N to N is
countable. 0

Proof A subset of a countable set is countable. 0

Corollary 1.4.5 <>

1. There exists an effectively uncomputable total function from N to N.

2. There exists an effectively uncomputable partial function from N to N. 0

Proof By Corollary 1.4.2 there are uncountably many total and partial functions , but

by Proposition 1.4.3 and Corollary 1.4.4 only countably many of these are effectively
computable. If S is a countable subset of an uncountable set T then T\ S ~ 0. 0

It follows from this that the set of computable functions is small indeed, and that there
are uncountably many uncomputable functions .

As a concrete example of an unsolvable problem we shall see later that it is impossible
effectively to decide, given an arbitrary effective procedure p and input d, whether

or not the computation resulting from applying p to d halts. The next subsection gives
another example.

16 Introduction

1.4.3 Existence of effectively uncomputable functions

Proposition 1.4.3 <> The set of all effectively computable partial functions from N to N is
countable. 0

1.4.4 The Busy Beaver problem : an explicit uncomputable function

The argument in the preceding subsection shows the existence of uncomputable functions
but not in a constructive way. The busy beaver function below, due to Rado [141]

and related to the Richard paradox [144], is mathematically well - defined, but , based on

A taste of computability theory 17- - -

certain reasonable assumptions about the language used to express computation , we
will show that there is no algorithm which computes it .

Assumptions: Any program p denotes a partial mathematical function ([pD: N -+ N.l ,
as sketched in subsection 1.3.3. Any program p has a length Ipl EN : the number of

symbols required to write p. For any n, there are only finitely many programs with

length not exceeding n.
We use programs in a small subset of Pascal [68, 166] with the following syntax.

Programs have the form read X; C; write Y, where X, Y are variables. A command
C can be an assignment X: =E where E is an expression built from operators +, * , etc.,
and variables and numbers in decimal representation. (Similar constructions can be
carried through with unary and other representations.) Commands of the formsC ; C
and while X>O do begin C end have the usual meanings.

Obseroation: Ipl ~ 19 for any program p = read X; C; writeY .

Proposition 1.4.6 The total function

BB(n) = max{ I Ip D(O) I p is a program with Ipl ~ n, and I Ip D(O).Jr}

is computed by no program.6

Proof Suppose for the sake of contradiction that some program q computes BB:

The proof uses a form of diagonalization. We present the idea in three small steps.
Step 1. The idea in deriving a contradiction is to find a number K and a program r

such that Irl ~ K and f[rD(O) = f[qD(K) + 1. This implies

f[qD(K) = BB(K) Since q computes BB.
~ f[rD(O) Since Irl ~ K and f[rD(O).j.
= f[qD(K) + 1 By definition of r

which is a contradiction.

Step 2. How to determine r and K? Well, since we are to compute f[qD(K) + 1, it seems
sensible to use q in the construction of r . Since Irl must be less than K this forces K to
be at least Iql. As a first try, let K = Iql and and r be the following program computing
f[qD(K) + 1:

read Xi Ci write Y

6Where we define max 0 = O.

18 Introduction

read X;
X:=c ;
c ;
Y:=Y+l ;

write Y

where c is a numerical constant representing the number Iql . This program does not

quite meet the requirements of Step 1 , since q is part of it and so Irl > K = Iql . In other

words , the size of program r is too large compared to the input to the command C.

Step 3 . As a second try , we increase the input to ,command C, i .e ., the value of X ,

without increasing the size of program r by the same amount . Let K = 31ql and let r

be the program above slightly modified , where c is again the decimal representation of

number Iql :

read Xj
X : = 3 * cj

Cj
Y : = Y+ lj

writeY

Clearly program r consists of the symbols to write q (i .e ., read Xj Cjwrite V) , plus

the symbols required to write the constant c , plus (count for yourself) 13 additional

symbols .

Since c is the decimal representation of the number Iql , it follows that Icl ~ Iql . Further

, any program is at least 19 symbols long , so it follows that

Irl = 13 + lcl + lql Byconstructionofr

~ Iql + Iql + Iql Since 19 ~ Iql and Icl ~ Iql

= 31ql = K

Hence , with K = 31ql , we have Irl ~ K and [rD (O) = [qD (K) + 1 , as required for the

argument seen earlier . (The constant 3 can be replaced by any larger value .) 0

1.4.5 Unsolvability of the halting problem

It is not hard to write programs in the small subset of Pascal of the previous section
which do not halt , e.g.,

read X; X:=1; while X > 0 do begin X:=X end ; write X

The following shows that it is impossible effectively to decide, given an arbitrary program
p and input n, whether or not p applied to n halts, i.e., whether or not [pD(n),J..

A taste of computability theory 19-

Step 3 is effective since there are only finitely many programs of any given size, and step
4 is effective by assumption . By the Church-Turing thesis one can turn this procedure
into a program in our subset of Pascal. The conclusion that B B is computable by a

program in this language is in contradiction with Proposition 1.4.6, so the (unjustified)
assumption that q exists must be false. 0

1.4.6 Consequences of unsolvability of the halting problem

We have just argued informally that the halting problem for programs in our Pascal subset
is not decidable by any program of the same sort. This is analogous to the classical

impossibility proofs, for example that the circle cannot be squared using too Is consisting
of an unmarked ruler and a compass. Such classical impossibility proofs, however,

merely point out the need for sb"onger too Is, for instance a marked ruler , to solve the
named problems.

Our "busy beaver"
argument similarly asserts that one particular problem , the halting

problem , cannot be solved be means of any of a class of too Is: programs in our
Pascal subset. But here a major difference arises because of the Church-Turing thesis.
This gives the undecidability of the halting problem much more weight since it implies
that the halting problem is not decidable by any intuitively effective computing device whatsoever

.

Corollary 1.4.7 <> The total function

halt(p) =
{

1 if ([pD(n).!.,n
0 th .0 erwIse

is computed by no effective procedure. 0

Proof: Suppose, for the sake of contradiction, that such a procedure does exist. Then B B
can also be computed by the following procedure:

1. Read n.
2. Set max = O.
3. Construct {Pl,...Pk} = {p I pisa program and Ipl ~ n}.
4. For i = 1,2,...,k do: if ([pDi(n).!. and max < ([pi D(O), then reassign max := ([Pi D(O).
5. Write max.

C~rtail1. Which problems can be solved within a
cannot?

1.5.1 Polynomial time

Similarly to the situation in computability theory, one might fear that one single definition
of ~ urce accounting would not suffice, and in fact different models exist giving

rise to different theories of complexity. Specifically, the class of problems solvable within
certain sharp limits may vary from model to model.

However, we will see that many computation models define precisely the same class
P TIM Eof problems decidable within time bounded by some polynomial function of the

length of the input. Many researchers identify the class of computationally tractable problems
with those that lie in PTIME, thereby suggesting what could well be called Cook's

thesis, after Stephen C. Cook, a pathbreaking researcher in computational complexity:

20 Introduction

l limit of time or space, and which

1 .5 The scope and goals of complexity theory

Recall that computability theory is concerned with questions such as whether a problem
is solvable at all, assuming one is given unlimited amounts of space and time . In contrast

, complexity theory is concerned with questions such as whether a problem can be
solved within certain limited computing resources, typically space or time. Whereas

computability theory is concerned with unsolvable problems and the boundary between
solvable and unsolvable problems, complexity theory analyzes the set of solvable

problems.
To address such questions, one must have a precise definition of space and time

costs. Granted that, complexity theory asks questions such as:

1. All reasonable formalizations of the intuitive notion of tractable computability are

equivalent (they can simulate each other within a polynomially bounded overhead
in time);

2. Polynomial -time Turing machine computability is a reasonable formalization of
tractable computability .

Note the close similarity with the Church- Turing thesis: "Turing machine computability
" has been replaced by

"
polynomial time Turing machine computability ,

" and "effectively

computable
"

by
" tractable computability ." A stronger form of the first part is

sometimes called the lnvariance Thesis [14].
Cook's thesis is a useful working assumption but should not be taken as being as

solidly founded as the Church- Turing thesis, which concerns computability in a world
of unlimited resources. Reasons for a certain skepticism about Cook's thesis include
the facts that an algorithm running in time Ixll00, where Ixl is the length of the input to
the algorithm , can hardly be regarded as computationally tractable; and that there are

algorithms (for instance as used in factorizing large integers) that run in a superpolynomial
time bound such as Ixllogloglxl, but with constant factors that are small enough for

practical use.

The scope and goals of complexity theory 21

1.5.2 Complexity hierarchies and complete problems

Ideally, one would like to be able to be able to make statements such as " the XXX problem
can be solved in time O(n3) (as a function of its input size); and it cannot be solved in

time O(n3- E:) for any c > 0." Alas, such definitive statements can only rarely be proven .
There are a few problems whose exact complexity can be identified , but very few.

Because of this, a major goal of complexity theory is classification of problems by difficulty
. This naturally leads to a division of aU problems into hierarchies of problem classes.

Standard classes of problems include : LOGSPACE, NLOGSPACE, PTIME, NPTIME, PSPACE.
Each class is characterized by certain computational resource bounds. For example, problems

in LOGSPACE can be solved with very little storage; those in PTIME can be solved
with unlimited storage, but only by algorithms running in polynomial time; and those
in NPTIME can be solved by polynomial time algorithms with an extra feature: they are
allowed to "guess

" from time to time during their computations .
Various combinations of these resources lead to a widely encompassing

"backbone "

hierarchy :

LOGSPACE ~ NLOGSPACE ~ PTIME ~ NPTIME ~ PSPACE = NPSPACE C REC C RE

Surprisingly , it is not known whether anyone of the inclusions above is proper : for

example , the question PTIME = NPTIME?, often expressed as P = NP ?, has been open for

decades .

Nonetheless, this hierarchy has proven itself useful for classifying problems. A great
many problems have been precisely localised in this hierarchy. A typical example is SAT,
the problem of deciding whether a Boolean expression can be made true by assigning
truth values to the variables appearing in it . This problem is complete for NPTIME, meaning

the following . First, SAT is in NPTIME: There is a nondeterministic algorithm that
solves it and runs in polynomial time . Second, it is "hardest" among all problems in
NPTIME: If it were the case that SAT could be solved by a PTIME algorithm , then every
problem in NPTIME would have a deterministic polynomial time solution , and PTIME =

NPTIME would be true . This means that two stages of the hierarchy would "
collapse."

The last four chapters of this book concern complete problems for the various complexity
classes.

1.6 Historical background

22 Introduction

At the Paris Conference in 1900 D. Hilbert gave a lecture which was to have profound
consequences for the development of Mathematics, particularly Mathematical Logic,
and the not yet existing field of Computer Science. Hilbert 's ambitions were high and
his belief in the power of mathematical methods was strong, as indicated by the following

quote from his lecture:

Occasionally it happens that we seek the solution under insufficient hypotheses or
in an incorrect sense, and for this reason do not succeed. The problem then arises:
to show the impossibility of the solution under the given hypotheses, or in the
sense contemplated . Such proofs of impossibility were effected by the ancients, for
instance when they showed the ratio of the hypotenuse to the side of an isosceles

triangle is irrational . In later mathematics, the question as to the impossibility of
certain solutions plays a preeminent part , and we perceive in this way that old and
difficult problems, such as the proof of the axiom of parallels, the squaring of the
circle, or the solution of equations of the fifth degree by radicals have finally found

fully satisfactory and rigorous solutions, although in another sense than originally
intended . It is probably this important fact along with other philosophical reasons
that gives rise to the conviction (which every mathematician shares, but which no

At the conference Hilbert presented 23 unsolved mathematical problems .

the Entscheidungsproblem (decision problem), was described as follows :8

The Entscheidungsproblem is solved if one knows a procedure which will permit
one to decide, using a finite number of operations, on the validity, respectively the

satisfiability of a given logical expression.

This problem was part of Hilbert's program which included an endeavour to formalize
number theory in a first-order deductive system. It was hoped that the provable theorems

of the system would be precisely the true number-theoretic propositions, and
that one could devise a procedure to decide whether or not a given proposition were a
theorem of the system.

A negative answer to the Entscheidungsproblem, i.e., a proof that no such procedure
exists, must necessarily be grounded in a precise definition of the notion of procedure.
However, Hilbert and his school believed that such a universal decision procedure existed

, and so had no reason to formalize the notion of a procedure in general terms.
In 1931 Godel showed his celebrated Incompleteness Theorem [51] stating, roughly,

that for any consistent, sufficiently strong formalization of number theory, there are
true propositions which cannot be proved in that formalization. To the experts this result

made it seem highly unlikely that the Entscheidungsproblem could have a positive
solution.

In 1936 it was shown independently by Church [21, 22] and Turing [162] that the

Entscheidungsproblem does not have a positive solution. Further, and just as important
in the long run, each author gave a formalization of the notion of procedure (via

A-expressions and Turing machines, respectively), and derived the unsolvability of the

Entscheidungsproblem from unsolvability of the Halting problem, which they both
showed for their respective formalisms. Similar work on other formalizations, also in
1936, was done by Kleene [93] and Post [133]. Gandy [48] describes this astonishing"confluence of ideas in 1936."

Historical background 23

One of these,

7 Our italics; not present in the original .
8In a formulation from 1928; the English translation from German is adopted from [48].

It is a remarkable fact that the different formalisms all define the same class of
number -theoretic functions , the so-called partial recursive functions, and equivalences between

various formalisms were soon proved by Kleene, Turing, and others. In fact, one
can write compilers that turn a program in one formalism into a program in one of the
other formalisms that computes the same function , supporting what we have previously
called the Church- Turing thesis. It should be noted that this correspondence between
the algorithms in the various formalisms is a stronger result than the fact that the various
formalisms define the same class of functions.

The initial work in complexity theory in the late 1920's and early 1930's was concerned
with subclass es of the effectively computable functions , e.g., the primitive recursive
functions studied by Hilbert [65], Ackermann [1], and others. Subclass es of

primitive recursive functions were studied by Kalmar [87] and Grzegorczyk [55]. More

programing language oriented versions of these classes were later introduced by Meyer
and Ritchie [119].

With the appearance of actual physical computers in the 1950's, an increasing interest

emerged in the resource requirements for algorithms solving various problems,
and the field of complexity as it is known today, began around 1960. One of the first
to consider the question as to how difficult it is to compute some function was Rabin
[137, 138]. Later, Blum [13] introduced a general theory of complexity independent of

any specific model of computation .
The first systematic investigation of time and space hierachies is due to Hartmanis ,

Lewis, and Stearns [62, 61, 104] in the 1960's, who coined the term "computational complexity
" for what we call complexity theory in this book.

Important results concerning the classes of problems solvable in polynomial time
and non-deterministic polynomial time were established by Cook [25] and Karp [90]
who were among the first to realize the importance of these concepts.

24 Introduction

Exercises

1.1 Does Turing argue that the tape symbol alphabet size should be uniformly bounded ,
or that each machine may have its own number of characters? 0

1.2 The Turing machine has a bounded tape symbol alphabet size, but an unboundedly
large set of states. Could one reason ably argue that the set of states should be uniformly
bounded as well ? What would be the effect of bounding both of these on the number of

problems solvable by Turing machines? 0

Historical background 25-

tax):

1.3 Prove that P (N) , the set of all subsets of N, is uncountable, using the diagonal
method . Hint : if all of P (N) could be listed 51, 52, . . ., then one can find a new subset of
N not in this list . 0

1.4 Prove that the set of all total functions N -+ {Oil } is not countable. 0

1.5 Let A and B be sets and let 5 be a non-empty set of partial functions from A into B,
i.e., 5 ~ A -+ B.L. Show that the following conditions are equivalent .

1. 5 is countable.

2. There is a sequence fo, fl , . . . so that g E 5 if and only if g ~ fi for some i .
3. There is a surjective function uN -+ 5.
4. There is a function uN -+ (A -+ B.L) such that g E 5 if and only if g ~ u(i) for some

i.

5. There is a partial function u : (N x A) -+ B.L such that g E 5 if and only if there is
an i EN such that g(a) ~ u(i,a) for all a in A .

.
The reader should note that the { ' s, g

's, etc. above are functions, and that these are not

necessarily computed by any algorithms. 0

1.6 Consider a language like the subset of Pasca]

lowing modification . Instead of commands of form

while 1>0 do begin C end

there are only commands of form

for 1 : - 1 to n do begin C end

where n is a numerical constant, with the usual meaning. (It terminates immediately if
n < 1.) Variable 1 may not be re-assigned within command C.

Use a consb"uction similar to the one in Subsection 1.4.4 to show that there is a function
which is not computable in this language. Is the function effectively computable at

all? 0

1.7 .
Change the language of the previous exercise by expanding the iteration state-

ment' s syntax to
for 1 : - El to E2 do begin C end

where El and E2 are numerical expressions. (1 may still not be assigned within command
C.) Consider two alternative ways to interpret this statemnt (using a "goto

"
syn-

26 Introduction

Show that every program terminates under semantics 1, but that some may loop under

For more on the historical development of computability theory, in particular fuller
discussions of the Church-Turing Thesis, see Gandy

's paper [48] or Kleene's classical
book [95]. A number of early papers on computability are reprinted in Davis' book [32]
with comments. This includes an English translation of G Odel's paper. Presentations of
G Odel's results for non-specialists appear in the books by Nagel and Newman [127] and
Hofstaedter [66].

More information about the scope and historical development of complexity theory
may be found in the surveys [14, 16, 27, 60, 139]. Broadly encompassing surveys of

complete problems may be found in the books by Garey and Johnson, and by Greenlaw,
Hoover, and Ruzzo [49, 53].

Semantics 1: equivalent to the following , where Tern is a new variable .

X := el ; Tern := E2;
1: if X > Tern then goto 2

C
X := X + 1
goto 1

2 :

Semantics 2: equivalent to the following .

X := el ;
1: if X > E2 then goto 2

C
X := X + 1
goto 1

2 :

semantics 2.

References

2 The WH I LE Language

The notions of the inb"oductory chapter, e.g., "effectively computable,
" were imprecise,

because they relied on an intuitive understanding of the notion "effective procedure.
"

We now present a model of computation, or programming language, called WHILE,
which is used throughout the book. In subsequent chapters we define the intuitive
notions of the preceding chapter precisely, by identifying

"effective procedure
" with

"WHILE program."

It may seem that we avoid the vagueness of intuitive argumentation by going to the

opposite extreme of choosing one model of computation which is too simple to model
realistic computing . Later chapters will argue that this is not the case, by proving the

equivalence of WHILE with a variety of other computation models.
The WHILE language has just the right mix of expressive power and simplicity . Expressive

power is important because we will be presenting many algorithms , some rather

complex, that deal with programs as data objects. The data structures of WHILE are particularly
well suited to this, and are far more convenient than the natural numbers used in

most theory of computation texts. Simplicity is essential since we will be proving many
theorems about programs and their behaviour . This rules out the use of larger, more

powerful languages, since proofs about them would simply be too complex to be easily
understood .

Section 2. 1 describes the WHILE syntax and informally describes the semantics of

programs. Section 2.2 precisely describes the semantics. Section 2. 3 describes a shorthand
notation used in the rest of the book. This last section can be skipped and consulted
on a "by need" basis later. Section 2.4 shows that equality tests may without

loss of generality be restricted to atomic values, each taking constant time . This will be
relevant later, when discussing time-bounded computations .

2 .1 Syntax of WHILE data and programs

The syntax of WHILE data sb' uctures and programs is described in Subsections 2.1.1-
2.1.2. Subsection 2.1.3 informally explains the semantics of WHILE-programs by means
of an elaborate example. Subsection 2.1.4 concerns conditionals and b' uth values in
WHILE, and Subsections 2.1.5-2.1.6 show how to compute with numbers and lists in
WHILE. Finally, Subsection 2. 1.7 describes a useful macro notation.

28 The WHILE Language

b b

ce

a .

b . e

)
. c

. d

) (
a .

b .

(
c . e

.

(
die

)

Figure

2 . 1 : Two trees in linear and

graphical

notatation .

2.1.1 Trees over a finite set

Recall the idealized subset of Pascal that we used in Subsection 1.4.4 in which one can

compute with numbers.1 It has commands to assign an arbitrary number to a variable,
and to increment and decrement a variable by one.

The language WHILE is very similar but with one very important difference: instead
of computing with numbers, the language computes with certain trees over a finite set.

For instance, a and (a . c) as well as (a . (b . c are trees over the set { a,b,c} . The

objects a,b,c are called atoms (definition) because, unlike for instance (a . c) , they cannot

�

1 The reason we call it

just, say, 0 to 65535.

Formally we define the set of trees D A over the set A as follows .

Definition 2.1.1 Given a finite set A (the atoms), DAis defined by :

1. Any element of A is an element of D A;
2. Whenever dl and d2 are elements of D A' then so is (dl .d2) ; and

3. DAis the smallest set satisfying the previous two points .

We will often use a designated element of A, named "nil ." 0

When the set A is clear from the contextD A will bewrittenD . Values in D A are writtend

, dl , etc. Objects in D A that are named a, aI , a2, etc., always denote elements of A .

"idealized" is that it has representations of all natural numbers 0,1,2' 0 0 0' and not

denotes the size of a dE]I).

value

2.1.2 Syntax of WHILE programs

The operation in WHILE, analogous to the increment operation on numbers in the ideal-

ized subset of Pascal in Subsection 1.4.4, is the operation that combines two trees dt and
d2 into one (dt . d2) . This operation is called cons. The operations in WHILE, analogous
to the decrement operation on numbers, are the two operations that decompose a tree
(dt . d2) into the subtrees dt and d2. These are called head and tail, respectively. There
is also an operation to test equality of elements of D.

Definition 2.1.3 Let A be a finite set of atoms, and Vars = {Vo,Vt,. . . } a countable set
of variables. We use the conventions de , f , . . . E DA and X, Y, Z, . . . E Vars . Then the

syntax of WHILEA is given by the following grammar :

Expressions 3 E, F ::= X

I d

I cons E F

I hd E

I tl E

I =1 E F
Commands 3 C, D ::= X : = E

I CiD

I while E do C

Programs 3 P ::= read X; C; wi te Y

Here X and Y are the not necessarily distinct input and output variables. We omit the A
from WHILEA when clear from the context. 0

We use indentation to indicate the scope of while and other

consider the two commands :

commands . For instance,

Syntax of WHILE data and programs 29

Definition 2.1.2 The function 1. 1 : D -+ N defined by:

Idl=
{

ifdeA
1+ ldll + ld21

In Figure 2.1, the leftmost value has size 9, and the righbnost has size 11.

if d = (dl .d2)

We now explain the semantics of a simple program to reverse a list , which illustrates
most aspects of WHILE.

Example

read Xi
Y
whil

y
X -

write Y

The program consists of a read command, a body, and a write command . The idea is that
some input dE 0 is assigned to the variable X, and then the body is executed. At any

point during execution every variable is bound to an element of 0 ; the collection of all

such bindings at one point is a store. Initially X is bound to the input d EO , and all

2 Comments are written in the form (.) , as in Pascal.

30 The WHILE Language

2.1.3 Informal semantics

2.1.4 Consider the following program , reverse :

cons (hd X) Y;

: = nil ;
Le X do
: =

: = tl X;

while E do while E do
C; C;

D; D;

The leftmost command repeatedly executes C as long as e is true and executes D once
when e has become false (what it means that an expression is true or false will be clear
later on). The rightmost command repeatedly executes first C and then D, as long as e is
true .

We also use braces to indicate scope, so the two above commands might have been
written {while E do C } j D and while E do {C j D} . Similarly we use parentheses
to explicate scope in expressions, such as cons (hd (tl X Y.

Note that a program always expects exactly one input . A program of, say, two inputs
can be expressed as a function which expects one input of form (de) :2

read X; (. X is (die) .)
Y := hd X; (. Y is d .)
Z := tl X; (. Z is e .)
C;

write Y;

Syntax of WHILE data and programs 31

output .

To bind a variable , say Y , to some fED one uses the assignment Y : = f . So the second

line assigns ni 1 to y .
3

More generally every expression E evaluates to some e ED , and Z : = E assigns this

e to Z . Specifically , E evaluates to e . As another example cons E F evaluates to (e . f)

if E evaluates to e and F evaluates to f . Further , hd E and tl E evaluate to e and f ,

respectively , if E evaluates to (e . f) .
Finally , a variable Z evaluates to the value it is

currently bound to .

The expression
= 1 E F evaluates to true , if E and F evaluate to the same value ,

and to false otherwise . Thus = 1 (nil . nil) (nil . nil) evaluates to true , and = 1

(nil . nil) nil evaluates to false .

Turning to our program , the next
thing that happens is that the while command

beginning in the third line is executed . The meaning of the command while E do C

is as follows . If E evaluates to nil proceed to the command following while E do C .

In the example this is the command write Y . However , if E evaluates to something

other than nil execute C , and test again whether E evaluates to nil . The outcome of

this test may be different from the first since the variables occurring in E
may have been

assigned new values by the command C . If E evaluates to nil , go to the next command ,

and otherwise execute C and test E again , etc .

So in the example program , the commands Y : = cons (hd X) Y ; X : = tl X

are executed in
sequence as long as X is not bound to nil . Before the first of these

two commands X is bound to (ed) (otherwise execution would have proceeded to

3Since all variables are initially bound to nil this command is superfluous . However it often happens that

one assigns some fEn > to a variable without ever making use of the initial value nil . Therefore , if one does

want to make use of the initial value nil , it is good programming practice to enter an explicit assignment Y

: . nil in the program .

the write command) and Y is bound to some f . After the first commandY is bound to

(e . f) , and after the second command X is bound to d.

If we think of the value (do. (d1 . (. . . . (dn- 1 . (dn . nil)) . . .))) as a list do, d1, . . .,

dn- 1, dn, then the program reverses lists; more about lists in Subsection 2.1.5. 0

2.1.4 Truth values and if -then -else

As is apparent from the preceding example, whenever evaluating expressions in tests

one should think of nil as " false" and any other element of R) as " true ." This intuition

is so predominant that we explicate it in a definition :

Definition 2.1.5 We use the following abbreviations :

false = nil
true = (nil . nil)

otherwise C2.

32 The WHILE Language- -

We now see that conditional com-

.
.

Z := false ; W
W := false ; C2

Conditional commands and boolean expressions.
mands can be expressed by while -commands alone.

Example 2.1.6 The following compound command executes C if and only if E evaluates
to true . Variable Z must be chosen different from existing variables.

Z := E; (* if E then C *)
while Z do { Z := false ; C } ;

The next statement will execute C1 if E evaluates to true and
Z := E; (* if E then Cl else C2 *)
W := true ;
while Z do := false ; Cl } ;
while W do } ;

=1 X cons (hd X) (tl X)

The same idea may be applied to expressions, rather than just commands, thus expressing
conjunction E and F, disjunction E or Fornegation not E, etc..

Testing for atomicity. Aabbreviation "cons? X" stands for

Syntax of programs- - WHILE data and

The value of cons ? X is true if the value of X is a pair (de) , else its value is false . Its

negation will be written " atom? X" and yields true if and only if X's value is atomic.
atom?cons ?

2.1.5 Lists

As one can see from the example in subsection 2. 1.3, elements of D sometimes have

deeply nested parentheses that are hard to read; one has to resort to counting to parse
an element like a . (b . nil . d . (e . nil .nil) .

Often the nesting has a certain structure, because we often express a list of elements
do, dt ,. . ., dn- t , dn as the tree (do. (dt . (. . " (dn- t . (dn . nil . . .) . For instance
(a . (b . nil represents the list consisting of elements a, b. Therefore it would be

particularly convenient to have a short notation for this form . Hence the idea is to use
the notation (do. . .dn) for the tree (do. (dt . (. ." (dn- t . (dn . nil . . .) . Then the
tree (a . (b . nil can be written (a b) in short notation and, as another example, the
tree a . (b .nil . d . (e .nil .nil) can be written a b) (de .

This is introduced in the following definition .

Definition 2.1.7 The list representation g of d ED A is the string of symbols from alphabet
AU { (, . ,) } defined recursively as follows :

{

d ifdEA
g = (gt . . . gn . a)

~
d = (d t . (d2. (. . . (dn . a

~
. . .) where a E A \ { ni 1 }

(gt . . .~) ifd = (dt . (d2. (. . .(dn.nJ.l) . . .)

We call (dt . . .dn) a list of l (d) = n; nil is the empty list of length o. 0

Notice that every element of D has at exactly one list representation. Henceforth we will
omit the underlines and write all values in the list form . Figure 2.2 gives some examples
of elements in D and their list representations.

The first example in the preceding subsection can now be expressed as saying that the

program reverses lists: if X was initially bound to input (do. . . dn) then Y is bound to
(dn . . . do) when execution reaches the final write command.

2.1.6 Numbers

WHILEA has a finite number of atoms, so how can we compute with numbers? Letting
each element of A represent a number clearly will not do, since A is finite. The idea,

As a matter of convenience, we will omit underlines and simply write 0 , 1 , 2 ,
. . . instead of Q, !, 2, . . . or nil , ni11 , ni12 , With the representation in this definition

, while E do C means: as long as E does not evaluate to 0, execute C. As two very
simple examples, the successor and predecessor functions are computed by :

read X; (. succ .) read X; (. pred .)
Y := cons nil X; Y:=tl X;

write Y; write Y;

Y := tl XYi
while X do

Y := cons nil Yi
X := tl Xi

write Yi

More programs computing with numbers are examined in the Exercises.

34 The WHILE Language

Here is a program for adding two numbers (note that XY is a single variable, whose
value is a pair):

read XV; (. add X Y .)
X := hd XV;

2.1.7 Syntactic sugar : some useful macro notations

We inuoduce some programming shorthand devices to increase human readability of
program texts. The first is nearly trivial : let SKIP be a command with no effect, say
X: =X.

Two notations for building lists . The expression list El . . . En will be used as shorthand
for cons El (cons E2 . . . (cons En- l (cons En nil)) . . .) for any n EN .

Its value is (d1 d2.. . dn- l dn) if the value of each list E; is d;.
The expression cons * El . . . En will be used as shorthand for cons El (cons

E2.. . (cons EnlEn) .. .) for any nE N. (This differs slightly in that nil is not added
at the end, which makes it more useful than list for extending an already-existing
list .) Its value is (dl d2. . . dn- l dn el e2. . . em) if the value of each list E; isd ; for
1 ~ i < n and the value of list En is (el e2. . . em)

In Iine procedure expansion . Note in the example for adding two numbers that the

program incremented and decremented X and Y, respectively, explicitly by means of
cons and tl expressions. A more abstract formulation of add, hiding the specific way
numbers are implemented , is:

read XV; (* add X Y *)
X := hd XYi
Y := tl XYi
while X do

Y := succ Yi
X := pred Xi

write Yi

where we allow the add program to use the succ and pred programs . Strictly speaking
we have not yet explained how this can be allowed . That is done in this subsection.

Given a program p we will allow a program q to use the command B : = p A. The

meaning is as follows . Suppose that the input and output variable in p are X and Y,
respectively. Now make a copy pp of p where X and Y are replaced by A and B, respec-

tively , and where all variables are renamed so that no variable of pp other than A and B
occurs in q. Then replace in q the command B : = p A by the body of pp .

Example 2.1.9 Consider the following program, append, which
= (dt """ dn) and e = (et """ em) computes (dt """ dn et """ em) "

for input (de) withd

Syntax of WHILE data and programs 35~ - -

36 The WHILE Language

(. X is (die) .)
(. A is d .)
(. Y is e .)
(. B is d reversed .)

read X;
A := hd X;
Y := tl X;
B := reverse A;
while B do

-

- - -

(* Y is A with B appended *)

Thus from now on ,

2.2 Semantics of WHILE programs

is (d .e) .)
is d .)
is e .)

X
A
Y

*

*

*

* B becomes d reversed .)

read Xj
A := hd Xj
Y := tl Xj
B := Nill
while A do

B := cons (hd A) Bj
A := tl Aj

while B do
Y := cons (hd B) Yj
B := tl Bj

wi te Y

Recall from the introductory chapter the important distinction between algorithms and
the mathematical functions they compute. In this section we show how any program in
WHILE can be used to define a partial function from D to D. The interpretation is nothing
more than a precise statement of the informal semantics mentioned in Subsection 2.1.3.

Subsection 2.2. 1 formalizes the notion of a store that was mentioned in Example 2. 1.4.

Subsections 2.2. 2- 2.2.3 then formalize the notions of evaluation of an expression and
execution of a command, also mentioned in Example 2. 1.4. Finally, Subsection 2.2.4 puts
together the pieces.

Y := cons (hd B) Yi
B := tl Bi

write Y (. Y is A with B appended .)

Written out explicitly the program is:

We will also allow names to stand for sequences of commands.

programs may make free use of conditionals .

Given a store 0- containing the values of the variables in an expression E, the function
EmapsE and 0- into the value EIiEDo- = d in D that E denotes. For example

Elicons X YDu = nil . nil) . nil) if 0- = [Xt-+ (nil . nil) , Yt-+ nil].

~ 2.2.2 The function E : Expression -+- (Store P -+- D) is defined by:

EIlXDo- = o-(X)
ElidDo- = d

Elicons E FDo- = (EIiEDo- . EIlFDo-)

Ellhd E Du = e if EIiEDu = (e . f)
nil otherwise

Elitl E Du = f if E Il E Du= (e.f)
nil otherwise

Ell =1 E FDo- = true if EIiEDu = EIlFDo-
false otherwise

Definition

Semantics of WHILE programs 37- -

2.2.2 Evaluation of expressions

'
" - . . . - " ' " - . . . - " ' " - . . . - "

2.2.1 Stores

The notation [Xl 1-+ dl , . . .,Xn 1-+ dn] denotes the function { such that { (Xi) = die The
notation { [X 1-+ d] denotes the function g such that g(x) = d, and g(y) = { (y) for y ~ x.
See Subsection A .3.6 in the Appendix for more information .

Definition 2.2.1 Given a program p=read X; C; write Y.

1. Vars (p) denotes the set of all variables occurring in p.
2. A store 0' for p is a function from Var s (p) to elements of D. The set of all stores

for p, i.e., the set Vars (p) -+ D, is called Store P.
3. The initial store O'b(d) E Store P for input dE D is:

[X too+- d,Zl too+- nil . . . ,Zm too+- nil]

where Vars(p) = {X,Zl, ' . . ,Zm} . Note that if Y and X are differentY is among the
Zi. 0

2.2.3 Execution of commands

Given a store 0' , the relation CI-O' -+ 0" express es the fact that the new store is 0" after

executing the command C in the store 0' . (If command C does not terminate in the given
store 0' , then there will be no 0" such that C I- 0' -+ 0" .) For instance,

I : =cons 1 Y I- [X t-+ nil , Y t-+ nil] -+ [X t-+ (nil . nil) , Y t-+ nil]

Definition 2.2.3 Define the relation . I- . -+ . ~ Command x Store P x Store P to be the
smallest relation satisfying:

I : =E I- 0' -+ 0' [1 t-+ d] if E Ii ED O' = d
C ; D I- 0' -+ 0' " if C I- 0' -+ 0" and D I- 0" -+ 0' "

while E do C I- 0' -+ 0' " if E Ii ED O' :1 nil , C I- 0' -+ 0" , while E do C I- 0" -+ 0' "

while E do C I- 0' -+ 0' if E Ii ED O' = nil

0

38 The WHILE Language- -

�

2.2.4 Semantics of WHILE programs

The function II. D maps a program p and input value d into a value I Ip D(d) = e in]l) if
the program terminates. (If the program does not terminate there will be no e E]I) with

I Ip D(d) = e.) This is done by executing C in the initial store O'b(d) and writing the value
0" (Y) bound to Y in the new store 0" resulting from execution of C.

Definition 2.2.4 The semantics of WHILE programs is the function

II. DWHILE : Program -+ (]I) -+]1)1.)

defined for p = read X; C; writeY by:

I Ip D W H I LE(d) = e if c ~ O'b(d) -+ 0' and O' (Y) = e

We write lip D instead of lip DWHILE when no confusion is likely to arise. If there is no e
such that I Ip D(d) = e, then p loops on d;4 otherwise p terminates on d. We also say that p
computes I Ip D. 0

Given the precise semantics of programs one can prove rigorously such properties as

I IreverseD (dt .. .dn) = (dn.. .dt) , see the exercises. .
4Jn this case, we write [p)(d) = .i , as usual for partial functions.

Case commands 39

2.2.5 Calculating semantic values

Given a program p and an input d on which p does not loop, how can we find the
corresponding output ([pD(d)? According to Definition 2.2.4 we have to find a store 0'
such that C I- O'E(d) -+ 0' , and then look up V

's value in 0' .
How do we solve the problem, given some C and store 0'0, of finding a 0' such that

C I- 0'0 -+ O'? This can be done by applying the rules in Definition 2.2.3 as follows.

. If C has form C ; D we first solve the problem of finding a 0" such that c I- 0'0 -4 0" ,
and then the problem of finding a 0' " such that D I- 0" -4 0"' , and then we can use
0' = 0"' .

. If C has form X : = E we calculate
that X I-+-d.

. if C has form while E do

In this section we describe a shorthand notation, namely the case command. The shorthand
is very useful later on, but also a bit complicated to explain in all details. Therefore,

the section can be omitted on a first reading, and consulted later, when necessary.

2.3.1 An example of case commands

Case commands are very useful for writing programs that examine the sb' Ucture

input extensively .

Recall that in Pascal one can write something like

case X of
1 : Y := X+1; (. here X is 1 and Y becomes 2 .)
2 : Y : = 5 ; (. here X is 2 and Y becomes 5 .)

2.3 Case commands

of their

The case commands in our setting are similar but more sophisticated, somewhat resembling
those of ML [131, 122], but also having assignments as side-effects.

 f[ED O'o = d and then 0' is the same as 0'0 except

C we calculate Ef[ED O'o = d. If d is nil then 0' is 0'0.
Otherwise, first solve the problem of finding a 0" such that c ~ 0'0 -+ 0" , and then
the problem of finding a 0' " such that while E do C ~ 0" -+ 0"' , and then we can
use 0' = 0"' .

40 The WHILE Language- -

A destructive side-effect of matching. The use of hd and tl has been replaced by
the pattern matching in the case command. Notice in particular that the match against
(H. X) overwrites the previous value of X, thus achieving the effect of X : = tl

commands

ad ED. If d= (dl . d2) then theExample 2.3.1 The following (contrived) program read,q

output is dl , and otherwise the output is the atom a.

read Xi
case X of

(V.W) : } Y := Vi (* here X is (die) , and Y becomes d *)
z : } Y := ai (* here X is an atom, and Y becomes a *)

write Yi

Example 2.3.2

read X;
Y := nil ; GO := true ;
while GO do

case X of
nil ~ GO := false ;

(H.X) ~ Y := cons HY ;
write Y;

x .

2.3.2 Syntax and semantics of case

The general syntax of case commands is:

The meaning of the case consb"uction is as follows . First X is evaluated to a value dE D.

It is then tested whetherd matches the pattern (V.W) , i .e., whetherd = (dt .d2) for some

dt , d2. If so, dt and d2 are assigned to V and W, respectively, and then Y : = V is executed.

If the value did not match the pattern (V. W) then no assignment takes place, and

it is tested whether it matches the next pattern Z. Any value matches a variable , so the

value is assigned to Z and Y : = a is executed. 0

As a more natural example, here is the reverse program expressed by means of a case

command :

X:= E
if match(X,pi) then {assign(X' Pl) ; Cl; } else
if match (X, P2) then {assign (X, P2) ; C2;} else

...
if match(X,Pn) then {assign(X' Pl) ; Cn; }

where match(X,P) is an expression that evaluates to true iff the value bound to X
matches the pattern P, and assign(X,P) is a sequence of assignments according to the
matching of the value bound to X with P.

First we define exactly what it means that a value matches a pattern and what the
corresponding assignments are, and then we show how to write code that realizes these
definitions.

An e ED matches a pattern P if

1. e=(el . e2) and P=(PI . P2) where el and e2 match PI and P2, respectively.
2. P = Z for some variable Z.
3. e=d and P=d for some value d.

He ED matches P the following assignments arise as side effects.

1. Matching e = (el . e2) with P=(PI . P2) gives rise to the sequence of assignments
C1 ; C2, where C1 is the assigments arising from the matching of el with PI and C2
is the assigments arising from the matching of e2 with P2.

2. Matching e with P=Z for some variable Z gives rise to Z : = e.
3. Matching e=d with P=d for some value d gives rise to no assignments.

Case commands 41

case E

PI => CI ;

Pn => Cn;

where a pattern has the following form (where no variable is allowed to occur twice):

P ::= d where dE D is any value
I Z where Z is a variable
I (Pt .P2)

The overall case command can be expressed as follows :

42 The WHILE Language- -

The expression match (E , P) defined below is such that for any 0' , I I ED O' matches P if

and only if l Imatch(E,P) D O' = true .

match(E, (P.Q = and (cons? E)
(and match(hd E, P) match(tl E,Q

match (E, Y) = true

match(E,d) = =? Ed

where cons? E evalutes to true iff E evaluates to an element of form (de) (this is

easy to program). For instance,

match (X, (d .Y = and (cons? X) (and (=? (hd X) d) true)

SKIP;

if (and (cons? X) (and (=? (hd X) d) true))
then {SKI Pi Y:=tl Xi C1;} else

if true

Y := E;
SKIP;
assign (hd E, P) ; assign (tl E,Q)

Y:=tl

X:= E

then {Z:=X; C2}

which evaluates to true iff X is bound to a an element of form (d . f) for some f .
We define assign(E,P) to be the sequence of assigments caused by matching the

2.3.3 Case commands testing several expressions

We will also allow case commands that test several expressions:

value of E with p.

assign (E,Y) =

assign (E,d) =

assign(E, (P.Q =

For instance,

assign (X, (d . Y =

Hence, altogether

case E of
(d.Y) ~ Cl ;
Z ~ C2;

becomes

Pn, Qn ~ Cn;

where in each clause both matchings must succeed for the corresponding command to
be executed. This can be expressed by:

case (CODS E F) of
(Pl .Ql) ~ Cl ;

2.4 Equality versus atomic equality

One could argue, as in Turing
's analysis of section 1.2. 1, against our use of the tree

comparison operator =? on the grounds that it is not "atomic"
enough. This can be

countered by showing how to express general equality in terms of a test atom=? , which
returns true if both arguments have the same atom as value, and false otherwise .

Case commands allow this to be done in a straightforward way. The following
program assumes given input as a pair (de) , and tests them for equality using only
atom=?:

read X;
D := hd X;
GO := true ;
while GO do

co~ ess

Equality versus atomic equality 43- - -

case E, F of

PI, Qt ~ Ct;

(Pn.Qn) Cn;

E := tl Xi

D:=cons Dl
E: =cons El
Y: = false ;
Y:= false ;
if (atom=?

case DE of
 Dl .D2) .D3) , El .E2) .E3) : }

 Dl.D2) .D3) , (W .E3)
(v .D3) . El .E2) .E3)
(A .D3) , (B .E3)

=>
=>
=>

A
write Y;

A few words on the

-
else Y: = false ; GO:=false ;

=> Y := atom=? A B; GO : = false ;

of this program are in order . First of all , termination is

(cons D2 D3) j
(cons E2 E3) j
GO:=falsej
GO:=falsej
A B)

then D:=D3; E:=E3

ensured by the fact that a certain number gets smaller every time the body of the while

loop is executed; this is addressed in an exercise.

Assume that the values d and e have been assigned to program variables D and

E. In the first clause of the case expression d and e have form d1. d2) . d3) and

 el . ev . e3) . Then D and E are re-assigned values (d1. (d2. d3 and (el . (e2. e3 ,
and the loop is repeated. It is clear that the new values for D and E are equal iff the

original ones were equal.
In the second clause e has form (a . e3) where a is an atom since the match in the

first clause failed . Then the two values cannot be equal. Similarly for the third clause.

If execution enters the fourth claused and e have form (a . d3) and (b . e3) where a

and b are atoms. For d and e to be equal, a and b must be the same atom, and d and e

must be equal.
In the fifth clause both values are atoms.

Exercises

44 The WHILE Language- -

�

2.1 Write a WHILE program that takes an input d and returns the list of atoms in d from

left to right . For instance, with d= ((a . b) . (a . (c .d the program should yield (a b

a c d) (i .e., (a . (b . (a . (c . (d . nil . 0

2.2 Write a WHILE program that expects an input of the form (at . . . an) (a list of atoms),
and removes adjacent identical atoms. For instance, if the input is (a a a b b c a) ,

the program should yield (a b c a) . 0

2.3 Let 0' = {X 1-+ (nil . nil) } , C be while X do X:=X, and show that there is no 0"

such that c I- 0' ~ 0" . 0

2.4 Given d = (a b c) , and let p = read X; C; write Y be the reverse program from

Subsection 2.1.3. Find a 0' such that C I- O'K ~ 0' . Explain in detail how 0' is computed . 0

2.5 Prove that [reverseD (dt . . .dn) = (dn. . .dt). Hint : Proceed by induction on n.s 0

2.6 . Prove that the general program for testing equality in section 2.4 runs in time

bounded by k .min (ldl,el), where die are the inputs and k is some constant. Estimate

the value of this constant.

5See Subsection A.6 for a presentation of induction.

atomic

Hint : consider the weight w : D - + N defined by :

The data sb"ucture of WHILE is very similar to those of Scheme and LISP. The book by
Kent Dybvig [39] is a good introduction to Scheme. The semantics of the WHILE language

is in essence a natural semantics as one would find it in an introductory text on
programm~ g language semantics, e.g., the books by Schmidt [150] or by Nielson and
Nielson [128].

Some other textbooks on computability and complexity use a language very similar
to WHILE, but in most cases the data sb"ucture used is numbers, rather than trees [92,
156]. The author has used sb"uctured data as well as sb"uctured programs for teaching
for several years at Copenhagen. The idea of restricting trees to the single atom nil
was due to Klaus Grue [54]. The same WHILE language was used in article [80], which
contains several results and definitions appearing later in this book.

Equality versus equality 45A , .. " --

w(a) = 1
w(dt.dv = 21dtl + Id21

Show that w(d) :$ 21dl for all dE]1:)), and show that the running time of the program is
bounded by 1 . min { w(d) , w(e)} for some constant ,. 0

References

2.7 Prove that the size Idl of a value d ED can be computed in time O(ldl). Hint: modify
the program for testing equality in section 2.4, so it compares d against itself, and

increases a counter ni 1 n each time a new " . 1/ is found in d. 0

3 Programs as Data Objects

In this chapter we are concerned with programs that take other programs as data. This

requires that programs be part of the data domain ; we show how to achieve this in
section 3.2. We then study three kinds of programs that have other programs as input in
sections 3.3- 3.6: compilers , interpreters , and specializers. The chapter concludes with
several simple examples of compilation in section 3.7.

A compiler is a program transformer which takes a program and translates it into an

equivalent program , possibly in another language. An interpreter takes a program and
its input data, and returns the result of applying the program to that input . A program
specializer, like a compiler , is a program transformer but with two inputs . The first input
is a program p that expects two inputs X, Y. The other input to the program specializer
is a value s for X. The effect of the specializer is to construct a new program Ps which

expects one input Y. The result of running Ps on input d, is to be the same as that of

running p on inputss and d.
The reason we emphasize these program types is that many proofs in computability

theory involve constructing an interpreter a compiler, or a specializer.
First we define what constitutes a programming language in section 3.1.

vrogrllmmmg

- data

Definition 3.1.1 A language L consists of

- + L- data.i)

1. Two sets, L- programs and L- datal

2. A function II. DL : L- programs - + (L

Here l[eD L is L's semantic function, which associates with every L-program p E
L- programs a corresponding partial function I[pDL : L- data -+ L- data.i . 0

We have already seen one example of a programmming language according to this definition
, viz . the language WHILE, which had L- data = D and L- programs as in Definition

2. 1.3. We shall see several programming languages in later chapters. As was the
case for WHILE, we will drop L from the notation I[e DL whenever L is clear from the
context.

48 Programs as Da ta Objects

Imagine one has a computer with machine language L. How is it possible to run programs
written in another language H?

We will answer this question in two steps. First, we say what it means that language
L is able to simulate an arbitrary H program . (In effect, this says L is at least as expressive
as H.) Second, we will show how L can simulate H, in two different ways: compilation
and interpretation .

Definition 3.1.2 Suppose L-data = M-data. Language L can simulate language M if for

every pEL -programs there is an m-program q such that for all dE L-data we have

[pDL(d) = [qD"(d)

Equivalently : L can simulate Miff there is a total function f : L-programs -+ M-programs
such that ([pDL = ([f (p)DH for all L-programs p.

Language L is equivalent to language M, written L = M, if language L and language M
can simulate each other. 0

This definition express es the facts that L and M can compute the same functions ; but it
does not assert the existence of any constructive way to obtain an M-program equivalent
to a given L-program . The remainder of this chapter concerns how simulation may be
done computably, by either translation (applying a compiling function) or by interpretation

. First, however, we will need a way to regard prograins as data objects.

3 .2 A concrete syntax for WHILE programs

We have earlier given a syntax for WHILE-programs and WHILE- data. Suppose we want to

give a WHILE program as input to another WHILE program . Presently this is not possible
simply because elements of WHILE-programs are not objects in WHILE- data. Therefore we
now give a concrete syntax for WHILE programs.

Definition 3.2.1 Let A = {at , . . ., an} be a finite set of atoms with n ~ 10, and let the
names " : =,

" "
; ,

" "while ,
" "var ,

" "
quote ,

" " cons ,
" "hd,

" " tl ,
" "=?,

" "nil " denote
10 distinct elements of A . The concrete syntax R of WHILEA program p is defined by the

map shown in Figure 3.it :

!. : WHILE- programs -+ WHILE- data

l Recall that VarB = {VI, V2,.. .}. While we often use X and Y to denote arbitrary elements of VarB, it is
convenient in the definition of !. to know the index of the variable to be coded. We assume that no program
contains a variable with higher index than its output variable.

(var 2)
)

For readability we will continue to use the original syntax when writing programs, but
it should be understood that whenever a program p is input to another, it is the corresponding

concrete syntax program R that we have in mind .

A concrete syntax for WHILE programs 49- ~

where we use the list and number notation of Subsections 2. 1.5- 2.1.6.

Figure 3.1: Mapping WHILE programs to their concrete syntax.

read X;
Y := nil ;
while X do

Y : = cons (hd X) .Y;
X := tl X

write Y;
would be translated to the value in D:

(var 1)
(; (:= var 2) (quote nil)

(while (var 1)
(; (:= (var 2) (cons (hd (var 1

(:= (var 1) (tl (var 1
(var 2)

For example, if X and Y are the variables Vt and V2, respectively, then the program
written as

Analogous ideas can be used for other languages L as well , though encoding programs
as data is harder if L-data is, as in many texts, the set of natural numbers.

Suppose. we are given three programming languages:

. A source languageS,

. A target language T, and

. An implementation language L.

A compiler compEL -programs from S to T has one input : a source program pES -programs
to be compiled . Running the compiler with input p (on an L-machine) must produce
another program target , such that running target on aT-machine has the same effect
as running p on an S-machine.

This is easiest to describe (and do) if the source and target languages have the same
data representationss - data = T- data, as one can simply demand that [source Ds(d) =

[targetD
T(d) for all inputs d.

50 Programs as Da fa Objects

3.3 Compilation

3.3.1 Compiling without change of data representation

Definition 3.3.1 Suppose

. S- data = T - data = L- data;

. S- programs U T - programs ~ L- data.2

Then:

1. A total function f : L- data -+ L- data is a compiling function from S to Tiff for all p
ES-programs: f (p) ET - programs, and ([pDs ~ lrf(p) DT.

[pDS(d) = lrf(p)DT(d)
�

2In other words : languagesS and T have concrete syntax where programs are L-data elements.

2. An L-program comp is a compiler from S to T if I Icomp D L is a compiling function. 0

Note that we carefully distinguish between a compiling function, and a compiler, i.e., a

compiling program. Spelled out, a compiling function f satisfies for all pES - programs
and all dES - data:

'
where

compiler

such diagrams are used, we will replace implementation language L above by H, indicating
"human." In fact, all of our programming language translations could be automated

Compilation 51

~ both sides may be

TI -diagrams3.3.2

We use the symbol

~

= { camp I 'v'p ES -
programs, 'v'dE S- data.

I Ip D S(d) = I Il Icomp D L(p)DT(d)}

! ** !L.~..J
source program E 3 target program

In this book comnilation will most often be described bv informal consb' uctions . and if

If language T can simulate languageS , then by definition there exists a total compiling
function from S to T. On the other hand, a compiler camp is an L-program whose meaning

is a compiling function , and so necessarily computable; it satisfies for every p E
S-programs and every dES - data = T - data,

If we also have a compiler camp from source languageS to target language T, written in
L, then we can perform translations, as described by the diagram:

([pDS(d) = ([([compDL(p)DT(d)

undefined, see Subsection A.3.3).

to denote the set of compilers from S to T written in L . Suppose we are given a collection

of S-programs, nature unspecified . This set can be denoted by

...........

1

* *
~ ~

* *

I

1S ~
-

~
T !'.........- - -

l ~ J

.........'

t

Definitionl 3.3.3 Suppose

. given a coding c : S-data

. S- programs U T - programs ~ L- data.

-dQtQ,~

"
I : t : ~ ~

~

~ ~

g
~

- . tT

52 Programs as Data Objects

in principle , but going to that level of detail would be more appropriate to aprogramming
language course than to a theory course.

On the other hand interpreters , under the name universal programs, will be treated
more formally . They playa central role in theorems of both complexity and computability

theory. Since their structure and running times are so important , several interpreters
will be given in considerable detail by programs.

3.3.3 Compiling with change of data representation

In order to compare computation by machines with different sorts of input / output data
we define one way that a (possibly partial) function on one data set can be represented
by a function on another set. This is a natural generalization of the concept of " commuting

diagram
II to the case where some arrows denote partial functions .

Definition 3.3.2 Given sets A, B, a coding from A to B is a one-to-one total function
c : A -+ B. A partial function g : B -+ B.L implements partial function f : A -+ A .L relative
to coding c if for all a E A

1. f (a) :l1 . implies g(c(a = c(f (a

2. f (a) = 1. implies g(c(a = 1. 0

Intuitively : in the following diagram , whenever an instance f : a 1-+ f (a) of its topmost
arrow is defined, there exists a corresponding defined instance g : c(a) 1-+ c(f (a of the
bottom arrow. Further, any undefined instance f : a 1-+ 1. of its topmost arrow corresponds

to an undefined instance g : c(a) 1-+ 1. of the bottom arrow. The behaviour of g
on values outside the range of c is irrelevant to the definition .

f ~

1. f : L-data -+L-data is a compiling function relative to coding c if for every p E
S-programs, lrf(p) DT implements f (p) ET- programs [p I S relative to c.

2. An L-program camp is a compiler from S to T with respect to coding c if [compDL is a
compiling function relative to c. 0

The first part of this definition amounts to the

ing diagram.

[p I S

commutativitygeneralized

T- data

3 .4 Interpretation

Suppose we are given two programming languages:

. An implementation language L, and

. A source languageS.

An interpreter intEL - programs for S- programs takes an input (p . d) , where p E
S- programs is a program and dES - data its input data. Running the interpreter with
input (p . d) on an L-machine must produce the same result as running p with input d
on an S-machine. Typically the time to run p interpretively is significantly larger than
to run it directly; we will return to this topic later.

AlanguageS such that S- programs ~ S- data will henceforth be said to have concrete

syntax. Also, if inlanguageS it holds that S- data x S- data ~ S- data, then we shall say
that S has pairing.

Definition 3.4.1 Assume

L- data = S- data. Then :

that languageS has concrete syntax and pairing, and that

Interpretation 53

of the follow-

oS~

.

Im
u

lJf(p) IT

3.4.1 Interpretation without change of data representation

~

.

s-data

1

c

T-data

54 Programs as Da ta Objects

1. A partial function iLdata -+- L- data.L is an interpreting function of S if for all

pES - programs and dES - data:

([pDS(d) = i (p .d)

2. L-program int is an interpreter of Sin L if ([intDL is an interpreting function of S.
0

intDL (p . d) }

to denote the set of all interpreters for S written in L .

3.4.2 An interpretion example: straight line Boolean programs

Expressed in concrete syntax, a program can be written
: =true , : =and, : =not are atoms in A) with the following
notation Nill for i EN from Definition 2. 1.8).

as an element of D A (where

grammar. We use the number

(It ; 12;" ' ;
(:=true X)
nil O I nilt

We use the symbol

w{ int I Vp,d. [pDs(d) = [

Program : := read Xo; 11 12888 im; write Xo
Xi := true I Xi := Xi and Xt I Xi := not Xi

I",)
I (:=and X Y Z) I (:=not X Y)
I ni12 I . . .

. . -. .

. . -. .

In this example a source program is a linear sequence of commands built from true and
Boolean variables 10,. . . ,Xn using boolean operations

" and " and I'not ." Informal syntax
is defined by the following grammar :

while P do

Explanation : The store 0' = [Xo 1-+ do, . . .,Xn 1-+ dn] will be represented as a list (do dt . . .

dn) . Two auxiliary functions are detailed in the next section: lookup , which finds the
value di, if given the store and i as arguments; and update , which assigns a new value
to variable Xi.

The interpreter first initializes the store by binding the input value d to variable
Xo using update . It then repeatedly dispatches on the form of the first instruction in
the remainder P of the program , and performs lookups or updates to implement the

language
's three command forms . After the case command, P is reassigned to what

follows after the current instruction ; so P decreases until empty.
Once the last command is executed, the value of Xo is looked up in the final store

and written out .

(* First instruction of remainder of P *)

=> Store : = update X true Store ;

=> V : = (lookupY Store) and (lookup Z Store) ;
Store := update X V Store ;

=> V : = not (lookupY Store) ;
Store := update X V Store ;

(* Remove first instruction *)

(:=not X Y)

Interpretation 55

The interpreter body

read PDi (. Input = program and value of XO .)
P := hd PDi D : = tl PDi (. Extract program and data from PD .)
Store := update 0 D Nill (. Initialize store : XO equals D .)

Auxiliary functions for storing and fetching

Suppose (do. . . dn) is a list of length n + 1, and j denotes a numeral j between 0 and
n. How do we perform the assignment X:=dj? This is done by the following sequence
of commands, where the GOTO variable J contains the numeral j , and Store contains
the list (do. . . dn). Note that after execution of the commands, Store and J have their

{ case hd P of

(:=true X)

(:=and X Y Z)

P := tl P } j

V := lookup 0 Storej
write V

va lu ~.q-

T := Store ; (* X := lookup J Store *)
K := J ;
while K do (* Remove the first i elements from a copy of Store *)

K := pred K;

56 Programs as Data Objects

original

T := tl T;
X := hd T;

Conversely, given a list (do. . . dn), a value d, and a number j , how do we compute the
list (do. . .dj - t d dj+t . . .dn)? This can be done by the following program , which assumes
that the list is in Store , the number is in J, and the value d is in V.

T := nil ; (. Store := update J V Store .)
K := J ;
while K do (. Net effect is to set .)

T := cons (hd Store) T; (. T = (dj - l . . . dO) and .)
Store := tl Store ; (. Store = (dj dj +l . . . dn) .)
K := tl K;

Store := cons V (tl Store) ; (. Store = (d dj +l . . . dn) .)
while T do (. Repace dO dl . . . dj - l on Store .)

Store := cons (hd T) Store ;
T := tl T;

3 .5 Ways to combine compiler and interpreter diagrams

Diagrams such as the preceding one, and more complex ones with several interpreter
blocks, compiler blocks, or other blocks put together, can be thought of as describing
one or more "computer runs." For example, suppose a Lisp system is processed inter -

pretively by an interpreter written in Sun RISC machine code (call this M). The machine
code itself is processed by the central processor (call this C) so two levels of interpretation

are involved , as described by Figure 3.2.
Assume that certain languages are directly executable; typically a machine language

T, or an implementation language L for which one already has a compiler or interpreter
available. Then a composite diagram composed of several n -diagrams is defined to be

directly executable if and only if every
"bottom -most" diagram in it is implemented in

an executable language.
In order to be meaningful a diagram must be "well -formed ," that is satisfy some

natural constraints:

1. All languages appearing bottom -most in the diagram must be executable {either

~
] :

:
Q.

-
-oS ~S :

:
.

-

i
- - - ; - - - - - - - ~ - - - I . . . J Z ' Z

t .) 1

!

:
* 1 - - , - - 1 -

L
.

.
S

-- :
3

~~E ~e~'
S

E
~

.
S

0~~ ~.
;

~

because they are machine languages, or because implementations are known .to
exist even though not shown in the diagram).

Let us define language L to match language H, written L ~ H, to mean that any
L-program is also an H-program , and has the same semantics. A special case: L ~
L, that is, any language matches itself .

The second constraint is that in any subdiagram of either of the following two
forms:

must satisfy:

3.6 Specialization

Suppose again that we are given three programming languages:

. A source languageS,

. A target language T, and

Specialization 57

. .! ** i! 81 !~
...........

1

* *
i j

* *

1

! 82
~

-
- ! - - J

T2 !'...._...- - -

l ~

- ..._.'

81 ~ 8,82 ~ 8 and T ~.T2

. An implementation language L .

A program specializer is given an S-program p together with part of its input data , s .
Its effect is to construct aT -program ps which , when given p

's remaining input d, will

yield the same result that p would have produced given both inputs . We leave open the

possibility that S and T are different languages , although we will requireS - data=T- data,
i .e., we only consider specialization without change in data representation .

58 Programs as Data Objects

Figure 3.3: A program specializer.

Thus we may think of specialization as a staging transformation . Program p
's computation

is not performed all at once on (s . d) , but rather in two stages. The first stage is
a program transformation which , given p and s, yields as output a specialized program
ps . In the second stage, program ps is run with the single input d~ ~ Figure 3.3.3 The

specialized program 1>s is correct if , when run with any value d for p
's remaining input

3 Notation: data values are in ovals, and programs are in boxes. The specialized program p. is first considered
as data and then considered as code, whence it is enclosed in both. Further, single arrows indicate

program input data, and double arrows indicate outputs. Thus spec has two inputs while p. has only one;
and p. is the output of spec.

Some simple examples of compilation 59

remaining input data d .

Definition 3.6.1 Assume that S has pairing , that Sand T have concrete syntax, and that
S- data = L- data = T - data. Then:

1. A total function f : L- data -+ L- data is a specializing function from S to Tiff for all

pES - programs and dES - data f (p . d) ET - programs and

[pDs(s . d) = Ilf (p . s) DT (d)

2. L-program specis a specializer from S to T if [specDL is a specializing function .

Specifically,

Proof This is immediate if there is an L-to-H compiler comp written in T, since function
[compDT satisfies Definition 3.1.2. Further, if L can be interpreted by H, there exists an
L-to-H compiler by Exercise 3.1. 0

data , it yields the same result that p would have produced when ~ ven both s and the

[pDS(s. d) = [[specDL(p. s)DT (d)

3 .7 Some simple examples of compilation

In this section we consider some fragments of WHILE and show by means of translations
that the fragments are as expressive, in a certain sense, as the whole language.

The first section describes a restriction on the size of expressions. The second section
describes a restriction on the number of variables a program may use, and the third
section restricts the set []) A to trees built from the single atom nil .

Data

Definition 3.7.1 Restrict the syntax of WHILE programs as follows arriving at W H ILElop.

60 Programs as Objects

3.7.1 Restriction to one operator

X := E
C1 ; C2

E ::= X ..-..
I
I

-

- - - -

d
cons X Y
hd X
tl X
=1 X Y

P ::= read X; C; write Y
while X do C

(cons (tl Y) (hd Y ;

Note that in assignments the expression may contain at most one operator, and in while

loops the tested expression must contain no operators at all . The semantics and running
times is the same as for WHILE programs .

Any WHILE program p can be translated into a W H ILElop program with the same semantics
. The problem is to break complex expressions and while tests into simple ones.

This can be done systematically introducing new variables and assignment statements.

Example 3.7.2 The program

read XV;
X := hd XV;
Y := tl XV;
while (hd X) do

Y := cons (hd X)
X := tl X ;

writeY
can be translated into :

read XV;
X := hd XV;
Y := tl XV;
Z := hd X;
while Z do

A := hd X;
B := tl Y;
C := hd Y;
D := cons B C;
Y := cons A D;
X := tl X;
Z := hd X;

write Y

We state the general translation using the infOrD\ ai syntax , but it could clearly be ex-

Figure 3.4: Transformation rules.

Proposition 3.7.4 - is a compiling function from WHILE to W H ILElop.

Proof: See the Exercises.

3.7.2 Restriction to one variable

W H I L E1var is the same language as WHILE except that the language only contains one
variable X, which is also used for both input and output . Any WHILE program can be
translated into a W H I L Elvar program with the same semantics.

Example 3.7.S Recall the following program to reverse a list :

Some simple examples of compilation 61

read Xj
Y := Nill
while X do

Y := cons (hd X) Yj
X := tl Xj

write Y

pressed via the concrete syntax introduced earlier .

Definition 3.7.3 Given a program p, construct the transformed program R by applying
the rules given in Figure 3.4 recursively. Variables Y, Yi , Y2 are fresh variables, chosen
anew every time a rule containing them is used.

For the general translation we will pack the variables Xi , .. ., In together by cona'
ing

to form a list (X 1 ... In) . More efficient translated programs could be obtained by
packing into balanced trees instead of lists.

Definition 3.7.6 Define tlOE = E and tli +lE = tli (tl E) . Given a program p with

input variables Xi ,. . ., In apply the transformation R defined in Figure 3.5.

Figure 3.5: Transformation rules.

62 Programs as Da fa Objects

read A;
A := cons A nil ; (. now A = cons X Y .)
while (hd A) do

A := cons (hd A) (cons (hd (hd A (tl A ;
A := cons (tl (hd A (tl A) ;

A:= hd A; (. write X .)
wri te A

The program has two variables. To convert it into an equivalent l -variable program
"
pack

" the two into one A= (cons X Y) . Whenever we need X in some expression we
take (hd A) , and whenever we need Y we take (tl A) . Whenever we wish to assign E
to X we assign cons E (tl A) to A, and whenever we wish to assign E to Y we assign
cons (hd A) E to A. We thus arrive at the following program .

compiling

3.7.3 Restriction to one atom

W H I L E1atom is the same language as WHILE except that the set 0 contains only the atom
nil . Any WHILE program can be translated into a W H I L E1atom program with essentially
the same semantics, but operating on encoded data.

For this we need to encode, as elements in O{nil }' arbitrary values from the set
O{nil ,a2...am}' where m is a fixed number and nil = ai . More precisely, we seek a simple
injective mapping from O{nil ,a2...am} to O{nil } . This can be done as follows. Recall that
nil = nil and nil i+1 = (nil . nil i). Then define the coding:

()
. li - 1 F . 1c ai = nJ. or I = , . . . , m

C(d1.dv = nil . nil) . (C(d1) . c(d2)

Atom ni 1 is mapped to ni 1. The remaining elements dE 0 are mapped to pairs (s . v) ,
where s codes the structure of d, and v codes the value of d. Specifically, for atomss is
nil and for pairss is (nil . nil) . For atom ai, v is the list nil i- 1 of i - 1 nil 's. For

pairs, v is the pair of the codings. Clearly, this encoding is injective, and Ic(d)1 ~ k . Idl
for any dE 0 , where k = max{2m - l ,S},

To obtain a general translation of programs from WHILE to programs of W H I L E1atom
(such that the translated programs simulate the semantics of the original programs) we
need to devise operations on 0 A simulating operations hd , t 1 , cons, =? on 0 A .

It is easy to give programs hdrep , t1rep , consrep of hd, t1 such that

([hdrepD(c dl .d2) = c(dl)
([hdrepD(nil) = nil
([t1repD (c dl .d2) = c(d2)
([t1repD (nil) = nil
([consrep D(c(dl) . c(d2 = c(dl . d2)

which run in constant time (see the Exercises.)
For an operation atom- ?rep simulating atom=? one first checks whether the two

arguments are both representations of atoms; this can be done in constant time. Then
one uses the program =? from section 2.4. Since encoded atoms are bounded in size by
a certain number depending on the number of atoms in A and since - ? runs in time

proportional to the smaller of its two arguments, the time to execute atom- ?rep El
E2 is constant for a given alphabet A.

Some simple examples of compilation 63

function from WHILE to W H I L E1var .Proposition 3.7.7 _ isa

transfor -

Exercises

3.1 Show how one can compile from S- programs to T- programs, if given an S-

interpreter written in L and a L-specializer. State appropriate assumptions concerning
the relationships between various input and output domains. 0

3.2 Prove Proposition 3.7.4. 0

3.3 Prove Proposition 3.7.7. 0

3.4 Prove Proposition 3.7.9. 0

64 Programs as Da fa Objects

read X: C: write Y = read Xi .Q; write Y
C1 . C2 = C1'C2-- . -- - ,-while E do C = while,g do.QXi:=E = Xi:=,g
Xi = Xi
g = e where e = c(d)cons el E2 = cons (nil.nil) (cons ~~)hg....,g = h dr e p ,g:t-U = t lrep ,gatom=? el E2 = atom-?rep ~ ~

Figure 3.6: Transfi>rmation rules.

We can now define a general translation on programs as follows :

Definition 3.7.8 Given a program p with input variables Xi ,. . ., In apply the
mation R defined in Figure 3.6.

Proposition 3.7.9 - is a compiling function from WHILE to W H I L Elatom relative to the
coding c.

Proof See the Exercises.

Some simple examples of compilation 65

3.5

1. Program hdrep, tlrep , consrep mentioned in section 3.7.3, for m = 2.
2. Try to rewrite your programs so that they use a single variable both for input, for

output, and internally in the program. For consrep assume that the two inputs
d 1 and d2 are fed to the program in the form (d 1 . d2) . 0

3.6 Can one compile an arbitrary WHILE program into an equivalent with only one
variable and one operator per command, i.e., can one combine the results of Propositions

3.7.4 and 3.7.7?
A partial answer: explain what happens when these two compilations are combined.

A full answer: establish that such a compilation is possible (by a construction} or impossible
(by a proof). 0

References

The practical and theoretical study of compilers and interpreters constitutes a branch
of Computer Science. An introduction to interpreters can be found in [88]. A good introduction

to compiler technology can be found in [3]. The compiler and interpreter
diagrams are due to Bratman [17] . As mentioned, interpretation , compilation , and spe-
cialization all play important roles in computability and complexity theory, and we will

say more about all three types of programs in due course.
The practical study of specializers is yet another branch of Computer Science, also

called partial evaluation, see e.g. the textbook [84] or survey article [82].

Part II

Introduction to Contputab illty

4 Self-interpretation: Universal Programs for
WHILE and I

Our first example of a universal program is an interpreter for WHILE written in WHILE,
developed in section 4.1. We then develop a universal program for a small subset called
I , in which programs have only one variable and one atom, in section 4.2. Both of these
self-interpreters will be used extensively in the remainder

'
of the book.

Proof The overall structure of the program is given in the following program fragment
where STEP is the sequence of commands in Figure 4.1 (explained below). Exercise 4.1
is to prove correctness of the algorithm .

read PD; (. Input (p .d) .)
P := hd PD; (. P = var 1) c (var 1 .)
C := hd (tl P) (. C = c program code is c .)
Cd := cons C nil ; (. Cd = (c . nil) , Code to execute is c .)
St := nil ; (. St = nil , Stack empty .)
VI := tl PD; (. VI = d Initial value of var . .)
while Cd do STEP; (. do while there is code to execute .)

write VI ;

4.1.1 Interpretation of a subset of WHILE in WHILE

Proposition4.1.1 There exists a WHILE program ulvar such that [ulvarD (p .d) =
[pD(d) for all p E WHILE-programs with exactly one variable and all dE WHILE-data.

0

4 .1 A universal program for the WHILE language

We first develop an interpreter in WHILE for WHILE programs that use only a single
variable , and then modify this interpreter so as to interpret the full WHILE language,

In this section we assume that the set []) A is such that A in addition to the 10 elements
"nil ,

" "
quote ,

" "yar ,
" " tl ," "hd,

" " cons ,
" " : =,

" "
; ,

" "while ,
" "=?" mentioned

in Definition 3,2,1, also contains 6 members denoted by the names "dohd,
" "dot I ,

"
"docons ," "doasgn ," "dowh,

" "do=? ,"

70 Self -
interpretation : Universal Programs for WHILE and I

Input is a program in the abstract syntax of Definition 3.2.1. (Input and output are

through the first and only variable , hence the (var 1) . The program uses three variables
: Cd, St , VI . The first is the code stack holding the code to be executed. Intially this

is the whole program . The second is the value stack holding intermediate results. Finally,
the third variable is the store holding the current value of the single program variable .

Initially this is d, the input to program p.
The effect of the sequence of commands STEP, programmed using the case-expression

shorthand notation , is to test what the next instruction in Cd is and update variables
Cd, St , VI accordingly. Recall the SKIP and cons * notations from section 2.1.7.

Expression evaluation is based on the following invariant. Suppose that, at some

point , p evaluates expression E in store [X It d] to e, i .e., I[ED[X It d] = e. Then initially
the values of Cd, St , Vl in ul var will be (E. CC) , S, d, ie ., E will be on top of the code
stack. Then after a number of iterations of STEP, the new values will be CC, (eS) , d,
ie ., the code for E will be popped from the code stack, and the value of E will be pushed
to the value stack. The store remains unchanged.

It is not hard to see that the evaluation of any expression terminates in a fixed number
of steps ; the only source of possible nontermination is in the rules implementing the
while command . This is addressed in Exercise 4.2.

Theorem 4.1.2 There exists a WHILE program u such that for all p E WHILE-programs and
all dE WHILE-datal Ip D(d) = lIuD (p . d) . 0

Proof: The overall structure of the program is given in the program fragment of Figure
4.2, where STEP is similar to the earlier command sequence.

In contrast to VI in the preceding version, VI is now a list of k variables. Initially all
these are bound to nil , except the input variable Vi which is bound to the input d. The
output is now the value of variable V j at the end of execution. The new version of STEP
is identical to the preceding one, except for the cases:

A universal program for the WHILE language 71- - - -

For example if the three values are hd E) . C) , S, and d, then after one iteration of
STEP the values are (E. (dohd. C)) , S, d. This signifies that first the expression E is to be
evaluated, and then afterwards the hd must be taken. By the invariant, after a number
of iterations of STEP the values are (dohd. C) , (e . S) , and d where e is the value of E
in the given store. Supposing e = (el . e2) , after one more iteration the values are C,
(el . g) , d. So the overall effect, starting from the original values hd E) . C) , s, d has
been to calculate the value of hd E and push it to the value stack while popping the
expression from the code stack.

Command execution is based on the following similar ~invariant . Suppose that, at
some point , p executes command C in store [X t-+ d] arriving at a new store [X t-+ e], i .e.,
C l- [X t-+ d] -+ [X t-+ e]. Assume the values of Cd, St , VI are (C. CC) , S, d, i .e., C is on top
of the code stack. Then after a number of iterations of STEP, the new values will be CC,
Se , i .e., the code for C will be popped from the code stack, and the new value for X will
have been saved in thp store. 0

4.1.2 Interpretation of the full WHILE language

We now show how the interpreter u1 var for single-variable programs can be extended
to accomodate programs using several variables. For this it is useful to have available
certain techniques which we first develop. The consb-uction is straightforward and uses
the lookup and update functions from section 3.4.2.

WHILE

4.2 A universal program for the I language : one atom

Definition 4.2.1 The syntax of I is given by grammar of Figure 4.3, where dE D. Pro-
semantics

Recall the interpreter u1 var for one-variable WHILE programs constructed in section

4.1.1. We obtain a universal program for I by applying methods from section 3.7 to

u1 var .

Program u1 var is not a self-interpreter for I , since it itself uses more than one variable

(such as Cd and St) and more than one atom. We now describe how a I -variable ,
I -atom universal program can be built , using the example compilations from section

3.7.

72 Se H-
interpretation : Universal Programs for and I-

x

and one variable

gram is as in section 2.2.

 var J) .Cd) , St => := lookup J VI ; St :=cons X St ;
 := (var K) E) .Cd) , St => Cd := cons. E doasgn K Cd;
(doasgn. (K.Cd , (T.St) => VI := update K T VI ; 0

The program u is called a self-interpreter in programming language theory, because it

interprets the same language as it is written in . In computability theory u is called a

universal program, since it is capable of simulating any arbitrary program p.

program for the I language : one atom and one variable 73

atoms using only nil .
The atoms used, all visible in the STEP macro of Figure 4.1, are the following: quote ,

while , needed to express the concrete syntax of WHILE-programs, together
with several auxiliaries: dohd, dotl , . . ., dowh used internally by the interpreter.

Definition 4.2.2 Suppose given is an arbitrary I -program p, whose concrete syntax regarded
as a WHILE-program as in Definition 3.2.1 is pWHILE. The concrete syntax of p

regarded as an I -program is, by definition , pI = c(pWHILE), where c is the one-to- one encoding
of D A into D given in section 3.7.3.

. Lemma 4.2.3 There exists a WHILE program ilatom which is an interpreter for I . Pr0-
gram i 1atom uses only the atom nil , and the concrete syntax of Definition 4.2.2.

Proof: Construct i 1atom from u1 var by the following modification : Replace any atom
at among quote , . . . , while , . . ., dohd, . . ., dowh appearing in the STEP macro by c(at).
Let ilatom be identical to u1 var , but with the modified STEP macro.

The net effect of ilatom on pI and program input data d ED = D{nil } will be the
same (aside from encoding) as that of u1 var on pWHILE and input dE D. Remark: each
operation hdrep , tlrep , or consrep (from section 3.7.3) needed in the expansion of
STEP into actual WHILE code can be realized by a constant number of operations. 0

Finally, we construct from i 1atom a true self-interpreter i for I . This is easily done,
since the "packing

"
technique of Proposition 3.7.7, translates program i 1 atom into an

A universal J

Expressions :3 E, F ::= X

I nil

I cons E F

I hd E

I tl E

Commands :3 C, D ::= X : = E

I C; D

I while E do C

Programs :3 P ::= read X ; C ; wi te X

Figure 4 .3: Syntax of the I language .

First , to avoid the problem that u1 var uses more than one atom , we code its non -nil

var , . . . ,

74 Self -interpretation : Universal Programs for WHILE and I- -

equivalent one-variable program i with l[i D I = l[i D W H I LE = [ilatomD W H I LE. We have

thus proven

Theorem 4.2.4 There exists a self -interpreter i for I using the concrete syntax of Definition

4.2. 2.

4.1 . Prove that for all p E WHILE-programs and all dE]I), ([pD(d) = ([i 1 var D (p . d) . This

can be done by induction on the lengths of computations of program execution and

execution of the interpreter . 0

4.2 Show that for any WHILE-program p without any WHILE commands and for all dE

0 , it holds that ([il varD (p . d) ~. This can be done by induction on the length of p. 0

4.3 Extend the WHILE language with a construction repeat C untilE , with aPascallike

semantics. Explain the emantics informally , e.g., when is E evaluated? Extend

u1 var so as to interpret this new construction (still for prograIns with one variable).
0

References

A universal program first appeared in Turing
's paper [162], and in practically every

book on computability published since then. The universal program for I much resembles

the one sketched in [SO].

Exercises

5 Elements of Computability Theory

A set A will be called decidable if the membership question for A can be answered by
a program that always terminates . If the program possibly loops on elements outside A ,
the set will be called semi -decidable .

We will show semi -
decidability equivalent to enumerability , where a set A is called

enumerable if there is some program that lists all and only the elements of A in some
order . This allows repetitions , and does not necessarily list A 's elements in any specific
order , for instance the order need not be increasing or without repetitions .

1. If ! (d) = 1. then f[pD(d) = 1..
2. If ! (d) = e then f[pD(d) = e.

Chapter 2 set up our model WHILE of computation, chapter 3 gave a way to pass WHILE
programs as input to other WHILE programs, and chapter 4 showed the existence of
universal programs. We are now in a position to state and prove some of the fundamental

results of computability theory, including those that were informally proven in
chapter 1.

Section 5.1 defines the notions of computable function and decidable set, and the
two related notions of semi-decidable and enumerable sets. Section 5.2 presents a spe-
cializer for WHILE programs. Section 5.3 proves that the halting problem is undecidable.
Section 5.4 proves that all properties of WHILE programs that depend only on the pro-
gram

's input-output behaviour are undecidable. Section 5.5 proves some properties of
decidable and semi-decidable sets, and section 5.6 shows that the halting problem is
semi-decidable. Section 5.7 proves some properties of enumerable and semi-decidable
sets.

5.1 Computability , decidability , enumerability

As mentioned earlier, a function is henceforth called computable if it is computed by
some WHILE program:

Definition 5.1.1 A partial function f : D -+- D.l is WHILE computable iff there is a WHILE
program p such thatf ~ Irp D, i.e., for all die ED:

76 Elements of Computability Theory-

all dE 0 , and moreoverd E A iff [pD(d) = true .

2. A set A ~ 0 is WHILE semi-decidable iff there is a WHILE-programd
E 0 : de A iff [pD(d) = true .

Definition 5.1.2

1. A set A ~ D is WHILE decidable iff there is a WHILE program p such that I Ip D(d).!. for

p such that for all

3. A set A ~ D is WHILE enumerable iff A = 0 or there is a WHILE program p such that
for all d ED : RpD(d).!., and A = {RpD(d) Id ED}. 0

5.2 Kleene 's s-m -n theorem

Recall from chapter 3 the notion of a specializer. We now prove that there exists a program

specializer from WHILE to WHILE written in WHILE.

Theorem 5.2.1 There is a WHILE program spec such that for all p E WHILE- programs
and sE WHILE- data, I Ispec D (p . s) E WHILE- programs, and for all sE WHILE- data

I Il Ispec D(p . s) D(d) = lIp D(s .d)

Proof Given a program p:

read Xi Ci write Y

Given input s, consider the following program Ps

read Xi X := conss Xi Ci write Y

It clearly holds that I Ip D (s . d) = I I Ps D(d). It therefore suffices to write a program that

transforms the pair (p . s) into Ps' when both Ps and p are expressed in concrete syntax.

The program p is expressed in concrete syntax as

 var i) ~ (var j

and Ps in concrete syntax would be:

 var i) (i (:= (var i) (cons (quote s) (var i) ~) (var j

where .Q is the concrete syntax of C. This is done by using the following program , spec ,
which uses the list notation of section 2.1.7. Note that the cons , : = and ; in Consexp
: - . . . , New C: - . . . , and Assign : x : - . . . are atoms.

Unsolvability of the halting problem 77~ - .

read PS;
P
S
Vari
C
Varj

(. PS is (var i) ~ (var j .s)
(. P is var i) ~ (var j
(. S is s
(. Vari is (var i)
(. C is ~
(. Varj is (var j)

.)

.)

.)

.)

.)

.)

:= hd PSi
:= tl PSi
:= hd Pj
:= hd (tl P)
:= hd (tl (tl P j

~

~

0

0

S

u

~

fa

-

<

" 2
~

aj

-

-

fa

~

. a

-

!

~

> .

c

. ~

~

~
'

~

e

C
t

) . , . . .

~

~

~

~

r
\ . - ~

Q

" 2 - 5 ~

~

~
 . s tb

bO

.
~

 e

bD

. . a ~
 ~

=

~
 ~

-
- =

 . . c = ~

~

'
; . : S

~

. s

~

~

~

fa

~

~

i

: : : a
.

~

tb
 E

. ~

-
c -

0 ~ ~ !

~

bO

~

~
 ~

~

Q
I

~ ~

~

- :

ca

O ~

. : S
 ~

' 5

~

- : S

0

is

" ' 8 - : = 0

a ~

- : = o

~

~

~

.] Q) =
 0 Q)

.
~

 .

: : s 0 Q) V
1 : a

U

Q) V
1

:
=

e ' : se ~

~
 ~
 e ~

,
. D

 ~ ~ ~ . 8 ~ ' H

(d ~
 ~ ' H

fU

fa
t ~

~

' - - . , . - - "

> . -

~

. s

. : g . . s ~

II ~] II

0

~ > . S
 ~

- ~

~

~

fI
) ~

s

'

cf) ~

=

cs

.

~

~

s ~

. n

~

~
 8 :

- ge

~

~

'

~

&

~
 0 =

~

O
~

~

t ~
 U

C !) ~

U

0

~

(
f)

=

~

C
t

)

" 0

5

.

~ = ~

~
 =

~

an

; >

C ' " ~

~
 . ~

Q , .

'
- - . . - - '

Quote S := list quote Si
Cons Exp := list cons Quote S Varii
Assign X : = list : = Vari Cons Expi
New C := list i Assign X C i
New P := list Vari New C Varji

write New Pi
0

The same idea can be generalized to specialize programs accepting m + n arguments to
their first m arguments. This is known in recursive function theory as Kleene's 5-m-n
theorem, and plays an important role there.

The specializer above is quite trivial , as it just
" freezes" the value of X by adding a

new assignment. It seems likely that spec could sometimes exploit its knowledge of p
's

first input more extensively, by performing at specialization time all of p
's computations

that depend only on s. This can indeed be done, and is known in the programming
languages community as partial evaluation. We return to this topic in the next part of this
book.

78 Elements- of Computability TheoryA , ,

5.4 Rice 's theorem

This must have form :

read Xi Ci write Y

Consider the following program r , built from q:

read Xi
X := cons X Xi (* Does program X stop on input xi *)
Ci (* Apply program q to answer this *)
if Y then

while Y do Y := Y (* Loop if X stops on input X *)
write Y (* Terminate if it does not stop *)

Consider the input X = r (in concrete syntax). Now either I[rD(r) :# ~ or I[rD(r) = ~

must be true.
If I[rD(r) :# ~ , then control in r 's computation on input r must reach the else branch

above (else r would loop on r). But then Y = false holds after command C, so I[rD(r)
= ~ by the assumption that q computes halt . This is contradictory .

