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Preface to the Second Edition

As is fit, this second edition arose out of our readers’ demands to read about new
developments and our desire to write about them. Although parsing techniques is
not a fast moving field, it does move. When the first edition went to press in 1990,
there was only one tentative and fairly restrictive algorithm for linear-time substring
parsing. Now there are several powerful ones, covering all deterministic languages;
we describe them in Chapter 12. In 1990 Theorem 8.1 from a 1961 paper by Bar-
Hillel, Perles, and Shamir lay gathering dust; in the last decade it has been used to
create new algorithms, and to obtain insight into existing ones. We report on this in
Chapter 13.

More and more non-Chomsky systems are used, especially in linguistics. None
except two-level grammars had any prominence 20 years ago; we now describe six
of them in Chapter 15. Non-canonical parsers were considered oddities for a very
long time; now they are among the most powerful linear-time parsers we have; see
Chapter 10.

Although still not very practical, marvelous algorithms for parallel parsing have
been designed that shed new light on the principles; see Chapter 14. In 1990 a gen-
eralized LL parser was deemed impossible; now we describe two in Chapter 11.

Traditionally, and unsurprisingly, parsers have been used for parsing; more re-
cently they are also being used for code generation, data compression and logic
language implementation, as shown in Section 17.5. Enough. The reader can find
more developments in many places in the book and in the Annotated Bibliography
in Chapter 18.

Kees van Reeuwijk has — only half in jest — called our book “a reservation
for endangered parsers”. We agree — partly; it is more than that — and we make
no apologies. Several algorithms in this book have very limited or just no practical
value. We have included them because we feel they embody interesting ideas and
offer food for thought; they might also grow and acquire practical value. But we
also include many algorithms that do have practical value but are sorely underused,;
describing them here might raise their status in the world.
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Exercises and Problems

This book is not a textbook in the school sense of the word. Few universities have
a course in Parsing Techniques, and, as stated in the Preface to the First Edition, read-
ers will have very different motivations to use this book. We have therefore included
hardly any questions or tasks that exercise the material contained within this book;
readers can no doubt make up such tasks for themselves. The questions posed in the
problem sections at the end of each chapter usually require the reader to step outside
the bounds of the covered material. The problems have been divided into three not
too well-defined classes:

e not marked — probably doable in a few minutes to a couple of hours.
* marked Project — probably a lot of work, but almost certainly doable.
* marked Research Project — almost certainly a lot of work, but hopefully doable.

We make no claims as to the relevance of any of these problems; we hope that some
readers will find some of them enlightening, interesting, or perhaps even useful.
Ideas, hints, and partial or complete solutions to a number of the problems can be
found in Chapter A.

There are also a few questions on formal language that were not answered eas-
ily in the existing literature but have some importance to parsing. These have been
marked accordingly in the problem sections.

Annotated Bibliography

For the first edition, we, the authors, read and summarized all papers on parsing
that we could lay our hands on. Seventeen years later, with the increase in publica-
tions and easier access thanks to the Internet, that is no longer possible, much to our
chagrin. In the first edition we included all relevant summaries. Again that is not pos-
sible now, since doing so would have greatly exceeded the number of pages allotted
to this book. The printed version of this second edition includes only those refer-
ences to the literature and their summaries that are actually referred to in this book.
The complete bibliography with summaries as far as available can be found on the
web site of this book; it includes its own authors index and subject index. This setup
also allows us to list without hesitation technical reports and other material of possi-
bly low accessibility. Often references to sections from Chapter 18 refer to the Web
version of those sections; attention is drawn to this by calling them “(Web)Sections”.

We do not supply URLSs in this book, for two reasons: they are ephemeral and
may be incorrect next year, tomorrow, or even before the book is printed; and, es-
pecially for software, better URLs may be available by the time you read this book.
The best URL is a few well-chosen search terms submitted to a good Web search
engine.

Even in the last ten years we have seen a number of Ph.D theses written in lan-
guages other than English, specifically German, French, Spanish and Estonian. This
choice of language has the regrettable but predictable consequence that their con-
tents have been left out of the main stream of science. This is a loss, both to the
authors and to the scientific community. Whether we like it or not, English is the
de facto standard language of present-day science. The time that a scientifically in-
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terested gentleman of leisure could be expected to read French, German, English,
Greek, Latin and a tad of Sanskrit is 150 years in the past; today, students and sci-
entists need the room in their heads and the time in their schedules for the vastly
increased amount of knowledge. Although we, the authors, can still read most (but
not all) of the above languages and have done our best to represent the contents of
the non-English theses adequately, this will not suffice to give them the international
attention they deserve.

The Future of Parsing, aka The Crystal Ball

If there will ever be a third edition of this book, we expect it to be substantially
thinner (except for the bibliography section!). The reason is that the more parsing
algorithms one studies the more they seem similar, and there seems to be great op-
portunity for unification. Basically almost all parsing is done by top-down search
with left-recursion protection; this is true even for traditional bottom-up techniques
like LR(1), where the top-down search is built into the LR(1) parse tables. In this
respect it is significant that Earley’s method is classified as top-down by some and
as bottom-up by others. The general memoizing mechanism of tabular parsing takes
the exponential sting out of the search. And it seems likely that transforming the
usual depth-first search into breadth-first search will yield many of the generalized
deterministic algorithms; in this respect we point to Sikkel’s Ph.D thesis [158]. To-
gether this seems to cover almost all algorithms in this book, including parsing by
intersection. Pure bottom-up parsers without a top-down component are rare and not
very powerful.

So in the theoretical future of parsing we see considerable simplification through
unification of algorithms; the role that parsing by intersection can play in this is not
clear. The simplification does not seem to extend to formal languages: it is still as
difficult to prove the intuitively obvious fact that all LL(1) grammars are LR(1) as it
was 35 years ago.

The practical future of parsing may lie in advanced pattern recognition, in addi-
tion to its traditional tasks; the practical contributions of parsing by intersection are
again not clear.

Amsterdam, Amstelveen Dick Grune
June 2007 Ceriel J.H. Jacobs
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Parsing (syntactic analysis) is one of the best understood branches of computer sci-
ence. Parsers are already being used extensively in a number of disciplines: in com-
puter science (for compiler construction, database interfaces, self-describing data-
bases, artificial intelligence), in linguistics (for text analysis, corpora analysis, ma-
chine translation, textual analysis of biblical texts), in document preparation and con-
version, in typesetting chemical formulae and in chromosome recognition, to name
a few; they can be used (and perhaps are) in a far larger number of disciplines. It is
therefore surprising that there is no book which collects the knowledge about pars-
ing and explains it to the non-specialist. Part of the reason may be that parsing has a
name for being “difficult”. In discussing the Amsterdam Compiler Kit and in teach-
ing compiler construction, it has, however, been our experience that seemingly diffi-
cult parsing techniques can be explained in simple terms, given the right approach.
The present book is the result of these considerations.

This book does not address a strictly uniform audience. On the contrary, while
writing this book, we have consistently tried to imagine giving a course on the subject
to a diffuse mixture of students and faculty members of assorted faculties, sophis-
ticated laymen, the avid readers of the science supplement of the large newspapers,
etc. Such a course was never given; a diverse audience like that would be too uncoor-
dinated to convene at regular intervals, which is why we wrote this book, to be read,
studied, perused or consulted wherever or whenever desired.

Addressing such a varied audience has its own difficulties (and rewards). Al-
though no explicit math was used, it could not be avoided that an amount of math-
ematical thinking should pervade this book. Technical terms pertaining to parsing
have of course been explained in the book, but sometimes a term on the fringe of the
subject has been used without definition. Any reader who has ever attended a lec-
ture on a non-familiar subject knows the phenomenon. He skips the term, assumes it
refers to something reasonable and hopes it will not recur too often. And then there
will be passages where the reader will think we are elaborating the obvious (this
paragraph may be one such place). The reader may find solace in the fact that he
does not have to doodle his time away or stare out of the window until the lecturer
progresses.
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On the positive side, and that is the main purpose of this enterprise, we hope that
by means of a book with this approach we can reach those who were dimly aware
of the existence and perhaps of the usefulness of parsing but who thought it would
forever be hidden behind phrases like:

Let P be a mapping Vy — 2(WVr)*

and $) a homomorphism ...

No knowledge of any particular programming language is required. The book con-
tains two or three programs in Pascal, which serve as actualizations only and play a
minor role in the explanation. What is required, though, is an understanding of algo-
rithmic thinking, especially of recursion. Books like Learning to program by Howard
Johnston (Prentice-Hall, 1985) or Programming from first principles by Richard Bor-
nat (Prentice-Hall 1987) provide an adequate background (but supply more detail
than required). Pascal was chosen because it is about the only programming lan-
guage more or less widely available outside computer science environments.

The book features an extensive annotated bibliography. The user of the bibliogra-
phy is expected to be more than casually interested in parsing and to possess already
a reasonable knowledge of it, either through this book or otherwise. The bibliogra-
phy as a list serves to open up the more accessible part of the literature on the subject
to the reader; the annotations are in terse technical prose and we hope they will be
useful as stepping stones to reading the actual articles.

On the subject of applications of parsers, this book is vague. Although we sug-
gest a number of applications in Chapter 1, we lack the expertise to supply details.
It is obvious that musical compositions possess a structure which can largely be de-
scribed by a grammar and thus is amenable to parsing, but we shall have to leave it
to the musicologists to implement the idea. It was less obvious to us that behaviour
at corporate meetings proceeds according to a grammar, but we are told that this is
so and that it is a subject of socio-psychological research.

Acknowledgements
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In a wider sense, we extend our thanks to the hundreds of authors who have been
so kind as to invent scores of clever and elegant algorithms and techniques for us to
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Introduction

Parsing is the process of structuring a linear representation in accordance with a
given grammar. This definition has been kept abstract on purpose to allow as wide an
interpretation as possible. The “linear representation” may be a sentence, a computer
program, a knitting pattern, a sequence of geological strata, a piece of music, actions
in ritual behavior, in short any linear sequence in which the preceding elements in
some way restrict' the next element. For some of the examples the grammar is well
known, for some it is an object of research, and for some our notion of a grammar is
only just beginning to take shape.

For each grammar, there are generally an infinite number of linear representa-
tions (“‘sentences’”) that can be structured with it. That is, a finite-size grammar can
supply structure to an infinite number of sentences. This is the main strength of the
grammar paradigm and indeed the main source of the importance of grammars: they
summarize succinctly the structure of an infinite number of objects of a certain class.

There are several reasons to perform this structuring process called parsing. One
reason derives from the fact that the obtained structure helps us to process the object
further. When we know that a certain segment of a sentence is the subject, that in-
formation helps in understanding or translating the sentence. Once the structure of a
document has been brought to the surface, it can be converted more easily.

A second reason is related to the fact that the grammar in a sense represents our
understanding of the observed sentences: the better a grammar we can give for the
movements of bees, the deeper our understanding is of them.

A third lies in the completion of missing information that parsers, and especially
error-repairing parsers, can provide. Given a reasonable grammar of the language,
an error-repairing parser can suggest possible word classes for missing or unknown
words on clay tablets.

The reverse problem — given a (large) set of sentences, find the/a grammar which
produces them — is called grammatical inference. Much less is known about it than
about parsing, but progress is being made. The subject would require a complete

UIf there is no restriction, the sequence still has a grammar, but this grammar is trivial and
uninformative.
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book. Proceedings of the International Colloquiums on Grammatical Inference are
published as Lecture Notes in Artificial Intelligence by Springer.

1.1 Parsing as a Craft

Parsing is no longer an arcane art; it has not been so since the early 1970s when
Aho, Ullman, Knuth and many others put various parsing techniques solidly on their
theoretical feet. It need not be a mathematical discipline either; the inner workings of
a parser can be visualized, understood and modified to fit the application, with little
more than cutting and pasting strings.

There is a considerable difference between a mathematician’s view of the world
and a computer scientist’s. To a mathematician all structures are static: they have
always been and will always be; the only time dependence is that we just have not
discovered them all yet. The computer scientist is concerned with (and fascinated
by) the continuous creation, combination, separation and destruction of structures:
time is of the essence. In the hands of a mathematician, the Peano axioms create the
integers without reference to time, but if a computer scientist uses them to implement
integer addition, he finds they describe a very slow process, which is why he will be
looking for a more efficient approach. In this respect the computer scientist has more
in common with the physicist and the chemist; like them, he cannot do without a
solid basis in several branches of applied mathematics, but, like them, he is willing
(and often virtually obliged) to take on faith certain theorems handed to him by the
mathematician. Without the rigor of mathematics all science would collapse, but not
all inhabitants of a building need to know all the spars and girders that keep it up-
right. Factoring out certain detailed knowledge to specialists reduces the intellectual
complexity of a task, which is one of the things computer science is about.

This is the vein in which this book is written: parsing for anybody who has pars-
ing to do: the compiler writer, the linguist, the database interface writer, the geologist
or musicologist who wants to test grammatical descriptions of their respective objects
of interest, and so on. We require a good ability to visualize, some programming ex-
perience and the willingness and patience to follow non-trivial examples; there is
nothing better for understanding a kangaroo than seeing it jump. We treat, of course,
the popular parsing techniques, but we will not shun some weird techniques that look
as if they are of theoretical interest only: they often offer new insights and a reader
might find an application for them.

1.2 The Approach Used

This book addresses the reader at least three different levels. The interested non-
computer scientist can read the book as “the story of grammars and parsing”; he
or she can skip the detailed explanations of the algorithms: each algorithm is first
explained in general terms. The computer scientist will find much technical detail on
a wide array of algorithms. To the expert we offer a systematic bibliography of over
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1700 entries. The printed book holds only those entries referenced in the book itself;
the full list is available on the web site of this book. All entries in the printed book
and about two-thirds of the entries in the web site list come with an annotation; this
annotation, or summary, is unrelated to the abstract in the referred article, but rather
provides a short explanation of the contents and enough material for the reader to
decide if the referred article is worth reading.

No ready-to-run algorithms are given, except for the general context-free parser
of Section 17.3. The formulation of a parsing algorithm with sufficient precision to
enable a programmer to implement and run it without problems requires a consider-
able support mechanism that would be out of place in this book and in our experience
does little to increase one’s understanding of the process involved. The popular meth-
ods are given in algorithmic form in most books on compiler construction. The less
widely used methods are almost always described in detail in the original publica-
tion, for which see Chapter 18.

1.3 Outline of the Contents

Since parsing is concerned with sentences and grammars and since grammars are
themselves fairly complicated objects, ample attention is paid to them in Chapter 2.
Chapter 3 discusses the principles behind parsing and gives a classification of parsing
methods. In summary, parsing methods can be classified as top-down or bottom-up
and as directional or non-directional; the directional methods can be further dis-
tinguished into deterministic and non-deterministic ones. This situation dictates the
contents of the next few chapters.

In Chapter 4 we treat non-directional methods, including Unger and CYK. Chap-
ter 5 forms an intermezzo with the treatment of finite-state automata, which are
needed in the subsequent chapters. Chapters 6 through 10 are concerned with direc-
tional methods, as follows. Chapter 6 covers non-deterministic directional top-down
parsers (recursive descent, Definite Clause Grammars), Chapter 7 non-deterministic
directional bottom-up parsers (Earley). Deterministic methods are treated in Chap-
ters 8 (top-down: LL in various forms) and 9 (bottom-up: LR methods). Chapter 10
covers non-canonical parsers, parsers that determine the nodes of a parse tree in a not
strictly top-down or bottom-up order (for example left-corner). Non-deterministic
versions of the above deterministic methods (for example the GLR parser) are de-
scribed in Chapter 11.

The next four chapters are concerned with material that does not fit the above
framework. Chapter 12 shows a number of recent techniques, both deterministic and
non-deterministic, for parsing substrings of complete sentences in a language. An-
other recent development, in which parsing is viewed as intersecting a context-free
grammar with a finite-state automaton is covered in Chapter 13. A few of the nu-
merous parallel parsing algorithms are explained in Chapter 14, and a few of the
numerous proposals for non-Chomsky language formalisms are explained in Chap-
ter 15, with their parsers. That completes the parsing methods per se.
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Error handling for a selected number of methods is treated in Chapter 16, and
Chapter 17 discusses practical parser writing and use.

1.4 The Annotated Bibliography

The annotated bibliography is presented in Chapter 18 both in the printed book and,
in a much larger version, on the web site of this book. It is an easily accessible and
essential supplement of the main body of the book. Rather than listing all publica-
tions in author-alphabetic order, the bibliography is divided into a number of named
sections, each concerned with a particular aspect of parsing; there are 25 of them in
the printed book and 30 in the web bibliography. Within the sections, the publica-
tions are listed chronologically. An author index at the end of the book replaces the
usual alphabetic list of publications. A numerical reference placed in brackets is used
in the text to refer to a publication. For example, the annotated reference to Earley’s
publication of the Earley parser is indicated in the text by [14] and can be found on
page 578, in the entry marked 14.
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Grammars as a Generating Device

2.1 Languages as Infinite Sets

In computer science as in everyday parlance, a “grammar” serves to “describe” a
“language”. If taken at face value, this correspondence, however, is misleading, since
the computer scientist and the naive speaker mean slightly different things by the
three terms. To establish our terminology and to demarcate the universe of discourse,
we shall examine the above terms, starting with the last one.

2.1.1 Language

To the larger part of mankind, language is first and foremost a means of communi-
cation, to be used almost unconsciously, certainly so in the heat of a debate. Com-
munication is brought about by sending messages, through air vibrations or through
written symbols. Upon a closer look the language messages (“utterances”) fall apart
into sentences, which are composed of words, which in turn consist of symbol se-
quences when written. Languages can differ on all three levels of composition. The
script can be slightly different, as between English and Irish, or very different, as
between English and Chinese. Words tend to differ greatly, and even in closely re-
lated languages people call un cheval or ein Pferd, that which is known to others as
a horse. Differences in sentence structure are often underestimated; even the closely
related Dutch often has an almost Shakespearean word order: “Ik geloof je niet”, “I
believe you not”, and more distantly related languages readily come up with con-
structions like the Hungarian “Pénzem van”, “Money-my is”, where the English say
“I have money”.

The computer scientist takes a very abstracted view of all this. Yes, a language
has sentences, and these sentences possess structure; whether they communicate
something or not is not his concern, but information may possibly be derived from
their structure and then it is quite all right to call that information the “meaning”
of the sentence. And yes, sentences consist of words, which he calls “tokens”, each
possibly carrying a piece of information, which is its contribution to the meaning of
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the whole sentence. But no, words cannot be broken down any further. This does not
worry the computer scientist. With his love of telescoping solutions and multi-level
techniques, he blithely claims that if words turn out to have structure after all, they
are sentences in a different language, of which the letters are the tokens.

The practitioner of formal linguistics, henceforth called the formal-linguist (to
distinguish him from the “formal linguist”, the specification of whom is left to the
imagination of the reader) again takes an abstracted view of this. A language is a
“set” of sentences, and each sentence is a “sequence” of “symbols”; that is all there
is: no meaning, no structure, either a sentence belongs to the language or it does not.
The only property of a symbol is that it has an identity; in any language there are a
certain number of different symbols, the alphabet, and that number must be finite.
Just for convenience we write these symbols as a, b, ¢, ..., but ©,», 1, ... would
do equally well, as long as there are enough symbols. The word sequence means that
the symbols in each sentence are in a fixed order and we should not shuffle them.
The word set means an unordered collection with all the duplicates removed. A set
can be written down by writing the objects in it, surrounded by curly brackets. All
this means that to the formal-linguist the following is a language: a, b, ab, ba, and
so is {a, aa, aaa, aaaa, ... } although the latter has notational problems that will
be solved later. In accordance with the correspondence that the computer scientist
sees between sentence/word and word/letter, the formal-linguist also calls a sentence
a word and he says that “the word ab is in the language {a, b, ab, ba}”.

Now let us consider the implications of these compact but powerful ideas.

To the computer scientist, a language is a probably infinitely large set of sen-
tences, each composed of tokens in such a way that it has structure; the tokens and
the structure cooperate to describe the semantics of the sentence, its “meaning” if
you will. Both the structure and the semantics are new, that is, were not present in
the formal model, and it is his responsibility to provide and manipulate them both. To
a computer scientist 3 +4 x 5 is a sentence in the language of “arithmetics on single
digits” (“single digits” to avoid having an infinite number of symbols); its structure
can be shown by inserting parentheses: (3+ (4 x 5)); and its semantics is probably
23.

To the linguist, whose view of languages, it has to be conceded, is much more
normal than that of either of the above, a language is an infinite set of possibly in-
terrelated sentences. Each sentence consists, in a structured fashion, of words which
have a meaning in the real world. Structure and words together give the sentence a
meaning, which it communicates. Words, again, possess structure and are composed
of letters; the letters cooperate with some of the structure to give a meaning to the
word. The heavy emphasis on semantics, the relation with the real world and the
integration of the two levels sentence/word and word/letters are the domain of the
linguist. “The circle spins furiously” is a sentence, “The circle sleeps red” is non-
sense.

The formal-linguist holds his views of language because he wants to study the
fundamental properties of languages in their naked beauty; the computer scientist
holds his because he wants a clear, well-understood and unambiguous means of de-
scribing objects in the computer and of communication with the computer, a most
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exacting communication partner, quite unlike a human; and the linguist holds his
view of language because it gives him a formal tight grip on a seemingly chaotic and
perhaps infinitely complex object: natural language.

2.1.2 Grammars

Everyone who has studied a foreign language knows that a grammar is a book of
rules and examples which describes and teaches the language. Good grammars make
a careful distinction between the sentence/word level, which they often call syntax or
syntaxis and the word/letter level, which they call morphology. Syntax contains rules
like “pour que is followed by the subjunctive, but parce que is not”. Morphology
contains rules like “the plural of an English noun is formed by appending an -s,
except when the word ends in -s, -sh, -o, -ch or -x, in which case -es is appended, or
when the word has an irregular plural.”

We skip the computer scientist’s view of a grammar for the moment and proceed
immediately to that of the formal-linguist. His view is at the same time very ab-
stract and quite similar to the layman’s: a grammar is any exact, finite-size, complete
description of the language, i.e., of the set of sentences. This is in fact the school
grammar, with the fuzziness removed. Although it will be clear that this definition
has full generality, it turns out that it is too general, and therefore relatively power-
less. It includes descriptions like “the set of sentences that could have been written
by Chaucer”; platonically speaking this defines a set, but we have no way of creating
this set or testing whether a given sentence belongs to this language. This particular
example, with its “could have been” does not worry the formal-linguist, but there
are examples closer to his home that do. “The longest block of consecutive sevens
in the decimal expansion of w” describes a language that has at most one word in
it (and then that word will consist of sevens only), and as a definition it is exact, of
finite-size and complete. One bad thing with it, however, is that one cannot find this
word: suppose one finds a block of one hundred sevens after billions and billions of
digits, there is always a chance that further on there is an even longer block. And
another bad thing is that one cannot even know if this longest block exists at all. It
is quite possible that, as one proceeds further and further up the decimal expansion
of m, one would find longer and longer stretches of sevens, probably separated by
ever-increasing gaps. A comprehensive theory of the decimal expansion of © might
answer these questions, but no such theory exists.

For these and other reasons, the formal-linguists have abandoned their static, pla-
tonic view of a grammar for a more constructive one, that of the generative grammar:
a generative grammar is an exact, fixed-size recipe for constructing the sentences in
the language. This means that, following the recipe, it must be possible to construct
each sentence of the language (in a finite number of actions) and no others. This does
not mean that, given a sentence, the recipe tells us how to construct that particular
sentence, only that it is possible to do so. Such recipes can have several forms, of
which some are more convenient than others.

The computer scientist essentially subscribes to the same view, often with the ad-
ditional requirement that the recipe should imply how a sentence can be constructed.
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2.1.3 Problems with Infinite Sets

The above definition of a language as a possibly infinite set of sequences of symbols
and of a grammar as a finite recipe to generate these sentences immediately gives
rise to two embarrassing questions:

1. How can finite recipes generate enough infinite sets of sentences?

2. If a sentence is just a sequence and has no structure and if the meaning of a
sentence derives, among other things, from its structure, how can we assess the
meaning of a sentence?

These questions have long and complicated answers, but they do have answers. We
shall first pay some attention to the first question and then devote the main body of
this book to the second.

2.1.3.1 Infinite Sets from Finite Descriptions

In fact there is nothing wrong with getting a single infinite set from a single finite
description: “the set of all positive integers” is a very finite-size description of a
definitely infinite-size set. Still, there is something disquieting about the idea, so we
shall rephrase our question: “Can all languages be described by finite descriptions?”
As the lead-up already suggests, the answer is “No”, but the proof is far from trivial.
It is, however, very interesting and famous, and it would be a shame not to present at
least an outline of it here.

2.1.3.2 Descriptions can be Enumerated

The proof is based on two observations and a trick. The first observation is that de-
scriptions can be listed and given a number. This is done as follows. First, take all
descriptions of size one, that is, those of only one letter long, and sort them alpha-
betically. This is the beginning of our list. Depending on what, exactly, we accept as
a description, there may be zero descriptions of size one, or 27 (all letters + space),
or 95 (all printable ASCII characters) or something similar; this is immaterial to the
discussion which follows.

Second, we take all descriptions of size two, sort them alphabetically to give
the second chunk on the list, and so on for lengths 3, 4 and further. This assigns
a position on the list to each and every description. Our description “the set of all
positive integers”, for example, is of size 32, not counting the quotation marks. To
find its position on the list, we have to calculate how many descriptions there are
with less than 32 characters, say L. We then have to generate all descriptions of size
32, sort them and determine the position of our description in it, say P, and add the
two numbers L and P. This will, of course, give a huge number! but it does ensure
that the description is on the list, in a well-defined position; see Figure 2.1.

! Some calculations tell us that, under the ASCII-128 assumption, the number is 248 17168
89636 37891 49073 14874 06454 89259 38844 52556 26245 57755 89193 30291, or
roughly 2.5 x 10°7.
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{ descriptions of size 1
{ descriptions of size 2

{ descriptions of size 3

L
{ descriptions of size 31
P descriptions of size 32
“the set of all positive integers”

Fig. 2.1. List of all descriptions of length 32 or less

Two things should be pointed out here. The first is that just listing all descriptions
alphabetically, without reference to their lengths, would not do: there are already
infinitely many descriptions starting with an “a” and no description starting with a
higher letter could get a number on the list. The second is that there is no need to
actually do all this. It is just a thought experiment that allows us to examine and draw
conclusions about the behavior of a system in a situation which we cannot possibly
examine physically.

Also, there will be many nonsensical descriptions on the list; it will turn out
that this is immaterial to the argument. The important thing is that all meaningful
descriptions are on the list, and the above argument ensures that.

2.1.3.3 Languages are Infinite Bit-Strings

We know that words (sentences) in a language are composed of a finite set of sym-
bols; this set is called quite reasonably the “alphabet”. We will assume that the sym-
bols in the alphabet are ordered. Then the words in the language can be ordered too.
We shall indicate the alphabet by X.

Now the simplest language that uses alphabet X is that which consists of all words
that can be made by combining letters from the alphabet. For the alphabet £ ={a, b}
we get the language { , a, b, aa, ab, ba, bb, aaa, ... }. We shall call this language X*,
for reasons to be explained later; for the moment it is just a name.

The set notation * above started with “ { , @,”, a remarkable construction; the
first word in the language is the empty word, the word consisting of zero as and zero
bs. There is no reason to exclude it, but, if written down, it may easily be overlooked,
so we shall write it as € (epsilon), regardless of the alphabet. So, Z* = { €, a, b, aq, ab,
ba, bb, aaa, ... }.In some natural languages, forms of the present tense of the verb
“to be” are empty words, giving rise to sentences of the form “I student”, meaning
“I am a student.” Russian and Hebrew are examples of this.

Since the symbols in the alphabet X are ordered, we can list the words in the
language X*, using the same technique as in the previous section: First, all words of
size zero, sorted; then all words of size one, sorted; and so on. This is actually the
order already used in our set notation for £*.
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The language £* has the interesting property that all languages using alphabet X
are subsets of it. That means that, given another possibly less trivial language over
%, called L, we can go through the list of words in X* and put ticks on all words that
are in L. This will cover all words in L, since £* contains any possible word over X.

Suppose our language L is “the set of all words that contain more as than bs”. L
is the set {a, aa, aab, aba, baa, ... }. The beginning of our list, with ticks, will look
as follows:

AN

aa
ab
ba
bb
aaa
aab
aba
abb
baa
bab
bba
bbb
v aaaa

R S~

Given the alphabet with its ordering, the list of blanks and ticks alone is entirely
sufficient to identify and describe the language. For convenience we write the blank
as a 0 and the tick as a 1 as if they were bits in a computer, and we can now write
L =0101000111010001--- (and £* = 1111111111111111---). It should be noted
that this is true for any language, be it a formal language like L, a programming
language like Java or a natural language like English. In English, the 1s in the bit-
string will be very scarce, since hardly any arbitrary sequence of words is a good
English sentence (and hardly any arbitrary sequence of letters is a good English
word, depending on whether we address the sentence/word level or the word/letter
level).

2.1.3.4 Diagonalization

The previous section attaches the infinite bit-string 0101000111010001- - - to the de-
scription “the set of all the words that contain more as than bs”. In the same vein
we can attach such bit-strings to all descriptions. Some descriptions may not yield a
language, in which case we can attach an arbitrary infinite bit-string to it. Since all
descriptions can be put on a single numbered list, we get, for example, the following
picture:
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Description Language
Description #1 000000100 - -
Description #2 110010001 - - -
Description #3 011011010---
Description #4 110011010---
Description #5 100000011 - - -
Description #6 111011011 ---

At the left we have all descriptions, at the right all languages they describe. We now
claim that many languages exist that are not on the list of languages above: the above
list is far from complete, although the list of descriptions is complete. We shall prove
this by using the diagonalization process (“Diagonalverfahren”) of Cantor.

Consider the language C = 100110 - -, which has the property that its n-th bit is
unequal to the n-th bit of the language described by Description #n. The first bit of
C is a 1, because the first bit for Description #1 is a 0; the second bit of C is a 0,
because the second bit for Description #2 is a 1, and so on. C is made by walking the
NW to SE diagonal of the language field and copying the opposites of the bits we
meet. This is the diagonal in Figure 2.2(a). The language C cannot be on the list! It

free

.._‘.‘./

(a) (b) ()
Fig. 2.2. “Diagonal” languages along n (a), n+ 10 (b), and 2n (c)

cannot be on line 1, since its first bit differs (is made to differ, one should say) from
that on line 1, and in general it cannot be on line 7, since its n-th bit will differ from
that on line n, by definition.

So, in spite of the fact that we have exhaustively listed all possible finite descrip-
tions, we have at least one language that has no description on the list. But there exist
more languages that are not on the list. Construct, for example, the language whose
n—+ 10-th bit differs from the n+ 10-th bit in Description #n. Again it cannot be on the
list since for every n > 0 it differs from line n in the n+ 10-th bit. But that means that
bits 1...9 play no role, and can be chosen arbitrarily, as shown in Figure 2.2(b); this
yields another 2° = 512 languages that are not on the list. And we can do even much
better than that! Suppose we construct a language whose 2n-th bit differs from the
2n-th bit in Description #n (c). Again it is clear that it cannot be on the list, but now
every odd bit is left unspecified and can be chosen freely! This allows us to create
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freely an infinite number of languages none of which allows a finite description; see
the slanting diagonal in Figure 2.2. In short, for every language that can be described
there are infinitely many that cannot.

The diagonalization technique is described more formally in most books on the-
oretical computer science; see e.g., Rayward-Smith [393, pp. 5-6], or Sudkamp [397,
Section 1.4].

2.1.3.5 Discussion

The above demonstration shows us several things. First, it shows the power of treat-
ing languages as formal objects. Although the above outline clearly needs consider-
able amplification and substantiation to qualify as a proof (for one thing it still has to
be clarified why the above explanation, which defines the language C, is not itself on
the list of descriptions; see Problem 2.1, it allows us to obtain insight into properties
not otherwise assessable.

Secondly, it shows that we can only describe a tiny subset (not even a fraction)
of all possible languages: there is an infinity of languages out there, forever beyond
our reach.

Thirdly, we have proved that, although there are infinitely many descriptions and
infinitely many languages, these infinities are not equal to each other, and the latter
is larger than the former. These infinities are called Xy and X by Cantor, and the
above is just a special case of his proof that Xy < K.

2.1.4 Describing a Language through a Finite Recipe

A good way to build a set of objects is to start with a small object and to give rules
for how to add to it and construct new objects from it. “Two is an even number and
the sum of two even numbers is again an even number” effectively generates the set
of all even numbers. Formalists will add “and no other numbers are even”, but we
will take that as understood.

Suppose we want to generate the set of all enumerations of names, of the type
“Tom, Dick and Harry”, in which all names but the last two are separated by commas.
We will not accept “Tom, Dick, Harry” nor “Tom and Dick and Harry”, but we shall
not object to duplicates: “Grubb, Grubb and Burrowes”? is all right. Although these
are not complete sentences in normal English, we shall still call them “sentences”
since that is what they are in our midget language of name enumerations. A simple-
minded recipe would be:

0. Tom is a name, Dick is a name, Harry is a name;

1. aname is a sentence;

2. asentence followed by a comma and a name is again a sentence;

3. before finishing, if the sentence ends in *“, name”, replace it by “and name”.

2 The Hobbit, by J.R.R. Tolkien, Allen and Unwin, 1961, p. 311.
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Although this will work for a cooperative reader, there are several things wrong
with it. Clause 3 is especially wrought with trouble. For example, the sentence does
not really end in “, name”, it ends in *, Dick” or such, and “name” is just a symbol
that stands for a real name; such symbols cannot occur in a real sentence and must
in the end be replaced by a real name as given in clause 0. Likewise, the word ““sen-
tence” in the recipe is a symbol that stands for all the actual sentences. So there are
two kinds of symbols involved here: real symbols, which occur in finished sentences,
like “Tom”, “Dick”, a comma and the word “and”; and there are intermediate sym-
bols, like “sentence” and “name” that cannot occur in a finished sentence. The first
kind corresponds to the words or fokens explained above; the technical term for them
is terminal symbols (or terminals for short). The intermediate symbols are called non-
terminals, a singularly uninspired term. To distinguish them, we write terminals in
lower case letters and start non-terminals with an upper case letter. Non-terminals
are called (grammar) variables or syntactic categories in linguistic contexts.

To stress the generative character of the recipe, we shall replace “X is a Y by
“Y may be replaced by X”: if “tom” is an instance of a Name, then everywhere we
have a Name we may narrow it down to “tom”. This gives us:

0. Name may be replaced by “tom”
Name may be replaced by “dick”
Name may be replaced by “harry”

1. Sentence may be replaced by Name

2. Sentence may be replaced by Sentence, Name

3. “, Name” at the end of a Sentence must be replaced by “and Name” before Name
is replaced by any of its replacements

4. asentence is finished only when it no longer contains non-terminals

5. we start our replacement procedure with Sentence

Clause 0 through 3 describe replacements, but 4 and 5 are different. Clause 4 is not
specific to this grammar. It is valid generally and is one of the rules of the game.
Clause 5 tells us where to start generating. This name is quite naturally called the
start symbol, and it is required for every grammar.

Clause 3 still looks worrisome; most rules have “may be replaced”, but this one
has “must be replaced”, and it refers to the “end of a Sentence”. The rest of the rules
work through replacement, but the problem remains how we can use replacement
to test for the end of a Sentence. This can be solved by adding an end marker after
it. And if we make the end marker a non-terminal which cannot be used anywhere
except in the required replacement from *“, Name” to “and Name”, we automatically
enforce the restriction that no sentence is finished unless the replacement test has
taken place. For brevity we write — instead of “may be replaced by”’; since terminal
and non-terminal symbols are now identified as technical objects we shall write them
in a typewriter-like typeface. The part before the — is called the left-hand side, the
part after it the right-hand side. This results in the recipe in Figure 2.3.

This is a simple and relatively precise form for a recipe, and the rules are equally
straightforward: start with the start symbol, and keep replacing until there are no
non-terminals left.
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0. Name — tom
Name — dick
Name — harry
1. Sentence — Name
Sentence — List End
2. List — Name
List — List , Name
3. , Name End — and Name

&

the start symbol is Sentence

Fig. 2.3. A finite recipe for generating strings in the t, d & h language

2.2 Formal Grammars

The above recipe form, based on replacement according to rules, is strong enough
to serve as a basis for formal grammars. Similar forms, often called “rewriting sys-
tems”, have a long history among mathematicians, and were already in use several
centuries B.C. in India (see, for example, Bhate and Kak [411]). The specific form
of Figure 2.3 was first studied extensively by Chomsky [385]. His analysis has been
the foundation for almost all research and progress in formal languages, parsers and
a considerable part of compiler construction and linguistics.

2.2.1 The Formalism of Formal Grammars

Since formal languages are a branch of mathematics, work in this field is done in a
special notation. To show some of its flavor, we shall give the formal definition of
a grammar and then explain why it describes a grammar like the one in Figure 2.3.
The formalism used is indispensable for correctness proofs, etc., but not for under-
standing the principles; it is shown here only to give an impression and, perhaps, to
bridge a gap.

Definition 2.1: A generative grammar is a 4-tuple (V, Vr, R, S) such that

(1) Vy and V7 are finite sets of symbols,

Q) VwnNVy =0,

(3) R is a set of pairs (P, Q) such that
(Ba) P (VyUVr)T and
(3b) 0 € (VWU V)",

@ SeVy

A 4-tuple is just an object consisting of 4 identifiable parts; they are the non-
terminals, the terminals, the rules and the start symbol, in that order. The above
definition does not tell this, so this is for the teacher to explain. The set of non-
terminals is named Vyy and the set of terminals V7. For our grammar we have:

Vy = {Name, Sentence, List, End}
Vr = {tom, dick, harry, ,, and}
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(note the , in the set of terminal symbols).

The intersection of Vyy and Vr (2) must be empty, indicated by the symbol for
the empty set, 0. So the non-terminals and the terminals may not have a symbol in
common, which is understandable.

R is the set of all rules (3), and P and Q are the left-hand sides and right-hand
sides, respectively. Each P must consist of sequences of one or more non-terminals
and terminals and each Q must consist of sequences of zero or more non-terminals
and terminals. For our grammar we have:

R = {(Name, tom), (Name, dick), (Name, harry),
(Sentence, Name), (Sentence, List End), (List, Name),
(List,List , Name),(, Name End, and Name)}

Note again the two different commas.
The start symbol § must be an element of Vy, that is, it must be a non-terminal:

S =Sentence

This concludes our field trip into formal linguistics. In short, the mathematics of
formal languages is a language, a language that has to be learned; it allows very con-
cise expression of what and how but gives very little information on why. Consider
this book a translation and an exegesis.

2.2.2 Generating Sentences from a Formal Grammar

The grammar in Figure 2.3 is what is known as a phrase structure grammar for
our t, d&h language (often abbreviated to PS grammar). There is a more compact
notation, in which several right-hand sides for one and the same left-hand side are
grouped together and then separated by vertical bars, |. This bar belongs to the
formalism, just as the arrow —>, and can be read “or else”. The right-hand sides
separated by vertical bars are also called alternatives. In this more concise form our
grammar becomes

0. Name —> tom | dick | harry
1. Sentence; —> Name | List End

2. List —> Name | Name , List
3. , Name End — and Name

where the non-terminal with the subscript  is the start symbol. (The subscript iden-
tifies the symbol, not the rule.)

Now let us generate our initial example from this grammar, using replacement
according to the above rules only. We obtain the following successive forms for
Sentence:
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Intermediate form Rule used Explanation
Sentence the start symbol
List End Sentence — List End rule 1

Name , List End List — Name , List rule 2

Name , Name , List End List — Name , List rule 2

Name , Name , Name End List —> Name rule 2

Name , Name and Name , Name End — and Name rule3

tom , dick and harry rule 0, three times

The intermediate forms are called sentential forms. If a sentential form contains no
non-terminals it is called a sentence and belongs to the generated language. The
transitions from one line to the next are called production steps and the rules are
called production rules, for obvious reasons.

The production process can be made more visual by drawing connective lines be-
tween corresponding symbols, using a “graph”. A graph is a set of nodes connected
by a set of edges. A node can be thought of as a point on paper, and an edge as a
line, where each line connects two points; one point may be the end point of more
than one line. The nodes in a graph are usually “labeled”, which means that they
have been given names, and it is convenient to draw the nodes on paper as bubbles
with their names in them, rather than as points. If the edges are arrows, the graph is
a directed graph; if they are lines, the graph is undirected. Almost all graphs used in
parsing techniques are directed.

The graph corresponding to the above production process is shown in Figure
2.4. Such a picture is called a production graph or syntactic graph and depicts the
syntactic structure (with regard to the given grammar) of the final sentence. We see
that the production graph normally fans out downwards, but occasionally we may
see starlike constructions, which result from rewriting a group of symbols.

A cycle in a graph is a path from a node N following the arrows, leading back to
N. A production graph cannot contain cycles; we can see that as follows. To get a cy-
cle we would need a non-terminal node N in the production graph that has produced
children that are directly or indirectly N again. But since the production process
always makes new copies for the nodes it produces, it cannot produce an already
existing node. So a production graph is always “acyclic”; directed acyclic graphs are
called dags.

It is patently impossible to have the grammar generate tom, dick, harry,
since any attempt to produce more than one name will drag in an End and the only
way to get rid of it again (and get rid of it we must, since it is a non-terminal) is
to have it absorbed by rule 3, which will produce the and. Amazingly, we have
succeeded in implementing the notion “must replace” in a system that only uses
“may replace”; looking more closely, we see that we have split “must replace” into
“may replace” and “must not be a non-terminal”.

Apart from our standard example, the grammar will of course also produce many
other sentences; examples are

harry and tom
harry
tom, tom, tom and tom
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Fig. 2.4. Production graph for a sentence

and an infinity of others. A determined and foolhardy attempt to generate the incor-
rect form without the and will lead us to sentential forms like

tom, dick, harry End

which are not sentences and to which no production rule applies. Such forms are
called blind alleys. As the right arrow in a production rule already suggests, the rule
may not be applied in the reverse direction.

2.2.3 The Expressive Power of Formal Grammars

The main property of a formal grammar is that it has production rules, which may
be used for rewriting part of the sentential form (= sentence under construction) and
a starting symbol which is the mother of all sentential forms. In the production rules
we find non-terminals and terminals; finished sentences contain terminals only. That
is about it: the rest is up to the creativity of the grammar writer and the sentence
producer.

This is a framework of impressive frugality and the question immediately rises:
Is it sufficient? That is hard to say, but if it is not, we do not have anything more
expressive. Strange as it may sound, all other methods known to mankind for gen-
erating sets have been proved to be equivalent to or less powerful than a phrase
structure grammar. One obvious method for generating a set is, of course, to write
a program generating it, but it has been proved that any set that can be generated
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by a program can be generated by a phrase structure grammar. There are even more
arcane methods, but all of them have been proved not to be more expressive. On the
other hand there is no proof that no such stronger method can exist. But in view of
the fact that many quite different methods all turn out to halt at the same barrier, it is
highly unlikely® that a stronger method will ever be found. See, e.g. Révész [394, pp
100-102].

As a further example of the expressive power we shall give a grammar for the
movements of a Manhattan turtle. A Manhattan turtle moves in a plane and can only
move north, east, south or west in distances of one block. The grammar of Figure 2.5
produces all paths that return to their own starting point. As to rule 2, it should be

north Move south | east Move west | €
east north
south north
west north
north east
south east
west east
north south
east south
west south
north west
east west
south west

Moveg

north east
north south
north west
east north
east south
east west
south north
south east
south west
west north
west east
west south

o =

A EERRAEERAEER

Fig. 2.5. Grammar for the movements of a Manhattan turtle

noted that many authors require at least one of the symbols in the left-hand side to be
anon-terminal. This restriction can always be enforced by adding new non-terminals.

The simple round trip north east south west is produced as shown in
Figure 2.6 (names abbreviated to their first letter). Note the empty alternative in rule

Fig. 2.6. How the grammar of Figure 2.5 produces a round trip

1 (the €), which results in the dying out of the third M in the above production graph.

3 Paul Vitany has pointed out that if scientists call something “highly unlikely” they are still
generally not willing to bet a year’s salary on it, double or quit.
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2.3 The Chomsky Hierarchy of Grammars and Languages

The grammars from Figures 2.3 and 2.5 are easy to understand and indeed some
simple phrase structure grammars generate very complicated sets. The grammar for
any given set is, however, usually far from simple. (We say “The grammar for a
given set” although there can be, of course, infinitely many grammars for a set. By
the grammar for a set, we mean any grammar that does the job and is not obviously
overly complicated.) Theory says that if a set can be generated at all (for example,
by a program) it can be generated by a phrase structure grammar, but theory does not
say that it will be easy to do so, or that the grammar will be understandable. In this
context it is illustrative to try to write a grammar for those Manhattan turtle paths in
which the turtle is never allowed to the west of its starting point (Problem 2.3).

Apart from the intellectual problems phrase structure grammars pose, they also
exhibit fundamental and practical problems. We shall see that no general parsing
algorithm for them can exist, and all known special parsing algorithms are either
very inefficient or very complex; see Section 3.4.2.

The desire to restrict the unmanageability of phrase structure grammars, while
keeping as much of their generative powers as possible, has led to the Chomsky hier-
archy of grammars. This hierarchy distinguishes four types of grammars, numbered
from O to 3; it is useful to include a fifth type, called Type 4 here. Type O grammars
are the (unrestricted) phrase structure grammars of which we have already seen ex-
amples. The other types originate from applying more and more restrictions to the
allowed form of the rules in the grammar. Each of these restrictions has far-reaching
consequences; the resulting grammars are gradually easier to understand and to ma-
nipulate, but are also gradually less powerful. Fortunately, these less powerful types
are still very useful, actually more useful even than Type 0.

We shall now consider each of the three remaining types in turn, followed by a
trivial but useful fourth type.

For an example of a completely different method of generating Type O languages
see Geffert [395].

2.3.1 Type 1 Grammars

The characteristic property of a Type 0 grammar is that it may contain rules that
transform an arbitrary (non-zero) number of symbols into an arbitrary (possibly zero)
number of symbols. Example:

, NE — and N
in which three symbols are replaced by two. By restricting this freedom, we obtain

Type 1 grammars. Strangely enough there are two, intuitively completely different
definitions of Type 1 grammars, which can be easily proved to be equivalent.
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2.3.1.1 Two Types of Type 1 Grammars

A grammar is Type 1 monotonic if it contains no rules in which the left-hand side
consists of more symbols than the right-hand side. This forbids, for example, the
rule, N E — and N.

A grammar is Type I context-sensitive if all of its rules are context-sensitive. A
rule is context-sensitive if actually only one (non-terminal) symbol in its left-hand
side gets replaced by other symbols, while we find the others back, undamaged and
in the same order, in the right-hand side. Example:

Name Comma Name End —> Name and Name End
which tells that the rule
Comma — and

may be applied if the left context is Name and the right context is Name End. The
contexts themselves are not affected. The replacement must be at least one symbol
long. This means that context-sensitive grammars are always monotonic; see Section
2.5.

Here is a monotonic grammar for our t, d&h example. In writing monotonic
grammars one has to be careful never to produce more symbols than will eventually
be produced. We avoid the need to delete the end marker by incorporating it into the
rightmost name:

Name -> tom | dick | harry
Sentence; —> Name | List

List —> EndName | Name , List
, EndName —> and Name

where EndName is a single symbol.
And here is a context-sensitive grammar for it.

Name —> tom | dick | harry
Sentence; —> Name | List
List —> EndName
| Name Comma List
Comma EndName —> and EndName contextis ... EndName
and EndName — and Name context is and
Comma — ,

Note that we need an extra non-terminal Comma to produce the terminal and in the
correct context.

Monotonic and context-sensitive grammars are equally powerful: for each lan-
guage that can be generated by a monotonic grammar a context-sensitive grammar
exists that generates the same language, and vice versa. They are less powerful than
the Type O grammars, that is, there are languages that can be generated by a Type
0 grammar but not by any Type 1. Strangely enough no simple examples of such
languages are known. Although the difference between Type 0 and Type 1 is funda-
mental and is not just a whim of Mr. Chomsky, grammars for which the difference
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matters are too complicated to write down; only their existence can be proved (see
e.g., Hopcroft and Ullman [391, pp. 183-184], or Révész [394, p. 98]).

Of course any Type 1 grammar is also a Type 0 grammar, since the class of Type
1 grammars is obtained from the class of Type O grammars by applying restrictions.
But it would be confusing to call a Type 1 grammar a Type 0 grammar; it would be
like calling a cat a mammal: correct but imprecise. A grammar is named after the
smallest class (that is, the highest type number) in which it will still fit.

We saw that our t, d&h language, which was first generated by a Type 0 gram-
mar, could also be generated by a Type 1 grammar. We shall see that there is also
a Type 2 and a Type 3 grammar for it, but no Type 4 grammar. We therefore say
that the t, d&h language is a Type 3 language, after the most restricted (and simple
and amenable) grammar for it. Some corollaries of this are: A Type n language can
be generated by a Type n grammar or anything stronger, but not by a weaker Type
n+ 1 grammar; and: If a language is generated by a Type n grammar, that does not
necessarily mean that there is no (weaker) Type n+ 1 grammar for it. The use of
a Type O grammar for our t, d&h language was a serious case of overkill, just for
demonstration purposes.

2.3.1.2 Constructing a Type 1 Grammar

The standard example of a Type 1 language is the set of words that consist of equal
numbers of as, bs and es, in that order:

aa....a bb....b cc....c
N J \ J \ J

n of them n of them n of them

For the sake of completeness and to show how one writes a Type 1 grammar if
one is clever enough, we shall now derive a grammar for this toy language. Starting
with the simplest case, we have the rule

0. s — abc

Having obtained one instance of S, we may want to prepend more as to the be-
ginning; if we want to remember how many there were, we shall have to append
something to the end as well at the same time, and that cannot be a b or a c. We shall
use a yet unknown symbol Q. The following rule both prepends and appends:

1. s — asQ
If we apply this rule, for example, three times, we get the sentential form
aaabcQQ

Now, to get aaabbbccce from this, each Q must be worth one b and one ¢, as
expected, but we cannot just write

Q — bc
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because that would allow bs after the first . The above rule would, however, be all
right if it were allowed to do replacement only between a b on the left and a ¢ on the
right. There the newly inserted be will do no harm:

2. bQe — bbcc

Still, we cannot apply this rule since normally the Qs are to the right of the c. This
can be remedied by allowing a Q to hop left over a c:

3. ¢Q — Qc

We can now finish our derivation:

aaabcQQ (3 times rule 1)
aaabQcQ (rule 3)
aaabbccQ  (rule 2)
aaabbcQc  (rule 3)
aaabbQcc  (rule 3)
aaabbbccc (rule 2)

It should be noted that the above derivation only shows that the grammar will produce
the right strings, and the reader will still have to convince himself that it will not
generate other and incorrect strings (Problem 2.4).

The grammar is summarized in Figure 2.7. Since a derivation graph of a’b’c?

1. 8 — abc | asQ
2. bQe — bbcc
3. cQ — Qc

Fig. 2.7. Monotonic grammar for a"b"c"

is already rather unwieldy, a derivation graph for a’b®c? is given in Figure 2.8. The

Fig. 2.8. Derivation of aabbcc

grammar is monotonic and therefore of Type 1. It can be proved that there is no Type
2 grammar for the language; see Section 2.7.1.
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Although only context-sensitive Type 1 grammars can by rights be called
context-sensitive grammars (CS grammars), that name is often used even if the gram-
mar is actually monotonic Type 1. There are no standard initials for monotonic, but
MT will do.

2.3.2 Type 2 Grammars

Type 2 grammars are called context-free grammars (CF grammars) and their rela-
tion to context-sensitive grammars is as direct as the name suggests. A context-free
grammar is like a context-sensitive grammar, except that both the left and the right
contexts are required to be absent (empty). As a result, the grammar may contain
only rules that have a single non-terminal on their left-hand side. Sample grammar:

0. Name -> tom | dick | harry
1. Sentence; —> Name | List and Name
2. List -> Name , List | Name

2.3.2.1 Production Independence

Since there is always only one symbol on the left-hand side, each node in a pro-
duction graph has the property that whatever it produces is independent of what its
neighbors produce: the productive life of a non-terminal is independent of its context.
Starlike forms as we saw in Figures 2.4, 2.6, and 2.8 cannot occur in a context-free
production graph, which consequently has a pure tree-form and is called a production
tree. An example is shown in Figure 2.9.

Fig. 2.9. Production tree for a context-free grammar

Since there is only one symbol on the left-hand side, all right-hand sides for a
given non-terminal can always be collected in one grammar rule (we have already
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done that in the above grammar) and then each grammar rule reads like a definition
of the left-hand side:

e A Sentenceis either a Name or a List followed by and followed by a Name.
* A List is either a Name followed by a , followed by a List, or it is a Name.

This shows that context-free grammars build the strings they produce by two pro-
cesses: concatenation (“... followed by ...”) and choice (“either ... or...”). In ad-
dition to these processes there is the identification mechanism which links the name
of a non-terminal used in a right-hand side to its defining rule (“... isa...”).

At the beginning of this chapter we identified a language as a set of strings, the
set of terminal productions of the start symbol. The independent production property
allows us to extend this definition to any non-terminal in the grammar: each non-
terminal produces a set, a language, independent of the other non-terminals. If we
write the set of strings produced by A as L£(A) and A has a production rule with,
say, two alternatives, A — al|P, then L(A) = L(a) U L(B), where U is the union
operator on sets. This corresponds to the choice in the previous paragraph. If o then
consists of, say, three members PgR, we have L(o) = L(P)o L(g) o L(R), where
o is the concatenation operator on strings (actually on the strings in the sets). This
corresponds to the concatenation above. And £(a) where a is a terminal is of course
the set {a}. A non-terminal whose language contains € is called nullable. One also
says that it “produces empty”’.

Note that we cannot define a language £(Q) for the Q in Figure 2.7: Q does not
produce anything meaningful by itself. Defining a language for a non-start symbol
is possible only for Type 2 grammars and lower, and so is defining a non-start non-
terminal as nullable.

Related to the independent production property is the notion of recursion. A
non-terminal A is recursive if an A in a sentential form can produce something that
again contains an A. The production of Figure 2.9 starts with the sentential form
Sentence, which uses rule 1.2 to produce List and Name. The next step could
very well be the replacement of the List by Name, List, using rule 2.1. We see
that List produces something that again contains List:

Sentence — List and Name — Name , List and Name

List is recursive, more in particular, it is directly recursive. The non-terminal A in
A—Bc, B—>dA is indirectly recursive, but not much significance is to be attached
to the difference.

It is more important that List is right-recursive: a non-terminal A is right-
recursive if it can produce something that has an A at the right end, as List can:

List — Name , List

Likewise, a non-terminal A is left-recursive if it can produce something that has an
A at the left end: we could have defined

List — List , Name
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A non-terminal A is self-embedding if there is a derivation in which A produces
A with something, say o, before it and something, say [, after it. Self-embedding
describes nesting: o is the part produced when entering another level of nesting; [ is
the part produced when leaving that level. The best-known example of nesting is the
use of parentheses in arithmetic expressions:

arith expression; — ~~-| simple expression
simple expression —> number | ’(’ arith expression ')’

A non-terminal can be left-recursive and right-recursive at the same time; it is then
self-embedding. A—Ab | cA | d is an example.

If no non-terminal in a grammar is recursive, each production step uses up one
non-terminal, since that non-terminal will never occur again in that segment. So the
production process cannot continue unlimitedly, and a finite language results. Recur-
sion is essential for life in grammars.

2.3.2.2 Some Examples

In the actual world, many things are defined in terms of other things. Context-free
grammars are a very concise way to formulate such interrelationships. An almost
trivial example is the composition of a book, as given in Figure 2.10. Of course this

Books —> Preface ChapterSequence Conclusion
Preface —> "PREFACE" ParagraphSequence
ChapterSequence —> Chapter | Chapter ChapterSequence
Chapter —> "CHAPTER" Number ParagraphSequence
ParagraphSequence —> Paragraph | Paragraph ParagraphSequence
Paragraph -> SentenceSequence
SentenceSequence —
Conclusion —»> "CONCLUSION" ParagraphSequence

Fig. 2.10. A simple (and incomplete!) grammar of a book

is a context-free description of a book, so one can expect it to also generate a lot of
good-looking nonsense like

PREFACE

gwertyuiop

CHAPTER V

asdfghjkl

zxcvbnm, .

CHAPTER II

gazwsxedcrfvtgb

yhnujmikolp

CONCLUSION

All cats say blert when walking through walls.
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but at least the result has the right structure. Document preparation and text mark-up
systems like SGML, HTML and XML use this approach to express and control the
basic structure of documents.

A shorter but less trivial example is the language of all elevator motions that
return to the same point (a Manhattan turtle restricted to Sth Avenue would make the
same movements)

ZeroMotiony —> up ZeroMotion down ZeroMotion
| down ZeroMotion up ZeroMotion
| e
(in which we assume that the elevator shaft is infinitely long; it would be, in Man-
hattan).

If we ignore enough detail we can also recognize an underlying context-free
structure in the sentences of a natural language, for example, English:

Sentence; —> Subject Verb Object
Subject —> NounPhrase
Object —> NounPhrase
NounPhrase — the QualifiedNoun
QualifiedNoun —> Noun | Adjective QualifiedNoun
Noun -> castle | caterpillar | cats
Adjective —> well-read | white | wistful |
Verb —> admires | bark | criticize |

which produces sentences like:
the well-read cats criticize the wistful caterpillar
Since, however, no context is incorporated, it will equally well produce the incorrect
the cats admires the white well-read castle

For keeping context we could use a phrase structure grammar (for a simpler lan-
guage):

Sentence; —> Noun Number Verb
Number -> Singular | Plural
Noun Singular -»> castle Singular | caterpillar Singular |
Singular Verb —> Singular admires |
Singular — ¢
Noun Plural -> cats Plural |
Plural Verb — Plural bark | Plural criticize |
Plural — ¢

where the markers Singular and Plural control the production of actual English
words. Still, this grammar allows the cats to bark. ... For a better way to handle con-
text, see the various sections in Chapter 15, especially Van Wijngaarden grammars
(Section 15.2) and attribute and affix grammars (Section 15.3).

The bulk of examples of CF grammars originate from programming languages.
Sentences in these languages (that is, programs) have to be processed automatically
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(that is, by a compiler) and it was soon recognized (around 1958) that this is much
easier if the language has a well-defined formal grammar. The syntaxes of all pro-
gramming languages in use today are defined through formal grammars.

Some authors (for example Chomsky) and some parsing algorithms, require a
CF grammar to be monotonic. The only way a CF rule can be non-monotonic is by
having an empty right-hand side. Such a rule is called an e-rule and a grammar that
contains no such rules is called e-free.

The requirement of being e-free is not a real restriction, just a nuisance. Almost
any CF grammar can be made e-free by systematic substitution of the e-rules; the
exception is a grammar in which the start symbol already produces €. The trans-
formation process is explained in detail in Section 4.2.3.1), but it shares with many
other grammar transformations the disadvantage that it usually ruins the structure of
the grammar. The issue will be discussed further in Section 2.5.

2.3.2.3 Notation Styles

There are several different styles of notation for CF grammars for programming lan-
guages, each with endless variants; they are all functionally equivalent. We shall
show two main styles here. The first is the Backus-Naur Form (BNF) which was first
used to define ALGOL 60. Here is a sample:

<name>::= tom | dick | harry
<sentence>s::= <name> | <list> and <name>
<list>::= <name>, <list> | <name>

This form’s main properties are the use of angle brackets to enclose non-terminals
and of : : = for “may produce”. In some variants, the rules are terminated by a semi-
colon.

The second style is that of the CF van Wijngaarden grammars. Again a sample:

name: tom symbol; dick symbol; harry symbol.
sentenceg: name; list, and symbol, name.
list: name, comma symbol, list; name.

The names of terminal symbols end in ...symbol; their representations are
hardware-dependent and are not defined in the grammar. Rules are properly termi-
nated (with a period). Punctuation is used more or less in the traditional way; for
example, the comma binds tighter than the semicolon. The punctuation can be read
as follows:

: “is defined as a(n)”

; “ orasa(n)”’

’ “followed by a(n)”

. “, and as nothing else.”

The second rule in the above grammar would then read as: “a sentence is defined as
a name, or as a list followed by an and-symbol followed by a name, and as nothing
else.” Although this notation achieves its full power only when applied in the two-
level Van Wijngaarden grammars, it also has its merits on its own: it is formal and
still quite readable.
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2.3.2.4 Extended CF Grammars

CF grammars are often made both more compact and more readable by introduc-
ing special short-hands for frequently used constructions. If we return to the Book
grammar of Figure 2.10, we see that rules like:

SomethingSequence — Something | Something SomethingSequence

occur repeatedly. In an extended context-free grammar we can write Something*
meaning “one or more Somethings” and we do not need to give a rule for
Somethingt; the rule

Something? —> Something | Something Something®

is implicit. Likewise we can use Something” for “zero or more Somethings” and
Something’ for “zero or one Something” (that is, “optionally a Something”).
In these examples, the operators *, “ and ’ work on the preceding symbol. Their
range can be extended by using parentheses: (Something ;)’ means “option-
ally a Something-followed-by-a-; ”. These facilities are very useful and allow the
Book grammar to be written more efficiently (Figure 2.11). Some styles even al-
low constructions like Something*“, meaning “one or more Somethings with a
maximum of 4”, or Something*, meaning “one or more Somethings separated
by commas”; this seems to be a case of overdoing a good thing. This notation for
grammars is called Extended BNF (EBNF).

Book; — Preface Chapter' Conclusion
Preface —-> "PREFACE" Paragraph'
Chapter —> "CHAPTER" Number Paragraph?

Paragraph —> Sentence'
Sentence —

Conclusion -> "CONCLUSION" Paragraph'

Fig. 2.11. A grammar of a book in EBFN notation

The extensions of an EBNF grammar do not increase its expressive powers: all
implicit rules can be made explicit and then a normal CF grammar in BNF notation
results. Their strength lies in their user-friendliness. The star in the notation X* with
the meaning “a sequence of zero or more Xs” is called the Kleene star. If X is a set,
X* should be read as “a sequence of zero or more elements of X”’; it is the same star
that we saw in T* in Section 2.1.3.3. Forms involving the repetition operators *, * or
? and possibly the separators ( and ) are called regular expressions. EBNFs, which
have regular expressions for their right-hand sides, are for that reason sometimes
called regular right part grammars RRP grammars which is more descriptive than
“extended context free”, but which is perceived to be a tongue twister by some.

There are two different schools of thought about the structural meaning of a reg-
ular right-hand side. One school maintains that a rule like:
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Book —> Preface Chapter® Conclusion

is an abbreviation of

Book — Preface (Ol Conclusion
00 — Chapter | Chapter O

as shown above. This is the “(right)recursive” interpretation. It has the advantages
that it is easy to explain and that the transformation to “normal” CF is simple. Disad-
vantages are that the transformation entails anonymous rules (identified by Ot here)
and that the lopsided production tree for, for example, a book of four chapters does
not correspond to our idea of the structure of the book; see Figure 2.12.

Fig. 2.12. Production tree for the (right)recursive interpretation

The second school claims that
Book —> Preface Chapter® Conclusion

is an abbreviation of

Book —> Preface Chapter Conclusion
| Preface Chapter Chapter Conclusion
| Preface Chapter Chapter Chapter Conclusion

This is the “iterative” interpretation. It has the advantage that it yields a beautiful
production tree (Figure 2.13), but the disadvantages are that it involves an infinite
number of production rules and that the nodes in the production tree have a varying
fan-out.

Since the implementation of the iterative interpretation is far from trivial, most
practical parser generators use the recursive interpretation in some form or another,
whereas most research has been done on the iterative interpretation.
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Fig. 2.13. Production tree for the iterative interpretation

2.3.3 Type 3 Grammars

The basic property of CF grammars is that they describe things that nest: an
object may contain other objects in various places, which in turn may contain

. etc. When during the production process we have finished producing one of
the objects, the right-hand side still “remembers” what has to come after it: in
the English grammar, after having descended into the depth of the non-terminal
Subject to produce something like the wistful cat, the right-hand side
Subject Verb Object still remembers that a Verb must follow. While we are
working on the Subject, the Verb and Object remain queued at the right in the
sentential form, for example,

the wistful QualifiedNoun Verb Object
In the right-hand side
up ZeroMotion down ZeroMotion

after having performed the up and an arbitrarily complicated ZeroMotion, the
right-hand side still remembers that a down must follow.

The restriction to Type 3 disallows this recollection of things that came before: a
right-hand side may only contain one non-terminal and it must come at the end. This
means that there are only two kinds of rules:*

e anon-terminal produces zero or more terminals, and
e anon-terminal produces zero or more terminals followed by one non-terminal.

The original Chomsky definition of Type 3 restricts the kinds of rules to

* anon-terminal produces one terminal.
* A non-terminal produces one terminal followed by one non-terminal.

Our definition is equivalent and more convenient, although the conversion to Chom-
sky Type 3 is not completely trivial.

Type 3 grammars are also called regular grammars (RE grammars) or finite-state
grammars (FS grammars). More precisely the version defined above is called right-
regular since the only non-terminal in a rule is found at the right end of the right-hand
side. This distinguishes them from the left-regular grammars, which are subject to
the restrictions

4 There is a natural in-between class, Type 2.5 so to speak, in which only a single non-
terminal is allowed in a right-hand side, but where it need not be at the end. This gives us
the so-called linear grammars.
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e anon-terminal produces zero or more terminals
* anon-terminal produces one non-terminal followed by zero or more terminals

where the only non-terminal in a rule is found at the left end of the right-hand side.
Left-regular grammars are less intuitive than right-regular ones, occur less frequently,
and are more difficult to process, but they do occur occasionally (see for example
Section 5.1.1), and need to be considered. They are discussed in Section 5.6.

Given the prevalence of right-regular over left-regular, the term “regular gram-
mar” is usually intended to mean “right-regular grammar”, and left-regularity is men-
tioned explicitly. We will follow this convention in this book.

It is interesting to compare the definition of right-regular to that of right-recursive
(page 24). A non-terminal A is right-recursive if it can produce a sentential form that
has an A at the right end; A is right-regular if, when it produces a sentential form that
contains A, the A is at the right end.

In analogy to context-free grammars, which are called after what they cannot do,
regular grammars could be called “non-nesting grammars”.

Since regular grammars are used very often to describe the structure of text on the
character level, it is customary for the terminal symbols of a regular grammar to be
single characters. We shall therefore write t for Tom, d for Dick, h for Harry and
& for and. Figure 2.14(a) shows a right-regular grammar for our t, d&h language
in this style, 2.14(b) a left-regular one.

Sentence; — t | d | h | List
List —> t ListTail | d ListTail | h ListTail
ListTail — , List | & t | & d | & h
(@)
Sentence; — t | 4 | h | List
List —> ListHead & t | ListHead & d | ListHead & h
ListHead —> ListHead , t | ListHead , 4 | ListHead , h |
t | d]| h
(b)

Fig. 2.14. Type 3 grammars for the t, d & h language

The production tree for a sentence from a Type 3 (right-regular) grammar degen-
erates into a “production chain” of non-terminals that drop a sequence of terminals on
their left. Figure 2.15 shows an example. Similar chains are formed by left-regular
grammars, with terminals dropping to the left.

The deadly repetition exhibited by the grammar of Figure 2.14 is typical of reg-
ular grammars and a number of notational devices have been invented to abate this
nuisance. The most common one is the use of square brackets to indicate “one out of
a set of characters”: [tdh] is an abbreviation for t |d | h:

S —> [tdh] | L

L — [tdh]l T
T — , L | & [tdh]
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Fig. 2.15. Production chain for a right-regular (Type 3) grammar

which may look more cryptic at first but is actually much more convenient and in
fact allows simplification of the grammar to

Ss —> [tdh] |

L
L — [tdh] , L | [tdh] & [tdh]
A second way is to allow macros, names for pieces of the grammar that are

substituted properly into the grammar before it is used:

Name —> t | d | h
Sg —> $Name | L
L —> $Name , L | $Name & S$Name

The popular parser generator for regular grammars /ex (Lesk and Schmidt [360])
features both facilities.

If we adhere to the Chomsky definition of Type 3, our grammar will not get
smaller than:

Ss - t|d|h|tM|dM| hM
M - ,N| &P

N - tM| dM | hM

P - t | d]|h

This form is easier to process but less user-friendly than the /ex version. We observe
here that while the formal-linguist is interested in and helped by minimally sufficient
means, the computer scientist values a form in which the concepts underlying the
grammar ($Name, etc.) are easily expressed, at the expense of additional processing.

There are two interesting observations about regular grammars which we want
to make here. First, when we use a regular grammar for generating a sentence, the
sentential forms will only contain one non-terminal and this will always be at the
end; that is where it all happens (using the grammar of Figure 2.14):
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Sentenceg

List

t ListTail

t , List

t , d ListTail
t,d&h

The second observation is that all regular grammars can be reduced considerably
in size by using the regular expression operators *, * and ’ introduced in Section
2.3.2 for “zero or more”, “one or more” and “optionally one”, respectively. Using
these operators and ( and ) for grouping, we can simplify our grammar to:

*

8¢ — (( [tdhl, )" [tdhl& )’ [tdh]

Here the parentheses serve to demarcate the operands of the “ and ? operators. Regu-
lar expressions exist for all Type 3 grammars. Note that the * and the * work on what
precedes them. To distinguish them from the normal multiplication and addition op-
erators, they are often printed higher than the level text in print, but in computer input
they are in line with the rest, and other means must be used to distinguish them.

2.3.4 Type 4 Grammars

The last restriction we shall apply to what is allowed in a production rule is a pretty
final one: no non-terminal is allowed in the right-hand side. This removes all the
generative power from the mechanism, except for the choosing of alternatives. The
start symbol has a (finite) list of alternatives from which we are allowed to choose;
this is reflected in the name finite-choice grammar (FC grammar).

There is no FC grammar for our t, d&h language; if, however, we are willing to
restrict ourselves to lists of names of a finite length (say, no more than a hundred),
then there is one, since one could enumerate all combinations. For the obvious limit
of three names, we get:

S¢ — [tdh]l | [tdh]l & [tdh] | [tdh] , [tdh] & [tdh]

for a total of 3+ 3 x 3+ 3 x 3 x 3 = 39 production rules.

FC grammars are not part of the official Chomsky hierarchy in that they are not
identified by Chomsky. They are nevertheless very useful and are often required as
a tail-piece in some process or reasoning. The set of reserved words (keywords) in
a programming language can be described by an FC grammar. Although not many
grammars are FC in their entirety, some of the rules in many grammars are finite-
choice. For example, the first rule of our first grammar (Figure 2.3) was FC. Another
example of a FC rule was the macro introduced in Section 2.3.3. We do not need the
macro mechanism if we change

zero or more terminals
in the definition of a regular grammar to
zero or more terminals or FC non-terminals

In the end, the FC non-terminals will only introduce a finite number of terminals.
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2.3.5 Conclusion
The table in Figure 2.16 summarizes the most complicated data structures that can

occur in the production of a string, in correlation to the grammar type used. See also
Figure 3.15 for the corresponding data types obtained in parsing.

Chomsky Grammar | Most complicated ~ Example

type type data structure figure
0/1 PS/CS | production dag 2.8

2 CF production tree 2.9

3 FS production list 2.15

4 FC production element —

Fig. 2.16. The most complicated production data structure for the Chomsky grammar types

2.4 Actually Generating Sentences from a Grammar

2.4.1 The Phrase-Structure Case

Until now we have only produced single sentences from our grammars, in an ad hoc
fashion, but the purpose of a grammar is to generate all of its sentences. Fortunately
there is a systematic way to do so. We shall use the a”"b"c” grammar as an example.
We start from the start symbol and systematically make all possible substitutions to
generate all sentential forms; we just wait and see which ones evolve into sentences
and when. Try this by hand for, say, 10 sentential forms. If we are not careful, we are
apt to only generate forms like aSQ, aaSQQ, aaasQQqQ, ..., and we will never see a
finished sentence. The reason is that we focus too much on a single sentential form:
we have to give equal time to all of them. This can be done through the following
algorithm, which keeps a queue (that is, a list to which we add at the end and remove
from the beginning), of sentential forms.

Start with the start symbol as the only sentential form in the queue. Now continue
doing the following:

e Consider the first sentential form in the queue.

e Scan it from left to right, looking for strings of symbols that match the left-hand
side of a production rule.

e For each such string found, make enough copies of the sentential form, replace in
each one the string that matched a left-hand side of a rule by a different alternative
of that rule, and add them all to the end of the queue.

e If the original sentential form does not contain any non-terminals, write it down
as a sentence in the language.

e Throw away the original sentential form; it has been fully processed.
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If no rule matched, and the sentential form was not a finished sentence, it was a blind
alley; they are removed automatically by the above process and leave no trace.
Since the above procedure enumerates all strings in a PS language, PS languages
are also called recursively enumerable sets, where “recursively” is to be taken to
mean “by a possibly recursive algorithm”.
The first couple of steps of this process for our a"b”"c” grammar from Figure
2.7 are depicted in Figure 2.17. The queue runs to the right, with the first item on

Step Queue Result
1 S
2 abc asQ abc
3 asQ
4 aabcQ aasQQ
5 aasQQ aabQc
6 aabQc aaabcQQ aaasSQQQ
7 aaabcQQ aaasQQQ aabbcc
8 aaaSQQQ aabbcc aaabQcQ
9 aabbcc aaabQcQ aaaabcQQQ aaaasQQQQ aabbcc
10 aaabQcQ aaaabcQQQ aaaasQQQQ
11

aaaabcQQQ aaaasQQQQ aaabbccQ aaabQQc

Fig. 2.17. The first couple of steps in producing for a""b"c"

the left. We see that we do not get a sentence for each time we turn the crank; in
fact, in this case real sentences will get scarcer and scarcer. The reason is of course
that during the process more and more side lines develop, which all require equal
attention. Still, we can be certain that every sentence that can be produced, will in
the end be produced: we leave no stone unturned. This way of doing things is called
breadth-first production; computers are better at it than people.

It is tempting to think that it is unnecessary to replace all left-hand sides that we
found in the top-most sentential form. Why not just replace the first one and wait
for the resulting sentential form to come up again and then do the next one? This is
wrong, however, since doing the first one may ruin the context for doing the second
one. A simple example is the grammar

Ss —= AC
A — b
AC — ac

First doing A—b will lead to a blind alley and the grammar will produce nothing.
Doing both possible substitutions will lead to the same blind alley, but then there will
also be a second sentential form, ac. This is also an example of a grammar for which
the queue will get empty after a (short) while.

If the grammar is context-free (or regular) there is no context to ruin and it is
quite safe to just replace the first (or only) match.
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There are two remarks to be made here. First, it is not at all certain that we
will indeed obtain a sentence for all our effort: it is quite possible that every new
sentential form again contains non-terminals. We should like to know this in advance
by examining the grammar, but it can be proven that it is impossible to do so for
PS grammars. The formal-linguist says “It is undecidable whether a PS grammar
produces the empty set”, which means that there cannot be an algorithm that will
for every PS grammar correctly tell if the grammar produces at least one sentence.
This does not mean that we cannot prove for some given grammar that it generates
nothing, if that is the case. It means that the proof method used will not work for
all grammars: we could have a program that correctly says Yes in finite time if the
answer is Yes but that takes infinite time if the answer is No. In fact, our generating
procedure above is such an algorithm that gives the correct Yes/No answer in infinite
time (although we can have an algorithm that gives a Yes/Don’t know answer in finite
time). Although it is true that because of some deep property of formal languages
we cannot always get exactly the answer we want, this does not prevent us from
obtaining all kinds of useful information that gets close. We shall see that this is a
recurring phenomenon. The computer scientist is aware of but not daunted by the
impossibilities from formal linguistics.

The second remark is that when we do get sentences from the above produc-
tion process, they may be produced in an unexploitable order. For non-monotonic
grammars the sentential forms may grow for a while and then suddenly shrink again,
perhaps even to the empty string. Formal linguistics proves that there cannot be an
algorithm that for all PS grammars produces their sentences in increasing (actually
“non-decreasing”) length. In other words, the parsing problem for PS grammars is
unsolvable. (Although the terms are used interchangeably, it seems reasonable to use
“undecidable” for yes/no questions and “unsolvable” for problems.)

2.4.2 The CS Case

The above language-generating procedure is also applicable to CS grammars, except
for the parts about undecidability. Since the sentential forms under development can
never shrink, the strings are produced in monotonic order of increasing length. This
means that if the empty string is not the first string, it will never appear and the CS
grammar does not produce €. Also, if we want to know if a given string w is in the
language, we can just wait until we see it come up, in which case the answer is Yes,
or until we see a longer string come up, in which case the answer is No.

Since the strings in a CS language can be recognized by a possibly recursive
algorithm, CS languages are also called recursive sets.

2.4.3 The CF Case

When we generate sentences from a CF grammar, many things are a lot simpler. It
can still happen that our grammar will never produce a sentence, but now we can test
for that beforehand, as follows. First scan the grammar to find all non-terminals that
have a right-hand side that contains terminals only or is empty. These non-terminals
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are guaranteed to produce something. Now scan again to find non-terminals that have
a right-hand side that consists of only terminals and non-terminals that are guaran-
teed to produce something. This will give us new non-terminals that are guaranteed
to produce something. Repeat this until we find no more new such non-terminals. If
we have not met the start symbol this way, it will not produce anything.

Furthermore we have seen that if the grammar is CF, we can afford to just rewrite
the leftmost non-terminal every time (provided we rewrite it into all its alternatives).
Of course we can also consistently rewrite the rightmost non-terminal. Both ap-
proaches are similar but different. Using the grammar

0. N — ¢t

2. L —= N,

let us follow the adventures of the sentential form that will eventually result in
d, h&h. Although it will go up and down the production queue several times, we
only depict here what changes are made to it. Figure 2.18 shows the sentential forms
for leftmost and rightmost substitution, with the rules and alternatives involved; for
example, (1b) means rule 1 alternative b, the second alternative.

S S
1b 1b

L&N L&N
2a Oc

N, L&N L&h
0b 2a

d, L&N N, L&h
2b 2b

d, N&N N, N&h
Oc Oc

d, h&N N, h&h
Oc 0b

d, h&h d, h&h

Fig. 2.18. Sentential forms leading to d, h&h, with leftmost and rightmost substitution

The sequences of production rules used are not as similar as we would expect. Of
course in grand total the same rules and alternatives are applied, but the sequences
are neither equal nor each other’s mirror image, nor is there any other obvious re-
lationship. Both sequences define the same production tree (Figure 2.19(a)), but if
we number the non-terminals in it in the order they were rewritten, we get different
numberings, as shown in (b) and (c).

The sequence of production rules used in leftmost rewriting is called the leftmost
derivation of a sentence. We do not have to indicate at what position a rule must
be applied, nor do we need to give its rule number. Just the alternative is sufficient;
the position and the non-terminal are implicit. A rightmost derivation is defined in a
similar way.
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Fig. 2.19. Production tree (a) with leftmost (b) and rightmost (¢) derivation order

A leftmost production step can be indicated by using an arrow marked with a
small /: N, L&N-+>d, L&N, and the leftmost production sequence

S > L&N > N,L&N > d,L&N >d,N&N > d,h&N > d,h&h
can be abbreviated to S T*->d, h&h. Likewise, the rightmost production sequence
S —>L&N -—>L&h ->N,L&h -> N,N&h ->N,h&h -—>d,h&h

can be abbreviated to S,i>d, h&h. The fact that S produces d, h&h in any way is
written as S—>d, h&h.

The task of parsing is to reconstruct the derivation tree (or graph) for a given input
string. Some of the most efficient parsing techniques can be understood more easily
if viewed as attempts to reconstruct a left- or rightmost derivation process of the
input string; the derivation tree then follows automatically. This is why the notion
“[left|right]-most derivation” occurs frequently in this book (note the FC grammar
used here).

2.5 To Shrink or Not To Shrink

In the previous paragraphs, we have sometimes been explicit as to the question if a
right-hand side of a rule may be shorter than its left-hand side and sometimes we
have been vague. Type O rules may definitely be of the shrinking variety, monotonic
rules definitely may not, and Type 2 and 3 rules can shrink only by producing empty
(¢); that much is sure.

The original Chomsky hierarchy (Chomsky [385]) was very firm on the subject:
only Type O rules are allowed to make a sentential form shrink. Type 1, 2 and 3 rules
are all monotonic. Moreover, Type 1 rules have to be of the context-sensitive variety,
which means that only one of the non-terminals in the left-hand side is actually al-
lowed to be replaced (and then not by €). This makes for a proper hierarchy in which
each next class is a proper subset of its parent and in which all derivation graphs
except for those of Type O grammars are actually derivation trees.
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As an example consider the grammar for the language a"b"c” given in Figure
2.7:
1. 8 — abc | asQ
2. bQe — bbcc
3. eQ@ —= Qc

which is monotonic but not context-sensitive in the strict sense. It can be made CS
by expanding the offending rule 3 and introducing a non-terminal for c:

1. S — abC | asQ
2. bQC — bbccC

3a. €CQ — CX

3b. CX — QX

3c. QX — QC

4, cC — c¢

Now the production graph of Figure 2.8 turns into a production tree:

There is an additional reason for shunning €-rules: they make both proofs and
parsers more complicated, sometimes much more complicated; see, for example,
Section 9.5.4. So the question arises why we should bother with e-rules at all; the
answer is that they are very convenient for the grammar writer and user.

If we have a language that is described by a CF grammar with e-rules and we want
to describe it by a grammar without e-rules, then that grammar will almost always
be more complicated. Suppose we have a system that can be fed bits of information,
like: “Amsterdam is the capital of the Netherlands”, “Truffles are expensive”, and
can then be asked a question. On a very superficial level we can define its input as:

inputy: =zero-or-more-bits-of-info question
or, in an extended notation

inputg: bit-of-info” question
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Since zero-or-more-bits-of-info will, among other strings, produce the
empty string, at least one of the rules used in its grammar will be an e-rule; the *
in the extended notation already implies an €-rule somewhere. Still, from the user’s
point of view, the above definition of input neatly fits the problem and is exactly what
we want.

Any attempt to write an e-free grammar for this input will end up defining a no-
tion that comprises some of the later bits-of-info together with the question
(since the question is the only non-empty part, it must occur in all rules involved!)
But such a notion does not fit our problem at all and is an artifact:

inputg: question-preceded-by-info
question-preceded-by-info: question
| bit-of-info
question-preceded-by-info

As a grammar becomes more and more complicated, the requirement that it be e-free
becomes more and more of a nuisance: the grammar is working against us, not for
us.

This presents no problem from a theoretical point of view: any CF language can
be described by an e-free CF grammar and e-rules are never needed. Better still, any
grammar with e-rules can be mechanically transformed into an e-free grammar for
the same language. We saw an example of such a transformation above and details of
the algorithm are given in Section 4.2.3.1. But the price we pay is that of any gram-
mar transformation: it is no longer our grammar and it reflects the original structure
less well.

The bottom line is that the practitioner finds the €-rule to be a useful tool, and it
would be interesting to see if there exists a hierarchy of non-monotonic grammars
alongside the usual Chomsky hierarchy. To a large extend there is: Type 2 and Type
3 grammars need not be monotonic (since they can always be made so if the need
arises); it turns out that context-sensitive grammars with shrinking rules are equiv-
alent to unrestricted Type O grammars; and monotonic grammars with e-rules are
also equivalent to Type 0 grammars. We can now draw the two hierarchies in one
picture; see Figure 2.20. Drawn lines separate grammar types with different power.
Conceptually different grammar types with the same power are separated by blank
space. We see that if we insist on non-monotonicity, the distinction between Type 0
and Type 1 disappears.

A special case arises if the language of a Type 1 to Type 3 grammar itself contains
the empty string. This cannot be incorporated into the grammar in the monotonic
hierarchy since the start symbol already has length 1 and no monotonic rule can
make it shrink. So the empty string has to be attached as a special property to the
grammar. No such problem occurs in the non-monotonic hierarchy.

Many parsing methods will in principle work for e-free grammars only: if some-
thing does not produce anything, you can’t very well see if it’s there. Often the pars-
ing method can be doctored to handle e-rules, but that invariably increases the com-
plexity of the method. It is probably fair to say that this book would be at least 30%
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Chomsky (monotonic) hierarchy hon-monotonic

hierarchy
unflestrlcted monotonic unrestricted phrase
Type 0 | phrase structure grammars structure grammars
global grammars with e-rules
production context-sensitive monotonic context—sensn.lve
Type 1 grammars grammars, grammars with
no e-rules non-monotonic rules
local Type 2 | context-free e-free grammars context-free grammars
production Type 3 | regular (e-free) grammars regular grammars,
regular expressions
no production | Type 4 finite-choice

Fig. 2.20. Summary of grammar hierarchies

thinner if e-rules did not exist — but then grammars would lose much more than
30% of their usefulness!

2.6 Grammars that Produce the Empty Language

Roughly 1500 years after the introduction of zero as a number by mathematicians in
India, the concept is still not well accepted in computer science. Many programming
languages do not support records with zero fields, arrays with zero elements, or vari-
able definitions with zero variables; in some programming languages the syntax for
calling a routine with zero parameters differs from that for a routine with one or more
parameters; many compilers refuse to compile a module that defines zero names; and
this list could easily be extended. More in particular, we do not know of any parser
generator that can produce a parser for the empty language, the language with zero
strings.

All of which brings us to the question of what the grammar for the empty lan-
guage would look like. First note that the empty language differs from the language
that consists of only the empty string, a string with zero characters. This language is
easily generated by the grammar Sy—>¢, and is handled correctly by the usual lex-
yacc pipeline. Note that this grammar has no terminal symbols, which means that V
in Section 2.2 is the empty set.

For a grammar to produce nothing, the production process cannot be allowed to
terminate. This suggests one way to obtain such a grammar: S;—S. This is ugly,
however, for two reasons. From an algorithmic point of view the generation process
now just loops and no information about the emptiness of the language is obtained;
and the use of the symbol S is arbitrary.

Another way is to force the production process to get stuck by not having any
production rules in the grammar. Then R in Section 2.2 is empty too, and the form
of the grammar is ({S}, {}, S, {}). This is not very satisfactory either, since now we
have a non-terminal without a defining rule; and the symbol S is still arbitrary.
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A better way is never to allow the production process to get started: have no start
symbol. This can be accommodated by allowing a set of start symbols in the defini-
tion of a grammar rather than a single start symbol. There are other good reasons for
doing so. An example is the grammar for a large programming language which has
multiple “roots” for module specifications, module definitions, etc. Although these
differ at the top level, they have large segments of the grammar in common. If we
extend the definition of a CF grammar to use a set of start symbols, the grammar for
the empty language obtains the elegant and satisfactory form ({}, {}, {}, {}).

Also on the subject of zero and empty: it might be useful to consider grammar
rules in which the left-hand side is empty. Terminal productions of the right-hand
sides of such rules may appear anywhere in the input, thus modeling noise and other
every-day but extraneous events.

Our preoccupation with empty strings, sets, languages, etc. is not frivolous, since
it is well known that the ease with which a system handles empty cases is a measure
of its cleanliness and robustness.

2.7 The Limitations of CF and FS Grammars

When one has been working for a while with CF grammars, one gradually gets the
feeling that almost anything could be expressed in a CF grammar. That there are,
however, serious limitations to what can be said by a CF grammar is shown by the
famous uvwxy theorem, which is explained below.

2.7.1 The uvwxy Theorem

When we have obtained a sentence from a CF grammar, we may look at each (ter-
minal) symbol in it, and ask: How did it get here? Then, looking at the production
tree, we see that it was produced as, say, the n-th member of the right-hand side of
rule number m. The left-hand side of this rule, the parent of our symbol, was again
produced as the p-th member of rule g, and so on, until we reach the start symbol.
We can, in a sense, trace the lineage of the symbol in this way. If all rule/member
pairs in the lineage of a symbol are different, we call the symbol original, and if all
the symbols in a sentence are original, we call the sentence “original”.
For example, the lineage of the first h in the production tree
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produced by the grammar

. 8§ —- L &N
2. 8 —= N
3 L —- N, L
4 L — N
5 N — ¢t
6. N — d
7 N — h

ishof7,10f4,1o0f 3,3 of 1, 1. Here the first number indicates the rule and the
second number is the member number in that rule. Since all the rule/member pairs
are different the h is original.

Now there is only a finite number of ways for a given symbol to be original.
This is easy to see as follows. All rule/member pairs in the lineage of an original
symbol must be different, so the length of its lineage can never be more than the
total number of different rule/member pairs in the grammar. There are only so many
of these, which yields only a finite number of combinations of rule/member pairs of
this length or shorter. In theory the number of original lineages of a symbol can be
very large, but in practice it is very small: if there are more than, say, ten ways to
produce a given symbol from a grammar by original lineage, your grammar will be
very convoluted indeed!

This puts severe restrictions on original sentences. If a symbol occurs twice in
an original sentence, both its lineages must be different: if they were the same, they
would describe the same symbol in the same place. This means that there is a maxi-
mum length to original sentences: the sum of the numbers of original lineages of all
symbols. For the average grammar of a programming language this length is in the
order of some thousands of symbols, i.e., roughly the size of the grammar. So, since
there is a longest original sentence, there can only be a finite number of original sen-
tences, and we arrive at the surprising conclusion that any CF grammar produces a
finite-size kernel of original sentences and (probably) an infinite number of unorigi-
nal sentences!

What do “unoriginal” sentences look like? This is where we come to the uvwxy
theorem. An unoriginal sentence has the property that it contains at least one sym-
bol in the lineage of which a repetition occurs. Suppose that symbol is a ¢ and the
repeated rule is A. We can then draw a picture similar to Figure 2.21, where w is the
part produced by the most recent application of A, vwx the part produced by the other
application of A and uvwxy is the entire unoriginal sentence. Now we can immedi-
ately find another unoriginal sentence, by removing the smaller triangle headed by A
and replacing it by a copy of the larger triangle headed by A; see Figure 2.22.

This new tree produces the sentence uvvwxxy and it is easy to see that we can, in
this way, construct a complete family of sentences uv*wx"y for all n > 0. This form
shows the w nested in a number of v and x brackets, in an indifferent context of # and
y.

The bottom line is that when we examine longer and longer sentences in a
context-free language, the original sentences become exhausted and we meet only
families of closely related sentences telescoping off into infinity. This is summarized
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Wy T, x y

Fig. 2.21. An unoriginal sentence: uvwxy

Fig. 2.22. Another unoriginal sentence, uv>wx2y

in the uvwxy theorem: any sentence generated by a CF grammar that is longer than
the longest original sentence from that grammar can be cut into five pieces u, v, w, x
and y, in such a way that uv"wx"y is a sentence from that grammar for all n > 0. The
uvwxy theorem is also called the pumping lemma for context-free languages and has
several variants.

Two remarks must be made here. The first is that if a language keeps on providing
longer and longer sentences without reducing to families of nested sentences, there
cannot be a CF grammar for it. We have already encountered the context-sensitive
language a"b"c" and it is easy to see (but not quite so easy to prove!) that it does not
decay into such nested sentences, as sentences get longer and longer. Consequently,
there is no CF grammar for it. See Billington [396] for a general technique for such
proofs.

The second is that the longest original sentence is a property of the grammar,
not of the language. By making a more complicated grammar for a language we can
increase the set of original sentences and push away the border beyond which we
are forced to resort to nesting. If we make the grammar infinitely complicated, we
can push the border to infinity and obtain a phrase structure language from it. How
we can make a CF grammar infinitely complicated is described in the section on
two-level grammars, 15.2.1.
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2.7.2 The uvw Theorem

A simpler form of the uvwxy theorem applies to regular (Type 3) languages. We have
seen that the sentential forms occurring in the production process for a FS grammar
all contain only one non-terminal, which occurs at the end. During the production
of a very long sentence, one or more non-terminals must occur two or more times,
since there are only a finite number of non-terminals. Figure 2.23 shows what we
see when we list the sentential forms one by one. The substring v has been produced

Start_symbol

- P
...... 0
u
<T>-~ R
<T> ----- S
A i
m " A appears again
a7
u v
- U
u v
- - -
u v w

Fig. 2.23. Repeated occurrence of A may result in repeated occurrence of v

from one occurrence of A to the next, u is a sequence that allows us to reach A, and w
is a sequence that allows us to terminate the production process. It will be clear that,
starting from the second A, we could have followed the same path as from the first
A, and thus have produced uvvw. This leads us to the uvw theorem, or the pumping
lemma for regular languages: any sufficiently long string from a regular language
can be cut into three pieces u, v and w, so that uv"w is a string in the language for all
n>0.

