
Basics of Compiler Design

Torben Ægidius Mogensen

DIKU
University of Copenhagen

Publishing address:

DIKU
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen
DENMARK

c© Torben Ægidius Mogensen 2000 – 2007

torbenm@diku.dk

Book homepage:
http://www.diku.dk/˜torbenm/Basics

First published 2000
This edition: April 25, 2007

Contents

1 Introduction 1
1.1 What is a compiler? . 1
1.2 The phases of a compiler . 2
1.3 Interpreters . 3
1.4 Why learn about compilers? . 4
1.5 The structure of this book . 5
1.6 To the lecturer . 5
1.7 Acknowledgements . 6
1.8 Permission to use . 6

2 Lexical Analysis 7
2.1 Introduction . 7
2.2 Regular expressions . 8

2.2.1 Shorthands . 10
2.2.2 Examples . 11

2.3 Nondeterministic finite automata . 13
2.4 Converting a regular expression to an NFA 15

2.4.1 Optimisations . 16
2.5 Deterministic finite automata . 19
2.6 Converting an NFA to a DFA . 20

2.6.1 Solving set equations . 20
2.6.2 The subset construction . 23

2.7 Size versus speed . 26
2.8 Minimisation of DFAs . 27

2.8.1 Example . 28
2.8.2 Dead states . 30

2.9 Lexers and lexer generators . 31
2.9.1 Lexer generators . 36

2.10 Properties of regular languages . 37
2.10.1 Relative expressive power 37
2.10.2 Limits to expressive power 39
2.10.3 Closure properties . 39

2.11 Further reading . 40

i

ii CONTENTS

Exercises . 41

3 Syntax Analysis 47
3.1 Introduction . 47
3.2 Context-free grammars . 48

3.2.1 How to write context free grammars 49
3.3 Derivation . 51

3.3.1 Syntax trees and ambiguity 52
3.4 Operator precedence . 56

3.4.1 Rewriting ambiguous expression grammars 57
3.5 Other sources of ambiguity . 60
3.6 Syntax analysis . 61
3.7 Predictive parsing . 61
3.8 Nullable and FIRST . 62
3.9 Predictive parsing revisited . 65
3.10 FOLLOW . 66
3.11 LL(1) parsing . 69

3.11.1 Recursive descent . 69
3.11.2 Table-driven LL(1) parsing 70
3.11.3 Conflicts . 71

3.12 Rewriting a grammar for LL(1) parsing 72
3.12.1 Eliminating left-recursion 72
3.12.2 left-factorisation . 74
3.12.3 Construction of LL(1) parsers summarized 75

3.13 SLR parsing . 75
3.14 Constructing SLR parse tables . 77

3.14.1 Conflicts in SLR parse-tables 82
3.15 Using precedence rules in LR parse tables 83
3.16 Using LR-parser generators . 85

3.16.1 Declarations and actions . 85
3.16.2 Abstract syntax . 86
3.16.3 Conflict handling in parser generators 88

3.17 Properties of context-free languages 90
3.18 Further reading . 90
Exercises . 91

4 Symbol Tables 97
4.1 Introduction . 97
4.2 Symbol tables . 98

4.2.1 Implementation of symbol tables 98
4.2.2 Simple persistent symbol tables 99
4.2.3 A simple imperative symbol table 100
4.2.4 Efficiency issues . 100

CONTENTS iii

4.2.5 Shared or separate name spaces 100
4.3 Further reading . 101
Exercises . 101

5 Type Checking 103
5.1 Introduction . 103
5.2 Attributes . 103
5.3 A small example language . 105
5.4 Environments for type checking . 105
5.5 Type-checking expressions . 105
5.6 Type checking of function declarations 108
5.7 Type-checking a program . 109
5.8 Advanced type checking . 109
5.9 Further reading . 112
Exercises . 112

6 Intermediate Code Generation 115
6.1 Introduction . 115
6.2 Choosing an intermediate language 116
6.3 The intermediate language . 117
6.4 Generating code from expressions 119

6.4.1 Examples of translation . 121
6.5 Translating statements . 123
6.6 Logical operators . 126

6.6.1 Sequential logical operators 127
6.7 Advanced control statements . 130
6.8 Translating structured data . 132

6.8.1 Floating-point values . 132
6.8.2 Arrays . 132
6.8.3 Strings . 137
6.8.4 Records/structs and unions 137

6.9 Translating declarations . 138
6.9.1 Example: Simple local declarations 138

6.10 Further reading . 139
Exercises . 140

7 Machine-Code Generation 143
7.1 Introduction . 143
7.2 Conditional jumps . 144
7.3 Constants . 145
7.4 Exploiting complex machine-code instructions 145

7.4.1 Two-address instructions . 147
7.5 Optimisations . 149

iv CONTENTS

7.6 Further reading . 150
Exercises . 151

8 Register Allocation 153
8.1 Introduction . 153
8.2 Liveness . 154
8.3 Liveness analysis . 154
8.4 Interference . 157
8.5 Register allocation by graph colouring 159
8.6 Spilling . 161
8.7 Heuristics . 162

8.7.1 Removing redundant moves 164
8.8 Further reading . 165
Exercises . 165

9 Function calls 167
9.1 Introduction . 167

9.1.1 The call stack . 167
9.2 Activation records . 168
9.3 Prologues, epilogues and call-sequences 169
9.4 Caller-saves versus callee-saves . 170
9.5 Using registers to pass parameters 173
9.6 Interaction with the register allocator 174
9.7 Accessing non-local variables . 178

9.7.1 Global variables . 178
9.7.2 call-by-reference parameters 179
9.7.3 Nested scopes . 180

9.8 Variants . 183
9.8.1 Variable-sized frames . 183
9.8.2 Variable number of parameters 184
9.8.3 Direction of stack-growth and position of FP 184
9.8.4 Register stacks . 185

9.9 Further reading . 185
Exercises . 185

10 Bootstrapping a compiler 187
10.1 Introduction . 187
10.2 Notation . 187
10.3 Compiling compilers . 189

10.3.1 Full bootstrap . 191
10.4 Further reading . 194
Exercises . 194

List of Figures

2.1 Regular expressions . 9
2.2 Some algebraic properties of regular expressions 12
2.3 Example of an NFA . 15
2.4 Constructing NFA fragments from regular expressions 17
2.5 NFA for the regular expression (a|b)∗ac 18
2.6 Optimised NFA construction for regular expression shorthands 18
2.7 Optimised NFA for [0−9]+ . 19
2.8 DFA constructed from the NFA in figure 2.5 26
2.9 Non-minimal DFA . 29
2.10 Minimal DFA . 31
2.11 Combined NFA for several tokens 33
2.12 Combined DFA for several tokens 34

3.1 From regular expressions to context free grammars 50
3.2 Simple expression grammar . 50
3.3 Simple statement grammar . 51
3.4 Example grammar . 52
3.5 Derivation of the string aabbbcc using grammar 3.4 53
3.6 Leftmost derivation of the string aabbbcc using grammar 3.4 53
3.7 Syntax tree for the string aabbbcc using grammar 3.4 54
3.8 Alternative syntax tree for the string aabbbcc using grammar 3.4 . . . 54
3.9 Unambiguous version of grammar 3.4 55
3.10 Preferred syntax tree for 2+3*4 using grammar 3.2 57
3.11 Unambiguous expression grammar 59
3.12 Syntax tree for 2+3*4 using grammar 3.11 60
3.13 Unambiguous grammar for statements 61
3.14 Fixed-point iteration for calculation of Nullable 64
3.15 Fixed-point iteration for calculation of FIRST 65
3.16 Recursive descent parser for grammar 3.9 70
3.17 LL(1) table for grammar 3.9 . 71
3.18 Program for table-driven LL(1) parsing 71
3.19 Input and stack during table-driven LL(1) parsing 72
3.20 Removing left-recursion from grammar 3.11 74

v

vi LIST OF FIGURES

3.21 Left-factorised grammar for conditionals 74
3.22 SLR table for grammar 3.9 . 78
3.23 Algorithm for SLR parsing . 78
3.24 Example SLR parsing . 79
3.25 Example grammar for SLR-table construction 79
3.26 NFAs for the productions in grammar 3.25 80
3.27 Epsilon-transitions added to figure3.26 81
3.28 SLR DFA for grammar 3.9 . 81
3.29 Summary of SLR parse-table construction 82
3.30 Textual representation of NFA states 89

5.1 Example language for type checking 104
5.2 Type checking of expressions . 106
5.3 Type-checking a function declaration 108
5.4 Type-checking a program . 110

6.1 The intermediate language . 118
6.2 A simple expression language . 120
6.3 Translating an expression . 122
6.4 Statement language . 124
6.5 Translation of statements . 125
6.6 Translation of simple conditions . 126
6.7 Example language with logical operators 128
6.8 Translation of sequential logical operators 129
6.9 Translation for one-dimensional arrays 133
6.10 A two-dimensional array . 134
6.11 Translation of multi-dimensional arrays 136
6.12 Translation of simple declarations 139

7.1 A subset of the MIPS instruction set 148

8.1 Gen and kill sets . 155
8.2 Example program for liveness analysis 156
8.3 succ, gen and kill for the program in figure 8.2 157
8.4 Fixed-point iteration for liveness analysis 158
8.5 Interference graph for the program in figure 8.2 159
8.6 Algorithm 8.3 applied to the graph in figure 8.5 162
8.7 Program from figure 8.2 after spilling variable a 163
8.8 Interference graph for the program in figure 8.7 163
8.9 Colouring of the graph in figure 8.8 164

9.1 Simple activation record layout . 169
9.2 Prologue and epilogue for the frame layout shown in figure 9.1 170

LIST OF FIGURES vii

9.3 Call sequence for x := CALL f (a1, . . . ,an) using the frame layout shown
in figure 9.1 . 171

9.4 Activation record layout for callee-saves 171
9.5 Prologue and epilogue for callee-saves 172
9.6 Call sequence for x := CALL f (a1, . . . ,an) for callee-saves 172
9.7 Possible division of registers for 16-register architecture 174
9.8 Activation record layout for the register division shown in figure 9.7 . 174
9.9 Prologue and epilogue for the register division shown in figure 9.7 . . 175
9.10 Call sequence for x := CALL f (a1, . . . ,an) for the register division shown

in figure 9.7 . 176
9.11 Example of nested scopes in Pascal 180
9.12 Adding an explicit frame-pointer to the program from figure 9.11 . . . 181
9.13 Activation record with static link . 182
9.14 Activation records for f and g from figure 9.11 183

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 What is a compiler?
In order to reduce the complexity of designing and building computers, nearly all of
these are made to execute relatively simple commands (but do so very quickly). A
program for a computer must be build by combining these very simple commands into
a program in what is called machine language. Since this is a tedious and error-prone
process most programming is, instead, done using a high-level programming language.
This language can be very different from the machine language that the computer can
execute, so some means of bridging the gap is required. This is where the compiler
comes in.

A compiler translates (or compiles) a program written in a high-level programming
language that is suitable for human programmers into the low-level machine language
that is required by computers. During this process, the compiler will also attempt to
spot and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast pro-
grams can be developed. The main reasons for this are:

• Compared to machine language, the notation used by programming languages is
closer to the way humans think about problems.

• The compiler can spot some obvious programming mistakes.

• Programs written in a high-level language tend to be shorter than equivalent
programs written in machine language.

Another advantage of using a high-level level language is that the same program can
be compiled to many different machine languages and, hence, be brought to run on
many different machines.

On the other hand, programs that are written in a high-level language and automat-
ically translated to machine language may run somewhat slower than programs that are
hand-coded in machine language. Hence, some time-critical programs are still written

1

2 CHAPTER 1. INTRODUCTION

partly in machine language. A good compiler will, however, be able to get very close
to the speed of hand-written machine code when translating well-structured programs.

1.2 The phases of a compiler
Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with well-
defined interfaces. Conceptually, these phases operate in sequence (though in practice,
they are often interleaved), each phase (except the first) taking the output from the
previous phase as its input. It is common to let each phase be handled by a separate
module. Some of these modules are written by hand, while others may be generated
from specifications. Often, some of the modules can be shared between several com-
pilers.

A common division into phases is described below. In some compilers, the ordering
of phases may differ slightly, some phases may be combined or split into several phases
or some extra phases may be inserted between those mentioned below.

Lexical analysis This is the initial part of reading and analysing the program text: The
text is read and divided into tokens, each of which corresponds to a symbol in
the programming language, e.g., a variable name, keyword or number.

Syntax analysis This phase takes the list of tokens produced by the lexical analysis
and arranges these in a tree-structure (called the syntax tree) that reflects the
structure of the program. This phase is often called parsing.

Type checking This phase analyses the syntax tree to determine if the program vio-
lates certain consistency requirements, e.g., if a variable is used but not declared
or if it is used in a context that doesn’t make sense given the type of the variable,
such as trying to use a boolean value as a function pointer.