The only other possibility is that I[r D(r) = ~ . But then r must reach the then branch

above (else r would halt on r), so Y :# false holds after command C. This implies

I[r D(r) :# ~ by the assumption that q computes hal t, another contradiction .

All possibilities lead to a contradiction . The only unjustified assumption above was

the existence of a program q that computes halt, so this must be false.1 0

The halting problem above is formulated as the problem of computing the function

halt; as such it is uncomputable . One can also formulate the same problem as one of

deciding membership of the subset of 11):

HALT = { (p .d) Ip E WHILE- programs,dE WHILE- data,and I[pD(d).!.}

It is easy to see that this set is undecidable . If it were decidable, it would follow easily

that halt were computable . Similarly , if halt were computable, it would follow immediately

that HALT were decidable.

Rice's theorem shows that the unsolvability of the halting problem is far from a unique

phenomenon; in fact, all nontrivial extensional program properties are undecidable.

1 This argument is closely related to the paradox es of mathematical logic . An inforn' \ai but essentially

similar example: "The barber shaves just those who do not shave themselves. Who shaves the barber?"

Rice's theorem 79

Proof Assume A is both decidable and nonbivial . We will show that this implies that
the halting problem is decidable, which it is not. Let b be a program computing the
totally undefined function: [bD(d) = ~ for all dE De .g.,

programs computing the totally undefined function . By nontriviality of A there must
be a program c in WHILE-programs which is not in A .

We now show how the halting problem (is [pICe) = .1?) could be solved if one had
a decision procedure for A . Suppose we are given a program of form :

p = read Yi Ci write Result

read X; while true do X := X; write Y

Assume to begin with that A contains b . By extensionality , A must also contain all other

in WHILE-programs, and a value e ED of its input , and we want to decide whether ([pD(e)
= .L. Without loss of generality, programs p and c have no variables in common (else

Definition 5.4.1

1. A program property A is a subset of WHILE-programs.

2. A program property A is non-trivial if { } ~ A ~ WHILE-programs.

3. A program property A is extensional if for all p,q E WHILE- programs such that
I Ip D ~ I Iq D it holds that pEA iff q EA . 0

In other words , a program property is specified by a division of the world of all programs
into two parts: those which have the property , and those which do not . A nonbivial

program property is one that is satisfied by at least one, but not all, programs.
An extensional program property depends exclusively on the program

's input -output
behaviour , and so is independent of its appearance, size, running time or other so-called
intensional characteristics.

An example property of program p is the following : is I Ip D(nil) = nil ? This is
extensional, since I Ip D = I Iq Dimplies that I Ip D(nil) = nil if and only if I Iq D(nil) = nil .
On the other hand, the following program property is nonextensional: is the number of
variables in p more than 100? This is clear, since one can have two different programs p,
q that compute the same input -output function lip D = II qD : D --.. D .1., but such that one
has more than 100 variables and the other does not .

Theorem 5.4.2 If A is an extensional and nonbivial program property , then A is undecidable
. 0

. Does [pD(nil) converge?

. Is the set {d I [pD(d)} converges finite? Infinite?

. Is [pI a total function?

and many others.

5.5 Decidable versus semi -decidable sets

In this section we present some results about WHILE decidable and semi-decidable
In one of these results we encounter the first application of our interpreter u.

Theorem 5.5.1

1. Any finite set A ~ Disdecidable.

80 Elements of Computability Theory- - ~

one can simply rename those in p). Construct the following program q (using the macro

*)
*)
*)

read Xi
Resultp : = p
Resultc := c

write Resultc

e ;
X;

Clearly if I Ip D(e)t , then I Iq D(d)t for all de D. On the other hand, if I Ip D(e).!., then I Iq D(d)

IrqD =
{

I Ib D if I Ip D(e) = .L
I Ic D if I Ip D(e) .L

sets.

notation of Subsection 2.1.7):

(* Read X
(* First J run program P on the constant e
(* Then run program c on input X

= I Ic D(d) for all dE D. Thus

If P does not halt on e then ([qD = ([b D, so extensionality and the fact that bE A implies
that q E A. If P does halt on e then ([qD = ([cD, and again by extensionality, c ~ A implies
q ~ A. Thus P halts on e if and only if q ~ A, so decidability of A implies decidability of
the halting problem.

The argument above applies to the case bE A. If b ~ A then exactly the same argument
can be applied to A = WHILE-programs\ A. Both cases imply the decidability of the

halting problem, so the assumption that A is decidable must be false. 0

In conclusion, all nontrivial questions about programs
'
input-output behaviour are

undecidable. For example

Decidable versus semi-decidable sets 81

2. H A ~ Disdecidable then so is D \ A.
3. Any decidable set is semi-decidable.
4. A ~ Disdecidable if and only if both A and D \ A aresemi -decidable .

3. Obvious from Definition 5.1.2.

4. "
Only if " follows from 3 and 2. For " if ,

" we use a technique called dovetailing. The
idea is to simulate two computations at once by interleaving their steps, one at a
time2. Suppose now that A is semi-decided by program p:

read Xi ; C1; write R1

and that II) \ A is semi-decided by program q:

read X2; C2; write R2

where we can assume that C 1 and C2 have no variables in common.
Given de II), if de A then I[pD(d) = true , and if de II) \ A then I[qD(d) = true .

Consequently one can decide membership in A by running p and q alternately,
one step at a time, until one or the other terminates with output true .

This is easily done using the universal program for WHILE; the details are left to
the reader in an exercise. 0

Proof:

by program

if (=1 X dn) then X : = true else
X .-.-

2. Let P = read X; C; writeR decide A. Then D \ A is decided by
read Xj

Cj
R := not Rj

write Rj

2
Dovetailing of unboundedly many computations at once will be used in Exercise 13.5 and in chapter 20.

false ;

1. If A = {d1, . . .,dn} ~ D, then it can be decided

read X;
if (=1 X dl) then X := true else
if (=1 X d2) then X := true else

WHILE-programs

program

read PD;
Vl := u PD;

write J true ;

where we have used the macro notation VI : =u PD. Given input (p . d) , the sequence
of commands for VI : =u PD will terminate if and only if program p terminates on input
d. Thus the program above writes true if and only if its input lies in HALT. 0

Corollary 5.6.2 D \ HALT is neither decidable nor semi-decidable. 0

Proof: Immediate from Theorem 5.5.1. 0

1. There is an enumeration do, dl , . . . of all elements of D such that do = nil , and no
elements are repeated;

2. There are commands start and next such that for any i ~ 0, the value of variable
New after executing (start ; next ; . . . ; next D (with i occurrences of next) is

di .

82 Elements of Computability Theory

Theorem 5.6.1 The halting problem for

Lemma 5.7.1

merated in sequence, one at a time:

Theorem 5.5.2

1. If A, B are decidable then AU B and An B are both decidable.
2. If A, B are semi-decidable then A U B and A n B are both semi-decidable.

5.6 The halting problem is semi - decidable

Theorem 5.3.1 established that the halting problem is undecidable. Now we show that
it is semi-decidable.

is semi-decidable.

u for WHILE:

5.7 Enumerability related to semi -decidability

It is not hard (though not as easy as for N) to show that the elements of D can be enu-

5.7.1 Enumerability characterized by semi -decidability

Theorem 5.7.2 The following statements about a set A ~ D are equivalent:

Enumerability related to semi - decidability 83-

(XU {d}) x (XU {d}) = Xx XU { (did) }U
{ (d . x) I x E X} U { (x . d) I x E X}

The trees created are placed on the list N. They are moved to the list L once they have
served their purpose in creating bigger trees, and New will always be the first element
of N. Thus initially, N contains the single tree nil and L is empty. Every time next is
performed, one tree New is removed from the list N and paired with all the trees that are
already in L as well as with itself. The trees thus created are added to N, and New itself
is added to L. The following claims are easy to verify:

(1) Every iteration adds a single element to L.
(2) Every element of Diseventually put on L. 0

Proof: Figure 5.1 shows WHILE codes for start , next . Explanation: they actually follow
the defining equation 0 = {nil } uo x 0 , using the fact that if X ~ 0 and d ~ X, then

1. A is WHILE enumerable.
2. A is WHILE semi-decidable.
3. A is the range of a WHILE computable partial function, so for some p:

A = { l[pD(d) Id E 0 and I[pD(d) ~ .l }

4. A is the domain of a WHILE computable partial function, so for some p:

A = {dE 0 Il [pD(d) ~ .l }

0

Proof: We show that 1 implies 2, 2 implies 3, 3 implies 1, and 2 is equivalent to 4. .

1 ~ 2. If A = 0 then 2 holds trivially, so assume there is a WHILE program p such that
for all d EO : I[pD(d),J., and A = { l[pD(d) Id E O}. Let P = read Xp; Cp; write
Rp, and let do, dl ,. . .be as in the enumeration of Lemma 5.7.1.
The following program, given input d, computes I[pD(do), I[pD(dl), . . ., and compares

d to each in turn. If d = di for some i, then p terminates after writing true .
If d ~ di for all i then p will loop infinitely, as needed for 2.

2 ~ 3. Assume that A is semi- dedded by program p of form read I ; C; write R,
and construct the program q:

read I ;
Save := I ;
C;
if R then SKIP else while true do SKIP;

write Save

Clearly IlpD(d).j, and IlpD(d) = true together imply IlqD(d) = d. On the other hand,
if either IlpD(d)t or IlpD(d) :F true , then IlqD (d) t . Thus dE A iff IlqD(d) = d, so
A = { llqD(e) lee D and IlqD(e).j,} .

84 Elements of Computability Theory

read D;
start ;
GO : = true
while GO do

Y := p New;
if (=1 Y D)
next ;

write true

then GO:=false ;

relatedEnumerability - to semi - decidability 85

3 => 1. If A = 0 then 3 holds trivially, so assume A contains at least one member dO, and
that A is the range of partial function I[p D, where p= ((var i) C (var j , i.e.,
A = mg(l[pD>. Define f such that f (a) = dO for every atom a, and

f (d) =
{

I[pD(d) if P stops when applied to d within lei stepse.
dO otherwise

f is obviously total. Claim: A = mg(f>. Proof of ~ : if a E A = mg(l[pD> then
a = I[pD(d) for some dE D. Thus p, when applied to d, terminates within some
number of steps, call it m. Then clearly

f (1 md) = I[pD(d) = a

so a E mg(f >. Proof of :;2: Values in the range of A are either of form I[pD(d) and so
in the range of I[pD and so in A, or are dO which is also in A.

Finally, the following program q, using the STEP macro from the universal program
u, computes f :

read TD; (. Input (t .d) .)
D := tl PD; (. D = d .)
VI := update i D j (. (var i) initially d, all others nil .)
Cd := cons C nil ; (. Cd = (C. nil) , Code to execute is C .)
St := nil ; (. St = nil , Stack empty .)
Time := hd TD (. Time = t , Time bound is t .)
while Cd do (. Run p for up to t stepsond .)

STEP; Time := tl Time;
if (=1 Time nil) then Cd := nil ; (. Abort if time out .)

if Time (. Output dO if time ran out , else J .)
then Out := lookup J VI else Out := dO;

write Out;

2 -$> 4. A program p which semi-decides A can be modified to loop infinitely unless its

output is true , hence 2 implies 4. If p is as in 4, replacing its write command by
wri te true gives a program to semi-decide A. 0

5.7.2 Recursive and recursively enumerable sets

The preceding theorem justifies the following definition of two of the central concepts
of computability theory. Even though at this point only WHILE (and I languages have
need considered, we will see as a result of the "robustness" results of chapter 8 that the

concepts are invariant with respect to which computing formalism is used.

86 Elements of Computability Theory

Definition 5.7.3 A set A is recursive iff there is a terminating program I Ip D that decides
the problem x E A ? A set A is recursively enumerable (or just r.e., for short) iff there is a

program lip D that semi-decides the problem x E A?

5.1 Consider a language WHILE- forloop which is just like WHILE,
of the while command, WHILE- forloop has a command

for X := alltails (E) do C

except

Its informal semantics: First, E is evaluated to yield a value d. If d = (d 1 . d2) , then X is
first bound to d, and command Cisexecuted once. The same procedure is now repeated
with X being bound to d2. In this way command Cisexecuted repeatedly, until X is
bound to an atom (which must eventually happen). At that time the for command
terminates and control goes to the next command.

1. Define the semantics of WHILE- forloop by rules similar to those for the WHILE-

semantics.

2. Show how WHILE- forloop programs can be translated into equivalent while -

programs .

3. Prove that your construction in (2) is correct using the semantics for WHILE and

your semantics from (1) for WHILE- forloop .

4. Is the halting problem decidable for WHILE- forloop -programs?

5. Can all computable functions be computed by WHILE- forloop -programs? 0

5.2 Show that there exists a total function which is WHILE-computable, but uncomputable

by any WHILE- forloop -program . Hint : consider ! (p .d) = true if I Ip D(d) =

true , and f alae otherwise . 0

5.3 Prove that it is undecidable whether a given program computes a total function . 0

5.4 Prove that it is undecidable whether two programs compute the same function .
Hint : show that it is undecidable whether a program computes the identity function ,
and derive the more general result from this . 0

5.5 Use Rice's theorem to prove that unnecessary code elimination is undecidable : given a

program p

Exercises

: that instead

Enumerability related to semi - decidability 87

read X; C1; while E do C; C2; write Y

with an identified while command , it is undecidable whether test E will be false every
time control reaches the command . 0

5.6 Prove Theorem 5.5.1 part 4. Hint : you will need two copies of the universal program
. 0

5.7 .. Prove Theorem 5.5.2. Hint : the results for decidable A , B are straightforward , as

is semi -decidability of An B. For semi -decidability of AU B, use Theorem 5.7.2, or the
"
dovetailing

"
technique of Theorem 5.5.1, Part 4. 0

5.8 List the first 10 elements ofll as given in Lemma 5.7.1. 0

5.9 Use induction to prove the two claims made about the enumeration ofll in the proof
of Lemma 5.7.1. 0

5.10 .. The pairs in list Tmp (Lemma 5.7.1) are added to the end of list N by append .

Show that the simpler alternative of adding them to the start of N does not work . What

goes wrong in the proof of the previous Exercise 5.9 if this change is made ? 0

5.11 Devise alternative start and next commands that take only O(n) time when next

is called , where n is the length of list L . Hint : find a faster way to achieve the effect of

append . More variables may be used , if convenient . 0

5.12 .. Devise alternative start and next commands that take only constant time when

next is called . Hint : at each next call the only essential action is that a new element is

added to L . Find a way to defer the addition of elements to N until needed . One method

can be found in [20] . 0

5.13 Show that if an infinite set is WHILE enumerable , then it is WHILE enumerable without

repetitions (i .e., the range of a one-to- one effective total function). 0

5.14 Show that a set A ;If 0 can be WHILE enumerated in increasing order if and only if

it is decidable . 0

5.15 Show that a set A ;If 0 is decidable if it is

. the range of a WHILE computable total monotonic function ; or

. the range of a while computable total function greater than the identity . 0

5.16 .. Show that any infinite WHILE enumerable set must contain an infinite WHILE

decidable subset . Hint : use the result of Exercise 5.14. 0

88 Elements of Computability Theory

References

Most of the results proved in this chapter appear in classical papers by the pioneers
in computability theory. The s-m-n theorem was proved by Kleene in the paper [93],
and also appears in his book [95]. The halting problem was studied first by Kleene
[93], Turing [162], and Oturch [21, 22]. Rice [143] developed a general technique to

prove undecidability of sets. A universal program first appeared in Turing
's paper [162].

Properties of recursively decidable and enumerable sets, and their relationship , were
studied by Kleene [94] and Post [134, 135].

6 Metaprogramming , Self -application , and

Compiler Generation

Definition 6.1.1 A timed programming language L consists of

1. Two sets, L- programs and L- data;

In this chapter we investigate some aspects of computability pertaining to running times,
i .e., the number of steps that computations take. Two aspects are given special attention

: execution of metaprograms, i .e., compilers, interpreters , and specializers, and selfapplication
, e.g., application of a program to itself , and in particular a specializer.

The main purpose of this chapter is not to prove new results in computability theory
(although the Futamura projections may be new to some theorists.) Rather, our main
aim is to link the perhaps dry framework and results of this book's material through
chapter 5 to daily computing practice.

This involves relating the time usage of compilation and interpretation ; the deleterious
effects of multiple levels of interpretation ; the use of "bootstrap ping

" (a form of selfapplication
) in compiling practice to gain flexibility and speed. Last but not least, the

Futamura projections show how, using a specializer and an interpreter , one may compile
, generate compilers, and even generate a compiler generator, again by self-application .

Interestingly , the Futamura projections work well in practice as well as in theory, though
their practical application is not the subject of this book (see [84].)

Section 6.1 first introduces running times into the notion of a programming language
arriving at a timed programming language. Section 6.2 is concerned with with interpretation

. Section 6.3 describes self-application of compilers, and section 6.4 introduces

partial evaluation, the well -developed practice of using program specialization for auto-
matic program optimization . Section 6.5 shows how it can be applied to compiling and

compiler generation, and discuss es some efficiency issues, showing that self-application
can actually lead to speedups rather than slowdowns .

The final two sections (which readers focused more on theoretical issues may wish
to skip) include 6.6 on pragmatically desirable properties of a specializer for practical
applications ; and section 6.7, which sketch es an offline algorithm for partial evaluation .

Much more will be said about program running times in the Complexity Theory parts
of this book. In this chapter we discuss time aspects of interpretation, specialization etc.
only informally, relying on the reader's experience and intuition.

6.2 Interpretation overhead

In the first subsection we discuss overhead in practice, i .e., for existing interpreters ,
and the second subsection is concerned with self-application of interpreters . It will be
seen that interpretation overhead can be substantial, and must be multiplied when one

interpreter is used to interpret another one.
Section 6.4 will show how this overhead can be removed (automatically), provided

one has an efficient program specializer.

6.2.1 Interpretation overhead in practice

In the present and the next subsection, we are concerned with interpreters in practice
, and therefore address the question: how slow can an interpreter get, i .e., what

are the lower bounds for the running time of practical interpreters . Suppose one has an
S-interpreter int written in language L, i .e.,

In practice , assuming one has both an L-machine and an S-machine at one 's disposal ,

interpretation often turns out to be rather slower than direct execution of S-programs .

If an S-machine is not available , a compiler from S to L is often to be preferred because

90 Metaprogramming , Self -
application , and Compiler Generation

int e
~

2. A function II- DLL - programs -+ (L- data -+ L- data.i); and

3. A function tim~ : L- programs -+ (L- data -+ N.i) such that for any pEL - programs
and dE L- data, I Ip D

L(d) = .1 iff timelp(d) = .1.

The function in 2 is L's semantic function , which associates with every pEL - programs a

corresponding partial input -output function from L- data to L- data. The function in 3 is
L's running time function which associates with every program and input the number of

steps that computation of the program applied to the input takes. 0

ties a relation

Up . time:: (d) ~ timetnt (p. d)

for all d. Here op is a "constant" independent of d, but it may depend on the source

program. p. Often op = c+ f (p), where constant c represents the time taken for "dispatch
on syntax

" and f (p) represents the time for variable access. In experiments c is often
around 10 for simple interpreters run on small source programs, and larger for more

sophisticated interpreters . Clever use of data sttuctures such as hash tables, binary
trees, etc. can make op grow slowly as a function of pi

 S size.

6.2.3 Layers of interpretation

Suppose a Lisp system (called L2) is processed interpretively by an interpreter written
in Sun RISC machine code (call this L1). The machine code itself is processed by the
central processor (call this LO) so two levels of interpretation are involved , as described
in the interpreter diagram in Figure 6.1.

The major problem with implementing languages interpretively is that the running
time of the interpreted program is be multiplied by the overhead occurring in the inter -

preter
's basic cycle. This cost, of one level of interpretation , may well be an acceptable

price to pay in order to have a powerful , expressive language (this was the case with

Lisp since its beginnings). On the other hand, if one uses several layers of interpreters ,
each new level of interpretation multiplies the time by a significant constant factor, so
the total interpretive overhead may be excessive (also seen in practice). Compilation is

clearly preferable to using several interpreters , each interpreting the next.

Interpretation overhead 91

6.2.2 Compiling (usually) gives faster execution than interpretation

If the purpose is to executeS-programs, then it is nearly always better to compile than
to interpret . One exb"eme: if S = L, then the identity is a correct compiling function
and, letting q = I Icomp D(p) = p, one has timeo: (d) = timelq(d): consider ably faster than the
above due to the absence of lkp. Less trivially , even when S ~ L, execution of acom -

piled S-program is nearly always consider ably faster than running the same program
interpretively .

the running time of programs compiled into L (or a lower -level language) is faster than
that of interpretively executed S-programs .

In practice, a typical interpreter int 's running time on inputs p and d usually satis-

interpreter

I Ip2 D L2(d) = l Iinti D L1(p2.d) = l Iint A D Lo(inti .(p2.d

program p2 and data d,

Q01 . ti~ t (d) ~ time Lt~tl (pi . d) and
0

Q12. ti~ ~(d) ~ time Lt~t2(p2 . d)
1

where Q01, Q12 are constants representing the overhead of the two interpreters (often
sizable, as mentiond in the previous section).

Consequently replacing pi in the first by int ~ and d by p2 . d, and multiplying the
second inequality by Q01 we obtain:

92 Metaprogramming , Self -
application , and Compiler Generation

.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L2

Time Nested Interpreter
Two interpretation levels

consumption application

Figure 6 .1 : Interpretation overhead .

Indeed, suppose now that we are given

.
intA written in LO that implements language L1; and. An

One can expect that , for appropriate constants a Ol, a12 and any Li -program pi , L2 -

. An interpreter inti written in Li that implements language L2.

where LO, Li , and L2 all have pairing and concrete syntax, and all have the same data

language. By definition of an interpreter,

an example of

self -application

1. The new language S
' is a conservative extension of S. By definition this means that

every S-program p is also an S'-program (so S-programs ~ S'-programs), and has
the same semantics in both languages (so lip Ds = lip Ds

'
).

2. We have a compiler hE S-programs, from source languageS to target language
T available in source form . By definition of compiler, I Ip D S = I Il Ih Ds(p)DT for any
S-program p.

3. Further, we assume that we have an equivalent program tE T -programs available
in target form , so I Ih Ds = I It Df.

high-IeveJ

Now h and t can be used to create a compiler from S' to T as follows :

1. Rewrite the existing compiler h, extending it to make a compiler
for S' , using only features already available in S:

Compiler bootstrap ping: an example of Be Y-application 93-- - - --

6.3 Compiler boots ~ a pping :

compiler hE ~
--+-

~- - -

l _~ J

- - -
-:
---- ~

- - +-
- : - Jlow - level compiler tE - - -

l _~ J

- - - ---_.-

h' ES-programs

The term "bootstrap ping
" comes from the phrase

"to pull oneself up by one's bootstraps
" and refers to the use of compilers to compile themselves. The technique is

widely used in practice, including industrial applications. Examples are numerous. We
choose a common one, that of extending an existing compiler forlanguageS to accept a
larger language S

' , based on the following assumptions:

QOt . timel:il 2 (p2 . d) ~ timel:i
O 1 (int ~. (p2 . d ntl nto

QOt. Qt2.
time;~(d) ~ QOt. tim~ ; t2(p2 . d)

1

Thus QOt . Qt2 . ti~ ~(d) :$ ti~ ~tl (int ~. (p2 . d , confirming the multiplication of in-
0

terpretive overheads.

compiler

This must be equivalent to h on the old source languageS, so for all S-programsl

2. Now apply t to h ' to obtain an S'
compiler t l ' in target language form :

Now we have obtained the desired extended compiler t1
' = ([tDT (h') . It is easy to see

that it is a target program equivalent to h', since:

([tl 'DT = ([([tDT (h') DT (substitution of equals)
= ([([hDs (h') DT Since t and h are equivalent
= ([h'DS h compiles source program h

' from S to T.

What happens if we continue this game?

1. Use t l ' to obtain an S'
compiler t2

' in target language form:

high-level

1 Note that this does not require h and h' to produce the same target code, just target code which
identical effects when run .

94 Metaprogramming , Self -
application , and Compiler Generation

~
' - Th' E Shigh-level

2. Use t2 ' to obtain an S'
compiler t3

' in target language form:

will have

p [[hIs (p) DT = [[h'ls (p) DT.

Compiler bootstrap ping : an example of se H-
application 95

([tl 'DT = ([([tDT (h') DT by definition of tl '
= ([([hDs (h') DT Since t and h are equivalent
= ([([h'DS (h') DT since h' is a conservative extension of h
= ([([([tDT (h') DT (h') DT since t is a compiler from S to T
= ([([tl 'DT (h') DT by definition of tl '
= ([t2 'DT by definition of t2 '

Note that t l ' and t2 '
may not be textually identical, since they were produced by two

different compilers, t and t 1', and it is quite possible that the extended language S
'

may require different target code than S. .

However, one easily sees that t2 ' and t3 ' are textually identical since the compilers
used to compile them are semantically equivalent:

t2 ' = f[tl 'DT (h') by definition of t2 '

= f[t2 'DT (h') Since tl ' and t2 ' are equivalent : f[tl 'DT = f[t2 'DT
= t3 '

by definition of t3 '

The difference between being semantical and syntactical identity of the produced compilers
stems from the relationship between the compilers we start out with : t and h are

equivalent in the sense that given the same input program they produce syntactically
the same output program . However h and h' are equivalent on S programs only in the
sense that given the same program , the two output programs they produce are semantically

equivalent (natural : when one revises a compiler, the old target code may need to
be modified).

Note that bootstrap ping involves self-application in the sense that (compiled versions
of) h' are used to compile h

' itself . Note also that self-application is useful in that
it eases the tasks of transferring a compiler from one language to another, of extending
a compiler, or of producing otherwise modified versions.

�

These runs can be written more concisely as follows :

tl ' = ([tDT (h')
t2 ' = ([tl 'DT (h')
t3 ' = ([t2 'DT (h')

Now t 1 I and t2 '
(and t3 /) are semantically equivalent since they are all obtained by correct

compilers from the same source program , h
' :

6.4 Partial evaluation : efficient program specialization

96 Metaprogramming , Self -
application , and Compiler Generation

The goal of partial evaluation is to specialize general programs so as to generate efficient
ones from them by completely automatic methods . On the whole , the general program
will be more generic , and perhaps simpler but less efficient , than the specialized versions

a partial evaluator produces . A telling catch phrase is binding -time engineering -

making computation faster by changing the times at which subcomputations are done

(see Figure 3.3).

The program specializer of section 5.2 is very simple, and the programs it ouputs
are slightly slower than the ones from which they were derived . On the other hand,
program specialization can be done much less trivivally , so as to yield efficient special-

ized programs. This is known as partial evaluation, a field at the borderline between in

programming language theory and practice.
Consider, for instance, the following program , which reads a pair of numerals and

returns the product . Data is assumed in "base 1" notation , addition is done by repeat-

edly adding 1 (succ below), and multiplication by repeated addition .

read XV; (* Input is a pair XY = (x .y) *)
X := hd XV; (* Unary notation : X = nilx *)
Y := tl XV;
P := 0 ; (* P will be the product *)
while Y do (* Add X to P for Y times *)

Y := predY ;
T := X;
while T do (* Add 1 to P for X times *)

T := pred T;
P := succ P;

write P;

Suppose that we want to specialize this program so that X is 3 = ni13 . Then we could

get the following program :

read Y;
P := 0 ;
while Y do

Y := predY ;
P := succ P;
P := succ P;
P := succ P;

write P;

Rather than calling the first program with arguments of form (3 . d) it is clearly better

to use the second, more efficient program. A typical partial evaluator, ie ., specializer,
will be capable of transforming the former into the latter.

Computing a(2,n) involves recursive evaluations of a(m,n) for m = 0, 1 and 2, and
various values of n. A partial evaluator can evaluate expressions m=?O and m- 1, and
function calls of form a (m- 1, . . .) can be unfolded. We can now specialize function a
to the values of m, yielding a less general program that is about twice as fast:

a2(n) = if n =1 0 then 3 else al (a2(n- l
al (n) = if n =1 0 then 2 else al (n- l)+l

tion by specialization

by specializing the spedalizer itself ; and even to generate a compiler generator. This is
interesting for several practical reasons:

. Interpreters are usually smaller, easier to understand , and easier to debug than
compilers .

. An interpreter is a (low -level form of) operational semantics, and so can serve as
a definition of a programming language, assuming the semantics of L is solidly
understood .

Compiling and compiler generation by specializa tion 97- - A .." , -c - ---- ----- -.

Ackermann 's function

6.5 Compiling and compiler genera

This section shows the sometimes surprising capabilities of partial evaluation for generating
program generators. We will see that it is possible to use program specialization

to compile, if given an interpreter and a source program in the interpreted language; to
convert an interpreter into a compiler:

w ~

~

6.4.1 A slightly more complex example :

Consider Ackermann 's function , with program :

a(m,n) = if m =1 0 then n+l else
if n =1 0 then a(m- l , l)
else a(m- l ,a(m,n- l

98 Metaprogranuning , Self -
application , and Compiler Generation

. The question of compiler correcmess is completely avoided, since the compiler
will always be faithful to the interpreter from which it was generated.

The results are called the Futamura projections since they were discovered by Yoshihiko
Futamura in 1971 [46]. We consider for simplicity only specialization without change
in data representation. That is, we assume that all the languages below have concrete
syntax and pairing, and that all the data languages are the same. Suppose we are given

. a specializer spec from L to T written in an implementation language Imp.

. an interpreter int for S-programs which is written in language L; and

. an arbitraryS-program source .

6.5.1 The first Futamura projection

target = nspec D Imp(int .source)

is aT -program equivalent to S-program source , i .e., that one can compile by partial
evaluation . (This is a solution of Exercise 3.1.)

This equation is often called the first Futamura projection [46], and can be verified as
follows , where in and out are the input and output data of source .

In other words , one can compile a new languageS to the output language of the special-

izer, provided that an interpreter for S is given in the input language of the specializer.

Assuming the partial evaluator is correct, this always yields target programs that are
correct with respect to the interpreter . This approach has proven its value in practice.
See [10, 85, 84] for some concrete speedup factors (often between 3 and 10 times faster).

A common special case used by the Lisp and Prolog communities is that Imp = T = L,
so one can compile from a new languageS to L by writing an S-interpreter in L.

The following shows that given an L to T -specializer , an S interpreter written in L, and
an S-program source , one can get a T program target equivalent to source . Concretely

:

outsourceD
S
(in)

= [intDL (source . in)
Assumption
Definition 3.4.1 of an interpreter
Definition 3.6.1 of a specializer
Definition of target

[[spec D Imp(int .source)DT(intargetD
 T(in)

-

Speedups &om specialization As mentioned before , compiled programs nearly always
run faster than interpreted ones, and the same holds for programs output by the

first Futamura projection . To give a more complete picture , though , we need to discuss

6.5.2 Compiler generation by the second Futamura projection
The second equation shows that one can generate an S to T compiler written in T, provided
that an S-interpreter in L is given and Imp = L: the specializer is written in its own input
language. Concretely, we see that

single
compiler = I Ispec D

L
(spec . int)

is a stand-alone compiler : an L-program which ,
yields target . It is thus a compiler from S to L,
ward as follows :

when applied to a

written in L . Verification is straightfor -

I[specDL(int .source)
I[l[specDL(spec. int)r (source)
I[compiler D T(source)

Equation compiler = I Ispec D
L(int . source) is called the second Futamura projection .

The compiler generates specialized versions of interpreter into Operationally , con-
Sb' ucting a compiler this way is hard to understand because it involves self-application
- using spec to specialize itself . But it gives good results in practice, and faster compilation

than by the first Futamura projection .

Compiling and compiler generation by specialization 99- - - - - -

input source ,

First Futamura projection
Definition 3.6.1 of aspeci.a Iizer
Definition of camp

target -

two sets of running times:

1. Interpretation versus execution:

timeint (p . d) versus timeintp (d)

2. Interpretation plus specialization versus execution:

timeint (p . d) + timesp8 C (int . p) versus timeintp (d)

If program int is to be specialized just once, then comparison 2 is the most fair, since
it accounts for what amounts to a form of "compile time ." If , however, the specialized
program intp is to be run often (e.g., as in typical compilation situations), then comparison

2 is more fair since the savings gained by running intp instead of int will , in the
long term, outweigh specialization time, even if intp is only a small amount faster than
into

6.5.4 Speedups from self -application

A variety of partial evaluators generating efficient specialized programs have been constructed
. Easy equational reasoning from the definitions of specializer, interpreter , and

compiler reveals that program execution, compilation , compiler generation, and compiler

generator generation can each be done in two different ways:

out = [intD (source . input) = [targetD (in)

target = [specD(int .source) = [compiler D(source)

compiler = [specD(spec . int) = [cogenD(int)

cogen = [specD(spec .spec) = [cogenD(spec)

100 Metaprogramming , Self -
application , and Compiler Generation

([pD (8. d) ([([specD (po s) D d ([([([cogenD p D s D d= = =. . .

6.5.3 Compiler generator generation by the third Futamura

projection

Finally, we show (again assuming Imp = L) that

cogen = ([specDL(spec . spec)

is a compiler generator: a program that transforms interpreters into compilers. Verification
is again straightforward:

compiler = ([specDL(spec. int) Second Futamura projection
= ([([specDL(spec. spec)DT(int) Definition 3.6.1 of a specializer
= ([cogen D T(int) Definition of compiler

The compilers so produced are versions of spec itself, specialized to various interpreters
. This projection is even harder to understand intuitively than the second, but

also gives good results in practice.
The following more general equation, also easily verified from Definition 3.6.1, sums

up the essential property of cogen (we omit language L for simplicity):

Further ,
cogen

can
produce

itself as
output

(Exercise 6 . 9 .)

While the verifications above
by equational reasoning

are sb '
aightforward

,
it is far

from clear what their
pragmatic consequences

are . Answers to these
questions

form the

bulk of the book 841 .

The exact timings vary according to the design of spec and int , and with the implementation

language L. We have often observed in practical computer experiments
[85, 84] that each equation

's rightmost run is about 10 times faster than the leftmost. Moral :
self-application can generate programs that run faster!

6.5.5 Metaprogramming without order -of -magnitude loss of

The right side of Figure 6.2 illusb-ates graphically that partial evaluation can substantially
reduce the cost of the multiple levels of interpretation mentioned in section 6.2. 3.

Compiling and compiler generation by specialization 101

efficiency

One may construct an interpreter for L2 written in LO as follows:

int ~ := I[spec D LO (intAint ~) satisfying
out = l[int ~DLO(p2. in)

A literal interpretation of Figure 6.2 would involve writing two partial evaluators,
one for L1 and one for LO. Fortunately there is an alternative approach using only one
partial evaluator, for LO. For concreteness let p2 be an L2-program, and let in , out be
representative input and output data. Then

out = Rint A D
 LO (int ~. (p2. in))

102 Metaprogramming , Se H -
application , and Compiler Generation

Computational completeness

The significant speedups seen in the examples above naturally lead to another demand:
that given program p and partial data 5, all of p

'S computations that depend only on its

partial input 5 will be performed .

Unfortunately this is in conflict with the desire that ([specD be total . Suppose, for

example, that program p
's computations are independent of its second input d, and that

([pD is a partial function . Then computational completeness would require ([specD(p . s)
to do all ofp

'a computation on s, so it would also fail to terminate whenever ([pD(s . d) =

.1. This is a problem , since nobody likes compilers or other program transformers that
sometimes loop infinitely !

A typical example which is difficult to specialize nontrivially without having the

specializer fail to terminate is indicated by the program fragment

if -complex- but - always - true - condition - with - unavailable - inputd
then X := nil
else while true do S := consS Sj

One cannot reason ably expect the specializer to determine whether the condition will

always be true . A specializer aiming at computational completeness and so less trivial
than that of section 5.2 will likely attempt to specialize both branch es of the while loop,

leading to nontermination at specialization time .

By partial evaluation of int ~, any L2-programs can be compiled to an equivalent LO-

program . Better still , one may construct a compiler from L2 into LO by

comp~ := [cogen D
Lo(int ~)

The net effect is that metaprogramming may be used without order- of- magnitude loss
of efficiency. The development above, though conceptually complex, has actually been
realized in practice by partial evaluation , and yields substantial efficiency gains.

6 .6 Desirable properties of a specializer

A tempting way out is to allow ps to be less completely specialized in the case that
[pD(s . d) = 1. , e.g., to produce a bivial specialization as in section 5.2. This is, however,
impossible in full generality, as it would require solving the halting problem .

Some practical specializers make use of run -time nontermination checks that monitor
the static computations as they are being performed , and force a less thorough spe-

cialization whenever there seems to be a risk of nontermination . Such strategies, if capable
of detecting all nontermination , must necessarily be overly conservative in some

cases; for if perfect, they would have solved the halting problem .

Optimality

It is desirable that the specializer be "optimal
" when used for compiling , meaning that

spec removes all interpretational overhead. This can be made somewhat more precise,
given a self-interpreter sint :

where sintp = I Ispec D(sint . p). Thus program sintp is semantically equivalent to p .
One could reason ably say that the specializer has removed all interpretational overhead in
case sintp is at least as efficient as p . We elevate this into a definition :

Definition 6.6.1 Program specializer specis optimal for a self-interpreter sint in case
for every program p and data d, if sintp = [specD(sint . p) then

timesintp (d) ~ timep(d)

This definition of "
optimality

" has proven itself very useful in constructing practical
evaluators [84]. For several of these, the specialized program sintp is identical up to
variable renaming to the source program p. Further, achieving optimality in this sense
has shown itself to be an excellent stepping stone toward achieving successful and satisfactory

compiler generation by self-application .

Desirable properties of a specializer 103- - -

GJ
([pD(d) = ([sintpD(d)

sint E

By definition of interpreter and specialization (or by the first Futamura projection), for
every dE][

6.7 How specialization can be done

Suppose program p expects input (s . d) and we know what s but not d will be. Intu -

itively , specialization is done by performing those of p
's calculations that depend only

on s, and by generating code for those calculations that depend on the as yet unavailable

input d. A partial evaluator thus perfonns a mixture of execution and code generation
actions - the reason Ershov called the process

"mixed computation
" [43], hence the

generically used name mix for a partial evaluator (called spec in chapter 3). Its output
is often called the residual program, the term indicating that it is comprised of operations
that could not be performed during specialization .

For a simple but illustrative example, we will show how Ackermann 's function (seen

earlier in section 6.4.1) can automatically be specialized to various values of its first

parameter. Ackermann 's function is useless for practical computation , but an excellent
vehicle to illustrate the main partial evaluation techniques quite simply . An example is

seen in Figure 6.3. (The underlines should be ignored for now.) Note that the specialized
program uses less than half as many arithmetic operations as the original .

Computing a (2 ,n) involves recursive evaluations of a (m,n) for m = 0, 1 and 2,
and various values of n. The partial evaluator can evaluate expressions m- Q and m- 1

for the needed values of m, and function calls of form a (m- 1, . . .) can be unfolded

(i .e., replaced by the right side of the recursive definition above, after the appropriate
substitutions).

104 Metaprogramming , Self -
application , and Compiler Generation- - - - -

An open problem . Unfortunately there is a fly in the ointment . The condition just

proposed is a definition relative to one particular self-interpreter sint . It could therefore
be "cheated," by letting spec have the following structure :

read Program J Si
if Program = sint
then ResultS
else Result := the trivial specialization of Program to Si

write Result

On the other hand, it would be too much to demand that spec yield optimal special-

izations of all possible self-interpreters . Conclusion : the concept of "optimality
" is pragmatically

a good one, but one which mathematically speaking is unsatisfactory. This

problem has not been resolved at the time of writin ~ and so could be a research topic
for a reader of this book.

How specialization can be done 105-

More generally, three main partial evaluation techniques are well known from program
transformation : symbolic computation, unfolding function calls, and program point

specialization. Program point specialization was used in the Ackermann example to create
specialized versions a O, ai , a2 of the function a.

On-line and Off -line Specialization . Figure 6.3 illustrates off-line specialization, an
approach that makes use of program annotations, indicated there by underlines . The
alternative is called on-line specialization : computing program parts as early as possible,
taking decisions "on the fly

"
using only (and all) available information .

These methods sometimes work better than off-line methods. Program P2 in Figure
6.3 is a clear improvement over the unspecialized program , but can obviously be

improved even more; a few online reductions will give :

a2(n) = if n=O then 3 else al (a2(n- l
al (n) = if n=O then 2 else al (n- l) +l

In particular , on-line methods often work well on structured data that is partially static
and partially dynamic . On the other hand they introduce new problems and the need
for new techniques concerning termination of specializers. For a deeper discussion of
the merits of each approach, see [84].

6.7.1 Annotated programs and a sketch of an off -line partial
evaluator

The interpretation of the underlines in Figure 6.3 is extremely simple:

1. Evaluate all non-underlined expressions;

2. generate residual code for all underlined expressions;

3. unfi Jld at specialization time all non-underlined function calls; and

4. generate residual function calls for all underlined function calls.

Sketch of an off -line partial evaluator. We assume given:

1. A first -order functional program p of form

f1 (s ,d) = expression1 (. reap . static t dynamic inputs .)
g(u ,v , . . .) = expression2
. . .
h (r , s , . . .) = expressionm

2. Annotations that mark every function parameter, operation, test, and function call

as either eliminable: to be performed / computed / unfolded during specialization,
or residual: generate program text to appear in the specialized program .

In particular the parameters of any definition of a function f can be partitioned into

those which are static and the rest, which are dynamic. For instance m is static and n is

dynamic in the Ackermann example.
The specialized program will have the same form as the original , but it will consist

of definitions of specialized functions gstatvalu8s (program points), each corresponding to

a pair (g , statvalues) where g is defined in the original program and statvalues

is a tuple consisting of some values for all the static parameters of gTheprameters of

function gstatvalu8s in the specialized will be the remaining, dynamic , parameters of g.

A specialization algorithm

Assumptions :

1. The input program p is as above, with

expression1 , and statics and dynamic
2. Every part of p is annotated as eliminable

defining function given by f 1 (s , d)
: d.

~ (no underlines) or residual (underlined).

106 Metaprogramming, Self-application, and Compiler Generation- - - --

=

appliedRE = the value of operator to Vt, . . . , Vn.

4. If E is operator (el , ... ,En) then compute E1' = Reduce(el),
Reduce(En).

En' -

RE = the expression
"
operator (El ' , . . . , En') ."

where E is the result of substituting Si in place of each static gparameter xi oc-

curring in g- expression , and Reduce simplifies the result E.

Given the list statvalues of values of all of gsstaticparameters , reduction of an
expression E to its residual equivalent RE = Reduce(E) is defined as follows:

1. If E is constant or a dynamic parameter of g, then RE = E.
2. If E is a static parameter of g then then RE = its value, extracted from the list

statvalues .

3. If E is not underlined and of form operator (el , . . . , En) then compute the
values VI, . . ., Vn of Reduce(el), . . ., Reduce(En). (These must be totally computable
from g

's static parameter values, else the annotation is in error.) Then set

108 Metaprogramming, Self-application, and Compiler Generation- - - - -

5. If E is not underlined and of form if EO then el else E2 then compute
Reduce(EO). This must be constant, else the annotation is in error. If Reduce(EO)
equals true , then RE = Reduce(el), otherwise RE = Reduce(E2).

6. If E is if EO then el else E2 and each Ei ' equals Reduce(Ei), then

RE = the expression
" if EO' then E1' else E2'"

7. Suppose E is f (el , E2, . . . , En) and Program contains definition

f (xi . . . xn) = f -expression

Since E is not underlined, the call is to be unfolded. Then RE = Reduce(E'), where
E' is the result of substituting Reduce(Ei) in place of each static fparameter xi
occurring in f - expression.

8. If E is f (el , E2, . . . , En), then

(a) Compute the tuple statvalues ' of the static parameters of f , by calling
Reduce on each. This will be a tuple of constant values (if not, the annotation

is incorrect.)

(b) Compute the tuple Dynvalues of the dynamic parameters of f , by calling
Reduce; this will be a list of expressions.

(c) Then RE = the call "fstatvalu8s,(Dynvalues)."

(d) A side-effect: if fstatvalu8s' is neither in Seen before nor in Pending, then
add it to Pending.

6.7.2 Congruence , binding -time analysis , and finiteness

Where do the annotations used by the algorithm above come from? Their primal source
is knowledge of which inputs will be known when the program is specialized, for example

m but not n in the Ackermann example. There are two further requirements for
the algorithm above to succeed.

First, the internal parts of the program must be properly annotated (witness comments

such as " if . . . the annotation is incorrect "). The point is that if any parameter or

operation has been marked as eliminable , then one needs a guarantee that it actually
will be so when specialization is carried out, for any possible static program inputs. For

example, an if marked as eliminable must have a test part that always evaluates to a

constant. This requirement (properly formalized) is called the congruence condition in
[84].

The second condition is termination: regardless of what the values of the static inputs
are, the specializer should neither attempt to produce infinitely many residual functions

, nor an infinitely large residual expression.
It is the task of binding-time analysis to ensure that these conditions are satisfied.

Given an unmarked program together with a division of its inputs into static (will be
known when specialization begins) and dynamic , the binding -time analyzer proceeds
to annotate the whole program . Several techniques for this are described in [84]. The
problem is complex for the following reason:

1. A specializer must account for all possible runtime actions, but only knows the
value of static data. It thus accounts for consequences one step into the future .

2. A binding -time analyzer must account for all possible runtime actions, but only
knows which input values will be static, but not what their values are. It thus accounts

for computational consequences two steps into the future .

The current state of the art is that congruence is definitely achieved, whereas binding -
time analyses that guarantee termination are only beginning to be constructed.

Exercises

6.1 Section 6.3 assumed one already had compilers forlanguageS available in both
source form h and target form h. In practice, however, writing target code is both involved

and error-prone, so it would be strongly preferable only to write h, and the by
some form of bootstrap ping obtain t satisfying I Ih BS = II t BT .

Explain how this can be done, assuming one only has a compiler forlanguageS
available in source form h. Start by writing an interpreter int for S in some existing
and convenient executable language L. 0

6.2 Find another way to accomplish the same purpose. 0

6.3 Another practical problem amenable to bootsrapping is that of cross-compiling:

given a compiler h from S to T written in S, and an executable target version t in an
available target language T, the problem is to obtain an executable target version t 1 in
a new target language T 1.

Explain how this can be done. One way is, as a first step, to modify the "code generation"
parts of h to obtain compiler hi from S to T1. 0

How specialization can be done 109-

Generatiol1110 Metaprogramming , Be Y -
application , and Compiler- ~

6.4 Find another way to accomplish the same purpose. 0

6.S Explain informally the results claimed in section 6.5.4, e.g., why compilation by
target = ([compiler D T(source) should be faster than compilation by target =

([specDL(int . source). 0

6.6 Prove that ([pD (s . d) = ([([([cogenD (p) D (s) D (d) 0

6.7 . Apply the algorithm sketched in section 6.7.1 to the program of Figure 6.3 with
static input m = 2. 0

6.8 Find an appropriate set of annotations (underlines) for the multiplication program
specialized In section 6.4. 0

6.9 Prove that cogen = ([cogenD (spec) . 0

References

As mentioned earlier, the possibility , in principle , of partial evaluation is contained in

Kleene's s-m-n Theorem [95] from the 1930s. The idea to use partial evaluation as a

programming tool can be traced back to work beginning in the late 1960's by Lombard i

and Raphael [107, 106], Dixon [37] , Chang and Lee [19], and Sandewall's group [8],
Futamura showed the surprising equations which are nowadays called the Futa-

mura projections in a paper from 1971 [46]. Essentially the same discoveries were made

independently in the 1970's by A .P. Ershov [41, 42, 43] and V.F. Turchin [160, 161]. Gluck

and others have described other ways of combining interpreters , compilers, and special-

izers, see e.g., [50]. The first implementation of a self-applicable partial evaluator was

done at Copenhagen in 1984 [85]. Much of the material in this chapter stems from [84].

In the 1980's and 1990's partial evaluation became a research field of its own, with

the first conference in 1988 [11]. For more historical information and references, see

[47, 44, 84, 81].

�

7 Other Sequential Models of Computation

We now define some new machine models that differ more or less radically in their
architectures from WHILE. section 7.1 describes some comon features of these models,
and sections 7.2- 7.5 presents the details of each. New models include:

. GOrO, a model similar to WHILE but with jumps instead of structured loops;

. TM, the Turing machines originating in Turing
's 1936 paper;

. RAM, the random access machines, a model of computer machine languages.

. CH, the counter machines, a simple model useful for undecidability proofs .

Remark to the reader. This chapter and chapter 8 introduce a series of new computa-
tional models based, loosely speaking, on new architectures; and chapter 9 introduces
two models based on languages: one for first -order data, and the other, the lambda
calculus, allowing arbitrary functions as values.

The net effect and goal of these three chapters is to provide evidence for the Church-

Turing thesis: that all computation models are equivalent. The means by which the goal
is achieved involve defining the several new machine types (input -output data sets,
computational states, computations , etc.); defining codings between their various data
types; and showing how machines or programs of the one sort can simulate ones of
the other sorts. Some of these constructions will be revisited later when arguing for the
robustness of, for example, polynomially time-bounded computations .

Some readers, already convinced of this, may wish to skip forward to chapter 10, on
natural undecidable problems. For their sake we point out two facts used several places
later in the book:

. Counter machines, with just two counters and insb"uctions to increment or decrement
either by 1, or test either for zero, are a universal computing model: any computable

function can, modulo some data encoding, be computed by some two-
counter program . (Theorem 8.7.2.)

. Further, the GOTO language, whose programs are essentially
" flow chart" equivalents

to WHILE programs, are also a universal computing model . Some future
consb"uctions will be based on this representation.

Judgment form : Read as:

I[pD(x) = y y is the output from running program p on input x

p ~ 5 -+ 5' A conb' ol transition from state 5 to state 5' in one step
p ~ 5 -+ * 5' Control transition in 0, 1, or more steps

Sequences of conb' ol transitions or computations are defined in terms of one-step transitions

as follows , for any stores 5,5',5" :

7.1.1 Data structures : one atom nil , two symbols 0, 1

For simplicity we use A = {nil } in the models where L- data = DA. By Proposition
3.7.9, this does not involve any loss of generality since any set D where A is a finite set

of atoms can be encoded in the set D{nil } . Thus, below D stands for D{nil } .

Further, we assume without loss of generality that TM-data = {O, 1 }
' , since a Turing

machine with a larger tape alphabet can be simulated with at most linear loss of time,

by one that works on symbols encoded as strings in {O, 1 }
.

by encoding each symbol in

an k-symbol alphabet as a block of nogk 1 bits .

Our presentation of Turing machines is nonstandard because of its programmed control

, and a fixed tape alphabet. A later section on the " speedup theorem" will use the

classical model , defined in section 7.6.

7.1.2 Control structures

Each of the computational models GOTO, TM, RAM, and CM has an imperative conb"ol

structure, naturally expressible by a program which is a finite sequence of instructions :

p = 11 12 . . . im . Sometimes this will be written with explicit labels: p = 1 :

11 2 : 12 . . . m: im m+1: . The exact form of each instruction It will be different

for the various machine types. At any point in its computation , the program will be in

a state of form

s = (/',0') where /, E { 1,2, . . .,m,m + I } is a program label and
0' is a store whose form will vary from model to model

A terminal state has label /, = m + 1, indicating that the computation has terminated . To

describe computations we use the common judgment forms :

can define the effect of running program p on input x by: lip D(x) = y if

1. 0-0 = Readin(x)
2. p r (1,0-0) -+-* (m + 1,0-), and
3. y = Readout(o-)

7 .2 A flowchart language GOTO

Definition 7.2.1 First, GOTO-data = D as in Definition 9.1.1. Let Vars be a countable set
of variables. We use the conventions die eD and X, Y,Z e Vars . Then GOTO-prog = the
set of imperative programs as in section 7.1, where informal syntax of a GOTO insbuction
is given by the following grammar :

I : := X := nil I X := Y I X := hd Y I X := tl Y
I X := cons Y Z I if X goto t' else t"

Labels t' in if statements must be between 1 and m + 1.
The test - 1 has been omitted since, by section 2.4, general equality can be expressed

using atomic equality ; and there is only one atom nil , which can be tested for using the
if insbuction . 0

Note that every expression has at most one operator, and tests must use variables rather
than expressions. The intuitive semantics of GOTO-programs is as follows. Execution
begins with insb"uction 11. Assignments are executed as in WHILE. A statement if X
goto i else i ' is executed in the obvious way: if the value of X is not nil then execution

proceeds with insb"uction It , and otherwise insb"uction insb"uction It is executed.

A flowchart language GDTD 113~ -

Readin :

Readout :

- +-

- +-

Finally, we

p ~ 5 - +* 5

p ~ 5 - + * 5' if P ~ 5 - + 5" and p ~ 5" - + * 5'

In anyone run , the store will be initialized according to the program input , and the

program
's computed result will be read out from the final store . Details differ from machine

to machine , so we assume given functions of the following types , to be specified
later for each model :

L-data

L-store

L-store
L-data

114 Other Sequential Models a/Computation-

Here is a version of the reverse program in a O TO, where instructions goto i and if

X goto i abbreviate the obvious special cases of if X goto i else it . The input
will be read into X and the output will be written from X.

Y := nil ;
if X goto 4;
goto 8;
Z := hd X;
Y := cons Z Y;
X := tl X;
goto 2;
X:= Y

.
.

~
N (f) qe & O

C
O

t

' - . O
O

H
H

H
H

H
H

H
H

Imandlet Vars (p) = {X,Z1. . . ,Zn}

1. A store for p is a function from Vars (p) to D. A state for p is a pair (,u) where
1 ~ ~ m + 1 and U is a store for p.

2. Readin(d) = [1 H- d,Z1 H- nil , . . . Zn H- nil].

3. Readout(u) = u(I).

4. The one-step b' ansition rules for a O TO appear in Figure 7.1. 0

Definition 7.2.2 Consider a program p = II
be the set of all variables in p.

The Turing machine TN 115

This model is a direct formalization of Turing
's analysis of computational process es,

using a sequence of insb' Uctions for conb' ol .
First, TM-data = {O, 1 }

" so an input is a bit sb' ing. A Turing machine has one or
more tapes. Each tape is a two-way infinite sequence of squares, where a square contains

a symbol from a finite tape alphabet A including the "blank symbolS . During a

computation the square
's contents may be tested or overwritten . At any time during a

computation there will only be finitely many non blank s~ bols on any tape.
In the literature the tape alphabet can sometimes be arbib' arily large, but we use

{O, 1,S} for simplicity and because it only makes small constant changes inrunning
times: the same reasons for restricting the GOTO language to one atom.

In a computational total state at some moment, each of the machine's readjwrite heads
is scanning one " current" square on each tape, and it is about to perform one of its

program insb' Uctions. This directs the machine to do one of the following for one of
the tapes: write a new symbol on the tape, replacing the previous scanned tape square

's
contents; move its read/ write head one square to the left or to the right ; or compare the
contents of its scanned square against a fixed symbol and then b' ansfer conb' ol to one
insb' Uction if it matches, and to another insb' Uction if not .

Finite

. . . B B 0 1 0 1 B B . . .

Tape

1
(

input

)

state

control

(

program

)

0 B B B . . .

Tape

2
(

initially

blank
)

P
. . .

. . . BOO 1 1 1 1 B . . .

Tape

k
(

initially

blank
)

multitape

The following grammar describes TM-prog by giving the syntax of both instructions and
data . Subscript j , l ~ j ~ k, indicates which tape is involved . For one- tape Turing ma -

7 .3 The Turing machine TM

Figure 7.2: A Turing machine.

subscript

empty string)

7.4 The counter machine CM

A counter machine
tersor cells) XO, Xi ,

program has as storage a finite number of counters (also called regis-

X2,. . ., each holding a natural number. Thus CM-data = N.

116 Other Sequential Models of Computation- -

chines the will be omitted.

rightj Ileftj I writej S I ifj S goto i else i 'I : Instruction ::=

S, S' : Symbol ::=

L,R: String ::=

0' : Tapes ::=

Tape ::=

(E: is the

where
{
E: if R = E: or if R begins with BPfx(R) = S Pfx(R') if R = S R' and S = 0 or 1

Finally, one-tape Turing machine one-step transition rules are defined as in Figure 7.3,where It is the instruction about to be executed. Extension to multiple tapes is straightforward but notationally tedious, and so is omitted.

0 111 B
S String I c
Tapek
L~ R

A store 0' is conceptually a k-tuple of two-way infinite tapes. The tapes must be represented
finitely in order to define the transition rules. One way is to include all nonblank

symbols, so a full tape is obtained by appending infinitely many blanks to each end of
a finite tape representation. A full storage state consists of a store in which the scanned

symbol will be underlined. Thus we define

TM-store = { (LlS1Rl, . . .,LkSkRk) I Li, Si, R; as above}

Here the underlines mark the scanned symbols Si, and Li and R; are (perhaps empty)

strings of symbols.

Inputs and outputs are strings in TM-data = {Oil}
., are found on the first tape, and

consist of all symbols to the right of the scanned symbol, extending up to but not including
the first blank. The store initialization and result readout functions are defined

as follows:

Readin(x) = ~ x, B, . . .,~ Start just left of input
Readout(LlSlRl ,L~ R2, .. .,LkSkRk) = Pfx(Rl) Tape 1, right to first B

machine one- step transition rules are defined as in Figure 7.4.

The counter machine CH 117

Figure 7.3: Turing machine one-step transition rules.

CM-store = { 0' I 0' : N -.. N}

where O' (i) is the current contents of counter Xi for any i EN . The store initialization
and result readout functions are defined as follows :

.

Readin(x) = [0 .-+ x,1 .-+ 0,2 .-+ 0, . . .] Input in counter 0
Readout(O') = 0' (0) Output from counter 0

Anyone program can only reference a fixed set of counters. Thus for any store 0' used
to execute it , O' (i) = 0 will hold for all but a fixed finite set of indices. Finally, the counter

Program instructions allow testing a counter for zero, or incrementing or decrementing
a counter 's contents by 1 (where 0 ..&..1 = 0 by definition , else x .l..1 = x - 1). All counter

contents are initially zero except for the input . The following grammar describes the CM
instruction syntax and so defines CM-prog.

I ::= Xi : - Xi + 1 I Xi : - Xi .:. 1 I if Xi - O goto /. else /.'

(Sometimes the dot will be omitted .) Additional computable instructions could be
added, e.g., Xi : - 0, Xi : - Xj , if Xi - 0 goto /., or goto /.. Such extensions are,
however, unnecessary in principle since they are special cases of or can be simulated

using the instruction set above.

A store 0' is a function in

This machine is an extension of the counter machine which more closely resembles
current machine languages. It has a number of storage registers containing natural
numbers (zero if un initial ized), and a much richer insb"uction set than the counter machine

. The exact range of insb"uctions allowed differ from one application to another,
but nearly always include

1. Copying one register into another.

2. Indirect addressing or indexing, allowing a register whose number has been computed
to be fetched from or stored into .

3. Elementary operations on one or more registers, for example adding or subtracting
1, and comparison with zero.

4. Other operations on one or more registers, for example addition , subtraction, multiplication

, division , shifiting, or bitwise Boolean operations (where register con-

118 Other Sequential Models of Computation

~ Register 0

0 Register 1

rt31 Register 2
Finite ~

state rpl :
control ~ .

(program) r ; ; - , .

~ Register I

.

Figure 7 .5 : Picture of a random access machine .

7 .5 The random access machine RAM

The random access machine RAM 119

tents are regarded as binary numbers, i .e., bit sequences).

The successor random access machine, SRAM, has only instruction types 1, 2, 3 above. General
RAM operations vary within the literature . Although rather realistic in some aspects,

the SRAM is, nonetheless, an idealized model with respect to actual machine codes. The
reason is that there is no built -in limit to word size or memory address space: it has a potentially

infinite number of storage registers, and each may contain an arbitrarily large
natural number. Even though anyone program can only address a constant number of

storage registers directly , indirect addressing allows unboundedly many other registers
to be accessed.

The following grammar describes the SRAM instruction syntax.

I ::= Xi : = Xi + 1 I Xi : = Xi ~ 1 I if Xi =O goto l else l '

I Xi : = Xj I Xi : = <Xj > I <Xi > : = Xj

While this machine resembles the counter machine, it is more powerful in that it allows

programs to fetch values from and store them into cells with computed address es. The intuitive

meaning of Xi : = <Xj > is an indirect fetch: register Xj
's contents is some number

n; and that the contents of register In are to be copied into register Xi . Similarly , the
effect of <Xi > : = Xj is an indirect store: register Xi 's contents is some number m; and
the contents of register Xj are to be copied into register im .

This version is nearly minimal , but will suffice for our purposes. More general RAM
models seen in the literature often have larger instruction sets including addition , multiplication

, or even all functions computed by finite-state automata with output , operating
on their argments

'
binary representations. We will argue that such extensions do

not increase the class of computable functions . They can, however, affect the class of

polynomial -time solvable problems, as the more powerful instructions can allow constructing

extremely large values within unrealistically small time bounds.
The RAM storage has the form

gRAM-store = { 0- I 0- : N - t N}

where o-(j) is the current contents of register Xj . Further,

Readin(x) = [0 I-+- X, 11-+- 0, . . .] Input in register XO
Readout(o-) = 0-(0) From register XO

Even though one program can directly reference only a fixed set of registers, the indirect

operations allow access to registers not appearing in the program text (perhaps

Successorrandomraccessmachim~ one-step tramititm : rules.

We will later on prove certain results for which it matters whether one chooses the formulation
of Turing machines above, or the classical formulation usually adopted in the

literature . Therefore we now briefly review the classical definition .

Definition 7.6.1 A k-tape classical Turing machine is a quintuple

(1:, Q,t'init,t'! in, n

where

1. 1: is a finite alphabet containing a distinguished symbol B;
2. Q is a finite set of states, including t'init, t'! in; and
3. T is a set of tupies of form

(t', (at ,bt ,Mt), . . ., (~ ,bk,MV ,t")

where

120 Other Sequential Models of Computation

Figure 7.6:

7.6 Cassical Turing machines

unboundedly many). On the other hand , the store is initialized to zero except for its

input register , so at any point during a computation only finitely many registers can
contain nonzero values . Consequently the machine state can be represented finitely (in
fact we will see that a Turing machine can simulate a SRAM).

The SRAM one-step transition rules are defined as in Figure 7.6.

Classical Turing machines 121

(a) at , . . ., at , bt , . . ., bk E 1:;

(b) Mt , . . .,Mk E { +- "t., -+} ; and

(c) l , lE Q and l ~ lfin .

The Turing machine is deterministic if for every l and at , . . .,ak there exists at most one

bt , . . .,bk, Mt , . . .,Mk' and l ' such that (l , (at ,bt ,Mt), . . ., (akl bk,Mk),l ') ET . 0

It is perhaps easiest to understand the definition by comparison with the previous definition

of Turing machines. Whereas the previous definition insisted that every Turing
machine use the same tape alphabet {O, 1, B} , the present definition allows each machine

to have its own tape alphabet 1:. Moreover, whereas the previous Turing machine was

control led by a sequence of labeled commands, we now have instead a set of states Q,
and a set of transitions T between these states. Roughly, every state lE Q corresponds
to a label in the earlier definition , and every transition tE T corresponds to a command.

Consider, for instance, a I -tape Turing machine with transition

(l , (a, b,M) , l
')

Such transitions will also simply be written

(l ,a, b,M ,l
')

The meaning of the transition is: in state l , if the scanned square contains a, overwrite a

with b, perform an action as specified by M , and goto state l ' , where the different values

of M are interpreted as follows :

+- : move the read/ write head one square to the left

,t. : do not move the read/ write head
-+ : move the read/ write head one square to the right

All this is counted as taking 1 step.
A tuple

(l , (at ,bt ,Mt), . . ., (aklbkl Mv ,l
')

specifies the analogous k-tape Turing machine state transition : in state l , if the scanned

symbol on tape i is ai, for all i E { I , . . .k} , then bi is to be written in place of ai for all

i E { I , . . .k} , the read/ write head on tape i is moved according to Mi , for all i E { I , . . .k} ,
and the new state becomes l ' . All this is also counted as taking 1 step. Note that all the

ai are replaced by the bi if this tuple applies; else none of them are replaced.

Models

In order to formalize computations we make use of configurations. For a I -tape Tur-

ing machine a configuration is a pair (t', (L,O' ,R , where t' is the current state, 0' is the
current scanned symbol, and L and R are the contents of the tape to the left and right
of 0' , respectively. Transitions modify the configurations as sketched above. A computation

always begins in state t'init with a blank as the scanned symbol, blank tape to the
left, and the input to the right . Computations end in t'fin (if they end at all) with the

output to the right of the scanned symbol up to the first blank . There are no transitions
from t'fin .

The tape to the left and right of the scanned s~ bol are at all times finite . In the
situation where one moves, say, to the right and the tape to the right is empty, we simply
add a blank .

This is all made precise in the following definition .

Definition 7.6.2 Given a k-tape Turing machine M = (1:, Q,t'init, t'fin, n .

1. A configuration of M is an element of Q x (1:* x 1: x 1:*)k.
2. One configuration C leads to another C' , notation C ~ C', if

C = (t', (Lt ,O' t ,Rt), . . ., (Ln,O'n,Rn
C' = (t" , (Lt ' O' l ,Rt), . . ., (L~,O'~,~

and there is a transition (t', (at ,bt ,Mt), . . ., (ak,bklMv ,t") ET such that for all i =
1, . . .,k both O' i = ai, and:

(a) if Mi = +- then

i . if Li = E. then Li = E., 0' = B, and Ri = biR; ;
li . if Li = "Y O' then Li = "Y, 0' = 0' , and Ri = biR; .

(b) if Mi = J, then Li = Li, 0' = bi, and Ri = Ri

(c) if Mi = -+ then

i. if R; = E. then ~ = E., 0' = B, and Li = Bill ;
li . if R; = O"'Y then ~ = "Y, 0' = 0' , and Li = Bill .

3. C leads to C' in m steps, notation C ~ m C', if there is a sequence of configurations
Ct, . . .,Cn such that C = Ct and C' = Cn.

4. For x,yE (1:\ {B})* we write M (x) = y, if for some m

(t'init, (EiB,x), (EiB,E.), . . ., (EiB,E. ~ m

(t'fin, (Lt , O' t , yRt), (L2,0'2,RV, . . . , (LkI O'k,RV)

where Rt is either E. or begins with B.

122 Other Sequential of Computation

Example 7.6.3 Here is a 1-tape Turing machine M that takes a number in the unary
number system as input, and returns its successor as output, i.eM (x) = xl for all unary
numbers x.

1. I. = {a, 1,B};
2. Q = {It ,l2,l3,l4};
3. linit = It ;
4. lfin = l4;
5. T = { (It ,BiB,~ ,lv ,(l2, 1, 1,~ ,lv ,(l2,B, 1, +- , l3), (l3, 1, 1,+- ,l3),(t3,B,Bijil4)}

The machine is started with scanned symbol B, blank tape to the left, and the input
1 . . . 1 to the right. Therefore it begins (first transition) by moving one step to the right.
Then (second transition) it moves one step to the right as long as it sees l ' s. When it
reaches a blank after the 1 's, it replaces the blank by an extra 1 (third transition). It then
moves to the left to get back to the initial blank (fourth transition), and when it arrives,
it terminates (fifth transition).

Here is a more clever machine computing the same function:

1. I. = {a, 1,B};
2. Q = {It ,l2};
3. linit = It ;
4. lfin = l2;
5. T = { (It ,B, 1,+- ,lv } . 0

Note that every transition must write something to the scanned square. In order to simply
move the read/ write head one must write the same symbol to the scanned square

as is already present. For instance,

(It ,BiB,~ ,lv

is the first transition in the example above which moves the read/ head one square to
the right. It is convenient to let nap be an abbreviation for the triple (B,Bij.). In case we
know the scanned square is a blank, this operation neither moves the read/ write head
nor writes anything to the tape- it performs a "no-operation.

"

Classical Turing machines 123

5. M decides a set L ~ 1:, if

M(x) =
{

for every x E I.
for every x E I.\ L

1
0

124 Other Sequential Models of Computation

7.1 Show that a program with several one- dimensional arrays can be simulated in a
RAM. 0

7.2 Show that it is not necessary to assume that every RAM memory cell is initialized
to o. Show how, given a RAM program p as defined above, to construct a RAM program
q which has the same input -output behavior as p, regardless of the initial state of its

memory. 0

7.3

1. Show that function x + 1 is computable by a Turing machine, if given as input the

binary representation of x.

2. Show that a Turing machine can, given input of form xBy where y,x E {0, 1}
*,

decide whether x = y . An alphabet larger than { 0, 1,B} may be assumed, if convenient
. 0

7.4 Show how to simulate instructions Xi : - 0, Xi : - Xj , goto i , and if Xi 0
goto i else i ' on a counter machine as defined above. 0

7.S Show that a counter machine can compute functions x + y,2 . x,x/ 2. 0

7.6 .. This exercise and the next concern the construction of a self-interpreter for SRAM

programs. Part 1: devise an appropriate way to represent the instruction sequence comprising
an SRAM program as SRAM data in memory. (Hint : you may wish to use more

than memory cell to contain one instruction .) 0

7.7 .. Part 2: Sketch the operation of the self-interpreter for SRAM programs. This can
store the program to be interpreted in odd memory locations, and can represent memory
cellloc of the program being interpreted by the interpreter

's memory cell 2 . loc. 0

7.8 Prove that the function f (x) = the largest u such that x = 3" . Y for some y is CM-

computable . 0

The data structure of a O TO is very similar to that of first -order LISP or Scheme, and its
control structure is very similar to early imperative languages, e.g., BASIC. Counter and

Exercises

References

Oassical Turing machines 125

random access machines were first studied by Shepherd son and Sturgis [155], and are
now very popular in complexity theory, for instance in the book by Aho, Hopcroft and
Ullman [2].

The SRAM and equivalent storage modification machines were studied by Sconhage
[152]. Turing machines were introduced in [162] and are widely studied in computability

and complexity theory. The boo.k by Papadimitriou [130] gives a large-scale introduction
to complexity theory and co'b1putation models. and [165] covers an even broader

range.

�

Figure 8.1 gives an overview of the translations and interpretations in this chapter (plus
two involving functional language F, to be given in the next chapter). The labels in the

diagram sum up the techniques that are used. The proofs of equivalence come in three
variations :

1. Show for a language pair X, Y how to compile an arbitrary X-program p into an

equivalentY -program q (possibly with change in data representation, as in Definition
3.3.3).

2. Show for a language pair X, Y how to write an interpreter for X in Y.

3. The remaining arcs, labeled with C, are trivial . For instance, every 2CM-program
is a CM-program with exactly the same computational meaning.

Figure 8.2 shows the form of data and store in each of the computation models. Compilation
from WHILE to I was dealt with in section 3.7.3; this involves coding multiatom

trees into ones with only nil .

8.2 From GOTO to WH I LE and back

from WHILE to GOTO.Proposition 8.2.1 There is a compiling function

Proof By standard techniques; see the Exercises.

8 Robustness of Computability

8.1 Overview

�

1 Effectively so: There are computable compiling functions between any two.

128 Robustness of Computability

Forms stores

The converse of the above proposition also holds . The classic 8ohm-Jacopini construction
in effect shows that every program can be written in the fom\ of one while loop (and
no goto

's) by adding an extra " instruction counter " variable . For instance, the GOTO
version of the reverse program can be converted back into the WHILE program shown
in Figure 8.3, where we use numerals from Subsection 2. 1.6.

Proposition ,8.2.2 There is a compiling function from GCTO to WHILE.

Proof: See the Exercises. 0

There is a controversy, sometimes experienced in undergraduate programming courses,
as to whether the use of goto-statements in Pascal is acceptable. It is often claimed that

Figure 8.2: cf data and

GOTO programs are unsb"uctured whereas WHILE programs are well -sb"uctured. The

preceding example shows that WHILE programs can be exactly as unsb"uctured as GOTO

programs. In practice, however, using WHILE programs often yields better-sb"uctured

programs .

The preceding theorem is related to Kleene's Normal Form Theorem (13.4.3) for recursive
functions in that it shows that any WHILE program can be written on the form

if-statements).

Compilations with change of data 129

read X;
Y := 1;
while Y do C;

wri te X

where C does not contain any while loops (except those required by the macro facility
to program

8.3 Compilations with change of data

The various remaining machine types have different forms of input-output data, which
necessitates transforming back and forth between different data domains. Figures 8.4,
8.5 show the encodings that we will use to represent one machine type

's data for simulation

by another machine type. (nle notation < -,- > used for cpr will be defined
shortly.)

{

O

,

1

}

*

=

TM

-

data

D

-

GOTO

-

data

CN
N

=

2CM

-

data

N

=

RAM

-

data

=

CM

-

data

Data,encodings mndp;l!;.

1. Define a one-to-one data encoding c : L-data -+ M-data.

2. Define a representation of any store 0' EL-store by a store u EM-store.

3. Define the consb"uction of an M-program p = Io ;il ;I2 ; . . .Ik ;Ik+1 from an L-

program p = 11; 12; . . . ; ik .
Here Io and and Ik+1 (if present) are respectively

"set-up
" code needed to prepare

the simulation, and "clean-up
" code to deliver the result in the needed final

format.

4. Prove that p correctly simulates the actions of p.

130 Robustness of Computability

Figure 8.4: between machine

8.3.1 Common characteristics of the simulations

All the simulations proceed by step-by-step simulation of program instructions . The

process of establishing that one can correctly embed computations by model L into those
of M can be summed up as follows , following the pattern of Definition 3.3.3:

Figure 8.5: Coding functions.

8.4 Compiling RAM to TM

RAM) to the a quite simple one (the Turing machine).
First, to simplify the consb"uction we reduce RAM insb"uctions to what might be called a
RISC or " reduced insb"uction set" version using register XO as an accumulator, and with
insb"uctionforms :

I ::= XO : - XO + 1 I XO : - XO .&. 1 I if XO - 0 goto i

I XO : - Xi I Xi : - XO I XO : - <Xi > I <XO> : - Xi

I Other operations: XO : - XO Operation Xi

Clearly any RAM program can be converted to an equivalent reduced form program ,

Compiling RAM to TH 131

We begin with the most complex compilation , from the most complex machine type (the

8.3.2 Coding numbers as bit strings - isomorpmcally

The shortest binary representation of a natural number nE N gives a one-to-one function
bin : N -+ {0,1}

*. It is not onto and so not an isomorphism, though, since any
number of leading zeroes can be prefixed onto a bit string without affecting its value.
An isomorphism CN : N -+ {O, 1}

* can be defined by a slight variation (Exercise 8.1):

CN(V) = C if v = 0, else
CN(V) = d where string id is the shortest binary representation of v + 1

which maps 0,1,2,3,4,5,6,7, . . . into C, 0, 1, 00, 01, 10, 11, 000, ...

slowing down its running time by at most a small constant factor.
The Turing machine simulating a RISC RAM program p will have 4 tapes as in the

following table, using the encoding CN : N -+ {O, 1, B}
* as defined in Figure 8.5. With each

tape form we have marked, by underlining, the "standard scan position." This is the
position the scan heads are to occupy between simulation of any two RAM instructions.

The first two tapes represent the locations and values of nonzero entries in the RAM
store 0' = [ao t-+ Co, . . .,ak t-+ Ck]. The third tape is the accumulator 10, the fourth is an

auxiliary
"scratch" tape for various purposes.

Note that "standard scan position
" can easily be located: since all number encodings

have at least one bit, it will always be the rightmost B in the first BB to the left of any
tape

's nonblank contents.

Initialization code: the RAM program input 1 is on tape 1. This is first copied to tape 2 and
0 is placed on tape 1, signifymg that cell 0 contains value 1. After this, both heads are
moved one position left to assume standard position . Termination code: the first value Co
on tape 2 is copied onto tape 1, and all other information is erased.

The simulation is described by three examples; the reader can fill in the rest.

XO :. XO + 1:
Find the right end of the {non blank portion of the) Accumulator tape 3. Repeat-

edly replace 1 by 0 on it, and shift left one position, as long as possible. When a 0
or B is found, change it to 1 and move one left to stop in standard position..

2. X23 := XO:
Scan right on tapes 1 and 2, one B block at a time, until the end of tape 1 is reached
or tape 1 contains a block B10111B. (Note: 10111 is 23 in binary notation.)
If the end of tape 1 was reached, location 23 has not been seen before. Add it, by
writing 10111 at the end of tape 1, and copy tape 3 (the value of XO) onto tape 2;
and return to standard position.

132 Robustness of Computability

Compiling TM to GO TO 133. - -

For simplicity of notation we describe how to compile one-tape Turing machine programs
into equivalent Ga Ta programs; the extension to multiple tapes is obvious and

simple. We follow the "common pattern." The encoding of Turing machine tapes as
Ga Ta values uses the encoding C01S defined in Figure 8.5.

A Turing machine store 0' = L ~ R will be represented by three Ga Ta variables Lf ,
C, Rt, whose values are related to the tape parts by C = st (notation defined in Figure
8.5), Rt = c01s(R), and Lf = C01S!., where r. is L written backwards, last symbol first. A
Turing machine program p = 11 ; 12; . . . ik is compiled into a simulating Ga Ta-program
p = II ;12; . . .Ik , where each Ii is the sequence of Ga Ta commands defined next (with
some syntactic sugar for readability).

If, however, B 10 111B was found on tape 1, then C23 is scanned on tape 2. In this
case it must be overwritten, done as follows:

. copy C24...BckB onto scratch tape 4;

. copy tape 3 (the value of XO) in place of C23 on tape 2;

. write B and copy tape 4 onto tape 2, thus reinstating the remainder C24...BckB
after the new C23; and finally

. return to standard position.

3. XO : = <X23>:
Starting at the left ends of tapes 1 and 2, scan right on both, one B block at a time,
until the end of tape 1 is reached or tape 1 contains a block with B10111B.
If the end is reached do nothing, as C23 = 0 and tape 3 already contains Co.
If B 1 0 111B was found on tape 1, then C23 is scanned on tape 2. Copy C23 onto tape
4. As above, search tapes 1 and 2 in parallel until location BC23B is found on tape
1, or tape 1's end is found. If the end was reached, write 0 on tape 3, since CC23 = Co.
Otherwise copy the tape 2 block corresponding to tape 1 onto tape 3, as the tape 2
block contains C(C23)' and return to standard position.

Finally, "other operations" XO : - XO Operation Xi can be simulated as long as they
denote Turing-computable functions on natural numbers. This holds for all operations

8.5 Compiling TM to GOTO

- -
in the various RAM models which have been proposed .

134 Robustness of Computability

TM command GOTO code must achieve

right if (=1 Rt nil) then Rt := (nil . nil) ;
Lf := cons C Lf ; C := hd Rt ; Rt := tl Rt ;

left if (=1 Lf nil) then Lf := (nil . nil) ;
Rt := cons CRt ; C := hd Lf ; Lf := tl Lf ;

write S C := d where d = Sf

if S goto i if C = d then goto i where d .= Sf

The initial GOTO store for Turing Machine input ~R is

[Rt 1-+ COIB(R),C 1-+ nil ,Lf 1-+ nil]

It is suaightforward to prove that p correctly simulates the actions of p.

8 .6 Compiling ; GOTO to CM

CM program values are natural numbers, so we represent tree structures in D by numbers

, using cpr as defined in Figure 8.5. For every GOTO variable with value x, there
will be a corresponding CM variable with value Cpr(x). Consequently every CM variable
will have value 0 or 2" .3v for some u, v; and both u and v will have the same property
(recursively).

A GOTO program p = 11; 12; . . . Ik is compiled into a simulating CM-program p =

II ;12; . . .Ik I where each Ii is the sequence of extended CM commands defined next
(with some syntactic sugar for readability).

It is straightforward to prove that p correctly simulates the actions of p. The only remaining
task is to show that these extended CH-commands are in fact CH-computable.

Lemma 8.7.1 Suppose CM program p has one input and contains k variables Xi ,. . . ,Xk
where k ~ 3. Then there is an CM program q with only two variables Y, Z such that ([pD
can be incorporated into ([qD by encoding C2CM(X) = 2%. 0

Proof: Each command It of p will be replaced by a sequence of commands It in q.

Variables Xi ,. . . ,Xk are represented in q by two variables Y, Z. Letting h be the k-th prime
number, the following simulation invariant property will be maintained :

If variables Xl , X2,. . . Xk have values Xt,X2, . . . ,Xk (respectively) before execution
of any p-instruction If , then

Value-Of(Y) = 2%1 . 3%2 h%k

will hold before execution of the corresponding q-instruction sequence It .

Compiling CM to 2CM 135

X3 := Xl ; XO := 0;
while X2 ~ 0 do { XO := XO + X3; X2 := X2- 1 }

8.7 Compiling CM to 2 CM

Definition 8.6.1 Function ! : Nk -+ N.l is CM-computable iff there is a CM-program q with
counters Xi ,. . .,Xk such that if 0'0 = [1 H- Xl, . . .,k H- Xk, all other i H- 0] and Y,XI, . . .,Xn E
N, then

! (XI, . . . ,Xn) = y iff q I- 0'0 -+* [0 Hy , . . .]

Lemma 8.6.2 The following functions are all CM-computable, where c is any constant:
a(x) = X+ c, g(x,y) = X+ y, h(x,y) = x . y, e(x) = cx, and
m(x) = max{y 13z.x = cY.z} .

Proof. The c-instruction sequence Xi : =xi +1; . . . ; Xi : =xi +1 computes function a(x) =

X + c. Functions g(x, y) = X + y, h(x, y) = x . y, and e(x) = CX are computable by the three

programs:

XO := Xl ; while X2 ~ 0 do { XO := XO+l ; X2 := X2- 1 }

This nearly completes the proof that the functions used in the compilation are CM-

computable, except for m(x). This is left as Exercise 8.2. 0

Explanation of the simulation method : variable Z is used as an auxiliary . Assuming
the simulation invariant to hold , operations X2 : = X2 + 1, X2 : = X2 - 1, and X2- 01
(for instance) can be realized by replacing y by 3 . y, or y + 3, or deciding whethery is
divisible by 3. It is easy to see that these can be done with two counters; forexampley

+ 3 can be computed by
while Y>O do { Y:=Y- l ; Z:=Z+l }
while Z ~ 4 do {Y := Y+l ; Z := Z- g }

where the test Z ~ 4 and the operation Z : = Z- 3 are easily programmed . Operations
on the other Xi are similarly realized, completing the construction . Initially p has its

input x as value of Xi , and every other variable has value O. By the invariant this corresponds
to initial q value y = 2% . 30 . SO = 2% of Y. Thus q is a 2-counter program

which , given input y = 2%, terminates with y = 2/ (%) . 30 . SO = 2/ (%), as required . 0

Theorem 8.7.2 Any CM-computable function f (x) can be incorporated into a 2CM-

computable function . 0

Corollary 8.7.3 The halting problem HALT -2CM for 2CM prograins is undecidable . 0

8.2 Show that the function: m(x) = max{y I 3z. x = cY . z} can be computed by a counter

illustrate on a

8.4 Give a compiling function from GOTOprograms lliustrate on a

8.S Prove Corollary 8.7.3.

136 Robustness of Computability

Exercises

8.1 Show that the function CN : N -+ {O, 1}
* of section 8.3.2 is both one-to-one and onto,

to GOTO programs.

to WHILE programs.

References

Other kinds of support of the Church-Turing thesis include works by Gandy [48], Kleene
[95], Minsky [124], Rogers [147] , and Shepherdsen and Sturgis [155].

and so an isomorphism.

small example . 0

0

machine program, for any fixed c.

8.3 Give a compiling function from WHILE programs
small example.

The language WHILE is imperative. This means that WHILE programs have a global store
that they update by means of assignments. In contrast to this, functional languages do not
have a store. Instead they pass values to other functions in calls and receive values when
these functions return a result . This difference is reflected in the syntax of programs in
that a functional language typically has a syntactic category for expessions but , unlike
WHILE, none for commands.

.anal Languages

9.1 A first -order functional language

9 Computability by Functi

(partly by T. JE. Mogensen)

defined in Figure 9.1.

Iist (ai . . .am b1. . .bm) .

append Z whererec append(Z) =
if (hd Z) then cons (hd hd Z)

else (tl Z)

138 Computability by Functional Languages (partly by 7: A! .. Mogensen)

Example 9.1.2 The expression append (cons (ai . . . am) (b1 . . .bm returns the

(append (tl hd Z) (tl Z

The function EI[E) B v gives the result of evaluating expression E, assuming variable X
has value v, and that E occurs within a recursive program of form E whererec f (X)
- B. If the expression never terminates on the given value v (due to a never-ending
recursion), then EI[E) Bv will not be defined .

Example 9.1.3 The following is a "tail recursive" version of the reverse program in
F, esentially the imperative program of Example 2.1.4, written in functional style. The

expression reverse (cons X nil) returns the list X reversed. The program does so

by keeping the two variables X and Y from the corresponding WHILE program in packed
together in the single F variable, here called Z. An update of a variable in WHILE is
simulated by a function call in F.

Proposition 9.2.1 There exists an interpreter intIFfor I written in F.

Proof See Exercise 9.3. 0

Proposition 9.2.2 There exists an interpreter intFI for F written in I .

Proof First we need to give a concrete syntax to F programs . This is done in Figure 9.2,
where var ', quote

',. . . ,doif ' should be understood as distinct elements of D.