2.8 CF and FS Grammars as Transition Graphs

A transition graph is a directed graph in which the arrows are labeled with zero or
more symbols from the grammar. The idea is that as you follow the arrows in the
graph you produce one of the associated symbols, if there is one, and nothing other-
wise. The nodes, often unlabeled, are resting points between producing the symbols.
If there is more than one outgoing arrow from a node you can choose any to fol-
low. So the transition graph in Figure 2.24 produces the same strings as the sample
grammar on page 23.

It is fairly straightforward to turn a grammar into a set of transition graphs, one
for each non-terminal, as Figure 2.25 shows. But it contains arrows marked with non-
terminals, and the meaning of “producing” a non-terminal associated with an arrow
is not directly clear. Suppose we are at node n;, from which a transition (arrow)
labeled with non-terminal N leads to a node n,, and we want to take that transition.
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Fig. 2.25. A recursive transition network for the sample grammar on page 23

Rather than producing N by appending it to the output, we push node 7, on a stack,
and continue our walk at the entrance to the transition graph for N. And when we
are leaving the transition graph for NV, we pop n, from the stack and continue at node
ny. This is the recursive transition network interpretation of context-free grammars:
the set of graphs is the transition network, and the stacking mechanism provides the
recursion.

Figure 2.26 shows the right-regular rules of the FS grammar Figure 2.14(a) as
transition graphs. Here we have left out the unmarked arrows at the exits of the
graphs and the corresponding nodes; we could have done the same in Figure 2.25,
but doing so would have complicated the stacking mechanism.

We see that we have to produce a non-terminal only when we are just leaving
another, so we do not need to stack anything, and can interpret an arrow marked
with a non-terminal N as a jump to the transition graph for N. So a regular grammar
corresponds to a (non-recursive) transition network.

If we connect each exit marked N in such a network to the entrance of the graph
for N we can ignore the non-terminals, and obtain a transition graph for the corre-
sponding language. When we apply this short-circuiting to the transition network of
Figure 2.26 and rearrange the nodes a bit, we get the transition graph of Figure 2.24.
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Fig. 2.26. The FS grammar of Figure 2.14(a) as transition graphs

2.9 Hygiene in Context-Free Grammars

All types of grammars can contain useless rules, rules that cannot play a role in any
successful production process. A production process is successful when it results in a
terminal string. Production attempts can be unsuccessful by getting stuck (no further
substitution possible) or by entering a situation in which no substitution sequence
will ever remove all non-terminals. An example of a Type 0 grammar that can get
stuck is

1. Ss — A B
2. S — B A
3. s = C
4, A B — x
5. cC —» CCC

When we start with the first rule for S, all goes well and we produce the terminal
string x. But when we start with rule 2 for S we get stuck, and when we start with
rule 3, we get ourselves in an infinite loop, producing more and more Cs. Rules 2, 3
and 5 can never occur in a successful production process: they are useless rules, and
can be removed from the grammar without affecting the language produced.

Useless rules are not a fundamental problem: they do not obstruct the normal
production process. Still, they are dead wood in the grammar, and one would like to
remove them. Also, when they occur in a grammar specified by a programmer, they
probably point at some error, and one would like to detect them and give warning or
eITor messages.

The problems with the above grammar were easy to understand, but it can be
shown that in general it is undecidable whether a rule in a Type 0 or 1 grammar is
useless: there cannot be an algorithm that does it correctly in all cases. For context-
free grammars the situation is different, however, and the problem is rather easily
solved.
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Rules in a context-free grammar can be useless through three causes: they may
contain undefined non-terminals, they may not be reachable from the start symbol,
and they may fail to produce anything. We will now discuss each of these ailments
in more detail; an algorithm to rid a grammar of them is given in Section 2.9.5.

2.9.1 Undefined Non-Terminals

The right-hand side of some rule may contain a non-terminal for which no production
rule is given. Such a rule will never have issue and can be removed from the grammar.
If we do this, we may of course remove the last definition of another non-terminal,
which will then in turn become undefined, etc.

We will see further on (for example in Section 4.1.3) that it is occasionally useful
to also recognize undefined terminals. Rules featuring them in their right-hand sides
can again be removed.

2.9.2 Unreachable Non-Terminals

If a non-terminal cannot be reached from the start symbol, its defining rules will
never be used, and it cannot contribute to the production of any sentence. Unreach-
able non-terminals are sometimes called “unused non-terminals”. But this term is a
bit misleading, because an unreachable non-terminal A may still occur in some right-
hand side B — ---A---, making it look useful, provided B is unreachable; the same
applies of course to B, etc.

2.9.3 Non-Productive Rules and Non-Terminals

Suppose X has as its only rule X — aX and suppose X can be reached from the start
symbol. Now X will still not contribute anything to the sentences of the language
of the grammar, since once X is introduced, there is no way to get rid of it: X is
a non-productive non-terminal. In addition, any rule which has X in its right-hand
side is non-productive. In short, any rule that does not in itself produce a non-empty
sublanguage is non-productive. If all rules for a non-terminal are non-productive, the
non-terminal is non-productive.

In an extreme case all non-terminals in a grammar are non-productive. This hap-
pens when all right-hand sides in the grammar contain at least one non-terminal.
Then there is just no way to get rid of the non-terminals, and the grammar itself is
non-productive.

These three groups together are called useless non-terminals.

2.9.4 Loops

The above definition makes “non-useless” all rules that can be involved in the pro-
duction of a sentence, but there still is a class of rules that are not really useful: rules
of the form A — A. Such rules are called loops. Loops can also be indirect: A — B,
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B — C, C — A; and they can be hidden: A — PAQ, P-5¢, Q-¢, so a production
sequence A — PAQ — ...A... — A is possible.

A loop can legitimately occur in the production of a sentence, and if it does,
there is also a production of that sentence without the loop. Loops do not contribute
to the language and any sentence the production of which involves a loop is infinitely
ambiguous, meaning that there are infinitely many production trees for it. Algorithms
for loop detection are given in Section 4.1.2.

Different parsers react differently to grammars with loops. Some (most of the
general parsers) faithfully attempt to construct an infinite number of derivation trees,
some (for example, the CYK parser) collapse the loop as described above and some
(most deterministic parsers) reject the grammar. The problem is aggravated by the
fact that loops can be concealed by e-rules: a loop may only become visible when
certain non-terminals produce €.

A grammar without useless non-terminals and loops is called a proper grammar.

2.9.5 Cleaning up a Context-Free Grammar

Normally, grammars supplied by people do not contain undefined, unreachable or
non-productive non-terminals. If they do, it is almost certainly a mistake (or a test!),
and we would like to detect and report them. Such anomalies can, however, occur
normally in generated grammars or be introduced by some grammar transforma-
tions, in which case we wish to detect them to “clean up” the grammar. Cleaning the
grammar is also very important when we obtain the result of parsing as a parse-forest
grammar (Section 3.7.4, Chapter 13, and many other places).

The algorithm to detect and remove useless non-terminals and rules from a
context-free grammar consists of two steps: remove the non-productive rules and
remove the unreachable non-terminals. Surprisingly it is not necessary to remove the
useless rules due to undefined non-terminals: the first step does this for us automati-
cally.

Ss — AB | DE
A — a

B — b C

C —= ¢

D - 4F

E — e

F — £D

Fig. 2.27. A demo grammar for grammar cleaning

We will use the grammar of Figure 2.27 for our demonstration. It looks fairly
innocent: all its non-terminals are defined and it does not exhibit any suspicious
constructions.



50 2 Grammars as a Generating Device
2.9.5.1 Removing Non-Productive Rules

We find the non-productive rules by finding the productive ones. Our algorithm
hinges on the observation that a rule is productive if its right-hand side consists of
symbols all of which are productive. Terminal symbols are productive since they
produce terminals and empty is productive since it produces the empty string. A
non-terminal is productive if there is a productive rule for it, but the problem is that
initially we do not know which rules are productive, since that is exactly the thing
we are trying to find out.

We solve this dilemma by first marking all rules and non-terminals as “Don’t
know”. We now go through the grammar of Figure 2.27 and for each rule for which
we do know that all its right-hand side members are productive, we mark the rule
and the non-terminal it defines as “Productive”. This yields markings for the rules
A—a, C—c, and E—e, and for the non-terminals A, C and E.

Now we know more and apply this knowledge in a second round through the
grammar. This allows us to mark the rule B—>bC and the non-terminal B, since now
C is known to be productive. A third round gives us S—AB and S. A fourth round
yields nothing new, so there is no point in a fifth round.

We now know that S, A, B, C, and E are productive, but D and F and the rule
S—DE are still marked “Don’t know”. However, now we know more: we know
that we have pursued all possible avenues for productivity, and have not found any
possibilities for D, F and the second rule for S. That means that we can now upgrade
our knowledge “Don’t know” to “Non-productive”. The rules for D, F and the second
rule for S can be removed from the grammar; the result is shown in Figure 2.28. This
makes D and F undefined, but S stays in the grammar since it is productive, in spite
of having a non-productive rule.

Ss — A B
A — a
B — b C
CcC —= c¢
E — e

Fig. 2.28. The demo grammar after removing non-productive rules

It is interesting to see what happens when the grammar contains an undefined
non-terminal, say U. U will first be marked “Don’t know”, and since there is no
rule defining it, it will stay “Don’t know”. As a result, any rule R featuring U in
its right-hand side will also stay “Don’t know”. Eventually both will be recognized
as “Non-productive”, and all rules R will be removed. We see that an “undefined
non-terminal” is just a special case of a “non-productive” non-terminal: it is non-
productive because there is no rule for it.

The above knowledge-improving algorithm is our first example of a closure al-
gorithm. Closure algorithms are characterized by two components: an initialization,
which is an assessment of what we know initially, partly derived from the situation
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and partly “Don’t know”; and an inference rule, which is a rule telling how knowl-
edge from several places is to be combined. The inference rule for our problem was:

For each rule for which we do know that all its right-hand side members are
productive, mark the rule and the non-terminal it defines as ‘“Productive’.’

Itis implicit in a closure algorithm that the inference rule(s) are repeated until nothing
changes any more. Then the preliminary “Don’t know” can be changed into a more
definitive “Not X”’, where “X” was the property the algorithm was designed to detect.

Since it is known beforehand that in the end all remaining “Don’t know” indica-
tions are going to be changed into “Not X", many descriptions and implementations
of closure algorithms skip the whole “Don’t know” stage and initialize everything to
“Not X”. In an implementation this does not make much difference, since the mean-
ing of the bits in computer memory is not in the computer but in the mind of the
programmer, but especially in text-book descriptions this practice is unelegant and
can be confusing, since it just is not true that initially all the non-terminals in our
grammar are “Non-productive”.

We will see many examples of closure algorithms in this book; they are discussed
in more detail in Section 3.9.

2.9.5.2 Removing Unreachable Non-Terminals

A non-terminal is called reachable or accessible if there exists at least one sentential
form, derivable from the start symbol, in which it occurs. So a non-terminal A is
reachable if S—>AB for some o and B.

We found the non-productive rules and non-terminals by finding the “productive”
ones. Likewise, we find the unreachable non-terminals by finding the reachable ones.
For this, we can use the following closure algorithm. First, the start symbol is marked
“reachable”; this is the initialization. Then, for each rule in the grammar of the form
A — o with A marked, all non-terminals in o are marked; this is the inference rule.
We continue applying the inference rule until nothing changes any more. Now the
unmarked non-terminals are not reachable and their rules can be removed.

The first round marks A and B; the second marks C, and the third produces no
change. The result — a clean grammar — is in Figure 2.29. We see that rule E—e,
which was reachable and productive in Figure 2.27 became isolated by removing
the non-productive rules, and is then removed by the second step of the cleaning
algorithm.

o

w
R
Qoo P
o)

Fig. 2.29. The demo grammar after removing all useless rules and non-terminals
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Removing the unreachable rules cannot cause a non-terminal N used in a reach-
able rule to become undefined, since N can only become undefined by removing all
its defining rules but since N is reachable, the above process will not remove any
rule for it. A slight modification of the same argument shows that removing the un-
reachable rules cannot cause a non-terminal N used in a reachable rule to become
non-productive: N, which was productive or it would not have survived the previous
clean-up step, can only become non-productive by removing some of its defining
rules but since N is reachable, the above process will not remove any rule for it.
This shows conclusively that after removing non-productive non-terminals and then
removing unreachable non-terminals we do not need to run the step for removing
non-productive non-terminals again.

It is interesting to note, however, that first removing unreachable non-terminals
and then removing non-productive rules may produce a grammar which again con-
tains unreachable non-terminals. The grammar of Figure 2.27 is an example in point.

Furthermore it should be noted that cleaning a grammar may remove all rules,
including those for the start symbol, in which case the grammar describes the empty
language; see Section 2.6.

Removing the non-productive rules is a bottom-up process: only the bottom level,
where the terminal symbols live, can know what is productive. Removing unreach-
able non-terminals is a top-down process: only the top level, where the start sym-
bol(s) live(s), can know what is reachable.

2.10 Set Properties of Context-Free and Regular Languages

Since languages are sets, it is natural to ask if the standard operations on sets —
union, intersection, and negation (complement) — can be performed on them, and if
so, how.

The union of two sets S; and S, contains the elements that are in either set;
it is written S; U S».. The intersection contains the elements that are in both sets;
it is written S1 N S,. And the negation of a set S contains those in £* but not in
S; it is written —S. In the context of formal languages the sets are defined through
grammars, so actually we want to do the operations on the grammars rather than on
the languages.

Constructing the grammar for the union of two languages is trivial for context-
free and regular languages (and in fact for all Chomsky types): just construct a new
start symbol S — S1|S>, where S and S, are the start symbols of the two grammars
that describe the two languages. (Of course, if we want to combine the two grammars
into one we must make sure that the names in them differ, but that is easy to do.)

Intersection is a different matter, though, since the intersection of two context-
free languages need not be context-free, as the following example shows. Consider
the two CF languages L = a"b"c™ and L, = a”’b"c" described by the CF grammars

Lig —- AP Ly, — Q¢C
A — aAb | e and Q — aQ | e
P - cP | ¢ C - bCec| e
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When we take a string that occurs in both languages and thus in their intersection, it
will have the form a”b%c” where p = g because of Ly and ¢ = r because of L. So
the intersection language consists of strings of the form a"b”c” and we know that
that language is not context-free (Section 2.7.1).

The intersection of CF languages has weird properties. First, the intersection of
two CF languages always has a Type 1 grammar — but this grammar is not easy to
construct. More remarkably, the intersection of three CF languages is more powerful
than the intersection of two of them: Liu and Weiner [390] show that there are lan-
guages that can be obtained as the intersection of k CF languages, but not of k— 1. In
spite of that, any Type 1 language, and even any Type O language, can be constructed
by intersecting just two CF languages, provided we are allowed to erase all symbols
in the resulting strings that belong to a set of erasable symbols.

The CS language we will use to demonstrate this remarkable phenomenon is the
set of all strings that consist of two identical parts: ww, where w is any string over
the given alphabet; examples are aa and abbababbab. The two languages to be
intersected are defined by

L3gs —> AP Lys — Q C
A —- aAx|bAy]|c¢ and Q — aQ | bo | e
P - aP | bP|c¢ C - xCal|ycCb | ¢

where x and y are the erasable symbols. The first grammar produces strings consist-
ing of three parts, a sequence A; of as and bs, followed by its “dark mirror” image
M, in which a corresponds to x and b to y, followed by an arbitrary sequence G; of
as and bs. The second grammar produces strings consisting of an arbitrary sequence
G, of as and bs, a “dark” sequence M>, and its mirror image A,, in which again a
corresponds to x and b to y. The intersection forces A| = Go, M| = M3, and G| = A».
This makes A, the mirror image of the mirror image of Aj, in other words equal to
Aj. An example of a string in the intersection is abbabyxyyxabbab, where we
see the mirror images abbab and yxyyx. We now erase the erasable symbols x and
y and obtain our result abbababbab.

Using a massive application of the above mirror-mirror trick, one can relatively
easily prove that any Type 0 language can be constructed as the intersection of two
CF languages, plus a set of erasable symbols. For details see, for example, Révész
[394].

Remarkably the intersection of a context-free and a regular language is always
a context-free language, and, what’s more, there is a relatively simple algorithm to
construct a grammar for that intersection language. This gives rise to a set of unusual
parsing algorithms, which are discussed in Chapter 13.

If we cannot have intersection of two CF languages and stay inside the CF lan-
guages, we certainly cannot have negation of a CF language and stay inside the CF
languages. If we could, we could negate two languages, take their union, negate the
result, and so obtain their intersection. In a formula: Ly N Ly = =((—L;) U (—L2));
this formula is known as De Morgan’s Law.

In Section 5.4 we shall see that union, intersection and negation of regular (Type
3) languages yield regular languages.
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It is interesting to speculate what would have happened if formal languages had
been based on set theory with all the set operations right from the start, rather than
on the Chomsky hierarchy. Would context-free languages still have been invented?

2.11 The Semantic Connection

Sometimes parsing serves only to check the correctness of a string; that the string
conforms to a given grammar may be all we want to know, for example because it
confirms our hypothesis that certain observed patterns are indeed correctly described
by the grammar we have designed for it. Often, however, we want to go further: we
know that the string conveys a meaning, its semantics, and this semantics is directly
related to the structure of the production tree of the string. (If it is not, we have the
wrong grammar!)

Attaching semantics to a grammar is done in a very simple and effective way: to
each rule in the grammar, a semantic clause is attached which relates the semantics of
the members of the right-hand side of the rule to the semantics of the left-hand side,
in which case the semantic information flows from the leaves of the tree upwards to
the start symbol; or the other way around, in which case the semantic information
flows downwards from the start symbol to the leaves; or both ways, in which case
the semantic information may have to flow up and down for a while until a stable
situation is reached. Semantic information flowing down is called inherited: each
rule inherits it from its parent in the tree. Semantic information flowing up is called
derived: each rule derives it from its children.

There are many ways to express semantic clauses. Since our subject is parsing
and syntax rather than semantics, we will briefly describe only two often-used and
well-studied techniques: attribute grammars and transduction grammars. We shall
explain both using the same simple example, the language of sums of one-digit
numbers; the semantics of a sentence in this language is the value of the sum. The
language is generated by the grammar of Figure 2.30. One of its sentences is, for

1. Sumg —> Digit
2. Sum —> Sum + Digit
3. Digit = 0 | 1 | - | 9

Fig. 2.30. A grammar for sums of one-digit numbers

example, 3+5+1; its semantics is 9.

2.11.1 Attribute Grammars

The semantic clauses in an attribute grammar assume that each node in the produc-
tion tree has room for one or more attributes, which are just values (numbers, strings
or anything else) sitting in nodes in production trees. For simplicity we restrict our-
selves to attribute grammars with only one attribute per node. The semantic clause
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of a rule in such a grammar contains some formulas which compute the attributes of
some of the non-terminals in that rule (represented by nodes in the production tree)
from those of other non-terminals in that same rule. These semantic actions connect
only attributes that are local to the rule: the overall semantics is composed as the
result of all the local computations.

If the semantic action of a rule R computes the attribute of the left-hand side of R,
that attribute is derived. If it computes an attribute of one of the non-terminals in the
right-hand side of R, say A, then that attribute is inherited by A. Derived attributes
are also called “synthesized attributes”. The attribute grammar for our example is:

1. Sumg; —> Digit {Ag:=A}

. Sum — Sum + Digit {Ap:=A;+A3}
3a. Digit — 0 {49 :=0}
3j. Digit — 9 {Ap:=9}

The semantic clauses are given between curly brackets. Ay is the (derived) attribute of
the left-hand side; Ay, ..., A, are the attributes of the members of the right-hand side.
Traditionally, terminal symbols in a right-hand side are also counted in determining
the index of A, although they do not (normally) carry attributes; the Digit in rule 2
is in position 3 and its attribute is A3z. Most systems for handling attribute grammars
have less repetitive ways to express rule 3a through 3;.

The initial production tree for 3+5+1 is given in Figure 2.31. First only the at-

Fig. 2.31. Initial stage of the attributed production tree for 3+5+1

tributes for the leaves are known, but as soon as all attributes in a right-hand side of
a production rule are known, we can use its semantic clause to compute the attribute
of its left-hand side. This way the attribute values (semantics) percolate up the tree,
finally reach the start symbol and provide us with the semantics of the whole sen-
tence, as shown in Figure 2.32. Attribute grammars are a very powerful method of
handling the semantics of a language. They are discussed in more detail in Section
15.3.1.

2.11.2 Transduction Grammars

Transduction grammars define the semantics of a string (the “input string”) as an-
other string, the “output string” or “translation”, rather than as the final attribute of
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Fig. 2.32. Fully attributed production tree for 3+5+1

the start symbol. This method is less powerful but much simpler than using attributes
and often sufficient. The semantic clause in a production rule is just the string that
should be output for the corresponding node. We assume that the string for a node is
output just after the strings for all its children. Other variants are possible and in fact
usual. We can now write a transduction grammar which translates a sum of digits
into instructions to compute the value of the sum.

1. Sumg —> Digit "make it the result"

. Sum —> Sum + Digit "add it to the previous result"
3a. Digit — 0 "take a O"

3j. Digit — 9 "take a 9"

This transduction grammar translates 3+5+1 into:

take a 3

make it the result

take a 5

add it to the previous result
take a 1

add it to the previous result

which is indeed what 3+5+1 “means”.

2.11.3 Augmented Transition Networks

Semantics can be introduced in a recursive transition network (Section 2.8) by attach-
ing actions to the transitions in the graphs. These actions can set variables, construct
data structures, etc. A thus augmented recursive transition network is known as an
Augmented Transition Network (or ATN) (Woods [378]).

2.12 A Metaphorical Comparison of Grammar Types

Text books claim that “Type n grammars are more powerful than Type n+ 1 gram-
mars, for n =0, 1,2, and one often reads statements like “A regular (Type 3) gram-
mar is not powerful enough to match parentheses”. It is interesting to see what kind
of power is meant. Naively, one might think that it is the power to generate larger
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and larger sets, but this is clearly incorrect: the largest possible set of strings, X*, is
easily generated by the Type 3 grammar

S — [Z1 8 |e

where [X] is an abbreviation for the symbols in the language. It is just when we want
to restrict this set, that we need more powerful grammars. More powerful grammars
can define more complicated boundaries between correct and incorrect sentences.
Some boundaries are so fine that they cannot be described by any grammar (that is,
by any generative process).

This idea has been depicted metaphorically in Figure 2.33, in which a rose is
approximated by increasingly finer outlines. In this metaphor, the rose corresponds
to the language (imagine the sentences of the language as molecules in the rose); the
grammar serves to delineate its silhouette. A regular grammar only allows us straight
horizontal and vertical line segments to describe the flower; ruler and T-square suf-
fice, but the result is a coarse and mechanical-looking picture. A CF grammar would
approximate the outline by straight lines at any angle and by circle segments; the
drawing could still be made using the classical tools of compasses and ruler. The
result is stilted but recognizable. A CS grammar would present us with a smooth
curve tightly enveloping the flower, but the curve is too smooth: it cannot follow all
the sharp turns, and it deviates slightly at complicated points; still, a very realistic
picture results. An unrestricted phrase structure grammar can represent the outline
perfectly. The rose itself cannot be caught in a finite description; its essence remains
forever out of our reach.

A more prosaic and practical example can be found in the successive sets of Java’
programs that can be generated by the various grammar types.

e The set of all lexically correct Java programs can be generated by a regular gram-
mar. A Java program is lexically correct if there are no newlines inside strings,
comments are terminated before end-of-file, all numerical constants have the
right form, etc.

* The set of all syntactically correct Java programs can be generated by a context-
free grammar. These programs conform to the (CF) grammar in the manual.

* The set of all semantically correct Java programs can be generated by a CS gram-
mar. These are the programs that pass through a Java compiler without drawing
error messages.

e The set of all Java programs that would terminate in finite time when run with a
given input can be generated by an unrestricted phrase structure grammar. Such
a grammar would, however, be very complicated, since it would incorporate de-
tailed descriptions of the Java library routines and the Java run-time system.

e The set of all Java programs that solve a given problem (for example, play chess)
cannot be generated by a grammar (although the description of the set is finite).

Note that each of the above sets is a subset of the previous set.

5 We use the programming language Java here because we expect that most of our readers
will be more or less familiar with it. Any programming language for which the manual
gives a CF grammar will do.
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2

Fig. 2.33. The silhouette of a rose, approximated by Type 3 to Type O grammars
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2.13 Conclusion

A Chomsky grammar is a finite mechanism that produces a usually infinite set of
strings, a “language.” Unlike many other set generation mechanisms, this production
process assigns a structure to the produced string, which can be utilized to attach
semantics to it. For context-free (Type 2) grammars, this structure is a tree, which
allows the semantics to be composed from the semantics of the branches. This is the
basis of the importance of context-free grammars.

Problems

Problem 2.1: The diagonalization procedure on page 11 seems to be a finite
description of a language not on the list. Why is the description not on the list, which
contains all finite descriptions after all?

Problem 2.2: In Section 2.1.3.4 we considered the functions n, n+ 10, and 2n
to find the positions of the bits that should differ from those in line n. What is the
general form of these functions, i.e., what set of functions will generate languages
that do not have finite descriptions?

Problem 2.3: Write a grammar for Manhattan turtle paths in which the turtle is
never allowed to the west of its starting point.

Problem 2.4: Show that the monotonic Type 1 grammar of Figure 2.7 produces
all strings of the form a"b"c” for n > 1, and no others. Why is n = 0 excluded?

Problem 2.5: Write a Type 1 grammar that produces the language of all strings
that consists of two identical parts: ww, where w is any string over the given alphabet
(see Section 2.10).

Problem 2.6: On page 34 we have the sentence production mechanism add the
newly created sentential forms to the end of the queue, claiming that this realizes
breadth-first production. When we put them at the start of the queue, the mechanism
uses depth-first production. Show that this does not work.

Problem 2.7: The last paragraph of Section 2.4.1 contains the words “in increas-
ing (actually ‘non-decreasing’) length”. Explain why “non-decreasing” is enough.

Problem 2.8: Relate the number of strings in the finite language produced by a
grammar without recursion (page 25) to the structure of that grammar.

Problem 2.9: Refer to Section 2.6. Find more examples in your computing en-
vironment where zero as a number gets a second-class treatment.

Problem 2.10: In your favorite parser generator system, write a parser for the
language {€}. Same question for the language {}.

Problem 2.11: Use the uvw theorem (Section 2.7.2) to show that there is no Type
3 grammar for the language a'b’.

Problem 2.12: In Section 2.9 we write that useless rules can be removed from
the grammar without affecting the language produced. This seems to suggest that
“not affecting the language by its removal” is the actual property we are after, rather
than just uselessness. Comment.
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Problem 2.13: Write the Chomsky production process of Section 2.2.2 as a
closure algorithm.



3

Introduction to Parsing

To parse a string according to a grammar means to reconstruct the production tree (or
trees) that indicate how the given string can be produced from the given grammar. It
is significant in this respect that one of the first publications on parsing (Greibach’s
1963 doctoral thesis [6]), was titled “Inverses of Phrase Structure Generators”, where
a phrase structure generator is to be understood as a system for producing phrases
from a phrase structure (actually context-free) grammar.

Although production of a sentence based on a Type 0 or Type 1 grammar gives
rise to a production graph rather than a production tree, and consequently parsing
yields a parse graph, we shall concentrate on parsing using a Type 2, context-free
grammar, and the resulting parse trees. Occasionally we will touch upon parsing
with Type O or Type 1 grammars, as for example in Section 3.2, just to show that it
is a meaningful concept.

3.1 The Parse Tree

There are two important questions on reconstructing the production tree: why do we
need it; and how do we do it.

The requirement to recover the production tree is not natural. After all, a grammar
is a condensed description of a set of strings, i.e., a language, and our input string
either belongs or does not belong to that language; no internal structure or production
path is involved. If we adhere to this formal view, the only meaningful question we
can ask is if a given string can be recognized according to a grammar; any question
as to how would be a sign of senseless, even morbid curiosity. In practice, however,
grammars have semantics attached to them: specific semantics is attached to specific
rules, and in order to determine the semantics of a string we need to find out which
rules were involved in its production and how. In short, recognition is not enough,
and we need to recover the production tree to get the full benefit of the syntactic
approach.
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The recovered production tree is called the parse tree. The fact that it is next
to impossible to attach semantics to specific rules in Type 0 and Type 1 grammars
explains their relative unimportance in parsing, compared to Types 2 and 3.

How we can reconstruct the production tree is the main subject of the rest of this
book.

3.1.1 The Size of a Parse Tree

A parse tree for a string of n tokens consists of n nodes belonging to the terminals,
plus a number of nodes belonging to the non-terminals. Surprisingly, there cannot be
more than Cgn nodes belonging to non-terminals in a parse tree with n token nodes,
where C is a constant that depends on the grammar, provided the grammar has no
loops. This means that the size of any parse tree is linear in the length of the input.

Showing that this is true has to be done in a number of steps. We prove it first
for grammars in which all right-hand sides have length 2; these result in binary trees,
trees in which each node either has two children or is a leaf (a node with no children).
Binary trees have the remarkable property that all binary trees with a given number
of leaves have the same number of nodes, regardless of their shapes. Next we allow
grammars with right-hand sides with lengths > 2, then grammars with unit rules, and
finally grammars with nullable rules.

As we said, an input string of length n consists of n token nodes. When the parse
tree is not there yet, these nodes are parentless leaves. We are now going to build an
arbitrary binary tree to give each of these nodes a parent, labeled with a non-terminal
from the grammar. The first parent node P; we add lowers the number of parentless
nodes by 2, but now P is itself a parentless node; so we now have n + 1 nodes of
which n —2+1 = n — 1 are parentless. The same happens with the second added
parent node P,, regardless of whether one of its children is P;; so now we have n + 2
nodes of which n — 2 are parentless. After j steps we have n+ j nodes of which n— j
are parentless and after n — 1 steps we have 2n — 1 nodes of which 1 is parentless.
The 1 parentless node is the top node, and the parse tree is complete. So we see
that when all right-hand sides have length 2, the parse tree for an input of length n
contains 2n — 1 nodes, which is linear in #.

If some of the right-hand sides have length > 2, fewer parent nodes may be re-
quired to construct the tree. So the total tree size may be smaller than 2n — 1, which
is certainly smaller than 2n.

If the grammar contains unit rules — rules of the form A — B — it is no longer
true that adding a parent node reduces the number of parentless nodes: when a par-
entless node B gets a parent A through the rule A — B, it is no longer parentless,
but the node for A now is, and, what is worse, the number of nodes has gone up
by one. And it may be necessary to repeat the process, say with a rule Z — A, etc.
But eventually the chain of unit rules must come to an end, say at P (so we have
P— Q---Z— A — B), or there would be a loop in the grammar. This means that
P gets a parent node with more than one child node and the number of parentless
nodes is reduced (or P is the top node). So the worst thing the unit rules can do is
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to “lengthen” each node by a constant factor C,, the maximum length of a unit rule
chain, and so the size of the parse tree is smaller than 2C,n.

If the grammar contains rules of the form A — €, only a finite number of €s can
be recognized between each pair of adjacent tokens in the input, or there would again
be a loop in the grammar. So the worst thing nullable rules can do is to “lengthen”
the input by a constant factor C,, the maximum number of €s recognized between
two tokens, and the size of the parse tree is smaller than 2C,,C,n, which is linear in
n.

If, on the other hand, the grammar is allowed to contain loops, both the above
processes can introduce unbounded stretches of nodes in the parse tree, which can
then reach any size.

3.1.2 Various Kinds of Ambiguity

A sentence from a grammar can easily have more than one production tree, i.e., there
can easily be more than one way to produce the sentence. From a formal point of
view this is a non-issue (a set does not count how many times it contains an el-
ement), but as soon as we are interested in the semantics, the difference becomes
significant. Not surprisingly, a sentence with more than one production tree is called
ambiguous, but we must immediately distinguish between essential ambiguity and
spurious ambiguity. The difference comes from the fact that we are not interested in
the production trees per se, but rather in the semantics they describe. An ambiguous
sentence is spuriously ambiguous if all its production trees describe the same seman-
tics; if some of them differ in their semantics, the ambiguity is essential. The notion
of “ambiguity” can also be defined for grammars: a grammar is essentially ambigu-
ous if it can produce an essentially ambiguous sentence, spuriously ambiguous if
it can produce a spuriously ambiguous sentence (but not an essentially ambiguous
one) and unambiguous if it cannot do either. For testing the possible ambiguity of a
grammar, see Section 9.14.

A simple ambiguous grammar is given in Figure 3.1. Note that rule 2 differs

1. Sumg —> Digit { Ag:=A; }
. Sum — Sum + Sum { Ag:=A1+A3 }
3a. Digit — 0 { A9:=0 }
3j. Digit — 9 { 4:=9 }

Fig. 3.1. A simple ambiguous grammar

from that in Figure 2.30. Now 3+5+1 has two production trees (Figure 3.2) but the
semantics is the same in both cases: 9. The ambiguity is spurious. If we change the
+ into a -, however, the ambiguity becomes essential, as seen in Figure 3.3. The
unambiguous grammar in Figure 2.30 remains unambiguous and retains the correct
semantics if + is changed into -.
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Fig. 3.3. Essential ambiguity: the semantics differ

Strangely enough, languages can also be ambiguous: there are (context-free) lan-
guages for which there is no unambiguous grammar. Such languages are inherently
ambiguous. An example is the language L = a"b"c” U a’b”c. Sentences in L
consist either of a number of as followed by a nested sequence of bs and es, or of a
nested sequence of as and bs followed by a number of e¢s. Example sentences are:
abcc, aabbe, and aabbcec; abbe is an example of a non-sentence. L is produced
by the grammar of Figure 3.4.

Ss — AB | DC
A — a | aar

B — bc | bBc
D — ab | aDb
¢ —- ¢ | cC

Fig. 3.4. Grammar for an inherently ambiguous language

Intuitively, it is reasonably clear why L is inherently ambiguous: any part of the
grammar that produces a”’b"c” cannot avoid producing a"b"c”, and any part of the
grammar that produces a”b”c? cannot avoid producing a”b”c”. So whatever we do,
forms with equal numbers of as, bs, and s will always be produced twice. Formally
proving that there is really no way to get around this is beyond the scope of this book.
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3.1.3 Linearization of the Parse Tree

Often it is inconvenient and unnecessary to construct the actual parse tree: a parser
can produce a list of rule numbers instead, which means that it linearizes the parse
tree. There are three main ways to linearize a tree, prefix, postfix and infix. In prefix
notation, each node is listed by listing its number followed by prefix listings of the
subnodes in left-to-right order; this gives us the leftmost derivation (for the right tree
in Figure 3.2):

leftmost: 2 2 1 3¢ 1 3e 1 3a

If a parse tree is constructed according to this scheme, it is constructed in pre-order.
In postfix notation, each node is listed by listing in postfix notation all the subnodes
in left-to-right order, followed by the number of the rule in the node itself; this gives
us the rightmost derivation (for the same tree):

rightmost: 3¢ 1 3e 1 2 3a 1 2

This constructs the parse tree in post-order. In infix notation, each node is listed by
first giving an infix listing between parentheses of the first n subnodes, followed by
the rule number in the node, followed by an infix listing between parentheses of the
remainder of the subnodes; n can be chosen freely and can even differ from rule
to rule, but n = 1 is normal. Infix notation is not common for derivations, but is
occasionally useful. The case with n = 1 is called the left-corner derivation; in our
example we get:

left-corner: (((3c)1) 2 ((3e)l)) 2 ((3a)l)

The infix notation requires parentheses to enable us to reconstruct the production
tree from it. The leftmost and rightmost derivations can do without them, provided
we have the grammar ready to find the number of subnodes for each node.

It is easy to tell if a derivation is leftmost or rightmost: a leftmost derivation
starts with a rule for the start symbol, while a rightmost derivation starts with a rule
that produces terminal symbols only. (If both conditions hold, there is only one rule,
which is both a leftmost and a rightmost derivation.)

The existence of several different derivations should not be confused with am-
biguity. The different derivations are just notational variants for one and the same
production tree. No semantic significance can be attached to their differences.

3.2 Two Ways to Parse a Sentence

The basic connection between a sentence and the grammar it derives from is the
parse tree, which describes how the grammar was used to produce the sentence.
For the reconstruction of this connection we need a parsing technique. When we
consult the extensive literature on parsing techniques, we seem to find dozens of
them, yet there are only two techniques to do parsing; all the rest is technical detail
and embellishment.
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The first method tries to imitate the original production process by rederiving the
sentence from the start symbol. This method is called top-down, because the parse
tree is reconstructed from the top downwards. !

The second method tries to roll back the production process and to reduce the
sentence back to the start symbol. Quite naturally this technique is called bottom-up.

3.2.1 Top-Down Parsing

Suppose we have the monotonic grammar for the language a"b"c” from Figure 2.7,
which we repeat here:

S — asQ
S — abc
bQec — Dbbcc
cQ —= Qc

and suppose the (input) sentence is aabbecc. First we try the top-down parsing
method. We know that the production tree must start with the start symbol:

® |

Now what could the second step be? We have two rules for S: S—>aSQ and S—abc.
The second rule would require the sentence to start with ab, which it does not. This
leaves us S—asQ:

6:0 l

This gives us a good explanation of the first a in our sentence. Again two rules apply:
S—asSQ and S—abc. Some reflection will reveal that the first rule would be a bad
choice here: all production rules of S start with an a, and if we would advance to the
stage aasSQQ, the next step would inevitably lead to aaa. . ., which contradicts the
input string. The second rule, however, is not without problems either:

since now the sentence starts with aabe. . ., which also contradicts the input sen-
tence. Here, however, there is a way out: cQ—Qc:

! Trees grow from their roots downwards in computer science; this is comparable to electrons
having a negative charge in physics.
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Now only one rule applies: bQe —bbce, and we obtain our input sentence (together
with the parse tree):

Top-down parsing identifies the production rules (and thus characterizes the parse
tree) in prefix order.

3.2.2 Bottom-Up Parsing

Using the bottom-up technique, we proceed as follows. One production step must
have been the last and its result must still be visible in the string. We recognize
the right-hand side of bQe —bbcec in aabbee. This gives us the final step in the
production (and the first in the reduction):

|

Now we recognize the Qc as derived by cQ—=Qc:

Again we find only one right-hand side: abc:
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Bottom-up parsing tends to identify the production rules in postfix order.

It is interesting to note that bottom-up parsing turns the parsing process into a
production process. The above reduction can be viewed as a production with the
reversed grammar:

asQ — S
abec — S
bbcec — bQc

Qc — cQ
augmented with a rule that turns the start symbol into a new terminal symbol:
S —= !
and a rule which introduces a new start symbol, the original sentence:
I, — aabbcc

If, starting from I, we can produce ! we have recognized the input string, and if we
have kept records of what we did, we also have obtained the parse tree.

This duality of production and reduction is used by Deussen [21] as a basis for a
very fundamental approach to formal languages.

3.2.3 Applicability

The above examples show that both the top-down and the bottom-up method will
work under certain circumstances, but also that sometimes quite subtle considera-
tions are involved, of which it is not at all clear how we can teach them to a computer.



3.3 Non-Deterministic Automata 69

Almost the entire body of parser literature is concerned with formalizing these subtle
considerations, and there has been considerable success.

3.3 Non-Deterministic Automata

Both examples above feature two components: a machine that can make substitu-
tions and record a parse tree, and a control mechanism that decides which moves the
machine should make. The machine is relatively simple since its substitutions are
restricted to those allowed by the grammar, but the control mechanism can be made
arbitrarily complex and may incorporate extensive knowledge of the grammar.

This structure can be discerned in all parsing methods: there is always a substi-
tuting and record-keeping machine, and a guiding control mechanism:

» substituting and
record-keeping
mechanism

control
mechanism -

The substituting machine is called a non-deterministic automaton or NDA; it is called
“non-deterministic” because it often has several possible moves and the particular
choice is not predetermined, and an “automaton” because it automatically performs
actions in response to stimuli. It manages three components: the input string (actu-
ally a copy of it), the partial parse tree and some internal administration. Every move
of the NDA transfers some information from the input string through the administra-
tion to the partial parse tree. Each of the three components may be modified in the
process:

partial
parse control input
tree(s)

internal
administration

The great strength of an NDA, and the main source of its usefulness, is that it can
easily be constructed so that it can only make “correct” moves, that is, moves that
keep the system of partially processed input, internal administration and partial parse
tree consistent. This has the consequence that we may move the NDA any way we
choose: it may move in circles, it may even get stuck, but if it ever gives us an answer,
in the form of a finished parse tree, that answer will be correct. It is also essential
that the NDA can make all correct moves, so that it can produce all parsings if the
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control mechanism is clever enough to guide the NDA there. This property of the
NDA is also easily arranged.

The inherent correctness of the NDA allows great freedom to the control mecha-
nism, the “control” for short. It may be naive or sophisticated, it may be cumbersome
or it may be efficient, it may even be wrong, but it can never cause the NDA to pro-
duce an incorrect parsing; and that is a comforting thought. If it is wrong it may,
however, cause the NDA to miss a correct parsing, to loop infinitely, or to get stuck
in a place where it should not.

3.3.1 Constructing the NDA

The NDA derives directly from the grammar. For a top-down parser its moves consist
essentially of the production rules of the grammar and the internal administration is
initially the start symbol. The control moves the machine until the internal adminis-
tration is equal to the input string; then a parsing has been found. For a bottom-up
parser the moves consist essentially of the reverse of the production rules of the gram-
mar (see Section 3.2.2) and the internal administration is initially the input string.
The control moves the machine until the internal administration is equal to the start
symbol; then a parsing has been found. A left-corner parser works like a top-down
parser in which a carefully chosen set of production rules has been reversed and
which has special moves to undo this reversion when needed.

3.3.2 Constructing the Control Mechanism

Constructing the control of a parser is quite a different affair. Some controls are
independent of the grammar, some consult the grammar regularly, some use large
tables precomputed from the grammar and some even use tables computed from the
input string. We shall see examples of each of these: the “hand control” that was
demonstrated at the beginning of this section comes in the category “consults the
grammar regularly”, backtracking parsers often use a grammar-independent control,
LL and LR parsers use precomputed grammar-derived tables, the CYK parser uses a
table derived from the input string and Earley’s and GLR parsers use several tables
derived from the grammar and the input string.

Constructing the control mechanism, including the tables, from the grammar is
almost always done by a program. Such a program is called a parser generator; it
is fed the grammar and perhaps a description of the terminal symbols and produces
a program which is a parser. The parser often consists of a driver and one or more
tables, in which case it is called table-driven. The tables can be of considerable size
and of extreme complexity.

The tables that derive from the input string must of course be computed by a rou-
tine that is part of the parser. It should be noted that this reflects the traditional setting
in which a large number of different input strings is parsed according to a relatively
static and unchanging grammar. The inverse situation is not at all unthinkable: many
grammars are tried to explain a given input string, for example an observed sequence
of events.
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3.4 Recognition and Parsing for Type 0 to Type 4 Grammars

Parsing a sentence according to a grammar is in principle always possible provided
we know in advance that the string indeed derives from the grammar. If we cannot
think of anything better, we can just run the general production process of Section
2.4.1 on the grammar and sit back and wait until the sentence turns up (and we know
it will). This by itself is not exactly enough: we must extend the production process
a little, so that each sentential form carries its own partial production tree, which
must be updated at the appropriate moments, but it is clear that this can be done with
some programming effort. We may have to wait a little while (say a couple of million
years) for the sentence to show up, but in the end we will surely obtain the parse tree.
All this is of course totally impractical, but it still shows us that at least theoretically
any string can be parsed if we know it is parsable, regardless of the grammar type.

3.4.1 Time Requirements

When parsing strings consisting of more than a few symbols, it is important to have
some idea of the time requirements of the parser, i.e., the dependency of the time
required to finish the parsing on the number of symbols in the input string. Expected
lengths of input range from some tens (sentences in natural languages) to some tens
of thousands (large computer programs); the length of some input strings may even
be virtually infinite (the sequence of buttons pushed on a coffee vending machine
over its life-time). The dependency of the time requirements on the input length is
also called time complexity.

Several characteristic time dependencies can be recognized. A time dependency
is exponential if each following input symbol multiplies the required time by a con-
stant factor, say 2: each additional input symbol doubles the parsing time. Exponen-
tial time dependency is written O(C") where C is the constant multiplication factor.
Exponential dependency occurs in the number of grains doubled on each field of the
famous chess board; this way lies bankruptcy.

A time dependency is linear if each following input symbol takes a constant
amount of time to process; doubling the input length doubles the processing time.
This is the kind of behavior we like to see in a parser; the time needed for parsing
is proportional to the time spent on reading the input. So-called real-time parsers
behave even better: they can produce the parse tree within a constant time after the
last input symbol was read; given a fast enough computer they can keep up indefi-
nitely with an input stream of constant speed. Note that this is not necessarily true of
linear-time parsers: they can in principle read the entire input of n symbols and then
take a time proportional to n to produce the parse tree.

Linear time dependency is written O(n). A time dependency is called quadratic
if the processing time is proportional to the square of the input length (written O(n?))
and cubic if it is proportional to the third power (written O(n%)). In general, a depen-
dency that is proportional to any power of n is called polynomial (written O(n?)).
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3.4.2 Type 0 and Type 1 Grammars

It is a remarkable result in formal linguistics that the recognition problem for a ar-
bitrary Type 0 grammar is unsolvable. This means that there cannot be an algorithm
that accepts an arbitrary Type 0 grammar and an arbitrary string and tells us in fi-
nite time whether the grammar can produce the string or not. This statement can be
proven, but the proof is very intimidating and, what is worse, it does not provide
any insight into the cause of the phenomenon. It is a proof by contradiction: we can
prove that, if such an algorithm existed, we could construct a second algorithm of
which we can prove that it only terminates if it never terminates. Since this is a log-
ical impossibility and since all other premises that went into the intermediate proof
are logically sound we are forced to conclude that our initial premise, the existence
of a recognizer for Type O grammars, is a logical impossibility. Convincing, but not
food for the soul. For the full proof see Hopcroft and Ullman [391, pp. 182-183], or
Révész [394, p. 98].

It is quite possible to construct a recognizer that works for a certain number of
Type 0 grammars, using a certain technique. This technique, however, will not work
for all Type O grammars. In fact, however many techniques we collect, there will
always be grammars for which they do not work. In a sense we just cannot make our
recognizer complicated enough.

For Type 1 grammars, the situation is completely different. The seemingly in-
consequential property that Type 1 production rules cannot make a sentential form
shrink allows us to construct a control mechanism for a bottom-up NDA that will at
least work in principle, regardless of the grammar. The internal administration of this
control consists of a set of sentential forms that could have played a role in the pro-
duction of the input sentence; it starts off containing only the input sentence. Each
move of the NDA is a reduction according to the grammar. Now the control applies
all possible moves of the NDA to all sentential forms in the internal administration
in an arbitrary order, and adds each result to the internal administration if it is not
already there. It continues doing so until each move on each sentential form results
in a sentential form that has already been found. Since no move of the NDA can
make a sentential form longer (because all right-hand sides are at least as long as
their left-hand sides) and since there are only a finite number of sentential forms as
long as or shorter than the input string, this must eventually happen. Now we search
the sentential forms in the internal administration for one that consists solely of the
start symbol. If it is there, we have recognized the input string; if it is not, the input
string does not belong to the language of the grammar. And if we still remember,
in some additional administration, how we got this start symbol sentential form, we
have obtained the parsing. All this requires a lot of book-keeping, which we are not
going to discuss, since nobody does it this way anyway.

To summarize the above, we cannot always construct a parser for a Type 0 gram-
mar, but for a Type 1 grammar we always can. The construction of a practical and
reasonably efficient parser for these types of grammars is a very difficult subject
on which slow but steady progress has been made during the last 40 years (see
(Web)Section 18.1.1). It is not a hot research topic, mainly because Type 0 and Type
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1 grammars are well-known to be human-unfriendly and will never see wide appli-
cation. Yet it is not completely devoid of usefulness, since a good parser for Type O
grammars would probably make a good starting point for a theorem prover.?

The human-unfriendliness consideration does not apply to two-level grammars.
Having a practical parser for two-level grammars would be marvelous, since it
would allow parsing techniques (with all their built-in automation) to be applied in
many more areas than today, especially where context conditions are important. The
present possibilities for two-level grammar parsing are discussed in Section 15.2.3.

All known parsing algorithms for Type 0, Type 1 and unrestricted two-level
grammars have exponential time dependency.

3.4.3 Type 2 Grammars

Fortunately, much better parsing algorithms are known for CF (Type 2) grammars
than for Type 0 and Type 1. Almost all practical parsing is done using CF and FS
grammars, and almost all problems in context-free parsing have been solved. The
cause of this large difference can be found in the locality of the CF production pro-
cess: the evolution of one non-terminal in the sentential form is totally independent
of the evolution of any other non-terminal, and, conversely, during parsing we can
combine partial parse trees regardless of their histories. Neither is true in a context-
sensitive grammar.

Both the top-down and the bottom-up parsing processes are readily applicable to
CF grammars. In the examples below we shall use the simple grammar

Sentenceg —> Subject Verb Object

Subject — the Noun | a Noun | ProperName
Object —> the Noun | a Noun | ProperName
Verb — bit | chased

Noun — cat | dog

ProperName — ---

3.4.3.1 Top-Down CF Parsing

In top-down CF parsing we start with the start symbol and try to produce the in-
put. The keywords here are predict and match. At any time there is a leftmost non-
terminal A in the sentential form and the parser tries systematically to predict a fitting
alternative for A, as far as compatible with the symbols found in the input at the po-
sition where the result of A should start. This leftmost non-terminal is also called the
goal of the prediction process.

Consider the example of Figure 3.5, where Object is the leftmost non-terminal,
the “goal”. In this situation, the parser will first predict the Noun for Object, but
will immediately reject this alternative since it requires the where the input has
a. Next, it will try a Noun, which is temporarily accepted. The a is matched and

2 A theorem prover is a program that, given a set of axioms and a theorem, proves or dis-
proves the theorem without or with minimal human intervention.
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Input: the cat bit a dog
Sentential form: the cat bit Object
(the internal administration)

Fig. 3.5. Top-down parsing as the imitation of the production process

the new leftmost non-terminal is Noun. This parse will succeed when Noun even-
tually produces dog. The parser will then attempt a third prediction for Object,
ProperName,; this alternative is not immediately rejected as the parser cannot see
that ProperName cannot start with a. It will fail at a later stage.

There are two serious problems with this approach. Although it can, in princi-
ple, handle arbitrary CF grammars, it will loop on some grammars if implemented
naively. This can be avoided by using some special techniques, which result in gen-
eral top-down parsers; these are treated in detail in Chapter 6. The second problem is
that the algorithm requires exponential time since any of the predictions may turn out
wrong and may have to be corrected by trial and error. The above example shows that
some efficiency can be gained by preprocessing the grammar: it is advantageous to
know in advance what tokens can start ProperName, to avoid predicting an alter-
native that is doomed in advance. This is true for most non-terminals in the grammar
and this kind of information can be easily computed from the grammar and stored in
a table for use during parsing. For a reasonable set of grammars, linear time depen-
dency can be achieved, as explained in Chapter 8.

3.4.3.2 Bottom-Up CF Parsing

In bottom-up CF parsing we start with the input and try to reduce it to the start
symbol. Here the keywords are shift and reduce. When we are in the middle of the
process, we have in our hands a sentential form reduced from the input. Somewhere
in this sentential form there must be a segment (a substring) that was the result of
the last production step that produced this sentential form. This segment corresponds
to the right-hand side o of a production rule A — o and must now be reduced to A.
The segment and the production rule together are called the handle of the sentential
form, a quite fitting expression; see Figure 3.6. (When the production rule is obvious

Subject chased a dog

production i T reduction

a Noun chased a dog

Eandie

Fig. 3.6. Bottom-up parsing as the inversion of the production process

from the way the segment was found, the matching segment alone is often called
the “handle”. We will usually follow this custom, but call the matching segment the
handle segment when we feel that that is clearer.)

The trick is to find the handle. It must be the right-hand side of a rule, so we
start looking for such a right-hand side by shifting symbols from the sentential form
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into the internal administration. When we find a right-hand side we reduce it to its
left-hand side and repeat the process, until only the start symbol is left. We will not
always find the correct handle this way; if we err, we will get stuck further on, will
have to undo some steps, shift in more symbols and try again. In Figure 3.6 we could
have reduced the a Noun to Object, thereby boldly heading for a dead end.

There are essentially the same two problems with this approach as with the top-
down technique. It may loop, and will do so on grammars with e-rules: it will con-
tinue to find empty productions all over the place. This can be remedied by touching
up the grammar. And it can take exponential time, since the correct identification of
the handle may have to be done by trial and error. Again, doing preprocessing on
the grammar often helps: it is easy to see from the grammar that Subject can be
followed by chased, but Object cannot. So it is unprofitable to reduce a handle
to Object if the next symbol is chased.

3.4.4 Type 3 Grammars

A right-hand side in a regular grammar contains at most one non-terminal, so there
is no difference between leftmost and rightmost derivation. Top-down methods are
much more efficient for right-regular grammars; bottom-up methods work better for
left-regular grammars. When we take the production tree of Figure 2.15 and if we
turn it 45° counterclockwise, we get the production chain of Figure 3.7. The se-

Fig. 3.7. The production tree of Figure 2.15 as a production chain

quence of non-terminals rolls on to the right, producing terminal symbols as they
go. In parsing, we are given the terminal symbols and are supposed to construct the
sequence of non-terminals. The first one is given, the start symbol (hence the prefer-
ence for top-down). If only one rule for the start symbol starts with the first symbol
of the input we are lucky and know which way to go. Very often, however, there are
many rules starting with the same symbol and then we are in need of more wisdom.
As with Type 2 grammars, we can of course find the correct continuation by trial and
error, but far more efficient methods exist that can handle any regular grammar. Since
they form the basis of some advanced parsing techniques, they are treated separately,
in Chapter 5.

3.4.5 Type 4 Grammars

Finite-choice (FC) grammars do not involve production trees, and membership of a
given input string in the language of the FC grammar can be determined by simple
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look-up. This look-up is generally not considered to be “parsing”, but is still men-
tioned here for two reasons. First, it can benefit from parsing techniques, and second,
it is often required in a parsing environment. Natural languages have some categories
of words that have only a very limited number of members; examples are the pro-
nouns, the prepositions and the conjunctions. It is often important to decide quickly
if a given word belongs to one of these finite-choice categories or will have to be
analysed further. The same applies to reserved words in a programming language.

One approach is to consider the FC grammar as a regular grammar and apply the
techniques of Chapter 5. This is often amazingly efficient.

Another often-used approach is to use a hash table. See any book on algorithms,
for example Cormen et al. [415], or Goodrich and Tamassia [416].

3.5 An Overview of Context-Free Parsing Methods

Among the Chomsky grammar types the context-free (Type 2) grammars occupy the
most prominent position. This has three reasons: 1. CF parsing results in trees, which
allow semantics to be expressed and combined easily; 2. CF languages cover a large
part of the languages one would like to process automatically; 3. efficient CF parsing
is possible — though sometimes with great difficulty. The context-free grammars are
followed immediately by the finite-state grammars in importance. This is because the
world and especially equipment is finite; vending machines, remote controls, virus
detectors, all exhibit finite-state behavior. The rest of the chapters in this book will
therefore be mainly concerned with CF parsing, with the exception of Chapter 5
(finite-state grammars) and Chapter 15 (non-Chomsky systems). We shall now give
an overview of the context-free parsing methods.

The reader of literature about parsing is confronted with a large number of tech-
niques with often unclear interrelationships. Yet all techniques can be placed in a
single framework, according to some simple criteria; they are summarized in Figure
3.11.

We have already seen that a parsing technique is either top-down, reproducing
the input string from the start symbol, or bottom-up, reducing the input to the start
symbol. The next division is that between directional and non-directional parsing
methods.

3.5.1 Directionality

Non-directional methods construct the parse tree while accessing the input in any
order they see fit. This of course requires the entire input to be in memory before
parsing can start. There is a top-down and a bottom-up version. Directional parsers
access the input tokens one by one in order, all the while updating the partial parse
tree(s). There is again a top-down and a bottom-up version.
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3.5.1.1 Non-Directional Methods

The non-directional top-down method is simple and straightforward and has prob-
ably been invented independently by many people. To the best of our knowledge it
was first described by Unger [12] in 1968, but in his article he gives the impression
that the method already existed. The method has not received much attention in the
literature but is more important than one might think, since it is used anonymously in
a number of other parsers. We shall call it Unger’s method; it is described in Section
4.1.

The non-directional bottom-up method has also been discovered independently
by a number of people, among whom Cocke (in Hays [3, Sect. 17.3.1]), Younger
[10], and Kasami [13]; an earlier description is by Sakai [5]. It is named CYK
(or sometimes CKY) after the three best-known inventors. It has received consid-
erable attention since its naive implementation is much more efficient than that of
Unger’s method. The efficiency of both methods can be improved, however, arriving
at roughly the same performance; see Sheil [20]. The CYK method is described in
Section 4.2.

Non-directional methods usually first construct a data structure which summa-
rizes the grammatical structure of the input sentence. Parse trees can then be derived
from this data structure in a second stage.

3.5.1.2 Directional Methods

The directional methods process the input symbol by symbol, from left to right. (It
is also possible to parse from right to left, using a mirror image of the grammar;
this is occasionally useful.) This has the advantage that parsing can start, and indeed
progress, considerably before the last symbol of the input is seen. The directional
methods are all based explicitly or implicitly on the parsing automaton described in
Section 3.4.3, where the top-down method performs predictions and matches and the
bottom-up method performs shifts and reduces.

Directional methods can usually construct the (partial) parse tree as they proceed
through the input string, unless the grammar is ambiguous and some postprocessing
may be required.

3.5.2 Search Techniques

A third way to classify parsing techniques concerns the search technique used to
guide the (non-deterministic!) parsing automaton through all its possibilities to find
one or all parsings.

There are in general two methods for solving problems in which there are several
alternatives in well-determined points: depth-first search, and breadth-first search.

* In depth-first search we concentrate on one half-solved problem. If the problem
bifurcates at a given point P, we store one alternative for later processing and
keep concentrating on the other alternative. If this alternative turns out to be a
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failure (or even a success, but we want all solutions), we roll back our actions to
point P and continue with the stored alternative. This is called backtracking.

e In breadth-first search we keep a set of half-solved problems. From this set we
compute a new set of (better) half-solved problems by examining each old half-
solved problem; for each alternative, we create a copy in the new set. Eventually,
the set will come to contain all solutions.

Depth-first search has the advantage that it requires an amount of memory that is
proportional to the size of the problem, unlike breadth-first search, which may re-
quire exponential memory. Breadth-first search has the advantage that it will find
the simplest solution first. Both methods require in principle exponential time. If we
want more efficiency (and exponential requirements are virtually unacceptable), we
need some means to restrict the search. See any book on algorithms, for example
Sedgewick [417] or Goodrich and Tamassia [416], for more information on search
techniques.

These search techniques are not at all restricted to parsing and can be used in
a wide array of contexts. A traditional one is that of finding an exit from a maze.
Figure 3.8(a) shows a simple maze with one entrance and two exits. Figure 3.8(b)
depicts the path a depth-first search will take; this is the only option for the human
maze-walker: he cannot duplicate himself and the maze. Dead ends make the depth-
first search backtrack to the most recent untried alternative. If the searcher will also
backtrack at each exit, he will find all exits. Figure 3.8(c) shows which rooms are
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Fig. 3.8. A simple maze with depth-first and breadth-first visits

examined in each stage of the breadth-first search. Dead ends (in stage 3) cause the
search branches in question to be discarded. Breadth-first search will find the shortest
way to an exit (the shortest solution) first. If it continues until there are no branches
left, it will find all exits (all solutions).

3.5.3 General Directional Methods

The idea that parsing is the reconstruction of the production process is especially
clear when using a directional method. It is summarized in the following two sound
bites.
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A directional top-down (left-to-right) CF parser identifies leftmost produc-
tions in production order.

and

A directional bottom-up (left-to-right) CF parser identifies rightmost pro-
ductions in reverse production order.

We will use the very simple grammar

Ss — PQR
P — p
Q —= q
R — r

to demonstrate this. The grammar produces only one string, pgr.
The leftmost production process for pgr proceeds as follows:

|s

P Q@ R
pPlQR
P alr
Ppar |

O I S

where the | indicates how far the production process has proceeded. The top-down
analysis mimics this process by first identifying the rule that produced the p, P—p,
then the one for q, etc.:

S-=PQR P-p Q0->q R->r
s = [PgR = ploR = pqgR = paqr|
(1) 2 3) “)
The rightmost production process for pgr proceeds as follows:
s
l'po R|
2 p o r
i Plgr
lpar

where the | again indicates how far the production process has proceeded. The
bottom-up analysis rolls back this process. To do this, it must first identify the rule
in production step 4, P—>p and use it as a reduction, then step 3, Q—q, etc. Fortu-
nately the parser can easily do this, because the rightmost production process makes
the boundary between the unprocessed and the processed part of the sentential form
creep to the left, so the last production brings it to the left end of the result, as we see
above. The parsing process can then start picking it up there:

P-p Q0-=q R—>r S->pqr
lpgr = Plgr = PQr = pqr|] = g
4 3) ) 4)

This double reversal is inherent in directional bottom-up parsing.
The connection between parse trees under construction and sentential forms is
shown in Figure 3.9, where the dotted lines indicate the sentential forms. On the left
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Fig. 3.9. Sentential forms in full parse tree (a), during top-down (b), and during bottom-up
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we have the complete parse tree; the corresponding sentential form is the string of
terminals. The middle diagram shows the partial parse tree in a top-down parser after
the p has been processed. The sentential form corresponding to this situation is pQR.
It resulted from the two productions S = PQR = pQR, which gave rise to the partial
parse tree. The diagram on the right shows the partial parse tree after the p has been
processed in a bottom-up parser. The corresponding sentential form is Pqr, resulting
from pgr < Pqr; the single reduction gave rise to a partial parse tree of only one
node.

Combining depth-first or breadth-first with top-down or bottom-up gives four
classes of parsing techniques. The top-down techniques are treated in Chapter 6. The
depth-first top-down technique allows a very simple implementation called recursive
descent; this technique, which is explained in Section 6.6, is very suitable for writing
parsers by hand. Since depth-first search is built into the Prolog language, recursive
descent parsers for a large number of grammars can be formulated very elegantly in
that language, using a formalism called “Definite Clause Grammars” (Section 6.7).
The applicability of this technique can be extended to cover all grammars by using a
device called “cancellation” (Section 6.8).

The bottom-up techniques are treated in Chapter 7. The combination of breadth-
first and bottom-up leads to the class of Earley parsers, which have among them
some very effective and popular parsers for general CF grammars (Section 7.2).
A formally similar but implementationwise quite different approach leads to “chart
parsing” (Section 7.3).

Sudkamp [397, Chapter 4] gives a full formal explanation of [breadth-
first | depth-first][top-down | bottom-up] context-free parsing.

3.5.4 Linear Methods

Most of the general search methods indicated in the previous section have exponen-
tial time dependency in the worst case: each additional symbol in the input multiplies
the parsing time by a constant factor. Such methods are unusable except for very
small input length, where 20 symbols is about the maximum. Even the best variants
of the above methods require cubic time in the worst case: for 10 tokens they perform
1000 actions, for 100 tokens 1 000 000 actions and for 10 000 tokens (a fair-sized
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computer program file) 10'? actions, which even at 10 nanoseconds per action will
already take almost 3 hours. It is clear that for real speed we should like to have a
linear-time general parsing method. Unfortunately no such method has been discov-
ered to date, and although there is no proof that such a method could not exist, there
are strong indications that that is the case; see Section 3.10 for details. Compare
this to the situation around unrestricted phrase structure parsing, where it has been
proved that no algorithm for it can exist (see Section 3.4.2).

So, in the meantime, and probably forever, we shall have to drop one of the two
adjectives from our goal, a linear-time general parser. We can have a general parser,
which will need cubic time at best, or we can have a linear-time parser, which will
not be able to handle all CF grammars, but not both. Fortunately there are linear-
time parsing methods (in particular LR parsing) that can handle very large classes of
grammars but still, a grammar that is designed without regard for a parsing method
and just describes the intended language in the most natural way has a small chance
of allowing linear parsing automatically. In practice, grammars are often first de-
signed for naturalness and then adjusted by hand to conform to the requirements
of an existing parsing method. Such an adjustment is usually relatively simple, de-
pending on the parsing method chosen. In short, making a linear-time parser for an
arbitrary given grammar is 10% hard work; the other 90% can be done by computer.

We can achieve linear parsing time by restricting the number of possible moves
of our non-deterministic parsing automaton to one in each situation. Since the moves
of such an automaton involve no choice, it is called a “deterministic automaton’.

The moves of a deterministic automaton are determined unambiguously by the
input stream (we can speak of a stream now, since the automaton operates from left
to right). A consequence of this is that a deterministic automaton can give only one
parsing for a sentence. This is all right if the grammar is unambiguous, but if it is
not, the act of making the automaton deterministic has pinned us down to one specific
parsing. We shall say more about this in Sections 8.2.5.3 and 9.9.

All that remains is to explain how a deterministic control mechanism for a parsing
automaton can be derived from a grammar. Since there is no single good solution to
the problem, it is not surprising that quite a number of sub-optimal solutions have
been found. From a very global point of view they all use the same technique: they
analyse the grammar in depth to bring to the surface information that can be used
to identify dead ends. These are then closed. If the method, applied to a grammar,
closes enough dead ends so that no choices remain, the method succeeds for that
grammar and gives us a linear-time parser. Otherwise it fails and we either have to
look for a different method or adapt our grammar to the method.

A (limited) analogy with the maze problem can perhaps make this clearer. If we
are allowed to do preprocessing on the maze (unlikely but instructive) the follow-
ing method will often make our search through it deterministic. We assume that the
maze consists of a grid of square rooms, as shown in Figure 3.10(a). Depth-first
search would find a passage through the maze in 13 moves (Figure 3.10(b)). Now we
preprocess the maze as follows: if there is a room with three walls, add the fourth
wall, and continue with this process until no rooms with three walls are left. If all
rooms now have either two or four walls, there are no choices left and our method
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Fig. 3.10. A single-exit maze made deterministic by preprocessing

has succeeded; see Figure 3.10(c), where the passage now takes 5 moves, with no
searching involved. We see how this method brings information about dead ends to
the surface, to help restrict the choice.

It should be pointed out that the above analogy is a limited one. It is concerned
with only one object, the maze, which is preprocessed. In parsing we are concerned
with two objects, the grammar, which is static and can be preprocessed, and the input,
which varies. (But see Problem 3.6 for a way to extend the analogy.)

Returning to the parsing automaton, we can state the fact that it is deterministic
more precisely: a parsing automaton is deterministic with look-ahead k if its control
mechanism can, given the internal administration and the next k symbols of the input,
decide unambiguously what to do next — to either match or predict and what to
predict in the top-down case, and to either shift or reduce and how to reduce in the
bottom-up case.

It stands to reason that a deterministic automaton creates a linear-time parser,
but this is not completely obvious. The parser may know in finite time what to do
in each step, but many steps may have to be executed for a given input token. More
specifically, some deterministic techniques can require k steps for a given position
k, which suggests that quadratic behavior is possible (see Problem 3.5). But each
parsing step either creates a node (predict and reduce) or consumes an input token
(match and shift). Both actions can only be performed O(n) times where n is the
length of the input: the first because the size of the parse tree is only O(n) and the
second because there are only 7 input tokens. So however the actions of the various
tasks are distributed, their total cannot exceed O(n).

Like grammar types, deterministic parsing methods are indicated by initials, like
LL, LALR, etc. If a method X uses a look-ahead of k symbols it is called X (k). All
deterministic methods require some form of grammar preprocessing to derive the
parsing automaton, plus a parsing algorithm or driver to process the input using that
automaton.

3.5.5 Deterministic Top-Down and Bottom-Up Methods

There is only one deterministic top-down method; it is called LL. The first L stands
for Left-to-right, the second for “identifying the Leftmost production”, as directional
top-down parsers do. LL parsing is treated in Chapter 8. LL parsing, especially LL(1)
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is very popular. LL(1) parsers are often generated by a parser generator but a simple
variant can, with some effort, be written by hand, using recursive-descent techniques;
see Section 8.2.6. Occasionally, the LL(1) method is used starting from the last token
of the input backwards; it is then called RR(1).

There are quite a variety of deterministic bottom-up methods, the most powerful
being called LR, where again the L stands for Left-to-right, and the R stands for
“identifying the Rightmost production”. Linear bottom-up methods are treated in
Chapter 9. Their parsers are invariably generated by a parser generator: the control
mechanism of such a parser is so complicated that it is not humanly possible to
construct it by hand. Some of the deterministic bottom-up methods are very popular
and are perhaps used even more widely than the LL(1) method.

LR(1) parsing is more powerful than LL(1) parsing, but also more difficult to
understand and less convenient. The other methods cannot be compared easily to the
LL(1) method. See Chapter 17.1 for a comparison of practical parsing methods. The
LR(1) method can also be applied backwards and is then called RL(1).

Both methods use look-ahead to determine which actions to take. Usually this
look-ahead is restricted to one token (LL(1), LR(1), etc.) or a few tokens at most,
but it is occasionally helpful to allow unbounded look-ahead. This requires differ-
ent parsing techniques, which results in a subdivision of the class of deterministic
parsers; see Figure 3.11.

The great difference in variety between top-down and bottom-up methods is eas-
ily understood when we look more closely at the choices the corresponding parsers
face. A top-down parser has by nature little choice: if a terminal symbol is predicted,
it has no choice and can only ascertain that a match is present; only if a non-terminal
is predicted does it have a choice in the production of that non-terminal. A bottom-
up parser can always shift the next input symbol, even if a reduction is also possible
(and it often has to do so). If, in addition, a reduction is possible, it may have a choice
between a number of right-hand sides. In general it has more choice than a top-down
parser and more powerful methods are needed to make it deterministic.

3.5.6 Non-Canonical Methods

For many practical grammars the above methods still do not yield a linear-time de-
terministic parser. One course of action that is often taken is to modify the grammar
slightly so as to fit it to the chosen method. But this is unfortunate because the re-
sulting parser then yields parse trees that do not correspond to the original grammar,
and patching up is needed afterwards. Another alternative is to design a parser so
it postpones the decisions it cannot take for lack of information and continue pars-
ing “at half power” until the information becomes available. Such parsers are called
non-canonical because they identify the nodes in the parse trees in non-standard,
“non-canonical” order. Needless to say this requires treading carefully, and some of
the most powerful, clever, and complicated deterministic parsing algorithms come in
this category. They are treated in Chapter 10.
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3.5.7 Generalized Linear Methods

When our attempt to construct a deterministic control mechanism fails and leaves
us with a non-deterministic but almost deterministic one, we need not despair yet:
we can fall back on breadth-first search to solve the remnants of non-determinism at
run-time. The better our original method was, the less non-determinism will be left,
the less often breadth-first search will be needed, and the more efficient our parser
will be. Such parsers are called “generalized parsers”; generalized parsers have been
designed for most of the deterministic methods, both top-down and bottom-up. They
are described in Chapter 11. Generalized LR (or GLR) (Tomita [162]) is one of the
best general CF parsers available today.

Of course, by reintroducing breadth-first search we are taking chances. The gram-
mar and the input could conspire so that the non-determinism gets hit by each input
symbol and our parser will again have exponential time dependency. In practice,
however, they never do so and such parsers are very useful.

3.5.8 Conclusion

Figure 3.11 summarizes parsing techniques as they are treated in this book. Nijholt
[154] paints a more abstract view of the parsing landscape, based on left-corner pars-
ing. See Deussen [22] for an even more abstracted overview. An early systematic
survey was given by Griffiths and Petrick [9].

3.6 The “Strength” of a Parsing Technique

Formally a parsing technique 77 is stronger (more powerful) than a parsing tech-
nique 7> if 77 can handle all grammars 7> can handle but not the other way around.
Informally one calls one parsing technique stronger than another if to the speaker
it appears to handle a larger set of grammars. Formally this is of course nonsense,
since all parsing techniques can handle infinite sets of grammars, and the notion of
“larger” is moot. Also, a user grammar designed without explicit aim at a particular
parsing technique has an almost zero chance of being amenable to any existing tech-
nique anyway. What counts from a user point of view is the effort required to modify
the “average” practical grammar so it can be handled by method 7', and to undo the
damage this modification causes to the parse tree. The strength (power) of parsing
technique 7 is inversely proportional to that effort.

Almost invariably a strong parser is more complicated and takes more effort to
write than a weak one. But since a parser or parser generator (see Section 17.2) needs
to be written only once and then can be used as often as needed, a strong parser saves
effort in the long run.

Although the notion of a “strong” parser is intuitively clear, confusion can arise
when it is applied to the combination of parser and grammar. The stronger the parser
is, the fewer restrictions the grammars need to obey and the “weaker” they can af-
ford to be. Usually methods are named after the grammar and it is here where the



3.7 Representations of Parse Trees 85

Top-down Bottom-up
Non-directional methods Unger parser CYK parser
Directional Methods, The predict/match automaton The shift/reduce automaton
depth-first or recursive descent Breadth-first, top-down
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Fig. 3.11. An overview of context-free parsing techniques

confusion starts. A “strong LL(1) grammar” is more restricted than an “LL(1) gram-
mar”’; one can also say that it is more strongly LL(1). The parser for such grammars
is simpler than one for (full) LL(1) grammars, and is — can afford to be — weaker.
So actually a strong-LL(1) parser is weaker than an LL(1) parser. We have tried to
consistently use the hyphen between “strong” and “LL(1)” to show that “strong” ap-
plies to “LL(1)” and not to “parser”, but not all publications follow that convention,
and the reader must be aware. The reverse occurs with “weak-precedence parsers”
which are stronger than “precedence parsers” (although in that case there are other
differences as well).

3.7 Representations of Parse Trees
The purpose of parsing is to obtain one or more parse trees, but many parsing tech-

niques do not tell you in advance if there will be zero, one, several or even infinitely
many parse trees, so it is a little difficult to prepare for the incoming answers. There
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are two things we want to avoid: being under-prepared and miss parse trees, and
being over-prepared and pre-allocate an excessive amount of memory. Not much
published research has gone into this problem, but the techniques encountered in the
literature can be grouped into two models: the producer-consumer model and the
data structure model.

3.7.1 Parse Trees in the Producer-Consumer Model

In the producer-consumer model the parser is the producer and the program using
the parse trees is the consumer. As in all producer-consumer situations in computer
science, the immediate question is, which is the main program and which is the
subroutine.

The most esthetically pleasing answer is to have them both as equal partners,
which can be done using coroutines. Coroutines are explained in some books on
principles of programming languages and programming techniques, for example Ad-
vanced Programming Language Design by R.A. Finkel (Addison-Wesley). There are
also good explanations on the Internet.

In the coroutine model, the request for a new parse tree by the user and the offer
of a parse tree by the parser are paired up automatically by the coroutine mechanism.
The problem with coroutines is that they must be built into the programming lan-
guage, and no major programming language features them. So coroutines are not a
practical solution to parse tree representation.

The coroutine’s modern manifestation, the thread, in which the pairing up is done
by the operating system or by a light-weight version of it inside the program, is avail-
able in some major languages, but introduces the notion of parallelism which is not
inherently present in parsing. The UNIX pipe has similar communication properties
but is even more alien to the parsing problem.

Usually the parser is the main program and the consumer is the subroutine. Each
time the parser has finished constructing a parse tree, it calls the consumer routine
with a pointer to the tree as a parameter. The consumer can then decide what to do
with this tree: reject it, accept it, store it for future comparison, etc. In this setup the
parser can just happily produce trees, but the consumer will probably have to save
state data between being called, to be able to choose between parse trees. This is the
usual setup in compiler design, where there is only one parse tree and the user state
saving is less of a problem.

It is also possible to have the user as the main program, but this places a heavy
burden on the parser, which is now forced to keep all state data of its half-finished
parsing process when delivering a parse tree. Since data on the stack cannot be saved
as state data (except by draconian means) this setup is feasible only with parsing
methods that do not use a stack.

With any of these setups the user still has two problems in the general case. First,
when the parser produces more than one parse tree the user receives them as separate
trees and may have to do considerable comparison to find the differences on which to
base further decisions. Second, if the grammar is infinitely ambiguous and the parser
produces infinitely many parse trees, the process does not terminate.
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So the producer-consumer model is satisfactory for unambiguous grammars, but
is problematic for the general case.

3.7.2 Parse Trees in the Data Structure Model

In the data structure model the parser constructs a single data structure which repre-
sents all parse trees simultaneously. Surprisingly, this can be done even for infinitely
ambiguous grammars; and what is more, it can be done in a space whose size is at
most proportional to the third power of the length of the input string. One says that
the data structure has cubic space dependency.

There are two such representations: parse forests and parse-forest grammars. Al-
though the two are fundamentally the same, they are very different conceptually and
practically, and it is useful to treat them as separate entities.

3.7.3 Parse Forests

Since a forest is just a collection of trees, the naive form of a parse forest consists
of a single node from which all trees in the parse forest are directly reachable. The
two parse trees from Figure 3.2 then combine into the parse forest from Figure 3.12,
where the numbers in the nodes refer to rule numbers in the grammar of Figure 3.1.

Fig. 3.12. Naive parse forest from the trees in Figure 3.2

When we look at this drawing, we notice two things: the meaning of the dashed
arrows differs from that of the drawn arrows; and the resulting tree contains a lot of
duplicate subtrees. One also wonders what the label in the empty top node should be.

The meaning of the dashed arrow is “or-or”: the empty top node points to either
the left node marked 2 or to the right node, whereas the drawn arrows mean “and-
and”: the left node marked 2 consists of a node marked Sum and a node marked + and
anode marked Sum. More in particular, the empty top node, which should be labeled
Sum points to two applications of rule 2, each of which produces Sum + Sum;
the leftmost Sum points to an application of rule 1, the second Sum points to an
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Fig. 3.13. The naive parse forest as an AND-OR tree

application of rule 2, etc. The whole AND-OR tree is presented in Figure 3.13, where
we see an alteration of nodes labeled with non-terminals, the OR-nodes and nodes
labeled with rule numbers, the AND-nodes. An OR-node for a non-terminal A has the
rule numbers of the alternatives for A as children; an AND-node for a rule number
has the components of the right-hand side of the rule as children.

3.7.3.1 Combining Duplicate Subtrees

We are now in a position to combine all the duplicate subtrees in the forest. We do
this by having only one copy of a node labeled with a non-terminal A and spanning
a given substring of the input. If A produces that substring in more than one way,
more than one or-arrow will emanate from the OR-node labeled A, each pointing to
an AND-node labeled with a rule number. In this way the AND-OR tree turns into a
directed acyclic graph, a dag, which by rights should be called a parse dag, although
the term “parse forest” is much more usual. The result of our example is shown in
Figure 3.14.

It is important to note that two OR-nodes (which represent right-hand sides of
rules) can only be combined if all members of the one node are the same as the
corresponding members of the other node. It would not do to combine the two nodes
marked 2 in Figure 3.14 right under the top; although they both read Sum+Sum, the
Sums and even the +s are not the same. If they were combined, the parse forest would
represent more parse trees than correspond with the input; see Problem 3.8.

It is possible to do the combining of duplicate subtrees during parsing rather
than afterwards, when all trees have been generated. This is of course more efficient,
and has the additional advantage that it allows infinitely ambiguous parsings to be
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Fig. 3.14. The parse trees of Figure 3.2 as a parse forest

represented in a finite data structure. The resulting parse forest then contains loops
(cycles), and is actually a parse graph.

Figure 3.15 summarizes the situation for the various Chomsky grammar types in
relation to ambiguity. Note that finite-state and context-sensitive grammars cannot

Most complicated data structure
Grammar type | unambiguous ambiguous infinitely ambiguous

PS dag dag graph
CS dag dag —
CF tree dag graph
FS list dag —

Fig. 3.15. The data structures obtained when parsing with the Chomsky grammar types

be infinitely ambiguous because they cannot contain nullable rules. See Figure 2.16
for a similar summary of production data structures.

3.7.3.2 Retrieving Parse Trees from a Parse Forest

The receiver of a parse forest has several options. For example, a sequence of parse
trees can be generated from it, or, perhaps more likely, the data structure can be
pruned to eliminate parse trees on various grounds.
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Generating parse trees from the parse forest is basically simple: each combination
of choices for the or-or arrows is a parse tree. The implementation could be top-down
and will be sketched here briefly. We do a depth-first visit of the graph, and for each
OR-node we turn one of the outgoing dashed arrows into a solid arrow; we record
each of these choices in a backtrack chain. When we have finished our depth-first
visit we have fixed one parse tree. When we are done with this tree, we examine the
most recent choice point, as provided by the last element of the backtrack chain, and
make a different choice there, if available; otherwise we backtrack one step more,
etc. When we have exhausted the entire backtrack chain we know we have generated
all parse trees. One actualization of a parse tree is shown in Figure 3.16.

Y
ONO

Fig. 3.16. A tree identified in the parse forest of Figure 3.14

!

It is usually more profitable to first prune the parse forest. How this is done
depends on the pruning criteria, but the general technique is as follows. Information
is attached to each node in the parse forest, in a way similar to that in attribute
grammars (see Section 2.11.1). Whenever the information in a node is contradictory
to the criteria for that type of node, the node is removed from the parse forest. This
will often make other nodes inaccessible from the top, and these can then be removed
as well.

Useful pruning of the parse forest of Figure 3.14 could be based on the fact
that the + operator is left-associative, which means that a+b+c should be parsed as
( (a+b) +c) rather than as (a+ (b+c) ). The criterion would then be that for each
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node that has a + operator, its right operand cannot be a non-terminal that has a node
with a + operator. We see that the top-left node marked 2 in Figure 3.14 violates
this criterion: it has a + operator (in position 2) and a right operand which is a non-
terminal (Sum) which has a node which has a node (2) which has a + operator (in
position 4). So this node can be removed, and so can two further nodes. Again the
parse tree from Figure 3.16 remains.

The above criterion is a (very) special case of an operator-precedence criterion
for arithmetic expressions; see Problem 3.10 for a more general one.

3.7.4 Parse-Forest Grammars

Representing the result of parsing as a grammar may seem weird, far-fetched and
even somewhat disappointing; after all, should one start with a grammar and a string
and do all the work of parsing, just to end up with another grammar? We will, how-
ever, see that parse-forest grammars have quite a number of advantages. But none of
these advantages is immediately obvious, which is probably why parse-forest gram-
mars were not described in the literature until the late 1980s, when they were intro-
duced by Lang [210, 220, 31], and by Billot and Lang [164]. The term *“parse-forest
grammar” seems to be used first by van Noord [221].

Figure 3.17 presents the parse trees of Figure 3.2 as a parse-forest grammar, and
it is interesting to see how it does that. For every non-terminal A in the original

Sumg —> Sum 1 5
Sum 1 5 — Sum 1 1 + Sum 3 3
Sum 1 5 — Sum 1 3 + Sum 5 1
Sum 1 3 — Sum 1 1 + Sum 3 1
Sum 3 3 — Sum 3 1 + Sum 5 1
Sum 1 1 — Digit 1 1
Digit 1 1 — 3
Sum 3 1 — Digit 3 1
Digit 31 — 5
Sum 5 1 — Digit 5 1
Digit 51 — 1

Fig. 3.17. The parse trees of Figure 3.2 as a parse-forest grammar

grammar that produces an input segment of length / starting at position i, there is
a non-terminal A_i_[ in the parse-forest grammar, with rules that show how A_i_[
produces that segment. For example, the existence of Sum 1 5 in the parse-tree
grammar shows that Sum produces the whole input string (starting at position 1,
with length 5); the fact that there is more than one rule for Sum 1 5 shows that the
parsing was ambiguous; and the two rules show the two possible ways Sum 1 5
produces the whole input string. When we use this grammar to generate strings, it
generates just the input sentence 3+5+1, but is generates it twice, in accordance with
the ambiguity.
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We write A_i_[ rather than A;; because A_i_l represents the name of a grammar
symbol, not a subscripted element of an entity A: there is no table or matrix A. Nor is
there any relationship between A_i_[ and say A_i_m: each A_i_[ is a separate name
of a grammar symbol.

Now for the advantages. First, parse-forest grammars implement in a graphical
way the concept, already expressed less directly in the previous section, that there
should be exactly one entity that describes how a given non-terminal produces a
given substring of the input.

Second, it is mathematically beautiful: parsing a string can now be viewed as a
function which maps a grammar onto a more specific grammar or an error value.
Rather than three concepts — grammars, input strings, and parse forests — we now
need only two: grammars and input strings. More practically, all software used in
handling the original grammar is also available for application to the parse-forest
grammar.

Third, parse-forest grammars are easy to clean up after pruning, using the al-
gorithms from Section 2.9.5. For example, applying the disambiguation criterion
used in the previous section to the rules of the grammar in Figure 3.17 identifies the
first rule for Sum 1 5 as being in violation. Removing this rule and applying the
grammar clean-up algorithm yields the unambiguous grammar of Figure 3.18, which
corresponds to the tree in Figure 3.16.

Sumg — Sum 1 5
Sum 1 5 — Sum 1 3 + Sum 5 1
Sum 1 3 — Sum 1 1 + Sum 3 1
Sum 1 1 — Digit 1 1
Digit 11 — 3
Sum 3 1 — Digit 3 1
Digit_ 3.1 — 5
Sum 5 1 - Digit 5 1
Digit 51 — 1

Fig. 3.18. The disambiguated and cleaned-up parse-forest grammar for Figure 3.2

Fourth, representing infinitely ambiguous parsings is trivial: the parse-forest
grammar just produces infinitely many (identical) strings. And producing infinitely
many strings is exactly what grammars normally do.

And last but probably not least, it fits in very well with the interpretation of
parsing as intersection, an emerging and promising approach, further discussed in
Chapter 13.

Now it could be argued that parse forests and parse-forest grammars are actually
the same and that the pointers in the first have just been replaced by names in the
second, but that would not be fair. Names are more powerful than pointers, since a
pointer can point only to one object, whereas a name can identify several objects,
through overloading or non-determinism: names are multi-way pointers. More in
particular, the name Sum 1 5 in Figure 3.17 identifies two rules, thus playing the
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role of the top OR-node in Figure 3.14. We see that in parse-forest grammars we
get the AND-OR tree mechanism free of charge, since it is built into the production
mechanism of grammars.

3.8 When are we done Parsing?

Since non-directional parsers process the entire input at once and summarize it into
a single data structure, from which parse trees can then be extracted, the question of
when the parsing is done does not really arise. The first stage is done when the data
structure is finished; extracting the parse trees is done when they are exhausted or
the user is satisfied.

In principle, a directional parser is finished when it is in an accepting state and
the entire input has been consumed. But this is a double criterion, and sometimes
one of these conditions implies the other; also other considerations often play a role.
As a result, for directional parsers the question has a complex answer, depending on
a number of factors:

e Is the parser at the end of the input? That is, has it processed completely the last
token of the input?

e Is the parser in an accepting state?

e Can the parser continue, i.e, is there a next token and can the parser process it?

e Isthe parser used to produce a parse tree or is just recognition enough? In the first
case several situations can arise; in the second case we just get a yes/no answer.

e If we want parsings, do we want them all or is one parsing enough?

e Does the parser have to accept the entire input or is it used to isolate a prefix of
the input that conforms to the grammar? (A string x is a prefix of a string y if y
begins with x.)

The answers to the question whether we have finished the parsing are combined in
the following table, where EOI stands for “end of input” and the yes/no answer for
recognition is supplied between parentheses.

at end of can in an accepting state?
input?  continue? yes no

prefix identified / .

yes yes . continue
continue

yes no OK (yes) premature EOI (no)
prefix identified / .

no yes . continue
continue
prefix identified & trailing o

no no error in input (no)
text (no)

Some answers are intuitively reasonable: if the parser can continue in a non-
accepting state, it should do so; if the parser cannot continue in a non-accepting
state, there was an error in the input; and if the parser is in an accepting state at the
end of the input and cannot continue, parsing was successful. But others are more
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complicated: if the parser is in an accepting state, we have isolated a prefix, even if
the parser could continue and/or is at EOL If that is what we want we can stop, but
usually we want to continue if we can: with the grammar S—a | ab and the input ab
we could stop after the a and declare the a a prefix, but it is very likely we want to
continue and get the whole ab parsed. This could be true even if we are at EOI: with
the grammar S—>a|aB where B produces € and the input a we need to continue
and parse the B, if we want to obtain all parsings. And if the parser cannot, we have
recognized a string in the language with what error messages usually call “trailing
garbage”.

Note that “premature EOI” (the input is a prefix of a string in the language) is
the dual of “prefix isolated” (a prefix of the input is a string in the language). If we
are looking for a prefix we usually want the longest possible prefix. This can be im-
plemented by recording the most recent position P in which a prefix was recognized
and continuing parsing until we get stuck, at the end of the input or at an error. P is
then the end of the longest prefix.

Many directional parsers use look-ahead, which means that there must always be
enough tokens for the look-ahead, even at the end of the input. This is implemented
by introducing an end-of-input token, for example # or any other token that does
not occur elsewhere in the grammar. For a parser that uses k tokens of look-ahead, k
copies of # are appended to the input string; the look-ahead mechanism of the parser
is modified accordingly; see for example Section 9.6. The only accepting state is then
the state in which the first # is about to be accepted, and it always indicates that the
parsing is finished.

This simplifies the situation and the above table considerably since now the
parser cannot be in an accepting state when not at the end of the input. This elim-
inates the two prefix answers from the table above. We can then superimpose the
top half of the table on the bottom half, after which the leftmost column becomes
redundant. This results in the following table:

can in an accepting state?
continue? yes no
yes — continue
no OK (yes) errorin input/
premature  EOI
(no)

where we leave the check to distinguish between “error in input” and “premature
EOI” to the error reporting mechanism.

Since there is no clear-cut general criterion for termination in directional parsers,
each parser comes with its own stopping criterion, a somewhat undesirable state
of affairs. In this book we will use end-of-input markers whenever it is helpful for
termination, and, of course, for parsers that use look-ahead.
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3.9 Transitive Closure

Many algorithms in parsing (and in other branches of computer science) have the
property that they start with some initial information and then continue to draw con-
clusions from it based on some inference rules until no more conclusions can be
drawn. We have seen two examples already, with their inference rules, in Sections
2.9.5.1 and 2.9.5.2. These inference rules were quite different, and in general infer-
ence rules can be arbitrarily complex. To get a clear look at the algorithm for drawing
conclusions, the closure algorithm, we shall now consider one of the simplest possi-
ble inference rules: transitivity. Such rules have the form

fA®Band BQCthenA®C

where ® is any operator that obeys the rule. The most obvious one is =, but <, <
and many others also do. But note that, for example, # (not equal) does not.

As an example we shall consider the computation of the “left-corner set” of a
non-terminal. A non-terminal B is in the left-corner set of a non-terminal A if there
is a derivation A->B---; it is sometimes useful to know this, because among other
things it means that A can begin with anything B can begin with.

Given the grammar

S —= ST
S — A a
T — At
A — Bb
B — Coc
C — x

how can we find out that C is in the left-corner set of S? The rules S—ST and S —Aa
in the grammar tell us immediately that S and A are in the left-corner set of S. We
write this as S/S and AZS, where / symbolizes the left corner. It also tells us AZT,
B/A, and C/B. This is our initial information (Figure 3.19(a)).

s/s s/sv B/S V c/sv
A/S A/SYV c/s
AT A/SYV c/AT
B/A B/S c/sv
Cc/B BT c/TV
B/SV
BTV
C/A
c/AvV
(@) ) (©) (d)

Fig. 3.19. The results of the naive transitive closure algorithm

Now it is easy to see that if A is in the left-corner set of B and B is in the left-
corner set of C, then A is also in the left-corner of C. In a formula:
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AZB N BZC = AZC

This is our inference rule, and we will use it for drawing new conclusions, or “in-
ferences”, by pairwise combining known facts to produce more known facts. The
transitive closure is then obtained by applying the inference rules until no more new
facts are produced. The facts are also called “relations” in the transitive-closure con-
text, although formally Z is the (binary) relation, and AZB and BZC are “instances”
of that relation.