Intermediate code generation The program is translated to a simple machine-independent
intermediate language.

Register allocation The symbolic variable names used in the intermediate code are
translated to numbers, each of which corresponds to a register in the target ma-
chine code.

Machine code generation The intermediate language is translated to assembly lan-
guage (a textual representation of machine code) for a specific machine architec-
ture.

Assembly and linking The assembly-language code is translated into binary repre-
sentation and addresses of variables, functions, etc., are determined.

1.3. INTERPRETERS 3

The first three phases are collectively called the frontend of the compiler and the last
three phases are collectively called the backend. The middle part of the compiler is
in this context only the intermediate code generation, but this often includes various
optimisations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes stronger invariants
on the things it passes on to the next, so that writing each subsequent phase is easier
than if these have to take all the preceding into account. For example, the type checker
can assume absence of syntax errors and the code generation can assume absence of
type errors.

Assembly and linking are typically done by programs supplied by the machine or
operating system vendor, and are hence not part of the compiler itself, so we will not
further discuss these phases in this book.

1.3 Interpreters

An interpreter is another way of implementing a programming language. Interpreta-
tion shares many aspects with compiling. Lexing, parsing and type-checking are in an
interpreter done just as in a compiler. But instead of generating code from the syntax
tree, the syntax tree is processed directly to evaluate expressions and execute state-
ments, and so on. An interpreter may need to process the same piece of the syntax tree
(for example, the body of a loop) many times and, hence, interpretation is typically
slower than executing a compiled program. But writing an interpreter is often simpler
than writing a compiler and the interpreter is easier to move to a different machine (see
chapter 10), so for applications where speed is not of essence, interpreters are often
used.

Compilation and interpretation may be combined to implement a programming lan-
guage: The compiler may produce intermediate-level code which is then interpreted
rather than compiled to machine code. In some systems, there may even be parts of a
program that are compiled to machine code, some parts that are compiled to interme-
diate code, which is interpreted at runtime while other parts may be kept as a syntax
tree and interpreted directly. Each choice is a compromise between speed and space:
Compiled code tends to be bigger than intermediate code, which tend to be bigger than
syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is more
important to be able to test a program modification quickly rather than run the pro-
gram efficiently. And since interpreters do less work on the program before execution
starts, they are able to start running the program more quickly. Furthermore, since an
interpreter works on a representation that is closer to the source code than is compiled
code, error messages can be more precise and informative.

We will not discuss interpreters in any detail in this book, except in relation to
bootstrapping in chapter 10. A good introduction to interpreters can be found in [2].

4 CHAPTER 1. INTRODUCTION

1.4 Why learn about compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Pascal or SML. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are:

a) It is considered a topic that you should know in order to be “well-cultured” in
computer science.

b) A good craftsman should know his tools, and compilers are important tools for
programmers and computer scientists.

c) The techniques used for constructing a compiler are useful for other purposes as
well.

d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.

Reason “b” is more convincing: Understanding how a compiler is built will allow
programmers to get an intuition about what their high-level programs will look like
when compiled and use this intuition to tune programs for better efficiency. Further-
more, the error reports that compilers provide are often easier to understand when one
knows about and understands the different phases of compilation, such as knowing the
difference between lexical errors, syntax errors, type errors and so on.

The third reason is also quite valid. In particular, the techniques used for reading
(lexing and parsing) the text of a program and converting this into a form (abstract
syntax) that is easily manipulated by a computer, can be used to read and manipulate
any kind of structured text such as XML documents, address lists, etc..

Reason “d” is becoming more and more important as domain specific languages
(DSL’s) are gaining in popularity. A DSL is a (typically small) language designed for
a narrow class of problems. Examples are data-base query languages, text-formatting
languages, scene description languages for ray-tracers and languages for setting up
economic simulations. The target language for a compiler for a DSL may be traditional
machine code, but it can also be another high-level language for which compilers al-
ready exist, a sequence of control signals for a machine, or formatted text and graphics
in some printer-control language (e.g. PostScript). Even so, all DSL compilers will
share similar front-ends for reading and analysing the program text.

Hence, the methods needed to make a compiler front-end are more widely appli-
cable than the methods needed to make a compiler back-end, but the latter is more
important for understanding how a program is executed on a machine.

1.5. THE STRUCTURE OF THIS BOOK 5

1.5 The structure of this book
The first part of the book describes the methods and tools required to read program text
and convert it into a form suitable for computer manipulation. This process is made
in two stages: A lexical analysis stage that basically divides the input text into a list
of “words”. This is followed by a syntax analysis (or parsing) stage that analyses the
way these words form structures and converts the text into a data structure that reflects
the textual structure. Lexical analysis is covered in chapter 2 and syntactical analysis
in chapter 3.

The second part of the book (chapters 4 – 9) covers the middle part and back-end of
the compiler, where the program is converted into machine language. Chapter 4 covers
how definitions and uses of names (identifiers) are connected through symbol tables.
In chapter 5, this is used to type-check the program. In chapter 6, it is shown how
expressions and statements can be compiled into an intermediate language, a language
that is close to machine language but hides machine-specific details. In chapter 7, it is
discussed how the intermediate language can be converted into “real” machine code.
Doing this well requires that the registers in the processor are used to store the values
of variables, which is achieved by a register allocation process, as described in chapter
8. Up to this point, a “program” has been what corresponds to the body of a single
procedure. Procedure calls and nested procedure declarations add some issues, which
are discussed in chapter 9.

Finally, chapter 10 will discuss the process of bootstrapping a compiler, i.e., using
a compiler to compile itself.

1.6 To the lecturer
This book was written for use in the introductory compiler course at DIKU, the depart-
ment of computer science at the University of Copenhagen, Denmark.

At DIKU, the compiler course was until recently taught right after the introductory
programming course1, which is earlier than in most other universities. Hence, existing
textbooks tended either to be too advanced for the level of the course or be too sim-
plistic in their approach, for example only describing a single very simple compiler
without bothering too much with the general picture.

This book was written as a response to this and aims at bridging the gap: It is
intended to convey the general picture without going into extreme detail about such
things as efficient implementation or the newest techniques. It should give the students
an understanding of how compilers work and the ability to make simple (but not sim-
plistic) compilers for simple languages. It will also lay a foundation that can be used
for studying more advanced compilation techniques, as found e.g. in [25].

At times, standard techniques from compiler construction have been simplified for
presentation in this book. In such cases references are made to books or articles where

1It is now in the second year.

6 CHAPTER 1. INTRODUCTION

the full version of the techniques can be found.
The book aims at being “language neutral”. This means two things:

• Little detail is given about how the methods in the book can be implemented in
any specific language. Rather, the description of the methods is given in the form
of algorithm sketches and textual suggestions of how these can be implemented
in various types of languages, in particular imperative and functional languages.

• There is no single through-going example of a language to be compiled. Instead,
different small (sub-)languages are used in various places to cover exactly the
points that the text needs. This is done to avoid drowning in detail, hopefully
allowing the readers to “see the wood for the trees”.

Each chapter has a set of exercises. Few of these require access to a computer, but
can be solved on paper or black-board. In fact, many of the exercises are based on
exercises that have been used in written exams at DIKU.

Teaching with this book can be supplemented with project work, where students
write simple compilers. Since the book is language neutral, no specific project is given.
Instead the teacher must choose relevant tools and select a project that fits the level of
the students and the time available. Suitable credit for a course that uses this book is
from 5 to 10 ECTS points, depending on the amount of project work.

1.7 Acknowledgements
The author wishes to thank all people who have been helpful in making this book a
reality. This includes the students who have been exposed to draft versions of the book
at the compiler courses “Dat 1E” and “Oversættere” at DIKU, and who have found
numerous typos and other errors in the earlier versions. I would also like to thank the
instructors at Dat 1E and Oversættere, who have pointed out places where things were
not as clear as they could be. I am extremely grateful to the people who in 2000 read
parts of or all of the first draft and made helpful suggestions.

1.8 Permission to use
Permission to copy and print for personal use is granted. If you, as a lecturer, want to
print the book and sell it to your students, you can do so if you only charge the printing
cost. If you want to print the book and sell it at profit, please contact the author at
torbenm@diku.dk and we will find a suitable arrangement.

In all cases, if you find any misprints or other errors, please contact the author at
torbenm@diku.dk.

See also the book homepage at http://www.diku.dk/∼torbenm/Basics.

Chapter 2

Lexical Analysis

2.1 Introduction
The word “lexical” in the traditional sense means “pertaining to words”. In terms of
programming languages, words are objects like variable names, numbers, keywords
etc. Such words are traditionally called tokens.

A lexical analyser, or lexer for short, will as its input take a string of individual let-
ters and divide this string into tokens. Additionally, it will filter out whatever separates
the tokens (the so-called white-space), i.e., lay-out characters (spaces, newlines etc.)
and comments.

The main purpose of lexical analysis is to make life easier for the subsequent syntax
analysis phase. In theory, the work that is done during lexical analysis can be made
an integral part of syntax analysis, and in simple systems this is indeed often done.
However, there are reasons for keeping the phases separate:

• Efficiency: A lexer may do the simple parts of the work faster than the more
general parser can. Furthermore, the size of a system that is split in two may be
smaller than a combined system. This may seem paradoxical but, as we shall
see, there is a non-linear factor involved which may make a separated system
smaller than a combined system.

• Modularity: The syntactical description of the language need not be cluttered
with small lexical details such as white-space and comments.

• Tradition: Languages are often designed with separate lexical and syntactical
phases in mind, and the standard documents of such languages typically separate
lexical and syntactical elements of the languages.

It is usually not terribly difficult to write a lexer by hand: You first read past initial
white-space, then you, in sequence, test to see if the next token is a keyword, a number,
a variable or whatnot. However, this is not a very good way of handling the problem:
You may read the same part of the input repeatedly while testing each possible token

7

8 CHAPTER 2. LEXICAL ANALYSIS

and in some cases it may not be clear where the next token ends. Furthermore, a
handwritten lexer may be complex and difficult to maintain. Hence, lexers are normally
constructed by lexer generators, which transform human-readable specifications of
tokens and white-space into efficient programs.

We will see the same general strategy in the chapter about syntax analysis: Speci-
fications in a well-defined human-readable notation are transformed into efficient pro-
grams.

For lexical analysis, specifications are traditionally written using regular expres-
sions: An algebraic notation for describing sets of strings. The generated lexers are in
a class of extremely simple programs called finite automata.

This chapter will describe regular expressions and finite automata, their properties
and how regular expressions can be converted to finite automata. Finally, we discuss
some practical aspects of lexer generators.

2.2 Regular expressions

The set of all integer constants or the set of all variable names are sets of strings, where
the individual letters are taken from a particular alphabet. Such a set of strings is called
a language. For integers, the alphabet consists of the digits 0-9 and for variable names
the alphabet contains both letters and digits (and perhaps a few other characters, such
as underscore).

Given an alphabet, we will describe sets of strings by regular expressions, an alge-
braic notation that is compact and easy for humans to use and understand. The idea is
that regular expressions that describe simple sets of strings can be combined to form
regular expressions that describe more complex sets of strings.

When talking about regular expressions, we will use the letters (r, s and t) in italics
to denote unspecified regular expressions. When letters stand for themselves (i.e., in
regular expressions that describe strings using these letters) we will use typewriter font,
e.g., a or b. Hence, when we say, e.g., “The regular expression s” we mean the regular
expression that describes a single one-letter string “s”, but when we say “The regular
expression s”, we mean a regular expression of any form which we just happen to call
s. We use the notation L(s) to denote the language (i.e., set of strings) described by the
regular expression s. For example, L(a) is the set {“a”}.

Figure 2.1 shows the constructions used to build regular expressions and the lan-
guages they describe:

• A single letter describes the language that has the one-letter string consisting of
that letter as its only element.

• The symbol ε (the Greek letter epsilon) describes the language that consists
solely of the empty string. Note that this is not the empty set of strings (see
exercise 2.10).

2.2. REGULAR EXPRESSIONS 9

Regular
expression Language (set of strings) Informal description

a {“a”} The set consisting of the one-
letter string “a”.

ε {“”} The set containing the empty
string.

s|t L(s) ∪ L(t) Strings from both languages
st {vw | v ∈ L(s),w ∈ L(t)} Strings constructed by con-

catenating a string from the
first language with a string
from the second language.
Note: In set-formulas, “|”
isn’t a part of a regular ex-
pression, but part of the set-
builder notation and reads as
“where”.

s∗ {“”}∪{vw | v ∈ L(s), w ∈ L(s∗)} Each string in the language is
a concatenation of any num-
ber of strings in the language
of s.

Figure 2.1: Regular expressions

10 CHAPTER 2. LEXICAL ANALYSIS

• s|t (pronounced “s or t”) describes the union of the languages described by s and
t.