An interpreter int F W H I LE for F written in WHILE can be obtained by modifying the

expression evaluation part of W H I L E's universal program from section 4.1, partly by

adding new variable B that is used as in the semantic equations defining F. The resulting

interpreter appears in Figure 9.3.
The STEP command is similar to the one in the W H I L E1var interpreter written in

WHILE with two exceptions: the rules pertaining to commands have been removed, and

three new transitions have been added to deal with function calls.

How they work : the call assigns to X the call's argument . After the argument has been

evaluated and placed on the computation stack (variable v), operation docall ' saves

Interpretation of I by F and vice versa 139

rev (cons Z nil) whererec rev (Z) =
if (hd Z)
then reverse (cons (t1 (hd Z (cons (hd (hd Z (t1 Z
else (t1 Z)

9.1.2 The language F+

An F+ program has programs with several multiparameter functions defined by nutual
recursion:

E whererec fl (Xl . . .Xk) =El , . . . , fn (Yl , . . . ,Ym) =En

The task of Exercise 9.1 is to define its semantics in a manner resmbling that above for
F. The purpose of Exercise 9.2 is to show that this richer version of the F language is no
more powerful than the simple seen above.

9 .2 Interpretation of I by F and vice versa

In this section we are concerned with the problem of writing interpreters for F in WHILE

or I , and vice versa. One half of this will be left to the Exercises:

the current value v of X by pushing it on the code stack. The new code stack top becomes
the body B of the enclosing program , thus setting the recursive call in action. Once this
is finished with its result u on top of the computation stack, operation return ' restores
X to its previous value .

Although interpreter int F W H I LE only uses the atom nil , it has several variables.
These may be compressed into one as in section 3.7.2, yielding the desired interpreter
intFI . 0

140 Computability by Functional Languages (partly by 7: / E. Mogensen)

Xl I X2 I . . .

AX; .A
AA

A ..-..-

-

-

9 .3 A higher
-order functional language LAMBDA

A commonly used model of computation is the lambda calculus [23], [7] . It is, however,
seldom used in complexity texts as the notion of a computation cost is unclear. This is
both because the number of reduction steps depends heavily on the reduction strategy
used and because the basic reduction step in the lambda calculus - {J-reduction - is
considered too complex to be an atomic computation step. We will not investigate these
issues here, as our prime objective is to show that the lambda calculus has the same

computation power as the I language, and hence the same as WHILE.

Expressions in the lambda calculus are either variables, lambda-abstractions or applications
:

A higher - order funcfionallanguage LAMBDA 141

The Church-Rosser theorem [7] shows that the order of reductions in a certain sense
doesn't matter : if , starting with the same lambda expression, two sequences of reductions

lead to normal forms {lambda expressions where no (3-reductions can be performed
), then the same normal form will be reached by both reduction sequences.

Hence, it makes sense to talk about the normal form of a term, if any such exist.
The theorem is actually a bit broader than this, but this is what we need here. Note,

however, that the order of reduction can have significant impact on the number of reductions

required to reach the normal form , and indeed even on whether the normal
form is reached.

Various notions of what is considered a value in lambda calculus have been used.
As we want to represent arbitrary tree-structures, we have chosen to let values be normal

form lambda expressions. For a discussion on other choices, including weak head
normal forms and head normal forms and on the mathematical models of computation
these imply , see [7] . This also discuss es properties of different strategies for the order of
reduction .

We define the language LAMBDA as having closed lambda calculus expressions as

programs . Values in input and output are lambda calculus expressions in normal
form . Running a program P with inputs Xl , " " Xn is done by building the application

P Xl . . . Xn and reducing this to normal form . The output of the program is the
normal form obtained this way.

142 Computability by Functional Languages (partly by 1: A! . . Moge)

Definition 9.3.1 A f3-redex (or just redex) is an expression of the form (Ax . A) B. The

operation of f3-reduction is done by the following rule :

(AX. A) B -+{3 A [x := B]

where the substitution A [x := B] replaces free occurences of x with B and renames
bound variables i A to avoid clash with free variables in B:

x[x := A] = A

y[x := A] = Y if x ~ Y
(B C)[x := A] = (B[x := A]) (C[x := A])
(AY. B)[x := A] = Az. B[y := z])[x := A]) where z is a fresh variable

f3-reduction can be performed anywhere in a lambda expression, and we lift the notation
A -+ {3 B to mean that A reduces to B by applying a single f3-reduction anywhere

in the term A (leaving the rest unchanged). A term is said to be in (full) normal form
if it contains no f3-redexes. A normal form of a lambda calculus term A is a normal
form term B that can be obtained from A by repeated f3-reductions . Not all terms have
normal forms . 0

LAMBDA

9.4.1 Implementing I in the lambda calculus

We will now write an interpreter for I in LAMBDA. To do so we must first decide how to
represent syntax of I programs and values in the domain V. Both values and lambda
expressions will be represented in the form of normal form A-expressions.

Values can be represented in many ways in the lambda calculus. We have chosen
the representation strategies used in [126] and [125]. Values in V are represented by a
representation function r 1 v : V -t A, defined as follows:

rnillv = Aab.a
r(v.w)lV = Aab.b rvlv rwlv

We can do case analysis on a V-value v by applying it (or rather, its representation) to
two LAMBDA expressions N and P. If v is nil , r v 1 v N P reduces to N. If v is a pair (a, b) ,
r v 1 v N P reduces to P r a 1 v rb 1 v . Hence, by letting P = Aht. h, we can take the head of v
and by letting P = Aht.t, we can take the tail.

We recall the syntax of I :

X
nil
cons E F
hd E
tl E

Equivalence of and the other models 143-

Program

Expression E,F: 3
..-..-
I
I
I
I

First we want to represent expressions. We use a somewhat different representation
strategy than for values. We let the representation of an expression E, r El be '\xcht. ~ ,

Command

9.4 Equivalence of LAMBDA and the other models

We will first show that LAMBDA is as powerful as I by writing an interpreter for I in
LAMBDA. Then we will write an interpreter for LAMBDA in an extended version of the
simple functional language F. Since the equipotency of F and I has already been established

in section 9.1, this concludes our argument.

:3 P ::= read X; C; write Xi
C , D ::= X : = E

I C ; D
I while E do C

144 Computability by Functional Languages (partly by 7: . IE. Mogensen)- - - -

d~fin M

- _t"cons E F
M Et'
tIT

vhila E do CC

Figure

9.4.2 Implementing the semantics of I

where ~ is

r
-:-=-E

1nJ.

= x

rnillD
c~ pE
h~
t~

-

Note that ruses the variables bound by the >. in >.xcht. r . The variables "tag
"

expres-

-- _CX :- E
c
--
;
--ff

-

And finally we represent programs by

rread X ; C ; write Xl
' P = rClc

9.4 shows an IThat is, we represent a program by the command

program and its encoding as a LAMBDA term.
it contains.

sions with their kinds . Note that nil has no tag.

way : rC1C = ~xsw .~ , where ~ is defined by

We represent commands in a similar

We will first construct a LAMBDA expression eval , which will take the representation of
an expression and the value of X and return the value of the expression. Using this, we
will construct a LAMBDA expression do, which will take the representation of a command
and the value of X and return the value of X after the command has been executed. This
will be our interpreter of I in LAMBDA.

Running an I program P on input v is done by running the LAMBDA program do on

inputs rPl'P and r v 1 'D. This will yield a normal form. r w 1'D if ' and only if P given the

input v yields an output w.

x r El
s'cfif
w r El 'cf

Equivalence of LAMBDA and the other models 145

Evaluation of expressions We now define the LAMBDA expression eval for evaluating

The idea is that when evaluating an expression every occurrence of the 'tag
' (variable) x

in the representation of an expression will be replaced by the current value of X, every'
tag

' c by a function "xhtab. b h t that can cons two arguments, every h by a function that
takes the head of a pair (and returns nil if given nil as argument) and every t by a
similar function returning the tail of a pair . Note that since constants are untagged in
the representation of expressions, these are returned unchanged by eval .

Execution of commands We use a similar idea for the do function. The recursive nature
of the while command is a bit complex, though. We first present do, then explain

expressions :

eval = .>t Ex.E x
(.>thtab. b h t)
(.>td. d d (.>tht. h
(.>td.d d (.>tht. t

read Xi
X := cons X Nill
while hd X do

X := cons (tl (hd X (cons (hd (hd X (tl X i
X := tl Xi
wri te X

An I program for reversing a list.

'\xsw.
s (x ('\xcht.c x ('\ab.a)
(s (w ('\xcht.h x)

(x ('\xcht.c (t (h x (c (h (h x (t x)
x ('\xcht. t x

The encoding of the reverse program. The layout of the encoding (including line
breaks) reflects the layout of the I program.

Figure 9.4: An I program and its encoding

the details

do = ;\C.C eval
(;\cdx.d (c x
(;\Ec.W W)

where

W = ;\wx .eval E x (;\w .x) (;\htw .w w (c x w

Occurences of eval in do and W and occurences of W in do represent that the entire

expressions these represent should be inserted in place of the names. This is just substitution

of macros. This means that the free variables E and c in W get bound by the ;\ in

the last line of the definition of do (the line that uses W).

Similar to before, interpretation of a command C will replace occurrences of the tag-

ging variables x, s and w in the representation of C by functions that 'do the right thing
'

with the commands. For the assignment command X : - E, this is eval , which evaluates

E and returns its value, which becomes the new value of X. For composite commands

C; C, the function ;\cdx. d (c x) will first execute C (by its execution function c)
and pass the new value of X to the execution functiond of D, which then produces the

final value of X.
Execution of the while statement is more tricky . The function ;\Ec. W W takes the

condition expression E of the while command while E do C and the execution function

c of the body C and then self-applies W. This yields

;\x .eval E x (;\w .x) (;\htw .w w (c x W

When this is given a value Xo of X, eval EXoevaluates E with respect to this value . If

the result of the evaluation is nil , the situation becomes

(;\ab.a) (;\w .xo) (;\htw .w w (c xo W

since rnill
' D = ;\ab.a). This reduces to

(;\w . xo) W

and finally to Xo. This is correct, as a nil condition terminates the while loop and

returns the value of X unchanged. If instead the condition evaluates to a pair (p . q) , we

get

(;\ab. b r p 1
'
Dr q 1

'D) (;\w . xo) (;\htw . w w (c xo W

146 Computability by Functional Languages (partly by 7: .A!.. Mogensen)- - - - -

Equivalence of LAMBDA and the other models 147-

and then to

(recall in~

9.4.3 Interpreting the lambda calculus in F+

In our interpretation of the lambda calculus we are interested in reduction to normal
form . This means that we can't use the usual simple absb"act machines for reducing
lambda-terms to weak head normal form (WHNF) . Instead we will develop an ab-
sb"act machine that does a one-step parallel reduction (reduces all redexes, even under
lambdas) and iterate this until no redexes are left . Parallel reduction with renaming of
bound variables can be expressed by the function RII D: A -+ Env -+ .IN -+ A, where
p e Env : Var -+ A is a mapping from variables to LAMBDA terms. The number ne .IN is

w w (c XO>

and finally the definition of W) to

(' \x .eval E x (' \w .x) (' \htw .w w (c x W) (c xo)

which is the same as before we started executing the while loop, except that the value
Xo of X has been modified by the execution function c the body C of the loop . Hence, the
entire while command is redone using the new value of X.

Termination and time complexity Readers familiar with the lambda calculus might
wonder why we haven't used a fixed-point operator to model the while loop . The reason

is that the present method is more robust under changes in reduction order : If an
I program P terminates on some input v, then (do rPl 'P rvl 'D) terminates regardless of
the order of reduction used to reduce lambda expressions. For certain reduction strategies

(including call-by-value), the number of .a-reductions required to reach the normal
form is proportional to the number of primitive operations performed by running P (as
an I program).

since r(p. q)lD = .>tab.b rplD rqlD. This reduces to

(.>thtw.w w (c %0 rplD rqlD) w

used for renaming variables. To obtain a normal form, RI[D must be applied repeatedly
until its output equals its input.

Rl[xDpn = p x
RI[('\x .et) e2Dpn = Rl[et Dp[x := Rl[e2Dpn]n
Rl[et e2Dpn = (Rl[et Dpn) (Rl[e2Dpn) if et ~ '\x .e'
RI[,\x . eDpn = '\xn. (Rl[e Dp[x := xn](n + 1

The notation (Rl[et Dpn) (Rl[e2Dpn) indicates syntax construction: that an application
expression is built from the values of the components Rl[et Dpn and Rl[e2Dpn. Likewise

, '\xn. (Rl[e Dp[x := xn](n + 1 indicates building of an abstraction expression. These
should not be confused with semantic application and abstraction as used in denotational

semantics.
With a suitable representation of syntax, numbers and environments, we can implement

RI[D in a language F+, which is the functional language F extended with multiple
functions and multiple parameters as suggested in Exercise 9.2 and with a case expression

similar to the one used for the WHILE language. The extensions do not add power
to the language, which can be shown by providing a translation from F+ to F. We will
not do so here, though.

We will represent numbers as described in section 2.1.6, hence 0 = nil , 1 =

(nil . nil) , 2 = (nil . (nil . nil etc. We represent the variable Xi by the number
i. We represent terms by pairs of tags (numbers) and the components of the term:

L Xi JE = (O.i)
LE FJE = (l .(LEJ E.LFJ E
L'\Xi.EJE = (2.(i.LEJE

Environments (p) are represented as lists of (name. value) pairs. We are now ready to
write the LAMBDA interprete~, shown in Figure 9.5.
The functions normalize and normalize2 make up the 'main loop

' of the interpreter,
which call r until no change is observed. rimplements the RI[D function. The four cases
in the case expression correspond to the four equations of RI[D. equal implements
equality over V and lookup fetches the value of a variable in an environment.

Time complexity While this interpreter is guaranteed to find (the representation of)
the normal form of a LAMBDA expression if one exists, we cannot say much about the

complexity of this : An arbitrary amount of work can be done between each {3-reduction ,

148 Computability by Functional Languages (partly by T. A! . . Mogensen)-

model E

Exer~i8es

9.1 Define a version F+ of the language F where programs contain several functions
each of which have several arguments. That is, the syntax of programs should be E
whererec 1(xi . . .Xk) - el , . . . , n (Y1, . . . ,Ym) - En. Program is to function k,

Equivalence of LAMBDA and the other 149-

partly because a ,a-reduction can require work proportional to the size of the function
that is applied and partly due to the need to compare terms for equality in normalize2 .
We can not reason ably expect an interpreter to have running time which is a simple
function of the number of ,a-reductions performed . Cost measures for the lambdacal -
culus not based on the number of ,a-reductions are discussed in [98].

normalize P whererec

normalize (P) =
normalize2 (P, r (P,nil , 0

normalize2 (P, Q) =
if equal (P, Q) then P else normalize (Q)

r (E, R, N) =
case E of

(O.X) => lookup (X, R)
(1 . 2 . (X.el .E2 => r (el , cons (cons X r (E2 , R,N R,N)
(1 . (el .E2 => cons 1 (cons r (el , R,N) r (E2 ,R, N
(2 . (X.el => cons 2 (cons N r (el ,

cons (cons X fJ) R,
cons nil N

equal (X, Y) =
if X then

if Y then
if equal (hd X,hd Y) then equal (tl X, tl Y) else nil

else nil
else if Y then nil else cons nil nil

lookup (X,R) =
if equal (X, hd (hd R then tl (hd R) else lookup (X, tl R)

Figure 9.5: The LAMBDA interpreter

so there are k arguments. Note that any function may call any other function , or itself .

Give a semantics similar to Figure 9.1. 0

9.2 Prove that the language of Exercise 9.1 is no more powerful than F by showing that

any F+ program can be translated into an equivalent F program . 0

9.3 .. Prove Proposition 9.2. 1. Hint : the pattern used in section 4.2 will make this easier:

first , construct the needed interpreter using as many functions , variables and atoms as is
convenient. Then reduce the number of atoms to one; and then use the result of Exercise
9.2. 0

The language F was inuoduced in [80]. It is very similar to first -order LISP or Scheme,
for example see [39]. The lambda calculus has long been investigated as a branch of

pure mathematics, and is now enjoying a renaissance due to its many applications
within functional programming . Important works on this include those by Barendregt
[7] , Church [23], and Turing [162].

150 Computability by Functional Languages (partly by 7: . Mogensen)

References

10 Some Natural Unsolvable Problems

10 .1 Do there exist natural unsolvable problems ?

We have argued, we hope convincingly , for two points , one formal and one informal :

1. That the halting problem for WHILE programs is not decidable by any WHILE program
.

2. That decidability of membership in a set A by any intuitively effective computing
device is exactly equivalent to decidability of membership in A by WHILE programs

.

Point 1 is analogous to the classical impossibility proofs e.g., that the circle cannot be

squared using tools consisting of a ruler and a compass. It asserts that one particular

problem , the halting problem , cannot be solved be means of any of a powerful class of

tools: WHILE programs .

Point 2 is a version of the Church- Turing thesis. It cannot be proven , as it equates
an intuitive concept with a formal one. On the other hand it is widely believed, and we

have given evidence for it by showing a variety of different computing engines to be

equivalent .

We have seen earlier that there are problems that cannot be solved by programs in

WHILE or any other of the computation models we have considered. By the Church-

Turing thesis, these problems cannot be solved by any notion of effective procedures at

all .
Until now, the unsolvable problems we have considered all concern properties of

programs : the first examples were the Busy Beaver and halting problems, and this was

subsequently extended to all non-trivial extensional program properties in Rice's theorem
.

In this chapter we give some examples of other kinds of problems that are unsolvable
: Post's correspondence problem , and several problems concerning context-free

grammars: emptiness of interesction, ambiguity , and exhaustiveness. After an introduction

, the remaining sections are each devoted to one of these problems.

Assuming the validity of point 2 causes point 1 to carry much more significance. In
particular the halting problem for WHILE programs is not decidable by any intuitively
effective computing device whatsoever.

The arguments used to prove point 1 use only accepted mathematical reasoning
methods (even though by a subtle argument). Nonetheless, the result is still unsatisfactory

. The reason is that the decision problem of point 1 is unnatural: One cannot imagine
a daily mathematical context in which one would want to solve the halting problem for
WHILE programs, unless one were specifically studying computability theory.

They are not completely unnatural in computer science, however, as an operating
system designer could have a lively interest in knowing whether the programs to be
executed will run the risk of nontermination . Such knowledge about program behavior
in general is, alas, doomed to failure by the undecidability of the halting problem , and
Rice's Theorem (see Theorem 5.4.2 and Exercise 5.5.)

This discussion motivates the desire to see whether there also exist natural problems
that are undecidable . In this chapter we will present some simple problems that on
the surface seem to have nothing to do with Turing machines or WHILE programs, but
which are undecidable since if they were decidable, then one could also decide the halting
problem. More generally, this technique is called reduction; a common definition in terms
of set membership problems is seen below.

undecidable .

Proof is immediate , as one can answer any question
" x E A ?"

indirectly , by constructing
f (x) and then testing whether f (x) E B . Since f is a total computable function and B is

1 More specifically : redua' ble by a many-one recursive reduction of A to B (other problem reductions exist,
e.g., the polynomial -time ones used in later chapters.)

152 Some Natural Unsolvable Problems

if A ~ B and A is undecidable, then B is also
rec

In part ill we present yet another undecidable problem , concerning diophantine
equations (whether a polynomial equation possess es integer roots), which was among
Hilbert 's list of problems, posed in 1900. It was finally shown to be undecidable, but
only in 1970 after years of effort by many mathematicians.

Definition 10.1.1 Suppose one is given A ~ X and B ~ Y. Define A to be reducible1 to B
if there is a total computable function f : X -+- Y such that for all x E X, we have x E A if
and only if f (x) E B.

Symbolically, we write this relation as A :5B. 0
rec

Theorem 10.1.2 If A :5 B and B is decidable, then A is also decidable. Contrapositively ,rPcc

An undecidable problem in string rewriting 153

decidable, this describes an effective terminating process.

2Named after the Norwegian mathematicial Axel Thue .

10 .2 An undecidable problem in string rewriting

10.2.1 String rewriting by semi - Thue systems

A string rewriting (or semi- Thue2) system over an alphabet ~ is a finite subset of ~. x ~' ,
i .e., a finite set R = { (Ut, Vt), . . ., (um, vm)} of pairs of strings where each Ui, Vie ~

. . A pair
(u, v) e R is called a rewrite rule or production. We often write U ::= v instead of (u, v) e R.
An example with ~ = {A, a, b, c} is:

R = { (A,a Aa), (A,b A b), (A , c), (A,aca)}

For a string rewriting system R over ~, the one-step rewrite relation ~ between strings in
~. is defined by :

rus ~ ros iff u ::= v e Rand r,se ~.

In our example, for instance,

A ~ a Aa
a Aa ~ aaAaa
aaA aa ~ aacaa

The multi -step rewrite relation or derivation relation ~ . is the transitive , reflexive closure
of ~ , defined for all rig ,he ~.

.by:

1. Ifg ~ h theng ~ . h.

2. g ~ .
g.

3. Ifg ~ . rand r ~ . h then g ~ . h.

In our example, for instance,
A ~ . A
A ~ . a Aa
A ~ * aacaa

�

labels runnin~; example
Production Form of instruction

Lt
Case

Lt

: :
=

1Lt + l Lt

=

I :

=

1
+

1

ILl

: :
=

I

Lt + l Lt

=

1 :

=

1

-

1
1

=

0

1Lt

: :
=

Lt + l Lt

=

1 :

=

1

-

1
I

~

0

ILl

: :
=

1Lt

,

Lt

=

if 1

=

0

goto

i

'

else i

"

1
=

0

1Lt

: :
=

1

Lt

"

Lt

=

if 1

=

0

goto

i

'

else i

"

I

~

0

Lt

"

: :
=

Lt + l1 Lt

=

Y :

=

Y
+

1

Lit

: :
=

Lit + l Lt

=

Y :

=

Y

-

1
Y

=
0

Lt1

: :
=

Lt + l Lt

=

Y :

=

Y

-

1
Y

~

0

Lit

: :
=

Lit

,

Lt

=

if y

=

o

goto

i

'

else i

"

Y
=

0

Lt1

: :
=

Lt

, , 1

Lt

=

if Y

=

O

goto

i

'

else i

"

Y

~

0

Common rewrite rules

5 : :
=

11

%

Ll

x is

program input

,
Ll

is first instruction .

I

Lm + l

: :
=

c

Lm
is the last instruction and c the

empty string

1Lm + l

: :
=

Lm
+ l

Lm + l1

: :
=

Lm + l

simuMt ~ program .

{x := X+1, X := X- 1, Y
if X=O goto t' else t" ,

:= Y+1, Y := Y- 1,
if Y=O goto .e else .e/}

Explicit instruction

Figure 10.1: Construction of string rewrite system to ! a two- counter

Pr~ This is shown by reduction from the the halting problem for two - counter machines
: HALT -2CM ~ DERIV. Recall that the instructions of a two - counter machine pro -

rec
gram must lie within the set

are written for notational convenience. As
we use program p that doubles its input x, with F as "end-oi-execution" label:

10.2.2 String rewriting : undecidability of derivability

Theorem 10.2.1 The following problem DERIV is undecidable : given a sbing rewriting
(or semi- Thue) system R over alphabet 1: and two sbings r, sE 1:*, to decide whether or
not r ~ * s.

An undecidable problem in string rewriting 155

Notation : a store (i , u, v) containing control point Lt and values u, v of variables X, Y will
be represented by a configuration string of form C = 1 ULt1 v in 1:*.

The following is shown by an easy induction . Assertion: for any m, there is a computation
p t- Cl -+. . . -+ Cm if and only if

Figure 10.2: Example of rewriting rules simulating a two-counter program.

A:
B:
C:
D:
E:

if X=O goto F else Bj
X := X- 1j
Y := Y+1j
Y := Y+1j
if X=O goto F else B

r. = {I , 1} U { Lt I It is an insb"uction}

#1%Cl# ~ m #Cm#

We use reduction, showing that if the derivability problem were decidable, then the

halting problem for two-counter machines would also be decidable. Suppose we are

given a two-counter program p = Lt : It .. . Lm: im with variables X (for input) and Y

. (initially zero), and natural number x as input. Begin by constructing from program p
and input x the sbing rewriting system R of Figure 10.1, over alphabet

Consequently 5 ~ . #1 "Lm+l1 v# for some u, v if and only if p terminates on input x. This

implies 5 ~ . E: if and only if p terminates on input x, so if the derivability problem could
be solved, one could also solve the halting problem, which we know to be unsolvable.

0

Figure 10.2 shows the effect in the running example, with input x = 2.

restricted version RPCP of the PCP. Thus DERIV ~ RPCp, so the RPCP is undecidable.
rec

Afterwards, we show that DERIV ~ PCp, and so the general PCP is also undecidable.
rec

Although the constructions involved are simple, careful reasoning is needed to
prove that they behave as desired.

il = 1 and Uit Ui2 . . . , Uim = Vit Vi2 . . . , Vim?

Construction for Lemma 10.3.3 to establish DERIV .$: RPCP.
rec

Suppose we are given a string rewriting system R = {(u,v),(u',v'), . . .} of pairs of
strings where each U,V E I.*, and strings T,5 in I.*. Its derivability problem is to decide
whether T ~ * 5.

Lemma 10.3.3 The rooted Post co" espondence problem RPCP is undecidable : given P =

(Ut,Vt), (U2,VV, . . ., (Un,Vn) E I;*, does there exist an index sequence it , . . ., im such that
0

156 Some Natural Unsolvable Problems

10 .3 Posfs correspondence problem

Definition 10.3.1 Post's correspondence problem pcp is defined as follows. Given a sequence
of pairs P = (Ut, Vi), (U2, VV, . . ., (un, Vn) of nonempty strings over a finite alphabet

1:, the problem is to determine whether or not there exists an index sequence it , . . .,im
such that

UitUi2" .,Uim = VitVi2" .,Vim

For instance, the pair sequence (a,ab), (b, ca), (ca,a), (abc, c) has solution sequence
1,2,3,1,4, with both sides above yielding

U1U2U3U1U4 = (a) (b) (ca) (a) (abc)
= (ab) (ca) (a) (ab) (c) = abcaaabc = V1V2V3V1V4

On the other hand, one can verify that the sequence given by (a,ab), (b, ca), (ca,a),
(ab, c) has no solution sequence at all .

A notational convenience: we will write r in place of index sequence il , . . ., im, and

Ut and Vt for (respectively) Uit Ui2 . . ., Uim and Vit Vi2 . . ., Vim' Given this the pcp can be
restated simply as: does Ut = Vt for some i ?

HUt Z = Vi, then we call z the remainder of Vt over Ut.

Theorem 10.3.2 The Post correspondence problem is undecidable . 0

We begin by reducing the derivability problem r ~ . 5 for sUing rewriting system R to a

Post 's correspondence problem 157�

" 1 " 3" 10" 7" 4" 7" 10" 7" S" S" S" 7" 10" 2 -

I A I a A a I a b A b a I abcba ## -

IAI a Aa I a b Ab a I a b c b a I I -

VIV3VI0V7V4V7VI0V7VSVSVSV7VI0V2

Henceforth an index sequence r not containing 1 or 2 will be called internal .

Lemma 10.3.4 The following are equivalent for any tE 1:* .

I . r ~ * t by the string rewrite system R
ll . " Irtl = V Ir for some internal r

m . " Irt2ltl = V Ir for some tv t2 with t = tl t2, and for some internal r

p ~

Figure 10.3: Example RPCP simulating a string rewrite system.

Consbuct the following RPCP problem P over alphabet 1: U {I } where I is a new
symbol not in 1:; and (Ul, VI) = (I ,#r#), and (U2, Vv = (s##,I):

P = { (I ,#r#),(s##,I)} U R U { (a,a) I a e 1: or a = I }' --.~- -J ' --.~- -J
i=1 i=2

To distinguish the two sets of pairs R and P, we will use production notation u ::= V for
R instead of writing (u, v) e R. Figure 10.3 shows the result of applying this consbuction
to the rewriting system with 1: = {A, a, b, c } , r = A, and s = abc ba, and rewrite rule set

R = {A ::= a Aa , A ::= b Ab , A ::= c}

The derivation A ~ a Aa ~ ab Aba ~ abcba is modelled in Figure 10.3 by the sequence
of pairs 1,3,10,7,4,7,10,7,8,5,8,7,10,2 with

I implies II . We show by induction on m that r ~ m t implies Utit # = Vti for some
internal '" The base case with m = Ois r ~ . r, immediatewithi = c since (Ut,Vt) = (#,#r #).

Now assume r ~ m+t t, so r ~ m
xgy and xgy ~ xhy = t for some g ::= hER . By

induction , Utixgy # = Vti for some internal '" Let x = at . . .ad,y = bt . . .be where each

aj,bk E I..
The u-remainder of Vti over Uti is xgy#; so to extend this partial solution , at least

enough pairs (U, v) from P must be added to extend Uti by xgy . It is easy to see that

utixhy # = Utixgy #xhy # = vtixhy # =
Vti

by an appropriate index sequence extending the U and v strings:

...
j = ih . . . jdPkt . . .keq

where indices h . . . jd add pairs (a, a) that in effect copy x, index P of <g,h) adds g to the
U string and h to the v string, indices kt . . .kq copy Y by adding pairs (bib), and index q
of pair (#,#) adds the final # to both .

II implies III . This is immediate , with t2 = t and tt = c.

III implies I is proven by induction , with inductive hypothesis I HOO : for any t1, t2 E
I.*, if U1rt2#t1 = V1rthen r =:>*

t1t2' Clearly this and t = t1t2 imply I . The base case is i = c,
so we must show U1 t2#t1 = V1 implies r =:>*

t1t2' But

can only hold if t2 = r and tl = E:. Thus t = tl t2 = r, so r ~ * t is bivially b' Ue.

Inductively , suppose I Hm holds . Consider internal index sequence ij . We analyse

Now g E ~' , so tt = wg for some w, implying Utrft2#Wg = vIrgo Removing g from both
sides: Utrft2#W = Vtr-

By 1 ROO (with w and ft2 in place of tt and tv we obtain r ~ .
wft2o Thus

158 Some Natural Unsolvable Problems

#t2#tI = UI t2#tI = VI = #r #

r ~ *
wft2 ~ Wgt2 = tlt2

by cases over the pairs (Ui,Vi) E P.. .
Case 1: (Uj,Vj) = <fig) wheref ::= ge R. Then

Ul ij t2#tl = Ul ift2 #tl = VI ij = VI ig

Figure 10.4: Example PCP simulating a string rewrite system.

Theorem following

4' fhis can be ensured by renaming if necessary .

160 Some Natural Unsolvable Problems

I 10.3.3.

10.4 Some problems concerning context -free grammars

problem is undecidable: given two context-free gram-

{ (+-f , g-+) (fig) E R}

10.4.1 The

Consb"uct the pcp P' as follows, similar to P consb"ucted for Lemma

P' = { ([. # , [+-r .) } U { ([s-+ # . # .] , # .]) } U

The effect on the example of Figure 10.3 is seen in Figure 10.4. Proof that in general P
has a rooted pcp solution if and only if P

' has an unrestricted pcp solution is left to the
exercises. 0

mars Gi = (Ni,Ti,Pi,5i) for i = 1,2, to decide whether or not L(Gt)nL (~) = 0.

Proof This is shown by reduction from the PCP. Assume given pair set (Ut, Vt),
(U2, vv , . . ., (un, Vn) over alphabet 1:. Assuming disjointness of all the involved symbols

and alphabets4, we construct from this the two grammars, with Nt =
'
{ 511E},

N2 = { 52,F},Tt = T2 = 1:U {1,2, . . .,n,~} and production sets

Pt = { 5t ::= i Eui,E ::= ~ I i Eui for i = 1,2, . . .,n}

P2 = { 52 ::= i52Vi,F ::= L11 i Fvi for i = 1,2, . . .,n}

Clearly 51 generates all sbings of form im . . . i2il L1 Uil Ui2 . . ., Uim, and 52 generates all of
form im. . . i2il L1vil Vi2 . . ., Vim' Thus L(Gl) n L(~) :# 0 if and only if there there exists an
index sequence il , " ' , im such that Uil Ui2 . . ., Uim = ViI Vi2 . . ., Vim' If it were possible to
decide emptiness of L(Gl) n L(~) we could also decide the pcp, and so the halting
problem for two-counter machines. But this, as we know, is undecidable . 0

Theorem 10.4.2 The following problem CFAMB is undecidable : given a context-free

grammar G = (N , T, P, 5), to decide whether or not G is ambiguous5.

Proof This is shown by reduction from the PCP. Given a set of correspondence pairs
(Ul,Vl), . ' ., (un,vn) over alphabet I., construct from this the grammar G = (N,IiP , 5),
with N = { 5,51, E, 52,F} and production set P as follows

5 ::= 51 I 52
51 ::= i Eui
E ::= L1li Euifori = 1,2, . . .,n

52 ::= i Fui
F ::= L11 i Fui for i = 1,2, . . .,n

Clearly 51, 52 derive just the same sbings they did in Gl and ~ . Thus L(Gl) n L(~) :# 0
if and only if the same sbing can be derived from both 51 and 52. But this is true if
and only if G is ambiguous (all derivations are necessarily left -most since at most one
nonterminal is involved). As a consequence, decidability of ambiguity would imply
decidability of context-free interesection, in conflict with the preceding theorem. 0

Lemma 10.4.3 Given a sequence of sbings U = (Ul,U2, . . .,un) over alphabet I., the

following set is generated by some context-free grammar Gu = (Nu ,T,Pu, 5u) where
T = { 1,2, . . .,n,L1} UI.:

{ im. . . i2il L1u I u :# Ui I Ui2' " Uim}

Theorem 10.4.4 The following problem CFALL is undecidable : given a context-free

grammar G = (N, T, P, 5), to decide whether L(G) = T*.

Proof Again we begin with the PCP. Given a sequence of pairs (Ul,Vl), . . ., (Un,Vn) over

alphabet I., construct from this three context-free grammars

definiti Ol1

Some problems concerning context - free grammars 161

5See Appendix A for the if unfamiliar .

1. Gu as by the preceding lemma with U = (Ut,U2, . . . ,un)

2. Gv as by the preceding lemma with V = (Vt, V2, . . ., vn).

3. Go with L(Go) = {x ET*
I x is not of the form im. .. i2it Auh Uj2. . . Ujt}

It is easy (and an exercise) to see that Go exists, and in fact can be a regular grammar. It
is also easy to construct from these a single context-free grammar G = (N, T, P, 5) with
L(G) = L(Gu)UL(Gv)UL(Go).

Claim: L(G) ~ T* if and only if the pcp has a solution. To see this, suppose x ET *

but x ~ L(G) = L(Gu) u L(Gv) u L(Go). Then x ET * \ L(Go) implies x has the form x =

im. .. i2it Auh Uj2 . . . Ujt. Further, x ET * \ L(Gu) implies x = im. . . i2it Aui I Ui2. . . Uim, and
x ET * \ L(Gv) implies x = im. . . i2it Avil Vi2. . . Vim. Thus Uil Ui2 = ViI Vi2. . . Vim, SO the pcp
has a solution. Similarly, if the pcp has an index sequence it , . . ., im as solution, then

is undecidable .

Exercises

10.1 Prove the "assertion" of Theorem 10.2.1.

162 Some Natural Unsolvable Problems

10.2 Does the pcp with pairs (10,101),(10,011),(011,11),(101,011) have a solution?

10.3 Prove that the following problem is decidable: given a sequence of pairs (Ul, VI),
(U2, VV, . . ., (Un, Vn) of nonempty sbings over a finite alphabet I., the problem is to determine

whether or not there exist two index sequences il , . . ., im and h , . . ., jn such that

UitUi2. . ., uim = vii Vj2. . .,Vjn

Hint : the sets of left and right sides can be described by regular expressions. 0

10.4 .
Complete the proof of Theorem 10.3.2 by showing that P has a rooted solution if

and only if P' has an unrestricted solution . Prove both the Ilif " and the "only if
"

parts.
0

10.5 Prove Lemma 10.4.3: construct the required context-free grammar Gu. 0

x = im.. . i2il~Vil Vi2. . . Vim' L(G)

Thus L(G) 1= T* if and only if the pcp has a solution, which

10.6 Complete the proof of Theorem 10.4.4 (for
volved is recognizable by a finite automaton) .

example showing that the set in -

posrs correspondence problem was first formulated and shown unsolvable in [136].
Context-free ambiguity and some related problems were proven undecidable in [6]. The
book by Lewis and Papadimibiou, and the one by R O Ze Itberg and Salomaa, contain a
broad selection of natural undecidable problems [103, 148].

Some problems concerning context -
freegramma J' S 163

.

10.7 Prove that it is undecidable, given two context-free grammars G, G', to det Eiii""dne
whether L(G) ~ L(G'). [J

References

Part III

Other Aspects of Contputability Theory

"

11 Hilbert's Tenth Problem

Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: to devise a process according to which
it can be determined by a finite number of operations whether the equation is
solvable in rational integers.

In modem terms, the problem is to give an algorithm which for a polynomial equation
with integer coefficients can decide whether or not it has a solution in integers. An

equation of this form is called Diophantine, after the Greek mathematician Diophantus
from the third century, who was interested in such equations.

Hilbert 's tenth problem is an example of a problem which is of independent interest
in another field than computability theory, namely number theory. For instance,

Fermat's famous "Last Theorem" states that the equation

(p + 1)n+3 + (q + 1)n+3 = (r + 1)n+3

has no solution in natural numbers for p,q,r,n. Whether this is true has long been one
of the most famous open problems in number theory.1 For each fixed n, Fermat's last
theorem is an instance of Hilbert 's tenth problem , provided we restrict solutions to the
natural numbers - this restriction is not essential as we shall see shortly. Thus, an algorithm

deciding for a Diophantine equation whether any solution exists in the natural
numbers would prove or disprove Fermat's last theorem for each fixed n. Conversely,
it has later been realized that unsolvability of Hilbert 's tenth problem would imply unsolvability

of many other decision problems in number theory and analysis.

lWlles has recently given a proof of Fermat's last theorem which seems to be widely accepted, see Annals
of Mathematics, May 1995.

(by M . H . Serensen)

11.1 Introduction

In the introduction to this book we mentioned Hilbert ' s famous list of open problems
at the International Congress of Mathematicians in 1900. The tenth problem is stated as
follows :

From the proof of GO Oel's famous theorem [51] it follows that every recursively
enumerable set A can be defined by a Diophantine equation preceded by a finite
number of existential and bounded universal quantifiers . In his doctoral dissertation,
Davis [30, 31] showed that all but one of the bounded quantifiers could be eliminated .
Hence, any recursively enumerable set A can be defined by a Diophantine equation
E(x,y,z,Xlt . . .,xn,) as follows :

x E A ~ 3y, V'Z :5: y,3XI, ' " ,3xn : E(x,y,z,XI, . . . ,xn)

This form of definition was subsequently called Davis Normal Form.
To prove that Hilbert 's tenth problem is unsolvable it remains to eliminate the single

bounded universal quantifier ; that is, to show that any recursively enumerable set A
can be defined by a Diophantine equation E(X,XI, " .,xn) thus:

x E A ~ 3XI, . . .,3xn : E(x,xlt . . .,xn)

Indeed, if A is any recursively enumerable, non-recursive set, then an algorithm deciding
for any x whether E(x, Xl, . . ., Xn) has a solution , i.e., whether there are Xl, ' . ., Xn such

that E(X,XI, " .,xn) holds, would also yield a method to test membership in A, which is

impossible.
While Davis showed how to simplify the form of equations necessary for defining

all recursively enumerable sets, Robinson [145] attacked the problem from the other
side. She showed that several sets could be defined by Diophantine equations. She
also studied so-called exponential Diophantine equations, which allow unknowns in
the exponents, and in particular showed, under what is now known as the Julia Robin-

son hypothesis, that any set definable by an exponential Diophantine equation is also
definable by a Diophantine equation.

Davis and Pumam finally managed to eliminate the last bounded quantifier from the
Davis Normal Form using the Chinese remainder theorem and Robinson's exponential
Diophantine equations. The result, sometimes called the "Bounded Quantifier Theorem

"
, states in its original form that, if there are arbitrarily long arithmetic progressions

consisting entirely of primes, then every recursively enumerable set can be defined by
an exponential Diophantine equation. Robinson subsequently managed to eliminate
the assumption regarding primes (which is still open) and simplify the proof . The resulting

joint paper by Davis, Pumam, and Robinson [35] stating that every recursively
enumerable set can be defined by an exponential Diophantine equation is now a classic.

It follows from Robinson's earlier result that to prove the unsolvability of Hilbert ' s
tenth problem, it is sufficient to prove that the Julia Robinson hypothesis is true. This

168 Hilbert
'
s Tenth Problem (by M . H . Sorensen)

remained an open problem , believed by many to be false, until it was proved ten years
later in 1970 by the young Russian mathematician Matiyasevich [111].

In this chapter we give an account of the unsolvability of Hilbert ' s tenth problem ,

leaving out the details of Matiyasevich
's result . The first section introduces exponential

Diophantine equations. The second section develops certain tools that are used in the
third section to prove the Davis-Pub\ am-Robinson theorem. The fourth section considers

Hilbert ' s tenth problem .

11 .2 Exponential Diophantine equations and sets

We begin by making the notions of the introduction precise. As is customary we shall
be concerned with solutions in natural numbers rather than in integers. We also show
that this is an inessential modification.

Definition 11.2.1

1. A function { : Nn -+ N is exponential polynomial if it can be written

{ (Xl, . . . ,Xn) = t

where t is defined by the following grammar with 1 :5 i :5 n and Ne N:2

t ::= Xi I N I tl . t21 tl + t21 tl - t21 t~
2

2. An equation { (Xl, . . . ,xn) = 0 is exponential Diophantine if { is exponential polynomial
. A solution is a tuple (al, . . . ,an) e Nn with { (au. . . ,an) = O.

3. A set A ~ Nn is exponential Diophantine if there exists an exponential polynomial
{ : Nm+n -+ N such that

.

E ~ nentia1 Diophantine equations and sets 169

1701 -li ~ s Tenth Problem (by M . H . S Bl' el1sen J

! (%, y,z) = 3% + 5%y - 71z5

is a polynomial, where we write z5 instead of z . z . z . z . z. Therefore,

3% + 5%y - 71z5 = 0

is a Diophantine equation, and the set of all natural numbers % such that there
exists y, z with 3% + 5%y - 71z5 = 0 is a Diophantine, set.

2. The function

! (%,y) = %- 2y

is a polynomial, so
%- 2y= O

is an exponential polynomial. Hence,

is an exponential Diophantine equation. Therefore the set of all x, y,z > 0 such that
for some k ~ 3, xl + yk = zk, is exponential Diophantine . 0

In the inb' oduction Diophantine equations had integer solutions, but in the preceding
definition their solutions were natural numbers. However , the problem of decid-

ins whether an arbib"ary (exponential) Diophantine equation has solution in integers is

equivalent to the problem of deciding whether an arbib"ary (exponential) Diophantine
equation has solution in natural numbers.

To reduce the former problem to the latter, note that there is a solution in integers to
the equation

! (xu .. .,xn) = 0

if and only if there is a solution in natural numbers to the equation

! (Pt - qu. . . , pn - qn) = 0

f (p,q, r, n) = (p+ 1)"+3+ (q+ 1)"+3- (r+ 1)"+3

(p + 1)n+3 + (q + 1)n+3 - (r + 1)n+3 = 0

Example 11.2.2

1. The function

is a Diophantine equation. Therefore the set of all even numbers is Diophantine;
indeed, it is the set of all natural numbers x such that there exists a y with x - 2y =
0, i.e., x = 2y.
The function

Encoding of finite sequences 171- -

For the opposite reduction , recall that any natural number can be written as the sum

of four squares (see , e.g ., the appendix to [117]) . Hence , there is a solution in natural
nurn ~ r to th ~ equation

if and only if there is a solution in integers to the equation

! (XI, . . . ,Xn> = 0

f (p~ + ~ + ~ + s~, . . ., ~ + ~ + ~ + s~) = 0

In conclusion, we have simplified the problem inessentially by considering only natural
number solutions.

In a similar vein, we may allow equations of form

! (Xl,. . ., xn) = g(Yl, . . ., Ym)
where g(Yl,. . ., Ym) is not simply 0, since this is equivalent to

! (Xl,.. .,xn) - g(Yl,.. .,Ym) = 0
We may allow conjunctions of equations

! (Xl,.. .,xn) = OAg(Yl,.. .,Ym) = 0
since this conjunction of equations has a solution if and only if there is a solution to the
ordinary equation

! (Xl, . . ., Xn) . ! (Xl, . . . , Xn) + g(Yl, . . ., Ym) . g(Yl, . . ., Ym) = 0
Similarly we may allow disjunctions of equations

! (Xl,.. .,Xn) = OVg(Yl,.. .,Ym) = 0
since this disjunction of equations has a solution if and only if there is a solution to the
ordinary equation

! (Xl, . . ., xn) . g(Yl,. . ., Ym) = 0

11.3 Encoding of finite sequences

We shall give a proof of the Davis-Putnam-Robinson theorem using encodings of
counter machine computation executions. The idea will be clearer in the next section.
Here it suffices to note that for this purpose it will be necessary to have available a
means of expressing facts about objects in a sequence of finite , but unknown , length .

There are several such techniques available. The best known , first employed by
G Odel [51], uses the Chinese Remainder theorem. In the present setting this technique
has the disadvantage that it makes it rather hard to express certain necessary operations
as exponential Diophantine equations. Therefore another technique was invented by
Matiyasevich [113], which we present in this section.

The bitwise less-than relation a~b is defined by:

a~ b~ ViE {O,. . .,n} :ai ~ bi 0

The rest of this section is devoted to showing that a ~ b is an exponential Diophantine
relation, i.e., that

{(a,b) ENxNla ~ b}

is a Diophantine set according to Definition 11.2.1. We prove this using two lemmas.
The first lemma is due to Robinson [145], and the proof is a modification of Robin-

son's proof due to Matiyasevich [114].

Lemma 11.3.2 Define for k ~ n,

Diophantine.when

The relation

172 Hilbert
's Tenth Problem (by M . H . Serensen)

Definition 11.3.1 For a, bEN, let
nn

a = L ai2i (0 :::5 ai :::5 1), b = L bi2i (0 :::5 bi :::5 1)
i=O i=O

(
n
)

n!
k

=
(n - k)!k!

k > n. The relation m = (~) is exponentia Jand let (~) = 0

Proof First, the less-than relation is exponential Diophantine, since

a < b ~ 3x : a + x + 1 = b

Second, let [NJf be the k'th digit of N written in base B. For instance, since 5 in base 2 is

and

d = [ni : is exponential Diophantine since

d = [ni : ~ 3c,eN = cBk+l + dBk+ eAd < B Ae < Bk

101 and we count from the right starting from 0, we have

[5]~ = [5]~ = 1

[5]~ = [5]~ = 0

Note that (~) is the k' th digit of (B + l)n written in base B, provided (~) < B for all k. This,
in turn, holds if B > 2n (see the exercises). Hence, m = (~) is exponential Diophantine:

Encoding of finite sequences 173

Finally, by the binomial theorem

(B+1)" = t (
n
) Bk

k=Ok

m =
(~)

~ 3B: B = 2n+ lAm = [(B+ l)n]f

The second lemma necessary to prove that the bitwise less- than relation is exponential
Diophantine involves a bit of elementary number theory, which has been banished to
the exercises.

Lemma 11.3.3 n ~ k ~ (k) is odd

Proof See the exercises. 0

Proposition 11.3.4 The bitwise less- than relation is exponential Diophantine .

Proof The relation m = (k) is exponential Diophantine by Lemma 11.3.2. The relation
" m is odd " is also exponential Diophantine :

m is odd ~ 3x : m = 2x + l

Hence, the proposition follows by Lemma 11.3.3. 0

If a ~ b then a is also digitwise less than b using any other base B, provided the base is a

power of 2. The converse does not generally hold ; it may be that B is a power of 2, a is

digitwise less than b in base B, and yet a ~ b. However , if B is a power of 2, a is digitwise
less than b in base B, and all the digits of b in B are 0 or 1, then also a ~ b. All this is

perhaps best explained with an example.

Example 11.3.5 For instance, 34 ~ 43, as can be seen from the first two rows in Figure
11.1. Moreover, 34 is also digitwise less than 43 with base 4, as can be seen from

the last two rows in the figure . The reason is that every group of two coefficients
x . 2;+ I + y . 2

; in the base 2 representation is packed into a single coefficient x .2+ Y in the
base 4 representation. If , in the base 2 representation, all bits in a number are less than
or equal to those in another number, then the same holds in the base 4 representation;
that is, if Xl $: X2 and YI $: Y2 then Xl . 2 + YI $: X2 . 2 + Y2.

174 Hilbert
's Tenth Problem (by M . H . Serensen)

43 = 1.25+ 0.24 + 1.23+ 0.22 + 1.21+ 1.20
18 = 0.25+ 1.24 + 0.23+ 0.22 + 1.21+ 0.20

43 = 2.42 + 2.41 + 3.40
18 = 1.42 + 0.41 + 2.40

Figure 11.2: More digitwise comparisons in base 2 and 4.

On the other hand, 18 is digitwise less than 43 in base 4, but 18 ~ 43, as can be
seen from Figure 11.2. The reason is that a group of two coefficients Xl . 2i+l + Yl . 2i
in the base 2 representation of a may fail to be digitwise less than the corresponding
two coefficients X2. 2i+l + Y2. 2i in the base 2 representation of h, even if it holds that
Xl .2+ Yl ~ X2 . 2 + Y2. For instance, this happens if Xl < X2 and Yl > Y2.

However, if all the coefficients in the base 4 representation are 0 or 1, i.e., Xl and X2
are 0, then this cannot happen. 0

11 .4 The Davis - Putnam - Robinson theorem

In this section we show that any recursively enumerable set A is exponential Diophantine
. As mentioned in section 11.1, the result is due to Davis, Putnam, and Robinson [35].

The present proof is due to Jones and Matiyasevich [70], and is somewhat more in the

spirit of this book than the original recursion-theoretic proof .

Any recursively enumerable set A can be represented by a counter machine p in
the sense that that x E A iff [pD(x) terminates. This follows from the fact that counter
machines can express all partial recursive functions . The idea, then, is to formalize

the execution of any counter machine p by an exponential Diophantine equation
{ (x,Zt, . . . ,ZV = 0 such that [pD(x) terminates iff { (x,Zt, . . . ,Zk) = 0 has a solution .

Before proceeding with the general construction it will be useful to review an

pIe , taken from [148], which illustrates how this is done .

exam -

Example 11.4.1 Consider the following counter machine p:

11: if xi =O goto 4 ;
12: xi : =xi - 1 ;
13: if X2=0 goto 1 ;
14: stop

We assume that every subtraction command I ,: X:=X- 1 is preceded by a command
I '_1:if X=O goto k . We also assume that for every conditional I ,:if X=O goto k,
Ik is not a subtraction command. This implies that a counter will never be decremented
below O. We write a stop command at the end of the program , and assume that all
counters have value 0, when the program terminates. These assumptions present no
loss of generality.

Recall that the input is stored in counter X 1. If the input to p is 2, then the computation
has length 7, (we count a single-step computation to have length 0), and the

following commands are executed in order :

1,2,3,1,2,3,1,4

The whole execution, including information about values of counters and the current

program point , can be represented by the matrix in Figure 11.3.

The two x-rows represent the values of the two counters before step t, counting the first

step as step O. For instance, Xl has value 2 before step 0 and 1, so Xl,O and Xl,l are both 2.

Xl has value 1 before step 2, 3, and 4, so Xl,2, Xl,3, and Xl,4 are alI I . The i-rows express

The Davis-Putnam-Robinson theorem 175

176 Hilbert
'
s Tenth Problem (by M . H . Sorensen)

which command is executed in step t . For instance, in step 0, command 1 is executed,
so il ,O is 1, and in step 2 command 3 is executed, and therefore i3,2 is 1.

Instead of representing the values of, say Xl , by a row of numbers, we can pack the
information into a single number

where y = 7 is the length of the computation and b is a number larger than all the numbers

in the mabix . With this idea the whole mabix becomes the system of equations in

Figure 11.4.

Thus every computation of p on some input x can be represented by certain values of
X,xt ,x2, it , . . . , i4,y,b. These values satisfy certain properties corresponding to the details
of the computation . For instance, in all executions of p command 2 is followed by execution

of command 3. Thus in Figure 11.4 whenever bi has coefficient 1 in i2, bi+t has
coeffient 1 in i3. This is a purely numerical relationship between the values of i2 and i3.
These relationships can be expressed as a set of equations such that every computation
of p on some input gives a solution to the equations, and every solution to the equations
correspond to a computation of p. 0

yL Xi,tbtt=O

The idea, in general, is now to translate any counter machine p into an exponential Diophantine

equation such that if I[pD(x) terminates, then the details of the computation -

the number of steps, the values of the counters, etc.- give a solution to the equ.ation,
and conversely, for every solution of the equation, there is a corresponding terminating
computation .

Theorem 11.4.2 Every recursively enumerable set A is exponential Diophantine .

The Davis-Putnam-Robinson theorem 177

Proof: Let A be any recursively enumerable set and p be a counter machine such that
x E A iff ([pD(x) terminates. Suppose p has form

p = 11.. . In (with counters Xl, . . . ,Xm) (11.1)

We now derive an exponential Diophantine equation

/ (X,Xl, . . . ,Xm,il , . . . , in,y,b, U) = 0 (11.2)

such that

([pD(x) terminates ~ (11.2) has a solution (11.3)

More precisely we derive 12 equation schemes which can be combined into a single
conjunction using the technique in section 11.2.

1. First of all, we need a base b for the representation in Figure 11.4. Recall that b
must be larger than all the coefficients in order for the representation to be correct. Since
the initial value of counter Xl is x and the other counters are initialized to 0, no counter
value can exceed x + y where y is the number of steps of the computation. Therefore,

b = 2x+y+n (1)

is large enough. We shall need later two additional facts about b, both satisfied by the
above choice: that b is a power of 2 and that b > n.

2. It will be convenient to have a number whose representation in base b is a sbing
of lengthy consisting entirely of 1 's. This is the number by- l + ... + b + 1. This number
satisfies the equation

l + bU= U+ bY (2)

and it is the only number satisfying the equation; indeed, if U = (bY - 1)/ (b - 1) then
U = by- l + ...+ b+ l .

3. It will be necessary later that the coefficients in Figure 11.4 are all strictly smaller
than b / 2. This is enforced by the following equations.

Xj ~ (b/ 2 - 1)U (j = 1, . . .,m) (3)

Indeed, if Xj is less than (b/ 2 - 1)Ubitwise, then the same thing holds digitwise in base
b, since b is a power of 2 (see Example 11.3.5). But the digits in (b / 2 - 1)U in base b are

exactly b / 2 - 1.
4,5. In each computation step of p, exactly one command is executed. This is expressed

by the following equations.

i, ~ U a = 1, . . ., n) (4)

178 Hilbert 's Tenth Problem (by M . H . Seren Ben)

n
U = E i,1=1

The first equation states that in the binary representation of the two numbers, all the
coefficients of i, are smaller or equal than those of U. Since b is a power of 2, and all the
coefficients of U are 1, this is the same as requiring that in base b, all the coefficients of
i, are smaller or equal than those of U, i .e., are 0 or 1 (see Example 11.3.5). That is, in
terms of Figure 11.4, all coefficients in i, are 0 or 1.

The second equation similarly express es the fact that in every i,-column in Figure
11.4 there be exactly one coefficient which is 1. For this it is necessary that no carry

occur in the summation , and this is guaranteed by the fact that b > n.
6,7. In any computation with p, the first and last step are to execute command II

and In , respectively. This is expressed as follows .

1 ~ il (6)

in = by- l (7)

The first equation express es that the rightmost coefficient of il in Figure 11.4 is 1. The
second states that the leftmost coefficient in in is 1.

B. After executing a command I , which is either a subtraction or an addition , the
next instruction should be I '+I . This is expressed as follows .

bi, ~ it + i'+1 (for all I with I ,: X: - X- 1 or X: - X- 1) (8)

The equation states that in Figure 11.4, if the coefficient of bi in i, is 1, then the coefficient
of bi+l should be 1 in i'+I . Note how the multiplication with b represents a move to the
left in Figure 11.4.

9. After executing a conditional I ,:if Xi
- O goto k the next instruction should be

either It or I '+I . This is expressed as follows .

bi, ~ ik + i'+1 (for all ' with I ,:if Xj=O goto k) (9)

The equation states that in Figure 11.4, if the coefficient of bj in i, is 1, and I , is the
command if Xj- O goto k, then the coefficient of bj+1 should be 1 in i,+1 or ik (where
k :F , + 1 by assumption).

10. Whenever executing a command I ,:if Xj- O goto k, the next command should
be Ik if Xj is 0, and I '+1 otherwise. This is expressed as follows.

bi, ~ i,+1 + U- 2xj (for all ' with I ,:if Xj- O goto k) (10)

To see this , suppose that Xi = 0 before , and hence also after , step k, i .e.,

The subb'action may require borrowing from the coefficient 1 of ~ in U, but not from
the coefficient 1 of ~ +1 in U since the coefficent of ~ in 2xj is O. Now, since

(10) holds iff the rightmost bit in the coefficient to ~ +1 in i'+1 is 0, i.e., iff

,
If, on the other hand, X j > 0 before and hence also after step k, i .e.,

The Davis-Putnam-Robinson theorem 179

x j = . . . + o. ~+1 + O. ~ + . . .

Then

bi, = . . . + 1. V+l + .. .

i'+1 = ... + O. ~+1 + ...

By (9) the next command must then be It , as

x j = . . . + n . ~ + 1 + n . ~ + . . .

2x j = . . . + 2n . ~ + 1 + 2n . ~ + . . .
Then

bi, = . . . + 1 . ~+ 1 + . . .

2x j = . . . + O. ~ + 1 + O. ~ + . . .

Here we made use of the fact that all coefficients are smaller than b / 2, so that no bit of
the coefficient of ~ - 1 is shifted into the coefficient of ~ by the multiplication with 2.
Hence, the subtraction U - 2x j looks as in Figure 11.5.

Then the subb'action U - 2% j looks as in Figure 11.6.
Again we made use of the fact that n < b / 2 so that no bit is shifted from one coefficient

to another by the multiplication with 2. Here the subb'action of the coefficients to
~ - 1

mayor may not require borrowing, but the coefficients to ~ and ~ +1
definitely do

need borrowing. Now the coefficient b - 2n to ~ + 1 in U - 2x j is even, whereas

i .e., iff the next command is not 1,+1.

required . This covers the case X; = o.

Indeed, consider (11). The sum L 'eA(l) i, is a number whose base b representation has
1 for every coefficient k where the k' th step in the execution of p is Xl : - Xl+1. Similarly
with the other sum. (11) now states that if Xl is n before the k' the step, and the instruction
executed in' the k' th step is an addition, then Xl is n + 1 before the k + l 'th step. For

example, consider Figure 11.7.
In this example there is only a single addition to Xl during the whole execution, namely
in step 1, and a single subtraction in step 4. Before step 1, Xl has value x, hence after it
has value x + 1. Similarly with subtractions. This can be expressed by requiring that if
we add Xl to the sums L 'eA(l) i, and - L 'eS(1) i, and shift the result one position to the
left, then the coefficients should match those in Xl. Note that multiplication with b does
not lead to overflow since it is assumed that all counters are 0 at the end.

Equation (12) is identical to Equation (11) except that the initial contents of xi is 0
rather than x, for j = 2, . . . ,m. The whole set of equations is collected in Figure 11.8. It is
now a routine matter to verify that the claim (11.3) is indeed true. 0

180 Hilbert
'
s Tenth Problem (by M . H . Ssren Ben)

Figure 11.6: U - 2xj when Xj > O.

so (10) holds iff the rightmost bit in the coefficient to ~ + 1 in i,+ 1 is 1, i.e., iff

i'+1 = . . . + 1. ~+1 + . . .

i.e., iff the next command is 1'+1, as required.
11,12. It remains to express the fact that addition and subtraction instructions should

modify the contents of the counters appropriately. Let A(j"} and 5(11 be the set of labels
I such that the command I , is Xj: -Xj+i and Xj: -Xj- i , respectively. This is done by the
following equations.

Xl = X+ b(Xl + L i,- L i,) (11)
'eA(l) 'eS(l)

Xj = b(xj+ L i,- L i,) (j = 2,.. .,m) (12)
'eA(p 'eS(p

exponentia J
wh ~ ~ solutionequation

equation { (X,ZI, . . . ,Zn) = 0 such that

x E A ~ { (x,ZlI . . . ,zn) = 0 has a solution

Since we can construct effectively the equation { (X,ZI, . . . ,zn) = 0 given x it follows that
an algorithm to decide for each x whether { (X,ZI, . . . zn) has a solution would imply a
decision procedure for A, which is impossible since A is non-recursive. 0

The Davis-Putrlam-Robinson theorem 181

Figure 11.7: Representing additions and subtractions.

Diophantine
in naturalor not iq has a

Figure 11.8: Representation ofexecution of counter machine.

Corollary 11.4.3 There is no algorithm that can decide for an

0

0

0

182 Hilbert 's Tenth Problem (by M . H . Sorensen)

11 .5 Matiyasevich
'
s theorem and Hilbert ' s tenth problem

In this section we briefly show that Hilbert 's tenth problem is unsolvable, leaving out
almost all details. As mentioned, the following theorem, due to Matiyasevich [111], was
the final step in solving Hilbert 's tenth problem .

Theorem 11.5.1 The relation u = VW is Diophantine .

Proof: See, e.g., [117] . 0

Corollary 11.5.2 Every recursively enumerable set is Diophantine .

Proof: By the Davis-Putnam-Robinson theorem, there exists for every recursively enumerable
set A an exponential Diophantine equation f (x,Zt, . . . ,zn) = 0 such that

x E A <=> 3zt , . . .,3zn : f (x,Zt, . . .,zn) = 0

By Matiyasevich
's theorem there is a Diophantine equation e(u,v,w,Yt, . . .,Ym) = 0 such

that
u = VW <=> 3Yt, . . .,3Ym: e(u,v,w,Yt, . . .,Ym) = 0

Therefore every occurrence in f (x,Zt, . . . ,zn) of t~
2 can be replaced by a variable u. We

must then add to the original equationf (x,Zt, . . .,Zn) = 0 the new equations v = tt , W =

t2, and e(u,v,w,Yt, . . .,Ym) = o. These can all be combined into a single Diophantine
equation using the technique in section 11.2. 0

The following corollary then shows that Hilbert 's tenth problem is unsolvable .

Corollary 11.5.3 There is no algorithm that. can decide for a Diophantine equation
whether or not is has a solution in natural nwnbers .

Proof Similar to the proof of Corollary 11.4.3 using the preceding corollary . 0

Exercises

11.1 Show that the non-sbict less-than relation a ~ b is Diophantine.

11.2 Show that the set of numbers that are not powers of 2 is Diophantine.

11.3 Show that the set of numbers that are not prime is Diophantine.

11.4 . Prove that for all nE N and all k E {o,.. .,n}

Hint: Prove the assertion for the cases k > n, k = n, and k < n. In the last case proceed in
the following steps.

1. Let m = E ~=o mi2i (the right hand side is the binary representation of m), and
define

ONE(m) = the number of Is among mo, . . ., m,
EXP(m) = the exponent of the highest power of 2 dividing m

EXP(m) is the same as the index in {O, . . .,l } of the rightmost 1 among mo, . . .,m,.
For example, since 76 in binary is 1001100, ONE(76) = 3, EXP(76) = 2.

2. Prove that m is odd iff EXP(m) = O.

3. Prove that EXP(m!) = m - ONE(m) by induction on m.
In the induction step consider the cases: m is even, and m is odd, and use in the
latter case the fact that EXP(m + 1) = ONE(m) - ONE(m + 1) + 1.

Matiyasevich
's theorem and Hilbert

'
s tenth problem 183-

(~) ~ 2n
Hint: For a real number r let rr1 denote the smallest integer larger than r, and let LrJdenote the largest integer smaller than r. For instance, L7/2J = L6/2J = 3 and r7/21 =r8/21 = 4. Then proceed by induction on n splitting into the cases:
1. k = n;2. 0 ~ k ~ Ln/2J;3. Ln/2J < k < n.

In the last case use the fact that
(~) = (n:J

The following rules may also be helpful:

n/ rnl
rnl - l

< 2
~ LnJ

The following is adopted from [148]. For a different proof of Lemma 11.3.3, see [70].

11.5 .. Prove that
k ~ n <=> (~) is odd

Hilbert

5. Now let n = E ~=Oni2i and k = E ~=oki2i. Prove that Vi : ki .$: ni implies

EXP

ON E Ck J

~to- left

References

Mathematicians in 1900. While it was not actually stated during his lecture, it appeared
in the published version, see Reid's biography [142].

Several papers by Davis, Putnam, and Robinson were mentioned in section 11.1.
Another classic recursion-theoretic presentation of the unsolvability of Hilbert ' s tenth

problem, with a historical appendix and more references, is due to Davis [33].
In Section 11.1 we also mentioned several papers by Matiyasevich . For more references

and much more information about all aspects of Hilbert ' s tenth problem , consult

Matiyasevich
's book [117] . The book discuss es many applications ; it infers from unsolvability

of Hilbert ' s tenth problem the unsolvability of several other problems in number

184 '8 Tenth Problem (by M . H . Serensen)

4. Prove that

EXP
(~)

= ONE(k) + ONE(n - k) - ONE(b)

(~)

EXP
(;)

> 0

= Nj foralli < i
< (2 =)Nj
:$ 1 + E~+l Nj

n.J
ni(= 0)
EJ+l nj

and conclude that

I
+ ONE(n- k)= ONE(n) = LNj - nj > 0

j=O

which gives the right direction.

= 0

and hence the left -to-right direction in the overall assertion follows .

6. For the right -to- left direction prove that if 3i : ki > ni then

as follows . Let i be the smallest index such that 0 = nj < kj = 1. Let N j = k j
- [b - a]~

.
Prove that

Matiyasevich
'
s theorem and Hilbert ' s tenth problem 185

theory and analysis . Its sections with commentaries at the end of each chapter give

many historical details .

In several places we have adopted technical and stylistic improvements from the

recent books by Floyd and Beigel [45] and Ro~enberg and Salomaa [148] .

Inference systems have proven themselves very powerful for defining logical systems,
in programming languages for defining operational semantics and type systems, and
in many other applications as well . The main purpose of this chapter is to understand

exactly what the limits are to their expressivity.

In Computer Science, an important application is to define a programming language
's

semantics: a systematic way to assign a meaning to every program in the language, thus

specifying precisely the possible effects that can be realized by any program
1.

Inference systems originated in Mathematical Logic, for the purpose of making a precise
formulation of mathematical reasoning, for example proofs in geometry from Eu-

clid 's axioms. A concrete " formal system
" is often presented by beginning with definitions

of some syntactic categories and then by presenting inference systems for reasoning
about them. Examples of syntactic categories might be Terms T, Formulas F,

Assumptions r , and Judgments r I- F. Such a judgment usually has an intuitive reading

, for instance " F is true, provided the assumptions listed in r hold ." An example of
an inference rule is the ancient modus ponens rule :

Logicians have tried to relate the question of which statements are true in a logical
framework , e.g., geometry, to the question of which statements are provable according

to a given formal logical system, e.g., Euclid 's axioms. The truth of a statement
in a mathematical system concerns its meaning in an " intended interpretation ," e.g.,
an assertion about figures in two - dimensional Euclidean space; whereas its provability
concerns whether its truth can be established by a certain system of formal proof procedures

. The fact that the two may be different first became clear with the discovery of
non-Riemannian geometries.

In the last analysis, formal proof procedures work by symbol manipulation , and are
often presented in the form of inference systems.

1 A "possible effect" might be transforming an input to an output, but in general need not be deterministic,
e.g., search process es or interactive communications are other possibilities.

Ifrl - F ~ G and rl - F, then rl - G

12 Inference Systems and Godel's

Incompleteness Theorem

Glide]'

Overview : section 12. 1 begins this chapter with some informal examples of the use of
inference systems to define programming language semantics.

section 12.2 introduces a generalization of the concept of set: an nary predicate, which
is much used in logic, and implicit in the informal examples. After this, section 12.3 es-

tablishes several properties cocerning recursive and recursively enumerable predicates,
extending those of sets as in chapter 5.

section 12.4 contains a general formalization of inference systems as used to define

predicates over D, and it is proven in section 12.4.3 that every predicate definable by an
inference system is a recursively enumerable subset of D.

This framework gives enough background to state and prove, in section 12.5, aversion
of Godel's incompleteness theorem: that no inference system can prove all and only

the true statements of even a particularly simple formal language DL concerning values
inDo

12.1 Examples of operational semantics by inference

systems

Language semantics can be defined in (at least) two ways. One way is by Plotkin 's structural

operational semantics [132] or Kahn's similar natural semantics [86]; both are used by
many researchers. By this approach, a language semantics is given by a collection of
inference rules that define how commands are excuted, how expressions are evaluated,
etc.

In an operational semantics a language definition is a set of inference rules and axioms
sufficient to execute programs. An inference rule consists of a set of premises which , if
true, allow one to conclude or deduce a conclusion. An axiom is a special case of an
inference rule - one with an empty set of premises. We give some examples now, and
a more general framework later in section 12.4.

The I semantics defined in section 2.2 is in essence (though not in apperance) an

operational semantics. For example, the definition of C I- 0' -+ 0" is easy to re-express
using inference rules as in the next section (Exercise 12.2). According to such rules
the meaning of a recursive construction such as a while loop or a recursively defined
function is typically obtained by

"
syntactic unfolding

"
; an example will be seen below.

Another way to define semantics is by denotational semantics, first developed by Scott
[154]. (See Schmidt [150] for a gentle introduction .) By this approach, every syntactic
construction in the language is assigned a meaning in some domain: a set plus a partial

188 Inference Systems and 's Incompleteness Theorem

order on its elements, ordered according to their " information content." For example,
the set N -+ Nil is a domain , orderedbyf ~ g iff for all x EN, eitherf (x) = g(x) orf (x) = .l

(see section 14.1 for a sketch of this approach). The meaning of a recursive consb"uction
such as a while loop or a recursively defined function is obtained by applying the " least
fixed-point operator

" to a certain higher-order function .

This is an axiom: an inference rule that is true without prerequisite assumptions, assuming
the value of variable x is defined by 0' .

Now consider an expression succ e whose value is 1 more than the value of its

subexpression e. If subexpression e evaluates to v, then the entire expression evaluates
to v + 1. This is expressed by the inference rule, where the part above the line is called
the premise:

Examples of operational semantics by inference systems 189

0' ~ x ~ O' (x)

12.1.1 Expression evaluation by inference rules

We now investigate how expressions in a programmin ~ language can be evaluated,

relating the syntactic world of expressions as written to their semantics, i .e., the mathematical
values which they denote.

Suppose e is an expression, such as x+y, which contains occurrences of the variables
x and y . Then the value of e can be determined only under some value assumptions
about the values of x and y . Such assumptions can be represented by a finite function
u = [x 1-+ v, . . .] which for instance maps x to its value, so u(x) = v. Function u is usually
called a store in an imperative programming language, or an environment in a functional

programming language.
The assertion that " if x = S and y = 6, then x+y = 11" is written as follows :

[x 1-+ S,y 1-+ 6] r x + y => 11

More generally, the notation ure => v is an example of what is called a judgment.
This one means that "given store (or environment) u, expression e can be evaluated

to yield result v." Here expression e is a syntactic object, value v is a semantic object, and
store u connects syntactic objects (variable names) with semantic objects (their current
values).

Expression evaluation is often based on a set of infrrence rules, one for each form of

expression in the language. For an expression which is a variable occurrence, we have
the assertion:

190 Inference Systems and G Odel 's Incompleteness Theorem- -

q ~ succ e ~ plus (v, l)

For an expression e 1 + e2 , if the subexpressions respectively have values u, v, then the

entire expression has value u + v . This is expressed by a two - premise inference rule :

q ~ el ~ u q ~ e2 ~ v

q ~ el + e2 ~ plus (u, v)

This may look " content -free " but in fact is not , since it defines the meaning of the syntactic

symbol
" +"

appearing to the left of the ~ in terms of the already well -understood

mathematical operation of addition (the plus appearing to the right).

For another example consider boolean -valued expression e 1 = e2 , which tests two

values for equality . This is easily described by two rules , one for each case:

q ~ e 1 ~ u q ~ e2 ~ u

q ~ el = e2 ~ true

q ~ e 1 ~ u q ~ e2 ~ v u ~ v

q ~ el = e2 ~ fa 'se

The meaning of a conditional expression if e then el else e2 can also be given by
two rules , the first applying when condition e2 is true and the other applying when it is

false:

0' ~ if e then el else e2 ~ v

0' r- if e then el else e2 =)- v

Using these inference rules , the value of a complex expression can be inferred from the

value assumptions held in the store 0' . For instance , when 0' = [m 1-+ Sin 1-+ 3], then the

inference

O' le ~ v

O' le ~ true

0' r 8 = > false 0' r 82 = > V

0' 1- m ~ 5 0' 1- n ~ 3 0' 1- m ~ 5 0' 1- 1 ~ 1

0' Im +n ~ 8 0' Im - 1 ~ 4

0' I- (m+n) * (m- 1) ~ 32

�

0' r el ~ v
�

� �

shows that (m+n) * (m- 1) has value 32, using unstated but obvious inference rules for

evaluating constants, subtraction and multiplication .

12.1.2 Recursion by syntactic unfolding

For another example, consider a programming construction for minimization "min x
such that e = 0." Its intended semantics is that e is to be evaluated repeatedly with
x = 0,1,2, . . . This is repeated until e first evaluates to 0, and the value that x has at that
time is returned . (The expression

's value will be unde~ ed if e evaluates to nonzero
values for all x .)

The following inference rules define this new construction 's semantics. A new judgment
is used, of form O' [x 1-+ u] I-mine ~ w. It signifies

"w is the smallest value of x not
less than u for which e evaluates to 0,

" where 0' is an environment defining the current
values of variables in e other than x .

O' [x 1-+ 0] I-mine ~ w

0' I- miD x such that e=O ~ w

O' [x t-+ u] ~ e ~ v, v ~ 0, and O' [x t-+ u + 1] ~mine ~ w

Intuitive explanation : computation
ment 0' and expression e, and the goal is to find v such that 0' ~ e => v .

In this case 0' is an empty environment [], and the goal is to evaluate " min x such

that i - x = 0" with no defined variables , and an as yet unknown value w . The only

Examples of operational semantics by inference systems 191

u [x 1-+ U] ~ e ~ 0

�

u[x H- u] I-mine => u

O' [x too+- u] ~ mine ~ w

�

The following illustrates computation of min x such that i - x - 0:

[x t-+- 1] I- 1 ~ 1, [x t-+- 1] I- x ~ 1

[x t-+- 0] I- 1 ~ 1, [x t-+- 0] I- x ~ 0
1 ~ 0

[x t-+- 1] I-
.
i - x ~ 0

[x t-+- 0] I- i - x ~ 1 [x t-+- 1] I-mln i - x ~ 1

[x t-+- 0] I-mini - x ~ 1

[] I- (min x such that i - x =O) ~ 1

begins at the bottom of the tree with given environ -

inference rule applicable to yield the bottom tree node requires the node above, in effect

initializing x to 0 and asking for the value of a I-min
judgment . Both inference rules

for I-min cause i - x to be evaluated, yielding 1 in this case. This is nonzero so the only
applicable I-

min rule is the last one, which in effect asks for another I-min
judgment , after

incrementing x from 0 to 1. Again , i - x has to be evaluated, now yielding O. Now only
the first I-min rule can be used, leading to the conclusion that [x 1-+ 1] I-mini - x => 1 and
so that w = 1.

The net effect of an inference system is to define a predicate, i.e., a relation among values

(for example, between expressions and their values in a given store). This section
introduces some terminology concerning predicates, and establish es some of their basic

properties .

The extensional view : predicates are sets

In this book a predicate over a set 5 is just a subset of 5. It is common in logic to express
the fact that v E 5 as " 5(v) is true,

" or sometimes even just to assert the statement " 5(v)."

If 5 = 51 X . . . X 5n then P is called an nary predicate (Q-ary or nullary , unary, binary,

ternary, etc. for n = 0,1,2,3, . . .). Examples of predicates over N:

1. binary : < is the set { (m,n) EN x NIm is smaller than n} .

2. binary : = is the set { (m,m) EN x N I mEN } .

3. unary : the set of prime numbers.

1. conjunction, or "and": PA Q = Pn Q. For sE sn, s is in PA Q iff s is in both P and
Q.

2. disjunction, or "or" : PV Q = pu Q. For sE sn, S is in pu Q iff s is in P or Q or both.

3. implication, or "if-then" :P ~ Q = {sE sn I if s is in P then s is also in Q} .

4. negation, or "not" : -,p = sn\ P. For sE sn, S is in -,p iffs is not in P.

192 Inference Systems and G Odel
'
s Incompleteness Theorem

12.2 Predicates

Operations on predicates

Suppose P and Q are nary predicates over S.
cates:

Then the following are also nary predi -

Some examples:

1. If P is the set of prime numbers and 0 is the set of odd numbers, then P /\ 0 is the
set of odd prime numbers.

2. If 0 is the set of odd numbers and E is the set of even numbers then E V 0 = N.

Recall that, although functions are just certain sets, we allow shorthand notations like

f (n, m) = n + m. Similarly we allow short hand notations for predicates, like " P(x, y) is
the predicate x = y + 1" with the understanding that what we really mean is that P(x, y)
is the set { (1,0), (2, 1), . . .} .

Suppose that P ~ 51 X . . . X 5n is an nary predicate. Then the following are (n - 1)-ary
predicates:

1. Universal quantifier, or " for all " :
V Xi P = { (Xl, . . .,Xi- l ,Xi+u . . .,Xn) E 51 X 5i- l X 5i+l X . . . X 5n I

for all Xi in 5i, (Xl, . . . Xn) is in 51 X . . . X 5n}
2. Existential quantifier, or " there exists" :

3XiP = { (Xl, . . . ,Xi- l ,Xi+l , . . . ,Xn) E 51 X 5i- l X 5i+l X . . . X 5n I
there is an xi in 5i such that (Xl, . . . Xn) is in 51 X . . . X 5n}

Examples:

1. If P(x, y) is the predicate ~ over N x N then Vy P(x, y) is the predicate over N which

only contains O. (0 is smaller than all other numbers.)
2. Further, VxP(x, y) is the predicate over N which contains no elements at all . (There

is no largest number).

3. If P(x,y) is the predicate X = y + 1 over N x 0 where 0 is the set of odd numbers
then 3xP(x,y) is the predicate over N containing exactly the even positive numbers

.

n-ary predicates over D as subsets of D

Predicates 193

Since set Disclosed under pairing, we can represent an nary predicate P over D as the
set of list values:

{ (dt . . .dn) = (dt . (d2. . . . (dn .nil) . . .) I dt , . . .,dn e P}

Thus we may take over the terms " recursive" (decidable) and " r.e." or " recursively enumerable
" (semidecidable) for predicates over D, without change from those concerning

sets. We will henceforth restrict our attention in some definitions and theorems to unary
predicates over D, but use the freer nary notation where convenient .

194 Inference Systems and GO Oel
'
s Incompleteness Theorem

Further, PY Q =: ~(~P/\ ~Q), so by Theorem 5.5.1 PY Q is decidable. 0

Theorem 12.3.2 If P and Q are recursively enumerable predicates then so are P Y Q,
p /\ Q, and 3x. P(X,Yl, . . .,Yn).

Proof: By Theorem 5.7.2 there are programs p, q respectively, such that P(Xl, . . .,xn) is
true iff I Ip D terminates on input (Xl, . . . ,xn) and similarly for Q and q. Then the program
just given also semidecides p /\ Q.

Unfortunately this simple approach does not work for P Y Q, since if the program
for P loops then the program above does too - even though the Q program might terminate

, making P Y Q true. One way to prove termination is to run p and q alternately,
as was done in the proof of Theorem 5.5.1, part 4.

For a more elegant solution, recall that a predicate is a set of tupies, so P Y Q is the
union of two sets. If either P = 0 or Q = 0, then PY Q is trivially recursively enumerable.
If neither is empty, then P = mg(f > and Q = mg<g) where f , g : D -+ D are recursive total
functions. Define function h by

h(x) = if hd(x) = nil then f (tl (x else g(tl (x

Clearly h is total recursive, and mg(h) = mg(f > U mg<g) as needed.

Finally, assume P(x,YlI . . .,Yn) is r.e. If P = 0 then 3x.P(x,YlI. . .,Yn) = 0 and so is

trivially recursively enumerable. Assume P = mg(f > for a recursive total function f
(recall that D contains tupies). Define g(d) = f (tl (d , clearly total recursive. It is easy to
see that

read Xp;
Yl := Xl ; . . . ; Yn := In ;
Cp; Cq;
Result := Rp and aq;
write Result

(Yll . . .,Yn) E mg<g) ~ 3x. P(x, Yt, . . . ,Yn)

12.3 Predicates and program descriptions

Theorem 12.3.1 If P and Q are recursive predicates then so are P V Q, p" Q, and -,P.

Proof By Theorem 5.5.1 -,p is decidable if P is decidable. Let p = read Xi , . . . ,In ;
Cp; write Rp and q = read Y1, . . . , Yn; Cq; write Rq be programs deciding P
and Q, respectively. Without loss of generality they have no variables in common. The
following program clearly decides p" Q:

The predicates defined by an inference system 195- - ,

which completes the proof. (Reasoning: given Yt,.. .,Yn ED, if 3x.P(x,YlI. . .,Yn) is
b"ue then f (d) = (x, Yt,. . ., Yn) for some d, XED. Thus g(d) = (Yt,. . ., Yn) so (Yt,. . ., Yn) E
mg<g); and conversely.) 0

Theorem 12.3.3 There are recursively enumerable predicates P, Q such that neither the
predicate -, Q nor Vx. P(x, Yt, . . ., Yn) is recursively enumerable.

Proof: By Theorem 5.7.2, since Theorems 5.3.1 and 5.6.1 prove that HALT predicate is
semidecidable but undecidable . For the second part , any nonempty r.e. set is of the
form A = mg (f > where f is total and recursive. Thus for any dE D

dE A iff 3x ED .d = f (x)

Predicated :7Jf f (x) is decidable since f is total recursive, so 3x ED . d = f (x) is recursively
enumerable. Finally, its negation is Vx. d :7Jf f (x). This cannot be r.e., as this would imply
that D \ A is also r.e., with HALT as a special case. 0

an inference system12.4 The predicates defined by

12.4.1 A formalization of inference systems

Definition 12.4.1 An inference system I consists of

1. Two finite sets, one of predicate names P, Q, . . ., Z and another of inference rules
RI,R2, . . .,Rm.

2. For each inference rule Rr, a corresponding type: Rr = PI X . . . x Pk ~ P where
P, PI, . . . , Pk are predicate names.

3. Each inference rule Rr with type PI x . . . x Pt ~ P is a decidable inference relation:
Rr ~ Ok x O. 0

We now simplify and generalize the examples of section 12. 1. The result is a framework
able to express the previous examples, and most logical proof systems as well . An inference

system I is a collection of inference rules which , acting together, define a collection
of provable judgments . The idea is to think of the set of values for which each judgment
is true as a predicate over D. The system proves assertions of form P(d) where P is a
predicate name and dE D.

Definition 12.4.2 An inference system I defines the set ThmsI of all judgments (theo-

Horn clause deduction . section 26.3 will describe the deduction of boolean variables

(also called propositional variables) from a set il of Horn clauses of form At /\ A2 /\ . . . /\

Ak ~ Ao. This is an archetypical example of an infernce system. In this context all

judgments have form I- A where A is a propositional variable, and one inference rule
for each Horn clause At /\ A2 /\ . . . /\ Ak ~ Ao E il :

I- At I- A2 . . . I- Ak

196 Inference Systems and G Odel
'
s Incompleteness Theorem

12.4.2 Examples of inference systems

rerns) provable from I . By definition:

�

I- Ao

1. Suppose R, has type Pt x . . . x Pk -+ P and Pt(dt), . . .,Pk(dv E Thmsz. If

 dt , . . .,dv ,d) E R" then P(d) E Thmsz.

2. No set Thmsz contains any element of]l) unless it can be shown so by some finite
number of applications of the preceding clause.

The premises of this application of rule R, are Pt(dt), . . .,Pk(dv , and P(d) is called its
conclusion. A special case: if k = 0, the rule is called an axiom. The effect of an axiom is
to place elements into set Thmsz with no need for premises. 0

Operational semantics . In previous sections we saw a definition of expression evaluation

by two ternary (3-ary) predicates : 0' I- expression ~ value for normal evaluation ,
and an auxiliary predicate 0' I-min

expression ~ value used for the minimization operator
.

Propositional logic . This system is at a higher metalevel , not being resbicted to one
fixed set 'Ii of propositional (boolean) formulas . It has only a single predicate of form
~ P where P is a boolean formula (Appendix section A .I), possibly containing boolean-

valued variables. The following axioms and inference rule are from [95]. They can be
used to deduce ~ P for all and only those boolean formulas P which are b"ue for every
assignment of b"uth values to their propositional variables.

It is thus an example of a complete and consistent logical system: one which can prove
all and only the b"ue statements in its domain of discourse (in this case, propositional
logic). As we will see from G Odel's theorem, this is an unusual property : in most logical

systems of a certain strength any consistent system must necessarily be incomplete , that

12.4.3 Recursive enumerabllity of sets defined by inference systems

Theorem 12.4.3 If I is an inference system, then ThmsI is a recursively enumerable set.