Going through the list in Figure 3.19(a) we first combine S/S and SZS. This
yields 88, which is rather disappointing since we knew that already; it is in Figure
3.19(b), marked with a ¢ to show that it is not new. The combination (S/S, A/S)
yields AZS, but we already knew that too. No other facts combine with S/8, so we
continue with A/S, which yields AZS and BZS; the first is old, the second our first
new discovery. Then (AZT, BZA) yields BZT, etc., and the rest of the results of the
first round can be seen in Figure 3.19(b).

The second round combines the three new facts with the old and new ones. The
first new discovery is C/8 from A/S and CZA (c); CLT follows.

The third round combines the two new facts in (¢) with those in (a), (b), and (¢),
but finds no new facts; so the algorithm terminates with 10 facts.

Note that we have already implemented an optimization in this naive algorithm:
the basic algorithm would start the second and subsequent rounds by pairing up all
known facts with all known facts, rather than just the new ones.

It is often useful to represent the facts or relations in a graph, in which they are
arcs. The initial situation is shown in Figure 3.20(a), the final one in (b). The numbers

(a) (b)

Fig. 3.20. The left-corner relation as a graph

next to the arrows indicate the rounds in which they were added.

The efficiency of the closure algorithm of course depends greatly on the inference
rule it uses, but the case for the transitive rule has been studied extensively. There are
three main ways to do transitive closure: naive, traditional, and advanced; we will
discuss each of them briefly. The naive algorithm, sketched above, is usually quite
efficient in normal cases but may require a large number of rounds to converge in
exceptional cases on very large graphs. Also it recomputes old results several times,
as we see in Figure 3.19: of the 15 results 10 were old. But given the size of “normal”
grammars, the naive algorithm is satisfactory in almost all situations in parsing.
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The traditional method to do transitive closure is to use Warshall’s algorithm
[409]. It has the advantage that it is very simple to implement and that the time it
requires depends only on the number of nodes N in the graph and not on the number
of arcs, but it has the disadvantage that it always requires O(N?) time. It always loses
in any comparison to any other closure algorithm.

The advanced algorithms avoid the inefficiencies of the naive algorithm: 1. cy-
cles in the graph are contracted as “strongly connected components”; 2. the arcs are
combined in an order which avoids duplicate conclusions and allows sets of arcs to
be copied rather than recomputed; 3. efficient data representations are used. For ex-
ample, an advanced algorithm would first compute all outgoing arcs at A and then
copy them to T rather than recomputing them for T. The first advanced transitive clo-
sure algorithm was described by Tarjan [334]. They are covered extensively in many
other publications; see Nuutila [412] and the Internet. They require time proportional
to the number of conclusions they draw.

Advanced transitive closure algorithms are very useful in large applications
(databases, etc.) but their place in parsing is doubtful. Some authors recommend
their use in LALR parser generators but the grammars used would have to be very
large for the algorithmic complexity to pay off.

The advantage of emphasizing the closure nature of algorithms is that one can
concentrate on the inference rules and take the underlying closure algorithm for
granted; this can be a great help in designing algorithms. Most algorithms in parsing
are, however, simple enough as to not require decomposition into inference rules and
closure for their explanation. We will therefore use inference rules only where they
are helpful in understanding (Section 9.7.1.3) and where they are part of the culture
(Section 7.3, chart parsing). For the rest we will present the algorithms in narrative
form, and point out in passing that they are transitive-closure algorithms.

3.10 The Relation between Parsing and Boolean Matrix
Multiplication

There is a remarkable and somewhat mysterious relationship between parsing and
Boolean matrix multiplication, in that it is possible to turn one into the other and
vice versa, with a lot of ifs and buts. This has interesting implications.

A Boolean matrix is a matrix in which all entries are either O or 1. If the indexes of
amatrix T represent towns, the element 7; ; could, for example, indicate the existence
of a direct railroad connection from town i to town j. Such a matrix can be multiplied
by another Boolean matrix Uj x, which could, for example, indicate the existence of
a direct bus connection from town j to town k. The result V;; (the product of 7 and
U) is a Boolean matrix which indicates if there is a connection from town i to town
k by first using a train and then a bus. This immediately shows how V;; must be
computed: it should have a 1 if there is a j for which both T; ; and U; ; hold a 1, and
a 0 otherwise. In a formula:

Vik = (Tian AUV (T2 AUz i) V-V (Tiy AUng)
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where A is the Boolean AND, V is the Boolean OR, and # is the size of the matrices.
This means that O(n) actions are required for each entry in V, of which there are n?;
so the time dependency of this algorithm is O(n?).

Figure 3.21 shows an example; the boxed row 7>, combines with the boxed
column U, » to produce the boxed entry V;>. Boolean matrix multiplication is not

T U \%
0 0 0 0 0 0 0i 1 0 0 0 0 0 0 0
RO Mt 0 0o 1 0 0 10 0 0
00 0 1 0 X 1 o 00 0ol = [0 0 0 0 0
0 0 0 0 0 0 §0§ 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Fig. 3.21. Boolean matrix multiplication

commutative: it is quite possible that there is a train-bus connection but no bus-train
connection from one town to another, so 7 x U will in general not be equal to U x T'.
Note also that this differs from transitive closure: in transitive closure a single relation
is followed an unbounded number of times, whereas in Boolean matrix multiplication
first one relation is followed and then a second.

The above is a trivial application of Boolean matrix multiplication (BMM), but
BMM is very important in many branches of mathematics and industry, and there is
a complete science on how to perform it efficiently.’> Decades of concentrated effort
have resulted in a series of increasingly more efficient and complicated algorithms.
V. Strassen* was the first to break the O(n?) barrier with an O(n?>3!"") algorithm, and
the present record stands at O(n>37%); it dates from 1987. It is clear that at least
O(n?) actions are required, but it is unlikely that that efficiency can be achieved.

More important from our viewpoint is the fact that in 1975 Valiant [18] showed
how a CF parsing problem can be converted into a BMM problem. In particular,
if you can multiply two Boolean matrices of size n x n in O(n*) actions, you can
parse a string of length n in O(n*) + O(n?) actions, where the O(n?) is the cost of
the conversion. So we can do general CF parsing in O(n?>37%"), which is indeed
better than the cubic time dependency of the CYK algorithm. But the actions of
both Valiant’s algorithm and the fast BMM are extremely complicated and time-
consuming, so this approach would only be better for inputs of millions of symbols
or more. On top of that it requires all these symbols to be in memory, as it is a non-
directional method, and the size of the data structures it uses is O(nz), which means
that it can only be run profitably on a machine with terabytes of main memory. In
short, its significance is theoretical only.

3 For a survey see V. Strassen, “Algebraic complexity theory”, in Handbook of Theoretical
Computer Science, vol. A, Jan van Leeuwen, Ed. Elsevier Science Publishers, Amsterdam,
The Netherlands, pp. 633-672, 1990.

4 V. Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, 13:354-356,
1969.
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In 2002 Lee [39] showed how a BMM problem can be converted into a CF pars-
ing problem. More in particular, if you can do general CF parsing of a string of
length n in 0(n3’8) actions, you can multiply two Boolean matrices of size n X n
in O(n3~%3) actions. There is again a conversion cost of O(n?), but since 8 can be
at most 2 (in which unlikely case parsing could be done in O(n)), O(n3~%/3) is at

least O(nz% ), which dominates the O(n?); note that for & = 0 the usual O(rn*) bounds
for both problems result. The computational efforts involved in Lee’s conversion are
much smaller than those in Valiant’s technique, so a really fast general CF parsing
algorithm would likely supply a fast practical BMM algorithm. Such a fast general
CF parsing algorithm would have to be non-BMM-dependent and have a time com-
plexity better than O(n?); unfortunately no such algorithm is known.

General CF parsing and Boolean matrix multiplication have in common that the
efficiencies of the best algorithms for them are unknown. Figure 3.22 summarizes
the possibilities. The horizontal axis plots the efficiency of the best possible general

best
BMM

best known BMM
n2.376

)

n Valiant

best parsing

Fig. 3.22. Map of the best parser versus best BMM terrain

CF parsing algorithm; the vertical axis plots the efficiency of the best possible BMM
algorithm. A position in the graph represents a combination of these values. Since
these values are unknown, we do not know which point in the graph corresponds to
reality, but we can exclude several areas.

The grey areas are excluded on the grounds of existing algorithms. For example,
the grey area on the right of the vertical line at 13 is excluded because we have the
CYK algorithm, which does general CF parsing in O(n?); so the pair (best parser,
best BMM) cannot have a first component which is larger than O(n*). Likewise the
area left of the vertical line at n! represents parsing algorithms that work in less than
O(n), which is impossible since the parser must touch each token. BMM requires
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2:376-+) is available; this yields two

at least O(n?) actions, but an algorithm for O(n
horizontal forbidden areas.

The shading marks the areas that are excluded by the Valiant and Lee conversion
algorithms. Valiant’s result excludes the horizontally shaded area on the right; Lee’s
result excludes the vertically shaded area at the top. The combination of the efficien-
cies of the true best parsing and BMM algorithms can only be situated in the white
unshaded area in the middle.

Extensive research on the BMM problem has not yielded a usable algorithm that
is substantially better than O(n?); since BMM can be converted to parsing this could
explain why the admittedly less extensive research on general CF parsing has not
yielded a better than O(n?) algorithm, except through BMM. On the other hand Fig-
ure 3.22 shows that it is still possible for general CF parsing to be linear (O(n')) and
BMM to be worse than O(n?).

Rytter [34] has linked general CF parsing to a specific form of shortest-path
computation in a lattice, with comparable implications.

Greibach [389] describes the “hardest context-free language”, a language such
that if we can parse it in time O(n*), we can parse any CF language in time O(n").
Needless to say, it’s hard to parse. The paper implicitly uses a parsing technique
which has received little attention; see Problem 3.7.

3.11 Conclusion

Grammars allow sentences to be produced through a well-defined process, and the
details of this process determines the structure of the sentence. Parsing recovers this
structure either by imitating the production process (top-down parsing) or by rolling
it back (bottom-up parsing). The real work goes into gathering information to guide
the structure recovery process efficiently.

There is a completely different and — surprisingly — grammarless way to do
CF parsing, “data-oriented parsing”, which is outside the scope of this book. See
Bod [348] and the Internet.

Problems

Problem 3.1: Suppose all terminal symbols in a given grammar are different. Is
that grammar unambiguous?

Problem 3.2: Write a program that, given a grammar G and a number 7, com-
putes the number of different parse trees with n leaves (terminals) G allows.

Problem 3.3: If you are familiar with an existing parser (generator), identify its
parser components, as described on page 69.

Problem 3.4: The maze preprocessing algorithm in Section 3.5.4 eliminates all
rooms with three walls; rules with two or four walls are acceptable in a deterministic
maze. What about rooms with zero or one wall? How do they affect the algorithm
and the result? Is it possible/useful to eliminate them too?
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Problem 3.5: Construct an example in which a deterministic bottom-up parser
will have to perform k actions at position k, for a certain k.

Problem 3.6: Project: There are several possible paths through the maze in
Figure 3.10(), so a maze defines a set of paths. It is easy to see that these paths
form a regular set. This equates a maze to a regular grammar. Develop this analogy,
for example: 1. Derive the regular grammar from some description of the maze. 2.
How does the subset algorithm (Section 5.3.1) transform the maze? 3. Is it possible
to generate a set of mazes so that together they define a given CF set?

Problem 3.7: Project: Study the “translate and cross out matching parentheses”
parsing method of Greibach [389].

Problem 3.8: Show that a version of Figure 3.14 in which the nodes marked 2
near the top are combined represents parse trees that are not supported by the input.

Problem 3.9: Implement the backtracking algorithm sketched in Section 3.7.3.

Problem 3.10: Assume arithmetic expressions are parsed with the highly am-
biguous grammar

Expr; — Number
Expr —> Expr Operator Expr | ( Expr )
Operator — + | - | x | / | 1

with an appropriate definition of Number. Design a criterion that will help prune the
resulting parse forest to obtain the parse tree that obeys the usual precedences for the
operators. For example, 4 45 x 6 + 8 should come out as ((4+ (5 x 6)) + 8). Take
into account that the first four operators are left-associative, but the exponentiation
operator 1 is right-associative: 6/6/6is ((6/6)/6)but 6167 6is (6 1 (6T 6)).

Problem 3.11: Research project: Some parsing problems involve extremely
large CF grammar, with millions of rules. Such a grammar is generated by program
and results from incorporating finite context conditions into the grammar. It is usu-
ally very redundant, containing many very similar rules, and very ambiguous. Many
general CF parsers are quadratic in the size of the grammar, which for ten million
rules brings in a factor of 10'#. Can parsing techniques be designed that work well
on such grammars? (See also Problem 4.5.)

Problem 3.12: Extensible Project: 1. A string S is balanced for a token pair
(t1,12) if #t; = #1, for S and #1; > #r1, for all prefixes of S, where #t is the number of
occurrences of 7 in S or a prefix of it. A token pair (71,%,) is a parentheses pair for
a grammar G if all strings in £(G) are balanced for (#1,%,). Design an algorithm to
check if a token pair (¢1,,) is a parentheses pair for a given grammar G: a) under the
simplifying but reasonable assumption that parentheses pairs occur together in the
right hand side of a rule (for example, as in F— (E) ), and b) in the general case.

2. A token ¢ in position i in a string matches a token f, in a position j if the string
segmenti+ 1--- j— 1 between them is balanced for (#;,%,). A parentheses pair (¢1,,)
is compatible with a parentheses pair (u1,u;) if every segment between a #; and its
matching #, in every string in £(G) is balanced for (u;,u2). Show that if (71,t2) is
compatible with (u,uz), (u1,u2) is compatible with (#1,1,).

3. Design an algorithm to find a largest set of compatible parentheses pairs for a
given grammar.
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4. Use the set of parentheses pairs to structure sentences in £(G) in linear time.

5. Derive information from G about the segments of strings in £(G) that are not
structured in that process, for example regular expressions.

6. Devise further techniques to exploit the parentheses skeleton of CF languages.



4

General Non-Directional Parsing

In this chapter we will present two general parsing methods, both non-directional:
Unger’s method and the CYK method. These methods are called non-directional
because they access the input in a seemingly arbitrary order. They require the entire
input to be in memory before parsing can start.

Unger’s method is top-down; if the input belongs to the language at hand, it
must be derivable from the start symbol of the grammar, say S. Therefore, it must be
derivable from a right-hand side of the start symbol, say A1A>---A,,. This, in turn,
means that A} must derive a first part of the input, A, a second part, etc. If the input
sentence is 1 - - - 1, this demand can be depicted as follows:

f 1 ty

Unger’s method tries to find a partition of the input that fits this demand. This is a
recursive problem: if a non-terminal A; is to derive a certain part of the input, there
must be a partition of this part that fits a right-hand side of A;. Ultimately, such
a right-hand side must consist of terminal symbols only, and these can easily be
matched with the current part of the input.

The CYK method approaches the problem the other way around: it tries to find
occurrences of right-hand sides in the input; whenever it finds one, it makes a note
that the corresponding left-hand side derives this part of the input. Replacing the
occurrence of the right-hand side with the corresponding left-hand side results in
some sentential forms that derive the input. These sentential forms are again the
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subject of a search for right-hand sides, etc. Ultimately, we may find a sentential
form that both derives the input sentence and is a right-hand side of the start symbol.
In the next two sections, these methods are investigated in detail.

4.1 Unger’s Parsing Method

The input to Unger’s parsing method [12] consists of a CF grammar and an input
sentence. We will first discuss Unger’s parsing method for grammars without e-rules
and without loops (see Section 2.9.4). Then, the problems introduced by e-rules will
be discussed, and the parsing method will be modified to allow for all CF grammars.

4.1.1 Unger’s Method without e-Rules or Loops

To see how Unger’s method solves the parsing problem, let us consider a small ex-
ample. Suppose we have a grammar rule

S—ABC | DE | F

and we want to find out whether S derives the input sentence pgrs. The initial parsing
problem can then be schematically represented as:

For each right-hand side we must first generate all possible partitions of the input
sentence. Generating partitions is not difficult: if we have m cups, numbered from 1
to m, and n marbles, numbered from 1 to n, we have to find all possible partitions
such that each cup contains at least one marble, the numbers of the marbles in any
cup are consecutive, and any cup does not contain lower-numbered marbles than any
marble in a lower-numbered cup. We proceed as follows: first, we put marble 1 in
cup 1, and then generate all partitions of the other n — 1 marbles over the other m — 1
cups. This gives us all partitions that have marble 1 and only marble 1 in the first
cup. Next, we put marbles 1 and 2 in the first cup, and then generate all partitions of
the other n — 2 marbles over the other m — 1 cups, etc. If n is less than m, no partition
is possible.

Partitioning the input corresponds to partitioning the marbles (the input symbols)
over the cups (the right-hand side symbols). If a right-hand side has more symbols
than the sentence, no partition can be found (there being no e-rules). For the first
right-hand side the following partitions must be tried:

S
A - C
p q rs
P |qr
pq|r S
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The first partition results in the following sub-problems: does A derive p, does B
derive ¢, and does C derive rs? These sub-problems must all be answered in the
affirmative, or the partition is not the right one.

For the second right-hand side, we obtain the following partitions:

S
D | E

P qrs
pq rs
pqr | s

The last right-hand side results in the following partition:

S
F

All these sub-problems deal with shorter sentences, except the last one. They will
all lead to similar split-ups, and in the end many will fail because a terminal symbol
in a right-hand side does not match the corresponding part of the partition. The only
partition that causes some concern is the last one. It is as complicated as the one
we started with. This is the reason that we have disallowed loops in the grammar. If
the grammar has loops, we may get the original problem back again and again. For
example, if there is a rule ' — S in the example above, this will certainly happen.

The above demonstrates that we have a search problem here, and we can attack
it with either the depth-first or the breadth-first search technique (see Section 3.5.2).
Unger uses depth-first search.

In the following discussion, the grammar of Figure 4.1 will serve as an example.
This grammar represents the language of simple arithmetic expressions, with opera-

Expry —> Expr + Term | Term
Term -> Term x Factor | Factor
Factor — ( Expr ) | i

Fig. 4.1. A grammar describing simple arithmetic expressions

tors + and x, and operand i. We will use the sentence (i+1) xi as input example.
So the initial problem can be represented as:

Fitting the first alternative of Expr with the input (i+i) xi results in a list of 15
partitions, shown in Figure 4.2. We will not examine them all here, although the un-
optimized version of the algorithm requires this. We will only examine the partitions
that have at least some chance of succeeding: we can eliminate all partitions that do
not match the terminal symbol of the right-hand side. So the only partition worth
investigating further is:
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Expr
Expr [ + [ Term
( i +1i) xi
( i+ i) xi
( i+i ) xi
( i+i) xi
( i+i)x | 1
(i + i) xi
(i +i ) xi
(i +1i) xi
(i +1i) x i
(i+ i ) xi
(i+ i) xi
(i+ i)x i
(i+i |) xi
(i+1i ) x i
(i+1) | x i

Fig. 4.2. All partitions for Expr —>Expr+Term

Expr
Expr \ + \ Term

(G [+[i)xi]

The first sub-problem here is to find out whether and, if so, how Expr derives
(i. We cannot partition (i into three non-empty parts because it only consists of
2 symbols. Therefore, the only rule that we can apply is the rule Expr —Term.
Similarly, the only rule that we can apply next is the rule Term—>Factor. So we
now have

Expr
Term
Factor

However, this is impossible, because the first right-hand side of Factor has too
many symbols, and the second one consists of one terminal symbol only. Therefore,
the partition we started with does not fit, and it must be rejected. The other partitions
were already rejected, so we can conclude that the rule Expr —Expr+Term does
not derive the input.

The second right-hand side of Expr consists of only one symbol, so we only
have one partition here, consisting of one part. Partitioning this part for the first
right-hand side of Term again results in 15 possibilities, of which again only one
has a chance of succeeding:
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Expr
Term
Term \ X \ Factor

[(i+i) [x ][4 \

Continuing our search, we will find the following derivation (the only one to be
found):

Expr —

Term —

Term x Factor —

Factor x Factor —

Expr ) x Factor —

Expr + Term ) x Factor —
Term + Term ) x Factor —
Factor + Term ) x Factor —
i + Term ) x Factor —

i + Factor ) x Factor —
i+ i) x Factor —

i+ i) x i

~ e~~~ o~~~ o~

This example demonstrates several aspects of the method: even small examples
require a considerable amount of work, but even some simple checks can result in
huge savings. For example, matching the terminal symbols in a right-hand side with
the partition at hand often leads to the rejection of the partition without investigating
it any further. Unger [12] presents several more of these checks. For example, one
can compute the minimum length of strings of terminal symbols derivable from each
non-terminal. Once it is known that a certain non-terminal only derives terminal
strings of length at least n, all partitions that fit this non-terminal with a substring of
length less than n can be immediately rejected.

4.1.2 Unger’s Method with e-Rules

So far, we only have dealt with grammars without e-rules, and not without reason.
Complications arise when the grammar contains €-rules, as is demonstrated by the
following example: consider the grammar rule S — ABC and input sentence pqr.
If we want to examine whether this rule derives the input sentence, and we allow
for e-rules, many more partitions will have to be investigated, because each of the
non-terminals A, B, and C may derive the empty string. In this case, generating all
partitions proceeds just as above, except that we first generate the partitions that have
no marble at all in the first cup, then the partitions that have marble 1 in the first cup,
etc.:
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S
A]lB]C
pqr

r |qr
pq |r
pqr

p qr

p |q |r

P |qr

rq r

pq | r

pqr

Now suppose that we are investigating whether B derives pgr, and suppose there is
arule B — SD. Then, we will have to investigate the following partitions:

B
S|D
par
p|ar
pq | r
pqr

It is the last of these partitions that will cause trouble: in the process of finding out
whether S derives pgr, we end up asking the same question again, in a different
context. If we are not careful and do not detect this, our parser will loop forever, or
run out of memory.

When searching along this path, we are looking for a derivation that is using a
recursive loop in the grammar of the form § — - -- — oSP. If the grammar contains
e-rules and the parser must assume that o0 and 3 can produce €, this loop will cause
the parser to ask the question “does S derive pgr?” over and over again.

If oo and B can indeed produce €, there are infinitely many derivations to be found
along this path, provided that there is at least one, so we will never be able to present
them all. The only interesting derivations are the ones without the loop. Therefore,
we will cut off the search process in these cases. On the other hand, if o and 3 cannot
both produce €, a cut-off will not do any harm either, because a second search along
this path is doomed to fail anyway, if the initial search did not succeed.

So we can avoid the problem altogether by cutting off the search process in these
cases. Fortunately, this is not a difficult task. All we have to do is to maintain a list
of questions that we are currently investigating. Before starting to investigate a new
question (for example “does S derive pgr?”) we first check that the question does not
already appear in the list. If it does, we do not investigate this question. Instead, we
proceed as if the question were answered negatively.

Consider for example the following grammar:
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This grammar generates sequences of ds in an awkward way. The complete search
for the questions 8 => d? and S > dd? is depicted in Figure 4.3. Figure 4.3

cut-off: no

cut-off: no

Fig. 4.3. Unger’s parser at work for the sentences d and dd

must be read from left to right, and from top to bottom. The questions are drawn



110 4 General Non-Directional Parsing

in an ellipse, with the split-ups over the right-hand sides in boxes. A question is
answered affirmatively if at least one of the boxes results in a “yes”. In contrast, a
partition only results in an affirmative answer if all questions arising from it result in
a “yes”.

Checking for cut-offs is easy: if a new question is asked, we follow the arrows in
the reversed direction (to the left). This way, we traverse the list of currently investi-
gated questions. If we meet the question again, we have to cut off the search.

To find the parsings, every question that is answered affirmatively has to pass
back a list of rules that start the derivation asked for in the question. This list can be
placed into the ellipse, together with the question. We have not done so in Figure 4.3,
because it is complicated enough as it is. However, if we strip Figure 4.3 of its dead
ends, and leave out the boxes, we get Figure 4.4. In this case, every ellipse only has

Fig. 4.4. The result of Unger’s parser for the sentence dd

one possible grammar rule. Therefore, there is only one parsing, and we obtain it by
reading Figure 4.4 from left to right, top to bottom:

S - LSD —» SD — LSDD — SDD — DD — dD — dd

In general, the total number of parsings is equal to the product of the number of
grammar rules in each ellipse.

This example shows that we can save much time by remembering answers to
questions. For example, the question whether L derives € is asked many times. Sheil
[20] has shown that the efficiency improves dramatically when this is done: it goes
from exponential to polynomial. Another possible optimization is achieved by com-
puting in advance which non-terminals can derive €. In fact, this is a special case of
computing the minimum length of a terminal string that each non-terminal derives.
If a non-terminal derives €, this minimum length is 0.

4.1.3 Getting Parse-Forest Grammars from Unger Parsing

It is surprisingly easy to construct a parse-forest grammar while doing Unger parsing:
all that is needed is to add one rule to the parse-forest grammar for each attempted
partition. For example, the first partition investigated in Section 4.1.1 (line 6 in Figure
4.2) adds the rule
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Expr 1 7 — Expr 1 2 + 3 1 Term 4 4

to the parse-forest grammar. Each segment of the partition and the partition itself is

designated by a specific non-terminal, the name of which is composed of the orig-

inal name and the starting point and length of the segment is should produce. This

even applies to the original terminals, since the above partition claims that the + is

specifically the + in position 3 (when counting the input tokens starting from 1).
The first partition in Figure 4.2 adds the rule

Expr 1 7 — Expr 1 1 + 2 1 Term 3 5

but since the input does not contain a +_2 1, a + in position 2, the rule can be re-
jected immediately. Alternatively, one can say that it contains an undefined terminal,
and then the grammar clean-up algorithm from Section 2.9.5 will remove it for us.
Likewise, the further attempts described in Section 4.1.1 add the rules

Expr 1 2 — Term 1 2
Term 1 2 — Factor 1 2
Factor 1 2 — i 1 2

which again contains an undefined terminal, i 1 2. (The first alternative of
Factor, Factor— (Expr), is not applicable because it requires breaking
Factor 1 2 into three pieces, and we were not yet allowing €-rules in Section
4.1.1.)

We see that Unger parsing, being a top-down parsing method, creates a lot of
undefined non-terminals (and ditto terminals); these represent hypotheses of the top-
down process that did not materialize.

Expr 1 7, — Term 1 7
Term 1 7 —> Term 1 5 x 6 1 Factor 7 1
Term 1 5 —> Factor 1 5

Factor 1 5 — (1 1Expr 2 3 ) 51
Expr 2 3 — Expr 2 1 + 3 1 Term 4 1
Expr 2.1 —» Term 2 1
Term 2 1 — Factor 2 1

Factor 2 1 — i 21
Term 4 1 —> Factor 4 1

Factor 4 1 — i 41

Factor 71 — 17 1

Fig. 4.5. Parse-forest grammar for the string (i+1i) xi

The parsing process generates a parse-forest grammar of 294 rules, which we do
not show here. After clean-up the parse-forest grammar of Figure 4.5 remains, with
11 rules. One sees easily that it is equivalent to the one parsing found for the string
(i+1) x1i at the end of Section 4.1.1.
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4.2 The CYK Parsing Method

The parsing method described in this section is attributed to J. Cocke, D.H. Younger,
and T. Kasami, who independently discovered variations of the method; it is now
known as the Cocke-Younger-Kasami method, or the CYK method. The most acces-
sible original description is that of Younger [10]. An earlier description is by Sakai
[5].

As with Unger’s parsing method, the input to the CYK algorithm consists of a
CF grammar and an input sentence. The first phase of the algorithm constructs a
table telling us which non-terminal(s) derive which substrings of the sentence. This
is the recognition phase; it ultimately also tells us whether the input sentence can
be derived from the grammar. The second phase uses this recognition table and the
grammar to construct all possible derivations of the sentence.

We will first concentrate on the recognition phase, which is the distinctive feature
of the algorithm.

4.2.1 CYK Recognition with General CF Grammars

To see how the CYK algorithm solves the recognition and parsing problem, let us
consider the grammar of Figure 4.6. This grammar describes the syntax of numbers

Number; —> Integer | Real
Integer —> Digit | Integer Digit
Real —> Integer Fraction Scale
Fraction — Integer
Scale — e Sign Integer | Empty
Digit — 0 | 1| 2 | 3| 4|5 |6 ] 7] 8]29
Sign — + | -
Empty —> &€

Fig. 4.6. A grammar describing numbers in scientific notation

in scientific notation. An example sentence produced by this grammar is 32.5e+1.
We will use this grammar and sentence as an example.

The CYK algorithm first concentrates on substrings of the input sentence, short-
est substrings first, and then works its way up. The following derivations of substrings
of length 1 can be read directly from the grammar:

T3 0 2 0 . ¢ 5 1 e v+ 1

This means that Digit derives 3, Digit derives 2, etc. Note, however, that this
picture is not yet complete. For one thing, there are several other non-terminals de-
riving 3. This complication arises because the grammar contains so-called unit rules,
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rules of the form A — B, where A and B are non-terminals. Such rules are also called
single rules or chain rules. We can have chains of them in a derivation. So the next
step consists of applying the unit rules, repetitively, for example to find out which
other non-terminals derive 3. This gives us the following result:

Number, |Number, Number, Number,
IntegerfInteger Integer Sign [Integer
Digit | Digit Digit Digit
| 3 1 2 | 1 5 1 e 1 + 1 1 1

Now we already see some combinations that we recognize from the grammar: For
example, an Integer followed by a Digit is again an Integer, and a . (dot)
followed by an Integer is a Fraction. We get (again also using unit rules):

Number, Integer Fraction Scale

Number, |Number, Number, Number,

Integer/Integer Integer Sign [Integer
Digit | Digit Digit Digit

| 3 1 2 1 1 5 | e 1 + 1 1 1

At this point, we see that the rule for Real is applicable in several ways, and then
the rule for Number, so we get:

| Number, Real

| Number, Real

Number, Integer Fraction Scale

Number, |Number, Number, Number,

IntegerfInteger Integer Sign [Integer
Digit | Digit Digit Digit

1 3 1 2 1 . 1 5 1 e 1 + 1 1 1

So we find that Number does indeed derive 32.5e+1.

In the example above, we have seen that unit rules complicate things a bit. An-
other complication, one that we have avoided until now, is formed by e-rules. For
example, if we want to recognize the input 43 .1 according to the example gram-
mar, we have to realize that Scale derives € here, so we get the following picture:

| Number, Real

| Number, Real

Number, Integer Fraction Scale
Number, |Number, Number e

IntegerInteger Integer| Pl
Digit | Digit Digit |~
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In general this is even more complicated. We must take into account the fact that
several non-terminals can derive € between any two adjacent terminal symbols in the
input sentence, and also in front of the input sentence or at the back. However, as
we shall see, the problems caused by these kinds of rules can be solved, albeit at a
certain cost.

In the meantime, we will not let these problems discourage us. In the example,
we have seen that the CYK algorithm works by determining which non-terminals
derive which substrings, shortest substrings first. Although we skipped them in the
example, the shortest substrings of any input sentence are, of course, the €-substrings.
We shall have to recognize them in arbitrary position, so we first compute Re, the set
of non-terminals that derive €, using the following closure algorithm.

The set R is initialized to the set of non-terminals A for which A — € is a gram-
mar rule. For the example grammar, R; is initially the set {Empty}. Next, we check
each grammar rule: If a right-hand side consists only of symbols that are a member
of Re, we add the left-hand side to Re (it derives €, because all symbols in the right-
hand side do). In the example, Scale would be added. This process is repeated until
no new non-terminals can be added to the set. For the example, this results in

R: = {Empty, Scale}.

Now we direct our attention to the non-empty substrings of the input sentence.
Suppose we have an input sentence ¢ = t1, - - -1, and we want to compute the set of
non-terminals that derive the substring of # starting at position i, of length /. We will
use the notation s;; for this substring, so,

Sig = Litix1 - tip1—1-
or in a different notation: s;; = #; ; ;1. Figure 4.7 presents this notation graphi-
cally, using a sentence of 4 symbols. We will use the notation R;; for the set of

| 51,4 4
| 523

3

[ ]

[ ]
| 8§22 | 2
51,2

S1,1 52,1 53,1 4.1 | 1
S1,0 52,0 53,0 54,0 0
length

——position

Fig. 4.7. A graphical presentation of substrings

non-terminals deriving the substring s;;. This notation can be extended to deal with
substrings of length 0: 5; 0 =€, and R; o = Re, for all i.
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Because shorter substrings are dealt with first, we can assume that we are at a
stage in the algorithm where all information on substrings with length smaller than
a certain / is available. Using this information, we check each right-hand side in
the grammar, to see if it derives s;;, as follows: suppose we have a right-hand side
Aq---Ay. Then we divide s;; into m (possibly empty) segments, such that A; derives
the first segment, A, the second, etc. We start with Ay. If Ay ---A,, is to derive s;,
Aq has to derive a first part of it, say of length k. That is, A; must derive s;; (be a
member of R; ), and A; - - - A, must derive the rest:

Ay Ay e A

\

t o tivk—1 itk Titk+1 e tip1—1

This is attempted for every k for which A; is a member of R;, including k = 0.
Naturally, if A; is a terminal, then A; must be equal to #;, and k is 1. Checking if
Ay ---A,, derives tj i ---t;1;—1 1s done in the same way. Unlike Unger’s method, we
do not have to try all partitions, because we already know which non-terminals derive
which substrings.

Nevertheless, there are two problems with this. In the first place, m could be 1
and A a non-terminal, so we are dealing with a unit rule. In this case, A} must derive
the whole substring s;;, and thus be a member of R;;, which is the set that we are
computing now, so we do not know yet if this is the case. This problem can be solved
by observing that if A is to derive s; ;, somewhere along the derivation there must be
a first step not using a unit rule. So we have:

A] —>B—>"'—>C—*>S,"1

where C is the first non-terminal using a non-unit rule in the derivation. Disregarding
e-rules (the second problem) for a moment, this means that at a certain moment in
the process of computing the set R;;, C will be added to R;;. Now, if we repeat the
computation of R;; again and again, at some moment B will be added, and during
the next repetition, A; will be added. So we have to repeat the process until no new
non-terminals are added to R;;. This, like the computation of Re, is an example of a
closure algorithm.

The second problem is caused by the e-rules. If all but one of the A, derive €,
we have a problem that is basically equivalent to the problem of unit rules. It too
requires recomputation of the entries of R until nothing changes any more, again
using a closure algorithm.

In the end, when we have computed all the R; ;, the recognition problem is solved:
the start symbol S derives #(=s; ,,) if and only if S is a member of R ,.

This is a complicated process, where part of this complexity stems from the e-
rules and the unit rules. Their presence forces us to do the R;; computation repeat-
edly; this is inefficient, because after the first computation of R;; recomputations
yield little new information.
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Another less obvious but equally serious problem is that a right-hand side may
consist of arbitrarily many non-terminals, and trying all possibilities can be a lot of
work. We can see that as follows. For a rule whose right-hand side consists of m
members, m — 1 segment ends have to be found, each of them combining with all the
previous ones. Finding a segment end costs O(n) actions, since a list proportional
to the length of the input has to be scanned; so finding the required m — 1 segment
ends costs O(n"~!). And since there are O(n?) elements in R, filling it completely
costs O(n™*1), so the time requirement is exponential in the maximum length of the
right-hand sides in the grammar. The longest right-hand side in Figure 4.6 is 3, so the
time requirement is O(n*). This is far more efficient than exhaustive search, which
needs a time that is exponential in the length of the input sentence, but still heavy
enough to worry about.

Imposing certain restrictions on the rules may solve these problems to a large ex-
tent. However, these restrictions should not limit the generative power of the gram-
mar significantly.

4.2.2 CYK Recognition with a Grammar in Chomsky Normal Form

Two of the restrictions that we want to impose on the grammar are obvious by now:
no unit rules and no e-rules. We would also like to limit the maximum length of a
right-hand side to 2; this would reduce the time complexity to O(n?). It turns out
that there is a form for CF grammars that exactly fits these restrictions: the Chomsky
Normal Form. It is as if this normal form was invented for this algorithm. A grammar
is in Chomsky Normal Form (CNF), when all rules either have the form A — a, or
A — BC, where a is a terminal and A, B, and C are non-terminals. Fortunately, as
we shall see later, any CF grammar can be mechanically transformed into a CNF
grammar.

We will first discuss how the CYK algorithm works for a grammar in CNF. There
are no e-rules in a CNF grammar, so R, is empty. The sets R; ; can be read directly
from the rules: they are determined by the rules of the form A — a. A rule A — BC
can never derive a single terminal, because there are no e-rules.

Next, we proceed iteratively as before, first processing all substrings of length 2,
then all substrings of length 3, etc. When a right-hand side BC is to derive a substring
of length /, B has to derive the first part (which is non-empty), and C the rest (also
non-empty).

o

| c

1
I I

So B must derive s; x, that is, B must be a member of R; ;, and likewise C must derive
Si+k,/—k; that is, C must be a member of R; ;. Determining if such a k exists is
easy: just try all possibilities; they range from 1 to / — 1. All sets R;x and R4z
have already been computed at this point.
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This process is much less complicated than the one we saw before, which worked
with a general CF grammar, for two reasons. The most important one is that we do
not have to repeat the process again and again until no new non-terminals are added
to R;;. Here, the substrings we are dealing with are really substrings: they cannot
be equal to the string we started out with. The second reason is that we have to find
only one place where the substring must be split in two, because the right-hand side
consists of only two non-terminals. In ambiguous grammars, there can be several
different splittings, but at this point that does not worry us. Ambiguity is a parsing
issue, not a recognition issue.

The algorithm results in a complete collection of sets R; ;. The sentence ¢ consists
of only n symbols, so a substring starting at position i can never have more than
n+1—1i symbols. This means that there are no substrings s;; with i +1 > n+ 1.
Therefore, the R;; sets can be organized in a triangular table, as depicted in Figure
4.8. This table is called the recognition table, or the well-formed substring table.

Rl,n
Rin-1 | Rop-1 |
o] - [®] -~ -
[ ~
|4 w
| Ry | | Ri1 | |Ri+1—l.l| | Ru1 |

Fig. 4.8. Form of the recognition table

The entry R;; is computed from entries along the arrows V and W simultane-
ously, as follows. The first entry we consider is R; 1, at the start of arrow V. All
non-terminals B in R; | produce substrings which start at position i and have a length
1. Since we are trying to obtain parsings for the substring starting at position i with
length /, we are now interested in substrings starting at i + 1 and having length / — 1.
These should be looked for in R;1;_1, at the start of arrow W. Now we combine
each of the Bs found in R; ; with each of the Cs found in R; 1 ;_1, and for each pair B
and C for which there is a rule A — BC in the grammar, we insert A in R; ;. Likewise
a B in R; > can be combined into an A with a C from R; >, _», etc., and we continue
in this way until we reach R;;_ at the end point of V and R;,;_; 1 at the end of W.

The entry R;; cannot be computed until all entries below it are known in the
triangle of which it is the top. This restricts the order in which the entries can be
computed but still leaves some freedom. One way to compute the recognition table
is depicted in Figure 4.9(a); it follows our earlier description in which no substring of
length [ is recognized until all string of length / — 1 have been recognized. We could
also compute the recognition table in the order depicted in Figure 4.9(b). In this order,
R; is computed as soon as all sets and input symbols needed for its computation are
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(a) off-line order (b) on-line order

Fig. 4.9. Different orders in which the recognition table can be computed

available. This order is particularly suitable for on-line parsing, where the number of
symbols in the input is not known in advance, and additional information is computed
each time a new symbol is read.

Now let us examine the cost of this algorithm. Figure 4.8 shows that there are
n(n+1)/2 entries to be filled. Filling in an entry requires examining all entries on
the arrow V, of which there are at most n; usually there are fewer, and in practical
situations many of the entries are empty and need not be examined at all. We will
call the number of entries that really have to be considered 7, for “number of oc-
currences’; it is usually much smaller than n and for many grammars it is even a
constant, but for worst-case estimates it should be replaced by n. Once the entry on
the arrow v has been chosen, the corresponding entry on the arrow W is fixed, so the
cost of finding it does not depend on n. As a result the algorithm has a time require-
ment of O(n’n,..) and operates in a time proportional to the cube of the length of
the input sentence in the worst case, as already announced at the beginning of this
section.

The cost of the algorithm also depends on the properties of the grammar. The
entries along the V and W arrows can each contain at most |Vy| non-terminals, where
|[Vy| is the number of non-terminals in the grammar, the size of the set Vy from
the formal definition of a grammar in Section 2.2. But again the actual number is
usually much lower, since usually only a very limited subset of the non-terminals
can produce a segment of the input of a given length in a given position; we will
indicate the number by |Viy|occ. So the cost of one combination step is O(|Vy/|2..).
Finding the rule in the grammar that combines B and C into an A can be done in
constant time, by hashing or precomputation, and does not add to the cost of one
combination step. This gives an overall time requirement of O(|Vi|2..2*npcc)-

There is some disagreement in the literature over whether the second index of the
recognition table should represent the length or the end position of the recognized
segment. It is obvious that both carry the same information, but sometimes one is
more convenient and at other times the other. There is some evidence, from Earley
parsing (Section 7.2) and parsing as intersection (Chapter 13), that using the end
point is more fundamental, but for CYK parsing the length is more convenient, both
conceptually and for drawing pictures.
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4.2.3 Transforming a CF Grammar into Chomsky Normal Form

The previous section has demonstrated that it is certainly worthwhile to try to trans-
form a general CF grammar into CNF. In this section, we will discuss this transfor-
mation, using our number grammar as an example. The transformation is split up
into several stages:

e first, e-rules are eliminated;

e then, unit rules are eliminated;

e then, the grammar is cleaned as described in Section 2.9.5 (optional);

* then, finally, the remaining grammar rules are modified, and rules are added, until
they all have the desired form, that is, either A — a or A — BC.

All these transformations will not change the language defined by the grammar. This
is not proven here. Most books on formal language theory discuss these transfor-
mations more formally and provide proofs; see for example Hopcroft and Ullman
[391].

4.2.3.1 Eliminating e-Rules

Suppose we have a grammar G, with an e-rule A — €, and we want to eliminate
this rule. We cannot just remove the rule, as this would change the language defined
by the non-terminal A, and also probably the language defined by the grammar G.
So something has to be done about the occurrences of A in the right-hand sides of
the grammar rules. Whenever A occurs in a grammar rule B — oA, we replace
this rule with two others: B — 0A’f, where A’ is a new non-terminal, for which
we shall add rules later (these rules will be the non-empty grammar rules of A),
and B — of3, which handles the case where A derives € in a derivation using the
B — oA rule. Notice that the o, and [ in the rules above could also contain A; in this
case, each of the new rules must be replaced in the same way, and this process must
be repeated until all occurrences of A are removed. When we are through, there will
be no occurrence of A left in the grammar.

Every e-rule must be handled in this way. Of course, during this process new &-
rules may originate. This is only to be expected: the process makes all e-derivations
explicit. The newly created e-rules must be dealt with in exactly the same way. Ul-
timately this process will stop, because the number of non-terminals that derive € is
finite and in the end none of these non-terminals occur in any right-hand side any
more.

The next step in eliminating the e-rules is the addition of grammar rules for the
new non-terminals. If A is a non-terminal for which an A’ was introduced, we add
arule A’ — o for all non-g-rules A — a. Since all e-rules have been made explicit,
we can be sure that if a rule does not derive € directly, it cannot do so indirectly. A
problem that may arise here is that there may not be a non-g-rule for A. In this case,
A only derives €, so we remove all rules using A’.

All this leaves us with a grammar that still contains e-rules. However, none of the
non-terminals having an e-rule is reachable from the start symbol, with one important
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exception: the start symbol itself. In particular, we now have a rule S — ¢ if and only
if € is a member of the language defined by the grammar G. All other non-terminals
with e-rules can be removed safely, but the actual cleaning up of the grammar is left
for later.

The grammar of Figure 4.10 is a nasty grammar to test your €-rule elimination
scheme on. Our scheme transforms this grammar into the grammar of Figure 4.11.

N Es
Vb
mR®
= 20

Fig. 4.10. An example grammar to test e-rule elimination schemes

This grammar still has €-rules, but these can be eliminated by the removal of non-

S — L’ aM | aM | L a]| a
L - L' M | L' | M | ¢

M - M’ M | M’ | &

L’ — L' M | L' | M

M - M’ M’ | M

Fig. 4.11. Result after our €-rule elimination scheme

productive and/or unreachable non-terminals. Cleaning up this grammar leaves only
one rule: S — a. Removing the e-rules in our number grammar results in the grammar
of Figure 4.12. Note that the two rules to produce €, Empty and Scale, are still
present but are not used any more.

Number; —> Integer | Real
Integer —> Digit | Integer Digit
Real —> Integer Fraction Scale’ | Integer Fraction
Fraction — . Integer
Scale’ — e Sign Integer
Scale — e Sign Integer | ¢
Digit - 0 | 1 | 2 | 3 | 4 | 5|6 | 7] 8] 9
Sign — + | -
Empty — ¢

Fig. 4.12. Our number grammar after elimination of e-rules
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4.2.3.2 Eliminating Unit Rules

The next trouble-makers to be eliminated are the unit rules, that is, rules of the form
A — B. It is important to realize that, if such a rule A — B is used in a derivation, it
must be followed at some point by the use of a rule B — o.. Therefore, if we have a
rule A — B, and the rules for B are

B—oay|og| - |ap,
we can replace the rule A — B with
A—oayfon| - [oy.

In doing this, we can of course introduce new unit rules. In particular, when repeating
this process, we could at some point again get the rule A — B. In this case, we have
an infinitely ambiguous grammar, because this means that B derives B. Now this may
seem to pose a problem, but we can just leave such a unit rule out; the effect is that
we short-cut derivations like

Also rules of the form A — A are left out. In fact, a pleasant side effect of removing
e-rules and unit rules is that the resulting grammar is not infinitely ambiguous any
more.

Removing the unit rules in our e-free number grammar results in the grammar of
Figure 4.13.

Numbery — 0 | 1 | 2 | 3 | 4| 5|6 | 7] 8] 9
Number; — Integer Digit
Number; —> Integer Fraction Scale’ | Integer Fraction
Integer — 0 | 1| 2 | 3 | 4|5 ]| 6| 7| 8]9
Integer — Integer Digit
Real —> Integer Fraction Scale’ | Integer Fraction
Fraction — . Integer
Scale’ —> e Sign Integer
Scale — e Sign Integer | ¢
Digit - 0 | 1 | 2 | 3 | 4| 5|6 | 7| 8] 9
Sign — + | -
Empty — €

Fig. 4.13. Our number grammar after eliminating unit rules

4.2.3.3 Cleaning up the Grammar

Although our number grammar does not contain non-productive non-terminals, it
does contain unreachable ones, produced by eliminating the e-rules: Real, Scale,
and Empty. The CYK algorithm will work equally well with or without them, so
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cleaning up the grammar, as described in Section 2.9.5, is optional. For conceptual
and descriptional simplicity we will clean up our grammar here, but further on (Sec-
tion 4.2.6) we shall see that this is not always advantageous. The cleaned-up grammar
is shown in Figure 4.14.

Numbers — 0 | 1 | 2 | 3 | 4 | 5| 6| 7| 8] 9
Number; —> Integer Digit

Number; —> Integer Fraction Scale’ | Integer Fraction
Integer — 0 | 1| 2 | 3| 4|5 ]| 6| 7| 8] 9
Integer — Integer Digit
Fraction — Integer

Scale’ — e Sign Integer

Digit - 0 | 1 | 2 | 3 | 4 | 5|6 | 7] 8] 29

Sign — + | -

Fig. 4.14. Our cleaned-up number grammar

4.2.3.4 Finally, to the Chomsky Normal Form

After all these grammar transformations, we have a grammar without e-rules or unit
rules, all non-terminal are reachable, and there are no non-productive non-terminals.
So we are left with two types of rules: rules of the form A — a, which are already
in the proper form, and rules of the form A — XX, ---X,,, with m > 2. For every
terminal b occurring in such a rule we create a new non-terminal 7, with only the
rule 7, — b, and we replace each occurrence of b in arule A — X1 X5 --- X,,, with Tj,.
Now the only rules not yet in CNF are of the form A — X1 X5 - - - X}, with m > 3, and
all X; non-terminals. These rules can now just be split up:

A — XiXo--- Xy
is replaced by the following two rules:

A — AXz--Xn
A — Xi1Xo

where A; is a new non-terminal. Now we have replaced the original rule with one
that is one shorter, and one that is in CNF. This splitting can be repeated until all
parts are in CNF. Figure 4.15 represents our number grammar in CNF.

4.2.4 The Example Revisited

Now let us see how the CYK algorithm works with our example grammar, which
we have just transformed into CNF. Again, our input sentence is 32.5e+1. The
recognition table is given in Figure 4.16. The bottom row is read directly from the
grammar. For example, the only non-terminals having a production rule with right-
hand side 3 are Number, Integer, and Digit. Notice that for each symbol a in
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Numbery — 0 | 1 | 2 | 3 | 4| 5| 6| 7] 8] 9
Number; —> Integer Digit
Number; —> N1 Scale’ | Integer Fraction
N1 — Integer Fraction
Integer — 0 | 1 | 2 | 3 | 4| 5|6 | 7] 8] 29
Integer —> Integer Digit
Fraction — T1 Integer
T1T — .
Scale’ — N2 Integer
N2 — T2 Sign
T2 — e
Digit - 0 | 1 | 2 | 3 | 4| 5| 6| 7] 8] 9
Sign — + | -
Fig. 4.15. Our number grammar in CNF
7| Number
6 Number
5
4 Number,
N1
I3 Numbez, Scale’
N1
2 Numbez, Fraction N2
Integer
Number, Number, Number, Number,
1| Integer, | Integer, T1 Integer, T2 Sign Integer,
Digit Digit Digit Digit
3 2 . 5 e + 1
1 2 3 4 5 6 7
i —

Fig. 4.16. The recognition table for the input sentence 32.5e+1

the sentence there must be at least one non-terminal A with a production rule A — a,
or else the sentence cannot be derived from the grammar.

The other rows are computed as described before. Actually, there are two ways
to compute a certain R;;. The first method is to check each right-hand side in the
grammar. For example, to check whether the right-hand side N1 Scale’ derives
the substring 2. 5e (= s2,4). The recognition table derived so far tells us that

e N1 isnotamember of Ry 1 or Ry,
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* N1isamemberof Ry 3, but Scale’ is not a member of Rs

so the answer is no. Using this method, we have to check each right-hand side in this
way, adding the left-hand side to R, 4 if we find that the right-hand side derives s7 4.

The second method is to compute possible right-hand sides from the recognition
table computed so far. For example, R» 4 is the set of non-terminals that have a right-
hand side AB where either

e Ais amemberof Ry and B is a member of R3 3, or
e Aisamember of Ry and B is a member of R4 5, or
e Aisamember of R 3 and B is a member of Rs ;.

This gives as possible combinations for AB: N1 T2 and Number T2. Now we
check all rules in the grammar to see if they have a right-hand side that is a member
of this set. If so, the left-hand side is added to R; 4.

4.2.5 CYK Parsing with Chomsky Normal Form

We now have an algorithm that determines whether a sentence belongs to a language
or not, and it is much faster than exhaustive search. Most of us, however, not only
want to know whether a sentence belongs to a language, but also, if so, how it can be
derived from the grammar. If it can be derived in more than one way, we probably
want to know all possible derivations. As the recognition table contains the infor-
mation on all derivations of substrings of the input sentence that we could possibly
make, it also contains the information we want. Unfortunately, this table contains
too much information, so much that it hides what we want to know. The table may
contain information about non-terminals deriving substrings, where these derivations
cannot be used in the derivation of the input sentence from the start symbol S. For
example, in the example above, R; 3 contains N1, but the fact that N1 derives 2.5
cannot be used in the derivation of 32 .5e+1 from Number.

The key to the solution of this problem lies in the simple observation that the
derivation must start with the start symbol S. The first step of the derivation of the
input sentence ¢, with length n, can be read from the grammar, together with the
recognition table. If n = 1, there must be a rule S — ¢; if n > 2, we have to examine
all rules S — AB, where A derives the first k symbols of 7, and B the rest, that is, A is
a member of Ry ; and B is a member of Ry ,—x, for some k. There must be at least
one such rule, or else S would not derive ¢.

Now, for each of these combinations AB we have the same problem: how does
A derive 51 and B derive si1 ,—? These problems are solved in exactly the same
way. It does not matter which non-terminal is examined first. Consistently taking the
leftmost one results in a leftmost derivation, consistently taking the rightmost one
results in a rightmost derivation.

Notice that we can use an Unger-style parser for this. However, it would not have
to generate all partitions any more, because we already know which partitions will
work.

Let us try to find a leftmost derivation for the example sentence and grammar,
using the recognition table of Figure 4.16. We begin with the start symbol, Number.
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Our sentence contains seven symbols, which is certainly more than one, so we have to
use one of the rules with a right-hand side of the form AB. The Integer Digit
rule is not applicable here, because the only instance of Digit that could lead to
a derivation of the sentence is the one in Ry, but Integer is not a member of
Ri6. The Integer Fraction rule is not applicable either, because there is no
Fraction deriving the last part of the sentence. This leaves us with the production
rule Number —> N1 Scale’, which is indeed applicable, because N1 is a mem-
ber of R4, and Scale’ is a member of Rs3, so N1 derives 32.5 and Scale’
derives e+1.

Next, we have to find out how N1 derives 32.5. There is only one appli-
cable rule: N1 — Integer Fraction, and it is indeed applicable, because
Integer is a member of R, and Fraction is a member of R3 >, so Integer
derives 32, and Fraction derives . 5. In the end, we find the following derivation:

Number —

N1l Scale’ —

Integer Fraction Scale’ —
Integer Digit Fraction Scale’ —
Digit Fraction Scale’ —
2 Fraction Scale’ —

2 Tl Integer Scale’ —

2 . Integer Scale’ —
Scale’ —

N2 Integer —

T2 Sign Integer —
e Sign Integer —
e + Integer —

e + 1

W Wwwwwwwwww
NDNDDNDNDDNDDN

5
5
5
5
5
5

Unfortunately, this is not exactly what we want, because this is a derivation that uses
the rules of the grammar of Figure 4.15, not the rules of the grammar of Figure 4.6,
the one that we started with.

4.2.6 Undoing the Effect of the CNF Transformation

When we examine the grammar of Figure 4.6 and the recognition table of Fig-
ure 4.16, we see that the recognition table contains the information we need on
most of the non-terminals of the original grammar. However, there are a few non-
terminals missing in the recognition table: Scale, Real, and Empty. Scale and
Empty were removed because they became unreachable, after the elimination of
e-rules. Empty was removed altogether, because it only derived the empty string,
and Scale was replaced by Scale’, where Scale’ derives exactly the same as
Scale, except for the empty string. We can use this to add some more information
to the recognition table: at every occurrence of Scale’, we add Scale.

The non-terminal Real was removed because it became unreachable after elimi-
nating the unit rules. Now, the CYK algorithm does not require that all non-terminals
in the grammar be reachable. We could just as well have left the non-terminal Real
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in the grammar, and transformed its rules to CNF. The CYK algorithm would then
have added Real to the recognition table, wherever that would be appropriate. The
rules for Real that would be added to the grammar of Figure 4.15 are:

Real —> N1 Scale’ | Integer Fraction

The resulting recognition table is presented in Figure 4.17. In this figure, we have

Number,

7
Real
Number,
6
Real

5

Number,
4 Real,

N1
Number,
e Scale’,
3 Real, Scale
N1
l

Numb
2 e Fraction N2

Integer

Number, Number, Number, Number,
1 Integer, | Integer, T1 Integer, T2 Sign Integer,

Digit Digit Digit Digit
0 Scale, Scale, Scale, Scale, Scale, Scale, Scale, Scale,

Empty Empty Empty Empty Empty Empty Empty Empty

3 2 5 e + 1
1 2 3 4 5 6 7 8

Fig. 4.17. The recognition table with Scale, Real, and Empty added

also added an extra row at the bottom of the triangle. This extra row represents the
non-terminals that derive the empty string. These non-terminals can be considered
as possibly occurring between any two adjacent symbols in the sentence, and also
in front of or at the end of the sentence. The set R;( represents the non-terminals
that can be considered as possibly occurring in front of symbol #; and the set R, 11 o
represents the ones that can occur at the end of the sentence.

Now we have a recognition table which contains all the information we need to
parse a sentence with the original grammar. Again, a derivation starts with the start
symbol S. If AjA; - - - A,y is a right-hand side of S, we want to know if this rule can be
applied, that is, if AjA,---A,, derives s1 ,. This is checked, starting with A;. There
are two cases:
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e A is a terminal symbol. In this case, it must be the first symbol of s; ,, or this
rule is not applicable. Then, we must check if A - - - A, derives s» ,—1, in the same
way that we are now checking if AjA; ---A,, derives s1 ;.

e Ay is a non-terminal. In this case, it must be a member of a Ry x, for some k, or
this rule is not applicable. Then, we must check if A;---A,, derives Sy ,¢, in
the same way that we are now checking if AjA> - - - A,, derives 51 ,,. If we want all
parsings, we must do this for every k for which A; is a member of R; ;. Notice
that non-terminals deriving the empty string pose no problem at all, because they
appear as a member of R; o for all i.

We have now determined whether the rule is applicable, and if it is, which parts of the
rule derive which substrings. The next step now is to determine how the substrings
can be derived. These tasks are similar to the task we started with, and are solved in
the same way. This process will terminate at some time, provided the grammar does
not contain loops. This is simply an Unger parser which knows in advance which
partitions will lead to a successful parse.

Let us go back to the grammar of Figure 4.6 and the recognition table of Figure
4.17, and see how this works for our example input sentence. We now know that
Number derives 32.5e+1, and want to know how. We first ask ourselves: can we
use the Number —Integer rule? Integer is a member of Ry and R; >, but
there is nothing behind the Integer in the rule to derive the rest of the sentence,
so we cannot use this rule. Can we use the Number —Real rule? Yes we can,
because Real is a member of R; 7, and the length of the sentence is 7. So we start
our derivation with

Number —-> Real — -

Now we get similar questions for the Real non-terminal: can we use the
Real — Integer Fraction Scale rule? Well, Integer is a member of
R1.1, but we cannot find a Fraction in any of the R, ; sets. However, Integer is
also a member of R 7, and Fraction is a member of R3>. Now, Scale is a mem-
ber of Rs o; this does not help because it would leave nothing in the rule to derive the
rest. Fortunately, Scale is also a member of Rs 3, and that matches exactly to the
end of the string. So this rule is indeed applicable, and we continue our derivation:

Number —> Real —> Integer Fraction Scale — ---

The sentence is now split up into three parts:

Number
Real
Integer | Fraction [ Scale
(3 2 |. 5 e + 1]

It is left to the reader to verify that we will find only one derivation, and that this is
it:
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Number —

Real —

Integer Fraction Scale —
Integer Digit Fraction Scale —
Digit Digit Fraction Scale —
Digit Fraction Scale —

2 Fraction Scale —

2 . Integer Scale —

Digit Scale —

Scale —

e Sign Integer —

e + Integer —

e + Digit —

e + 1

W Wwwwwwwww
NN DNDDNDDNDDN
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4.2.7 A Short Retrospective of CYK

We have come a long way. We started with building a recognition table using the
original grammar. Then we found that using the original grammar with its unit rules
and e-rules is somewhat complicated, although it can certainly be done. We pro-
ceeded by transforming the grammar to CNF. CNF does not contain unit rules or
e-rules. Our gain in this respect was that the algorithm for constructing the recogni-
tion table became much simpler. The limitation of the maximum length of a right-
hand side to 2 was a gain in efficiency, and also a little in simplicity. However, Sheil
[20] has demonstrated that the efficiency only depends on the maximum number of
non-terminals occurring in a right-hand side of the grammar, not on the length of
the right-hand sides per sé. This can easily be understood, once one realizes that the
efficiency depends on (among other things) the number of cuts in a substring that are
“difficult” to find, when checking whether a right-hand side derives this substring.
This number of “difficult” cuts only depends on the number of non-terminals in the
right-hand side. So, for efficiency, Chomsky Normal Form is a bit too restrictive.

A disadvantage of this transformation to CNF is that the resulting recognition ta-
ble lacks some information that we need to construct a derivation using the original
grammar. In the transformation process, some non-terminals were thrown away, be-
cause they became non-productive. Fortunately, the missing information could easily
be recovered. Ultimately, this process resulted in almost the same recognition table
that we would get with our first attempt using the original grammar. It only contains
some extra information on non-terminals that were added during the transformation
of the grammar to CNF. More importantly, however, it was obtained in a simpler and
much more efficient way.

For a more elaborate version of the CYK algorithm, applied to Tree Adjoining
Grammars, see Section 15.4.2.
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4.2.8 Getting Parse-Forest Grammars from CYK Parsing

As with Unger parsers, it is quite simple to obtain a parse-forest grammar during
CYK parsing: whenever a non-terminal A is entered into entry R; ; of the recognition
table because there is arule A — BC and B is in R;; and C is in R; 4 ;, the rule

Ail = BikCmn

is added to the parse-forest grammar, where m =i+kandn=i+1—k.

There are two things to note here. The first is that this algorithm will never intro-
duce undefined non-terminals: arule A i /[—B i k C_m_nis added only when it
is guaranteed that rules for B i kand C_m_n exist. On the other hand, such a rule is
added without any regard to its reachability: the non-terminal A i [ may be reach-
able from the start symbol or it may not; it is just too early to tell. We see that CYK
parsing, being a bottom-up algorithm, creates a lot of unreachable non-terminals;
these represent finds of the bottom-up process that led nowhere.

The second is that the parse-forest grammar contains more information than the
recognition table, since it not only records for each non-terminal in a given entry that
it is there but also why it is there. The parse-forest grammar combines the recogni-
tion phase (Section 4.2.2) and the parsing phase (Section 4.2.5) of the CYK parsing
process.

Obtaining the parse-forest grammar from Figure 4.17 and the grammar from Fig-
ure 4.6 is straightforward; the result is in Figure 4.18. We see that it contains many
unreachable non-terminals, for example Number 2 6, Scale 5 0, etc. Remov-
ing these yields the parse-forest grammar of Figure 4.19; it is easy to see that it is
equivalent to the one derivation found at the end of Section 4.2.6.

4.3 Tabular Parsing

We have drawn the CYK recognition tables as two-dimensional triangular matrices,
but the complexity of the entries — sets of non-terminals — already shows that
this representation is not in its most elementary form. Simplicity and insight can be
gained by realizing that a CYK recognition table is a superposition of a number of
tables, one for each non-terminal in the grammar; the entries in these tables are just
bits, saying “Present” or “Not Present”. Since the grammar for numbers from Figure
4.6 has 8 non-terminals, the recognition table from Figure 4.17 is a superposition of
8 matrices. They are shown in Figure 4.20. The dot in the top left corner of the table
for Number means that a Number of length 7 has been recognized in position 1;
the one almost at the bottom right corner means that a Number of length 1 has been
recognized in position 7; etc.

Imagine these 8 tables standing upright in the order Number --- Empty, per-
haps cut out of transparent plastic, glued together into a single block. Now topple
the block backwards, away from you. A new matrix appears, 7, on what was the
bottom of the block before you toppled it, as shown in Figure 4.21, where the old
recognition table is still visible on what is now the top. The new table still has the
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Startg
Number 1 7
Real 1 7
Number 2 6
Real 2 6
Number 1 4
Real 1 4
Number 2 3
Real 2 3
Scale 5 3
Number 1 2
Integer 1 2
Fraction 3 2
Number 1 1
Integer 1 1
Digit 1 1
Number 2 1
Integer_2_ 1
Digit 2 1
Number 4 1
Integer_4_1
Digit 4 1
Sign 6 1
Number 7_1
Integer 7 1
Digit 7 1
Scale 5 0
Empty 5 0

Fig. 4.18. Parse-forest grammar retrieved from Figure 4.17 and the grammar from Figure 4.6

Startg
Number 1 7
Real 1 7
Scale 5 3
Integer 1 2
Fraction 3 2
Integer_1 1
Digit 1 1
Digit 2 1
Integer 4 1
Digit 4 1
Sign 6 1
Integer 7 1
Digit 7 1

R R AR R R R R R AR R AR R A AR

AR R R R AR R ERR

Number 1 7

Real 1 7

Integer 1 2 Fraction 3 2 Scale 5 3
Real 2 6

Integer 2 1 Fraction 3 2 Scale 5 3
Real 1 4

Integer 1 2 Fraction 3 2 Scale 5 0
Real 2 3

Integer 2 1 Fraction 3 2 Scale 5 0
e 51 Sign 6 1 Integer 7 1
Integer 1 1 Digit 2 1

Integer 1 1 Digit 2 1

.. 3 1 Integer 4 1

Integer 1 1

Digit 1 1

311

Integer 2 1

Digit_2 1

2 21

Integer 4 1

Digit_4_1

541

+ 6 1

Integer_7_1

Digit 7 1

171

Empty 5 0

€

Number 1 7

Real 1 7

Integer 1 2 Fraction 3 2 Scale 5 3
e 5 1 Sign 6_1 Integer 7 1
Integer 1 1 Digit 2 1
.. 3 1 Integer 4 1
Digit_1 1

311

2.2 1

Digit 4 1

541

+ 6 1

Digit 7 1

171

Fig. 4.19. Cleaned parse-forest grammar obtained by CYK parsing
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Number Integer
0
] ]
[] []
Real Fraction
| e [+ ]
] ]
Scale Digit
1] ]
] ]
Sign Empty

Fig. 4.20. The 8 faces of the table in Figure 4.17

positions in the input as the horizontal axis, but the vertical axis now consists of
names of non-terminals, and the entries are lists of lengths. For example, the list
{1,2,4,7} in T} yymper in the top left corner means that productions of Number of
these lengths can be recognized in position 1. Parsing algorithms that use mainly this
representation are called tabular parsing algorithms. It will be clear that no informa-
tion is gained or lost in this transformation, but the tabular representation has its own
advantages and disadvantages.

The table T is initialized by putting a 1 in all entries 7; 4 where the input has a
token ¢ in position i and the grammar has a rule A — ¢. There are two ways to fill the
rest of the table, top-down and bottom-up.

4.3.1 Top-Down Tabular Parsing

For recognition we are only interested in one element in one entry of the table 7
does Tg 1 contain n, where S is the start symbol and 7 is the length of the input? To
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Number 2’37’ 1,3,6 1 1
Integer 1,2 1 1 1
Real 4,7 3,6
Fraction 2
Scale 0 0 0 0 0,3 0 0 0
Digit 1 1 1 1
Sign 1
Empty 0 0 0 0 0 0 0 0
3 2 5 e + 1
1 2 3 4 5 6 7 8

Fig. 4.21. A tabular representation of the table in Figure 4.17

find this out, we stack this query in some form on a stack and, using all grammar
rules for S, we draw up a list of possibilities for 7g ; to contain 7, much as we did in
the Unger parser. For a rule like S—AB these include:

does T | contain 0 and does 73| contain n?
does Ta 1 contain 1 and does 7g > contain n— 1?7
does Ta 1 contain 2 and does 7g 3 contain n —2?

does Tp 1 contain n and does 73,1 contain 0?

If the conditions in any of these lines are fulfilled, 75 ; must be made to contain 7.
Each of these new queries can be expanded and examined in this same way. In
the end the queries will develop into “terminal queries”, queries that can be resolved
without creating new queries. Examples are “does T34 contain 1?7, which can be
answered by checking if the input contains an a in position k, and “does Tp contain
07, which is equivalent to “does P produce €?”. Once we have obtained an answer
to a query we store it in the proper position in the table, and we do this not only for
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the top query, but also for all intermediate, generated queries. This is very important
since now we can obtain the answer without further computation if the same query
turns up again, which it frequently does. Note that this requires the possibility to
store negative information (actually positive information about absence) in the en-
tries of table 7': an entry like T ; can contain information like “does not contain 7”.
Also note that this process does not always compute all entries in the table; it may
miss entries that, given the grammar, can never be part of a recognition. For some
applications this is an advantage.

The technique of storing results of computations in a table in order to replace
recomputation by table lookup is called memoization (this is not a spelling error;
there is really no ‘r’ in the word). It is a very useful and widely applicable device in
algorithmics, and can often reduce the time requirements of an algorithm from expo-
nential to polynomial, as it does in the present example. Memoization was invented
in 1968 by Michie [410] and introduced in parsing by Sheil [20], who did not yet use
the term “memoization”; see also Norvig [343].

Furthermore we have to concern ourselves with left-recursive non-terminals,
again using the same technique as in the Unger parser. If the non-terminal A is left-
recursive, the query “does 7Ty contain n” will eventually again create the query
“does Ty,1 contain n”, and will thus start an endless loop. The loop can easily be pre-
vented by just discarding this recursive occurrence of the same query, since a second
computation would not bring in any information not already obtained by the first.
Whether a generated query is a recursive occurrence can be determined by looking it
up in the stack of queries. In short, top-down tabular parsing is very similar to Unger
parsing with memoization.

A full implementation of this algorithm is discussed in Section 17.3.

4.3.2 Bottom-Up Tabular Parsing

The bottom-up tabular parsing algorithm fills all entries correctly, but requires more
care than the top-down algorithm. Like CYK, it works most efficiently for grammars
that are in Chomsky Normal Form, and we will assume our grammar to be so. And,
like in CYK, we need to be careful with the order in which we compute the entries.
Also, we will fill the three-dimensional “wedge” of Figure 4.21, the entries of which
are Booleans (bits), rather than its two-dimensional front panel, the entries of which
are lists of integers. The entry in the wedge which describes whether a terminal
production of A with length k starts in position i is written 7; 4 x.

Bottom-up tabular parsing fills the whole recognition table by filling columns
starting from the right end. To fill entry 7; 4 &, we find a rule of the form A — BC
from the grammar, and we access T; p 1. If this entry is set, there is a segment at i
of length 1 produced by B. So we access T;y1 ck—1, and if it is also set, there is a
segment at i + 1 of length k — 1 produced by C. From this we conclude that the input
segment at i of length & holds a terminal production of A and we set the entry 7 4 x.
If not, we try again with 7; > and T;15 c x—2, etc., until 7; g 1 and i x—1c,1, just as
in the CYK algorithm.
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We can stop at Tir_1c,1, because grammars in CNF have no €-rules, so T;x co
does not exist. This means that the computation of the entry 7; 4 x involves entries
T; p,j with j < k only. So if we compute all entries T; p; before all entries T; o x for
Jj < k and arbitrary P and Q, the values of all entries needed for the computation of
T; o are guaranteed to be ready. This imposes a particular computation order on the
algorithm:

for all input positions i from n to 1
for all non-terminals A in the grammar
for all length k from 1 to i
compute Tj 4k

The cost of computing one entry T; 4 x is O(n|P,y|), where n is the length of the
input and |P,,| the average number of production rules of a non-terminal. As we saw,
this computation is repeated O(n|G|n) times, where |G| is proportional to the size of
the grammar. So the time requirements of this parsing algorithm is O(n*|G||P,y|) or
0(r*) x O(|G||Pus)).

Bottom-up tabular parsing is applied in a number of algorithms in Sections 12
and 15.7.

Nederhof and Satta [40] have written a tutorial on tabular parsing, applying it to
a wide selection of non-deterministic parsing algorithms.

4.4 Conclusion

The non-directional methods take hold of the input string over its full width. The
top-down method (Unger) tries to cut the input string into segments and impose a
structure on it deriving from the start symbol; if it succeeds, it has found a parsing.
The bottom-up method tries to divide the input into recognizable segments, which
can then be assembled into the start symbol; if it succeeds, it has found a parsing.
Although their look-and-feel is quite different, both methods can be implemented by
filling in a table; only the order in which the entries are computed differs.

Rus [28] presents a remarkable, deterministic non-directional bottom-up parsing
algorithm.

Problems

Problem 4.1: A string U is a supersequence of a string S if U can be created from
S by inserting zero or more tokens from the language in arbitrary places in S. (See
also Section 12.4.) a) Design an Unger parser for a grammar G that will recognize a
supersequence of a string in the language generated by G. b) Do the same for a CYK
parser.

Problem 4.2: A string U is a subsequence of a string S if U can be created from
S by deleting zero or more tokens from arbitrary places in S. (See also Section 12.4.)
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a) Design an Unger parser for a grammar G that will recognize a subsequence of a
string in the language generated by G. b) Do the same for a CYK parser.

Problem 4.3: Project: Eliminating €-rules from a grammar greatly modifies it,
and effort must be spent to undo the damage during parsing. Much of the effort can be
saved by incorporating the removed €s in the modified grammar, as follows. Given a
grammar like S—aBe, B—>b | €, we first convert it to AND-OR form, recording the
original right-hand side in the name of the non-terminal. (A grammar is in AND/OR
Jform if there are only two kinds of rules, AND-rules which specify concatenation of
grammar symbols, and OR-rules which specify choice between non-terminal sym-
bols, and there is only one rule for each non-terminal. This names the alternatives
rather than the non-terminals.) This yields S—aBec, B—>Bp, | B, B, —>b, By —>€.
Next substitute out all nullable OR-rules (the one for B in our case): S—>Sp, ¢ | SaB,c»
SaB,c —>aBpC, S;B,c —>aBc, B, —>b, B —¢. Now substitute the rules of the form
A — €& S—>8,8,¢ | SuB,c> SaB,c—>aBpC, SuB,c—>ac, Bp—>b. Then when parsing
SaB.c —>ac the subscript of the S tells us the real form of the right-hand side.
Elaborate this idea into a complete algorithm, with parser.

Problem 4.4: Remove the unit rules from the grammar

S —= T
T — U
Uu —- T

Problem 4.5: Research Project: CYK, especially in its chart parsing form, has
long been a favorite of natural language parsing, but we have seen its time require-
ments are O(|G||P,,|n*). With some natural language grammars being very large
(millions of rules), especially the generated ones, even O(|G|) is a problem, regard-
less of the O(|P,y|). Design a version of the CYK/chart algorithm that is better than
O(|G|). Do not count on |ADJ] to be substantially smaller than |G|?, where ADJ is
the set of pairs of non-terminals that occur adjacently in any right-hand side. (See
also Problem 3.11.)

Problem 4.6: Project: When looking at program source code in a programming
language, usually seeing two adjacent tokens is enough to get a pretty good idea
of which syntactic structure we are looking at. This would eliminate many of the
bottom-up hypotheses that CYK maintains. Use this idea to automatically suppress
the bulk of the table entries, hopefully leaving only a limited number. This would
make it an almost linear-time parser, which might be important for parsing legacy
code, which comes with notoriously sloppy grammar.

Try to suppress more hypotheses of the form A — o by checking tokens that can
occur just before, at the beginning of, inside, at the end of, and just after, a terminal
production of A.

Problem 4.7: Formulate the inference rule for the computation of 7; 4 in Section
4.3.

Problem 4.8: Draw Figures 4.8 and 4.16 using the end position of the recognized
segment as the second index.

Problem 4.9: Project Determine the class of grammars for which Rus’s algo-
rithm [28] works.
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Problem 4.10: Formal Languages: Design an algorithm to transform a given
grammar into one with the lowest possible number of non-terminals. This is impor-
tant since the time requirements of many parsing algorithms depend on the grammar

size.
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Regular Grammars and Finite-State Automata

Regular grammars, Type 3 grammars, are the simplest form of grammars that still
have generative power. They can describe concatenation (joining two strings to-
gether) and repetition, and can specify alternatives, but they cannot express nesting.
Regular grammars are probably the best-understood part of formal linguistics and
almost all questions about them can be answered.

5.1 Applications of Regular Grammars

In spite of their simplicity there are many applications of regular grammars, of which
we will briefly mention the most important ones.

5.1.1 Regular Languages in CF Parsing

In some parsers for CF grammars, a subparser can be discerned which handles a
regular grammar. Such a subparser is based implicitly or explicitly on the follow-
ing surprising phenomenon. Consider the sentential forms in leftmost or rightmost
derivations. Such sentential forms consist of a closed (finished) part, which contains
terminal symbols only and an open (unfinished) part which contains non-terminals
as well. In leftmost derivations the open part starts at the leftmost non-terminal and
extends to the right; in rightmost derivations the open part starts at the rightmost non-
terminal and extends to the left. See Figure 5.1 which uses sample sentential forms
from Section 2.4.3.

Fig. 5.1. Open parts in leftmost and rightmost productions

It can easily be shown that these open parts of the sentential form, which play an
important role in some CF parsing methods, can be described by a regular grammar,
and that that grammar follows from the CF grammar.
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To explain this clearly we first have to solve a notational problem. It is conven-
tional to use upper case letters for non-terminals and lower case for terminals, but
here we will be writing grammars that produce parts of sentential forms, and since
these sentential forms can contain non-terminals, our grammars will have to produce
non-terminals. To distinguish these “dead” non-terminals from the “live” ones which
do the production, we shall print them barred: X.

With that out of the way we can construct a regular grammar G with start symbol
R for the open parts in leftmost productions of the grammar C used in Section 2.4.3,
which we repeat here:

Ss —= L &N
S —= N

L - N, L
L — N

N - t|d]|h

The first possibility for the start symbol R of G is to produce the start symbol of C;
so we have R—>8, where § is just a token. The next step is that this token, being
the leftmost non-terminal in the sentential form, is turned into a “live’” non-terminal,
from which we are going to produce more of the sentential form: R—S. Here S is
a non-terminal in G, and describes open parts of sentential forms deriving from S
in C. The first possibility for S in G is to produce the right-hand side of S in C as
tokens: S—L&N. But it is also possible that L, being the leftmost non-terminal in the
sentential form, is already alive: S—L&N, and it may even have finished producing,
so that all its tokens have already become part of the closed part of the sentential
form; this leaves &N for the open part: S—&N. Next we can move the & from the
open part to the closed part: S—N. Again this N can become productive: S—N, and,
like the L above, can eventually disappear entirely: S—¢. We see how the original
S—L&N gets gradually worked down to S—s¢. The second alternative of S in C,
S—N, yields the rules S—N, S—N, and S —¢, but we had obtained these already.
The above procedure introduces the non-terminals L and N of G. Rules for them
can be derived in the same way as for S; and so on. The result is the left-regular
grammar G, shown in Figure 5.2. We have already seen that the process can create
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Fig. 5.2. A (left-)regular grammar for the open parts in leftmost derivations
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duplicate copies of the same rule; we now see that it can also produce loops, for
example the rule L—IL, marked X in the figure. Since such rules contribute nothing,
they can be ignored.

In a similar way a right-regular grammar can be constructed for open parts of
sentential forms in a rightmost derivation. These grammars are useful for a better
understanding of top-down and bottom-up parsing (Chapters 6 and 7) and are essen-
tial to the functioning of some parsers (Sections 9.13.2 and 10.2.3).

5.1.2 Systems with Finite Memory

CF (or stronger) grammars allow nesting. Since nesting can, in principle, be arbitrar-
ily deep, the generation of correct CF (or stronger) sentences can require an arbitrary
amount of memory to temporarily hold the unprocessed nesting information. Me-
chanical systems do not possess an arbitrary amount of memory and consequently
cannot exhibit CF behavior and are restricted to regular behavior. This is immedi-
ately clear for simple mechanical systems like vending machines, traffic lights and
DVD recorders: they all behave according to a regular grammar. It is also in princi-
ple true for more complicated mechanical systems, like a country’s train system or a
computer. However, here the argument gets rather vacuous since nesting information
can be represented very efficiently and a little memory can take care of a lot of nest-
ing. Consequently, although these systems in principle exhibit regular behavior, it is
often easier to describe them with CF or stronger means, even though that incorrectly
ascribes infinite memory to them.

Conversely, the global behavior of many systems that do have a lot of memory
can still be described by a regular grammar, and many CF grammars are already for
a large part regular. This is because regular grammars already take adequate care of
concatenation, repetition and choice; context-freeness is only required for nesting. If
we call a rule that produces a regular (sub)language (and which consequently could
be replaced by a regular rule) “quasi-regular”, we can observe the following. If all
alternatives of a rule contain terminals only, that rule is quasi-regular (choice). If
all alternatives of a rule contain only terminals and non-terminals with quasi-regular
and non-recursive rules, then that rule is quasi-regular (concatenation). And if a rule
is recursive but recursion occurs only at the end of an alternative and involves only
quasi-regular rules, then that rule is again quasi-regular (repetition). This often covers
large parts of a CF grammar. See Krzemien and Lukasiewicz [142] for an algorithm
to identify all quasi-regular rules in a grammar.

Natural languages are a case in point. Although CF or stronger grammars seem
necessary to delineate the set of correct sentences (and they may very well be, to
catch many subtleties), quite a good rough description can be obtained through reg-
ular languages. Consider the stylized grammar for the main clause in a Subject-
Verb-Object (SVO) language in Figure 5.3. This grammar is quasi-regular: Verb,
Adjective and Noun are regular by themselves, Subject and Object are con-
catenations of repetitions of regular forms (regular non-terminals and choices) and
are therefore quasi-regular, and so is MainClause. It takes some work to bring
this grammar into standard regular form, but it can be done, as shown in Figure 5.4,
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MainClause; —> Subject Verb Object
Subject — [ a | the ] Adjective” Noun
Object —> [ a | the ] Adjective’ Noun
Verb — verbl | verb2 |
Adjective — adjl | adj2 |
Noun -> nounl | noun2 |

Fig. 5.3. A not obviously quasi-regular grammar

in which the lists for verbs, adjectives and nouns have been abbreviated to verb,
adjective and noun, to save space.

MainClause; —> a SubjAdjNoun verb Object
MainClause; —> the SubjAdjNoun verb Object

SubjAdjNoun verb Object —> noun verb Object
SubjAdjNoun verb Object adjective SubjAdjNoun verb Object

¥

verb Object —» verb Object

v

Object a ObjAdjNoun
Object — the ObjAdjNoun

ObjAdjNoun — noun
ObjAdjNoun —> adjective ObjAdjNoun

verb —> verbl | verb2 |
adjective adjl | adj2 |
noun -> nounl | noun2 |

\

Fig. 5.4. A regular grammar in standard form for that of Figure 5.3

Even (finite) context-dependency can be incorporated: for languages that require
the verb to agree in number with the subject, we duplicate the first rule:

MainClause —> SubjectSingular VerbSingular Object
| SubjectPlural VerbPlural Object

and duplicate the rest of the grammar accordingly. The result is still regular. Nested
subordinate clauses may seem a problem, but in practical usage the depth of nesting
is severely limited. In English, a sentence containing a subclause containing a sub-
clause containing a subclause will baffle the reader, and even in German and Dutch
nestings over say five deep are frowned upon. We replicate the grammar the desired
number of times and remove the possibility of further recursion from the deepest
level. Then the deepest level is regular, which makes the other levels regular in turn.
The resulting grammar will be huge but regular and will be able to profit from all sim-
ple and efficient techniques known for regular grammars. The required duplications
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and modifications are mechanical and can be done by a program. Dewar, Bratley and
Thorne [376] describe an early example of this approach, Blank [382] a more recent
one.

5.1.3 Pattern Searching

Many linear patterns, especially text patterns, have a structure that is easily expressed
by a (quasi-)regular grammar. Notations that indicate amounts of money in various
currencies, for example, have the structure given by the grammar of Figure 5.5, where
_, has been used to indicate a space symbol. Examples are $_19.95 and ¥_1600.
Such notations, however, do not occur in isolation but are usually embedded in long
stretches of text that themselves do not conform to the grammar of Figure 5.5. To

Amounty —> CurrencySymbol Space* Digit? Cents’
CurrencySymbol — € | $ | ¥ | £ |

Space —

Digit —> [0123456789]

Cents —> . Digit Digit | .--

Fig. 5.5. A quasi-regular grammar for currency notations

isolate the notations, a recognizer (rather than a parser) is derived from the grammar
that will accept arbitrary text and will indicate where sequences of symbols are found
that conform to the grammar. Parsing (or another form of analysis) is deferred to a
later stage. A technique for constructing such a recognizer is given in Section 5.10.

5.1.4 SGML and XML Validation

Finite-state automata also play an important role in the analysis of SGML and XML
documents. For the details see Briiggemann-Klein and Wood [150] and Sperberg-
McQueen [359], respectively.

5.2 Producing from a Regular Grammar

When producing from a regular grammar, the producer needs to remember only one
thing: which non-terminal is next. We shall illustrate this and further concepts us-
ing the simple regular grammar of Figure 5.6. This grammar produces sentences
consisting of an a followed by an alternating sequence of bs and cs followed by
a terminating a. For the moment we shall restrict ourselves to regular grammars in
standard notation; further on we shall extend our methods to more convenient forms.

The one non-terminal the producer remembers is called its state and the producer
is said to be in that state. When a producer is in a given state, for example A, it
chooses one of the rules belonging to that state, for example A—bC, produces the b
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S —= a A
S — aB
A — DbB
A — boCC
B — c A
B — c¢cC
C —= a

Fig. 5.6. Sample regular grammar

and moves to state C. Such a move is called a state transition, and for a rule P — tQ

is written P - Q. A rule without a non-terminal in the right-hand side, for example
C—a, corresponds to a state transition to the accepting state; for a rule P — ¢ it is

written P O, where ¢ is the accepting state.
It is customary to combine the states and the possible transitions of a producer in
a transition diagram. Figure 5.7 shows the transition diagram for the regular gram-

mar of Figure 5.6; we see that, for example, the state transition Agc is represented

Fig. 5.7. Transition diagram for the regular grammar of Figure 5.6

by the arc marked b from A to C. S is the initial state and the accepting state is
marked with a {. ! The symbols on the arcs are those produced by the corresponding
move. The producer can stop when it is in an accepting state.

Like the non-deterministic automaton we saw in Section 3.3, the producer is
an automaton, or to be more precise, a non-deterministic finite automaton, NFA or
finite-state automaton, FSA. It is called “finite” because it can only be in a finite
number of states (5 in this case; 3 bits of internal memory would suffice) and “non-
deterministic” because, for example, in state S it has more than one way to produce
an a.

Regular grammars can suffer from undefined, unproductive and unreachable non-
terminals just like context-free grammars, and the effects are even easier to visualize.
If the grammar of Figure 5.6 is extended with the rules

' Another convention to mark an accepting state is by drawing an extra circle around it;
since we will occasionally want to explicitly mark a non-accepting state, we do not use that
convention.
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D undefined

E

E unproductive
A unreachable

HoHEH W W
AREER
P 0o QaQ

we obtain the transition diagram

where we can see that no further transitions are defined from D, which is the actual
meaning of saying that D is undefined; that E, although being defined, literally has
no issue; and that F has no incoming arrows.

The same algorithm used for cleaning CF grammars (Section 2.9.5) can be used
to clean a regular grammar. Unlike CF grammars, regular grammars and finite-state
automata can be minimized: for a given FS automaton A, a FS automaton can be
constructed that has the least possible number of states and still recognizes the same
language as A. An algorithm for doing so is given in Section 5.7.

5.3 Parsing with a Regular Grammar

The above automaton for producing a sentence can in principle also be used for
parsing. If we have a sentence, for example, abcba, and want to check and parse it,
we can view the above transition diagram as a maze and the (tokens in the) sentence
as a guide. If we manage to follow a path through the maze, matching symbols from
our sentence to those on the walls of the corridors as we go, and end up in ¢ exactly
at the end of the sentence, we have checked the sentence. See Figure 5.8, where the
path is shown as a dotted line. The names of the rooms we have visited form the
backbone of the parse tree, which is shown in Figure 5.9.

But finding the correct path is easier said than done. How did we know, for ex-
ample, to turn left in room S rather than right? Of course we could employ general
maze-solving techniques (and they would give us our answer in exponential time) but
a much simpler and much more efficient answer is available here: we split ourselves
in two and head both ways. After the first a of abcba we are in the set of rooms
{a, B}. Now we have a b to follow; from B there are no exits marked b, but from A
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Fig. 5.8. Actual and linearized passage through the maze

Fig. 5.9. Parse tree from the passage through the maze

b b
MO O =u®,
O ORRORRORROZ O
Fig. 5.10. Linearized set-based passage through the maze

there are two, which lead to B and C. So we are now in rooms {B C}. Our path is
now more difficult to depict but still easy to linearize, as shown in Figure 5.10.

We can find the parsing by starting at the end and following the pointers back-
wards: ) «— C «— A « B « A < 8. If the grammar is ambiguous the
backward pointers may bring us to a fork in the road: an ambiguity has been found
and both paths have to be followed separately to find both parsings. With regular
grammars, however, one is often not interested in the parse, but only in the recogni-
tion: the fact that the input is correct and it ends here suffices.

5.3.1 Replacing Sets by States

Although the process described above is linear in the length of the input (each next
token takes an amount of work that is independent of the length of the input), still
a lot of work has to be done for each token. What is worse, the grammar has to be
consulted repeatedly and so we expect the speed of the process to depend adversely
on the size of the grammar. In short, we have designed an interpreter for the non-
deterministic automaton, which is convenient and easy to understand, but inefficient.

Fortunately there is a surprising and fundamental improvement possible: from the
NFA in Figure 5.7 we construct a new automaton with a new set of states, where each
new state is equivalent to a set of old states. Where the original — non-deterministic
— automaton was in doubt after the first a, a situation we represented as {A, B}, the
new — deterministic — automaton firmly knows that after the first a it is in state AB.



5.3 Parsing with a Regular Grammar 145

The states of the new automaton can be constructed systematically as follows.
We start with the initial state of the old automaton, which is also the initial state
of the new one. For each new state we create, we examine its contents in terms of
the old states, and for each token in the language we determine to which set of old
states the given set leads. These sets of old states are then considered states of the new
automaton. If we create the same state a second time, we do not analyse it again. This
process is called the subset construction and results initially in a (deterministic) state
tree. The state tree for the grammar of Figure 5.6 is depicted in Figure 5.11. To stress

Fig. 5.11. Deterministic state tree for the grammar of Figure 5.6

that it systematically checks all new states for all symbols, outgoing arcs leading
nowhere are also shown. Newly generated states that have already been generated
before are marked with a v/.

The state tree of Figure 5.11 is turned into a transition diagram by leading the
arrows to states marked ¢ to their first-time representatives and removing the dead
ends. The new automaton is shown in Figure 5.12. It is deterministic, and is therefore

Fig. 5.12. Deterministic automaton for the grammar of Figure 5.6

called a deterministic finite-state automaton, or a DFA for short.

When we now use the sentence abeba as a guide for traversing this transition
diagram, we find that we are never in doubt and that we safely arrive at the accepting
state. All outgoing arcs from a state bear different symbols, so when following a list
of symbols, we are always pointed to at most one direction. If in a given state there is
no outgoing arc for a given symbol, then that symbol may not occur in that position.
If it does, the input is in error.
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There are two things to be noted here. The first is that we see that most of the
possible states of the new automaton do not actually materialize: the old automaton
had 5 states, so there were 2° = 32 possible states for the new automaton while in
fact it has only 5; states like SB or ABC do not occur. This is usual; although there
are non-deterministic finite-state automata with n states that turn into a DFA with
2" states, these are rare and have to be constructed on purpose. The average garden
variety NFA with n states typically results in a DFA with less than or around 10 x n
states.

The second is that consulting the grammar is no longer required; the state of
the automaton together with the input token fully determine the next state. To allow
efficient look-up the next state can be stored in a table indexed by the old state and
the input token. The table for our DFA is given in Figure 5.13. Using such a table, an

input symbol
a b c
S | AB
old state AB BC | AC
AC ¢ | BC
BC ¢ | AC

Fig. 5.13. Transition table for the automaton of Figure 5.12

input string can be checked at the cost of only a few machine instructions per token.
For the average DFA, most of the entries in the table are empty (cannot be reached
by correct input and refer to error states). Since the table can be of considerable size
(300 states times 100 tokens is normal), several techniques exist to exploit the empty
space by compressing the table. Dencker, Diirre and Heuft [338] give a survey of
some techniques.

The parse tree obtained looks as follows:

(s ey —C—()
& ® 0 & O

which is not the original parse tree. If the automaton is used only to recognize the
input string this is no drawback. If the parse tree is required, it can be reconstructed
in the following fairly obvious bottom-up way. Starting from the last state ¢ and
the last token a, we conclude that the last right-hand side (the “handle segment”
in bottom-up parsing) was a. Since the state was BC, a combination of B and C, we
look through the rules for B and C. We find that a derived from C—a, which narrows
down BC to C. The rightmost b and the C combine into the handle bC which in the
set {A, C} must derive from A. Working our way backwards we find the parsing
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This method again requires the grammar to be consulted repeatedly; moreover, the
way back will not always be so straight as in the above example and we will have
problems with ambiguous grammars.

Efficient full parsing of regular grammars has received relatively little attention;
substantial information can be found in papers by Ostrand, Paull and Weyuker [144]
and by Laurikari [151].