• st (pronounced “s t”) describes the concatenation of the languages L(s) and L(t),
i.e., the sets of strings obtained by taking a string from L(s) and putting this in
front of a string from L(t). For example, if L(s) is {“a”, “b”} and L(t) is {“c”,
“d”}, then L(st) is the set {“ac”, “ad”, “bc”, “bd”}.

• The language for s∗ (pronounced “s star”) is described recursively: It consists of
the empty string plus whatever can be obtained by concatenating a string from
L(s) to a string from L(s∗). This is equivalent to saying that L(s∗) consists of
strings that can be obtained by concatenating zero or more (possibly different)
strings from L(s). If, for example, L(s) is {“a”, “b”} then L(s∗) is {“”, “a”, “b”,
“aa”, “ab”, “ba”, “bb”, “aaa”, . . . }, i.e., any string (including the empty) that
consists entirely of as and bs.

Note that while we use the same notation for concrete strings and regular expressions
denoting one-string languages, the context will make it clear which is meant. We will
often show strings and sets of strings without using quotation marks, e.g., write {a, bb}
instead of {“a”, “bb”}. When doing so, we will use ε to denote the empty string, so the
example from L(s∗) above is written as {ε, a, b, aa, ab, ba, bb, aaa, . . . }. The letters
u, v and w in italics will be used to denote unspecified single strings, i.e., members of
some language. As an example, abw denotes any string starting with ab.

Precedence rules

When we combine different constructor symbols, e.g., in the regular expression a|ab∗,
it isn’t a priori clear how the different subexpressions are grouped. We can use paren-
theses to make the grouping of symbols clear. Additionally, we use precedence rules,
similar to the algebraic convention that 3 + 4 ∗ 5 means 3 added to the product of 4
and 5 and not multiplying the sum of 3 and 4 by 5. For regular expressions, we use
the following conventions: ∗ binds tighter than concatenation, which binds tighter than
alternative (|). The example a|ab∗ from above, hence, is equivalent to a|(a(b∗)).

The | operator is associative and commutative (as it is based on set union, which
has these properties). Concatenation is associative (but obviously not commutative)
and distributes over |. Figure 2.2 shows these and other algebraic properties of regular
expressions, including definitions of some shorthands introduced below.

2.2.1 Shorthands
While the constructions in figure 2.1 suffice to describe e.g., number strings and vari-
able names, we will often use extra shorthands for convenience. For example, if we
want to describe non-negative integer constants, we can do so by saying that it is one
or more digits, which is expressed by the regular expression

2.2. REGULAR EXPRESSIONS 11

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

The large number of different digits makes this expression rather verbose. It gets even
worse when we get to variable names, where we must enumerate all alphabetic letters
(in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. Sequences of letters within
square brackets represent the set of these letters. For example, we use [ab01] as a short-
hand for a|b|0|1. Additionally, we can use interval notation to abbreviate [0123456789]
to [0-9]. We can combine several intervals within one bracket and for example write
[a-zA-Z] to denote all alphabetic letters in both lower and upper case.

When using intervals, we must be aware of the ordering for the symbols involved.
For the digits and letters used above, there is usually no confusion. However, if we
write, e.g., [0-z] it is not immediately clear what is meant. When using such notation
in lexer generators, standard ASCII or ISO 8859-1 character sets are usually used, with
the hereby implied ordering of symbols. To avoid confusion, we will use the interval
notation only for intervals of digits or alphabetic letters.

Getting back to the example of integer constants above, we can now write this
much shorter as [0-9][0-9]∗.

Since s∗ denotes zero or more occurrences of s, we needed to write the set of digits
twice to describe that one or more digits are allowed. Such non-zero repetition is quite
common, so we introduce another shorthand, s+, to denote one or more occurrences
of s. With this notation, we can abbreviate our description of integers to [0-9]+. On a
similar note, it is common that we can have zero or one occurrence of something (e.g.,
an optional sign to a number). Hence we introduce the shorthand s? for s|ε.

+ and ? bind with the same precedence as ∗.
We must stress that these shorthands are just that. They don’t add anything to the

set of languages we can describe, they just make it possible to describe a language
more compactly. In the case of s+, it can even make an exponential difference: If +

is nested n deep, recursive expansion of s+ to ss∗ yields 2n−1 occurrences of ∗ in the
expanded regular expression.

2.2.2 Examples

We have already seen how we can describe non-negative integer constants using reg-
ular expressions. Here are a few examples of other typical programming language
elements:

Keywords. A keyword like if is described by a regular expression that looks exactly
like that keyword, e.g., the regular expression if (which is the concatenation of the two
regular expressions i and f).

12 CHAPTER 2. LEXICAL ANALYSIS

(r|s)|t = r|s|t = r|(s|t)
s|t = t|s
s|s = s

s? = s|ε
(rs)t = rst = r(st)

sε = s = εs

r(s|t) = rs|rt

(r|s)t = rt|st

(s∗)∗ = s∗

s∗s∗ = s∗

ss∗ = s+ = s∗s

Figure 2.2: Some algebraic properties of regular expressions

Variable names. In the programming language C, a variable name consists of letters,
digits and the underscore symbol and it must begin with a letter or underscore. This
can be described by the regular expression [a-zA-Z_][a-zA-Z_0-9]∗.

Integers. An integer constant is an optional sign followed by a non-empty sequence
of digits: [+−]?[0-9]+. In some languages, the sign is considered a separate operator
and not part of the constant itself.

Floats. A floating-point constant can have an optional sign. After this, the mantissa
part is described as a sequence of digits followed by a decimal point and then another
sequence of digits. Either one (but not both) of the digit sequences can be empty.
Finally, there is an optional exponent part, which is the letter e (in upper or lower case)
followed by an (optionally signed) integer constant. If there is an exponent part to
the constant, the mantissa part can be written as an integer constant (i.e., without the
decimal point).

This rather involved format can be described by the following regular expression:

[+−]?((([0−9]+. [0−9]∗|. [0−9]+)([eE][+−]?[0−9]+)?)|[0−9]+[eE][+−]?[0−9]+)

This regular expression is complicated by the fact that the exponent is optional if the
mantissa contains a decimal point, but not if it doesn’t (as that would make the number
an integer constant). We can make the description simpler if we make the regular

2.3. NONDETERMINISTIC FINITE AUTOMATA 13

expression for floats include integers, and instead use other means of distinguishing
these (see section 2.9 for details). If we do this, the regular expression can be simplified
to

[+−]?(([0−9]+(. [0−9]∗)?|. [0−9]+)([eE][+−]?[0−9]+)?)

String constants. A string constant starts with a quotation mark followed by a se-
quence of symbols and finally another quotation mark. There are usually some restric-
tions on the symbols allowed between the quotation marks. For example, line-feed
characters or quotes are typically not allowed, though these may be represented by
special sequences of other characters. As a (much simplified) example, we can by the
following regular expression describe string constants where the allowed symbols are
alphanumeric characters and sequences consisting of the backslash symbol followed
by a letter (where each such pair is intended to represent a non-alphanumeric symbol):

”([a−zA−Z0−9]|\[a−zA−Z])∗”

2.3 Nondeterministic finite automata
In our quest to transform regular expressions into efficient programs, we use a stepping
stone: Nondeterministic finite automata. By their nondeterministic nature, these are
not quite as close to “real machines” as we would like, so we will later see how these
can be transformed into deterministic finite automata, which are easily and efficiently
executable on normal hardware.

A finite automaton is, in the abstract sense, a machine that has a finite number of
states and a finite number of transitions between these. A transition between states is
usually labelled by a character from the input alphabet, but we will also use transitions
marked with ε, the so-called epsilon transitions.

A finite automaton can be used to decide if an input string is a member in some
particular set of strings. To do this, we select one of the states of the automaton as the
starting state. We start in this state and in each step, we can do one of the following:

• Follow an epsilon transition to another state, or

• Read a character from the input and follow a transition labelled by that character.

When all characters from the input are read, we see if the current state is marked as
being accepting. If so, the string we have read from the input is in the language defined
by the automaton.

We may have a choice of several actions at each step: We can choose between
either an epsilon transition or a transition on an alphabet character, and if there are
several transitions with the same symbol, we can choose between these. This makes
the automaton nondeterministic, as the choice of action is not determined solely by

14 CHAPTER 2. LEXICAL ANALYSIS

looking at the current state and input. It may be that some choices lead to an accepting
state while others do not. This does, however, not mean that the string is sometimes
in the language and sometimes not: We will include a string in the language if it is
possible to make a sequence of choices that makes the string lead to an accepting state.

You can think of it as solving a maze with symbols written in the corridors. If you
can find the exit while walking over the letters of the string in the correct order, the
string is recognized by the maze.

We can formally define a nondeterministic finite automaton by:

Definition 2.1 A nondeterministic finite automaton consists of a set S of states. One
of these states, s0 ∈ S, is called the starting state of the automaton and a subset F ⊆ S
of the states are accepting states. Additionally, we have a set T of transitions. Each
transition t connects a pair of states s1 and s2 and is labelled with a symbol, which is
either a character c from the alphabet Σ, or the symbol ε, which indicates an epsilon-
transition. A transition from state s to state t on the symbol c is written as sct.

Starting states are sometimes called initial states and accepting states can also be called
final states (which is why we use the letter F to denote the set of accepting states).
We use the abbreviations FA for finite automaton, NFA for nondeterministic finite
automaton and (later in this chapter) DFA for deterministic finite automaton.

We will mostly use a graphical notation to describe finite automata. States are de-
noted by circles, possibly containing a number or name that identifies the state. This
name or number has, however, no operational significance, it is solely used for iden-
tification purposes. Accepting states are denoted by using a double circle instead of
a single circle. The initial state is marked by an arrow pointing to it from outside the
automaton.

A transition is denoted by an arrow connecting two states. Near its midpoint, the
arrow is labelled by the symbol (possibly ε) that triggers the transition. Note that the
arrow that marks the initial state is not a transition and is, hence, not marked by a
symbol.

Repeating the maze analogue, the circles (states) are rooms and the arrows (transi-
tions) are one-way corridors. The double circles (accepting states) are exits, while the
unmarked arrow to the starting state is the entrance to the maze.

Figure 2.3 shows an example of a nondeterministic finite automaton having three
states. State 1 is the starting state and state 3 is accepting. There is an epsilon-transition
from state 1 to state 2, transitions on the symbol a from state 2 to states 1 and 3
and a transition on the symbol b from state 1 to state 3. This NFA recognises the
language described by the regular expression a∗(a|b). As an example, the string aab
is recognised by the following sequence of transitions:

2.4. CONVERTING A REGULAR EXPRESSION TO AN NFA 15

from to by
1 2 ε

2 1 a
1 2 ε

2 1 a
1 3 b

At the end of the input we are in state 3, which is accepting. Hence, the string is
accepted by the NFA. You can check this by placing a coin at the starting state and
follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we are in state 2
and the next symbol is an a, we can, when reading this, either go to state 1 or to state 3.
Likewise, if we are in state 1 and the next symbol is a b, we can either read this and go
to state 3 or we can use the epsilon transition to go directly to state 2 without reading
anything. If we in the example above had chosen to follow the a-transition to state 3
instead of state 1, we would have been stuck: We would have no legal transition and
yet we would not be at the end of the input. But, as previously stated, it is enough that
there exists a path leading to acceptance, so the string aab is still accepted.

A program that decides if a string is accepted by a given NFA will have to check all
possible paths to see if any of these accepts the string. This requires either backtrack-
ing until a successful path found or simultanious following all possible paths, both of
which are too time-consuming to make NFAs suitable for efficient recognisers. We
will, hence, use NFAs only as a stepping stone between regular expressions and the
more efficient DFAs. We use this stepping stone because it makes the construction
simpler than direct construction of a DFA from a regular expression.

2.4 Converting a regular expression to an NFA

We will construct an NFA compositionally from a regular expression, i.e., we will
construct the NFA for a composite regular expression from the NFAs constructed from

-��
��

1 -b

�
ε

��
��
��
��

3

��
��

2

	

a
?

a

Figure 2.3: Example of an NFA

16 CHAPTER 2. LEXICAL ANALYSIS

its subexpressions.
To be precise, we will from each subexpression construct an NFA fragment and

then combine these fragments into bigger fragments. A fragment is not a complete
NFA, so we complete the construction by adding the necessary components to make a
complete NFA.

An NFA fragment consists of a number of states with transitions between these
and additionally two incomplete transitions: One pointing into the fragment and one
pointing out of the fragment. The incoming half-transition is not labelled by a symbol,
but the outgoing half-transition is labelled by either ε or an alphabet symbol. These
half-transitions are the entry and exit to the fragment and are used to connect it to other
fragments or additional “glue” states.