Proof: Given I with predicate names P, Q, . . ., Z and rules Rt, R2, . . ., Rm, define the syntax
of proof tree forms to be all elements of D generated by the grammar with nonterminal

symbolsS and D, start symbolS, and productions:

s : := (nil ' D Sk) for every k-premise rule R" r = 1,2, . . .,m
D : := nil I (D . D)

Define a proof tree t to be a proof tree form such that every subtree

(nil ' d (nil ~ dt . . .) . . . (nilk dk' . '

The predicates defined by an in ference system 197

~ (R ~ 5) ~ [(R ~ (5 ~ T ~ (R ~ T)]

~ p => PVQ ~ Q => PVQ

is there must be true statements which are not provable .

~ p ~ (Q ~ P)

~ P ~ (Q ~ P " Q) ~ P " Q ~ P ~ P " Q ~ Q

~ (P ~ R) ~ [(Q ~ R) ~ (PVQ ~ R)]

~ (P ~ Q) ~ [(P ~ - , Q) ~ - , P] ~ - , - , P ~ P

~ P ~ P ~ Q

~ Q

Following is an example of its use is to prove that I ~ I for any propositional variable I

(symbol ~ omitted for compactness) :

�

I ~ (I ~ I > [I ~ (I ~ 1>] ~ { [I ~ I ~ I > ~ 1>] ~ (I ~ I >}�

I => (I => n => n rl ~ J ~ I>~ 1>1 ~ (J~ I>- . . - -

I =:>- 1

198 Inference Systems and G Odel
'
s Incompleteness Theorem- -

outputs d. Thus byIf input is a proof b"eeT = (nil rd . . .) for P, then the program
Theorem 5.5.1 mg ([check P D> is recursively enumerable. Further,

mg ([check P D> = {dIP (d) E

so ThmsI is a

by Theorem 12.3.2.

Thmsl

finite union of recursively enumerable sets,

12.5.1 Thelogical language

of t where Rr ~ Ok x 0 satisfies:

 dl ,8 8 8,dk),d) ERr

and so recursively enumerable
0

DL for H

Further, t is a proof tree for predicate P if t = (nil r . . .) is a proof tree, and Rr has type
PI x . . . x Pk -+ P. It is immediate from Definition 12.4.2 that P(d) E ThmsI if and only if

there exists a proof tree for P.
It is straightforward to show from Definition 12.4.2 that the property

" t is a proof tree

for predicate P
" is decidable (Exercise 12.3). Let program check P decide this property .

Consider the program
'

read T;
if check P T then X := hd tl T else X := false ;
write X

12 .5 A version of Godel
'
s incompleteness theorem

G Odel's original proof involved statements concerning arithmetic on the natural numbers

. Its pathbreaking achievement was to reveal a fundamental limitation in the power
of mathematical proof systems: that beyond a certain complexity level, there can be no

hope to have a proof system which is simultaneously complete and consistent.

As might be expected, we will instead lnanipulate values in D. This gives a substantially

simpler construction, both displaying the power of our framework , and stimulating

thought about the powers of logical systems in practice, for instance for reasoning
about program behavior .

statement

A version of Gooel
'
s incompleteness theorem 199-

An abstract syntax of DL This is given by a grammar defining terms, which stand for
values in [)), and statements, which are assertions about relationships among terms .

Terms : T : : = nil I (T . T) I Xo I Xl I . . .
Statements : S : : = T=T++T I -, SIS A S I 3Xi S

The symbol ++ stands for the II
append

"
operation on list values . Logical operators V , ~

, V, etc . can be defined from -' , A, 3 above as usual , and equality T = T' can be regarded as

syntactic sugar for T = T' ++ nil . Statements are intuitively interpreted in the natural

way , for example the relation " X is a sublist of y
" could be represented by the following

----_.: S(x, y):

3u3v3w (y

m,n ~ 0 and each d;,ej ED}

will then prove that no inference system as defined above can generate all true statements
in OL.

As is traditional in logic, we first give the syntax of OL expressions. For the sake of
preciseness, we will define exactly what it means for a OL statement to be true, leaving it
to the reader to check that this captures his or her intuitions about statements involving
values from D.

We now proceed to define "true statement" more formally and precisely.
First a free occu" ence of a variable x in statementS is any occurrence which does not

lie within any substatement 3x T of S. The set Freevars(S) of free variables in statementS
is the set of all x which have at least one free occurrence in S. Finally, S is said to be closed
if Free Vars(S) = { } . We will sometimes write S(x,y, . . .,z) instead of S alone, to indicate
that its free variables are x,y,. . .,Z.

The operation of substitution is done by a function Subst(F, x, d) where dE D which
yields the result of replacing by d every free occurrence of variable x withinS (x). This
may also be applied to several variables, written Subst(F,(xu " .,xn), (dt . . . dn .

Definition 12.5.1 Let size(S) be the number of occurrences of operations ++, -' , A, 3 in S.
The set Ti of true closed statements of size i or less is given inductively

1. 7i = { (dt . . .dm et . . .en) = (dt . . .dm)++(et . . .en) I

I S is closed and S ~ 'Ti}
I F1 e 'Ti and F2 e 'Ti}
I Subst(Six,d) e 'Ti for some de D}

The set of true closed statements of DL is by definition 7 = 7i u T2 u . . .

A concrete syntax of DL This is simply a representation of DL-terms and statements

as values within o . Choose some pairwise distinct values ~ ..!..I :!:::t, .:!If)., ~ all in 0 ,

which are pairwise distinct from each other, and from nil i for i = 0,1, 2, . . .

The concrete syntax is defined by

Terms: CT ::= .D:i! I (..:.. CT CT) I nilo I nill I . . .
Statements: CS ::= (:t:t: CT CT CT) I (~ CS) I (,6. CS CS) I (~ il i CS)

Finally, the set 7D is by definition the set of concrete syntactic encodings, as just described

, of statements in r .

12.5.2 Representation of predicates in DL

Definition 12.5.2 A predicate P ~]l)n is representable in DL if there is a statement

S(xi , . . . ,Xn) such that

P = { (d1 . . . dn) I Subst(S,(xi , . . .,xn), (d1 . . . dn eT }

Lemma 12.5.3 If set A ~]I) is representable in DL, then so is A =]I) \ A.

Proof Suppose statementS(x) represents A as above. Then

A = {d I Subst(Six,d) ~ / } = {d I Subst(-,Six,d) eT }
0

Theorem 12.5.4 For any I -program p, the set dom(l[pD> is representable in DL

Proof: Recall the semantics of section 2.2. We only consider the sublanguage I of WHILE,
so the store 0' used there can be replaced by the current value d of the single variable X.

We will show that for each I expression E and command C, there exist DL-statements

FE(d,d') and Gc(d,d') that represent the binary predicates I[E Dd = d' and C ~ d -+ d'. This

suffices since ifp is read Xi Ci write X, then dom(l[pD> is represented by statement
3d'Gc(d,d').

200 Inference Systems and G Odel
'
s Incompleteness Theorem, -

'
" " " " '""

""

'""
""

.., s
F1AF2

3xS

u
u
u

2. For i ~ 1:

Ti+l = Ti

jnrompletenes.~theorem

Gx:-E(d,d') :=FE(d,d')

GCl ;c2(d,d') := 3d"(GCl (d,d") A Gc2(d" ,d'

Gwhile Edo c(d,d'):= (FE(d,nil) Ad = d') V

3trace3fst3 Ist(trace = (d.lst) A trace = fst++ (d' . nil) A FE (d', nil) A
Vh Vu Vv Vt(trace= h++(u. (v.t)) =>

~ (u,v) A 3e3f(FE(U, (e.f)))
0

Assignment is straightforward, and sequencing C1 ; C2 ~ d -+ d' is represented naturally
by an intermediate state d" .

Representation of command while E do C is a bit bickier , since its execution may
take an unbounded number of steps. The idea is to represent while E do C f- d -+- d'

by a computation trace. This will be a sequence (dl . . .dn) where d = dl , d' = dn, and
C f- di -+- di+l for i = 1,2, . . .,n - 1.

The consb"uction above uses this idea. The two parts concerning [st and 1st ensure
that the trace properly begins with d = dl and ends with d' = dn. The remaining part
(beginning FE (d', nil checks to see that E evaluates to false at the loop

's end (d' = dn),
and that while E do C ~ di -+ di+l holds for every pair di,di+l in the trace.

A version of G Odel's t 201

Expressions. This is by an easy induction on syntax:

Fnil (d,d') = d' = nil
Fx(d,d') = d' = d
F(El.E2) (d,d') = 3r3s F el(d,r) I\ FE2(d,s) I\ d' = (r .s)

Commands . This is also by induction on syntax. We give the definition and then ex-

plain.

12.5.3 Proof of a version of Gtidel 's incompleteness theorem

We now show that the set r of hue DL statements is not recursively enumerable. On the
other hand, the set of all statements deducible in any inference is recursively enumerable

by Theorem 12.4.3. As a consequence, any inference system that only deduces hue DL
statements cannot deduce all of them, i .e., there must be at least one statement which is
hue but not provable .

Syste ~ Inco ~ fleten ~

Stated another way: any inference system whatever must either be inconsistent: it
deduces some statements that are not true, i.e., in r ; or it must be incomplete, i.e., it
cannot deduce all true statements.

Theorem 12.5.5 (G Odel's incompleteness theorem.) To is not recursively enumerable.

Proof Consider the set

HALT = { (p. d) I p E WHILE- programs,dE WHILE- data, and I Ip D(d)j,}

Now HALT = dom(lIuD> where u is the universal program (self-interpreter) for I programs
, and so by Theorem 12.5.4 is representable in OL. By Corollary 5.6.2, its complement

HALT = D\ HALT is not recursively enumerable. By Lemma 12.5.3, HALT is

RALT= { (p.d) I Subst(Fix, (p.dE 7}

(p . d) EH A If iff ([qD(Subst(F ,x, (p . d) J,

But this would imply that H A If is recursively enumerable, which is false. 0

Corollary 12.5.6 For any inference system I and predicate name P:

If {dIP (d) E ThmsZ} ~ To then {dIP (d) E ThmsZ} <; To

In effect this says that if any inference system proves only true DL statements, then it
cannot prove all of them. In other words there is and always will be a difference between
truth and provability by inference systems (at least for DL). This captures one essential

aspect of G Odel's incompleteness theorem. In comparison with the original proof, and
others seen in the literature, this one uses surprisingly little technical machinery (though
it admittedly builds on the nontrivial difference between decidable and recursively enumerable

problems).
Differences: first, this presentation does not involve Peano arithmetic at all, as

G Odel's original work did. Our use of D instead gave simplified constructions, but it
could well be argued that the result is different since it concerns a different logical system

(although one which seems no more complex than Peano arithmetic). We believe

and GOde]'s TheoremInference

representable by some statement F(x), so

that some form of equivalence between Peano arithmetic and DL should not be difficult
to establish.

Second, GOdel' s theorem is often presented as "any logical system of a certain minimal

complexity must be either incomplete or inconsistent." We have avoided the
problem of dealing with "

logical system
" as studied in mathematical logic by substituting

a proper generalization : " inference system." The assumption above that
{dIP (d) E ThmsI } ~ 7D says in effect that I is consistent and the proper inclusion
we conclude express es incompleteness. On the other hand, the formulation above says
nothing about minimal complexity of I , just that " the full truth " of DL statements cannot

be ascertained by means of axioms and rules of logical deduction .
Third , G Odel's theorem begins with a logical system containing Peano arithmetic ,

and works by diagonalization to construct a witness: an example of a statementS which
is true, but which cannot be provable . G Odel's original witness is (intuitively) true since
it in effect asserts " there is no proof in this system of SIt - so if the system were able to
prove S, it would be inconsistent!

prove

Exercises

Definition

12.2 Construct an inference system which defines the semantics of WHILE programs.
definitions

12.3 Prove that the property lit is a proof tree ftJr predicate p" is decidable. It suffices to

G Odel's incompleteness theorem appeared in 1931 [51], and overviews can be found in
[32, 36, 130]. The original proof was expressed in terms of provability and consistency,
rather than in terms of truth and the difference between recursive and r.e. sets, as we

A version of G Odel's incompleteness theorem 203-

Our version indeed uses diagonalization , but on I programs instead, and to
that the problem HALT is not recursively enumerable.

12.1 Express the first example of section 12.1.1 as an inference system I in the style of
12.4.1.

of and C ~ 0' -+ 0" .

References

Hint : rewrite the

sketch an algorithm.

204 Inference Systems and G Odel 's mcompleteness Theorem- -

have done. Post observed in [135] that this difference is the essence of G Odel incompleteness

. It may be relevant that computability theory and the Church-Turing thesis

had not been developed in 1931; an interesting historical account may be found in [34].

The articles [86, 132] by Kahn and Plotkin stimulated the use of inference systems in

Computer Science. They have been used widely since then, for example to define both

the static and dynamic semantics of the programming language ML [122].

13 Computability Theory Based on Numbers

The partial recursive functions have been studied extensively, using a framework very
similar to our own but with function arguments, results, and program descriptions
drawn from the natural numbers N = {0,1,2, ...} . This deeply studied field is known as
recursive function or computability theory, and has been developed by Kleene, Rogers,
Church, Turing, and others [95, 147, 22, 162] since the 1930s.

A wide variety of formalizations proposed in the 1930s as candidates to define the
class of all computable partial functions on natural numbers have all turned out to be

equivalent . The candidates included the Turing machine; the lambda calculus (Church);
primitive recursive function definitions plus minimization (G Odel, Kleene); systems of
recursion equations (G Odel); and systems of sb' ing or term rewrite rules (Post, Markov).

This confluence of ideas [48] led to the famous Church-Turing-Kleene thesis: that a

partial function f : N -+- N.l is effectively computable if and only if it is computable by
some Turing machine (and hence within any of the other formalisms).

Two cornerstones of recursive function theory are the existence of a universal function
, and of a program specialization function (the latter under the name of the s-m-n

property), both partial recursive. Both concepts are very natural in Computer Science, as
we have seen.

13.1 The class of partial recursive functions

An important early formalization of the concept of computability was the class of partial
recursive functions or precursive functions , defined and systematically investigated

Giidel numbers versus programs as data objects Our approach differs from the classical
one in that programs are data values in our framework , and so need not be encoded

in the form of natural numbers. For the sake of perspective we briefly outline the beginning
assumptions of classical recursive function theory; being entirely based on natural

numbers, it is necessary to encode programs and nonnumeric data structures (e.g., n-

tupies) as natural numbers.
A suaightforward analogy can be made between N and D, the set of Lisp data structures

. In our framework programs are elements of D, so the need to enumerate programs
by assigning each one a numerical index by an often complex G Odel numbering scheme
is completely circumvented .

13.2.1 Primitive recursive functions

Definition 13.2.1 A function g is obtained from f by explicit transfi' rmation if there are

el, . . . , en, each either a constant in N or a variable Xi, such that for all X' " EN

g(xlI . . . ,xm) = f (el, . . . ,en)

Definition 13.2.2 Iff : Nk -+ N.l ,gi : Nn -+ N.l for i = 1, . . .,k then h : Nk -+ N.l is defined
from f ,gl , . . . ,gk by composition iff for all Xn EN

Definition 13.2.3 Function h: Nn+l -+ NiL is defined fromf : Nn -+ N.Lig: Nn+2 -+ NiL by
primitive recursion iff for all xn, tEN

h(O,x") = f (xn)
h(t + 1,x") = g(t,h(t,1"),xn) if h(t,x") :F .l
h(t + 1,1") = .l otherwise

Definition 13.2.4 Function f is primitive recursive if it is obtainable from base functions
,xx.O and ,xx. x + 1 by some finite number of applications of explicit transformation,
composition, and primitive recursion.

206 Computability Theory Based on Numbers- - -

'
- - . , - " '

f (gt (xn),. . . ,gk(X"
.L

if each gi(X") =F 1-
if some gi(Xn) = 1-h(x") =

largely by Kleene, but already implicit in G Odel's earlier pathbreaking work [51, 93, 95].

This is a purely mathematical characterization, with few computational aspects: The

partial recursive functions are defined to be the smallest class of functions containing
certain initial functions and closed under several operations on functions . For the sake

of completeness and links with other work in computability theory, we prove this class

equivalent to functions computable by counter machines

The lambda notation used in this chapter is defined in Appendix A .3.8. An abbreviation

: we write ' jn to stand for the tuple Xl, . . ., Xn or (Xl, . . ., Xn).

13 .2 The ",,
- recursive functions

This class is defined in stages, beginning with a simpler class of functions , all of which

are total .

An easy induction shows that every primitive recursive function is total . The operations
of primitive recursion and explicit transformation may, however, be applied both to
total and to partial functions .

13.2.2 Primitive recursiveness and CM-computability

Recall Definition 8.6.1.

Theorem 13.2.5

1. The functions : Ax.O and AX. X + 1 are CM-computable.

2. If f is CM-computable, then so is any function g obtained from f by explicit transformation
.

3. If f , gl , . . ., gk are CM-computable functions , then so is their composition .

4. If f , g are CM-computable functions and function h is defined from them by primitive
recursion, then h is also CM-computable .

The ~ fn~

Proof Part 1: Function '\x.O is computable by the program whose only command is XO
: = 0, and '\x. x + 1 is computable by the command XO : = Xl + 1.
Part 2: given program q that computes f , prefix its command part by straightforward
code to transform store [1 ~ Xl, . . ., n ~ Xn] into store [1 ~ el, . . ., m ~ em].

Part 3: easy. Given programs to compute f ,gl , . . .,gk, concatenate the code to compute
and store gl (xn) in Xl , code to compute and store g2(Xn) in X2, . . ., with the code to

compute and store gk(xn) in Xk, followed by the code to compute f (:xk). Some variable

renaming and copying may be needed so internal variables of the g and f programs do
not conflict with each other or Xl , . . ., Xk.

Part 4 is left as Exercise 13.1. 0

In the following expression J1,y (f (y) = 0) operator J1" pronounced
" minimum ,

"
specifies

a search to find a value of argument value y such that f (y) = 0, making zero the value
of a given function f .

The p,-recursive functions 207-

any primitive recursive function is CM-computable .

13.2.3 Definition of precursiveness

13.3 Equivalence of precursiveness and

Lemma 13.3.1 If g : Nn+l -+ N is a CM-computable and total function, then Jl,t<g(t,rr) = 0)
is a CM-computable function.

Proof Given program p to compute g(t,rr), the following program will compute
Jl,t<g(t,rr) = 0):

read Xl , . . . , In ;
T .- O..- ,
R := p T Xl . . . In ; (* Apply P to 0,1,2. . . until it yields 0 *)

while R do
{ T := T + 1; R := p T Xl . . . In } ;

write T (* Write T when (if) that first happens *)
0

Corollary 13.3.2 Every Jl,-recursive function f : Nn -+ N.l is CM-computable.

Theorem 13.3.3 A function f : ~ -+ Nil is Jl,-recursive iff it is CM-computable.

Proof
"
Only if

" is Corollary 13.3.2. We give only a sketch for "if," as this is technically
rather complex, and beside the main point of this book: that using a structured data set

208 Computability Theory Based on Numbers- - -

CM-computability

Definition 13.2.6 Function h : Nn -+ N.L is defined from g : Nn+ 1 -+ N by minimization iff

forallxn EN

h(xn) = tift EN is the smallest number such that g(t,xn) = 0

h(xn) = .l otherwise

Notation : we write function h in short form as: Jl,t(g(t,xn) = 0), or even Jl, t .g.

Definition 13.2.7 Function f is JI,-recursive if it is obtainable from base functions .xx.o

and .xx. x + 1 by some finite number of applications of explicit transformation , composition
, primitive recursion, and minimization applied to total functions .

A JI,-recursive function need not be total . Note that Definition 13.2.7 applies minimiza -

tion only to total functions g. By Rice's Theorem (section 5.4), this property is undecidable

from a program defining g, so Definition 13.2. 7 does not naturally define a programming
language (see also Exercises 13.2, 13.4).

represented

where Pi is the i-th prime number (for any i > 0).

2. Prove the function init (xn) = 21 .30.5%1 P~"+2 to be primitive recursive.

3. For t' = 1, . . ., m prove the following one-instruction store transfi>rmation function to
be primitive recursive:

5. Prove the t-step state transition function stp(t,s) = nxtt (s) (that is, stp composed
with itself t times) to be primitive recursive.

6. Clearly the function g(x) = Jl,t (stp(t,s) = 0) is Jl,-recursive.

7. Finally, it is immediate that

f (x) = y where stp<g(X) - l ,s) = 2l , 3Y. P:~2

This is J1,-recursive, since it is a composition of primitive recursive functions with

Equivalence of Jl,
-recursiveness and CM- computability- -

1. A CM-state s = (i , O') where 0' = [01-+ Va, 1 1-+ Va, . . . , k 1-+ v J is by the

l vk- 2 3vo 5Vt. .pS = k+2

in St(s) = 5' iff It : S -+- s'

4. Prove the following state transition function to be primitive recursive:

t() =
{

inst(s) if S = 2t .3vo and t' ~ mnx S 0 if t' > m

Details of this sort of construction may be found in [32, 36].

number

the primitive recursive stp .

such as D significantly simplifies many constructions in both computability and complexity

theory. In outline , the " if "
part is proven as follows .

The starting point is a CM-program p that computes f . Let P = il . . . Im, and suppose
it has variables XO,. . . ,Xk where n ~ k. We assume input is via variables Xi ,. . . ,In , and

output is the final value of Xo.

210 Computability Theory Based on NumbersA . .

Kleene 's normal form theorem for the WH I LE

language

13.4

function pit<f (t, xn) = true) : J)" -+ J).l is defined by

- -
sented in a uniform way. Intuitively , it says that selection of a function f to compute
amounts to selecting the constant p below. Further, performing the computation on input

d amounts to searching for the unique c that makes function T(p,d, c) the value

true ; and reading out the result is done by applying a very simple function U.

This is essentially Kleene's normal form theorem as in [95], but the result is somewhat

stronger due to our use of structured data.

Theorem 13.4.3 There is a total function U : D -+ D and a total WHILE-computable func-

tion T(p,d,c) such that

1. For all p,dE D there is at most one c ED such that T(p,d, c) = true .

{

di if i is the least index such that ! (t,X") = true
.l otherwiseI Lt<f<t,xn) = true) =

A parallel development to that of section 13.2 may be carried out using data set 0 and

for the WHILE language, using a standard enumeration do, dt, . . . of 0 , for example as

in Lemma 5.7.1. We omit the details as they are exact analogues of the above for the CM

language.

Definition 13.4.1 Let f : On+ t -+ N be a WHILE-computable total function. The partial

Lemma 13.4.2 If f : 0 "+1 -+ N is WHILE-computable and total , then I Lt(f (t,xn) = true)

is a WHILE-computable partial function .

Proof. Given program p to compute f , and start , next , New as in Lemma 5.7.1, the

following program will compute I Lt<f (t,xn) = true):

read Xl , . . . , In ; start ;
R := p New Xl . . . In ;
while not R do

{ next ; R := p New Xl . . . In } ;
write Y

0

The following is interesting because it shows that all recursive functions can be repre-

ILE-cnmputab1e

To begin with , program q terminates since the while loop decreases Trace , so T is a
WHILE-recursive function .

Program q on input (p . d . c) first stores c's reverse (Valo Vail . " Val ,) into
variable Trace . It then simulates p a step at a time, checking along the way to see

Kleene's normal form theorem for the WHILE language 211- -

2. A partial function f : B) -+ B).L is recursive if and only if there is ape B) such that for
alldeB)

in linear

!(d) = U(Llc(T(p,d,c) = true)Further, U is WHILE-computable in constant time and T is WHtime.
Proof Supposing TU are recursive, the "if" of part 2 follows from WHILE-versions ofTheorems 13.2.5 and 13.3.3.For "only if," we must find TU as described. Suppose! = I Ip D for some program p(assuming only one argument x = Xl for notational simplicity.) Without loss of generality p has only one variable X (by section 3.7.2).Recall the universal program u1 var seen earlier for one-variable WHILE-programs.Build from it a program which we call q, and define T(p,d, c) = I Iq D(p. d. c). The ideais that q will simulate I Ip D(d)'s computation just as u1var does, but meanwhile it willcheck that argument c is a correct "trace" of its computation.More concretely, consider the universal program u1 var terminates within r iterations. Let Val; be the values of u1 var variables Val, Stk, Cd just before the ith iterationof u1 var's while loop, and define u1 var's reversed trace on input d to be c - (Val,.. . Vail Valo).Now, program q:read PDC; (. Input is (program. data. c) .)Cd := cons (hd PDC) nil; (. Control stack = (program. nil) .)Val := hd (tl PDC); (. The value of X .)Stk := nil; (. Computation stack empty.)Flag := true; (. Trace is OK so far .)Trace := reverse (tl (tl PDC ; (. Computation trace .)while Trace:;.f nil do{ if hd Trace:;.f Val then Flag := false; (. Trace mismatch.)Trace := tl Trace;STEP };if Cd:;.f nil then Flag := false;wri te Flag

Ba~ Num ~ rs

Further, if RpD(d) = .l then T(p,d, c) = false for all c. Clearly RpD(d) ~ .l if and only if
T(p,d, c) = true where c is p

's trace on input d.

Finally, the theorem follows if we set U(c) = hd(c), to return the final value that p
assigns to its variable X. Clearly this is computable in constant time; and the time to

compute T is proportional to the length of the computation trace c. 0

CM-computable

13.3 Extend p, to functions on D in the natural way using the enumeration do, dt, . . . of
Lemma 5.7.1. Then prove that pit.f (tip ,d) = nil may be uncomputable when f is a

partial WHILE-computable function. Hint : let f (tip ,d) = true if t = true , or if both
t ~ true and RpD(d).1., else undefined. 0

p,y<f (x, y) = 0).
Prove that if f is partial computable, there exists a partial computable

tion g with g ~ ey. P(x, y). Hint : use dovetailing as in Theorem 5.5.1.

212 Computability Theory on

that Trace agrees with the values u1 var assigns to X. If P terminates on input d then
u1 var terminates on (p . d) , so q

's while loop will terminate with Cd = nil on input
(p . d . (Valr . . . Vail Valo . Thus ([qD(p . d . c) = true and

(pic(T(p,d,c) = true) = (Val, .. . Vail Valo)

Exercises

functions is closed under primitive recur-13.1 Prove that the class of

partial func -

0

f is a partial CM-computable function .

sion.

13.2 Explain why the consb"uction used to prove Theorem 13.3.3 or Lemma 13.4.2 does
not necessarily show that partial function IL y . f is recursive when f is a partial computable

function . 0

13.5 (Hilbert' s choice function.)- Define g ~ ey. f (x, y) to hold if for all x, whenever there
exists some ysuch thatf (x,y) = 0, thenf (x,g(x = O. In other words,g(x) produces some
witness to the truth of 3y. ! (x, y) = 0, but not necessarily the least one as was the case for

Classic books on recursive function are the ones by Kleene, Davis, and Rogers [95, 31,
147] . More recent ones include a newer one by Davis et.ai. [36] and one by Sommer-

balder and van Westrhenen [156], which has a scope similar to that of this book.

Kleene 's normal form theorem for the W Hl L Elangu age 213

References

14 More Abstract Approach es to

Computability

One could object to the previous treatment of recursion on the grounds that it explains
recursive language consttuctions by means of recursion, for example in section 2.2 or

Figure 9.1 (or section 12.1.2). One nonrecursive way to deal with recursion has already
been given by example: " syntactic unfolding

" in section 12. 1.2.
This chapter begins with two additional , and different , nonrecursive ways to deal

with recursion. The first is by means of fixpoints of functionals , in which a recursive
definition is viewed as defining a mapping from certain partial functions to others. The
second is by means of " reflexive programs

" : the "Second Recursion theorem" due to
Kleene.

Relations: it can be proven that syntactic unfolding gives the same semantics as least

fixpoints of functionals ; and that its effect can be achieved by reflexive programs . Proofs

may be found in [109, 147] , but are beyond the scope of this book.
The final parts of the chapter concern model-independent approach es to computability

. Since the robustness results of chapter 8 suggest that all computation models
are equivalent , this is a popular modem starting point . Indeed, one result appearing
at the chapter end is Rogers

'
Isomorphism theorem: Given any two programming languages

L and M (with data N) there exists a computable isomorphism (a one-to- one onto

mapping) from L-programs to M-programs that does not change the computed functions
.

14.1 Recursion by semantics : fixpoints of functionals

In this section we describe one approach to defining the meaning of recursively defined
functions , by so-called " fixpoint semantics."

First an example: consider the recursive definition

f (n) = (if n = 0 then 1 else n * f (n - 1 (14.1)

This is intended to define a function f : N ~ N.L. A Pascal program corresponding to
the definition is:

216 More Abstract Approach es to Computability- -

This question amounts to "how does one interpret a recursive definition ?" This is
a decidedly nontrivial question since recursive functions ~ defined in terms of themselves

, and problems of self-reference are notorious for creating philosophical problems.
An answer: the function defined by a recursive equation such as (14.1) is often taken

to be the least fixpoint of the functional F defined by the equation. We now define and
clarify these terms.

Uniqueness of functions defined by recursive equations

The factorial function is the only function satisfying (14.1). It can happen, however, that

is no constraint on the value of g(l).
Which among the range of all possible functions that satisfy a recursive equation

should we select as its "meaning,
II i.e., the unique function defined by that recursive

definition? It is desirable that
. the "meaning

"
always exists;

. it is unambiguous; and

. it is a computable function (though perhaps partial), provided the operations in
the equatio~ are themselves computable.

First we define the meaning of the statement: "Function g : N -+- N.l satisfies equation
(14.2)."

Definition 14.1.1 Function g satisfies (14.2) provided1 g ~ g' , where g' is defined by

g
'
(n) = (if n = 0 then 0 else if n = 1 then g (l) else g (n - 2) + 2) (14 .3)

1 Recall that g ~ g' if and only if for all ne N, either g<n) and g' (n) are both undefined (.1), or are both in N
and equal.

function f (n : integer) : integer ;
begin

if n = 0 then f := 1 else f := n * f (n - 1)
end

The question naturally arises: what mathematical function f : N -+ N.l is defined by a
recursive equation such as (14.1)?

an equation has more than one solution . For example , consider equation

g(n) = (if n = 0 then 0 else if n = 1 then g(1) else g(n - 2) + 2) (14.2)

where f : N -+- N.L. It is satisfied by g(n) = n. On the other hand, it is also satisfied by
many other functions, for instance g(n) = if n even then n else n + 100. The reason: there

functional B

: F<g) = g' , where

g' (n) = (if n = 0 then 0 else if n = 1 then g(l) else g(n - 2) + 2)

For an example, : Ftransforms function g3(n) = n2 into

: F<g3) = & , where

& (n) = (if n = 0 then 0 else if n = 1 then 12 else (n - 2)2 + 2)

Satisfying equation (14.2) thus amounts to asserting g = : F<g). Such a function is called
a fixpoint of :F. Our goal is therefore to select as standard interpretation a unique computable

function g satisfying g = :F<g).

Some examples (where we write ~ for " equal by the definition ofg
"):

1. Claim : gl satisfies (14.2) where gl (n) ~ n. We show this by considering cases n = 0,
n = 1, and n > 1. First, gl (0) ~ 0 = (if 0 = 0 then 0 else . . .). Now suppose n = 1.
Then

gl (1) ~ 1 = (if 1 = 0 then 0 else if 1 = 1 then gl (1) else. . .)

trivially . Finally, suppose n > 1. Then

del del
gl (n) = n = n - 2 + 2 = gl (n - 2) + 2 =

(if n = 0 then 0 else if n = 1 then gl (1) else gl (n - 2) + 2)

2. (14.2) is also satisfied by g2(n) ~ (if n even then n else .1). Arguing again by cases,

equation (14.2) is trivially true for n :5 1. If n > 1 is even then

Recursion by semantics : fixpoints of 217

Note that this definition is nonrecursive, since g' is defined in terms of g and not in terms
of itself . Equation (14.3) defines a uans format ion from g to g' . Function uansformers
are often called functionals, and one may write for example g' = F <g) where F is the
functional defined by (14.3). In this case F has type (N -+ N.L) -+ (N -+ N.L), and is
defined by

del del
g2(n) = n = n - 2 + 2 = g2(n - 2) + 2 =

(if n = 0 then 0 else if n = 1 then g2(1) else g2(n - 2) + 2)

and if n > 1 is odd then

del del
g2(n) = .l = .l + 2 = g2(n - 2) + 2 =

(if n = 0 then 0 else if n = 1 then g2(1) else g2(n - 2) + 2)

where h(x) = 0.5 - :x;2. Such an equation can often be solved by fixpoint iteration: a s0-
lution is the limit (if it exists) of the sequence xo,h(xo),h(h(xo , . . ., where Xo is an initial

approximation to x. If Xo = 0, we obtain

Evaluating, we obtain

Xo = 0,xi = .5,X2 = .25,X3 = .4375,X3 = .3086,

which has as limit the solution x = 0.366. . . = (- 1 + v' 3) / 2.

Simple conditions on h guarantee convergence, i.e., that the limit of the sequence
xo, h(xo), h(h(xo , . . . exists. This method of fixpoint iteration is widely used in numerical

analysis, for instance to solve matrix equations.

218 More Abstract Approach es to Computability

3. (14.2) is not satisfied by g3(n) ~ n2 since 4 = g3(2) :F 2 = & (2).

Fixpoints of functionals . Among all possible fixpoints , there will always be one which
is least defined - the one such that g ~ : F<g) but g(n) = .l for as many values of n as

The least fixpoint of equation (14.1) is its only fixpoint: f (n) = n! The least

Consider an equation of the form x = h(x) where x

x = 0.5 - ,x2

Xo = 0, Xt = h(xo) = .5 - ~ , X2 = h(xt) = .5 - x' i, . . .

possible. This is naturally called the least fixpoint of F .
At last our standard interpretation: the effect of recursive equation f = F <f > is to

define f to be the least fixpoint of F .

Example.

Fixpoints of first order equations.
varies over the real numbers , for example

fixpoint of the equation for g is the function :

g(n) = if n is odd then .L else n

Recursion by semantics : fixpaints of functionals 219- -

Computing the least fixpoint of a functional

Similarly, the least fixpoint may be obtained as the limit of an infinite series of functions

fo,f1,f2, . . . = fo,:Flfo),:F(:Flfo , . . . where

fo(n) = .l for all n = 0,1,2, . . .

Using this scheme we can verify that the least fixpoint of the equation

f (n) = (if n = 0 then 1 else n * f (n - 1

loolf 11 11 12 16 124 1120,...

1. Function fo is an initial (and very poor) approximation to the least fixpoint of .1",
and ft , f2, . . . are successively better approximations.

2. The individual functions fi will most likely not be fixpoints (and the ones in the

table are not). But the limit of to, ft , f2, . . . will always exist, and will always be .1"'s
least fixpoint.

3. More precisely fi ~ fi +t for all i, where f ~ g iff for all x E Neither f (x) = 1.. or

f (x) = g(x) EN. The limit is the smallest function (with respect to partial order ~)

f such that fi ~ f for all i.

is f (n) = n! Its computation is seen in the table below. The scheme is constructed a row

at a time, with fo as given above. The line for fi +l is constructed from the previous line

by

fi +l (n) = F <fi) = (if n = 0 then 1 else n * fi (n - 1

Remarks

This scheme works in principle and as a definition , but for practical implementation
a more efficient way to compute the same values would be used . For instance

one would only compute those values of f (x) that are needed for the final answer .

Theoretical basis. Putting this informal discussion on solid foundations requires some
mathematical "

machinery,
" for example as presented in [109, 150]. There it is shown

that the least fixpoint always exists and that the sequence to, tl , h , . . . above always
converges toward it provided functional F is "continuous " (in a sense different from
that of analysis). Fortunately, any recursive function definition one can write using
variables, constants, tests, function calls and continuous base functions (such as + , * ,
and " if -then-eIse") defines a continuous functional .

Mutual recursion . It is easy to generalize this approach to assign meaning to acollection
of functions defined by mutual recursion, by computing the least fixpoint of a

functional on a cartesian product of sets of partial functions . (In Scott's domain theory
this is extended to a variety of other "domain consb"uctors,

" see [150].) For an example,

f (n) = (if n = 0 then true else g(n - 1
g(n) = (if n = 0 then false else f (n - 1

14 .2 Recursion by syn

tions defined by self-referential or " reflexive "
algorithms . Given this ability , it is possible

to simulate recursion as a special case, without having it as a built -in language
construct. The theorem thus gives an alternate way to assign meaning to recursive language

constructs. The recursion theorem has many applications in recursive function

theory, machine-independent computational complexity , and learning theory [13, 18]. It
is valid for any programming language computing all partial recursive functions , such

220 More Abstract Approach es to Computability

defines functions f , g : N -+ B such that f (n) = true for even n and filise for odd n, and

'.tax: Kleene's and Rogers' recursion

g(n) = false for even n and true for odd n.

Recursion by syntax : Kleene
'
s and Rogers

'
recursion theorems 221- -

RqD(d) = RpD(q .d)

Typically p
's first input is a program, which p may apply to various arguments, transform

, time, or otherwise process as it sees fit . The theorem in effect says that p may
regard q as its own text, thus allowing self-referential programs.

Rogers has an alternative version of this theorem, which gives another viewpoint
that is more convenient for some applications. It in essence says that every computable
total program transformation has a "syntactic fixpoint

" : a program p whose meaning is

unchanged by the transformation.

Theorem 14.2.2 (Rogers
' recursion theorem.) For any total computable function f : L-

data -+ L-data, there is a program q such that for all inputs EL-data,
,

RqD ~ Rf(q)D

A first application is to prove the existence of a program q which yields its own text
as output, regardless of its input - a favorite (and nontrivial) beginning programming
exercise.

that the s-m-n Theorem holds and a universal program exists. Such a language is called

an "acceptable enumeration " (Rogers [147]) of the partial recursive functions , and will

be discussed later in this chapter.

We will first prove the recursion theorem to hold for an extension of the I language.

The proof is straighforward , and yields much more efficient programs than those given

by traditional constructions [95, 147] . In section 14.3 it will be shown to hold for all

acceptable enumerations, thus all reasonable programming languages.
,

First, some motivating discussion.

The theorem and applications

Kleene's version of the recursion theorem may be stated as follows , for a language L not

yet specified. Proofs will given later, at which time we will also discuss the efficiency of

the programs whose existence is proven .

Theorem 14.2.1 (Kleene's second recursion theorem.) For any L-program p, there is an

L-program q satisfying, for all inputs dE L-data,

222 More Abstract Approach es to Computability

com -

Example 3: Elimination ofrecursion, using Kleene's version. Let L = I . Consider the total

computable function I Ip D: D -+ D defined by

I Ip D(q .x) = [if x = 0 then 1 else x . I Iq D(tl x)]

where x is assumed to be a numeral nil n, as in section 2.1.6. The call to q can be

programmed as the call1 Ii D((q . (tl x) , where i is the universal program for 1-

programs . By Theorem 14.2. 1, there is a " fixed-point
/1

program e with the property

lIeD (x) = I Ip D(e .x) = [if x = 0 then 1 else x . lIiD e . (x- 1)] =
[if x = 0 then 1 else x . lIeD(x- 1)]

Thus e, which was found without explicit use of recursion, is the factorial function .
More generally, Kleene's theorem implies that any acceptable programming system is"closed under recursion."

14.2.2 Proof for a reflexive extension of I

Our first proofs of the Recursion theorems are indirect , applying only to a " reflexive "

programming language extending I .
Let It be an extension of language I , with syntax as in Figure 14.1. This is an abstract

syntax; a concrete one is obtained as in section 4.2 by encoding * and uni v as trees built
from nil .

Informal semantics: the value of expression * is the text of the program currently
being executed. The value of expression univ (E, F) is the value of ([eD(f), where e is

([qD(d) = ([pD(q. d) = q

Let the obviously

Other examples, including the Blum Speedup Theorem involve computing time and
appear in chapter 20.

Example 1: A self-reproducing program, using Kleene's theorem. Let program p satisfy
I Ip D(r . d) = r for all r , d. Letting q be the program given by Theorem 14.2.1, we have

Example 2: A self-reproducing program, using Rogers
' version.

putable function f be defined (informally) by

f (p) = the program
"read x ; y : = p ; write Y"

Clearly [qD ~ [f (q)Dimplies [qD(d) = [f (q)D(d) = q as desired.

Expressions 3 E, F ::= X

I nil I cons E Flhd Eltl E

I .

I univ (El , E2)
Commands 3 C, D ::= X : = E I C ; D I while E do C

Programs 3 P ::= read X; C; wi te X

Figure 14.1: Abstract syntax of the It language.

the value of E and f is the value of F. In words : evaluation of E is expected to result in
a program text . This program is then run with the value of F as input , and the result of
this run is the value of uni v (E , F) . Somewhat more formally :

Definition 14.2.3 The It language has It -programs C D and It -programs the result of

encoding the programs generated by the grammar of Figure 14.1 uniquely as elements
of D . Its semantic function is defined by :

where it is the self-interpreter for I from section 4.2, modified so that the STEP macro
is replaced by the extension in Figure 14.2.

Recursion by syntax : Kleene 's and Rogers
'
recursion theorems 223

I Ip Dt(v) lIitDI(p.v)=

Note that it is an I program ; hence any it program can be efficiently compiled into I .
How interpreter it works : the program being interpreted is always available in i -

variable P during interpretation . Its value is the value computed for * , as seen in the
first new part of the case statement. For the rest, recall the expression evaluation and
command execution invariants of section 4.1.1.

Expression uni v (el , E2) is handled by first saving the current value VI of variable
X, and then evaluating el and E2. This is done by the case part that pushes el , E2, and
douni v onto the control stack Cd. Once their values V1, V2 are obtained (in reverse order
on the computation stack St), the case for which douni v starts Cd applies. This replaces
VI by V2, and pushes V 1 onto Cd. By the command execution invariant of section 4.1.1
this will effect execution of program V1 on input V2. Once this is completed, the result
of the program run is stored into variable VI . The case for which clean starts Cd re-
establish es the expression invariant by : pushing VI onto St ; resetting VI to its former
value (saved on Cd); and continuing with the rest of the program .

Reflexive

Remark: running interpreter it on an I program. will be slower than running the
same I program. directly . However the cost is only the overhead of one extra interpretation

layer - not prohibitive , even for programs using * and uni v . The point is that

invoking uni v does not cause a new layer of interpretation , but just continues to use
the current interpreter

's facilities by simulating a recursive call using the stacks. Thus
the multiplication of interpretive overhead mentioned in section 6.2 is avoided .

We now program. the two examples above directly in It .

language .

read Xi
if x ' 0
then Ansver : = 1
else { Temp := x -

vi te Ansver

224 More Abstract Approach es to Computability

Figure 14.2: , extension of the STEP Macro.

The facto -

Answer := x . univ (. , Temp) } ;

Example 1: a self -reproducing program . Let q be the following program , in abstract

syntax form :

read X;
X := * ;
write X

Running this program on any input will yield q as output.

Example 2: recursive computation in a nonrecursive imperative
rial function is computed by the following It program:

A model -
independent approach to computability 225

For any de 0, ([qDt(d) = ([rDt(d) wherer = I Ip Dt(q) = f (q). Thus I Iq Dt = I If (q)Dt

read Di
X := cons * Di
Ci
write Y

read Di
Tern := p * i
Y : = univ (Tern, D) i
write Y

be the following It program:

Theorem 14.2.4 Kleene 's and Rogers
' recursion theorems hold for L = It .

Proof Kleene 's theorem : For an arbitrary It program p = read X ; C; write Y, let q

For any dE D, q first assigns (q. d) to X, and then writes ([pDt(q . d) = ([qDt(d).

Rogers
' theorem: Given It program p with f = ([pDt, let q be the It program:

14 .3 A model -
independent approach to computability

Turing machine computability is often expressed mathematically by beginning with a
standard enumeration Po, PI, P2,. . . of all Turing machines. Letting Pi be the ith Turing
machine in the list, for each i ~ 0 one may define <Pi : N -+ N.l to be the partial function
that Pi computes.

A similarity with this book's framework is immediate, if we identify the ith Turing
machine with its numerical index i (i is often called the Godel number of the Turing machine

"
program

"). Then the enumeration defines a programming language with data
domain N and semantic function II-DTM : N -+ (N -+ N.l) where l Ii D T Md = <Pi(d). This is extended

to multiargument functions by defining the partial nary function <pf : Nn -+ N.l
to be

<pf(Xt, . . ., Xn) = <pi(<Xl,. . . xn

where <-,. . . ,-> is a total computable one-to-one "tupling function" that assigns a unique
natural number to each n-tuple of natural numbers. The superscript of <pf is dropped
when the number of arguments is clear from context.

14.3.1 Acceptable enumerations of recursive functions

In the following definitions, an n-argument function { : Nn -+ N.l is considered

effectively computable iff for some total effectively computable tupling function
<XI,X2, . . .,Xn> there is a one-argument effectively computable g : N -+ N.l such that for

any Xl, . . .,Xn EN

{ (Xl, . . . ,Xn) = g XI,X2, . . . ,Xn

226 More Abstract Approach es to Computability- - - -

An example 2-tupling or pairing function is <x, y> = 2% . 3Y already seen in Figure
8.4. Actually , pairing is enough since tupies can be formed by repeated pairing : define

<Xt,xu . . .,xn> to be <Xt,<xu . . .,<xn- t,xn>. . . .

More recent recursive function theory, e.g., as formulated by Rogers [147] , begins
even more abstractly: instead of an enumeration Po, Pt, Pu. . . of programs, one simply
assumes that for each i ~ 0 there is given a partial function 'Pi : N -+ N.l . The starting

point is thus an enumeration 'Po, 'Pt, 'Pu. . . of one-argument partial recursive functions

that are required to satisfy certain natural conditions . The definition given below captures

properties sufficient for a development of computability theory which is entirely

independent of any particular model of computation .

The underlying theme is to avoid explicit construction of programs wherever possible
, so there is no formal definition of program at all; a program is merely an index

in this standard enumeration . Informal algorithm sketch es, with liberal appeals to the

Church-Turing thesis, are used to establish computability .

The approach emphasizes extensional properties expressed in terms of numbers and

mathematical functions , rather than intensional properties of programs, for example
their appearance, time efficiency, or storage consumption .

Our goals are somewhat different , though , partly because we start from Computer
Science, in which the exact nature of programs and their intensional properties is of

major concern. We are more interested in efficient problem solving by programs than

in exploring the outer regions of Uncomputability . Nonetheless the interplay between

these two viewpoints is fascinating and well worth study, since the extensional viewpoint

focuses on what the problems are that are to be solved (computing functions , deciding

membership in sets, etc.), whereas the intensional viewpoint focuses on how they
are to be solved, by concrete programs running with measurable time and storage us-

age. Another way to describe this is as a distinction between problem specification and

problem solution by means of programs .

A model -
independent approach to computability 227

Universal function property: the universalfunctio11
where univ(pix) = <pp(x) for any pix EN.

30 s-m-n function property: for any natural numbers m, n there exists a computable
total functions ~ : Nm+ I -+- N such that for any index pEN and any inputs
(XI,o 0 o,Xm,YI,o 0 o,Yn) E Nm+n

t univ : N x N -+ Nil is computable,

cp~
+n(Xl' .. .,Xm,Yl,.. .,Yn) = Cp~:'(P,Xl,...,xm)(Yl' .. .,Yn)

For conciseness we will also write x . y instead of <x,y>. Henceforth we will write a
value ranging over N in teletype font , e.g., p, when it clearly denotes an index used as a

program , otherwise in mathematical style, e.g., p.

Definition 14.3.1 A sequence 'PO, 'Pt, ' P2, . . . of partial recursive functions is defined to
be an acceptable enumeration [147] if it satisfies the following conditions :

1. Turing completeness: for any effectively computable partial function f : N -4 Nil
there exists an index pEN such that 'Pp = f .

These properties correspond to quite familiar programming concepts. Completeness
says that the language is "Turing powerful

" and so by the Church-Turing thesis at least
as strong as any other computing formalism .

By the completeness property , there must be an index up EN such that lIupD(p . x) =
univ(pix) for any pix EN . By universal function property , program up is a universal

program such that CPup(pix) = univ(pix) = cpp(x) for all x EN for any index pEN . But this
can be re-expressed as lIupD(p . x) = I Ip D(x), so up is a self-interpreter as in Definition
3.4.1.

Finally, the s-m-n function property asserts the possibility of program specialization,
also known as partial evaluation . To see this, let m = n = 1. Since 51 is computable, by
property 1 there must be a program spec that computes it , so 51 = I Ispec D. The last

equation above becomes, after omitting some sub- and superscripts:

cpp(X, y) = C Pcpapec(pix)(Y)

which can be re-expressed as I Ip D(x . y) = I Il Ispec D (p . x) D(y), the same as Definition
3.6.1. Further, an m + n-argument function may be specialized to its first m arguments
by a series of one-argument specializations, using the pairing function .

Clearly any of the languages we have studied so far can be used to define an acceptable
function enumeration , by appropriately numbering its programs .

Theorem 14.3.2 Language I defines an acceptable enumeration .

Theorem 14.3.3 Given any acceptable enumeration <P, there is a total recursive function

compose: N2 - + N such that for any indices P, q and x EN

Remarks

Even though very natural from a computing viewpoint , these conditions are not guaranteed
to be satisfied for any arbitrary sequence CPo, CPt, CP2, ' . . of partial recursive functions

. For example, suppose the indices i correspond to positions in a listing of all finite

automata, and cp;(x) is the result of applying finite automaton number i to input x expressed

as a bit string . This fails Turing completeness since it is well known that finite

automata cannot compute all computable functions . Similarly , there exist enumerations

possessing a partial recursive universal function but not a partial recursives -m-n function

, or vice versa, or neither [108], [147] .

228 More Abstract Approach es to Computability- - -

Proof: Let do, d 1, . . . enumerateD as in Lemma 5.7.1, and define CPi : N -+- N.l by

CPi(n) = m if I Idi D I (nil ") = nil m, else .L

Functions taking i to di and back are clearly computable by the Church-Turing thesis.
0

C Pcompose<p,q)(X) = cpp(cpq(X

Proof By the Church-Turing thesis, the function CPi(cpj(X is
find an index for it by a unifonn method. First, define f by

f (p,q, x) = cpp(cpq(X = univ(p,univ(q, x

(equality holds by universality). By the Church-Turing thesis, this 3-argument function
is computable, and so by Turing completeness has some index r . The needed function
is then compose = C P C Omp O S8 where composes ~(rip ,q). Alternatively this can be done

using only one-argument specialization, by: compose = sl(sl(rip),q). 0

A simple result using this approach is that symbolic function composition is possible in any

language defining an accepable enumeration . This generalizes the result of Theorem

13.2.5, that symbolic function composition can be done for CM programs .

A model -
independent approach to computability 229

14.3.2 Kleene 's and Rogers
' theorems revisited

Theorem 14.3.4 Kleene's recursion theorem holds for all acceptable enumerations CP:

-
an e a Kleene fixed-point for p.

Proof By the s-m-n property there is an effectively computable function spec: N -+ N
such that cpp(y,x) = CPspec(p,y)(x) holds for any program pEN . It is evidently possible to
construct a program q EN such that for any x, y:

CPq(y,x) = cpp(spec(y,y),x)

Let e be the program spec(q, q). Then we have

cpp(e,x) = cpp(spec(q, q),x) = CPq(q, x) = CPspec(q,q)(x) = CPe(X)

0
Remark: This proof was devised by Kleene as a realization in his framework of " reduction

by the Y combinator " from the lambda calculus. Close examination reveals a
similarity , except for the use of the universal and s-m-n functions which is needed here.

Theorem 14.3.5 (The second recursion theorem, Rogers
' version (1967 For any computable

function , f , taking programs as input (a program transformation) there is afixed -

point program , that is an nE N such that

CPn(x) = CPf(n)(x)

whenever f (n) is defined . For a program p with CPp = f , this n is called a Rogers fixed-

point for p.

lnfom\ aily , this says that any computable program transformer has a "syntactic fix -

point ,
" i .e., a program n whose meaning is unchanged by the transfom\ ation . Possibly

relevant applications include cryptography .
The direct proof of Rogers

' version of the recursion theorem is a bit more involved
than that of Kleene's, see [147] . Due to the following propositions , the two apparently
different theorems are of equal power in the sense that given the ability to find Kleene
fixed -points Rogers fixed-points can be found as well and vice versa.

Lemma 14.3.6 Rogers implies Kleene: Theorem 14.3.5 and the s-m-n property implies
Theorem 14.3.4.

- .
For any program pEN there is a program eEN such that CPe(X) = cpp(e,x). We call such

230 More Abstract Approach es to Computability- - - -

14.3.3 Relation to the fixpoint theorems for It

A strength of the results just proven , in relation to that of Theorem 14.2.4, is that they
hold for any programming language defining an acceptable enumeration . In particular

they hold for I as well as for It , and even for Turing machines.

A weakness, however, is that all nontrivial uses of either fixpoint theorem seem

to require the universal program . If the constructions seen above for Theorems 14.3.4

and 14.3.5 are carried out in practice, the resulting programs e or n turn out to be un-

accept ably inefficient . For example, [59] reports several experiments to compute the

factorial n! Every program built , by either the Kleene or the Rogers method, had run-

ning time greater than exponential in n. The reason is that carrying out the constructions

above literally leads to the use of n interpretation levels, each consisting of one universal

program interpreting the next, in order to compute n!

The " reflective" construction of Theorem 14.2.4, however, only takes approximately
time linear in n to compute n!, since only one interpretation level is ever involved . More

details on experiments and efficiency of fixpoint algorithms may be found in [80, 59].

Lemma 14.3.7 Kleene implies Rogers: Theorem 14.3.4 together with the universal function

property implies Theorem 14.3.5.

Proof Lemma 14.3.6: Given p, let f (n) = spec(pin) (we use the s-m-n theorem). Then by
Theorem 14.3.5 we have, as required for all x:

'Pn(X) = 'Pf(n)(x) = 'Pspec(pin)(x) = 'Pp(nix)

Lemma 14.3.7: Let f be any computable program b"ans format ion . By the Church-Turing
thesis applied to to the universal function and f there exists a program gp such that

'Pgp(q, x) = 'Pf(q>(x) when q EN and f (q) is defined . By Theorem 14.3.4 the program

gp has a fixed-point , that is, there is an e with 'Pe(X) = 'Pgp(e,x) = 'Pf(e)(x). Thus e is a

Rogers fixed-point program for the b"ans format ion f . 0

In the proofs of Theorem 14.3.4 and Proposition 14.3.7 fixed-points are obtained in a

uniform manner. The second recursion theorem can therefore be generalized a bit :

Proposition 14.3.8 There exist total computable functions , kfix ,rfix : N - t N, such that

for any program pEN , kfix (p),rfix (p) are Kleene, respectively Rogers, fixed-points for

p.

14 .4 Rogers
'

isomorphism theorem

Rogers
' remarkable theorem is that there exists a compiling bijection between any two

programming languages L, M defining acceptable enumerations of the partial recursive
functions on N: compiling functions which are total , computable, meaning-preserving,
one-to-one, and onto. The proof involves several steps:

Notational conventions . To reduce notational overhead we henceforth assume that L ,
M and the anonymous cp are acceptable enumerations of the partial recursive functions ,
so natural numbers serve as both programs and data for each language , each is Tur -

ing complete , and each has its own universal function and one - argument specialization
functions . For L , call these functions respectively uniVL and specL' and the L -

programs to

compute them : uniVL and specL ; if we wish to emphasize the programming language

viewpoint we may write [pDL (d) instead of uniVL (p , d) . Language Mistreated analogously

; and enumeration cp has functions univ or [- D(-), spec, and programs : uni v and

spec .

Even though all the program and data sets equal N we sometimes write , for example ,
" L -

program p
" to help the reader keep clear which language is being discussed .

2This theorem states that if there exist two one-to-one functions f : A -+- B,g : B -+- A , then there exists an

isomorphism (a one-to- one and onto function) between A and B.

Rogers
'

isomorphism theorem 231

232 More Abstract Approach es to Computability- - - ~

Solving equations with programs as unknowns by the recursion theorems

Both form of the recursion theorem amount to computable equation solving, in which

the "unknowns " are programs . For the Kleene version : given a program p, we wish to

find a q such that for all data d the equation I Ip D(q .d) = I Iq D(d) holds . For the Rogers
version : given a computable function f , we wish to find a q such that equation II qD =

I If (q)D holds (equality of two input -output functions).

This idea underlies the following construction .

Theorem 14.4.2 Let h be a total recursive function , and spec an s-1-1 function . There

is an i such that I Ih(x)D = I Ispec(i,x)D for all x, and such that spec(i,x) is one-to-one as a

function of x.

Proof: Call i a " 1-1 specialization index " if spec(i,x) is one-to- one as a function of x. We

formulate an equation with free variable i such that any solution i is a 1-1 specialization
index, and satisfies I Ih(x)D = I Ispec(i,x)D for all x. The equation:

0 if spec(i, j) = spec(i,k) for some k < j

II
.
D(

.
) = 1 if spec(i, j) :F spec(i,k) for all k < j and

, J,y
spec(i, j) = spec(i,k) for some k with j < k :$ Y

I Ih(j)D(y) otherwise

This is recursively defined, since program i is used on both sides. Still , the right side

is clearly a computable function of i, j ,y (Church-Turing !), so there is a program r such

that I Ir D(i, j ,y) equals the right side's value. Define f (i) = spec(r, i). Then certainly lIiD =

I If (i)D is another way to express the equation.

By Rogers
' version of the recursion theorem (since f is clearly total computable), lIiD

= I If (i)D has a solution i . We now show that i is a 1-1 specialization index and I Ih(x)D

[pDL(d) = uniVL(p.d) = [ulmD"(p.d) = [speCM(ulm.p)D"(d)

Proposition 14.4.1 There is a total computable function r : L-programs -+- M-programs
such that I Ip D L = I Ir(p)DM for any pEL -programs.

Proof: Function uniVL is partial recursive, so by Turing completeness there is an M-

program ulm with l Iulm D M = uniVL. Consider function r(p) = specM(ulm .p). This is certainly

total and computable . Further, it is an L-toM compiler since

= I Ispec(i,x)D for all x. First, suppose for the sake of conb"adiction that i is not a 1-1
specialization index. Consider the smallest k such that spec(i, j') = spec(i,k) for some
j' > k, and let j be the smallest such j

' for this k. Then for any y we have

I Ispec(i,j)D(y) = lIiD(j ,y) = 0

and for all y ~ j we have

I Ispec(i,k)D(y) = lIiD(k,y) = 1

This conb"adicts spec(i,j) = spec(i,k). Consequently i must be a 1-1 specialization index
so spec(i,x) is one-to-one as a function of x. But this implies that the first two cases of
the equation (yielding 0 and 1) can never apply, and so that I Ispec(i,x)D(y) = lIiD(x,y) =
I Ih(x)D(y) for all y, as required. 0

Computational remarks on this theorem: the first two parts of the equation serve only
to detect possible violations of the one-to-one property of spec(i,x), but every solution i
must be one-to-one (in argument x), as just argued. It seems somehow paradoxical that
the first two cases above can never apply for any j , Yi but the cases must be present, else
the recursion theorem would not yield a program i with the desired property.

It would be interesting to investigate the relative efficiency of the two prograIns h(x)
and spec(i,x). Without the first two parts of the equation, one could compute lIiD(j ,y) =
univ(h(j),y), not too expensive. It appears, though, that the exb"a overhead imposed by
the search over k values could be substantial.

Proposition 14.4.3 There is a one-to-one total computable r : L-programs -+ M-programs
such that I Ip D L = I Ir(p)D" for any pEL -programs.

Proof Let h be a total recursive compilation function as given by Proposition 14.4.1.
Given this h, let i be the index from Theorem 14.4.2. Then r(p) = spec(i, p) is a one-to-one
compiling function as required, since I Ih(p)D = I Ispec(i,p)D. 0

Program padding

It is intuitively clear that one can, by adding useless insb"uctions, transform any program
into another which is arbitrarily larger but equivalent . This is the essence of the

following . Remark: the condition "
arbitrarily larger but equivalent

" is neatly and abstractly

expressed by the fact that function 1r is one-to- one and for all d we have I Ip])CM
= 1I1r(p,d)])CM (reflect a bit on this).

Rogers' isomorphism theorem 233~ -

234 More Abstract Approach es to Computability- - -

Using padding, we can now strengthen Proposition 14.4.3 to make the compiling functions

strictly monotonic .

Proposition 14.4.5 There is a total computable g : L-programs -+ M-programs such that

I Ip D L = Lig(p)D" for pEL -programs, and 0 < g(p) < g(p + 1) for all p.

Proof Let r be the one-to-one function from Proposition 14.4.3, and 1T a padding function

as just constructed. Define g as follows :

g(O) = 1T(r(O), min { y 11T(r(O),y) > a})

g(p + 1) = 7r(r(p + 1), min { y 11T(r(p + 1),y) > g(p)})

Function g simply takes a program compiled from L into M by r, and "pads
" it sufficiently

to exceed all of its own values on smaller arguments. It is clearly computable .
0

Finally, the crux of our development :

Theorem 14.4.6 There is a one-to- one, onto, total computable function f : L-programs -+

M-programs such that I Ip D L = I If (p)D" for pEL -programs.

Proof Let g : L-programs -+ M-programs and h : M-programs -+ L-programs be compiling
functions from Proposition 14.4.5 such that I Ip D L = Lig(p)D" , I Iq D" = I Ih(q)DL, and 0 <

g(p) < g(p + 1) and 0 < h(q) < h(q + 1) for all p, q.

Both functions are one-to- one and p < g(p) and q < h(q); these will be key properties
in the following construction . The one-to-one property ensures that gland h- l are partial

functions ; the monotonicity of both implies that their inverses are also computable .

Lemma 14.4.4 The Padding Lemma. For any language L defining an acceptable enumeration

there is a one -to- one total computable function 1r : N x N - + N such that ([pDL =

[7r(p,d)DL for every p, dEN .

Proof Consider the pairing function pr(x,y) = <x,y> from section 14.3, and let prt be its

(computable) left inverse, so x = prt x, y for any x, yEN . Choosing h = prt in Theorem

14.4.2 (and omitting superscripts), we obtain a program index i such that [prt (z)D
= [spec(i,z)D for all z. By definition of spec this implies for any p, d that

.

[pI = [prt p,d D = [spec(i,<p,d D

By Theorem 14.4.2 the function 7r(p,d) = spec(i,<p,d is total computable, and one-to-

one in <p,d>. 0

Define functions zig : L-programs ~ { true ,false } , zag : M-programs ~ { true ,
false } , and f as follows :

zig(p) = if 3 q . h(q) = P then zag(q) else true

zag(q) = if 3 p . g(p) = q then zig(p) else false

f (p) = if zig(p) then g(p) else h- l (p)

If zig
's argument (which is always an L-program) is not in the range of h, then true is

returned . If it is in the range of h, zig traces its argument backward one step, and applies
zag. Symmetrically , zag returns false if its M-program argument is not in the range of

g, else it traces backward with the aid of zig .

Figure 14.3 shows how they work . Given L-program p, the chain of its immediate
ancestors by g,h is traced backwards until a program is found which is outside the range
of h if the chain starts in L, or outside the range of g if the chain starts in M. (Being outside

Rogers
'
isomorphism theorem 235

Case 1 : zig (p) = true

p p

g

/

'

~ /

'

~ ~

h

f (p) = g (p) f (p) = g (p)

Case 2 : zig (p) = false

Lp
P

g ~

~ /

~

JV

h

f (p) = h
- l

(p) f (p) = h
- l

(p)

Figure 14 .3 : Isomorphism by the Cantor - Bernstein construction .

One-to-one. Suppose f (p) = f (p
'). As f is defined, there are two possibilities for each

(the " then" or the "else" branch above),.giving four combinations . First : if f (p) = g(p)
and f (p

') = g(p
') then g(p) = g(p

') which implies p = p
' since g is one-to- one. Second: if

f (p) = h- l (q) and f (p
') = h- l (q

') then h- l (q) = h- l (q
') which implies q = q' since h is a

single-valued function .
Third possiblity : f (p) = g(p) and f (p

') = h- l (p
'), which by definition of f can only

happen if zig(p) = true and zig(p
') = false . But this is impossible since p

' = h<f (p
' =

h<f (p = h<g(p , which :implies zig(p) = zig(p
'). The fourth possibility is the same, just

with the roles of p and p
'..reversed. 0

Exercises

14.i Construct a self-reproducing WHILE-program directly, so [pD(d) = p for all d. 0

References

Manna's book [109] has a lucid and elementary treatment of the fixpoint treatment of

recursion, a subject treated from a more abstract viewpoint in denotational semantics

[154, 150]. The recursion theorem is originally due to Kleene [95], and Rogers gave an

alternate form involving program transformation in [147] . The isomorphism theorem is

from [146]; our proof is adapted from [108].

236 More Abstract Approach es to Computability- -

is marked by a crossbar over an arrow in the diagram .) In the first case f (p) = g(p) and

in the second, f (p) = h- l (p).
Note that zig,zag are both total since g,h decrease. Further, f (p) is always uniquely

defined . This is evident if zig(p) = true , as f (p) = g(p). The other case is zig(p) = false ,
which can (by inspection of zig

's definition) only occur if p is in the range of h, in which

case f (p) is the unique value of h- l (p).
We must now show that f is a total computable isomorphism . From the remarks

above it should be clear that f is total and recursive.

Onto . Let q EM-programs . Value zag(q) is either true or false . If true then q = g(p)
for some q EL -programs for which zig(p) = true . This implies f (p) = q. If zag(q) is

false then zi$(h(q = zag(q) = false , which implies implies f (h(q = h- l (h(q = q.

Thus all M programs are in the range of f .

Part IV

Introduction to Contplexity

15 Overview of Complexity Theory

Parts I, II and ill of this book concerned understanding the nature of computability , and

delineating the boundary between problems that are effectively solvable (computable)
and those that are not . The problems studied involved computing partial functions and

deciding memberships in sets 1.

Following Turing
's analysis of computation in general, we chose at first the WHILE

language as computing formalism , and proved several fundamental results using it in

chapter 5. In particular Kleene's s-m-n theorem established the possibility of program
specialization, the halting problem was shown undecidable, and Rice's theorem established

the undecidability of all nontrivial extensional program properties . A universal
WHILE-program , able to simulate any WHILE-program at all, was constructed.

The boundary between those sets whose membership problems are decidable,
semidecidable, and undecidable was explored, as were the relations among semidecidability

of set membership, effective enumerability , and the computability of possibly
partial functions .

After that rather abstract chapter, relations to daily computing concepts were dis-

cussed informally in chapter 6: compilers, interpreters , partial evaluation , compiler
bootstrap ping, and related computational time aspects. Time was, however, only
treated in a quite informal way.

The remainder of Part n very significantly broadened the scope, relevance, and applicability
of the previous formal results, by showing that they hold not only for the

WHILE language, but also for several other computing formalisms : both flow chart and
functional analogues of the WHILE language; Turing machines; counter machines; random

access machines; and classically defined " recursive functions ." This was done by
showing all these formalisms to be mutually simulable, or by compilations . Inparticular

, chapter 8 on " robustness" introduced models CH, 2CH, RAM, SRAM, TM and proved
their equivalences (see Figure 8.1 for an overview .) The main result was: computability ,
without regard to resource bounds, is equivalent for all of: F, WHILE, GOTO, CH, 2CH,
RAM, and TH. A corollary : the halting problem is undecidable for any language L in this

15.1 Where have we been ?

1 All over countably infinite value domains .

15 .2 Where are we now going ?

Parts I through ill concerned only what was computable, and paid no attention at all

(aside from the informal chapter 6) to how much time or space was required to carry out

a computation . In the real computing world , however, computational resource usage is

of primary importance , as it can determine whether or not a problem is solvable at all

in practice.
In the remainder of the book we thus investigate computability in a world of limited

resources such as running time or memory space. We will develop a hierarchy of robust

subclass es within the class of all decidable sets. In some cases we will prove proper containments

: that a sufficient resource increase will properly increase the classes of problems
that can be solved. In other cases, questions concerning proper containments are still

unsolved, and have been for many years.

In lieue of definitive answers, we will characterize certain problems as complete for

the class of all problems solvable within given resource bounds. A complete problem
is both solvable within the given bounds and, in a precise technical sense, "hardest"

among all problems so solvable. Many familiar problems will be seen to be complete
for various of these complexity classes.

240 Overview of Complexity Theory- - -

list .

Finally, some relatively natural and simple problems (at least in appearance!) were

shown to be impossible to solve by any effective computational process. These included

Post's Correspondence Problem and Context-free Ambiguity .

Part ill concerned several more advanced aspects of computability , including

Rogers
'
Isomorphism Theorem and G Odel's Incompleteness Theorem.

lems.

15.2.1 How complexity differs from computability

Characteristics of complexity theory include the following . First, complexity theory is

intensional: it concerns properties of programs and their computations , as well as what is

computed . (This is in contrast to "extensional" as in Definition 5.4.1.) As a consequence,
it is vital that we have " fair " resource measures with respect to actual implementations .

As was the case for computability , we will not consider finite problems2; instead, we

2The difficult field of Kolmogorov complexity [105] concerns efficiency of computations on purely finite prob-

study the asymptotic complexity of a program solving a program : how rapidly its resource

usage grows, as the size of its input data grows to infinity .

Complexity theory has as yet a great many unsolved open questions, but has
evolved a substantial understanding of just what the intrinsic complexity is of many
interesting general and practically motivated problems. This is reflected by a well -

developed classification system for "how decidable" a problem is. Computability theory
has similar classification systems, for "how undecidable " a problem is [95], [147] ,

but this subject is beyond the scope of this book .

15.2.2 Robusbtess of PTIME and PSPACE

The concepts we attempt to capture all involve computational resources, the central
ones being time, space, and nondeterminism (the ability to "guess

").
We begin by defining what it means to decide a problem within a given time bound.

Next , we define decidability of a problem within a given space (or memory or storage)
bound . Programs running in polynomial space may, however, take too much running
time to be regarded as tractable. The third " resource,

"
nondeterminacy, will also be

introduced and discussed.

These definitions will require some discussion since not entirely straightforward ,
partly due to our several machine models, and partly to some near-philosophical questions

about "what is a fair time or space cost?" when input size grows toward infinity .
After carefully investigating

" fair " resource measures, we will establish that :

Invariance of polynomial -time computability

Conclusion 2 supports (or will , once proven) a strong
" robustness " result : that there

exists a class PTIME of problems solvable in time polynomially bounded in the size of

Where are we now going ? 241- -

1. Computability, up to linear diffi?Tences inrunning time, is equivalent for F, WHILE,
and GOTO.

2. Computability, up to polynomial diffi?Tences inrunning time, is equivalent for all of:
F, WHILE, GOTO, SRAM, and TH.

3. Computability, up to polynomial diffi?Tences in memory usage, is equivalent for all of:
F, WHILE, GOTO, SRAM, and TH.

its input ; and that this class is essentially independent of the computation model being
used3.

The assertion that PTIMEL is the same class of problems for all reasonable sequential
(that is, nonparallel) computational models L could well be called Cook's thesis, after

Stephen C. Cook, a pathbreaking researcher in computational complexity . A stronger
version, analogous to the Church- Turing thesis but most likely too strong, is to identify
PTIME with the class of all tractable, or feasible problems.

The complexity equivalences in points 2 and 3 above do not concern either the counter
machine or the unrestricted RAM. Informal reasons: counter machines have so limited an
instruction set that solving even trivial problems can take nonpolynomial computation
time. The full RAM model has the opposite problem : it can solve some problems faster
than is realistic on actual computers (details later).

Point 2 (resp. 3) will be shown by following the arcs in the chain SRAM, TM, GOrO,
and SRAM: showing for each pair L, M in the chain how to construct, for an arbitrary
L-program p, an equivalent M-program q whose running time is polynomially bounded
in the running time (resp. space usage) of p.

15.3 Computational resources and problems

We deal with such questions as: what is the most efficient way to solve a given problem ?
Such a question is quite difficult to answer because it quantifies over all possible correct

algorithms for the problem . Nevertheless we will establish lower bounds on needed resources

(time or space) for some problems: proofs that that any algorithm solving the

problem within a certain programming language must use at least at certain amount of

computing resources.

Establishing that problem A cannot be solved in time f (n) amounts to proving that
no matter how any program p is written, if p solves A then it must take more than f (n)
amount of time on some inputs . Such results can only be proven in precisely defined
contexts, and even then are not at all easy to obtain .

On the other hand, there exist some problems that have no best algorithm: the famous
"Blum speedup theorem (chapter 20) says that there are problems such that for any program

p whatever that solves the problem , there is another program q also solving the

problem which is much faster than p on all but finitely many inputs .

3 Conclusion 1 is not as sb" ong since it involves fewer machine types , and it seems likely that the property
of linear time solvability in fact depen ~ s 00 the machine model used .

242 Overview of Complexity Theory

resources problems 243

In this book part we are primarily concerned with the following question. When
do added computational resources provably increase problem -solving ability ? For instanceis

there a problem P solvable by no algorithm whatsoever that runs in time n2
(where n is the size of the input data), but which can be solved by at least one algorithm
that runs in time n3? We will see that the answer is "yes."

A similar question: given time resource bound function f , are there problems solvable
in time b. f (n), but not in time a . f (n) for some constants a < b? (Here, again, n is the

size of the input data.) In other words , do constant time fizctors matter for problems solvable
in time O(f (n ? We will see that the answer is "yes

" for a natural programming
language I .

As a special case, we prove that constant timefizctors are indeed important, even within
linear-time solvable problems; thus confirming in theory what one tends to think from

practical experience. Practice can, however, only establish positive results such as: problem
A can be solved in time f (n). Negative results are much harder, as it is clearly

inadequate to say
"1 tried to solve this problem in this way . . . , but failed ."

and

What problems are solvable in bounded time or space?

Our goal is to investigate the relative computing power of the above mentioned models
for solving problems, given bounds on programs

'
running times or space usage. This

leads first to asking the question: "what is a problem ?"

If a problem is to compute a function f (x) there is a risk of a trivial answer: given
more time, more problems can be solved simply because larger results f (x) can be written

out when more time is available(!). Such answers give little real insight into the relation
between available resources and problem -solving power, so we restrict ourselves

to decision problems: determining membership in subsets of L-data for various languages
L.

In the remainder of the book for simplicity of exposition we will , unless explictly
stated otherwise, assume L is an imperative language, with programs of form : p =

11. . . Ik . Thus a computation is a linear sequence of states p I- SI -+- S2 -+- . . . -+- Sf, which

naturally describes computations by all the languages seen so far except the functional

language F.

Nondeterminism

Many practically interesting but apparently intractable problems lie is the class NPTIME,
a superset of PTIME including, loosely speaking, programs that can II guess

" (a precise

definition will appear later.) Such programs can solve many challenging search or optimization

problems by a simple-minded technique of guessing a possible solution and

then verifying, within polynomial time, whether or not the guessed solution is in fact a

correct solution .
The ability to guess is formally called "nondeterminism " (hence the N in NPTIME)

and will be discussed in a later chapter. The concept involves a so-called angelic interpretation

. By this view a membership decision problem is non determinist ically solvable

if for each "yes
" instance there exists one or more correct guess sequences leading to acceptance

of the input , and for each "no" instance, no guess sequence at all can possibly
lead to answering

"
yes."

For practical purposes it is not at all clear how, or whether, nondeterministic polynomial
-time algorithms can be realized by deterministic polynomial -time computation .

This well -studied problem
" PTIME = NPTIME? ,

" often expressed as "P = NP? ,
" has been

open for many years. In practice, all solutions to such problems seem to take at least

exponential time in worst -case situations . It is particularly frustrating that no one has

been able to prove no subexponential worst -case solutions exist.

244 Overview of Complexity Theory- -

15.4 PTIME and tractability
An extension of Cook's thesis would be to argue that the class of all computationally
tractable problems comprises exactly those that lie in PTIME. This is a useful working

assumption in many circumstances, but should not be taken too literally .

Identification of PTIME with the computationally tractable problems is less solidly
founded than the Church-Turing thesis, which concerns computability in a world of

unlimited resources. Reasons for a certain skepticism include two facts:

. An algorithm running in time Ixll00 can hardly be regarded as computationally
tractable for inputs with Ixl > 2;

. There exist algorithms that run in a superpolynomial time bounds in the worst

case, but which work quite well in practice and with small constant factors. Examples

:

- The Simplex method for linear programming can take exponential time in

the worst case, but works very well in practice for finding optimal solutions

to systems of linear inequalities . In this interesting case, there exist alternative

algorithms that are truly polynomially time-bounded (e.g., the "ellipsoid

There are, as well , a number of arguments in favour of identi ~ g PTIME with tractability
. While admittedly not a perfect fit , this class has good closure properties , so few

reasonable operations on problems in PTIME or programs running in polynomial time
take us outside the class. Further, the class has many alternative characterizations and
theorems, making it mathematically appealing to work with .

41 is just the WHILE language, restricted to programs with one variable and manipulating data only containing
the atom nil .

A proper hierarchy based on constant time factors 245

15 .5 A proper hierarchy based on constant time factors

The constant speedup theorem, well known from Turing machine based complexity theory ,
in essence states that any program running in superlinear time can be rewritten so as
to run faster - by any preassigned constant factor . This counterintuitive result will be

proven false for a natural imperative programming language I that manipulates tree-

structured data 4. This relieves a long -standing tension between general programming

practice , where linear factors are essential , and complexity theory , where linear time

changes are traditionally regarded as trivial .

Specifically , there is a constant b such that for any a ~ 1 there is a set X recognizable
in time a . b . n but not in time a . n (where n is the size of the input .) Thus the collection
of all sets recognizable in linear time by deterministic I -programs , contains an infinite

hierarchy ordered by constant coefficients . Constant hierarchies also exist for larger
increases from time bounds T(n) to T' (n), provided the bounds are time - constructible in

a natural sense.

method"), but all seem to have un accept ably large constant time factors for

practical use.

- Type inference in the programming language SML [122] has been proven to
take exponential time in the worst case, regardless of the algorithm used, but

again works well in practice.

15.6 A backbone hierarchy of set membership problems

Various combinations of these resources lead to a widely encompassing
"backbone"

hierarchy:

Its significance is notably enhanced by the fact that the placement of a problem
within the hierarchy is in general quite independent of the way the problem is described,
for example whether graphs are represented by connection matrices or by adjacency
lists. (There are a few exceptions to this rule involving degenerate problem instances,
for example extremely sparse graphs, but such exceptions only seem to confirm that the
rule holds in general.)

A collection of open problems

A long -standing open problem is whether every
"backbone " inclusion is proper . Many

researchers think that every inclusion is proper , but proofs have remained elusive . All

that is known for sure is that NRDONLY C PSPACE, a very weak statement .

246 Overview of Complexity Theory

15.7 Complete problems for (most of) the problem
classes

In spite of the many unresolved questions concerning proper containments in the "backbone

,
" a great many problems have been proven to be complete for the various classes.

5This problem class will be seen to be identical to the Turing -machine - defined class LOGSPACE.

RDONLY ~ NRDONLY ~ PTIME ~ NPTIME ~ PSPACE = NPSPACE C REC C RE

where RDONL Y denotes those problems decidable by
" read-only

"
algorithms5 (i .e., without

rewritable storage), and PTIME and PSPACE denote those problems solvable in time
and space, respectively, bounded by polynomial functions of the problem

's input size.
Classes NRDONLY, NPTIME, NPSPACE denote the problems decidable within the same
bounds, but by nondeterministic algorithms that are allowed to or "guess

"
; and REC,

RE are the recursive and recursively enumerable classes of decision problems already stud-

Led in chapter 5.

Invariance of with respect to problem representation

The significance of this hierarchy is that a great number of practically interesting problems
(e.g., maze searching, graph coloring , time tabling , regular expression manipulation

, context-free grammar properties) can be precisely located at one or another stage
in this progression.

If such a problem P is complete for class C, then it is "hardest" in the sense that if it lay
within the next smaller class (call it B with B ~ c), then every problem in class c would

also be in class B, i .e., the hierarchy would "
collapse

" there, giving B = c . Complete

problems are known to exist and will be consb"ucted for every class in the "backbone "

except for RDONL Y (since no smaller class is present) and REC (for more subtle reasons.)

15 .8 Intrinsic characterizations of LOGSPACE and PTIME

The classes LOGSPACE and PTIME have been traditionally defined by imposing space,

respectively time, bounds on Turing machines. We will give two "intrinsic" characteri-

zations, free of any externally imposed bounds. In particular, we will see that LOGSPACE
is identical to the class RDONL Y of problems solvable by WHILE-programs that do not
use the cons operation; and that PTIME is identical to the class R DO N Lyrec of problems
solvable by the same programming language, extended by recursion. We anticipate the

klog (ldl> for some k and all d

. Read-only counter programs
nomial in Idl

Intrinsic characterizations of LOGSPACE and PTIME 247

in which each counter is bounded by Idl , or a poly -

. GOTO programs without " cons ,
" i .e., which use no additional space at all , beyond

the input d

first result briefly as follows .

Read-only computation models A one-tape Turing machine with input length n can

run for time 20(n), i .e., exponential time, without ever moving its read/ write head beyond

the boundaries of its input sUing d. This time bound is " intractable,
" i .e., well

beyond the running times of practically usable algorithms . This problem thus motivates

a study of space bounds that are small enough to give running times closer to

practical interest: smaller than n = Idl, the length of the input .

A solution is to use " read-only
" models that allow only read-only access to the input

value d and, when measuring program space consumption , to count only the
"
workspace

" that is used beyond the input length . (This is intuitively reasonable, since

read-only input will remain unchanged during the entire computation .) We will see that

the following all define the same class of decidable problems:

. Read-only Turing machine programs for which the work space is bounded by

Further, all problems in this class will be seen to lie in PTIME (though whether the class
subset

More information about the scope and historical development of complexity theory may
be found in the surveys [14, 16, 27, 60, 139]. Broadly encompassing surveys of complete
problems may be found in the books by Garey and Johnson, and by Greenlaw, Hoover,
and Ruzzo [49, 53]. The approach taken in this book stems from article [SO], and [83]
contains a preview of some of its results on complexity .

248 Ovez :View of Complexity Theory

is a proper

References

of PTIME is still an open question).

16 Measuring Time Usage

Some simplifications16.1.1

For technical convenience we make some small changes in the machine or programming

models seen earlier , and precisely define program running times in the revised computation

models . The main changes are the following . None affect the class of problems

representations may be encoded. Their aim
,tions within limited time or space resources

that

Parts I-ill concerned only the limits of computability and completely ignored questions
of running time and space, except for the very informal treatment of time in chapter 6.

In the remainder of the book we will need to be much more precise about running
time and space: partly to be able to prove theorems concerning what can or cannot
be done within various resource bounds; and partly to justify that these results reflect
facts about real-world computations (at least in contexts where resource bounds may be

expanded whenever needed).

16 .1 Time usage in imperative languages

Functional languages as well as imperative ones can be classified by time and space us-

age, but require more subtle definitions because of properly timing function calls and
returns, and accounting for implicit space consumption caused by recursion. For simplicity

we ignore them, except in some special circumstances.
In an imperative language, a computation is a sequence of state transitions p ~ si -+

S2 -+ . . . -+ St. Two tree-manipulating imperative languages will be the main focus: the

language GOTO already seen, but restricted to data with only the atom nil ; and the

language I of section 4.2.

can be solved, though some problem
's

is to provide better descriptions of computa
(with fairer cost assignments, or technically more manageable.)

. In WHILE, GOTO and F, the only atom used is nil .

. A fixed input set, namely {O, 1 }
* or a subsetD Ol of D isomorphic to it will consistently

be used. The motivation is to make it easier to compare various models
without having continually to invoke data coding and decoding functions .

16.1.2 The unit -cost time measure

We regard 0, 1 as standing for standard encodings in D of nil and (nil . nil) , respec-

following grammarD
Ol)

250 Measuring TJme Usage

~

t if P ~ si -+ S2 -+ . . . -+ Sf, and si = (1, Readin(d , and St is final
.1. otherwise

This associates with any completed computation p I- si -+ S2 -+ . . . -+ St the number of
transition steps t it takes. This seems reason ably faithful to daily computational practice

, but some special cases can be questioned: the cost of cons and - 1 in the GOTO

of { a, 1} * and a subset of D

D Ol : := nil I (nil D Ol) I nil .nil).

tim~ (d)

tively. Clearly any D- value in the set D Ol generated by the

Recall Definition 6.1.1 of a timed programming language L. The simplest time measure is
the unit cost time measure, quite commonly used in complexity theory :

Definition 16.1.1 For an imperative language L, the function tim ; : L- programs - +

(L- data - + NiL) is defined as follows , for any p EL - programs, dE L- data:

language, and the cost of RAM operations in case register contents or memory sizes become

extremely large. These will be discussed carefully below in sections 17.1 and 16.5.
A "non-unit -cost" measure will account for differences in time that executing individual

instructions may take. The idea is to assign a cost to each instruction as it is
executed (perhaps depending on the current store 0'), and to let the cost of a computation

be the sum of the costs of its individual steps.

16 .2 Relating binary trees and bit strings

Before continuing, there is a difference in data sets that must be reconciled: Turing machines
read bit strings, and counter machines read numbers, whereas our WHILE, GOTO

and other languages read binary trees. Function CN of section 8.3.2 provides an isomor-

phism between numbers and bit strings, so all we need is a way to represent a bit string
in {a, 1}

* as a binary tree in D, and vice versa.

Comparing times -be. ! Ween computation models 251

can be regarded as a string from {O, 1 }
*. Further, string a 1 a2. . . ~ E {O, 1 }

* with a; E

{ 0, 1} can be regarded as an element of D Ol by the coding c : {O, 1 }
* -+ D Ol defined by

using Lisp list notation . (The order reversal is inessential , only a technical convenience

for use in later consb"uctions .)