5.3.2 e-Transitions and Non-Standard Notation

A regular grammar in standard form can only have rules of the form A — a and
A — aB. We shall now first extend our notation with two other types of rules, A — B
and A — €, and show how to construct NFAs and DFAs for them. We shall then turn
to regular expressions and rules that have regular expressions as right-hand sides
(for example, P — a*bQ) and show how to convert them into rules in the extended
notation.

The grammar in Figure 5.14 contains examples of both new types of rules; Figure

S — A
S — aB
A — aA
A — ¢
B — b B
B — b

Fig. 5.14. Sample regular grammar with e-rules

5.15 presents the usual trio of NFA, state tree and DFA for this grammar. First con-
sider the NFA. When we are in state S we see the expected transition to state B on the
token a, resulting in the standard rule S —aB. The non-standard rule S —A indicates
that we can get from state S to state A without reading (or producing) a symbol; we
then say that we read the zero-length string € and that we make an e-transition (or
e-move): S->A. The non-standard rule A—s>¢ creates an e-transition to the accepting
state: Ai><>. e-transitions should not be confused with e-rules: unit rules create €-
transitions to non-accepting states and e-rules create e-transitions to accepting states.

Now that we have constructed an NFA with e-moves, the question arises how we
can process the e-moves to obtain a DFA. To answer this question we use the same
reasoning as before; in Figure 5.7, after having seen an a we did not know if we were
in state A or state B and we represented that as {A, B}. Here, when we enter state S,
even before having processed a single symbol, we already do not know if we are in
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Fig. 5.15. NFA (a), state tree (b) and DFA (c) for the grammar of Figure 5.14

states S, A or ¢), since the latter two are reachable from S through e-moves. So the
initial state of the DFA is already compound: SA{. We now have to consider where
this state leads to for the symbols a and b. If we are in S then a will bring us to
B and if we are in A, a will bring us to A. So the new state includes A and B, and
since ¢ is reachable from A through e-moves, it also includes ¢) and its name is AB{).
Continuing in this vein we can construct the complete state tree (Figure 5.15(b)) and
collapse it into a DFA (c). Note that all states of the DFA contain the NFA state ¢,
so the input may end in all of them.

The set of NFA states reachable from a given state through e-moves is called the
e-closure of that state. The e-closure of, for example, Sis {S, A, {}.

For a completely different way of obtaining a DFA from a regular grammar that
has recently found application in the field of XML validation, see Brzozowski [139].

5.4 Manipulating Regular Grammars and Regular Expressions

As mentioned in Section 2.3.3, regular languages are often specified by regular
expressions rather than by regular grammars. Examples of regular expressions are
[0-91%(.[0-91%)7 which should be read as “one or more symbols from the set
0 through 9, possibly followed by a dot which must then be followed by one or more
symbols from 0 through 9” (and which represents numbers with possibly a dot in
them) and (ab) " (p | @) *, which should be read as “zero or more strings ab fol-
lowed by one or more ps or gs” (and which is not directly meaningful). The usual
forms occurring in regular expressions are recalled in the table in Figure 5.16, where
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R, Ry, and R, are arbitrary regular expressions; some systems provide more forms,

Form Meaning Name
RiR, R, followed by R; concatenation
Ri|R, RiorR alternative
R* zero or more Rs optional sequence (Kleene star)
Rt one or more Rs (proper) sequence
R’ zero or one R optional
(R) R grouping
abc---] any symbol from the set abc- - -
a the symbol a itself

Fig. 5.16. Some usual elements of regular expressions

some provide fewer.

In computer input, no difference is generally made between the metasymbol * and
the symbol *, etc. Special notations will be necessary if the language to be described
contains any of the symbols | * + 2 () [or].

5.4.1 Regular Grammars from Regular Expressions

A regular expression can be converted into a regular grammar by using the trans-
formations given in Figure 5.17. The 7 in the transformations stands for an inter-
mediate non-terminal, to be chosen fresh for each application of a transformation; o
stands for any regular expression not involving non-terminals, possibly followed by
a non-terminal. If o is empty, it should be replaced by € when it appears alone in a
right-hand side.

The expansion from regular expression to regular grammar is useful for obtaining
a DFA from a regular expression, as is for example required in lexical analysers like
lex. The resulting regular grammar corresponds directly to an NFA, which can be
used to produce a DFA as described above. There is another method to create an
NFA from the regular expression, which requires, however, some preprocessing on
the regular expression; see Thompson [140].

We shall illustrate the method using the expression (ab)” (p|q) *. Our method
will also work for regular grammars that contain regular expressions (like A —
ab*cB) and we shall in fact immediately turn our regular expression into such a
grammar:

Sg — (ab) (p|l)*

Although the table in Figure 5.17 uses T for generated non-terminals, we use A, B, C,
... in the example since that is less confusing than 71, 75, T3, . ... The transformations
are to be applied until all rules are in (extended) standard form.

The first transformation that applies is P — R*o, which replaces
Ss— (ab) " (p|q) " by
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Rule pattern
P—a

P —aQ

P—Q0

P—ce

P —ao

P— (Ri|Ry]---)or

P— (R)a
P—R"o

P—Ra

P— R0,

P — [abc---]o

Replace by

(standard)
(standard)
(extended standard)
(extended standard)

P —aT
T — o

P—Ria
P— Rya

P — Ro
P—-T
T — RT
T— o
P — RT
T — RT
T— o
P — Ro
P—o

P — (afble]---)o

Fig. 5.17. Transformations on extended regular grammars

S —= A
A —
A —

(ab) A
(pla)”*

v

The first rule is already in the desired form and has been marked ¢. The transforma-
tions P — (R)o and P — ac. work on A—> (ab) A and result in

A — aB
B — b A

4
v

Now the transformation P — R™ o must be applied to A— (p | @) ¥, yielding

A —
CcC —
cC —= ¢

(pla) €
(pla) c

v

The € originated from the fact that (p|q) " in A— (p| q) * is not followed by any-
thing (of which ¢ is a faithful representation). Now A— (p|q) C and C— (p|q) C

are easily decomposed into

Qap
Vi

Q' Q™
(el IeNNe!

AN AN
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Ss — A
A — a8B
B — b A
A — pC
A — qg_C¢C
c = pC
cC = qg¢C_
CcC — ¢

Fig. 5.18. Extended-standard regular grammar for (ab) “(p la)*

The complete extended-standard version can be found in Figure 5.18; an NFA and
DFA can now be derived using the methods of Section 5.3.1 (not shown).

5.4.2 Regular Expressions from Regular Grammars

Occasionally, for example in Section 9.12, it is useful to condense a regular grammar
into a regular expression. The transformation can be performed by alternatingly sub-
stituting a rule and applying the transformation patterns from Figure 5.19. The first

Rule pattern Replace by
P—Ri0i

P RyO» P—RiQ1 |R0s-
P—=RQ[RQ|--0Q|a P — (Ri[Ry]---)Q | o

P— (R)P|RQ1 |R2Ds | & P— (R)*R1Q1 | (R)*R202 | B

Fig. 5.19. Condensing transformations on regular grammars

pattern combines all rules for the same non-terminal. The second pattern combines
all regular expressions that precede the same non-terminal in a right-hand side; o
is a list of alternatives that do not end in Q (but see next paragraph). The third pat-
tern removes right recursion: if the repetitive part is (R), it prepends (R)* to all non-
recursive alternatives; here [ consists of all the alternatives in o, with (R)* prepended
to each of them. Oy, Q», - -- should not be equal to P (but see next paragraph). When
o is € it can be left out when it is concatenated with a non-empty regular expression.

The substitutions and transformations may be applied in any order and will al-
ways lead to a correct regular expression, but the result depends heavily on the appli-
cation order; to obtain a “nice” regular expression, human guidance is needed. Also,
the two conditions in the previous paragraph may be violated without endangering
the correctness, but the result will be a more “ugly” regular expression.

We will now apply the transformation to the regular grammar of Figure 5.18, and
will not hesitate to supply the human guidance. We first combine the rules by their
left-hand sides (transformation 1):
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S — A
A - aB | pC]|agcC
B — b A
C —- pC | gcC | e
Next we substitute B:
A - aba|pcCc|gcC
C - pC|lgcC | e

followed by scooping up prefixes (transformation 2):

A — (ab) A | (pl@) C
cC — (pla) Cc | ¢

Note that we have also packed the ab that prefixes A, to prepare it for the next
transformation, which involves turning recursion into repetition:

S — A
A — (ab)” (p|la) C
c - (pla)’

Now C can be substituted in A and A in S, resulting in
s = (ab)" (pl@) (|D”

This is equivalent but not identical to the (ab) ™ (p | g) * we started with.

5.5 Manipulating Regular Languages

In Section 2.10 we discussed the set operations “union”, “intersection”, and “nega-
tion” on CF languages, and saw that the latter two do not always yield CF languages.
For regular languages the situation is simpler: these set operations on regular lan-
guages always yield regular languages.

Creating a FS automaton for the union of two regular languages defined by the
FS automata A; and A is trivial: just create a new start state and add e-transitions
from that state to the start states of A; and A,. If need be the e-transitions can then
be removed as described in Section 5.3.1.

There is an interesting way to get the negation (complement) of a regular lan-
guage L defined by a FS automaton, provided the automaton is e-free. When an
automaton is e-free, each state ¢ in it shows directly the set of tokens C; with which
an input string that brings the automaton in state # can continue: C; is exactly the set
of tokens for which ¢ has an outgoing transition. This means that if the string contin-
ues with a token which is not in C, the string is not in L, and so we may conclude it
is in =L. Now we can “complete” state ¢ by adding outgoing arrows on all tokens not
in C; and lead these to a non-accepting state, which we will call s_;. If we perform
this completion for all states in the automaton, including s_1, we obtain a so-called
complete automaton, an automaton in which all transitions are defined.

The complete version of the automaton of Figure 5.7 is shown in Figure 5.20,
where the non-accepting state is marked with a X.
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Fig. 5.20. The automaton of Figure 5.7 completed

The importance of a complete automaton lies in the fact that it never gets stuck
on any (finite) input string. For those strings that belong to the language L of the au-
tomaton, it ends in an accepting state; for those that do not it ends in a non-accepting
state. And this immediately suggests how to get an automaton for the complement
(negative) of L: swap the status of accepting and non-accepting states, by making the
accepting states non-accepting and the non-accepting states accepting!

Note that completing the automaton has damaged its error detection properties,
in that it will not reject an input string at the first offending character but will process
the entire string and only then give its verdict.

The completion process requires the automaton to be e-free. This is easily
achieved by making it deterministic, as described on page 145, but that may be
overkill. See Problem 5.4 for a way to remove the e-transitions only.

Now that we have negation of FSAs, constructing the intersection of two FSAs
seems easy: just negate both automata, take the union, and negate the result, in an
application of De Morgan’s Law pNg = —((—p) U (—g)). But there is a hitch here.
Constructing the negation of an FSA is easy only if the automaton is e-free, and
the union in the process causes two e-transitions in awkward positions, making this
“easy” approach quite unattractive.

Fortunately there is a simple trick to construct the intersection of two FS au-
tomata that avoids these problems: run both automata simultaneously, keeping track
of their two states in one single new state. As an example we will intersect automaton
Ay, the automaton of Figure 5.7, with an FSA A, which requires the input to con-
tain the sequence ba. A, is represented by the regular expression . ‘ba. . It needs 3

states, which we will call 1 (start state), 2 and ) (accepting state); it has the following

transitions: 1 [aEC] 1, 1g2, 2g<>, O [agc] 0.

We start the intersection automaton A; MA, in the combined state S1, which is
composed of the start state S of A; and the start state 1 of A,. For each transition
P LR Qi in A; and for each transition P, LR 0> in A, we create a transition (P P,) 4
(Q107) in A| NA,. This leads to the state tree in Figure 5.21(a); the corresponding
FSA is in (b). We see that it is similar to that in Figure 5.7, except that the transition
BSC s missing: the requirement that the string should contain the sequence ba
removed it.
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Fig. 5.21. State tree (a) and FSA (b) of the intersection of Figure 5.7 and . “ba.”

In principle, the intersection of an FSA with n states and one with m states can
require n X m states, but in practice something like ¢ x (n+m) for some small value
of ¢ is more usual.

Conversely, sometimes a complex FSA can be decomposed into the intersection
of two much simpler FSAs, with great gain in memory requirements, and sometimes
it cannot. There is unfortunately little theory on how to do this, though there are some
heuristics; see Problem 5.7. The process is also called “factorization”, but that is an
unfortunate term, since it suggests the same uniqueness of factorization we find in
integers, and the decomposition of FSAs is not unique.

5.6 Left-Regular Grammars

In a left-regular grammar, all rules are of the form A — a or A — Ba where a is a
terminal and A and B are non-terminals. Figure 5.22 gives a left-regular grammar
equivalent to that of Figure 5.6.

Left-regular grammars are often brushed aside as just a variant of right-regular
grammars, but their look and feel is completely different. Take the process of pro-
ducing a string from this grammar, for example. Suppose we want to produce the
sentence abcba used in Section 5.3. To do so we have to first decide all the states
we are going to visit, and only when the last one has been decided upon can the first
token be produced:
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Sgs —= C a
C — Boec
cC - ADb
B — AD
B — a

A —= Boc
A — a

Fig. 5.22. A left-regular grammar equivalent to that of Figure 5.6

QP WP AN
ooabooe
n Qo
o o N 1}

[V

And once the first token is available, all of them are, and we do not have any choice
any more; this is vastly different from producing from a right-regular grammar.

Parsing with a left-regular grammar is equally weird. It is easy to see that initially
we are in a union of all states {S,A,B,C}, but if we now see an a in the input, we can
move over this a in two rules, B—a, and A—>a. Suppose we use rule A—>a; what
state are we in now? The rule specifies no state except A; so what does the move
mean?

The easy way out is to convert the grammar to a right-regular one (see below in
this section), but it is more interesting to try to answer the question what a move over
a in A—a means. The only thing we know after such a move is that we have just
completed a production of A, so the state we are in can justifiably be described as “A
finished”’; we will write such a state as A¢. And in the same manner the first rule in
Figure 5.22 means that when we are in a state Cf and we move over an a we are in

. .. a . « . ’s
a state Sy; this corresponds to a transition C¢—S¢. Then we realize that “S finished
means that we have parsed a complete terminal production of S; so the state Sy is the
accepting state ¢ and we see the rightmost transition in Figure 5.7 appear.

Now that we have seen that the rule A — Bt corresponds to the transition B 4

Ay, and that the rule Sy — Bt corresponds to By R ¢, what about rules of the form
A — 7 After the transition over ¢ we are certainly in the state Ay, but where did
we start from? The answer is that we have not seen any terminal production yet,
so we are in a state €, the start state! So the rules A—a and B—>a correspond to

transitions ngAf and Engf, two more components of Figure 5.7. Continuing this
way we quickly reconstruct the transition diagram of Figure 5.7, with modified state
names:
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This exposes an awkward asymmetry between start state and accepting state, in that
unlike the start state the accepting state corresponds to a symbol in the grammar. This
asymmetry can be partially removed by representing the start state by a more neutral
symbol, for example []. We then obtain the following correspondence between our
right-regular and left-regular grammar:

0 —- aa A — [ a

0 — aB B — [ a

A —> b B B —- A Db

A - Db C C - AbD

B — c A A — B c

B = cC C —- B c

CcC = a O — C a

[J: start state O: ¢

Q: € O start state

Obtaining a regular expression from a left-regular grammar is simple: most of
the algorithm in Section 5.4.2 can be taken over with minimal change. Only the
transformation that converts recursion into repetition

Rule pattern Replace by
P— (R)P|RiQ1 |R20> | &0 P— (R)'R1Q1 | (R)"R0> | B

must be replaced by
P—PR)| QiR | R |oe P— ORI(R)" | Q2R (R)™ | B

where 3 consists of all the alternatives in o, with (R)* appended to each of them.
This is because A—>aA | b yields a*b but A—>Aa | b yields ba".

5.7 Minimizing Finite-State Automata

Turning an NFA into a DFA usually increases the size of the automaton by a mod-
erate factor, perhaps 10 or so, and may occasionally grossly inflate the automaton.
Considering that for a large automaton a size increase of a factor of say 10 can pose
a major problem; that even for a small table any increase in size is undesirable if the
table has to be stored in a small electronic device; and that large inflation factors may
occur unexpectedly, it is often worthwhile to try to reduce the number of states in the
DFA.
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The key idea of the DFA minimization algorithm presented here is that we con-
sider states to be equivalent until we can see a difference. To this end the algorithm
keeps the DFA states in a number of mutually disjoint subsets, a “partition.” A parti-
tion of a set S is a collection of subsets of S such that each member of S is in exactly
one of those subsets; that is, the subsets have no elements in common and their union
is the set S. The algorithm iteratively splits each subset in the partition as long as it
can see a difference between states in it.

We will use the DFA from Figure 5.23(b) as an example; it can be derived from
the NFA in Figure 5.23(a) through the subset algorithm with A = SQ and B = P, and
is not minimal, as we shall see.

(a) (b)

Fig. 5.23. A non-deterministic FSA and the resulting deterministic but not minimal FSA

Initially we partition the set of states into two subsets: one containing all the
accepting states, the other containing all the other states; these are certainly different.
In our example this results in one subset containing states S, B and A, and one subset
containing the accepting state .

Next, we process each subset S; in turn. If there exist two states ¢; and ¢, in S;
that on some symbol a have transitions to members of different subsets in the current
partition, we have found a difference and S; must be split. Suppose we have g — r|
and ¢» 4, rp, and r; is in subset X; and r; is in a different subset X5, then S; must be
split into one subset containing g; and all other states ¢; in S; which have g; L i
with r; in X, and a second subset containing the other states from S;. If ¢; has no
transition on a but g»> does, or vice versa, we have also found a difference and S; must
be split as well.

In our example, states S and A have transitions on a (to the same state, (), but
state B does not, so this step results in two subsets, one containing the states S and
A, and the other containing state B.

We repeat applying this step to all subsets in the partition, until no subset can
be split any more. This will eventually happen, because the total number of subsets
is bounded: there can be no more subsets in a partition than there are states in the
original DFA, and during the process subsets are never merged. (This is another
example of a closure algorithm.)

When this process is completed, all states in a subset S; of the resulting partition
have the property that for any alphabet symbol a their transition on a ends up in the
same subset S;(a) of the partition. Therefore, we can consider each subset to be a sin-
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gle state in the minimized DFA. The start state of the minimized DFA is represented
by the subset containing the start state of the original DFA, and the accepting states
of the minimized DFA are represented by the subsets containing accepting states of
the original DFA. The resulting DFA is, in fact, the smallest DFA that recognizes the
language specified by the DFA that we started with. See, for example, Hopcroft and
Ullman [391].

In our example we find no further splits, and the resulting DFA is depicted below.

5.8 Top-Down Regular Expression Recognition

The Type 3 recognition technique of Section 5.3 is a bottom-up method collecting
hypotheses about the reconstruction of the production process, with a top-down com-
ponent making sure that the recognized string derives from the start symbol. In fact,
the subset algorithm can be derived quite easily from a specific bottom-up parser, the
Earley parser, which we will meet in Section 7.2 (Problem 5.9). Somewhat surpris-
ingly, much software featuring regular expressions uses the straightforward back-
tracking top-down parser from Section 6.6, adapted to regular expressions. The main
advantage is that this method does not require preprocessing of the regular expres-
sion; the disadvantage is that it may require much more than linear time. We will first
explain the technique briefly (backtracking top-down parsing is more fully discussed
in Section 6.6), and then return to the advantages and disadvantages.

5.8.1 The Recognizer

The top-down recognizer follows the grammar of regular expressions, which we
summarize here:

compound_re*

repeat re | simple re

simple re ["*'|’+"|"?"]

token | ’(’ regular expression ')’

regular expression;
compound re
repeat re

simple re

ARER"

The recognizer keeps two pointers, one in the regular expression and one in the input,
and tries to move both in unison: when a token is matched both pointers move one
position forward, but when a simple re must be repeated, the regular expression
pointer jumps backwards, and the input pointer stays in place. When the regular
expression pointer points to the end of the regular expression, the recognizer registers
a match, based on how far the input pointer got.
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When the recognizer tries to recognize a compound re, it first finds out
whether it is a repeat re. If so, it checks the mark. If that is a + indicating a
mandatory simple re, the recognizer just continues searching fora simple re,
but if the simple re is optional (%, ?), the search splits in two: one for a
simple_ re, and one for the rest of the regular expression, after this repeat re.
When the recognizer comes to the end of a repeat re, it again checks the mark.
Ifitis a ?, it just continues, but if it was a real repeater (*, +), the search again splits
in two: one jumping back to the beginning of the repeat re, and one continuing
with the rest of the regular expression.

When the recognizer finds that the simple re is a token, it compares the
token with the token at the input pointer. If they match, both pointers are advanced;
otherwise this search is abandoned.

Two questions remain: how do we implement the splitting of searches, and what
do we do with the recorded matches. We implement the search splitting by doing
them sequentially: we first do the entire first search up to the end or failure, includ-
ing all its subsearches; then, regardless of the result, we do the second search. This
sounds bothersome, both in coding and in efficiency, but it isn’t. The skeleton code
for the optional repeat_re is just

procedure try optional repeat re(rp, ip: int):
begin

try simple re(rp, ip);

try regular expression(after subexpression(rp), ip);
end;

where rp and ip are the regular expression pointer and the input pointer. And the al-
gorithm is usually quite efficient, since almost all searches fail immediately because
a token search compares two non-matching tokens.

The processing of the recorded matches depends on the application. If we want
to know if the regular expression matches the entire string, as for example in file
name matching, we check if we have simultaneously reached the end of the input,
and if so, we abandon all further searches and return success; if not, we just continue
searching. But if, for example, we want the longest match, we keep a high-water
mark and continue until all searches have been exhausted.

5.8.2 Evaluation

Some advantages of top-down regular expression matching are obvious: the algo-
rithm is very easy to program and involves no or hardly any preprocessing of the
regular expression, depending on the implementation of structuring routines like
after subexpression (). Other advantages are less directly visible. For ex-
ample, the technique allows naming a part of the regular expression and checking
its repeated presence somewhere else in the input; this is an unexpectedly powerful
feature. A simple example is the pattern (. %) =x\x, which says: match an arbitrary
segment of the input, call it x, and then match the rest of the input to whatever has
been recognized for x; \x is called a backreference. (A more usual but less clear
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notation for the same regular expression is \ (. *\) \1, in which \1 means: match
the first subexpression enclosed in \ ( and \) .)

Faced with the input abab, the recognizer sets x to the values €, a, ab, aba,
and abab in any order, and then tries to match the tail left over in each case to the
present value of x. This succeeds only for x=¢ and x=ab, and only in the last case is
the whole input recognized. So the above expression recognizes the language of all
strings that consist of two identical parts: ww, where w is any string over the given
alphabet. Since this is a context-sensitive language, we see to our amazement that,
skipping the entire Type 2 languages, the Type 3 regular expressions with backrefer-
ences recognize a Type 1 language! A system which uses this feature extensively is
the §-calculus (Jackson [285, 291]), discussed further in Section 15.8.3.

The main disadvantage of top-down regular expression recognition is its time
requirements. Although they are usually linear with a very modest multiplication
constant, they can occasionally be disturbingly high, especially at unexpected mo-
ments. O(nk) time requirement occur with patterns like a*a”---a*, where the a* is
repeated k times, so in principle the cost can be any polynomial in the length of the
input, but behavior worse than quadratic is unusual. Finding all 10000 occurrences
of lines matching the expression . ) in this book took 36 sec.; finding all 11000
occurrences of just the ) took no measurable time.

5.9 Semantics in FS Systems

In FS systems, semantic actions can be attached to states or to transitions. If the
semantics is attached to the states, it is available all the time and is static. It could
control an indicator on some panel of some equipment, or keep the motor of an
elevator running. Semantics associated with the states is also called Moore semantics
(Moore [136]).

If the semantics is attached to the transitions, it is available only at the moment
the transition is made, in the form of a signal or procedure call; it is dynamic and
transitory. Such a signal could cause a plastic cup to drop in a coffee machine or shift
railroad points; the stability, staticness, is then provided by the physical construction
of the equipment. And a procedure call could tell the lexical analyser in a compiler
that a token begin has been found. Semantics associated with transitions is also called
Mealy semantics (Mealy [134]).

There are many variants of transition-associated semantics. The signal can come
when specific transition s; Ls j occurs (Mealy [134]); when a specific token causes
a specific state to be entered (x Ls j» where * is any state); when a specific state is

entered (x s j» McNaughton and Yamada [137]); when a specific state is left (s; 5
x); etc. Not much has been written about these differences. Upon reading a paper it
is essential to find out which convention the author(s) use. In practical situations it is
usually self-evident which variant is the most appropriate.
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Suppose we are looking for the occurrence of a short piece of text, for example, a
word or a name (the “search string”) in a large piece of text, for example, a dictionary
or an encyclopedia. One naive way of finding a search string of length n in a text
would be to try to match it to the characters 1 to n; if that fails, shift the pattern one
position and try to match against characters 2 to n+ 1, etc., until we find the search
string or reach the end of the text. This process is, however, costly, since we may
have to look at each character n times.

Finite automata offer a much more efficient way to do text search. We derive a
DFA from the string, let it run down the text and when it reaches an accepting state, it
has found the string. Assume for example that the search string is ababec and that the
text will contain only as, bs and cs. The NFA that searches for this string is shown in
Figure 5.24(a); it was derived as follows. At each character in the text there are two

Fig. 5.24. NFA (a), state tree (b) and DFA (c) to search for ababe

possibilities: either the search string starts there, which is represented by the chain of
states going to the right, or it does not start there, in which case we have to skip the
present character and return to the initial state. The automaton is non-deterministic,
since when we see an a in state A, we have two options: to believe that it is the start
of an occurrence of ababe or not to believe it.
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Using the traditional techniques, this NFA can be used to produce a state tree (b)
and then a DFA (c). Figure 5.25 shows the states the DFA goes through when fed
the text aabababca. We see that we have implemented superstring recognition, in

(2)=(a2) (=)= {nc) =m0} ~ocs) o) »ice)} (20} =(12)
a —~a —~ b ~“Ta b ~Ta ~ b ~ c T a
\ /

Fig. 5.25. State transitions of the DFA of Figure 5.24(c) on aabababca

which a substring of the input is recognized as matching the grammar rather than the
entire input. This makes the input a superstring of a string in the language, hence the
name.

This application of finite-state automata is known as the Aho and Corasick bibli-
ographic search algorithm (Aho and Corasick [141]). Like any DFA, it requires only
a few machine instructions per character. As an additional bonus it will search for
several strings for the price of one. The DFA corresponding to the NFA of Figure
5.26 will search simultaneously for Kawabata, Mishima and Tanizaki. Note

Fig. 5.26. Example of an NFA for searching multiple strings

that three different accepting states result, Ox, Ov and .

The Aho and Corasick algorithm is not the last word in string search. It faces
stiff competition from the Rabin-Karp algorithm (Karp and Rabin [145]) and the
Boyer-Moore algorithm (Boyer and Moore [143]). An excellent overview of fast
string search algorithms is given by Aho [147]. Watson [149] extends the Boyer-
Moore technique, which searches for a single word, so it can search for a regular
expression. However fascinating all these algorithms are, they are outside the scope
of this book and will not be treated here.

5.11 Conclusion

Regular grammars are characterized by the fact that no nesting is involved. Switch-
ing from one grammar rule or transition network to another is a memory-less move.
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Consequently the production process is determined by a single position in the gram-
mar and the recognition process is determined by a finite number of positions in the
grammar.

Regular grammars correspond to regular expression, and vice versa, although the
conversion algorithms tend to produce results that are more complicated than would
be possible.

Strings in a regular set can be recognized bottom-up, using finite-state automata
created by the “subset algorithm”, or top-down, using recursive descent routines de-
rived from the regular expression. The first has the advantage that it is very efficient;
the second allows easy addition of useful semantic actions and recognition restric-
tions.

Finite-state automata are extremely important in all kinds of text searches, from
bibliographical and Web searches through data mining to virus scanning.

Problems

Problem 5.1: Construct the regular grammar for open parts of sentential forms
in rightmost derivations for the grammar C in Section 5.1.1.

Problem 5.2: The FS automata in Figures 5.7 and 5.12 have only one accept-
ing state, but the automaton in Figure 5.15(c) has several. Are multiple accepting
states necessary? In particular: 1. Can any FS automaton A be transformed into an
equivalent single accepting state FS automaton B? 2. So that in addition B has no
e-transitions? 3. So that in addition B is deterministic?

Problem 5.3: Show that the grammar cleaning operations of removing non-
productive rules and removing unreachable non-terminals can be performed in either
order when cleaning a regular grammar.

Problem 5.4: Design an algorithm for removing e-transitions from a FS automa-
ton.

Problem 5.5: Design a way to perform the completion and negation of a regular
automaton (Section 5.5) on the regular grammar rather than on the automaton.

Problem 5.6: For readers with a background in logic: Taking the complement
of the complement of an FSA does not always yield the original automaton, but
taking the complement of the complement of an already complemented FSA does,
which shows that complemented automata are in some way different. Analyse this
phenomenon and draw parallels with intuitionistic logic.

Problem 5.7: Project: Study the factorization/decomposition of FSAs; see, for
example, Roche, [148].

Problem 5.8: When we assign fwo states to each non-terminal A, A; for “A start”
and Ay for “A finished, a rule A — XY results in 3 e-transitions, A £ X, Xy 5 Y,
and Yy A > and a non-g-transition X; X x ror Y ER Yy, depending on whether X
or Y is a terminal. Use this view to write a more symmetrical and esthetic account of
left- and right-regular grammars than given in Section 5.6.

Problem 5.9: Derive the subset algorithm from the Earley parser (Section 7.2)
working on a left-regular grammar.



164 5 Regular Grammars and Finite-State Automata

Problem 5.10: Derive a regular expression for S from the grammar of Figure
5.22.

Problem 5.11: Project: Section 5.7 shows how to minimize a FS automa-
ton/grammar by initially assuming all non-terminal are equal. Can a CF grammar
be subjected to a similar process and what will happen?

Problem 5.12: History: Trace the origin of the use of the Kleene star, the raised
star meaning “the set of an unbounded number of occurrences”. (See [135].)



6

General Directional Top-Down Parsing

In this chapter, we will discuss top-down parsing methods that try to rederive the
input sentence by prediction. As explained in Section 3.2.1, we start with the start
symbol and try to produce the input from it; at any point in time, we have a sentential
form that represents our prediction of the rest of the input sentence. It is convenient
to draw the prediction right under the part of the input that it predicts, with their left
ends flush, as we did in Figure 3.5:

rest of input

prediction

This sentential form consists of both terminals and non-terminals. If a terminal sym-
bol is in front, we match it with the current input symbol. If a non-terminal is in front,
we pick one of its right-hand sides and replace the non-terminal with this right-hand
side. This way, we all the time replace the leftmost non-terminal, and in the end,
if we succeed, we have imitated a leftmost derivation. Note that the prediction part
corresponds to the open part of the sentential form when doing leftmost derivation,
as discussed in Section 5.1.1.

6.1 Imitating Leftmost Derivations

Let us now illustrate such a rederiving process with an example. Consider the gram-
mar of Figure 6.1. This grammar produces all sentences with equal numbers of as

S — aB | ba
A —> a | as | baa
B — b | bsS | aBB

Fig. 6.1. A grammar producing all sentences with equal numbers of as and bs
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and bs.

Let us try to parse the sentence aabb, by trying to rederive it from the start
symbol, S. S is our first prediction. The first symbol of our prediction is a non-
terminal, so we have to replace it by one of its right-hand sides. In this grammar,
there are two choices for S: either we use the rule S—aB, or we use the rule S—DbA.
The sentence starts with an a and not with a b, so we cannot use the second rule here.
Applying the first rule leaves us with the prediction aB. Now the first symbol of the
prediction is a terminal symbol. Here, we have no choice:

a abb
a B

We have to match this symbol with the current symbol of the sentence, which is also
an a. So we have a match, and accept the a. This leaves us with the prediction B
for the rest of the sentence: abb. The first symbol of the prediction is again a non-
terminal, so it has to be replaced by one of its right-hand sides. Now we have three
choices. However, the first and the second are not applicable here, because they start
with a b, and we need another a. Therefore, we take the third choice, so now we
have prediction aBB:

a bb

o]

Again, we have a match with the current input symbol, so we accept it and continue
with the prediction BB for bb. Again, we have to replace the leftmost B by one of its
choices. The next terminal in the sentence is a b, so the third choice is not applicable
here. This still leaves us with two choices, b and bS. So, we can either try them both,
or be a bit more intelligent about it. If we would take bS, then we would get at least
another a (because of the S), so this cannot be the right choice. So we take the b
choice, and get the prediction bB for bb. Again, we have a match, and this leaves
us with prediction B for b. For the same reason, we take the b choice again. After
matching, this leaves us with an empty prediction. Luckily, we are also at the end
of the input sentence, so we accept it. If we had made notes of the production rules
used, we would have found the following derivation:

S — aB — aaBB —> aabB — aabb

Figure 6.2 presents the steps of the parse in a tree-form. The dashed line separates
the already processed part from the prediction. All the time, the leftmost symbol of
the prediction is processed.

This example demonstrates several aspects that the parsers discussed in this chap-
ter have in common:

*  We always process the leftmost symbol of the prediction.
e If this symbol is a terminal, we have no choice: we have to match it with the
current input symbol or reject the parse.
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Fig. 6.2. Production trees for the sentence aabb

e If this symbol is a non-terminal, we have to make a prediction: it has to be re-
placed by one of its right-hand sides. Thus, we always process the leftmost non-
terminal first, so we get a leftmost derivation.

* As aresult, the top-down method recognizes the nodes of the parse tree in pre-
order: the parent is identified before any of its children.

6.2 The Pushdown Automaton

The steps we have taken in the example above resemble very much the steps of
a so-called pushdown automaton. A pushdown automaton (PDA) is an imaginary
mathematical device that reads input and has control over a stack. The stack can
contain symbols that belong to a so-called stack alphabet. A stack is a list that can
only be accessed at one end: the last symbol entered on the list (“pushed”) is the first
symbol to be taken from it (“popped”). This is also sometimes called a “first-in, last-
out” list, or a FILO list: the first symbol that goes in is the last symbol to come out. In
the example above, the prediction works like a stack, and this is what the pushdown
automaton uses the stack for too. We therefore call this stack the prediction stack.
The stack also explains the name “pushdown” automaton: the automaton “pushes”
symbols on the stack for later processing.

The pushdown automaton operates by popping a stack symbol and reading an
input symbol. These two symbols then in general give us a choice of several lists
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of stack symbols to be pushed on the stack. So there is a mapping of (input sym-
bol, stack symbol) pairs to lists of stack symbols. The automaton accepts the input
sentence when the stack is empty at the end of the input. If there are choices (so an
(input symbol, stack symbol) pair maps to more than one list), the automaton ac-
cepts a sentence when there are choices that lead to an empty stack at the end of the
sentence.

This automaton is modeled after context-free grammars with rules in the so-
called Greibach Normal Form (GNF). In this normal form, all grammar rules have
either the form A — aor A — aBB; - - - B,,, with a a terminal and A, By, ... , B, non-
terminals. The stack symbols are, of course, the non-terminals. A rule of the form
A — aB1B;---B, leads to a mapping of the (a, A) pair to the list B{B; - --B,. This
means that if the input symbol is an a, and the prediction stack starts with an A, we
could accept the a, and replace the A part of the prediction stack with B1B,---B,. A
rule of the form A — a leads to a mapping of the (a, A) pair to an empty list. The
automaton starts with the start symbol of the grammar on the stack. Any context-free
grammar that does not produce the empty string can be put into Greibach Normal
Form (Greibach [8]). Most books on formal language theory discuss how to do this
(see for example Hopcroft and Ullman [391]).

The example grammar of Figure 6.1 already is in Greibach Normal Form, so we
can easily build a pushdown automaton for it. The automaton is characterized by the
mapping shown in Figure 6.3.

(a, S) — B

(b, 8) — A

(a, 4) —

(a, A) — S

(b, A) — AA
(b, B) —

(b, B) —= s

(a, B) — BB

Fig. 6.3. Mapping of the PDA for the grammar of Figure 6.1

An important remark to be made here is that many pushdown automata are non-
deterministic. For example, the pushdown automaton of Figure 6.3 can choose be-
tween an empty list and an S for the pair (a, A). In fact, there are context-free lan-
guages for which we cannot build a deterministic pushdown automaton, although we
can build a non-deterministic one.

We should also mention that the pushdown automata as discussed here are a sim-
plification of the ones we find in automata theory. In automata theory, pushdown
automata have so-called states, and the mapping is from (state, input symbol, stack
symbol) triplets to (state, list of stack symbols) pairs. Seen in this way, they are like
finite-state automata (discussed in Chapter 5), extended with a stack. Also, pushdown
automata come in two different kinds: some accept a sentence by empty stack, others
accept by ending up in a state that is marked as an accepting state. Perhaps surpris-
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ingly, having states does not make the pushdown automaton concept more powerful
and pushdown automata with states still only accept languages that can be described
with a context-free grammar. In our discussion, the pushdown automaton only has
one state, so we have left it out.

Pushdown automata as described above have several shortcomings that must be
resolved if we want to convert them into parsing automata. Firstly, pushdown au-
tomata require us to put our grammar into Greibach Normal Form. While grammar
transformations are no problem for the formal-linguist, we would like to avoid them
as much as possible, and use the original grammar if we can. Now we could relax
the Greibach Normal Form requirement a little by also allowing terminals as stack
symbols, and adding

(a,a) =

to the mapping for all terminals a. We could then use any grammar all of whose
right-hand sides start with a terminal. We could also split the steps of the pushdown
automaton into separate “match” and “predict” steps, as we did in the example of
Section 6.1. The “match” steps then correspond to usage of the

(a,a) —
mappings, and the “predict” step then corresponds to a
(LA)— -

mapping, that is, a non-terminal on the top of the stack is replaced by one of its right-
hand sides, without consuming a symbol from the input. For the grammar of Figure
6.1, this results in the mapping shown in Figure 6.4, which is in fact just a rewrite of
the grammar of Figure 6.1.

aB
bA

(, 8)
(, 8)
(, A)
(, A)
(, &)
(, B)
(, B)
(, B)
(a, a)
(b, b)

as
bAA

bs
aBB

AR EERAEER

Fig. 6.4. Match and predict mappings of the PDA for the grammar of Figure 6.1

We will see later that, even using this approach, we may have to modify the gram-
mar anyway, but in the meantime this looks very promising, so we adopt this strategy.
This strategy also solves another problem: e-rules do not need special treatment any
more. To get Greibach Normal Form, we would have to eliminate them but this is
not necessary any more, because they now just correspond to a
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(;A) =

mapping.

The second shortcoming is that the pushdown automaton does not keep a record
of the rules (mappings) it uses. Therefore, we introduce an analysis stack into the
automaton. For every prediction step, we push the non-terminal being replaced onto
the analysis stack, suffixed with the number of the right-hand side taken (number-
ing the right-hand sides of a non-terminal from 1 to n). For every match, we push
the matched terminal onto the analysis stack. Thus, the analysis stack corresponds
exactly to the parts to the left of the dashed line in Figure 6.2, and the dashed line
represents the separation between the analysis stack and the prediction stack. This
results in an automaton that at any point in time has a configuration as depicted in
Figure 6.5. Such a configuration, together with its current state, stacks, etc. is called
an instantaneous description. In Figure 6.5, matching can be seen as pushing the
vertical line to the right.

matched input|rest of input

analysis | prediction

Fig. 6.5. An instantaneous description

The third and most important shortcoming, however, is the non-determinism.
Formally, it may be satisfactory that the automaton accepts a sentence if and only if
there is a sequence of choices that leads to an empty stack at the end of the sentence,
but for our purpose it is not, because it does not tell us how to obtain this sequence.
We have to guide the automaton to the correct choices. Looking back to the example
of Section 6.1, we had to make a choice at several points in the derivation, and we did
so based on some ad hoc considerations that were specific for the grammar at hand:
sometimes we looked at the next symbol in the sentence, and there were also some
points where we had to look further ahead, to make sure that there were no more
as coming. In the example, the choices were easy, because all the right-hand sides
start with a terminal symbol. In general, however, finding the correct choice is much
more difficult. The right-hand sides could for example equally well have started with
a non-terminal symbol that again has right-hand sides starting with a non-terminal,
etc.

In Chapter 8 we will see that many grammars still allow us to decide which right-
hand side to choose, given the next symbol in the sentence. In this chapter, however,
we will focus on top-down parsing methods that work for a larger class of grammars.
Rather than trying to pick a choice based on ad hoc considerations, we would like to
guide the automaton through all the possibilities. In Chapter 3 we saw that there are
in general two methods for solving problems in which there are several alternatives in
well-determined points: depth-first search and breadth-first search. We shall now see
how we can make the machinery operate for both search methods. Since the number
of actions involved can be exponential in the size of the input, even a small example
can get quite big. To make things even more interesting, we will use the inherently
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ambiguous language of Figure 3.4, whose grammar is here repeated in Figure 6.6,
and we will use aabe as test input.

Ss —> AB | DC
A - a | aa
B — bc | bBc
D — ab | aDb
¢ —- ¢ | cC

Fig. 6.6. A more complicated example grammar

6.3 Breadth-First Top-Down Parsing

The breadth-first solution to the top-down parsing problem is to maintain a list of
all possible predictions. Each of these predictions is then processed as described in
Section 6.2 above, that is, if there is a non-terminal on top, the prediction stack is
replaced by several new prediction stacks, as many as there are choices for this non-
terminal. In each of these new prediction stacks, the top non-terminal is replaced by
the corresponding choice. This prediction step is repeated for all prediction stacks it
applies to (including the new ones), until all prediction stacks have a terminal on top.

For each of the prediction stacks we match the terminal in front with the current
input symbol, and strike out all prediction stacks that do not match. If there are no
prediction stacks left, the sentence does not belong to the language. So instead of
one prediction (stack, analysis stack) pair, our automaton now maintains a list of
prediction (stack, analysis stack) pairs, one for each possible choice, as depicted in
Figure 6.7.

matched input | rest of input

analysis] | prediction]

analysis2 | prediction2

Fig. 6.7. An instantaneous description of our extended automaton

The method is suitable for on-line parsing, because it processes the input from
left to right. Any parsing method that processes its input from left to right and results
in a leftmost derivation is called an LL parsing method. The first L stands for Left to
right, and the second L for Leftmost derivation.

Now we almost know how to write a parser along these lines, but there is one
detail that we have not properly dealt with yet: termination. Does the input sentence
belong to the language defined by the grammar when, ultimately, we have an empty
prediction stack? Only when the input is exhausted! To avoid this extra check, and to
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avoid problems about what to do when we arrive at the end of sentence but have not
finished parsing yet, we introduce a special so-called end marker #. This end marker
is appended both to the end of the sentence and to the end of the prediction, so when
both copies match we know that the prediction has been matched by the input and

the parsing has succeeded.

(a)

[aabc#

| s#

(c)

\aabc#

S1D
S1D;
S)A|
S)Ay

abC#
aDbC#
aB#
aAB#

(e)

a

[abc#

S;Dja
S1DraDq
S1DyaD)
S>AjaB)
S>A1aB)
SpArad
SrAraA)

bC#
abbC#
aDbbC#
be#
bBc#
aB#
aAB#

(g)

aa

\bc#

Si1DyaDja
S1DyaDjyaD;
S1DraDyaD)
S,AraAaB;
S)AraA|aB)
SrAralAjal;
SyAraAjral,

bbc#
abbbC#
aDbbbC#
be#
bBc#
aB#
aAB#

(i)

aab

[c#

S1DpaDjab
S,A,aAjaB1b
S)AjaA|aBybB;
S)AyaAaB)bB;

bC#
c#
bec#
bBcc#

(b)

(d)

()

(h)

()

[aabc#

S
S

DC#
AB#

‘abc#

SiDja
S1Dra
SrAja
S)Ara

bC#
DbC#
B#
AB#

aa

[bc#

S;DraDja
SiDraDra
SrAjaAja
SrAraAjra

bbC#
DbbC#
B#
AB#

aab

‘c#

S|DraDjab
S,AraAjaB|b
S,AraAaByb

bC#
c#
Be#

aabc

[ #

SoAraA|aB|bc

| #

Fig. 6.8. The breadth-first parsing of the sentence aabc
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6.3.1 An Example

Figure 6.8 presents a complete breadth-first parsing of the sentence aabe. At first
there is only one prediction stack: it contains the start symbol and the end marker;
no symbols have been accepted yet (frame a). The step leading to () is a predict
step; there are two possible right-hand sides, so we obtain two prediction stacks.
The difference of the prediction stacks is also reflected in the analysis stacks, where
the different suffixes of S represent the different right-hand sides predicted. Another
predict step with multiple right-hand sides leads to (c). Now all prediction stacks
have a terminal on top; all happen to match, resulting in (d). Next, we again have
some predictions with a non-terminal in front, so another predict step leads us to (e).
The next step is a match step, and fortunately, some matches fail; these are dropped
as they can never lead to a successful parse. From (f) to (g) is again a predict step.
Another match in which again some matches fail leads us to (). A further prediction
results in (7) and then a match brings us finally to (j), leading to a successful parse
with the end markers matching.
The analysis is

S)AraAaB bc#
For now, we do not need the terminals in the analysis; discarding them gives
S2A2A 1B

This means that we get a leftmost derivation by first applying rule S,, then rule A;,
etc., all the time replacing the leftmost non-terminal. Check:

S — AB — aAB — aaB —> aabc

The breadth-first method described here was first presented by Greibach [7].
However, in that presentation, grammars are first transformed into Greibach Normal
Form, and the steps taken are like the ones our initial pushdown automaton makes.
The predict and match steps are combined.

6.3.2 A Counterexample: Left Recursion

The method discussed above clearly works for this grammar, and the question arises
whether it works for all context-free grammars. One would think it does, because all
possibilities are systematically tried, for all non-terminals, in any occurring predic-
tion. Unfortunately, this reasoning has a serious flaw, which is demonstrated by the
following example: let us see if the sentence ab belongs to the language defined by
the simple grammar

S — Sb | a

Our automaton starts off in the following state:

\ ab#
| s#
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As we have a non-terminal at the beginning of the prediction, we use a predict step,
resulting in:

\ ab#
S| | Sb#
S) | a#

As one prediction again starts with a non-terminal, we predict again:

\ ab#
S1S| | Sbb#
S1S; | ab#
S, | a#

By now, it is clear what is happening: we seem to have ended up in an infinite
process, leading us nowhere. The reason for this is that we keep trying the S—Sb
rule without ever coming to a state where a match can be attempted. This problem can
occur whenever there is a non-terminal that derives an infinite sequence of sentential
forms, all starting with a non-terminal, so no matches can take place. As all these
sentential forms in this infinite sequence start with a non-terminal, and the number
of non-terminals is finite, there is at least one non-terminal A occurring more than
once at the start of those sentential forms. So we have: A — --- — Ad. A non-
terminal that derives a sentential form starting with itself is called left-recursive.

Left recursion comes in several kinds: we speak of immediate left recursion when
there is a grammar rule A — Aa., like in the rule S—8b; we speak of indirect left
recursion when the recursion goes through other rules, for example A — Bo,, B — Ap.
Both these forms of left recursion can be concealed by e-producing non-terminals;
this causes hidden left recursion and hidden indirect left recursion, respectively. For
example in the grammar

ABc
cd
ABf
Se
€

P AW wWn
EERR

the non-terminals S, B, and C are all left-recursive. Grammars with left-recursive
non-terminals are called left-recursive as well.

If a grammar has no e-rules and no loops, we could still use our parsing scheme if
we use one extra step: if a prediction stack has more symbols than the unmatched part
of the input sentence, it can never derive the sentence (every non-terminal derives
at least one symbol), so it can be dropped. However, this little trick has one big
disadvantage: it requires us to know the length of the input sentence in advance, so
the method no longer is suitable for on-line parsing. Fortunately, left recursion can
be eliminated: given a left-recursive grammar, we can transform it into a grammar
without left-recursive non-terminals that defines the same language. As left recursion
poses a major problem for any top-down parsing method, we will now discuss this
grammar transformation.
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6.4 Eliminating Left Recursion

We will first discuss the elimination of immediate left recursion. We will assume that
e-rules and unit rules already have been eliminated (see Sections 4.2.3.1 and 4.2.3.2).
Now, let A be a left-recursive rule, and

A — Aoy |- |Aoy [Bi] - | Bm

be all the rules for A. None of the ¢; are equal to €, or we would have arule A — A,
a unit rule. None of the [3; are equal to € either, or we would have an e-rule. The
sentential forms generated by A using only the A — Aoy, rules all have the form

AOLk1 Oy * Otkj

and as soon as one of the A — B; rules is used, the sentential form no longer has an
A in front. It has the following form:

Bia‘kl akz e a‘kj

for some i, and some ki, ..., k;, where j could be 0. These same sentential forms are
generated by the following set of rules:
Ahead - Bl | | Bm
Awit — o | - oy

Atails - Alail Atuils | €
A —  Apead Awils

or, without re-introducing e-rules,

Ahead — Bl | | Bm
Atail — 0 ‘ e | (o
Agits  — Ail Atails | Ayqil
A —  Apead Auails ‘ Apead

where Apeaq, Asail, and Az are newly introduced non-terminals. None of the o; is €,
S0 A, does not derive €, so Ay, is not left-recursive. A could still be left-recursive,
but it is not immediately left-recursive, because none of the [3; start with an A. They
could, however, derive a sentential form starting with an A.

In general, eliminating indirect left recursion is more complicated. The idea is
that first the non-terminals are numbered, say A1, As, ..., A,. Now, for a left-recursive
non-terminal A there is a derivation

A — Bo — -+ — Cy — Ad

with all the time a non-terminal at the left of the sentential form, and repeatedly
replacing this non-terminal using one of its right-hand sides. All these non-terminals

have a number associated with them, say iy, i, . .., iy, and in the derivation we get the
following sequence of numbers: iy, i, ..., iy, i1. Now, if we did not have any rules
A; — Ajorwith j <, this would be impossible, because iy < i < -+ < iy <

is impossible.
The idea now is to eliminate all rules of this form. We start with A;. For A,
the only rules to eliminate are the immediately left-recursive ones, and we already
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have seen how to do just that. Next, it is A,’s turn. Each production rule of the form
A> — Ajais replaced by the production rules

Ay — oo - | o0
where
Al — oy | |(xm

are the Aj-rules. This cannot introduce new rules of the form Ay — A7y because we
have just eliminated A, ’s left-recursive rules, and the o;’s are not equal to €. Next, we
eliminate the immediate left-recursive rules of A,. This finishes the work we have to
do for A,. Likewise, we deal with A3 through A,,, in this order, always first replacing
rules A; — AyY, then rules A; — A9, etc. We have to obey this ordering because
for example replacing a A; — A0 rule could introduce a A; — AsYy rule, but not a
A; — Ajarule.

6.5 Depth-First (Backtracking) Parsers

The breadth-first method presented in the previous section has the disadvantage that
it uses a great deal of memory. The depth-first method also has a disadvantage: in its
general form it is not suitable for on-line parsing. However, there are many applica-
tions where parsing does not have to be done on-line, and then the depth-first method
is advantageous since it does not need much memory.

In the depth-first method, when we are faced with a number of possibilities, we
choose one and leave the other possibilities for later. First, we fully examine the
consequences of the choice we just made. If this choice turns out to be a failure (or
even a success, but we want all solutions), we roll back our actions until the present
point and continue with the other possibilities.

Let us see how this search technique applies to top-down parsing. Our depth-first
parser follows the same steps as our breadth-first parser, until it encounters a choice:
a non-terminal that has more than one right-hand side lies on top of the prediction
stack. Now, instead of creating a new analysis stack/prediction stack pair, it chooses
the first right-hand side. This is reflected on the analysis stack by the appearance of
the non-terminal involved, with suffix 1, exactly as it was in our breadth-first parser.
This time however, the analysis stack is not only used for remembering the parse, but
also for backtracking.

The parser continues in this way, until a match fails, or the end markers match.
If the prediction stack is empty, we have found a parse, which is represented by the
analysis stack; if a match fails, the parser will backtrack. This backtracking consists
of the following steps: first, any terminal symbols at the end of the analysis stack
are popped from this stack, and pushed back on top of the prediction stack. Also,
these symbols are removed from the matched input and added to the beginning of
the rest of the input. This is the reversal of the “match” steps. So backtracking over a
terminal is done by moving the vertical line backwards, as is demonstrated in Figure
6.9. Then there are two possibilities: if the analysis stack is empty, there are no
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ayaz - ai-1 Gi|Qiy) o an # ayay - aji—1|ai iy - an #
o a; [3# o a; B#
(eY] (2)

Fig. 6.9. Backtracking over a terminal

other possibilities to try, and the parsing stops; otherwise, there is a non-terminal
on top of the analysis stack, and the top of the prediction stack corresponds to a
right-hand side of this non-terminal. The choice of this right-hand side just resulted
in a failed match. In this case we pop the non-terminal from the analysis stack and
replace the right-hand side part in the prediction stack with this non-terminal. This
is the reversal of a prediction step, as demonstrated in Figure 6.10. Next there are

apap -+ ai|aipy - an # apap -+ ai|aipy - an #
o Ag |y B# oA B#
[S)) 2)

Fig. 6.10. Backtracking over the choice for the k-th rule for A, A — v

again two possibilities: if this was the last right-hand side of this non-terminal, we
have already tried its right-hand sides and have to backtrack further; if not, we start
parsing again, first using a predict step that replaces the non-terminal with its next
right-hand side.

Now let us try to parse the sentence aabe, this time using the backtracking
parser. Figure 6.11 presents the parsing process step by step; the backtracking steps
are marked with a B. The example demonstrates another disadvantage of the back-
tracking method: it can make wrong choices and find out about this only much later.

As presented here, the parsing stops when a parsing is found. If we want to find
all parsings, we should not stop when the end markers match. We can continue by
backtracking just as if we had not found a successful parse, and record the analysis
stack (which represents the parse) every time that the end markers match. Ultimately,
we will end with an empty analysis part, indicating that we have exhausted all anal-
ysis possibilities, and the parsing stops.

6.6 Recursive Descent

In the previous sections, we have seen several automata at work, using a grammar
to decide the parsing steps while processing the input sentence. Now this is just
another way of stating that these automata use a grammar as a program. Looking at
a grammar as a program for a parsing machine is not as far-fetched as it may seem.
After all, a grammar is a prescription for deriving sentences of the language that
the grammar describes, and what we are doing in top-down parsing is rederiving a
sentence from the grammar. This only differs from the classic view of a grammar as a
generating device in that we are now trying to rederive a particular sentence, not just
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aabc# aabc# aabc#
— —
S# S| |DC# S|D; |abC#
(1 (@] 3)
a|abc# B aabc# B aabc#
— —
SiDja|bC# S|D; |abC# S| |DC#
) 5 (6)
aabc# a|abc# a|abc#
— —
SD, |aDbC# S;Dra |DbC# S|DyaD; |abbC#
(@) ®) )
aa|bc# aab|c# B aa|bc#
— —
S;DraDja|bbC# S|DyaDab |bC# S|DyaD a|bbC#
(10) an (12)
a|abc# B a|abc# a|abc#
— —
S|DyaD; |abbC# S|Dya|D|bC# S|DyaD; |aDbbC#
(13) (14) (15)
aa|bc# aa|bc# B aa|bc#
— —
S|DyaDa|DbbC# S|DraD;aD; [abbbC# S|DraDya|D bbC#
(16) (17) (18)
aa|bc# B aa|bc# B a|abc#
— —
S|DraD;aD; |aDbbbC# S|DraDya |DrbbC# S|DyaD; |aD,bbC#
(19) (20) 1)
a|abc# B aabc# B aabc#
— —
S|Dya|DrbC# S|D; |aDybC# S| |DyC#
(22) (23) (24)
aabc# aabc# aabc#
— —
Si# S, |AB# S)A| |aB#
(25) (26) @7
a|abc# a|abc# B a|abc#
— —
SrAja|B# SpA|aBj |bc# S)Aja|B#
(28) (29) (30)
a|abc# B a|abc# B aabc#
— —
S)A1aB; |bBc# SoAja|By# SHA| |aBo#
(31 (32) (33)
aabc# aabc# a|abc#
— —
So|ABy# SHA, |aAB# S>Ara|AB#
(34) 35) (36)
alabc# aa|bc# aa|bc#
— —
S)AraA | |aB# S)AraA a|B# S)AraA aB; |bc#
37) (38) (39)
aab|c# aabc |#
S)AraA aB b|c# S)AraA aB bc|#

(40)

Fig. 6.11. Parsing the sentence aabc

a1
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any sentence. Seen in this way, grammars are programs, written in a programming
language with a declarative style — that is, it defines the result but not the steps
needed to obtain that result.

If we want to write a top-down parser for a given context-free grammar there
are two options. The first is to write a program that emulates one of the automata
described in the previous sections. This program can then be fed a grammar and
an input sentence. This is a perfectly sound approach and is easy to program. The
difficulty comes when the parser must perform some other actions as parts of the
input are recognized. For example, a compiler must build a symbol table when it
processes a declaration sequence. This, and efficiency considerations lead to the sec-
ond option: writing a special purpose parser for the given grammar. Many of such
special-purpose parsers have been written, and most of them use an implementa-
tion technique called recursive descent. We will assume that the reader has some
programming experience, and knows about procedures and recursion. If not, this
section can be skipped. It does not describe a new parsing method, but just an im-
plementation technique that is often used in hand-written parsers and also in some
machine-generated parsers.

6.6.1 A Naive Approach

As a first approach, we regard a grammar rule as a procedure for recognizing its
left-hand side. A rule like

S — aB | ba

is regarded as a procedure to recognize an S. This procedure then states something
like the following:

S succeeds if

a succeeds and then B succeeds
or else

b succeeds and then A succeeds

This does not differ much from the grammar rule, but it does not look like a piece of
program either. Like a cookbook recipe, which usually does not tell us that we must
peel the potatoes, let alone how to do that, the procedure is incomplete.

There are several bits of information that we must maintain when carrying out
such a procedure. First, there is the notion of a “current position” in the rule. This
current position indicates what must be tried next. When we implement rules as
procedures, this current position is maintained automatically, by the program counter,
which tells us where we are within a procedure. Next, there is the input sentence
itself. When implementing a backtracking parser, we usually keep the input sentence
in a global array, with one element for each symbol in the sentence. The array must
be global, because it contains information that must be accessible equally easily from
all procedures.

Then there is the notion of a current position in the input sentence. When the
current position in the rule indicates a terminal symbol, and this symbol corresponds
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to the symbol at the current position in the input sentence, both current positions will
be advanced one position. The current position in the input sentence is also global
information. We will therefore maintain this position in a global variable. Also, when
starting a rule we must remember the current position in the input sentence, because
we need it for the “or else” clauses. These must all be started at the same position
in the input sentence. For example, starting with the rule for S of the grammar in
Figure 6.1, suppose that the a matches the symbol at the current position of the input
sentence. The current position is advanced and then B is tried. For B, we have a rule
similar to that of S. Now suppose that B fails. We then have to try the next choice for
S, and back up the position in the input sentence to what it was when we started the
rule for S. This is backtracking, just as we have seen it earlier.

All this tells us how to deal with the procedure for one rule. However, usually
we are dealing with a grammar that has more than one non-terminal, so there will
be more than one rule. When we arrive at a non-terminal in a procedure for a rule,
we have to call the procedure for that non-terminal, and, if it succeeds, return to the
current invocation and continue there. We achieve this automatically by using the
procedure-call mechanism of the implementation language.

Another detail that we have not covered yet is that we have to remember the
grammar rules that we use. If we do not remember them, we will not know afterwards
how the sentence was derived. Therefore we note them in a separate list, the “Parse
list”, striking them out when they fail. Each procedure must keep its own copy of the
index in this list, again because we need it for the “or else ” clauses: if a choice fails,
all choices that have been made after the choice now failing must be discarded.

And the last detail to be filled in concerns the way the parser is started: by calling
the procedure for the start symbol. When that procedure succeeds and the next sym-
bol in the input is the end marker, the grammar rules left in the Parse list represent a
leftmost derivation of the sentence.

Now let us see how a parser, as described above, works for an example. Let us
consider again the grammar of Figure 6.6, and input sentence abc. We start with
a call of S followed by a check for #, the input extended with #, and a Parse list
consisting of just a node for S.

[ Active calls | Sentence || Parse list |
[1: es# | eabc# [ 1:8 \

Our administration is divided into three parts. The “Active calls” part shows the
active procedure calls, with a dot (e) indicating the current position within each call.
The bottom rule in this part is the currently active procedure. The “Sentence” part
indicates the sentence, including a position marker indicating the current position in
the sentence. The “Parse list” will be used to remember the rules that we use (not
only the currently active ones). The entries in this list are numbered, and each entry
in the “Active calls” part also contains its index in the Parse list. As we shall see later,
this is needed to back up after having taken a wrong choice.

Initially there is only one possibility: the current position in the active call indi-
cates that we must invoke the procedure for S, so let us do so:
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Active calls | Sentence || Parse list

1: Se# eabc# || 1:8
2: S — eDC | AB| eabc# ||2:S — DC

Notice that we have advanced the position in the call of S. It now indicates where we
have to continue when we are finished with S: the dot represents the return address.
Now we try the first alternative for S. There is a choice here, so the current position
in the input sentence is saved. We have not made this explicit in the pictures, because
this position is already present in the “Sentence” part of the entry that invoked S.

’ Active calls \ Sentence H Parse list

1: Se# eabc# || 1:S

2: S — DeC | AB | eabc# ||2:S — DC
3: D — eab | aDb | eabc# || 3:D — ab

Now the first choice for D is tried. The a succeeds, and next the b also succeeds, so
we get:

’ Active calls \ Sentence H Parse list

1: Se# eabc# 1:s

2: S — DeC | AB | eabc# ||2:S — DC
3: D — abe | aDb | abec# || 3:D — ab

Now we are at the end of a choice for D. This means that the procedure for D succeeds
and returns. We remove the entry from the list of active calls, after updating the
current positions in the entry above. Next, it is C’s turn to be called:

’ Active calls \ Sentence H Parse list

1: Se# eabc# || 1:8

2: S — DCe | AB| abec# |[2:S — DC
4. C — ec | cC | abec# ||3:D — ab
4:C —- ¢

Now the e succeeds, so the C succeeds, and then the S also succeeds:

’ Active calls \ Sentence H Parse list

1: Se# abce# || 1:8

2:8 — DC
3:D - ab
4:.C = ¢

Now the #s match, so we have found a parsing and the Parse list part represents a
leftmost derivation of the sentence:

S — DC — abC — abc

This method is called recursive descent, “descent” because it operates top-down,
and “recursive” because each non-terminal is implemented as a procedure that can
directly or indirectly (through other procedures) invoke itself. It should be stressed
that “recursive descent” is merely an implementation issue, albeit an important one.
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It should also be stressed that the parser described above is a backtracking parser,
independent of the implementation method used. Backtracking is a property of the
parsing method, not of the implementation.

The backtracking method developed above is esthetically pleasing, because we
in fact use the grammar itself as a program; we can actually transform the grammar
rules into procedures mechanically, as we shall see below. There is only one problem:
the recursive descent method, as described above, does not always work! We already
know that it does not work for left-recursive grammars, but the problem is worse
than that. For example, aabc and abece are sentences that are not recognized, but
should be. Parsing of the aabe sentence gets stuck after the first a, and parsing of
the abecce sentence gets stuck after the first ¢. Yet, aabe can be derived as follows:

S — AB —> aAB —> aaB —> aabc
and abce can be derived with
S — DC — abC — abcC — abcc

So let us examine why our method fails. A little investigation shows that we
never try the A—>aA choice when parsing aabe, because the A—>a choice succeeds.
Likewise we never try C—cD when parsing abcc, because C—c succeeds. Such
a problem arises whenever more than one right-hand side can succeed, and this is
the case whenever a right-hand side can derive a prefix of a string derivable from
another right-hand side of the same non-terminal. The method developed so far is
too optimistic, in that it assumes that if a choice succeeds, it must be the right choice.
It does not allow us to backtrack over such a choice, when it was the wrong one. This
is a particularly serious problem if the grammar has e-rules, because e-rules always
succeed. Another consequence of being unable to backtrack over a succeeding choice
is that it does not allow us to get all parses when there is more than one (this is
possible for ambiguous grammars).

Improvement is certainly needed here. Our criterion for determining whether a
choice is the right one clearly is wrong. Looking back at the backtracking parser
of the beginning of this section, we see that that parser does not have this problem,
because it does not evaluate choices independently of their context. One can only
decide that a choice is the right one if taking it results in a successful parse; even if
the choice ultimately succeeds, we have to try the other choices as well if we want all
parses. In the next section, we will develop a recursive-descent parser which solves
all the problems mentioned above.

Meanwhile, the method above only works for grammars that are prefix-free. A
non-terminal A is prefix-free if it does not produce two different strings x and y such
that one is a prefix of the other. And a grammar is prefix-free if all its non-terminals
are prefix-free. For the above algorithm this means that an attempt to recognize A
in a given position in the input string can never succeed in more than one way, so if
the first recognition is rejected later on, there is no need to go back and try another
recognition because there will not be one.
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6.6.2 Exhaustive Backtracking Recursive Descent

In the previous section we saw that we have to be careful not to accept a choice too
early; it can only be accepted when it leads to a successful parse. Now this demand
is difficult to express in a recursive-descent parser; how do we obtain a procedure
that tells us whether a choice leads to a successful parse? In principle there are in-
finitely many of these, one for each sentential form (the prediction) that must derive
the rest of the input, but we just cannot write them all. However, at any point during
the parsing process we are dealing with only one such sentential form: the current
prediction, so we could try to build a parsing procedure for this sentential form dy-
namically, during parsing. Some programming languages offer a useful facility for
this purpose: procedure parameters. With procedure parameters, a procedure can ac-
cept another procedure (or even the same one) as a parameter and call it, or pass it
on to another procedure.

Let us see how we can use procedure parameters to write a parsing procedure for
a symbol X. This procedure for X is passed a procedure fail that parses the rest of the
sentence, the part that follows the X. Such procedures are called continuations, since
they embody the continuation of the work to be done. So a call X (tail) will parse
the entire input by first parsing X and then calling fail to parse the rest. This is the
approach taken for all non-terminals, and, for the time being, for terminals as well.

The parsing procedure for a terminal symbol a is easy: it tries to match the current
input symbol with a. If it succeeds, it advances the input position, and calls the tail
parameter; then, when fail returns, it restores the input position and returns. If it fails
it just returns. So the abstract code for a is

procedure a(tail):

begin if text[tpl='a’ then begin tp:=tp+l; tail(); tp:=tp-1 end end;
where the input is in an array text and the input position in the variable tp.

The parsing procedure for a non-terminal A is more complicated. The simplest
case is A — €, which is implemented as a call to fail. The next simple case is A —
X, where X is either a terminal or a non-terminal symbol. To deal with this case,
we must remember that we assume that we have a parsing procedure for X, so the
implementation of this case consists of a call to X, with the fail parameter.

The next case is A — XY, with X and Y symbols. The procedure for X expects a
procedure for “what comes after the X as parameter. Here this parameter procedure
is built using the Y and the tail procedures: we create a new procedure out of these
two. This, by itself, is a simple procedure: it calls Y, with fail as a parameter. If we
call this procedure Y;,;;, we can implement A by calling X with Y, as parameter. So
the abstract code for the rule A — XY is

procedure A (tail):

begin

procedure Y : begin Y (tail) end;
X (Yiail)

end;

And finally, if the right-hand side contains more than two symbols, this technique
has to be repeated: for arule A — X X - - - X,, we create a procedure for X5 - -- X,, and
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tail using a procedure for X3 - - - X, and tail, and so on. So the abstract code for a rule
A—X1Xo---X, 18

procedure A (tail):
begin
procedure Xpui: begin X, (tail) end;

procedure X, ---X,nir: begin Xp (X3---Xyil) end;
X1 (X2 Xntail)
end;

Here X5 - - Xpuil, X3+ Xyuil, etc., are just names of new procedures. We see the
prediction stack at the start of procedure X,, is represented by and encoded in the
sequence of calls of X1, X>--- X),, and tail.

Finally, if we have a non-terminal with n alternatives, that is, we have A —
o |- |o,, the parsing procedure for A has n consecutive code segments, one for
each alternative, according to the above abstract code. They all call tail in their in-
nermost procedures.

Applying this technique to all grammar rules results in a parser, except that we
do not have a starting point yet. This is easily obtained: we just call the procedure for
the start symbol, with the procedure for recognizing the end marker as a parameter.

This end-marker procedure is different from the others, because this is the proce-
dure where we finally find out whether a parsing attempt succeeds. It tests whether
we have reached the end of the input and if so, reports that we have found a parsing;
it has no parameters, and so does not call any tail. Its abstract code is

procedure end marker:
begin if at end of input then report parsing end;

The abstract code for the rule A — X1 X5 - - - X, declares the auxiliary procedures
X5 -+ Xutail to Xpail @s local procedures to that for A. This is necessary because fail
must be accessible from X, and the only scope from which tail is accessible is
inside the procedure for A. So to use this coding technique in practice we need a
programming language that allows local procedures and allows them to be passed
as parameters; unfortunately this rules out almost all present-day programming lan-
guages. The only reasonable possibilities are GNU C and the functional languages.
GNU C is a widely available extension of C, and is used in the code below; parser
writing in functional languages is treated briefly in Section 17.4.2. The technique
can also be used in languages without local procedures, but then some trickery is
required; see Problem 6.4.

Listings 6.13 and 6.14 present a fully backtracking recursive-descent parser for
the grammar of Figure 6.6, written in GNU C. The program has a mechanism to
remember the rules used (the procedures pushrule () and poprule () in Listing 6.14),
so the rules can be printed for each successful parse. We see that, for example, the
rule B—bBc corresponds to the code

static void c_t(void) { c(tail); }
static void Bc_t(void) { B(c_t); }
pushrule ("B -> bBc"); b(Bc_t); poprule();
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We have also used GNU C’s facility to mix declarations and statements.
Figure 6.12 presents a sample session with this program. Note that no error mes-

> aabc
Derivation:
S -> AB
A -> aA
A -> a
B -> bc
> abcc
Derivation:
S -> DC
D -> ab
C -> cC
C ->c
> abc
Derivation:
S -> DC
D -> ab
cC->c
Derivation:
S -> AB
A -> a
B -> bc
> abca

Fig. 6.12. A session with the program of Listing 6.13

sage is given for the incorrect input abca; the parser just finds zero parsings.

We see that we can perform recursive descent by interpreting the grammar, as
in Section 6.6.1, or by generating code and compiling it, as in Section 6.6.2. It is
sometimes useful to make the distinction; the first can then be called interpreted
recursive descent and the second compiled recursive descent.

6.6.3 Breadth-First Recursive Descent

Johnstone and Scott [36] present a different approach to exhaustive recursive descent,
called Generalized Recursive Descent Parsing (GRDP). Like the naive approach of
Section 6.6.1 it features a separate parsing procedure for each non-terminal. How-
ever, instead of returning as soon as a match is found, which was the pitfall causing
the naive approach to fail, the GRDP procedure for a non-terminal A keeps track of
all matches, and in the end returns the set of lengths of input segments that start at
the current position and match A. The returned set can be empty, in which case no
match was found.

The caller of such a procedure, which presumably is processing a right-hand-side
in which A occurs, must be prepared for this and process each of the lengths in turn
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static void a(void (*tail) (void)) /* recognize an ’‘a’ and call tail */

{ if (textltp] == ’a’) { tp++; tail(); --tp; } }
static void b(void (*tail) (void)) /* recognize a 'b’ and call tail */
{ if (text[tp] == 'b’) { tp++; tail(); --tp; } }
static void c(void (*tail) (void)) /* recognize a ‘c’ and call tail */
{ if (textltp]l == ’c’) { tp++; tail(); --tp; } }

static void A(void (*tail) (void)) /* recognize an ‘A’ and call tail */
{

pushrule("A -> a"); a(tail); poprule();

static void A _t(void) { A(tail); }

pushrule ("A -> aA"); a(A t); poprule();

static void B(void (*tail) (void)) /* recognize a 'B’ and call tail */

static void c¢_t(void) { c(tail); }

pushrule ("B -> bc"); b(c t); poprule();

static void Bc_t (void) { E(c_t); }

pushrule ("B -> bBc"); b(Bc_t); poprule();
}

static void D(void (*tail) (void)) /* recognize a 'D’ and call tail */

{

static void b_t(void) { b(tail); }
pushrule ("D -> ab"); a(b_t); poprule();
static void Db_t(void) { D(b t); }
pushrule ("D -> aDb"); a(Db _t); poprule();

}

static void C(void (*tail) (void)) /* recognize a 'C’ and call tail */
{

pushrule("C -> c"); c(tail); poprule();

static void C_t(void) { C(tail); }

pushrule ("C -> cC"); c(C_t); poprule();
}

static void S(void (*tail) (void)) /* recognize a 'S’ and call tail */

{

static void C_t(void) { C(tail); }

pushrule("S -> DC"); D(C t); poprule()

static void B t(void) { B(tail); }

pushrule("S -> AB"); A(B_t); poprule()
}
static void endmark (void) /* recognize end and report success */
{ if (text[tp] == '#') parsing found(); }

static void parser(void) { tp = plp = 0; S(endmark); }
int main(void) { while ( getline()) parser(); return 0; }

Fig. 6.13. A fully backtracking recursive-descent parser for the grammar of Figure 6.6
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#define MAXSIZE 100 /* some large value */
/* text handling */
char text [MAXSIZE]; /* input text */
int length; /* number of symbols in text */
int tp; /* index in text */
static int getline(void) {
int ch;
printf(">"); length = 0;
while ((ch = getchar()), ch >= 0 && ch != '\n’) {

text [length++] = ch;

)

text [length] = "#’; return ch == '\n’;

}

/* administration of rules used */

const char *parse list[MAXSIZE]; /* store of rules used */
int plp; /* index in parse list */
static void pushrule (const char *s) { parse list[plp++] = s; }

static void poprule(void) { --plp; }
static void parsing found (void) {

int i;
printf ("Derivation:\n");
for (1 = 0; 1 < plp; i++) printf(" $s\n", parse list[i]);

Fig. 6.14. Auxiliary code for the fully backtracking recursive-descent parser of Figure 6.13

when trying to match the rest of this right-hand-side. In the end, the caller of the
procedure for the start symbol should check that the length of the input is a member
of the returned set.

Given the grammar

Ss — A ab
A —> alhAa|ce

and the input string aaaaaaab, the call in S to the routine for A will return the
lengths 0, 2, 4, and 6, and only for length 6 will the routine for S be able to parse the
remaining ab. The events inside the routine for A are more complex. After matching
the first a, the routine calls itself, yielding the lengths 0, 2, 4, and 6. It tries these
lengths and for each length it tries to match the final a; this succeeds for 0, 2, and 4,
but not for 6. Together with the two matched as this yields the lengths 2, 4, and 6.
The alternative A—¢ supplies the length O, resulting in the length set { 0, 2, 4,6 } as
returned to S.

The fact that each procedure returns all possible matches prompted us to call this
method breadth-first, although the method also has a depth-first aspect, in that each
right-hand-side of a non-terminal is examined in-depth before the next right-hand-
side is examined.

The method is suitable for all non-left-recursive CF grammars and can be op-
timized to perform competitively with common-place parser generators for LL(1)
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grammars or non-left-recursive LR(1) grammars. The method is implemented in a
freely available parser generator; see Johnstone and Scott [363].

6.7 Definite Clause Grammars

In Sections 6.6.1 and 6.6.2 we have seen how to create parsers that retain much of
the original structure of the grammar. The programming language Prolog allows us
to take this one step further. We will first give a very short introduction to Prolog
and then explain how to create top-down parsers using it. For more information on
Prolog, see, for example, The Art of Prolog by Leon Sterling and Ehud Shapiro (MIT
Press).

6.7.1 Prolog

Prolog has its foundations in logic. The programmer declares some facts about ob-
jects and their relationships, and asks questions about these. The Prolog system uses
a built-in search and backtracking mechanism to answer the questions. For example,
we can tell the Prolog system about the fact that a table and a chair are pieces of
furniture by writing

furniture(table).
furniture (chair).

We can then ask if a bread is a piece of furniture:
| ?- furniture(bread).

and the answer will be “no”, but the answer to the question
| ?- furniture(table).

will be “yes”. Such a Prolog form that can succeed or fail is called a predicate and
when it is used as the start of a search it is called a goal.

We can also use variables, which can be either instantiated (have a value), or
uninstantiated; such variables are called logic variables. Logic variables are identi-
fied by names starting with a capital letter or an underscore (_). We can use them for
example as follows:

| ?- furniture(X).

This is asking for an instantiation of the logic variable X. The Prolog system will
search for a possible instantiation and respond:

X = table

We can then either stop by typing a RETURN, or continue searching by typing a
semicolon (and then a RETURN). In the latter case the Prolog system will search
for another instantiation of X. The process of finding instantiations of logic variables
that match the known facts is called inference.

Not every fact is as simple as the one in the example above. For example, a Prolog
clause that tells us something about antique furniture is the following:
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antique furniture(Obj,Age) :- furniture(Obj), Age > 100.

Here we see a predicate which is the conjunction of two goals: an object Obj with
age Age is an antique piece of furniture if it is a piece of furniture and its age is more
than 100 years.

An important data structure in Prolog is the /ist, in which a arbitrary number of
data items are concatenated. The empty list is denoted by [1; [al is a list with
head a and tail [1; [a,b, c] is a list with head a and tail [b, ¢]. Another useful
data structure is the compound value, in which a fixed number of data items are
combined in a named entity. An example is dog (' Fido’ ,brown) . Data items in
data structures may be logic variables.

6.7.2 The DCG Format

Many Prolog systems allow us to specify grammars in a format that differs from the
usual Prolog clauses. Since Prolog clauses are sometimes called definite clauses, a
grammar in this format is called a Definite Clause Grammar, often abbreviated to
DCG. The DCG form of the grammar of Figure 6.6 is shown in Figure 6.15. There

sn --> dn, cn.
s n --> amn, bn.
an --> [al.

an --> [a]l, a n.

bn --> [b]l, [c].

bn --> [bl, bn, [c].
cn --> [c].

cn --> [c], ¢ n.

dn --> [a]l, [bl.

dn --> [al, d n, [b].

Fig. 6.15. The example grammar of Figure 6.6 in Definite Clause Grammar format

is a DCG predicate for each non-terminal and a DCG clause for each grammar rule.
Since predicate names have to start with lower case letters in Prolog, we have trans-
lated non-terminal names like S by predicate names like s_n, for “S-non-terminal”.
The terminal symbols appear as lists of one element.

The Prolog system translates these DCG rules into Prolog clauses. The idea is to
let each DCG rule for a non-terminal A correspond to a Prolog rule with two logic
arguments of type list, traditionally called Sentence and Remainder, such that
the rule

A_n(Sentence, Remainder):-

means that the character list Sentence is equal to whatever this rule for A produces
concatenated with the character list Remainder.

More in particular, the DCGruled_n-->[al, [b] . corresponds to the Prolog
clause
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d n(S,R) :- symbol(S,a,R;), symbol(R;,b,R).

where we have abbreviated Sentence to S and Remainder to R. The predicate
symbol () is defined as

symbol ([A|R],A,R).

This is a form of the Prolog predicate definition in which the condition lies in the
matching of the arguments only: the predicate symbol (S, a, R;) succeeds when S
can be split into two parts, A and R, such that A matches a and R matches Ry, in short
when there is an R; such that S=aR;. Likewise the predicate symbol (R;,b,R)
tries to find an R such that Rj=bR. Together they enforce that S=abR, which is
exactly what the DCG rule d_n-->[al], [b]l . means.

This technique can be extended to more than one intermediate logic variable, as,
for example, in the translation of the second DCG rule for d_n:

d n(S,R) :- symbol(S,a,R;), d n(R;,Ry), symbol(R,b,R).

Here the Prolog system will have to find instantiations of two logic variables, Ry and
Ry such that S=aR;, Rj=P (d_n) Ry, and Ry=bR, where P (d_n) is any terminal
production of d n. When we combine these equations we obtain the semantics of
d n(S,R) as described above: S=aP (d_n)DbR. (Most Prolog processors use a
much less readable format internally.)

6.7.3 Getting Parse Tree Information

The DCG program of Figure 6.15 is a recognizer rather than a parser, but logic vari-
ables make it easy to collect parse tree information as well. To this end, we supply
each non-terminal in the DCG program with a logic argument, the tree it has con-
structed. Nodes in the tree are conveniently represented as compound values, with the
entire rule (between apostrophes) as the name and the children as the components. So
anode for the rule S—AB with children X and Y is represented as * S—>AB’ (X, Y).
Tokens in right-hand sides do not produce parse trees, since they occur in the rule
name already.

Since the parse trees of the children of a non-terminal A are delivered by the
non-terminals of those children in the right-hand sides of the DCG rule for A, all
we have to do to obtain the correct parse tree to be delivered by A is to create a
compound value from the name of the rule and the parse trees of its children. The
result is shown in Figure 6.16. It relies heavily on Prolog’s ability to postpone the
instantiation of values until the sources for that instantiation are available.

6.7.4 Running Definite Clause Grammar Programs

The DCG program of Figure 6.16 can be loaded into a Prolog interpreter, after which
we can submit queries as described above. In composing these queries we should be
aware that the root of the grammar, S, corresponds to a DCG name s_n (T) where
T is the parse tree and to a Prolog predicate s n (T, S, R) where S is the sentence
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s n(’'S—=DC’ (T{,T)) --> d n(Ty), c n(T).
s n(’'S—AB’ (T,T2)) --> a n(T;), b n(Ty).
a n(’'A—a’) --> [al.

a n(’A—alA’ (Ty)) --> [al, a n(T).

b n(’'B—=bc’) --> [bl, [cl].

b n(’B—>bBc’ (T;)) --> [bl, b n(T;), [cl.
c n(’'C—c’) --> [ecl].

c n(’'C—=cC’ (Ty)) --> [c]l, ¢ n(Ty).

d n('D—ab’) --> [al, [b].

d n(’'D—>aDb’ (T})) --> [al, d n(Ty), [bl.

Fig. 6.16. The Definite Clause Grammar of Figure 6.16 with parse tree construction

and R is the remainder. The runs presented here were performed on C-Prolog version
L.5.

First we want the DCG program to generate some sentences, together with their
parse trees. We do so by passing two uninstantiated variables, S and T, to s_n, and
requesting the system to find three instantiations (user input has been underlined to
differentiate it from computer output):

?- s n(T,s, []).

|

T = S->DC(D->ab,C->c)

S = [a,b,c] ;

T = S->DC(D->ab,C->cC(C->c))

S = [a,b,c,c] ;

T = S->DC(D->ab,C->cC(C->cC(C->c)))
S = [a,b,c,c,c] .

yes

We see that the system will only generate sentences S starting with an a fol-
lowed by a b, and then followed by an ever increasing number of cs. The Pro-
log system uses a depth-first search mechanism, which is not suitable for sen-
tence generation (see Section 2.4, where we use a breadth-first method). The val-
ues of T show the corresponding parse trees; each has the rule S—DC as the top,
and the components describe its two children. It is important to note that S—DC
is used here as a name, so S—=DC (D—ab, C—cC (C—c) ) should be read as
’S->DC’ (‘D->ab’,’C->cC’ (" C->c’) ), which corresponds to the parse tree

Next we ask the system to recognize some sentences; we start with our example
from Section 6.6.1, abe:
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| ?- s n(T, [a,b,cl, ().

T = S->DC(D->ab,C->c) ;
T = S->AB(A->a,B->bc) ;
no

The full backtracking parser correctly parses the string but also supplies a second
parsing, missed by the naive backtracking parser. The third answer, no, indicates
that no further parsings are possible.

Finally we try the two input strings on which the naive parser of Section 6.6.1
failed, aabe and abcec:

| ?- s (T, [a,a,b,cl, ).

T = S->AB(A->aA(A->a),B->bc) ;
no

| - sn(la,b,c,cl, ).

T = S->DC(D-»ab,C->cC(C->c)) ;
no

Both input strings are handled correctly. They indeed involve applications of both
A—a and A—aaA in the first and of both C—c and C—cC in the second example.
These runs demonstrates that we can use Definite Clause Grammars quite well
for recognizing sentences, and to a lesser extent also for generating sentences.
Cohen and Hickey [26] discuss this and other applications of Prolog in parsers in
more detail.

6.8 Cancellation Parsing

We have pointed out repeatedly that top-down parsing cannot handle left recursion.
This problem is shared by other tasks one would like to perform recursively, for
example graph searching, where cycles in the graph can cause infinite loops. The
standard solution there is to keep a set B of nodes that one is already visiting and back
off when a node in B is about to be visited again. The set B (for “Busy”) represents
the subproblems already under examination, and starting to examine a subproblem
(with the same parameters) while already examining it would lead to an infinite loop.

6.8.1 Cancellation Sets

The idea of “busy” sets can be used to make DCG parsing of left-recursive grammars
possible (Nederhof [105]). Each Prolog predicate for a non-terminal A is given a
third logic argument, CancellationSet, in addition to the original Sentence
and Remainder. The cancellation set contains the names of the non-terminals that
are already being investigated left-recursively, and plays the role of the “busy” set in
graph handling. Using these sets results in cancellation parsing.

The first thing the rules for a non-terminal A do is to test whether A is in the can-
cellation set and back off if it is. This prevents looping on left recursion effectively,
but as a result the rules for A will no longer recognize any terminal production of A
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that involves left recursion. More precisely, they recognize only subtrees produced
by A in which A figures nowhere on the “left spine” except at the top. Such subtrees
must exist, or A produces nothing. So special measures must be taken to recognize
parse trees in which A does occur more than once on the left spine. (The left spine of
a tree is the sequence of nodes and arcs visited by starting at the top and following
the leftmost branch at each node. Left spines are discussed in more detail in Section
10.1.1.1.)

The solution to this problem is simple but ingenious: as soon as a subtree 7 with
A at the top is recognized, it is wrapped up to look like a newly defined terminal
symbol, A, and this terminal is pushed back into the input stream. In effect we scoop
up a terminal production of A from the input, reduced it to a node A, and leave it in
the input represented by the A. Now the rest of the parser has to be adapted to the
new situation. How this is done is explained in the next section.

6.8.2 The Transformation Scheme

We assume that the Prolog DCG system has the possibility to intersperse the DCG
rules with “normal” Prolog text by putting it between curly braces, and that the under-
lying Prolog system has a definition for a predicate member (E, L) which succeeds
when E is a member of the list L. The transformation scheme for a non-terminal A
to a set of DCG cancellation rules then consists of three patterns, one for rules of the
form A — Ba., one for rules of the form A — ¢, and one specific pattern to handle
the A:
A(C) --> {not member(A,C)}, B(A|C),
transformation of 0., untoken (bar (A)), A(C).
A(C) --> {not member(A,C)}, I[t1,
transformation of o0, untoken (bar (4)), A(C).
A(C) --> [bar(A)].

For the moment we assume that o is not empty; the complications with A — € are
treated in the next section.

This transformation scheme packs quite a few subtleties. The logic argument C is
the cancellation set and the goal not member (A, C) implements the test whether
A is already in the cancellation set. The transformation of the right-hand side follows
the CF-DCG conversion shown in Section 6.7.2, except that all calls of non-terminals
get a cancellation set as an argument. If the right-hand side starts with a non-terminal,
that non-terminal gets a cancellation set equal to the old one extended with A; all
other non-terminals get empty cancellation sets.

The DCG form untoken (bar (A) ) pushes back a copy of A into the input
stream. It works as follows: the Prolog predicate untoken is defined as

untoken (T, S, [T|S]) .

and the DCG processor will develop the DCG application untoken (a)
into the Prolog goal untoken (a,Sentence,Remainder). As a result,
a call of untoken(a,Sentence,Remainder) will set Remainder to
[a|Sentencel], thus prepending a to the rest of the input.
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At this point in the pattern for A (C) we have recognized a Ba. or a to., reduced
it and pushed it back as A; so in terms of input we have not made any progress and
still have an A to parse, since that is what the caller of A (C) expects. This parsing
process must be able to absorb the A from the input and incorporate it in the parse
tree. There are two candidates for this A: a left-recursive rule for A, and the caller
of A (C). In the first case a new A node will be constructed on the left spine; in the
second the left spine of A nodes ends here. The Prolog system must consider both
possibilities. This can be achieved by introducing a predicate A, which is defined
both as all left-recursive rules of A and as A. Also, to allow the new left-recursive
rules to be activated, A, must be called without the indication that A is already being
investigated. So the transformation scheme we have now is

Aj(C) --> {not member(A4,C)}, B(A|C),

transformation of 0., untoken (bar (A)), A,(C).
Ap(C) --> {not member(A4,C)}, B(A|C),

transformation of o., untoken (bar (A)), A,(C).
A, (C) --> {not member(A,C)}, I[1,

transformation of 0., untoken (bar (A)), A,(C).
Ar(C) --> A/ (C).
Ay (C) --> [bar(A)].

where A; stands for all left-recursive rules for A and A,, for all its non-left-recursive
ones.

As long as there is an A prepended to the input the only rules that can make
progress are those that can absorb the A. One candidate is A, (C) - ->A; (C) and the
other is the B in the first pattern. This B will usually be equal to A, but it need not be,
if A is indirectly left-recursive; in that case a call of B will eventually lead to a call
of an A;. If the B is actually an A, its replacement in the transformation must be able
to absorb an A, and must still be able to parse a non-left-recursive instance of A. So
we need yet another predicate here, A, defined by

Ap(C) --> A,(C).
Ap(C) --> [bar(A)].

The fog that is beginning to surround us can be dispelled by a simple observation:
we can add the non-left-recursive rules of A to A, and the left-recursive ones to Ay,
both without affecting the working of the parser, for the following reasons. The non-
left-recursive rules of A can never absorb the A, so adding them to A, can at most
cause failed calls; and calls to the left-recursive rules of A will be blocked by the
left-recursion check preceding the A,. So both A, and A, turn into a predicate A,
defined by

A (C) --> A(Q).
A;(C) --> [bar(A)].

In addition to simplifying the transformation scheme, this also removes the need to
determine which rules are left-recursive.

This simplification leaves only occurrences of A and A; in the transformation,
where the As can occur only in non-first position in right-hand sides. In those po-
sitions they can be replaced by A;s with impunity, since the only difference is that
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A, would accept a A, but As do not occur spontaneously in the input. So in the end
there are only A;s left in the transformation patterns, which means that they can be
renamed to A. This brings us to the transformation scheme at the beginning of the
section.

Figure 6.17 shows the resulting cancellation parser for the gram-
mar for simple arithmetic expressions of Figure 4.1. Notice that in

expr(C) --> {not member (expr,C)},
expr ([expr|Cl), ["+’]1, term([]),
{print (' expr->expr+term’), nl},
untoken (bar (expr) ), expr(C).
expr (C) --> {not member (expr,C)},
term([expr|Cl),
{print (’expr->term’), nl},
untoken (bar (expr) ), expr(C).
term(C) --> {not member (term,C)},
term([term|C]), ['x’], factor(I[l),
{print (’ term->termxfactor’), nl},
untoken (bar (term)), term(C).
term(C) --> {not member (term,C)},
factor ([term|C]),
{print (‘ term->factor’), nl},
untoken (bar (term)), term(C).
factor(C) --> {not member (factor,C)},
[il,
{print (’ factor->i’), nl},
untoken (bar (factor)), factor(C).
factor(C) --> {not member (factor,C)},
[“('1, expr(I[1), [")'],
{print (’ factor->(expr)’), nl},
untoken (bar (factor)), factor(C).

expr(C) --> [bar(expr)l].
term(C) --> [bar(term)].
factor(C) --> |[bar(factor)].

Fig. 6.17. Cancellation parser in DCG notation for the grammar of Figure 4.1

expr ([expr|Cl), [“+’], term(I[]1), the first expr is the name of
a DCG predicate and the second is just a constant, to be added to the cancellation
set.

Rather than building up the parse tree in a logic variable we produce it here
using print statements; since these are placed at the end of the recognition, the
tree is produced in bottom-up order. Running this DCG cancellation parser with
the query expr ([1, [i, " x",i,"+",1i,"x’,1i], [1) yields the following re-
versed rightmost derivation:
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factor->i
term->factor
factor->i
term->termxfactor
expr->term
factor->i
term->factor
factor->i
term->termxfactor
expr->expr+term

6.8.3 Cancellation Parsing with e-Rules

Recognizing left-corner subtrees first has introduced a bottom-up component in our
algorithm. We know that bottom-up techniques can have problems with e-rules, and
indeed, the naive transformation of a rule A — ¢,

A(C) --> {not member(A,C)}, untoken(bar(4)), A(C).
A(C) --> [bar(A)].

causes an infinite number of bar (A) tokens to be inserted in the input stream. As we
wrote in Section 3.4.3.2, a bottom-up parser “will continue to find empty productions
all over the place”.