Construction of NFA fragments for regular expressions is shown in figure 2.4. The
construction follows the structure of the regular expression by first making NFA frag-
ments for the subexpressions and then joining these to form an NFA fragment for the
whole regular expression. The NFA fragments for the subexpressions are shown as dot-
ted ovals with the incoming half-transition on the left and the outgoing half-transition
on the right.

When an NFA fragment has been constructed for the whole regular expression, the
construction is completed by connecting the outgoing half-transition to an accepting
state. The incoming half-transition serves to identify the starting state of the completed
NFA. Note that even though we allow an NFA to have several accepting states, an NFA
constructed using this method will have only one: the one added at the end of the
construction.

An NFA constructed this way for the regular expression (a|b)∗ac is shown in fig-
ure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding out
all shorthand, e.g. converting s+ to ss∗, [0−9] to 0|1|2| · · · |9 and s? to s|ε, etc. How-
ever, this will result in very large NFAs for some expressions, so we use a few opti-
mised constructions for the shorthands. Additionally, we show an alternative construc-
tion for the regular expression ε. This construction doesn’t quite follow the formula
used in figure 2.4, as it doesn’t have two half-transitions. Rather, the line-segment
notation is intended to indicate that the NFA fragment for ε just connects the half-
transitions of the NFA fragments that it is combined with. In the construction for
[0− 9], the vertical ellipsis is meant to indicate that there is a transition for each of
the digits in [0− 9]. This construction generalises in the obvious way to other sets of
characters, e.g., [a−zA−Z0−9]. We have not shown a special construction for s? as
s|ε will do fine if we use the optimised construction for ε.

The optimised constructions are shown in figure 2.6. As an example, an NFA for
[0−9]+ is shown in figure 2.7.

2.4. CONVERTING A REGULAR EXPRESSION TO AN NFA 17

Regular expression NFA fragment

a -��
��

a

ε -��
��

ε

s t - s - t

s|t

-��
��-

ε

-ε

s

t
��
��^

�

ε

s∗ -��
��

ε

-

ε

	

s

Figure 2.4: Constructing NFA fragments from regular expressions

18 CHAPTER 2. LEXICAL ANALYSIS

-��
��

1 -ε

-

ε

��
��

2 -a ��
��

3 -c ��
��
����

4

��
��

5

-ε

-
ε

��
��

6
R

a

��
��

7
�

b

��
��

8

+

ε

Figure 2.5: NFA for the regular expression (a|b)∗ac

Regular expression NFA fragment

ε

[0−9]

-��
��R

0

�

9

... ��
��

ε

s+ -��
��

-

ε

��
��

ε� ε

�

s

Figure 2.6: Optimised NFA construction for regular expression shorthands

2.5. DETERMINISTIC FINITE AUTOMATA 19

-��
��ε

��
��

-ε� ε ��
��
��
��	

-��
��R

0

�

9

... ��
��

ε

Figure 2.7: Optimised NFA for [0−9]+

2.5 Deterministic finite automata

Nondeterministic automata are, as mentioned earlier, not quite as close to “the ma-
chine” as we would like. Hence, we now introduce a more restricted form of finite
automaton: The deterministic finite automaton, or DFA for short. DFAs are NFAs, but
obey a number of additional restrictions:

• There are no epsilon-transitions.

• There may not be two identically labelled transitions out of the same state.

This means that we never have a choice of several next-states: The state and the next
input symbol uniquely determines the transition (or lack of same). This is why these
automata are called deterministic.

The transition relation is now a (partial) function, and we often write it as such:
move(s,c) is the state (if any) that is reached from state s by a transition on the symbol
c. If there is no such transition, move(s,c) is undefined.

It is very easy to implement a DFA: A two-dimensional table can be cross-indexed
by state and symbol to yield the next state (or an indication that there is no tran-
sition), essentially implementing the move function by table lookup. Another (one-
dimensional) table can indicate which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special case of NFA
and any NFA can (as we shall shortly see) be converted to an equivalent DFA. However,
this comes at a cost: The resulting DFA can be exponentially larger than the NFA (see
section 2.10). In practice (i.e., when describing tokens for a programming language)
the increase in size is usually modest, which is why most lexical analysers are based
on DFAs.

20 CHAPTER 2. LEXICAL ANALYSIS

2.6 Converting an NFA to a DFA
As promised, we will show how NFAs can be converted to DFAs such that we, by com-
bining this with the conversion of regular expressions to NFAs shown in section 2.4,
can convert any regular expression to a DFA.

The conversion is done by simulating all possible paths in an NFA at once. This
means that we operate with sets of NFA states: When we have several choices of a
next state, we take all of the choices simultaneously and form a set of the possible
next-states. The idea is that such a set of NFA states will become a single DFA state.
For any given symbol we form the set of all possible next-states in the NFA, so we get a
single transition (labelled by that symbol) going from one set of NFA states to another
set. Hence, the transition becomes deterministic in the DFA that is formed from the
sets of NFA states.

Epsilon-transitions complicate the construction a bit: Whenever we are in an NFA
state we can always choose to follow an epsilon-transition without reading any symbol.
Hence, given a symbol, a next-state can be found by either following a transition with
that symbol or by first doing any number of epsilon-transitions and then a transition
with the symbol. We handle this in the construction by first closing the set of NFA
states under epsilon-transitions and then following transitions with input symbols. We
define the epsilon-closure of a set of states as the set extended with all states that can
be reached from these using any number of epsilon-transitions. More formally:

Definition 2.2 Given a set M of NFA states, we define ε-closure(M) to be the least (in
terms of the subset relation) solution to the set equation

ε-closure(M)
= M∪{t |s ∈ ε-closure(M) and sεt ∈ T}

Where T is the set of transitions in the NFA.

We will later on see several examples of set equations like the one above, so we
use some time to discuss how such equations can be solved.

2.6.1 Solving set equations
In general, a set equation over a single set-valued variable X has the form

X = F(X)

where F is a function from sets to sets. Not all such equations are solvable, so we
will restrict ourselves to special cases, which we will describe below. We will use
calculation of epsilon-closure as the driving example.

In definition 2.2, ε-closure(M) is the value we have to find, so we replace this by X
and get the equation:

2.6. CONVERTING AN NFA TO A DFA 21

X = M∪{t | s ∈ X and sεt ∈ T}

and hence

F(X) = M∪{t | s ∈ X and sεt ∈ T}

This function has a property that is essential to our solution method: If X ⊆ Y then
F(X) ⊆ F(Y). We say that F is monotonic. Note that F(X) is not ε-closure(X). F
depends on M and a new F is required for each M that we want to find the epsilon-
closure of.

When we have an equation of the form X = F(X) and F is monotonic, we can find
the least solution to the equation in the following way: We first guess that the solution
is the empty set and check to see if we are right: We compare /0 with F(/0). If these are
equal, we are done and /0 is the solution. If not, we use the following properties:

• Any solution S to the equation has S = F(S).

• /0⊆ S implies that F(/0)⊆ F(S).

to conclude that F(/0)⊆ S. Hence, F(/0) is a new guess at S. We now form the chain

/0⊆ F(/0)⊆ F(F(/0))⊆ . . .

If at any point an element in the sequence is identical to the previous, we have a fixed-
point, i.e., a set S such that S = F(S). This fixed-point of the sequence will be the least
(in terms of set inclusion) solution to the equation. This isn’t difficult to verify, but we
will omit the details. Since we are iterating a function until we reach a fixed-point, we
call this process fixed-point iteration.

If we are working with sets over a finite domain (e.g., sets of NFA states), we will
eventually reach a fixed-point, as there can be no infinite chain of strictly increasing
sets.

We can use this method for calculating the epsilon-closure of the set {1} with
respect to the NFA shown in figure 2.5. We use a version of F where M = {1}, so we
start by calculating

F(/0) = {1}∪{t | s ∈ /0 and sεt ∈ T}
= {1}

As /0 6= {1}, we continue.

22 CHAPTER 2. LEXICAL ANALYSIS

F({1}) = {1}∪{t | s ∈ {1} and sεt ∈ T}
= {1}∪{2,5} = {1,2,5}

F({1,2,5}) = {1}∪{t | s ∈ {1,2,5} and sεt ∈ T}
= {1}∪{2,5,6,7} = {1,2,5,6,7}

F({1,2,5,6,7}) = {1}∪{t | s ∈ {1,2,5,6,7} and sεt ∈ T}
= {1}∪{2,5,6,7} = {1,2,5,6,7}

We have now reached a fixed-point and found our solution. Hence, we conclude that
ε-closure({1}) = {1,2,5,6,7}.

We have done a good deal of repeated calculation in the iteration above: We have
calculated the epsilon-transitions from state 1 three times and those from state 2 and
5 twice each. We can make an optimised fixed-point iteration by exploiting that the
function is not only monotonic, but also distributive: F(X ∪Y) = F(X)∪F(Y). This
means that, when we during the iteration add elements to our set, we in the next iter-
ation need only calculate F for the new elements and add the result to the set. In the
example above, we get

F(/0) = {1}∪{t | s ∈ /0 and sεt ∈ T}
= {1}

F({1}) = {1}∪{t | s ∈ {1} and sεt ∈ T}
= {1}∪{2,5} = {1,2,5}

F({1,2,5}) = F({1})∪F({2,5})
= {1,2,5}∪ ({1}∪{t | s ∈ {2,5} and sεt ∈ T})
= {1,2,5}∪ ({1}∪{6,7}) = {1,2,5,6,7}

F({1,2,5,6,7}) = F({1,2,5})∪F({6,7})
= {1,2,5,6,7}∪ ({1}∪{t | s ∈ {6,7} and sεt ∈ T})
= {1,2,5,6,7}∪ ({1}∪ /0) = {1,2,5,6,7}

We can use this principle to formulate a work-list algorithm for finding the least fixed-
points for distributive functions. The idea is that we step-by-step build a set that even-
tually becomes our solution. In the first step we calculate F(/0). The elements in this
initial set are unmarked. In each subsequent step, we take an unmarked element x from
the set, mark it and add F({x}) (unmarked) to the set. Note that if an element already
occurs in the set (marked or not), it is not added again. When, eventually, all elements
in the set are marked, we are done.

This is perhaps best illustrated by an example (the same as before). We start by
calculating F(/0) = {1}. The element 1 is unmarked, so we pick this, mark it and

2.6. CONVERTING AN NFA TO A DFA 23

calculate F({1}) and add the new elements 2 and 5 to the set. As we continue, we get
this sequence of sets:

{1}

{
√

1 ,2,5}

{
√

1 ,

√

2 ,5}

{
√

1 ,

√

2 ,

√

5 ,6,7}

{
√

1 ,

√

2 ,

√

5 ,

√

6 ,7}

{
√

1 ,

√

2 ,

√

5 ,

√

6 ,

√

7}

We will later also need to solve simultaneous equations over sets, i.e., several equations
over several sets. These can also be solved by fixed-point iteration in the same way
as single equations, though the work-list version of the algorithm becomes a bit more
complicated.

2.6.2 The subset construction
After this brief detour into the realm of set equations, we are now ready to continue
with our construction of DFAs from NFAs. The construction is called the subset con-
struction, as each state in the DFA is a subset of the states from the NFA.

Algorithm 2.3 (The subset construction) Given an NFA N with states S, starting
state s0 ∈ S, accepting states F ⊆ S, transitions T and alphabet Σ, we construct an
equivalent DFA D with states S′, starting state s′0, accepting states F ′ and a transition
function move by:

s′0 = ε-closure({s0})
move(s′,c) = ε-closure({t | s ∈ s′ and sct ∈ T})
S′ = {s′0}∪{move(s′,c) | s′ ∈ S′, c ∈ Σ}
F ′ = {s′ ∈ S′ | s′∩F 6= /0}

The DFA uses the same alphabet as the NFA.

A little explanation:

• The starting state of the DFA is the epsilon-closure of the set containing just the
starting state of the NFA, i.e., the states that are reachable from the starting state
by epsilon-transitions.

• A transition in the DFA is done by finding the set of NFA states that comprise
the DFA state, following all transitions (on the same symbol) in the NFA from
all these NFA states and finally combining the resulting sets of states and closing
this under epsilon transitions.

24 CHAPTER 2. LEXICAL ANALYSIS

• The set S′ of states in the DFA is the set of DFA states that can be reached
using the move function. S′ is defined as a set equation which can be solved as
described in section 2.6.1.

• A state in the DFA is an accepting state if at least one of the NFA states it contains
is accepting.

As an example, we will convert the NFA in figure 2.5 to a DFA.

The initial state in the DFA is ε-closure({1}), which we have already calculated to
be s′0 = {1,2,5,6,7}. This is now entered into the set S′ of DFA states as unmarked
(following the work-list algorithm from section 2.6.1).