Treating all of 0

Our resbiction to the subset 001 of 0 makes things simpler, but is by no means essential.

A coding of arbitrary 0 elements is easy to define and work with , with for example
Co : 0 -+ { O, 1 }

*
representing dE 0 by its "Polish prefix form " in {O, 1 }

*. This is obtained

by traversing its tree structure in preorder, writing 0 every time nil is seen, and 1 every
time an internal "cons" node is seen.

The constructions seen below could be carried out using the full 0 (or even with 0 A
for a fixed atom alphabet A), at the expense of some complications (see Exercise 16.3).

16 .3 Comparing times between computation models

We now refine the definition of "simulation ,
" as formulated by Definition 3.1.2, to include

time factors. For complexity purposes it will often be necessary to compare the

efficiency of source and target programs of some simulation .

The following is expressed assuming two timed languages, L and M with L-data =

M-data; but it is easily generalized with respect to simulations with respect to a 1-1 data

Definition 16 .3.1 Suppose one is given two timed programming languages , L and M

with L -data = M-data . Then by definition 1

I To avoid trivial exceptions, the requirements only apply to programs p and languagesS such that Idl ~

time: <d) for all data d. This is not unreasonable, since a program running in time less than this would be

unable to examine all of its input data value.

�

c(ata2 . . . a V = (akak- t . . . at) E Dot

coding function c : L-data - + M-data.

252 Measuring TJD1e Usage

ti~ (d) ~ ap . timelp(d)

In words: M can simulate L up to a linear time difference. Here ap is called the
overhead factor. It can be either less than 1 (speedup) or greater than one (slowdown).

3. L =ptime Miff L ~ptime M and M ~ptime L. In words: L and M are polynomially equivalent.

4. L ='intime Miff L ~'intime M and M ~'intime L. In words: L and M are linearly equivalent.

Lemma 16.3.2 Let xxx be either ptime or lintime. If L ~%%% M and M ~%%% N, then L ~%%% N.

Consequently L ~%%% M ~%%% L implies L =%%% M.

Proof: The composition of two polynomials, or of two linear functions, is also polynomial
or linear. 0

16.3.2 Program -dependent or - independent overhead

We now define a more refined version = 'intime- pg- ind of linear-time simulation . This
subtle difference will turn out to be important in chapter 19 where it will be proven that
constant factors make a difference in the problems that can be solved in linear time, for
the languages I and F. Therefore we describe this simulation more explicitly .

Definition 16.3.3 Suppose one is given two timed programming languages, L and M
with L-data = M-data. Then by definition

1. L :j ' intime- pg- ind M if there is a constant a ~ 0 such that for every L-program p there
exists an L-program q such that I[pDL = I[qD

" and for all dE L- data

time'4(d) ~ a . time; (d)

In words : M can simulate L up to a program -independent linear time difference (or

overhead factor) a.

L ~ptime M if every for L-program p there exists an L-program q such that I Ip D L
= I Iq D" and there is a polynomial f (n) such that for all dE L- data

tim d) ~ f (ti~ (d

In words: M can simulate L up to a polynomial time difference.
L ~'intime M if every for L-program p there exists a constant ap ~ 0 and an L-program
q such that I Ip D L = I Iq D" and for all dE L- data

2. L = 'intime- pg- ind Miff L ~'intime- pg- ind M and M ~'intime- pg- ind L. In words: Land M

Lemma then L ~'intime- pg- ind N. Con-

implies L ='intime- pg- ind M.

Proof: The composition of two program -independent linear functions is also aprogram -

independent linear

Tree- manipulating programs 253

16.3.4 If L ~'intime-pg-ind M and M ~'intime-pg-ind H,
sequently L ~'intime-pg-ind M ~'intime-pg-ind L

16.4.2 GOTO revisited

The language GOTO will henceforth have the following syntax (slightly restricted) and
semantics, and running times:

are strongly linearly equivalent.

function .

The only difference between program-independent and program-dependent linear
overhead as in Definition 16.3.1 is in the order of the quantifiers. The program-

independent version is smcter since the same constant a has to suffice for all programs
p.

16.4 Tree -manipulating programs

16.4.1 Henceforth : only atomic comparisons

In section 2.4 it was shown that any program using Uee comparison operator =? could
be replaced by an equivalent one using only comparison of atoms atom=? Consequently

in the remainder of this book we assume that tree-manipulating programs only
compare values only against the atom nil , and that such a comparison has unit time
cost. Remark: this avoids any need to have either of the operations - ? and atom- ?,
since their effects can be achieved using if and while .

Definition 16.4.1 Let program p = It . . . Im, and let Vars be a countable set of variables.
We use the conventions de ED and X, Y, Z E Var s. The informal syntax of GOTO is given
by the following grammar for insb"uctionforms where dE D:

I : := X := nil I X := Y I X := hd Y I X := tl Y
I X := cons Y Z I if X goto t' else t"

Conceptually, this is very simple: one counts one time unit for each operation or test

performed on data during execution. Technically, we use parts of the definitions of E
etc. from section 2.2.

Definition 16.4.2 Given a store 0' containing the values of the variables in an expression
E, the function 7 maps E and 0' into the time 7 ([ED O' EN taken to evaluate E. Function
7 : Expression -+- (Store P -+- N) is defined by:

7 ([I D O' = 1
7 ([nil D O' = 1
TIlhd ED O' = 1 + T Il ED O'
7 ([tl ED O' = 1 + T Il ED O'
7 ([cons E FDO' = 1 + T Il ED O' + 7 ([FDO'

0
Given a store 0' , the relation C I-time 0' ~ t express es the fact that t time units are expended

while executing the command C, beginning with store 0' . (If command C does
not terminate in the given store 0' , then there will be no t such that C I-time 0' ~ t.) By
definition C I-time 0' ~ t is the smallest relation satisfying:

1 : = E I-time O' ~ t + 1 if 7 ([ED O' = t

C; D I-time 0' ~ t + t' if C I-time 0' ~ t, C I- 0' -+- 0" ,
and D I-time 0" ~ t'

while E do Cl-time O' ~ t + 1 if E([ED O' = nil and 7 ([ED O' = t

while E do C I-time 0' ~ t + t' + 1 if E([ED O' ~ nil ,7 ([ED O' = t,
C I- 0' -+- 0" , and while E do C I-time 0" ~ t'

0

measures16.5 Fair time complexity

Since all our programs are imperative , the only natural cost to assign to a computation
is the sum of the costs of its individual steps . The " unit cost per operation

" model will

254 Measuring TIme Usage

Labels .e in if statements must be between 1 and m + 1. Program semantics I Ip D
GO To

(d)

is as in Definition 7 .2. 2 . Program running time timeg
O TO(d) is given by the unit - cost

measure of section 16 .1.2. 0

16.4.3 Running times of WHILE programs

consistently be used unless other measures are specified. Thus Turing machines and the
GOTO language use unit cost, whereas I uses time as specified by Definition 16.4.2.

One-step instruction times for random access machines can be defined in more than
one way, and some are closer to daily computational practice than others. Even though
the exact choice of instruction set is unimportant for computability in the limit , it becomes

important when talking about computing within limited resources.
Time measures on the counter machine CM do not give much insight . The problem

is that the CM instructions are too weak to solve interesting problems within reasonable
time, since in anyone instruction , a counter may change in value by at most 1. We
will see, however, that a reasonable measure of computation space can be defined for a
counter machine.

The full RAM model has somehat the opposite problem under the unit -cost model , if

memory cells are unlimited in value: its instruction set is typically too strong to yield
a reasonable time measure. The problem is one of data value size: if instructions such
as X: =Y+Z are allowed , executing X: =X+X k times will multiply X's value by 2k; and an
instruction X: =X* X (allowed on many RAM models) can, if repeated, construct extremely
large values within short time.

A symptom of this problem is that some problems known to be "NP-complete
" (presented

later in this book) can be solved in polynomially many steps on the unlimited
RAM model [151]. One solution to this problem is to use a nonuniform cost measure, in
effect "

charging
" instructions according to how large the values are that they manipulate

. This leads to the logarithmic cost model discussed below.
Another solution , which we will use, is to limit the RAM model to be a "successor

RAM" or SRAM, with indirect addressing to load and store data, but only with data computation
instructions X: =Y+1 or X: =Y- 1. We will see that this yields the same class

PTIME under unit time costing as Turing machines and other models. Further, it is essentially

equivalent to " impure Lisp," meaning Lisp with instructions to change already
existing cells via operations such as SETCAR! or RPLACA. Another equivalent formulation

is Schonhages storage modification machine [152].

Fair time complexity measures 255- -

16.5.1 Random access machine instruction times

There is some controversy about what a " fair charge
" should be for instruction times on

a RAM, for at least two reasons. First, the model is close enough to actual machine hardware
instruction sets to relate its computation times to those we deal with in practice

(unlike , for example, the counter machine). Second, the model allows arbitrarily large

256 Measuring Tlnte Usage- -

natural numbers to be stored in its registers or memory cells - a feature in conflict with

the first .

It is not easy to get around allowing arbitrarily large values in memory cells, since

if one assumes all cells are finite then the machine becomes a kind of finite automaton.

While interesting in themselves and useful for many purposes (e.g., lexical analysis in

a compiler), finite automata are not Turing complete, and daily Computer Scienceal -

gorithms become quite unnatural when truncated to fit within finitely bounded word

sizes.

We here have a paradoxical situation : that the most natural model of daily computing

on computers, which we know to be finite , is by an infinite (i .e., potentially
unbounded) computation model . This question can be discussed at great length, which

we will not do here. One element in such a discussion, though , would surely be the fact

that we carefully design and build our computers to provide a faithful model of a mathematical

world , e.g., great attention is paid to ensure that an ADD instruction behaves as

closely as possible to the idealized mathematical addition function .

Consequently it would seem unnatural not to model our descriptions of computer

capacities on mathematical idealizations , at least until one exceeds limits due to word

size, run time cost, or memory capacity. It is also relevant that today' s computers are

extremely fast and have very large memories, so such limitations are not encountered

as often as in the earlier days of our field .

Back to the point of assigning fair costs to the RAM model : factors relevant to " fair

costing
" can include :

Pair time complexity measw - es 257

16.5.2 Two time cost models for the RAM

The unit -cost measure.
insb' Uction It '.

log i + log u(i)
log i + log u(i)
logi
log i + log u(i)
log i + log j + log u(j)
logi + logj + logu(j) + logu(u(j
logi + logj + logu(i) + logu(j)

As for Turing machines, this charges 1 step for any current

t' else t"

Xi := Xi +l
Xi :- Xi - l
Xi := 0
if Xi =O goto
Xi := Xj
Xi := <Xj >
<Xi > := Xj

The logarithmic -cost measure. This charges to each operation a time proportional to
the number of bits occupied by its operands. The reasoning is that data are traditionally
stored in binary form , and it takes more time to manipulate longer data values. Further,
the same reasoning is applied to address es or register numbers involved in indirect fetch
and store operations.

Some literature accounts for point 1 above, some accounts for point 2, and most of
the literature ignores the remaining points . Accounting for 1 and 2 gives the following
instruction time charge (ignoring constants). The idea is to "charge

" time proportional
to the number of bits manipulated by each ins~ ction when executed.

Instruction form Execution time , given store u

Which time measure is more realistic ? We will see that, when discussing polynomial
time bounds and the class PTIME, it makes little difference which time measure is cho-
sen. However , these factors become highly relevant if we discuss either or both of linear
time computability, or the effect of increasing both data and storage size toward infinity .

The assumption that both data and storage size tend toward infinity implies acom -

puting model where more and more hardware or circuitry is needed. It thus models
one aspect of distributed computing, e.g., situations involving very large data bases, but
not daily practice within a single stored-program computer .

In spite of the argument that one should "
charge

" time proportional to the address

length for access to a memory cell, or a dag or graph node, this is not the way people
think or count time when they program . Memories are now quite large and quite cheap
per byte, so most programmers need to take little account of the time to access memory
in external data storage.

Further, computer memories are carefully designed to make pointer access essentially
a constant time operation, sousers rarely need to be conscious of address length in order
to make a program run fast enough. In practice computer hardware is fixed : word sizes
or memory capacities cannot practically be increased on demand.

An analogy is with arithmetic : even though the computer certainly cannot deal with

arbiuary integers, it is carefully designed to model operations on them faithfully as

long as they do not exceed, say, 32 bits . Given this fact, programmers have the freedom
to assume that the computer faithfully realizes the world of arithmetical calculations,

thinking of his or her problem and ignoring the computer
's actual architecture unless

boundary cases arise.

Our choice of SRAM timing

We are especially interested in problems that can be solved within small resourceus -

age, for example linear time algorithms and those using limited storage (e.g., logarithmic
space). Such programs simply do not run long enough to fill astronomically many

memory cells, or to create long address es or values. Thus for the purpose of this book

we feel that the unit -cost SRAM model is more faithful to daily programming , and so
take it as our model . This view is biased toward problems with reasonable memory
requirements, where time is the limiting factor of greatest interest.

Fortunately, the SRAMro model above is so restricted that this cannot happen, but
if , for example, multiplication were allowed as a primitive operation, extremely large
values could be constructed in a short time, bringing the fairness of the unit -cost time

258 Measuring Tlnte Usage

measure into question.

16.3 The purpose of this exercise is to show how to modify the coding between bit

sbings in {O, 1 }
* and binary trees dE D Ol of section 16.2 to include all of D. Coding

co represents dE D by its "Polish prefix form ." This is obtained by doing a preorder
traversal of its tree structure, writing 0 every time nil is seen, and 1 every time an
internal "cons" node is seen.

Formally it is defined by co(nil) = O,co(d1 . d2) = 1co(d1)co(d2). Figure 16.1 shows
an example.

Fair time complexity measw - es 259

: bound on the slowdown of the translation in Propo-
0

n

nil nil

Ci) (nil . nil . nil) . nil . nil = 110110000

Figure 16 .1: Polish prefix codefi Jr a binary tree .

The exercise is to prove the following:

1. I Co(d)1 = Idl for all dE D.

2. Co is one-to-one.

Exercises

16.1 Find a program-independent
sinon 3.7.9.

3. Let the balance bal(x) of x = at . . . an E {O, 1}
* be the number of 1 's in x minus the

number of O's in x. Then x = Ci)(d) for some dE D if and only if bal(x) = - 1, and
bal(y) ~ 0 for every prefixy = at . . . ai of x with i < n.

The lemma gives a simple algorithm to determine whether a bit string corresponds to a
tree: initialize a counter to 1, and scan the bit string from the left. Add 1 every time a
1 is seen and subtract 1 whenever a 0 is seen. The string represents a tree if and only if
the counter equals 0 when the scan is finished, and never becomes negative.

Hint : Part 3 can be used for part 2. 0

The random access machine was introduced by Shepherd son and Sturgis in 1963 [155].
Discussions of the delicate issue of what is a fair time cost measure are found the the
book by Aho, Hopcroft and Ullman [2], and in articles by Schonhage and by Jones [151,
SO].

260 Measuring T1D1e Usage

References

17 Time Usage of Tree -
manipulating Programs

17.1 A DAG semantics for GOTO

To deserve its name, complexity theory must concern realistic models of program behaviour
. In this (admittedly low -level) chapter we examine several basic assumptions,

hoping that the discussion will give greater faith that our complexity models faithfully
capture intuitive complexity concepts.

As in the preceding chapter, nil will be the only atom used in any construction
or definition henceforth - even though for the sake of readability we may use other
atomic abbreviations in examples, for instance 0 and 1 as alternate ways to write nil
and (nil . nil) . Extension to multiple atoms is straightforward but more complex.

17.1.1 Justification of unit cost timing for GOTO programs
We have assumed every elementary operation cons, hd, etc. as well as every conditional

to take one time unit in GOTO, and similar costs appear in WHILE. These costs may
seem illogical and even unreasonable since, for example, the command X : - cons Y
Y binds to X a b"ee with more than twice as many nodes as that bound to Y.

In fact, it is reasonable to assign constant time to a cons operation and the others
using the data-sharing implementation techniques common to Lisp and newer functional
languages. In this section we give such a semantics for GOTO.

The first subsection introduces a certain form of graphs. The second subsection reveals
the connection between these graphs and elements of D. The third subsection uses

the graphs to state the new semantics and the fourth subsection proves the correctness
of the new GOTO semantics with respect to the standard GOTO-semantics. The last subsection

sketch es a Pascal-like implementation of the semantics, which will be used in
later chapters.

Definition 17.1.1

1. A DAG is a directed acyclic graph.
2. A data-storage graph (DSG for short) is a DAG with the following properties:

(a) Every node has either no out-edges or two out-edges. The first is called an
atom-node, and the second is called a cons-node.

262 TIme Usage of Tree-manipulating Programs- -

~.
>

~ (
I)

~(
I)

u"
. d

IC
- '

~.
: S

-
: S

.
~

6~~

tI ' ! E , " i ; -

.
; ~

 8 ~

~

~

~

~

From H) to DSGs and back

elements

To view a DSG 15 as an element of D we unfi Jld it from a given node n to give

nn
nJ. 1 nJ.

17 .1: Two example DSGs

of D as DSGs. and con-

(b) For every cons-node, one out-edge has label I and the other has label r . The

node pointed to by the edge with label I is called the left child of the cons-

node, and the node pointed to by the edge with label r is called its right child.

(c) There is only one atom-node, named node 0, to represent atom nil .

3. A rooted DSG is a DSG together with a designated node chosen as the root . A DSG

may have nodes that are unreachable from its root .

4. Suppose 0 is a DSG with two nodes nt , n2, and let n be a fresh node not already
in o. Then add(0,nt ,n2,n) is the DSG obtained ,by adding the node n to 0, and

adding an edge from n to ntlabelled " and a node from n to n2 la belled r. For
instance, the DSG in the right of Figure 17.1 could arise from the one to its left by
an add(ont , n2, n) operation . 0

Figure 17.1 shows two example DSGs; consider the leftmost one. (It represents
 nil . nil) . (nil . nil , which can also be written as (1 0) or even (1. 1) .) For

simplicity , the labels I and r have not been written ; instead the same information is represented
by the physical horizontal relationship between the edges on paper. There is

in reality only one node labeled nil , but we have duplicated it to make it easier to read

the diagrams.

- - -- A VAG semantics for GDTD 263

For example, let 0 be the lefbnost DSG in Figure 17.1, and n its topmost node. Then

unfto,n) = nil . nil) . (nil . nil = (1 0) .

The idea in the DAG semantics is that during execution in GOTO a DSG 0 is built ,
and rather than binding every variable to a dEll) we bind the variable to a node in the
DSG by an environment p : Vars (p) -+ Dag Nodes. Where a variable before was bound
to atom nil it will now be bound to atom-node 0, and where it was bound earlier to a

pair (dt .dv it is now bound to a cons-node. An example: the reverse program seen in
section 7.2.

0 : read X;
1: Y:= nil ;
2 : if X then goto 4 ;
3 : goto 8 ;
4 : Z := hd X;
5 : Y := cons Z Y;
6 : X := tl X;
7 : goto 2 ;
8 : write Y

unf(tS,n) EO, see below.

the roots of the DSGs for d 1 and d2, respectively.

Definition 17.1.3 Given a DSG c5 and a node n in c5 defined = unftc5, n) E])) as follows.

unf<6, n) =

{

where 0 is the atom -node for nil

(dt.d2) Where unftn1,tS) = d1 and unftn2,tS) = d2 and
n is a cons-node with left child ni and right child n2

Consider this program , applied to input (1 0) . The left part of Figure 17.2 illustrates
the D S G at the start: X is bound to DAG structure for (1 0) = nil .nil) nil) , while
Y and Z point to nil . At the end of execution two more node~ have been allocated and
Y points to the node denoting the result (0 1) , the reverse of input (1 0) .

Definition 17.1.2 Given a dE]I) define a DSG d = dag(d, n) with root node n as follows .

1. if d is the atom nil then d consists of the dag with one node named o.

2. if d = (dl .d2) then d has a root n, which has edges to nl and n2 where nl and n2 are

�

DAG semantics

In general the DAG semantics is as follows.

Definition 17.1.4 (DAG semantics for GOTO). Let program p = 1 : 11 ; . . . ; m: im with

both input and output via variable X, and let Vars (p) - {X, Z1. . . , Zn} be the set of all

variables in p.

1. A store for p is a pair (6,p) where 6 is a DSG and p is a mapping from Vars (p) to

nodes of 6. A state for p is a pair (t',0') where 1 ~ t' ~ m + 1 and 0' is a store for p.

The initial store Ub(d) for p with input d is (60, po) where 60 = dag<d,l) and

Po = [X I-+- I,Z11-+- 0, . . .,Zn I-+- 0]

The rules for the DAG semantics of GOTO appear in Figure 17.3. We define

I[pDDAG(d) = e iff (1, (60, po -+ . . . -+ (m + 1, (6,p and unf(6,p(Y = e

4. We define the running time of p on input d by:

(nil (nil . nil =

 nil . nil) nil) = (l 0)

(nil . nil) = 1 Z (nil . nil) = 1

~
nil nil n

nil = 0 ni . O-<=Z nil -<=X

Figure 17 .2 : First and last DSG in execution of rellerse

2 .

tim ~
AG(d) = tiff (1, (60, po - + . . . - + (m + 1, (6, p ~ -

~ ""'

t+ l states

A DAG semantics for GDTD 265- - - - - - - -- - -- -- - - - - - - - - - -

s
(

o
,

p
,

a
)

=

(
0

,
0

) wWhere 0 is o

'

s nil node .

s
(

o
,

p
,

y
)

=

(
o

,
p

(Y

s
(

o
,

p
, consZY)

=

(
add

(
o

,
p

(
Z

) ,
p

(Y) ,
n

) ,
n

)
Where n is fresh .

(
o

,
n

) If

p
(Y)

is a cons - node

s
(

o
,

p
,

hd
Y)

=

with left child n

,
else

(
0

,
0

) Where 0 is o

'

s nil node .

(
o

,
n

)
If

p
(Y)

is a cons - node

s
(

o

,
p

,
tlY

)

=

with

right

child n
,

else

(
0

,
0

) Where 0 is o

'

s nil node

(
t '

,
00

)
- + -

(
t '

+
1

, (
0

'

,
p

[
X ~ n

]
If It '

=
X :

-

E
,

00
=

(
o

,
p

) ,
s

(
o

,
piE

)

=

(
0

'

,
n

)

(
t '

,
oo

)
- + -

(
t "

,
oo

) If It '
=

if X

gotot

" else t '

"

and

p
(

X
)

~

0

(
t '

,
0 '

)
- + -

(
t '

"

,
0 '

)
If It '

=
if X

goto

t " else t '

"

and

p
(

X
)

=
0

Proof. First prove that (60, po) ' " 0'0 for the initial stores in the DAG and standard semantics
(use the property that unftdag<din),n) = d). Then prove that (6,p) ' " 0' implies

<i ,O') -+- <i ',O") for some 0"

(l , (6, p -+ (f , (6' , p' for some (6', p')

DAG semantics are equivalent.

Figure 17.3: DAG Semantics of GOTD-programs, where 0' = (p,6).

17.1.3 Correcmess of the DAG semantics

Informally a DSG store (6,p) corresponds to a a O TO store 0' : Vars (p) -+ D if p and
0' bind the same variables, and unfolding the node bound to Z by p gives the value
bound to Z by 0' .

Definition 17.1.5 Correspondence (6,p) "" 0' between a DSG store (6,p) and a a O TO store
0' is defined as follows .

(6,p) 0' iff dom(p) = dom(u) and unft6,p(Z = O' (Z) for all Z E dom(p)

Theorem 17.1.6 For any program p, I Ip D DAG(d) = I Ip D GO To(d), that is the standard and

We now give a Pascal-like implementation using arrays of the DAG
chart language GOTO. This will be used for several purposes:

semantics

17.2.1 Simulating input -free programs

The first is now the main goal: to make it evident that each operation takes time
bounded by a constant. As usual we assume there is only one atom, nil (the technique
is easily extendible to any fixed finite set of atoms). The implementation technique is
easier to explain for an input -free program , so we begin assuming no input , and then

explain how to account for initialization for input data.

Given a GOTO programp = 1 : 11; . . . ; m: im . Let {X, Z1 . . . , Zk} bethesetofvari -

abIes in p with output through variable X. Construct a Pascal-like simulating program
as follows :

266 Tlnte Usage of Tree - manipulating Programs

17.2 A Pascal-like implementation of GOTO

: of flow

16.4.3 to WHILE programs.

. To prove that the problems solvable by functional F programs without cons are

exactly those solvable in polynomial time, in section 24.2.

. To prove that boolean program nontriviality and Horn clause satisfiability are
"
complete for PTIME," meaning that they are in a sense "most difficult " among

all problems solvable in polynomial time (chapter 26).

and that if these two reductions hold then (8', p
') ' " 0" . It follows that given a program

p = 1 : It ; . . . ; m: im and some input d, either

1. Neither the standard nor the DAG semantics ever arrive at label m + 1;

2. Both the standard and the DAG semantics arrive at label m + 1 in t steps, and the

final states (m + 1, (6, p and (m + 1, u) satisfy (6,p) ' " uH so, then unft6 , p(Y =

u (Y), so the final result in the two semantics are the same . 0

A Pascal -like implementation of a O TO 267

The idea is that the two parallel arrays Hd, Tl hold all pointers to hd and tl substructures
. Variables assume only node pointers as values in this implementation . A variable

has value 0 if it is bound to nil , and otherwise points to a position in the arrays Hd and
Tl arrays which contains pointers to its first and second components.

For simplicity we handle allocation by using variable Time to find an unused index
in these arrays

1. Command It , which simulates command It for 1 ~ i ~ m + 1, is defined
in Figure 17.4. Note that each of the simulation sequences above takes constant time,
under the usual assumptions about Pascal program execution.

Pascal-likeimplementation

We leave the actual programming of the wri teout procedure as an exercise for the
reader (Exercise 17.1).

(. 0 encodes nil .)

*)
*)
*)
*)

Index = 1. . infinity ;
Node = O. . infinity ;
X, YJ Z1J . . . , Zk : Node;
Hd. Tl : array Index of Node;

: Index ; (. The current step number
Tl [O] := 0 ; (. So Hd and Tl of nil give nil

:= 0 ; . . . ; Zn := 0 ; (. Initialize all vars to nil
(. Step number initially 1

(. Code simulating p ' s instructions .)

- - -
m : I ; ; ; ;
m+ 1 : writeout ;

Figure 17.4: of GOTO.

1 A more realistic implementation could maintain a " free list " of unused memory cells .

TimeHd[O] := 0;X := 0; ZlTime: = 1;1 : Ii;2 : Ii;
type

var

17.2.2 Data initialization

Suppose now that program p has input d = (dt d2. . . dn) ED . This data has to be stored

into the Pascal data structures Hd, n . One way to describe this is to assume that variable

X has been initialized by the following sequence of instructions , inserted at the start of

p, where Zero indicates the always-present cell 0:

One := cons Zero Zero ; X : = Zero ; Initl ; . . . Initn ;

268 TIme Usage of Tree-manipulating Programs- -

where for 1 ~ i ~ n Ini ti is:

X := CODS Zero X

if ai = 0, else

X := CODS ODe X

This adds n + 2 instructions and so has the effect of incrementing every instruction label
in p by n + 3, so the simulation should now implement GOTO code if Z = nil goto
r else s in p by Pascal-like code if Z = 0 then gotor +n+3 else s+n+3.

The following indicates the initial DAG built this way for input d = (1 0) , coded as
 nil . nil) nil) .

Hd[O] = Tl [O] = 0: Head, tail of nil = nil
Hd[l] = Tl [l] = 0: Cell for One = (nil . nil)
X = nil at start , no values in Hd[2] or Tl [2]
Hd[3] = Tl [3] = 0: cons 0 onto Xn

nJ.l nil X = 4, Hd[4] = 1, Tl [4] = 3: cons 1 onto X

An alternative approach. Some readers may object to the approach of building the input
into the Pascal-like simulating program. While we will find this convenient later, there
is a simple alternative: Just replace the line

X := Zero; Zl := 0; . . . Zn := 0; (* Initialize all vars to nil *)

above by
read in ; Zl := 0; . . . Zn := 0; (* Initialize X to d, others to nil *)

where procedure readin reads d = (dl d2. . . dn) and initializes Hd, Tl and sets Time
to n+3 (all just as the initialization sequence above would do). This is Exercise 17.2.

A Pascal . like implementation of GDTD 269

Trace of an example simulation . Consider the reverse program seen before, and
assume that it is given input X = (1 0) , coded as nil . nil) nil) , which is represented

in the Hd, Tl table positions 0 through 4. This would give rise to the sequence
of memory images in Figure 17.5, where

Instrt
Ut
Hdt, TIt

the insbuction about to be executed at time t
the DAG cell variable U is bound to at time t
the final values of Hd [t] , Tl [t] , respectively

represented

-

This models the right part of Figure 17.1, except that all of nil , a and b are

by cell number O.

Figure 17.5: Some values.

�

Memory reuse

Practical implementations of programs manipulating b"ee-structured data re-use memory
cells, in contrast to the method above which allocates a new cell every time the clock

ticks. This is often done by organizing all free cells into a single linked list called the

freelist. A cons operation can be implemented by detaching a cell from the freelist, and

assigning its two fields . When memory is exhausted (assuming it is finite , unlike in

the model above), a garbage collection phase ensues, in which cells that have no pointers
to them are located and collected together into a new freelist (assuming there are any
unused cells, else execuition aborts). Describing such methods in more detail is beyond
the scope of this book.

Exercises

stem from McCarthy
's original work

be found in Henderson's book [64].

References

The implementation ideas sketched in this chapter
on Lisp [118]. A more pedagogical b"eatment can

Relevant ideas are also discussed in [80, 151].

17.1 Write a Pascal-like program
"wri teout (index) " . Its effect should be to print out

the value in D denoted by position index in the Hd and Tl arrays. 0

17.2 Write a Pascal-like program
" readin ." Its input should be a list (al ' " an) ED Ol.

Its effect should be to initialise the Hd and Tl arrays so that cell n + 2 denotes the value

(al . . .an) . 0

18 Robustness of Time -bounded Computation

18.1 Classifying programs by their mnning times

We begin by defining a complexity class to be a set of programs that run within a certain
resource bound 1. Next , we define the sets of problems solvable by programs running
within these classes; for instance the well -known class PTIME is defined below to be

of time-boundedprO K Tams:

L time<f(n = {p EL-program I tim~ (d> .$ f (ldl> for all dE L-data]
1 This is somewhat more concrete than is customary; the literat Ul' e mostly defines a complexity class to be a

set of problems. One reason to differ is that the number of programs in a given language is countably infinite ,
whereas the number of problems, e.g., subsets of { O, I }

. , is uncountably infinite .

define three sets

In chapter 8 the term " robust" had a precise meaning: that the classes of problems
decidable by a wide range of computation models are essentially invariant aside from
inessential data encodings. Computing in a resource- limited context leads to a new

aspect of robustness. Ideally, resource-bounded problem solvability should be:

1. invariant with respect to choice of machine model ;
2. invariant with respect to size and kind of resource bound (e.g., quadratic time,

polynomial space, etc.); and

3. invariant with respect to problem representation (e.g., does the choice to represent
a directed graph by an incidence matrix or by adjacency lists make a complexity
difference).

In this chapter we will affirm the first two points for polynomial time bounds, and leave
the last to chapter 25. As before we are only interested in decision problems expressible
by a "yes-no" answer, and not in computation of functions .

exactly the set of problems solvable by programs in W H I LE Ptime.

Consequent to the discussion of section 16.2, we assume L-data= {O, 1 }
* for every

language L. Recall that Idl is the size of a data value d: the number of symbols in it if d
is a string in {O, 1}

*, and the number of nodes if d is a tree in D.

Definition 18.1.1 Given programming language L and a total function f : N -+ N, we

272 Robustness of Tlnte-bounded Computation-

The corresponding classes of decision problems solvabl
~

within limited time are easy to

LINTIME~ and impliesLemma 18.1.3 L ~'intime M implies LINTIMEL ~
LINTIMEL = LINTIMEM and PTIMEL = PTIMEM.

Proof. Let A E LINTIMEL. Then A is decided by some L-program p such that ti~ (d) ~
a . Idl for some a and all d. By Definition 16.3.1, L ~'intime M implies there exists an M-

program q such that I Ip D L = I Iq D", and time'c:(d) ~ b. ti~ (d) for some b and all data d.

Combining these two we get

u L
time (). n . p (n LPtime =

00
L' intime =

ULtime
().n.kn)

k=O

so L ='intime M

ti~ (d) ~ b. ti~ (d) ~ b. a .Idl

Consequently A E LINTIMEM. The rest of the proof is very similar.

" a polynomial

d~fin ~-

Definition 18.1.2 Given programming language L and a total function f : N -+- N

1. The class of problems L-decidable in time f is:

TIMEL(f) = {A <; {0, 1}
* I A is decided by some p E Ltime<f(n }

2. The class of problems L-decidable in polynomial time is:

PTIMEL = {A <; {0,1}
* I A is decided by some p E LPtime>}

3. The class of problems L-decidable in linear time LINTIME is:

LINTIMEL = {A <; {O, 1}
*

I A is decided by some pEL
lintime

}

Recall the several simulations and constructions from chapter 8. We now do time analyses
of some of them, and give another construction . Recall from Definition 16.3.1 that

notation :ilintime
- pg- ind is used for linear-time simulation overhead with aprogram -

independent constant factor Q.

Theorem 18.2.1 TM :ilintime
- pg- ind GOTO

Proof Let program p = II . . . im bea Turing machine program using alphabet {Oil ,B} .

By the consb"uction of section 8.5, each Turing machine insb"uction is mapped into a

nonlooping sequence of GOTO insb"uctions. Thus the total GOTO program run time is
slower than the Turing machine by at most a constant factor. This factor is independent
of program p, giving a lintime-pg-ind simulation . 0

chapter 8 showed how one could compile a GOrO program to an equivalent CM program .
That consb"uction will not do for time analyses, though , for several reasons. First, the CM
is too limited for polynomial time to be meaningful . Second, the translation of chapter 8
took no account of data sharing (as used in the DAG semantics), so the time to simulate
X : =cons X X, for instance, would be unrealistically high , even if the first problem were
somehow overcome.

Instead, we will show how to compile an GOrO-program p into an equivalent SRAM-

program . The idea is simply to implement the DAG semantics of section 17.1 on the
SRAM model .

li " ' i ", , -

Proof: section 17.2 sketched a Pascal-like implementation of a GOTO program. The implementation
assumed data to be stored in registers representing the tree structures of

GOTO programs by means of graph structures: The SRAM memory represents a DAG,
which in turn represents a memory state of the GOTO program being simulated. The
simulation sketched in section 17.2 preserves these representations after simulating any
one GOTO instruction.

The running time of the Pascal-like program from the construction of Figure 17.4
is clearly at most linearly slower (by a program-independent constant factor) than the

Robustness of polynomial time 273

18.2 Robustness of polynomial time

18.2.1

.pg- ind SRAMTheorem 18.2.2 a O TO ~

equivalent SRAM program , as in Exercise 18.6.

Given these representations, each GOTO operation is conceptually realized by a simple

operation on the DAG , and in practice is realized by a bounded sequence of SRAM

operations. Further, the running time of the SRAM program is shown in Exercise 18.6 to
be slower than the GOTO program from which it was obtained by at most aprogram -

independent linear factor. 0

18.2.2 Compiling SRAM to TM

Theorem 18.2.3 Under the unit -cost measure, s~

gRAM-program p =Proof: Assume the consb"uction of section 8.4 is applied to an
II ; 12; .. . I m, yielding as-tape TM-program q with Hp DSRAM = H qDTM.

Since an gRAM-program can at most increase any cell Xi by 1 in one step, none of the
values Vi can exceed t in value (since the initial value of every cell Xi is 0.) Further, at
most t of the values vo, VI, . . . can be nonzero, since initially all are zero except for XO.

This has as consequence that in the Turing machine simulation of section 8.4, the
Address and Contents tapes can have length at most O(t log t) bits . The same length
bound applies to the accumulator and scratch tapes.

Now, a time analysis: one instruction of gRAM-program p is simulated on the Tur-

ing machine by at most five scans and copyings of the various tapes. Thus one step
of p is simulated by at most O(t log t) Turing machine steps. Consequently no step
takes time more than time~ (d) ~ a . u log u to simulate, where u = tim4

RAM(d). Definition
16.3.1 assumes all of d is read, so n = Idl ~ tim4

RAM(d) = u. Thus one simulation

step takes time at most O(u log u) steps. As a result the entire u-step simulation takes
time at most O(u2log u) Turing machine steps. This yields time~ (d) = O(u2log u) where
u = tim4

RAM(d). This is polynomially bounded , as required . 0

18.2.3 The polynomial -time robusbtess theorem

Theorem 18.2.4 PTIME TM = PTIMEGOTO = PTIMESRAM

274 o/ TIme- bounded Computation

a O TO program from which it was obtained . The consbuction can be refined to yield an

[~ ptime TM

[0 t-+ vo, l t-+ Vt, . . .,k t-+ Vk, . . .]

Suppose that program p, after executing t steps on an input d of length n, has store

This theorem justifies writing only PTIME, since the class of problems so defined s independent
of (any reasonable) computing model used to define it . Remark: using the

logarithmic cost measure, the general RAM is polynomially equivalent to the models
above; see Exercise 18.7.

18.3 Linear time

Some of the following results concern programs in the functional language F, leading to
the need to define its time usage function tim~ (d).

18.3.1 Running times of F programs
Consider program p = EO whererec f (X) = B. The following uses the F semantic
function [: Expression -.. Expression -.. D -.. D.l as defined in Figure 9.1. Given
a value v of the variable X in an expression E, the function T maps E and v into the
time nE Dv EN taken to evaluate E. Further, function P maps p and d into the time
Pl[pDd EN taken to run p on d, i.e. Pl[pDd = ti~ (d).

Definition 18.3.1 The functions T : Expression -.. Expression -.. D -.. N.l and P :
F - program -.. D -.. N.l are defined by:

PI[EO whererec f (x) = BDd = TI[EODBd
TI[XDB v = 1
Tl[dDB v = 1
Tl[hd EDB v = 1 + nE D B v
Tl[tl ED Bv = 1+ nE D Bv
Tl[cons E FDB v = 1 + nE D B v + nFDB v
Tl[if E then El else E2DB v = 1 + nE D B v + nE1DB v, if [I[EDB v ~ nil
Tl[if E then El else E2DB v = 1 + nE D B v + nE2DB v, if EI[EDB v = nil
Tl[f (E) DB v = 1 + nE D B v + nBDB ([I[EDB)

Linear time 275- - --- - -- - - -

Proof By the consb' uctions just given,

TM ~'intime- pg- ind GOTO ~'intime- pg- ind SRAM ~ptime TM

Now L ~'intime- pg- ind M or L ~'intime M implies L ~ptime M, so by Lemma 16.3.2 TM =ptime
Ga Ta =ptime SRAM. By Lemma 18.1.3 this implies PTIMETM = PTIMEGOTO = P TIM Es RAM. 0

276 Robustness of TIme-bounded Computation-

18.3.2 Linear - time equivalence of GOrO, WHILE, I , and F

Lemma 18.3.2 There exist two programs intIF and intFI and constants c,d such that
for any p E I - programs, q E F - programs and dE D:

l Iint I F)F (p . d) = I Ip) I (d) and timernt I F(P. d) ~ c. time~(d)

l Iint F I) I (q .d) = I Iq)F(d) and timelnt F I (q .d) ~ d. time Fq(d)

Proof: The result follows from an easy time analysis of the constructions in Propositions
9.2.1 and 9.2.2. Program independence holds because I and F programs have only one
variable. 0

Theorem 18.3.3 GOTO ='intime WHILE = 'intime I = 'intime F, so

LINTIMEGOTO = LINTIME WHILE = LINTIME I = LINTIMEF

Therefore a fortiori L =ptime M for any two of the languages just listed

Proof: This follows partly from the compilations ~f Propositions 8.2.1 and 8.2.2. In each
case, the translated program q runs slower than the original p by a constant factor. For

example ingoing from WHILE to GOTO by Proposition 8.2.1, tim<
 TO(d) ~ a. time;a

I LE(d)
for some a and all d.

The remainder follows from Lemma 18.3.2.
0

Theorem 18.3.3 states a form of robustness within linear-time decidable problems: for
the cluster we have studied until now of programming languages L manipulating trees
in D, the class LINTIMEL is stable.

Robusb\ ess of the concept of linear time

The question
"
just which problems can be solved in linear time" has aroused some con-

b"oversy and many differences of opinion , as it depends critically on the exact commpu-

tation model used (i .e., it is not " robust"). One might hope that Theorem 18.3.3 could

be extended, for example to

LINTIME 1M = PTIME 1M = LINTIMEGOTO = LIN TIM E Sa A M

dnn 'f

but this seems false: the class of problems solvable in linear time is nonrobust since it

appears to be different for various models. In particular , the multitape Turing machine
model is unnatural for linear time, and seems unable to solve as many problems in
linear time as the SRAM.

2 Together with

Linear time factors matter for Turing machines 277

the one - dimensional nature of the storage tapes .

18 .4 Linear time factors don
'
t matter for Turing machines

In the classical Turing machine model (described in section 7.6), one-step transitions
are defined to cost one time unit each. The definition is unrealistic , as it ignores two

important program -dependent parameters: the number of tapes k, and the size of the tape
alphabet I.. The assumption that these can be chosen arbitrarily large is also questionable
in view of Alan Turing

's analysis of computation , cf. Exercise 1.1.
In this section we show that not accounting for these factors2 implies the well -known

Turing machine constant speedup theorem. It in essence asserts that for any classical Turing
machine running in superlinear time, there is an equivalent one that runs faster by any
desired constant fizctor. The central idea in the proof is to replace the tape alphabet I. by
another alphabet I.

m for a possibly large constant m.
There is some controversy as to the interpretation of the speed-up theorem and its

proof . Papadimitriou [130] claims that "advances in hardware make constants mean-

ingless," since the proof shows that increasing the word size of the computer decreases
the running -time by a constant-factor. Saying that a program runs in 2 . n2 time does
not make sense, because while this may be true of today

's computer, the program may
run in n2 time on the computer of tomorrow . Instead, one should simply say that the

program runs in 0 (n2) time, thus abstracting from the constant factor.
This however, does not account for the fact that constant-factors may make adifference

when considering programs that run on the same computer, i .e., when the word size
is fixed . Indeed, claiming that every superlinear program

's running time can be cut in
half clearly contradicts daily programming experience. Moreover, a sign of a mismatch
of theory with practice is seen in its proof which , in practical terms, amounts to increasing

the word size. Intuitively speaking, the speedup is obtained by a change of hardware
- unrealistic from a programming perspective. In any case, the physical realizability of
this trick is dubious .

Further, it is not at all clear that the technique could be adapted to more familiar machine
architectures, even if one assumed that hardware could be increased in size upon

demand. The constant speedup theorem is in fact false for the I and F languages: Theorem
19.3.1 shows that increased constant factors give a provable increase in decision

power for linear time bounds, and Theorem 19.5.3 does the same for a broad class of
so-called constructible time bounds. A consequence is that the classical Turing machine

computation model is provably different from I and F for problems solvable in linear
and many other time bounds. One view of this is that I and F are more faithful models

of computational practice than classical Turing machines.
Before proving the main result it may be useful to review a simple example illustrating
the essential idea in the speed-up theorem.

Example 18.4.1 The following Turing machine M decides the set of even unary numbers
.

1. I. = { O, 1,B} ;
2. Q = { io, . . . , i3 } ;
3. ilnit = to;
4. ifin = i3;
5. T = { (io,BiB, -+, il), (il , 1,B, -+, i2>, (il ,B, 1, t - , i3), (i2, 1,B, -+,il), (i2,B, 0, t - , i3)}

The machine first moves to the right of the initial blank and then reads past 1 's. It is
in state il whenever it has read an even number of 1 's, and in state i2 whenever it has

read an odd number of 1 's. Therefore, if the blank following the input is arrived at in

i I , the input is even and the output hence is 1. The machine requires around Ixl steps to

compute its result, where x is the input , and Ixl its length .
We will now consider an equivalent machine M ' which , apart from an initial setup

phase, runs in half the time . The idea is to use an alphabet which allows us to express
two consecutive occurrences of 1 in a single symbol 11. This allows us to read past two
1 's in a single transition , and therefore the new machine will run twice as fast.

However , M ' receives its input in the same form as M and must therefore first transform
it into the compressed format . We will use an extra tape to carry the compressed

form of the input . Here is M ,:3

1. I. = { O, liB , 11, m } ;
2. Q = { io, . . ., is } ;
3. ilnit = to;
4. ifin = is ;

278 Robustness of TIme - bounded Computation

�

3 Remember that nop is short for (BiB, ,!.).

5. T = {(io,(B,B,-+-),nop,it),
(it , (l ,B, -+-), nop,i2), (i2, (l ,B, -+-), (B, 11, -+-),it),
(it , (B,B,.!.), (BiB, +-),i3), (i2, (B,B,.!.), (B, 1B, +-),i3),

(i3, nap, (11,11, +-),i3), (3, nap, (B,B, -+-),i4),

(4,nop,(11,B, -+), 4), (4, (B, 0, f -), (1B, B,..1.), 5), (4, (B, 1, f -), (B,B,..1.), 5)}

As usual the first uansition just skips the initial blank . The next group of uansitions

move the input to the second tape in compressed form . If the input does not have even

length, then it is necessary to pad an exua blank to the last 1, since we collect pairs
of symbols into single symbols. The symbol 1B is used for this . The third group of

uansitions move to the start of the compressed input on the second tape (alternatively
we could have processed the input backwards). Finally, the last group of uansitions

process the compressed input .
The last phase takes around rlxl / 21 steps so we have roughly reduced the running -

time by half . The price to be paid is that we need to compress the input and go back to

the start, and this takes around Ixl + rlxl / 21 steps. 0

In this example, the total cost has been increased. However , this is just because M

has linear running time . If M runs in superlinear time then the added linear time to

compress the input may be outweighed by the halfing of the superlinear running time,
as the next theorem shows.

Theorem 18.4.2 Let M be a classical Turing machine deciding a set L in time f . For any
c > 0 there is a Turing machine deciding L in time g where g(n) = c . f (n) + 2n + 4.

Proof We shall prove that if
M = (1:, Q, init' fin)

is a I -tape Turing machine running in time f and c > 0, then there is a 2-tape machine

running in time An. e . f (n) + 2n + 4. It is easy to modify the proof to show that if M is a

k-tape machine, for k > 1, then M ' also is a k-tape machine.

The essential idea of the proof is similar to that of the example above. Each symbol
of M ' encodes several symbols of M . As a consequence, several successive transitions

in M can be encoded by a single transition of M ' .

More specifically, we shall encode m = r6/ el symbols of M into a single symbol of

M ' (the choice of m will be clear at the end of the proof). Thus 1:' contains all m-tupies

Linear time factors don
'
t matter for Turing machines 279

M' = (I.', Q', iinit' ifin>

of symbols from M. Since M' must be able do deal with the input to M, ro' must also
include the alphabet of M. Hence:

ro' = ro u rom

The uansitions of M' are divided into three phases: a compression phase, a simulation

phase, and a decompression phase.
In the compression phase M

' reads the input x from tape 1 and stores it in compressed
form of length rlxl / ml on the auxiliary tape, erasing tape 1 at the same time .4 Whenever
m symbols 0' 1, . . . ,O'mE I, have been read from tape 1, the single symbol (0'1, . . .,O'm> E I,m

is written to the auxiliary tape. This can be done by recalling in the state the symbols
that are read.

More specifically, we include in M ' states

Q
' = r,O UI,1 U . . . UI,m

- 1

with the following meaning:

(Ul, . . .,Um- l) I:m- l Ul, . . .,um- lreadfromtape1

The transitions to do the compression appear in Figure 18.1, to which the following
numbers refer. As long as less than m symbols have been read from tape 1, another

symbol is read and recorded in the state (1). When m symbols have been read from tape
1, the compressed symbol is written to tape 2, and control returns to the initial state (2).
If the whole input has been read, the compression phase ends (3). In case the input ends
in the middle of an m-tuple , additional blanks are padded (4). When the compression
phase ends, the read/ write head on tape 2, moves to the beginning of the input (5). All
this takes 2 + Ixl + rlxl / ml steps.

We are then ready to the simulation phase in which all operations take place on the
second tape. In the simulation phase M

'
repeatedly simulates m transitions of M by at

most 6 transitions . Such a simulation of m steps is called a stage. At every stage M
'

moves one square to the left , two to the right , and one to the left again. Recalling the

4Note that in the general case where M is a k-tape machine, k > 1, such an auxiliary tape is available already
in M' which is also given k tapes.

280 Robustness of TIme - bounded Computation

state in has meaning
() ~ no symbols read from tape 1 yet
(0') 1:1 0' read from tape 1
(0'1, O'V 1:2 0'1,0'2 read from tape 1

Compression phase. For all (-T) e I,m,Ui e I,:
(1) Ul,.. .,uI),(u,B,-+),nop,(uu.. .,UI,U 0 ~ I ~ m- l
(2) Ul,... ,Um-l),(U ,B,-+), Ul,.. .,um-l,u),B,-+),O)
(3) (0, (B,B,,!,), (BiB,.-),leos)
(4) Ul,.. .,uI),(B,B,,!,), Ul,.. .,uI,B,.. .,B),B,.-),leos) 1 ~ I ~ m-l
(5) (leos,nop,(TiT,.-),leos)
Simulation phase I. For all (c1),(-T),(jI) e I,mU {B},q e Q,jE {1,.. .,m}:
(6) (leos, nop,.(B,B,,!,), (linit, m
(7) q, }), nap, (T, T,.-), (q, j,-T (8) q, j" -T), nap, (c1, c1, -+), (q, j, c1,-T
(9) q,j"c1 ,-T),nop,(T, T ,-+),(qij,c1,-T
(10) qij,c1, -T), nop, (p,p, .-),(q,j,c1,T ,jI
Simulation~ e II. For (c1),(-T),(jI) e tm)u {~/g E-O, je .(1,.. .,m} with (q,\~UTl . . . Tj-l' Tj, Tj+l . .. Tm,pR I) ~ \q- ,(L~l . .. *1-l,1l'I'~I+l . . .1l'3mR

where t = m, or t < m and q' = lfindan 1l'1 = 1l'1, . . ., 1l'm, 1l'2 = 1l' m+ 11. . ., 1l'2m, 1l'3 = 1l'2m+ 1,. . ., 1l'3m :
(11) q, j,(c1,T ,jI ,nop, -T),(ifv,.-),(qij,(c1 ,T,jI) if 1 < 1-1 < m q., j, (c1, T, jI , nap, c1), (ifl),'!'), (q' ,1 - -

(12) q, j,(c1,T ,jI , nop, -T), (ifv,-+), (q., j,(c1,T ,jI) if 2m + 1 < 1-1 < 3m q., j, (c1, T, jI , nap, c1), (if3),,!,),(q', I - -

(13) q, j, (c1,T ,jI ,nop, -T),(ifv,.-),(qij,(c1 ,T,jI) if m + 1 ~ 1-1 ~ 2m
 qij,(c1,T,jI ,nop, c1),(if3),-+),(q',I and if1 ~ c1

(14) q,j,(c1,T ,jI ,nop, -T),(ifv,-+),(qij,(c1 ,T,jI) if m + 1 ~ 1-1 ~ 2m
 qij,(c1,T,jI ,nop, c1),(if3),.-),(q',I and if3 ~ P

.::t\ (:\ ("')) (, I if m + 1 < I - 1 < 2m(15) q,), (u, T, PI)' nap, (T I, 1l'2 ,,!, , q, d... -...... - ...an 1l'1 = U , 1l'3 = P
Decompression phase. For all (c1) e I,mU {B},je {1,.. .,m}:

(16) lfin, j),(B,u j+l,'-),(c1,c1 ,,!,),loo)
Figure 18.1: Transitions in the sped-up machine.

Linear time factors don
'
t matter for Turing machines 281

scanned tupies in the state, M ' now has sufficient information to predict the next m steps
of M . These m steps can affect at most m successive squares, spanning over at most two
consective m-tupies, and so M ' can implement the next m transitions of M by at most
two transitions .

More specifically, at each stage, M
'
begins in a state (q, i), where q represents the state

of M and j is the position of M 's read/ write head within the m-tuple that M '
currently

scans. This requires the addition to Q
' :

SFrom now on it will be convenient to use the vector notation 8 = 0' 1, . . .,O'm. We shall bit a bit sloppy and
write , e.g., 8 E 1;rft instead of the more correct (8) E }:m.

6Some of the O' j, Tit PI could be blanks; m-tupies of blanks are treated as a single blank .

282 Robustness of Tlnte - bounded Computation

Q' = ...UQx {l ,.. .,m}

At the very first stage, control must be passed from the compression phase to the simulation

phase (6). M ' now moves one square to the left (7), then two to the right (8-9),
and one to the left again (10), recalling the scanned m-tupies in the state. This requires
the addition to Q

' :

Q' -- . . .
U Q x {1, . . .,m} x rim
U Q x {1, . . .,m} x r.2m

U Q x {1, . . .,m} x r.3m

After these move operations, M
' is in a state5

(q,j ,u,r ,jJ)

representing the information that at this point M is in state q, Tj is its scanned symbol,
and to the left on the tape it has U ,T1, . . . ,Tj- 1, and to the right it has Tj+1, . . . , Tn,P. Now

suppose that M has the following computation in m steps (all such m-step computations
can be computed from just the definition of M, without knowing the input).6

(q,(LUT1 . . . Tj- 1' Tj, Tj+1 . . . Tm,pR ~ m (q
', (L1r1 . . .1r1- 1, 1rl,1rl+1 . . .1r3mR

Then M' simulates that in two steps, splitting into cases according to whether changes
are made in U, r , and p (11)-(15). If the computation happens in fewer than m steps, but
ends ifin , similar transitions are made by M

'. Thus the simulation phase comprises a
total of at most 6rf (lxl)fml + 1 steps.

The decompression phase begins, if M ever terminates, and simply consists in decompressing
the output.

Exercises

Linear time factors don 't matter for Turing machines 283

More specifically, if oM terminates, the initial configuration of M leads to

(lfin , (LTl . . .
Tj- l ,Tj,Tj+l . . . TmR

where Tj+l is either 1 or O. Correspondingly , M ' terminates in a configuration ,

 lfin , j), (L
'
, a ,R

'), (L,r ,R

Therefore, Tj is written on tape 1, and M ' ends in its final state too (17) . This adds just
one to the running time.

The total running time, then, of the simulation is

(2 + Ixl + rlxlfml) + (6rf (lxl)fml + 1) + 1 :5
ef (lxl) + 4 + 2Ixl

as requried . 0

The reader should not be surprised to see analogs of the preceding theorem with the
term 2n + 4 replaced by some other term. The term is sensitive to small changes in the
definition of Turing machines. For instance, some models only allow a machine to write
a symbol or move one square, but not both, in a single step, and this makes a difference.

18.1 Show that that the interpreter int of F by WHILE of Proposition 9.2.2 induces at
most a constant slowdown: given any F -program p and input d, time'1:~LE(p . d) ~ b.

tim~ (d). 0

18.2 Complete Lemma 18.3.2 part 1 by showing that the interpreter int of Exercise 18.1
can be replaced by an I program. 0

18.3 Show that the interpreter int of I by F of Proposition 9.2.2 induces at most constant
slowdown: for any I program p and input d, timernt(p .d) ~ bitime~(d). This

finish es Lemma 18.3.2. 0

18.4 Why can the proof method of Theorem 18.4.2 not be applied to WHILE or GOTO? 0

18.5 Show that multiple arrays can be simulated in RAM 0

18.6 . The Pascal-like implementation of GOTO was not quite a SRAM program because
it had several arrays, and records as well. Prove that this is equivalent to an SRAM

program running at most linearly more slowly. Consequence: any GOTO program p can
be implemented by a SRAM program q which runs in time linear in p

's running time.
Does the constant coefficient depend on program p? 0

18.7 Argue informally that the RAM ~ ptime TM under the logarithmic time cost measure
for RAM computations . Show that this implies PTIME = PTIMERAM. 0

References

The random access machine was introduced by Shepherd son and Sturgis in 1963 [155].
The book by Aho, Hopcroft and Ullman contains a good discussion of robustness of
polynomial time [2]. This insight arose in work by several authors including Cobham,
Edmonds, Cook, and Karp. [24, 40, 25, 90]

284 Robustness of T1D1e- bounded Computation

19 Linear and Other Time Hierarchies for

WH I LE Programs

An interesting question is: for a given programing language L, does a < b imply

TIMEL('\n.a . n) <; TIMEL('\n.b . n)

In other words : does increased linear-bounded computing time give strictly increased

problem-solving power for our various programming languages? In this chapter we

prove that increasing the time available for problem-solving can properly increase the

class of solvable problems.

The first result concerns an extremely simple language version of the WHILE language

called I , in which programs are limited to one atom and one variable . We prove
that constant time factors do matter for both I and F (the functional language of section

9.1), for linear time bounds. This result, in agreement with daily experience, is in contrast

to the situation for Turing machines as seen by Theorem 18.4.2.

A key to the proof is the existence of an "efficient " self-interpreter for I . This is used

in a time-bounded version of the diagonalization argument used earlier to show the

existence of uncomputable functions .

This is first shown for I , then results are extended to the functional language F, and

to superlinear time bounds: proper increases can occur when one time bound function

dominates another in the limit . Finally, some limits to the construction of hierarchies

are referenced; proofs of those results will appear in a later chapter.

For I , we show specifically that there is a constant b such that for any a ~ 1 there is a

decision problem which cannot be solved by any program that runs in time bounded by

a . n, regardless ofhow clever one is at programming , or at problem analysis, or both . On the

other hand, the problem can be solved by an I -program in time a . b . noninputs of size

n. In other words , sufficiently more linear time provably gives more problem-solving

power .

Essentially the same construction has been carried out in detail on the computer by
Hesselund and Dahl . By carefully examining the constant factors in their construction,

they establish in [29] that TIMEI(201. a . n + 48) properly includes TIMEI(a . n), so the

result holds for the value b = 201 + 48 = 249.

Time analyses of some earlier constructions

The following are easy to verify :

The compiling function from WHILE to W H I L Elvar of Proposition 3.7.7 gives
program -dependent linear overhead.

The compiling function from WHILE to W H I L Elatom relative to the coding c of

Proposition 3.7.9 introduces program -independent linear overhead.
This translation involves an amount of extra time overhead which depends on the
(fixed) number of atoms in D A, but not on the program to which the translation is

applied .

Constructing the efficient interpreter

Recall the interpreter i 1 var for one-variable WHILE programs constructed in section
4.1.1. It had form :

read PD; (* Input (p .d) *)
P := hd PD; (* P = var 1) c (var 1)) *)
C := hd (tl P) (* C = c program code is c *)
Cd := cons C nil ; (* Cd = (c . nil) , Code to execute is c *)
St := nil ; (* St = nil , Stack empty *)
VI := tl PD; (* VI = d Initial value of var . *)
while Cd do STEP; (* do while there is code to execute *)

write VI ;

2 .

286 Linear and Other TlIne Hierarchies for WHILE Programs

19 .1 An efficient universal program for I

Running times of I programs are just as in section 16.4.3 (reasonable, since I is a subset
of WHILE).

We show that the universal program for I developed in section 4.1.1 is "efficient ,"

a term we use with a definite technical meaning. An "efficient " interpreter is one that
introduces program-independent linear overhead, as in section 16.3.2. Note that constant a
below is quantified before p, so the overhead caused by an efficient interpreter is independent

of p.

Definition 19.1.1 An S-interpreter int written in L is efficient if there is a constant a such
that for all pES - programs and dES - data:

time!nt (p . d) ~ a . tim~ (d)

An efficient universal
program

for I 287

where STEP is the large case command in section 4.1.1.
seen to be efficient in the sense above:

Proposition 19.1.2 There exists a such that for all p and d

time"!'HILE(p d) < a . time W H I LE I Wr
(d)11var . - p

Proof Note that the entire STEP command is a fixed piece of noniterative code, so it

only takes constant time (independent of p and d) to perform the commands to find the

appropriate case in Figure 4.1 and to realize its effect. The appropriate case is the one

matching the top of the control stack Cd and, in some cases, the form of the top of the

computation stack St .

Any single step of the interpreted program is realized by applying at most two iterations
of STEP. For example, the decision of whether while E do C should perform C the

first time takes one step in p (in addition to the time to evaluate E). It is realized interpre -

tively by two iterations : one to set up the code stack before evaluating the expression
E and one done afterwards , to check E's value to see whether to enter C or escape from
the while loop.

In this way a uniform and program -independent upper bound on the interpretation
/ execution time ratio may be obtained for all computations .

Variable access in the simulated program p is simulated by actions in i 1 var . Since p
has at most one variable , their execution times are independent of p. They are dependent
on the interpreter i 1 var , but are independent of program p.

However it is not clear that a program -independent upper bound can exist if p is
allowed to be an arbitrary WHILE program - if interpreted programs have multiple
variables, the actions to simulate variable access will typically take time depending on

p. 0

Remark: i 1 var satisfies another natural inequality , in the opposite direction : there exists
a constant b such that for all p and d

Such a bound is quite natural , because every single step of the interpreted program p is
simulated by several actions (always more than one) of i 1 var .

Although natural , such a constant b does not exist for all universal programs, since
there are infinite classes of programs that can be simulated faster than they run , for

example by remembering whether a certain subcomputation has been performed before

This program i 1 var is easily

time W H I L Elwr (d) < b. time"!'HILE(p d)p - l1var.

19.2 An efficient timed universal program for I

-program program! if for all p E I -programs,

The effect of f[tu D(p . d . nil n) is to simulate p for min(n,timep(d steps. H timep(d) ~ n,
ie ., p terminates within n steps, then tu produces a non-nil value containing p

's result.
Hnot, the value nil is yielded, indicating

"time limit exceeded."

Similar to the terminology for interpreters, we say:

288 Linear and Other Time Hierarchies for WHILE Programs

since it itself uses more than one

one, as in section 3.7.2.

tu is a timed universal

and , if so, fetching its result from memory rather that by repeating the computation . An

example is by using Cook 's construction involving stack programs [28, 5] .

An efficient self-interpreter for I

Program i 1 var is not, however, a

Theorem 19.1.3 The self-interpreter i of Theorem 4.2.4 is efficient .

Proof: A correctness proof resembles that of Exercise 4.1. Each operation hdrep , tlrep ,
or consrep is realized by a program -independent constant number of operations. 0

Definition 19.2.1 An I
dE D and n ~ 1:

1. If timep(d) ~ n then I Itu D(p . d . nil ") = (lIp D(d).nil) , and
2. If timep(d) > n then I Itu D(p . d . nil ") = nil .

An efficient program for I 289timed universal

where we have used a shorthand notation for the membership test. This is easily turned
into actual I commands. Let tu be the result of translating tt from W H I L E1atom to I as
in Theorem 19.1.3.

Lemma 19.2.4 tu is an efficient timed universal I -program.

Proof: To prove tu efficient, we must find a k such that for all p E I - programs,d ED, and
n we have both of:

ntuD(p.d.niln) ~ k . npD(d)
ntuD(p.d.niln) ~ k . n

The proof of the first inequality is similar to Proposition 19.1.2. The second is immediate
from the form of tu , since Cntr decreases with each iteration. If kl, k2 respectively
satisfy the first and second, then max(k1,k2) satisfies both. 0

then Cntr := tl Cntr ;
STEP; X :- cons Vl nil ; }

else { Cd := nil ; X := nil } ;
write X

Construction 19.2.3 Recall the universal program i for I in section 19.1 by translating
a certain W H I L E1atom program i1var with the STEP command into I . The idea in constructing

tu is to take i 1 var and add some extra code and an extra input , a time bound
of the form nil " stored in a variable Cntr , so obtaining a program tt . Every time the
simulation of one operation of program input p on data input discompleted , the time
bound is decreased by 1. Translating t t into I gives the desired program tu .

Here is tt :

read X; (. X = (p . d . nil ") .)
Cd := cons (hd X) nil ; (. Code to be executed .)
VI := hd (tl X) ; (. Initial value of simulated X .)
Cntr := tl (tl X) ; (. Time bound .)
St := nil ; (. Computation stack .)
while Cd do .

if Cntr
then { if hd (hd Cd) E {~ ~ ~ ~

do_cons.do..asgD.do_while }

19.3 A linear -time hierarchy for I : constant time factors

290 Linear and Other Tlnte Hierarchies for WHILE Programs

do matter

Theorem 19.3.1 There is a constant
'
b such that for all a ~ 1, there is a set A in TIMEI(a.

read X;

Timebound := nila.IXI;
Arg := cons X (cons X Timebound) j
X := tu Argj (* Run X on X for up to a . IX! steps *)
if hd X then X := false else X := truej
wri te X

c . a . Ipl + k . a . Ipl + e ~ a . (c + k + e) . Ipl

which implies that A E TIMEI(a . b. n) with b = c + k + e.

b . n) that is not in TIMEI (a . n).

Claim : the set A = {d I [diagDL (d) = true } is in TIMEI(a . b. n) for an appropriate b, but
is not in TIMEI(a . n). Further, b will be seen to be independent of a.

We now analyze the running time of program diagon input p. Since a is fixed,
nil a.ldl can be computed in time c.aIdl for some c and any d. We implicitly assume that

command "Time bound : = nil a.IXI" has been replaced by code to do this computation .
From Definition 19.2.2, there exists k such that the timed universal program tu of

Theorem 19.2.4 runs in time timetu p .dinil " ~ k . min(n, timep(d . Thus the command
"X : = tu Arg

" takes time at most

k . min(a . Ipl, timep(p ~ k . a . Ipl

so on input p, program diag runs in time at most

c .a . Ipl+ k .a . Ipl+ e

where c is the constant factor used to compute a . IXI, k is from the timed universal program
, and e accounts for the time beyond computing Timebound and running tu . Now

Ipl ~ 1 so

Now suppose for the sake of conb'adiction that A E TIMEI(a. n). Then there exists
a program p which also decides membership in A, and does it quickly, satisfying

timep(d) :5 aIdl for all d ED. Consider cases of I[pD(p) (yet another diagonal argument).
Then timep(p) :5 a . Ipl implies that tu has sufficient time to simulate p to completion on
input p. By Definition 19.2.2, this implies

I[tu D(p . p . nil aolpl) = (l[pD(p) . nil)

If I[pD(p) is false , then I[diagD(p) = true by construction ofdiag . If I[pD(p) is true , then
I[diagD(p) = false . Both cases conb'adict the assumption that p and diag both decide
membership in A. The only unjustified assumption was that A E TIMEI(a. n), so this
must be false. 0

1. Theorem 19.3.1 holds for the value b = 201 + 48 = 249. Can b be reduced still
farther, perhaps even to 1 + E: for any E: > O?

2. Does Theorem 19.3.1 hold for languages WHILE or GOTO?

The theorem's proof technique can be extended to the SRAM, although somewhat more
complex programming is involved .

Theorem 19.3.2 For either the unit -cost or the logarithmic cost measure, there is a constant
b such that for all a ~ 1, there is a decision problem A in TIMESRAM(a . b. n) that is not

in TIMESRAM(a . n).

Proof: Exercises 19.3 and 19.4.

A linear-time hierarchy for F 291,

Two open problems

19 .4 A linear - time hierarchy for F

Theorem 19.4.1 The result of Theorem 19.3.1 holds for the one-variable, one-atom func-

tionallanguage F.

Proof: By Theorem 19.3.1 TIMEI(a. n) ~ TIMEI(ab. n) for all a. Using this and Lemma
18.3.2 we obtain a chain of inequalities:

TIMEF(a. n) ~ TIMEI(ad. n) ~ TIMEI(abd. n) ~ TIMEF(abcd. n)

so the result holds with bcd in place of the b of Theorem 19.3.1. 0

(* Insert body of b here *)
Timebound) ;

(* run X on input X until it stops , *)
(* or until Timebound is reduced to nil *)
:= true ;

Behavior Suppose I[bD(d) always yields values of the form nil m (as it always will in

our applications). Then for any input p ED:

I Idiag D(~

timediag(p) ~
<

For a time bound function f (n) to be usable, it must be possible when given an input of
size n to find out how much time f (n) is available by a computation not taking more than
the order of f (n) steps. This is the intuitive content of the following restriction.

292 Linear and Other T1D1e Hierarchies for WHILE Programs

read Xi
Timebound := b Xi
Arg := cons X (cons X
X := fftuD(Arg) i
if X
then X := false else X
write X

.) =
{

lime analysis

min(timtb(p) + k . I I Ib D(p) I
ti1ntb(p) + k . I I Ib D(p) I + e

+ e,timep(p

19 .5 Hierarchy results for superlinear times

We showed earlier for languages I and F that within linear time bounds, increased time

gives provably greater decision power . The proof technique involved diagonalization .
In this section we carry the theme further , showing analogous results for other computation

models, and for other time bounds. In particular we will look at asymptotic
complexity, showing that when one functional time bound grows faster than another in

the limit , there are problems solvable in the larger time bound but not in the smaller.

First, a slight generalization of the construction seen earlier.

Construction 19.5.1 Given an I -program b, define program diag as follows , where tu
is the timed universal program of Lemma 19.2.4:

true if timep(p) > I IrbD(p) I
false if timep(p) :$ IlrbD(p)1 and Irp D(p) :F false
true if timep(p) :$ IlrbD(p)1 and Irp D(p) = false

resul ~

Definition 19.5.2 Function f : N -+ N is time constructible if there is a program b and a

Some traditional theorems

The following theorem generalizes Theorem 19.5.3, since the upper and lower time
bounds f , g may be two quite different functions. Its proof uses the following small
but central result, which is easy to prove for GOTO and holds for any other natural programming

language.

Theorem 19.5.4 If functions fig are time constructible, f (n) ~ n,g(n) ~ n for all n, and
limn-+oog(n)/ f (n) = 0, then TIMEI(f) \ TIMEI<g) 0.

Hierarchy for superlinear times 293- -

c > 0 such that for all n ~ 0

I[bD(nil D) = nilf <n) and ti~ (d) :5 c .f (n)

Many familiar monotone functions are time-consb"uctible, e.g., all linear functions, all
polynomials, and f + gif *g,fg whenever fig are time-consb"uctible (Exercise19.8).

A more liberal definition is to let I Ib D(nil D) be the binary representation off (n). All
the following works with this broader formulation; only small changes are necessary. .

Theorem 19.5.3 If f is time-consb"uctible and no f (x) = 0, then there exists b > 0 such
that

TIMEI(bf) \TIMEI(f) ~ 0.

Proof Suppose b and c are as in the definition of time-consb"uctible, and let program
diag be as in Consb"uction 19.5.1. Then

timediag(p) ~ c . f (lpl) + k. f (lpl) + e ~ (c + k + e) . f (lpl)

so the set A decided by diag lies in TIME c+ k+ e)f) .
Now suppose A E TIME(f) . Then I Idiag D = I Ip D for some program p satisfying

timep(d) ~ f (ldl) for all dE D. Looking at diag's behaviour on input p, we see that
Timebound is set to ni V <lpl>, so the timed universal program tu has enough time to
simulate p on p to completion. Consequently

II D() = I Idia D() =
{

false if I Ip D(p) ~ false
p p g p true if I Ip D(p) = false

This is a contradiction, which suffices to prove the theorem. 0

294 Linear and Other TIme Hierarchies for WHILE Programs

Exercises

19.1 Why can the proof method of Theorem 19.3.1 not be applied to WHILE or GOTO? 0

19.2 Prove that there are problems solvable by WHILE programs in time n3 but not in
time n2. 0

19.4 For the interpreter of the previous exercise, consider a logarithmic cost which also

accounts for the cost of instruction access. Thus all times are as in the table given before

for SRAM instruction times, but with factor log t added to execute instruction in location

t .
Show that under this cost, the total interpretation time will be bounded by a

program -independent constant times the interpreted program
's running time. 0

19.5 Prove the unit -cost version of Theorem 19.3.2 from Exercise 19.3: that linear time

SRAM-decidable sets possess an infinite hierarchy ordered by constant coefficients, as in

Theorem 19.3.1. 0

Proof This is very similar to the proof of Theorem 19.5.3, but needs the "padding
lemma" 14.4.4.

Corollary 19.5.5 For any c > 0 and integer k > 0, TIMEI(An.nk+E:)\ TIMEI(An.nk) ~ 0.

The following can be proven directly by diagonal constructions similar to that of Theorem
19.5.3, though more complex since self-interpreters are less easy to write for languages

TM or RAM than for GOTO. Alternatively, somewhat weaker versions may be

proven using Theorem 19.5.4.

Theorem 19.5.6 If functions f , g are time constructible, f (n) ~ n, g(n) ~ n for all n, and
limn-+oo f (n)f <g(n) logg(n = 00 then TIMETM(f) \ TIMETM<g) ~ 0.

Theorem 19.5.7 If functions fig are time constructible, f (n) ~ n,g(n) ~ n for all n, and

limn-+oof(n)fg (n) = 00 then TIMESRAM(f) \ TIMESRAM<g) ~ 0.

19.3 Sketch the construction of a universal program for SRAM prograIns . This can store

the program to be interpreted in odd memory locations, and can represent program

memory cellioc in the interpreter
's memory cell 2 . loc. Discuss its running time in

relation to that of the interpreted program , under the unit -cost asumption . 0

Hierarchy results for super linear times 295

19.6 Prove the logarithmic cost version of Theorem 19.3.2 from Exercise 19.4. 0

19.7 Prove that the following functions are time constructible :

1. f (n) = an + b, for non-negative integer constants a and b.

2. f + g, assuming thatf ,g are time constructi1?le.

3. f * g, assuming that f , g are time constructible .

4. fg , assuming thatf ,g are time constructible . , 0

19.8 We say that a numeric function f : N -+ N is WHILE-computable if there is a WHILE

program that computes nilf <n)
given nil n. Prove, that if f is WHILE computable then

there is a function h such that h(n) ~ f (n) for all n, and h is time constructible . 0

The earliest work on time-bounded hierarchies is from 1965, due to Hartmanis, Lewis
and Stearns [61, 62]. The hierarchy result for linear time in the I language appeared in
1993 in [80]. Papers by Gurevich and Shelah, and by Schonhage contain related work
[57, 151].

References

20 The Existence of Optimal Algorithms

(by A . M . Ben- Amram)

Remarks : Levin 's theorem exploits the existence of an efficient interpreter . All of these

theorems can be proven in a general form that applies not only to running time but to

1 Actually,
"
optimal up to a constant factor" would be a more predse description.

The previous chapter
's hierarchy theorems (19.3.1, 19.4.1, 19.5.3) show that there exist

programs whose running time cannot be improved beyond a constant multiplicative
factor. We call such programs optimazt.

These theorems consb"uct, from a given time bound T(n), a problem which is solvable

by an optimal program with running time cT(n) for some c and all n. In practice, however

, we are typically given a problem that we wish to solve by computer, rather than a
time bound . We attempt to write a program that will solve it as fast as possible. But
how fast can a given problem be solved?

The branch es of Computer Science that deal with such questions are the design of
efficient algorithms and, on the negative side, lower-bound theory. (This book deals mainly
with the hierarchy and completeness results underlying lower -bound theory.) In this

chapter we consider what may be the most essential question to begin with : given a

problem , does there necessarily exist a " fastest" algorithm to solve it ? In other words ,
is the goal of algorithm design always well defined?

One of the major results in complexity theory, Blum 's speedup theorem, shows that
there exist problems for which this goal cannot be achieved. For every algorithm to
solve such a problem , there is another one that is significantly faster. These problems
are, however, artificially consb"ucted to prove the theorem. It is therefore edifying to
discover that for an important class of problems that occur in practice an optimal algorithm

does exist: one whose time cannot be improved by more than a constant multiplicative
factor. This result is known as Levin 's theorem. In this chapter we formulate

and prove, first Levin 's theorem, and then Blum 's theorem. We conclude with a theorem
of a somewhat different flavour , known as the gap theorem. This theorem shows

that the results of the hierarchy theorems depend on the time bound T being a "nice"

(that is, time consb"uctible) function : there exist functions t such that no program can be

designed to have running time inside some large zone lying just above t .

resources ,other reasonable computing

generalization here .

details

20.1 Levin 's theorem

For R ~ D x D the first projection of R is the set

7rlR = {x ED I (3y ED) (x,y) E R}

Definition 20.1.1 Let R ~ D x D be a semi-decidable predicate. A function f : D -+ D 1-
is called a witness function for R if x E 7rlR implies (x,f (x E R.

For example, let SAT be the set of satisfiable propositional formulae; recall from section
A.1.1 that eval9F evaluates formula F for truth assignment 9. Let RSAT = {(F,9) I FE
SAT,eva I9 F = true}. Then a witness function for RSAT would be any function f that
produces a satisfying assignment for a formula that has one, and produces any answer
whatsoever (or loops) for an unsatisfiable one.

The reason that such an f is called a witness function is that problems like SAT are
often considered as decision problems; for instance, in chapter 27 we will consider the
problem of deciding membership in SAT. In this situation, the role of f is to witness
that a formula is satisfiable. In practice, however, computing f will often be our actual
goal, since we would not be content just with knowing that a solution (e.g. a satisfying
assignment, a clique in the graph, etc.) exists.

Remark: if Rr D(d) = .L we define timer(d) = 00.

Theorem 20.1.2 Levin's theorem.
Let R ~ D x D be a semi-decidable binary predicate, so R = dom(Rr D> for some program

r . Then there is a WHILE program opt such that R opt D is a witness function for R,
and for every program q that computes a witness function f for R, we have

timeopt (x) :5 aq(timeq(x) + timer(x . f (x)

for all x, where aq is a constant that depends on q but not on x. Further, the program
opt can be effectively obtained from r . 0

Proof will be given later, after discussion of motivations and consequences.
A brute-force search program for finding a witness immediately comes to mind. Given

xED we just enumerate elements y ED, checking one after the other until a witness pair

298 The Existence of Optimal Algorithms (by A . M . Ben -Amram)

We do not go into of this

(x, y) E R has been found2. It is quite obvious that this strategy can yield an extremely
inefficient program, since it may waste a lot of time on wrong candidates until it finds a
witness. Levin's theorem states a surprising fact: for many interesting problems there is
another brute-force search strategy that not only is efficient, but optimal up to constant
factors. The difference is that Levin's strategy generates and tests not solutions, but

programs.

Problems with easy witness checking . A common situation with many problems is

that verifying membership of a pair (x, y) in R (checking a witness) is relatively straightforward
, not withstanding that producing a witness might be difficult . For example,

verifying membership in RSAT amounts to evaluating 8(.11; this can be done in linear

time. On the other hand, finding a witness for :F is at least as hard as just deciding
whether the witness exists, a problem complete for NPTIME.

This situation holds for a great many problems. For example it has been open for

many years whether SAT has any solution algorithm at all that runs in subexponential
time . The beauty of Levin 's theorem is that, even though no- one knows how fast (say)

satisfiability can be decided, the construction nonethelss gives an algorithm for it that is

asymptotically optimal (up to constant factors).

For Levin 's theorem to be of interest, it suffices that we be able to check witness es

efficiently enough so that having the complexity of checking as a lower bound forwitness -

searching is acceptable. However , in many cases, it can actually be proved that searching

for a witness cannot be done asymptotically faster than checking; for instance, this

is obvious when checking takes linear time (as in the SAT example).

This is a quite general phenomenon, which led to formulation of the class NPTIME,
also called NP (to be discussed at length in chapters 25 and 27) . By definition , all problems

in NPTIME can be soved by
"
guess-and-verify

"
algorithms , where both guessing

and verification can be done in polynomial time . The only cause of superpolynomial
time is that the number of possible guesses is typically exponential in the problem input

size, and thus too large to enumerate.

A more sophisticated result that is relevant: by the version we saw of Kleene's normal

form (Theorem 13.4.3), for any program p there is a predicate R, decidable in linear

time, such that R(x, y) is true if and only if y is the computation of p on input x . In this

21f R is decidable, this is straightforward by testing (x, y) E R for all finite binary trees y, using a loop as in

Lemma 5.7.1 to enumerate them. If R is semi- decidable but not decidable, then one could use a "dovetailing
"

of computations as in Theorem 5.5.1 to test (x,do) E R?, (X,dl) E R?, . . . in parallel .

Levin's theorem 299

Suppose R is easy to check, and that program r satisfies Definition 20.1.3.

opt of Theorem 20.1.2 is asymptotically fastest (that is, up to a constant
all programs that compute witness es for R.

Then program
factor) among

Proof of Levin 's theorem

Proof: We make a simple, non-resbictive assumption on the program r : when run with

input (x . y) , if (x, y) E R it gives y as output . Otherwise, it loops forever.
Recall that the concrete syntax for I programs uses only the atom nil . EnumerateD

= {do,dt , . . .} as in Lemma 5.7.1 by programs start and next . We build program
opt from these parts (a concrete program will be given shortly):

1. A limain loop
" to generate all finite trees. At each iteration one new tree is added

to list L = (dn. . .dtdo) . Tree dn for n = 0/1/2, . . . will be treated as the command

part of the n-th I program pn.

2. Iteration n will process programs Pk for k = nn - L . . ./1,0 as follows :

(a) Run Pk on input x for a " time budget
" of at most bk(n) = 2n- k

steps.

(b) If Pk stops on x with outputy , then run r on input (x . y) , so Pk and r together
have been executed for at most bk(n) steps.

(c) If Pk or r failed to stop, then replace k by k - 1, double the time budget to

bk- t (n) = 2n- k+ t
steps, and reiterate.

3. If running Pk followed by r terminates within time budget bk(n), then output
lIoptD (x) = y and stop; else continue with iteration n + 1.

Thus the programs are being interpreted concurrently, every one receiving some " interpretation
effort ." We stop once anyone of these programs has both solved our problem

300 The Existence of Optimal Algorithms (by A . M . Ben -Amram)

case, finding a witness for x is exactly equivalent to running p on x, and so can have

arbitrarily high complexity .
Ease of witness checking is captured in the following definition . (section A .3.ll explains

the o() notation .)

Definition 20.1.3 We call a semi-decidable binary predicate R easy to check if there is a

program r such that R = dom(RrD) , and no witness function f can be computed (on

input x) in o(timer(x .f (x). 0

and been checked, within its given time bounds . Note that opt will loop in case no witness

is found .
The keys to '/optimality

" of opt are the efficiency of STEP, plus a policy of allocating
time to the concurrent simulations so that the total time will not exceed, by more than a

constant factor, the time of the program that finish es first . The following table showing
the time budgets of the various runs may aid the reader in following the flow of the

construction and correctness argument .

finally analyze its time usage.

Levin's theorem 301

We first argue that the abstract algorithm just given is correct, then give it in concrete

program form, and

Correctness of the algorithm. Proving correctness of opt has two parts: showing that

opt produces only witness es, and that it produces a witness for every x E 1rl R. First,
if (opt D(x) = y then (rD(x .y) terminates, so (x,y) E R. Thus every output of opt is a

witness for its input.
Second, suppose x E 1rl R. Claim: there is a pair (n, k) with k ~ n such that

1. timepk (x) ~ 2n- k; and

2. timepk (x) + timer(x . y) ~ 2n- k where y = (PkD(x).

Proof of claim: since x E 1rlR there exists a pair (x,y) E R. For this y, clearly (rD(x .y)
terminates. Choose any program Pk such that Y = (PkD(x), and choose a value n large
enough so that 1 and 2 hold.

The computation of (opt D(x) stops at iteration n or before. This implies (opt D(x) =

(r D(x . y) = y and (x, y) E R, so opt has a witness as output for every input x E 1rl R.

302 The Existence of Optimal Algorithms (by A . M . Ben -Amram)- - -

A program for opt . Let STEP be the WHILE macro used in Lemma 4.2.3 to execute

an arbitrary I program . This uses variables Cd, St and Vl to contain the control stack,

computation stack, and current value of the (unique) variable , respectively. By the proof

of Proposition 4.1.1, any single step of the interpreted program is simulated by at most
two applications of STEP.

Program opt is built from STEP and start , next of Lemma 5.7.1, and can be seen
in Figure 20.1. The list of all elements of []) considered to date is maintained in variable
L, with a local copy L1. The time budget is maintained in variable T, with a local copy
T1.

The main loop of the program is (1) . During its n-th iteration , the inner loop (2)
first applies STEP to simulate each program Pk on Lion input x for 2n- k

steps.

Program opt stops once one of the programs yields an outputy (loop (2a) , provided
that value has been verified using r without overrunning the time budget (loop

(2c) . Faith fulness to the informal algorithm above should be clear.

2n-k+l - 1, thus O(2n).
(5) The total time for iteration

for constants Co, . . ., C3 and all n.
(6) The total time up to and including iteration n is bounded by c32n+l .

Another important fact has already been demonstrated in section 19.2 on " timed interpreters
" : if program q, followed by program r , terminates within time t, then 2t

invocations of STEP are enough to bring the interpretation to completion .
Now let x be the input to opt , and suppose that a program q computes awitnessy

for x . Thus, running q followed by r will yield the outputy in time

tq;r (x) = timeq(x) + timer(x . y)

Levin's theorem 303- - - -- - -------- - --

l n is bounded by the sum of the times for the Pk:

n
con + L Ct2n-k + c22n ~ c32n

k=O

lime analysis of opt . The following are easy to establish for n > O. The phrase
"simulation

of Pk
1/ includes running both Pk and subsequently r (Steps 2(a) and 2(b) above).

(1) The time for each iteration of the main loop, outside the code to simulate Pk by
STEP or to double t, is bounded by con where Co is a constant and n is the iteration
number (cf. Exercises 5.11, 5.12).