The technical reason for this failure is that the simplification applied above does
not hold for €-rules. An e-rule is a non-left-recursive rule and although it cannot
absorb the A, it can succeed, and so provides a way for the A to stay in the input.
This immediately suggests a solution: block the recognition of empty productions
when there is already a barred token as first token of the rest of the input. To check
this condition, we need a predicate not barred, the Prolog form of which can be
defined as

not barred(S,S):- not(S = [bar(X)|T]).

It succeeds unless S can be decomposed in some barred head X and some tail T; note
that the eventual values of X and T are immaterial.

The technique is applied in the following DCG cancellation parser for the gram-
mar S—>Sa|e:

s n(C) --> {not member(s n,C)},
s_n([s_n|cl), [al,
untoken(bar(s n)), s n(C).

s n(C) --> {not member(s n,C)},
not barred,
untoken(bar(s n)), s n(C).

s n(C) --> [bar(s n)l.
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6.9 Conclusion

General directional top-down parsing is quite powerful, but has a severe problem
with left-recursive grammars. Although the recursive descent parsing method is ele-
gant, the naive version is wrong and exhaustive backtracking recursive descent pars-
ing requires some trickery.

Cancellation parsing allows for left-recursive grammars, and with some addi-
tional trickery will handle e-rules as well.

General directional top-down parsers can easily be written in languages with
good support for recursion, maintaining a close relationship between grammar and
program code.

Problems

Problem 6.1: Prove that the grammar of Figure 6.1 produces only sentences with
equal numbers of as and bs, and that it produces all such sentences.

Problem 6.2: Non-deterministic PDAs like the ones in Figures 6.3 and 6.4 look
somewhat like FSAs. Section 5.3.1 demonstrated how non-deterministic FSAs can be
made deterministic, using the subset algorithm, but the fact that some transitions in
PDAs stack more than one non-terminal prevents direct application of this technique.
However, some stack only one non-terminal, and these could be made deterministic,
resulting in sets of non-terminals on the prediction stack. Investigate this line of
thought and compare it to the ideas of Sections 10.1.3 and 10.2.4.

Problem 6.3: Research Project in Formal Languages: Hygiene in Pushdown
Automata: Find an algorithm that removes useless transitions from a given PDA.
Several definitions of “useless transition” are possible; two reasonable ones are: a
transition is useless if it cannot be used in any recognition of a correct input to the
PDA; and: a transition is useless if it need not be used in any recognition of a correct
input to the PDA. In both cases the removal of the transition does not affect the
language recognized by the PDA.

Problem 6.4: Design a way to express the fully backtracking recursive descent
parser from Figures 6.13 and 6.14 in an imperative or object-oriented language that
does not allow local procedure declarations, for example ANSI C.

Problem 6.5: For the grammar of Figure 6.6, write a GRDP parser that keeps
track of its actions so that it can produce parse trees, run it on the test input aabe and
compare the results with Figure 6.11. Also run it on the test input abe, and confirm
that it has two parses.

Problem 6.6: Project: The GRDP parser of Section 6.6.3 cannot handle left
recursion, but it seems reasonable that that can be remedied as follows. Upon calling
the routine for a non-terminal L we first suppress all left recursion; this gives us the
set of lengths of segments (if present) that match L non-recursively. Then we call the
routine for L again, now feeding it these lengths to use for the left-recursive call, so
it can collect more; etc. In the end no more new matches are found, and the collected
lengths can be returned. Turn this into a complete algorithm.
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Problem 6.7: Run the DCG grammar of Figure 6.16 on a Prolog system and
experiment with various correct and incorrect input.

Problem 6.8: (a) Modify the cancellation parser from Figure 6.17 to produce
the parse tree in a logic variable rather than through print statements. (b) Make
the grammar ambiguous by removing the precedence difference between + and x,
using the rule expr —expr [+ | x] expr, and experiment with it.



7

General Directional Bottom-Up Parsing

As explained in Section 3.2.2, directional bottom-up parsing is conceptually very
simple. At all times we are in the possession of a sentential form that derives from
the input text through a series of leftmost reductions. These leftmost reductions dur-
ing parsing correspond to rightmost productions that produced the input text: the
first leftmost reduction corresponds to the last rightmost production, the second cor-
responds to the one but last, etc.

There is a cut somewhere in this sentential form which separates the already
reduced part (on the left) from the yet unexamined part (on the right). See Figure 7.1.
The part on the left is called the “stack” and the part on the right “rest of input”. The

Stack Rest of input
—————————— B e e i
terminals .
Cut terminals
and

. only
non-terminals

|tg N te tg Ne Ny ta|t; £y €3
I T

partial parse
trees

Fig. 7.1. The structure of a bottom-up parse

latter contains terminal symbols only, since it is an unprocessed part of the original
sentence, while the stack contains a mixture of terminals and non-terminals, resulting
from recognized right-hand sides. We can complete the picture by keeping the partial
parse trees created by the reductions attached to their non-terminals. Now all the
terminal symbols of the original input are still there; the terminals in the stack are
one part of them, another part is semi-hidden in the partial parse trees and the rest
is untouched in the rest of the input. No information is lost, but structure has been
added. When the bottom-up parser has reached the situation where the rest of the
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input is empty and the stack contains only the start symbol, we have achieved a
parsing and the parse tree will be dangling from the start symbol. This view clearly
exposes the idea that parsing is nothing but structuring the input.

The cut between stack and rest of input is often drawn as a gap, for clarity and
since in actual implementations the two are often represented by quite different data
structures in the parser. Note that the stack part corresponds to the open part of the
sentential form when doing rightmost derivation, as discussed in Section 5.1.1.

Our non-deterministic bottom-up automaton can make only two moves: shift and
reduce; see Figures 7.2 and 7.3. During a shift, a (terminal) symbol is shifted from
the rest of input to the stack; t; is shifted in Figure 7.2. During a reduce move, a

tg Nf te tg NL Nb ta tz t3

A e

tg Nt te tyq NC Nb td tl t2 t3

AN

Fig. 7.2. A shift move in a bottom-up automaton

number of symbols from the right end of the stack, which form the right-hand side
of a rule for a non-terminal, are replaced by that non-terminal and are attached to
that non-terminal as the partial parse tree. NNy t, is reduced to R in Figure 7.3. We

|t:g Nr te td§NC Ny ta

A

|t:g N te td§R| |t1 ty t3

A

|t1 £ t3

reducing NcNptq to R

Fig. 7.3. A reduce move in a bottom-up automaton
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see that the original N.Npt, are still present inside the partial parse tree. There is,
in principle, no harm in performing the instructions backwards, an unshift and an
unreduce, although they would seem to move us away from our goal, which is to
obtain a parse tree. We shall see that we need them to do backtracking.

At any point in time the machine can either shift (if there is an input symbol left)
or not, or it can do one or more reductions, depending on how many right-hand sides
can be recognized. If it cannot do either, it will have to resort to the backtrack moves,
to find other possibilities. And if it cannot even do that, the parsing is finished, and
the machine has found all (zero or more) parses.

We see that a parent node in the parse tree is identified after all its children have
been identified: the parent R is not identified until each of its children N, Ny, and t,
have been recognized and put on the stack. This order of creating and visiting a tree
is called “post-order”.

7.1 Parsing by Searching

The only problem left is how to guide the automaton through all of the possibilities.
This is easily recognized as a search problem, which can be handled by a depth-first
or a breadth-first method. We shall now see how the machinery operates for both
search methods. Since the effects are exponential in size, even the smallest example
gets quite big and we shall use the unrealistic grammar of Figure 7.4. The test input
is aaaab.

1. s — ashb
2. 8 - S ab
3. 8 —- aaa

Fig. 7.4. A simple grammar for demonstration purposes

7.1.1 Depth-First (Backtracking) Parsing

Refer to Figure 7.5, where the gap for a shift is shown as | and that for an unshift
as |. At first the gap is to the left of the entire input (frame @) and shifting is the
only alternative; likewise with frame b and c. In frame d we have a choice, either to
shift, or to reduce using rule 3. We shift, but remember the possible reduction(s); the
rule numbers of these are shown as subscripts to the symbols in the stack. The same
happens in frame e. In frame f we have reached a position in which the shift fails, the
reduce fails (there are no right-hand sides b, ab, aab, aaab, or aaaab) and there
are no stored alternatives on the b. So we start backtracking by unshifting (g). Here
we find a stored alternative, “reduce by 3”, which we apply (%), deleting the index for
the stored alternative in the process. Now we can shift again (7). No more shifts are
possible, but a reduce by rule 1 gives us a parsing (j), indicated by a <. After having
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(a) [aaaab (k) asb] (s) sab]
/\
aasa aaa
(b)y alaaab
() s|b (1) salb
(¢) aalaab Vi i]
aasa aaa
(d) aaaz[ab
(m) aaazalb (u) Slab
(e) aaazas[b aaa
(n) aaaz|ab
(f) aaazazb] (v) aaalab
(0) Skab
() aaazazlb aaa (w) aalaab
(h) as[b (p) salb (x) alaaab
4&133 aaa
(y) laaaab
() asbi] (q) Saby]
aaza aaa
» 8] < (r)  s] <
ésx;\ Sab
N \
aaza aaa

Fig. 7.5. Stages for the depth-first parsing of aaaab

enjoyed our success we unreduce (k); note that frame k only differs from frame i in
that the stored alternative 1 has been consumed. Unshifting, unreducing and again
unshifting brings us to frame n where we find a stored alternative, “reduce by 3”.
After reducing (o) we can shift again, twice (p, g). A “reduce by 2” produces the
second parsing (r). The rest of the road is barren: unreduce, unshift, unshift, unreduce
(v) and three unshifts bring the automaton to a halt, with the input reconstructed (y).

7.1.2 Breadth-First (On-Line) Parsing

Breadth-first bottom-up parsing is simpler than depth-first, at the expense of a far
larger memory requirement. Since the input symbols will be brought in one by one
(each causing a shift, possibly followed by some reduces), our representation of a
partial parse will consist of the stack only, together with its attached partial parse
trees. We shall never need to do an unshift or unreduce. Refer to Figure 7.6, where
the gap is indicated by a (non-directional) |.

We start our solution set with only one empty stack (a/). Each parse step consists
of two phases. In phase one the next input symbol is appended to the right of all
stacks in the solution set; in phase two all stacks are examined and if they allow
one or more reductions, one or more copies are made of it, to which the reductions
are applied. This way we will never miss a solution. The first and second a are just
appended (b1, c1), but the third allows a reduction (d2). The fourth causes one more
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(al) |aaaab initial (fl) aaaab| shifted from e/
(bl) alaaab shifted from al f2) /Sib | shifted from e2
aaa
(cI) aalaab shifted from b/
(f3) asb] shifted from e3
(dl) aaalab shifted from ¢/
aaa
(d2) s]ab reduced from d/
1) 8| reduced from /2 <
aaa /
Sib
(el) aaaal|b shifted from d/ aaa
(e2) salb shifted from d2 f5) 8| reduced from f3 <
aaa\ aSl{
aaa
(e3) as|b reduced from e/

aaa

Fig. 7.6. Stages for the breadth-first parsing of aaaab

reduction (e3) and the fifth gives rise to two reductions, each of which produces a
parsing (f4 and f5).

7.1.3 A Combined Representation

The configurations of the depth-first parser can be combined into a single graph;
see Figure 7.7(a) where numbers indicate the order in which the various shifts and
reduces are performed. Shifts are represented by lines to the right and reduces by

S a S a
A 10 11 A 6 10
8 s 1 s
ol ! !
7—»5 = b 7_>s 5 b
I a 5 a 3 a 7 a 3 b 1 a 5 a 3 a 3 a 3 b

Fig. 7.7. The configurations of the parsers combined

upward arrows. Since a reduce often combines a number of symbols, the additional
symbols are brought in by arrows that start upwards from the symbols and then turn
right to reach the resulting non-terminal. These arrows constitute at the same time
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the partial parse tree for that non-terminal. Start symbols in the rightmost column
with partial parse trees that span the whole input head complete parse trees.

If we complete the stacks in the solution sets in our breadth-first parser by ap-
pending the rest of the input to them, we can also combine them into a graph, and,
what is more, into the same graph; only the action order as indicated by the numbers
is different, as shown in Figure 7.7(b). This is not surprising, since both represent
the total set of possible shifts and reduces: depth-first and breadth-first are just two
different ways to visit all nodes of this graph. Figure 7.7(b) was drawn in the same
form as Figure 7.7(a). If we had drawn the parts of the picture in the order in which
they are executed by the breadth-first search, many more lines would have crossed.
The picture would have been equivalent to (b) but much more complicated.

7.1.4 A Slightly More Realistic Example

The above algorithms are relatively easy to understand and implement; see, for ex-
ample, Hext and Roberts [15] for Domolki’s method to find all possible reductions
simultaneously. Although they require exponential time in general, they behave rea-
sonably well on a number of grammars. Sometimes, however, they will burst out in
a frenzy of senseless activity, even with an innocuous-looking grammar (especially
with an innocuous-looking grammar!). The grammar of Figure 7.8 produces alge-
braic expressions in one variable, a, and two operators, + and -. Q is used for the

»n

00 H HHE-
+ 0 = HMHE

EEERER"

Fig. 7.8. A grammar for expressions in one variable

operators, since O (oh) looks too much like 0 (zero). This grammar is unambiguous
and for a-a+a it has the correct production tree

which restricts the minus to the following a rather than to a+a. Figure 7.9 shows
the graph searched while parsing a-a+a. It contains 109 shift lines and 265 reduce
arrows and would fit on the page only thanks to the exceedingly fine print the photo-
typesetter is capable of. This is exponential explosion.
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Ot Om+ O+

Ol O+

Ottt Om+ O+

Ottt Om+ Ol +

Ottt Om+ O+

Ottt Omal Ol +

Ot ¢ Om Ol +

Ol e+

Fig. 7.9. The graph searched while parsing a-a+a
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7.2 The Earley Parser

In spite of their occasionally vicious behavior, breadth-first bottom-up parsers are
attractive since they work on-line, can handle left recursion without any problem
and can generally be doctored to handle e-rules and loops. So the question remains
how to curb their needless activity. Many methods have been invented to restrict the
search breadth to at most 1, at the expense of the generality of the grammars these
methods can handle; see Chapter 9. A method that restricts the fan-out to reasonable
proportions while still retaining full generality was developed by Earley [14].

7.2.1 The Basic Earley Parser

When we take a closer look at Figure 7.9, we see after some thought that many
reductions are totally pointless. It is not meaningful to reduce the third a to E or S
since these can only occur at the end if they represent the entire input; likewise the
reduction of a-a to S is absurd, since S can only occur at the end. Earley noticed
that what was wrong with these spurious reductions was that they were incompatible
with a top-down parsing, that is: they could never derive from the start symbol. He
then gave a method to restrict our reductions only to those that derive from the start
symbol; the method is now known as Earley parsing. We shall see that the resulting
parser takes at most #° units of time for input of length n rather than C" for some
constant C.

Earley’s parser can also be described as a breadth-first top-down parser with
bottom-up recognition, which is how it is explained by the author [14]. Since it can,
however, handle left recursion directly but needs special measures to handle e-rules,
we prefer to treat it as a bottom-up method with a top-down component.

We shall again use the grammar from Figure 7.8 and parse the input a-a+a. Just
as in the non-restricted algorithm from Section 7.1.1, we have at all times a set of
partial solutions which is modified by each symbol we read. We shall write the sets
between the input symbols as we go; we have to keep earlier sets, since they will
still be used by the algorithm. Unlike the non-restricted algorithm, in which the sets
contained stacks, the sets consist of what is technically known as items, or Earley
items to be more precise. An “item” is a grammar rule with a gap in its right-hand
side; the part of the right-hand side to the left of the gap (which may be empty)
has already been recognized, the part to the right of the gap is predicted. The gap
is traditionally shown as a fat dot: <. Examples of items are: E—>e¢EQF, E—>EeQF,
E—>EQeF, E—>EQFe, F—>ae, etc. It is unfortunate that such a vague every-day
term as “item” has become endowed with a very specific technical meaning, but the
expression has taken hold, so it will have to do.

Items have quite different properties depending on exactly where the dot is, and
the following types can be distinguished.

e An item with the dot at the end is called a reduce item, since the dot at the end
means that the whole right-hand side has been recognized and can be reduced.

e Anitem with the dot at the beginning (just after the arrow) is known as a predicted
item, since it results from a prediction, as we shall see below.
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¢ An item with the dot in front of a terminal is called a shift item, since it allows a
shift of the terminal.

e An item with the dot in front of a non-terminal does not have a standard name;
we shall call it a prediction item, since it gives rise to predictions.

* An item with the dot not at the beginning is sometimes referred to as a kernel
item, since at least part of it has been confirmed.

Although all items fall in at least one of the above classes, some fall in more than
one: the types in this classification are not mutually exclusive. For example, the item
F—>ea is both a predicted and a shift item.

An Earley item is an item as defined above, with an indication of the position of
the symbol at which the recognition of the recognized part started, its origin position.
Notations vary, but we shall write @n after the item (read: “at n”). If the set at the end
of position 7 contains the item E—>EeQF@3, we have recognized an E in positions 3
through 7 and are looking forward to recognizing QF.

The sets of items contain exactly those items 1) of which the part before the dot
has been recognized so far and 2) of which we are certain that we shall be able to use
the result when they will happen to be recognized in full (but we cannot, of course, be
certain that that will happen). For example, if a set contains the item E—>EeQF@3,
we can be sure that when we will have recognized the whole right-hand side EQF,
we can go back to the set at the beginning of symbol number 3 and find there an
item that was looking forward to recognizing an E, i.e., that had an E with a dot in
front of it. Since that is true recursively, no recognition will be useless; of course, the
recognized E is part of a right-hand side under construction and the full recognition
of that right-hand side may eventually fail.

7.2.1.1 The Scanner, Completer and Predictor

The construction of an item set from the previous item set proceeds in three phases.
The first two correspond to those of the non-restricted algorithm from Section 7.1.1,
where they were called “shift” and “reduce”; here they are called “Scanner” and
“Completer”. The third is new and is related to the top-down component; it is called
“Predictor”.

The Scanner, Completer and Predictor operate on a number of interrelated sets
of items for each token in the input. Refer to Figure 7.10, where the input symbol
O at position p is surrounded by several sets: itemset,, which contains the items
available just before G,; completed,, ., the set of items that have become completed
due to Gp; activep 1, which contains the non-completed items that passed G,; and
predicted,, | |, the set of newly predicted items. The sets active,; and predicted,, | |
together form itemset, . Initially, itemset, is filled (as a result of processing 6,_1)
and the other sets are empty; itemset; is filled from the start symbol.

The Scanner looks at G, goes through itemset, and makes copies of all items that
contain «c; all other items are ignored. In the copied items, the part before the dot
was already recognized and now © is recognized; consequently, the Scanner changes
G into Ge. If the dot is now at the end, the Scanner has found a reduce item and stores
itin the set completed,, , ;; otherwise it stores it in the set active) 1.
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Scanner in Completer
Completer completed,, .|
items
completed
items ScaM by o) '
after items
N Gp . . after
previous activepy | -
P+ . : S
symbol active
items L
itemset,, after o S dtemsety iy
Predictor
Y
predicted
items from
activep |
predicted,, |

Fig. 7.10. The Earley item sets and their processes for one input symbol

Next the Completer inspects completed,, . ;, which contains the items that have
just been recognized completely and can now be reduced as follows. For each item
of the form R — ---e @m the Completer goes to itemset,,, and calls the Scanner in
a special way as follows. The Scanner, which was used to working before on the
terminal ¢, found in the input and itemset,, is now directed to work on the non-
terminal R recognized by the Completer and itemset,,. Just as for a terminal it copies
all items in itemset,, featuring a eR, replaces the R by Re and stores them in either
completed,, | or activey,, as appropriate. This can add new recognized items to the
set completed,, |, which just means more work for the Completer. After a while, all
completed items have been reduced, and the Predictor’s turn has come.

The Predictor goes through the sets active,, 1, which was filled by the Scanner,
and predicted,, |, which is empty initially, and considers all items in which the dot
is followed by a non-terminal. We expect to see these non-terminals in the input, and
the Predictor predicts them as follows. For each such non-terminal N and for each
rule for that non-terminal N — P- - -, the Predictor adds anitem N — eP--- @p+1to
the set predicted,, ;. This may introduce new predicted non-terminals (for example
P) in predicted,, ; which cause more predicted items. After a while, this too will
stop.

The sets activepi1 and predicted,, | together form the new itemsetp, . If the
completed set after the last symbol in the input contains an item S — ---e @1, that
is, an item spanning the entire input and reducing to the start symbol, we have found
a parsing.
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Now refer to Figure 7.11, which shows the item sets of the Earley parser working
on a-a+a with the grammar from Figure 7.8. In this and following drawings, the

completed, completed,
F—>ae@l campleted3 F—>ae @3
act/pred, E—>Fe@l [osvez | E->EQFe@l
S—>eE @1 S—>Ee@l S—>Ee @1
E—>eEQF@1
- t/pred —_—
E—>eF @1 a act/pred, 2 act/preds as act/pred,
E—EQeF@l
F—>ea @l E—>EeQF@l Fren a3 E—>EeQF@l
= itemset Q—>e+ @2 E—— Qe+ @4
Q—>e- @2 = uemsers Q—>e- @4
= itemset) = itemsety
-ompleted,
completeds completede
F e @5
e
E—EQFe@l
+, act/preds as S—>Ee el
. E_)EQ'F@]' . activeg
F 5
—ea e E—>EeQF@l
= itemsets — itemsets

Fig. 7.11. Item sets of the Earley parser working on a-a+a

sets activep, predicted e and itemset, have been combined into one set; the internal
division between active), and predicted,, is indicated in the drawings by a dotted line.

The initial active item set active; is {S—>eE@1}, indicating that this is the
only item that can derive directly from the start symbol. The Predictor first predicts
E—eEQF@1, from this E—>eEQF@1 and E—>eF@1 (but the first one is in the set
already) and from the last one F—>ea@1. This gives itemset;.

The Scanner working on itemset| and scanning for an a, only catches F—>e¢a@1,
turns it into F—>ae@1, and stores it in completed,. This means not only that we have
recognized and reduced an F, but also that we have a buyer for it. The Completer goes
to the set itemset; and copies all items that have eF. Result: one item, E—>eF@1,
which turns into E—>Fe@1 and is again stored in completed,. More work for the
Completer, which will now copy items containing ¢E. Result: two items, S—>eE@1
which becomes S—>Ee@1 and goes to the completed set, and E—>eEQF@1 which
becomes E—>EeQF@1, and which becomes the first and only member of active;.
The completion of S yields no new information.

The Predictor working on active; has an easy job: eQ causes two items for Q, both
with @2, since that is where recognition will have started, if it occurs at all. Nothing
spectacular happens until the Scanner processes the second a; from itemsets it ex-
tracts F—ea@3 which gives F—>ae@3, which is passed to the Completer (through
completed,). The latter sees the reduction of a to F starting at position 3, goes to
itemsets to see who ordered an F, and finds E—>EQeF@1. Given the F, this turns
into E—EQFe@1, which in its turn signals the reduction to E of the substring from
1 to 3 (again through completed,). The Completer checks itemset; and finds two
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clients there for the E: S—>e¢E@1 and E—>eEQF@1; the first ends up as S—>Ee@1
in completed,, the second as E—>EeQF@1 in actives.

After the last symbol has been processed by the Scanner, we still run the Com-
pleter to do the final reductions, but running the Predictor is useless, since there is
nothing to predict any more. Note that the parsing started by calling the Predictor
on the initial active set and that there is one Predictor/Scanner/Completer action for
each symbol. Since completedq indeed contains an item S—>Ee@1, there is at least
one parsing.

7.2.1.2 Constructing a Parse Tree

All this does not directly give us a parse tree. As is often the case in parser construc-
tion (see, for example, Section 4.1), we have set out to build a parser and have ended
up building a recognizer. The intermediate sets, however, contain enough informa-
tion about fragments and their relations to construct a parse tree easily. As with the
CYK parser, a simple top-down Unger-type parser can serve for this purpose, since
the Unger parser is very interested in the lengths of the various components of the
parse tree and that is exactly what the sets in the Earley parser provide. In his 1970
article, Earley gives a method of constructing the parse tree(s) while parsing, by
keeping with each item a pointer back to the item that caused it to be present. Tomita
[162, p. 74-77] has, however, shown that this method will produce incorrect parse
trees on certain ambiguous grammars.

The set completed in Figure 7.11, which is the first we inspect after having
finished the set construction, shows us that there is a parse possible with S for a root
and extending over symbols 1 to 5; we designate the parse root as Si.s in Figure
7.12. Given the completed item S —>Ee@1 in completed there must be a parse node
E|_s, which is completed at 5. Since all items completed after 5 are contained in
completedq, we scan this set to find a completed E with origin position 1; we find
E—>EQFe@l. This gives us the parse tree in frame a, where the values at the question
marks are still to be seen. Since items are recognized at their right ends, we start by
finding a parse for the Fo._s, to be found in completeds. We find F—>ae@5, giving
us the parse tree in frame b. It suggests that we find a parse for Q7.4 completed after
4; in completeds we find Q—+e@4. Consequently Q7.4 is Q4.4 and the E;.» in frame
b must be E;_3. This makes us look in completed, for an E—---@1, where we find
E—>EQFe@l. We now have a parse tree (c), and, using the same techniques, we
easily complete it (d).

7.2.1.3 Space and Time Requirements

It is interesting to have a look at the space and time needed for the construction of
the sets. First we compute the maximum size of the sets just after symbol number p.
There is only a fixed number of different items, 7, limited by the size of the grammar;
for our grammar it is / = 14. However, each item can occur with any of the origin
positions @1 to @p + 1, of which there are p+ 1. So the number of items in the sets
just after symbol number p is limited to I x (p + 1). The exact computation of the
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Fig. 7.12. Construction of the parse trees

maximum number of items in each of the sets is complicated by the fact that different
rules apply to the first, last and middle items. Disregarding these complications, we
find that the maximum number of items in all sets up to p is roughly I x p?/2. So, for
an input of length n, the memory requirement is O(n?), as with the CYK algorithm.
In actual practice, the amount of memory used is often far less than this theoretical
maximum. In our case all sets together could conceivably contain about 14 x 52 /2 =
175 items, with which the actual number of 4 +3+3+1+2+4+34+3+14+2+3+1=
26 items compares very favorably.

Although a set at position p can contain a maximum of O(p) items, it may require
an amount of work proportional to p? to construct that set, since each item could, in
principle, be inserted by the Completer once from each preceding position. Under the
same simplifying assumptions as above, we find that the maximum number of actions
needed to construct all sets up to p is roughly 7 x p*/6. So the total amount of work
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involved in parsing a sentence of length n with the Earley algorithm is O(n?), as it
is with the CYK algorithm. Again, in practice it is much better: on many grammars,
including the one from Figure 7.8, it will work in linear time (O(n)) and on any
unambiguous grammar it will work in O(n?). In our example, a maximum of about
14 x 53 /6 ~ 300 actions might be required, compared to the actual number of 28
(both items for E in predicted, were inserted twice).

It should be noted that once the computation of the sets is finished, only the
completed sets are consulted. The active and predicted sets can be thrown away to
make room for the parse tree(s).

The practical efficiency of this and the CYK algorithms is not really surprising,
since in normal usage most arbitrary fragments of the input will not derive from
any non-terminal. The sentence fragment “letter into the upper leftmost” does not
represent any part of speech, nor does any fragment of size larger than one. The
O(n?) and O(n®) bounds only materialize for grammars in which almost all non-
terminals produce almost all substrings in almost all combinatorially possible ways,
as for example in the grammar S—S8S, S—x.

7.2.2 The Relation between the Earley and CYK Algorithms

The similarity in the time and space requirement between the Earley and the CYK
algorithm suggest a deeper relation between the two and indeed there is: the Ear-
ley sets can be accommodated in a CYK-like grid, as shown in Figure 7.13. The
horizontal axis of the CYK matrix represents the position where recognition started;
its vertical level represents the length of what has been recognized. So an Earley
item of the form A — 0.e3@q in itemset,, goes to column g, since that is where its
recognition started, and to level p — g since that is the length it has recognized. So
the contents of an Earley set is distributed over a diagonal of the CYK matrix, slant-
ing from north-west to south-east. Completed items are drawn in the top left corner
of a box, active and predicted items in the bottom right corner. But since predicted
items have not yet recognized anything they occur in the bottom layer only. When
the reader turns Figure 7.13 clockwise over 45°, the Earley set can be recognized by
stacking the boxes along the arrows at the bottom.

When we compare this picture to that produced by the CYK parser (Figure 7.14)
we see correspondences and differences. Rather than having items, the boxes contain
non-terminals only. All active and predicted items are absent. The left-hand sides of
the completed items also occur in the CYK picture, but that parser features more
recognized non-terminals; from the Earley picture we know that these will never
play a role in any parse tree. The costs and the effects of the top-down restriction are
clearly shown.

The correspondence between the Earley and CYK algorithms has been analysed
by Graham and Harrison [19]. This has resulted in a combined algorithm described
by Graham, Harrison and Ruzzo [23]. For a third, and very efficient representation
of the CYK/Earley data structure see Kruseman Aretz [29].

There is another relationship between the Earley and CYK algorithms, which
comes to light when the Earley data structure is expressed in tabular form (Section
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length
recognized
@l
E—EQFe
S—>Ee
5
part of
@2 —
E->EeQF comple
ted)
part of
4 activey,
@3
E—>EQeF .
ltemsetp
E—EQFe
S—>Ee
3
@4
E-—>EeQF
2
@5
E—>EQeF
F-—>ae Q—>-eo F—>ae Q—>+e F—>ae
E—>Fe
1 S—E
E—>EeQF
predict-
0 —>eE ions
—>eEQF Q—>e4 Q—>e+ ’
E<>eF;F—>ea Q—>e- F—>ea Q—>e- F-—>ea
itemset| itemsetr itemsets itemsety itemsets itemsetg
a, =2 az +4 as

Fig. 7.13. The Earley sets represented in CYK fashion

4.3). The table is shown in Figure 7.15, where the vertical axis enumerates the items
and the entries contain the lengths recognized for each item. We see that the entry for
item S—Ee at position 1 holds a 5 (among other lengths) indicating that the whole
input can be parsed using rule S—E from position 1.

When we compare this table to the one in Figure 4.21, we see that the items
take the positions of non-terminals, which suggests that they can be viewed as non-
terminals in a grammar. And indeed they can. The grammar is shown in Figure 7.16;
the items enclosed in { and } are names of new non-terminals, in spite of their looks.

We see that the grammar contains three kinds of rule. Those of the form
A — {A—ea}|{A—eB}| - predict items for A and correspond to the Predictor.
Those of the form {A—---eX---} — X{A—---Xe---} correspond to the Scanner
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length
recognized @1
5| s
@2
4
@3
E E
3
S S @4
2
@5
F F F
1 E Q E Q E
S S S
a, -2 a; +4 as

Fig. 7.14. CYK sets for the parsing of Figure 7.11

when X is a terminal and to the special Scanner inside the Completer when X is a
non-terminal. And those of the form {A—---e} — & correspond to the Completer.

The most important point, however, is that no right-hand side in such an item
grammar contains more than two non-terminals. As we have seen (page 116), the
CYK parser has O(n?) (cubic) time requirements only when operated with a gram-
mar with at most two non-terminals in any right-hand side. (Since such grammars
give rise to binary trees as parse trees, they are said to be in binary form.) But the
Earley parser has cubic time requirements for any grammar, and we now see why:
the Completer/Scanner mechanism chops up the longer right-hand side into steps of
1, in a process similar to that in Section 4.2.3.4, thus creating a binary form grammar
on the fly!

7.2.3 Handling ¢-Rules

Like most parsers, the above parser cannot handle €-rules without special measures.
e-rules show up first as an anomaly in the work of the Predictor. While predicting
items of the form A — e--- @p as a consequence of having a *A in an item in
active, or predicted,,, it may happen to create an empty prediction A — e @p. This
means that the non-terminal A has been completed just after symbol number p and
this completed item should be added to the set completed,,, which up to now only
contained items with origin position p — 1 at most. So we find that there was more
work for the Completer after all. But that is not the end of the story. If we now run
the Completer again, it will draw the consequences of the newly completed item(s)
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S—>eE 0

S—>Ee 1,3,5

E—>eEQF 0

E—EeQF 1,35

E—EQeF 24

E—EQFe 35

E—>eF 0

E—>Fe 1

F—>ea 0 0 0

F—>ae 1 1 1

Q-—>e+ 0 0

Q—>+e 1

Q—>e- 0 0

Q—>-e 1
a - a + a
1 2 3 4 5

Fig. 7.15. The Earley data structure in tabular form

{s—>eE} — E {S—>Ee} F — {F—ea}

{s—Ee} — ¢ {F—>ea} — a {F—>ae}
{F—ae} — ¢

E — {E—>eEQF} | {E—>eF}

{E—>eEQF} — E {E—>EeQF} Q — {Q—=e+} | {Q—>e-}

{E—>EeQF} — Q {E—EQeF} {Q—e+} — + {Q—>+e}

{E—>EQeF} — F {E—>EQFe} {Q-—>+¢} — ¢
{E—>EQFe} — ¢ {Q—>e-} = - {Q—=>-¢}
{E—>eF} — F {E—>Fe} {Q—>-0} = ¢

{E—>Fe} — ¢

Fig. 7.16. A grammar for Earley items

at origin position p. So it will consult itemset,, which is, however, incomplete since
items are still being added to its constituents, active, and predicted,,. If it finds items
with occurrences of *A there, it will add copies with As instead. Part of these may
require new predictions to be made (if the dot lands in front of another non-terminal),
and part of them may be completed items, which will have to go into completed,, and
which will mean more work for the Completer. The items in this set can have starting
points lower than p, which bring in items from further back, to be added to itemset),.
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And of course these may or may not now be completed through this action or through
empty completed items. Etc.

7.2.3.1 The Completer/Predictor Loop

The easiest way to handle this mare’s nest is to stay calm and keep running the
Predictor and Completer in turn until neither has anything more to add. Since the
number of items is finite this will happen eventually, and in practice it happens sooner
rather than later. (This is again a closure algorithm.)

The Completer and Predictor loop has to be viewed as a single operation called
“X” by Graham, Harrison and Ruzzo [23]. Just like the Predictor it has to be applied
to the initial state, to honor empty productions before the first symbol; just like the
Completer it has to be applied to the final state, to honor empty productions after the
last symbol.

Part of the effects are demonstrated by the grammar of Figure 7.17 which is based
on a grammar similar to that of Figure 7.8. Rather than addition and subtraction, this

Ss — E
E - EQF | F
F — a

Q — x| /| e

Fig. 7.17. A grammar with an e-rule

one handles multiplication and division, with the possibility to omit the multiplica-
tion sign: aa means axa.
The parsing is given in Figure 7.18. The items pointed at by a > have been

completed, completeds completeds

F—ae @l F—ae @2 F—ae @4

E—>Fe @1 E—EQFe@l E—EQFe@l

act/pred, S—>Ee @l S—>Ee @l completed, S—>Ee @l
S SeE @l Q—>e @2 Q—>e @3 Q—/e @3 Q—>e @5
Ez:iQng a, act/pred, a, act/predy /3 act/pred, a, act/preds
Fsea @l E—>EeQF@1 E—>EeQF@l E——>EQ0F@1 E-—>EeQF@1l
- > E—EQeF@l > E—EQeF@l F—>ea @4 > E—EQeF@l
= itemset; ‘Q>ex @2 ‘0>ex @3 — itemsets ‘Q>ex @5
Q—>e/ @2 Q—>e¢/ @3 Q—>e/ @5

F—>ea @2 F—>ea @3 F—>ea @5

= itemset) = itemsets = itemsets

Fig. 7.18. Recognition of empty productions in an Earley parser

added by a second pass of the Completer/Predictor. The Q—e@2, inserted by the
Predictor into completed, as a consequence of E—>EeQF@1 in activey, is picked up
by the second pass of the Completer, and is used to clone E—>EeQF@1 in active;
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into E—>EQeF@1. This in turn is found by the Predictor which predicts the item
F—>ea@2 from it.

Note that we now do have to create the full active/predicted set after the last
symbol, since its processing by the Completer/Predictor may insert an item of the
form S—---@1 in the last completed set, indicating a parsing.

7.2.3.2 Modifying the Predictor

Aycock and Horspool [38] show a way to avoid the Completer/Predictor loop. Before
parsing we determine which non-terminals can produce the empty string, in other
words, which non-terminals are nullable; we will see below in Section 7.2.3.3 how
to do this. The processing of items during parsing is then arranged as follows:

e The items at a position p are put in a list, list,. This list is initialized with the
items produced by the Scanner moving items from /list,_ over token G,_;.

e The items in the list are treated one by one by a Driver, in the order they appear
in the list. If the item has the dot in front of a terminal, the Driver offers it to
the Scanner; if the item has the dot in front of a non-terminal, the Driver offers
it to the Predictor; otherwise the item has the dot at the end and is offered to the
Completer. Any item resulting from this that must be inserted into the present
list is added at the end, in order, unless it is already in the list, in which case it is
discarded.

e The Predictor is modified as follows. When presented with anitemA — ---eB---
it predicts all items of the form B — e--- as usual, but if B is nullable it also
predicts the item A — ---Be - - -.

It is clear that the loop has gone: each item gets treated exactly once. It is less obvious
that this arrangement produces exactly the item sets that would have resulted from
the Completer/Predictor loop.

When working on [ist,, the Driver examines the items in turn and distributes
them over the Scanner, the Predictor and the Completer. There is a fundamental
difference between the Scanner and the Predictor on the one hand and the Completer
on the other: the Scanner and the Predictor use only the item they are given (plus
the next input token for the Scanner and the grammar rules for the Predictor), but
the Completer combines it with other items from far-away and near-by places. The
Completer takes one item of the form A — ---e@g from list,, goes to list,, finds all
items of the form B — ---eA..- @r in that list and puts corresponding items B —

--Ae-.-@r in list,. Now that is fine as long as g < p, since then list, is already
finished, and the scan will find all items. But when g = p, list,, the list that is scanned,
and /ist,, the list under construction, are the same, and the Completer scan may miss
items for the simple reason that they have not been appended yet.

The shortest grammar in which this problem occurs is

Ss — A AXx
A — &
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which produces only one string: x. Let us assume for the moment that we are still
using the original Earley Predictor. The starting list /ist; is initialized with the item
S—>eAAx@1. The Driver examines it and passes it to the Predictor, which predicts
the item A—e@1 from it, which is appended to list;. The Driver immediately picks
it up, and offers it to the Completer, which scans list;, combines the item with
S—>eAAx@1 and produces S—>AeAx@1. The list /ist; now looks as follows:

S—>eAAxX@1
A—>e@l
S—AeAx@1

Next the Driver turns to S—>AeAx@1, and gives it to the Predictor. Again the pre-
dicted item A —>e@1 results, but since it is already in the list, it is not appended again.
So the Driver does not find a new item, and stops.

We see that the resulting state does not accept the input token x. So it is wrong,
but we are not surprised: the original algorithm would have gone on processing items
until nothing changed any more. Soon it would have passed the item A—e@1 to the
Completer again, which would then have produced the item S—>AAex@1, and all
would be well. In particular we see that one inference from the completed e-item
A—>e@1 is drawn, but later inferences are not, because each item is treated only
once.

This is where the modified Predictor comes in: by predicting an item A —
---Be.--@p from A — ---Be---@p when B is nullable, it provides the inference
from B — e (or any other item that causes B to produce €) even when the item is out
of sight because it has already been processed. Applied to the item S—>AeAx@1 it
produces rwo predictions: A—>e@1, which is not appended, and S —AAex@1, which
is. This yields the correct /ist;:

S—>eAAxX@1
A—>e@l

S—>AeAx@1
S—AAex@l

Aycock and Horspool [38] give a formal proof of the correctness of their algo-
rithm. Figure 7.19 shows the lists for the same parsing as in Figure 7.18.

listr lists lists

F—ae @1 F—ae @2 F—ae @4

list, E—>Fe @1 E—EQFe@1 ) E—EQFe@1
SeE @l S—>Ee @1 S—>Ee @1 listy S—>Ee @1
E—»eEQF@L E—>EeQF@l E-—s>EeQF@l Q—>/e¢ @3 E-—>EeQF@l
EseF @l a, Q—ex @2 | &) | Q—ex @3 /3 E—EQeF@l | &4 | Q—>ex @5
Fsea @1 Q—e/ @2 Q—e/ @3 F—>ea @4 Q—e/ @5
Q—>e @2 Q—>e @3 Q—>e @5

E—>EQeF@l E-—>EQeF@l E—>EQeF@l

F—>ea @2 F—>ea @3 F—>ea @5

Fig. 7.19. Recognition of empty productions with a modified Predictor
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Another way of avoiding the Completer/Predictor loop is to do e-elimination on
the grammar, as described in Section 4.2.3.1, but that would make the subsequent
construction of the parse tree(s) much harder.

7.2.3.3 Determining Nullability

A simple closure algorithm allows us to find out which non-terminals in a grammar
can produce the empty string (are nullable). First we scan the grammar and any
time we find a rule of the form A — € we mark A as nullable. Next we scan the
grammar again and whenever we find a rule P — Q; ---Q, where Q;---Q, are all
marked nullable, we mark P as nullable. Now we repeat the last step until no more
non-terminals get marked. Then all nullable non-terminals have been marked.

7.2.4 Exploiting Look-Ahead

In the following paragraphs we shall describe a series of increasingly complicated
(and more efficient) parsers of the Earley type. Somewhere along the line we will
also meet a parser that is (almost) identical to the one described by Earley in his

paper.

7.2.4.1 Prediction Look-Ahead

When we go back to Figure 7.11 and examine the actions of the Predictor, we see that
it sometimes predicts items that it could know were useless if it could look ahead at
the next symbol. When the next symbol is a -, it is kind of foolish to proudly predict
Q—e¢+@2. The Predictor can of course easily be modified to check such simple
cases, but it is possible to have a Predictor that will never predict anything obviously
erroneous: all its predicted items will be either completed or active in the next set.
Of course the predictions may fail on the symbol after that; after all, it is a Predictor,
not an Oracle.

To see how we can obtain such a improved Predictor we need a different example,
since after removing Q—>e+@2 and Q —>e -@4 from Figure 7.11 all predictions there
come true, so nothing can be gained any more.

The artificial grammar of Figure 7.20 produces only the three sentences p, q
and pqg, and does so in a straightforward way. The root is S’ rather than S, which
is a convenient way to have a grammar with only one rule for the root. This is not
necessary but it simplifies the following somewhat, and it is common practice.

The parsing of the sentence q is given in Figures 7.21(a) and (b). Since we are
now using look-ahead, we have appended an end-of-input marker # to the input, as
explained on page 94. Starting from the initial item, the Predictor predicts a list of 7
items (frame a). Looking at the next symbol, g, the Predictor could easily avoid the
prediction C—>ep@1, but several of the other predictions are also false, for example,
A—seC@l. The Predictor could avoid the first since it sees that it cannot begin with
q. If it knew that C cannot begin with a q, it could also avoid A—eC@1. (Note by the
way that itemset, is empty, indicating that there is no way for the input to continue.)
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Il

s, — S
S — A | AB | B FIRST(S) = {p, q}
FIRST(aAB) = {p}
A — C FIRST(2) = {p}
B — D FIRST(B) = {q}
cC - p FIRST(C) = {p}
D —- g FIRST(D) = {q}

Fig. 7.20. A grammar for demonstrating prediction look-ahead and its FIRST sets

't /pred
act/pred, completed, completed,

S_>.S@l D—qge @l . D—qge @l
S—>eA @1 act/pred,

B—>De @1 B—De @1
S—>eAB @1 S—s>Be @l S’ —eS @1 S—>Be @1
S—>eB @l , S—>eB el i
rec @1 | i [87—2se @ #, bep @1 | Qi [87—=>se @ #,
B—>eD @1 act/pred, D—>eq €1 act/pred,
D—eq @1

= itemset) = itemset)

= itemset|

(a) (b)
Fig. 7.21. Parsing the sentence g without look-ahead (a) and with look-ahead (b)

The required knowledge can be obtained by computing the FIRST sets of all non-
terminals and their alternatives in the grammar. The FIRST set of a non-terminal A
is the set of all tokens a terminal production of A can start with. Likewise, the FIRST
set of an alternative o is the set of all tokens a terminal production of o can start
with. These FIRST sets and a method of computing them are explained in Sections
8.2.1.1 and 8.2.2.1.

The FIRST sets of our grammar are shown in Figure 7.20. Since S has three
alternatives, we need FIRST sets for each of them, to see which alternative(s) we
must predict. FIRST(A) and FIRST(B) are already available as the FIRST sets of the
non-terminals, but that of AB must be determined separately.

The use of the FIRST sets is very effective (frame b). The Predictor again starts
from the initial item, but since it knows that q is not in FIRST(a) or FIRST(aB), it
will avoid predicting S—>eA@1 and S—>eAB@1, and just predict S—eB@1. Items
like A—>eC@1 do not even have to be avoided, since their generation will never be
contemplated in the first place. The item S—eB@1 results in three predictions, all
of them to the point.

As usual, e-rules have a big impact. If we add a rule C—¢ to our grammar
(Figure 7.22), the entire picture changes. Starting from the initial item S’ —>eS@1
(Figure 7.23), the Predictor will still not predict S—eA@1 since FIRST(a) does
not contain g, but it will predict S—>eAB@1 since FIRST(AB) does contain a q.
Next A—eC@1 is predicted, followed by C—>e@1, but that is a completed item and
goes into completed;. When the Completer starts, it finds C—e@1, applies it to
A—eC@1 and produces A—>Ce@1, likewise completed. The latter is then applied to
S—eAB@1 to produce the active item S—>AeB@1. This causes another run of the
Predictor, to follow the new eB, but all those items have already been added.
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s, — S
S — A | AB | B FIRST(S) = {&, p. q}
FIRST(aB) = {p, q}
A — C FIRST(a) = {¢, p}
B — D FIRST(B) = {q}
cC - p | ¢ FIRST(C) = {¢&, p}
D - g FIRST(D) = {q}
Fig. 7.22. A grammar with an e-rule and its FIRST sets
completed
> | C>e el completed,
> | A—sCe @1 S>qe ol
act/pred, B—De el
S s ol S—>Be @1
................ S—>ABe @l
S—>eAB @l | S' —aSe @1 #2
S—>eB @1
A—eC @1 act/pred,
B—eD @
Dseq 1
> | S—AeB @l = emset)

= itemset|

Fig. 7.23. Parsing the sentence g with the grammar of Figure 7.22

An interesting problem occurs when we try to parse the empty sentence, or ac-
tually the sentence #, since an end marker is appended. If we follow the above al-
gorithm, we find that the look-ahead token # is not in any of the FIRST sets, for
the simple reason that it is not part of the grammar, so no rule gets predicted, and
the input is rejected. One way to solve the problem is to decide to predict an item
only when the look-ahead does not contradict it, rather than when the look-ahead
confirms it. A FIRST set containing € does not contradict the look-ahead # (in fact
it does not contradict any look-ahead), so the rules S—A, A—C, and C—¢ get pre-
dicted. The resulting parsing is shown in Figure 7.24; we see that completed; con-

completed
C—e el
A—>Ce @1
S—>Ae @1
> S’ —>Se @1

v v

#

act/pred,

= itemset|

Fig. 7.24. Parsing the empty sentence with the grammar of Figure 7.22
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tains S—>Ae@1, so the input is recognized, as expected. The next section shows a
way to improve this algorithm and indeed predict only what the look-ahead confirms.

7.2.4.2 Reduction Look-Ahead

Once we have gone through the trouble of computing the FIRST sets, we can use
them for a second type of look-ahead: reduction look-ahead. Prediction look-ahead
reduces the number of predicted items, reduction look-ahead reduces the number of
completed items. Referring back to Figure 7.11, which depicted the actions of an Ear-
ley parser without look-ahead, we see that it does two silly completions: S—>Ee@1
in completed,, and S—>Ee@1 in completed,. The redundancy of these completed
items stems from the fact that they are only meaningful at the end of the input. Now
this may seem a very special case, not worth testing for, but the phenomenon can
be viewed in a more general way: if we introduce an explicit symbol for end-of-file
(for example, #), we can say that the above items are redundant because they are
followed by a symbol (- and +, respectively) which is not in the set of symbols that
may follow the item on completion.

The idea is to keep, together with each item, a set of symbols which follow af-
ter that item, the reduction look-ahead set; if the item is a reduce item but the next
symbol is not in this set, the item is not completed but discarded. The rules for con-
structing the look-ahead set for an item are straightforward, but unlike the prediction
look-ahead it cannot be computed in advance; it must be constructed as we go. (A
limited and less effective set could be computed statically, using the FOLLOW sets
explained in Section 8.2.2.2.)

The initial item starts with a look-ahead set of [#] (look-ahead sets will be
shown between square brackets at the end of items). When the dot advances in an
item, its look-ahead set remains the same, since what happens inside an item does
not affect what may come after it; only when a new item is created by the Predictor,
a new look-ahead set must be composed. Suppose the parent item is

P — AeBCDlabc] @n

and predicted items for B must be created. We now ask ourselves what symbols may
follow the occurrence of B in this item. It is easy to see that they are:

e any symbol C can start with,
e if C can produce the empty string, any symbol D can start with,
e if D can also produce the empty string, any of the symbols a, b and c.

Given the FIRST sets for all non-terminals, which can also tell us if a non-terminal
can produce empty, the resulting new reduction look-ahead set is easily computed.
It is also written as FIRST(CD [abc]), which is of course the set of first symbols of
anything produced by CDa|CDb|CDc.

The Earley sets with reduction look-ahead for our example a-a+a are given
in Figure 7.25. The computation of the sets follows the above rules. The look-
ahead of the item E—eEQF [#+-]@1 in predicted; results from its being inserted
twice. Initially it is inserted by the Predictor from S—eE [#] @1, which contributes
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completed,
actpred, F—ae@l completeds
SSeE ] el E—>Fe@l [ Q—>-e@2 |
E—>eEQF [#+-]el a, act/pred, - act/preds -
E—>eF [#+-]@1
Fsea [#+-]@1 (E—>EeQF[#+-]1@1 (E—>EQeF [#+-1@1
- Q—>e+ [a]l @2 F—>ea [#+-]@3
= itemset| Q-—>e- [al @2 — itemsets
= itemset)
completed, completedy
F>ae @3 completeds F—>ae @5
E->EQFe@1 | Q—>+e@4 | E—>EQFeel
S—>Ee @1
a; act/pred, +, act/preds as; act/pred #6
_E—>EcQF [#+-]@1 (E>EQeF[#+-1@1 ESEeQF [B+-101
Q—=e+ [a] @4 F->ea [#+-]@5 Q—>0+[a]@6
Q—>e- [a]l @4 = itemsets Q—se- [a] @6
= itemsety — itemsets
- O

Fig. 7.25. Item sets with reduction look-ahead

the look-ahead #, and which results in the item E—>eEQF [#]@1. When the Pre-
dictor processes this item, it predicts items for the eE in it, with a look-ahead
of FIRST(QF [#]); this contributes +-. These items include E—>e¢EQF [+-]@1,
which together with the item from S—eE [#] @1 results in the first item we see
in predicted,.

Note that the item S—>Ee [#] @1 is not placed in completed,, since the actual
symbol ahead (-7) is not in the item’s look-ahead set; something similar occurs in
completed,, but not in completedy.

Now that we have reduction look-ahead sets available in each item, we can use
them to restrict our predictions to those confirmed by the look-ahead. Refer again
to the grammar of Figure 7.22 and the parsing in Figure 7.24. The initial item is
Ss' —eS [#], which gives rise to three potential items: S—>eA [#], S—>eAB [#],
and S—eB [#]. Now we get FIRST(A [#]) = {#,p}, FIRST(AB [#]) = {p,q}, and
FIRST(B[#]) = {g}. And since the look-ahead is #, only the first item survives.
This improvement does not affect our example in Figure 7.24, but in general this use
of the reduction look-ahead set in the prediction of items creates fewer items, and is
thus more efficient.

7.2.4.3 Discussion

As with prediction look-ahead, the gain of reduction look-ahead in our example is
meager, but that is mainly due to the unnatural simplicity of our example. The effec-
tiveness of look-aheads in Earley parsers in the general case is not easily determined.
Bouckaert, Pirotte and Snelling [17], who have analysed variants of the Earley
parsers for two different look-ahead regimes, show that prediction look-ahead re-
duces the number of items by 20 to 50% or even more on “practical” grammars.
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Earley recommends the reduction look-ahead, but does not take into account the
effort required to compute and maintain the look-ahead sets. Bouckaert, Pirotte and
Snelling definitely condemn the reduction look-ahead, on the grounds that it may
easily double the number of items to be carried around, but they count, for example,
E—>eF[+-]@1 as two items. All in all, since the gain from reduction look-ahead
cannot be large and its implementation cost and overhead are probably considerable,
it is likely to be counterproductive in practice.

The well-tuned Earley/CYK parser by Graham, Harrison and Ruzzo [23] features
no look-ahead at all, claiming that more speed can be gained by efficient data struc-
tures and that carrying around look-ahead information would interfere with doing
SO.

McLean and Horspool [35] describe an optimized Earley parser, grouping the
Earley items into subsets corresponding to LR states.

7.2.5 Left and Right Recursion

It is interesting to see how the Earley parser reacts to left-recursive and right-
recursive grammars. As examples we will use the simple grammars S—Sa | € (left-
recursive) and S—as$ | € (right-recursive) on the input aaaa. . .. The Earley parser
handles left recursion extremely well:

completed, completed, completed, completed, completed
S—=>e @1 [S—>sae e1] [S—>Sae e1l] [S—sae e1] [S—>Sae e1l]
act/pred, @, act/pred, @y  act/pred; @3  act/pred, @4  act/preds
S—>eSa @1
~~~~~~~~~~~~~~~~ |s:>.s.-.a @1.| |s.—..>.s.-.a.@1| |S..—.>.S.-.a.@1.| |S.—..>.S.°.a @l|
S—>Sea @1

— itemset, = itemsety = itemset3 = itemsety = itemsets

We see that the result is dull but very efficient: each next item set is constructed with
a constant number of actions, so the parser takes linear time. (Note by the way that
after the single prediction in itemset| no further predictions occur; so all items have
origin position 1.)

The behavior on the right-recursive grammar is quite different:

completed.s
completed, completed, S—e @5
completed, s 53 S—e @1 S->aSe @4
completed, S—>e o2 S—>ase @2 S—>ase @3 S—>ase @3
S—>. el S—»ase el S—»ase @2
S—>aSe @1 S sage @1 S—>aSe @2
act/pred; 81 qctfpred, B2 as Q4 [s—sase @1

act/preds
S—>eaS. @l S—>ass el S>asS @2 act/pred, act/preds

S—>ealS @2 | « fo--ceieeieeoii- S—>aeS @3

= itemset; S—>eaS @3 e or S—>aeS @4
— 7 a8 @4 | 0 t-eeeeeeiiiiaia.

itemsets = itemset3 — itemsets S—>eaS @5

= itemsets

The number of completed items grows linearly because the parser recognizes n Ss in
positionn: a(a(a(a...))).This means that the parser has to perform 1 +2+3+
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44 ---4+n=n(n+1)/2 actions; so the time requirements are quadratic. Although
this is much better than the O(n?) from the general case, it is much worse than linear,
and somehow it seems wasteful.

When we follow the algorithm through this example, we see that it collects and
keeps a lot of information it never uses again. Let us look at position 4 where we have
just shifted over a3, which caused the S—eaS@3 in itemset; to be transformed into
S—>aeS@3 and to be inserted in actives. The Predictor predicts from it the items
S—>eas@4 (into predicted,) and S—>e@4 (into completed,). The Completer takes
the latter item, “reaches out” into itemsets to find items with the dot in front of
an S, and finds S—>aeS@3, which is transformed into S—>aSe@3, again a com-
pleted item. The process then repeats itself two more times, bringing in the items
S—>aSe@2 and S—>aSe@1.

The point to observe here is that, except for the final one all these completed items
were temporary results, which cannot be used again by any other action of the parser,
and we might as well not store them. This suggests that when a completed item pops
up, we should do all the further completions that result from it, and keep only the final
results. But there is a snag here: in the above example each completed item led to
just one other item, but in the general case a completed item for say a non-terminal
A may find more than one item with the dot in front of A, and soon we would be
bringing in more and more items. So we restrict our eager completion to completed
items whose processing by the Completer results in only one new item; we can then
safely discard the original completed item. We keep, however, the original item if it
was produced by the Predictor rather than by eager completion, since we will need
these items later to construct the parse tree(s). Such a chain of eager completions can
stop in one of three ways: 1. the result is a non-completed item; 2. proceeding further
would result in more than one item; 3. we cannot proceed further. The last situation
can only occur when we have reached the initial item set.

With this space-saving optimization, our parsing looks like:

completed, completed, completed, completed.s

completed, S @2 S>e @3 S—>e @4 S—>e @5

S—=e @1 S—aSe @l S—>aSe @l S—aSe @l S—>aSe @l
act/pred, a act/predy a act/preds a act/pred, ay act/preds
S—easS @1 S—>aeS @1 S—>aeS @2 S—>aeS @3 S—>aeS @4
— itemset; S—->.-aS @2 S—->.oaS @3 S—->.oaS @4 S—->.oaS @5
= itemset3 = itemset3 = itemsety = itemsets

and indeed the process now requires linear space. Unfortunately it still requires
quadratic time: the subsequent Scanner action over a4 will produce S—>aeS@4,
which produces S—>e@5, which will make the Completer visit item sets 4 through
1, so the time requirements are still quadratic. The point to notice here is that in
doing so the Completer repeated the work it did before on item sets 3 through 1.
Once an S has been completed in itemsets, the actions described above will be re-
peated, with the same result: the production of the item S—>aSe@1, discarding all
in-between items. More generally, once an A has been completed with origin posi-
tion i, the eager completion that follows will always yield the same result. So we can
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avoid this waste of effort by recording at each position a list of so called transitive
items. A transitive item B : A — 0.é3@ j in position i means that if a non-terminal B
is recognized in position i, eager completion will yield the itetm A — 0o @ ;.

With this new item type in place, the Completer completing a B in position i
will first check if there is a transitive item for B in that position, and if so, use it.
Otherwise it proceeds as described above, doing completion possibly followed by
eager completion. If the eager completion results in exactly one item, that item is
stored as a transitive item in position i, with the label B. In short, we memoize the
result of eager completion provided it is unique. This avoids all duplication of work,
and the parser requires linear time on the above and similar grammars:

compl/trans; compl/trans; compl/trans, compl/transs
compl/trans, =+ @2 §=>e @3 S+ @4 §=>e @
S §->ase 6l $->ase 6l §->ase 6l $->ase 6l
S:S—>e @1 S:S—e @1 S:S—>e @1 S:S—e @1 S:S—e @1
a a, as ay
act/pred, act/preds act/preds act/pred, act/preds
S—>eaS @l S—aeS @l S—>aeS @2 S—>aeS @3 S—>aeS @4
— itemset; S—>.oaS @2 S—>faS @3 S—>.oaS @4 S—>faS @5
= itemsets = itemsets = itemsets = itemsets

This improvement was invented by Leo [32], and is much better than one would
expect. It can be proved that the modified Earley parser runs in linear time on a very
large class of grammars, including the LR(k) grammars for any k (Section 9.4), and
even the LR-regular grammars (Section 9.13.2). It should be pointed out, however,
that the modified Earley parser has much more overhead than a made-to-measure
LR(k) or LR-regular parser. On the other hand, it will avoid duplicate work even on
grammars outside these classes, which is of course where its real usefulness lies.

In our zeal to remove items that cannot play a role in recognition, we have also
eliminated some items needed for constructing the parse tree. Leo’s paper [32] shows
how to modify that part of the Earley parser to cope with the deficiencies. It also
describes how to handle hidden right recursion.

7.3 Chart Parsing

Chart parsing is not an algorithm but rather a framework in which to develop and
experiment with parsers. It can be seen as an abstraction of Earley and CYK parsers,
and produces a wide variety of parsers similar to these. It is used extensively in
natural language processing, where its flexibility and easy implementability in Prolog
are appreciated.

The main data structure in chart parsing is the chart, a set of Earley items in our
terminology but traditionally interpreted and represented as labeled edges in a graph.
This graph has nodes (vertices) between the input tokens (and before and after them);
each edge (arc) runs from one vertex to another somewhere on the right of it, or to the
same vertex. The nodes are numbered from 1 to n+ 1. Edges are labeled with dotted
items; an edge running from node i to node j labeled with a dotted item A — oef3



7.3 Chart Parsing 227

means that the segment between nodes i and j can be parsed as o and that we hope to
be able to extend the edge with a . We shall write such an edge as (i,A — cef3, j).

Although there are different ways to treat terminal symbols in chart parsing, it is
convenient to make them single productions of non-terminals. A word like “cat” in
a position k is then represented by an edge (k,Noun—>’cat’ e k+1). As a result
the algorithms need to handle non-terminals only. This approach also abstracts from
the precise value of Noun in an early stage.

An edge labeled with an item with the dot in front of a symbol is called an active
edge, and one with the dot at the end is called an inactive item; the terms passive
item and completed item are also used for the latter. Figure 7.26 shows a chart with

A—>BCDeE

Ik Ter1 /3] k43 Tkra Ikts Ikv6

Fig. 7.26. A chart with four edges, three inactive and one active

one active edge, representing the hypothesis A—>BCDeE, and three inactive ones,
representing the fact that B, C, and D have been found. C happens to produce €. The
dashed arrow to the right symbolizes the activity of the active edge, looking for an E.

7.3.1 Inference Rules

In its most abstract form a chart parsing algorithm is specified by three sets of infer-
ence rules, where an inference rule is of the form

If the chart contains edges E|, E», - -- it must also contain an edge E.

One can say that edge E is required by edges Ej,Ey,---; the edges E|,E,,--- are
called the “conditions” and E the “inference”.

One set of rules is for completion, another is for steering the parsing process;
it can specify top-down, bottom-up, or left-corner parsing, or yet another parsing
regime. A third set of inference rules is for initializing the chart. The complete pars-
ing is then defined as the transitive closure of the rules over the chart; for transitive
closure see Section 3.9. Since the rules in these three sets can easily be changed
almost independently, this setup allows great flexibility.

7.3.2 A Transitive Closure Algorithm

The inference mechanism and the transitive closure algorithm are easy to program,
but a naive implementation is prone to looping on problematic grammars (those with
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loops, left recursion, infinite ambiguity, etc.) We will therefore present a robust im-
plementation of the transitive closure algorithm for chart parsing. In addition to the
chart it uses a list of newly discovered edges, the agenda; the order in which the
edges are kept and retrieved is to be specified later. The basic idea is that at all times
the following invariant holds:

If some edges in the chart and some inference rule require the existence of
an edge E, then E is present in the chart and/or the agenda.

This immediately implies that when the agenda is empty, all edges required by edges
in the chart are in the chart, and the transitive closure is complete. Also we will
have to initialize the chart and agenda so that the invariant already holds. The agenda
mechanism is summarized pictorially in Figure 7.27, where the normal arrows indi-
cate information flow and the fat ones represent actions that move edges.

Inference rules

strat
Grammar strategy
completion
Inference
Machine

VAR

(AN

input

Chart

Agenda

Fig. 7.27. The agenda in chart parsing

The transitive closure algorithm is very simple:

until the agenda is empty do:
extract an edge E from the agenda;
if E is already in the chart: discard it;
otherwise:
apply all inference rules to E and possibly one or more
edges from the chart, and put the resulting edges,
if any, in the agenda;
put E in the chart;

Several things should be noted here. First, the algorithm does not specify the order
in which edges are obtained from the agenda: the agenda can work as a stack, a first-
in-first-out queue, a priority queue, etc. Second, if E is already in the chart, it can
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indeed be discarded: all inferences from it and the chart have already been made.
Third, the algorithm does not specify the order in which the inference rules are to be
applied; the order is immaterial, since the results go into the agenda and do not affect
the chart or each other. Fourth, the edge E is put in the chart only after all inferences
have been drawn from it and put in the agenda, to avoid violating the invariant given
above. Fifth, no edge will be placed more than once in the chart; edges may occur
multiple times in the agenda, though.

The last, and probably most important thing to note is that the algorithm will
always terminate. We can see this as follows. Each cycle of the transitive closure
algorithm can do one of two things. It can either remove one edge from the agenda
or add a new edge to the chart and possibly add edges to the agenda. Now there are
only a finite number of edges possible, so the otherwise branch can be taken only
a finite number of times. That means that only a finite number of edges can be added
to the agenda, and they will eventually all be cleared out by the first action in the
loop body. For an example see Section 7.3.6.

7.3.3 Completion

The set of inference rules for completion is the same in almost all chart parsing
algorithms, and usually contains only one rule, called the “Fundamental Rule of
Chart Parsing”; it says:

If there is an active edge (i,A — cteBf, j) and an inactive edge (j,B — Ye,k),
there must be an edge (i,A — a.Bef, k).

Like the Completer in the Earley parser this rule shifts the dot over the B in the item
A — oeBf} when we have a completed B.

7.3.4 Bottom-Up (Actually Left-Corner)

We are now in a position to specify a complete chart parsing algorithm. The simplest
is probably the algorithm that is usually called “bottom-up chart parsing” but which
is actually left-corner. (Pure bottom-up chart parsing is possible but unusual; see
Problem 7.6.) It uses only one inference rule:

If the new edge E has the form (i,A — o, j) (is inactive), add an edge
(i,P — Aef3, j) for each rule P — AP in the grammar.

In other words, upon discovering an A try all rules that have an A as their left corner.
For initialization, we leave the chart empty and for all input tokens # put (k, 7} —
e,k + 1) in the agenda. If the grammar has e-rules, we put edges (k, P — e,k) for
each rule P — ¢ in the agenda, for all 1 < k <n-+ 1. The parser is now ready to run.

7.3.5 The Agenda

The moment we try to run the parser we find that it is underspecified. Which edge
should we extract from the agenda first? The simple answer is that it does not matter;
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we can extract them in any order and the parser will work. But doing so will recog-
nize the input in a very haphazard way, and if we want a more controlled parsing, we
need a more controlled agenda regime.

Suppose that we use the left-corner inference rule; that there are no e-rules in
the grammar; that the agenda acts as a stack; and that the input edges are stacked in
reverse order, so the edge for the leftmost token, (1,7 — te,2) ends up on top. First
the edge for T; is retrieved. There are no edges in the chart yet, so the Fundamental
Rule does nothing; but the new edge is an inactive edge, so the left-corner rule finds
grammar rules that have 7 for its left corner. In a grammar without e-rules there must
be at least one such rule; otherwise there would be no way to produce a sentence
starting with 77. An edge (1,A; — Tje0,,2) is made for each such rule and pushed
on the agenda stack. The edge for 77 is put in the chart. See Figure 7.28.

C’~>B.’Y____>

3] 15} 13 73

Fig. 7.28. The first few steps in constructing a chart under the left-corner inference rule

In the next cycle the topmost edge of the agenda is retrieved; we will assume it
is (1,A — Tjeq,2). Since it is not completed, it is put in the chart, and no new edges
are generated. Now the edge for #, is on top and is retrieved. It can either activate
the Fundamental Rule and combine with the edge for A into a new edge for, say, B,
which now spans 2 tokens, or create left-corner edges for itself by the left-corner
inference rule, or both. If we assume the edge for B is completed, the left-corner rule
will create at least one new edge for it, perhaps for C, starting at position 1. So slowly
a left spine is being constructed, as in a left-corner parser.

If there are e-rules, then, at initialization, edges for them must be put in the
agenda stack before the edges for each token, and at the end.

There are many possibilities for the agenda regime. We have seen the stack
regime in operation above; it leads to depth-first search, and if the edges for the
input tokens are stacked in order, a left-to-right parser results. A queue regime is
also possible, resulting in breadth-first search: first all inferences from all tokens are
drawn; next all inferences from these inferences are drawn, etc. We already see that
this allows left-corner parsing to be used with depth-first search (the usual order) and
breadth-first search (very unusual).

Another possibility is to assign a priority to each edge and run the agenda as a
priority queue. Not all words in a sentence are equally important, and sometimes it
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is wise to start our parsing with the most significant word, which in many languages
is the finite — i.e. the conjugated — verb. As a result, the first edge created may
already determine the structure of the sentence. Additional inference rules are then
required to steer the parsing process so as to obtain edges for the components of this
first edge. This is highly useful in head-corner parsing, for which see Section 10.3. A
head-corner parser using this technique is described by Proudian and Pollard [198].

7.3.6 Top-Down

A top-down parser tries to predict the next production rule by inspecting the predic-
tion stack. This stack consists of the remainders of right-hand sides that have already
been recognized. In our chart parser, if the edge retrieved from the agenda is of the
form (i,A — 0B, j) (it is an active edge), the prediction it holds is Bp. This leads
to the traditional top-down inference rule:

If the new edge E has the form (i,A — oeBp, ) (is active), add an edge
(j,B — o7, j) for each rule B — 7 in the grammar.

In a practical parser this rule will have additional conditions based on look-ahead,
but the parser will also work without them. The parser can be initialized by putting
an edge for the start symbol running from 1 to 1 and edges for the input tokens on
the agenda stack, in that order.

We know that we have to be careful about left recursion in top-down parsers
(Section 6.3.2), but it is easy to see that our transitive closure algorithm avoids
the problem, as already claimed in Section 7.3.2. Suppose we have a left-
recursive non-terminal with the rules L—>La, L—>Lb, and L—>c, and an edge
(i,P—...eL...,j) comes up. This causes edges for all three rules for L to be
pushed in some order, say (j,L—>eLa, j), (j,L—>ec, ), (j,L—>eLb, j); see Figure
7.29(a). In this figure we have shown only the items, to fit it on the page; the start

Agenda (stacking upwards):

L—>eLb L—>eLb

L—>ec L—>ec L—>ec
L—>eLb L-—>eLa L—>elLa L-—>eLa L—>elLa
L—>ec L—ec L—>ec L—ec L—>ec
L—>eLlLa L—>eLa L—>elLa L—>eLa L—elLa

Chart (adding downwards):

L—>eLb L—>eLb L—>eLb L—>eLb L—>eLb
L—>ec L—>ec L—>ec
L—>elLa L—eLa
(a) (®) (¢) (d) (e) 0

Fig. 7.29. Left recursion: the agenda and the chart
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and stop positions are j and j in all cases. Next the edge (j, L—>eLb, j) is popped,
and causes all three rules for L to be pushed again; that done, it is put in the chart
(b). Now a (j,L—>eLb, j) gets popped again, but is discarded since it is already in
the chart (¢). Next an edge (j,L—>ec, j) is popped, and handed over to the inference
mechanism. It may introduce other edges but these are not concerned with the non-
terminal L; eventually the edge itself is put in the chart (d). The edge (j,L—>eLa, j)
is popped, and is replaced by another set of three edges for L; the edge itself again
goes to the chart (e). Finally the remaining items are popped one by one, and since
all of them are already in the chart, they are all discarded, so the displayed part of
the agenda disappears (f).

7.3.7 Conclusion

Chart parsing is a very versatile framework for creating and tailoring general context-
free parsers, and the present description can only hint at the possibilities. For exam-
ple, a chart parser will happily accept more than one interpretation of the same token
in the input, which is very convenient for natural language parsing. An ambiguous
word like “saw” at position k can be entered as two edges, (k,Noun—’saw’ e k+
1) and (k,VerbPastTense—'saw’ e k+ 1). Chart parsing shares with Earley
parsing its O(n?) time requirements.

Chart parsing was invented by Kay in the early 1970s [16]. Many sophisticated
inference rules have been published, for example by Kilbury [24] and Kay [25]. For a
comparison of these see Wirén [27]. The agenda mechanism was introduced by Kay
[25]. The literature references in (Web)Section 18.1.2 contain many other examples.
There are several Prolog implementations of chart parsing on the Internet.

Probably the most extensive application of transitive closure and inference rules
to parsing is by Sikkel [158].

Figure 7.30 shows the recognition table of Figure 4.16 in chart format.

Number

Fig. 7.30. The recognition table of Figure 4.16 in chart format
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7.4 Conclusion

General bottom-up parsing methods are powerful because they start from the raw ma-
terial, the input string, and recognize everything that can be recognized; they leave no
stone unturned. Just because of this thoroughness they easily fall prey to exponential
explosion. To remedy this, a top-down component is added, resulting in the Earley
algorithm. The tabular implementation of this algorithm, chart parsing, allows fine
control over the top-down, bottom-up, and prediction content of the parser.

Problems

Problem 7.1: Redesign the depth-first and breadth-first parsing algorithms of
Sections 7.1.1 and 7.1.2 so they yield parse-forest grammars (Section 3.7.4) rather
than sequences of parse trees.

Problem 7.2: The naive parsing algorithms of Sections 7.1.1 and 7.1.2 do not
work for grammars with e-rules, but intuitively this defect is easily remedied: just
recognize € at all positions and backtrack if the recognition does not lead anywhere.
Explain why this plan does not work.

Problem 7.3: Suppose all terminal symbols in a given grammar are different.
Can that property be exploited in parser design?

Problem 7.4: The Earley sets from position 1 to a position k contain all predic-
tion stacks possible at k. We can see this as follows. An item A — 0.e3@m contains
the beginning of a prediction, 3. The next segment of the prediction can be found as
the § in the item X — YeAJ in the item set at position m. Such an item must exist, but
there may be more than one, in which case the prediction forks, and we get a predic-
tion tree. a) Construct this prediction tree for position 3 in the parsing in Figure 7.11.
b) Describe the complete algorithm for constructing the prediction tree at a position
k.

Problem 7.5: The transitive items in position 7 in the improved Earley parser
from Section 7.2.5 can be computed right away when itemset; is constructed, or
the computation can be postponed until a Completer comes along for the first time.
Comment on the difference.

Problem 7.6: Pure bottom-up chart parsing uses no additional rules besides the
Fundamental Rule. Find an initialization that will make this parser work.

Problem 7.7: Show that the left-corner chart parser in this chapter will not loop
on grammars with loops in them.
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Deterministic Top-Down Parsing

In Chapter 6 we discussed two general top-down methods: one using breadth-first
search and one using depth-first search. These methods have in common the need to
search to find derivations, and thus are not efficient. In this chapter and the next we
will concentrate on parsers that do not have to search: there will always be only one
possibility to choose from. Parsers with this property are called deterministic. Deter-
ministic parsers have several advantages over non-deterministic ones: they are much
faster; they produce only one parse tree, so ambiguity is no longer a problem; and this
parse tree can be constructed on the fly rather than having to be retrieved afterwards.
But there is a penalty: the class of grammars that the deterministic parsing methods
are suitable for, while depending on the method chosen, is more restricted than that
of the grammars suitable for non-deterministic parsing methods. In particular, only
non-ambiguous grammars can be used.

In this chapter we will focus on deterministic top-down methods. As has been
explained in Section 3.5.5, there is only one such method, this in contrast with the
deterministic bottom-up methods, which will be discussed in the next chapter. From
Chapters 3 and 6 we know that in a top-down parser we have a prediction for the rest
of the input, and that this prediction has either a terminal symbol in front, in which
case we “match”, or a non-terminal, in which case we “predict”.

It is the predict step that, until now, has caused us so much trouble. The predict
step consists of replacing a non-terminal by one of its right-hand sides, and if we
have no means to decide which right-hand side to select, we have to try them all. One
restriction we could impose on the grammar, one that immediately comes to mind,
is limiting the number of alternatives for each non-terminal to one. Then we would
need no search, because no selection would be needed. However, such a restriction
is far too severe, as it would leave us only with languages that consist of one word.
So, limiting the number of right-hand sides per non-terminal to one is not a solution.

There are two sources of information that could help us in selecting the right
right-hand side. First there is the partial derivation as it has been constructed so far.
However, apart from the prediction this does not give us any information about the
rest of the input. The other source of information is the rest of the input. We will
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see that looking ahead at the next symbol or the next few symbols will, for certain
grammars, tell us which choice to make.

8.1 Replacing Search by Table Look-Up

As a first step we will consider a simple form of grammars which make it partic-
ularly easy to limit the search, grammars in which each right-hand side starts with
a terminal symbol. In this case, a predict step is always immediately followed by a
match step, matching the next input symbol with the symbol starting the right-hand
side selected in the prediction. This match step can only succeed for right-hand sides
that start with this input symbol. The other right-hand sides will immediately lead to
a match step that will fail. We can use this fact to limit the number of predictions as
follows: only the right-hand sides that start with a terminal symbol that is equal to
the next input symbol will be considered. For example, consider the grammar of Fig-
ure 6.1, repeated in Figure 8.1, and the input sentence aabb. Using the breadth-first

Ss —> aB | ba
A — a | asS | baa
B — b | bs | aBB

Fig. 8.1. A grammar producing sentences with an equal number of as and bs

top-down method of Chapter 6, extended with the observation described above, re-
sults in the steps of Figure 8.2: Frame a presents the start of the automaton; we have
appended the # end marker both to the initial prediction and the input. Only one
right-hand side of S starts with an a, so this is the only applicable right-hand side;
this leads to frame b. Next, a match step leads to c. The next input symbol is again
an a, so only one right-hand side of B is applicable, resulting in frame d. Frame e is
the result of a match step; this time, the next input symbol is a b, so two right-hand
sides of B are applicable; this leads to f. Frame g is the result of a match step; again,
the next input symbol is a b, so two right-hand sides of B and one right-hand side
of 8 are applicable; this leads to frame A. This again calls for a match step, leading
to i. Now there are no applicable right-hand sides for S and A, because there are no
right-hand sides starting with a #; thus, these predictions are dead ends. This leaves
a match step for the only remaining prediction, leading to frame j.

We could enhance the efficiency of this method even further by precomputing the
applicable right-hand sides for each non-terminal/terminal combination, and enter
these in a table. For the grammar of Figure 8.1, this would result in the table of
Figure 8.3. Such a table is called a parse table or a parsing table.

Despite its title, most of this chapter concerns the construction of these parse
tables. Once such a parse table is obtained, the actions of the parser are obvious.
The parser does not need the grammar any more. Instead, every time a predict step
is called for, the parser uses the next input symbol and the non-terminal at hand as
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‘aabb# ‘aabb#
(a) — (b) —
| s# S| | aB#
a ‘ abb# a ‘ abb#
(c) — (d) —
Sia | B# S|aB; | aBB#
aa ‘ bb# aa ‘ bb#
(e) SiaBsa | BB# — (f) S;aB3aB; | bB# —
SjaB3aB; | bSB#
aab [ b# aab [ b#
(2) SjaB3aB|b | B# — (h) S;aB3aB|bB| | b# _
S;aB3aB)b | SB# S|aB3aB|bB; | bS#
S;aB3aB,bS, | bAB#
aabb ‘ # aabb# ‘
) S;aB3aBbB|b | # ) S;aB3aB|bB b#
S;aB3aB|bB)b | S#
S;aB3aB,bS;b | AB#

Fig. 8.2. The limited breadth-first parsing of the sentence aabb

a b #

S| S;—aB S, —=bA
A | A —>a A3z —>bAA
Ar—aS
B | B3—aBB | B|—=b
B, =bSs

Fig. 8.3. The parse table for the grammar of Figure 8.1

indices in the parse table. The corresponding table entry contains the right-hand sides
that have to be considered. For example, in Figure 8.2(e), the parser would use input
symbol b and non-terminal B to determine that it has to consider the right-hand sides
B; and B,. If the corresponding table entry is empty, we have found an error in the
input and the input sentence cannot be derived from the grammar. Using the parse
table of Figure 8.3 instead of the grammar of Figure 8.1 for parsing the sentence
aabb will again lead to Figure 8.2. The advantage of using a parse table is that we
do not have to check all right-hand sides of a non-terminal any more to see if they
start with the right terminal symbol.

We still have a search process, albeit a more limited one than we had before.
Given a prediction A and an input token a, the search is now confined to the elements
of the parse table entry for [A,a]. This means that we now only need a search because
of the [A,a] and the [B,b] entries of the table. These entries have more than one
element, so we need the search to determine which one results in a derivation of the
input sentence.
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This last observation is an important one: it immediately leads to a restriction
that we could impose on the grammar, to make the parsing deterministic: we could
require that each parse table entry contain at most one element. In terms of the gram-
mar, this means that all right-hand sides of a non-terminal start with a different ter-
minal symbol. A grammar which fulfills this requirement is called a simple LL(1)
grammar (SLL(1)), or an s-grammar. “LL(1)” means that the grammar allows a de-
terministic parser that operates from Left to right, produces a Left-most derivation,
using a look-ahead of one (1) symbol.

Consider for example the grammar of Figure 8.4. This grammar generates all

Ss —> aB
— b | aBb

Fig. 8.4. An example SLL(1) grammar

sentences starting with a number of as, followed by an equal number of bs. The
grammar is clearly SLL(1). It leads to the parse table of Figure 8.5. The parsing

| _a [ b [#
S | S;—aB
B | B,—aBb | Bj—b

Fig. 8.5. The parse table for the grammar of Figure 8.4

of the sentence aabb is presented in Figure 8.6. Again we have added the # end
marker to signal termination. As expected, there is always only one prediction, so

aabb# aabb# a|abb#
— — —
S# S| |aB# Sia|B#
[¢V] 2 3)
a|abb# aa|bb# aa|bb#
— — —
S1aB; |aBb# SiaBa|Bb# S1aBaB; |bb#
(€] ) 6)
aab (b# aabb |# aabb#
— —
SiaB,aB|b |b# SiaB,aB bb|# S;aB,aB | bb#
(@] ®) )

Fig. 8.6. The SLL(1) parsing of the sentence aabb

no search is needed. Thus, the process is deterministic, and therefore very efficient.
The efficiency could be enhanced even further by combining the predict step with
the match step that always follows the predict step.
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So, SLL(1) grammars lead to simple and very efficient parsers. However, the re-
strictions that we have placed on the grammar are severe. Not many practical gram-
mars are SLL(1), although many can be transformed into SLL(1) form. In the next
section, we will consider a more general class of grammars that still allows the same
kind of parser.

8.2 LL(1) Parsing

For the deterministic top-down parser described in the previous section, the crucial
restriction placed on the grammar is that all right-hand sides of a non-terminal start
with a different terminal symbol. This ensures that each parse table entry contains at
most one element. In this section, we will drop the requirement that right-hand sides
start with a terminal symbol. We will see that we can still construct a parse table in
that case. Later on, we will see that we can even construct a parse table for grammars
with e-rules.

8.2.1 LL(1) Parsing without e-Rules

If a grammar has no e-rules, there are no non-terminals that derive the empty string.
In other words, each non-terminal ultimately derives strings of terminal symbols of
length at least one, and this also holds for each right-hand side. The terminal symbols
that start these strings are the ones that we are interested in. Once we know for each
right-hand side which terminal symbols can start a string derived from this right-
hand side, we can construct a parse table, just as we did in the previous section. So,
we have to compute this set of terminal symbols for each right-hand side.

8.2.1.1 FIRST, Sets

These sets of terminal symbols are called the “FIRST; sets”: if we have a non-empty
sentential form x, then FIRST|(x) is the set of terminal symbols that can start a
sentential form derived from x in zero or more production steps. The subscript | in-
dicates that the set contains single terminal symbols only. Later, we will see FIRST}
sets, consisting of strings of terminal symbols of length at most k. For now, we will
drop the subscript ;: we will use FIRST instead of FIRST;. If x starts with a terminal
symbol, then FIRST(x) is a set that has this symbol as its only member. If x starts
with a non-terminal A, then FIRST(x) is equal to FIRST(A), because A cannot pro-
duce €. So, if we can compute the FIRST set for any non-terminal A, we can compute
it for any sentential form x. However, FIRST(A) depends on the right-hand sides of
the A-rules: it is the union of the FIRST sets of these right-hand sides. These FIRST
sets may again depend on the FIRST set of some non-terminal. This could even be A
itself, if the rule is directly or indirectly left-recursive. This observation suggests the
iterative process described below to compute the FIRST sets of all non-terminals:

e We first initialize the FIRST sets to the empty set.
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e Then we process each grammar rule in the following way: if the right-hand side
starts with a terminal symbol, we add this symbol to the FIRST set of the left-
hand side, since it can be the first symbol of a sentential form derived from the
left-hand side. If the right-hand side starts with a non-terminal symbol, we add
all symbols of the present FIRST set of this non-terminal to the FIRST set of the
left-hand side. These are all symbols that can be the first terminal symbol of a
sentential form derived from the left-hand side.

* The previous step is repeated until no more new symbols are added to any of the
FIRST sets.

Eventually, no more new symbols can be added, because the maximum number of
elements in a FIRST set is the number of symbols, and the number of FIRST sets is
equal to the number of non-terminals. Therefore, the total number of times that a new
symbol can be added to any FIRST set is limited by the product of the number of
symbols and the number of non-terminals. This is an example of a transitive closure
algorithm.

8.2.1.2 Producing the Parse Table

With the help of these FIRST sets, we can now construct a parse table for the gram-
mar. We process each grammar rule A — o in the following way: if o starts with a
terminal symbol a, we add the right-hand side o to the (A,a) entry of the parse table;
if o starts with a non-terminal, we add o to the (A,a) entry of the parse table for all
symbols a in FIRST(o). This parse table can then be used for parsing as described in
Section 8.1.

Now let us compute the parse table for the example grammar of Figure 8.7. This

Sessiony — Fact Session

Sessiony — Question

Sessiong — ( Session ) Session
Fact —= ! STRING

Question — ? STRING

Fig. 8.7. An example grammar

grammar describes a simple language that could be used as the input language for a
rudimentary consulting system: the user enters some facts, and then asks a question.
There is also a facility for sub-sessions. The contents of the facts and questions are
of no concern here. They are represented by the word STRING, which is regarded as
a terminal symbol.

We first compute the FIRST sets. Initially, the FIRST sets are all empty.
Then, we process all grammar rules in the order of Figure 8.7. The grammar rule
Session —> Fact Sessionresultsinadding the symbols from FIRST(Fact)
to FIRST(Session), but FIRST(Fact) is still empty. The grammar rule
Session—>Question results in adding the symbols from FIRST(Question)
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to FIRST(Session), but FIRST(Question) is still empty too. The gram-
mar rule Session —> ( Session ) Session results in adding ( to
FIRST(Session). The grammar rule Fact — ! STRING results in adding ! to
FIRST(Fact), and the grammar rule Question — ? STRING resultsin adding
? to FIRST(Question). So, after processing all right-hand sides once, we have the
following:

FIRST(Session) | FIRST(Fact) | FIRST(Question)
( \ ! \ ?

Next, we process all grammar rules again. This time, the grammar rule
Session — Fact Session will result in adding ! (from FIRST(Fact)) to
FIRST(Session), the grammar rule Session —> Question will result in
adding ? to FIRST(Session), and no other changes will take place. So now we
get:

FIRST(Session) | FIRST(Fact) | FIRST(Question)

B \ 1 \ ?

There were some changes, so we have to repeat this process once more. This time,
there are no changes, so the table above presents the FIRST sets of the non-terminals.

Now we have all the information we need to create the parse table. We have
to add Fact Session to the [Session,a] entry for all terminal symbols a in
FIRST(Fact Session). The only terminal symbol in FIRST(Fact Session)
is !, so we add Fact Session to the [Session,!] entry. Likewise, we add
Question to the [Session,?] entry. Next we add ( Session ) Session
to the [Session, (] entry, ! STRING to the [Fact,!] entry, and ? STRING to
the [Question,?] entry. This results in the parse table of Figure 8.8, where we
show just the right-hand sides of the predicted rules in the entries, since the left-hand
sides are already shown as the indexes on the left. All parse table entries have at

\ 1 \ ? \ ( | ) | sSTRING | #
Session Fact Session | Question | ( Session ) Session
Question ? STRING

Fact ! STRING

Fig. 8.8. The parse table for the grammar of Figure 8.7

most one right-hand side, so the parser is deterministic. A grammar without e-rules
is called LL(1) if all entries of the parse table, as constructed above, have at most
one element, or, in other words, if for every non-terminal A the FIRST sets of A are
pairwise disjoint (no symbol occurs in more than one). If two or more such FIRST
sets contain the same symbol, we have a FIRST/FIRST conflict and the grammar is
not LL(1).

We have lost the S (simplicity) of SLL(1), but the parser is still as simple as
before. Producing the parse table has become more difficult, but we have gained
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a lot: many practical grammars are LL(1), or are easily transformed into an LL(1)
grammar.

8.2.2 LL(1) Parsing with e-Rules

Not allowing e-rules is, however, still a major drawback. Certain language constructs
are difficult, if not impossible, to describe with an LL(1) grammar without €-rules.
For example, non-terminals that describe lists of terminals or non-terminals are dif-
ficult to express without e-rules. Of course, we could write

A — aA | a

for a list of as, but this is not LL(1). Compare also the grammar of Figure 8.7 with
the one of Figure 8.9. They describe the same language, but the one of Figure 8.9 is
much clearer.

Sessiong; —> Facts Question | ( Session ) Session
Facts —> Fact Facts | ¢
Fact — ! STRING

Question — ? STRING

Fig. 8.9. The grammar of Figure 8.7 rewritten

8.2.2.1 Extending the FIRST Sets

The main problem with allowing €-rules is that the FIRST sets, as we have discussed
them in the previous section, are not sufficient any more. For example, the Facts
non-terminal in the grammar of Figure 8.9 has an e-rule. The FIRST set for this
right-hand side is empty, so it does not tell us on which look-ahead symbols we
should choose this right-hand side. Also, in the presence of €-rules, the computation
of the FIRST sets itself needs some revision. For example, if we compute the FIRST
set of the first right-hand side of Session using the method of the previous section,
? will not be a member, but it should, because Facts can derive € (it is transparent),
and then ? starts a sentential form that can be derived from Session.

Let us first extend the FIRST definition to also deal with e-rules. This time, in
addition to terminal symbols, € will also be allowed as a member of a FIRST set. We
will now also have to deal with empty sentential forms, so we will sometimes need
the FIRST(¢) set; we will define it as the set containing only the empty string €. We
will also add € to the FIRST set of a sentential form if this sentential form derives €.

These may seem minor changes, but the presence of e-rules affects the computa-
tion of the FIRST sets. FIRST(uju; - - - u,), which was simply equal to FIRST(u1), is
now computed as follows. We take FIRST(u ), examine if it contains €, and if so, we
remove the € and replace it by FIRST(u - -- u,). Apart from this, the computation of
the revised FIRST sets proceeds in exactly the same way as before, using the same
transitive closure technique.
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The treatment of € is easy to understand: if FIRST(u;) contains €, it is transparent,
so the tokens in FIRST(uy --- u,) show up through it, and the original € disappears
in the process. Of course the same algorithm is used to compute FIRST(uy --- u,),
etc. This chain of events ends at the first u; whose FIRST(u;) does not contain €.
If all of the FIRST(u;), FIRST(u«>), ... FIRST(x,) contain €, the last step is the
addition of FIRST(¢) to FIRST(uu; - - - u,), thus showing that the whole alternative
is transparent.

For some algorithms we need to know whether a non-terminal A derives €. Al-
though we could compute this information separately, using the method described in
Section 4.2.1, we can more easily see if € is a member of the FIRST(A) set as com-
puted. This method uses the fact that if a non-terminal derives €, € will ultimately be
a member of its FIRST set.

Now let us compute the FIRST sets for the grammar of Figure 8.9. They
are first initialized to the empty set. Then, we process each grammar rule:
the rule Session — Facts Question results in adding the terminal sym-
bols from FIRST(Facts) to FIRST(Session). However, FIRST(Facts) is
still empty. The rule Session —> ( Session ) Session results in adding
( to FIRST(Session). Then, the rule Facts — Fact Facts results in
adding the symbols from FIRST(Fact) (still empty) to FIRST(Facts), and
the rule Facts — ¢ results in adding € to FIRST(Facts). Then, the rule
Fact — ! STRING results in adding ! to FIRST(Fact), and the rule
Question — ? STRING adds ? to FIRST(Question). This completes the
first pass over the grammar rules, resulting in:

FIRST(Session) | FIRST(Facts) | FIRST(Fact) | FIRST(Question)
( \ e \ ! \ ?

The second pass is more interesting: this time, we know that Facts
derives €, and therefore the rule Session — Facts Question adds
the symbols from FIRST(Question) (?) to FIRST(Session). The rule
Facts — Fact Facts adds ! to FIRST(Facts). So we get:

FIRST(Session) | FIRST(Facts) | FIRST(Fact) | FIRST(Question)

(? \ el \ ! \ ?

In the third pass, the only change is the addition of ! to FIRST(Session),
because it is now a member of FIRST(Facts). So we have:

FIRST(Session) | FIRST(Facts) | FIRST(Fact) | FIRST(Question)
(2 \ e! \ ! \ ?

The fourth pass does not result in any new additions.

The question remains how to decide when an € right-hand side or, for that matter,
aright-hand side which derives € is to be predicted. Suppose that we have a grammar
rule

A — oq|op|-- oy

where o, is or derives €. Now suppose we find A at the front of a prediction, as in
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where we again have added the # end marker. A breadth-first parser would have to
investigate the following predictions:

We know how to compute the FIRST sets of these predictions, and we know that
none of them contains €, because of the end marker (#). If the next input symbol
is not a member of any of these FIRST sets, either the prediction we started with
(Ax#) is wrong, or there is an error in the input sentence. Otherwise, the next input
symbol is a member of one or more of these FIRST sets, and we can strike out the
predictions that do not have the symbol in their FIRST set. Now, if none of these
FIRST sets have a symbol in common with any of the other FIRST sets, the next
input symbol can only be a member of at most one of these FIRST sets, so at most
one prediction remains, and the parser is deterministic at this point.

A context-free grammar is called LL(/) if this is always the case. In other words,
a grammar is LL(1) if for any prediction Ax#, with A a non-terminal with right-
hand sides o, . .., 0, the sets FIRST(oux#), ..., FIRST(o,x#) are pairwise disjoint
(no symbol is a member of more than one set). This definition of LL(1) does not
conflict with the one that we gave on page 241 for grammars without e-rules. In that
case FIRST(a,;x#) is equal to FIRST(0;) since o is not transparent, so the above
definition reduces to the requirement that all FIRST(a.), ..., FIRST(a,,) be pairwise
disjoint.

The above is the official definition of an LL(1) grammar (possibly with e-rules),
but since it requires dynamic computation of FIRST sets, it is usually replaced in
practice by a simplified form which allows precomputation at parser generation time.
This version is described in the next section. Unfortunately it is often also called
“LL(1)”, although the official term is “strong-LL(1)”; to avoid confusion we will
often use the term “full LL(1)” for the dynamic version described above. Section
8.2.4 gives a reasonably efficient implementation of full LL(1), which allows a large
degree of precomputation.

8.2.2.2 The Need for FOLLOW Sets

With the above building blocks we can in principle construct a deterministic parser
for any LL(1) grammar. This parser operates by starting with the prediction S#, and
its prediction steps consist of replacing the non-terminal at hand with each of its
right-hand sides, computing the FIRST sets of the resulting predictions, and checking
whether the next input symbol is a member of any of these sets. We then continue
with the predictions for which this is the case. If there is more than one prediction,
the parser announces that the grammar is not LL(1) and stops.
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Although this is a deterministic parser, it is far from ideal. First, it does not use
a parse table like the one in Figure 8.8, and it does not check the LL(1) property of
the grammar until parsing time; we would like to check that property during parser
generation time, while computing the parse tables. Second, it is not very efficient,
because it has to compute several FIRST sets at each prediction step. We cannot
precompute these FIRST sets, because in the presence of e-rules such a FIRST set
depends on all of the predictions (of which there are infinitely many), not just on the
first non-terminal. So we still do not know whether, and if so, how we can construct a
parse table for an LL(1) grammar with e-rules, nor do we have a method to determine
if such a grammar is LL(1).

Now suppose we have a prediction Ax# and a rule A — o, and o is or derives
€. The input symbols that lead to the selection of A — o are the symbols in the set
FIRST(ow#), and as we have seen this set is formed by the symbols in FIRST(c),
extended with the symbols in FIRST(x#), because of the transparency of o. The set
FIRST(x#) is the problem: we cannot compute it at parser generation time. What we
can precompute, though, is the union of all FIRST(x#) sets such that x# can follow
A in any prediction. This is just the set of all terminal symbols that can follow A in
any sentential form derivable from S# (not just the present prediction) and is called,
quite reasonably, the FOLLOW set of A, FOLLOW(A).

It would seem that such a gross approximation would seriously weaken the parser
or even make it incorrect, but this is not so. Suppose that this set contains a symbol
a that is not a member of FIRST(x#), and a is the next input symbol. If a is not a
member of FIRST(A), we will predict A — o, and we will ultimately end up with
a failing match, because oux# does not derive a string starting with an a. So the
input string will (correctly) be rejected, although the error will be detected a bit later
than before, because the parser may make some e-predictions before finding out that
something is wrong. If a is a member of FIRST(A) then we may have a problem if
a is a member of one of the FIRST sets of the other right-hand sides of A. We will
worry about this a bit later.

The good thing about FOLLOW sets is that we can compute them at parser gen-
eration time. Each non-terminal has a FOLLOW set, and they can be computed as
follows:

e as with the computation of the FIRST sets, we start with the FOLLOW sets all
empty.

* Next we process all right-hand sides, including the S# one. Whenever a right-
hand side contains a non-terminal, as in A — --- By, we add all symbols from
FIRST(y) to FOLLOW(B), since these symbols can follow a B. In addition, if y
derives €, we add all symbols from FOLLOW(A) to FOLLOW(B).

e The previous step is repeated until no more new symbols can be added to any of
the FOLLOW sets.

This is again an example of a transitive closure algorithm.

Now let us go back to our example and compute the FOLLOW sets. Start-
ing with Session #, # is added to FOLLOW(Session). Next, the sym-
bols of FIRST(Question) (?) are added to FOLLOW(Facts), because of
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the rule Session — Facts Question. This rule also adds all symbols of
FOLLOW(Session) (#) to FOLLOW(Question).

The rule Session —> ( Session ) Session results in adding the
) symbol to FOLLOW(Session) and in a spurious addition of all symbols
of FOLLOW(Session) to FOLLOW(Session). The next rule is the rule
Facts —> Fact Facts. All symbols from FIRST(Facts) (!) are added
to FOLLOW(Fact), and since Facts produces empty, all symbols from
FOLLOW(Facts) (?) are added to FOLLOW(Fact). The other rules do not re-
sult in any additions. So, after the first pass we have:

FOLLOW(Session) | FOLLOW(Facts) | FOLLOW(Fact) | FOLLOW(Question)

#) \ ? \ 12 \ #

In the second pass, ) is added to FOLLOW(Question), because
it is now a member of FOLLOW(Session), and all members of
FOLLOW(Session) become a member of FOLLOW(Question) because
of the rule Session — Facts Question.

In the third pass no changes take place. The resulting FOLLOW sets are pre-
sented below:

FOLLOW(Session) | FOLLOW(Facts) | FOLLOW(Fact) | FOLLOW(Question)

#) \ ? \ 1? \ #)

8.2.2.3 Using the FOLLOW Sets to Produce a Parse Table

Once we know the FOLLOW set for each non-terminal that derives €, we can con-
struct a parse table. First we compute the FIRST set of each non-terminal. This also
tells us which non-terminals derive €. Next, we compute the FOLLOW set of each
non-terminal. Then, starting with an empty parse table, we process each grammar
rule A — « as follows: we add the right-hand side o to the [A,a] entry of the parse
table for all terminal symbols a in FIRST(c), as we did before. This time however,
we also add o to the [A,a] entry of the parse table for all terminal symbols a in
FOLLOW(A) when a is or derives € (when FIRST(o) contains €). A shorter way of
saying this is that we add o to the [A,a] entry of the parse table for all terminal sym-
bols a in FIRST(oo FOLLOW(A)). This last set consists of the union of the FIRST
sets of the sentential forms o for all symbols b in FOLLOW(A).

If a token in a FOLLOW set causes the addition of a right-hand side to an entry
that already contains a right-hand side due to a token in a FIRST set, we have a
FIRST/FOLLOW conflict, and the grammar is not LL(1). It is even possible to have
a FOLLOW/FOLLOW conflict: an entry receives two right-hand sides, both brought
in by tokens from FOLLOW sets. This happens if more than one alternative of a
non-terminal can produce €.

Now let us produce a parse table for our example. The
Session — Facts Question rule does not derive €, because Question
does not. Therefore, only the terminal symbols in FIRST(Facts Question)lead
to addition of this rule to the table. FIRST(Facts Question) contains ! from
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FIRST(Facts) and ? from FIRST(Question) because Facts derives €. So the
right-hand side Facts Question must be entered in the entries [Session,!]
and [Session,?]; the right-hand side ( Session ) Session should be added
to entry [Session,(].

FIRST(Fact Facts) is {!}, so this right-hand side is entered in [Facts,!].
Since the right-hand side of Facts—>¢ produces € but has an otherwise empty
FIRST set, its look-ahead set is FOLLOW (Facts), which contains just ?; so the
right-hand side € is entered in entry [Facts,?].

Similarly, all other rules are added, resulting in the parse table presented in Figure
8.10.

| ( ) | #] ! | ? | STRING
Session ( Session ) Facts Facts
Session Question Question
Facts Fact Facts | ¢
Fact ! STRING
Question ? STRING

Fig. 8.10. The parse table for the grammar of Figure 8.9

8.2.3 LL(1) versus Strong-LL(1)

If all entries of the resulting parse table have at most one element, the parser is
again deterministic. In this case, the grammar is called strong-LL(1) and the parser
is called a strong-LL(1) parser. In the literature, strong-LL(1) is often referred to
as “strong LL(1)”, without a hyphen between the words “strong” and “LL”. This is
misleading because it indicates that “strong” belongs to “grammar” rather than to
“LL(1)”, which in turn suggests that the class of strong-LL(1) grammars is more
powerful than the class of LL(1) grammars. This is not the case: every strong-LL(1)
grammar is LL(1).

It is perhaps more surprising that every LL(1) grammar is strong-LL(1). In other
words, every grammar that is not strong-LL(1) is not LL(1), and this is demonstrated
with the following argument: if a grammar is not strong-LL(1), there is a parse table
entry, say (A,a), with at least two elements, say o and . This means that a is a
member of both FIRST(oo FOLLOW(A)) and FIRST(B FOLLOW(A)). Now there
are three possibilities:

e ais amember of both FIRST(ot) and FIRST(P). In this case, the grammar cannot
be LL(1), because for any prediction Ax#, a is a member of both FIRST(ou#)
and FIRST(Bx#).

e ais a member of either FIRST(a) or FIRST(B), but not both. Let us assume,
without loss of generality, that a is a member of FIRST(a). In this case, a is still
a member of FIRST(B FOLLOW(A)), so there is a prediction Ax#, such that a is
a member of FIRST(Bx#). However, a is also a member of FIRST(ox#), so the
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grammar is not LL(1). In other words, in this case there is a prediction in which
an LL(1) parser cannot decide which right-hand side to choose either.

e a is neither a member of FIRST(a), nor a member of FIRST(B). In this case o
and B must derive € and @ must be a member of FOLLOW(A). This means that
there is a prediction Ax# such that a is a member of FIRST(x#) and thus a is a
member of both FIRST(owc#) and FIRST(Bx#), so the grammar is not LL(1). This
means that in an LL(1) grammar at most one right-hand side of any non-terminal
derives €.

8.2.4 Full LL(1) Parsing

We already mentioned briefly that an important difference between LL(1) pars-
ing and strong-LL(1) parsing is that the strong-LL(1) parser sometimes makes -
predictions before detecting an error. Consider for example the following grammar:

Ss —- aAb | baAa
A - c8S | ¢

The strong-LL(1) parse table of this grammar is:
| a2 | b | |#

S|aAb|bAa
A|eg € c S

Now, on input sentence aacabb, the strong-LL(1) parser makes the following
moves:

aacabb# aacabb# a|acabb#
— — —
S# S| |aAb# Sia|Ab#
Q)] ) 3)
a|acabb#
SiaA; |b#

)

The problem here is that the prediction is destroyed by the time the error is de-
tected. In contrast, a full-LL(1) parser would not do the last step, because neither
FIRST(b#), nor FIRST(cSb#) contain a, so the full-LL(1) parser would detect the
error before choosing a right-hand side for A. A full-LL(1) parser has the immediate
error detection property, which means that an error is detected as soon as the erro-
neous symbol is first examined, whereas a strong-LL(1) parser only has the correct-
prefix property, which means that the parser detects an error as soon as an attempt is
made to match (or shift) the erroneous symbol. In Chapter 16, we will see that the
immediate error detection property will help improve error recovery.

Given a prediction A---#, a full-LL(1) parser bases its parsing decisions on
FIRST(A - - - #) rather than on the approximation FIRST(A FOLLOW(A)); this avoids
any parsing decisions on erroneous input symbols (which can never occur in
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FIRST(A - - #) but may occur in FIRST(A FOLLOW(A))). So, if we have predic-
tion A---# and input symbol a, we first have to determine if a is a member of
FIRST(A - - - #), before consulting the parse table to choose a right-hand side for A.
The penalty for this is in efficiency: every time that parse table has to be consulted, a
FIRST set has to be computed and a check made that the input symbol is a member.

Fortunately, we can do better than this. A first step to improvement is the follow-
ing: suppose that we maintain between all symbols in the prediction a set of terminal
symbols that are correct at this point, like this:

X Y z # ]
@ ® @ @

Here, @ is the set of symbols that are legal at this point; this is just the FIRST set
of the remaining part of the prediction: FIRST(#); likewise, @ is FIRST(Z#), ®
is FIRST(YZ#), and @ is FIRST(XYZ#). These sets can easily be computed, from
right to left. For example, @ consists of the symbols in FIRST(Y'), with the symbols
from @ added if Y derives € (if € is a member of FIRST(Y)). When a non-terminal is
replaced by one of its right-hand sides, the set behind this right-hand side is available,
and we can use this to compute the sets within this right-hand side and in front of
it. Since none of these sets contain €, they give an immediate answer to the question
which prediction to choose.
Now let us see how this works for our example. As the reader can easily verify,

FIRST(S) ={ a, b}, and
FIRST(A) = { ¢, €}.

The parser starts with the prediction S#. We have to find a starting point for the sets:
it makes sense to start with an empty one to the right of the #, because no symbols
are correct after the #. So the parser starts in the following state:

aacabb#

s #
a,b #

The first input symbol is a member of the current FIRST set, so it is correct. The (S,
a) entry of the parse table contains aAb, so we get parser state

aacabb#
Sy a A b #

Computing the sets marked with a question mark from right to left results in the
following parser state:
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|aacabb#
S a A b #
a b,c b #

Note that b now is a member of the set in front of A, but a is not, although it is a
member of FOLLOW(&). After the match step, the parser is in the following state:

a|acabb#
S A b #
;ﬂp b #
The next input symbol is not a member of the current FIRST set, so an error is
detected, and no right-hand side of A is chosen. Instead, the prediction is left intact,
so error recovery can profit from it.

It is not clear that all this is more efficient than computing the FIRST set of a
prediction to determine the correctness of an input symbol before choosing a right-
hand side. However, it does suggest that we can do this at parser generation time, by
combining non-terminals with the FIRST sets that can follow it in a prediction. For
our example, we always start with non-terminal S and the set {#}. We will indicate
this with the pair [S,{#}]. Starting with this pair, we will try to make rules for the
behavior of each pair that turns up, for each valid look-ahead. We know from the
FIRST sets of the alternatives for S that on look-ahead symbol a, [S,{#}] results in

right-hand side aAb. Now the only symbol that can follow A here is a b. So in fact,
we have:

on look-ahead symbol a, [S,{#}] results in right-hand side a [A,{b}] b.
Similarly we find:
on look-ahead symbol b, [S,{#}] results in right-hand side b [A,{a}] a.

We have now obtained pairs for A followed by a b, and A followed by an a. So we
have to make rules for them: We know that on look-ahead symbol ¢, [A,{b}] results
in right-hand side ¢S. Because A can only be followed by a b in this context, the
same holds for this S. This gives:

on look-ahead symbol ¢, [A,{b}] results in right-hand side ¢ [S,{b}].
Likewise, we get the following rules:

on look-ahead symbol b, [A,{b}] results in right-hand side €;
on look-ahead symbol ¢, [A,{a}] results in right-hand side ¢ [S,{a}];
on look-ahead symbol a, [A,{a}] results in right-hand side €.

Now we have to make rules for the pairs S followed by an a, and S followed by a b:

on look-ahead symbol a, [S,{a}] results in right-hand side a [A,{b}] b;
on look-ahead symbol b, [S,{a}] results in right-hand side b [A,{a}] a;
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on look-ahead symbol a, [S,{b}] results in right-hand side a [A,{b}] b;
on look-ahead symbol b, [S,{b}] results in right-hand side b [A,{a}] a.

In fact, we find that we have rewritten the grammar, using the (non-terminal,
followed-by set) pairs as non-terminals, into the following form:

[s,{#}1 — a [A,{b}] b | b [A,{a}] a
[s,{a}] — a [a,{b}] b | b [a,{a}] a
[S,{b}] — a [a,{b}] b | b [A,{a}] a
[a,{a}] — c Is,{a}] | ¢
[a,{b}] — c [s,{b}] | ¢

For this grammar, the following parse table can be produced:
| a | b | e |#

[s,{#}1 |a [A,{b}] b|b [A,{a}] a

[s,{a}] |a [aA,{b}] b|b [A,{a}] a

[s,{b}] |a [A,{b}] b|b [A,{a}] a

[a,{a}] |¢ c [s,{a}]

[a,{b}l € c [s,{b}]

The entries for the different [S,...] rules are identical so we can merge them.
After that, the only change with respect to the original parse table is the duplication
of the A-rule: now there is one copy for each context in which A has a different set
behind it in a prediction.

Now, after accepting the first a of aacabb, the prediction is [A,{b}]b#; since
the parse table entry ([A,{b}], a) is empty, parsing will stop here and now.

The resulting parser is exactly the same as the strong-LL(1) one. Only the parse
table is different. Often, the LL(1) table is much larger than the strong-LL(1) one.
As the benefit of having an LL(1) parser only lies in that it detects some errors a bit
earlier, this usually is not considered worth the extra cost, and thus most parsers that
are advertised as LL(1) parsers are actually strong-LL(1) parsers.

In summary, confronted with a prediction stack Ao and a grammar rule A — J3,

e a(full) LL(1) parser bases its decisions on the FIRST set of Bot and the first token
of the input;

e astrong-LL(1) parser bases its decisions on the FIRST set of 3, the FOLLOW
set of A when [§ produces €, and the first token of the input;

e asimple-LL(1) parser bases its decisions on the first token of 3 and the first token
of the input.

8.2.5 Solving LL(1) Conflicts

If a parse table entry has more than one element, we have an “LL(1) conflict”. In
this section, we will discuss how to deal with them. We have already seen one way
to deal with conflicts: use a depth-first or a breadth-first parser with a one sym-
bol look-ahead. This, however, has several disadvantages: the resulting parser is not
deterministic any more, it is less efficient (often to such an extent that it becomes
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unacceptable), and it still does not work for left-recursive grammars. Therefore, we
want to try and eliminate these conflicts, so we can use an ordinary LL(1) parser.

Two techniques that can help us here are left recursion elimination and left-
factoring. These can be performed by hand relatively easily and are described in the
next two sections. Grammars for which these two techniques are sufficient are called
“kind grammars”; see Zemli¢ka and Kral [106, 107, 108] for their precise definition
and processing.

8.2.5.1 Left-Recursion Elimination

The first step to take is the elimination of left recursion. Left-recursive grammars
always lead to LL(1) conflicts, because the right-hand side causing the left recursion
has a FIRST set that contains all symbols from the FIRST set of the non-terminal.
Therefore, it also contains all terminal symbols of the FIRST sets of the other right-
hand sides of the non-terminal. Eliminating left recursion has already been discussed
in Section 6.4.

8.2.5.2 Left-Factoring

A further technique for removing LL(1) conflicts is left-factoring. Left-factoring of
grammar rules is like factoring arithmetic expressions:

axb+axc=ax(b+c).
The grammatical equivalent to this is a rule
A — xy|xz

which clearly has an LL(1) conflict on the terminal symbols in FIRST(x). We replace
this grammar rule with the two rules

A — xN
N — y|z

where N is a new non-terminal. There have been some attempts to automate this
process; see Foster [405], Hammer [406], and Rosenkrantz and Hunt [408].

8.2.5.3 Conflict Resolvers

Sometimes, these techniques do not help much. We could for example be dealing
with a language for which no LL(1) grammar exists. In fact, many languages can be
described by a context-free grammar, but not by an LL(1) grammar. Another method
of handling conflicts is to resolve them by so-called disambiguating rules. An ex-
ample of such a disambiguating rule is: “on a conflict, the textually first of the con-
flicting right-hand sides is chosen”. With this disambiguating rule, the order of the
right-hand sides within a grammar rule becomes crucial, and unexpected results may
occur if the grammar-processing program does not clearly indicate where conflicts
occur and how they are resolved.
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A better method is to have the grammar writer specify explicitly how each con-
flict must be resolved, using so-called conflict resolvers. One option is to resolve
conflicts at parser generation time. Parser generators that allow this kind of conflict
resolver usually have a mechanism that enables the user to indicate (at parser gener-
ation time) which right-hand side must be chosen on a conflict. Another, much more
flexible method is to have conflicts resolved at parse time. When the parser meets
a conflict, it calls a user-specified conflict resolver. Such a conflict resolver has the
complete left-context at its disposal, so it could base its choice on this left context. It
is also possible to have the parser look further ahead in the input, and then resolve the
conflict based on the symbols found. See Milton, Kirchhoff and Rowland [337] and
Grune and Jacobs [362], for similar approaches using attribute grammars. (Attribute
grammars are discussed in Section 15.3.1.)

8.2.6 LL(1) and Recursive Descent

Most hand-written parsers are LL(1) parsers. They usually are written in the form of
a non-backtracking compiled recursive-descent parser (see Section 6.6). In fact, this
is a very simple way to implement a strong-LL(1) parser. For a non-terminal A with
grammar rule

A — o | e | (o
the parsing routine has the following structure:

procedure A;
if look_ahead € FIRST(0,; FOLLOW(A)) then
code for o ...
else if look_ahead € FIRST (o, FOLLOW(A)) then
code for oy ...

else if look_ahead € FIRST(o,, FOLLOW(A)) then
code for o, ...
else ERROR;
end A;

The look-ahead symbol always resides in a variable called “look_ahead”. The pro-
cedure ERROR announces an error and stops the parser.

The code for a right-hand side consists of the code for the symbols of the right-
hand side. A non-terminal symbol results in a call to the parsing routine for this
non-terminal, and a terminal symbol results in a call to a MATCH routine with this
symbol as parameter. This MATCH routine has the following structure:

procedure MATCH(sym);
if look_ahead = sym then
look_ahead := NEXTSYM
else ERROR;
end MATCH;
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The NEXTSYM procedure reads the next symbol from the input.

Several LL(1) parser generators produce a recursive descent parser instead of a
parse table that is to be interpreted by a grammar-independent parser. The advantages
of generating a recursive descent parser are numerous:

e Semantic actions are easily embedded in the parsing routines.

* A parameter mechanism or attribute mechanism comes virtually for free: the
parser generator can use the parameter mechanism of the implementation lan-
guage.

* Non-backtracking recursive descent parsers are quite efficient, often more effi-
cient than the table-driven ones.

e Dynamic conflict resolvers are implemented easily.

The most important disadvantage of generating a recursive descent parser is the
size of the parser. A recursive descent parser is usually larger than a table-driven one
(including the table). With present computer memories this is no longer a problem,
however.

8.3 Increasing the Power of Deterministic LL Parsing

There are many situations in which a look-ahead of one token is not enough. A prime
example is the definition of an element of an expression in a programming language:

elementy —> idf | idf ( parameters ) | idf [ indexes ]

where idf produces identifiers. This grammar fragment defines expression elements
like x, sin (0.41), and T[3, 11, each of which starts with an identifier; only the
second token allows us to distinguish between the alternatives.

There are several ways to increase the power of deterministic LL parsing, and we
have already seen one above: conflict resolvers. This section concentrates on extend-
ing the look-ahead, first to a bounded number of tokens and then to an unbounded
number. In between we treat an efficient compromise.

8.3.1 LL(k) Grammars

It is possible and occasionally useful to have a look-ahead of k symbols with k > 1,
leading to LL(k) grammars. To achieve this, we need a definition of FIRST}, sets: if
x is a sentential form, then FIRST(x) is the set of terminal strings w such that |w|
(the length of w) is less than k and x-w, or |w]| is equal to k, and x-wy, for some
sentential form y. For k = 1 this definition coincides with the definition of the FIRST
sets as we have seen it before.

We now have the instruments needed to define LL(k): a grammar is LL(k) if for
any prediction Ax#k, with A a non-terminal with right-hand sides o, ..., o, the
sets FIRSTk(Otlx#k), e, FIRSTk(Ocnx#k) are pairwise disjoint. (Here #~ represents a
sequence of k #s; they are required to supply enough look-ahead tokens for checking
near the end of the input string.) Obviously, for any k, the set of LL(k) grammars is
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a subset of the set of LL(k 4 1) grammars, and in fact, for any k there are LL(k+ 1)
grammars that are not LL(k). A trivial example of this is given in Figure 8.11. Less

ss — ab | afa

Fig. 8.11. An LL(k+ 1) grammar that is not LL(k)

obvious is that for any k there are languages that are LL(k + 1), but not LL(k). An
example of such a language is given in Figure 8.12. See Kurki-Suonio [42] for more

S — aSA | &
A — abs | ¢

Fig. 8.12. A grammar defining an LL(k 4 1) language that is not LL(k)

details.

With LL(k) grammars we have the same problem as with the LL(1) grammars:
producing a parse table is difficult. In the LL(1) case, we solved this problem with
the aid of the FOLLOW sets, obtaining strong-LL(1) parsers. We can try the same
with LL(k) grammars using FOLLOW;} sets. For any non-terminal A, FOLLOW}(A)
is now defined as the union of the sets FIRST;(x#%), for any prediction Ax#r.

Once we have the FIRSTy sets and the FOLLOW} sets, we can produce a parse
table for the grammar. Like the LL(1) parse table, this parse table will be indexed
with pairs consisting of a non-terminal and a terminal string of length equal to k.
Every grammar rule A — « is processed as follows: o is added to the (A, w) entry
of the table for every w in FIRSTy(o0 FOLLOW,(A)) (as we have seen before, this
last set denotes the union of several FIRST; sets: it is the union of all FIRST;(ow)
sets with v an element of FOLLOW/{(A)). All this is just an extension to k look-ahead
symbols of what we did earlier with one look-ahead symbol.

If this results in a parse table where all entries have at most one element, the
grammar is strong-LL(k). Unlike the LL(1) case however, for k > 1 there are gram-
mars that are LL(k), but not strong-LL(k). An example of such a grammar is given
in Figure 8.13.

S —> akaa | baba
A — b | e

Fig. 8.13. An LL(2) grammar that is not strong-LL(2)

This raises an interesting question, one that has kept the authors busy for quite a
while: why is it different for k = 1? If we try to repeat our proof from Section 8.2.3
for a look-ahead k > 1, we see that we fail at the very last step: let us examine a
strong-LL(k) conflict: suppose that the right-hand sides o and B both end up in the
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(A, w) entry of the parse table. This means that w is a member of both FIRST; (o
FOLLOW,(A)) and FIRST(3 FOLLOW(A)). Now there are three cases:

e w is a member of both FIRST;(ct) and FIRST.(B). In this case, the grammar
cannot be LL(k), because for any prediction Ax#* w is a member of both
FIRSTy(cux#*) and FIRST,(Bx#).

e wis a member of either FIRST (o) or FIRST.(B), but not both. Let us say that
w is a member of FIRST,(o). In this case, w still is a member of FIRST;(3
FOLLOW((A)) so there is a prediction Ax#X, such that w is a member of
FIRSTk(Bx#k). However, w is also a member of FIRST;(oux#), so the gram-
mar is not LL(k). In other words, in this case there is a prediction in which an
LL(k) parser cannot decide which right-hand side to choose either.

* wis neither a member of FIRST(cr) nor a member of FIRST (). Here, we have
to deviate from the reasoning we used in the LL(1) case. As w is an element of
FIRSTy (o0 FOLLOW[(A)), w can now be split into two parts w1 and wj 2, such
that wy 1 is an element of FIRSTy (o) and wy » is a non-empty start of an element
of FOLLOW(A). Likewise, w can be split into two parts wy | and w»» such that
wy.1 is an element of FIRST,(B) and w;; is a non-empty start of an element of
FOLLOW[(A). So we have the following situation:

Now, if wi.| = wa.1, wi 1 is a member of FIRST (o), as well as FIRST(B), and
there is a prediction Ax#* such that x#>"w,---. So FIRSTk(O(.x#k) contains w
and so does FIRSTk(Bx#k), and therefore, the grammar is not LL(k). So the only
case left is that wy | # wp 1. Neither wy » nor wy » are €, and this is just impossible
if jw| = 1.

Strong-LL(k) parsers with k > 1 are seldom used in practice, partly because the
gain is marginal and the same effect can often be obtained by using conflict resolvers,
and partly because the parse tables can be large. That problem may, however, have
been exaggerated in the literature, since the table entries are mostly empty and the
tables lend themselves very well to table compression.

To obtain a full-LL(k) parser, the method that we used to obtain a full-LL(1)
parser can be extended to deal with pairs (A, L), where L is a FIRST}, set of x#* in
some prediction Ax#*. This extension is straightforward and will not be discussed
further.

8.3.2 Linear-Approximate LL(k)

The large LL(k) tables and their heavy construction mechanism can often be avoided
by a simple trick: in addition to FIRST sets of non-terminals and alternatives, we
introduce SECOND sets: the set of tokens that can occur in second position in the
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terminals productions of a non-terminal or alternative. We then choose an alterna-
tive A if the first token of the input is in FIRST(A) and the second token of the
input is in SECOND(A). Rather than a table of size O(¢?), where ¢ is the number
of terminals in the grammar, this technique needs two tables of size O(¢); also, the
tables are easier to generate. This gives us a poor man’s version of LL(2), called
“linear-approximate LL(2)”, and, with the introduction of THIRD, FOURTH, etc.
sets, linear-approximate LL(k).

If the first non-terminal in an alternative produces only one token, its FOLLOW
set must be called upon to create the correct SECOND set for that alternative. With
this provision, it is easy to see that linear-approximate LL(2) efficiently and cheaply
handles the grammar fragment for expression elements at the beginning of Section
8.3 on page 254.

In principle linear-approximate LL(2) is weaker than LL(2), because it breaks
the relationships between the two tokens in the look-ahead sets. If two alternatives
in an LL(2) parser have look-ahead sets of {ab,cd} and {ad,cb} respectively, they
are disjoint; but under linear-approximate LL(2) both have a FIRST set of ac and
a SECOND set of bd, so they are no longer disjoint. In practice this effect is rare,
though.

Linear-approximate LL was first described by Parr and Quong [51], who also
give implementation details.

8.3.3 LL-Regular

LL(k) provides bounded look-ahead, but grammar rules like A—Bb | B¢ with B pro-
ducing for example a” show that bounded look-ahead will not always suffice: the
discriminating token can be arbitrarily far away.

This suggests unbounded look-ahead, but that is easier said than done. Un-
bounded look-ahead is much more important and has been investigated much more
extensively in LR parsing, and is treated in depth in Section 9.13.2. We will give here
just an outline of the LL version; for details see Jarzabek and Krawczyk [44], Nijholt
[45], Poplawski [47], and Nijholt [48].

If bounded look-ahead is not enough, we need a way to describe the set of un-
bounded look-ahead sequences, which suggests a grammar. And indeed it turns out
that each alternative defines its own context-free look-ahead grammar. But this has
two problems: it solves the parsing problem by almost doing the same parsing, and
we cannot decide if the look-ahead grammars of two alternatives are disjoint. To
solve both problems we approximate the CF grammars by regular grammars (hence
the term “LL-regular”): disjointness of regular expressions can be decided, and there
is a trick to do regular analysis of the input only once for the entire parsing.

There is no hard and fast algorithm for the approximation of the CF grammars
with regular grammars, but there are many heuristics.

LL-regular is probably of theoretical interest only; if a parser writer goes through
that much trouble, the effort is more wisely spent on LR-regular. Still, it offers many
interesting insights, and the parser landscape would be incomplete without it.
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8.4 Getting a Parse Tree Grammar from LL(1) Parsing

Getting a parse tree grammar from LL(1) parsing is straightforward. The basic idea is
to create a new grammar rule for each prediction; the non-terminals in the right-hand
side are numbered using an increasing global counter, and the resulting right-hand
side is also inserted in the prediction stack. This produces numbered non-terminals in
the prediction stack, which then lead to the creation of more newly numbered rules.
The created rules then form the parse tree grammar. Since the parser is deterministic,
there is only one parse, and we obtain a parse tree grammar rather than a parse forest
grammar.

To see how it works in some more detail we refer to the grammar in Figure
8.9 and parse table 8.10. We start with a prediction stack Session 1 #, a look-
ahead ! and a global counter which now stands at 2. For non-terminal Session
and look-ahead ! the table predicts Session —> Facts Question. So we
generate the parse tree grammar rule Session 1 —> Facts 2 Question 3
where Session_ 1 obtains its number from the prediction and the Facts 2
and Question 3 obtain their numbers from the global counter. Next we
turn the prediction stack into Facts 2 Question 3 #. For Facts and
! the parse table yields the prediction Facts —> Fact Facts which
gives us the parse tree grammar rule Facts 2 —> Fact 4 Facts 5
and a stack Fact 4 Facts 5 Question 3 #. The next step is simi-
lar and produces the grammar rule Fact 4 — ! STRING and a stack
! STRING Facts 5 Question 3 #. Now we are ready to match the !.

This process generates successive layers of the parse tree, using non-terminal
names like Question 3 and Facts 5 as forward pointers. See Figure 8.14,
where the leaves of the tree spell the absorbed input followed by the prediction stack.
When the parsing is finished, the leaves spell the input string.

Fig. 8.14. Partial parse tree/grammar for input starting with ! STRING ...

There is no need to clean the resulting grammar. It cannot have undefined non-
terminals: each non-terminal created in a right-hand side is also put on the prediction
stack and a subsequent prediction will create a rule for it. It cannot have unreachable
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non-terminals either: rules are only created for non-terminals in the prediction stack,
and these all derive from predictions that ultimately derive from the start symbol.

8.5 Extended LL(1) Grammars

Several parser generators accept an extended context-free grammar instead of an or-
dinary one. See for example Lewi et al. [46], Heckmann [49], and Grune and Jacobs
[362]. Extended context-free grammars have been discussed in Chapter 2. To check
that an extended context-free grammar is LL(1), we have to transform the extended
context-free grammar into an ordinary one, in a way that will avoid introducing LL(1)
conflicts. For example, the transformation for Something™ given in Chapter 2:

Something* — Something | Something Something®

will not do, because it will result in an LL(1) conflict on the symbols in
FIRST(Something). Instead, we will use the following transformations:

Something* — ¢ | Something Something*
Something® —> Something Something*
Something’ —> & | Something

If the resulting grammar is LL(1), the original extended context-free grammar was
ELL(1) (Extended LL(1)). This is the recursive interpretation of Chapter 2. Parser
generation usually proceeds as follows: first transform the grammar to an ordinary
context-free grammar, and then produce a parse table for it.

Extended LL(1) grammars allow a more efficient implementation in recursive
descent parsers. In this case, Something’ can be implemented as an if statement:

if look_ahead € FIRST(Something) then
code for Something...

else if look_ahead ¢ FOLLOW(Some thing’) then
ERROR;

Something” can be implemented as a while loop:

while look_ahead € FIRST(Something) do
code for Something...

if look_ahead ¢ FOLLOW(Some thing”) then
ERROR;

and Something® can be implemented as a repeat loop:

repeat
if look_ahead ¢ FIRST(Something) then
ERROR;
code for Something ...
until look_ahead € FOLLOW(Something™);

Here procedure calls have been replaced by much more efficient repetitive constructs.
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8.6 Conclusion

LL(1) parsing is a method with a strong intuitive appeal: the parser reads the input
from left to right, making decisions on its next step based on its expectation (predic-
tion stack) and the next token in the input. In some sense it “just follows the signs”.
The process can be implemented conveniently as a set of mutually recursive routines,
one for each non-terminal. If there were no €-rules, that would be about the whole
story.

An e-rule does not produce tokens, so it does not provide signs to follow. Instead
it is transparent, which makes us consider the set of tokens that can occur after it. This
set is dynamic, and it cannot be precomputed, but derives from the prediction. It can,
however, be approximated from above, by using the FOLLOW set; a precomputable
linear-time parser results.

The power of deterministic LL parsing can be increased by extending the look-
ahead, to bounded length, resulting in LL(k) parsing, or to unbounded length, in
LL-regular parsing. Linear-approximate LL(2) is a convenient and simplified form
of LL(2) parsing.

Problems

Problem 8.1: Under what conditions is a grammar LL(0)? What can be said
about the language it produces?

Problem 8.2: An LL(1) grammar is converted to CNF, as in Section 4.2.3. Is it
still LL(1)?

Problem 8.3: In an LL(1) grammar all non-terminals that have only one alter-
native are substituted out. Is the resulting grammar still LL(1)?

Problem 8.4: What does it mean when a column for a token ¢ in an LL(1) parse
table is completely empty (for example # in Figure 8.5)?

Problem 8.5: a. Is the following grammar LL(1)?

Ss — Ab | Ac
A — &

Check with your local LL(1) parser generator. b. Same question for

Ss — Ab | Ac
A - a | ¢

c. Same question for

Ss — A
A — aA

Problem 8.6: In Section 8.2.5.1 we give a simple argument showing that no
left-recursive grammar can be LL(1): the union of the FIRST sets of the non-left-
recursive alternatives would be equal the FIRST set of the left-recursive alternative,
thus causing massive FIRST/FIRST conflicts. But what about the grammar
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Ss —> S B | ¢
B — ¢

which is left-recursive, obviously not LL(1), but the FIRST sets of both alternatives
contain only €?

Problem 8.7: Devise an algorithm to check if a given parse table could have
originated from an LL(1) grammar through the LL(1) parse table construction pro-
cess.

Problem 8.8: Devise an efficient table structure for an LL(k) parser where & is
fairly large, say between 5 and 20. (Such grammars may arise in grammatical data
compression, Section 17.5.1.)






9

Deterministic Bottom-Up Parsing

There is a great variety of deterministic bottom-up parsing methods. The first de-
terministic parsers (Wolpe [110], Adams and Schlesinger [109]) were bottom-up
parsers and interest has only increased since. The full bibliography of this book on its
web site contains about 280 entries on deterministic bottom-up parsing against some
85 on deterministic top-down parsing. These figures may not directly reflect the rel-
ative importance of the methods, but they are certainly indicative of the fascination
and complexity of the subject of this chapter.

There are two families of deterministic bottom-up parsers:

Pure bottom-up parsers. This family comprises the precedence and bounded-
(right)-context techniques, and are treated in Sections 9.1 to 9.3.

Bottom-up parsers with an additional top-down component. This family, which
is both more powerful and more complicated than the pure bottom-up parsers,
consists of the LR techniques and is treated in Sections 9.4 to 9.10.

There are two main ways in which deterministic bottom-up methods are extended to
allow more grammars to be handled:

Remaining non-determinism is resolved by breadth-first search. This leads to
Generalized LR parsing, which is covered in Section 11.1.

The requirement that the bottom-up parser does the reductions in reverse right-
most production order (see below and Section 3.4.3.2) is dropped. This leads to
non-canonical parsing, which is covered in Chapter 10.

The proper setting for the subject at hand can best be obtained by summarizing a

number of relevant facts from previous chapters.

A rightmost production expands the rightmost non-terminal in a sentential form,
by replacing it by one of its right-hand sides, as explained in Section 2.4.3. A
sentence is then produced by repeated rightmost production until no non-terminal
remains. See Figure 9.1(a), where the sentential forms are right-aligned to show
how the production process creeps to the left, where it terminates. The grammar
used is that of Figure 7.8.
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a-a+a
F| -a+a
E| -a+a
EQ| a+a

EQF| +a

EQ| a
EQF

(a) (b)

Fig. 9.1. Rightmost production (a) and rightmost reduction (b)

e Each step of a bottom-up parser, working on a sentential form, identifies the latest
rightmost production in it and undoes it by reducing a segment of the input to the
non-terminal it derived from. The identified segment and the production rule are
called the “handle” (Section 3.4.3.2).

Since the parser starts with the final sentential form of the production process
(that is, the input) it finds its first reduction somewhere near to the left end, which
is convenient for stream-based input. A bottom-up parser identifies rightmost
productions in reverse order. See Figure 9.1(b) where the handles are left-aligned
to show how the reduction process condenses the input.

* To obtain an efficient parser we need an efficient method to identify handles,
without considering alternative choices. So the handle search must either yield
one handle, in which case it must be the proper one, or no handle, in which case
we have found an error in the input.

Although this chapter is called “Deterministic Bottom-Up Parsing”, it is almost
exclusively concerned with methods for finding handles. Once the handle is found,
parsing is (almost always) trivial. The exceptions will be treated separately.

Unlike top-down parsing, which identifies productions before any of its con-
stituents have been identified, bottom-up parsing identifies a production only at its
very end, when all its constituents have already been identified. A top-down parser
allows semantic actions to be performed at the beginning of a production and these
actions can help in determining the semantics of the constituents. In a bottom-up
parser, semantic actions are only performed during a reduction, which occurs at the
end of a production, and the semantics of the constituents have to be determined
without the benefit of knowing in which production they occur. We see that the in-
creased power of bottom-up parsing compared to top-down parsing comes at a price:
since the decision what production applies is postponed to the last moment, that de-
cision can be based upon the fullest possible information, but it also means that the
actions that depend on this decision come very late.
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9.1 Simple Handle-Finding Techniques

There is a situation in daily life in which the average citizen is called upon to identify
a handle. If one sees a formula like
44+5x6+8

one immediately identifies the handle and evaluates it:

4 4+5%x6-+8
4+ 30 + 8
The next handle is
44+ 30 + 8
34 + 8
and then
34 + 8
42

If we look closely, we can discern shifts and reduces in this process. People doing
the arithmetic shift symbols until they reach the situation

44+5x%x6 + 8

in which the control mechanism in their heads tells them that this is the right moment
to do a reduce. If asked why, they might answer something like: “Ah, well, I was
taught in school that multiplication comes before addition”. Before we formalize
this notion and turn it into a parsing method, we consider an even simpler case.
Meanwhile we note that formulas like the one above are called “arithmetic ex-
pressions” and are produced by the grammar of Figure 9.2. S is the start symbol, E

Ss —= E
E —- E+ T
E — T
T —- T x F
T — F
F — n
F - (E)

Fig. 9.2. A grammar for simple arithmetic expressions

stands for “expression”, T for “term”, F for “factor” and n for any number. Having
n rather than an explicit number causes no problems, since the exact value is imma-
terial to the parsing process. We have demarcated the beginning and the end of the
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expression with # marks; the blank space that normally surrounds a formula is not
good enough for automatic processing. The parser accepts the input as correct and
stops when the input has been reduced to #S.#.

An arithmetic expression is fully parenthesized if each operator together with its
operands has parentheses around it:

S —= E
E — (E+ T)
E — T
T — (T xF)
T — F
F — n

Our example expression would have the form

# ( (4 + (5x6)) +8) #

>

Now finding the handle is trivial: go to the first closing parenthesis and then back to
the nearest opening parenthesis. The segment between and including the parentheses
is the handle and the operator identifies the production rule. Reduce it and repeat the
process as often as required. Note that after the reduction there is no need to start
all over again, looking for the first closing parenthesis: there cannot be any closing
parenthesis on the left of the reduction spot. So we can start searching right where
we are. In the above example we find the next right parenthesis immediately and do
the next reduction:

# ( (4 +30) +8) #

I

9.2 Precedence Parsing

Of course, grammars normally do not have these convenient begin- and end markers
to each compound right-hand side, and the above parsing method has little practical
value (as far as we know it does not even have a name). Yet, suppose we had a method
for inserting the proper parentheses into an expression that was lacking them. At a
first glance this seems trivial to do: when we see +nx we know we can replace this
by + (nx and we can replace xn+ by xn) +. There is a slight problem with +n+, but
since the first + has to be performed first, we replace this by +n) +. The #s are easy;
we can replace #n by # (n and n# by n) #. For our example we get:

# (4 + (5 x6) +8) #

This is, however, not quite correct — it should have been # ( (4+ (5x6) ) +8) # —
and for 4+5x6 we get the obviously incorrect form # (4+ (5x6) #.
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9.2.1 Parenthesis Generators

The problem is that we do not know how many parentheses to insert in, for ex-
ample, +nx: in 4+5x6 we should replace it by + (nx to obtain # (4+ (5x6) ) #,
but 4+5x6x76x8 would require it to be replaced by + ( ( (nx, etc. We solve this
problem by inserting parenthesis generators rather than parentheses. A generator for
open parentheses is traditionally written as <, one for closing parentheses as >; we
shall also use a “non-parenthesis”, =. These symbols look confusingly like <, > and
=, to which they are only remotely related. Now our tentatively inserted parentheses
become firmly inserted parenthesis generators; see Figure 9.3. We have left out the

+ X = + < x
X + = x > +
+ + = + > +
# = > #

Fig. 9.3. Preliminary table of precedence relations

n since the parenthesis generator is dependent on the left and right operators only.

The table in Figure 9.3 is incomplete: the pattern x x is missing, as are all pat-
terns involving parentheses. In principle there should be a pattern for each combi-
nation of two operators (where we count the genuine parentheses as operators), and
only the generator to be inserted is relevant for each combination. This generator is
called the precedence relation between the two operators. It is convenient to collect
all combinations of operators in a table, the precedence table. The precedence table
for the grammar of Figure 9.2 is given in Figure 9.4; the leftmost column contains
the left-hand symbols and the top-most row the right-hand symbols.

# 0+ | x| (])
Bl =|<|<|<
+> > <|<|>
x| >|>|>|<|>
( <|<|<|=
) | > > | > >

Fig. 9.4. Operator-precedence table to the grammar of Figure 9.2

There are three remarks to be made about this precedence table. First, we have
added a number of < and > tokens not covered above (for example, x>x). Second,
there is #=# and (=) — but there is no ) = ( ! We shall shortly see what they mean.
And third, there are three empty entries. When we find these combinations in the
input, it contains an error.

Such a table is called a precedence table because for symbols that are normally
regarded as operators it gives their relative precedence. An entry like +< x indicates
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that in the combination +x, the x has a higher precedence than the +. We shall first
show how the precedence table is used in parsing and then how such a precedence
table can be constructed systematically for a given grammar, if the grammar allows
it.

The stack in an operator-precedence parser differs from the normal bottom-up
parser stack in that it contains “important” symbols, the operators, between which
relations are defined, and “unimportant” symbols, the numbers, which are only con-
sulted to determine the value of a handle and which do not influence the parsing.
Moreover, we need locations on the stack to hold the parenthesis generators between
the operators (although one could, in principle, do without these locations, by reeval-
uating the parenthesis generators again whenever necessary). Since there is a paren-
thesis generator between each pair of operators and there is also (almost) always a
value between such a pair, we shall indicate both in the same position on the stack,
with the parenthesis generator in line and the value below it; see Figure 9.5.

Stack rest of input

(a) # 4 + 5 x 6 + 8 #

(b) # o< o+ < + 8 #
4 :
(¢) # S + 8 #

) # < v s #

(e) # = #
+'/ \8

4/ \x
5'/ \6

Fig. 9.5. Operator-precedence parsing of 4+5x6+8

To show that, contrary to what is sometimes thought, operator-precedence can
do more than just compute a value (and since we have seen too often now that
4+5x6+8=42), we shall have the parser construct the parse tree rather than the
value. The stack starts with a #. Values and operators are shifted onto it, interspersed
with parenthesis generators, until a > generator is met; the following operator is not
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shifted and is left in the input (Figure 9.5(b)). It is now easy to identify the handle
segment, which is demarcated by a dotted rectangle in the figure. The operator x
identifies the type of node to be created, and the handle is now reduced to a tree; see
(c), in which also the next > has already appeared between the + on the stack and the
+ in the input. We see that the tree and the new generator have come in the position of
the < of the handle. A further reduction brings us to (d) in which the + and the 8 have
already been shifted, and then to the final state of the operator-precedence parser, in
which the stack holds #=# and the parse tree dangles from the value position.

We see that the stack only holds < markers and values, plus a > on the top each
time a handle is found. The meaning of the = becomes clearer when we parse an
input text which includes parentheses, like 4x (5+6) ; see Figure 9.6. We see that the

Stack rest of input
(a) # 4 x (5+6) #
0 o< x < (i< & 3 ) #
4 LA 6.
(c) # < x<(:)> #
4 e R
@ #< X5 #
A 11:
(e) # = #
44

Fig. 9.6. An operator-precedence parsing involving =

= is used to build handles consisting of more than one operator and two operands;
the handle in (c¢) has two operators, the ( and the ) and one operand, the 11. Where
the < generates open parentheses and the > generates close parentheses, both of
which cause level differences in the parse tree, the = generates no parentheses and
allows the operands to exist on the same level in the parse tree.

As already indicated on page 200, the set of stack configurations of a bottom-up
parser can be described by a regular expression. For precedence parsers the expres-
sion is easy to see:

# | #<q ([<=1@" >7 | #=#

where q is any operator; the first alternative is the start situation and the third al-
ternative is the end situation. (Section 9.12.2 will show more complicated regular
expressions for other bottom-up parsers.)

9.2.2 Constructing the Operator-Precedence Table

The above hinges on the difference between operators, which are terminal symbols
and between which precedence relations are defined, and operands, which are non-
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terminals. This distinction is captured in the following definition of an operator gram-
mar:

A CF grammar is an operator grammar if (and only if) each right-hand
side contains at least one terminal or non-terminal and no right-hand side
contains two consecutive non-terminals.

So each pair of non-terminals is separated by at least one terminal; all the terminals
except those carrying values (n in our case) are called operators.

For such grammars, setting up the precedence table is relatively easy. First we
compute for each non-terminal A the set FIRSTop(A), which is the set of all operators
that can occur as the first operator in sentential forms deriving from A. Note that such
a first operator can be preceded by at most one non-terminal in an operator grammar.
The FIRSTops of all non-terminals are constructed simultaneously as follows:

1. For each non-terminal A, find all right-hand sides of all rules for A; now for each
right-hand side R we insert the first operator in R (if any) into FIRSTop(A). This
gives us the initial values of all FIRSTops.

2. For each non-terminal A, find all right-hand sides of all rules for A; now for each
right-hand side R that starts with a non-terminal, say B, we add the elements of
FIRSTop(B) to FIRSTop(A). This is reasonable, since a sentential form of A may
start with B, so all operators in FIRSTop(B) should also be in FIRSTop(A).

3. Repeat step 2 above until no FIRSTop changes any more. We have now found
the FIRSTp of all non-terminals.

We will also need the set LASTop(A), which is defined similarly, and a similar
algorithm, using the last operator in R in step 1 and a B which ends A in step 2
provides it. The sets for the grammar of Figure 9.2 are shown in Figure 9.7.

FIRSTop(S) = {#} LASTop(S) = {#}
FIRSTop(E) = {+, x, (} LASTp(E) = {+, x, ) }
FIRSTop(T) = {x, (}  LASTop(T) = {x, ) }
FIRSTop(F) = { (} LASTop(F) ={) }

Fig. 9.7. FIRSTop and LASTp sets for the grammar of Figure 9.2

Now we can fill the precedence table using the following rules, in which ¢, g
and ¢ are operators and A is a non-terminal.

» For each occurrence in a right-hand side of the form g; g2 or g1 A g2, set g1 = q».
This keeps operators from the same handle together.

e For each occurrence g A, set g1 < ¢» for each ¢> in FIRSTop(A). This demar-
cates the left end of a handle.

e For each occurrence Aqq, set go>q; for each ¢» in LASTop(A). This demarcates
the right end of a handle.

If we obtain a table without conflicts this way, that is, if we never find two differ-
ent relations between two operators, then we call the grammar operator-precedence.
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It will now be clear why (=) and not ) = ( in our grammar of Figure 9.2, and why
+3>+: because E+ occurs in E—E+T and + is in LASTop(E).

In this way, the table can be derived from the grammar by a program and be
passed on to the operator-precedence parser. A very efficient linear-time parser re-
sults. There is, however, one small problem we have glossed over: Although the
method properly identifies the handle segment, it often does not identify the non-
terminal to which to reduce it. Also, it does not show any unit rule reductions;
nowhere in the examples did we see reductions of the form E—T or T —F. In short,
operator-precedence parsing generates only skeleton parse trees.

Operator-precedence parsers are very easy to construct (often even by hand) and
very efficient to use; operator-precedence is the method of choice for all parsing
problems that are simple enough to allow it. That only a skeleton parse tree is ob-
tained, is often not an obstacle, since operator grammars often have the property
that the semantics is attached to the operators rather than to the right-hand sides; the
operators are identified correctly.

It is surprising how many grammars are (almost) operator-precedence. Almost all
formula-like computer input is operator-precedence. Also, large parts of the gram-
mars of many computer languages are operator-precedence. An example is a con-
struction like CONST total = head + tail; from a Pascal-like language,
which is easily rendered as:

Stack rest of input
# < CONST < = < + > ; #
total head tail

Ignoring the non-terminals has other bad consequences besides producing a
skeleton parse tree. Since non-terminals are ignored, a missing non-terminal is not
noticed. As a result, the parser will accept incorrect input without warning and will
produce an incomplete parse tree for it. A parser using the table of Figure 9.4 will
blithely accept the empty string, since it immediately leads to the stack configuration
#=+#. It produces a parse tree consisting of one empty node.

The theoretical analysis of this phenomenon turns out to be inordinately difficult;
see Levy [125], Williams [128, 129, 131] and many others in (Web)Section 18.1.6.
In practice it is less of a problem than one would expect; it is easy to check for the
presence of required non-terminals, either while the parse tree is being constructed
or afterwards — but such a check would not follow from the parsing technique.

9.2.3 Precedence Functions

Although precedence tables require room for only a modest [Vr|? entries, where
|Vr| is the number of terminals in the grammar, they can often be represented much
more frugally by so-called precedence functions, and it is usual to do so. The idea is
the following. Rather than having a table T such that for any two operators ¢; and
q2, Tq1,q2] yields the relation between g; and ¢, we have two integer functions

f and g such that f(q) < g(g2) means that q1<q2, f(q1) = g(g2) means g1=q>
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and f(q1) > g(q2) means q1>q>. f(q) is called the left priority of q, g(q) the right
priority; they would probably be better indicated by [ and r, but the use of f and g
is traditional. It will be clear that two functions are required: with just one function
one cannot express, for example, +>+. Precedence functions take much less room
than precedence tables: 2|Vr| entries versus |Vr|? for the table. Not all tables allow a
representation with two precedence functions, but many do.

Finding the proper f and g for a given table seems simple enough and can indeed
often be done by hand. The fact, however, that there are two functions rather than one,
the size of the tables and the occurrence of the = complicate things. An algorithm
to construct the two functions was given by Bell [120]. There is always a way to
represent a precedence table with more than two functions; Bertsch [127] shows
how to construct such functions.

Finding two precedence functions is equivalent to reordering the rows and
columns of the precedence table so that the latter can be divided into three regions:
a > region on the lower left, a < region on the upper right and a = border between
them; see Figure 9.8. The process is similar but not equivalent to doing a topological

#) |+ | x| (
#| = < | <<
( =< |<|<
+ > > > |<|<
x| >[>|>|>|<
Y| > > > >

Fig. 9.8. The precedence table of Figure 9.4 reordered

sort on f, and g.

Precedence parsing recognizes that many languages have tokens that define the
structure and tokens that carry the information; the first are the operators, the second
the operands. That raises the question whether that difference can be formalized; see
Gray and Harrison [124] for a partial answer, but usually the question is left to the
user.

Some operators are actually composite; the C and Java programming language
conditional expression, which is formed by two parts: x>0?x:0 yields x if x is
greater than 0; otherwise it yields 0. Such distributed operators are called distfix op-
erators. They can be handled by precedence-like techniques; see, for example Peyton
Jones [132] and Aasa [133].

9.2.4 Further Precedence Methods

Operator precedence structures the input in terms of operators only: it yields skeleton
parse trees — correctly structured trees with the terminals as leaves but with unla-
beled nodes — rather than parse trees. As such it is quite powerful, and serves in
many useful programs to this day. In some sense it is even stronger than the more
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famous LR techniques: operator precedence can easily handle ambiguous grammars,
as long as the ambiguity remains restricted to the labeling of the tree. We could add a
rule E—>n to the grammar of Figure 9.2 and it would be ambiguous but still operator-
precedence. It achieves its partial superiority over LR by not fulfilling the complete
task of parsing: getting a completely labeled parse tree.

There is a series of more advanced precedence parsers, which do properly label
the parse tree with non-terminals. They were very useful at the time they were in-
vented, but today their usefulness has been eclipsed by the LALR and LR parsers,
which we will treat further on in this chapter (Sections 9.4 through 9.14). We will
therefore only briefly touch upon them here, and refer the reader to the many publi-
cations in (Web)Section 18.1.6.

The most direct way to bring back the non-terminals in the parse tree is to involve
them like the terminals in the precedence relations. This idea leads to simple prece-
dence parsing (Wirth and Weber [118]). A grammar is simple precedence if and only
if:

e it has a conflict-free precedence table over all its symbols, terminals and non-
terminals alike;

* none of its right-hand sides is €;
e all of its right-hand sides are different.

For example, we immediately have the precedence relations (=E and E=) from the
rule F— (E) .

The construction of the simple-precedence table is again based upon two sets,
FIRSTA11(A) and LASTAr1(A). FIRST A (A) is similar to the set FIRST(A) from
Section 8.2.1.1, and differs from it in that it also contains all non-terminals that can
start a sentential form derived from A, whereas FIRST(A) contains terminals only. A
similar definition applies to LAST AL (A).

Unfortunately almost no grammar is simple-precedence, not even the simple
grammar of Figure 9.2, since we have (<E in addition to (=E, due to the occur-
rence of (E in F— (E), and E being in FIRST1 1 (E) from E—E+T. A few other
conflicts also occur. On the bright side, this kind of conflict can often be solved by
inserting extra levels around the troublesome non-terminals, as done in Figure 9.9,
but this brings us farther away from our goal, producing a correct parse tree.

It turns out that most of the simple-precedence conflicts are </= conflicts. Now
the difference between < and = is in a sense less important than that between either
of them and >. Both < and = result in a shift and only > asks for a reduce. Only
when a reduce is found will the difference between < and = become significant for
finding the left end of the handle. Now suppose we drop the difference between <
and = and combine them into <; then we need a different means of identifying the
handle segment. This can be done by requiring not only that all right-hand sides be
different, but also that no right-hand side be equal to the tail of another right-hand
side. A grammar that conforms to this and has a conflict-free </> precedence table
is called weak precedence (Ichbiah and Morse [121]).
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Ss — E’
E’ — E
E — E + T’
E — T/
T — T
T —- T x F
T — F
F — n
F — (E)

FIRSTALL(E")={E,T’,T,F,n, (} LASTALL(E’)={T’,T,F,n,)}
FIRSTALL(E)={E,T",T,F,n, (} LASTA1(E)={T,F.,n,)}

FIRSTALL(T' )= {T, F.n, (} LASTALL(T' )= {F, n, ) }
FIRSTA 1 (T)={T, F,n, (} LASTALL(T)={F,n,)}
FIRST A1 1(F) = {n, (} LASTALL(F) = {n, ) }
#|E' |E|T" |T|F | n|+|x]| (]|)
# Tl < | <<« <
E’' | =
E | > = =
T | > > >
T | > > | = >
F | > > | > >
n | > > | > >
+ = < |<|< <
X =< <
( =l < < |<|< <
) | > > | > >

Fig. 9.9. Modifying the grammar from Figure 9.2, to obtain a conflict-free simple-precedence
table

Unfortunately the simple grammar of Figure 9.2 is not weak-precedence either.
The right-hand side of E—T is the tail of the right-hand side of E—E+T, and upon
finding the stack

<E=+<T>»

we do not know whether to reduce with E—T or with E—>E+T. Several tricks are
possible: taking the longest reduce, looking deeper on the stack, etc.

The above methods determine the precedence relations by looking at 1 symbol
on the stack and 1 token in the input. Once this has been said, the idea suggests itself
to generalize this and to determine the precedence relations from the topmost m
symbols on the stack and the first n tokens in the input. This is called (m,n)-extended
precedence (Wirth and Weber [118]). For many entries in the table checking the full
length on the stack and in the input is overkill, and ways have been found to use just
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enough information, thus greatly reducing the table sizes. This technique is called
mixed-strategy precedence (McKeeman [123]).

9.3 Bounded-Right-Context Parsing

There is a different way to solve the annoying problem of the identification of the
right-hand side: let the identity of the rule be part of the precedence relation. This
means that for each combination of, say, m symbols on the stack and » tokens in the
input there should be a unique parsing decision which is either “shift” (<) or “reduce
using rule X” (>x), as obtained by a variant of the rules for extended precedence.
The parser is then a form of bounded-right-context. Figure 9.10 gives such tables
for m =2 and n = 1 for the grammar of Figure 9.2; these tables were constructed
by hand. The rows correspond to stack symbol pairs; the entry Accept means that

# + x n ( )
#S | Accept
#E | >s 5k < Error
#T | gt >E-T < Error
#F | >r>F >TsF >TsF Error
#n | >p_n >Fn >Fon Error Error Error
# ( | Error Error Error < < Error
E+ | Error Error Error < < Error
E) | >r»(E) >F->(E) >F-(g) Error Error >p_ (g
Tx | Error Error Error < < Error
+T | >E>E+T >E—E+T < >E-SE+T
+F | >rF >rF >rsF > F
+n | >posn >Fosn >Fosn Error Error >p_n
+ ( | Error Error Error < < Error
XF | >751xF >TTxF >T—>TxF >T_SsTxF
XN | >Fosn >Fosn >Fosn Error Error >p_n
x (| Error Error Error < < Error
(E | Error < <
(T | Error >EST < >E>T
(F | Error >TsF >TsF > sF
(n | Error >Fon >Fon Error Error >g_op
( (| Error Error Error < < Error

Fig. 9.10. BC(2,1) table for the grammar of Figure 9.2

the input has been parsed and Error means that a syntax error has been found. Blank
entries will never be accessed; all-blank rows have been left out. See, for example,
Loeckx [122] for an algorithm for the construction of such tables.
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9.3.1 Bounded-Context Techniques

The table of Figure 9.10 represents a variant of bounded-context, or more precisely,
a particular implementation of bounded-right-context. To understand the bounded-
context idea we have to go back to the basic bottom-up parsing algorithm explained
in Section 3.2.2: find a right-hand side anywhere in the sentential form and reduce it.
But we have already seen that often such a reduction creates a node that is not a node
of the final parse tree, and backtracking is needed. For example, when we reduce the
second n in #nxn# to F we have created a node that belongs to the parse tree. We
obtain #nxF#, but if we now reduce the F to T, obtaining #nxT#, we have gone one
step too far, and will no longer get a parsing. So why is the first reduction OK, and
the second is not?

In bounded-context parsing the proposed reductions are restricted by context con-
ditions. A right-hand side o of a rule A — o found in a sentential form can only be
reduced to A if it appears in the right context, B;of3;. Here B is the left context, 3,
the right one. Both contexts must be of bounded length, hence “bounded context”;
either or both can be €.

Using these contexts, it is easy to see from the grammar that n in the context
x---# can be reduced to F, but F in the context x---# cannot be reduced to T, al-
though in the context +- - - # it could. Turning this intuition into an algorithm is very
difficult. A grammar is bounded-context if no segment B;of3; that results from a
production A — o in a sentential form can result in any other way. If that condition
holds, we can, upon seeing the context pattern 3;03,, safely reduce to B1AR,. If the
maximum length of B; is m and that of B, is n, the grammar is BC(m,n).

Finding sufficient and non-conflicting contexts is a difficult affair, which is
sketched by Floyd [117]. Because of this difficulty, bounded-context is of no con-
sequence as a parsing method; but bounded-context grammars are important in er-
ror recovery (Richter [313], Ruckert [324]) and substring parsing (Cormack [211],
Ruckert [217]), since they allow parsing to be resumed in arbitrary positions. This
property is treated in Section 16.5.2.

If all right contexts in a bounded-context grammar contain terminals only, the
grammar and its parser are bounded-right-context, or BRC(m,n). Much more is
known about bounded-right-context than about general bounded-context, and exten-
sive table construction algorithms are given by Eickel et al. [115] and Loeckx [122].
Table construction is marginally easier for BRC than for BC, but it can handle fewer
grammars.

The implementation of BRC parsing as sketched above is awkward: to try a re-
duction A — o in the context B ---[, the top of the stack must be tested for the
presence of o, which is of variable length, and then B; on the stack and 3, in the in-
put must be verified; repeat for all rules and all contexts. It is much more convenient
to represent all triplets (B;03;) as pairs (B;c,B2) in a matrix, like the one in Figure
9.10; in this way B;o and B, are basically the left and right contexts of the parsing
decision at the gap between stack and rest of input:
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left context of right context of
prospective rhs : : prospective rhs
[ B o k]
left context of ; : right context of
parsing decision parsing decision

As a final step the left contexts are cut to equal lengths, in such a way that enough
information remains. This is usually easily done; see Figure 9.10. This brings BRC
parsing in line with the other table-driven bottom-up parsing algorithms.

Although some publications do not allow it, BC and BRC parsers can handle
nullable non-terminals. If we add the rule E—¢ to the grammar of Figure 9.2, the
context (,) is strong enough to conclude that reducing with E—s¢ is correct.

Bounded-right-context is much more prominent than bounded-context, but since
it is more difficult to pronounce, it is often just called “bounded-context”; this some-
times leads to considerable confusion. BRC(2,1) is quite powerful and was once
very popular, usually under the name “BC(2,1)”, but has been superseded almost
completely by LALR(1) (Section 9.7).

It should be pointed out that bounded-context can identify reductions in non-
canonical order, since a context reduction may be applied anywhere in the sentential
form. Such a reduction can then result in a non-terminal which is part of the right
context of another reduction pattern. So bounded context actually belongs in Chapter
10, but is easier to understand here.

If in bounded-right-context we repeatedly apply the first context reduction we
find in a left-to-right sweep, we identify the reductions in canonical order, since the
right context is free from non-terminals all the time, so no non-canonical reductions
are needed.

If during table construction for a bounded-context parser we find that a segment
Biop, produced from B;AB; can also be produced otherwise, we can do two things:
we can decide that the grammar is not BC and give up, or we can decide not to
include the segment in our table of reduction contexts and continue. In doing so we
now run the risk of losing some parsings, unless we can prove that for any sentential
form there is at least one reduction context left. If that is the case, the grammar is
bounded-context parsable or BCP. Constructing parse tables for BCP(m,n) is even
more difficult than for BC or BRC, but the method can handle substantially more