We now pick an unmarked element from the uncompleted S′. We have only one
choice: s′0. We now mark this and calculate the transitions for it. We get

move(s′0,a) = ε-closure({t | s ∈ {1,2,5,6,7} and sat ∈ T})
= ε-closure({3,8})
= {3,8,1,2,5,6,7}
= s′1

move(s′0,b) = ε-closure({t | s ∈ {1,2,5,6,7} and sbt ∈ T})
= ε-closure({8})
= {8,1,2,5,6,7}
= s′2

move(s′0,c) = ε-closure({t | s ∈ {1,2,5,6,7} and sct ∈ T})
= ε-closure({})
= {}

Note that the empy set of NFA states is not an DFA state, so there will be no transition
from s′0 on c.

We now add s′1 and s′2 to our incomplete S′, which now is {
√

s′0,s
′
1,s

′
2}. We now pick

s′1, mark it and calculate its transitions:

2.6. CONVERTING AN NFA TO A DFA 25

move(s′1,a) = ε-closure({t | s ∈ {3,8,1,2,5,6,7} and sat ∈ T})
= ε-closure({3,8})
= {3,8,1,2,5,6,7}
= s′1

move(s′1,b) = ε-closure({t | s ∈ {3,8,1,2,5,6,7} and sbt ∈ T})
= ε-closure({8})
= {8,1,2,5,6,7}
= s′2

move(s′1,c) = ε-closure({t | s ∈ {3,8,1,2,5,6,7} and sct ∈ T})
= ε-closure({4})
= {4}
= s′3

We have seen s′1 and s′2 before, so only s′3 is added: {
√

s′0,

√

s′1,s
′
2,s

′
3}. We next pick s′2:

move(s′2,a) = ε-closure({t | s ∈ {8,1,2,5,6,7} and sat ∈ T})
= ε-closure({3,8})
= {3,8,1,2,5,6,7}
= s′1

move(s′2,b) = ε-closure({t | s ∈ {8,1,2,5,6,7} and sbt ∈ T})
= ε-closure({8})
= {8,1,2,5,6,7}
= s′2

move(s′2,c) = ε-closure({t | s ∈ {8,1,2,5,6,7} and sct ∈ T})
= ε-closure({})
= {}

No new elements are added, so we pick the remaining unmarked element s′3:

26 CHAPTER 2. LEXICAL ANALYSIS

-��
��

s′0

�
�

��*a

H
H

HHjb

��
��

s′1
PPPPq

c

U

a

�
b

��
��

s′2

�
a

M

b

��
��
��
��

s′3

Figure 2.8: DFA constructed from the NFA in figure 2.5

move(s′3,a) = ε-closure({t | s ∈ {4} and sat ∈ T})
= ε-closure({})
= {}

move(s′3,b) = ε-closure({t | s ∈ {4} and sbt ∈ T})
= ε-closure({})
= {}

move(s′3,c) = ε-closure({t | s ∈ {4} and sct ∈ T})
= ε-closure({})
= {}

Which now completes the construction of S′ = {s′0,s
′
1,s

′
2,s

′
3}. Only s′3 contains the

accepting NFA state 4, so this is the only accepting state of our DFA. Figure 2.8 shows
the completed DFA.

2.7 Size versus speed
In the above example, we get a DFA with 4 states from an NFA with 8 states. However,
as the states in the constructed DFA are (nonempty) sets of states from the NFA there
may potentially be 2n− 1 states in a DFA constructed from an n-state NFA. It is not
too difficult to construct classes of NFAs that expand exponentially in this way when
converted to DFAs, as we shall see in section 2.10.1. Since we are mainly interested
in NFAs that are constructed from regular expressions as in section 2.4, we might ask

2.8. MINIMISATION OF DFAS 27

ourselves if these might not be in a suitably simple class that do not risk exponential-
sized DFAs. Alas, this is not the case. Just as we can construct a class of NFAs
that expand exponentially, we can construct a class of regular expressions where the
smallest equivalent DFAs are exponentially larger. This happens rarely when we use
regular expressions or NFAs to describe tokens in programming languages, though.

It is possible to avoid the blow-up in size by operating directly on regular expres-
sions or NFAs when testing strings for inclusion in the languages these define. How-
ever, there is a speed penalty for doing so. A DFA can be run in time k ∗ |v|, where |v|
is the length of the input string v and k is a small constant that is independent of the
size of the DFA1. Regular expressions and NFAs can be run in time c∗ |N| ∗ |v|, where
|N| is the size of the NFA (or regular expression) and the constant c typically is larger
than k. All in all, DFAs are a lot faster to use than NFAs or regular expressions, so it is
only when the size of the DFA is a real problem that one should consider using NFAs
or regular expressions directly.

2.8 Minimisation of DFAs
Even though the DFA in figure 2.8 has only four states, it is not minimal. It is easy to
see that states s′0 and s′2 are equivalent: Neither are accepting and they have identical
transitions. We can hence collapse these states into a single state and get a three-state
DFA.

DFAs constructed from regular expressions through NFAs are often non-minimal,
though they are rarely very far from being minimal. Nevertheless, minimising a DFA
is not terribly difficult and can be done fairly fast, so many lexer generators perform
minimisation.

An interesting property of DFAs is that any regular language (a language that can be
expressed by a regular expression, NFA or DFA) has a unique minimal DFA. Hence,
we can decide equivalence of regular expressions (or NFAs or DFAs) by converting
both to minimal DFAs and compare the results.

As hinted above, minimisation of DFAs are done by collapsing equivalent states.
However, deciding whether two states are equivalent is not just done by testing if their
immediate transitions are identical, since transitions to different states may be equiv-
alent if the target states turn out to be equivalent. Hence, we use a strategy where we
first assume all states to be equivalent and then separate them only if we can prove
them different. We use the following rules for this:

• An accepting state is not equivalent to a non-accepting state.

• If two states s1 and s2 have transitions on the same symbol c to states t1 and t2
that we have already proven to be different, then s1 and s2 are different. This
also applies if only one of s1 or s2 have a defined transition on c.

1If we don’t consider the effects of cache-misses etc.

28 CHAPTER 2. LEXICAL ANALYSIS

This leads to the following algorithm.

Algorithm 2.4 (DFA minimisation) Given a DFA D over the alphabet Σ with states
S where F ⊆ S are the accepting states, we construct a minimal DFA D′ where each
state is a group of states from D. The groups in the minimal DFA are consistent: For
any pair of states s1,s2 in the same group G and any symbol c, move(s1,c) is in the
same group G′ as move(s2,c) or both are undefined.

1) We start with two groups: F and S\F. These are unmarked.

2) We pick any unmarked group G and check if it is consistent. If it is, we mark it.
If G is not consistent, we split it into maximal consistent subgroups and replace
G by these. All groups are then unmarked.

3) If there are no unmarked groups left, we are done and the remaining groups are
the states of the minimal DFA. Otherwise, we go back to step 2.

The starting state of the minimal DFA is the group that contains the original starting
state and any group of accepting states is an accepting state in the minimal DFA.

The time needed for minimisation using algorithm 2.4 depends on the strategy used
for picking groups in step 2. With random choices, the worst case is quadratic in the
size of the DFA, but there exist strategies for choosing groups and data structures for
representing these that guarantee a worst-case time that is O(n ∗ log(n)), where n is
the number of states in the (non-minimal) DFA. In other words, the method can be
implemented so it uses little more than linear time to do minimisation. We will not
here go into further detail but just refer to [3] for the optimal algorithm.

We will, however, note that we can make a slight optimisation to algorithm 2.4: A
group that consists of a single state need never be split, so we need never select such
in step 2, and we can stop when all unmarked groups are singletons.

2.8.1 Example
As an example of minimisation, take the DFA in figure 2.9.

We now make the initial division into two groups: The accepting and the non-
accepting states.

G1 = {0,6}
G2 = {1,2,3,4,5,7}

These are both unmarked. We next pick any unmarked group, say G1. To check if this
is consistent, we make a table of its transitions:

G1 a b
0 G2 −
6 G2 −

2.8. MINIMISATION OF DFAS 29

-
start ��

��
����

0 -
a ��

��
1

?
a

-
b ��

��
2 -

a

b

��
��

3
+

b

��
��

4

?
a

-
b ��

��
5

a

�
b

��
��
����

6
�

�
�
��

a

��
��

7

�
b

6

a

Figure 2.9: Non-minimal DFA

This is consistent, so we just mark it and select the remaining unmarked group G2 and
make a table for this

G2 a b
1 G2 G2
2 G2 G2
3 − G2
4 G1 G2
5 G2 G2
7 G1 G2

G2 is evidently not consistent, so we split it into maximal consistent subgroups and
erase all marks (including the one on G1):

G1 = {0,6}
G3 = {1,2,5}
G4 = {3}
G5 = {4,7}

We now pick G3 for consideration:

G3 a b
1 G5 G3
2 G4 G3
5 G5 G3

This isn’t consistent either, so we split again and get

30 CHAPTER 2. LEXICAL ANALYSIS

G1 = {0,6}
G4 = {3}
G5 = {4,7}
G6 = {1,5}
G7 = {2}

We now pick G5 and check this:

G5 a b
4 G1 G6
7 G1 G6

This is consistent, so we mark it and pick another group, say, G6:

G6 a b
1 G5 G7
5 G5 G7

This, also, is consistent, so we have only one unmarked non-singleton group left: G1.

G1 a b
0 G6 −
6 G6 −

As we mark this, we see that there are no unmarked groups left (except the single-
tons). Hence, the groups form a minimal DFA equivalent to the one in figure 2.9. The
minimised DFA is shown in figure 2.10.

2.8.2 Dead states
Algorithm 2.4 works under some, as yet, unstated assumptions:

• The move function is total, i.e., there are transitions on all symbols from all
states, or

• There are no dead states in the DFA.

A dead state is a state from which no accepting state can be reached. Such do not
occur in DFAs constructed from NFAs without dead states, and NFAs with dead states
can not be constructed from regular expressions by the method shown in section 2.4.
Hence, as long as we use minimisation only on DFAs constructed by this process, we
are safe. However, if we get a DFA of unknown origin, we risk that it may contain both
dead states and undefined transitions.

A transition to a dead state should rightly be equivalent to an undefined transition,
as neither can yield future acceptance. The only difference is that we discover this
earlier on an undefined transition than when we make a transition to a dead state.
However, algorithm 2.4 will treat these differently and may hence decree a group to be
inconsistent even though it is not. There are two solutions to this problem:

2.9. LEXERS AND LEXER GENERATORS 31

-
start ��

��
����
G1 -

a ��
��

G6

N
a

q
b

��
��

G7 -
a

i
b ��

��
G4

+

b

��
��

G5

@
@

@@I

a
M b

Figure 2.10: Minimal DFA

1) Make sure there are no dead states. This can be ensured by invariant, as is the
case for DFAs constructed by the methods shown in this chapter, or by explicitly
removing dead states before minimisation. Dead states can be found by a simple
reachability analysis for directed graphs.

2) Make sure there are no undefined transitions. This can be achieved by adding a
new dead state (which has transitions to itself on all symbols) and replacing all
undefined transitions by transitions to this dead state. After minimisation, the
group that contains the dead state will contain all dead states from the original
DFA. This group can now be removed from the minimal DFA (which will once
more have undefined transitions).

2.9 Lexers and lexer generators
We have, in the previous sections, seen how we can convert a language description
written as a regular expression into an efficiently executable representation (a DFA).
This is the heart of a lexer generator, but not the full story. There are several additional
issues, which we address below:

• A lexer has to distinguish between several different types of tokens, e.g., num-
bers, variables and keywords. Each of these are described by its own regular
expression.

• A lexer does not check if its entire input is included in the languages defined by
the regular expressions. Instead, it has to cut the input into pieces (tokens), each
of which is included in one of the languages.

32 CHAPTER 2. LEXICAL ANALYSIS

• If there are several ways to split the input into legal tokens, the lexer has to decide
which of these it should use.

We do not wish to scan the input repeatedly, once for every type of token, as this can
be quite slow. Hence, we wish to generate a DFA that tests for all the token types
simultaneously. This isn’t too difficult: If the tokens are defined by regular expressions
r1,r2, . . . ,rn, then the regular expression r1 | r2 | . . . | rn describes the union of the
languages and the DFA constructed from it will scan for all token types at the same
time.

However, we also wish to distinguish between different token types, so we must be
able to know which of the many tokens was recognised by the DFA. The easiest way
to do this is:

1) Construct NFAs N1,N2, . . . ,Nn for each of r1,r2, . . . ,rn.

2) Mark the accepting states of the NFAs by the name of the tokens they accept.

3) Combine the NFAs to a single NFA by adding a new starting state which has
epsilon-transitions to each of the starting states of the NFAs.

4 Convert the combined NFA to a DFA.

5) Each accepting state of the DFA consists of a set of NFA states, some of which
are accepting states which we marked by token type in step 2. These marks are
used to mark the accepting states of the DFA so each of these will indicate the
token types it accepts.