(2) In iteration n, STEP is applied to n + 1 programs: Pn' . . ., P I ' Po.
(3) In iteration n, program Pk is simulated for a number of interpretation steps, no

larger than 2n- k.
(4) The total time to maintain time counter t is of the order of 1 + 2 + . . . + 2n- k =

2n- k < 2t . (x) < 2n+l - k- q.r

If program. opt reaches iteration n and
to simulate both q and r to completion.
time

simulates q = Pk on x, it will have enough time
The effect is that opt will yield its result within

time (x) < c 2n+l < C 2k+12n- k < C 2k+2t . (x)opt - 3 - 3 - 3 q,r

The other possibility is that program opt has already stopped earlier and so does not
reach iteration n + 1 to simulate q = Pk on x because another simulated program was
success fully completed and checked. In this case timeopt (x) is even smaller.

We conclude that timeopt(x) ~ c32k+2tq;r (X). Since 2k+2 is a constant that depends
only on q, the proof is complete. 0

hard to compute

Blum's speedup theorem involves two techniques:
subtle than that seen before in Theorem 5.3.1; and a

a diagonalization argument more

search process executing programs

304 The Existence of Optimal Algorithms (by A . M . Ben -Amram)

Sure enough, q appears somewhere in the enumeration of all I programs; say q = Pk"
Choose n so that

20.2 Functions arbitrarily

Final remarks . Levin 's theorem shows, that for a large class of important problems,
we can obtain an "optimal

"
program with only the effort of devising a solution checker.

This is obviously a tremendous reduction of the effort in developing programs for many
practical problems. However , this is also an example of how important it is to observe
that a constant factor is program -dependent. Program opt is slower than program Pk by
the factor c32k+2. Note that k is the number in the enumeration of the program Pk. If our

problem is indeed complicated , we can expect even the smallest program that solves it
to be quite large; if it appears at, say, position pi (XX)' then opt will be slower by C3 .21002.
Conclusions:

. Assuming that checking a solution is indeed easy (as often happens), the only
achievement that can be claimed by the hard-working algorithm developer is a

saving on the constant factor !

. " there is no free lunch " : since the constant factor is enormous, there is still point
in spending energy on devising programs to solve problems directly .

under a time budget, similar to that used in proving Levin's theorem. Before proving
Blum's result, we establish a simpler result that uses the same sort of diagonalization.

We define the following simplifying framework for the proof, only considering input of
the form nil n. A program accepts a set of integers, in the sense that it program accepts
n if it outputs a non-nil value for input nil n. The time complexity of program p, then,
can be expressed as a function on N, namely tp(n) = timep(nil n).

On diagonalization . In chapter 19 we used diagonalization to prove the hierarchy
theorem. In this chapter we use diagonalization in a slightly more involved manner, so
it may be useful to present first a general form of the diagonalization argument .

Let Q be a set of programs . We wish to consb"uct a program P and ensure that P ~ Q.
We consb"uct P so I Ip D ~ I Iq D for all q E Q. More explicitly , p will be built so for every
q E Q there is at least one input d such that I Ip D(d) differs from I Iq D(d).

Such a q will be said to have been "killed ." We consb"uct p so every q E Q will be
"killed " at some stage during pi

 S computations , thus making p E Q impossible . This is
done by inverting q

's output for some input d, so I Ip D(d) = true if I Iq D(d) = false and
false otherwise.

The following shows that there exist problems arbitrarily hard to solve, no matter what

algorithm is used. The result is stronger than Theorem 19.3.1 since the lower bound on
run time applies to all but finitely many inputs .

Theorem 20.2.1 For every total recursive function g : N ~ N there exists a total recursive

f : N ~ { true , false } such that if f = I Ip D for any program p, then tp(n) > g(n) for all
but finitely many nE N. 0

Proof The proof uses some ideas from the proof of Levin 's theorem 20.1.2. We
assume that the reader is familiar with this, and now just give a sketch. Let Po,
PI, P2,. . . enumerate all I -programs . Program Pk can be generated by code start ;
next ; . . . ; next with k occurrences of next (as in the proof of Levin 's theorem).

Call program p
"
quick on m" if tp (m) ~ g(m). Our goal is to find a function f such

that f = pimplies p ~ Q, where Q is the set of programs that are quick on infinitely
many inputs . This is done progressively. The value of any f (n) is computed in stages:
for each m = 0, 1,2, . . ., n we consb"uct two sets

Deadm = Those programs Pk that have been "killed " so far

Qui ckm = All programs Pk with k ~ m that are not in Deadm- I
and are "quick

" on m

Functions arbitrarily hard to compute 305

read n;
Dead := 0; (. Programs that have been killed .)
for m : = 0 to n do (. Compute f (O), ..., f (n) .)

Quick := 0; (. Programs that run with time <= g .)
for k := 0 to m do (. Iterate on different inputs .)

if k ~ Dead and tPk (m) ~ g(m) (. Collect untilled pgms .)
then Quick := Quick U {k} ; (. quick on input m .)

if Quick # 0 (. Now compute f (m) .)
then k := the smallest index in Quick;

Dead := Dead U {k} ;
Quick := Quick \ {k} ;
Answer := -,I I Pk D(m) (. The value of f (m) .)

else Answer := true ;
(. End of all the loops .)

write Answer

Figure 20.2: A function that is hard to compute.

306 The Existence of Optimal Algorithms (by A . M . Ben -Amram)- -

Suppose now that f = Pro By construction I Ipk D ~ f for every element k put into Dead,
so r is not in any set Deadm. Suppose further that program Pr is fast on infinitely many

inputs . Then it is also fast on infinitely many inputs no, nt , . . . larger than r (see Figure
20.3 for a pictorial representation). For every one of these of these, r will be entered

into Quickn ; (since r is not in Deadn;). Eventually r will be the smallest index in some

Quickn ;, at which point it will be added to Deadn;. A conb' adiction arises because of the

The set sequences will be monotone: r ~ 5 implies Deadr ~ Deads and Deadr U Quick , ~

Deads U Quicks .

The value of f (n) will be made different from Pk(n) where k is the smallest index in

Qui ckn, assuming this set is nonempty . Function f is (by definition) computed by the

program of Figure 20.2. This program reads n, then computes Deadi, Quick ; , f (i) in turn

for i = 0,1, . . ., n, and finally writes f (n). It is evident that f is total .

In the program (which omits the subscripts on Quick and Dead) any index k such

that tPk (m) ~ g(m) for some value k ~ m ~ n will be entered into Quick , unless already in

Dead.

For each n, the value of f (n) is defined so as to make f ~ I Ipk D for a new Pk in Qui ck .

(This happens provided Quick is nonempty, which will occur infinitely often.) When

program Pk has been killed , it is removed from the set Quick and placed in set Dead.

Blum '
s speedup theorem 307

Figure Program

Answer

20.3 Blum 's speedup theorem

timep(d) ~ h(ti7nep/(d

To appreciate the significance of this theorem, let h be a "fast growing
" function such

as 2 n . The theorem says that there is a function f such that, for every program Po you

Programs

Dot . at (m , k) = a program Pk that is quick on input m

nl n2 n3 n4 ns
p ,

index k

Inputs n

m

20 .3: p , is quick infinitely often .

assumption that f = I Ip,D:

= -,l[p,D(ni> = -,f (ni>f (nj> =

Theorem 20.3.1 For any total recursive function h there exists a total recursive function
f such that for any program p computing f , there is another program pi such that f =
(pD = (p/D, and for all but finitely many dE D

308 The Existence of Optimal Algorithms (by A . M . Ben-Amram)

choose for computing " there is an infinite sequence of programs PI, P2,. . . which all

compute I , and such that every Pi+ 1 is exponentially faster than Pi for all but finitely
many inputs . Interestingly , the proof shows the existence of these programs, but it can
also be shown that there is no algorithm which can construct a Pi+I from Pi.

Proof: The proof of Blum 's theorem uses some ideas from the proof of Levin 's theorem
20.1.2 and some from Theorem 20.2.1. We assume that the reader is familiar with them,
and now just give a sketch.

We further assume the "speedup
" function h to be time-constructible . This is no

loss of generality, since a time-constructible function always exists "above" h (see Exercise
19.8). Further, we assume that h(n) ~ 2n for all n, and h is monotone. We let

h(k)(x) = h(h(. . . h(x) . . . with k applications (and h(O)(x) = x).
We now describe a "diagonalizing

"
program blum and define I = I Iblum D. In the

construction below, we use the STEP macro to simulate programs concurrently in the
manner of section 20.1, with two modifications .

First, the checking phase using the program r is irrelevant to the current construction
. Secondly, we modify the computation of the number of steps t. In the proof of

Theorem 20.1.2, t began at 1 and was doubled after every round of simulation , so that
on iteration n, we performed 2n- k

interpretation steps on behalf of Pk. In the current
construction , t will be replaced at the end of each round by h(t), so Pk is interpreted for
h(n- k)

steps.
On input n, the main task of program bl um is to compute a set Deadn ~ {O, 1,2, . . ., n} .

By computing a set we mean, creating a list of its elements (in nil i notation). Note that

checking whether k is in the set, using this representation, takes O(n2) time .

Computation of Deadn. If n = 0, Deadn is empty. For n > 0 compute Deadn- l first .
Next , perform precisely niterations of the following generate-and-simulate loop. During

the loop, we maintain a list Quickn of programs to be "killed " . Initially Quickn is

empty. Iteration m will process programs Pk for k = mm - 1, . . .,1,0 as follows :

1. Run Pk on input m for a " time budget
" of at most t = h(m- k)(l) steps.

2. Ifk ~ Deadn- l and Pk stops on m with outputy , then add k to Quickn .

3. Replace k by k - 1, and change the time budget to t := h(t) = h(m- (k- l (l) steps.

Once niterations have been completed, we define Deadn as follows : if list Quickn is

empty, Deadn = Deadn- l . If it is not, Deadn is Deadn- l plus the lowest index that appears
on Quickn (note that it is necessarily not in Deadn- l).

Blum
'
s speedup theo ~ m 309

Completion of the program. The program is completed by removing from Quickn the
smallest index k, and "killing

"
program Pk by setting the output of bl um to true if Pk

on input n yields false , and false otherwise. Figure 20.4 contains this algorithm in
program form.

Figure 20.4: A program to compute Blum's function.

lime analysis . Clearly h(k)(1) ~ 2k. Thus the "budget
" for Pk in iteration n is bk(n) =

h(n- k)(1).

Claim 1: Let P be any I program such that ([pD = ([blumD. Then (3k) tp(n) > bk(n) for all
but finitely many n.

Proof: Since the enumeration Pi includes all I programs, there is a k so that P = Pt.
Assume to the contrary that tp(n) ~ bk(n) for infinitely many values of n. In particular ,
infinitely many such values are larger than k. For each such value, the generate-and-

simulate loop will generate P and find that it terminates within its budget of bk(n) steps.
Hence it will put it on Quick (unless it has been killed already). Since for every n,
the lowest index on Qui ck is killed , k will eventually be killed . This contradicts the

hypothesis that ([pD = ([blumD.

Claim 2: The running time of the iteration that computes Deadn from Deadn- l is

310 The Existence of Optimal Algorithms (by A . M . Ben -Amram)

tbl U J Dt(n) ~ h(n-k- l)(1)

On the other hand, by Claim 1,

tp(n) > bk(n) = h(n-k)(l)

nLi=no+ 1h(n+l - ko)(l) c2h(
n+2- ko)(1)

2ko
- k- 3 h(n+2- ko) (1)

<
<
< h (ko- k- 3)

(
h (n+ 2- ko)

(1
)

~ h (n- k- l)
(l)

bounded by c2h(n+l)(I) where C2 is a constant.

Proof: This is rather similar to the analysis for Levin 's theorem. It is straightforward
fromthe estimations already performed , since we used the generate-and-simulate loop,
and only added the effort of lookup in Dead for programs that terminate; this effort

takes at most 0 (n3) time, which (due to the growth rate of h) is bounded by clh(n+l)(I)
for an appropriate constant Ct.

Claim 3: For every k ~ 0 there is a program blumk such that [blumkD = [blumD and

tblumk(n) ~ h(n- k- l)(I), for all but finitely many n.

Proof: Let ko = k + rlogc21 + 3. Let no be a value of 17 such that no program among

PO,Pl,P2' " ' ,Pko is killed for n > no (observe that such an no always exists). Program

blUDlk is a "shortcut " version of program blum , that skips the computation of

Deado,Deadl , ' . . ,Deadno' Instead, it has Deadno initialized as a quoted constant. This

actually only helps if the input n is larger than no; for n ~ no the program does the same
as bl um. However for larger n the time of computing Deadno is saved.

Also, in the generate-and-simulate loops for no + 1, no + 2, . . ., n it is not necessary to

simulate Pi for any j ~ ko (this follows from the definition of no). We next compute the

running time of bl umk for n > no.
A simple modification of Claim 2 above shows that the iteration that computes

Deadn from Deadn- l now runs in time c2h(n+l - ko)(I). Summing over the iterations for

Deadno+l ,Deadno+2, . . . , Deadn we obtain the bound :

This completes the proof of the claim.
We are ready to complete the proof of Theorem 20.3.1 (modulo the simplifying

framework). Let P = Pk be an arbitrary program such that I Ip D = I Iblum D. Using Claim 3

we obtain a program blumk such that I Iblumk D = I Ip D, and for all but finitely many values

of n,

Combining the last two inequalities and using monotonicity of h, we get

The gap theorem shows that for an arbitrarily chosen computable increase in time

bounds, there exist functions such that applying the inCrease to the bound does not

enlarge the class of decidable problems (in sharp contrast to the hierarchy results of the

last chapter). The theorem provides such a function that satisfies a pair of conditions ,
one an arbitrarily chosen computable lower time bound g and another, h, that defines

the amount of increase to be applied .

Theorem 20.4.1 the gap theorem. For any (arbitrarily large) total recursive functions g :

D -+ N and h : N -+ N such that ('v'n) h(n) ~ n, there is a total recursive function t : D -+ N

such that ('v'd) t(d) ~ g(d) and for every I program P we have

timep(d) ~ h(t(d = > timep(d) ~ t(d)

for all but finitely many values d.

Thus, time bound hot is not " stronger
" than t when infinitely many inputs are considered

. Note that by the assumption on h, we have hot ~ t, so the statement is significant .

We say that there is a complexity gap between t and hot .

Proof First define a macro TEST that accepts as input a tree variable X and an integer-

valued variable N, and gives a Boolean result . Macro TEST generates I programs

Pl ,P2' " ' ,Pi until Pi
= X (this will happen because our enumeration process generates

all trees). Using the timed interpreter from the previous chapter, TEST runs each generated

program for at most h(N) steps on X. If any of these programs terminates within 5

steps where N < 5 ~ h(N) the result of TEST is false . Otherwise it 's true .

We now use the macro TEST to write a program that computes a function t : D -+ N.

On input X, the program computes n = g(X), then repeatedly applies TEST to X and

N = n, n + 1, n + 2, . . . until true is obtained. The result, t(X), is the last value of N . We

claim that function t is total , and satisfies the theorem.

Proving that t is total amounts to showing that the loop in the program will always
terminate, i .e., that TEST eventually yields true . To this end, note that all the calls to

The gap theorem 311

20.4 The gap theorem

tp(n) > h(tbl Ul Dt (n

and the proof is complete.

312 The Existence of Optimal Algorithms (by A . M . Ben -Amram)

TEST run the same set of programs on the same input , X. Among these programs, some

may terminate on input X, while others do not . Let T be the largest number of steps
that a program that does terminate takes to do so. Then unless the loop stops for some
N ~ T, it will surely stop for N = T + 1 (the reader may care to verify this).

To prove that t satisfies the theorem, suppose that for some program p, timep(d) ~
h(t(d . Suppose that p = d or appears befored in the enumeration of b' ees; then p is

among the programs enumerated by TEST in computing t(d). Note that t(d) is defined as
a value of N for which TEST yields true . This means, that timep(d) ~ t(d), for otherwise
TEST would have yielded false .

We conclude, that timep(d) ~ h(t(d = > timep(d) ~ t(d), except possibly if p appears
later than d in the enumeration of ttees. But this case applies to finitely many d. 0
The statement of the gap theorem would not be very surprising if , when we relate the
time bound t(d) to the size of d, we find that t does not grow monotonically with Idl
but keeps oscillating up and down . For then hot would also be such an oscillating
function , and why would any program have a running time that is "sandwiched " between

such strange bounds? Actually the gap feature is not restricted to such functions .
Exercise 20.8 shows, that the theorem can be modified to guarantee that t is monotone

increasing in Idl.

Exercises

20.2 . What is the space complexity of opt ? In particular, how does it relate to the space
consumption of a given program q for the problem in question? 0

20.3 Suppose we change every
" semi - decidable " in Levin 's theorem to " decidable ,

" and

require r to halt on every input , with some appropriate convention to signal whether
the checking was successful or not . Would then opt halt always ? 0

Another natural question to ask is, where do we find these strange time bounds?
For instance, could they be polynomial? Versions of the gap theorem that describe the
growth rate of the function t have been proven, but are beyond the scope of our book.
However, exercise 20.9 gives an illustration of the fact, that these functions would in
general be very fast-growing.

20.1 The proof of Levin's theorem assumes program q to be coded in language I , while
opt is a WHILE program. Explain why this discrepancy does not affect the result. 0

20.4 Prove a version of Levin 's theorem for space complexity (it suffices to explain the
differences from the given proof). 0

20.5 Give an upper bound on the time required to compute function f in Theorem
20.2. 1. 0

20.6 . Extend the proof of Blum 's theorem to cover arbitrary inputs . 0

20.7 section 20.3 claimed that Blum 's theorem establish es the existence of a faster program
p

', but there is no algorithm to construct it , given p. However , from the proof of
the theorem we know that blumk+1 is that faster program . Why doesn't the proof imply
an algorithm to obtain the faster program ? In other words , why is the construction of

blUlDk+1 not effective? 0

20.8 Modify the proof of Theorem 20.4.1 to ensure that function t will increase when Idl
is increased. 0

20.9 . Let us restrict attention to time bounds which only depend on the size of the

input , t(d) = f (ldl). Demonstrate that for some constant a > 0, it is not possible to find
such a time bound t such that there is a "gap

" between t and at, and 0 < f (n) $: n2. Hint :

Design a program PI such that for every odd n and 0 < i $: n

(3d) i < timept (d) $: ai

for an appropriate constant a. Design another program P2 whose time similarly lies
between in and ain. Show, that for t,f as above, and for infinitely many inputs , one
of these programs will have its running time inside the intended "

gap." Remark: It is

actually possible to generalize this result to any polynomial function of n (instead of n2).
0

References

The gap theorem 313

Levin 's theorem has been presented in a form quite similar to the above in an article

by Gurevich [56]. This is rather different from (and simpler than) the original Russian
article [102, 100].

Blum 's speedup theorem is from [13]. The gap theorem is attributed to two independent
works , [15] and [159]. Both theorems can be found , together with an assortment of

related results, in [165].

314 The Existence of Optimal Algorithm.~

The fields of designing efficient algorithms and of proving lower bounds for com -

putational problems have been the issue of extensive literature , for example [2, 96] and

numerous more recent publications .

(by A . M . Ben-Amram)

e-bounded Computations

We have hitherto emphasized computation time. There is a similar but somewhat different

way to classify problems according to how much memory space is required to solve
them. For simplicity of exposition we limit ourselves to imperative languages in which
a computation is a linear sequence of states, i .e., all the languages seen so far except the
functional language Fl .

For the computation models of chapter 7 the input is contained in the initial store,
which always has length at least Idl, i .e., space linear in the size of the input . In other
words , there are no problems solvable in sub linear space in the models given earlier.

In general (see Theorem 21.5.2), linear space decidable sets can take exponential time
to decide; and no better bound is known . This time bound is intractable, i .e., well beyond

that of practically usable algorithms , and thus motivates a study of space bounds
that are small enough to give running times closer to practical interest, and so smaller
than Idl, the length of the input .

A solution to this problem is to use "offline " models that allow only read-only access
to an input value d and, when measuring program space consumption , to count only
the "workspace

" that is used beyond the input length . (This is intuitively reasonable,
since read-only input will remain unchanged during the entire computation .) For the
moment we are only interested in decision problems expressible by a yes-no answer,
and not in computation of functions .

In order to study space-bounded computations , we will equip Turing, counter, or
random access machines with a read-only input, instead of the earlier device of incorporating

the program input value into its initial state. A motivation is that it will become

possible to analyse computations in sublinear space, i .e., using space smaller than the
size of the program input , thus bringing space-limited computation nearer practically
interesting problems than before.

The models will later be extended to allow output as well . This will be write-only,
symmetric with the read-only restriction on input , in order to maintain the separation of
work storage from storage used for input -ouput data. Classes of functions computable
in limited space analogous to the above time-bounded decidable classes will turn out
to be quite useful for investigating complete, i .e., hardest problems for the various com-

1 Functional languages can also be classified spacewise, but require more subtle definitions ~ use of
implicit space usage caused by recursion.

21 Spac

�

The following is to be regarded as a generic definition , parametrized by the definition
of state space or size used for the various machine types. Precise definitions of these
will be given shortly .

Definition 21.1.1 Let P = 1 : 11 . . . m: im be any imperative program in some language L,
and let p ~ 51 -+ 52 -+ . . . -+ St be a terminating computation with 51 = (l , Readin(d for
some input value dE L- values. Then by definition (parametrized on the length 151 of a
state 5):

spac~ (d) = max{ ls11, ls21, . . ., Istl}

Turing machine space usage is the standard used to define space-bounded computation .
First, we define this for the multitape Turing machines seen earlier in section 7.3.

Definition 21.1.2 Let P be a k-tape Turing machine program . We define the length of
counter

21.1.2 Some read -only machine models and

Definition 21.1.3 A read-only Turing machine TMro is a two- tape Turing machine whose
input is astringd in { O, 1 }

*. Its instructions are as follows , where subscript u = 1 indicates
that the two-way read-only input tape 1 is involved ; or u = 2 indicates that the

two-way read-write work tape 2 is involved . Instruction syntax is as follows :

316 Space - bounded Computations

a state 5 = (l ,u), where l is the instruction
k-tuple of tapes, to be

151 = max(ILl~lRll , IL2~ R21, . . ., ILk Sk Rkl)

their space or size usage

and 0' = (L1~lRl , . . .,LkStRk) is a

plexity classes. Of special use will be those computable in logarithmic space.

21 .1 Space -bounded computation models

21.1.1 Space measures for imperative machine models

The read - only Turing machine variant has read-only access to its input d . Further , only
the "

workspace
" that is used beyond the input data will be counted . (This is intuitively

reasonable , since read -only input will remain unchanged during the entire computation
.)

Space - bounded computation models 317

Definition 21.1.4 A read-only counter machine CMro is a register machine whose input
is astringd in { O, 1}

. . Input access is by instruction if Inci = 0 goto .e else l ' ,
which tests symbol ak in input d = at a2. . . an indirectly : index k is the value of counter

2This condition simplifies constructions, and causes no loss of generality in computational power, or in
time beyond a constant factor.

Tape 1: I ::= right1 Ileft1 I if1 S goto t' else t"

Tape 2: I ::= right2 Ileft2 I if2 S goto t' else t" I wri te2 S

Symbols : S ::= 0 I 1 I B

A tape together with its scanning position will be written as . . . BL1~1 R1 B . . . , where

the underline indicates the scanned position . We assume the program never attempts to

move right or left beyond the blanks that delimit the input , unless a non blank symbol
has first been written2 .

We define the length ofa read-only THro state 5 = (t', 0'), where t' is the instruction

counter and 0' = (. . . BL1~1R1B. . . , . . . B~ ~ R2B. . .), to be 151 = IL2~ R21, formallyex -

pressing that only the symbols on " work "
tape 2 are counted , and not those on tape 1.

0

Ci . Data initialization sets counter CO to n , giving the program a way to
" know " how

long its input is .

I ::= Ci : = Ci + 1 I Ci : = Ci .:. 1 I Ci : = C j

I if Ci = O goto [else l ' I if Inci = O goto [else ['

Storage has form CMro -store = (du) E { O, 1 }
. x { U I UN ~ N } where d is the input

data and u (i) is the current contents of counter Ci for any i EN . The counter values u

are initialized to zero except for co : initially ,

u = [O ..-+- Idl , l ..-+- 0, 2 ..-+- 0, . . .J

A state has form 5 = ([, (d , u = ala2 . . . an , where [is the instruction counter . The effect

of instruction execution is as expected from the syntax , plus definition of the effect of

instruction if Inci - O goto [else [' . Informally : if 1 ~ i ~ n and aq (1') = 0 then

conb "ol is b"ansferred to It " else to It " .

We define the space ofa read -
only CMro state 5 = ([, (d , u to be

151 =
L log (u (i

0' (1')# 0

nom

Remark : this differs slightly from the counter machines seen earlier in section 7.4, in
that input is a bit string instead of a number . The difference is easily reconciled by using
the isomorphism CN between numbers and b"ees in D as defined in section 8.3.2.

318 Space - bounded Computa

where logv is the number of bits required to represent v . This formally express es that

only the space usage of nonempty registers (measured in bits) is counted . 0

21 .1.3 Comparing ordinary and read -only machines

The following easily proven propositions assert that, as far as space usage is concerned,
multiple tapes are only essential when considering computations that use space less
than the length of the input .

Proposition 21.1.5 For any k-tape Turing machine p such that space~ (d) ~ Idl for any
input d, there exists a I -tape Turing machine q with [pDTH = [qDTH and a constant a such
that space~ (d) ~ a . space~ (d) for any input d.

Corollary 21.1.6 If P is a read-only Turing machine such that space~
O(d) ~ Idl for all

inputs d, there is a I -tape Turing machine q with [p DTMro = [qDTH, and a constant a such
that space~ (d) ~ a .space~

O(d) for any input dE { O, 1}
*.

Proof Exercises 21.1 and 21.2. 0

Essentially the same results hold for counter machines, except that we must take account
of the isomorphism CN : N -+ {O, 1 }

*. Hints for the straightfoward proofs are give in
Exercises 21.3, 21.4.

Proposition 21.1.7 For any counter machine p as in section 7.4 there exists a read-only
counter machine q and a constant a such that for any input v EN :

[qDCMrO(CN(V = cN([pDCM(v and space~
O(cN(V ~ a .spac~ (v)

Proposition 21.1.8 For any read-only counter machine p such that space~
O(d) ~ Idl for

any input d, there exists a counter machine q as in section 7.4 and a constant a such that
for any input v EN :

cN([qDCM(v = [pDCMro(CN(V and space~ (v) ~ a . spac~
O(cN(V

21.2 Comparing space usage of Turing and counter

machines

Corollary 21.2.2 For any f with f (n) ~ n

CECM(d.f1

2 . L 'ogspace = Uk : O Lspace(.).n ,klogn)

3 L Pspace = U . L space(f>. f a polynomial

The corresponding classes of problems solvable within limited space are easy to define:

Definition 21.1.10 Given programming language L and a total function f : N ~ N

1. The class of problems L-decidable in space f is:

SPACEL(f) = {A ~ L-data I A is decided by some pEL space(f (n }

2. The class of problems L-decidable in logarithmic space is:

LOGSPACEL = {A ~ L-data I A is decided by some pEL logs pace)}

3. The class of problems L-decidable in polynomial space is:

PSPACEL = {A ~ L-data I A is decided by some p EL Pspace)}

Theorem 21.2.1 For any f with f (n) ~ max Oog n, 1)

US P A CE T Mr O(cf) = US P A CE C Mr O(df)
C ' d

USPACETM(C/) = USPAc d

where t' is the insbuction counter. Assume A ES P A CE T Hr O(cf>. Clearly the scan-

ning positions on both tapes can be represented by counters, each no larger than
2 + max(n,cf (n ~ 22cf(n). The idea of the simulation is to represent the work tape contents

by two counters, each no larger than 22cf(n), and to simulate operations on both

tapes by corresponding counter operations.
A work tape containing bt . . . ~i' . . bm where m ~ cf (n) can be represented by a pair

of numbers l , r, where

. I is the value of bt . . . bi as a base 3 number (counting B as digit 0, 0 as digit 1, and
1 as digit 2), and

. r is the value ofbmbm- t . . .bi+t , also as a base 3 number.

The work tapes are initially all blank , so I = r = 0 at the simulated computation
's start.

Since m ~ cf (n), we have

Putting these together, we have two counters to represent the input and work tape
scanning position , and two counters to represent the work tape contents.

The effect of moving a work tape head right one position is to replace I by 3 . I +
(r mod 3), and to divide r by 3, and similarly for moving left . It is easy to see that these

operations can be done by counters. Testing the scanned square
's contents amounts to

a test on I mod 3, also easily done.

Space-bounded Computations

Proof: The corollary is immediate from Theorem 21.2.1 and the preceding propositions
. Two constructions follow to prove Theorem 21.2.1, one building from an f -space-

bounded Turing machine program a corresponding counter machine operating in the
desired size bound, and another construction in the opposite direction. We leave it to
the reader to verify that the constructed programs decide the same sets as their sources,
that is that the simulations are faithful. This should not be surprising, as each program
simulates the operations of the other in exactly the same order, so it is only important
to verify that the desired space bounds are preserved, and that the two programs' states
continue to correspond properly. 0
Construction 21.2.3 A ES P A CE T Mr O(C!> implies A E Ud SPA CE C Mro(d! .

A TMro total state is

l,r ~ 3cf(n> ~ 4cf(n> = 22cf(n>

Representation of TMro storage in a CMro program.

s = <i , . . . BLl~lRlB . . ., . . . BL2S2R2B. . .)

Comparing space usage of Turing and counter machines 321

These counters are all bounded in size by 22cf(n> and so by 2cf(n) bits; and

tively represent the Turing machine's total state. Each Turing machine operation
faithfully simulated by operations on counters, concluding the construction.

Construction 21.2.4 A ES P A CE C Mro(d{> implies A E Uc SPA CE T Mr O(C{>:

collec-

can be
0

Representation of CMro storage in aTHro program . Suppose p is a CMro program ,
and d = a 1 a2 . . . an is an input . The CMro input a 1 a2. . . an will be present on tape 1 of
the THro .

The THro code to simulate p will represent each variable Ci by a block of bits on
the work tape containing the binary representation of value j of Ci . Some TM data
initialization is needed, as the initial value of counter CO is n. It is easy to write TM code
to accomplish this; the main task is to construct the binary representation of value n
(which occupies log n bits, whence the lower bound on {>.

Each CMro counter C1,. . ., Ck is assumed to have length at most df (n) bits . One may
think of having as a new symbol the marker 2, so the work tape form would be

The same effect can be achieved without the extra symbol 2 by a simple data encoding

doubling number , k of CMro vari -

. Locate the block containing the value j of Ci , and copy it into another block for
use as a counter c.

. If 1 :5 c :5 n then continue, else goto the code simulating t .

. Move to the l~ft end of input tape 1 containing at a2. . . an.

. If c = 1, the input symbol aj has been found and may be tested for zero.

. If c > 1 then decrement it by 1, scan forward one symbol on the input tape, and

repeat from the previous step. 0

. . .B B Block } 2 Block22. . .2 Blockk B B. . .

into 0, 1, at most the tape space. Since there is a fixed
ables, the total amount of work tape storage, including markers to separate the blocks,
is at most a constant times f (n) bits, as required.

Each CMro operation is straightforwardly simulable by the Turing machine. For example

, command if Inci =0 goto t' else t" can be realized by steps:

21.4 Robustness of PSPACE

�

322 Space-bounded Computations

21 .3 Relation of LOGSPACE to counter machines and

PTIME

Corollary 21.3.1 LOGSPACETM = LO G SPA C Ec H

Proof: Immediate from Theorem 21.2. 1. 0

Corollary 21.3.2 LOGSPACE ~ PTIME

Proof: Suppose A E LOGSPACE is decided by some Turing machine p with m instructions
in space k log n for some k and all inputs of length n. Then p cannot run for more than
m. (n + 2) . 3klogn steps, else it would have repeated a state

(i , . . .Bl.s.lRlB . . ., . . .BL2.s.2R2B. . .)

and so be in an infinite loop. The expression above is certainly polynomial-bounded,
since alogn = nloga for any a,n > 0, and so 3klogn = nklog3. 0

Theorem 21.2. 1 gives a plea singly tight connection between the space used by Turing
machine computations and the sizes of counters used by counter machines solving the
same problems. Further, any counter machine is also a RAM, so we now briefly consider
the translation compiling RAM to TM from a memory usage perspective.

The amount of Turing machine tape used by a translated program can be assumed to
be bounded by the sum of the lengths and address es of the nonzero RAM memory cells3.
Now every nonconstant address must have first appeared in a register; so if the RAM

program uses at most space f (d) bits of storage on input d, then the simulating Turing
machine uses at most linearly more space.

From this (informal) argument we can conclude PSPACETM = PSPACECM = PSPACERAM.
Therefore we henceforth often write PSPACE rather than PSPACETM.

3Using the construction of chapter 8 , this could only fail if the RAM repeatedly stored first a nonzero
value, and then 0, in a great many cells. This would create many useless but space-consuming blocks on the
Turing machine's tape. The problem is easy to circumvent; each time a register-changing RAM instruction is
performed, the simulating Turing machine checks to see whether the new value is zero. If so, the address
and value are removed from address and contents tapes, thus "compacting

" the tape storage. This yields the
desired space bound.

programs

Storage usage in GOTO programs

The original tree-based semantics gives unrealistically high space measures for two reasons
. First, the tree model did not account for sharing, whereas an assignment such as

X: =cons X X should clearly not double the memory assigned to X.

Storage in the TM to GOTO to RAM translations

In the translation compiling TM to GOTO, the number of DAG nodes accessible from
variables can be seen to be proportional to the sum of the lengths of the tapes of the

Turing machine being simulated. Consequently PSP ACE TM ~ PSP ACEGOTO.
In the translation compiling GOTO to SRAM, the number of accessible SRAM memory

cells is proportional to the DAG size since the implementation simply realizes the DAG
as described. On the other hand, the implementation as sketched does not perform
garbage collection. Revising the implementation to do this would give PSPACEGOTO
PSPACERAM and thus

Robustness of RSPACE 323

c

PSPACEGOTO = PSPACERAM = PSPACETM = PSPACECM

has some complications that require a more

subtle implementation ; the complications and an alternate implementation are sketched

below .

A second problem is that even if the more realistic DAG model of section 17.1.1 is
used, it often happens that nodes become inaccessible. For example, consider the translation

compiling a Turing machine program to an equivalent GOTO seen in section 18.2.
Without accounting for unreachable nodes, this would require space roughly proportional

to the simulated Turing machine's running time, since every tape head motion is
simulated by a cons . This is far in excess of what seems reasonable. The following
seems to be a fairer definition :

Definition 21.4.1 A space measure for theflow chart language GO Ta Consider the semantics
of section 17.1.1 in which the store 0' is a DAG (dip) where p maps Vars (p) to nodes,
and d is a DSG that specifies the structure of the DAG . By definition , the size 10' 1 of such
a store is the number of nodes in the dag that can be reached from some node variable ,
that is the number of nodes reachable via d from the entry nodes in the range of p.

324 Space-bounded Computations. -

21 .5 Relations between space and time

Proposition 21.5.1 TIMETM(f) ~ SPACETM(f) for any f . Consequently PTIME ~ PSPACE .

Proof TIMETM(f) ~ SPACETM(f) is obvious, since a TM-program p that runs in time
bounded by f (ldl) cannot write on more than f (ldl) tape cells. Thus 5pace~ (d) :5: f (ldl)

by Definition 21.4.1 so

PSPACETM :;2 PTIMETM = P TIM Es RAM = PTIMEGOTO.

0

Theorem 21.5.2 H f (n) ~ n for all n then

SPACETM(f) ~ UTIMETM(cf)
c

Proof We show that if a one-tape Turing machine program pruns in space f and terminates

on its inputs , then it also runs in time cf for appropriate c.

Clearly p cannot repeat any computational state s = (i , . . . B L ,s. R B . . . > in the computation

on input d, since if this happened, p would loop infinitely on d. So to prove
our result it suffices to show that a terminating program running in space f has at most

cf<ldl> different states for some c.
Consider any computational state s reachable on input d. By the assumption on p,

IL,S.RI ~ f (ldl>. The total number of possible values of the non blank tape contents LSR

with this space bound is bounded by 3f<ldl>, since each symbol in LSR must be 0, 1, or

B. Further, the scanning position where S is located has at most f (ldl> possibilities .

Combining these bounds, the total number of different possible values of the tape,

including both tape scanning position and contents, is bounded by

Finally , a total configuration of program p includes the control point and the state of its

tape . The number of these is bounded by <Ipl + 1) . 6f <ldl> ~ cf <ldl > for all d where , for

example , c = 121pl will do since

(Ipl + 1) . 6f<ldl> ~ (2Ipl)i<ldl> .6f<ldl> = (12Ipl)i<ldl>

f (ldl> .3f<ldl>

Now n :$: 2" for all n ~ 1, so by the assumption that f (n) ~ n we have

f (ldl> . 3f<ldl> ~ 2f<ldl> .3f<ldl> = 6f<ldl>

Functions computable in logarithmic space 325

Since no state in p I- So -+ si -+ . . . St -+ St+ 1 . . . can be repeated, the running time of p is
bounded by cf</dl>. Thus A lies in TIME(cf<ld/ . 0

21 .6 Functions computable in logarithmic space

For later usage in chapter 26 (and for the sake of curiosity), we show that a number of
familiar functions can be computed in logarithmic space. The read-only Turing machine
has binary integers as inputs (multiple entries are separated by blanks), and is now
assumed equipped with a one-way write-only output tape to write function values.

Proposition 21.6.1 The following functions f : {a, 1}
* -+ {a, 1}

* are Turing computable
in space logn:

1. .>t(x,y).x + y, .>t(x,y).x .y, .>t(x,y).x ~ y
2. .>t(x, y). x . y
3. f (XI, X2, . . . xn) = the same sequence sorted into nondecreasing order

Proof Exercises 21.5, 21.6, 21.7.

Lemma 21.6.2 The following statements about a function f : {O, 1 } * -+ {O, 1 }
* are equivalent

, provided If (d)1 is bounded by some polynomial p(ldl) for all d:

1. f is Turing computable in space klogn for some k.
2. The following function is computable in space k' log Idl:

.>t(i ,d).the i -thbit off (d)

Proof To show 1 implies 2, suppose f is Turing computable by program p in space k log n
with input X, and that it produces its output by executing a series of instructions of form
wri te Z. The idea is simply to produce the bits of f (d) = IpD(d), one at a time, but to
ignore them until the i -th bit has been produced, at which time that bit is written.

Add to p an extra input variable I and a counter variable C, and prefix p
's code by

the following:

if I > p(IXI) then stop ; Otherwise:
read I ; (. from input tape (I . X) into memory.)
C := 0; (. initialize bit counter .)

326 Space-bounded Computations- -

constant times logldl . To complete the consuuction ,
in p by the following :

C := C + 1;
if C = I then write Z and stop ;

replace

as in Lemma 21.6.2. We sketch the construction of a 6-tape Turing program r to compute

Storage representation r 's tape contents are as shown in Figure 21.1.

Initialization is trivial , as programs Pt and Pg for functions f and g both begin scanning
the blank to the left of their respective inputs g(x) and x . Thus the only initialization

action is to set i = 0 by writing 0 on tape 3, as all other tapes are initially blank .

z

A(i, x). the ith bit of g(x)

f <g(X .

every insb"uction wr it e

(nil is written for a nonexistent bit.) Because of the polynomial bound on If (d)I, variable
I , if stored, will not require more than O(logp(ldl bits. This is bounded by a

To show 2 implies 1, let program p compute A(i ,d) .the i -thbit off (d). Embed it in a

program q of form :

for C := 1 to p (ldl) do
{ B := p C Input ;

if B = 0 or B = 1 then write B }

The idea is to write the bits off (d) = I Ip D(d), one bit at a time in order, by computing the

i -th bit of f (d) for i = 1,2, . . ., p(ldl and printing its results.

The expression p C Input above is realized by running p, modified to take the

Input part of its argument from the read-only tape, and the C part from the work tape.

Theorem 21.6.3 If f , g are both computable in space log n then so is fog .

Proof One cannot simply compute g(x) and then apply f to this result, as g(x) may

occupy more that klogn bits (e.g., if g is the identity function). On the other hand, a

logspace f program does not look at its input all at once, but rather one symbol at a

time. Our strategy is thus not to store g(x) explicitly but rather virtually , using the result

of Lemma 21.6.2. Let TM-program Pf compute f , and assume program Pg computes

Functions computable in logarithmic space 327

Figure 21.1: Tape contents for 6-tape Turing program r .

Instruction simulation .

goto t' and if2 S goto
course simulated by wri te6

ing the contents b of tape 4.

First , any insb" uctions in program Pfofforms right2 , left2 ,
.e can be performed without change ; and wri te2 S is of

S. Insb" uction if } S goto .e can be performed by test -

The remaining Pfinstructionforms are right } and left }; we only describe the first ,
as the other is nearly identical . Instruction right } is simulated by code to effectuate:

i := i + 1; b := Pg x i ; (. i = scan position from tape 3 .)

Finally, it must be seen that this code can be programmed on a Turing machine, and that

the resulting machine r works in logarithmically bounded space.

As to programming , command b : = Pg x i can be realized by modifying Pg
'S program

to use tape 5 as its work tape, and to take its input from tape 1 as long as it is

scanning the x part of its two-part input xBi , and to shift over to reading from tape 3

when reading from the i part .

As to r 's space consumption , let n = Ixl . Tape 4 is of constant size, and tape 5 is

Pg
'S work tape on x and so is logarithmically bounded in n. The value of g(x), which

is PI
's simulated input , must be bounded by some polynomial1r (n) by the running

time argument of Corollary 21.3.2. Thus 0 :5 i :5 1 + 1r(n), so tape 3 is logarithmically
bounded (assuming i to be represented in binary notation). Finally, tape 2 has length at
most k' loglg (x)1 :5 k' log(1r(n = O(logn).

Tape 1 is not counted, and all 4 work tapes are logarithmically bounded . They can
all be combined into one work tape, also logarithmically bounded , which completes the

argument . 0

steps without entering an infinite loop, since exceeding this limit would imply it had

repeated a total state and so was in an infinite loop. If I Ip D(p) has not terminated within

~

~

~

: ;

! J

~

i ~

. e . ~ .
~

 ' 5

~

E

u

~

;

rt
1 .

.
~

 ~

tU

0 . ~

~

0

. - ; ~

~

~

C /) ' H

~ - ~
 -

, . ; :

'

~

'
v

~

0 ~

~
 bO

- ~
 ~

~ . . C /) ! J > -

~

~

~

.
- e ~

 ~

. fi

. ~

. : : 5 ~
 bb

 ~

~

~

fI : [

.
~

~

"
0

~

tb

6 ~
 oS

. . . .

~
 ~

x

~

i

~

0 '

C /) . S

] a

~

~

e . . =

.
e ~

 ~
 ~
 6

~
 C /) t j ! - a =

~
 ~

"
0 e ~

: a ~ . Q
 C /)

bO

s

tU " ' O

5w

~
 tU

. c ~

~

~

~

;
~

~ " ' 8

' 5

. ~
 ~
 ~

E

.
f : =

~ :

6

;

~

"

~
 . - ~

 . - ' C

- ~

tU

~ " - ~

v

~

. c tU

~

b

f1)

,
g

~

.
~

 ~

~

.
~

!

~

~
 a

1 . : S

.
! ~

.
~

~
 g

.
=

 ; . : S
 ~

. E

~
] ~
 ;

~

~

~
8

~

;

~

O
J ! .

. s ~

u

'

tU " tU _ , ~

~ ~ 0

bO
S =

~

C /) ~
 ~

 ~

~

tU

. s ~ ~

. c

. , g ~

i

~ 1I
 cd ~ ' C

:
E

~

~
 ; '

~
 ~
 C /)

~
 u

.
~

0 o

! t3

~

. - -

: a ~
 - g

tI

~ " tu
 Q , . ~

~

. E
 ~

6 e

~

. s ~

~
 ~
 ~
 ~

~

. 8

0 \

~
 _ . E . .

\ 4 - .

c ~
 . S . 6 " . d ~

0 j ! . ~

~
 a - g

. 5

~

. . . . - :

!

- =
 ~ ~

6b
E ~

w

- ~ ~

tb ~ ~

0

~
 6 ~

' : i : : . 0 ~
 . . ~

8 ~
 C /)

.
6 ~
 a ~

8 ~

~

0 5

0

C
I

)

- . 8 : - =

~
 ~

~
 ~
 ~

IS . 2 . e . . t) ~
 ~

~

5

tU

~

~
 ; ; ~

.
~

 ~

C
I

) ~

.
E

~

u

' . 5 ~

15

~
 ~
 ~
 .

~

~
 - 0 - - bO

0 ~

a

~
 ~

~

~
 tU

' " : : ' ~

~
 ' + oC . o ~

cI
5 ~

tU

~

. : S
 b ~

 ~

~

~
 . 5 pj

~

~

t ~
 ~

b

~

~
 ! - o

' , g ' : S
pj " S - S - 8

! ' : i : : . - - a . ' : i : : . ' : i : : .]

tU

~

:
E

 : =

0 . ~

0

-

~
 ~

t : ~
~

 !]

.
9 ~

~

~
 ~

. ~

8 / \ ~

V
I

V
I

2

~

~

~

0

: a - ; z

/ \ 1

~
~

~

~
 bO

U
 0 : =
 ~
 C /) ~
 ~

C /) ~

~
 . ~
 -

~
 - - 0 ~

bO

~

~

~

t

~

~
 ~

 . <
 C

4 ~

~
~

~

~

. Q

ro
t ~

~

~

bO

~

.
, g ~

 ~

~

:

! . 0 ~
 ~ . e

~
 ~ . a : ; C /) ~

~

~
 ~

~ ~
 ~

~

.

m

~

~

Z
 =
 tI) - . c ~

 F

~
 ~

tU

r : " '

~
 ~

S

. ro
t

~

(oJ

(oJ

~ . . c

'

~
 ~ . . g . . tU

~
 U

~

~
 - - - .
tU

; a ~

~

t =
 !

~

a

' C

! . 2 . . 2 . .

~

~

F

0

\ 4 - .

~
 00

~ < + : : . ~

at U O : = ~

tI) tI) tI) oS

~

C
I

) ~
 ~

6 ' : : !] * se

i

.
~

e i tb

t ; ~
 ~

 ~

~

~

!

]

0

~ . s . ~ "
c ! ~
 ~

\ 4 - . ~

~
 bO

0 , ~

to

0 : =
 ~
 ~

u

: a

0 bO

U

o : =

' : i : : . 60
0

8

~

' tj '

tU

~

t ' ~ ~

~

~

~

. - 4 0 . - 4

- 0

~

"
2 u

- .
~

 - 5 z ' 0 +

~

~
 > -

. ~

~

t

~

~
 ~

S
O

 ~
 ~

- y -

~ .
, !

e .

a] ~
 ~

; 1 ~

i

~
 ~

 =

1 : ; ; j

~
 .

~
 ~

~

~
 J ! .

i

~

~

~

. ~

~
 ~

~

~
 8 . : a

. ! ! i ~

~
 ~

~

~
~

i

!

1 ~

~

~

~

~
~

g

~

0

tU

~ - ~
 .

tU

N

. ut
a

tu > .

.

! O

cd

~

=

~

~

.
0 S
 ~

j

.
s a

- 5 ~

~

~

~

. $

u

=

~

~

~

. ro
t

0 ~
 bO

E

r
~

 . 8 C /) : = . B
 ' H

~

0 , , =

~

C /) ~
 ~

. E

t3

s ~
 ' C

u ~
 .

V
ol

~
 C /) ~
 .

a ~
 ~

. . . .

~
 . . . C /)

~

. . s =
 F

i

~

. . s =
 ~

' + oC

-

L
~

~
 ~

> .

0 0

. -

~
 ~

~
 0

~

~

' tj ' g , , 8 ;

" 0 ~
 / \ ' t ~
 . 5 ~
 ~

~
 .

~
 . ~

! j

tt
) N ~ . c C

tu

~ ~

f8
4

. . c ~ ~ ~

s8 _ . s tu

~ o : = o

limit(d) = (Ipl + 1) . 3f<ldl> . f (ldl)

Hierarchies of problems solvable in bounded space 329

this number of steps, it will never terminate . Thus this value may be used for a variable
Timebound , playing the same role as in Theorem 19.5.3. The code Timebound : = tl
Timebound from section 19.5.3 must thus be replaced by code to perform the binary
number operation Timebound : = Timebound - 1.

following

Exercises

21.1 Prove Proposition 21.1.5.

21.2 Prove Proposition 21.1.6.

21.4 Prove Proposition 21.1.8. This can be done by filling in the details of the
sketch.

Space analysis It must be guaranteed that diag runs in space bf (ldl> for some b. First,
note that O(f (lpl space is enough to store Timebound as a binary number. Second, the

space condition above can be checked by monitoring the space usage of p, rejecting it if
it uses more than f (lpl> memory, or more than limit (p> time. If diag is itself written in
a space-economical way as just described, it will not use more than linearly more space
than f (lpl>.

Finally, assuming the set decided by diag can be decided by another program in

space not exceeding f (ldl> leads to a contradiction , just as in section 19.5.3; this proves
the theorem. 0

21.3 Prove Proposition 21.1.7. This can be done by filling in the details of the following
sketch.

Given CM program p, its code can be modified as follows : First, CMro program q
scans the symbols of its input at . . . an = CN(V), and computes v = cNt(at . . . an), which
it stores into a counter. It then executes the code of p without modification . A sb' aight-

forward size analysis of the values involved shows that this can be done in the required
space. 0

Theorem 21.7.3 If functions f , g are space constructible, f (n) ~ n, g(n) ~ n for all n, and
limn-+oog(n)/ f (n) = 0, then SPACETM(!>\ SPACETM<g) ~ 0.

Proof: This is very similar in concept to the proof of Theorems 19.5.3 and 21.7.2. 0

0

0

330 Space-bounded Computations- -

References

The earliest work on space-bounded hierarchies is from 1965, due to Hartmanis, Lewis
and Steams [61, 62]. Early results on sublinear space are found in papers by Savitch,

Meyer, Jones, and Jones, Lien and Laaser [149, 120, 79, 71, 75].

Given CMro program p, its code can be modified as follows : First, q copies input v

into a counter Cv not used by p, and then determines its length n and puts it into counter

CO. This is straightforward using the definition of CN: divide v + 1 by 2 repeatedly and
discard the remainder until 0 is obtained; the number of times halving is done is n + 1.

Second, p can be simulated stepwise, all instructions that q executes being identical
to those of P with a single exception: Inci =0 goto i else i ' . The value of the needed
bit from CN(V) can be found by repeatedly halving v + 1 a number of times equal to the
value of Ci . If the result is positive and even then the bit is 0, else if positive and odd
then 1, else Ci exceeds n. A straightforward size analysis of the values involved shows
that this can be done in the required space. 0

21.5 Prove Proposition 21.6.1, part 1. An informal construction , for instance a sketch
of a Turing machine, will do; just make it clear that the algorithm works , and that all
values involved are logarithmically bounded . 0

21.6 Prove Proposition 21.6.1, part 2.

21.7 Prove Proposition 21.6.1, part 3.

21.8 Prove that the following functions are space-constructible:

1. f (n) = an + b, for non-negative integer constants a and b.

2. f + g, assuming thatf ,g are space constructible .

3. f * g, assuming that fig are space constructible .

4. fg , assuming that f , g are space constructible .

0

0

A nondeterministic program is one that may
"
guess,

" i .e., one whose next-state transition
relation is multivalued rather than a partial function, as has been the case hitherto. This

capacity may be added to any of the imperative computation models already seen by
adding a single instruction form t' : goto t" or t" ' . Its semantics is to enlarge the state
transition relation of Figure 7.1 to also allow transitions

22.1 Definition of nondeterministic

Definition 22.1.1 A computation p ~ 51 -+ 52 -+ . . . 5t is accepting if it terminates and
writes the output true . An input dE L-data is accepted by nondeterministic program
p if P has at least one accepting computation p ~ 51 -+ 52 -+ . . . 5t with 51 = (1, Readin(d .
The 5et Acc(p) ~ D accepted by p is by definition

This is sometimes called "
angelic nondeterminism " : inessenced is accepted if there

exists at least one sequence of " guesses
"

leading to output true , but does not specify
how such a sequence can be obtained. One can think of acceptance as the result of a
search through the tree of all possible comptations on the given input a search which
succeeded in finding a branch ending in "accept.

"

22 Nondeterministic Computations

(l ,u) -+ (t" ,u) and as well: (l ,u) -+ (l " ,u)

acceptance

Acc(p) = {dE 1:* I p accepts d}

rise to many different computations, some of which may fail to terminate, and some
which may terminate with different outputs.

command ,
" for example

C : : = choose Cl or C2

with the natural semantics: Either command Cl or command C2 may be executed.
Note that nondeterministic programs are not functional : the same input may give

332 Nondeterministic Computations

The problem is, given a directed graph G = (V, E,sit) with edges E = { (Ut,Vt),
(U2, VV, . . .} and a source and target nodess , t, to decide whether there exists a path
from s to t. The following nondeterministic WHILE program sketch assumes inputss , t,
and that the graph G is given as a list Ut . VI) (U2. V2) . . . (Un. Vn in JI).

if W = hd Edge
then W := tl Edge;

This suaightforward nondeterministic program just
"
guesses

" a path from s to t .

22.2 A simple example : path finding

read ST , G;
W := S;

write true

22.3 Resource -bounded nondeterministic algorithms

l angelically, taking the least possible values

Definition 22.3.2 In the following, L- program p may be nondeterministic.

while W ~ T do (. Repeat until (if ever) T is reached .)
Copy := G;
while Copy do (. This chooses an edge at random: .)

choose
Copy :=

~
tl Copy (. Either omit the first edge of G' S copy .)

or { Edge := hd Copy; Copy := nil } ; (. or keep it .)

Time and space usage are also interpreted
over all accepting computations :

Definition 22.3.1 Given a computation C = P I- si -+ S2 -+ . . . Sf, its running time is t (its
number of states). The space usage of C is by definition ICI = max{ lsol, ls11, . . ., I Stl} . The
time usage (space usage) function of program p on input d is the shortest length (minimum

space) of any accepting computation :

timep(d) = min { t I pI - si -+ . . . -+ St is an accepting computation on input d}
spacep(d)= min { ICII C = p I- si -+ . . . -+ St is an accepting computation on input d}

(* If W = source of chosen edge then *)
(* continue from target of chosen edge *)

(* If it gets here , a path was found *)

Resource - bounded nondetemtinistic algorithms 333

istic one.

Exercises

22.1 Prove that a set A ~ {O, 1 }
* is accepted by a nondeterministic Turing machine if

and only if it is recursively enumerable.

.

Proof: The constructions seen earlier for deterministic programs can without modifica-

tion be applied to the nondeterministic ones. 0

References

-

- -

. NLOGSPACETM =NLO~SPACECM

NPTIMEL = {Acc(p) tim~ (d) :::$: a polynomial pin Idl}
NPSPACEL = {Acc(p) spac~ (d) :::$: a polynomial pin Idl}
NLOGSPACEL = {Acc(p) spac~ (d) :::$: klogldl for some k}

The symbol N in the classes above indicates nondeterminism. Note that, by definition
and in contrast to deterministic computation as defined before, if p fails to accept an

input d then it may enter an infinite loop (though it is not required to do so).

Proposition 22.3.3
PTIMEL ~NPTIMEL, PSPACEL ~NPSPACEL, and LOGSPACEL ~NLOGSPACEL.

Proof: Immediate since every deterministic program is also nondeterministic, and uses
no more time nor space under the nondeterministic measure than under the determin-

0

Theorem 22.3.4 Aside from data encoding,

. NPTIME TM =NPTIMESRAM =NPTIMEGOTO

. NPSPACETM =NPSPACESRAM =NPSPACEGOTO=NPSPACECM

The earliest work on nondeterministic space-bounded computation is by Kuroda from
1964 [97] , soon followed by Hartmanis , Lewis and Steams [61, 62]. Edmonds explored
nondeterministic algorithms from a more practical viewpoint [40].

ex)

of Various Problems

This chapter introduces a wide -ranging sequence of problem classes, and proves them
to be a hierarchy. Many familiar and important computational problems can be located

precisely in this hierarchy, hence the chapter
's title .

It is not yet known , however, which or how many of the inclusions below are proper
ones, for instance whether there exists at least one problem solvable in polynomial time
but not in logarithmic space. The containments we will establish are:

Computation models henceforth

We will henceforth refer to LOGSPACE, PTIME, etc. without naming the computation
model involved . When time bounds are being discussed, a one-tape Turing machine will

generally be used because of its simplicity , and "work tape
" will refer to its only tape.

When possibly sublinear space bounds are involved , the model will be the read-only
version with read-only input and an additional work tape.

Input format

Turing machine inputs will in principle always be sb"ings in }:* = { O, 1}
*. It will ,

however, sometimes be convenient to represent inputs as sb"ings over an alphabet
}: :) {O, 1 } ,for example with markers or parentheses for the sake of readability . Clearly
any Turing machine with such an extended input tape alphabet can be simulated by one
with just {O, 1} with only a constant slowdown , and space multiplied by a constant.

23 .1 Some convenient normalizations

In this and following chapters many constructions start with a Turing machine program
p, deterministic or no deterministic , that accepts a set A ~ {O, 1}

*. These constructions
become technically more convenient if we can assume without loss of generality that

program p has been normalized so that acceptance of an input only occurs in a fixed

23 A Structure for Classifying the Camp I ~,ty

LOGSPACE ~ NLOGSPACE ~ PTIME ~ NPTIME ~ PSPACE = NPSPACE

way, less general than as defined before, and so easier to recognize in our constructions.
This is the content of

Proposition 23.1.1 For any Turing machine program p there is a program q = It . . . Im
such that for anyd E {0, 1}

.

1. P has a computation that accepts d if and only if q has a computation

Readin(d) = (0,0'0) -+ . . . -+ (m,O'm) -+ (m,O'm) -+ . . .

where the work tape of 0' m contains ..!BB. . . .

2. P has a computation that does not acceptd if and only if q has a computation

Readin(d) = (0,0'0) -+ . . . -+ (m - 1,O'm- V -+ (m - 1,O'm- t) -+ . . .

where the work tape of 0' m- t contains .QBB. . . .

3. In the computations above, q first reaches configurations with label m or m - 1
after using the same space as p on the same input , and time at most a constant
factor larger than that used by P on the same input .

Proof: First, add instructions at the end of p to "clean up
"

by erasing its work tape except
for the answer (0 or 1), and moving to scan the answer. Given this normalization , q can
be constructed by adding instructions

at the end of p, so it loops infinitely at fixed conb' ol points on the answer.

Clearly the cleanup code costs no exb' a space, and uses time at most the length of
the nonblank part of p

's work tape, which is of course bounded by p
's run time. The

final code only adds a constant amount to time usage. 0

23.2 Program state transition graphs

336 A Stlucture for Classifying the Complexity of Various Problems

m- l : if 0 goto m- l ;
m: if 1 goto m

number:

[Vt/.../V,] , [(U,U
') , (V,V

') , . . . , (W,W
')] , VO, Vend

Definition 23.2.1 A concrete syntax for graphs. Graph G = (V, E, VO, Vend) can be represented
by listing its vertices, edges, and source and target as the following sbing over

the alphabet I. = {O, 1,[,], (,) , }, where each vertex Vi is represented by i as a binary

Program state transition graphs 337

Definition 23.2.2 We assume given a deterministic or nondeterministic read-only Tur-

ing machine program p with m instructions, normalized as in Proposition 23.1.1; an
input d = at a2 . . . an E {O, 1}

* of length n; and a function I : N -+ N, which will be used
to bound p

's work tape size.

AnI -bounded configuration ofp for input d is by definition a tuple C = (t',i, j , W), where

. 1 ~ t' ~ m is a control point in p;

. W = bt b2. . .bw E {a, 1,B}* is the contents of its work tape, satisfying It' l + Irl ~ I (n);
and

. i, j satisfying 0 ~ i ~ n + 1,0 ~ j ~ I (n) + 1 are the scan positions on its input and
work tapes, respectively, so symbol ai and bj are scanned (blank if at one end of
either tape).

The state transition graph Gp(d) of p for input d is a directed graph Gp(d) = (V, E, Vo, Vend)
with identified initial and final vertices Vo, V_ Il, where

1. Vertex set V = Vp(d) equals the set of all f -bounded configurations C = (/', i, j ,W) of

p;
2. Edge set E = Ep(d) equals the set of all configuration pairs (C,C') (or more sugges-

tively : C -+ C') such that program p takes configuration C to C' in one computation
step;

3. The initial vertex of Gp(d) is Va = (I ,O,O,B), i .e., the empty work tape; and

4. The final vertex of Gp(d) is Vend = (m,O,O, 1), where m is the number of instructions

inp .

When the work space is bounded , a program p may only enter finitely many different

configurations . Since the graph vertex set V is a set of configurations , the graph for

any program that runs in space f is always finite , even though p may have infinitely long
computations .

The state transition graph can certainly be defined without any restriction of the

program
's work space, in which it may sometimes be infinite .

Lemma 23.2.3 Suppose A ~ {O, 1}
* is accepted in space f by program p, where f (n) ~

logn for all n. Let transition graph Gp(d) of p for input d be as above. Then

. dE A if and only if Gp(d) has a path from Va to Vend; and

. Any vertex of Gp(d) can be represented in O(f (ldl space.

338 A Structure for Classifying the Complexity of Various Problems

This straightforward nondeterministic program just
"
guesses

" a path from Va to Vend. Its

storage is two vertices. Given r vertices in V, this takes at most O(log r) bits, which is at
most O(1ogsize(G . 0

23.3 Algorithms for graph searching

The following apparently rather specialized problem will turn out to playa central role
in establishing several parts of the space-time complexity hierarchy.

Decision problem GAP (graph accessibility):

Input a directed graph G = (V, E, Va, Vend) as in the concrete syntax of Definition 23.2.1.
Output true if G has a path Va -+* vend, else false .

We present no less than four algorithms for the problem. The first two are nondeterministic
and use logarithmic space: one gives positive answers and the other, negative

answers. The others are deterministic. The third uses polynomial time, and polynomial
space as well; and the last runs in space O(loin). Each is expressed by giving an informal

procedure, after which its time or space usage on a Turing machine is analysed.

23.3.1 Graph accessibility in nondeterministic logarithmic space
Theorem 23.3.1 The GAP problem is in the class NLOGSPACETM.

The first part is immediate. As to the second, in any configuration C = (l ,i,j ,W) we have
0 ~ i ~ n + 1 and 0 ~ j ~ f (n) + 1. Thus in binary notation, i takes at most 1 + logn =
O(f (n bits, and j takes at most log(f (n) + 1) = O(f (n bits. The number of control

points l is independent of n, and !WI ~ f (n) by definition.

Proof: Let G = (V, E, VO, Vend) be a graph with designated start and finish vertices Vo, Vend
and vertex set V = {VI, . . .,vr} . Note that r ~ size(G). Consider the program sketch

(assuming graph G is given as read-only data):

w := v O;
while w ~ vend do

choose an arbitrary node x with w -+ x E E;
w := x

write true

using nondeterminism.

Theorem 23.3.2 The following set is in the class NLOGSPACETH:

GAP = { G = (V, E, Va, Vend) I graph G has no path from vertex Vo to Vend}

Proof Let G be a graph be as above. Let

<.
ni = I{ulvo -+- ' u} 1

be the number of nodes that can be reached from node Vo by a path of length at most i.
We will soon show how each ni can be computed. First, though, we show ~ nondeterministic

algorithm which, assuming nr- l to be given in advance, can answer I I Nopath
- truell iff G E GAP. Consider the program sketch of Figure 23.1.

Assume that n,- l is given correctly. This program , for every node z, can either

ignore it , or '1
guess

" that there exists a path from Va to z . After this, it checks to see

whether its guess was correct, and aborts if the verification attempt failsl . The number
verified counted .

I This walk

Algorithms for graph searching 339

of such guesses is If it equals n,- 1 then every accessible node has been

examined .

can be done by a random exactly as in section 23.3.1.

23 .3.2 Graph inaccessibility in nondeterministic logarithmic space

Surprisingly , the negation of this problem can also be solved within logarithmic space

th~

constant

Lemma

Proof is omitted ; it is just the correctness of the well -known II
depth-first search" algorithm

of Figure 23.3. Time analysisl at first abstractly: the loop to initialize Seen before
takes time 0 (1 VI). Procedure Probe can call itself recursively at most r times. No edge is

probed more than once, so the total time used in Probe is O(max(1 VI, lE I .
these, the algorithm

's total run time is O(max(IVI, IEI .
Combinin~

Now a more concrete analysis, of Turing machine computation time . Suppose graph
G is represented by listing its vertices and edges as in Definition 23.2.1.

The algorithm can be implemented on a Turing machine, storing array Seen before
and the recursion stack on its tape. Extra time is required , however, to scan up and
down its tape to find edges in E and to test Seenbef ore [v] . A straightforward analysis
shows the total run time to be bounded by a small polynomial in max(IVI, IEI), and thus
in the size of the representation of G, since max(IVI, lE I) ~ (IVI + lE I) ~ size(G).

340 A for Classifying Complexity of Various Problems

23.3.3 Graph accessibility in polynomial time

23.3.3 GAP is in PTIME.

or log r, and so runs in logarithmic space.

In this case, the final value of Nopath is true if and only if there exists no path from

Vo to Vend. In all other cases the program fails to terminate, so only correct answers are
ever produced .

The algorithm above uses several variables, each either of value bounded by either
a constant or logr , and so runs in logarithmic space (assuming nr- 1 given in advance).

What remains is to verify that nr- 1 can be computed in logarithmic space; this is
done by the following algorithm , also nondeterministic . First, note that no = 1 since
there is exactly one path Vo -+0 Vo of length 0 from Va.

The rest of the algorithm is based on the fact that Vo -+i u for i ~ 1 iff Vo -+i- 1 w
and w -+ u is a G edge for some node w. The algorithm determines for every node u
whether or not there is an edge from at least one node w with Vo -+i- 1 w. Assuming
inductively that the count ni- 1 is known , this can be done as in the algorithm above:
non determinist ically choose some nodes w with Vo -+i- 1 w, and use the count ni- 1 to

verify that all such nodes have been examined. If so, Vo -+i u iff there is an edge w -+ u
where w is one of the nodes that was examined.

The program of Figure 23.2 embodies these ideas. 0

The algorithm above uses several variables, each either of value bounded by either a

n := 1; i := 0;
repeat (. Invariant here: n = ni .)

i := i + 1;
n := 0; (. Search for all and only nodes u reachable .)
for u := 1 to r do (. from Vo in ~ i steps .)

Counter := nJ ; (. Find all nodes reachable in < i steps .)
Foundu := false ;
for w : = 1 to r do (. Examine EVERY node w .)

choose (. Guess w unreachable in < i steps .)
skip

or (. Guess w reachable in < i steps .)
if 3 path Vo -+ < iw
then Counter := Counter- 1; (. w reached in < i steps .)

if w -+ u then Foundu := true ; (. If reachable .)
else abort ;

if Counter =F 0
then abort (. Missed nodes reachable in < i steps .)

if Foundu
then n := n + 1; (. Another u reachable in ~ i steps .)

until i = r - 1;
(. End of outermost loop .)

write n

Figure 23.2: Nondeterministic algorithm to compute nr.

Proof: Correctness of the following algorithm is based on the observation that x --..k
Y iff

one of three cases holds : k = 0 and x = y; or k = 1 and (x, y) E E; or k > 1 and for some

Z E V I both of x --..r~l z and z --..L~J yare true . 0

Algorithm Divide -and-conquer search.
This algorithm (Figure 23.4) uses recursion to decide whether there exists a path

from vertex i to vertex j of length at most i . Termination is ensured by dividing i by
two at each recursive call. Space bound loir is understood to mean (logr)2. 0

Space analysis : procedure Path can call itself recursively to a depth of at most O(logr),
as this is the number of times r can be halved before reaching 1. The " call stack" of

Algorithms for graph searching 341

23.3.4 Graph accessibility in log2 n space

Lemma 23.3.4 GAP is in Uk SPA CE T M(k(logn)2).

342 A Structure for Classifying the Complexity of Various Problems

procedure

Main :

Graph

-

> Boolean
;

begin

read V
,

E
,

v

O ,
vend

.

;

r :

=

Number of vertices in V
;

write Path
(

vo ,
vend

,
r

) ;

end
(

*
Main

program

*

) ;

procedure

Path
(

i

,
j

,
i

)
;

begin

(

*
Gives true if 3

path

i - +

*

j

no

longer

than i
*

)

if i

=

0 then

{

return truth of Jis i

=

j

?

J

}
;

if i

=

1 then

{

return truth of Jis i

-

>

j

in E ?

J

}
;

for k :

=

1 to n do

{

t ' :

=

i div 2
;

(

*

Integer

division
*

)

if Path
(

i

,

k

,

i

'

)
and Path

(
k

,
j

,

i

-

i

'

)

then return true

}
;

return false

end

Figure

23 . 4 : Divide

-

and

-

conquer

search .

traditional implementations thus has at most O(logr) stack frames, each containing 3
numbers between 0 and r (and a return address of constant size). Each number can be

represented in O(logr) bits, so the total storage requirement is at most O(loir) bits .
This bound is easily achieved on a Turing machine, by storing the call stack on its tape.

Figure 23.3: Depth-first Graph Search.

Algorithms for graph searching 343

Proof: First, the number of configurations C = (l , i, j ,W) is at most (m + l)(n + 2)<f (n) +
2)3f (n), which is O<gf(

n for appropriate g.

Since f is space constructible, step z : = f (n) ; can be performed in space f (n) and
so in time hf (n) for appropriate h.

23.3.5 nme and space to generate a state transition graph

Assume given program p with m instructions, an input d of length n, and a work space
size bound function f : N -+- N. Let Gp(d) = (V,E,Va,Vend) be the state transition graph
from Definition 23.2.2.

Lemma 23.3.5 If f is space constructible and f (n) ~ log n for all n, then for a fixed program
p there is a c such that for all d, graph Gp(d) can be constructed in time at most

cf<ldl> .

Construction 23.3.6 The abstract algorithm of Figure 23.5 will write Gp(d). 0

344 A Structure for Classifying the Complexity of Various Problems

time proportional to the number of configurations.

quadratic in the number of configura-

of the exponent. The test " if c1 -+ c2"

Lemma constmctibl ~- - - ~ -
gram p there is a c such that for all d, graph Gp(d) can be constructed using work space
at most cf (ldl).

Proof: A slight modification of Construction 23.3.6 can be used. The change is that
instead of storing the vertices and edges of Gp(d) in memory, they are written on a
write -only output tape as they are constructed.

First, note that a single configuration C = (t , i, j ,w) takes space at most

O(max(log(m + l),log(n + l),log(f (n ,f (n

which is of size O<! (n by the assumption that f (n) ~ logn (recall that misfixed). The
first nest of loops require storing values of i , i , j and w, which together occupy the

space of one configuration. Instead of storing the result, the algorithm is modified to
write configurations on the output tape as soon as computed.

The second nest of loops require storing the two configurations c1 and c2 at once.

Listing all values of c 1 E V can be done by the same four nested loops just mentioned,
and the values of c2 E V can be generated by four more. Again, edges are written out
as soon as generated.

The total storage usage of the algorithm just sketched is clearly O<! (n , as required.
0

23 .4 Some inclusions between deterministic and

nondeterministic classes

We have now done most of the work needed for the following result, which strengthens
that of Theorem 21.5.2.

Implementation of the above on a Turing machine is straightforward , the only effect

of slow access to data stored on its tapes being to increase the value of c. This completes
the proof . 0

23.3.7 If f is space and f (n) ~ log n for all n, then for a fixed pro-

The first nest of four loops takes
The second nest of two loops takes time at most
tions, which only serves to increase the base
can be done in time O(lc11 + Ic21).

Some inclusions between detem1inistic and nondetemtinistic classes 345

Proof: Given p that runs in space f , Construction 23.3.6 yields its state uansition graph
Gp(d) = (V, E, VO, Vend) in time O<gf(n for appropriate g, where n = Idl. We have shown

Proof: Suppose A ENSPACE(!> is accepted by program q. Let program p be as in Proposition
23.1.1, and let Gp(d) be p

's state transition graph. As observed befored E A iff q
accepts d, so dE A iff Gp(d) has a path from Va to Vend. It thus suffices to show that this
path test can be done in space (f (n)2), where n = Idle

By Lemma 23.3.7 there is a c such that the function g(d) = Gp(d) can be constructed
using work space at most cf (ldl), and graph Gp(d) has at most r = cf<n) nodes. By the
result of section 23.3.4, this graph can be tested to see whether a path from Va to Vend
exists in space 0 (1ogr)2). Finally

Proof: Left -to-right containment is immediate by definition . The opposite containment
follows from Theorem 23.4.3, since the square of any polynomial is also a polynomial .

0

Theorem 23.4.1 NSPACE(f) ~ TIME(cf) for some constant c, if f is space consbuctible

(logr)
2 = (log(Cf(n)2 = </(n)logc)2 = (logc)2f(n)2

Consequently the test for existence of a path from Va to Vend can be carried out in space
at most O<f<n)2). 0

Coro Uary23.4.4 PSPACE = NPSPACE

and f (n) ~ log n for all n.

that P accepts d if and only if Gp(d) has a path from Va to Vend. This can be tested by the
depth-first graph searching algorithm of section 23.3 in time polynomial in gf(n>, which
is again exponential in f (n) (for example <gf(n k = <gkf

(n
). 0

Corollary 23.4.2 NLOGSPACE ~ PTIME

Proof cilogn = nklogc, so NPSPACE(klogn) ~ TIME(cilogn) = TIME(nklogc). 0

Theorem 23.4.3 NSPACE(!> ~ SPACE(f2), if f is space constructible and f (n) ~ logn for
all n.

346 A Structure for Classifying the Complexity of Various Problems

23.5 An enigmatic hierarchy

Theorem 23.5.1 LOGSPACE ~ NLOGSPA.CE ~ PTIME ~ NPTIME ~ PSPACE = NPSPACE,
and NLOGSPACE ~ PSPACE.

NLOGSPACE ~ U SPACE(kloin)
k~l

For any k ~ 1 we have limn-+ookloin / n = 0, so by the hierarchy theorem for space
consb' Uctible bounds (Theorem 21.7.2), there exist problems in sPACE(n) but not in
SPACE(kloin) for any k, and so a fortiori not in NLOGSPACE. Since n is certainly polynomially

bounded , there are problems in PSPACE but not in NLOGSPACE. 0
An interesting but unpleasant fact is that, even after many years

' research, it is still
not known which of the inclusions above are proper inclusions . The undoubtedly best-

known of these several open questions is whether PTIME = NPTIME, also known as the
P=NP? question.

Frustratingly , the result that NLOGSPACE <; PSPACE implies that at least one among
the inclusions

LOGSPACE ~ NLOGSPACE ~ PTIME ~ NPTIME ~ PSPACE

must be a proper inequality (in fact, one among the last three, since equality of all three
would violate NLOGSPACE <; PSPACE); but it is not known which ones are proper .

The gap in computational resources between, say, LOGSPACE and NPTIME seems to
be enormous. On the one hand, NPTIME allows both polynomially much time, and as
much space as can be consumed during this time, and as well the ability to guess. On
the other hand, LOGSPACE allows only deterministic program that move a fixed number
of pointers about, without changing their data at all . (This claim will be substantiated
in section 24.1.)

Nonetheless, no one has been able either to prove that LOGSPACE = PTIME, nor to
find a problem solvable in the larger class that is provably unsolvable in the smaller.

Many candidates exist that are plausible in a very strong sense, as will be seen in a later

chapter on "complete problems,
" but the problems of proper inclusion remain open.

Theorem 23.5.2 If A ENSPACE(f) and f (n) ~ log n is space-consb' Uctible, then A E
NSPACE(C.f) for some c > 0, where A is the complement of A .

Proof: The set inclusions are immediate consequences of the definitions of the various
complexity classes, plus Theorem 23.4.2 and 23.4.3. Further, Theorem 23.4.3 establish es

Exercises

23.1 Estimate

23.2 Estimatetion
23.2.

the running time of the graph searching algorithm of section 23.3.4. 0

algorithmtime transit inn graph-building

running

References

An enigmatic hierarchy 347

of the state . of sec-
0

the running

23.3 Prove carefully that GAP E NLOGSPACE.

time of the algorithm of Theorem 23.3.2 for deciding mem-23.4 Estimate the

bership in GAP in LOGSPACE.

The "backbone hierarchy
"

presented here is the result of work by many researchers.
These include the first works on space- and time-bounded computation by Hartmanis,
Lewis and Stearns [61, 62]; the role of nondetenninism as seen in theory and practice by
Kuroda and Edmonds [97, 40]; Savitch's pathbreaking works on logspace computation
and reduction plus later results by Meyer, Stockmeyer, Jones and others [149, 120, 79,
71, 75]; and Immerman and Szelepcsenyi

's answers in 1987 to Kuroda's question of 23
years before [158, 67] .

Proof Suppose nondeterministic Turing machine program p accepts A in space f . Then
an arbitrary input d is in A iff there is a path in the transition graph Gp(d) of p for input
d from Va to Vend. In other words, dE A iff Gp(d) E GAP. But this implies dE A iff

Gp(d) E GAP.-
By Lemma 23.3.7 there is a c such that for all d, graph Gp(d) can be constructed using

work space at most cf (ldl }. Combining the construction of Gp(d) with the algorithm of
Theorem 23.3.2, we obtain a nondeterministic algorithm to test membership in A .

Its space usage is at most logsize(Gp(d , and size(Gp(d is at most bf<ldl> for some b
and all inputs d. ' Consequently the algorithm uses at most logbf

<ldl> = O(f (ldl space,
as required . 0

24 Characterizations of LOGSPACE and PTIME

24 .1 Characterizing LOGSPACE by cons - free GO TO

programs

A b' ee-manipulating program is read-only if it never constructs new values, but instead

just scans its input . While limited in their computational power, such programs are

by no means trivial . For example (if equipped with a write -only output string) the
"
append

" function is easy to program , and arithmetic operations are not difficult (see
the Exercises.) The following defines this and two other restrictions more precisely:

Definition 24.1.1 The restricted languages below have exactly the same semantics as
before, except that their sets of programs are limited in various ways.

1. WHro, GO T Oro, and F+ro will henceforth denote the read-only versions of the languages
WHILE, GOTO and F, respectively, meaning: the same programs and semantics

, except that programs restricted not to contain cons . An F program will ,
however, be allowed to have any fixed number of variables.

2. A CM\ c: -C+l
program is a CM program without any operations to increase a counter.

It is allowed , however, to have instructions Ci : = Cj to copy one counter into
another.

3. A cwalue(n) program is a CM program that, if given input of length n, computes so
that no counter ever exceeds n in value .

4. An F+-program is tail-recursive if no function call is nested inside another operation
or function call (nesting inside the then or else branch of an if expression

is allowed , though). F+tr will henceforth denote F restricted to tail -recursive programs
, and F+rotr will henceforth denote F restricted to cons -free tail -recursive

programs. 0

Proposition 24.1.2 WHro ='intime GO T Oro ='intime F+rotr

by GOTO Programs

c M'ogspace program then A is decidable byLemma 24.1.5 If A ~ {O, 1 }
* is decidable by a

a C Mvalue(n) program.

350 Characterizations of LOGSPACE and PTIME by GDTD Programs

Proof WHro = 'intime GO T Oro is immediate from the proof of Theorem 18.3.3, as the operation
cons was not used in Propositions 8.2. 1 or 8.2.2. The point of Exercise 24.1 is to

prove GO T Oro = 'intime F+rotr (straightforward). 0

Looking ahead, we will eventually prove that, when applied to inputs from {O, l }
*

1. WHro, GO T Oro, and F+rotr decide exactly the problems in LOGSPACE.

2. F+ro decides exactly the problems in PTIME (even though F+ro programs may
run for exponentially many steps!).

Read-only tail -recursive programs are just those output by Wadler 's treeless transformer

[164] when applied to (possibly nonlinear) input programs of type {oil }
* -+

{O, l } . This is interesting since the concept of treelessness was introduced for the "deforestation
"

program optimization without thought of complexity ; and the result above
characterizes the computations performable by programs that can be deforested.

24.1.1 Some central simulation lemmas

To establish the first point above, we show that the following all define the same decidable

problems (on inputs from D Ol for GO T Oro programs):

. Turing machine programs that run in space k log(ldl) for some k.

. Read-only counter programs in which each counter is bounded in value by Idl, or
a polynomial in Idl, or even restricted so that no counter may be incremented.

. GO T Oro programs .

. Frotr programs.

Proofs are by a series of lemmas progressing from GO T Oro programs to the logspace
counter-length bounded machines of Corollary 21.3.1.

Lemma24 .1.3 A ~ { O, 1}
* is decidable by a CM\C:-C+1

program iff A is decidable by a
GO T Oro program .

Lemma 24.1.4 If A ~ {O, 1}
* is decidable by a cwalue(n)

program then A is decidable by
a CM\C:-C+1

program .

Characterizing LOGSPACE by cons -free GDTD programs 351- -

Together these lemmas , imply the following:

24 .1.2 Constructions to prove the simulation lemmas

We must now prove the three Lemmas. The following is an easy result on very limited
counter machines:

Proof: Lemma 24.1.3: we must show that any CM\C:-C+l
program p is equivalent to some

GO T Oro program program , and conversely. Input to a CM-program is astringal a2. . . an,
corresponding to input list

(anan- l ...~ ...al) E 001

(using Lisp list notation) for a GO T Oro-program . Each ai is nil or (nil . nil) .

Suppose we are given a CM\ c: -C+l
program p. Its counters Ci can only assume values

between 0 and n. Thus any Ci with value k can be represented by a GO T Oro program
variable Xi which points to sublist (ak...al) (and to the nil at the end of the input list ,
in case k = 0).

Counter command Ci : = C j can obviously be simulated by Xi : = Xj . Command
Ci : = Ci .:.1 can be simulated by Xi : = tl Xi (recall that tl (nil) = nil). Command
if Ci = 0 goto i else i ' can be simulated by if Xi goto i ' else i (the test is
reversed since counter value 0 corresponds to the end of the list , which has list value
nil = false). Command if inci = 0 goto i else i ' can be simulated by if hd
Xi goto i ' else i (the test is again reversed since symbol 0 is coded as nil = false).

Conversely, suppose that we are given a GO T Oro-program p and the input list
(anan- l ...~ ...al) E 001. We assume n > 0; a special case can be added to give the correct
answer if n = O.

Corollary 24.1.6 A ~ {O, 1 }
* is decidable by a c M'ogspace program iff A is decidable by a

CM\C:-C+l
program.

Proof Corollary 24.1.6: "If " is immediate since CM\C:-C+l ~ Cwalue(n) ~ c M'ogspace. "Only
if " follows from from Lemmas 24.1.5 and 24.1.4. 0

Theorem 24.1.7 A ~ {Oil }
* is in LOGSPACETM iff A is decidable by a GO T Oro program

iff A is decidable by a F+rotr program. 0

The theorem is immediate from Corollary 21.3.1, Corollary 24.1.6, and Proposition
24.1.2.

Representation of an n2-bounded CM counter by a fixed number of 2n-bounded counters

. Consider the traditional enumeration of pairs of natural numbers :

352 Characterizations of LOGSPACE and PTIME by GDTD Programs

{(O,O), (0, 1), (1,0), (2,0), (1, 1), (0,2), (0,3),. . .}

The variables X of p can only point to: one of three things : 1) a position (ai ...8k...at)
within the list with i ?: 1; or 2) the root of (nil . nil) , encoding some ai = 1; or 3) the
atom nil .

Thus variable X may be represented by two counter variables Xi , X2. In case 1) Xi
has i ?: 1 as value. In case 2) Xi has value 0 and X2 has value n. In case 3) both variables
have value O.

Counter code to maintain these representation invariants is straighforward to con-

struct, by enumerating the possible forms of GO T Oro commands. 0

Proof: Lemma 24.1.4: we must show that any cwalue(n)
program p is equivalent to some

program q without C : = C+1. All counters are by assumption bounded by n, so we
need not account for "overflow ." Recall that counter CO is initialized to the length n of
the input .

We can simulate C : = C+1 (without addition !) by using an auxiliary variable Tern
and exploiting the instruction Tern : = CO which assigns input length n to Tern. Let the
initial value of C be i .

The following works in two phases: first , variable Tern is initialized to n, and then
C and Tern are synchronously decremented by 1 until C = O. Thus Tern ends at n - i, at
which point it is decremented once again, to n - i - 1. For the second pass C is reset
to n, and Tern and C are again synchronously counted down until Tern = o. Once this

happens, C is i + 1 = n - (n - i - 1), as required . Note that if C = n, the effect is to leave C

unchanged.

Tern := CO; (. Tern := n .)
while C :F 0 do (. Tern := n - i and C := 0 .)

{C := C- 1; Tern := Tern- 1} ;
Tern : = Tern - 1; (. Tern : = n - i - 1 .)
C := CO; (. C := n .)
while Tern:F 0 do (. C := i + 1 by decreasing Tern to 0 .)

{C := C - 1; Tern := Tern - 1} ;
0

Proof: Corollary 24.1.5: We must show that any c M'ogspace program p is equivalent to
some C M Value(n)

program q. We do this in two stages.