grammars than either; Williams [193] has the details.

Note that the parsing method is the same for BRC, BC and BCP; just the parse
table construction methods differ.

9.3.2 Floyd Productions

Bounded-context parsing steps can be summarized conveniently by using Floyd pro-
ductions. Floyd productions are rules for rewriting a string that contains a marker, A,
on which the rules focus. A Floyd production has the form aAB => YAd and means
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that if the marker in the string is preceded by o and is followed by [, the construction
must be replaced by YAS. The rules are tried in order starting from the top and the
first one to match is applied; processing then resumes on the resulting string, starting
from the top of the list, and the process is repeated until no rule matches.

Although Floyd productions were not primarily designed as a parsing tool but
rather as a general string manipulation language, the identification of the A in the
string with the gap in a bottom-up parser suggests itself and was already made in
Floyd’s original article [113]. Floyd productions for the grammar of Figure 9.2 are
given in Figure 9.11. The parser is started with the A at the left of the input.

A n => n A
A ( > (A
n A => F A
T A X > TX A
TXF A => T A
F A = T A
E+T A => E A
T A => E A
(E) A => F A
A+ => + A
A) = ) A
A # => # A
#E# A => S A

Fig. 9.11. Floyd productions for the grammar of Figure 9.2

The apparent convenience and conciseness of Floyd productions makes it very
tempting to write parsers in them by hand, but Floyd productions are very sensitive
to the order in which the rules are listed and a small inaccuracy in the order can have
a devastating effect.

9.4 LR Methods

The LR methods are based on the combination of two ideas that have already been
touched upon in previous sections. To reiterate, the problem is to find the handle in a
sentential form as efficiently as possible, for as large a class of grammars as possible.
Such a handle is searched for from left to right. Now, from Section 5.10 we recall
that a very efficient way to find a string in a left-to-right search is by constructing a
finite-state automaton. Just doing this is, however, not good enough. It is quite easy
to construct an FS automaton that would recognize any of the right-hand sides in
the grammar efficiently, but it would just find the leftmost reducible substring in the
sentential form. This substring, however, often does not identify the correct handle.
The idea can be made practical by applying the same trick that was used in the
Earley parser to drastically reduce the fan-out of the breadth-first search (see Sec-
tion 7.2): start the automaton with the start rule of the grammar and only consider,
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in any position, right-hand sides that could be derived from the start symbol. This
top-down restriction device served in the Earley parser to reduce the cost to O(n?),
here we require the grammar to be such that it reduces the cost to O(n). The result-
ing automaton is started in its initial state at the left end of the sentential form and
allowed to run to the right. It has the property that it stops at the right end of the
handle segment and that its accepting state tells us how to reduce the handle; if it
ends in an error state the sentential form was incorrect. Note that this accepting state
is an accepting state of the handle-finding automaton, not of the LR parser; the latter
accepts the input only when it has been completely reduced to the start symbol.
Once we have found the handle, we follow the standard procedure for bottom-up
parsers: we reduce the handle to its parent non-terminal as described at the beginning
of Chapter 7. This gives us a new “improved” sentential form, which, in principle
should be scanned anew by the automaton from the left, to find the next handle. But
since nothing has changed in the sentential form between its left end and the point of
reduction, the automaton will go through the same movements as before, and we can
save it the trouble by remembering its states and storing them between the tokens
on the stack. This leads us to the standard setup for an LR parser, shown in Figure
9.12 (compare Figure 7.1). Here s; is the initial state, s,--- sp are the states from

Stack Rest of input
B e —————————— —
states, terminals Cut terminals
and non-terminals only

S] tg sg Nf sf te S¢ tg 8¢ Ne s¢ Ny 8p ta 82 t] ty t3
1 1 1

partial parse
trees

Fig. 9.12. The structure of an LR parse

previous scans, and s, is the top, deciding, state.

By far the most important component in an LR parser is the handle-finding au-
tomaton, and there are many methods to construct one. The most basic one is LR(0)
(Section 9.5); the most powerful one is LR(1) (Section 9.6); and the most practical
one is LALR(1) (Section 9.7). In its decision process the LR automaton makes a very
modest use of the rest of the input (none at all for LR(0) and a one-token look-ahead
for LR(1) and LALR(1)); several extensions of LR parsing exist that involve the rest
of the input to a much larger extent (Sections 9.13.2 and 10.2).

Deterministic handle-finding automata can be constructed for any CF grammar,
which sounds promising, but the problem is that an accepting state may allow the
automaton to continue searching in addition to identifying a handle (in which case
we have a shift/reduce conflict), or identify more than one handle (and we have a
reduce/reduce conflict). (Both types of conflicts are explained in Section 9.5.3.) In
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other words, the automaton is deterministic; the attached semantics is not. If that
happens the LR method used is not strong enough for the grammar. It is easy to
see that there are grammars for which no LR method will be strong enough; the
grammar of Figure 9.13 produces strings consisting of an odd number of as, the
middle of which is the handle. But finding the middle of a string is not a feature of

Ss > aSa]| a

Fig. 9.13. An unambiguous non-deterministic grammar

LR parsers, not even of the extended and improved versions.

As with the Earley parser, LR parsers can be improved by using look-ahead, and
almost all of them are. An LR parser with a look-ahead of k tokens is called LR(k).
Just as the Earley parser, it requires k end-of-input markers to be appended to the
input; this implies that an LR(0) parser does not need end-of-input markers.

9.5 LR(0)

Since practical handle-finding FS automata easily get so big that their states cannot
be displayed on a single page of a book, we shall use the grammar of Figure 9.14 for
our examples. It describes very simple arithmetic expressions, terminated with a $.

0
%

M
HH BB
EERR
~BHEHA

E )

Fig. 9.14. A very simple grammar for differences of numbers

An example of a string in the language is n- (n-n) $; the n stands for any number.
The only arithmetic operator in the grammar is the -; it serves to remind us that the
proper parse tree must be derived, since (n-n) -n$ is not the same asn- (n-n) $.

9.5.1 The LR(0) Automaton

We set out to construct a top-down-restricted handle-recognizing FS automaton for
the grammar of Figure 9.14, and start by constructing a non-deterministic version.
We recall that a non-deterministic automaton can be drawn as a set of states con-
nected by arrows (transitions), each marked with one symbol or with €. Each state
will contain one item. Like in the Earley parser an item consists of a grammar rule
with a dot e embedded in its right-hand side. An item X — ---YeZ--- in a state



9.5 LR(0) 281

means that the NFA bets on X — ---YZ--- being the handle and that it has already
recognized - - - Y. Unlike the Earley parser there are no back-pointers.

To simplify the explanation of the transitions involved, we introduce a second
kind of state, which we call a station. It has only €-arrows incoming and outgoing,
contains something of the form eX and is drawn in a rectangle rather than in an
ellipse. When the automaton is in such a station at some point in the sentential form,
it assumes that at this point a handle starts which reduces to X. Consequently each
eX station has e-transitions to items for all rules for X, each with the dot at the
left end, since no part of the rule has yet been recognized; see Figure 9.15. Equally
reasonably, each state holding an item X — ---eZ--- has an e-transition to the station
eZ, since the bet on an X may be over-optimistic and the automaton may have to
settle for a Z. The third and last source of arrows in the NFA is straightforward. From
each state containing X — ---eP--- there is a P-transition to the state containing
X — ---Pe--. for P aterminal or a non-terminal. This corresponds to the move the
automaton makes when it really meets a P. Note that the sentential form may contain
non-terminals, so transitions on non-terminals should also be defined.

With this knowledge we refer to Figure 9.15. The stations for S, E and T are

Fig. 9.15. A non-deterministic handle recognizer for the grammar of Figure 9.14

drawn at the top of the picture, to show how they lead to all possible items for S, E
and T, respectively. From each station e-arrows fan out to all states containing items
with the dot at the left, one for each rule for the non-terminal in that station; from
each such state non-g-arrows lead down to further states. Now the picture is almost
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complete. All that needs to be done is to scan the items for a dot followed by a non-
terminal (readily discernible from the outgoing arrow marked with it) and to connect
each such item to the corresponding station through an e-arrow. This completes the
picture.

There are three things to be noted about this picture. First, for each grammar
rule with a right-hand side of length [ there are [ + 1 items and they are easily found
in the picture. Moreover, for a grammar with r different non-terminals, there are r
stations. So the number of states is roughly proportional to the size of the grammar,
which assures us that the automaton will have a modest number of states. For the
average grammar of a hundred rules something like 300 states is usual. The second
thing to note is that all states have outgoing arrows except the ones which contain a
reduce item, an item with the dot at the right end. These are accepting states of the
automaton and indicate that a handle has been found; the item in the state tells us
how to reduce the handle. The third thing to note about Figure 9.15 is its similarity
to the recursive transition network representation of Section 2.8.

We shall now run this NFA on the sentential form E-n-n$, to see how it works.
As in the FS case we can do so if we are willing to go through the trouble of re-
solving the non-determinism on the fly. The automaton starts at the station S and
can immediately make e-moves to S—>eES$, oE, E—>eE-T, E—>eT, ¢T, T—>en and
T—>e (E). Moving over the E reduces the set of items to S—>Ee$ and E—>Ee-T;
moving over the next - brings us at E—>E-eT from which e-moves lead to T,
T—>en and T—>e (E). Now the move over n leaves only one item: T—>ne. Since
this is a reduce item, we have found a handle segment, n, and we should reduce it
to T using T—n. See Figure 9.16. This reduction gives us a new sentential form,
E-T-n$, on which we can repeat the process.

. E - ‘ ) @ . $

Fig. 9.16. The sets of NFA states while analysing E-n-n$

We see that there are two ways in which new items are produced: through e-
moves and through moving over a symbol. The first way yields items of the form
A — eq, and such an item derives from an item of the form X — eAy in the same
state. The second way yields items of the form A — aGef} where G is the token we
moved over; such an item derives from an item of the form A — 0.eGf in the parent
state.
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Just as in the FS case (page 144) we have described an interpreter for the non-
deterministic handle recognizer, and the first thing we need to do is to make the NFA
deterministic, if we are to use this parsing method in earnest. We use the subset con-
struction of Section 5.3.1 to construct a deterministic automaton with the sets of the
items of Figure 9.15 as its states. The result is shown in Figure 9.17, where we have

Fig. 9.17. The corresponding deterministic handle recognizer

left out the stations to avoid clutter and because they are evident from the other items.
We see that the deterministic automaton looks a lot less understandable than Figure
9.15; this is the price one has to pay for having determinism. Yet we see that the
subset construction has correctly identified the subsets we had already constructed
by hand in Figure 9.16. This type of automaton is called an LR(0) automaton.

9.5.2 Using the LR(0) Automaton

It is customary to number the states of the deterministic automaton, as has already
been done in Figure 9.17 (the order of the numbers is arbitrary; they serve identifica-
tion purposes only). Now it has become much easier to represent the sentential form
with its state information, both in a program and in a drawing:

@E® - @n ® - n $

The sequence @ @ @ @ can be read from Figure 9.17 using the path E-n. We start
with state @ on the stack and shift in symbols from the sentential form, all the while
assessing the new states. As soon as an accepting state shows up on the top of the
stack (and it cannot show up elsewhere on the stack) the shifting stops and a reduce
is called for; the accepting state indicates how to reduce. Accepting state @ calls for
a reduction T—>n, so our new sentential form will be E-T-n$.
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Repeating the handle-finding process on this new form we obtain the configura-
tion

OE® - Q@T®O® -n$

which shows us two things. First, the automaton has landed in state and thus
identified a new reduction, E—E-T, which is correct. Second, we see here the effect
already hinted at in Figure 9.12: by restarting the automaton at the beginning of the
sentential form we have done superfluous work. Up to state @, that is, up to the left
end of the handle T—n, nothing had changed, so we could have saved work if we
had remembered the old states @, @, and @ between the symbols in the sentential
form.
This leads to the following LR(0) parsing algorithm:

1. Consult the state s on top of the stack; it is either an accepting state specifying a
reduction X — o or it is a non-accepting state.

a) If s is an accepting state, unstack |o| pairs of symbols and states from the
stack, where |al| is the length of the right-hand side o.. The unstacked sym-
bols constitute the children in the parse tree for X; see Figure 9.12. Next we
push X onto the stack. We have now reduced o to X.

b) If s is a non-accepting state, shift the next token from the input onto the
stack.

2. The top of the stack is now a non-terminal (1a.) or terminal (1b.) symbol T, with
a state v under it. Find state u in the LR(0) automaton and follow the path marked
T starting from that state.
a) If this leads to a state v, push v onto the stack.
b) Otherwise the input is erroneous.

Two things are important about this algorithm. The first is that if we start with a
consistent stack configuration (each triple of state, symbol, and state on the stack
corresponds to a transition in the LR(0) automaton) the stack configuration will again
be consistent afterwards. And the second is that it does the proper reductions, and
thus does the parsing we were looking for.

Note that the state u exposed after a reduction can never call for another reduc-
tion: if it did, that reduction would already have been performed earlier.

We see that LR(0) parsing is performed in two steps: 1. the top state indicates
an action, shift or reduce with a given rule, which is then performed; 2. a new top
state is computed by going from one state through a transition to another state. It
is convenient to represent an LR(0) automaton in an ACTION table and a GOTO
table, both indexed by states. The GOTO table has columns indexed by symbols; the
ACTION table has just one column. In step 1 we consult the ACTION table based
on the state; in step 2 we index the GOTO table with a given symbol and a given
state to find the new state. The LR(0) ACTION and GOTO tables for the automaton
of Figure 9.17 are given in Figure 9.18.

Suppose we find state 6 on top of the stack and the next input token is n. The
ACTION table tells us to shift, and then the GOTO table, at the intersection of 6 and
n, tells us to stack the state 3. And the ACTION table for state 3 tells us to reduce
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ACTION GOTO
n - () $§ ET
1 | shift 113 e 6 e e 4 2
2|E = T 2
3|T - n 3
4 | shift 41e 7 e e 5
5|8 — E § 5
6 | shift 6|3 e 6 e e 9 2
7 | shift 713 e 6 e e 8
8/E —E - T 8
9 | shift 9le 7 e 10 e
100|T - ( E) 10

Fig. 9.18. LR(0) ACTION and GOTO tables for the grammar of Figure 9.14

[T9%2]

using T—n. An entry “e” means that an error has been found: the corresponding
symbol cannot legally appear in that position. A blank entry will never even be con-
sulted: either the state calls for a reduction or the corresponding symbol will never at
all appear in that position, regardless of the form of the input. In state 4, for example,
we will never meet an E: the E would have originated from a previous reduction, but
no reduction would do that in that position. Since non-terminals are only put on the
stack in legal places no empty entry on a non-terminal will ever be consulted.

In practice the ACTION entries for reductions do not directly refer to the rules to
be used, but to the numbers of these rules. These numbers are then used to index an
array of routines that have built-in knowledge of the rules, that know how many en-
tries to unstack and that perform the semantic actions associated with the recognition
of the rule in question. Parts of these routines will be generated by a parser generator.
Also, the reduce and shift information is combined in one table, the ACTION/GOTO
table, with entries of the forms “sN”, “rN” or “e”. An entry “sN” means ‘“shift the
input symbol onto the stack and go to state N, which is often abbreviated to “shift
to N”. An entry “rN” means “reduce by rule number N”; the shift over the resulting
non-terminal has to be performed afterwards. And “e” means error, as above. The
ACTION/GOTO table for the automaton of Figure 9.17 is given in Figure 9.19.

Tables like in Figures 9.18 and 9.19 contain much empty space and are also quite
repetitious. As grammars get bigger, the parsing tables get larger and they contain
progressively more empty space and redundancy. Both can be exploited by data com-
pression techniques and it is not uncommon that a table can be reduced to 15% of
its original size by the appropriate compression technique. See, for example, Al-
Hussaini and Stone [67] and Dencker, Diirre and Heuft [338].

The advantages of LR(0) over precedence and bounded-right-context are clear.
Unlike precedence, LR(0) immediately identifies the rule to be used for reduction,
and unlike bounded-right-context, LR(0) bases its conclusions on the entire left con-
text rather than on the last m symbols of it. In fact, LR(0) can be seen as a clever
implementation of BRC(e<,0), i.e., bounded-right-context with unrestricted left con-
text and zero right context.
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n - ( ) $ E T
s3 e s6 e e s4 s2
3 3 3 3 13 3 13
4 4 4 4 4 14 4
e s7 e e S5
rl r1 r1 rl1 rl rl rl
s3 e s6 e e s9 s2
s3 e s6 e e s8
R 2 2 2 2 2 R
e s7 e sl0 e
5 5 5 5 5 5 15

SO0 IN N R WN

—

Fig. 9.19. The ACTION/GOTO table for the grammar of Figure 9.14

9.5.3 LR(0) Conflicts

By now the reader may have the vague impression that something is wrong. On
the one hand we claim that there is no known method to make a linear-time parser
for an arbitrary grammar; on the other we have demonstrated above a method that
seems to work for an arbitrary grammar. An NFA as in Figure 9.15 can certainly be
constructed for any grammar, and the subset construction will certainly turn it into
a deterministic one, which will definitely not require more than linear time. Voila, a
linear-time parser.

The problem lies in the accepting states of the deterministic automaton. An ac-
cepting state may still have an outgoing arrow, say on a symbol +, and if the next
symbol is indeed a +, the state calls for both a reduction and for a shift: the combina-
tion of automaton and interpretation of the accepting states is not really deterministic
after all. Or an accepting state may be an honest accepting state but call for two dif-
ferent reductions. The first problem is called a shift/reduce conflict and the second
a reduce/reduce conflict. Figure 9.20 shows examples (which derive from a slightly
different grammar than in Figure 9.14).

()

shift/reduce conflict reduce/reduce conflict
(on +) (always)

Fig. 9.20. Two types of conflict

Note that there cannot be a shift/shift conflict. A shift/shift conflict would imply
that two different arrows leaving the same state would carry the same symbol. This
is, however, prevented by the subset algorithm (which would have made into one the
two states the arrows point to).
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A state that contains a conflict is called an inadequate state. A grammar that
leads to a deterministic LR(0) automaton with no inadequate states is called LR(0).
The absence of inadequate states in Figure 9.17 proves that the grammar of Figure
9.14 is LR(0).

9.5.4 ¢-LR(0) Parsing

Many grammars would be LR(0) if they did not have e-rules. The reason is that a
grammar with a rule A — € cannot be LR(0): from any station P — ---eA--- an &-
arrow leads to a state A — e in the non-deterministic automaton, which causes a DFA
state containing both the shift item P — ---eA--- and the reduce item A — e. And
this state is inadequate, since it exhibits a shift/reduce conflict. We shall now look at
a partial solution to this obstacle: e-LR(0) parsing.

The idea is to do the e-reductions required by the reduce part of the shift/reduce
conflict already while constructing the DFA. Normally reduces cannot be precom-
puted since they require the first few top elements of the parsing stack, but obviously
that problem does not exist for e-reductions.

The grammar of Figure 9.21, a variant of the one in Figure 7.17, contains an €-
rule and hence is not LR(0). (The e-rule is intended to represent multiplication.) The

cCoHMEED
Vv by
o~ HEE
0 n
)

Fig. 9.21. An e-LR(0) grammar

start item S—>eE$ leads to E—>eEQF by an €-move, and from there to E—>EeQF
by a move over E. This item has two €-moves, to Q—e/ and to Q—>e; the second
causes a shift/reduce conflict. Following the above plan, we apply the offending rule
to the item E—>EeQF, but the resulting item cannot be E—EQeF, for two reasons.
First, the same item would result from finding a / in the input; and second, there is
no corresponding Q on the parsing stack. So we mark the Q in the new item with a
stroke on top: Q, to indicate that it does not correspond to a Q on the parse stack, a
kind of non-Q.

We can now remove the item Q—>e since it has played its part; the shift/reduce
conflict is gone, and a deterministic handle recognizer results. This means that the
grammar is €-LR(0); the deterministic handle recognizer is shown in Figure 9.22.
The endangered state is state 4; the state that would result in “normal” LR(0) parsing
is also shown, marked 4X. We see that the immediate reduction Q—¢€ and the sub-
sequent shift over Q have resulted in an item F—>ea that is not present in the pure
LR(0) state 4X.



288 9 Deterministic Bottom-Up Parsing

4x

S—>Ee$
E—>EeQF
Q—>e/
E—>EQeF
F—ea

S—>Ee$
E—>EeQF
Q—>e/
Q—>e

Fig. 9.22. Deterministic e-LR(0) automaton for the grammar of Figure 9.21

In addition to the e-reductions during parser table construction, e-LR(0) parsing
has another feature: when constructing the states of the deterministic handle recog-
nizer, items that differ only in the presence or absence of bars over non-terminals are
considered equal. So while the transition over F from state 4 yields an item E—>EQF e
and that from state 5 yields E—EQF e, both transitions lead to state 6, which contains
both items.

This feature has two advantages and one problem. The first advantage is that with
this feature more grammars are €-LR(0) than without it, although this plays no role
in our example. The second is that the semantics of a single rule, the E—EQF in our
example, is not split up over several items.

The problem is of course that we now have a reduce/reduce conflict. This problem
is solved dynamically — during parsing — by checking the parse stack. If it contains

OE®Q®F ®

we know the Q was there; we unstack 6 elements, perform the semantics of E—EQF,
and push an E. If the parse stack contains

©®E®F ®

we know the Q was not there; we unstack 2 elements, create a node for Q —¢, unstack
2 more elements, perform the semantics of E—EQF, and push an E. Note that this
modifies the basic behavior of the LR automaton, and it could thus be argued that
€-LR(0) parsing actually is not an LR technique.

Besides allowing grammars to be handled that would otherwise require much
more complicated methods, e-LR(0) parsing has the property that the non-terminals
on the stack all correspond to non-empty segments of the input. This is obviously
good for efficiency, but also very important in some more advanced parsing methods,
for example generalized LR parsing (Section 11.1.4).

For more details on €-LR(0) parsing and the related subject of hidden left recur-
sion see Nederhof [156, Chapter 4], and Nederhof and Sarbo [94]. These also supply
examples of grammars for which combining items with different bar properties is
beneficial.
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9.5.5 Practical LR Parse Table Construction

Above we explained the construction of the deterministic LR automaton (for exam-
ple Figure 9.17) as an application of the subset algorithm to the non-deterministic
LR automaton (Figure 9.15), but most LR parser generators (and many textbooks
and papers) follow more closely the process indicated in Figure 9.16. This process
combines the creation of the non-deterministic automaton with the subset algorithm:
each step of the algorithm creates a transition u L v, where u is an existing state
and v is a new or old state. For example, the first step in Figure 9.16 created the

transition @ E @. In addition the algorithm must do some bookkeeping to catch du-
plicate states. The LR(0) version works as follows; other LR parse table construction
algorithms differ only in details.

The algorithm maintains a data structure representing the deterministic LR han-
dle recognizer. Several implementations are possible, for example a graph like the
one in Figure 9.17. Here we will assume it to consist of a list of pairs of states (item
sets) and numbers, called S, and a set of transitions 7'. S represents the bubbles in
the graph, with their contents and numbers; T represents the arrows. The algorithm
also maintains a list U of numbers of new, unprocessed LR states. Since there is a
one-to-one correspondence between states and state numbers we will use them inter-
changeably.

The algorithm starts off by creating a station A, where A is the start symbol of
the grammar. This station is expanded, the resulting items are wrapped into a state
numbered 1, the state is inserted into S, and its number is inserted in U. An item or a
station [ is expanded as follows:

1. If the dot is in front of a non-terminal A in /, create items of the form A — e---
for all grammar rules A — - - - ; then expand these items recursively until no more
new items are created. The result of expanding / is the resulting item set; note
that this is a set, so there are no duplicates. (This implements the e-transitions in
the non-deterministic LR automaton.)

2. If the dot is not in front of a non-terminal in /, the result of expanding [ is just /.

The LR automaton construction algorithm repeatedly removes a state u from the
list U and processes it by performing the following actions on it for all symbols
(terminals and non-terminals) ¢ in the grammar:

1. An empty item set v is created.

2. The algorithm finds items of the form A — owerf3 in u. For each such item a new
item A — ore is created, the kernel items. (This implements the vertical tran-
sitions in the non-deterministic LR automaton.) The created items are expanded
as described above and the resulting items are inserted in v.

3. If state v is not already present in S, it is new and the algorithm adds it to U.
Then v is added to S and the transition u - v is added to T'. Here u was already
present in S; the transition is certainly new to 7'; and v may or may not be new
to S. Note that v may be empty; it is then the error state.
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Since the above algorithm constructs all transitions, even those to error states, it
builds a complete automaton (page 152).

The algorithm terminates because the work to be done is extracted from the list
U, but only states not processed before are inserted in U. Since there are only a finite
number of states, there must come a moment that there are no new states any more,
after which the list U will become empty. And since the algorithm only creates states
that are reachable and since only a very small fraction of all states are reachable, that
moment usually arrives very soon.

9.6 LR(1)

Our initial enthusiasm about the clever and efficient LR(0) parsing technique will
soon be damped considerably when we find out that very few grammars are in fact
LR(0). If we drop the $ from rule 1 in the grammar of Figure 9.14 since it does not
really belong in arithmetic expressions, we find that the grammar is no longer LR(0).
The new grammar is given in Figure 9.23, the non-deterministic automaton in Figure
9.24, and the deterministic one in Figure 9.25. State 5 has disappeared, since it was
reached by a transition on $, but we have left the state numbering intact to facilitate
comparison; a parser generator would of course number the states consecutively.

1. s - E
2. E —- E-T
3.>E — T
4, T — n
5. T - (E)

Fig. 9.23. A non-LR(0) grammar for differences of numbers

When we inspect the new LR(0) automaton, we observe to our dismay that state 4
(marked X) is now inadequate, exhibiting a shift/reduce conflict on -, and the gram-
mar is not LR(0). This is all the more vexing as this is a rather stupid inadequacy:
S—Ee can never occur in front of a - but only in front of a #, the end-of-input
marker, so there is no real problem at all. If we had developed the parser by hand, we
could easily test in state 4 if the symbol ahead was a - or a # and act accordingly (or
else there was an error in the input). Since, however, practical parsers have hundreds
of states, such manual intervention is not acceptable and we have to find algorithmic
ways to look at the symbol ahead.

Taking our cue from the explanation of the Earley parser,’ we attach to each
dotted item a look-ahead symbol. We shall separate the look-ahead symbol from the
item by a space rather than enclose it between [1s as we did before, to avoid visual

1

! Actually LR parsing was invented (Knuth [52, 1965]) before Earley parsing (Earley [14,
1970]).
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Fig. 9.25. Inadequate LR(0) automaton for the grammar in Figure 9.23

clutter. The construction of a non-deterministic handle-finding automaton using this
kind of item, and the subsequent subset construction yield an LR(1) parser.

We shall now examine Figure 9.26, the NFA. Like the items, the stations have
to carry a look-ahead symbol too. Actually, a look-ahead symbol in a station is more
natural than that in an item: a station like eE # just means hoping to see an E fol-
lowed by a #. The parser starts at station ¢S #, which has the end marker # as
its look-ahead. From it we have €-moves to all production rules for S, of which
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€

Fig. 9.26. Non-deterministic LR(1) automaton for the grammar in Figure 9.23

there is only one; this yields the item S—seE #. This item necessitates the sta-
tion eE #; note that we do not automatically construct all possible stations as we
did for the LR(0) automaton, but only those to which there are actual moves from
elsewhere in the automaton. The station eE # produces two items by e-transitions,
E—>eE-T # and E—>eE #. It is easy to see how the look-ahead propagates. The
item E—>eE-T # in turn necessitates the station eE -, since now the automaton
can be in the state “hoping to find an E followed by a -”. The rest of the automaton
will hold no surprises.
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Look-aheads of items are directly copied from the items or stations they derive
from; Figure 9.26 holds many examples. The look-ahead of a station derives either
from the symbol following the originating non-terminal:

the item E-—>eE-T leads to station eE -

or from the previous look-ahead if the originating non-terminal is the last symbol in
the item:

theitem S—>eE # leads to station eE #

There is a complication which does not occur in our example. When a non-terminal
is followed by another non-terminal:

P — eQOR

there will be e-moves from this item to all stations eQ y, where for y we have to fill in
all terminals in FIRST(R). This is reasonable since all these and only these symbols
can follow Q in this particular item. It will be clear that this is a rich source of
stations. More complications arise when the grammar contains e-rules, for example
when R can produce €; these are treated in Section 9.6.1.

The next step is to run the subset algorithm of page 145 on this automaton to
obtain the deterministic automaton; if the automaton has no inadequate states, the
grammar was LR(1) and we have obtained an LR(1) parser. The result is given in
Figure 9.27. As was to be expected, it contains many more states than the LR(0)

T—(E®) #
E->E®-T )
E->E®-T -

T->® (E) )
T->en -
T—>® (E) -

Fig. 9.27. Deterministic LR(1) automaton for the grammar in Figure 9.23

automaton although the 60% increase is very modest, due to the simplicity of the
grammar. An increase of a factor of 10 or more is more likely in practice. (Although
Figure 9.27 was constructed by hand, LR automata are normally created by a parser
generator exclusively.)
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We are glad but not really surprised to see that the problem of state 4 in Figure
9.25 has been resolved in Figure 9.27: on # reduce using S—E, on - shift to state 7
and on any other symbol give an error message.

It is again useful to represent the LR(1) automaton in an ACTION and a GOTO
table; they are shown in Figure 9.28 (state 5 is missing, as explained on page 290).
The combined ACTION/GOTO table can be obtained by superimposing both tables;
this results in the LR(1) parsing table as it is used in practice.

ACTION GOTO

n - () # n - ( ) # S E T
s e s e e 1] 3 6 accept 4 2
2le 13 e e 13 2
3le 4 e e 14 3
41le s e e rl 4 7
6|s e s e e 6110 13 11 9
T7|ls e s e e 71 3 6 8
8le 12 e e 12 8
9le 13 e 13 9
10|e 4 e 4 e 10
I1|e s e 11 14 12
12|e 15 e r5 12
13| s S e 13| 10 13 16 9
14 | s S e 14 | 10 13 15
15|e 2 e 12 e 15
16|e s e s e 16 14 17
17|e 15 e 15 ¢ 17

Fig. 9.28. LR(1) ACTION and GOTO tables for the grammar of Figure 9.23

The sentential form E-n-n# leads to the following configuration:
DE® - ®n B -n#

and since the look-ahead is -, the correct reduction T—>n is indicated.

All stages of the LR(1) parsing of the string n-n-n are given in Figure 9.29.
Note that state @ in & causes a shift (look-ahead -) while in [ it causes a reduce
(look-ahead #).

When we compare the ACTION and GOTO tables in Figures 9.28 and 9.18, we
find two striking differences. First, the ACTION table now has several columns and
is indexed with the look-ahead token in addition to the state; this is as expected. What
is less expected is that, second, all the error entries have moved to the ACTION table.
The reason is simple. Since the look-ahead was taken into account when constructing
the ACTION table, that table orders a shift only when the shift can indeed be per-
formed, and the GOTO step of the LR parsing algorithm does not need to do checks
any more: the blank entries in the GOTO table will never be accessed.
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a @ n-n-n# shift

b ®n® -n-n# reduce 4
c ©@T® -n-n# reduce 3
d ®E @ -n-n# shift

e ODE® - ©® n-n# shift

f OE® - @n O -n# reduce 4
g ODE® -O@T -n# reduce 2
h ©®E @ -n# shift

i OE® - @ n# shift

j ©OE® - @n® # reduce 4
k DE® - @T ® # reduce 2
| O©®E® # reduce 1
m @© s # accept

Fig. 9.29. LR(1) parsing of the string n-n-n

It is instructive to see how the LR(0) and LR(1) parsers react to incorrect input,
for example E-nn- - -. The LR(1) parser of Figure 9.28 finds the error as soon as the
second n appears as a look-ahead:

©®E® - @n O n---

since the pair (3,n) in the ACTION table yields “e”; the GOTO table is not even
consulted. The LR(0) parser of Figure 9.18 behaves differently. After reading E-n it
is in the configuration

DE® - @n O n--

where entry 3 in the ACTION table tells it to reduce by T —n:
PE® - @T n---

and now entry 8 in the ACTION table tells it to reduce again, by E—E-T this time:
®E® n--

Only now is the error found, since the pair (4,n) in the GOTO table in Figure 9.18
yields “e”.

Since the LR(0) automaton has fewer states than the LR(1) automaton, it retains
less information about the input to the left of the handle; since it does not use look-
ahead it uses less information about the input to the right of the handle. So it is not
surprising that the LR(0) automaton is less alert than the LR(1) automaton.

9.6.1 LR(1) with e-Rules

In Section 3.2.2 we have seen that one has to be careful with e-rules in bottom-up
parsers: they are hard to recognize bottom-up. Fortunately LR(1) parsers are strong
enough to handle them without problems. In the NFA, an e-rule is nothing special;
it is just an exceptionally short list of moves starting from a station (see station eBc
in Figure 9.31(a)). In the deterministic automaton, the e-reduction is possible in all
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states of which the e-rule is a member, but hopefully its look-ahead sets it apart
from all other rules in those states. Otherwise a shift/reduce or reduce/reduce conflict
results, and indeed the presence of €-rules in a grammar raises the risks of such
conflicts and reduces the likelihood of the grammar being LR(1).

S
A
B
B

Fig. 9.30. A simple grammar with an e-rule

ARER"
oo

Fig. 9.31. Non-deterministic and deterministic LR(1) automata for Figure 9.30

To avoid page-filling drawings, we demonstrate the effect using the trivial gram-
mar of Figure 9.30. Figure 9.31(a) shows the non-deterministic automaton, Figure
9.31(b) the resulting deterministic one. Note that no special actions were necessary
to handle the rule B—e.
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The only complication occurs again in determining the look-ahead sets in rules
in which a non-terminal is followed by another non-terminal; here we meet the same
phenomenon as in an LL(1) parser (Section 8.2.2.1). Given an item, for example,
P — eABC d where d is the look-ahead, we are required to produce the look-ahead
set for the station eA ---. If B had been a terminal, it would have been the look-ahead.
Now we take the FIRST set of B, and if B produces € (is nullable) we add the FIRST
set of C since B can be transparent and allow us to see the first token of C. If C is
also nullable, we may even see d, so in that case we also add d to the look-ahead set.
The result of these operations can be written as FIRST(BCd). The new look-ahead
set cannot turn out to be empty: the sequence of symbols from which it is derived
(the BCd above) always ends in the original look-ahead set, and that was not empty.

9.6.2 LR(k > 1) Parsing

Instead of a one-token look-ahead k tokens can be used, with k > 1. Surprisingly, this
is not a straightforward extension of LR(1). The reason is that for k > 1 we also need
to compute look-ahead sets for shift items. That this is so can be seen from the LR(2)
grammar of Figure 9.32. It is clear that the grammar is not LR(1): the input must start

l. S —> Aa | Bb | Cec | Ded
2. A — gE
3. B - (E
4 Cc - g
5. D - ¢q
6. E —=> e

Fig. 9.32. An LR(2) Grammar

with a g but the parser cannot see if it should reduce by ¢—q (look-ahead e), reduce
by D—q (look-ahead e), or shift over e. But each choice has a different two-token
look-ahead set (ec, ed and {ea, eb}, respectively), so LR(2) should work.

The initial state, state 1, in the LR(2) parser for this grammar is

S—>eha ##
S—eBb ##
S—>eCec ##
S—>eDed ##
A—>eqgE a#
B—>eqgE b#
C—>eq ec

D—eg ed

which calls for a shift over the q. After this shift the parser reaches a state
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A—>geE a#
B—>geE b#
C—>ge ec
D—qge ed
E—>ee a#
E—>ee b#

where we still have the same shift/reduce conflict: there are two reduce items, C—>qe
and D—>qe with look-aheads ec and ed, and one shift item, E—ee, which shifts
on an e.

The conflict goes away when we realize that for each item / two kinds of look-
aheads are involved: the item look-ahead, the set of strings that can follow the end of
I; and the dot look-ahead, the set of strings that can follow the dot in /. For parsing
decisions it is the dot look-ahead that counts, since the dot position corresponds with
the gap in an LR parser, so the dot look-ahead corresponds to the first k tokens of
the rest of the input. Note that for reductions the item look-ahead seems to be the
deciding factor, but since the dot is at the end in reduce items, the item look-ahead
coincides with the dot look-ahead. In an LR(1) parser the dot look-ahead of a shift
item / coincides with the set of tokens on which there is a shift from the state / resides
in, so there is no need to compute it separately, but as we have seen above, this is not
true for an LR(2) parser.

So we compute the full two-token dot look-aheads for the shift items to obtain
state 2:

item with dot look-
item look-ahead ahead
A—>qgeE a# ea
B—>geE b# eb

C—>ge ec ec
D-—>qge ed ed
E—ee a# ea
E—>ee b# eb

Now the conflict is resolved since the two reduce actions and the shift action all have
different dot look-aheads: shift on ea and eb, reduce to C on ec, and reduce to D on
ed.

More in general, the dot look-ahead of an item A — o83 y, where 7 is the item
look-ahead, can be computed as FIRSTy(BY).

Parts of the ACTION and GOTO tables for the LR(2) parser for the grammar in
Figure 9.32 are given in Figure 9.33. The ACTION table is now indexed by look-
ahead strings of length 2 rather than by single tokens, but the GOTO table is still
indexed by single symbols, since each entry in a GOTO table represents a transi-
tion in the handle-finding automaton, and transitions consume just one symbol. As
a result, superimposing the two tables into one ACTION/GOTO table is no longer
possible; combined ACTION/GOTO tables are a feature of LR(1) parsing only (and,
with some handwaving, of LR(0)). Again all the error detection is done in the AC-
TION table.
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ACTION GOTO
ge ea eb ec ed - g a b ¢ d e E
2

S € € € €

e s s 14 15 3 4

B W N =
AW N~

Fig. 9.33. Partial LR(2) ACTION and GOTO tables for the grammar of Figure 9.32

It is interesting to compare this to LR(0), where there is no look-ahead at all.
There the ACTION table offers no protection against impossible shifts, and the
GOTO table has to contain error entries. So we see that the LR(0), LR(1), and
LR(k > 1) table construction algorithms differ in more than just the value of k: LR(0)
needs a check upon shift; LR(k > 1) needs the computation of dot look-ahead; and
LR(1) needs either but not both. It is of course possible to design a combined algo-
rithm, but for all values of k part of it would not be activated.

However interesting LR(k > 1) parsing may be, its practical value is quite limited:
the required tables can assume gargantuan size (see, e.g., Ukkonen [66]), and it does
not really help much. Although an LR(2) parser is more powerful than an LR(1)
parser, in that it can handle some grammars that the other cannot, the emphasis is on
“some”. If a common-or-garden variety grammar is not LR(1), chances are minimal
that it is LR(2) or higher.

9.6.3 Some Properties of LR(k) Parsing

Some theoretically interesting properties of varying practical significance are briefly
mentioned here. It can be proved that any LR(k) grammar with £ > 1 can be trans-
formed into an LR(k — 1) grammar (and so to LR(1), but not always to LR(0)), often
at the expense of an enormous increase in size; see for example Mickunas, et al.
[407]. It can be proved that if a language allows parsing with a pushdown automaton
as described in Section 3.3, it has an LR(1) grammar; such languages are called de-
terministic languages. It can be proved that if a grammar can be handled by any of
the deterministic methods of Chapters 8 and 9, it can be handled by an LR(k) parser
(that is, all deterministic methods are weaker than or equally strong as LR(k)). It
can be proved that any LR(k) language can be obtained as a regular expression, the
elements of which are LR(0) languages; see Bertsch and Nederhof [96].

LR(k>1) parsers have the immediate error detection property: they will stop at
the first incorrect token in the input and not even perform another shift or reduce. This
is important because this early error detection property allows a maximum amount
of context to be preserved for error recovery; see Section 16.2.6. We have seen that
LR(0) parsers do not have this property.

In summary, LR(k) parsers are the strongest deterministic parsers possible and
they are the strongest linear-time parsers known, with the exception of some non-
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canonical parsers; see Section 10. They react to errors immediately, are paragons of
virtue and beyond compare, but even after 40 years they are not widely used.

9.7 LALR(1)

The reader will have sensed that our journey has not yet come to an end; the goal of a
practical, powerful, linear-time parser has still not been attained completely. At their
inception by Knuth in 1965 [52], it was realized that LR(1) parsers would be imprac-
tical in that the space required for their deterministic automata would be prohibitive.
A modest grammar might already require hundreds of thousands or even millions of
states, numbers that were totally incompatible with the computer memories of those
days.

In the face of this difficulty, development of this line of parsers came to a stand-
still, partially interrupted by Korenjak’s invention of a method to partition the gram-
mar, build LR(1) parsers for each of the parts and combine these into a single over-all
parser (Korenjak [53]). This helped, but not much, in view of the added complexity.

The problem was finally solved by using an unlikely and discouraging-looking
method. Consider the LR(1) automaton in Figure 9.27 and imagine boldly discarding
all look-ahead information from it. Then we see that each state in the LR(1) automa-
ton reverts to a specific state in the LR(0) automaton; for example, LR(1) states 6
and 13 collapse into LR(0) state 6 and LR(1) states 2 and 9 collapse into LR(0) state
2. We say that LR(1) states 6 and 13 have the same core, the items in the LR(0) state
6, and similarly for LR(1) states 2 and 9.

There is not a single state in the LR(1) automaton that was not already present
in a rudimentary form in the LR(0) automaton. Also, the transitions remain intact
during the collapse: both LR(1) states 6 and 13 have a transition to state 9 on T, but
so has LR(0) state 6 to 2. By striking out the look-ahead information from an LR(1)
automaton, it collapses into an LR(0) automaton for the same grammar, with a great
gain as to memory requirements but also at the expense of the look-ahead power.
This will probably not surprise the reader too much, although a formal proof of this
phenomenon is not trivial.

The idea is now to collapse the automaton but to keep the look-ahead informa-
tion, as follows. The LR(1) state 2 (Figure 9.27) contains the items

E—>Te -
E—>Te #

and LR(1) state 9 contains

E—>Te -
E—>Te )

where the LR(0) core is

E—>Te
E—>Te
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They collapse into an LALR(1) state which corresponds to the LR(0) state 2 in Figure
9.25, but now with look-ahead:

E—Te #
E—>Te -
E—>Te )

The surprising thing is that this procedure preserves almost all the original look-
ahead power and still saves an enormous amount of memory. The resulting automa-
ton is called an LALR(1) automaton, for “Look Ahead LR(0) with a look-ahead of 1
token.”

The LALR(1) automaton for our grammar of Figure 9.23 is given in Figure 9.34.
The look-aheads are sets now and are shown between [ and 1, so state 2 is repre-

—> (*E) [#-)
E—>eE-T[#-)]

S—>eE[#]
E—>eE-T[#-]

E—>eT[#-] E—>eT[#-)]
T—>en[#-] T—>0n[# )1
T—>e (E) [#-] e (E) [#-)]

—>E-oT[#-)]
T-—>en[#-)]
T—>e (E) [#- )]

Fig. 9.34. The LALR(1) automaton for the grammar of Figure 9.23

sented as E—>Te [#-)]1. We see that the original conflict in state 4 is indeed still
resolved, as it was in the LR(1) automaton, but that its size is equal to that of the
LR(0) automaton. Now that is a very fortunate state of affairs!

We have finally reached our goal. LALR(1) parsers are powerful, almost as
powerful as LR(1) parsers, they have fairly modest memory requirements, only
slightly inferior to (= larger than) those of LR(0) parsers,” and they are time-efficient.
LALR(1) parsing may very well be the most-used parsing method in the world today.
Probably the most famous LALR(1) parser generators are yacc and its GNU version
bison.

LALR(k) also exists and is LR(0) with an add-on look-ahead of k tokens.
LALR(k) combines LR(0) information about the left context (in the LR(0) automa-

2 Since the LALR(1) tables contain more information than the LR(0) tables (although they
have the same size), they lend themselves slightly less well to data compression. So practi-
cal LALR(1) parsers will be bigger than LR(0) parsers.
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ton) with LR(k) information about the right context (in the k look-aheads). Actually
there is a complete family of LA(k)LR(j) parsers out there, which combines LR(j)
information about the left context with LR(k) information about the right context.
Like LALR(1), they can be derived from LR(j + k) parsers in which all states with
identical cores and identical first k tokens of the j -+ k-token look-ahead have coin-
cided. So LALR(1) is actually LA(1)LR(0), Look-ahead Augmented (1) LR (0). See
Anderson [55].

9.7.1 Constructing the LALR(1) Parsing Tables

When we have sufficiently drunk in the beauty of the vista that spreads before us on
these heights, and start thinking about returning home and actually building such a
parser, it will come to us that there is a small but annoying problem left. We have
understood how the desired parser should look and also seen how to construct it, but
during that construction we used the unacceptably large LR(1) parser as an interme-
diate step.

So the problem is to find a shortcut by which we can produce the LALR(1)
parse table without having to construct the one for LR(1). This particular prob-
lem has fascinated scores of computer scientists for many years (see the references
in (Web)Section 18.1.4), and several good (and some very clever) algorithms are
known. On the other hand, several deficient algorithms have appeared in publica-
tions, as DeRemer and Pennello [63] and Kannapinn [99] have pointed out. (These
algorithms are deficient in the sense that they do not work for some grammars for
which the straightforward LR(1) collapsing algorithm does work, rather than in the
sense that they would lead to incorrect parsers.)

Since LALR(1) is clearly a difficult concept; since we hope that each new LALR
algorithm contributes to its understandability; and since we think some algorithms
are just too interesting to skip, we have allowed ourselves to discuss four LALR(1)
parsing table construction algorithms, in addition to the one above. We present 1. a
very simple algorithm, which shows that constructing an LALR(1) parsing table is
not so difficult after all; 2. the algorithm used in the well-known parser generator
yacc; 3. an algorithm which creates LALR(1) by upgrading LR(0); and 4. one that
does it by converting the grammar to SLR(1). This is also the order in which the
algorithms were discovered.

9.7.1.1 A Simple LALR(1) Algorithm

The easiest way to keep the LALR(1) parse table small is to never let it get big.
We achieve this by collapsing the states the moment they are created, rather than
first creating all states and then collapsing them. We start as if we are making a full
LR(1) parser, propagating look-aheads as described in Section 9.6, and we use the
table building technique of Section 9.5.5. In this technique we create new states by
performing transitions from existing unprocessed states obtained from a list U, and if
the created state v is not already present in the list of processed states S, the algorithm
adds it to U so it can be the source of new transitions.
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For our LALR(1) algorithm we refine this step as follows. We check v to see if
there is already a state w in § with the same core. If so, we merge v into w; if this
modifies w, we put w back in U as an unprocessed state: since it has changed, it may
lead to new and different states. If w was not modified, no new information has come
to light and we can just extract the next unprocessed state from U'; v itself is discarded
in both cases. The state w keeps its number and its transitions; it is important to note
that when w is processed again, its transitions are guaranteed to lead to states whose
cores are already present in S and 7.

The merging makes sure that the cores of all states in S are always different, as
they should be in an LALR(1) parser; so never during the process will the table be
larger than the final LALR(1) table. And by putting all modified states back into
the list to be processed we have ensured that all states with their proper LALR(1)
look-aheads will be found eventually. This surprisingly simple algorithm was first
described by Anderson et al. [56] in 1973.

The algorithm is not ideal. Although it solves the main problem of LALR(1)
parse table generation, excessive memory use, it still generates almost all LR(1)
states, of which there are many more than LALR(1) states. The only situation in
which we gain time over LR(1) parse table generation is when merging the created
state v into an existing state w does not modify w. But usually v will bring new look-
aheads, so usually w will change and will then be reprocessed. Computer scientists,
especially compiler writers, felt the need for a faster LALR(1) algorithm, which led
to the techniques described in the following three sections.

9.7.1.2 The Channel Algorithm

The well-known parser generator yacc uses an algorithm that is both intuitively rel-
atively clear and reasonably efficient (Johnson [361]); it is described in more detail
by Aho, Sethi and Ullman in [340]. The algorithm does not seem to have a name; we
shall call it the channel algorithm.

We again use the grammar of Figure 9.23, which we now know is LALR(1) (but
not LR(0)). Since we want to do look-ahead but do not yet know what to look for,
we use LR(0) items extended with a yet unknown look-ahead field, indicated by an
empty square; an example of an item would be A—>bCeDe [J. Using such items,
we construct the non-deterministic LR(0) automaton in the usual fashion; see Figure
9.35. Now suppose that we were told by some oracle what the look-ahead set of the
item S—>eE []is (first column, second row in Figure 9.35); call this look-ahead set
L. Then we could draw a number of conclusions. The first is that the item S—>Ee []
also has L. The next is that the look-ahead set of the station eE[] is also L, and from
there L spreads to E—>eE-T,E—>Ee¢-T, E—>E-e¢T, E—>E-Te, E—>eT and E—>Te.
From E—>E-eT and E—eT it flows to the station ¢T and from there it again spreads
on.

The flow possibilities of look-ahead information from item to item once it is
known constitute “channels” which connect items. Each channel connects two items
and is one-directional. There are two kinds of channels. From each station channels
run down to each item that derives from it; these channels propagate input from
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D1

Fig. 9.35. Non-deterministic automaton with channels

elsewhere. From each item that has the dot in front of a non-terminal A, a channel
runs parallel to the e-arrow to the station eA[]. If A is the last symbol in the right-
hand side, the channel propagates the look-ahead of the item it starts from. If A is
not the last symbol, but is followed by, for example, CDe (so the entire item would
be something like P — BeACDe [J), the input to the channel is FIRST(CDe); such
input is said to be “generated spontaneously”, as opposed to “propagated” input.

Figure 9.35 shows the full set of channels: those carrying propagated input as
dotted lines, and those carrying spontaneous input as dashed lines, with their sponta-
neous input sets. A channel from outside introduces the spontaneous look-ahead #,
the end-of-input marker, to the station(s) of the start symbol. The channel set can be
represented in a computer as a list of input and output ends of channels:

Inputend leadsto outputend Remarks

[#] ==> e3[] spontaneous
esl] ==> S->eE [] propagated
S—>eE [ ==> S-—>Ee [] propagated
S—eE [l ==> E [] propagated
[-1 ==> eE [] spontaneous

Next we run the subset algorithm on this (channeled) NFA in slow motion and
watch carefully where the channels go. This procedure severely taxes the human
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brain; a more practical way is to just construct the deterministic automaton without
concern for channels and then use the above list (in its complete form) to re-establish
the channels. This is easily done by finding the input and output end items and sta-
tions in the states of the deterministic automaton and constructing the corresponding
channels. Note that a single channel in the NFA can occur many times in the deter-
ministic automaton, since items can (and will) be duplicated by the subset construc-
tion. The result can best be likened to a bowl of mixed spaghetti and tagliatelli (the
channels and the transitions) with occasional chunks of ham (the item sets) and will
not be printed in this book.

Now we are close to home. For each channel we pump its input to the channel’s
end. First this will only have effect for channels that have spontaneous input: a #
will flow in state 1 from item S—eE [[]] to station eE [[]], which will then read
eE[#]; a - from E—eE-T [[J] flows to the ¢E [[]], which changes to eE[-1;
etc. We go on pumping until all look-ahead sets are stable and nothing changes any
more. We have now obtained the LALR(1) automaton and can discard the channels;
of course we keep the transitions. This is an example of a transitive closure algorithm.

It is interesting to look more closely at state 4 (see Figure 9.34) and to see how
S—>Ee [#] gets its look-ahead which excludes the -, although the - is present in
the look-ahead set of E—>Ee-T [#-] in state 4. To this end, a magnified view of
the top left corner of the full channeled LALR(1) automaton is presented in Figure
9.36; it comprises the states 1 to 4. Again channels with propagated input are dotted,
those with spontaneous input are dashed and transitions are drawn. We can now see
more clearly that S—>Ee [#] derives its look-ahead from S—>eE [#] in 1, while
E—>Ee-T [#-] derives its look-ahead (indirectly) from eE [ -] in state 1. This item
has a look-ahead - generated spontaneously in E—>eE-T [[]] in state 1. The chan-
nel from S—eE[#] to eE[#-] only works “downstream”, which prevents the -
from flowing back. LALR(1) parsers often give one the feeling that they succeed by
a narrow margin!

If the grammar contains €-rules, the same complications arise as in Section 9.6.1
in the determination of the FIRST set of the rest of the right-hand side: when a non-
terminal is nullable we have to also include the FIRST set of what comes after it, and
so on. We meet a special complication if the entire rest of the right-hand side can be
empty: then we may see the look-ahead [], which we do not know yet. In fact this
creates a third kind of channel that has to be watched in the subset algorithm. We
shall not be so hypocritical as to suggest the construction of the LALR(1) automaton
for the grammar of Figure 9.30 as an exercise to the reader, but we hope the general
principles are clear. Let a parser generator do the rest.

9.7.1.3 LALR(1) by Upgrading LR(0)

The above techniques basically start from an LR(1) parse table, explicit or implicit,
and then shrink it until the items are LR(0): they downgrade the LR(1) automaton to
LALR(1). It is also possible to start from the LR(0) automaton, find the conflicts in
it, and upgrade from there. This leads to a complicated but very efficient algorithm,
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s 14

S—>eE [4]

E—>E[g]; [}#—J‘.

4]

T—e (E) ~[#-] .
S—>E- P#]

E—Ee-T \#-]

Fig. 9.36. Part of the deterministic automaton with channels (magnified cut)

designed by DeRemer and Pennello [63]. Again it has no name; we shall call it the

relations algorithm, for reasons that will become clear.

Upgrading the inadequate LR(0) automaton in Figure 9.25 is not too difficult. We
need to find the look-ahead(s) we are looking at in the input when we are in state 4
and reducing by S —E is the correct action. That means that the stack must look like

- E®@

Looking back through the automaton, we can see that we can have come from one

state only: state 1:

®E®

Now we do the reduction because we want to see what happens when that is the

correct action:

® s
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and we see that we have reduced to S, which has only one look-ahead, #, the end-
of-input token. So the reduce look-ahead of the item S—Ee in state 4 is #, which
differs from the shift look-ahead - for E—Ee -T, so the conflict is resolved.

This is an example of a more general technique: to find the look-ahead(s) of an
inadequate reduce item in an LR(0) automaton, we take the following steps:

* we assume that the implied reduction R is the proper action and simulate its
effects on an imaginary stack;

e we simulate all possible further movements of the LR(0) automaton until the
automaton is about to shift in the next token, 7;

e we add 7 to the look-ahead set, since it has the property that it will be shifted and
accepted if we do the reduction R when we see it as the next token in the input.

It will be clear that this is a very reasonable method of collecting good look-ahead
sets. It is much less clear that it produces the same LALR look-ahead sets as the
LALR algorithms above, and for a proof of that fact we refer the reader to DeRemer
and Pennello’s paper.

Turning the above ideas into an algorithm requires some serious effort. We will
follow DeRemer and Pennello’s explanation closely, using the same formalism and
terminology as much as is convenient. The explanation uses an unspecified grammar
of which only two rules are important: A — ® and B — BAy, for some, possibly
empty sequences of non-terminals and terminals ®, B, and . Refer to Figure 9.37.

onlyify = Cy...C,—e

/ e,
Ja B — BACeCy---C,, GG

Hunting for LALR(1) look-aheads in an LR(0) automaton —
the lookback and includes relations

Fig. 9.37.

Suppose the LR(0) automaton has an inadequate state g with a reduce item A —
we, and we want to know the LALR look-ahead of this item. If state ¢ is on the top
of the stack, there must be a path through the LR(0) automaton from the start state
1 to g (or we would not have ended up in g), and the last part of this path spells ®
(or we would not be able to reduce by A — ®). We can follow this path back to the
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beginning of ®; this leads us to the state p, where the present item A — ®e originated.
There are two things to note here: there may be several different paths back that spell
, leading to several different ps; and ® may be €, in which case p is equal to ¢g. For
simplicity Figure 9.37 shows one p only.

We have now established that the top segment of the stack is p ®; --- ®, ¢,
where p is one of the ps identified above and o - - - @, are the components of . We
can now do the simulated reduction, as we did above. This shortens the stack to p A,
and we have to shift over the A, arriving at a state r.

More formally, a reduce item A — we in an LR(0) state ¢ identifies a set of

. A A .
transitions {p; — r1,...,pn — 1}, where for all p; we have p; 2 g. This defines
the so-called lookback relation between a pair (state, reduce item) and a transition.

One writes (¢, A — we) lookback (p; A ri) for 1 <i < n. This is step 1 of the
simulation. Note that this is a relation, not an algorithm to compute the transition(s);
it just says that given a pair (state, reduce item) and a transition, we can check if the
“lookback” relation holds between them. (DeRemer and Pennello write a transition

(pi A r;) as (p;,A), since the r follows directly from the LR(0) automaton, which is
deterministic.)

The shift from p over A is guaranteed to succeed, basically because the presence
of an item A — e in ¢ combined with the existence of a path ® from g leading back
to p proves that p contains an item that has a dot in front of an A. That eA causes both

the o path and the transition p Ay (except when A is the start symbol, in which case
we are done and the look-ahead is #). The general form of such an item is B — PeAY,
as shown in Figure 9.37. Here we have the first opportunity to see some look-ahead
tokens: any terminal in FIRST(y) will be an LALR look-ahead token for the reduce
item A — e in state g. But the simulation is not finished yet, since y may be or
produce €, in which case we will also have to look past the item B — PAey.

If v produces €, it has to consist of a sequence of non-terminals C; - --C,, each
capable of producing €. This means that state r contains an item C; — e, which is
immediately a reduce item; see a similar phenomenon in state 3 in Figure 9.31. Its
presence will certainly make r an inadequate state, but, if the grammar is LALR(1),
that problem will be solved when the algorithm treats the item C; — e in r. For
the moment we assume the problem is solved; we do the reduction, push C; on the
simulated stack, and shift over it to state r¢c,. We repeat this process until we have
processed all Cy - - - Cp,, and by doing so reach a state r¢, which contains a reduce item
B — BAve.

Now it is tempting to say that any look-ahead of this item will also figure in the
look-ahead that we are looking for, but that is not true. At this point in our simulation
the stack contains p A r Cy r¢, --- C, 1¢,, so we see only the look-aheads of those
items B — PBAvye in state rc, that have reached that state through p! State rc, may
be reachable through other paths, which may quite well bring in other look-aheads
for the reduce item B — PAye which do not belong in the look-ahead set of A — .
So to simulate the reduction B — BAy we walk the path y back through the LR(0)
automaton to state p, all the while removing C;s (components of y) from the stack.
Then from state p backwards we can freely find all paths that spell B, to reach all



9.7 LALR(1) 309

states p! that contain the item B — eBAy. Each of these states p’ has a transition on
B, for the same reasons p had a transition on A (again except when B is the start
symbol). The transition over B leads to a state /, which brings us back to a situation
similar to the one at p.

This process defines the so-called includes relation: (p A r) includes (p’ A )
if and only if the grammar contains a rule B — BAy, and y->¢, and p’ P, p- Note that

one (p A r) can include several (p’ By )s, when several paths B3 are possible.

To simulate all possible movements of the LR(0) automaton and find all the tran-
sitions that lead to states that contribute to the look-ahead of A — we in state g, we
have to repeat the step from p to p’ for successive p”, p’”, ..., until we find no new
ones any more or until we are stopped by reaching a reduction of the start symbol.
This is step 2 of the simulation.

Any token ¢ that can be shifted over in any of the states r, ¥/, ... thus reached,
belongs in the look-ahead of A — e in state ¢, since we have just shown that after
the reduction A — ® and possibly several other reductions, we arrive at a state in
which a shift over ¢ is possible. And no other tokens belong in the look-ahead set,
since they will not allow a subsequent shift, and would get the parser stuck.

So we are interested in the terminal transitions of the states r, 7/, . ... To describe
them in a framework similar to the one used so far, we define a relation directly-

reads as follows; refer to Figure 9.38. A transition (p A r) directly-reads ¢ if r has

h M%‘\ o

C

Hunting for LALR(1) look-aheads in an LR(0) automaton —

Fig. 9.38. the directly-reads and reads relations

an outgoing arrow on the terminal symbol 7. Actually, neither p nor A is used in this

definition, but we start from the transition p Y r rather than from the state » because
the lookback and includes relations use transitions rather than states.

Again nullable non-terminals complicate the situation. If » happens to have an
outgoing arrow marked with a non-terminal C that produces €, we can reduce € to C
in our simulation, stack it, shift over it and reach another state, say s. Then anything

we are looking at after the transition r S, s must also be added to the look-ahead
set of A — we. Note that this C need not be the C; in Figure 9.38; it can be any
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nullable non-terminal marking an outgoing arrow from state r. This defines the reads
relation: (p A r) reads (r < s) if and only if both transitions exist and CSe. And

then all tokens u that fulfill (r < s) directly-reads u belong in the look-ahead set
of A — me in state g. Of course state s can again have transitions on nullable non-
terminals, which necessitate repeated application of the “reads and directly-reads”
operation. This is step 3 of the simulation.

We are now in a position to formulate the LALR look-ahead construction algo-
rithm in one single formula. It uses the final relation in our explanation, in-LALR-
lookahead, which ties together a reduce item in a state and a token: ¢ in-LALR-
lookahead (¢, A — we), with the obvious meaning. The relations algorithm can now
be written as:

t in-LALR-lookahead (¢, A — we) =
(¢, A — we) lookback (p 2 r) includes (' 2 /') - -

. B c
-+ includes (p” = ") reads (+" = s) - -

/1

/
.- reads (r Sy ) directly-reads ¢

This is not a formula in the arithmetic sense of the word: one cannot put in parenthe-
ses to show the precedences, as one can in a + b X c; it is rather a linked sequence of
relations, comparable to a < b < ¢ < d, in which each pair of values must obey the
relational operator between them. It means that a token 7 is in the LALR lookahead
set of reduce item A — e in state ¢ if and only if we can find values for p, p/, ...,
B,B,....,r,7,...,C,C',...,and s, 5, ..., so that all the relations are obeyed.

In summary, when you do a reduction using a reduce item, the resulting non-
terminal either is at the end of another item, in which case you have to include that
item in your computations, or it has something in front of it, in which case your look-
ahead set contains everything you can read from there, directly or through nullable
non-terminals.

The question remains how to utilize the sequence of relations to actually compute
the LALR look-ahead sets. Two techniques suggest themselves. We can start from
the pair (¢, A — me), follow the definitions of the relations until we reach a token #,
record it, backtrack and exhaustively search all possibilities: the top-down approach.
We can also make a database of relation triples, insert the initially known triples and
apply the relation definitions until nothing changes any more: the transitive closure
approach. Both have their problems. The top-down method has to be careful to pre-
vent being caught in loops, and will often recompute relations. The transitive closure
sweep will have to be performed an indefinite number of times, and will compute
triples that do not contribute to the solution.

Fortunately there is a better way. It is not immediately evident, but the above
algorithm has a remarkable property: it only uses the grammar and the LR(0) tran-
sitions over non-terminals (except for both ends of the relation sequence); it never
looks inside the LR(0) states. The reasonings that show the validity of the various
definitions use the presence of certain items, but the final definitions do not. This
makes it particularly easy to express the relations as arcs in a directed graph in which
the non-terminal transitions are the nodes.
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The relations graph corresponding to Figures 9.37 and 9.38 is shown in Figure
9.39. We see that it is quite different from the transition graphs in Figures 9.37 and

directly-reads

reads

directly-reads

Hunting for LALR(1) look-aheads in an LR(0) automaton —

Fig. 9.39. the relations graph

9.38: the transition arcs in those graphs have become nodes in the new graph, and
the relations, not present in the old graphs, are the arcs in the new one. To emphasize
this fact, the transition nodes in Figure 9.39 have been drawn in the same relative
positions as the corresponding arcs in Figures 9.37 and 9.38; this is the cause of the
strange proportions of Figure 9.39.

The LALR look-ahead sets can now be found by doing a transitive closure on this
graph, to find all leaves connected to the (¢, A — we) node. The point is that there
exists a very efficient algorithm for doing transitive closure on a graph, the “SCCs
algorithm”. This algorithm successively isolates and condenses “strongly connected
components” of the graph; hence its name. The algorithm was invented by Tarjan
[334] in 1972, and is discussed extensively in books on algorithms and on the Inter-
net.

DeRemer and Pennello describe the details required to cast the sequence of re-
lations into a graph suitable for the SCCs algorithm. This leads to one of the most
efficient LALR parse table construction algorithms known. It is linear in the number
of relations involved in the computation, and in practice it is linear in the number of
non-terminal transitions in the LR(0) automaton. It is several times faster than the
channel algorithm used in yacc. Several optimizations can be found (Web)Section
18.1.4. Bermudez and Schimpf [76] extend the algorithm to LALR(k).

When reaching state r¢, in Figure 9.37 we properly backtracked over all compo-
nents of ¥ back to state p, to make sure that all look-aheads found could indeed be
shifted when we perform the reduction A — . If we omit this step and just accept
any look-ahead at r¢, as look-ahead of A — ®, we obtain an NOQLALR(1) parser, for
“Not Quite LALR(1)”. NQLALR(1) grammars are strange in that they do not fit in
the usual hierarchy ((Bermudez and Schimpf [75]); but then, that can be expected
from an incorrect algorithm.
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9.7.1.4 LALR(1) by Converting to SLR(1)

When we look at the non-LR(0) automaton in Figure 9.25 with an eye to upgrading it
to LALR(1), we realize that, for example, the E along the arrow from state 1 to state
4 is in fact a different E from that along the arrow from state 6 to state 9, in that it
arises from a different station eE, the one in state 1, and it is the station that gets the
look-ahead. So to distinguish it we can call it ®E®, so now the item S—>eE reads
S—>e@DE®, where DE® is just a non-terminal name, in spite of its appearance. This
leads to the creation of a station e« @E® (not shown) which produces two items based
on the two rules E—T and E—E-T. We can even give the non-terminals in these
rules more specific names:

QE® — OTO®
QE® — OE® ®-©® @T®

where we obtained the other state numbers by following the rules through the LR(0)
automaton.

Continuing this way we can construct an “LR(0)-enhanced” version of the gram-
mar of Figure 9.23; it is shown in Figure 9.40. A grammar rule A — BcD is trans-

@8 —» QOE®
QE® > QE® ®-0 @T® | VTO
®E® — OEO® 9-0 @T® | OT®
QT@ —> On®
@T®@ > ©®(® ®E® @)® | ®n®
QT® — ©(® ®E® ®)® | @n®

Fig. 9.40. An LR(0)-enhanced version of the grammar of Figure 9.23

formed into a new grammar rule (s1)A(sy) — (s1)B(s2) (s2)c(s3) (s3)D(s4), where
(sx) is the state shifted to by the non-terminal, and (s1)---(s4) is the sequence of
states met when traveling down the right-hand side of the rule in the LR(0) automa-
ton.

We see that the rules for E have been split into two versions, one starting at @
and the other at ®, and likewise the rules for T. It is clear that the look-aheads of
the station e@E® all end up in the look-ahead set of the item E—E-Te reached at
the end of the sequence ODE® @®-@ @T®, so it is interesting to find out what the
look-ahead set of the «®E® in state 1 is, or rather just what the look-ahead set of
*DE® is, since there is only one e @E® and it is in state 1.

Bermudez and Logothetis [79] have given a surprisingly simple answer to that
question: the look-ahead set of e@E® is the FOLLOW set of @E® in the LR(0)-
enhanced grammar, and likewise for all the other LR(0)-enhanced non-terminals.
Normally FOLLOW sets are not very fine tools, since they combine the tokens that
can follow a non-terminal N from all over the grammar, regardless of the context in
which the production N occurs. But here the LR(0) enhancement takes care of the
context, and makes sure that terminal productions of eE in state 1 are recognized
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only if they really derive from @E®. That all this leads precisely to an LALR(1)
parser is less clear; for a proof see the above paper.

To resolve the inadequacy of the automaton in Figure 9.25 we want to know the
look-ahead set of the item S —>Ee in state 4, which is the FOLLOW set of @S¢. The
FOLLOW sets of the non-terminals in the LR(0)-enhanced grammar are as follows:

FOLLOW(®s9) = [#]
FOLLOW(®E®) = [#-]
FOLLOW(®E®) = [-) ]
FOLLOW(@T®) = [#-]
FOLLOW(®T®@) = [-)]
FOLLOW(@T®) = [#-)1

so the desired LALR look-ahead set is #, in conformance with the “real” LALR
automaton in Figure 9.34. Since state 4 was the only inadequate state, no more look-
aheads sets need to be computed.

Actually, the reasoning in the previous paragraph is an oversimplification: a re-
duce item in a state may derive from more than one station and import look-aheads
from each of them. To demonstrate this we compute the look-aheads of E—>E-Te in
state 8. The sequence ends in state 8, so we select from the LR(0)-enhanced grammar
those rules of the form E—E-T that end in state 8:

@PE® —» OE® ®-© OT®
®E® —-»> OGE® ©-0 @TO®

We see that the look-aheads of both stations e DE® and ¢®E® end up in state 8, and
so the LALR look-ahead set of E—E-Te in that state is

FOLLOW(®E®) U FOLLOW(®E®) = [#-1 U [-)]1 = [#-)1

Since this is the same way as look-aheads are computed in an SLR parser for a normal
— not LR(0)-enhanced — grammar (Section 9.8), the technique is often referred to
as “converting to SLR”.

The LALR-by-SLR technique is algorithmically very simple:

e deriving the LR(0)-enhanced grammar from the original grammar and the LR(0)
automaton is straightforward;

e computing the FOLLOW sets is done by a standard algorithm;

e selecting the appropriate rules from the LR(0)-enhanced grammar is simple;

* uniting the results is trivial.

And, as said before, only the look-ahead sets of reduce items in inadequate states
need to be computed.

9.7.1.5 Discussion

LALR(1) tables can be computed by at least five techniques: collapsing and down-
grading the LR(1) tables; Anderson’s simple algorithm; the channel algorithm; by
upgrading the LR(0) automaton; and by converting to SLR(1). Of these, Ander-
son’s algorithm [56] (Section 9.7.1.1) is probably the easiest to program, and its
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non-optimal efficiency should only seldom be a problem on present-day machines.
DeRemer and Pennello [63]’s relations algorithm (Section 9.7.1.3) and its relatives
discussed in (Web)Section 18.1.4 are among the fastest. Much technical and experi-
mental data on several LALR algorithms is given by Charles [88].

Vilares Ferro and Alonso Pardo [372] describe a remarkable implementation of
an LALR parser in Prolog.

9.7.2 Identifying LALR(1) Conflicts

When a grammar is not LR(1), the constructed LR(1) automaton will have conflicts,
and the user of the parser generator will have to be notified. Such notification often
takes such forms as:

Reduce/reduce conflict
in state 213 on look-ahead *;’
S—E versus A—=T+E

This may seem cryptic but the user soon learns to interpret such messages and to
reach the conclusion that indeed “the computer can’t see this”. This is because LR(1)
parsers can handle all deterministic grammars and our idea of “what a computer can
see” coincides reasonably well with what is deterministic.

The situation is worse for those (relatively rare) grammars that are LR(1) but not
LALR(1). The user never really understands what is wrong with the grammar: the
computer should be able to make the right parsing decisions, but it complains that it
cannot. Of course there is nothing wrong with the grammar; the LALR(1) method is
just marginally too weak to handle it.

To alleviate the problem, some research has gone into methods to elicit from the
faulty automaton a possible input string that would bring it into the conflict state.
See DeRemer and Pennello [63, Sect. 7]. The parser generator can then display such
input with its multiple partial parse trees.

9.8 SLR(1)

There is a simpler way to proceed with the NFA of Figure 9.35 than using the chan-
nel algorithm: first pump around the look-ahead sets until they are all known and
then apply the subset algorithm, rather than vice versa. This gives us the so called
SLR(1) automaton (for Simple LR(1)); see DeRemer [54]. The same automaton can
be obtained without using channels at all: construct the LR(0) automaton and then
add to each item A — --- a look-ahead set that is equal to FOLLOW(A). Pumping
around the look-ahead sets in the NFA effectively computes the FOLLOW sets of
each non-terminal and spreads these over each item derived from it.

The SLR(1) automaton is shown in Figure 9.41. Since FOLLOW(S)={#},
FOLLOW(E)={#,-,) } and FOLLOW(T)={#,-,) }, only states 1 and 4 differ from
those in the LALR(1) automaton of Figure 9.34. The increased look-ahead sets do
not spoil the adequateness of any states: the grammar is also SLR(1).
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6
S—>eE[$] T—> (°E) [$-)] (
E—>eE-T[$-)] E—>eE-T[$-)]
E—>eT[$-)] E—>eT[$-)]

T—>en[$-)] T—>en[$-)]

Fig. 9.41. SLR(1) automaton for the grammar of Figure 9.23

SLR(1) parsers are intermediate in power between LR(0) and LALR(1). Since
SLR(1) parsers have the same size as LALR(1) parsers but are considerably less
powerful, LALR(1) parsers are generally preferred.

FOLLOW; sets with k > 1 can also be used, leading to SLR(k > 1) parsers. As
with LA(k)LR(j), an LR(j) parser can be extended with additional FOLLOW}, look-
ahead, leading to S(k)LR(j) parsers. So SLR(1) is actually S(1)LR(0), and is just the
most prominent member of the S(k)LR(j) parser family. To top things off, Bermudez
and Schimpf [76] show that there exist NQSLR(k > 1) parsers, thereby proving that
“Simple LR” parsers are not really that simple for k > 1.

9.9 Conflict Resolvers

When states in an automaton have conflicts and no stronger method is available,
the automaton can still be useful, provided we can find other ways to resolve the
conflicts. Most LR parser generators have built-in conflict resolvers that will make
sure that a deterministic automaton results, whatever properties the input grammar
may have. Such a system will just enumerate the problems it has encountered and
indicate how it has solved them.

Two useful and popular rules of thumb to solve LR conflicts are:

e on a shift/reduce conflict, shift (only on those look-aheads for which the conflict

occurs);
e on areduce/reduce conflict, reduce using the longest rule.

Both rules implement the same idea: take the largest bite possible. If you find that
there is a production of A somewhere, make it as long as possible, including as much
material on both sides as possible. This is very often what the grammar writer wants.
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Systems with built-in conflict resolvers are a mixed blessing. On the one hand
they allow very weak or even ambiguous grammars to be used (see for example,
Aho, Johnson and Ullman [335]). This can be a great help in formulating gram-
mars for difficult and complex analysis jobs; see, for example, Kernighan and Cherry
[364], who make profitable use of automatic conflict resolution for the specification
of typesetter input.

On the other hand a system with built-in conflict resolvers may impose a struc-
ture on the input where there is none. Such a system no longer corresponds to any
grammar-like sentence-generating mechanism, and it may be very difficult to specify
exactly what strings will be accepted and with what structure. How severe a draw-
back this is depends on the application and of course on the capabilities of the parser
generator user.

It is to a limited extent possible to have dynamic (parse-time) conflict resolvers,
as in the LL case (Section 8.2.5.3). Such a conflict resolver is called in a context that
is still under construction, which complicates its use, but in simple cases its working
can be understood and predicted. McKenzie [86] describes an extension of yacc that
supports dynamic conflict resolvers, among other things.

Some experiments have been made with interactive conflict resolvers, which con-
sult the user of the parser when a conflict actually arises: a large chunk of text around
the conflict point is displayed and the user is asked to resolve the conflict. This is use-
ful in, for example, document conversion; see Share [365].

9.10 Further Developments of LR Methods

Although the LALR(1) method as explained in Section 9.7 is quite satisfactory for
most applications, a number of extensions to and improvements of the LR methods
have been studied. The most important of these will be briefly explained in this sec-
tion; for details see the literature, (Web)Section 18.1.4 and the original references.

For methods to speed up LR parsing by producing executable parser code see
Section 17.2.2.

9.10.1 Elimination of Unit Rules

Many rules in practical grammars are of the form A — B; examples can be found
in Figures 2.10, 4.6, 5.3, 7.8, 8.7, 9.42 and many others. Such rules are called unit

Metre —> Iambic | Trochaic | Dactylic | Anapestic

Fig. 9.42. A (multiple) unit rule

rules, single rules, or chain rules. They generally serve naming purposes only and
have no semantics attached to them. Consequently, their reduction is a matter of
stack manipulation and state transition only, to no visible purpose for the user. Such
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“administrative reductions” can take a considerable part of the parsing time (50% is
not unusual). Simple methods to short-cut such reductions are easily found (for ex-
ample, removal by systematic substitution) but may result in an exponential increase
in table size. Better methods were found but turned out to be complicated and to im-
pair the error detection properties of the parser. That problem can again be corrected,
at the expense of more complication. See Heilbrunner [64] for a thorough treatment
and Chapman [71] for much practical information.

Note that the term “elimination of unit rules” in this case is actually a misnomer:
the unit rules themselves are not removed from the grammar, but rather their effect
from the parser tables. Compare this to the actual elimination of unit rules in Section
4.2.3.2.

Actually unit rule elimination is a special case of stack activity reduction, which
is discussed in the next section. But it was recognized earlier, and a separate body of
literature exists for it.

9.10.2 Reducing the Stack Activity

Consider the stack of an LR parser, and call the state on top of the stack s;. Now we
continue the parser one step with proper input and we suppose this step stacks a token
X and another state s, and we suppose that s, # s,, as will normally happen. Now,
rather than being satisfied with the usual top stack segment s; X s,, we collapse this
into one new state, s; + s, which now replaces the original s;. This means two things.
First, we have lost the symbol X, and with it the possibility to construct a parse tree,
so we are back to constructing a recognizer. But second, and more importantly, we
have replaced an expensive stacking operation by a cheap state transition.

We can repeat this process of appending new states to the top state until one
of two things happens: a state already in it is appended for the second time, or the
original state s; gets popped and we are left with an empty state. Only at that moment
do we resume the normal stacking and unstacking operation of an LR parser.

When doing so for all acceptable inputs, we meet all kinds of compound states, all
with s, on the left, and many pairs are connected by transitions on symbols, terminal
and non-terminal ones. Together they form a finite-state automaton. When we are
forced to resume normal LR operation, it is very likely that we will find a state
different from s, on top, say s,. We can then repeat the process for s, and obtain
another FSA.

Continuing this way we obtain a set of FSAs connected by stacking and unstack-
ing LR operations. Using these FSAs instead of doing all the stack manipulation
hidden in them greatly reduces the stack activity of the parser. Such a parser is called
reduction-incorporated (RI).

In a traditional LR parser the gain in speed will almost certainly be outweighed
by the disadvantage of not being able to construct a parse tree. Its great advantage
lies in situations in which stack activity is expensive. Examples are the use of an LR
parser as a subparser in a GLR parser (Chapter 11), where stack activity involves
graph manipulation, and in parallel parsing (Chapter 14), where stack activity may
require process communication.
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The details of the algorithm are pretty complicated; descriptions are given by
Aycock and Horspool [176] and Scott and Johnstone [100]. The resulting tables can
be very large, even for every-day grammars.

9.10.3 Regular Right Part Grammars

As shown in Section 2.3.2.4, there are two interpretations of a regular right-hand side
of a rule: the recursive and the iterative interpretation. The recursive interpretation
is no problem: for a form like A* anonymous non-terminals are introduced, the re-
duction of which entails no semantic actions. The burden of constructing a list of the
recognized As lies entirely on the semantic routines attached to the As.

The iterative interpretation causes more problems. When an A" has been recog-
nized and is about to be reduced, the stack holds an indeterminate number of As:

A-AAA |

The right end of the handle has been found, but the left end is doubtful. Scooping up
all As from the right may be incorrect since some may belong to another rule; after
all, the top of the stack may derive from a rule P — QAAA™. A possible solution is
to have for each reducing state and look-ahead a FS automaton which scans the stack
backwards while examining states in the stack to determine the left end and the actual
rule to reduce to. The part to be reduced (the handle) can then be shown to a semantic
routine which can, for example, construct a list of As, thereby relieving the As from
a task that is not structurally theirs. The resulting tables can be enormous and clever
algorithms have been designed for their construction and reduction. See for example,
Lalonde [62], Nakata and Sassa [69, 74], Shin and Choe [90], Fortes Gélvez, [91],
and Morimoto and Sassa [97]. Kannapinn [99] has given a critical analysis of many
algorithms for LR and LALR parse table creation for EBNF grammars (in German).

9.10.4 Incremental Parsing

In incremental parsing, the structured input (a program text, a structured document,
etc.) is kept in linear form together with a parse tree. When the input is (incremen-
tally) modified by the user, for example by typing or deleting a character, it is the
task of the incremental parser to update the corresponding parse tree, preferably at
minimum cost. This requires serious measures inside the parser, to quickly determine
the extent of the damage done to the parse tree, localize its effect, and take remedial
steps. Formal requirements for the grammar to make this easier have been found. See
for example, Degano, Mannucci and Mojana [330] and many others in (Web)Section
18.2.8.

9.10.5 Incremental Parser Generation

In incremental parser generation, the parser generator keeps the grammar together
with its parsing table(s) and has to respond quickly to user-made changes in the
grammar, by updating and checking the tables. See Horspool [80], Heering, Klint
and Rekers [83], Horspool [84] and Rekers [347].
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9.10.6 Recursive Ascent

In Sections 8.2.6 and 8.5 we have seen that an LL parser can be implemented con-
veniently using recursive descent. Analogously, an LR parser can be implemented
using recursive ascent, but the required technique is not nearly as obvious as in the
LL case. The key idea is to have the recursion stack mimic the LR parsing stack.
To this end there is a procedure for each state; when a token is to be shifted to the
stack, the procedure corresponding to the resulting state is called instead. This indeed
constructs the correct recursion stack, but causes problems when a reduction has to
take place: a dynamically determined number of procedures has to return in order to
unstack the right-hand side. A simple technique to achieve this is to have two global
variables, one, Nt, holding the non-terminal recognized and the second, /, holding
the length of the right-hand side. All procedures will check / and if it is non-zero,
they will decrease / by one and return immediately. Once [ is zero, the procedure that
finds that situation will call the appropriate state procedure based on Nt. For details
see Roberts [78, 81, 87] and Kruseman Aretz [77]. The advantage of recursive ascent
over table-driven is its potential for high-speed parsing.

9.10.7 Regular Expressions of LR Languages

In Section 9.6.3 we mentioned that any LR(k) language can be obtained as a reg-
ular expression, the elements of which are LR(0) languages. The opposite is even
stronger: regular expressions over LR(0) languages can describe more than the LR(k)
languages. An immediate example is the inherently ambiguous language a”’b"c” U
aPb”c? discussed on page 64. It is produced by the regular expression

L; Lye ‘Lab Lé

where the language Lg is produced by the simplest grammar in this book, S —a,
Ly by S—bSc|¢, and similarly for £53, and Le. It is easy to see that each of
these grammars is LR(0).

Bertsch and Nederhof [96] show that a linear-time parser can be constructed for
regular expressions over LR(k) languages. Unfortunately the algorithm is based on
descriptions of the languages by pushdown automata rather than CF grammars, and
a transformation back to CF grammars would be very complicated. Some details
are provided in Section 12.3.3.2, where a similar technique is used for linear-time
substring parsing of LR languages.

9.11 Getting a Parse Tree Grammar from LR Parsing

Getting a parse tree grammar from LR parsing is similar to getting one from LL pars-
ing (Section 8.4): each time one makes a “serious” decision (prediction, reduction)
one generates a grammar rule for it. As in the LL case, LR parsing produces a parse
tree grammar rather than a parse forest grammar.
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We consider parsing n-n with the table of Figure 9.18. All non-terminals are
numbered using the same increasing counter. After a single shift we have the config-
uration

® n ® - n$

The moment we reduce n to T, we produce a rule T _1-—sn, and push T 1 on the
stack:

OT 1@ - n $

The next step reduces the T to E; this produces a rule E_2—T 1 and the configura-
tion

®E2@ - n $

Continuing this process we obtain the parse tree grammar

T1l1 — n

E2 —- T1

T3 — n

E4 — E2 -T3
S5 — E 4%

and the final datum yielded by the parsing process is that S_5 is the start symbol of
the parse tree grammar.

Note that it is possible to number the input tokens with their positions and to
follow where they go in the parse tree grammar:

T1 — n

E2 — T1

T3 — n3

E4 — E2 -, T3
S5 — E 4 %4

This is useful when semantics is attached to the input tokens.

Again the grammar is clean. It has no undefined non-terminals: each non-
terminal included in a right-hand side during a reduction comes from the stack, and
was defined in a previous reduction. It has no unreachable non-terminals either: each
left-hand side non-terminal created in a reduction is put on the stack, and will later
be included in some right-hand side during a subsequent reduction, except for the
start symbol, which is reachable by definition.

9.12 Left and Right Contexts of Parsing Decisions

At the beginning of Chapter 7 we indicated that stacks in bottom-up parsing can
be described by regular grammars, and we are now in a position to examine this
phenomenon in more detail, by considering two non-obvious properties of an LR
automaton: the left context of a state and the right context of an item.
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9.12.1 The Left Context of a State

The left context of a state is easy to understand: it is the set of all sequences of
symbols, terminals and non-terminals, that lead to that state. Although this set is
usually infinitely large, it can be represented by a regular expression. It is easy to
see that, for example, the left context of state 4 in the LR automaton in Figure 9.17
is E, but more work is needed to obtain the left context of, say, state 9. To find all
paths that end in state 9 we proceed as follows. We can create the path to state 9 if
we know the path(s) to state 6 and then append an E. This gives us one rule in a left-
regular grammar: P 9—P 6 E, where P_6 and P_ 9 are the paths to states 6 and
9, respectively. Now there are three ways to get to state 6: from 1, from 6 and from 7,
all through a (. This gives us threerules: P 6 —>P _1(,P_6—>P 6(,P_6—>P 7(.
Continuing in this way we can construct the entire left-context grammar of the LR
automaton in Figure 9.17. It is shown in Figure 9.43, and we see that it is left-regular.

EEERR'
BBBHA
ERRN"

Fig. 9.43. Left-context grammar for the LR(0) automaton in Figure 9.17

We can now apply the transformations shown in Section 5.4.2 and Section 5.6 to
obtain regular expressions for the non-terminals. This way we find that indeed the
left context of state 4 is E and that that of state 9 is [ (|E- (1 [ (|E- (1 E. This
expression simplifies to [ ( | E- (1TE, which makes sense: it describes a sequence of
one or more ( or E- (, followed by an E. The first ( or E- ( brings us to state 6, any
subsequent (s and E- (s bring us back to state 6, and the final E brings us to state 9.

Now the connection with the stack in an LR parser becomes clear. Such a stack
can only consist of a sequence which leads to a state in the LR automaton; for ex-
ample, it could not be (-, since that leads nowhere in Figure 9.17, though it could
be (E- (which leads to state 7). In short, the union of all left contexts of all states
describes the complete set of stack configurations of the LR parser.

All stack configurations in a given P_s end in state s and thus lead to the same
parsing decision. LR(1) automata have more states than LR(0) automata, and thus
more left context sets. For example, the LR(1) automaton in Figure 9.27 remembers
whether it is working on the outermost expression (in which case a # may follow) or
on a nested expression; the LR(0) automaton in Figure 9.17 does not. But the set of
all stack configurations P_x is the same for LR(0) and LR(1), because they represent
all open parts in a rightmost production, as explained in Section 5.1.1.



322 9 Deterministic Bottom-Up Parsing
9.12.2 The Right Context of an Item

The right context of a state is less easy to understand: intuitively it is the set of all
strings that are acceptable to an LR parser in that state, but that set differs consider-
ably from the left context sketched above.

First it is a context-free language rather than a regular one. This is easy to see
when we consider an LR parser for a CF language: any string in that language is
acceptable as the right context of the initial state.

Second, it contains terminals only; there are no non-terminals in the rest of the
input, to the right of the gap. Yet it is clear that the right context of an item is not
just an unrestricted set of strings, but follows precisely from the CF grammar C
and the state S, and we would like to capture these restrictions in a grammar. This
is achieved by constructing a regular grammar Ggs for the right context which still
contains undeveloped non-terminals from C, similar to the left context grammar.
The set of terminal strings acceptable after a state is then obtained by replacing these
non-terminals by their terminal productions in C; this introduces the CF component.
More precisely: each (regular) terminal production Ts of the grammar Gg is a start
sentential form for grammar C; each combination of 75 and C produces a (CF) set of
strings that can figure as rest of input at S.

There is another, perhaps more surprising, difference between left and right con-
texts: although the left contexts of all items in an LR state are the same, their right
contexts can differ. The reason is that the same LR state can be reached by quite
different paths through the grammar. Each such path can result in a different item in
that state and can carry a different prediction of what will happen on the other side
of the item. A trivial example occurs in the grammar

S — a B c
S — abDe
B — ¢
D — ¢

The state reached after shifting over an a contains

S—>aeBc
S—aeDe
B—>e
D—>e

and it is clear that the right context of the item B—>e is ¢ and that of D—e is e.
This example already alerts us to the relationship between right contexts and look-
ahead symbols. Like the latter (Section 9.6.2) right contexts exist in an item and a dot
variety. The item right context of S—aeBc is €; its dot right context is Be. Item right
contexts are easier to compute but dot right contexts are more important in parsing.

We shall start by constructing the regular grammar for item right contexts for the
automaton in Figure 9.17, and then derive dot right contexts from it. Since the right
contexts are item-specific we include the names of the items in the names of the non-
terminals that describe them. We use names of the form F_s{/} for the set of strings
that can follow item / in state s in sentential forms during rightmost derivation.
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As we have seen in Section 9.5, items can derive from items in the same state or
from a parent state. An example of the first type is E—>eE-T in state 6. It derives
through the e-moves T—> (¢E) 5 eE-SE—>eE-T and E—>eE-T-eE-SE—>eE-T
in the non-deterministic automaton of Figure 9.15 from both T—> (eE) and
E—>eE-T in state 6. An example of the second type is T— (eE) in state 6, de-
riving in three ways from the T—e (E) in states 1, 6 and 7, through the transition

T—>e (E) —(>T—> (eE) in Figure 9.15.
If the item E—>eE-T originates from T—> (eE) , its right context consists of the
) which follows the E in T—> (eE) ; this gives one rule for F_6{E—>eE-T}:

F 6{E—>eE-T} — ) F 6{T—(*E)}

If the item originates from T—>eE-T, its right context consists of the -T which
follows the E in T—>eE-T; this gives the second rule for F_6{E—>eE-T}:

F 6{E—>eE-T} — -T F 6{E—>eE-T}

The general rule is: F s{A —ea} — Yy F_s{X — PeAy} for an e-transition
{X — PeAy} = {eA} 5 {A — eq}, for each state s in which the item {X — PeAy}
occurs.

A shift over a token does not change the right context of an item: during a shift
over a ( from state 1 to state 6, the item T—>e (E) changes into T—> (eE), but its
right context remains unaffected. This is expressed in the rule

F 6{T—>(*E)} — F 1{T—>e(E)}

The general rule is: F_r{A — aref}} — F_s{A — oerB} for a transition {A —
aeiBl 5 {A — oreB).

Repeating this procedure for all e-moves and shifts in Figure 9.17 gives us the
(right-regular) grammar for the right contexts; it is shown in Figure 9.44. Note that
the two ways of propagating right context correspond with the two ways of propa-
gating the one-token look-ahead in LR(1) parsing, as explained on page 293.

Again applying the transformations from Section 5.4.2 we can obtain regular
expressions for the non-terminals. For example, the item right context of E—>eE-T
in state 6 is [)"[-T[)117)") [-T1"$ which simplifies to [-T|)1") [-T]"$.
Again this makes sense: the prediction after that item is a sequence of -Ts and ) s,
with at least one ), since to arrive at state 6, the input had to contain at least one (.

Finding dot right contexts is now simple: the dot right context of E—>eE-T in
state 6,D 6 {E—>eE-T}, is of course just E-T F 6{E—>eE-T}. The general rule
is:D s{A — aef} — B F_s{A— oeP} forall items.

For a thorough and formal analysis of right contexts see Seyfarth and Bermudez
[93].

9.13 Exploiting the Left and Right Contexts

There are many ways to exploit the left and right contexts as determined above. We
will discuss here three techniques. The first, DR(k) parsing, uses knowledge of the
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F 1{S—>eE$} — ¢ F_6{E—>eE-T} — ) F 6{T—>(°E)}
F 1{E—>eE-T} — -T F 1{E—>eE-T} F 6{E—>eE-T} —> -T F 6{E—>eE-T}
F 1{E—>eE-T} — $ F 1{S—>eES$} F 6{E—>eT} — -T F 6{E—>eE-T}
F 1{E—>eT} — -T F_1{E—>eE-T} F 6{E—>eT} — ) F 6{T—>(*E)}
F 1{E—>eT} — $ F 1{S—>eE$} F 6{T—(*E)} — F 1{T—>e(E)}
F 1{T->e(E)} — F 1{E—>eT} F 6{T—>(*E)} — F 6{T—>e(E)}
F 1{T—>en} — F 1{E—>eT} F 6{T—>(eE)} — F 7{T—>e(E)}
F 2{E—>Te} — F 1{E—>eT} F 6{T—>e(E)} — F 6{E—>eT}

F 2{E—>Te} — F 6{E—>eT} F 6{T—>en} — F 6{E—>eT}

F 3{T—>ne} — F 1{T—>en} F 7{E—>E-eT} — F 4{E—>Ee-T}
F 3{T—>ne} — F 6{T—>en} F 7{E—>E-¢T} — F 9{E—>Ee-T}
F 3{T—ne} — F 7{T—>en} F 7{T—>e(E)} — F 7{E—>E-eT}
F 4{S—>Ee3$} — F 1{S—>eE$} F 7{T—>en} — F 7{E—>E-eT}

F 4{E—>Ee-T} — F 1{E—>eE-T} F 8{E—>E-Te} — F 7{E—>E-eT}
F 5{s—>E$e} — F 4{S—>Ee$} F 9{E—>Ee-T} — F 6{E—>eE-T}

F 9{T—>(Ee)} — F 6{T—>(°E)}
F 10{T—(E)e} — F 9{T—(Ee)}

Fig. 9.44. Right-regular right-context grammar for the LR(0) automaton in Figure 9.17

left context to reduce the required table size drastically, while preserving full LR(k)
parsing power. The second, LR-regular, uses the full right context to provide optimal
parsing power, but the technique does not lead to an algorithm, and its implemen-
tation requires heuristics and/or handwaving. The third, LAR(k) parsing, is a tamed
version of LR-regular, which yields good parsers for a large class of unambiguous
grammars. An even more extensive application of the contexts is found in the chapter
on non-canonical parsing, Chapter 10, where the right context is explicitly improved
by doing reductions in it. And there is no reason to assume that this exhausts the
possibilities.

9.13.1 Discriminating-Reverse (DR) Parsing

As Figure 9.12 shows, an LR parser keeps states alternatingly between the stacked
symbols. Actually, this is an optimization; we could omit the states, but that would
force us to rescan the stack after each parse action, to reestablish the top state, which
would be inefficient. Or would it? Consider the sample parser configuration on page
283, which was based on the grammar of Figure 9.14 and the handle recognizer of
Figure 9.17, and which we repeat here without the states:

#E-nO -n$

We have also added a bottom-of-stack marker, #, which can be thought of as caused
by stacking the beginning of the input. There can be no confusion with the end-of-
input marker #, since the latter will never be put on the stack.

When we look at the above configuration, we find it quite easy to guess what the
top state, indicated by O, must be. The last shift was over an n, and although there
are three arrows marked n in Figure 9.17, they all point to the same state, @, so we
can be certain we are looking at
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#E -n® -n$

Since @ is a reduce state, we can confidently reduce the n to T. So the loss of the left
context did not do any harm here; but, as the reader might expect, that is not going
to last.

After the reduction we have the configuration

#E-TO - n $

and now we have a problem. There are again three arrows marked T in Figure 9.17,
but they do not all point to the same state; two point to @ and one points to ®, so we
seem none the wiser. But we know how to handle situations in which there are only a
finite number of possibilities: we put them all in a state, and progress with that state
as our knowledge. The state is

®: @
®: @
@:

and it represents our knowledge between the - and the T in the configuration; it says:
if we are now in LR state @ or ®, the top state was @, and if we are now in state
@, the top state was ®. Such a state is called a DR state, for Discriminating Reverse
state (Fortes Galvez [89]).

When we now look backwards on the stack, we see a -; the LR states @ and ®
do not have incoming arrows marked -, so we cannot be in one of these, but state @
has, coming from @ and ®@. So our DR state between the E and the - is

@: ®
®: ®

which says if we are now in LR state @, the top state was ®, and if we are now in
state @, the top state was ®. Here something surprising has happened: even though
we do not know in which LR state we are, we now know that the top of the stack was
®, which is the answer we were looking for! This gives us the configuration

#E-T® -n$

in which we reduced the E-T to E. We have now reproduced the parsing example of
page 283 without states on the stack and without rescanning the entire stack for each
parsing action. Whether that is something worth striving for is less than clear for the
moment, but we will see that the technique has other benefits.

More generally, suppose we are in a DR state d

s 1

I 1y
where [ ---I; are LR states and the ¢ ---#; are the top-of-stack states implied by
them, and suppose we have the stack symbol s on our left. Now we want to compute
the DR state to the left of s, one step back on the stack. To do so we go through all
transitions of the form p; — p, in the LR handle recognizer, and for each transition
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that has an p; equal to an [}, we insert the form p;: ¢; in a new DR state e. This is
reasonable because if we were in LR state p; to the left of the s, then moving over
the s would bring us in LR state p,, and that would imply that the top of the stack is
t;. In this way we obtain a transition in a DR automaton: d = e, or more graphically,
e <~ d. This transition carries our knowledge about the top of the stack in our present
position over the symbol s to the left.

We can compute the complete DR automaton by performing this step for all
possible stack symbols, starting from the initial state of the DR automaton

ne: 11
frs 1

which of course says that if we are in LR state ¢; on the top of the stack, then the top-
of-stack state is ¢;. It is always good to see a difficult concept reduced to a triviality.
States in which all #; ---#; are equal are final states, since they unequivocally tell
us the top-of-stack state. The DR automaton generation process is guaranteed to
terminate because there are only a finite number of DR states possible. The DR
automaton for the LR automaton of Figure 9.17 is shown in Figure 9.45.

20000009000
2P E®O e

Fig. 9.45. DR automaton for the LR automaton of Figure 9.17
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One thing we immediately notice when looking at the graph in Figure 9.45 is that
it has no loops: at most two steps backwards suffice to find out which parsing action
is called for. We have just shown that the grammar of Figure 9.14 is BRC(2,0)!

But there are more important things to notice: now that we have the transition
diagram in Figure 9.45 we can discard the GOTO table of the LR parser (but of
course we have to keep the ACTION table). That looks like a meager advantage: the
DR automaton has 14 states and the LR(0) automaton only 10. But DR automata
have an interesting property, already showing up in Figure 9.45: the first fan-out is
equal to the number of symbols, the second fan-out is usually a modest number, the
third fan-out a very modest number and in many DR tables there is no fourth fan-out.
This is understandable, since each step to the left tends to reduce the uncertainty. Of
course it is possible that some DR parser will occasionally dig unboundedly deep
back in the stack, but such operations are usually controlled by a simple loop in the
DR automaton (see Problem 9.21), involving only a few DR states.

Compared to GOTO tables the DR automata are very compact, and, even better,
that property holds more or less independently of the type of LR table used: going
from LR(0) to LR(1) to LR(2) tables, each one or more orders of magnitude larger
than the previous, the corresponding DR automaton only grows minimally. So we
can afford to use full LR(k) tables and still get a very small replacement for the
GOTO table! We still need to worry a bit about the ACTION table, but almost all of
its entries are “shift” or “error”, and it yields readily to table compression techniques.
DR parsing has been used to create LR(1) parsers that are substantially smaller than
the corresponding LALR(1) tables. The price paid for these smaller tables is an in-
creased parse time caused by the stack scanning, but the increase is very moderate.

The reader may have noticed that we have swept two problems under the rug in
the above explanation: we needed the large LR table to obtain the small DR table, a
problem similar to the construction of LALR(1) parsers without generating the full
LR(1) tables; and we ignored look-aheads. Solving these problems is the mainstay
of DR parser generation; detailed solutions are described by Fortes Gélvez [92, 95].
The author also proves that parse time is linear in the length of the input, even if
the parser sometimes has to scan the entire stack [95, Section 7.5.1], but the proof
is daunting. A generalized version of DR parsing is reported by Fortes Gélvez et al.
[179] and a non-canonical version by Farré and Fortes Galvez [207, 209].

Kannapinn [99] describes a similar system, which produces even more compact
parsers by first reducing the information contents of the LR(1) parser, using various
techniques. This reduction is, however, at the expense of the expressive power, and
for stronger reductions the technique produces smaller parsers but can handle fewer
grammars, thus defining a number of subclasses of LR(1).

9.13.2 LR-Regular

The right context can be viewed as a kind of super-look-ahead, which suggests that
it could be a great help in resolving inadequate states; but it is not particularly easy
to make this plan work. The basic idea is simple enough: whenever we meet an
inadequate state in the parse table construction process, compute the right contexts of
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the offending items as described in the previous section. If the two contexts describe
disjunct sets, they can serve to resolve the conflict at parse time by finding out to
which of the two sets the rest of the input belongs. If the two contexts do not exclude
each other, the plan does not work for the given grammar. (See Figure 9.13 for a
simple unambiguous grammar for which this technique clearly will not work.)

This requires us to solve two problems: deciding whether the two dot right con-
texts are disjunct, and checking the rest of the input against both contexts. Both are
serious problems, since the right contexts are CF languages. It can be proved that it
is undecidable whether two CF languages have a terminal production in common,
so finding out if the two right contexts really are sufficient to distinguish between
the two items seems impossible (but see Problem 9.29). And checking the rest of the
input against a CF language amounts to parsing it, the very problem we are trying to
solve.

Both problems are solved by the same trick: we replace the CF grammars of the
right contexts by regular grammars. As we have seen in Section 5.5 we can check
if two regular languages are disjunct (take the intersection of the automata of both
languages and see if the resulting automaton still accepts some string; if it does, the
automata are not disjunct). And it is simple to test the rest of the input against both
regular languages; below we will show that we can even do that efficiently. But this
solution brings in a new problem: how to replace CF grammars by regular ones.

Of course a regular grammar R cannot be equivalent to a CF grammar C, so
replacing one by the other involves an approximation “from above”: R should at
least produce all strings C produces or it will fail to identify an item as applicable
when it is. But the overproduction should be minimal, or the set of string may no
longer be disjunct from that of the other item, and the parser construction would fail
unnecessarily. So R will have to envelop C as tightly as possible. If mutually disjunct
regular envelopes for all right contexts in inadequate states exist, the grammar G is
LR-regular (Culik, II and Cohen [57]), but we can make a parser for G only if we
can also actually find the envelopes.

It is actually not necessary to find regular envelopes of the right contexts of each
of the items in an inadequate state. It suffices to find regular envelopes for the non-
terminals of the grammar; these can then be substituted into the regular expressions
for the right contexts.

Finding regular envelopes of non-terminals in a context-free grammar requires
heuristics. It is possible to approximate non-terminals better and better with increas-
ingly more complicated regular grammars, but it is undecidable if there exist regu-
lar envelopes for the right contexts that are good enough for a given grammar. So
when we find that our approximations (regular envelopes) are not disjunct, we can-
not know if better heuristics would help. We shall therefore restrict ourselves to the
simple heuristic demonstrated in Section 9.13.2.3.

9.13.2.1 LR-Regular Parse Tables

Consider the grammar in Figure 9.46(a), which produces d"a and d”b. It could, for
example, represent a language of integer numbers, with the ds standing for digits,
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0
»

a S—>eAa
S—>eBb
C A—>eAC
A—>e(C C—>de
C—>ed D—>de
D B—>eBD (c)
B—>eD
D—>ed
) (®)

Fig. 9.46. An LR-regular grammar (a), with initial state 1 (b) and inadequate state 2 (c)
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and the a and b for indications of the numeric base; examples could then be 123a
for a decimal number, and 123b for a hexadecimal one. For another motivation of
this grammar see Section 10.2.2 and Figure 10.12.

It is easy to see that the grammar of Figure 9.46(a) is not LR(k): to get past the
first d, it has to be reduced to either C or D, but no fixed amount of look-ahead can
reach the deciding a of b at the end of the input. The figure also shows the initial
state 1 of an LR parser for the grammar, and the state reached by shifting over a d,
the one that has the reduce/reduce conflict. The full LR automaton is shown in Figure
9.49.

To resolve that conflict we construct the right contexts of both items,
F 2{C—>de} and F_2{D—>de}. The regular grammar for F_2{C—>de} is

F 1{S—>ena} — #

F 1{aA—>eAC} — a F 1{S—>ena}
F 1{a—>eC} — a F 1{S—>ena}
F 1{a—eAC} — cC F 1{Aa—seaC}
F 1{a—>eCc} — C F_1{A—seAC}
F 1{C—>ed} — F_1{A—eC}

F 2{C—>de} — F _1{C—ed}

Unsurprisingly this resolves into C*a#. A similar reasoning gives D'b# for