If the same accepting state in the DFA can accept several different token types, it is
because these overlap. This is not unusual, as keywords usually overlap with variable
names and a description of floating point constants may include integer constants as
well. In such cases, we can do one of two things:

• Let the lexer generator generate an error and require the user to make sure the
tokens are disjoint.

• Let the user of the lexer generator choose which of the tokens is preferred.

It can be quite difficult (though always possible) with regular expressions to define,
e.g., the set of names that are not keywords. Hence, it is common to let the lexer choose
according to a prioritised list. Normally, the order in which tokens are defined in the
input to the lexer generator indicates priority (earlier defined tokens take precedence
over later defined tokens). Hence, keywords are usually defined before variable names,
which means that, for example, the string “if” is recognised as a keyword and not a
variable name. When an accepting state in a DFA contains accepting NFA states with
different marks, the mark corresponding to the highest priority (earliest defined) token

2.9. LEXERS AND LEXER GENERATORS 33

-����
1

�

ε

�
ε

-ε

j

ε

����
2 -i ����

3 -f ����m4 IF

����
5 -

[a-zA-Z] ����m6�

[a-zA-Z 0-9]

ID

����
7 -

[+-]

*
ε

����
8 -

[0-9] ����m9
Y

ε
NUM

����
10 -

[+-]

*
ε

����
11 -

[0-9]

?

.

����m12
�

[0-9]

FLOAT

-.

N

[eE]

����m13
�

[0-9]

FLOAT

?

[eE]

����
14 -

[0-9] ����m15
FLOAT

-
[eE]

Y
ε

����
16 -

[+-]

*
ε

����
17 -

[0-9] ����m18
Y

ε
FLOAT

Figure 2.11: Combined NFA for several tokens

is used. Hence, we can simply erase all but one mark from each accepting state. This
is a very simple and effective solution to the problem.

When we described minimisation of DFAs, we used two initial groups: One for the
accepting states and one for the non-accepting states. As there is now several kinds
of accepting states, we must use one grouping for each token, so we will have n + 1
groups if we have n different tokens.

To illustrate the precedence rule, figure 2.11 shows an NFA made by combining
NFAs for variable names, the keyword if, integers and floats, as described by the
regular expressions in section 2.2.2. The individual NFAs are (simplified versions of)
what you get from the method described in section 2.4. When a transition is labelled
by a set of characters, it is a shorthand for a set of transitions each labelled by a single
character. The accepting states are labelled with token names as described above. The
corresponding minimised DFA is shown in figure 2.12.

Splitting the input stream

As mentioned, the lexer must cut the input into tokens. This may be done in several
ways. For example, the string if17 can be split in many different ways:

34 CHAPTER 2. LEXICAL ANALYSIS

-

����mC
U

[a-zA-Z 0-9]

IF

����mB
6

f

-
[a-eg-zA-Z 0-9]ID ����mD�

[a-zA-Z 0-9]

ID

����
A

6

i

*

[a-hj-zA-Z]

-.

?

[0-9]

@
@

@
@R

[+-]

����
E

?

[0-9]����
F

�
�

�
��

.

�
�

�
�	

[0-9]

����mG -.

@
@

@
@R

[eE]
�

[0-9]

NUM ����mH�

[0-9]

�
�

�
�	

[eE]
FLOAT

����
I

@
@

@
@R

[0-9]
�

�
�

�	

[+-]

����
J -[0-9] ����mK�

[0-9]

FLOAT

Figure 2.12: Combined DFA for several tokens

2.9. LEXERS AND LEXER GENERATORS 35

• As one token, which is the variable name if17.

• As the variable name if1 followed by the number 7.

• As the keyword if followed by the number 17.

• As the keyword if followed by the numbers 1 and 7.

• As the variable name i followed by the variable name f17.

• And several more.

A common convention is that it is the longest prefix of the input that matches any token
which will be chosen. Hence, the first of the above possible splittings of if17 will be
chosen. Note that the principle of the longest match takes precedence over the order of
definition of tokens, so even though the string starts with the keyword if, which has
higher priority than variable names, the variable name is chosen because it is longer.

Modern languages like C, Java or SML follow this convention, and so do most
lexer generators, but some (mostly older) languages like FORTRAN do not. When
other conventions are used, lexers must either be written by hand to handle these con-
ventions or the conventions used by the lexer generator must be side-stepped. Some
lexer generators allow the user to have some control over the conventions used.

The principle of the longest matching prefix is handled by letting the DFA read as
far as it can, until it either reaches the end of the input or no transition is defined on
the next input symbol. If the current state at this point is accepting, we are in luck and
can simply output the corresponding token. If not, we must go back to the last time we
were in an accepting state and output the token indicated by this. The characters read
since then are put back in the input stream. The lexer must hence retain the symbols
it has read since the last accepting state so it can re-insert these in the input in such
situations.

As an example, consider lexing of the string 3e-y with the DFA in figure 2.12. We
get to the accepting state G after reading the digit 3. However, we can continue making
legal transitions to state I on e and then to state J on - (as these could be the start of
the exponent part of a real number). It is only when we, in state J, find that there is
no transition on y that we realise that this isn’t the case. We must now go back to the
last accepting state (G) and output the number 3 as the first token and re-insert - and
e in the input stream, so we can continue with e-y when we look for the subsequent
tokens.

Lexical errors

If no prefix of the input string forms a valid token, a lexical error has occurred. When
this happens, the lexer will usually report an error. At this point, it may stop reading the
input or it may attempt continued lexical analysis by skipping characters until a valid
prefix is found. The purpose of the latter approach is to try finding further lexical errors

36 CHAPTER 2. LEXICAL ANALYSIS

in the same input, so several of these can be corrected by the user before re-running
the lexer. Some of these subsequent errors may, however, not be real errors but may
be caused by the lexer not skipping enough characters after the first error is found. If,
for example, the start of a comment is ill-formed, the lexer may try to interpret the
contents of the comment as individual tokens.

When the lexer finds an error, the consumer of the tokens that the lexer produces
(e.g., the rest of the compiler) will usually not itself produce a valid result. However, it
may try to find (non-lexical) errors in the input, again allowing the user to find several
errors quickly. Again, some of these errors may really be spurious errors caused by
lexical error(s), so the user will have to guess at the validity of every error message
apart from the first. Nevertheless, such error recovery has proven to be an aid in
productivity by locating errors quickly when the input is so large that restarting the
lexer from the start of input incurs a considerable time overhead. Less commonly, the
lexer may work interactively with a text editor and restart from the point at which the
error was spotted after the user has fixed it.

2.9.1 Lexer generators

A lexer generator will typically use a notation for regular expressions similar to the
one described in section 2.1, but may require alphabet-characters to be quoted to dis-
tinguish them from the symbols used to build regular expressions. For example, an *
intended to match a multiplication symbol in the input is distinguished from an * used
to denote repetition by quoting the * symbol, e.g. as ‘*‘. Additionally, some lexer
generators extend regular expressions in various ways, e.g., allowing a set of charac-
ters to be specified by listing the characters that are not in the set. This is useful, for
example, to specify the symbols inside a comment up to the terminating character(s).

The input to the lexer generator will normally contain a list of regular expressions
that each denote a token. Each of these regular expressions has an associated action.
The action describes what is passed on to the consumer (e.g., the parser), typically an
element from a token data type, which describes the type of token (NUM, ID, etc.) and
sometimes additional information such as the value of a number token, the name of an
identifier token and, perhaps, the position of the token in the input file. The information
needed to construct such values is typically provided by the lexer generator through
library functions or variables that can be used in the actions.

Normally, the lexer generator requires white-space and comments to be defined
by regular expressions. The actions for these regular expressions are typically empty,
meaning that white-space and comments are just ignored.

An action can be more than just returning a token. If, for example, a language
has a large number of keywords, then a DFA that recognises all of these individually
can be fairly large. In such cases, the keywords are not described as separate regular
expressions in the lexer definition but instead treated as special cases of the identifier
token. The action for identifiers will then look the name up in a table of keywords and
return the appropriate token type (or an identifier token if the name is not a keyword).

2.10. PROPERTIES OF REGULAR LANGUAGES 37

A similar strategy can be used if the language allows identifiers to shadow keywords.
Another use of non-trivial lexer actions is for nested comments. In principle, a reg-

ular expression (or finite automaton) cannot recognise arbitrarily nested comments (see
section 2.10), but by using a global counter, the actions for comment tokens can keep
track of the nesting level. If escape sequences (for defining, e.g., control characters)
are allowed in string constants, the actions for string tokens will, typically, translate
the string containing these sequences into a string where they have been substituted by
the characters they represent.

Sometimes lexer generators allow several different starting points. In the example
in figures 2.11 and 2.12, all regular expressions share the same starting state. However,
a single lexer may be used, e.g., for both tokens in the programming language and for
tokens in the input to that language. Often, there will be a good deal of sharing between
these token sets (the tokens allowed in the input may, for example, be a subset of the
tokens allowed in programs). Hence, it is useful to allow these to share a NFA, as
this will save space. The resulting DFA will have several starting states. An accepting
state may now have more than one token name attached, as long as these come from
different token sets (corresponding to different starting points).

In addition to using this feature for several sources of text (program and input), it
can be used locally within a single text to read very complex tokens. For example,
nested comments and complex-format strings (with nontrivial escape sequences) can
be easier to handle if this feature is used.

2.10 Properties of regular languages
We have talked about regular languages as the class of languages that can be described
by regular expressions or finite automata, but this in itself may not give a clear under-
standing of what is possible and what is not possible to describe by a regular language.
Hence, we will now state a few properties of regular languages and give some exam-
ples of some regular and non-regular languages and give informal rules of thumb that
can (sometimes) be used to decide if a language is regular.

2.10.1 Relative expressive power

First, we repeat that regular expressions, NFAs and DFAs have exactly the same ex-
pressive power: They all can describe all regular languages and only these. Some
languages may, however, have much shorter descriptions in one of these forms than in
others.

We have already argued that we from a regular expression can construct an NFA
whose size is linear in the size of the regular expression, and that converting an NFA
to a DFA can potentially give an exponential increase in size (see below for a concrete
example of this). Since DFAs are also NFAs, NFAs are clearly at least as compact
as (and sometimes much more compact than) DFAs. Similarly, we can see that NFAs

38 CHAPTER 2. LEXICAL ANALYSIS

are at least as compact (up to a small constant factor) as regular expressions. But we
have not yet considered if the converse is true: Can an NFA be converted to a regular
expression of proportional size. The answer is, unfortunately, no: There exist classes
of NFAs (and even DFAs) that need regular expressions that are exponentially larger
to describe them. This is, however, mainly of academic interest as we rarely have to
make conversions in this direction.

If we are only interested in if a language is regular rather than the size of its de-
scription, however, it doesn’t matter which of the formalisms we choose, so we can in
each case choose the formalism that suits us best. Sometimes it is easier to describe
a regular language using a DFA or NFA instead of a regular expression. For exam-
ple, the set of binary number strings that represent numbers that divide evenly by 5
can be described by a 6-state DFA (see exercise 2.9), but it requires a very complex
regular expression to do so. For programming language tokens, regular expression are
typically quite suitable.

The subset construction (algorithm 2.3) maps sets of NFA states to DFA states.
Since there are 2n − 1 non-empty sets of n NFA states, the resulting DFA can po-
tentially have exponentially more states than the NFA. But can this potential ever be
realised? To answer this, it isn’t enough to find one n-state NFA that yields a DFA
with 2n− 1 states. We need to find a family of ever bigger NFAs, all of which yield
exponentially-sized DFAs. We also need to argue that the resulting DFAs are minimal.
One construction that has these properties is the following: For each integer n > 1,
construct an n-state NFA in the following way:

1. State 0 is the starting state and state n−1 is accepting.

2. If 0≤ i < n−1, state i has a transition to state i+1 on the symbol a.

3. All states have transitions to themselves and to state 0 on the symbol b.

We can represent a set of these states by an n-bit number: Bit i is 1 in the number if
and only if state i is in the set. The set that contains only the initial NFA state is, hence,
represented by the number 1. We shall see that the way a transition maps a set of states
to a new set of states can be expressed as an operation on the number:

• A transition on a maps the number x to (2x mod (2n)).

• A transition on b maps the number x to (x or 1), using bit-wise or.

This isn’t hard to verify, so we leave this to the interested reader. It is also easy to see
that these two operations can generate any n-bit number from the number 1. Hence,
any subset can be reached by a sequence of transitions, which means that the subset-
construction will generate a DFA state for every subset.

But is the DFA minimal? If we look at the NFA, we can see that an a leads from
state i to i+1 (if i < n−1), so for each NFA state i there is exactly one sequence of as
that leads to the accepting state, and that sequence has n−1−i as. Hence, a DFA state

2.10. PROPERTIES OF REGULAR LANGUAGES 39

whose subset contains the NFA state i will lead to acceptance on a string of n−1−i
as, while a DFA state whose subset does not contain i will not. Hence, for any two
different DFA states, we can find an NFA state i that is in one of the sets but not the
other and use that to construct a string that will distinguish the DFA states. Hence, all
the DFA states are distinct, so the DFA is minimal.