Characterizing LOGSPACE by cons -free GDTD programs 353

so 0 ~ x2, f ~ 2z. Thus x,y ~ 2n if z ~ n2.
Each CM operation on Cz is simulable by operation on Cx, Cy as in Figure 24.1. For

example, Cz: =Cz+1 involves moving Northwest one position along a diagonal unless
x = 0, in which case one moves to the start of the next diagonal .

We showed earlier that without loss of generality one may assume that test if
Inc = 0 goto i else i ' is only performed when the value i of C satifies i ~ n. This
is harder, as it involves reconstructing i from the representation Cx, Cy of C. First, Cx
and Cy are copied into Dx, Dy, giving representation of a variable we could call D. By
manipulating Dx and Dy the loop decrements D until it reaches 0 or n decrements have
occurred, meanwhile counting variable R up by 1 at each iteration . The net result is to
set R to i = min (i, n), and that input position is then tested.

This reduces the counter bound from n2 to 2n; the technique below can be used to
reduce this further to n. 0

The development above supports the intuition that LOGSPACE is precisely the class of
all problems solvable by read-only programs, which may move any fixed number of
markers around their input , but cannot use any other form of storage. The charac-

terization by GOTO programs is particularly elegant, although one has a suspicion that
such programs will take extra time due to the complexity of "backing up

" to inspect an

already-seen input .

Representation of one 2n-bounded CM counter C by several n-bounded counters. We

represent C containing x by counters Under and Over , where Under contains min (x, n),
and Over contains 0 if x ~ n and x - n otherwise. Each CM operation on C is simulable as
in Figure 24.2. Variable N is counter CO, initialized to the input length n (again assumed
to be posititve).

24.1.3 Relation to functional and Wadler 's treeless programs

Wadler 's "beeless transformer ," when applied to any of a quite useful class of first -

order programs, will automatically yield a linear-time equivalent program which builds

as described in Appendix A .7. We represent anyone counter Cz with value z by two
counters Cx, Cy with values x, y such that z is the position of the pair (x, y) in this enumeration

. Note that

z = (x + y)(x + y + l)/ 2+ y = (x2+ 2xy+ f + x + 3y)/ 2

Operation

on C Simulation

C :

-

C
+

1 if Under

=

n

then Over :

=

Over
+

1 else Under :

=

Under
+

1

C :

=

C

-

1 if Over

=

0

then Under :

=

Under

-

1 else Over :

=

Over

-

1

if C

~

0

goto

t ' if Over

~

0 or Under

~

0 then

goto

t '

if
Inc ~

0

goto

t ' if
inunder

~

0

goto

t '

no intermediate tree structures [164]. Here cons operations may appear (and other con-

structors too, henceforth ignored); but their only function is to construct output values,
not to produce data in one program part that will be consumed in another (the functional

world 's equivalent of "storage
").

Relaxing Wadler 's requirement that right sides must be linear (not contain two references
to the same variable), we obtain a language identical to F+rotr . Consider a

treeless program that yields only constant values as output . Even though it may use
cons internally , the program output by his transformation then contains no "cons"

operations
at all . Again relaxing the linearity requirement on right sides, we obtain a

language essentially identical with F+rotr .

Theorem 24.1.8 Without the right side linearity requirement , treeless programs with

input in { O, 1}
. and output in {O, 1} decide exactly the problems in LOGSPACE.

354 Characterizations of LOGSPACE and PTIME by GDTD Programs

Figure 24.1: Simulating an n2-bounded counter by two 2n-bounded counters.

Figure 24.2: Simulating a 2n-bounded counter by n-bounded counters.

24.2 Characterizing PTIME by cons -free programs with
.

recurs Ion

We now prove that PTIME is identical to the set of problems solvable by cons- free programs
with recursion. This is analogous to the inbinsic characterization of LOGSPACE,

without reference to time or storage bounds.

24.2.1 The recursive extension of a programming language

Suppose

. k:Ik

The recursive extension L +rec is defined so L +rec_programs consists of all programs with
syntax as in Figure 24.3. where each insb"uction In , In or Kn can be either :

. " call Pr " where 1 < r < m. or- - ,

. Any L-insb"uction (unlimited , except that in each procedure Pi , any referenced
variable X must satisfy X e {U1, . . ., Uu, Pi 1, Pi2 , . . .} , i.e. it must be either local or

global) .

Here 1 is the new procedure
's initial control point, and 0' new assigns default values to

all of Pi 's local variables. Thus label 10+1 plays the role of "return address" (or exit
for the initial call.) When a procedure

's last instruction has been executed, the leftmost

Otaracterizing PTIME by cons - free programs with recursion 355- - -

Definition 24.2.1
form

1:11 2:12 . .

of earlier proce -

and

Semantics is what you expect and so only briefly described. A total state is a sequence
(10,0'0,11,0'1,.. .,in,O'n,exit).

Storage: 0' n contains the global variable bindings, 0'0 contains the variable bindings
of the most recently called procedure, and 0'1, . . .,0' n- l contain bindings
dures that have been called but not yet returned from. Variable fetches assignments
are done using only 0' n and 0'0.

Control: 10 is the current control point, 11,... ,In are return address es, and exit
indicates program termination. The initial state is (1,[U1 input],exit). Instruction"1: call Pi" causes 10,0'0 to be replaced by

1,unew,lO+1,uo

356 Characterizations of LOGSPACE and PTIME by GDTD Programs

globalvariables Ul , . . . ,Uu;

procedure Pl ; local variables Pll , . . . ,Plv ;
1:11 2:12 . . . i :1i

procedure P2; local variables P21, . . . ,P2w;
l :Jl 2:J2 . . . j :Jj

.
procedure Pm; local variables Pml, . . . , Pmx ;

l :Kl 2:K2 . . . k :Kk

read Ul ; l :call Pl ; 2: write Ul

label and store 10,0'0 are popped off, and control is transferred to the instruction whose

Figure 24.3: Recursive program syntax.

label is on the stack top .

24.2.2 Simulating PTIME without cons

As a first step we use the flow chart implementation of GOTO using arrays, as in section
17.2 of chapter 17. An example appears in Figure 17.5.

Lemma 24.2.2 Given a GOTO-program p = 1: 11 2 : 12 . . .m: im and an input de D Ol.
Let (i I, 0'1) -+ . . . (it ,O'v -+ . . . be the (finite or infinite) computation ofp on d, where il = 1
and 0'1 is the initial DAG for input d. Then for any t ~ 0 and variable X the equations in

Figure 24.4 hold.

Proof: A simple induction on t, using the definitions from Figure 17.4. 0

Theorem 24.2.3 If V ~ D Ol is decidable by a (recursive or nonrecursive) WHILE-program
p in polynomial time, then V is decidable by a C M'ogspace+rec-program.

Proof: Suppose one is given a WHILE-program p that runs in time f (n) where f is a

polynomial, and an input d. The various functions Instrt ,Hdt, Tit ,Xt are computable
by mutual recursion, at least down to t = n + 3 (the time used to build the initial DAG
as in section 17.2.2). Further, the values of Hdt, TIt for t = 0,1, . . ., n + 2 are determined

solely by the program input d, and easily computed.

24.2.4

Characterizing PTIME by cons -free programs with recursion 357

Regard each equation in Figure 24.4 as a definition of a function of one variable t .
This is always an integer, between 0 and f (n) + n + 3 where n = Idl.

The calls all terminate , since in each call the value of argument t decreases. Now t
is bounded by the running time, which is a polynomial in the size of d, hence p can be
simulated by a recursive counter machine with polynomial size bounds on its counters.

The value of output variable X is thus available, e.g., to a "print
" function , through

Xf(n>+n+3. 0

If A is decidable in polynomial time, then it is decidable by an F+ro

Proof: By the means seen seen earlier in section 24.1, the C M'ogspace+rec-program can be
simulated by aIdl -bounded counter machine with recursion (the addition of recursion

requires no changes to the constructions), and this in turn can be simulated by acons-
free F+-program. 0

Corollary
program.

358 Characterizations of LOGSPACE and PTIME by GDTD Programs

1 MFG stands for " minimal function graph ." as in [78] .

Remark . Time analysis of this procedure reveals that it takes exponential time, due to

recomputing values many times (for example, Instrt is recomputed again and again).

Thus even though a polynomial -time problem is being solved, the solver is running in

superpolynomial time . Fortunately, the following result gives a converse.

Theorem 24.2.5 If V <; Dot is decidable by an F+ro program , then V is decidable in

polynomial time .

Proof: (Sketch.) This is done by tabulation . Suppose we are given an F+ro program p,
and an input do = (at . . . an) ED .

The idea is to collect a set MFGt of triples of forms (f ,O' ,e) or (f ,O' ,d), where f is the

name of a function defined in p, 0' is a tuple of arguments to f , and dE D. These signify
the following .

1. (f ,O' ,e) E MFG : function f appearing in program p has been called, with ai-gument

tuple 0' . Computation of the value of f (O') is not yet finished .

2. (f ,O' ,d) E MFG : functionf appearinginprogramp hasbeencalled , with argument

tuple 0' , and the value f (O') = d has been computed .

Since p is cons -free, the value that 0' assigns to any variable X must be a pointer to some

part of do. There are at most n of these, and so there exist at most 2m . nk+t
possible

triples in MFG, where m is the number of functions defined in p.

The simulation algorithm :

1. MFG := { (f1 , [X1t -t (do)], e)} , where the first function in pis f1 and has argument
Xi .

2. Repeat steps 3 through 9 until MFG cannot be changed.

3. Pick a triple (f ,O' ,e) E MFG, andfindthedefinitionf (xi , . . . , In) = Expinpro -

gram p.

4. Attempt to evaluate Exp with Xi , . . . , In bound to the values in 0' .

5. If the value of a call g (Exp1 , . . . ,Expm) is needed in order to evaluate Exp, try
to evaluate the arguments Exp1 , . . . , Expm to yield a tuple 0" .

6. If argument evaluation fails, then abandon the current attempt to evaluate Exp.

7. If argument evaluation succeeds and MFG contains a triple (g, O" ,d
'
), then continue

to evaluate Exp with d' as the value of the call g (Exp1 , . . . , Expm) .

con . .~ - free programs with recursion

8. If argument evaluation succeeds but MFG contains no triple (g,u',d
') with dE

D, then perform MFG := MFGu { (g,u',e)} , and abandon the current attempt to
evaluate Exp.

9. If evaluation of Exp with Xl , . . . , In bound to the values in u succeeds with result
value d, then replace (f ,u ,e) E MFG by (f ,u ,d) E MFG .

10. If (f , [Xl H- (do)],d) E MFG, then ([pD(do) = d, else ([pD(do) = 1. .

MFG is used for two purposes while simulating program p. The first is as an "oracle,
"

from which to fetch values of already computed function applications , rather than recomputing
them. The second is as a " repository

" in which the triple (f ,u,d) is placed
every time a new fact f (u) = d has been established. If this happens, the triple (f ,u ,e)
(which must already be in MFG) is replaced by the new (f ,u ,d).

This process is repeated until MFG cannot be increased. If one ever adds a triple
(fl , [Xl H- do], d), then we know that ([pD(do) = d, and the computation stops. The entire
algorithm can be made terminating , since there exists only a polynomially bounded
number of possible triples to put in MFG .

Interestingly , the same technique also works if p is nondeterministic , and the method
applies as well if the functions are replaced by relations. 0

Further developments . Cook [28] proved similar results in the framework of "auxiliary
push-down automata." Further developments involving efficient memoization led

to the result that any 2DPDA (two-way deterministic pushdown automaton) can be simulated
in linear time on a RAM ([26, 72, 5]). This in turn led to efficient pattern -matching

algorithms , in particular the Knuth -Morris -Pratt sUing matcher - an interesting case
where investigations in "pure theory

" led to a practically significant algorithm .

An interesting open problem . The results above can be interpreted as saying that, in
the absence of "cons," functional programs are capable of simulating imperative ones;
but at a formidable cost in computing time, since results computed earlier cannot be
stored but must be recomputed . In essence, the "heap

" can be replaced by the "stack,"

but at a high time cost.
It is not known , however, whether this cost is necessary. Proving that it is necessary (as

seems likely) would require proving that there exist problems which can be solved in
small time with general storage, but which require large time when computed functionally

. A simple but typical example would be to establish a nonlinear lower bound on
the time that a one-tape, no-memory two-way pushdown automaton [28] requires to solve

24.1 Prove the missing part of Theorem 24.1.2.
established.)

24.2 Prove that it is possible to construct from any GO T Oro program an equivalent WHro

program, and vice versa. (You may appeal to constructions seen earlier.)

24.3 Prove that it is possible to construct from any GOTO

program.

24.4 Try to show how to construct from any Fro program an equivalent GO T Oro or
0

program an equivalent Fro

WHro program . Reflect on the results of your attempt .

24.5 Assume that WHro programs are allowed a command "write X" whose effect is

to extend a write -only output string by 0 in case the value of X is nil , and to extend it

by 1 otherwise . The output string is initially empty.

Denote by x the binary representation of number x, as a list of bits written in reverse

order, i .e., least significant bit first . Write a WHro program which , when given input
(x y) , will write out x"+-y. 0

24.6 Assume WHro programs have outputs as described in the previous exercise. Write

a WHro program which , when given input (at a2. . . an) where each a; E {O, 1 } , will write

out its reversal (anan- t . . .at) . 0

References

Both of the main results of this chapter have been seen before in other forms.

It has long been a " folklore theorem" that LOGSPACE consists of exactly to the sets

decidable by a multihead , two-way read-only Turing machine. The result of Theorem

24.1.7 implies this, since such a Turing machine is essentially identical to a cwalue(n)

program . Our result is a bit stronger since Theorem 24.1.7 can be read as saying that the

Turing machine could be restricted only to move its heads right , or to reset them back

to the start of the input tape.

360 Characterizations of LOGSPACE and PTIME by GDTD Programs

Exercises

(Note that two inclusions need to be

some decision problem . One instance would be to prove that string matching must take

superlinear time . We conjecture that such results can be obtained .

O Jaracterizing PTIME by cons - free programs with recursion 361- - - -

More than 25 years ago Cook [26] used a somewhat dh iferent framework ,
"
auxiliary

push- down automata,
" to characterize PTIME. In essence this is very close to our proof

that PTIME equals the sets decidable by Frotr -programs, the main difference being that
our recursive programs have an implicit call stack in place of Cook's nonrecursive automata

with an explicit single stack.
In comparison to these classical results, our program -oriented version seems more

natural from a programming viewpoint (both appear in [83], which sums up the results
of this chapter). In particular , the results are still of considerable interest as regards
relationships between time and space, or the power of "cons" in a functional language.

~ >
'

5

~e~Contpl,
- . 4

'
2

~ Q
J

.
.

Q
J

25 Completeness and Reduction of One
Problem to Another

An old slogan:
"If you can't solve problems, then at least you can classify them."

The unsolved problems of Theorem 23.5.1 concerning proper containments within

LOGSPACE ~ NLOGSPACE ~ PTIME ~ NPTIME ~ PSPACE = NPSPACE

are apparently quite difficult, since they have remained open since the 1970s in spite of
many reseachers' best efforts to solve them. This has led to an alternative approach: to
define complexity comparison relations :5: between decision problems (different relations
will be appropriate for different complexity classes).

The statement A :5: 8 can be interpreted as "problem A is no more difficult to solve
than problem 8," or even better: "given a good way to solve 8, a good way to solve A
can be found." Further, we can use this idea to break a problem class such as NPTIME
into equivalence subclass es by defining A and 8 to be of equivalent complexity if A :5: 8
and 8 :5: A.

Complexity comparison is almost always via reduction of one problem to another:
A :5: 8 means that one can efficiently transform an algorithm that solves 8 within given
resource bounds into an algorithm that solves A within similar resource bounds1. Two
interesting facts lie at the core of modem complexity theory, and will be proven in the
following chapters:

1. Each of the several complexity classes C already studied possess es complete problems
. Such a problem (call it H) lies in class C, and is "hardest" for it in the sense

that A :5: H for each problem A in C. Class C may have many hard problems.
2. A complete problem H for class V has the property that if HE C for a lower class

C in the hierarchy of Theorem 23.5.1, then C = V: the two classes are identical.
Informally said, the hierarchy collapses at that point.

l
Examples have already been seen in chapter 10 including Definition 10.1.1. There several problems were

proven undecidable by reducing the halting problem to them . Intuitively : if HALT is thought of as having
infinite complexity , proving HALT ~ B shows that B also has infinite complexity .

25.1 Introduction

Definition 25.1.1

366 Completeness and Reduction of One Problem to Another-

3. Even more interesting : Many natural and practically motivated problems have been

proven to be complete for one or another complexity class C.

25.1.2 Three example problems

Appendix section A .I describes graphs , and boolean expressions and their evaluation .

We use the term CNF to stand for conjunctive normal form .

25 .1.1 Forms of reduction

The idea of reduction of one problem to another has been studied for many years, for

example quite early in Mathematical Logic as a tool for comparing the complexity of

two different unsolvable problems or undecidable sets. Many ways have been devised

to reduce one problem to another since Emil Post's pathbreaking work in 1944 [135].

A reduction A :5 B where (say) A, B ~ ll can be defined in several ways. First, the

reduction may be many-one: one shows that A :5 B by exhibiting a total computable
function such that for any dEll we have dE A if and only if f (d) E B. Clearly, an

algorithm for deciding membership in B can be used to decide membership in A . (A

concrete example will be given shortly .) A stronger version is one-one, in which f is

required to be injective .
An alternative is truth-table reducibility, where one answers a question x E A? by

asking several questions Yl E B, . . ., Yk E B?, and then combining the truth values of

their answers in some preassigned way. Yet another variant is Turing reducibility, where

question x E A? gives rise to a dialogue : a whole series of questions about membership
in B. The first question depends only on x. The second question (if any) can depend
both on x and the response (positive or negative) to the first question; and so forth . The

chief requirement on such a reduction is that the series is required to terminate for every
x and answer sequence.

If computability is being studied , the only essential requirement is that the reduction

be effective. Complexity classifications are naturally involve bounds on the complexity
of the questions that can be asked, for example of the function fused for many-one

reducibility . In order to study, say, the class NPTIME using many-one reducibility , it is

natural to limit one's self to questions that can be computed by deterministic algorithms
in time polynomial in Ixl.

1. A k-clique in undirected graph G is a set of k vertices such that G has an edge
between every pair in the set. Figure 25.1 shows a graph G containing two 3-

cliques: one with vertices 1, 2, 5 and another with vertices 1, 4, 5.
2 A boolean expression :F is said to be closed if it has no variables. If closed, :F can

be evaluated by the familiar rules such as true A false = false.
3. A truth assignment for :F is a function 8 mapping variables to truth values such

that 8(F) is a closed boolean expression. :F is satisfiable if it evaluates to true for
some truth assignment 8.

4. By definition

SAT = {: F I : F is a satisfiable boolean CNF expression}

For an example of the satisfiability problem , the CNF expression

(A V ..,B) " (B V C) " (..,A V ..,C)

is satisfied by ttuth assignment 9 = [A H- false , B H- false , C H- true]. 0

Three combinatorial decision problems . Following are three typical and interesting
problems which will serve to illustrate several points . In particular , each will be seen to
be complete, i .e., hardest, problems among all those solvable in a nondeterministic time
or space class. The problems:

GAP = { G I directed graph G = (V, E,Va,Vend) has a path
from vertex Va to Vend}

CLIQUE = { (G,k) I undirected graph G has a k-clique }

SAT = { : F I : F is a satisfiable boolean CNF expression }

Introduction 367- --- - --- -- --- - --

.
25.1.3 Complete problems by reduction to programs with only

boolean variables

In this and the following chapters, we prove problems complete for various classes using
a novel approach. Supose we are given a decision problem H that we wish to show

complete for complexity class C. The most inbicate part is usually to show that H is

"hard " for C: to show that A :::5: H for any arbitrary problem A E C, using an appropriate
reduction notion :::5: for classifying problems2 in C.

To say we are given an arbitrary problem A E C usually means we are given an L-

program p (for some language L) that decides membership in A within the time, space,
or other resource bounds defining problem class C. Reduction usually establish es hardness

by showing how, given a resource-bounded program p EL -prog that solves A, to
construct a reduction function f .

Such a function maps problems in C into problems in C, and has the property that
for any input dE L-data, the answer to the question

"does p acceptd ?" is "yes
" if and

only if f (d) EH . Our approach usually proves a problem H hard for C in two steps:

1. Reduce the question
" is dE A " to a question involving a very simple class SBP of

programs involving only boolean variables.

2. Then we further reduce the question about programs in SBP to a question involving

problem H . Typically H is a simple mathematical, logical, or combinatorial

problem defined without any reference to programs at all .

25 .2 Invariance of problem representations
.

Before comparing problem complexities, we have to address a question: can the way a

problem is presented significantly affect the complexity of its solution ? For one example,
a number n can be presented either in binary

"notation , or in the much longer unary
notation , such as the list form nil n used before. Another example is that a directed or

368 Completeness and Reduction of One Problem to Another

2
Showing that HE Cisusually much more suaightforward .

Problem equivalence modulo encodings

One may circumvent many of these problems by considering problems
I Imodulo encodings

,
1I i .e., to consider two problem representations Pl and P2 to be equivalent if

there exist computable functions to convert instances of Pl problems into instances of
P2 problems with corresponding solutions, and vice versa. Ideally such conversion
functions should be simple, and efficiently computable, so a good solution immediately
gives rise to a good solution to P2 and vice versa.

It is not known whether the CLIQUE problem is in PTIME or not - all known algorithms
take exponential time in the worst case. However a little thought shows that the

choice of representation will not affect its status, since one can convert back and forth

among the representations above in polynomial time; so existence of a polynomial time

Invariance of problem representations 369- -

undirected graph G = (V , E) with V = { VI, V2t. . . , Vn} can be presented in any of several
forms :

1. An n by n incidence matrix M with Mi ,j equal to 1 if (Vi,Vj) E E and 0 otherwise .

Figure 25.1 contains an example.

2. An adjacency list (u, u', u" , . . .) for each v E V, containing all vertices u for which
(v,u) E E. An example is

[1 H- (2,4,5),2 H- (1,3,5),3 H- (2,4),4 H- (1,3,5),5 H- (1,2,4)].

3. A list of all the vertices v E V and edges (Vi, vi) E E, in some order. Example:

[1,2,3,4,5], [(1,2), (2,3), (3,4), (4,5), (5, 1), (1,4), (2,5)]; or

4. In a compressed format , in case the graph is known to be sparse, i .e., have few

edges between vertices.

Loosely speaking, unary notation for numbers seems unnatural given that we measure

complexity as a function of input length, since unary notation is exponentially more

space-consuming than binary notation .
There are also differences in the graph representations, though less dramatic . For

example, the incidence matrix is guaranteed to use n2 bits, but a sparse matrix could
be stored in much less space; and even the apparently economical adjacency list form
is less than optimal for dense graphs, as adjacency lists can take as many as O(n2log n)
bits, assuming vertex indices to be given in binary .

370 Completeness and Reduction of One Problem to Another

CLIQUE algorithm for one representation would immediately imply the same for any
of the other representations.

From this viewpoint the most "sensible"
problem representations are all equivalent ,

at least up to polynomial -time computable changes in representation. The question
of representation becomes trickier when one moves to lower complexity classes, and

especially so for linear time computation .
Recent work by Paige on the "reading problem

" [129] shows that data formed from
finite sets by forming tupies, sets, relations, and multisets can be put into a canonical
and easily manipulable storage form in linear time on an SRAM3. This ensures the independence

of many standard combinatorial algorithms from the exact form of problem
presentation.

that graph G has a k-clique if and only if : F is a satisfiable expression.
This implies that CLIQUE is at least as hard to solve as SAT in polynomial time :

given a polynomial time algorithm p to solve CLIQUE , one could answer the question" is : F satisfiable?"
by first computing f (:F) and then running p on the result .

Construction 25.3.1 Given a conjunctive normal form boolean expression : F = CIA . . . A

Ck, construct a graph f (:F) = (G,k) where graph G = (V, E) and

1. V = the set of occurrences of literals in : F

2. E = { (a, b) I a and b are not in the same conjunct of : F, and neither is the negation
of the other}

For an instance, the expression

(A V -,8) A (8 V C) A (-,A V -,C)

3The term "pointer machine" is sometimes used but imprecise, as argued in [9]. By most definitions, the
programs obtained by compiling GOTO programs into SRAM code are all pointer programs.

25 .3 Reduction for complexity comparisons

Reducing SAT to CLIQUE in polynomial time

Many superficially quite different problems turn out to be "sisters under the skin," in
the sense that each can be efficiently reduced to the other. We show by informal example
that SAT ~ CUQUE. This means that there is a polynomial time computable function

ptime
f which, when given any CNF boolean expression :F, will yield a pair f (:F) = (G, k) such

would give graph f (,1:") as in Figure 25.2. The expression :F is satisfied by b"uth assignment
[A false,B false,C....... true], which corresponds to the 3-clique { -,A,-,B,C}.

More generally, if :F has n conjuncts, there will be one n-clique in f (,1:") for every b"uth
assignment that satisfies :F, and these will be the only n-cliques in f (,1:").

It is also possible to show that CLIQUE :$ SAT, but by a less straightforward con-
phme

sb"uction. We now proceed to define these concepts more formally.

25.3.1 A general definition of problem reduction

Recall that a problem is identified with deciding membership in a set of strings A <; 1:*

where 1: = {O,1}.

Definition 25.3.2 Let :5 be a binary relation between decision problems over 1: = {O, 1} .
Let C, V <; P(1:*) be two sets of problems4 with C <; V. Relation :5 is called a C, V-classifier
if for all A, B, C <; 1:*

1. A :5 A Reduction is reflexive
2. A :5 B and B :5 C implies A :5 C Reduction is transitive
3. A :5 B and BE C implies A E C C is downwards closed under reduction
4. A :5 B and BE V implies A E V V is downwards closed under reduction

Reduction for complexity comparisons 371- - -

Figure 25.2: The graph f A V -,8) A (8 V C) A (-,A V -,C .

4For example we could have C = PTIME and ' D = NPTIME. Generally, C and ' D will be two classes for which
we know that C ~ ' D, but we do not know whether the inclusion is proper.

372 Completeness and Reduction of One Problem to Another

Definition 25.3.3 Given a C, V-classifier :5 and sets A, B, H ~ 1:,*

. A, B are :5-equivalent if A :5 B and B :5 A.

. His :5-hardfor V if A :5 H for all A E V.

. His :5-complete for V if HE V, and His :5-hard for V.

Figure 25.3 illustrates the idea that problem H is complete; it lies within set V, and every
problem in V or its subset Cisreducible to H. The following shows the utility of these
ideas: if a problem complete for a larger class is contained in a smaller class (with an
appropriate reduction), then the two classes are identical.

Proposition 25.3.4 if :5 is a C, V-classifier, and C ~ V, and His :5-complete for V, then
HE C if and onlyif C = V.

Proof:
"If " is trivial . For "only if,

"
suppose HE C, and let A E V be arbitrary. By

completeness A :5 H, and by the definition of a classifier, A E C. Thus V ~ C and so
V = C. 0

Proposition 25.3.5 If A is :5-complete for V, and A :5 B, and BE V, then B is also complete
for V.

Proof: Let DE V be arbitrary. By completeness D :5 A, and by the definition of a classi-
fier, A :5 B implies D :5 B. Thus B is V-hard, so BE V implies it is V-complete. 0
The following shows thatthe complement of a complete problem is also complete, provided

the class it is in is closed under complementation.

H

V

A

C

Figure

25 . 3 : A

complete problem

H

for

V .

Theorem 25.3.6 Suppose that V is closed under complementation, meaning A E V implies
1:* \ A E V. If ~ is a C, V-classifier and problem H is ~-complete for V, then so is

1:* \ H.

Proof: Since H is ~-complete for V it is in V, which implies 1:
* \ H is also in V. Note

that by completeness of H we have 1:* \ H ~ H. Further,it is immediate that A ~ B if and

only if 1:
* \ A ~ 1:* \ B for any A, B. This implies H ~ 1:* \ H.

To show hardness, consider an arbitrary problem A E V. Then A ~ H by hardness
of H and so A ~ 1:* \ H by transitivity of reduction. Thus 1:* \ H is ~-complete for V. 0

Reduction for complexity comparisons 373

A ~ B if and only if 3f E Fns(Vx E 1:*
Fns

. x E A if and only if f (x) E B)

Many -one reductions

A common classification technique is by so-called many-one reduction functions. A function

f that reduces A to 8 has the property that x E A iff f (x) E 8 for all x. Thus the

question
" is x E A ?" can be answered by first computing f (x), and then asking

" is

f (x) E 8?" Provided f is essentially simpler to compute than the problem of deciding
membership in A, this shows a way that answering one problem can help to answer
another.

Definition 25.3.7 Given a class Fns of total functions f : 1:* -+ 1:*, define

The general idea is that Fns is a class of "easy
" reduction functions, that can be used

to classify complex problems by reducing one to another. An example would be the
function fused to reduce SAT to CLIQUE in the example seen earlier.

Lemma 25.3.8 :5: is a C, V-c1assifier, providedFns

1. Class Fns contains the identity function id : 1:* -+ 1:*,
2. Fns is closed under composition (so fig e Fns implies fog e Fns),
3. f : 1:* -+ 1:* e Fns and Be C implies {x I f (x) e B} e C, and
4. f : 1:* -+ 1:* e Fns and Be V implies {x I f (x) e B} e V.

Proof: Condition 1 implies A :5: A for any A. If A :5: B by function f in Fns and B :5: CJ:n.4 J:n.4 Fns

PTIME,

It may seem surprising that complete problems exist at all for our various complexity
classes. Interestingly , most of the classes mentioned before (excepting linear time) have
natural and interesting complete problems. The following chapters will discuss several
in detail

Existence of complete problems

Given a class V and an appropriate notion of problem reduction ~ , a first question to ask
is whether or not V has at least one ~ -complete problem , say, H . This can be technically
difficult since it involves showing that any problem A in V can be reduced to H , i .e.,
that H is "hard " for V . The other part , showing that HE V , is often (though not always)

fairly straightforward .
The usual way to show H to be ~ -hard for V is to begin with an arbitrary Turing

machine (or other) program p that decides a problem A within the resource limits that
define V , and to show how, given an arbitrary p-input d, to construct a value f (d) such
that dE A {::} f (d) EH . If f defines a ~ -reduction , the task is completed since one has
shown A ~ H for any A E V .

374 Completeness and Reduction of One Problem to Another

Theorem

25.3.2 Sources of complete problems

Definition 25.3.9 Some special cases of many-one classifiers:

~ : Fns = { total recursive functions f : I,* -+ I,*}rec
~ : Fns = {polynomial time computable functions f : I,* -+ I,*}

ptime
~ : Fns = { logarithmic space computable functions f : I,* -+ I,*}

logs

25.3.10 Consider the list of problem classes LOGSPACE, NLOGSPACE,
NPTIME, PSPACE, REC, RE.

1. ~ is a REC, RE-classifier
rec

2. ~ is a PTIME, ' D-classifier for any ' D appearing later in the list than PTIME.
ptime

3. ~ is a LOGSPACE, ' D-classifier for any ' D appearing later in the list than LOGSPACE.
logs

Proof Straightforward verification of the conditions of Lemma 25.3.8. 0

A powerful and general way to prove the existence of such problems is to make
variants of the set accepted by the universal programs seen before (for instance we will
see that the halting problem HALT is complete for the recursively enumerable sets).
While this proves the existence of complete problems, the problems obtained this way
are often, however, somewhat unnatural and unintuitive . An example will be seen
below for nondeterministic linear time in section 25.6.

Complete problems for RE by recursive reductions 375

HALT = {(p . d) I p is a GOTO-program and lip D(d) :F 1. }

Proof HALT E RE by Theorem 5.6.1. We now need to show that A ~HALT for anyrec
A ERE. By Theorem 5.7.2, A E RE implies that there exists a GOTO-program p such that
A = dom(lIp D). Thus for any dE ~*

dE A if and only if I Ip D(d) ~ .l if and only if (p . d) E HALT

Showing other problems complete

Once the existence of one ~ -complete problem for V has been established, other problems
can be shown complete by Proposition 25.3.5: If H is ~ -complete for V , and H ~ B,

and BE V, then B is also complete for V . This is usually much simpler since it does not
involve reasoning about arbitrary programs in a computation model . The technique has
been used extensively since Cook's pathbreaking work proving the existence of problems

~ -complete for NPTIME. Several hundred problems have been shown complete
ptime

for NPTIME and for PTIME. Relevant books include [49] and [53].
However for this approach to be useful it is necessary that problem H be well -

chosen: simply stated, and such that many interesting problems can easily be reduced
to it . It is for this reason that the problems SAT and GAP have taken prominent roles
within the classes NPTIME and NLOGSPACE, respectively. We will see similarly archetypical

problems for both PTIME and PSPACE.
We begin with two examples: one obtained by a universal construction , and one

obtained from the state transition graphs used earlier.

25 .4 Complete problems for RE by recursive reductions

Theorem 25.4.1 The following set is ~ -complete for the class RE:
rec

Theorem 25.4.2 The following sets are ~ -complete for the class RE:
rec

1. HALT-2CM = {(p .d) I p is a 2CM-program and RpD(d) ~ l . } .

2. The string rewriting problem DERIV.

3. Post's correspondence problem PCP.

4. { (Gl,~) I Gl,~ are context-free grammars and L(Gl)n L(~) ~ 0} .
5. CFAMB = {GIG is an ambiguous context-free grammar} .

6. CFNOTALL = {G I L(G) ~ T* where T is CF grammar G
's terminal alphabet} .

Proof chapter 8 showed that HALT ~ HALT -2CM, and chapter 10 had proofsrec

sets X above is hard for RE.
Further, it is quite easy to see that each of the sets X above lies in RE, concluding the

proof. 0

By the Friedberg-Muchnik theorem (see [147] for a proof) there exist incomparable recursively
enumerable problems, that is to say, there are problems A, B such that neither

A ~ B nor B~ A holds.
rec rec

25 .5 Complete problems for NLOGSPACE by logspace

reductions

376 Completeness and Reduction of One Problem to Another

Thus A:$:HAL Tby the (obviously recursive) reduction functionf(d) = (p.d). 0recWe conclude that HALT is a "hardest" problem among all recursively enumerable problems. Further, for each problem X shown undecidable in chapter 101 either X or its
complement is :$: -complete for RE:rec

that~ ~
HALT ~ X for each remaining set X in this list.rec By Theorem 25.4.1, A :::$:HALT for anyrec
A ERE, so by Theorem 25.3.10, HALT ~ X implies A ~ X for any A ERE. Thus each of the

rec rec

Theorem 25.5.1 The following set is :$ -complete for the class NLOGSPACE:
logs

GAP = { G = (V, E, Vo, Vend) I graph G has a path from vertex Vo to Vend}

Complete problems for NLOGSPACE by logspace reductions 377- -�

Corollary 25.5.2 GAP is in LOGSPACE if and only if LOGSPACE = NLOGSPACE.

Theorem 25.5.3 The nonemptiness problem for regular grammars is ~ -complete for
logs

NLOGSPACE. 0

Proof First, it is in NLOGSP ACE: Given regular grammar G = (N , T, P, 5), build a graph
with edge from A to B whenever there is a production A ::= xB. Then L(G) ~ 0 iff there is

a path from 5 to some C where C ::= x with x ET * is a production in P. In section 23.3 we

saw that graph searching could be done by a nondeterministic algorithm in logarithmic

space. The graph built has size no larger than that of the grammar, so this shows that

the nonemptiness problem for regular grammars is in NLOGSPACE.

Conversely, since the graph accessibility problem GAP is complete for NLOGSPACE

it suffices by Proposition 25.3.5 to reduce GAP to the regular nonemptiness problem .

Given a graph accessibility problem instance (G, Vo, Vend), construct a grammar with start

symbol Vo, productions A ::= B for all edges A -+- B of G, and a single terminal production
Vend ::= e. This regular grammar will generate the set { e} if G has a path from Vo to

Vend, and 0 if there is no such path . 0

The following are immediate from Theorem 25.3.6.

Proof Let G = (V, E, VO, Vend) be a given graph with designated start and finish vertices

Vo, Vend and vertex set V = {Vt, . . ., vr} . Note that r ~ size(G) for any natural representation
.

First, GAP E NLOGSPACE by Theorem 23.3.1. We now need to show that if A E

NLOGSPACE then A ~ GAP. Let A = Acc(p) where p is a nondeterministic TMro-
logs

program running in logarithmic space.

Section 23.2 showed how to build the state transition graph Gp(d) from d for a given
TMro-program p. Further, the proof of Lemma 23.3.7 showed that the vertices and edges
of Gp(d) could be listed using at most klogn space, where n = Idl. In other words ,
function f (d) = Gp(d) is computable in logarithmic space.

Clearly dE A if and only if p accepts d, which in turn holds if and only if f (d) =

Gp(d) E GAP. Consequently A ~ GAP, so GAP is NLOGSPACE-hard . It is also in
logs

NLOGSPACE, so it is ~ -complete for NLOGSPACE. 0
logs

Thus GAP is a "hardest" problem among all problems in NLOGSPACE:

A nondeterministic universal program

By definition A E NLINTIME iff A is accepted by a nondeterministic program p which
runs in time bounded by aIdl for some a and all dE D.

Recall the universal program u of chapter 4. Construct a universal program nu for
nondeterministic programs by extending the STEP macro by adding two rules to interpret

the instruction choose C1 or C2, as follows . These can be implemented simply
by using a choose instruction in the interpreter itself .

NLINTIME.

f = I Ip D, and tp(d) :5 aIdl, and If(d) I :5 b .Idl for all d ED.

378 Completeness and Reduction of One Problem to Another

Corollary 25.5.4 The following set is ~ -complete for the class NLOGSPACE:
logs

GAP = { G = (V , E, VO, Vend) I graph G has no path from Vo to Vend}

Corollary 25.5.5 The emptiness problem for regular grammars is ~ -complete for
logs

NLOGSPACE.

25 .6 A problem complete for NLINTIME

We now show that NLINTIME has a "hardest" problem with respect to linear-time reductions
. This problem is a variant of the set accepted by the universal program Ui one

of the complete problem sources mentioned in section 25.3.2.

It is easy to see that nu is efficient as we have defined the term, and that (p . d) is
accepted iff p accepts d.

Definition 25.6.1 f : D -+ D is linear time and size computable if there are a,b,p such that

Definition 25.6.2 Let L, M ~ D. Then L is reducible to M (written L ~ M) iff there is a
'time

linear time and size computable function f such that dE L iff f (d) EM for all d in D.
Further, P ~ D is complete for NLINTIME iff P E NLINTIME and L ~ P for all LE

'time

Lemma 25.6.3 ~ is a reflexive and transitive relation .
' time

Corollary 25.6.5 If H is complete for NLINTIME, then HE LINTIME if and only if
NLINTIME = LINTIME.

Theorem 25.6.6 WFA (while -free acceptance) is complete for NLINTIME, where

WFA = { (p . d) I p is while -free and p accepts d}

Proof To show WFA E NLINTIME, modify the nondeterministic universal program nu
as follows . First, check that input p is an encoded while -free program , and then run
nu. The checking can be done in time linear in Ipl, and while -freeness implies that

tp(d) ~ Ipl regardless of d. Thus recognition of WFA takes time at most linear in l(p .d)1
'time

for all p, d in D.
Now suppose problem A is accepted by p in time aIdl . Given d, define f (d) = (q.d)

where q is the following program , and ST E Pa'ldl stands for aIdl copies of the code for
the STEP macro of section 4.1.1:

A problem complete for NLINTIME 379

read X; (. Input is d .)
Cd := cons p nil ; (. Control stack = (p .nil) .)
VI := X; (. The value of X = d .)
Stk := nil ; (. Computation stack is initially empty .)
S~ 'ldl; (. a . Idl = time bound .)
write VI ; (. Final answer is value of X .)

Clearly ! is linear time computable . Program q is while -free, and it works by simulating
p on d for aIdl steps. This is sufficiently long to produce p

's outputS, so dE A if and

only if ! (d) E W FA. 0

SIt also works if p stops in fewer than aIdl steps, since the STEP macro makes no changes to Vl if Cd is
nil .

Proof This is essentially the same as for Lemma 25.3.8. It is immediate that the identity
function is linear time computable . Further, the composition of any two linear

time computable functions is also linear time computable . Note that the size condition

If (d) I ~ b . Idl for some b and all dE []) is needed for this : Functions computable within
linear time without a size limit are not closed under composition since they can build
values exponentially larger than their argument, for example by repeatedly executing
X : = cons X X. 0

Lemma 25.6.4 L ~ M and ME LINTIME implies LE LINTIME.
'time

References

380 Completeness and Reduction of One Problem to Another

Exercises

25.1 Prove that SAT ~ CLIQUE, i.e. that the reduction described before can be done
logsin logarithmic space. 0

25.2 Prove that GAP ~ GAP1, where GAP1 is the set of all acyclic graphs with a pathlogs
from Va to Vend. Show that GAP1 is also ~ -complete for the class NLOGSPACE. 0

logs

25.3 Prove that CLIQUE ~ VERTEXCOVER, where VERTEXCOVER is the set of all
ptime

of all bipies (G, S,k) such that S is a subset containing k of G's nodes, such that every
edge of G includes a node from S as an endpoint. Hint: consider the complement graph
G, with the same vertices but with all and only the edges that are not edges of G. 0

25.4 Prove two parts of Theorem 25.3.10. 0

The approach used in chapters 25 through 28, of reducing arbitrary computations to

computations of programs using only boolean variables, was first used (to our knowledge
) in [52], and was an organizing theme of two papers by Jones and Muchnick

[76, 77] .
The concepts of many-one reduction (and several other reductions) stem from recursive
function theory. They are very clearly explained in Post's 1944 paper [135], which

also shows in essence that HALT is 5 -complete for RE.
rec

The use of reductions in complexity theory began in a burst of activity in several
locations in the early 1970s, pioneered by work of Stephen Cook and his student Walter
Savitch. The breakthrough was Cook's 1971 paper [25], in which the SAT problem was
first proven 5 -complete for NPTIME. Interestingly , Levin proved a very similar result

ptime
independently in 1972 [101, 99], but this was unreco~ ed for several years due to its

6This was done independently by Cook , and by Meyer and Stockmeyer too , at around the same time .

A problem complete for NLINTIME 381

Somewhat earlier in 1970, Savitch had in essence shown that the GAP problem is ~ -
logs

complete for NLOGSPACE in [149]; and in 1971 Cook had. proved th~
"
path problem

" to

be ~ -complete for PTIME [25]. In 1972 Meyer and Stockmeyer proved some problems
logs

concerning regular expressions complete for PSPACE [120].
This author 's 1973-77 papers [79, 71, 75, 74] defined the idea of logspace reduction6,

defined the terms "complete for NLOGSPACE" and "complete for PTIME,
" and proved a

fairly large set of problems complete for NLOGSPACE or PTIME. The NLINTIME-complete

problem of Theorem. 25.6.~ comes from [80]. ,
Since the the 1970s, the field has grown enormously. Wide-ranging surveys of complete

problems for NPTIME and PTIME, respectively, may be found in the books by Garey
and Johnson, and by Greenlaw; Hoover, and Ruzzo [49, 53].

Problems for PTIME

Taking larger steps than before, we omit formally defining an explicit concrete syntax,
instead defining program length below as though this had been done. The effect of the

following is to assume that variable Xi is represented by a tag (such as the var used

earlier) together with the value of i in binary notation .

26 Complete

I
E
X

X := E
X I true I El
XO I Xi I .. .

..-..

..-..

..-..

V E2 I El " E2

26 . 1 PTIME reduced to
goto

-
free boolean

programs

Definition 26 . 1 . 1 (The language BOOLE) A boolean program is an input
- free program q

=

11 ' . . 1 m where each instruction 1 and expression
E is of form given by :

1 : : = X : =
Ell 1 ; 12 I goto t ' I if E then 11 else 12

E : : = X I true I false I el V E2 I el A E21
- , E I el = > E2 I el ~ E2

X : : = XO I Xi I . . .

Programqis

.
goto - free if it has no goto instructions ; and

.
single

-
assignment

if no variable appears on the left sides of two different assignment

statements

Program semantics is as one would expect , where unassigned variables are initialized

to f als e . Since there is no input , rather than the form I [qD (d) used until now we instead

write I [qDi and I [qDt to indicate that the computation by q does or does not terminate ;

and notation I [qD to denote the value computed by q : the value stored by the last assignment

done by program q , assuming I [qDi .

A BOOLE program q
=

11 . . . 1 m is sometimes called a monotone circuit if its instruction

and expression
forms are given as follows (monotone in the sense that the output value

is a monotone function of the imitial variable values) :

384 Complete Problems for PTIME

Definition 26.1.2 The length Iql of a BDDLE program is the number obtained by counting
one for every operator : =, ; ,. . ., ~ appearing in q, and adding 1 + nogll for each

occurrence of a variable Xi in q.

Lemma 26.1.3 Goto- free BDDLE programs always terminate , and can be executed in

polynomial time (as a function of their length).

Proof Immediate by a simple algorithm slightly extending that of section 3.4.2. 0

The following result in essence says that if goto- free programs can be executed in logarithmic
space, then PTIME = LOGSPACE. The proof is in stages, and relies heavily on

ideas from the Pascal-like implementation of GDTD described in secti9n 17.2. This is

perhaps worth reviewing before reading further , in particular Figure 17.5.

Theorem 26.1.4 The following set1 is ~ -complete for PTIME:
logs

Bacc\GOTO = {pIp is a goto- free BDDLE program whose last assignment yields true }

Proof By Lemma 26.1.3 Bacc\GOTO is in PTIME. The following Lemma proves that
Bacc\GOTO is ~ -hard for PTIME. 0

logs

Lemma 26.1.5 Let P be an arbitrary GOTO program running in polynomial time, and d
be an input. There exists a goto-free BOOLE program q such that I Iq D = true if and only
if I Ip D(d) = true . Further, q can be constructed from p and d in space O(log Idl).

Proof Let p run in polynomial time g(-), and let d = (at a2 . ..an) . Using the ideas
from section 17.2, we show how to construct from p, d an input-free GOTO program pd =

It . . . Im and a polynomial1r(_) such that

1. I Ipd D terminates if and only if I Ip D(d) = true ; and
2. if I Ipd D terminates then it does so in time at most 7r(ldl).

The construction of section 17.2 added Idl + 3 instructions at the start of p to initialize X
to d. Let the resulting program have m - 1 instructions (this defines m). The addition of
one more GOTO instruction :

program acceptance"

m : if X goto m+1 else m

�

problem.1 Bacc \~ stands for "the goto-free boolean

PTIME reduced to goto - free boolean programs 385

where in general at time t, it is the current control point in p, 1St is the current DAG, and
Pt is the current environment mapping variables to DAG nodes. Recall from section 17.2
that the initial state (it , lSt,pt) has it = 1 (execution starts at the first instruction of pd),
1St = the DAG containing only 0 (the nil node), and Pt(X) = 0 for all variables of pd.

Variables of the BOOLE program . Let r + 1 = nog1r(n)l . This is large enough so any
number between 0 and 1r(n) can be represented as a sequence br. . . bI bo of r + 1 bits .
Note that r = O(logn) because 1r(n) is a polynomial .

The program we will construct manipulates the following boolean variables2: Lt , Xi,
H~, T~, where c, E [O,1T(n)], t' E [I ,m + 1], i E [O,r], and X stands for any variable of pd.
Their intended interpretation at any time t is:

2We use a b"aditional notation from analysis, where [a, b) denotes the closed interval { c I a :$ c :$ b} ; (a, b)
denotes the open interval { c I a < c < b} ; and similarly for the "half - open

" intervals (a, b) and [a, b).

� �

(it "st,pt) -+ (i2"s2lPV -+ . . . -+ (it "st,pt) -+ . . .

at the end (to test the output variable X) gives the desired termination property . This

program
's running time is bounded by the polynomial 7r(n) = g(n) + n + 4. Now consider

the pd computation

Lt = true iff i is the currently active instruction Label at time tie ., i = it

Xi = true iff 1 is the ith bit of the binary representation of c = Pt(X),

where pd variable X refers to DAG node c at time t

H~ = true iff i is the ith bit of the Head child of DAG node c, ie .,

the ith bit of the left child of node o(c)

T~ = true iff i is the ith bit of the Tail child of DAG node c, ie .,

the ith bit of the right child of node o(c)

Note the analogy to Figure 24.4. Variables H~ and T~ have no time index t, and are defined
in terms of an unindexed DAG O. The reason for this is that the DAGs 00,01,02, . . .

are increasing, so later DAGS have all the nodes and edges of earlier ones; so 0 represents
the "limit " of the Oi. Since no node c ever gets changed, we record in H~ and T~ the

information about the unique left and right o-children of c (if any, else zero).

Simulation of computational steps . The BOOLE instructions It simulating I at time t

386 Complete Problems for PTIME

Figure 26.1: BODLE instructions to simulate a GO T Oprogram.

The BODLE program. We will consb"uct from pd a BODLE program
-1 -1I"(n)q= 11 := true; 1 ; ... ;1 ; Answer := Lm+l

All boolean variables are by default false when q begins, so the first insb"uction properly
simulates the initial state of pd. Intended behavior: [qD will simulate the computation

of [pdDi so after II ; ... ;r (n) have been executed, boolean variable Answer is
assigned true if and only if the pd computation terminated, which holds if and only if
p answers true on input d.

first perform a switch to determine which of pd
'S instructions is to be realized. Thus

It = if Ll then I ~ else if L2 then I ~ else . . . else
if Lm then I ~ else Lm+l := true

Finally, the code I ~ to simulate individual instructions is found in Figure 26.1. Notation
: the syntax bin(t) stands for the r-bit vector of the binary expansion of t, where

tE [0,1r(n)]. Command f : = bin(u) stands for a sequence of r + 1 assignment statements
Xi: =true or Xi : =false for i = 0,1, . . ., r, each according as to whether the ith bit of u is
a 1 or a 0. (The value of u will be known, not a variable, so no computation is needed.)

Explanation of Figure 26.1: The entry for goto i ' just updates Lt and Lt, to preserve
their intended meanings. The code for if X goto i ' else i " tests the bits of X's

'T(~) - Xo . - ".{). . X, . - T'I Ct;. - .- .L" . . . , .- C
h(Ws,...,W1,WO) = if WO then T2c+l(Ws,...,W1) else T2c(Ws,...,Wl)

Remarks: the code 1l0(yr, . . ., yO) in effect b"averses a search tree to find the head component
of the leaf whose number is the binary value of bit string yr , . . . , yO. Its execution

time is O(logn), but the code size of 1lo(yr, . . ., yO) is O(1r(n)logn). Analogous remarks

apply to 7 .

Program q as just consb"ucted exactly simulates the computation by p on d. Equivalence
can be established by proving that the boolean variables Lt,xi,H~, T~ each preserve

their " intended interpretations.
"

Doing this formally would involve two proofs by induction
on computation lengths, one by p and the other by q.

Constructibility in logarithmic space. The translation above involves a number of
counters for t, i, etc., all bounded in value by 7r(n) and thus representable within O(log n)
bits. Construction is quite straightforward except for il and T . These can also be han-

PTIME reduced to goto - free boolean programs 387
.

Xo . = 9.0.. ft"
if WO then

llc(c)
llc(WS ,...,W1,WO)

. XT .- HT. . . , .- c
1l2c+I(Ws,.. .,WI) else

-

1l2c(WS,...,W1)-

dIed, once one observes that it is only necessary to keep track of the current subscript of
1 or 7 (a number bounded by 7r(n , and the lengths of the current argument sequence
WS, . . ., WO; this is always a prefix of yr, . . ., yO. 0

value. If any is nonzero (so X's value is not nil), control is in effect transferred to

Li " else to Li " . The entries for X: =nil and X: =Y just set the bits Xi for i = 0, . . ., r and

update the control point appropriately .

The entry for X : = cons Y Z sets the bits Xi for i = 0, . . ., r to bits in the address of a
free DAG cell. For this we use the current " time of day

" or execution step t . In addition ,
the bits of Y and Z are copied into the boolean variables H~, T~ representing the head and
tail component of the new DAG cell t.

Finally, the entry for X : = hd Y (the one for X : = tl Y is similar so explanation
is omitted) has a more complex task: first to locate the DAG cell c to which Y is bound ,
and then to copy the bits from that cell's head component over into those of X. This is
done by the following code, called 'Ii for hd; code T for tl is also included :

388 Complete .Prob.lem~ for PTIME

26 .2 The monotone circuit value problem

Some BODLE programs are so simple they can be regarded as circuits . We now show
that these too yield a decision problem complete for PTIME. The key is to show that

goto- free BODLE programs can be reduced still further , by eliminating if and -' .
The following proves this, plus another result we will use later (in Theorem 26.3.3):

that no variable is assigned in two different commands.

Lemma 26.2.1 There is a logspace computable translation from any goto- free BODLE

program p to another q such that [pI = [qD and q has each of the following properties :

1. The right sides of assignments in q are all of form X, true , X A Y, X V Y, or -,X,
where X, Y are variables; and the if instruction tests only variables.

2. Property 1 plus : q has no if instructions , so it is just a sequence of assignments.

3. Properties 1 and 2 plus : no right side of any assignment in q contains -' .

4. Properties 1, 2 and 3 plus : q has the single-assignment property .

Proof: We prove these accumulatively , in order. Item 1 is quite straightforward by
adding extra assignments to simplify complex expressions (using methods seen before),
and expressing the operators ~ and ~ in terms of V and -' . Any occurrence of false
can be replaced by an in initial ized variable .

Items 2 and 3 are less trivial . For item 2, suppose p = II . . . im is a goto- free BODLE

program . We define an if -free translation I of each instruction I , and set program q to
be:

translation given

: = true ; It ...lm

below . VariableS below is to be chosen as a new variable for

if U then I else J S:=Go; Go:=SI\U;
r . J- , -
X := (E 1\ Go) ,

Go: =SA-,Uj Go:=S

(X A -,Go)

The lis

!i...lx := E
Remark: this translation is to be oroven correct in Exercise 26.3. It definitelv has dele-- -
tenons effects on run time: Instead of choosing to execute either instruction I or J in if

-

each occurrence of if in I , but the same Go is used for all of q. We have used expressions
with more than one right -side operator for readability , but they can obviously be

eliminated .

The monotone circuit value problem 389

U then I else J, the translated program executes them both, but in such a way that

only one of them has any effect (so the other is in effect a " no- operation
"
).

Correctness is based on the following claim : For any simple or compound instruction
I , its translation !

. has exactly the same effect as I on variables assigned in I , provided Go is true
when its execution begins, and

. has no effect at all on variables assigned in I , provided Go is false when its
execution begins.

First, it is easy to see that the translation of X : =E will make no change to X if variable Go
is false , and that it will effectuate the assignment X: =E if variable Go is true . Second,
if Go is false when execution of instruction if U then I else J or instruction I ;
J begins, then it will remain false until its end, so ! has no effect.

Third , assuming Go is initially true , the translation of if U then I else J will
execute the translations of both branch es! and .J, and in that order; and it will also set
Go to true in the branch to be executed, and to false in the other branch.

For item 3: first , a reference to the constant false can be eliminated by replacing
it by an unused variable , since these are all assumed initialized to false . This allows

reducing the instruction forms to those cited plus X : = .., y .
This too can be eliminated by a straightforward program transformation . The device

is to represent every p variable X by two complementary variables, X' and X" , in its
translation p

' . The idea is that each will always be the negation of the other, and the
value of X in P is the value of X' . This property is ensured at the start by prefixing the
code of p

'
by instructions X" : = true for every X occurring in p (since all are initially

false). The last step is to show how each of p
's instructions can be simulated while

Instruction in p Translation in p'

X"

X"

X"

X"

X'

X := : = Fresh variabletrue

x
x
x
x

. - Y. -

:= Y /\ Z

:= y V Z

:= ..,y

:= V"

: = V" V z"

: = V" " z"

: = V" ; X" : = Tern

Variable Tern is used in the last line so an assignment X : = x will not go wrong.- ,

x' := true ;
X' : = V' ;
X' : = V' A Z' ;
X' : = V' V Z' ;
Tern : = V' ;

algorithm
describedshortly ,

PTIME:

implies A :5: MCV as required.
logs

390 Complete Problems for PTIME

A logspace to do

Theorem 26.2.2 The monotone circuit value problem is ~ -complete for
logs

MCV = {pIp is a monotone circuit and (pD = true }

and one used to compare variables for equality .

Logspace computability . This is straightforward ; since logspace computable functions
are closed under composition we need only argue that each individual transformation

can be done in logarithmic space.

Item 1 is not difficult ; the only trick is to use counters to keep track of expressions
'

nesting level (a fully parenthesized concrete syntax should be used). Item 2 is also

straightfo ~ ard - one must just assign uniqueS variables, which can be done by indexing
them 1,2, etc. Item 3 can be done in two passes. Pass one finds all variables X in

p, and to generate X
" : =true for each to prefix the translation . Pass two translates each

instruction as described above.

Finally, item 4 (variable renaming): each instruction Ii in a given p = 11. . . im is an

assignment; denote it by Xi : =Ei. There may, however, be several assignments with the
same left side Xi = Xi even though i ~ j . Transformation : replace every Ii by Xi : =Ei
where Xl ,. . . ,X'" are new variables, and Ei is identical to Ei except that reference to any Y
in Ei is replaced as follows :

. Trace backward from Ii until you first find an instruction Ii = Y: = . . . , or the

program start.

. If Ii = Y: = . . . is found then replaceY by Xi, else leave Y unchanged.

This can be done using three pointers : one for the current Ii , one for b"acing backward ,

Proof Lemma 26.1.3 implies that the MCV problem is in PTIME (all that is needed is an
extra program syntax check). By the construction of Theorem 26.1.4, A ~ Bacc\GOTO for

logs
any problem A E PTIME. The construction just given implies Bacc\GOTO ~ MCV, which

logs
0

Prov ability by Horn clauses 391~ ~

HORN = {(il ,A) 11l ~ A}

Remark: the disjunctive fonn of a Horn clause :F = AlA A2 A . . . A Ak ~ Ao is

26 .3 Provability by Horn clauses

Definition 26.3.1 A Horn clause is a boolean expression

At AA2A .. .A Ak => Ao

where each Ai is a boolean variable and k ~ O. An axiom is a Horn clause with k = O.
Given a conjunction il of Horn clauses, we define variable A to be provable from il ,
written il r A, as follows:

1. Any axiom in il is provable from il .
2. If At ,A2A.. . A Ak => Ao E il and il r Ai for i = 1,2, . . .k, then il r Ao.
3. No other variables are provable from il .

(The second case includes the first as the case k = 0.) It is natural to read At A A2 A . . . A
Ak => Ao as " Ao is true if At ,.. . ,Ak are all true." The Horn clause provability problem is
defined to be

F ' = -,A 1 v -,A2 V . . . V -,Ak V Ao

This is a logically equivalent expression, meaning that expressions F and F ' have the
same value under any truth assignment. Thus a conjunction of Horn clauses il is logically

equivalent to an expression in conjunctive normal form .
Such an expression il can be trivially satisfied, by assigning true to every variable .

A link fully characterising the syntactically defined notion of provability il ~ A in terms
of the semantic notion of satisfibility is the following (Exercise 26.4):

Proposition 26.3.2 il ~ A holds if and only if il /\ -,A is unsatisfiable.

The HORN problem has been studied under several names including
"attribute closure

" and is essentially equivalent to deciding whether a context-free grammar generates
a nonempty set of strings. The following result in essence says that if propositional

Prolog programs can be executed in logarithmic space, then PTIME = LOGSPACE.

Theorem 26.3.3 HORN is ~ -complete for PTIME.
logs

Proof: HORN is in PTIME: Consider the following simple marking algorithm . It is easy
to verify that it runs in polynomial (quadratic) time . The HORN problem can, in fact,
be solved in linear time on a pointer machine [38, 9].

Algorithm. Given (il ,A), begin with every boolean variable being unmarked . Then

for each Horn clauseAl A A2 A . . . A Ak ~ Ao E il with unmarked Ao, mark Ao if all of

AI " A2, . . . , Ak are marked ; and repeat until no more variables can be marked .

Clearly the algorithm works in time at most the square of the size of il . Co" ectness is

the assertion that 1l1- A iff A has been marked when the algorithm terminates (it is

clear that it does terminate since no variable is marked more than once). For " if ,
" we

use induction on the number of times the algorithm above performs
" for each Horn

I "cause . . .
Note that all axioms will be marked first , and these are bivially provable from il .

Now considerAl A A2 A . . . A Ak ~ Ao in il , and suppose a mark has just been placed
on Ao. By the inductive assumption each left side variable is provable , so the right side

will also be provable (by Definition 26.3.1). In this way every provable variable will

eventually be marked, so if A has been marked when the algorithm terminates, then

1l1- A .
Similar reasoning applies in the other direction ("only if "), using induction on the

number of steps in a proof . The base case where A is an axiom is immediate . Assume

1l1- A by a proof of n + 1 steps whose last step uses Horn clause ai ,A2 " . . . A Ak ~

Ao E il . By induction all of AI , A2 . . ., Ak have been marked, so Ao will be marked if not

already so. Thus every variable that is provable from il will get marked .

HORN is hard for PTIME: Suppose A E PTIME is decided by GOTO program p. For a

given input d, consider the single-assignment straight line monotone BOOLE program q
constructed from p, d in the proof of Theorem 26.2.2. It had the property that dE A iff

([qD = true .
Construct from this a Horn problem il which has

1. An axiom ~ X for every assignment X : . true in q.

2. AclauseY ~ X for every assignment X : = Y in q.

3. AclauseY A Z ~ X for every assignment X : - Y " Z in q.

4. Clauses Y ~ X and Z ~ X for every assignment X : = Y V Z in q.

Exercise 26.5 is to show that this construction can be done in logarithmic space. Letting
A be the last variable assigned in q, the following Lemma 26.3.4 shows (il , A) has a

solution if and only if ([qD = true . 0

392 Complete Problems for PTIME-

PTIME 393

Proof: This is by induction on i . Assume the statement holds for all k with 0 ~ k < i ~ m,
and consider the form of the ith instruction Xi : - Ei. If it is Xi : - true then O' i+1 (Xi) = true
and 1 1- Xi since ~ Xi is an axiom. Suppose the ith instruction is Xi : =Xji then j < i by
the single-assignment property as established in Lemma 26.2.1. By induction 0' j+1 (Xj) =
true iff 1 1- Xi.

One direction : suppose O' i+1(Xi) = true . This implies O' i(Xj) = O' j+1(Xj) = true . Then
by induction 1 1- Xi' which implies 1 1- Xi by clause Xj ~ Xi. The other direction :
suppose 1 1- Xi. This can only be deduced from clause Xj ~ Xi because of q

's single-
assignment property , so 1 1- Xj holds, and 0' j+1 (Xj) = true by induction . Again by q

's
single-assignment property , this implies O' i(Xj) = true = O' i+1(Xi).

The other two cases are very similar and so omitted .

26.4 Context -free emptiness and other problems
corn ete for PTIME

Proof: Given G it is easy to decide whether it generates at least one terminal string by
a marking algorithm like the one above: first mark all productions whose right sides
consist exclusively of terminal symbols, then all productions whose right sides contain
only marked symbols, and repeat until no more marks can be added. Then G E CF~0 if

Context - free emptiness and other problems complete for- - -

Corollary 26.4.1 The following set is :5 -complete for PTIME:
logs

CF~0 = {context-free grammar G I L(G) ~ 0}

Remark: the single-assignment property is essential for this, since there is no concept of
order in the application of Horn clauses to deduce new boolean variables. If applied to
an arbitrary monotone straight line BODLE program , il can deduce as true every X that
the program makes true , but it could possibly also deduce more than just these, since
it need not follow q

's order of executing instructions .

Lemma 26.3.4 Let q = 1 : Xl : =El . . . m: Xm : =Em, and let

q ~ (1,0'0) -+ . . . -+ (m + 1,O'm)

be q
's computation where O'o(X) = false for every qvariable X. Then for every i E [Din]

we have il ~ Xi if and only if O' i+l (Xi) = true .

GAME is complete for PTIME

Definition 26.4.3 A two-player game is a quadruple G = (PI, P2, M, W) where PI, P2, M, W
are finite sets such that PI n P2 = 0, W ~ PI U P2, M ~ (PI X Pv U (P2 X PI). The set of

positions for player 1 (respectively 2) is PI (respectively Pv, the set of moves is M, and the
set of won positions is W.

The set of winning positions is defined inductively by: any won position in pEW is

winning (for player 1 if P E PI, else for player 2). Further, position p E PI is winning
for player 1 if there is a move (p,q) EM such that q is winning for player 1; and position
p E P2 is winning for player 1 if forevery move (p,q) EM , position q is winning for player
1. Winning positions for player 2 are defined analogously.

Theorem 26.4.4 The following problem GAME is complete for PTIME: given a two-

player game (PI, P2, M, W) and a start position 5, to decide whether 5 is a winning position
for player 1.

P~ First, GAME is in PTIME by a simple marking algorithm: mark each position
in W n PI; and then add marks to each position that is winning for player 1 by the
above definition, until no new marks can be added. Anwer "yes

" if start position 5 gets
marked.

394 Complete Problems for PTIME

and only if its start nonterminal has been marked . Thus the problem
" is G E Cp :#:0?" is

in PTIME.

By Theorem 26.3.3, A E PTIME implies A :5 Horn for any A . Thus it suffices to prove
logs

that Horn :5 Cp :#:0, since :5 -reduction is transitive . This is easy : Given a pair (il , 8),
logs logs

construct a context -free grammar G whose nonterminals are the boolean variables ap -

pearing in il , with start symbol 8 , and which has productions :

A : : - c (the empty string) if - + A is an axiom in il

A : : = At A2. . . Ak if At A2. . . Ak - + A E il

It is easy to see that L(G) = { c } if il ~ 8 , and L(G) = 0 if il ~ 8 does not hold , so (il , 8) E

HORN iff G E Cp:#:0. 0

The following is immediate from Theorem 25.3.6.

Corollary 26.4.2 The complementary set Cf0 is :5 -complete for PTIME.
logs

Parallel computation and problems complete- A &

HORNproblem

appearing

clauses

26.5 Parallel computation and problems complete for

There seems to be a clear gap between those problems that are easy to solve using parallelism
, and problems that are complete for PTIME. A sketch follows , although parallelism

is outside the scope of this book.
The class NC (standing for "Nick 's Class") is the set of all problems that can be solved

on inputs of size n in time O(logkn) (very fast), provided one is given a number of
processors that is polynomial in n, and that these can communicate instantaneously (a
rather liberal assumption). Analogous to identifying PTIME with the class of all feasibly
solvable problems, many researchers identify NC with the class of all problems that
have efficient parallel solutions . while the identification is not perfect, it gives a starting
point , and has been used in many investigations .

The classes LOGSPACE and NLOGSPAGE are easily seen to lie within NC, which certainly
lies within PTIME. On the other hand, if any problem that is :$ -complete for

logs
PTIME lies in NC, then PTIME = NC, that is all polynomial-time solvable problems have fast
parallel solutions. This would be a remarkable result, comparable in its significance to
showing that PTIME = NPTIME.

for PTIME 395

Second, we will prove that a ('Il, A) can be reduced to GAME. Con-
struct

in (il ,A), and Axioms is the set of

PTIME

of form ~ B in il , and

G = (Vars, il , M, Axioms) = (Pl,P2,M,W)

where Vars is the set of boolean variables

M = { (Ao, A 1/\ . . . /\ Ak ~ Ao) I A 1/\ . . . /\ Ak ~ Ao E 1 }
u {(ai /\ . . .A Ak~ Ao, Ai) 11 ~ i ~ k}

In words: a position for player 1 is a variable, and a position for player 2 is clause in 1 .
A move for player 1 from position A is to choose a clause implying A, and a move for
player 2 from A 1/\ . . . /\ Ak ~ Ao is to choose a premise Ai to prove.

It is easy to verify (Exercise 26.6) that position A is winning for player 1 if and only
if A is deducible from 1 , i.e., G = (Vars, 1 ,M,Axioms) E GAME iff (1 ,A) E HORN.
Further, it is easily seen that G is constructible from 1 in logarithmic space. 0

Thus to show that certain problems are hard to parallelize , it suffices to show that

they are complete for PTIME. This property is often used in the literature , and is a major
motivation of the book [53]. More details can be found in that book, or in the one by

Papadimitriou [130].

Exercises

26.1 Prove correctness of the translation of Lemma 26.1.5, using inductions on computation
length . 0

26.2 Prove that the translation of Lemma 26.1.5 can all be carried out in space O(log !pl).
0

26.3 Prove correctness of the translation of Lemma 26.2.1, using induction on program
length . 0

26.4 Prove Proposition 26.3.2. 0

26.5 Complete the proof of Theorem 26.3.3 by showing that function f is computable in

logarithmic space. 0 0

26.6 Fill in the missing details of the proof of Proposition 26.4.4. 0

26.7 A two-player game as in Definition 26.4.3 is played on a finite directed graph (PI U

P2, M) . In general, this graph may contain cycles. Prove that GAME is complete for
PTIME even if restricted to DAGs, i .e., acyclic directed graphs. 0

26.8 Prove that GAME is in LOGSPACE when restricted to graphs that are trees. Hint

(by Ben-Amram): the problem is essentially one of tree traversal . Choose a data representation
of the game tree that makes this convenient. 0

References

The first problem shown ~ -complete for PTIME was Cook's "path problem ,
" described

logs
in [25]. The circuit value problem was proven complete for PTIME by Goldschlager in

1977 [52]. The remaining problems in this chapter were proven complete by Jones [74].

The book by Greenlaw, Hoover, and Ruzzo [53] has a very large collection of problems
complete for PTIME, with particular emphasis on parallel computation .

396 Complete Problems for PTIME-

27 Complete Problems for NPTIME

chapter : that SAT is ~ -complete for NPTIME.
logs

In chapter 26 we showed the Horn clause deducibility problem to be complete for
PTIME. Hardness was proven by steps whose net effect is to reduce acceptance of an

input by a deterministic polynomial time program to provability of a goal by a set of
Horn clauses . A variation on this construction is used to prove the cenual result of this

A recapitulation . Much of chapter 26 can be re-used for NPTIME, so we recapitulate
its two-phase development . Phase 1:

1. Begin with a deterministic GOTO program p running in polynomial time, and an
input d.

2. Build input -free GOTO program pd such that I Ip D(d) = true iff I Ipd
 D= true .

3. Build from pd a goto -free BOOLE program q so I Ip D(d) = true iff I Iq D BO O LE = true .

Conclusion : Problem Bacc\GOTO is :5: -complete for PTIME. Completeness of Horn clause
logs

deducibility was proven by carrying this development further as follows :

1. Eliminate if 's from q to obtain an equivalent goto -free BOOLE program q
' whose

instructions are all of form : X: - true , X: =Y, X: - YvZ, or X: =Y AZ.
2. Build from q

' an equivalent single-assignment goto -free BOOLE program q
" .

3. Build from q
" a Horn problem 'Il ,A such that I Iq

" D = true iff ' Ill - A .

The development for NPTIME is quite analogous. The essential difference from PTIME is
that a nondeterministic program p (recall chapter 22) can "guess

" from time to time by
executing an instruction of form : goto t" or t"' . Phase 1 is almost as above:

1. Begin with a nondeterministic GOTO program p running in polynomial time, and an

input d.

2. Build input -free nondeterministic GOTO program pd such that I Ip D(d) can yield
true iff I Ipd

 D can yield true .

3. Build from pd a deterministic goto -free BOOLE program q such that lip D(d) can yield
true iff I I Ini t ; qD = true for some sequence of assignments Ini t .

assignments

([Xt:=bi; .. . Xk:=bki pD = true

Proof Non Trivial is in NPTIME by a simple
"
guess and verify

"
algorithm: choose values

bi non determinist ically, set up an initial store binding the variables to them, and then
evaluate p.

The following Lemma 27.1.2 shows that Non Trivial is ~ -hard for NPTIME, and so
logs

complete. 0

398 Complete Problems for NPTIME-

27.1 Boolean program nontriviality is complete for

NPTIME

A very simple problem complete for NPTIME is the following :

Theorem 27.1.1 The following problem Non Trivial is ~ -complete for NPTIME:
logs

Given : a deterministic goto -free BODLE program p .

To decide: is there a sequence of
such that

xi :=bi; ...Xk:=bk with bi E {true ,false }

First conclusion: the problem
"Nontrivial " is complete for NPTIME: is a given a goto -

free boolean program , does there exist an initialization of its variables causing it to produce

output true ?
Phase two also involves consbucting a boolean expression : F from program p and

input d, but asking a different question than in chapter 26: is expression : F satisfiable, ie .,
is it possible to assign buth values to its variables to make : F evaluate to true? By Proposition

26.3.2, Horn clause deducibility is a special case of nonsatisfiability, and so Horn

clause nondeducibility is a special case of satisfiability . By Theorem 25.3.6 Horn clause

nondeducibility is also complete for PTIME, so phase two 's result naturally extends that

for PTIME.
The consbuction proceeds as follows :

1. Build from q an equivalent goto -free BOOLE program ql without conditional in-

sbuctions .

2. Build from ql an equivalent single-assignment no- if , no-goto BOOLE program
~ .

3. Build from ~ a boolean expression :F such that : F is satisfiable iff [Ini t ; qD=

[Ini t ; ~ D= true for some assignment sequence Ini t .

Boolean program non triviality is complete for NPTIME 399

Proof We mostly follow the pattern of the proof of Lemma 26.1.5.

Step A . Given p and d with n = Idl, construct a nondeterministic input -free GOTO program
pd = I 1. . . Im and a polynomial 7r such that

1. pd has a terminating computation if and only if p accepts d; and

2. if pd has a terminating computation then it has one that terminates in time at most
7r(n).

This is done exactly as in Lemma 26.1.5. The only difference is that pd may contain
nondeterministic instructions goto i ' or i "

copied over from those in p.

Step B. The next step is, as in Lemma 26.1.5, to construct from pd = il . . . Im a goto -

free BOOLE program

q
' - L . - true . -

il . .=1I"
I (n) . Answer . - L- 1 . - " . . . " . - m+1

Exactly the same construction from Figure 26.1 can be used, plus the following translation
of the nondeterministic choice instruction :

This is clearly a deterministic program . Construct q from q
'

by prefixing it with instructions
X: =false for every variable in q, except the oracle variables Ot. Clearly

{ 00, Ot, . . ., 01l'(n)} includes all variables not assigned in q.

L may also have instructions of form goto i ' or i " .1 From chapter 22: a GOTO programwhich
�

Assume A is accepted by nondeterministic GOTO program
1

p. To show: A can be reduced
to goto -free boolean program nontriviality in logarithmic space.

Lemma 27.1.2 Let p be a nondeterministic Ga Ta program running in time g(ldl) for any
input dE D where g(n) is a polynomial. Then for any input d there exists a deterministic

goto -free boolean program q such that I I Ini t ; q D BO O LE = true for some assignment
sequence Ini tiff P can acceptd. Further, q can be constructed from p and d in space
O(log Idl).

Expression : F, to be built from p and d, will have the same boolean variables as in the

previous section, plus new boolean "oracle" variables at, one for each point in time, i .e.,

polynomially many new variables.
A "choice"

by p to transfer control to i ' at time t will amount to setting at = true
in :F, and a transfer to i " will amount to setting at = false in : F. Each at is called an
oracle variable, since the choice of a satisfying truth assignment (Definition 25.1.1) for
: F, in effect, predetermines the sequence of choices to be taken by program p, just as
the initialization sequence Ini t of the preceding section. The values of variables at
will not be uniquely determined : Since p may have many different computations on
the same input d, some accepting and others not, there may be many satisfying truth

assignments.

400 Complete Problems for NPTIME

Now q has the property that GOTO program pd has a terminating computation if and

only "if I I Ini t ; qD = true for some initialization assignment sequence Ini t . (This was
not true for q

' since its construction relied on the falsity of unassigned variables.) An

example initialization sequence:

Ini t - 00: - true ; ; 01: - false ; . . . 01l"(n) : =true ;

Correcbtess of q. First, if I I Ini t ; qD = true for some initialization sequence Ini t , then
the accepting computation by Ini t ; q clearly corresponds to an accepting computation
by pd. Now consider any computation (there may be many) by pd:

pd I- (1, to) -+. (ltl ' O' tl) -+ (l ~I' 0' :1) -+. . . . (It ,, O' t,) -+ (l ~" 0' :1) -+. . . .

where (ltl ,O' tl), (lt2,O' t2)' . . . is a list of all states (It ,O' t) such that Itt has form goto l '

or fI ' . For each such ti, let Ini t contain assignment Ot; : - true if branch l ~; is taken
in this computation , else assignment Ot; : - false if branch l ~~ is taken. Then Ini t ; q
will , when it encounters its tith instruction

Lt : = false ; if Ot; then Lt, : = true else Lt" : = true

take the branch that pd takes. Consequently Ini t ; q will have a computation that is

parallel to the one by pd, yielding result I I Ini t ; qD= true .
It should be evident that this construction can be done in logarithmic space because

it is so similar to that of Lemma 26.1.5. 0

27.2 Satisfiability is complete for NPTIME

Satisfiability is complete for NPTIME 401

J=" will be constructed from q very similarly to the way 1- was built , but a few additional
clauses will be needed to be certain that J=" can be satisfied only in ways that

correspond to correct computations .

details appear in the following section.
construction will be established.

27.2.1 Constructionof a 3CNF expression from a program and its

Lemma 27.2.2 Let P be a nondeterministic GOTO program running in time g(ldl) for any
input d ED where g(n) is a polynomial . Then for any input d there exists a 3CNF boolean

expression2

which is satisfiable iff p can acceptd. Further, F can be constructed from p and d in

space O(log Idl).

Proof Begin with got a-free BODLE program q from Lemma 27.1.2. Apply a construction
in Lemma 26.2.1 to q to construct an equivalent goto -free BODLE program qt without
conditional. Its instructions can only have forms X: =true , X: - false , X: - I , X: =-,Y,
X: =YVZ, or X: =Y AZ.

2
Meaning of 3CNF: each Cj is a disjunction of at most three literals . See Appendix section A .I for termi -

nology if unfamiliar .

Theorem 27.2.1 SAT is :::5: -complete for NPTIME.
logs

After that, correctness and space
0

input

F = CIA C2 A . . . ACt

seen before;
usage of the

Proof: First, SAT E NPTIME by a simple
"
guess and verify

"
algorithm . Given a boolean

expression : F, a nondeterministic program can first select a truth assignment 8, using
the instruction goto l or l ' to choose between assigning true or false to each variable

. Then evaluate 8(:F) (in polynomial time by Lemma 26.1.3. H true, accept the input ,
else don't. All this can certainly be done by a nondeterministic polynomial time computation

.
The next task is to show that A :5: SAT for any set A ~ D Ol in NPTIMEGOTO. This is

logs
done by modifying the construction of a Horn clause program from a Ga Ta program

NPTTM~Probl Pcn1 S

Next, apply another construction from Lemma 26.2.1 to q1 to construct an equivalent
single-assignment no- if , no-goto BODLE program ~ = I1I2 ... Im. Finally, construct
boolean expression

402 Complete for

:F = It A... AI;;;
where each I is defined as follows :

Expression F does not have the form of a set of Horn clauses because the negation
operator appears in two places. Further, we are asking a different question, satisfiability ,
rather than Horn clause deducibility .

Correcbtess. First, note that expression F has exactly the same variables as~ . Second,
the only unassigned variables in ~ are the oracle variables OJ. If Il Ini t ; ~ DBOOLE = true
for some initialization Ini t of the oracle variables, it is clear that the b"uth assignment

8(X) = the value Ini t assigns to X

causes 8(.1) to evaluate to true.

Conversely, suppose 8(.1) evaluates to true for some b"uth assignment 8, and let Ini t
contain X: - true for each X with 8(X) = true and X: =false for each X with 8(X) = false .
Since ~ is single-assignment, a simple induction on computation length very like the

proof of Lemma 26.3.4 shows that for each assignment X : = . . . performed by Ini t ; ~ ,
b"uth assignment 8 must map variable X to the (unique) value that Ini t ; ~ stores into
X.

Thus F is satisfiable if and only if Il Ini t ; ~ D = true for some b"uth assignment
8. We have already seen that this holds if and only if 1l8(qt)D = true for some b"uth

assignment 8, and that this holds iff IlpdD = true , which holds iff IlpD(d) = true .
Thus F is satisfiable if and only if p accepts d. Exercise 27.2 is to show that this

consb"uction can be done in logarithmic space. 0

Theorem 27.3.2 The Vertex Cover problem is ~ -complete
logs

Given: an undirected graph G = (V, E) and a number k.

for NPTIME:

Proof First, CLIQUE E NPTIME by a simple algorithm. Given graph G and number k,
just guess a subset of k of G's vertices and check to see whether every pair is joined by
an edge of G. This takes at most quadratic time.

Second, we saw in Construction 25.3.1 how the SAT problem can be reduced to
CLIQUE. It is easy to see that the construction can be done in logarithmic space, so
SAT ~ CLIQUE. By Proposition 25.3.5, CLIQUE is also ~ -complete for NPTIME. 0

logs logs

Other problems complete for NPTIME 403- -

27 .3 Other problems complete for NPTIME

Thousands of problems have been shown complete for NPTIME. For a large selection,
see [49]. Many of the first problems shown complete for NPTIME concern graphs, as
indicated by the following selection. However there is a wide variety in nearly all areas
where combinatorial explosions can arise. For historical reasons we now sometimes
write "vertex" where "node" has been used other places in the book; but the meaning
is exactly the same.

Corollary 27.3.1 The CLIQUE problem is ~ -complete for NPTIME.
logs

To decide: is there a subset 5 ~ V with size k such that every edge in E has an endpoint.
5?m .

Proof. It is clear that Vertex Cover is in NPTIME by a simple guess-and-verify algorithm .
Second, we show CLIQUE $: Vertex Cover which by the previous result and Proposi-

logs
lion 25.3.5 implies Set Cover is also $: -complete for NPTIME.

logs
The reduction is as follows , given a CLIQUE problem instance (G,k) (does G = (V, E)

have k mutually adjacent vertices?). Construct the "
complement

"
graph G = (V, E')

where E' = { (v,w) I(V,WE V, v ~ w, (v,w) ~ E}, and let n be the number of vertices in V.
Claim : C is a kelement clique of G if and only if 5 = V \ C is a n - kelement vertex

cover of G. Assume C is a k-clique. An arbitrary edge (v, w) of G connects two distinct
vertices and is not in E. Thus at least one of v or w must not be in C, and so must be in
5 \ C. Thus every edge has an endpoint in 5, so 5 is an n - kelement vertex cover of G.

Now assume 5 is an n - kelement vertex cover of G and v, w are any two distinct
vertices of C. H (v,w) were an edge in E' then one would be in 5 = V \ C. Thus (v,w) is
an edge in E, so C is a clique .

404 Complete Problems for NPTIME

Thus (G,k) E CLIQUE iff (Gin - k) E Vertex Cover. Further, (G,n - k) can be con-

structed from (G,k) in logarithmic space, so CLIQUE ~ Vertex Cover. 0
logs

To decide: is there a subcollection Sit' . . . , Sit of at most k of these whose union covers
all elements in any Si:

Clearly, Sit' . . .' Sit is a set cover of V = UVE V Sv if and only if {Vit' . . . , Vit} is a vertex
cover of E. Constructibility in logarithmic space is simple . 0

27.1 Prove Theorem 27.1.1. Hint : for hardness, show that SAT ~ Non Trivial. 0
logs

27.2 Complete the proof of Theorem 27.2.1 by showing that function f is computable in

logarithmic space. 0

27.3 Verify the equivalence stated in Theorem 27.3.3. 0

3Por example , by listing each as a sbing { VI , . . ., Vm } , using binary integers to denote the various elemenm

Vi.

Theorem 27.3.3 The Set Cover problem is ~ -complete for NPTIME:
logs

Given: a number k and a collection of sets3 51, . . ., 5n.

j=n j=k

U Si = U Sij
j=l j=l

Exercises

Proof: It is again clear that Set Cover is in NPTIME by a simple guess-and-verify algorithm
. Second, we show Vertex Cover ~ Set Cover which by the previous result and

logs

Proposition 25.3.5 implies Set Cover is also ~ -complete for NPTIME.
logs

The reduction is as follows, given a Vertex Cover problem instance (G,k) (does G =
(V, E) have a set of k vertices that contact every edge?). Construct the collection of sets
Sv, one for each vertex v E V , such that

Sv = { (u, W) E VI v = uvv = W}

Other problems complete for NPTIME 405

References

27.4 Prove that the Feedback Vertex Set problem is ~ -complete for NPTIME:
logs

Given: a directed graph G = (V, E) and a number k.

To decide: is there a kelement subsetS C V such that every cycle of G contains

one vertex in 1 Hint reduce Vertex Cover to Feedback Vertex Set.
I at least

0

28 Complete Problems for PSP ACE

28.1 Acceptance by boolean programs with goto

Proof A simple interpreter slightly extending that of section 3.4.2 can execute an arbitrary
BOOLE program . It uses space for the current control point and the current values

of all program variables. Each of these is bounded by the length of the program being
interpreted .

This naive interpreter will of course loop infinitely if the interpreted program does
so. It can be modified always to terminate as follows . Let the interpreted program p
have m labels and k boolean variables. Then it can enter at most m . 2k configurations
without repeating one and so looping .

Modify the interpreter to maintain a binary counter c consisting of r = k nog m 1
boolean values (initially all false), and increase this counter by 1 every time an instruction

of p is simulated. H c becomes 2' - 1 (all true 's) then the interpreter stops simulation
and signals that p has entered an infinite loop. This is sufficient since 2' ~ m .2k.