F_2{D—>de}. Next we have to replace the CF non-terminals C and D by their regu-
lar envelopes. In our example this is trivial, since both are already regular; so the two
LR-regular contexts are d"a# and d"b#. And indeed the two sets are disjunct: the
grammar of Figure 9.46(a) is LR-regular, and the LR-regular contexts can be used as
LR-regular look-aheads. Right contexts always end in a # symbol, since each item
eventually derives from the start symbol, and it has a look-ahead #.

So the entry for a state p in the ACTION table of an LR-regular parser can contain
one of five things: “shift”, “reduce”, “error”, “accept”, or a pointer to an LR-regular
look-ahead automaton; the latter occurs when the LR state corresponding to p was
inadequate. The GOTO table of an LR-regular parser in identical to that of the LR

parser it derives from.
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9.13.2.2 Efficient LR-Regular Parsing

We now turn to the actual parsing, where we meet our second problem: how to de-
termine which of the right contexts the rest of the input is in. The naive way is to just
construct an FSA for each LR-regular look-ahead and send it off into the input to see
if it stops in an accepting state. This has two drawbacks: 1. the input is rescanned by
each FSA F, and there can be many of them; 2. the whole process is repeated after
each shift, which may cause the parsing to require O(n?) time.

The second drawback can be removed by replacing the FSA F by a new FSA <1[7,
which accepts the reverse of the strings that F' accepts; basically such an FSA can be
made by reversing all arrows, swapping the initial and accepting states, and making
the result deterministic again. We start F at the right of the added end-of input token
#, and run it backwards over the input. It marks each position in which it is in an
accepting state with a marker Fj, the start state of the original, forward, automaton
F. This costs O(n) steps. Now, when during parsing we want to know if the rest of
the input conforms to F, we can just check if the present position is marked Fj, at
constant cost.

We can of course repeat the backward scan of the input for every reversed look-
ahead FSA, but it is much more efficient to combine all of them in one big FSA ?
by creating a new start state ® with e-transitions to the start states of all reversed
automata for the dot right contexts, as shown in Figure 9.47. The clouds represent

Fig. 9.47. Combined backwards-scanning automaton ? for LR-regular parsing

the various reversed automata, with their accepting states @, ®, @, etc. Using this
combined automaton we need now scan backwards only once:

® @ ®
@@ ......... ®tn—]®®



9.13 Exploiting the Left and Right Contexts 331

The backwards scan marks each position with the accepting states of all reversed

FSAs in ? that apply at that position. These are the start states of the forward au-
tomata. A left-to-right LR parsing scan can then use these states as summaries of the
look-aheads. This removes the first drawback mentioned above.

We have now achieved a linear-time algorithm: we first read the entire input (at
cost O(n)); then we scan backwards, using one single FSA recording start states of
right contexts (again O(n)); and finally we run the LR-regular parser forward, using
the recorded states rather than the tokens as look-aheads (also O(n)).

9.13.2.3 Finding a Regular Envelope of a Context-Free Grammar

The fundamental difference between regular and context-free is the ability to nest.
This nesting is implemented using a stack, both during production and parsing, for
LL, LR and pushdown automaton alike. This observation immediately leads to a
heuristic for “reducing” a CF language to regular: limit the stack depth. A stack of
fixed depth can assume only a finite number of values, which then correspond to the
states of a finite state automaton. The idea can be applied naturally to an LR parser
with a stack limited to the top state only (but several other variations are possible).

The heuristic can best be explained using a non-deterministic LR automaton, for
example the one in Figure 9.15. Assume the input is n ($. Initially we work the
system as an interpreter of the NFA, as in Figure 9.16, so we start in the leftmost
state in that figure. Shifting over the n brings us to a state that contains only T—>ne
(actually state 2 in Figure 9.17), and since we remember only the top of the stack,
we forget the initial state. State 2 orders us to reduce, but since we have lost the n
and the initial state, we know that we have to shift over a T but we have no idea from
what state to shift. We solve this by introducing a state containing all possible items,
thus acknowledging our total ignorance; we then shift over T from that state. The
result is the item set:

E—>E-Te

E—>Te

Note that this item set is not present in the deterministic LR(0) automaton, and cannot
occur as a state in the CF parsing. The item set tells us to reduce to E, but again
without any previous information. We act as above, now obtaining the item set

S—Ee$
E-—>Ee-T
T— (Ee)

which is again not an LR(0) state. This item set allows shifts on $, - and ) , but not on
(; so the input n ($ is rejected, even by the regular envelope constructed here. Note
that the input n) $ is accepted; indeed it does not contain blatant impossibilities.

A closer look at the above discussion makes it clear what happens when we have
to reduce to a non-terminal A: we continue with all items of the form P — oAep.
These items can be found in the non-deterministic LR automaton as the items that
have an incoming arrow on A. This gives us a way to convert such an automaton
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into an FSA for a regular envelope: we connect by e-transitions all reduce states for
each non-terminal A to all states with incoming arrows marked A; next we remove
all arrows marked with non-terminals.

This procedure converts the non-deterministic LR(0) automaton of Figure 9.15
into the non-deterministic finite-state automaton of Figure 9.48, in which the un-
marked arrows represent e-transitions, and the accepting state is again marked with
a ¢. Rather than connecting all reduce items of a non-terminal A to all items of the

Fig. 9.48. A possible regular envelope for the grammar of Figure 9.14

form P — oAeP, we first connect the reduce items to a “terminal station”, which
is the dual to the “departure” station shown in Figure 9.15, and connect from there
to the destination states. Although Figure 9.48 could be drawn neater and without
crossing lines, we have kept it as close as possible to Figure 9.15 to show the rela-
tionship.

A specific deterministic finite-state automaton for a given non-terminal P can
be derived from it by marking the station of P as the start state, and making the
automaton deterministic using the subset algorithm. This FSA — or rather the regular
expression it corresponds to — can then be used in the expressions derived for item
and dot right contexts in Section 9.12.2. See Problem 9.27.

If the resulting regular sets are too coarse and do not sufficiently separate the
actions on various items, a better approximation could be obtained by remembering
k states rather than 1, but the algorithm to do so is quite complicated. It is usually
much easier to duplicate part of the grammar, for example as follows:



9.13 Exploiting the Left and Right Contexts 333

S
E
T
T

E S

E-T | T
n| (E)
n| (E)

AR

This trick increases the number of states in the FSA and so the tightness of the fit.
But finding exactly which part to duplicate will always remain an art, since the basic
problem is unsolvable.

The grammar of Figure 9.46(a) shows that LR-regular parsing can handle some
non-deterministic grammars. Culik, II and Cohen [57] prove that the same is true for
languages: LR-regular can handle some languages for which there are no determin-
istic grammars. For the dismal error detection properties of LR-regular, see Problem
9.28.

The above approximation algorithm is from Nederhof [402]. There are many
other algorithms for approximating the right context, for example Farré and Fortes
Galvez [98]. See also Yli-Jyrd [403], Pereira and Wright [404], and other papers
from (Web)Section 18.4.2. Nederhof’s paper [401] includes a survey of regular ap-
proximating algorithms.

9.13.3 LAR(m) Parsing

Bermudez and Schimpf [82] show a rather different way of exploring and exploiting
the right context. At first sight their method seems less than promising: when faced
with two possible decisions in an inadequate state, parse ahead with both options and
see which one survives. But it is easy to show that, at least occasionally, the method
works quite well.

We apply the idea to the grammar of Figure 9.46. Its LR(0) automaton is shown
in Figure 9.49; indeed state @ is inadequate, has a reduce/reduce conflict. Suppose
the input is dddb, which almost immediately lands us in the inadequate state. Rather
than first trying the reduction C—de and seeing where it gets us, and then D—>de,
we try both of them simultaneously, one step at a time. In both cases the parser starts
in state @, a d is stacked, and state @ is stacked on top, as in frame a:

The top level in the bubble is reduced using C—de and the bottom level with D—>de,
as shown in frame b. GOTOs over the resulting C and D give frame c. The new states
®@ and @ are OK and ask for more reductions, leading to frame d. Two more GOTOs
put the states @ and ® on top; both require shifts, so our simultaneous parser is
now ready for the next input token. The way we have drawn the combined simulated
stacks in transition bubbles already shows that we intend to use them as states in a
look-ahead automaton, the LAR automaton.
When we now process the next d in the input:
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Fig. 9.49. The LR(0) automaton of the grammar of Figure 9.46

we are pleasantly surprised: the LAR state after the second d is the same as after the
first one! This means that any further number of ds will just bring us back to this
same state; we can skip explaining these and immediately proceed to the final b. We
stack the b and immediately see that one of the GOTOs fails ((b)):

That is all we need to know: as soon as there is only one choice left we can stop our
search since we know which decision to take in the inadequate state.
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It would be inconvenient to repeat this simulation every time the inadequate state
occurs during parsing, so we want to derive from it a finite-state look-ahead automa-
ton that can be computed during parser generation time and can be consulted during
parsing. To this end we perform the simulated look-ahead process during parser gen-
eration, for all input tokens. This results in a complete FS look-ahead automaton for
the given inadequate state. Figure 9.50 shows the LAR automaton for the inadequate
state @, as derived above. Note that it is exactly the FS automaton a programmer

Fig. 9.50. The LAR automaton for the inadequate state @ in Figure 9.49

would have written for the problem: skip ds until you find the answer.

The above example allowed us to demonstrate the basic principles and the power
of LAR parsing, but not its fine points, of which there are three. The inadequate
state can have more than one conflict; we can run into more inadequate states while
constructing the LAR automaton; and one or more simulated stacks may grow in-
definitely, so the FS look-ahead automaton construction process may not terminate,
generating more and more states.

The first two problems are easily solved. If the inadequate LR state has more
than one conflict, we start a separate level in our initial LAR state for each possible
action. Again states in which all levels but one are empty are terminal states (of the
LAR automaton). And if we encounter an inadequate state p, in the simulated stack
of level [, we just copy that stack for all actions that p, allows, keeping all copies in
level I. Again states in which all levels but one are empty are terminal states; we do
not need to find out which of the stacks in that level is the correct one.

The problem of the unbounded stack growth is more interesting. Consider the
grammar of Figure 9.51; it produces the same language as that of Figure 9.46, but is
right-recursive rather than left. The pertinent part of the LR(0) automaton is shown
in Figure 9.52.

We process the first two ds just as above:
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Ss — A | B
A - CA | a
c — d

B - DB | b
D — d

Fig. 9.51. An LAR(1) grammar

shift d C—>de
GOTO GOTO
— —_—
shift d D—>de
GOTO GOTO

but to our dismay we see that the miracle of the identical states does not repeat it-
self. In fact, it is easy to see that for each subsequent d the stacks will grow longer,
creating more and more different LAR states, preventing us from constructing a fi-
nite-state look-ahead automaton at parser generation time. Bermudez and Schimpf’s
solution to this problem is simple: keep the top-most m symbols of the stack only.
This leads to LAR(m) parsing. Note that, although we are constructing look-ahead
automata, the m is not the length of the look-ahead, but rather the amount of left
context maintained while doing the look-ahead. If the resulting LAR automaton has
loops in it, the look-ahead itself is unbounded, unrelated to the value of m.

Using this technique with m = 1 truncates the stacks of frame e above to those in
frame a below:
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shift 4
GOTO
e
shift d
GOTO

Proceeding as before, we shift in the ds, perform reductions and GOTOs, and finally
truncate again to m = 1, and we are happy to see that this leads us back to the previous
state. Since there are only a finite number of stacks of maximum length m, there are
only a finite number of possible states in our LAR automaton, so the construction
process is guaranteed to terminate. The result for our grammar is shown in Figure
9.53.

D—>de

Fig. 9.53. The LAR(1) automaton for the inadequate state 2 in Figure 9.52

This technique seems a sure-fire way to resolve any problems with inadequate
states, but of course it isn’t. The snag is that when reducing a simulated stack we
may have to reduce more symbols than are available on that stack. If that happens, the
grammar is not LAR(m) — so the fact that our above attempt with m = 1 succeeded
proved that the grammar of Figure 9.51 is LAR(1). Making m larger than the length
of the longest right-hand side does not always help since successive reduces may still
shorten the stack too much.

The above procedure can be summarized as follows:

* For each inadequate state p, we construct an LAR look-ahead automaton, which
starts in a provisional LAR state, which has as many levels as there are possible
actions in p,.

e In each provisional state we continue to perform reduce and GOTO actions until
each stack has an LR state which allows shifting on top, all the while truncating
the stack to m symbols.

— If we run into an inadequate state p, in this process, we duplicate the stack
inside the level and continue with all actions p, allows.
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— If we have to reduce more symbols from a stack than it contains, the grammar
is not LAR(m).
— If we shift over the end marker # in this process, the grammar is ambiguous
and is not LAR(m).
If there is now only one non-empty level left in the LAR state, it is a terminal
LAR state. Otherwise the result is either a new LAR state, which we process, or
a known LAR state.
e For each new LAR state p we create transitions p 4 p; for all tokens ¢ that p
allows, where the p, are new provisional states.
*  We continue the above process until there are no more new LAR states or we find
that the grammar is not LAR(m).

We regret to say that we have again left a couple of complications out of the dis-
cussion. When working with m > 1, the initial LAR state for an inadequate LR state
must contain stacks that derive from the left context of that state. And the number of
LAR automata can be reduced by taking traditional LALR look-ahead into account.
These complications and more are discussed by Bermudez and Schimpf [82], who
also provide advice about obtaining reasonable values for m.

9.14 LR(k) as an Ambiguity Test

It is often important to be sure that a grammar is not ambiguous, but unfortunately
that property is undecidable: it can be proved that there cannot be an algorithm that
can, for every CF grammar, decide whether it is ambiguous or unambiguous. This
is comparable to the situation described in Section 3.4.2, where the fundamental
impossibility of a recognizer for Type 0 grammars was discussed. (See Hopcroft
and Ullman [391, p. 200]). The most effective ambiguity test for a CF grammar
we have at present is the construction of the corresponding LR(k) automaton, but
it is not a perfect test: if the construction succeeds, the grammar is guaranteed to
be unambiguous; if it fails, in principle nothing is known. In practice, however, the
reported conflicts will often point to genuine ambiguities.

The construction of an LR-regular parser (Section 9.13.2) is an even stronger,
but more complicated test; see Heilbrunner [392] for a precise algorithm. Schmitz
and Farré [398] describe a different very strong ambiguity test that can be made
arbitrarily strong at arbitrary expense, but it is experimental.

9.15 Conclusion

The basis of bottom-up parsing is reducing the input, through a series of sentential
forms, to the start symbol, all the while constructing the parse tree(s). The basis of
deterministic bottom-up parsing is finding, with certainty, in each sentential form a
segment o. equal to the right-hand side of a rule A — o such that the reduction using
that rule will create a node A that is guaranteed to be part of the parse tree. The basis
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of left-to-right deterministic bottom-up parsing is finding, preferably efficiently, the
leftmost segment with that property, the handle.

Many plans have been devised to find the handle. Precedence parsing inserts
three types of marker in the sentential form: < for the left end of a handle; = for
use in the middle of a handle; and > for the right end of the handle. The decision
which marker to place in a given position depends on one or a few tokens on the left
and on the right of the position. Bounded context identifies the handle by a left and
right context, each a few tokens long. LR summarizes the entire left context into a
single state of an FSA, which state then identifies the reduction rule, in combination
with zero, one, or a few tokens of the right context. LR-regular summarizes the entire
right context into a single state of a second FSA, which state in combination with the
left context state then identifies the reduction rule. Many different FSAs have been
proposed for this purpose.

Problems

Problem 9.1: Arguably the simplest deterministic bottom-up parser is one in
which the shortest leftmost substring in the sentential form that matches a right-hand
side in the grammar is the handle. Determine conditions for which this parser works.
See also Problem 10.9.

Problem 9.2: Precedence parsing was explained as “inserting parenthesis gener-
ators”. Sheridan [111] sketches an algorithm that inserts sufficient numbers of paren-
theses. Determine conditions for which this works.

Problem 9.3: There is an easy approach to LR(0) automata with shift/reduce
conflicts only: shift if you can, reduce otherwise. Work out the consequences.

Problem 9.4: Extend the tables in Figure 9.18 for the case that the input consists
of sentential forms containing both terminal and non-terminal symbols rather than
strings of terminals. Same question for Figure 9.28.

Problem 9.5: Complete the LR(2) ACTION and GOTO tables of Figure 9.33.

Problem 9.6: Design the combined LR(k = 0,1,> 1) algorithm hinted at on
page 299.

Problem 9.7: Devise an efficient table structure for an LR(k) parser where £ is
fairly large, say between 5 and 20. (Such grammars may arise in grammatical data
compression, Section 17.5.1.)

Problem 9.8: An LR(1) grammar is converted to CNF, as in Section 4.2.3. Is it
still LR(1)?

Problem 9.9: In an LR(1) grammar in CNF all non-terminals that are used only
once in the grammar are substituted out. Is the resulting grammar still LR(1)?

Problem 9.10: Is it possible for two items in the LALR(1) channel algorithm to
be connected both by propagation channels and by spontaneous channels?

Problem 9.11: Apply the algorithm of Section 9.7.1.3 to the grammar of Figure
9.30.
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Problem 9.12: The reads and directly-reads relations in Section 9.7.1.3 seem
to compute the FIRST sets of some tails of right-hand sides. Explore the exact rela-
tionship between reads and directly-reads and FIRST sets.

Problem 9.13: Project for Prolog fans: The relations in the algorithm of Section
9.7.1.3 immediately suggest Prolog. Program the algorithm in Prolog, keeping the
single-formula formulation of page 310 as a single Prolog clause, if possible.

Problem 9.14: Although the LALR-by-SLR algorithm as described by
Bermudez and Logothetis [79] can compute look-ahead sets of reduce items only,
a very simple modification allows it to compute the LALR look-aheads of any item.
Use it to compute the LALR look-ahead sets of E—>Ee - T in states 4 and 9 of Figure
9.25.

Problem 9.15: Project: The channels in the channel algorithm in Section 9.7.1.2
and the relations in the relations algorithm in Section 9.7.1.3 bear some resemblance.
Work out this resemblance and construct a unified algorithm, if possible.

Problem 9.16: Project: It is not obvious that starting the FSA construction pro-
cess in Section 9.10.2 from state 5o yields the best possible set, either in size or in
amount of stack activity saved. Research the possibility that a different order pro-
duces a better set of FSAs, or even that a different or better set exists that does not
derive from some order.

Problem 9.17: Derive left-context regular expressions for the states in Figure
9.17 as explained in Section 9.12.

Problem 9.18: Write a program to construct the regular grammar for the left
contexts of a given grammar.

Problem 9.19: Write a program to construct the regular grammar for the right
contexts of a given grammar.

Problem 9.20: It seems reasonable to assume that when the dot right contexts in
a given inadequate state have a non-empty intersection even on the regular expression
level, the grammar must be ambiguous: there is at least one continuation that will
satisfy both choices, right up to the end of the input, and thus lead to two successful
parses. The grammar S —>aSa | a, which is unambiguous, proves that this is not true:
D_25—>-a=aaa*$ and D_2$—>a-=aa*$, and they have any string in aaa”$ in
common. What is wrong with the reasoning?

Problem 9.21: Construct a grammar that has a DR automaton with a loop in it.

Problem 9.22: Since the regular envelope in LR-regular parsing is too wide, it
can happen that the rest of the input is inside the regular envelope but outside the CF
right context grammar it envelopes. What happens in this case?

Problem 9.23: Show that the naive implementation of the LR-regular parser in
Section 9.13.2 indeed has a time requirement of O(n?).

Problem 9.24: Work out the details of building a reverse FSA F from a given
b

FSA F, both when F is non-deterministic and when it is already deterministic. ( F
should recognize the reverse of the strings F' recognizes.)

Problem 9.25: Derive a deterministic automaton (or a regular expression) for T
from the automaton in Figure 9.48.
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Problem 9.26: Devise a way to do the transformation to a regular envelope on
the deterministic LR(0) automaton (for example Figure 9.17) rather than on the non-
deterministic one.

Problem 9.27: 1. Make the NFA in Figure 9.48 deterministic for T. 2. Derive a
regular expression for T and use it in the expression [-T|)1") [-T]"$ derived for
the item right context of E—>eE-T in state 6 in Section 9.12.2.

Problem 9.28: Project: Design reasonable error reporting for an LR-regular
parser. (Background: If the backward scan of an LR-regular parser is performed on
incorrect input, chances are that the automaton gets stuck somewhere, say at a posi-
tion P, which means that no look-aheads will be attached to any positions left of P,
which in turn means that parsing cannot even start. Giving an error message about
position P is unattractive because 1) it may not be the leftmost error, which is awk-
ward if there is more than one error, and 2) no reasonable error message can be given
since there is finite-state information only.)

Problem 9.29: Project Formal Languages: The argument on page 328 suggest-
ing that it is undecidable whether a grammar is LR-regular or not works the wrong
way: it reduces our problem to an undecidable problem, but it should reduce an un-
decidable problem to ours. Correct.

Problem 9.30: On page 337 we write that the grammar is not LAR(m) if during
reducing a simulated stack we have to reduce more symbols than are available on
that stack. But why is that a problem? We know which reduction to do, so we could
just do it. Or can we?
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Non-Canonical Parsers

Top-down parsers make their predictions in pre-order, in which the parent nodes are
identified before any of their children, and which imitates leftmost derivations (see
Section 6.1); bottom-up parsers perform their reductions in post-order, in which the
parent nodes are identified after all of their children have been identified, and which
imitates rightmost derivation (see the introduction in Chapter 7). These two orders of
producing and visiting trees are called “canonical”, and so are the parsing techniques
that follow them.

Non-canonical parsing methods take liberties with these traditional orders, and
sometimes postpone the decisions that would be required to create parse trees in pure
pre- or post-order. This allows them to use a larger set of grammars, but on the other
hand these methods create fragments of parse trees, which have to be combined at
later moments.

Like their canonical counterparts, non-canonical methods can be classified as
top-down (Section 10.1) and bottom-up (Section 10.2) methods, based on whether
they primarily use pre-order or post-order. There are deterministic and general non-
canonical methods. The deterministic methods allow parsing in linear-time; as with
LL and LR methods, they can be generalized by applying a limited breadth-first
search. Altogether the non-canonical methods form a large and diverse field that has
by no means been completely explored yet.

Figure 10.1 shows the relation between non-canonical parsing and the corre-
sponding non-canonical production process, as Figure 3.9 did for canonical parsing.
In this case just the node for g has been identified. Again the dotted line represents
the sentential form.

The most important property of deterministic non-canonical parsing is that it al-
lows a larger class of grammars to be used without modification while retaining linear
time requirements. Since it has simultaneously aspects of top-down and bottom-up
parsing it can also provide further insight in parsing; see, for example, Demers [103],
who describes a parsing technique on a gliding scale between LL(1) and SLR(1).

On the down side there is an increased complexity and difficulty, both for the
implementer and the user. Postponing decisions does not come free, so non-canonical
parsing algorithms are more complex and require more ingenuity than their canonical
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a b
Fig. 10.1. Full parse tree (a), non-canonical top-down (b), non-canonical bottom-up (c)

counterparts; this makes them less attractive for implementers. And where LL and
LR parser generators can leave the construction of the parse tree to the user, the non-
canonical methods identify parse tree nodes in an often unintuitive order, making it
next to impossible for users to construct a parse tree on their own. Consequently we
find non-canonical methods primarily in systems that offer the user a finished parse
tree.

Creating a node in a parse tree is actually a two-step process: first the node is
created and then it is identified, i.e., labeled with a non-terminal. In almost all parsers
these two steps coincide, but that does not have to be. Some non-canonical parsers
create the nodes, together with their identifications, in non-canonical order; others
create the nodes in canonical order, but identify them later, in some different order.
Examples of the latter are PLL(1) and Partitioned LR. There should probably be
different names for these approaches but there are not, to our knowledge. Note that
operator-precedence creates the nodes in canonical order but identifies them later, or
not at all, and therefore borders on the non-canonical.

10.1 Top-Down Non-Canonical Parsing

Top-down non-canonical parsers postpone parse tree construction decisions, but not
as far as canonical bottom-up parsers. As a result they are less powerful but often al-
low earlier decisions than LR parsers. This is important when early semantics actions
are desired.

We will discuss here three deterministic top-down non-canonical methods: left-
corner parsing, cancellation parsing, and Partitioned LL. The first two allow top-
down parsing with left-recursive grammars, while the third allows grammars for lan-
guages that would require unbounded look-ahead in traditional top-down parsing.

10.1.1 Left-Corner Parsing

As we have seen in Section 6.3.2, a standard top-down parser cannot deal with left-
recursive grammars, since it has no way of knowing how many rounds of left re-
cursion it should predict. Suppose we postpone that decision and concentrate on
predicting a suitable subtree; once we have found that, we may be able to decide
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whether another round of left recursion is needed. This leads to a technique called
“left-corner parsing”.

10.1.1.1 Left Spines

Consider the grammar for simple arithmetic expressions in Figure 10.2 copied from
Figure 9.2, and the input string n+nxn#, where # is the usual end marker.

Ss — E
E —- E+ T
E —- T
T —- T x F
T — F
F — n
F — (E)

Fig. 10.2. A grammar for simple arithmetic expressions

We start with the prediction S# and the first token of the input, n. A traditional
LL parser would want to produce the complete left spine of the parse tree before the
n is matched. It would use something like the following reasoning: the pair (S,n)
predicts an E; the pair (E,n) either predicts E+T, which brings us back to E, or a T;
the pair (T,n) predicts TxF, which brings us back to T or an F; and the F finally
predicts the n. Only then can matching take place. But the LL parser cannot do so
deterministically, since it cannot decide how many E+Ts and TxFs it should predict,
as shown in Figure 10.3(a).

A left-corner parser postpones these decisions, finds that the left-corner predic-
tion F —>n is a decision that can be made with certainty, and is satisfied with that. The
predicted F is then parsed recursively (see below). By the same reasoning, the result-
ing F can only derive from a prediction T—F, which allows the F to be matched.
This allows us to look behind the T, where we see a +. This + tells us that the parse
tree node starting with the T cannot have been TxF, but must have derived from
E—T. So we predict E—T, match the T and look behind the E, where the + tells us
to predict E—>E+T. The predicted + and the + from the input are now matched, and
the left-corner parser starts parsing nxn with T as the prediction.

Several points must be made here. The first is that in some weird way we have
been making predictions from hindsight; we will return to this point further on. The
second is that the above process fixed the left spine of the parse tree to some extent,
but not completely; see Figure 10.3(b). The reason is of course that the parser cannot
know yet if more nodes E+T will be required; they would be if the input were, for
example, n+nxn+n+n. The third is that the F (and the T and the E) must be parsed
recursively, since they may match large portions of the input string. If the input had
been (n+nxn+n) +n, the whole sub-expression between parentheses would have to
be absorbed by the parsing of the F, to allow us to look behind it. And the fourth, and
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(a) (b)

Fig. 10.3. Left spines: initially (a) and after some nodes have been recognized (b)

probably most important point is that the above sketch is not yet a usable algorithm
and needs more detail.

10.1.1.2 The Production Chain Automaton

Figure 10.3(a) provides more information than we have given it credit for:
it shows clearly that the left spine is described by a regular expression:
SE (E+T) "T (TxF) "Fn. This regular expression corresponds to a finite-state au-
tomaton, which is depicted in Figure 10.4(a), and which also shows the second al-
ternative for F, (E). The nodes are the predicted non-terminals that participate in
the left-corner process, and the arrows are labeled with the rules involved in the pre-
dictions. The automaton describes all leftmost production chains from S; such an
automaton is called a production chain automaton for S (Lomet [102]).

In the sketch of the algorithm in the previous section we were interested in the
token that became visible behind the first non-terminal in a prediction; they form the
look-ahead sets of the predictions and are also shown in the picture of the automaton.
The non-terminal S starts of with a look-ahead set of [#], and the production S —E
passes it on to the E. So along the S-to-E arc the look-ahead set is [#]. The production
rule E—>E+T adds a + to this set, so when the production rule E—T is taken, the
look-ahead set has grown to [#+]. In the same way T—TxF adds a X, so when the
production rule T—F is taken, the look-ahead set is [#+x]. The final predictions
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S S

S—E ’/[#] S—E /[#]
E ‘\/@ E—E+T E ‘/\E E—E+T
E—T /[#+] E—T /[#H
T ‘\/@ T—>TxF T ‘/\@ T—>TxF
T—>F/ [#+x] T—>F/[#+x]

F F
F—>n/ \F—>(E) F—>n/ \F—)(E)

n (E) n (E)

(@) (b)

Fig. 10.4. Left spine finite-state automata, predictive (a) and reversed (b)

F—n and F— (E) do not have look-ahead sets, since these rules start with the
terminal symbols and are identified by these.

The automaton as depicted in Figure 10.4(a) generates the predictions from S
to the first terminal symbol non-deterministically, since there is nothing to guide
the automaton into determinacy. But in our sketch of the algorithm we used the
look-ahead tokens discovered after the first non-terminal of a rule to find our way
backwards through the automaton. This means that if we reverse the arrows in the
production automaton, we can let ourselves be guided by the look-ahead tokens to
find the next (actually the previous!) prediction. When the reversed automaton of
each non-terminal in a grammar G is deterministic, we have a deterministic parser,
and G is of type LC(1).

We see in Figure 10.4(b) that the reverse production chain automaton for our
grammar is indeed deterministic. The working of the parser on n+nxn is now more
easily followed. Starting at the bottom, the initial n of the input gives us the predic-
tion F—n and absorbing the F reveals the + after it. This + leads us to the prediction
T —F, where the path splits in a path labeled [#+] and one labeled [x]. Since the
input symbol is a +, we follow the first path and predict a parse tree node E—T.
At the automaton node E the path splits again, into one labeled [#] and one labeled
[+]. Since the input symbol is still the +, we take the second path and predict a parse
tree node E—>E+T. Now the + can be matched, and the parser recursively recognizes
the nxn with prediction T, as described below. When that is done, we are back at the
E node in the FSA, but now the input symbol is #. So we predict S—E, create a
parse tree node S, match the E, and the parsing is finished.

If the input had been the erroneous string n), the automaton would have got
stuck at the F since the input symbol ) is not in the look-ahead set of the prediction
T —F, and the parser would have reported an error.
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To parse the remaining nxn recursively with prediction T, a production chain
automaton for T is created, using the same technique as above. Since it starts with a
look-ahead set of [#+] just as the T in Figure 10.4(b), this automaton is identical to
the lower part of that figure, so no new automaton is needed. But that is not always
the case, as the following example shows.

Suppose the input is (n). Then we enter the automaton for S at the ( at the
bottom, and predict F—> (E). The open parenthesis is matched, and we now want
to parse n) # with the prediction E. But this E is followed by a ), unlike the one in
Figure 10.4(b), which is followed by a #. There are two ways to deal with this.

The first is to indeed create a new automaton for E [) ] ; this automaton is similar
to the automaton in Figure 10.4(b) from the E node down, except that the token #
in the look-ahead sets is replaced by ) . More in general, we create a new automaton
for each combination of non-terminal and look-ahead set. This approach produces a
full-LC(1) parser, comparable to the full-LL(1) parser explained in Section 8.2.3.

The second is to add the closing parenthesis to the look-ahead set of the E node
in Figure 10.4(b) and update the automaton. If we do this for all non-terminals in
the grammar, there will be only one node in the production chain automaton for
each non-terminal and the look-ahead sets become equal to the FOLLOW sets. This
course of action leads to a strong-LC(1) parser, comparable to a strong-LL(1) parser.
Like the latter, it has smaller tables and weaker error detection properties than its full-
LC(1) counterpart. For example, the erroneous input n) will fool it into predicting
F—>n, T—F and E—T, and only then will the automaton get stuck on an input
symbol ) and a look-ahead set [#].

10.1.1.3 Combining the Chain Automaton and the Parse Stack

The actions of a left-corner parser can be implemented conveniently as a top-down
parser, using a stack and a parse table. The table is indexed by the first token of the
prediction if it is a non-terminal, and the first token of the rest of the input, the look-
ahead. We start with the prediction S#; see Figure 10.5. We have seen above that the
non-terminal S and the look-ahead n lead to the prediction F; —>n, so we stack the n
and add the F; to the analysis (we have appended the subscript | to identify the first
rule for F). But that cannot be all: this way we lose the part of the prediction between
the F and the S in the automaton of Figure 10.4(b). So we also stack a new-made
symbol S\F, to serve as a source for predictions for the left spine from S to F. As a
stack symbol, S\ F matches the rest of S after we have matched an F; in other words,
any string produced by F S\ F is a terminal production of S.

Next we match the n, adding it to the analysis. Now we need a prediction for
S\F, with look-ahead +, and the automaton tells us to predict T, —=F. We add the T,
to the analysis, but we have parsed the F already, so we do not stack it; it is in fact the
left operand of the T in the analysis. We do, however, stack a symbol S\T, to cover
the rest of the left spine. The symbol S\T designates the position T in the automaton
for 8, the look-ahead is still +, so the automaton wants us to predict E; —T. Like
before, we have already parsed the entire right-hand side of the prediction, so we
only stack the symbol S\E, which brings us to the fifth frame in Figure 10.5. Now
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n+nxn# n+nxn#
—
S# Fi|n S\F#
(1) 2
n|+nxn# n|+nxn#
—
Fin|s\F# FinT,|S\T#
(3) )
n|+nxn# n|+nxn#
—
FinT;,E; S\E# FinT,E;E [+ T S\E#
5) ©)
n+|nxn# n+|nxn#
—
FinT,E;E|+|T S\E# FinT,E,E|+F| |n T\F S\E#
()] ®)
n+n | xn# n+n | xn#
—
FinT,E;E|+Fn T\F S\E# FinTE;E|+FnT, T\T S\E#
) (10)
n+n | xn# n+nx [ n#
—
FinT,E2E(+F nT, T | xF T\T S\E# FinT,E;E(+F nT) T x| F T\T S\E#
(11) (12)
n+nx [n# n+nxn | #
—
FinT,E;E|+F nT>T|xF;| |n F\F T\T S\E# FinT,E,E|+F nT,T{xFin F\F T\T S\E#
(13) (14)
n+nxn | # n+nxn | #
—
FinT,E;E|+F nT, T xFin T\T S\E# FinTyEE | +F nT, T xFn S\E#
(15) (16)
n+nxn | # n+nxn | #
—
FinT,E,E;+F nT,T|xFin|S\s# FinToEoE(+F nT, T xFnS; | #

an

8)

Fig. 10.5. Left-corner parsing of the input n+nxn

the automaton tells us to predict E; —E+T, of which we have already recognized the
left corner E. So we stack the +T, and of course our reminder, again S\E, after which
the + is matched.

Now we have again a “normal” non-terminal on top of the prediction stack: T.
In principle we would now need a new automaton for T, but since T occurs in the
automaton for S, that occurrence will serve. The recognition of the n as a F; and
the F as a T> mimic the sequence of events above, but now something happens that
requires our attention: after having recognized a T while looking for a T, we cannot
just pack up and be satisfied with it, but we have to acknowledge the possibility that
we have to stay in the automaton for T for another round, that there may be more of
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T after this T. We do this by stacking the symbol for “the rest of T after T”, T\T.
This symbol allows two predictions: leave the automaton, and stay in it.

We see immediately how necessary it was to stack the T\T symbol, since we do
have to stay in the automaton for T, to parse the subsequent xn (frames 10 through
15). Only in frame 15 can we decide that we have seen the whole T we were looking
for, due to the look-ahead #, and leave the T automaton.

Something similar happens in frame 17, where we stop at the top of the automa-
ton for S on the symbol S\ S, considering whether to continue looking for more S or
to stop here. But since there is no way to stay in the automaton in the state S\ S, the
transition to frame 18 is automatic, and the parsing is finished.

We can collect our decisions in a parse table. The complete table is given in
Figure 10.6; since we did not construct separate automata for E, T, and F for different
look-aheads, it represents a strong-LC(1) parser for the grammar of Figure 10.2.

| = | x | + | ¢ [)|¢#
s n S\F (E) S\F
s\F S\T S\T s\T
S\T x F S\T | S\E S\E
S\E + T S\E s\s
s\s €
E n E\F ( E) E\F
E\F E\T E\T E\T | E\T
E\T x F E\T | E\E E\E | E\E
E\E + T E\E € €
T n T\F (E) T\F
T\F T\T T\T T\T
T\T x F T\T | & € €
F n F\F ( E) F\F
F\F € € € €

Fig. 10.6. LC parse table for the grammar of Figure 10.2

10.1.1.4 Obtaining A Parse Tree

The last frame of Figure 10.5 shows the left-corner analysis of n+nxn to be
F|nT,E>E;+FnT,T|xFnS; but that is less helpful than one would hope. The rea-
son is of course that non-canonical methods identify the nodes in the parse tree in an
unusual order, in this case in infix order. As explained in Section 3.1.3, infix order
requires parentheses to be unambiguous, but the presented analysis does not include
them (see Problem 10.3). So the analysis has to be analysed further to yield a parse
tree.

To properly parenthesize the analysis, we need to identify the left and right chil-
dren of each node.
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e A grammar rule whose right-hand side starts with a terminal or is empty is rec-
ognized before all of its children. For example, a node for the second rule for F,
F— (E), has zero left children and 3 right children; we will represent the node
asFp [0+3].

e A grammar rule whose right-hand side starts with a non-terminal is recognized
after its first child and before the rest of its children. For example, a node for the
first rule for T, T—TxF, has one left child and 2 right children; we will represent
the node as T [1+2].

Using these rules we can parenthesize the left-corner analysis of n+nxn as shown in
Figure 10.7.

(((F; [0+1] n) T,[1+0]) E;[1+0])
E; [1+2]
+
(
((F; [0+1] n) T,[1+01)
T [1+2]
x
(F1[0+1] n)
)
S;[1+0]
)

Fig. 10.7. The fully parenthesized infix left-corner analysis of n+nxn

Now having to “analyse the analysis” may raise eyebrows, but actually the prob-
lem is caused by the linear format of the analysis shown in diagrams like Figure 10.5.
Left-corner parser generators of course never linearize the parse tree in this way but
rather construct it on the fly, using built-in code that gathers the children of nodes as
itemized above, so the problem does not materialize in practice.

10.1.1.5 From LC(1) to LL(1)

The recognizing part of the left-corner parser presented above is indistinguishable
from that of an LL(1) parser. Its stack, parse table, and mode of operation are iden-
tical to those of an LL(1) parser; only the construction of the parse table from the
grammar and the construction of the analysis differ. This suggests that there is an
LL(1) grammar that gives the same language as the LC(1) grammar, and in fact there
is.

An LL(1) grammar for the language produced by an LC(1) grammar can always
be obtained by the following technique, for which we need the notion of “left-spine
child”. A non-terminal B is a left-spine child of A (written BZA) if there is a grammar
rule A — Bo. for some possibly empty o or if there is a rule A — CP and BZC. So B
is a left-spine child of A if B can occur on a left spine starting at A. We shall also need



352 10 Non-Canonical Parsers

to define that A is a left-spine child of itself: AZA. More in particular, in our example
we have S/S/E/E/T/T/F/F. The / is also called the left-corner relation.

To construct the LL(1) grammar, we start from the root non-terminal of the LC(1)
grammar, S in our example, and we are going to need one or more rules for it in the
LL(1) grammar. To find rules for a non-terminal A in the LL(1) grammar, we look
for rules in the LC(1) grammar with a left-hand side B that is a left-spine child of A
and whose right-hand side starts with a terminal or is empty. Such rules are of the
form B — P, where [ starts with a terminal or is €. This B can be a left-corner for
A, after which we still have to parse the part of A after B, that is, A\B. So for each
such B — 3 we add arule A — B A\B to the LL(1) grammar. For our start symbol S
there are two such rules, F—n and F—> (E) , which give us two rules for the LL(1)
grammar: S—>nS\F and S— (E) S\F.

So now we need one or more rules for S\F in the LL(1) grammar. We obtain
these in a similar but slightly different way. To find rules for a non-terminal A\B in
the LL(1) grammar, we look for rules in the LC(1) grammar with a left-hand side C
that is a left-spine child of A and whose right-hand side starts with the non-terminal
B. Such rules are of the form C — By, where Y may be empty. Since we have already
parsed the B prefix of A, and C is a left-corner child of A, we can try to continue by
parsing 7, and if we succeed, we will have parsed a prefix of A produced by C, which
leaves A\C to be parsed. So for each such C — By we add a rule A\B — yA\C to the
LL(1) grammar. For S\F there is only one such rule, T—F, which causes us to add
S\F—S\T to the LL(1) grammar.

For S\T, however, there are two such rules in the LC(1) grammar, T—>TxF
and E—T, resulting in two rules in the LL(1) grammar, S\T—>x F S\T and
S\T—S\E. A similar step lets us create two rules for S\E: S\E—>+ F S\E and
S\E—8\S. The latter, deriving from S;—E, requires a rule for S\S. Rules of the
form A\A — € can always be created for any A when required, so we add a rule
s\s—s¢ to the LL(1) grammar.

The above new rules have introduced the non-terminals E, T, and F into the LL(1)
grammar, and rules for these must also be created, using the same patterns. Figure
10.8 shows the final result. We see that in addition to the trivial rule E\E—s¢ there
is another rule for E\E, reflecting the fact that E is directly left-recursive. The same
applies to T\T.

The above transformation can be performed on any CF grammar. If the result is
an LL(1) grammar the original grammar was LC(1). If we offer the grammar to a
strong-LL(1) parser generator, we obtain a strong-LC(1) parser; using a full-LL(1)
parser generator yields a full-LC(1) parser.

Deterministic left-corner parsing was first described extensively in 1970 by
Rosenkrantz and Lewis, II [101]. A non-deterministic version was already used im-
plicitly by Irons in 1961 [2]. It seems a good candidate for a model of human natural
language parsing (see, for example Chester [377], Abney and Johnson [383], and
Resnik [384]).



10.1 Top-Down Non-Canonical Parsing 353

S —- nsS\F | (E) s\F
S\F — S\T
S\T — S\E | x F S\T
S\E — + T S\E | s\s
s\s — ¢

E — nEF | ( E) EF
E\F — E\T
E\T — E\E | x F E\T
E\E — + T E\E | ¢

T —- nT\F | (E) T\F
T\F — T\T
T\T — x F T\T | ¢

F — nF\F | (E) F\F
F\F — ¢

Fig. 10.8. LL(1) grammar corresponding to the LC(1) grammar of Figure 10.2

10.1.2 Deterministic Cancellation Parsing

The non-deterministic version of cancellation parsing described in Section 6.8 can,
as usual, be made deterministic by equipping it with look-ahead information.

As with left-corner parsing, the look-ahead set of a non-terminal A consists of
two components: the FIRST sets of the non-left-recursive alternatives of A, and the
set of tokens that can follow A. As with LL(1) and LC(1) techniques, there are two
possibilities to compute the follow part of the look-ahead set: it can be computed
separately for each occurrence of A, or it can be replaced by the FOLLOW set of
A. But in cancellation parsing there is another influence on the look-ahead sets: the
set of alternatives of A, since that set is not constant but depends on A’s cancellation
set; so the FIRST sets also fluctuate. There are again two possibilities here. We can
compute these “first” look-ahead sets separately for each combination of A and its
possible cancellation sets, or we can compute it for A in general, disregarding the
influence of the cancellation set.

So in total there are four combinations. Nederhof [105] calls the deterministic
parsers resulting from separate computation of the look-ahead sets for each occur-
rence of each combination of a non-terminal with one of its possible cancellation sets
C(k) parsers; using FOLLOW sets but keeping the differences in cancellation sets
gives strong-C(k) parsers; also disregarding the cancellation sets gives the severe-
C(k) parsers. The fourth combination, ignoring the cancellation sets but distinguish-
ing different occurrences of the same non-terminal, is not described in the paper
because it is identical to full-LL.

Since the construction of deterministic cancellation parsers is quite compli-
cated; since such parsers are less powerful than left-corner parsers; and since non-
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deterministic cancellation parsers are much more useful than their deterministic ver-
sions, we will not discuss their construction here further.

10.1.3 Partitioned LL

LL(1) parsing requires us to choose between the alternatives of a non-terminal right
at the start. Partitioned LL(1) (or PLL(1)) tries to postpone this decision as long
as possible, but requires that the decision will be taken before or at the end of the
alternatives. This assures that the deterministic nature of the parser is preserved.
Partitioned LL(k) parsing was designed by Friede [196, 195].

10.1.3.1 Postponing the Predictions by Using Partitions

We will demonstrate the technique using the grammar from Figure 10.9, which pro-

Ss — A | B
A — akb | ab
B — aBc | ac

Fig. 10.9. A difficult grammar for top-down parsing

duces the language a"b"Ua"c". Sample strings are ab, aacc, and aaabbb; note
that “mixed” strings like aaabbc are forbidden.

Trying to get a top-down parser for this grammar is quite interesting since the
language it generates is the standard example of a language for which there cannot
be a deterministic top-down parser. The reason for the inherent impossibility of such
a parser for this language is that a top-down parser requires us to make a prediction
for a b or a c in the second half of the sentence for each a we read. But the point
where we can decide which of them to predict can be arbitrarily far away; and just
predicting [be] will not do, since that would allow “mixed” sentences like the one
above.

To postpone the decision between two alternatives of a non-terminal A, we first
look for a common prefix. Suppose the first alternative is A — of3 and the second
is A — ay. We can then parse the common prefix o first although we will have to
predict both B and y; we will see below how we can implement this. The moment
we reach the point where the two alternatives start to differ, we try an LL(1)-like
test to find out if we can see which one applies. To do this, we compute the sets
FIRST(B FOLLOW(A)) and FIRST(y FOLLOW(A)). If these are disjoint, we can
base our decision on them, as we did in LL(1) parsing; we can then also discard one
of the predictions.

If this were all, Partitioned LL(1) would just be LL(1) with automatic left-
factoring (Section 8.2.5.2). But Partitioned LL(1) goes one step further. Suppose
the LL(1) test fails and it so happens that 3 and y both start with a non-terminal, say
P and Q; so p = PP’ and Y= QY. Partitioned LL(1) then puts P and Q together in a
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“partition”, which is actually a set: {P, O}, and tries to postpone and still achieve the
decision by parsing with the partition {P,Q} as prediction. An essential requirement
for this to work is of course that parsing with a partition tells in the end which mem-
ber of the partition was found. We can then proceed with the proper choice of B’ and
Y, just as we could with B or y after a successful LL(1) test.

At first sight this does not seem like a very bright plan, since rather than having
to distinguish between the alternatives of P and Q separately, we now have to distin-
guish between the union of them, which will certainly not be easier. Also, when P
or Q happen to be A, we get the same problem back that we had with A in the first
place. But that is not true! If we now try to distinguish between the alternatives of A
and run into P in one alternative and Q in the other, we can simply continue with the
partition {P,Q} — provided the rest of the problems with the parser for {P,Q} can
be solved.

10.1.3.2 A Top-Down Implementation

When we try to distinguish between the two alternatives of S in Figure 10.9, we find
that they have no common prefix. Next we try the LL(1) test on A and B, but since
both start with an a, it fails. So we combine A and B into A_or_B. The recognizing
routine for A_or_B is shown in Figure 10.10. It requires us to handle the following
set of alternatives simultaneously:

b: A
. A
c: B
: B

oo oo
Qo wo w

where the result of the recognition is given after the colon.
We see that they have a common prefix a, for which we construct recognizing
code (token (”a’) ;). The alternatives are now reduced to
b:A
A
c : B
: B

Q wo

But A and B have been replaced by A or B followed by tests whether a A or B
resulted. This gives the following alternatives to deal with:

AorB (A? b:A | B? ¢ : B)
b:Aa
c: B

where the test for the result is indicated by a question mark. Now the LL(1) test
succeeds: FIRST(A or B) is a, which sets it off from the two other alternatives,
which start with b and ¢, respectively. All this results in the parser of Figures 10.10
and 10.11, where we have added print statements to produce the parse tree. A
sample run with input aaaccec yields the output
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char A or B(void) {
/* common prefix */
token(’a’);
/* decision point */
switch (dot) {

case 'b’: token(’'b’); print("A->ab"); return 'A’;

case ‘c’: token(’'c’); print("B-s>ac"); return 'B’;

case 'a’:
switch (A or B()) {
case 'A’: token('b’); print ("A->aBAb"); return 'A’;
case 'B’: token(’c’); print("B->aBc"); return 'B’;

}

default: return error ("abc");

}

Fig. 10.10. C code for the routine A_or B

char S(void) {
/* common prefix */
/* decision point */
switch (dot) {

case 'a’:
switch (A or B()) {
case 'A’: print("S->A"); return 'S’;
case 'B’: print("S->B"); return ’S’;

}

default: return error("a");

}
Fig. 10.11. C code for the routine S

B—ac
B—aBc
B—aBc
S—B

The recursive descent routines in a canonical LL parser just return true or
false, indicating whether or not a terminal production of the predicted non-
terminal was found. We see that this set of return values is extended with the identity
of the non-terminal in the PLL code, and it is this small extension that makes the
parser more powerful.

10.1.3.3 PLL(0) or SPLL(1)?

The original definition of PLL(k) (Friede [196]) splits the PLL(k) test into two parts:
two right-hand sides o and ovy of rules for A are distinguishable if after skipping the
common prefix o at least one of the following conditions holds.
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* Both 3 and 7 start with a terminal symbol and those symbols are different.

*  FIRSTx(BFOLLOW(A)) and FIRSTy(YFOLLOWy(A)) have nothing in com-
mon, where FIRSTyx and FOLLOWY{ are the FIRST and FOLLOW sets of length
k.

This split allows the definition of PLL(0), PLL(k) with k = 0O: the second test will
always fail, but the first one remains meaningful, and saves the technique. In fact,
the SLL(1) grammar from Figure 8.4 is PLL(0) under this definition — but if we
replace the rule for B by B—ab |aaBb it is no longer SLL(1) while still being
PLL(0), because PLL skips the common prefix. PLL(0) grammars have some the-
oretical significance since they are exactly the strict deterministic grammars (again
Friede [196]), but their theory is simpler.

Still, kK = 0 suggests that no look-ahead is involved, as in LR(0), where the deci-
sion about a rule can be taken on the last symbol of its production. But that is not the
case here: to decide between B—b and B—aBb we need to look at the first symbol
of the input. Now we could also modify the definition of LL(k), by splitting the LL(k)
test as above. Then non-trivial LL(0) grammars would exist, and they would be the
SLL(1) or s-grammars. So it would perhaps be more reasonable to call the PLL(0)
grammars SPLL(1) grammars or partitioned s-grammars. (For LL(0) grammars un-
der the normal LL(k) definition, see Problem 8.1.)

10.1.4 Discussion

The main advantages of canonical top-down parsing are the fact that semantic ac-
tions can be performed early in the parsing process, and the simplicity of the parser.
Non-canonical top-down parsers work for more grammars, retain much of the first
advantage but lose on the second.

10.2 Bottom-Up Non-Canonical Parsing

Non-canonical parsers derive their increased power from postponing some of the
decisions that canonical parsers have to take. For bottom-up parsers, this immediately
leads to two questions.

The first is that bottom-up parsers already postpone the recognition of a sub-
tree (handle) to the last possible moment, after all the terminals of the handle have
been read, possibly plus a number of look-ahead tokens. So what more is there to
postpone? The answer is that non-canonical bottom-up methods abandon rather than
postpone the hunt for the (leftmost) handle, and start looking for a subtree further on
in the input. Whether this subtree can again be called a handle is a matter of defini-
tion. We will still call it a handle, although many authors reserve that term for the
leftmost fully recognized subtree, and use words like “phrase” for the non-leftmost
ones.

The second question is: Why is it profitable to reduce a non-leftmost handle? Af-
ter all, when a non-leftmost handle has been found and the corresponding reduction
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performed, the leftmost handle will still have to be found or we will never get a parse
tree. Here the answer is that reducing segments further on in the input improves the
look-ahead. A single token in the look-ahead may not give sufficient information to
decide whether and how to reduce, but knowing that it is part of a non-terminal A or
B might, and if that is the case, the grammar is amenable to non-canonical bottom-
up parsing. This shows that look-aheads are essential to non-canonical bottom-up
parsing, and that we will need to allow non-terminals in the look-ahead.

The non-canonical bottom-up parsing methods differ in the way they resume their
search for a handle. We will show here three methods, total precedence, NSLR(1),
and LR(k,e0); the bibliography in (Web)Section 18.2.2 shows several examples of
other techniques.

Farré and Fortes Gélvez [209] describe a non-canonical DR(k) parser; unlike the
other parsers in this chapter it can require O(n?) time to parse its input.

For the — non-canonical — BC and BPC methods see Section 9.3.1.

10.2.1 Total Precedence

Knuth [52] was the first to hint at the possibility of non-canonical bottom-up parsing,
but the first practical proposal came from Colmerauer [191], who modified prece-
dence parsing to recognize non-leftmost handles.

We shall use Colmerauer’s grammar G, for the explanation:

Ss —= a
S — aSB
S — DbSB
B — b

This grammar produces the language [ab]”ab”, a number of as or bs, next an a,
and then an equal number of bs. An example is ababb. It is tricky to make a left-
to-right parser for this language, since all as before the last a come from the rule
S—a$8B, but the last a comes from S—a, and we cannot know what is the last a
until we have seen the end of the input, after n bs.

The grammar is not simple precedence (it is not LR(1) either, as is easily shown
by considering the LR(1) state after the input string aa). Its simple-precedence table
can be computed using the procedure sketched in Section 9.2.4; the result is

#|S|B| a b
# < <| <
S| > = <
B|> >
a|> < | </>
b|>|= < | </>

This table has two </> conflicts, a</>b and b</>b. The first should be resolved
as a>b when the a is the last a but as a<b when it is not; and the second as b<b
when it occurs before the last a and as b>b after the last a. These are fundamental
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conflicts, which cannot be resolved by traditional conflict resolvers (Section 9.9) or
by resorting to other precedence methods.

In a total precedence parser we want to read on past the conflict and try to find
another handle further on that will shed light on the present problem. The > rela-
tions in the conflicting entries prevents us from doing so, so we remove these; it is
clear that that will have repercussion elsewhere, but for the moment it allows us to
continue. Since now all combinations of a and b have the relation <, we will shift
all as and bs until we reach the end of the string, where we are stopped by the > in
b>#:

# <a<b<a<b<b>#

This leads us to reduce the handle <b> to B, and this reduction turns out to be a
great help.

Now that the subtree B has been recognized, it can be considered a newly defined
terminal symbol, just as we did in cancellation parsing in Section 6.8. Going back to
the simple-precedence table construction procedure sketched in Section 9.2.4, we see
that the juxtaposition of S8 and B in the right-hand sides of S—>aSB and S—>bSB
requires a > relation between all symbols in LASTAr1(S) and B, if B is a termi-
nal. Since LASTa;(S)={a,b,B}, we get a>B, b>B, and B>B, which gives us the
following total precedence table:

#|S|B|la|b

# < < | <

S|> = <

B|> > >

a| > >l <<

b|l>|=|>|<|<

With this new table the parsing of the string ababbb is straightforward:

# <a<b<a<b<b>t#
# <a<b<a<b>»B>»#
# <a<b<a>»B >B > #
# <a<b=8=B2>B > #
# <a=8=B>#
# =85 = #

The above total precedence table was constructed by ad hoc reasoning and hand-
waving, but we need an algorithm to implement this technique on a computer. It
turns out that a grammar can have zero, one or several total precedence tables, and
the problem is how to find one if it exists. Colmerauer [191] gives a set of equations
a total precedence table for a given grammar has to obey, and provides several meth-
ods to solve these equations, including one that can reasonably be done by hand. But
the procedures are lengthy and we refer the interested reader to Colmerauer’s paper.

10.2.2 NSLR(1)

Postponing decisions in a total precedence parser was easy: just ignore the problem,
read on and come back later to repair the damage. It is not that easy in an LR parser;



360 10 Non-Canonical Parsers

the reason is that an LR parser bets so heavily on the first handle that it finds it diffi-
cult to switch to an alternative set of hypotheses when the first set leads to problems.
A good example is supplied by the structure of declarations in some (Pascal-like)
programming languages:

VAR i, j, k: INT;

VAR x, vy, z: REAL;
which can be described by the grammar

declarationg; —> VAR intvar list ’:’ INT ’;’
| VAR realvar list ’:’ REAL ’;’

intvar list - intvar ’,’ intvar list | intvar
intvar —> variable name

realvar list —> realvar ’,’ realvar list | realvar
realvar — variable name

The reason we want exactly this grammar is that it allows us to attach semantics to
the rules intvar—svariable name and realvar—svariable name that
identifies the variable name with its proper type. But the Pascal-like syntax does not
supply that information until the end of the declarations, which is why canonical LR
techniques are not enough.

Since the long names in the above grammar are unwieldy in items and some of
the tokens serve only to improve program readability, we shall use the abbreviated
and abstracted grammar from Figure 10.12. The above declarations then correspond
to vvvi and vvvr.

SwHw<HH®SA
VIV
4 SSR<d<d<WH

Fig. 10.12. An abstract grammar of variable declarations

We will now show how to construct a new set of hypotheses for an SLR(1) parser
when we have to abandon the original search for the first handle (Tai [197]). The
initial state 1 of the SLR(1) parser for this grammar is

S—>eIi
S—>eRr
I—>eVI
I—>eV
V—>ev
R—>eWR
R—>eoW
W—=ev
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and the moment we shift over the first v we run into a reduce/reduce conflict in state
2 when we add the FOLLOW sets of V and W as look-aheads to the reduce items, in
accordance with the recipe for SLR(1) parsers (Section 9.8):

V—=ve [vil]
W—ve [vr]

The rest of the SLR(1) automaton is free of conflicts, but this reduce/reduce conflict
is bad enough, since it reflects our inability to do the proper reduction of v until we
have seen either the i or the r. But that token can be arbitrarily far away.

10.2.2.1 Creating New Look-Aheads

Clearly the present look-aheads are inadequate, so two questions arise: what look-
ahead symbols do we use instead, and how do we obtain them. The look-aheads
in SLR parsing derive from FOLLOW sets, which normally contain terminals only,
since whatever comes after the end of the handle is the untouched input. In non-
canonical SLR(1) (NSLR(1)) we try to obtain a 1-symbol (terminal or non-terminal)
look-ahead by fully reducing a segment of the input that follows the item immedi-
ately. To determine what symbols qualify for this task, we need to know what fully
reduced symbols can follow a given non-terminal A. This is easier than it sounds,
since fully reduced symbols are exactly the symbols as they appear in the grammar.
The set of fully reduced symbols that can follow a given non-terminal A is called
FOLLOWy M(A), since it is the same set of symbols which can follow A in sentential
forms during leftmost production; hence the subscript LM.

The FOLLOWT1 )\ set can be obtained by running a variant of the FOLLOW set
construction algorithm of page 245, in which the second step is replaced by (and
simplified to!)

e We process all right-hand sides, including the S# one. Whenever a right-hand
side contains a non-terminal, as in A — ---BX ---, where X is a terminal or a
non-terminal, we add X to FOLLOW]j p(B). In addition, if X --- derives €, we
add all symbols from FOLLOW| y1(A) to FOLLOW m(B).

This fills FOLLOWMm(A) with all unexpanded (= fully reduced) symbols that can
follow A. For V this yields {I,i}, where the I comes directly from I —VI, and the
i comes from I—V and S—1Ii through the € clause in the algorithm. Likewise,
FOLLOWpM(W) = {R,r}. Note that FOLLOWT ]y is in general neither a subset nor a
superset of FOLLOW.

Now that we have determined the new look-aheads we can turn to the problem of
obtaining them from the rest of the input. Actually the new non-terminal look-aheads
can be seen as new hypotheses for finding the handle; only now the handle will be
found (if possible) in the first segment of the rest of the input. So we add the items
for oI and eR to state 2, plus all the prediction items that are brought in by these:
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V—=ve [Iil]
W—>ve [Rr]
I—>eVI
I—>eV
V—>ev
R—>eWR
R—>eoW
W—ev

If the state still has a conflict even when using FOLLOW] \ rather than FOLLOW,
the grammar is not suitable for this technique (but see the next section).

The new items may cause transitions to new, non-canonical states that were not
present in the original SLR(1) parser. These states are used by the parser when it
hunts for a non-first handle. Of course these non-canonical states can again have
conflicts, and if they cannot be solved by the same technique, the grammar is again
not NSLR(1).

10.2.2.2 Finding Minimum Look-Ahead Sets

The above state is not yet a proper NSLR(1) state but rather a LSLR(1) state, for
Leftmost SLR(1), since it is based on FOLLOWT7 ;. The LSLR technique will work
for the grammar of Figure 10.12, but it can be shown that the requirement for “fully
reduced” items is overly strong. Quite often a less reduced look-ahead will do, and
by using such a look-ahead we can occasionally avoid a non-canonical state which
would have had a conflict.

The minimum set of look-ahead symbols can be found as follows (Tai [197]).
We first determine the first symbols each look-ahead non-terminal X of a reduce
item A — ---[---X ---] goes through on its way to being fully reduced. These are
easily found, since they are the symbols right after the dot in the prediction items
resulting from X. For I they are {V,v} and for R we get {W,v}. We tentatively add
these to the reduce look-aheads, resulting in

V—=ve [IVvi]
W—ve [RWvr]

We see that we have now created a reduce/reduce conflict, but that does not surprise
us since we knew already that we had to reduce the v to something, so we remove
the v. The whole state 2 now becomes

V—=ve [IVi]

W—>ve [RWr]

I—>eVI

I—>eV

V—>ev

R—>eWR

R—>eoW

W—oev

but this still has shift/reduce conflicts. Remarkably, these are easily removed: when
we have a choice between using, say, V to resolve the conflict between the first two
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items and shifting over V to find another non-terminal, I, which will then just later
serve to resolve the same conflict, we of course choose to reduce and not to shift. So
we can remove the shift items that cause shift/reduce conflicts (but only those that
were added to resolve the original conflict)! Note that this differs from the traditional
preference for a shift on a shift/reduce conflict presented in Section 9.9. The item set
has become a lot smaller now:

V—>ve [IVi]

W—>ve [RWr]

V—>ev

W—ev

And since I and R no longer appear on the left-hand side of any item, they will not
pop up as look-aheads and can be removed:

V—ave [Vi]
W—ve [Wr]
V—=>ev
W—ev

This is the final form of the NSLR(1) state 2.

Tai [197] proves that applying this procedure to a conflict-free LSLR(1) state
cannot cause the resulting NSLR(1) state to have conflicts, but the proof is lengthy.
In other words, there are no LSLR(1) grammars that are not also NSLR(1). There
exist, however, grammars that are NSLR(1) but not LSLR(1); this is caused by states
in the LSLR(1) parser that are absent from the NSLR(1) parser. For examples see
Tai’s paper.

The complete NSLR(1) automaton is shown in Figure 10.13. The other reduce
states (5, 6, 7, 10, 11, 12) have not been subjected to the SLR-to-NSLR transforma-
tion, since they are already adequate SLR(1) states.

10.2.2.3 A Complete NSLR(1) Parsing Example

The input string vvi is now parsed as follows:

) vvité

O v @ v i#

OvOvO i # reduce by V—>v
O v Oov i #

Here a new look-ahead V is obtained in state @, which causes a further reduce; one
way of understanding this is by pushing the V back into the input stream:

O v 0O v i# reduce by Vv
@ v vi#

and push back again, followed by two shifts:

) VVit#
@ v ©® vV i#
OVvVOeVvDE i#
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Fig. 10.13. NSLR(1) automaton for the grammar in Figure 10.12

The look-ahead i in state ® asks for a reduce by I —V, then by I—VTI in state &,

and then on to the start symbol S:

v
v

I
I
S
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®
®16

@
@®i®

H P H B H

#

I+

e s
3+

It is interesting to note that states 6 and 11 cannot be reached. ..
Salomon and Cormack [200] give an explicit algorithm for NSLR(1), and apply
it to complicated problems in programming language parsing.

10.2.3 LR(k,e<)

As we have seen in Sections 9.6 and 9.8, the essential difference between SLR(1)
parsing and LR(1) parsing is that an SLR(1) parser uses the FOLLOW set of a non-
terminal A as the look-ahead set of an item A — -- -, whereas an LR(1) parser con-
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structs the look-ahead set precisely, based on the look-ahead(s) of the item or items
A — - derives from.

When in a non-canonical SLR(1) parser the necessity arises to create new items
because we abandoned a reduce item A — «e, we can do so relatively easily by
expanding the non-terminals in FOLLOWM(A) and then do some clean-up. And
when we then are forced to abandon these new items, we can again turn to the
FOLLOW1pM(A) set to obtain new non-terminals and from them new items. This
is because the look-ahead of an item in an SLR(1) parser does not depend on its
origin, but only on A.

In a non-canonical LR parser we have to collect much more information about
the set of tokens that can follow a given item / in a given item set (state). First its
construction should follow the principles of LR parsing, which means that it should
derive from the look-ahead information of the items / derives from. And second, the
information should cover the entire rest of the input, since we do not know how often
and until what point we need to postpone our decisions. Non-canonical LR parsing
was first proposed by Knuth [52], but it was Szymanski [194] who gave an algorithm
for its construction. The algorithm yields an LR(k,co) parser, where k is the length
of the look-ahead and e~ (infinity) is roughly the number of times a decision can be
postponed (see Section 10.2.3.4 for more on this subject).

The regular right context grammar explained in Section 9.12.2 suggests itself
as a good representation of the look-ahead information required by a non-canonical
LR parser, but it is not good enough. The regular grammar describes all possible
right contexts of an item / that can occur, over all paths along which a state can be
reached, but in an actual parsing we know that path precisely. It is easy to see that
in the grammar S— (S) | a the regular right context of the item S—>ase is ) ", but
when in a parsing we have seen the first part of the input ( ( ( (a we know that the
exact right context is ) ) ) ). And it is this kind of exact right context that we want
to use as a look-ahead in LR(k,0) parsing; it is a subset of the regular right context
grammar and has to be constructed during parsing.

So for the moment we have two problems: how to derive the LR(k,o) right con-
texts and how to use them during parsing.

10.2.3.1 An LR(1,~) Parsing Example

We will again use the abstract grammar for declarations in Figure 10.12 on page 360
we used in explaining NSLR(1) parsing and stick to one-token look-ahead, so k = 1.
Since we want to see exactly what happens to the look-aheads, we will build up the
states very careful. The kernel items of the initial state, 1; of the LR(1,e0) parser are

S—eIi #
S—>eRr #

Expanding the non-terminals after the dot yields the expanded initial state, 1,



366 10 Non-Canonical Parsers

S—eIi #
S—>eRr #
I—eVI i#
I—>eV i#
V—sev Ii#
V—oev i#
R—>eWR r#
R—>oW r#
W—>ev Rr#
W—ev r#

which differs from the initial state of the NSLR(1) parser (page 360) only in that the
full right context is kept with each item. For example, the right context of I —>eVI
is i# because the item derives from S—>eIi #.

Suppose the input is vvi. As all LR parsers, the LR(1,00) parser starts with an
empty stack and the input concatenated with the end marker as “rest of input” (Figure
9.12, page 279). We will write this configuration as evvi#, where e is the gap. The
look-ahead in this configuration is a v. Rather than examining each item to see how
it reacts to this look-ahead, we first simplify the state by removing all items that do
not have v as their dot look-ahead and then see what the rest says. The filtered state
1 f is

V—sev Ii#

V—sev i#

W—>ev Rr#

W—>ev r#

All items agree on the action: shift, which yields state 2;:

V—ove Ii#
V—ove i#
W—>ve Rr#
W—>ve r#

and the configuration changes to vevi#. The state suggests two different reduce
operations, so we need look-ahead, which we obtain by expanding the dot look-
aheads (I and R). In canonical LR parsing they are replaced by their FIRST sets
(FIRST(zi#) and FIRST(Rr#), respectively) but here we want their FIRST sets
plus their expansions since one of these may be the basis for a non-canonical reduce
operation further on. This causes dotted items in the look-ahead parts of other items,
a strange but useful construction. Szymanski does not give them a name, but we will
call them “dotted look-aheads’’; and we will call the non-look-ahead item the “active
item”.
When we expand the I in V—>ve Ii# to VI, we obtain the item

V—ove [I—eVI]i#

where V—>ve is the active item, [I—eVI] is a dotted look-ahead representing the
first part of the right context, and i# is the rest of that context. This indicates that
the complete right context is VIi#, with the understanding that when the VI gets
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recognized, it must be reduced to I. Szymanski uses the notation ]15VI]3i# for this
item, where the subscripted bracket ], means: “when you get here you can reduce
by rule number #”. This is more compact and more efficient algorithm-wise but less
informative. Note that for k > 1 there can be more than one dotted look-ahead in an
item.
Applying this expansion to all items in state 2; we obtain state 2,:
Ii#
i#
Rr#
r#
[I—>eVI]i#
[T>eV]i#
[V—sev]Ii#
[V—>ev]i#
[R—>eWR] r#
[R—>eW]r#
[W—ev]Rr#
[W—ev]r#

V—>ve
V—>ve
W—ve
W—>ve
V—>ve
V—>ve
V—>ve
V—>ve
W—ve
W—ve
W—=>ve
W—>ve

Now we can filter out the items that are compatible with the look-ahead v, yielding
state 2:

[V—>ev]Ii#
[V—=ev]i#
[W—>ev] Rr#
[W—ev]r#

V—>ve
V—>ve
W—ve
W—ve

We see that there is still no agreement among the items, so we give up on the hypoth-
esized reduces V—>ve and W—ve, and promote the dotted look-aheads to active
items:

V—>ev
V—>ev
W—=ev
W—ev

Ii#
i#
Rr#
r#

Now we shift; this shift is certain to succeed, since we have just made sure all items
had a v as a the dot look-ahead. The result is

Ii#

i#

Rr#

r#

V—>ve
V—>ve
W—>ve
W—>ve

which brings us back to state 2; and changes the configuration to vvei#. It may
seem natural that we come back to state 2; here, because we have read just another
v, but it isn’t. If the rule I —VI had been I —VIx, the first item in state 2; had been
V—>ve Ixi# and that of the above state V—>ve Ixxi#. This shows the profound
effect of keeping the exact entire right context.

Expanding state 2 yields again state 2,, but now the look-ahead is i! Filtering it
with this look-ahead yields the state
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V—ave i#

and now a unanimous decision can be taken. We reduce v to V and the configuration
becomes veVi#. After the first v the parser was in the state 2,, and this state must
now be filtered with look-ahead V. This yields another reduce state:

V—ove [I—>eVI]i#
V—ove [I—eV]i#

We reduce the first v to V, with the new configuration ¢VVi#, which provides a
look-ahead Vv, with which we filter state 1., etc. The rest of the parsing proceeds
similarly.

10.2.3.2 The LR(k,0) Algorithm

The basic loop of a non-canonical LR(k,e) parser is different and more complicated
than that of a canonical LR parser:

e Consider the item set p; on the top of the stack.

e Expand the look-aheads in each of the items if they are non-terminals; they then
yield dotted look-aheads. This results in a state p,.

e Filter from p, the items that have the actual look-ahead as their dot look-ahead.
This results in a state py.

e See if the items in py lead to a decision. Five decisions are possible: reduce; ac-
cept; reject the input; reject the grammar as not LR(k,20); and reject the grammar
as ambiguous. They are covered in detail below.

e If the items in p; do not lead to a decision, shift, as described below. The shifted
token and the new item set resulting from the shift are stacked.

We shall now examine the five possible decisions in more detail.

e Since it is the purpose of LR parsers to produce one single parse tree, each re-
duction we do must be correct, so we reduce only if all items in py appoint the
same reduction.

*  We accept the input when it has been reduced to the start symbol. The look-ahead
together with the end marker make sure that this can only happen at the end of
the input.

*  We reject the input as erroneous when there are no items left in the top state.
When that happens there are no possibilities left for the right context, so no fur-
ther input can ever complete the parse tree.

e If we have abandoned the active item it is possible that there is no dotted look-
ahead left to eventually turn into an active item. Now we created dotted look-
aheads hoping that after a while one of them would be recognized and reduced to
a single non-terminal, which would be used as a look-ahead to resolve an earlier
LR conflict — but if there is no dotted look-ahead that will never happen, and the
LR(k,e0) method is not strong enough to handle the grammar.
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* It is possible that when we reach the end of the input we still have more than
one item left, which means that we still have not been able to make a decision,
and still more than one completion of the parse tree is possible. So the input is
ambiguous, the grammar is ambiguous, and the grammar is not LR(k,eo).

Normally in an LR parser, when we shift we move the dot one place to the right
in the (active) item, and when the dot happens to be at the end of the item we would
not shift but rather reduce or have a conflict. Here we may need to shift even if the
active item is a reduce item, and we have seen above how we do that: we abandon
the active reduce item. If there is a dotted look-ahead at the front of the right context
now, it is promoted to active item with the dot at the beginning. And if there is not,
the item will continue for a while without active item, until a dotted look-ahead is
finally shifted to the front. This can only happen for k > 1.

LR(k,o0) parsing is much more powerful than LR(k) parsing, but this power
comes at a price. It is undecidable whether a grammar is LR(k,e0), and we have
seen above that even during parsing we can find that the grammar is not LR(k,e0) or
is even ambiguous. So we can successfully parse millions of strings with a grammar
and only then find out that it was not LR(k,e0) and the parser was unsound. Also,
the method has several serious implementation problems (see next section), but then
again, it is the strongest linear-time parsing technique for unambiguous grammars
known.

10.2.3.3 Problems with and Fixes for the LR(k,) Parser

We just claimed that LR(k,e0) parsers have linear time requirements, but the signs are
not favorable. Suppose we have a grammar S—aSb | aSc | € and an input aaaa- - -.
Then we meet the following kernel item sets:

S—>aeSb bb#
S—>aeSc bb#

S—>eaSb # S—>aeSb b# S—>aeSb cb#
S—seaSc # a S—>aeSb # a S—>aeSc b# a S—>aeSc cb#
S—>aesb # S—>aeSb c# S—>aeSb bc#

S—e #
S—>aeSc c# S—aeSc bc#
S-—s>aeSb cc#
S—aeSc cc#

1 2 3 4

etc., so we see that the size of the item set grows exponentially. And when we try
the algorithm on the left-recursive grammar of Figure 9.14, even the initial state is
infinitely large because it contains infinite sequences like
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E—>eE-T &%

E—>eE-T -T$#

E—>eE-T -T-TS$#
E—>eE-T -T-T-T&#
E—>eE-T -T-T-T-T$#
E—>eE-T -T-T-T-T-T$#
E—>eE-T -T-T-T-T-T-T&#

The cause of these problems is that right contexts are finite-state (Type 3) lan-
guages and the above algorithm constructs finite-choice (Type 4) expressions for
them. The ever-growing states 2, 3y, ... above actually contain only two items re-
gardless of the number of as read; for example, state 4y is actually

S—>aeSb [bc] [becl#
S—>aeSc [bc] [bel#

and the infinite sequence can be condensed into a single regular expression:
E—>eE-T (-T) s#

So the expansion step in the LR(k,e0) algorithm must be extended with grammar-to-
expression transformations like those in Figure 5.19. Unfortunately the details of this
step have not been published, as far as we know.

With these transformations the item sets no longer grow infinitely or exponen-
tially, but they still grow, linearly. After having processed seven as from the input
the two-item state is

S—aeSb [bc] [be] [bel [bel [bel [bel #
S—aeSc [bcl] [be] [bel [bel [be] [bel #

This cannot be condensed to

S—>aesb [bcl™#
S—saeSc [bc] #

because only exactly seven bs or ¢ are acceptable, one from the active item and six
from the look-aheads. Since the look-ahead sets are copied from item to item, a linear
growth in look-ahead size translates into a quadratic time requirement. Fortunately
there is a simple way to fix this problem. New look-aheads are created only when
a non-terminal is expanded; during this expansion an item A — 0.eBf} Y causes an
item B — @J Py to be created, so the look-ahead changes from 7y to By: the addition is
always at the front of the old look-ahead. So we can implement the item B — 3 Py as
B — 3 P where P is a pointer to 7, the look-ahead of the parent item. This reduces
the copying of an item to constant costs, and the overall parse time requirements to
linear in the length of the input. (The dotted look-aheads complicate the algorithm
somewhat but can be handled in basically the same way.)

LR(k,e0) parsing is the most powerful linear-time parsing algorithm known today.
It can handle many more grammars than LR(k) but it cannot handle all unambiguous
grammars; an example of an unambiguous non-LR(k,eo) grammar is S — aSale. It is
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undecidable whether a grammar is LR(k,e), and the parser discovers its own insuf-
ficiency only while parsing a string that hits one of its weak spots. LR(k,0) is also
called NLR(k), for Non-canonical LR(k).

10.2.3.4 LR(k,t)

LR(k,e0) parsing may be the most powerful linear-time parsing algorithm known
today, but it has one problem: decidability. Not only does the undecidability surround
it with a blanket of uncertainty, it also prevents the creation of a table-driven version.
Section 9.5 has shown us how much less convenient and efficient the interpretive
parser in Figure 9.16 is compared to a table-driven one based on the deterministic
automaton of Figure 9.17, and we would like to “upgrade” our LR(k,o) parser in a
similar way. One reason why we cannot is that the LR(k,o0) parser has an infinite
number of states, as the examples in the previous sections show. If it had a finite
number of states, we could construct them all, and thus achieve decidability and a
table-driven version at the same time.

So it becomes interesting to see why there are infinitely many states. There are
only a finite number of dotted items, and a much larger but still finite number of
combinations of them, but it is the unbounded length of the right contexts that causes
the number of states to be infinite. This raises the question why we need unbounded
length right contexts, especially if we use a finite look-ahead of k tokens only. The
answer is that the segment of the right context after the first k tokens serves one
important purpose: to create dotted look-aheads which turn into active items when
the original active item is abandoned. So intuitively it should help if we restricted the
number of times the active item in a given item can be abandoned to say ¢; this leads
to LR(k,t) parsing. (This notation also explains the name LR(k,e°).)

To understand that this works we go back to the explicit, finite choice imple-
mentation of right contexts, where a right context is just a string of terminals and
non-terminals. Now suppose we have an LR(1,2) item P—>pe RSTuv# resulting
from a shift over p in a grammar which contains the rules P—>p, R—>r, S—s, and
T—t, among many others, and we follow this item through the shift and expand
actions performed on it. We will assume that at each decision point there are other,
conflicting, items in the same state which force us to abandon the active item; this
assumption causes the maximum utilization of the right context.

Since t = 2, we can abandon the active item only twice, and to keep track of
this we record the number of abandons with the item; see Figure 10.14. In step 2 of
the table we expand the look-ahead R to a dotted look-ahead, which turns into an
active item in step 3, due to giving up on P—>pe. Also the counter rises to 1. Similar
actions bring us to step 6 where the counter has risen to 2, and no further “abandon
and shift” is possible.

Exhausting the number of abandons allowed means two things. The first is that
when the exhausted item occurs during parsing and we still cannot make a decision,
the grammar is not LR(1,2) and the parsing fails. The second is more important for
our purposes: we see that the trailing uv# never played a role, so we can remove
them from the original item P—>pe RSTuv#, truncating it to P—>pe RST.
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Step Action Resulting item

1 shift over p P—>pe RSTuv# (0

2 expand P-—>pe [R-—>er]STuv#(
3 abandon and shift over r R->re STuv# |

4 expand R-—>re [S—>es]Tuvi |
5 abandon and shift over s S-—>se Tuv# 2

6 expand S—>se [T—et]luv#?2

7 stop

Fig. 10.14. Development of an LR(1,2) item until exhausted

In this way we can for each item find out how much of its right context is needed
to allow at most ¢ abandons. This keeps the right contexts limited in length and keeps
the number of possible LR(k,¢) states finite, so we can construct a table-driven parser.
Also, we do not have to wait until parse time to find conflicts; they reveal themselves
during table generation, as with LR parsers: we have achieved decidability! Szyman-
ski [194] gives details.

Just as the power of LR(k,0) came at a price, decidability, the decidability of
LR(k,t) comes at a price: power. Although LR(k,¢) can handle many more grammars
than LR(k), it cannot handle more languages.

10.2.3.5 Discussion

LR(k,e0) parsing is the strongest linear-time parsing algorithm known today, both
with respect to grammars and to languages. Suitability of a given grammar cannot
be checked in advance, so the parser may reject the grammar while parsing. The full
algorithm is quite complicated and carries a heavy performance penalty, as states,
look-aheads and right contexts are constructed on the fly.

LR(k,t) parsing is the strongest decidable linear-time parsing algorithm known
today, with respect to grammars. It handles many more grammars than LR(k), but can
handle deterministic languages only. Its table-driven implementation is as efficient as
LALR(1) parsing, but the table construction algorithm is very complex and the tables
can be large.

Hutton [202] describes non-canonical LALR(k) (NLALR(k)) and (NLALR(%,t)),
also called LALR(k,¢). It turns out that it is undecidable if a grammar is NLALR(k),
but it is decidable if a grammar is NLALR(k,f), just as with LR(k,e0) and LR(k,¢).

As Szymanski [194] and Farré and Fortes Galvez [207] point out, non-canonical
LR parsing does LR parsing with context-free look-ahead. It could with some justi-
fication be called LR-context-free, in analogy to LR-regular.

10.2.4 Partitioned LR

When an LL(1) parser is confronted with two alternatives, both starting with the
same token, as in
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A —- P | Q
P — a

Q — a
it has a FIRST-FIRST conflict; but an LR parser merrily shifts the a and accepts
both alternatives, leading to a state {P —>ae, Q—>ae} (which is why there is no such
thing as a shift-shift conflict). When an LR parser is confronted with two possible
reduction rules, as in the state {P—ae, Q—ae}, it has a reduce/reduce conflict; but
a Partitioned LR parser merrily reduces the a to both non-terminals, resulting in a
set {P,Q}. This is of course only possible when all right-hand sides in the reduction

have the same length.

10.2.4.1 Sets of Non-Terminals as LR Stack Entries

In a Partitioned LR parser, the LR stack can contain sets of non-terminals in addition
to the usual non-terminals. The uncertainty that that implies can often be resolved by
later reductions, as the following example shows. Suppose the top few elements of
the stack are

s3 {Q,R} s4 {s,T} s5 {U,V,W} s¢

AAAA

where the non-terminal sets are linked to partial parse trees as the non-terminals did
in Figure 9.12; so {U,V,W} points to a tree that can represent a terminal production of
aU,aVoraW, and similarly for the other sets. Now suppose the top state sg, possibly
with help from some look-ahead, indicates that the parser should reduce using the
rules A—>QSU and B—RSV. Then the top three non-terminal sets get scooped up
from the stack and linked to a single node for {A,B}:

sy P s3 {A,B} s7 |

'

{a,8}

/N

{o,r} s {u,v}

RAR

We see that the set {U,V,W} has been narrowed down to {U,V} in the process, and
that the second member of the right-hand side has been fixed to S, since the W and
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the T are not compatible with the right-hand sides of the reduction rules A—>QSU
and B—>RSV.

We also note that, unlike canonical LR states, Partitioned LR states can contain
reduce items with unrelated right-hand sides. In a canonical LR state each right-hand
side must be a suffix of another right-hand side or vice versa, for example F—AbCe
and G—DbCe, since both must match the top of the stack - - - AbCe. Actually the same
is true in Partitioned LR parsers, but since the stack contains sets of non-terminals,
the right-hand sides of rules in a state have much more leeway, and indeed the reduce
items A—>QSUe and B—RSVe both match the top of the stack above. If they did not
they would not have survived the shifts over {Q,R}, {S,T} and {U,V,W}.

Now suppose state s7 tells us to reduce with the rule C—PB. The reduction
refines the {A,B} to a single B. This information then propagates into the tree for
{a,B}, fixing {Q,R} to R and {U,V} to V, resolving all uncertainties:

sy C sg |

R S v

We see that a reduce action in a Partitioned LR parser entails updating the parse
tree in addition to the usual task of creating a new parse tree node. Actually one can
distinguish these two tasks even in a canonical LR parser: first the node is created
with its children, and then the node is labeled with the proper non-terminal. Similarly,
we have seen in Section 9.2.2 that operator-precedence parsers construct skeleton
parse trees: nodes are just constructed; they never get labeled. Node construction

and node labeling are two fairly independent actions; only in canonical LR parsing
do they occur simultaneously.

10.2.4.2 A Partitioned LR Parsing Example

It is relatively easy to construct a Partitioned LR handle-finding automaton, and we
even have the choice between LR(0), SLR(1), etc. for the look-ahead. We first con-
struct the canonical LR automaton, of the desired kind. When it has no conflicts, we
are of course done and do not need to resort to non-canonical techniques. When it
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has shift/reduce conflicts or reduce/reduce conflicts with rules of unequal lengths,
the Partitioned LR technique cannot help us (but see Problem 10.17). But when there
is a state with a reduce/reduce conflict with rules of equal lengths, we mark the state
for reduce with all these rules for the appropriate look-aheads. This creates a set of
non-terminals A = {A},A,,...,A,} as a potential stack entry. We examine each state
that contains at least one item B — --- @Ay --- and see how it reacts to shifting over
the set A. This may create new states, and so on, but the process will eventually ter-
minate. If this removes all conflicts, the grammar is Partitioned LR of the desired
kind.

Figure 10.15 shows part of the Partitioned SLR(1) automaton for the grammar of
Figure 10.12, and we will use it to demonstrate the parsing of the input vvvi. The

R—>We [r]
R—>eWR
R—>eW
W—ev

Fig. 10.15. Part of a Partitioned SLR(1) automaton for the grammar of Figure 10.12

initial state @ is that of an SLR(1) parser, as it was in Figure 10.13. Shifting over the
v brings us to state @, which under a look-ahead of v asks for a reduce to {V,W}:

@v e vvié reduce {V,W}—->v
Next, we shift over the {V,W} and the second v:

@ {v,w} ® v ® v i# reduce {V,W}—->v
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and history repeats itself. But after the third v is shifted, state @ finds a look-ahead
i and can now authorize a reduce to V:

@ {v,w} ® {V,W} ® v @ i# reduce V—>v

Shifting over the V brings us to state ®, which reduces the V to an I, which results
in state ® on the top of the stack. This causes the reduction of {V,W}I to I, which
requires fixing the {V,W} to V. From there the road to the end state is clear:

@ {v,w} ® {V,W} ® Vv ® i# reduce I—-V

@ {v,w} ® {v,W} ® 1 ® i # reduce I—>VI,
refining {V,W} to v

@ {Vv,W} ® I 6 i# reduce I—>VI,
refining {V,W} to V

Q1 ®i® # reduce S—Ii

There are striking similarities but also considerable differences between this Par-
titioned LR example and the NSLR(1) parsing example on page 363. In Partitioned
LR non-terminals do not figure as look-ahead, and the shift and reduce actions are
more similar to those of an LR parser than of an NSLR parser. On the other hand an
NSLR parser does not need to update the parse tree.

10.2.4.3 Discussion

A restricted parser based on the above principles was described by Madhavan et
al. [206]. The described parser is used as a structuring tool in compiler design in
a technique called Graham—Glanville code generation.! It requires grammars to use
only two types of rules, A — By ---B,t and A — B, with the restriction that if the
terminal ¢ occurs in more than one rule, all these rules must have the same value for n.
This requirement ensures that the grammar is Partitioned LR(0), but makes the parser
impossible to use in a more general setting. No other publication on Partitioned LR
is known to us.

One practical advantage of Partitioned LR is that it delivers a partially resolved
parse tree, which can then be disambiguated on the fly or off-line by grammatical or
external means. This is exploited by Madhavan et al. by incorporating a cost func-
tion in the parser; this cost function cooperates with the parser to find the optimal
structuring of the input as to costs. For details see Madhavan et al. [206].

It is easy to see that the class of Partitioned LR grammars and that of NSLR
grammars are incommensurable. NSLR can handle grammars with reduce-reduce
conflicts with rules of unequal length (for example, the grammar of Figure 10.12 with
W—v replaced by W—vv) which Partitioned LR cannot. Partitioned LR can handle
some ambiguous grammars (for example, the grammar of Figure 10.12 with S—Rr
replaced by S—Ri), which NSLR cannot. In fact, the ability to handle ambiguous

' In Graham—Glanville code generation a bottom-up parser is used to structure the stream
of intermediate machine instructions originating from the intermediate code generator in
a compiler into final machine instructions, which are specified to the parser as grammar
rules.
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grammars is one of the strong points of Partitioned LR, since it allows the efficient
construction of ambiguous parse trees, which can then be disambiguated on external
criteria.

It is clear that Partitioned LR parsing needs more research.

10.3 General Non-Canonical Parsing

In a sentence like “The neighbors invited us to a barbecue party”, the word that
carries the most syntactic and semantic information is “invited”. It tells us many
things: the action is in the past; it is a transitive verb so we should be looking for two
noun phrases, one for the subject and one for the object; and if we have a good data
base entry for “to invite” we know that the subject and object are very likely human,
and that there might be a preposition phrase starting with “to”. With this knowledge
we can identify the noun phrase “the neighbors” as the subject, “us” as the object,
both duly human, and “to a barbecue party” as the preposition phrase. In the noun
phrase “the neighbors”, the most significant word is “neighbors”; in “to a barbecue
party” it is “party”’; etc. And we already see a parse tree emerging.

When we want to develop this idea into a parsing technique, we meet two prob-
lems: how do we tell the computer what is the most important component of a phrase;
and how does the computer find that component in the input. The answers are “head
grammars” and “head-corner parsing,” respectively. A head grammar is a CF gram-
mar in which one member in each right-hand side is marked as the “head” of that
right-hand side. The top level of a very simple head grammar of English could look
like this:

Ss —> NP VP NP PP |

NP —> ART’ NOUN | PRON | ---
NOUN — | "neighbors’ |
PRON — | rus’ |

ART —> ‘'the’ | ’'a’

VP — | "invited’ |

PP — | "to’ NP |

Here NP stands for “noun phrase”, VP stands for “verb phrase”, and PP for “prepo-
sition phrase”. We use a bar over a symbol to indicate that it is the head; if there is
only one symbol in a right hand side it is the head automatically. Head grammars
were first discussed by Proudian and Pollard [198], and made popular by Kay [199].

Several algorithms have been published to exploit the head information and to
lead the parser to the proper heads of the phrases. These are called head-corner
parsers, for reasons to be explained below. They include modified chart parsers (for
example Proudian and Pollard [198], or Kay [199]) or modified Earley parsers (for
example Satta and Stock [201], or Nederhof and Satta [203]).

An intuitively appealing version of a head-corner chart parser is given by Sikkel
and op den Akker [204]. We start from the start symbol S. In each of its right-hand
sides we expand the symbol marked “head”, unless it is a terminal, and at the same
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time construct the corresponding partial parse tree. We then continue expanding non-
terminals marked “head” in these partial parse trees, producing more and more partial
parse trees, until in each of them we reach a terminal marked “head.” This process
yields a set of spines similar to the ones produced in left-corner parsing in Section
10.1.1.1 and Figure 10.3. Whereas left spines are constructed by systematically ex-
panding the leftmost symbol until we meet a terminal, head spines are constructed
by systematically expanding the head symbol until we meet a terminal. Like the left
spines in Figure 10.4, head spines can contain cycles. In fact, if the head in every
right-hand side in the grammar is the leftmost symbol, head-corner parsing turns
into left-corner parsing. This is how head-corner parsing got its name, in spite of the
fact that no corner is involved.

This preparatory step, which is independent of the input, yields a large number of
head spines, each connecting S to some terminal #4 through a rule S — oA, where
t4 is eventually produced by A through a chain of head non-terminals. For each 74
found in the input at position p, a partial parse tree P is now constructed from § to
t4. For such a parse tree P to be correct, o has to produce the segment 1...p — 1 of
the input and B the segment p+1...n.

Now suppose o is actually BC. We then construct all head spines for B and C,
and for all head spine terminals 75 produced by B and ¢ produced by C that occur
in that order in the input segment 1...p — 1 we connect their spines to P. Next we
do the same for [ and the segment p+ 1...n. If the required spines cannot be found
P is discarded. We continue this process recursively on both sides, until all input
tokens are accounted for. We have then constructed all possible parse trees. Sikkel
and op den Akker [204] use chart parsing arcs to do the administration, and give
many details in their paper.

The above explanation actually missed the point of head-corner parsing, which is
that semantic considerations can be introduced to great profit at an early stage. When
we have a head spine § — -+-A---, A — -~ F---)F = --.G---,G— ---f4---, we
can take all the semantic information attached to 74 — its “attributes” — propagate
them up the spine and use them to restrict possible head spines to be attached to the
dots on the left and the right of the spine. Suppose, for example, that #4 is a verb form
identifying a feminine plural subject, and suppose the dots to the left of £ in the rule
for A include a possible subject, then only head spines ending in a terminal which
identifies a feminine plural form need to be considered for that position. This tends
to quickly reduce the search space.

An in-depth description of a head-corner parser implemented in Prolog is given
by van Noord [205].

We see that head-corner parsing identifies the nodes in the parse tree in a char-
acteristic non-standard way. That and its close relationship to left-corner parsing has
led the authors to classify it as a general (non-deterministic) non-canonical method
and to cover it in this chapter; but we agree that the taxonomy is strained here.
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10.4 Conclusion

Non-canonical parsing is based on postponing some decisions needed in canonical
parsing, but postponement is something that is open to interpretation, of which there
are many. Almost all decisions can be postponed in more than one way; a whole
range of parsing techniques result, and the field is by no means exhausted.

The advantage of non-canonical parsing techniques is their power; LR(k,e) is
the most powerful linear parsing technique we have. Their main disadvantage is their
sometimes inordinate complexity.

Problems

Problem 10.1: What conclusion can be drawn when a production chain automa-
ton (like the one in Section 10.1.1.2(a)) happens to be deterministic?

Problem 10.2: Analyse the movements of the strong-LLC(1) parser from Figure
10.6 on the incorrect input string n) . What nodes did it predict before detecting the
error?

Problem 10.3: Why is it impossible for a left-corner parser to produce the anal-
ysis shown in Figure 10.7 immediately, including the proper parentheses?

Problem 10.4: Construct the full-LC(1) parse table corresponding to the strong-
LC(1) one in Figure 10.6.

Problem 10.5: Rosenkrantz and Lewis, II [101] and Soisalon-Soininen and
Ukkonen [104] use slightly different and incompatible definitions of LC(k). Map
the differences.

Problem 10.6: Project: Implement an LC(1) parser for the example in Section
10.1.1 using an LL(1) parser generator and add code to produce a correct parse tree.

Problem 10.7: Project: The treatment of left-corner parsing is marred by an
asymmetry between rules with right-hand sides that start with a terminal and those
that start with a non-terminal. This nuisance can, in principle, be remedied by in-
troducing a non-terminal £ which produces only €, and putting an £ in front of all
right-hand sides that start with a terminal symbol. Rethink the examples and algo-
rithms of Section 10.1.1 for a thus modified grammar.

Problem 10.8: By definition non-canonical parsers take their parsing decisions
in non-standard order. The parsers from Figures 6.17 and 10.10 print the rules in-
volved in the parse tree in standard postfix order, just as any LR parser would. Is
there a contradiction?

Problem 10.9: Arguably the simplest non-canonical bottom-up parser is one
in which any substring in the sentential form that matches a right-hand side in the
grammar is a handle. Determine conditions for which this parser works. See also
Problem 9.1.

Problem 10.10: On page 361 we wrote that FOLLOW/] \; is in general neither a
subset nor a superset of FOLLOW; explain.
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Problem 10.11: Project: As we saw on page 364, the NSLR table generation
process can produce unreachable states. Design an algorithm to find and remove
them, or an algorithm that does not create them in the first place.

Problem 10.12: Since the FOLLOWyp ) set can contain symbols that cannot
actually follow a given item in a given set, it is possible that the NSLR(1) parser in-
troduces an item for a look-ahead non-terminal, which, when it is finally recognized
in an incorrect input string, does not allow being shifted over, giving rise to an error
message of the type “Syntactic entity X cannot appear here”. Construct a grammar
and input string that shows this behavior.

Problem 10.13: When we abandon an active item in an LR(k,e) parser and find
that there is no dotted look-ahead to be promoted to active item, all is not lost. We
could: 1. scan the look-ahead to find the first non-terminal, which will be at position
ki > k, and try parsing again, this time as LR(kj,e0); 2. hope that the rest of the
input matches one of the other items in the state, so we can at least parse this input.
Develop and evaluate both ideas.

Problem 10.14: Suppose we reach the end of the input in an LR(k,e0) parser
and we still have more than one item left. Design an algorithm that constructs the
multiple parse trees from the state of the parser at that moment.

Problem 10.15: Project: Design and implement a complete, linear-time,
LR(k,e) parser.

Problem 10.16: Complete the Partitioned LR automaton of Figure 10.15.

Problem 10.17: Suppose there is a shift/reduce conflict in a Partitioned LR
parser. Design a way to adapt the grammar to Partitioned LR parsing.

Problem 10.18: Project: As with the NSLR table generation process, the Par-
titioned LR table generation process as described in Section 10.2.4.2 can produce
unreachable states. Design an algorithm to find and remove them, or an algorithm
that does not create them in the first place.

Problem 10.19: Project: Design and implement a complete Partitioned LR
parser.

Problem 10.20: Project: Since head-corner parsers require the nodes of the parse
tree to be constructed in non-canonical order, it seems an ideal candidate for non-
canonical parsing. Design a non-canonical LR parsing algorithm that postpones the
reduction until it can reduce the head of a rule.
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Generalized Deterministic Parsers

Generalized deterministic parsers are general breadth-first context-free parsers that
gain efficiency by exploiting the methods and tables used by deterministic parsers,
even if these tables have conflicts (inadequate states) in them. Viewed alternatively,
generalized deterministic parsers are deterministic parsers extended with a breadth-
first search mechanism so they will be able to operate with tables with some multiple,
conflicting entries. The latter view is usually more to the point.

Before going into the algorithms, we have to spend a few words on the question
what exactly constitutes a “generalized deterministic parser”. Usually the term is
taken to mean “a parser obtained by strengthening an almost-deterministic parser by
doing limited breadth-first search”, and initially the technique was applied only to
parsers with LR tables with just a few inadequate states. Later research has shown
that “generalized parsing” can also be used profitably with tables with large amounts
of inadequate states, and even without tables (actually with trivial tables; see next
paragraph). We will therefore cover under this heading any breadth-first CF parser
with some, even the weakest, table support.

Trivial parse tables are interesting in themselves, since they are a low extreme
all other tables can be measured against: they form the bottom element if one wishes
to order parse tables in a lattice. The trivial bottom-up table has one state, which
says: both shift the next input token onto the top of the stack and reduce with all
rules whose right-hand sides match the top of the stack. The trivial top-down table
has one state, which says: either match the next input token to the top of the stack or
predict with all rules whose left-hand sides match the top of the stack. Since states
are used to make a distinction and since just one state cannot make a distinction, one
can also leave it out.

As said above, the first generalized parsing algorithms that were designed were
based on almost-LR parse tables, and much more is known about generalized LR
parsing than about the other variants. We shall therefore treat generalized LR parsing
first, and then those based on other tables.

Merrill [171] has shown that it is also possible to do generalized LR parsing by
strengthening an almost-deterministic LR parser by doing depth-first search.
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11.1 Generalized LR Parsing

Section 9.4 has shown how we can make very powerful and efficient parsers for LR
grammars. But although most languages of practical interest are LR (deterministic)
most grammars of practical interest are not. And if we try to design an LR grammar
for one of these LR languages we find that such a grammar is hard to construct, or
does not provide the proper structuring needed for the semantics, or — usually —
both. This limits the practical usefulness of LR parsing.

On the bright side, most practically useful grammars are almost LR, which means
that their LR automata have only a few inadequate states. So we become interested
in ways to exploit such almost-LR automata, and the answer lies in reintroducing a
little bit of breadth-first search (Section 7.1.2). Research in this direction has resulted
in “generalized LR parsing”.

Generalized LR parsing (GLR parsing) can be characterized as left-to-right
bottom-up breadth-first parsing in which the breadth-first search is limited by in-
formation from an LR handle-recognizing automaton; the LR automaton is allowed
to have inadequate states (conflicts) in it.

GLR parsing was first described by Lang [159] in 1974 but unfortunately the
publication was not noticed by the world. The idea was rediscovered in 1984 by
Tomita [160, 161], who wrote a 200-page book about it [162]. This time the world
took notice and the technique became known as Tomita parsing. Over the years it was
increasingly found that this naming was not ideal, and the technique is now almost
universally referred to as “GLR parsing”.

11.1.1 The Basic GLR Parsing Algorithm

The GLR method does breadth-first search exactly over those parsing decisions that
are not solved by the LR automaton (which can be LR(1), LALR(1), SLR(1), LR(0),
precedence or even simpler), while at the same time keeping the partial parse trees in
a form akin to the common representation of Section 7.1.3. More precisely, whenever
an inadequate state is encountered on the top of the stack, the following steps are
taken:

1. For each possible reduce in the state, a copy of the stack is made and the reduce
is applied to it. This removes part of the right end of the stack and replaces it with
a non-terminal; using this non-terminal as a move in the automaton, we find a
new state to put on the top of the stack. If this state again allows reductions,
this copy step is repeated until all reduces have been treated, resulting in equally
many stack copies.

2. Stacks that have a rightmost state that does not allow a shift on the next input
token are discarded (since they resulted from incorrect guesses). Copies of the
next input token are shifted onto the remaining stacks.

There are a number of things to be noted here. First, if the automaton uses look-
ahead, this is of course taken into account in deciding which reduces are possible
in step 1; ignoring this information would not be incorrect but would cause more
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stacks to be copied and subsequently discarded. Second, the process in step 1 may
not terminate. If a grammar contains non-terminals that can produce themselves, for
example A-5A (loops), A will continuously be reduced to A. And grammars with
hidden left recursion turn out to cause infinite numbers of €-reductions. These two
problems will be dealt with in Section 11.1.3. Third, if all stacks are discarded in step
2 the input was in error, at that specific point. Fourth, if the table is weak, especially
if it is not produced by an LR process, it may suggest reductions with rules whose
right-hand sides are not present on the stack; such reductions are then to be ignored.

11.1.2 Necessary Optimizations

The above steps form the basic mechanism of the GLR parser. Since simple stack du-
plication may cause a proliferation of stacks and is apt to duplicate much more data
than necessary, two optimizations are used in the practical form of the parser: com-
bining equal stack suffixes and combining equal stack prefixes. We shall demonstrate
all three techniques using the grammar of Figure 11.1 as an example. The grammar

WS
Vv

[oT o I
+ w

Fig. 11.1. A moderately ambiguous grammar

is a variant of that of Figure 3.1 and is moderately ambiguous. Its LR(0) automa-

Fig. 11.2. LR(0) automaton to the grammar of Figure 11.1

ton is shown in Figure 11.2; it has one inadequate state, ®. Since the grammar is
ambiguous, there is no point in using a stronger LR method. For more (and larger!)
examples see Tomita [162] and several of the publications in (Web)Section 18.2.1.
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11.1.2.1 Stack Duplication

Refer to Figure 11.3, in which we assume the input d+d+d$. The automaton starts

a () d+d+d$ shift

b ® 4o +d+d$ reduce, shift, shift

c O®E® + ®d4a® +d$ reduce

d OE®+ @®E 6 +d$ duplicate to e/ and
e2; reduce e/

el ) E ©) +d$ shift, shift, to f7

e2 OE®+ @®E 6 +d$  shift, shift, to f2

fl ) E ® + ®ada© $ reduce, to g/

2 OE®+ @E® + ®d4 O $ reduce, to g2

gl @ E ® + ®E 6 $ duplicate to h1.1 and
hi.2; reduce hi.l

g2 OEO®+ @E® + ®@E 6 $ duplicate to h2.1 and
h2.2; reduce h2.1

hi.l @ E ® $ shift, to il.]

hli2 @ E ® + ®E ® $ discard

h2l OE® + ® E ® $ reduce again, to h2.1a

h22 OE® + @E® + @ E 6 $ discard

h2.la @© E ©) $ shift, to i2.1a

il.1 ) E ® 8§ ® reduce, to j1.1

i2.la © E ® 3 ® reduce, to j2.1a

jl.1 @ <] accept

j2.la @© S accept

Fig. 11.3. Sequence of stack configurations while parsing d+d+d$

in state @ (frame a). The steps shift (b), reduce, shift, shift (¢) and reduce (d) are
problem-free and bring us to state ®. The last state, however, is inadequate, allowing
a reduce and a shift. True to the breadth-first search method and in accordance with
step 1 above, the stack is now duplicated and the top of one of the copies is reduced
(el) while the other one is left available for a subsequent shift (e¢2). Note that no
further reduction is possible and that both stacks now have a different top state. Both
states allow a shift and then another (f1, f2) and then a reduce (g/, g2). Now both
stacks carry an inadequate state on top and need to be duplicated, after which opera-
tion one of the copies undergoes a reduction (hl.1, hi1.2, h2.1, h2.2). It now turns out
that the stack in /2.1 again features an inadequate state ® after the reduction; it will
again have to be duplicated and have one copy reduced. This gives the stack in /2. /a.
Now all possible reductions have been done and it is time for a shift again. Only state
® allows a shift on $, so the other stacks are discarded and we are left with i/./ and
i2.1a. Both require a reduction, yielding j/./ and j2.1a, which are accepting states.
The parser stops and has found two parsings.

In order to save space and to avoid cluttering up the pictures, we have not shown
the partial parse trees that resulted from the various reductions that have taken place.
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I