2.10.2 Limits to expressive power
The most basic property of a DFA is that it is finite: It has a finite number of states and
nowhere else to store information. This means, for example, that any language that
requires unbounded counting cannot be regular. An example of this is the language
{anbn | n≥ 0}, that is, any sequence of as followed by a sequence of the same number
of bs. If we must decide membership in this language by a DFA that reads the input
from left to right, we must, at the time we have read all the as, know how many there
were, so we can compare this to the number of bs. But since a finite automaton cannot
count arbitrarily high, the language isn’t regular. A similar non-regular language is the
language of matching parentheses. However, if we limit the nesting depth of parenthe-
ses to a constant n, we can recognise this language by a DFA that has n+1 states (0 to
n), where state i corresponds to i unmatched opening parentheses. State 0 is both the
starting state and the only accepting state.

Some surprisingly complex languages are regular. As all finite sets of strings are
regular languages, the set of all legal Pascal programs of less than a million pages is
a regular language, though it is by no means a simple one. While it can be argued
that it would be an acceptable limitation for a language to allow only programs of less
than a million pages, it isn’t practical to describe programming languages as regular
languages: The description would be far too large. Even if we ignore such absurdities,
we can sometimes be surprised by the expressive power of regular languages. As an
example, given any integer constant n, the set of numbers (written in binary or decimal
notation) that divides evenly by n is a regular language (see exercise 2.9).

2.10.3 Closure properties
We can also look at closure properties of regular languages. It is clear that regular
languages are closed under set union, as if we have regular expressions s and t for
the two languages, the regular expression s|t describes the union of the languages.
Similarly, regular languages are closed under concatenation and unbounded repetition,
as these correspond to basic operators of regular expressions.

Less obviously, regular languages are also closed under set difference and set in-
tersection. To see this, we first look at set complement: Given a fixed alphabet Σ, the
complement of the language L is the set of strings built from the alphabet Σ, except
the strings found in L. We write the complement of L as L. To get the complement
of a regular language L, we first construct a DFA for the language L and make sure
that all states have transitions on all characters from the alphabet (as described in sec-

40 CHAPTER 2. LEXICAL ANALYSIS

tion 2.8.2). Now, we simply change every accepting state to non-accepting and vice
versa, and thus get a DFA for L.

We can now (by using the set-theoretic equivalent of De Morgan’s law) construct
L1∩L2 as L1∪L2. Given intersection, we can get set difference by L1 \L2 = L1∩L2.

Regular sets are also closed under a number of common string operations, such as
prefix, suffix, subsequence and reversal. The precise meaning of these words in the
present context is defined below.

Prefix. A prefix of a string w is any initial part of w, including the empty string and all
of w. The prefixes of abc are hence ε, a, ab and abc.

Suffix. A suffix of a string is what remains of the string after a prefix has been taken
off. The suffixes of abc are hence abc, bc, c and ε.

Subsequence. A subsequence of a string is obtained by deleting any number of sym-
bols from anywhere in the string. The subsequences of abc are hence abc, bc,
ac, ab, c, b, a and ε.

Reversal. The reversal of a string is the string read backwards. The reversal of abc is
hence cba.

As with complement, these can be obtained by simple transformations of the DFAs for
the language.

2.11 Further reading
There are many variants of the method shown in section 2.4. The version presented
here has been devised for use in this book in an attempt to make the method easy to
understand and manageable to do by hand. Other variants can be found in [4] and [7].

It is possible to convert a regular expression to a DFA directly without going
through an NFA. One such method [22] [4] actually at one stage during the calculation
computes information equivalent to an NFA (without epsilon-transitions), but more
direct methods based on algebraic properties of regular expressions also exist [10].
These, unlike NFA-based methods, generalise fairly easily to cover regular expressions
extended with explicit set-intersection and set-difference.

A good deal of theoretic information about regular expressions and finite automata
can be found in [15]. An efficient DFA minimization algorithm can be found in [18].

Lexer generators can be found for most programming languages. For C, the most
common are Lex [20] and Flex [28]. The latter generates the states of the DFA as
program code instead of using table-lookup. This makes the generated lexers fast, but
can use much more space than a table-driven program.

Finite automata and notation reminiscent of regular expressions are also used to
describe behaviour of concurrent systems [24]. In this setting, a state represents the
current state of a process and a transition corresponds to an event to which the process
reacts by changing state.

2.11. FURTHER READING 41

Exercises

Exercise 2.1

In the following, a number-string is a non-empty sequence of decimal digits, i.e., some-
thing in the language defined by the regular expression [0-9]+. The value of a number-
string is the usual interpretation of a number-string as an integer number. Note that
leading zeroes are allowed.

Make for each of the following languages a regular expression that describes that
language.

a) All number-strings that have the value 42.

b) All number-strings that do not have the value 42.

c) All number-strings that have a value that is strictly greater than 42.

Exercise 2.2

Given the regular expression a∗(a|b)aa:

a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.3

Given the regular expression ((a|b)(a|bb))∗:

a) Construct an equivalent NFA using the method in section 2.4.

b) convert this NFA to a DFA using algorithm 2.3.

Exercise 2.4

Make a DFA equivalent to the following NFA:

-start �������
0 -a ����

1 -a

Ib �b
����

2 -a ����
3

	

ε

Ia

42 CHAPTER 2. LEXICAL ANALYSIS

Exercise 2.5
Minimise the following DFA:

?

�������
0

Q
Q

Q
QQs

aC
C
C
C
C
CCW

b ����
1

�
�

�	
a

����
2�a����

3
�
�
�
�
�
���

b
�

a����
4

�
�

�
��3

b

-a

Exercise 2.6
Minimise the following DFA:

-����
0 -b

?
a

����
1 -a

R
b

����
2

R
b

��
��

a

����
3 -b �������

4 -b

I
a

����
5

K
b

��
��

a

Exercise 2.7
Construct DFAs for each of the following regular languages. In all cases the alphabet
is {a, b}.

a) The set of strings that has exactly 3 bs (and any number of as).

b) The set of strings where the number of bs is a multiple of 3 (and there can be any
number of as).

c) The set of strings where the difference between the number of as and the number
of bs is a multiple of 3.

Exercise 2.8
Construct a DFA that recognises balanced sequences of parenthesis with a maximal
nesting depth of 3, e.g., ε, ()(), (()(())) or (()())()() but not (((()))) or (()(()(()))).

2.11. FURTHER READING 43

Exercise 2.9
Given that binary number strings are read with the most significant bit first and may
have leading zeroes, construct DFAs for each of the following languages:

a) Binary number strings that represent numbers that are multiples of 4, e.g., 0, 100
and 10100.

b) Binary number strings that represent numbers that are multiples of 5, e.g., 0,
101, 10100 and 11001.

Hint: Make a state for each possible remainder after division by 5 and then add
a state to avoid accepting the empty string.

c) Given a number n, what is the minimal number of states needed in a DFA that
recognises binary numbers that are multiples of n? Hint: write n as a∗2b, where
a is odd.

Exercise 2.10
The empty language, i.e., the language that contains no strings can be recognised by
a DFA (any DFA with no accepting states will accept this language), but it can not be
defined by any regular expression using the constructions in section 2.2. Hence, the
equivalence between DFAs and regular expressions is not complete. To remedy this, a
new regular expression φ is introduced such that L(φ) = /0.

a) Argue why each of the following algebraic rules, where s is an arbitrary regular
expression, is true:

φ|s = s
φs = φ

sφ = φ

φ∗ = ε

b) Extend the construction of NFAs from regular expressions to include a case for
φ.

c) What consequence will this extension have for converting the NFA to a minimal
DFA? Hint: dead states.

Exercise 2.11
Show that regular languages are closed under prefix, suffix, subsequence and reversal,
as postulated in section 2.10. Hint: show how an NFA N for a regular language L can
be transformed to an NFA Np for the set of prefixes of strings from L, and similarly for
the other operations.

44 CHAPTER 2. LEXICAL ANALYSIS

Exercise 2.12
Which of the following statements are true? Argue each answer informally.

a) Any subset of a regular language is itself a regular language.

b) Any superset of a regular language is itself a regular language.

c) The set of anagrams of strings from a regular language forms a regular language.
(An anagram of a string is obtained by rearranging the order of characters in the
string, but without adding or deleting any. The anagrams of the string abc are
hence abc, acb, bac, bca, cab and cba).

Exercise 2.13
In figures 2.11 and 2.12 we used character sets on transitions as shorthands for sets of
transitions, each with one character. We can, instead, extend the definition of NFAs
and DFAs such that such character sets are allowed on a single transition.

For a DFA (to be deterministic), we must require that transitions out of the same
state have disjoint character sets.

a) Sketch how algorithm 2.3 must be modified to handle transitions with sets in
such a way that the disjointedness requirement for DFAs are ensured.

b) Sketch how algorithm 2.4 must be modified to handle character sets. A new
requirement for DFA minimality is that the number of transitions as well as the
number of states is minimal. How can this be ensured?

Exercise 2.14
As mentioned in section 2.5, DFAs are often implemented by tables where the current
state is cross-indexed by the next symbol to find the next state. If the alphabet is large,
such a table can take up quite a lot of room. If, for example, 16-bit UNI-code is used
as the alphabet, there are 216 = 65536 entries in each row of the table. Even if each
entry in the table is only one byte, each row will take up 64KB of memory, which may
be a problem.

A possible solution is to split each 16-bit UNI-code character c into two 8-bit char-
acters c1 and c2. In the regular expressions, each occurrence of a character c is hence
replaced by the regular expression c1c2. This regular expression is then converted to
an NFA and then to a DFA in the usual way. The DFA may (and probably will) have
more states than the DFA using 16-bit characters, but each state in the new DFA use
only 1/256th of the space used by the original DFA.

a) How much larger is the new NFA compared to the old?

2.11. FURTHER READING 45

b) Estimate what the expected size (measured as number of states) of the new DFA
is compared to the old. Hint: Some states in the NFA can be reached only after
an even number of 8-bit characters are read and the rest only after an odd number
of 8-bit characters are read. What does this imply for the sets constructed during
the subset construction?

c) Roughly, how much time does the new DFA require to analyse a string compared
to the old?

d) If space is a problem for a DFA over an 8-bit alphabet, do you expect that a
similar trick (splitting each 8-bit character into two 4-bit characters) will help
reduce the space requirements? Justify your answer.

46 CHAPTER 2. LEXICAL ANALYSIS

Chapter 3

Syntax Analysis

3.1 Introduction

Where lexical analysis splits the input into tokens, the purpose of syntax analysis (also
known as parsing) is to recombine these tokens. Not back into a list of characters, but
into something that reflects the structure of the text. This “something” is typically a
data structure called the syntax tree of the text. As the name indicates, this is a tree
structure. The leaves of this tree are the tokens found by the lexical analysis, and if
the leaves are read from left to right, the sequence is the same as in the input text.
Hence, what is important in the syntax tree is how these leaves are combined to form
the structure of the tree and how the interior nodes of the tree are labelled.

In addition to finding the structure of the input text, the syntax analysis must also
reject invalid texts by reporting syntax errors.

As syntax analysis is less local in nature than lexical analysis, more advanced meth-
ods are required. We, however, use the same basic strategy: A notation suitable for
human understanding is transformed into a machine-like low-level notation suitable
for efficient execution. This process is called parser generation.

The notation we use for human manipulation is context-free grammars1, which
is a recursive notation for describing sets of strings and imposing a structure on each
such string. This notation can in some cases be translated almost directly into recursive
programs, but it is often more convenient to generate stack automata. These are similar
to the finite automata used for lexical analysis but they can additionally use a stack,
which allows counting and non-local matching of symbols. We shall see two ways of
generating such automata. The first of these, LL(1), is relatively simple, but works
only for a somewhat restricted class of grammars. The SLR construction, which we
present later, is more complex but accepts a wider class of grammars. Sadly, neither of
these work for all context-free grammars. Tools that handle all context-free grammars
exist, but they can incur a severe speed penalty, which is why most parser generators
restrict the class of input grammars.

1The name refers to the fact that derivation is independent of context.

47

48 CHAPTER 3. SYNTAX ANALYSIS

3.2 Context-free grammars
Like regular expressions, context-free grammars describe sets of strings, i.e., lan-
guages. Additionally, a context-free grammar also defines structure on the strings in
the language it defines. A language is defined over some alphabet, for example the set
of tokens produced by a lexer or the set of alphanumeric characters. The symbols in
the alphabet are called terminals.