Clearly the modified interpreter uses space at most polynomial in the length of p. 0

Lemma 28.1.1 Boolean programs can be executed in space at most a polynomial function

of their length . Further , execution can be guaranteed to terminate .

First, we will prove the following:

Theorem 28.0.4 The following set is ~ -complete for PSPACE:
logs

Bacc = {pIp is a BOOLE program such that I Ip D = true }

In light of Theorem 26.1.4, this says that the difference between simulating programs
with or without goto corresponds to the difference between PSPACE and PTIME (if any).
Using this as a basis, we will proceed to show the following problems complete for
PSPACE:

REGALL = {R I R is a regular expression over 1: and L(R) = 1:*}
QBT = {:F I :F is a true quantified boolean expression}

408 Complete Problems for PSPACE

Theorem 28.0.4 in essence says that if boolean programs can be executed in polynomial
time, then PTIME = PSPACE. To show that Bacc is hard for PSPACE we reduce computations

by an arbitrary polynomial Iy space-bounded counter machine to Bacc.

This is done in a way close to that of Lemma 26.1.5. The only essential difference is that

pd must initialize its input counter CO to the number cN(d). This can easily be computed,
as sketched in Exercise 21.3.

BODLE program q has boolean variables c{ for i E [1,k], jE [O,1r(n)]. The intended interpretation
: variable c{ will be true if and only if the j -th bit of the current value of

counter Ci is a 1. Instructions It to simulate instruction It of pd are now easily defined
as follows:

Lemma 28.1.2 Let P be a CM program running in polynomial space f (n), and let d = at
a2 . . . an E { O, 1 }

* be an input of length n. Then there exists a boolean program q such
that I[q D800 LE = true if and only if I[pD(d) = true . Further, q can be constructed from p
and d in space O(logn).

Proof: We follow a pattern seen for Theorems 26.1.4 and 27.2.1, with one boolean variable
for each bit of each of p

's counters.

q = 1 : It ; . . . ; m : 1". ; m+1 : Answer :- true

Step A . There is a polynomial1r such that for any d, an input -free CM program pd =

It . . . im with counters C1,. . ., Ck can be built in space O(logldl > such that

Step B. The next step is, as in Lemma 26.1.5, to construct from pd = 11 ... im a BODLE
program q such that I[qrOOLE = true if and only if p terminates on input d. It has form:

Quantified

consbucted

proVE

- boolean algebra 409

within logarithmic space.Program q can easily be

problems hard for PSPACE.

Corollary 28.1.3 The following set is ~ -complete for PSPACE:
logs

Bterm = {pIp is a BODLE program which terminates}

Proof: Theorem 28.0.4: By Lemma 28.1.1, Bacc is in PSPACE. If A is in PSPACE then by
Theorem 21.2.1 it is decidable by some polynomially space-bounded counter machine

program p. The preceding Lemma shows how to reduce A to Bacc, so Bacc is ~ -hard
logs

for PSPACE. 0

The following variant is a bit simpler, and so will be used in some later reductions to

28 .2 Quantified boolean algebra .

Definition 28.2.1 A quantified boolean expression is an expression E of form given by:

E ::= Xltruelfalse I El V E2 I El A E21~ EIEl ~ E2IEl ~ E2
I VX . EI3X . E

X ::= XO I Xi I . . .

It is closed if every variable X is bound, i.e., lies within the scope of some quantifier VIE
or 3X . E. The value of a closed quantified boolean expression E is either true or false.

An expression of form VIE has value true if both E+ and E- have value true, where
E+, E- are obtained from E by replacing every unbound occurrence of X in E by true ,

Theorem 28.2.2 The set QBT

Proof: First, it should be clear that b"uth of a quantified boolean expression can be established
in linear space, by an algorithm that enumerates all combinations of values

true, false of its quantified variables, and combines the results of subexpressions according
to the logical operators and quantifiers in E. This requires one bit per variable .

and similarly for the other forms.

One-step simulation We start out by constructing a quantified boolean expression
Nx(X,L,! , i:') where X stands for the sequence Xt, . . .,Xk' L stands for Lt , . . .,Lm+t, and

similarly for their primed versions. The expression will be such that

P ~ (t', [11-+- Vt, . . .,k I-+- Vk]) -+ (t", [11-+- v I ' . . .,k I-+- Vk])

if and only if

NX(Vt, . . .,Vk,false , . . ., true, . . .,false , v I , . . .,vk,false , . . ., true, . . .,false)

evaluates to true, where the first sequence of truth values has true in position t' only,
and the second has true in position t" only. Intention : Lt = true (L/ = true) if the current
control point (next control point) is instruction It .

410 Complete Problems for PSPACE

respectively false . Expression 3X. E has value true if E+ or E- have value true (or
both), and expressions El V E2, etc. are evaluated by combining the values of their

components in the usual way for boolean expressions. 0

of b"ue quantified boolean expressione is ~ -complete for
logs

PSPACE.

: = Y could be realized by

1:
2:
3:

X := true ;
if Y goto 4 else to 3
X := false

obviously computable in logspace).
For example, the assignment X

We next show Bterm ~ QBT, so QBT is ~ -complete for PSPACE by Theorems 28.0.4
logs logs

and 25.3.5.
Consider BODLE program p = II . . . Im with variables Xi ,. . . ,Ik . Without loss of generality

we may assume every instruction in p is of the form X : = true , X : = false , or
if X goto l else l ' , where the alIter abbreviates if X then goto l else goto
l ' . The reason is that the boolean operators and assignments may all be transformed into
code to " test and jump

" with at most linear increase in program size (a transformation

Lab(l) stands for Ll " AiE[l,l)u<l,k) -,Li
Lab' (l) stands for Li " AiE[l,l)u<l,k) -,Li

Given this machinery, define

Quantified boolean algebra 411-

NX(Xk,Lm+t,(,L'm+t) =: (Lab(l) A Et) V... v (Lab(m) A E",) V Lab(m + 1)

where the Et are defined by the table

The size of this expression is clearly polynomial in m + k, and it is also evident that it is
logspace computable with the aid of a few counters bounded by k or m.

Multistep simulation For this we will construct quantified boolean expressions__2i (it
"" i -II

) .Nx- A,L,X,L for, = 0,1,2,..., which evaluate to true if program p can go from state
represented by (X, L) to the state represented by (1' , U) by a 2i-step sequence of transitions

.
This can be defined inductively as follows. To illustrate the technique without unduly

long argument lists, we consider only a binary predicate p2i(a,b) rather than the
2(m + k)-ary boolean predicate N,x2i (. . .) .

pI (a, b) = P(a,b)
p2t(a,b) = 3cVuVv{[(u= a A V= C)V(U= CAv= b)] ~ Pt(u,v)}

Claims: first, expression p2i(a,b) will be true if and only if there exists a sequence
aI,a2,.. .,a2i such that p2i

-l
(ai,ai+l) holds for every i E [1,2i). Second, the size of the ex-

Some auxiliary notation: if vectors 6, V have the same lengths, then 6 ~ V stands for
(Ut ~ Ut) " . . ." (Us ~ Us). Similarly, if I ~ {1,2, . . .,s}, then 6 ~ , V stands for AiE,(Ui ~
Ui). Finally, two more abbreviations:

Finally, a size analysis: by the argument above about P(a,b), the size of boolean expression
Nx2

'
(. . .) is of the order of r times the size of Nx(X,t ' , i ' , t ') . The latter has been

argued to be polynomial in the size of program p, so the total is polynomially bounded .
The final step, logspace computability of the reduction , is Exercise 28.4. 0

REGALLTheorem 28.3.1 The totality problem
~ -complete for PSPACE.

IOR~

REGNOTALL is in PSPACE. Given regular expression R over alphabet 1:, the property
L(R) ~ 1:* can be decided in linear space as follows. First, construct an NFA

M = (Q,1:,m,qo,f) (nondeterministic finite automaton, see the appendix) such that
L(M) = L(R). This can be done so the size of M is linear in the size of R [3].

Then apply the usual "subset construction" [3] to define a DFA (deterministic finite
automaton) MD accepting the same set L(R) = L(M) = L(MD). Note that MD may have
a number of states exponential in the size of M, since each state is a subset of the states
of M.

412 Complete Problems for PSPACE

28.3 Regular expression totality

for regular expressions (is L(R) = 1:*?) is

Proof We
to be

-.I show the complementary problem REGNOTALL = {R I L(R) ~ ~*}
~ -complete for PSPACE. This suffices by Theorems 25.3.6 and 23.5.2.logs

pression p2i (a, b) is 0 (; + 5) where 5 is the size of expression P(a,b), since each doubling
of the exponent only adds a constant number of symbols to the previous expression.

Now let r = rk . log(m + 1)1, so 2' ~ (m + 1)2k (the number of config' :Jrations p can
enter without looping). Consider quantified boolean expression Nx2

'
(X, il , i ' , il) . Value

2' is large enough so that if program p can go from state represented by (X, L) to the... ...
state represented by (X

'
, L ') by any sequence of transitions , then it can do so in at most

2' transitions .

Consequently p terminates iff its start transition can reach one with control point
m + 1 within T steps. Thus ([pD = true iff the following quantified boolean expression
is true (the part [. . .] describes p

's initial state):

it it --+ ". --+ 2' it
3A3L . [A~ false I\I' ll \ L ~ (l /m+l]false] I\ Nx (A,L, I

'
,L ') I\ Lin+l

Regular expression totality 413

The property L(MD) ;If ~
* holds if and only if there is some path from the automa-

ton's initial state {qo} to a nonaccepting state. As seen before, this can be done by a nondeterministic
search through MD

'S transition graph, storing at most one graph node at
a time (it is not necessary to build all of MD first). The natural way to represent a state
of automaton MD is by storing one bit for each M state, that is as a bit vector of size
O(IRI). Thus the nondeterministic search can be done in at most linear space.

This shows the problem L(R) ;If ~
* is in NSPACE(n), and so in PSPACE by Theorem

23.4.3.

r.* \ #[(OI1)m+t(tlf)k#]*

r.* \ #10m#fkr.*

r.* \ r.*#Om1(tlf)k#

r.*#(Et I E21.. . I Em)#r.*

Wrong format

Wrong start

Wrong finish

Some Ci ~ Ci+l

REGNOTALL is hard for PSPACE. We prove Bterm ~ REGNOTALL .
logs

Suppose we are given a BODLE program p = It . . . im with variables Xi ,. . .,Xk. Without
loss of generality we may assume every instruction in p is of the form X : = true ,

X : - false , or if X goto l else l ' . We will show how to construct a regular expression

Rp over ~ = {#,O, 1, t , f } which generates all sequences that are not terminating
computations by p. Thus L(Rp) = ~* iff P does not terminate (which implies every string
in 1:* is a noncomputation), so p E Bterm iff Rp is in REGNOTALL .

Represent a configuration C = (l , [1 bt, . . .,k bk]) by the following string over

alphabet 1: of length m + 1 + k:

c = Ol-110m+l- lbl . . . bk

L(Rt) =

L(RV =

L(R3) =

L(~) =

where bi = t if hi = true and bi = f if hi = false for i = 1, . . . ,k. A computation trace will be
a sbing over alphabet I.:

Tracesp = {#' Ej# . . .#'"Ei# I pI - Cl -+ . . . -+ Ct and
Cl = (1, [1 t-+ false, . . . ,k t-+ false]) and Ct = (m + 1, [. . .])

Claim: for each BODLE program p there is a regular expression Rp such that

1. L(Rp) = I.* \ Tracesp
2. Rp is constructible in space O(lpl)
3. Rp = Rl I R2 I R3 I ~ where the Ri behave as follows:

414 Complete Problems for PSPACE

Verification of this construction 's correctness is straightforward but tedious .

Exercise 28.2 is to show that R 1, R2, R3 can be defined without using \ .

Regular expressions El for each insbuction label t' define the set of strings C#C such
that P If C -+ C'. In order to define them, we use abbreviation 1: \ a for the obvious finite
union, and V iel Xi for the union (I) of Xi for each i E 1.

Strings having symbol a at position i are generated by yr = 1:i- la1:*.

Strings not having symbol a at position i:

Nr = 1:* \ Yi = c 11: I . . . l1:i- ll1 :il (1: \ a)1:*

Strings including C#C with a, bE {t , f } at positions i of C and C (respectively):

Bfb = (OI1)
m+l (tlf)i

- la (tlf)k
- i#yt+m+l

Strings including C#C with a,bE {t ,f } at some position i of C and C (resp.):

Bab - Bab 1 1 Bab- 1 . . . k

Strings with a at position i of C such that t' is not the control point in C :

crt = (OI1)
m+l (tlf)i

- la(tlf)k
- i#Nl

Given these, definition of the Et is straightforward:

A generalization: regular expressions with squaring. Suppose the class of regular
expressions is enriched by adding the operator R2, where by definition L(R2) = L(R) .

L(R). The totality problem for this class (naturally called REG2 ALL) can by essentially
similar methods be shown complete for Uc SPACE(2cn).

The ability to square makes it possible, by means of an extended regular expression
of size O(n), to generate all noncomputations of an exponentially space-bounded

counter machine. Intuitively, the point is that an expression (. . . (}:
2)2 . . .)2 of size n generates

all sbings in }:* of length 2", so the "yardstick
" m + k + 1 used above can be made

exponentially long by an extended regular expression of length O(n). This allows generation
of all noncomputations by an exponential space counter or Turing machine by a

linear-length regular expression with squaring.

28.4 Game complexity

Board games. We showed a simple one- token game to be complete for PTIME in Theorem
26.4.4. A natural question is what the complexity is for many-token games such as

n x n-board size chess, Hex, or Go. It might be expected that their complexity is higher,
since the number of possible configurations is exponential in the board size. This is
indeed the case; constructions and references may be found in [156], [165], [49]-

Blindfold games. Games such as Battleship, Kriegspiel (blindfold chess), and even
card games are based on imperfect information: no player is fully aware of the total game
state. Again, it might be expected that their complexity is higher. It is shown in [73] that
the one-token game shown complete for PTIME in Theorem 26.4.4 becomes complete for
PSPACE in its natural blindfold version. The technique used is a simple reduction from
REGALL.

Exercises

28.1 Prove Corollary 28.1.3. 0

28.2 Consbuct regular expressions for Rt, R2, R3 without using set complement \ . Give
bounds on their lengths in relation to the size of program p. 0

context -sensitive

28.4 Prove that the quantified boolean expression of the proof of Theorem 28.2.2 can be
built in logarithmic space. 0

Game complexity 415

grammars is complete
0

416 Complete Problems for PSPACE

References

The technique of redudng computations by arbitrary programs to ones using only
boolean variables was used extensively by Jones and Muchnick in [76, 77] . Completeness

for PSPACE of the REGALL and QBT problems is due to Meyer and to Stockmeyer
[120, 157] .

Part VI

Appendix

A Mathematical Terminology and Concepts

This appendix introduces a number of mathematical concepts that are used throughout
the book . Readers with little or no mathematical background may read the appendix
from one end to the other and do the exercises . Readers familiar with the notions introduced

may consult the appendix if the need arises . The index should make this easy.
Section A .I gives a short introduction to the manipulation of logical expressions .

Section A .2 introduces sets and operations on sets, and Section A .3 is concerned with
functions . Section A .4 introduces graphs . Section A .5 describes grammars , regular expressions

, and finite automata . Section A .6 introduces definition and proof by induction
. Section A .7 describes pairing functions .

Section A .7 contains a number of exercises ; in general the reader is encouraged to

try all the exercises . Section A .7 gives references for further reading .

A .I Boolean algebra

Boolean algebra is the manipulation of logical expressions or propositional formulas. In
boolean algebra we work with two truth values, true and false. We use p,q,r, . . . to denote
boolean variables.

A boolean expression or formula, is formed by combining b"uth values, variables and
smaller boolean expressions with the boolean operators shown in the following table:

operator pronounced arity precedence associativity
-, not unary 5 -

A and binary 4 left
V or binary 3 left
~ implies binary 2 left
~ if and only if binary 1 left

" If and only if " is usually abbreviated to 'Iiff ,
" and p A q is called the conjunction of p

and q. Likewise , p V q is called the disjunction of p and q, and -,p the negation of p.
The -' -operator has the tightest binding Sb' ength, so p V q V -,q /\ true ~ r ~ - false is a
boolean expression equivalent to p V q) V -' q) A true ~ - false) ~ r). A literal is either
a boolean variable or its negation, making p and -,q literals , whereas -' -' p, (p A q) and
true are not .

true, if E is true
false, if E is false
8(E), if E is a variable

A .tit Evaluation of boolean expressions

When we want to determine the truth value of a boolean expression, we must specify
how the variables in the expression are to be interpreted. To this end we let 8 be a

truth assignment mapping boolean variables to truth values. If all the boolean variables

occurring in an expression E are in the domain of (8), then we define the value of E under

the truth assignment 8 to be the result of applying the function eval : truth assignments -+

boolean expressions -+ truth values given by

.
. . . . " " '

II~~ -
;

t

where the truth

420 Mathematical Terminology and Concepts.- - ..-- - --- - - -- ------ ...", .

It is interesting to note that by using the following equations:

-' (p /\ q) =: -,p V -,q -,(p V q) =: -,p /\ -,q (de Morgan
's laws)

(p /\ q) V r =: (p V r) /\ (q V r) (p V q) /\ r =: (p /\ r) V (q /\ r)

}
(distributivity)

p/\ (qvr) =: (p/\q)v (p/\ r) pv (q/\ r) =: (pvq)/\ (pvr)
-,(p ~ q) =: p /\ -,q -' (p ~ q) =: (-,p V -'q) /\ (p V q)

-,-,p =: p true =: p V -,p false =: p /\ -'P

it is possible to convert any boolean formula into conjunctive normal form (CNF) , that is

a finite conjunction of finite disjunctions of literals: (A 11 V . . . V A In1) 1\ . . . 1\ (Am I V . . . V

Amnm). A concrete example of a boolean formula in CNF is (p V -'q) 1\ -,q 1\ (-,p V P V q).

popq, if E is popq andp = eval8p and q = eva18q
"' p, if E is ..,p and p = eval8p

value of pop q is given by the following truth table:

A .2.1 Definition and examples

A set is informally defined to be a collection of objects. The only requirement a collection
must satisfy to be called a set is that for any object x, either x is definitely in the

collection, or x is definitely not in it . If 5 is a set and x is an object in 5 we say that x is an
element of 5 (or x is in 5, or x belongs to 5, or x is a member of 5, or even that x is contained
in 5) and write x e 5. If x is not in 5 we write x ~ 5.

Well-known examples of a set inlude :

1. N: the set of all non-negative integers (thus including zero), also called the natural
numbers.

2. Ii: the set of all real numbers, e.g., 2. 1,1/ 3,400, - 32,7r,e.

3. JR+: the set of positive real numbers, e.g., 2. 1,1/ 3,400,7r,e.

4. The collection of all graphs with at most five edges.

If a set contains only finitely many different objects at,a2, . . . ,an then the set is written

{alta2, . . . ,an} . For example, the set containing the first three prime numbers (and nothing
else) is written {2,3,5} .
An infinite set may be described similarly if there is an obvious rule for listing its elements

. For instance the set of odd non-negative numbers may be written { 1,3,5,7, . . .} .
Two sets T and 5 are equal, written T = 5, if and only if they contain the same elements

, i .e., if and only if every element in T is also an element in 5 and vice versa. Thus
the sets {2,5,2,5,3} and {2,3,5} are equal. If T = 5 we also say that T and 5 are one and
the same set.

A set T is a subset of another set 5, written T ~ 5 if every element of T is also an
element of 5. If T is a subset of 5 and vice versa, T and 5 are equal by the definition of

equality.
By definition of equality there is only one set without any members at all . This set is

written 0, and is called the empty set.
If 5 is some set and P{x) is some condition involving x we use the notation { x e

5 I P{x)} to denote the set of all those members of 5 that satisfy the condition P{x). For
instance the set

{x EN I x :?: 2 and the only divisors of x are 1 and x}

is the set of all prime numbers.

Sets 421

A.2 Sets

A .2.2 Some operations on

If T and 5 are two sets then the union 5 U T is the set of all those objects that are elements
in T or in 5 (or both). For example, { 1,3} U {3,5} = { 1,3,5} . The intersection 5 n T is
the set of all those objects that are elements in both T and 5. For example, { 1,3,4} n

{3,4,5} = {3,4} . 5 and T are disjoint if they have no members in common, ieiif 5nT = 0.

Finally, the difference 5\ T is the set of all those objects that belong to to 5 but not T. Thus

{ 1,2,5} \ {3,5,7} = { 1,2} .
An ordered pair is a sequence of two (not necessarily distinct) objects in parentheses

(a, b). Thefirst component is a and the second component is b. If 5 and T are sets the cartesian

product 5 x T is the set of all ordered pairs where the first component belongs to T and
the second component belongs to 5.

Similarly we speak of triples (a,b,c), quadruples (a,b,c,d), and in general n-tupies
(ai ,a2, . . . ,an), and of the cartesian product of n sets 51, 52, . . ., 5n.

P (5) denotes the set of all subsets of 5. For instance,

P ({ 1,2,3}) = { 0, { 1} , {2} , {3}, { 1,2} , { 1,3} , {2,3} , { 1,2,3} }

If 5 is a finite set we let I 5 I denote the number of elements in 5.

A .2.3 An abbreviation

We use the vector notation Xn to denote the sequence Xl, Xu ' . ., Xn (also when Xl, Xu ' . ., Xn
are numbers, graphs, etc.). Note that xn does not include parentheses, so (xn) means

(Xl, X2, . . ., xn). Moreover, if xn denotes Xl, Xu ' . ., Xn and i /m denotes denotes YI, Yu . . ., Ym
then (Xn, i /m) means (Xl, Xu ' . .,Xn,YI,Yu . . .,Ym).

A function from a set A into a set B is a correspondence which associates to every a in
A exactly one b in B. More precisely, a function from A into B is a subset f of A x B

satisfying :

422 Mathematical Terminology and Concepts

sets

Functions

Total Functions

1. For all a in A there is at least one b in B such that (a, b) is in f (definedness).

2. For all a in A there is at most one b in B such that (a, b) is in f (uniqueness).

A .3

A.3.1

Iff is a function from A into B, a is an element of A, and b is the unique b in B such that
(a,b) is in f , we write f (a) = b and call a the argument and b the result. Note that by the
definition of a function there corresponds to every argument exactly one result.

The set of all functions from A into B is written A -+ B, and the fact that f is a
function from A into B is written f : A -+ B.

Some examples:

1. The function double f : N -+ N associates to every n in N the number n + n. This is
the set { (0,0),(1,2),(2,4),(3,6), . . .} . For example, f (2) = 4.

2. The function predecessor g : N -+ N associates to every n 0 the number n - 1 and
associates 0 to O. This is the set {(0,0),(l ,0),(2,1),(3,2), . . .} . For example, f (3) = 2.

3. The function monus ..:.. : N x N -+ N which associates to every pair (m, n) with
m ~ n the difference m - n and associates 0 to all other pairs. This is the set
{ O, 0), 0), 0, 1),0), (l ,0), 1), 2,0),2), (l , 1),0), 0,2),0), . . .} . For example f (0,2) =
O.

The set-theoretic definition of a function can be thought of as a table listing the arguments
in one column (first component) and the result of applying the function to the

arguments in the second column. For instance, double is:

A more customary way of writting the example functions is symbolically , e.g.:

We shall also employ this shorthand notation. However it is important to keep in mind
that a function is just a certain set.

A function is sometimes called a total function to make explicit the difference from
the partial functions introduced in the next subsection. The unqualified term function will
always refer to a total function.

Functions 423

0 01 22 4.
1. f(n) = n+n.
2. f(n) =

{
n - 1 if n > 0
0 ifn=O

3. f(m, n) =
{

m - n if m > n
0 ifm~n

A .3.2 Infinite sequences

Let S be some set. An infinite sequence of elements from S is a total function from N to

S. For example, the identity function i : N -+- N defined by i(x) = x is a sequence, and the

function i : N -+- N x N defined by i(x) = (i,2i) is a sequence.

Instead of presenting a sequence by a function definition , one often simply writes the

first few values i (0), i(1), i(2), etc. when it is obvious how i is then defined . For instance,
the first sequence above would simply be written 110,1,2, . . ." and the second would be
written " (0,0), (1,2), (2,4), (3,6), . . ."

A .3.3 Partial functions

in B such that (a, b) E f .

This is the same as a total function except that there is no definedness condition ; a

partial function may not have a result in B for some argument in A . However , when a

partial function has a result for some argument , then it has only one result .

If f is a partial function from A into B and (a, b) E f then we say that f is defined or

converges on a, and we write f (a).'J,. If a is an element of A on which f is defined, and b

is the unique element in B such that (a, b) is in f , we again write f (a) = b and call a and
b the argument and result, respectively.

If , on the other hand, for some a in A there is no b in B with (a, b) belonging to f we

say that f is undefined or diverges on a and write f (a)t , or alternatively f (a) = l - . In these
two notations one should not think of f (a) or l - as objects existing in B or some other set;
the notations simply state that there exists no bE B such that (a,b) E f . Iff (a)t and g(a)t
we will even write f (a) = g(a). Again this simply means that f and g are both undefined

on the value that they are applied to.

The set of all partial functions from A into B is written A -+- B.i , and the fact that f is

a partial function from A into B is written f : A -+- B.i .

As an example of a partial function , consider f : N x N -+- N.i , which maps any pair
(m,n) to the result of rounding W up to the nearest integer. For instance f (3,2) = 2. This

function is defined on (m,n) if and only if n :F 0, e.g., f (2,0) = l - .

The cautious reader will have noticed a small error in the preceding example. Recall

that N x N is the set of all pairs (m,n) where m,n EN . Thus f associates to every (m,n)
with n :F 0 a number k in N. Recall also that if a E A and g : A -+- B.i and (a, b) E g

424 Mathematical Terminology and Concepts

A partial function from A into B is a correspondence which associates to every a in A at

most one b in B, i .e., a subset f of A x B such that for every a in A there is at most one b

For a partial function f : A -+ B 1. the domain of f is the set

dom(f > = {a E A If (a) .J.}

In case f is total , dom(f > = A .
The co domain of a total or partial function from A into B is the set B.
The range of a total or partial function from A into B is the set

mg (f > = {bE B I there is a a E A such that f (a) = b}

A .3.4 Total versus partial functions

standard obtaining

A .3.5 Equality of functions

Recall that functions are just certain sets, and that two sets are equal if and only if they
contain the same elements. This implies that two total functions f , g : A -+- B are equal
if and only if they are the same sets of pairs. Equal total functions f and g thus satisfy
f (a) = g(a) for all a E A.

Functions 425- - --- --- ---

we write b = g(a), that is, we put parentheses around a. Thus above we should have
written { 3,2 = 2, rather than { (3,2) = 2. However it is customary to drop one set of
parentheses, and we shall also do so.

ways of a total function f ' from a partial function

1. Remove all those elements of A on which f is undefined: Define f ' : dom(f > -+ B

function.
There are two

f : A -+ B1.:

by f' (a) = f (a) for all a e dom(f).

�

Any total function is also a partial function . For a partial function f : A -+ B.L it may
happen that for all a E A, f (a) is defined, i.e., dom(f > = A . In that case f is also a total

Similarly, two partial functions f , g : A -+ B.L are equal, written f ~ g, iff dom(f > =
dom<g) and for all a E dom(f > : f (a) = g(a), i.e., iff for all a E A:

1. f (a)t and g(a)t ; or

2. Add a new element * to B and let that be the result whenever I is undefined :
Define f ' : A -+ (B U { * }) by : f ' (a) = I (a) for all a E dom(f) , and I

' (a) = * for a E
A \ dom(f) .

426 Mathematical Terminology and Concepts

2. f (a)j , and g (a)j , and f (a) = g (a) .

A.3.6 Some operations on partial functions

The composition of two partial functions f : A -+ B.l and g : B -+ C.l is the partial function
(g 0 f> : A -+ B.l defined by

(g 0 f>(a) =
{

gif (a if a ed~
m(f> and f (a) e dom(g)

.l otherwise
The function updating of two partial functions f , g : A -+ B.l is the partial function f (g] :
A -+ B.l defined by

f (g](a) =
{

g(a) if a ed~m(g)
f (a) otherwise

Note that if both g and f are undefined on a e A, then so is f (g].
A function f : A -+ B.l with finite domaindom(f> = {at,a2,.. .,an} is also written

[at t-+- bt,a2 t-+- b2,... ,an t-+- bn] where f (at) = bt,f (av = b2,... ,f (an) = bn. (This is just a
slight variant of the notation {(at,bt),(a2,bv,.. .,(an,bn)} for f .) So (omitting a pair of
square brackets)

f [at t-+- bt,a2 t-+- b2,. . . ,an t-+- bn]
is the function h: A -+ B.l such that h(at) = bt,h(av = b2,.. .,h(an) = bn, and h(a) = f (a)
for a e A \ {alta2,.. .,an}.

Let fig : X -+ R.l for some set X. Then
1. The sum f +g: X -+ R.l is defined by:

(f +)(x) = f (x) + g(x) if f (x).!. .
and g(x).!.

g .l otherwise
The product f . g : X -+ R.l is dined by:

if .)(x) = f (x) . g(x) if f (x).!. .and g(x).!.g .l Otherwise
3. The difference f - g : X -+ R.l j iefined by:

if -)(x) = f (x) - g(x) if f (x).!. .
and g(x).!.

g .l otherwise

Since we have agreed to write f (a) = g (a) if both f and g are undefined on a, an equivalent
definition of f ~ g would be to require that for all a E A : f (a) = g (a).

Functions 427

A .3.7 Higher - order functions

A higher-order function is a function that returns a function as its value.
One example is twice : (N -+ N) -+ (N -+ N) where by definition for any f : N -+ N we

have twice(f > = g where g(n) = f (f (n for all nE N.
Another example is apply : (N -+ N) x N -+ N where for any f : N -+ N,nE N we have

apply (fin) = f (n).

A .3.8 Lambda notation

Lambda notation is a device to define a function without giving it a name. For instance,
we have previously described the successor function as

f : N -+- N, f (n) = n + 1

Using the lambda notation this function could be written:

).nn + 1 : N -+- N

The notation).nn + 1 should be read: the function that maps any n to n + 1.
In the usual notation we write for example f (3) = 3 + 1. What we do when we write

3 + 1 on the right hand side of this equality is that we take the definition of f , f (n) = n + 1
and substitute 3 for n in the right hand side of the definition. In the lambda notation we
do something similar by writing

().n .n+ l)3= 3+ 1 = 4

Note the unusual bracketing in this expression.

4. The quotient 1/ g : X -+ Rl. is defined by:

if / g)(x) =
{ ~

(x) / g(x)
: ~ =

d g(x),J. and g(x) :F 0

5. Similar notation is used with a constant a E X in place of I . For instance, a .1 : X -+
Rl. is defined by (a . {>(x) = a ./ (x).

In the special case where I , g are total functions (see section A.3.4) the operations 1-3
and 5 give as a result a total function. In 4 the result may be a partial function even
when I , g are both total.

We write functions of several variables, e.g., addition , as:

(*) .>t(m,n) .m+ n : NxN -+ N

and for instance (.>t(m, n) . m + n) (3,4) = 3 + 4 = 7.
Another slightly different function is a higher -order verion of the same:

(* *) .>tm. .>tn . m + n : N -+ (N -+ N)

Whereas the first function expects a pair (m, n) and then gives m + n as result, the second
function expects a number and then gives a function as result . For instance,

(.>tm . .>tn . m + n) 3 = .>tn .3 + n

This function ,
"add 3" can itself be applied to some argument, for instance

(.>tm .3 + m) 4 = 3 + 4 = 7

Thus
 .>tm. .>tn . m + n)3)4 = (.>tn .3 + n)4 = 3 + 4 = 7

It is clear that for any two numbers k, I eN

(.>t(m,n) . m + n) (k, l) = .>tm. .>tn . m + n)k) I

This suggests that one can represent functions of several variables by means of functions
of just one variable . Indeed this holds in general as was discovered independently by
several people. The transformation from a function like the one in (*) to the one in (* *)
is called currying after H . B. Curry , one of the discoverers of the idea.

From now on multiple function applications associate to the left , so el e2 e3 means

(el ev e3.

A .3.9 Injective , surjective , bijective , and monotonic total functions

An injective function is a function { : A -+ B such that for all a,a' E A, if a ~ a' then

{ (a) ~ { (a'). An injective function is also said to be one-to-one.
A surjective function is a function { : A -+ B such that for all bE B there is an a E A

such that { (a) = b, i .e., if and only if mg (f > = B. Note that this does not follow from the

fact that { is a function from A into B. A surjective function is also said to be onto.
A bijective function is a function which is both injective and surjective.

Examples:

1. { : N -+ N,{ (n) = n + 1 is injective but not surjective.

428 Mathematical Terminology and Concepts

Functions 429

2. g : N x N -+ N,g(m,n) = m + n is surjective but not injective .

3. h : N -+ 0 , where 0 is the set of odd non-negative numbers, defined by h(n) =
2 . n + 1 is bijective .

A function f : N -+ N is monotonic if n ~ m implies f (n) ~ f (m), and strictly monotonic if
n < m implies f (n) < f (m). If a function f : N -+ N is strictly monotonic then it is also

injective, but not necessarily vice versa.

A .3.11 Comparing the growth of functions

Below all functions are from N into]R+. Given a total function f .

1. o ({> (pronounced big oh) is the set of all functions g such that for some rE]R+ , and
for all but finitely many n,

g(n) < r . f (n)

2. c ({> is the set of all functions g such that for some rE]R+ and for infinitely many
n,

g(n) > r . f (n)

3. 9 ({> is the set of all functions g such that for some rl , r2 E]R+ and for all but finitely
many n,

rl . f (n) :5 g(n) :5 r2 . f (n)

Some useful functionsA.3.10

10 (n) =
{

0 if n = 0
g m otherwise, where mEN is the largest number such that 2m ~ n

For instance, log(65536) = 16 since 216 = 65536. It is convenient to assume that 10g(O) = o.
Thus log is a total function from N into N.

For a non-empty set N of natural numbers max(N) denotes the largest number in
N if it exists, and 00 otherwise. Thus max is a total function from the set of non-empty
subsets of N into Nu {oo}, i.e., max: P(N) \ {0} -+- NU {oo}.

For a non-empty set N of natural numbers min(N) denotes the smallest number in
N. Such a number exists in every non-empty subset of N.

We review some functions that are used in the remainder.
The logarithmic function with base 2, log : N -+ N is defined

If g E 0 (1> then for some, the graph of g is below that of , . f = .xx., ' f (x) for all but

finitely many arguments. If g E 0(1> then the graph of g is below that of , . f = .xx., ' f (x)
for all , > 0 and all but finitely many arguments.

If g E 9 (1> then for some ' 1,' 2 the graph of f stays between the graph of ' 1.f and
' 2 . f for all but finitely many arguments.

The following properties are useful. Their proofs are left as exercises.

1. g E 8 (1> iffg E 0 (1> and f E O(g)
2. g E 8 (1> ifff E 8 (g)

Some examples of the O-notation, whose proofs are also left as exercises:

A .4 Graphs

A graph consists of a number of nodes and a number of edges between these nodes . For

instance the following graph has three nodes and three edges . The edges have arrows

in one direction , so this is a directed graph .

430 Mathematical Tem1inology and Concepts

jim g(n)n -+ CX) f<"ii""j = 0

�

1. '\n . k E O('\nn), but '\n . n ~ O('\n . k), for any k E]R+.

2. '\n . logn E O('\nn), but '\n . n ~ O('\n . logn).

3. '\n . n' E O('\n . b"), but '\n . b" ~ O('\n . n'), for all a,bE]R+.

A common but sloppy notation is to write f = O<g) instead of f E O<g). Such notation
is harmless as long as one keeps in mind that the = is neither symmetric nor transitive.
Thus if f = O<g) and h = O<g) one should conclude neither O<g) = f which is meaning-

less nor f = h which may be plain wrong.

More precisely, we define a directed graph to be a pair (V, E) where V is called the
set of nodes or vertices and E ~ V x V is called the set of edges. The graph above is
({ 1,2,3} , { (1,2), (2,3), (3,1)}). An edge (x,y) E E may also be written as x -+ y .

A path in (V, E) (from Xl to xn) is a finite sequence Xl, . . . ,Xn where n ~ 1 and Xi -+ xi+l
is an edge in E for each i with 1 :5 i < n. The length of the path is n. The empty path is the

unique path of length O. The path is a cycle if n > 0 and Xl = Xn. A graph is cyclic if there
is a cycle in it , and acyclic otherwise . A DAG is a directed acyclic graph .

We write

. Xl -+ . . . -+ Xn for a path XI,X2, . . .,Xn

. X -+*
y if there is a path from X to y

. x -+n
y if there is a path from x to y of length n

. x -+$n y if there is a path from x to y of length n or less.

A directed graph with source and target nodes is a 4-tuple G = (V, E, Vo, Vend) where VO, Vend E
V and (V, E) is a directed graph.

An undirected graph is a directed graph (V, E) such that E is symmebic: whenever
edge (x,y) E E then we also have (y,x) E E.

A .S Grammars and finite automata

A .Sit Alphabets and strings

A finite non-empty set is sometimes called an alphabet, in which case the members of
the set are called symbols. If I. = {al, . . . , ak} is an alphabet, a string over I. is a sequence
blb2. . .bm where m ~ 0 and each bi E I.. For example, if I. = {O, 1}, then 11, 101, and
100011 are all strings over I.. The empty string c is the unique string with m = O.

If x = bl . . .bm and y = Cl. . . Cn, then x and y are equal, written x = y, if m = n and
bi = Ci for all i E { I , . . . n} . If x = bl . . . bm and y = Cl . . . Cn, their concatenation is the string
xy = bl . . .bmCl.. . Cn. If z = xy then we say x is a prefix of z, and that y is a suffix of z. If
z = xwy then we say w is a substring of z.

If A, B are two sets of strings over I., then we define

-
{XtX2...Xn I n ~ lixt ,...,XnEA}(so A* = A+U{E:})

Grammars and finite automata 431

AB
A*

A+

{xy I x E A, YE B}
{XIX2. . .Xn I n ~ O,Xl, . . .,Xn E A}

-

432 Mathematical Terminology and Concepts

A .S.2 Grammars

A grammar includes a rewrite system P (as defined
to generate sbings over an alphabet. We nft~n writ ~
instance

A ::= a A a I b A b I c I aca

The usage of a grammar is that one starts out with the start symbolS and then replaces
non-terminals A (in particular 5) by the right hand sides of their productions, so the

preceding grammar, beginning with A, can generate strings over {a, b} like:

aacaa
aaabcbaaa
bbaacaabb
baacaab

(What is the underlying structure of all these sbings?)
More formally, a grammar is a 4-tuple G = (N, T, P, S) where

1. N is an alphabet whose members are called nonterminals.

2. T is an alphabet, disjoint from N, whose members are called terminals.

3. P is a sbing rewriting system over NUT such that (15, "Y) E Pimplies 15 ~ T
*.

4. S is a member of N called the start symbol.

In the preceding example

1. N = {A}.
2. T = {a,b,c} .

IIX written back -The reverse of string x = btb2.. .bm is the string f = bm.. .b2bt, i .e.,
wards."

A ::= a Aa
A ::= b Ab
A ::= c
A ::= aca

with 1: = { a, b, c} is a grammar. For conciseness we often group productions with the
same left side, separated by the symbol

"
1
" (pronounced

"or "). Thus the four productions
above could be expressed as one:

. in section 10.2.1), used as a tool
~ is ::= "Y instead of (is,''Y) E P. For

3. P = { (A,a A a), (A, bA b), (A , c), (A,aca)} .

4. S = A .

The requirement on d in part 3 of the definition of a grammar states that no production
may allow a sequence of terminals to be rewritten further , hence the name " terminal

symbol .
"

We now give precise definitions of one-step and multistep rewriting . These are
called the one-step derivation relation ~ and the multistep derivation relation ~ * and are
defined as follows where a ,/3,p,O' E (Nu T) *:

1. ad /3 ~ a"'(/3 iff d ::= "'(E P.

2. If p ~ 0' then p ~ * 0' .

3. p ~
*

p.

4. If p ~ * a and a ~ * 0' then p ~ * 0' .

The set generated by a grammar G = (N, T, P, S) is:

L(G) = {x ET *
I S ~ * x }

Some classes of grammars are particularly interesting, and well -studied forprogramming
language applications .

A regular grammar G = (N, T, P, S) is a grammar in which every production is of form
A ::= x or A ::= x B where A, BEN , x ET . . Our example grammar above is not regular.

A context-free grammar G = (N, T, P, S) is one such that in every production <5 ::= "YE P,
<5 is a single nonterminal symbol . Our example grammar above is context-free.

Clearly every regular grammar is context-free, but not necessarily vice versa.
A context-sensitive grammar G = (N, T, P, S) is one such that in every production a ::=

{JE P, the length of {J is larger than or equal to that of a, or a ::= {J is S ::= c, and S does
not appear on the right side of any production in P.

Let G = (N, T, P, S) be a context-free grammar . There is a specific form of one-step
and multi -step rewriting where one always rewrites the left -most non-terminal . These
are called the left-most one-step derivation relation ~ I and the left-most multistep derivation
relation~ ; and are defined as follows where p,a- E (Nu fl . :

Grammars and finite automata 433

The set generated by our example grammar is the set of all strin~ xci where x is a
sbing of a's and b's, and f is the reverse sbing of x.

A .5.3 Classes of grammars

Math ~mati ~a J

1. a<5fJ ~ l a"YfJ iff <5 ::= "YE P and a ET *, fJ E (NU T) *.

2. Ifp ~ l 0' then p ~ i 0' .

3. p ~ i p.

4. Ifp ~ i a and a ~ i 0' then p ~ i 0' .

Sometimes one can generate the same terminal sbing from a context-free grammar by
two different left -most derivation sequences. For instance, in our example grammar

A ~ l aca

by the last production , but also

A ~ l a Aa ~ 1 aca

In this case the grammar is said to be ambiguous.

434 Terminology and Concepts

Grammars and finite automata 435

A .5.5 Regular expressions

One way to represent a set of sbings is to find a grammar generating exactly that set.
Another way is to find a regular expression. Let 1: be an alphabet. The set of regular
expressions over 1: is defined as follows .

1. e is a regular expression over 1:.
2. If a E 1: then a is a regular expression over 1:.
3. If r,s are regular expressions over 1: then so are (r Is), (rs), and (r*)

To save parentheses we adopt the conventions that

1. * has the highest precedence;
2. concatenation has the second highest precedence, and associates to the left ;
3. 1 has the lowest precedence, and associates to the left .

For instance the regular expression r = (00)*) I (1 11)*) can be written shorter as
(00)* 11(11)*.

As for grammars we define L(r), the set generated by the regular expression r, as follows :

1. L(e) = 0;
2. L(a) = {a} for every a E 1:;
3. L(r I s) = L(r) U L(s);
4. L(rs) = L(r)L(s);
5. L(r*) = L(r)*

where L(r)L(s) and L(r)* are defined in Subsection A.5.l . For the regular expression r
above L(r) is the set of all sb-ings consisting either of an even number of O's or an odd
number of l 's.

The cautious reader may have noticed that a certain class of grammars was called
the regular grammars. This suggests some connection to the regular expressions. Indeed
the following property holds:

Proposition A.S.l

1. For any regular grammar G there is a regular expression r with L(G) = L(r).
2. For any regular expression r there is a regular grammar G with L(G) = L(r).

On the other hand there are certain sets of strings that are generated by a context-free
grammar but not by any regular expression or regular grammar. For instance, this is the
case with the set of strings consisting of n a's followed by n b's.

The idea of representing a set L of strings by this NFA is as follows . From the start node 1

we can " read" a c and then proceed to node 2. From this node we can read any number

of a's without leaving the state and then read abjumping to node 3. Again we can

read any number of a's and then a c, jumping to the accepting node. Thus altogether
we have read a string of form : ca . . . aba . . . aCe The set L consists of all the strings we

can read in this manner; in other words , L is the same set of string as the set generated

by the regular expression c a * ba * c.
The reason why these automata are called "non-deterministic " is that there can be

two different edges out of a node with the same labeL and there can be edges la belled

 :, as illustrated in the following NFA, which accepts the set of strings generated by
 : I ab lac :

. Q is a set of states;

. 1; is an alphabet;

. m : Qx (1;U{c:}) -+P (Q) isa
set of states;

. qo is a state, the start state;

that maps a state and a symbol to a

436 Mathematical Terminology and Concepts-- -

~!!!!-.(i).~ -"(2)~~-.(3)~-. .-".(4~~ ' "()a ' "()a ~

transition function

A .5.6 NF A and OF A

Grammars and regular expressions are compact representations of sets of strings.

We now introduce a third kind of representation of a set of strings, namely a nondeterministic

finite automaton, or NFA for short. Pictorially an NFA is a directed graph
where every edge has a label, one node is depicted as the start node, and zero, one or

more nodes are depicted as accept nodes. Here is an example where the start node stands

out by having an arrow la belled " start" into it , and where the single accepting node has

two circles rather than just one:

c.
start b

c 5

More formally an NFA is a 5-tuple (Q,~,m,qo,f) where

Grammars and finite automata 437

. F is a set of states, the accepting states.

In the first example above:

. Q = { I ,2,3,4} ;

. 1: = { a ,b , c} ;

. m(I ,c) = {2}
m(2,a) = {2}
m(2,b) = {3}
m(3,a) = {3}
m(3,c) = {4}

. qo = 1;

. F = {4} .

Formally, a string x = at . . .an with each ai E 1: is accepted by an NFA (Q,1:,m,qo, f) if
there is a sequence of states qt, . . . qn+ tE Q and symbols at, . . . ,an E 1: U { c:} such that
m(qi,ai) :3 qi+t for all i E { I , . . .,n} , and qo = qt . Given an NFA N, L(N) denotes the set
of all strings accepted by N, and this is called the language accepted by N .

A deterministic finite automaton, or DFA for short, is an NFA such that no edge is
la belled c: and all edges out of the same node are la belled by different symbols. The first
of the above NFAs is a DFA, the second is not . Formally, a DFA can be dscribed as a
5-tuple (Q, 1:, m, qo, f) where

. Q is a set of states;

. 1: is an alphabet;

. m : Q x 1: -+ Q is a transition function that maps a state and a symbol to a state;

. qo is a state, the start state;

. F is a set of states, the accepting states.

Note that m now maps from 1: (instead of 1: u {c:}) to Q (instead of P (Q . A string
x = at . . .an with each ai E 1: is accepted by a DFA (Q,1:,m,so, f) if there is a sequence
of states qt, . . .qn+tE Q and symbols at, . . .,an E 1: U { c:} such that m(qi,ai) = qi+t for all
i E { I , . . ., n } , and qo = qt. L(N) denotes the set of all strings accepted by the DFA N, and
this is called the language accepted by N .

It is easy to turn the second of the above NFA' s into a DFA accepting the same language
. It is also easy, as we have done, to express the language accepted by the two

NFA's by means of regular expressions. It is natural to wonder what the connections
are in general between NFA' s, DFA' s, and regular expressions. This is settled in the

lowing proposition .

t Recall that predicates are certain sets. In this section we often discuss whether or not something holds or
is true. This always boils down to set membership, d . section 12.2.

2 By convention 1+ 2+ .. .+ n = 0 when n = O.
3 Allenby [4] mentions a a strildng example of this kind. Consider the following property that a number n

mayor may not have: n can be written as n~ + ~ + n~ + n~ + n~ + n~ + n~ + n~ where nt, . . .,ns EN. It turns
out that the property holds for all natural numbers except 23 and 239.

438 Mathematical Terminology and Concepts~ -

1 . (*) holds for n = O.

Proposition A.S.2 the following conditions are equivalen for any language L:

1. There is a DFA accepting L.
2. There is an NFA accepting L.
3. There is a regular expression generating L.
4. There is a regular grammar generating L.

Proofs of these properties can be found in [3].
In consbucting 2 from 1, the number of states of the two automata are the same since

any DFA may be converted into an equivalent NFA by a bivial change in the uansition
function (to yield a singleton set of states instead of one state). In consbucting 1 from
2, the DFA may have as many as 2n states where n is the number of states of the NFA.
In consbucting 2 from 3, the NFA has at most twice as many states as the size of the

regular expression.

A .6 Induction

A .6.1 Inductive proofs

Consider the formula
n(n + 1)

(*) 1+ 2+ . . .+ n =
2

Is this equation b"ue for all nE Nil If n = 0 it states that2 0 = (0.1)/ 2 which is b"ue. For
n = 1 it states 1 = (1.2)/ 2 which is b"ue. For n = 2,3 it states that 1 + 2 = (2.3)/ 2 and
1 + 2 + 3 = (3.4)/ 2, which are both b"ue, and so on.

The formula seems to be b"ue for all examples. However this does not constitute a

proof that it really is b"ue in all cases. It could be that the formula fails for some number.3

On the other hand, if we don't know what n is, we need a general technique to prove
the equation.

Suppose we could prove the following.

2. Whenever (*) holds for some number n it also holds for n + 1.

Then (*) would hold for 0, for 1, for 2, and so on. The principle of mathematical induction
states that if the above two properties hold then (*) holds for all numbers:

Mathematical induction. If for some predicate P(n) on N, P(O) is true, and it
holds that for all nE N P(n) implies P(n + 1), then P(n) holds for all nE N.

We can prove (*) by applying this principle , using (*) in place of P(n):
Base case: If n = 0 then (*) states that 0 = 0 .1/ 2 which is true.
Induction Step: Suppose that (*) holds for some n. (This is called the induction hypothesis
). Then

1+2+...+n+<n+1) = ~ +<n+1)n(n+ 1) + 2(n+ 1)2 2n(n+1)+2(n+1)2(n+1)(n+2)2
so (*) also holds for n + 1.

Hence by mathematical induction , (*) holds for all nE N.
If one wants to prove for some predicate P(n) that P(n) holds for all n ~ 1 one must

prove in the base case that PO) holds and prove for all n ~ 1 that P(n) implies P(n + 1).
For a predicate P(n) it sometimes happens that we can prove P(n + 1) more easily if

we know that P(k) holds not only for k = n but for all k ~ n. This can be stated as the

mathematically equivalent principle of complete induction or course-of-values induction:

Complete induction. If for some predicate P(n) on N P(O) is true, and it holds
that P(k) for all k ~ n implies P(n + 1), then P(n) holds for all nE N.

Again if one proves PO) in the base case, the conclusion is that P(n) holds for all n ~ 1.

More generally

Induction 439

1+2+...+n= ~~~-~]l2
Then

-

-

For instance , the sum s(n) = 1 + 2 +

s(O)
s(n + 1)

0
(n + 1) + s(n)

-

we may use :

A .6.2 Inductive definitions

One can define objects inductively (or recursively).
. . . + n can be defined as follows :

1. f (n + 1) may use not only n and f (n), but all the values 0, . . ., n and f (O), . . ., f (n).

2. Function f may have more parameters than the single one from N.

3. Several functions may be defined simultaneously .

As examples of the three variations :

1. The fibonacci function f : NN is defined by :

f (O) = 1

f (l) = 1

f (n + 2) = f (n + 1) + f (n)

2. The power function "' (m,n) . m" : N x NN is defined by :

mo = 1
m"+l = m .m"

3. The functions even : N - . { T , F} returning Tiff the argument is even, and odd : N - .

{ T, F} returning Tiff the argument is odd can be defined by mutual recursion:

even(O) = T
even(n + 1) = odd (n)

odd (O) = F
odd (n + 1) = even(n)

440 Mathematical Terminology and Concepts

Definition by Recursion. If S is some set, a is an element of S, and g : S x N -+- S

f (O) = a

g<f (n),n)-

is well - defined .

is a total function, then the function f : N -+ S

f (n + 1)

A .6.3 Other structures than numbers

The set of strings generated by a grammar can be viewed as defined inductively . Here
is an example:

A parenthesis string is a string over the alphabet { (,) } . The set of all balanced parenthesis
strings is defined as the set of strings generated by the following grammar :

5 ::= c
5 ::= 5 5
5 ::= (5)

Example strings generated by the grammar : 0 and (00) and (0 (0 . Some examples, not

generated by the grammar :)(and 0 (0 and 0 .
There is a well -known algorithm to test whether a parenthesis string is balanced. Let

I(x) and r(x) be the number of left and right parentheses in x, respectively. A prefix of
x is astringy such that x = yz for some z, i .e., an initial part of x. Claim: a parenthesis
string x is balanced iff I(x) = r(x) and for all prefix es y of x I(y) ~ r(y).

Actually we can prove correctness of this claim. This has two parts. First, that any
string x generated by the grammar satisfies the test; and second, that any string satisfying

the test is also generated by the grammar.
For the first part, the proof is by complete induction on n, the number of steps in the

derivation 5 ~ . x, with base case n = 1. So P(n) is: any string x in a derivation 5 ~ . x
with n steps satisfies the test.

Base case. If n = 1 then the derivation must be 5 ~ . c (remember that every derived

string consists only of terminals). Clearly, I(c) = 0 = r(c), and since the only prefix of c
is c itself , I(y) ~ r(y) for all prefix es y.

Induction step: Suppose all strings generated in n or fewer steps from the grammar
satisfy the test, and consider some string x generated in n + 1 steps. The rewriting must

begin with either 5 ~ 5 5 or 5 ~ (5).
We consider first the case beginning with 5 ~ 55 . Here x has form uv where 5 ~ . u

and 5 ~ . v are derivations in n or fewer steps. By induction hypothesis the test holds
for both u and v. Then

I(x) = I(uv)
= I(u) + I(v)
= r(u) + r(v)
= r(x)

Now we only need to show that I(y) ~ r(y) for any prefixy of x = uv, so let y be some

prefix of x. If Y is a prefix of u then I(y) ~ r(y) by induction hypothesis. If y is not a prefix

Induction 441

442 Mathematical Tem1inology and Concepts

also an exercise.
Induction proofs occur frequently in computability and complexity theory as well as

in other branch es of theoretical computer science. The only way to get to master such

proofs is to try and do a number of them. Therefore the reader is strongly encouraged
to try out Exercises A .17 and A .IB.

A .7 Pairing functions

A pairing decomposition of set X consists of three total functions

pr: X x X -+ X,hd: X -+ X,tl : X -+ X

hd(pr(x,y = x
tl (pr(x,y = y

In a pairing decomposition pr is called a pairing function .
The pairing function pr is one-to- one since pr(x, y) = pr(x' , y') implies that x =

hd(pr(x,y = hd(pr(x
', y' = x' and similarly for y,y' . Function pr need not be onto,

although such functions do exist.
There are several pairing functions for the set N of natural numbers. One example is

prt (x, y) = 2% . 3Y. To understand that one can find corresponding hd, tl one must know
that if 2%3Y = 2G3b then x = a and y = b. This follows from the fundamental theorem of
arithmetic: Any n :F 0 can be written in exactly one way as a product p~lp ;

2 . . . p:,m where

Pt < P2 < . . . < pm are prime numbers and nt , n2 . . ., nm are all numbers different from
o.

such that for all x, yE X and all Z E mg(pr):

of u then y = uw where w is a prefix of v. Then by induction hypothesis:

I(y) = I(uw)
= I(u) + I(w)
= r(u) + I(w)
~ r(u) + r(w)
= r(uw)
= r(x)

as required .
The case where the derivation begins with 5 ~ (5) is left as an exercise, and the proof

of the remaining part, that any sUing x satisfying the test is generated by the grammar, is

For a more economical example in which pr is onto, consider the pairing decomposition
where the pairing function is pr3(X, y) = (x + y)(X + y + 1)/ 2 + y = (::x;2 + 2xy + y2 +

x + 3y) / 2. This pairing is surjective.
This can be illustrated by the figure :

In both of the two last pairing decompositions the pairs in the sequence

{ (O,O),(O,1), (1,O), (2,O), (1, 1), (O,2), (O,3), . . .}

receive increasing values by the pairing function , and in the last example these values
are even consecutive. Further, Polya has proven that any surjective polynomial pairing
function must be identical to pr3(x, y) or its converse pr 4(X, y) = pr3(y, x).

Exercises

A.I

1. Place the implicit parentheses in the boolean expression p ~ -,q ~ -,q ~ -,p ~ -,q
2. Convert the expression to CNF and indicate which equations you use.

3. Given the truth assignment 6(p) = true, 6(q) = false, what is the value of the expression
in question I ? What is the value of the CNF-converted expression?

A boolean expression is called satisfiable iff there exists a truth assignment for the
variables of the expression such that the value of the expression is true. It is called
valid iff the value of the expression is true under all truth assignments of the variables

.

4. Is the expression in question 1 satisfiable? Is it valid ? 0

Pairing functions 443-

y437 12 ...4 8 130 0 2 5 9 14 . . .0 1 2 3 4 x
10
6
3
1

. . .

2
1

444 Mathematical Terminology and Concepts

A.2 Suppose f : A -.. B.L and g : B -.. C.L are two partial functions. What function is the
set

h = { (a,c) E A x C I there is a bE B : (a,b) E land (b,c) E g}?

Give a similar explicit description of f g]. 0

A.3 Prove 1-3 in Subsection A.3.9. 0

A.4 Prove that if f : A -.. B is a bijective function then there exists exactly one function

fIB -.. A such that: f (a) = b if and only f
- I(b) = a. The function f

- I is called the
inverse of f . 0

A.S Prove that if f : A -.. B is an injective function then there exists exactly one function

f
- I : mg(f > -.. A such that: f (a) = b if and only f

- I (b) = a. The function f
- I is again

called the inverse of f . 0

A.6 Prove that the inverse of an injective function is surjective. 0

A.7 Give an example of a function which is neither injective nor surjective. 0

A.8 What is the inverse of the composition of two bijective functions? 0

A.9 Show that if f E O(g) and g E O(h) then f E O(h). 0

A.tO Prove the five properties at the end of section A.3.11. 0

A.l1 Suppose f E O(f
') and g E O(g'). Which of the following are true?

1. f + g E O(f
' + g').

2. f .g E O(f
' .g').

3. fIg E O(f
'
Ig').

4. Suppose that f - g and f
' - g' are functions from N into]R.+. Then f - g E O(f

' - g').
0

A.t2 Construct NFAs accepting the following regular expressions:

1. (alb)*

2. (a*
Ib

)

3. e I a)b*)* 0

A .IS Convert the NFA of the preceding exercise into a DFA.

A .16 What is wrong with the following alledged induction proof ?
A set of natural numbers is odd if all its members are odd .
Claim: Every finite set of natural numbers N is odd .

proof: By induction on the number of elements in N .
Base case: n = O. Then trivially all elements are odd, since there are no elements [the

rat is not burled here].
Induction step: We assume that all sets with n members are odd and must show that

all members with n + 1 members are odd . Let Shave n + 1 members. Remove one
element I and let the resulting set be called L. Since L has n members the induction

hypothesis guarantees that L is odd . Now put I back and take another element k out

resulting in a set K. K again has n elements and so is odd . In particular I is odd, and
since S = LU { I} and L is odd, S is odd . 0

A .17 Prove the last case in the proof that every string generated by the grammar for balanced

parenthesis strings satisfies the test for parenthesis strings (see Subsection A .6.3).
0

A .IS Prove that every parenthesis string satisfying the test in Subsection A .6.3 is also

generated by the grammar in the same subsection. Hint : use induction on the number of

symbols in the string x with base case O. In the induction step argue that since x satisfies
the test, x must have form (y) where y satisfies the test, or vw where v and w satisfy the
test. Then use the induction hypothesis. 0

A .19 Give algorithms to compute hd and tl for the three pairing decompositions in sec-
tionA .7. 0

Pairingfunctions 445-

A.13 Convert the NFAs of the preceding exercise into DFAs. 0

A .14 Give a regular expression generating the language accepted by the following NFA :

c
start

0

0

446 Mathematical Terminology and Concepts

References

Most of the contents of this appendix is covered by many books on discrete mathematics
. For more specialized texts, an excellent introduction to sets and functions can be

found in Halmos' book [58], and finite automata are covered by the classic text by Aho,
Hopcroft, and Ullman [2].

Bibliography

[1] W. Ackermann. Zum Hilbertschen Aufbau der reelen Zahlen. Mathematische Annalen, 99,
1928.

[2] A. Aho, J.E. Hopcroft, and J. DUllman . The Design and Analysis of Computer Algorithms.
Computer Science and Information Processing. Addison-Wesley, 1974.

[3] A. Aho, R. Sethi, and J.DUllman . Compilers: Principles, Techniques, and Design. Addison-
Wesley, 1986.

[4] R.B.J.T. Allenby. Rings, Fields, and Groups. Edward Arnold, 1988.
[5] N. Andersen and N.D. Jones. Generalizing cook's b"ans format ion to imperative stack programs

. In Juhani Karhumiki, Hermann Maurer, and Grzegorz Rozenberg, editors, Results
and Trends in Theoretical Computer Science, volume 812 of Lecture Notes in Computer Science,
pages 1- 18. Springer-Verlag, 1994.

[6] Y. Bar-Hillel, M. Peries, and E. Shamir. On formal properties of simple phrase sbucture
grammars. Z. Phonetik, Sprachwiss. Kommunikationsforsch., 14:143-172, 1961.

[7] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, second,
revised edition, 1984.

[8] L. Beckman, A. Haraldson, o . Oskarsson, and E. Sandewall. A partial evaluator and its use
as a programming tool. Artificial Intelligence, 7:319-357, 1976.

[9] M. Ben-Amram. What is a "pointer machineS I G ACT News, 26(2):88-95, June 1995.
[10] A. Berlin and D. Weise. Compiling scientific code using partial evaluation. IEEE Computer,

23:25-37, 1990.

[11] D. Biomer, A.P. Ershov, and N.D. Jones, editors. Partial Evaluation and Mixed Computation.
North-Holland, Amsterdam, 1988.

[12] L. Blum, M. Shub, and S. Smale. On a theory of computation over the real numbers, np-
completeness, and universal machines. Proc. IEEE Symposium on Foundations of Computer
Science, 29, 1988.

[13] M. Blum. A machine independent theory of the complexity of recursive functions. Journal
of the Association for Computing Machinery, 14:322-336, 1967.

[14] P. van Emde Boas. Machine models and simulations. In J. val Leeuwen, editor, Handbook of
Theoretical Computer Science, vol. A. Elsevier, 1990.

[15] A.B. Borodin. Computational complexity and the existence of complexity gaps. Journal of
the Association for Computing Machinery, 19:158-174, 1972.

[16] A.B. Borodin. Computational complexity - theory and practice. In A. v. Aho, editor, Currents
in the Theory of Computing, pages 35-89. Prentice-Hall, 1973.

[17] H. Bratman. An alternate form of the uncol diagram. Communications of the ACM, 4:3:142,
1961.

448 Bibliography

Bibliography 449

[51] K. G Odel. Uber formal unentscheidbares Sitze del Principia Mathetatica und verwandter
Systeme. Monatsheft, Math. Phys., 37:349-360, 1931.

[52] L.M. Goldschlager. The monotone and planar circuit value problems are logspace complete
for pSI G ACT News, 9:25-29, 1977.

[53] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation. Oxford University
Press, New York, 1995.

[54] K. Grue. Arrays in pure functional programming languages. Lisp and Symbolic Computation,
2:105-113, 1989.

[55] A. Grzegorczyk. Some classes of recursive functions. Rozpraqy Mathematyczny, 4:1-45, 1953.

[56] Y. Gurevich . Kolmogorov machines and related issues: the column on logic in computer

450 Bibliography

science. Bull. of the EATCS, 35:71-82, 1988.
[57] Y. Gurevich and S. Shelah. Nearly linear time. In Lecture Notes in Computer Science 363,

pages 108-118. Springer Verlag, 1989.

[58] P. Halmos. Naive Set Theory. Springer-Verlag, undergraduate texts in mathematics, 1974
edition, 1960.

[59] T.A. Hansen, T. Nikolajsen, J. Traff, and N.D. Jones. Experiments with implementations
of two theoretical constructions. In Lecture Notes in Computer Science 363, pages 119-133.
Springer Verlag, 1989.

[60] J. Hartmanis and J.E. Hopcroft. An overview of the theory of computational complexity.
Journal of the Association for Computing Machinery, 18(3):444-475, 1971.

[61] J. Hartmanis, P.M. Lewis II, and RE. Stearns. Classification of computations by time and
memory requirements. In Proc. IFIO Congress 65, Spartan, N. Y., pages 31-35, 1965.

[62] J. Harbnanis and R.E. Stearns. On the complexity of algorithms. Transactions of the American
Mathematical Society, 117:285-306, 1965.

[63] J. HAstad. Computational Limitations for Small-depth Circuits (PhiD. thesis). MIT Press, Cambridge
, MA, 1987.

[64] P. Henderson. Functional Programming: Application and Implementation. PH, 1980.

[65] D. Hilbert and P. Demays. Grundlagen der Mathematik, volume I. Springer, 1934.

[66] D. Hofstaedter. G Odel, Escher, Bach: An Eternal Golden Braid. Harvester Press, 1979.

[75] N. D. Jones, E. Lien, and W. Laaser. New problems complete for nondeterministic log space.
Mathematical Systems Theory, 10:1- 17, 1976.

[76] N. D. Jones and S. Muchnick. Even simple programs are hard to analyze. Journal of the
Association.for Computing Machinery, 24(2):338-350, 1977.

[77] N. D. Jones and S. Muchnick. Complexity of finite memory programs with recursion. Journal
of the Association.for Computing Machinery, 25(2):312-321, 1978.

[78] N. D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In Proceedings of the Thirteenth ACM Symposium on Principles of Programming
Languages, pages 296-306, St. Petersburg, Florida, 1986.

[79] N.D. Jones. Reducibility among combinatorial problems in log n space. In Proceedings 7th
Annual Princeton Conference on l ' l format ion Sciences and Systems, pages 547-551. Springer-

Verlag, 1973.

Bibliography 451

452 Bibliography

[109] Z. Manna. Mathematical Thoery of Computation. MH, 1974.

[110] A.A. Markov. The theory of algorithms. Technical report, Israeli Program for Scientific
Translations, Jerusalem, 1962. Translated from the Russian version which appeared in 1954.

[111] Y. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akedemii Nauk SSSR, 191:279-
282, 1970. English uanslation in [112].

[112] Y. V. Matiyasevich. Enumerable sets are diophantine. Soviet Mathematics: Doklady, 11:354-
357, 1970.

[113] Y. V. Matiyasevich. Diofantova predstavlenie perechislimykh predikatov. Izvestia Akdemii
Nauk SSSR. Seriya Matematichekilya, 35(1):3-30, 1971. English uanslation in [116].

[114] Y. V. Matiyasevich. Diophantine representation of the set of prime numbers. Doklady
Akademii Nauk SSSR, 196:770-773, 1971. English uanslation in [115].

[115] Y. V. Matiyasevich. Diophantine representation of the set of prime numbers. Soviet Mathematics
: Doklady, 12:249-254, 1971.

[116] Y. V. Matiyasevich. Diophantine representations of enumerable predicates. Mathematics of
the USSR. Izvestia, 15(1):1-28, 1971.

[117] Y. v. Matiyasevich. Hilbert's Tenth Problem. Mit Press, 1993.

[118] J. McCarthy. Recursive functions of symbolic expressions and their computation by machine
. CACM, 3(4):184-195, 1960.

[119] A. Meyer and DiM. Ritchie. The complexity of loop programs. In Proceedings of the ACM
National Meeting, pages 465-469, 1967.

[120] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Proceedings of the IEEE 13th Annual Symposium on Switch-

ingand Automata Theory, pages 125-129, 1972.

[121] R Milner. Operational and algebraic semantics of concurrent process es. Handbook of Theoretical
Computer Science, B:1203- 1242, 1990.

[122] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. Mit , Cambridge, Massachusetts
, 1990.

[123] P.B. Miltersen. Combinatorial Complexity Theory (PhiD. thesis). BRICS, University of Aarhus,
Denmark, 1993.

[124] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall Series in Automatic
Computation, 1967.

Bibliography 453

Papadimitriou . Complexity.

[133] E.L. Post. Finite combinatory process es- formulation I. Journal of Symbolic Logic, 1:103-105,
1936.

[134] E.L. Post. Formal reductions of the general combinatorial decision problem. American Journal
of Mathematics, 65:197-215, 1943.

[135] E.L. Post. Recursively enumerable sets of positive natural numbers and their decision problem
. Bulletin of the American Mathematical Society, 50:284-316, 1944.

[136] E.L. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical
Society, 50:264-268, 1946.

[137] M.O. Rabin. Speed of computation and classification of recursive sets. In Third Convention
of the Scientific Society, Israel, pages 1-2, 1959.

[138] M.O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive
sets. Technical Report 1, O.N.R., Jerusalem, 1960.

[139] M.O. Rabin. Complexity of computations. Communications of the ACM, 20(9):625-633, 1977.

[140] M.O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128-
138, 1980.

[141] T. Rado. On a simple source for non-computable functions. Bell System Technical Journal,
pages 877-884, May 1962.

[142] C. Reid. Hilbert. Springer-Verlag, New York, 1970.

[143] H.G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 89:25-59, 1953.

[144] J. Richard. Les principes des mathematiques et Ie probleme de~ ensembles. Acta Mathemat-
ica, 30:295-296, 1906.

454 Bibliography

[130] C.H.
1994.

Addison-Wesley Publishing Company,

[131] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

[132] GordonD. Plotkin. A sb"uctural approach to operational semantics. Technical Report 19,
Aarhus University, 1981.

Bibliography 455- - ~

CF:#0, 393, 434
Cp0 , 394
CFALL, 161, 434
CFAMB, 161, 434acceptable enumeration , 227

acceptance, see also decision

by a non- detecuainistic program , 331

by finite automata, 437

accepting states, 437
Ackermann 's function , 97, 104

algorithm , 9

alphabet, 431

tape, 115
annotated program , 106, 110

approximation , xv

asymptotic , 299, 300
atom?, 33

Bacc, 407
Bacc \ OOTO, 384
binding-time engineering, 96
bit sb' ings, related to binary b' ees, 250
bitwise less-than, 172
Blum's speedup theorem, 307
boolean algebra

quantified, 409
boolean expression, 419
boolean operators, 419
boolean programs

acceptance, see Bacc
defined, 383
nontriviality, 398

boolean variables, 419
busy beaver, 16

-
for proving equivalence of languages,

127
versus interpretation, 91
with change of data, 52, 129

compiler, SO, 53, 231
bootsb'apping, 93
diagrams, 51, 56
generation, 97

compiling function, SO
w.rit. coding, 53

complete logical system, 196, 198
complete problems, 365, 372, 374

for NLOGSPACE, 376, 380
for NPTIME, 397
for NLINTIME, 378
for PSPACE, 407

Index

2CM, 127, 135
2DPDA, 359

atoms (definition), 28
automata

finite, 436

c, 434
cartesian product, 422
case command, 39

CFG, see grammar, context free
Church-Rosser theorem, 142
Church-Th ring thesis, 4, 8, 127
Church- Turing-Kleene thesis, 205
circuit complexity, xv, 9
circuit, monotone, 383, 388
CUQUE, 367, 369, 370
CM, 111, 116, see also 2CM
CM\C:-C+1, 349
CM-computability, 127, 208
CM-computable, 134, 208
C M'ogspact, 350, see also space-bounded

programs
CM'ogs pact+rec, 356
CMro, 317, 319
C M Nlllt(n), 349
CNF, 367, 370, 420
communicating systems, xv
compilation, SO, 59

completeness;

in linear time and size, 378
in logarithmic space, 325

computable function, 205, see also CM
computable; decidable;
effectively computable;
equivalence of languages;
recursive function; WHILE
computable

computation model

DAG, 261, 431
DAG semantics,

460 Index

-
CH, 116
RAM, 118
SRAM, 119
TM, 115

complete problems

computable, 75

- -
PTIME, 272, 275
LINTIME, 272, 276
characterizaton without resource

bounds, 349
definition of, 271
non-deterministic, 333
relations among, 322, 324, 333, 345, 346
robustness of, 276
space classes

LOGSPACE,319 .
PSPACE, 319, 322
definition of, 319, 333
robustness of, 322

time classes
PTIME, 244
definition of, 333
robustness of, 273, 276

composition, 206
of (primitive) recursive functions, 206
of compiler and interpreter diagrams,

56
of functions, symbolic, 228
of general functions, 426
of space-bounded programs, 326

machine models, see CM; RAM; SRAM; ~
read-only, see also CMro; TMro

computation models
comparison of times, 251, 273
default for complexity classes, 335
effect on complexity theory, 20, 241
equivalence v.rit. computability, 127
fair time measures, 254
introduced, 111
read-only, 247, 316
space measures, 316

computational completeness
of a specializel:, 102
optimality of a specializer, 103
luring completeness, 227

computationally tractable, 20
concrete syntax, 48, 53, 143, 336
conditionals, 32
configuration, 337
configuration string, 155
conjunction, 32, 192, 419
conjunctive normal form, see CNF
co Ds*, 35
cons-free programs, 349, 355
co Ds?, 33
conservative extension, 93
consistent logical system, 196, 198
constant time factor, 290
constant time factors, 243, 285, 290
constructible, 293

space, 328
context-free grammar, see under grammar
context-sensitive grammar, see under

grammar
convergent, 10
Cook's construction, 288, 359
Cook's thesis, 20, 242
counter machine, see CM
currying, 428
cycle, 431

for PTIME, 383
for RE, 375

completeness, 365
complexity classes, see also

-
divide-and -conquer search, 341
DL, 198
dovetailing, 81, 87, 299
DSG, 261

edges, 430
effective procedure, 3
effectively computable, 11
effectively decidable, 13
effectively enumerable, 13
effectively solvable, 4
encoding

booleans as b' ees, 32
in compilaxious with change of data,

129
integers as b' ees, 34
many atoms using one, 63, 73
numbers as bit sbings, 131
of bit sbings in b' ees, 250
of problem input, 368

false , 32
finite automaton, 256, 436
first component, 422
fixpoint, 215, 221, 230
fixpoint iteration, 218
formula, 419
function, 422

Ackermann's, 97, 104
addition, 426
argument, 421
bijective, 428
co domain of, 425
composition, 426
computable in logarithmic space, 325
computing a, 10
converging, 424

Index 461

data sharing, 261
data-storage graph, 261
Davis-Pubtam-Robinson theorem, 176
decidable, 76

in linear time, 272
in logarithmic space, 319
in polynomial space, 319
in polynomial time, 272
in space f , 319
in time f , 272

decision problems, 243
derivation relation, 153
deterministic finite automaton, 437
DFA, 437
diag, 290, 328
diagonal argument, see diagonalization
diagonalization, 14, 290, 328
Diophantine ~ uations, 169
directed graph, 431
disjoint, 422
disjunction, 32, 192, 419
disbibuted computing, 2S8
divergent, 10

F, 137, 275, 291
F+ro, 349
false, 419

of b"ees in bit sb"ings, 251

programs in mumbers (G Odel), 205

sequences in numbers (Matiyasevich),
171

Entscheidungsproblem , 23
enumerable, 76
enumeration , 14
environment , 189

equation
Diophantine , 169

exponential Diophantine , 169

equation solving, 232

equivalence of Jl,-recursiveness, 208

equivalence of languages
with respect to complexity , 252
with respect to computability , 48

evaluation , 36
execution, 36
existential quantifier , 193

explicit b' ansformation , 206

expression
evaluation , 189

extensional, 226, 240

462 Index

defined, 424
defined inductively, 439
definedness, 422
diverging, 424
division, 427
domain of, 425
double, 423
exponential polynomial, 169
injective, 428
inverse, 444
logarithmic, 429
maximum, 429
minimum, 429

goto-free, 383
GO T Oro, 349
grammar, 432

ambiguous, 161, 434
context-free, 160, 433

decision problems for, 160, 393, 434
definition, 433

context-sensitive, 433
decision problems for, 415
definition, 433

regular, 433, 435
decision problems for, 412, 434
definition, 433

GAME, 394
game complexity, 415
GAP, 367
Gap theorem, 311
garbage collection, 270
G Odel numbers, 205

1, 72
It , 222
implements, 52
implication, 192
indirect fetch, 119
indirect store, 119

G Odel's incompleteness
GOTO, 111

theorem, 198

monotonic , 429
monus, 423

multiplication, 426
one-to-one, 428
onto, 428
pairing, 442
partial, 424
polynomial, 169
predecessor, 423
range of, 425
recursive, 205
recursively defined, 439
result, 423
semantic, 47
strictly monotonic, 429
subtraction, 426
swjective, 428
total, 423
undefined, 424
uniqueness, 422
updating, 426

function call, 137
Futamura projections, 98

set generated by, 433
graph, 430

accessibility, 338 .

acyclic, 431
algorithm, 338, 339, 341, 342
building, 343
cyclic, 431
directed,430
inaccessibility, 339
searching, 338
state transition, 337

halting problem, 77
hardware viewpoint, 9
hierarchy, 285, 291, 365
higher-order function, 427
Hilbert's choice function, 212
Hilbert's program, 23
Hilbert' s tenth problem, 167
Hilbert, D., 167
Horn clause, 391

Index 463

induction, 439
complete, 439
course-of-values, 439
hypothesis, 439

inference relation, 195
inference rule, 189
inference system, 188, 195
infinite sequence, 424
initial store, 264
intensional, 226, 240
interpreter, 54

efficient, 286
overhead, 90

interpreting function, 54
invariance, 241
Invariance Thesis, 21
isomorphism theorem, 231

Markov algorithms, 8
match, 40, 57
Mcv, 390
minimization, 208
model-independent, m
monotone circuit, 383
multi-step derivation relation, 433
multi-step rewrite relation, 153

judgment , 189

LAMBDA, 140
lambda calculus, 8
lambda notation, 427
language

accepted by DFA, 437
accepted by NFA, 437- -
equivalent, 48
functional, 137
imperative, 137
implementation, 53, 58
simulating one by another, 48
source, 53, 57
target, 57

left-most multistep derivation relation, 433
left-most one-step derivation relation, 433
length (of a list), 33
length of a read-only TMro state, 317
length of a state, 316
linear time, 276, 291
linearly equivalent, 252

omega-notation , 429
one-step derivation relation , 433
one-step rewrite relation , 153

operational semantics, 188

optimality of a specializer, 103

a -notation , 429
o-notation , 430

LINTIME, 272, 276
list, 33
list , 35

ordered pair, 422
overhead factor, 252

natural numbers, 421
natural semantics, 188
negation, 32, 192, 419
NFA, 436
NLINTIME, 378
NLOGSPACE,333, 345, 346
nodes, 430
non-deterministic finite automaton, 436
nondeterminism, 243, 331
nontem\ inals, 432
nonuniform complexity, xv
normal form, 142
normal form theorem, 210
normalizations, 335
NPSPACE, 333, 345, 346
NPTIME, 243, 333, 346
numerals, 34

list representation, 33
literal, 419
logarithmic cost, 255, 257
LOGSPACE, 319, 322, 346, 351
LOGSPACE functions, 325
lookup , 55

program-dependent, 253, 256
program-independent, 253
programming language, 47
programs

cons-free, 349, 355
proof b' ee, 197
propositional formulas, 419
provability, 202
PSPACE, 319, 322, 345, 346, 407
PTIME, 244, 272, 275, 322, 345, 346,
pushdown automaton, 359

quadruples, 422
quantified boolean algebra, 409

r.e., see recursively enumerable
RAM, 111
random access machine, 8, 118
read-only,315
Readin, 113
Readout, 113
real numbers, xv, 421

positive, 421
recursion theorem, 220, 229
recursive, 86
recursive function theory, 205
recursive extension, 355
recursive function, 8, 205
recursively enumerable, 86, 195, 197,202
redex, 142
redudng SAT to CLIQUE, 370
reduction, 152, 365, 366
reduction function, 368
reflexive extension, 222
REG:F0, 434

terminating, 38
time-bounded, 271
timed universal, 288

464 Index

program padding, 233
program point specialization, 105
program property, 79

extensional, 79
intensional, 79
non-bivial , 79

program specia}izel:, 58, 227
optimal, 103

pairing, 53
pairing decomposition, 442
parallelism, xv
parallelism,PTIME, 395
partial evaluation, 65, 77, 96

off-line, 106
techniques, 104

partial recursive, 205
partial recursive functions, 24
Pascal-like implementation of Ga Ta, 266
path finding, 332
pattern, 40
pcp, 156
polynomial-time, 274
polynomially equivalent, 252
Post's correspondence problem, 156
predecessor, 34
predicate, 192, 195
prefix, 431
primitive recursion, 206
problem, 3

ambiguity, 161, 434
complete for NLOGSPACE,376
complete for NLINTIME, 378
complete for RE, 375
completeness, 161, 434
membership, 434
natural unsolvable, 151
non-emptiness for, 434
representation, 271
representation of, 368
undecidable, 154

production, 153
program

boolean, 407
computes a function, 38
function computed by, 38
looping, 38
self-reproducing, 222
stack, 288

REGALL, 434
REGAMB, 434

equality, 421
exponential Diophantine, 169
intersection, 422
member of, 421
union, 422

simulation
invariant, 135
with data change, 129

single-assignment, 383
size (of a b' ee), 29
slowdown, 252
software viewpoint, 9
solvable, 4
source program, .50
space usage, 332

s-m-n function property, 227
SAT, 367, 370, 397
satisfiable, 443
second component, 422
self-interpreter, 72, 227
self-reprodudng program, 222
semantic function, 47, 90
semi-decidable, 76
semi- Thue, 153
set, 421

contained in, 421
countable, 14

-
difference, 422
Diophantine, 169
element of, 421
empty, 421

Index 465

deciding membership of, 10

regular expression, 435
set generated by, 435

totality , 412

regular grammar, see under grammar
representable predicate, 200
resource bound , 271, 332
resources, 242
restriction

to one operator, 60
to one variable, 61

reverse, 30, 432
rewrite rule, 153
Rice's theorem, 78

SPACE(! >, 319
space-bounded programs, 319
space-consb' uctible, 328
specialization, 205
specia1izel:, 59
specializer properties .

computational completeness, 102
optimality, 103
totality, 102

specializing function, 59
speedup, 252
gRAM, 119
stack programs, 288, 359
start state, 436, 437
start symbol, 432
state, 112, 114, 264

terminal, 112
state transition graph, 337, 343
states (of an DFA), 437
states (of an NFA), 436
stochastic algorithms, xv
storage modification machine, 255
store, 36, 37, 112, 114, 137, 189, 264

initial, 37
string, 431

accepted by DFA, 437
accepted by NFA, 437
bit, 250

robust, 147, 274, 276, 322
robustness, 241, 271

computability, 127
Rogers, H., 226, 231
rooted DSG, 262
running time

WHILE program, 254
running time, 275
running time function, 90
Russell's Paradox, 15

b' Uth values, 419
n-tupies, 422

tupling function, 225

Turing completeness, 227

Turing machineS, 8, 115, 316

configuration, 122
deterministic, 121
enumeration, 225

program, 225

uncomputabl@

superlinear time , 292

symbolic computation ,

symbols , 431

valid, 443
value assumption, 189
variable

bound, 141
free, 141

vector notation, 422
VERTEXCOVER, 380
vertices, 431

tape alphabet, 115
terminals, 432
theorem, 196

normal form, 129
theta-notation, 429
n -diagrams, 51
time

linear, 276
superlinear, 292

time consb"Uctible, 293, 297
time usage, 332

programming language, 89

Wadier, P., 350, 3S3
WHILE, 27
WHILE-computable, 75
W H I L Elatom , 63
W H ILElop , ~
W H I L el W' ,61
WHILEA,29
WHro, 349

timed
timed
TM, 111
TMro, 316
totality of a specializer, 102
tractable, 244
transition function, 436, 437
treeless transformer,

triples, 422
true, 419
true , 32
truth, 202
truth assignment, 420
truth table, 420

353

~ Index
-

concatenation, 431

configuration, 155

empty, 431
string matching, 359, 360
s bing rewriting, 153
sb' Ongiy linearly equivalent, 253

sb' Uctural operational semantics, 188

sublinear, 315
subset, 421
substring, 431
successor, 34
successor random access machine, 119

suffix,431

function. see undecidable

TIME(f>,272universal program, 288

uncomputable functions, 16
undecidable, 78, 154
undirected graph, 431

unfolding, 191
unfolding function calls, 105
unit cost, 250, 257, 261
universal function, 205
universal function property, 227

universal program, 72
universal quantifier, 193

unnecessary code elimination, 86

unsolvable, 4

update, 137
update, 55

	Cover
	Copyright
	Contents

	Preface
	List of Notations
	1 Introduction
	2 The While Language
	3 Programs as Data Objects
	4 Self-Interpretation: Universal Programs for WHILE and I
	5 Elements of Computability Theory
	6 Metaprogramming, Self-Application, and Compiler Generation
	7 Other Sequential Models of Computation
	8 Robustness of Computability
	9 Computability by Functional Languages
	10 Some Natural Unsolvable Problems
	11 Hilbert's Tenth Problem
	12 Inference Systems and Godel's Incompleteness Theorem
	13 Computability Theory Based on Numbers
	14 More Abstract Approaches to Computability
	15 Overview of Complexity Theory
	16 Measuring Time Usage
	17 Time Usage of Tree-Manipulating Programs
	18 Robustness of Time-Bounded Computation
	19 Linear and Other Time Hierarchies for WHILE Programs
	20 The Existence of Optimal Algorithms
	21 Space-Bounded Computations
	22 Nondeterministic Computations
	23 A Structure for Classifying the Complexity of Various Problems
	24 Characterizations of LOGSPACE and PTIME by GOTO Programs
	25 Completeness and Reduction of One Problem to Another
	26 Complete Problems for PTIME
	27 Complete Problems for NPTIME
	28 Complete Problems for PSPACE
	Appendix
	Bibliography
	Index