A context-free grammar recursively defines several sets of strings. Each set is
denoted by a name, which is called a nonterminal. The set of nonterminals is disjoint
from the set of terminals. One of the nonterminals are chosen to denote the language
described by the grammar. This is called the start symbol of the grammar. The sets are
described by a number of productions. Each production describes some of the possible
strings that are contained in the set denoted by a nonterminal. A production has the
form

N → X1 . . .Xn

where N is a nonterminal and X1 . . .Xn are zero or more symbols, each of which is
either a terminal or a nonterminal. The intended meaning of this notation is to say that
the set denoted by N contains strings that are obtained by concatenating strings from
the sets denoted by X1 . . .Xn. In this setting, a terminal denotes a singleton set, just
like alphabet characters in regular expressions. We will, when no confusion is likely,
equate a nonterminal with the set of strings it denotes

Some examples:

A→ a

says that the set denoted by the nonterminal A contains the one-character string a.

A→ aA

says that the set denoted by A contains all strings formed by putting an a in front of
a string taken from the set denoted by A. Together, these two productions indicate
that A contains all non-empty sequences of as and is hence (in the absence of other
productions) equivalent to the regular expression a+.

We can define a grammar equivalent to the regular expression a∗ by the two pro-
ductions

B →
B → aB

where the first production indicates that the empty string is part of the set B. Compare
this grammar with the definition of s∗ in figure 2.1.

Productions with empty right-hand sides are called empty productions. These are
sometimes written with an ε on the right hand side instead of leaving it empty.

3.2. CONTEXT-FREE GRAMMARS 49

So far, we have not described any set that could not just as well have been described
using regular expressions. Context-free grammars are, however, capable of expressing
much more complex languages. In section 2.10, we noted that the language {anbn | n≥
0} is not regular. It is, however, easily described by the grammar

S →
S → aSb

The second production ensures that the as and bs are paired symmetrically around the
middle of the string, ensuring that they occur in equal number.

The examples above have used only one nonterminal per grammar. When several
nonterminals are used, we must make it clear which of these is the start symbol. By
convention (if nothing else is stated), the nonterminal on the left-hand side of the first
production is the start symbol. As an example, the grammar

T → R
T → aTa
R → b
R → bR

has T as start symbol and denotes the set of strings that start with any number of as
followed by a non-zero number of bs and then the same number of as with which it
started.

Sometimes, a shorthand notation is used where all the productions of the same
nonterminal are combined to a single rule, using the alternative symbol (|) from regular
expressions to separate the right-hand sides. In this notation, the above grammar would
read

T → R | aTa
R → b | bR

There are still four productions in the grammar, even though the arrow symbol → is
only used twice.

3.2.1 How to write context free grammars
As hinted above, a regular expression can systematically be rewritten as a context free
grammar by using a nonterminal for every subexpression in the regular expression and
using one or two productions for each nonterminal. The construction is shown in fig-
ure 3.1. So, if we can think of a way of expressing a language as a regular expression,
it is easy to make a grammar for it. However, we will also want to use grammars to
describe non-regular languages. An example is the kind of arithmetic expressions that
are part of most programming languages (and also found on electronic calculators).
Such expressions can be described by grammar 3.2. Note that, as mentioned in sec-
tion 2.10, the matching parenthesis can’t be described by regular expressions, as these

50 CHAPTER 3. SYNTAX ANALYSIS

Form of si Productions for Ni
ε Ni →
a Ni → a
s jsk Ni → N jNk
s j|sk Ni → N j

Ni → Nk
s j∗ Ni → N jNi

Ni →
s j+ Ni → N jNi

Ni → N j
s j? Ni → N j

Ni →

Each subexpression of the regular expression is numbered and subexpres-
sion si is assigned a nonterminal Ni. The productions for Ni depend on the
shape of si as shown in the table above.

Figure 3.1: From regular expressions to context free grammars

Exp → Exp+Exp
Exp → Exp-Exp
Exp → Exp*Exp
Exp → Exp/Exp
Exp → num
Exp → (Exp)

Grammar 3.2: Simple expression grammar

can’t “count” the number of unmatched opening parenthesis at a particular point in
the string. If we didn’t have parenthesis in the language, it could be described by the
regular expression

num((+|-|*|/)num)∗

Even so, the regular description isn’t useful if you want operators to have different
precedence, as it treats the expression as a flat string rather than as having structure.
We will look at structure in sections 3.3.1 and 3.4.

Most constructions from programming languages are easily expressed by context
free grammars. In fact, most modern languages are designed this way.

When writing a grammar for a programming language, one normally starts by di-
viding the constructs of the language into different syntactic categories. A syntactic

3.3. DERIVATION 51

Stat → id:=Exp
Stat → Stat ;Stat
Stat → if Exp then Stat else Stat
Stat → if Exp then Stat

Grammar 3.3: Simple statement grammar

category is a sub-language that embodies a particular concept. Examples of common
syntactic categories in programming languages are:

Expressions are used to express calculation of values.

Statements express actions that occur in a particular sequence.

Declarations express properties of names used in other parts of the program.

Each syntactic category is denoted by a main nonterminal, e.g., Exp from grammar 3.2.
More nonterminals might be needed to describe a syntactic category or provide struc-
ture to it, as we shall see, and productions for one syntactic category can refer to
nonterminals for other syntactic categories. For example, statements may contain ex-
pressions, so some of the productions for statements use the main nonterminal for
expressions. A simple grammar for statements might look like grammar 3.3, which
refers to the Exp nonterminal from grammar 3.2.

3.3 Derivation
So far, we have just appealed to intuitive notions of recursion when we describe the
set of strings that a grammar produces. Since the productions are similar to recursive
set equations, we might expect to use the techniques from section 2.6.1 to find the set
of strings denoted by a grammar. However, though these methods in theory apply to
infinite sets by considering limits of chains of sets, they are only practically useful
when the sets are finite. Instead, we below introduce the concept of derivation. An
added advantage of this approach is, as we will later see, that syntax analysis is closely
related to derivation.

The basic idea of derivation is to consider productions as rewrite rules: Whenever
we have a nonterminal, we can replace this by the right-hand side of any production
in which the nonterminal appears on the left-hand side. We can do this anywhere in a
sequence of symbols (terminals and nonterminals) and repeat doing so until we have
only terminals left. The resulting sequence of terminals is a string in the language
defined by the grammar. Formally, we define the derivation relation ⇒ by the three
rules

52 CHAPTER 3. SYNTAX ANALYSIS

T → R
T → aTc
R →
R → RbR

Grammar 3.4: Example grammar

1. αNβ ⇒ αγβ if there is a production N → γ

2. α ⇒ α

3. α ⇒ γ if there is a β such that α⇒ β and β⇒ γ

where α, β and γ are (possibly empty) sequences of grammar symbols (terminals and
nonterminals). The first rule states that using a production as a rewrite rule (anywhere
in a sequence of grammar symbols) is a derivation step. The second states that the
derivation relation is reflexive, i.e., that a sequence derives itself. The third rule de-
scribes transitivity, i.e., that a sequence of derivations is in itself a derivation2.

We can use derivation to formally define the language that a context-free grammar
generates:

Definition 3.1 Given a context-free grammar G with start symbol S, terminal symbols
T and productions P, the language L(G) that G generates is defined to be the set
of strings of terminal symbols that can be obtained by derivation from S using the
productions P, i.e., the set {w ∈ T ∗ | S ⇒ w}.

As an example, we see that grammar 3.4 generates the string aabbbcc by the
derivation shown in figure 3.5. We have, for clarity, in each sequence of symbols
underlined the nonterminal that is rewritten in the following step.

In this derivation, we have applied derivation steps sometimes to the leftmost non-
terminal, sometimes to the rightmost and sometimes to a nonterminal that was neither.
However, since derivation steps are local, the order doesn’t matter. So, we might as
well decide to always rewrite the leftmost nonterminal, as shown in figure 3.6.

A derivation that always rewrites the leftmost nonterminal is called a leftmost
derivation. Similarly, a derivation that always rewrites the rightmost nonterminal is
called a rightmost derivation.

3.3.1 Syntax trees and ambiguity
We can draw a derivation as a tree: The root of the tree is the start symbol of the
grammar, and whenever we rewrite a nonterminal we add as its children the symbols

2The mathematically inclined will recognize that derivation is a partial order.

3.3. DERIVATION 53

T
⇒ aTc
⇒ aaTcc
⇒ aaRcc
⇒ aaRbRcc
⇒ aaRbcc
⇒ aaRbRbcc
⇒ aaRbRbRbcc
⇒ aaRbbRbcc
⇒ aabbRbcc
⇒ aabbbcc

Figure 3.5: Derivation of the string aabbbcc using grammar 3.4

T
⇒ aTc
⇒ aaTcc
⇒ aaRcc
⇒ aaRbRcc
⇒ aaRbRbRcc
⇒ aabRbRcc
⇒ aabRbRbRcc
⇒ aabbRbRcc
⇒ aabbbRcc
⇒ aabbbcc

Figure 3.6: Leftmost derivation of the string aabbbcc using grammar 3.4

54 CHAPTER 3. SYNTAX ANALYSIS

T
�

�
@

@
a T

�
�

@
@

c

a T c

R
�

�
@

@
R

�
�

@
@

b R

R b R
�

�
@

@

ε

ε R b R

ε ε

Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4

T
�

�
@

@
a T

�
�

@
@

c

a T c

R
�

�
@

@
R b R

�
�

@
@

ε R b R
�

�
@

@
ε R b R

ε ε

Figure 3.8: Alternative syntax tree for the string aabbbcc using grammar 3.4

3.3. DERIVATION 55

T → R
T → aTc
R →
R → bR

Grammar 3.9: Unambiguous version of grammar 3.4

on the right-hand side of the production that was used. The leaves of the tree are
terminals which, when read from left to right, form the derived string. If a nonterminal
is rewritten using an empty production, an ε is shown as its child. This is also a leaf
node, but is ignored when reading the string from the leaves of the tree.

When we write such a syntax tree, the order of derivation is irrelevant: We get the
same tree for left derivation, right derivation or any other derivation order. Only the
choice of production for rewriting each nonterminal matters.

As an example, the derivations in figures 3.5 and 3.6 yield the same syntax tree,
which is shown in figure 3.7.

The syntax tree adds structure to the string that it derives. It is this structure that
we exploit in the later phases of the compiler.

For compilation, we do the derivation backwards: We start with a string and want
to produce a syntax tree. This process is called syntax analysis or parsing.

Even though the order of derivation doesn’t matter when constructing a syntax tree,
the choice of production for that nonterminal does. Obviously, different choices can
lead to different strings being derived, but it may also happen that several different
syntax trees can be built for the same string. As an example, figure 3.8 shows an
alternative syntax tree for the same string that was derived in figure 3.7.

When a grammar permits several different syntax trees for some strings we call the
grammar ambiguous. If our only use of grammar is to describe sets of strings, ambigu-
ity isn’t a problem. However, when we want to use the grammar to impose structure on
strings, the structure had better be the same every time. Hence, it is a desireable feature
for a grammar to be unambiguous. In most (but not all) cases, an ambiguous grammar
can be rewritten to an unambiguous grammar that generates the same set of strings, or
external rules can be applied to decide which of the many possible syntax trees is the
“right one”. An unambiguous version of grammar 3.4 is shown in figure 3.9.

How do we know if a grammar is ambiguous? If we can find a string and show two
alternative syntax trees for it, this is a proof of ambiguity. It may, however, be hard to
find such a string and, when the grammar is unambiguous, even harder to show that
this is the case. In fact, the problem is formally undecidable, i.e., there is no method
that for all grammars can answer the question “Is this grammar ambiguous?”.

But in many cases it is not difficult to detect and prove ambiguity. For example,
any grammar that has a production of the form

N → NαN

56 CHAPTER 3. SYNTAX ANALYSIS

where α is any sequence of grammar symbols, is ambiguous. This is, for example, the
case with grammars 3.2 and 3.4.

We will, in sections 3.11 and 3.13, see methods for constructing parsers from gram-
mars. These methods have the property that they only work on unambiguous gram-
mars, so successful construction of a parser is a proof of unambiguity. However, the
methods may also fail on certain unambiguous grammars, so they can not be used to
prove ambiguity.

In the next section, we will see ways of rewriting a grammar to get rid of some
sources of ambiguity. These transformations preserve the language that the grammar
generates. By using such transformations (and others, which we will see later), we
can create a large set of equivalent grammars, i.e., grammars that generate the same
language (though they may impose different structures on the strings of the language).

Given two grammars, it would be nice to be able to tell if they are equivalent. Un-
fortunately, no known method is able to decide this in all cases, but, unlike ambiguity,
it is not (at the time of writing) known if such a method may or may not theoretically
exist. Sometimes, equivalence can be proven e.g. by induction over the set of strings
that the grammars produce. The converse can be proven by finding an example of a
string that one grammar can generate but the other not. But in some cases, we just have
to take claims of equivalence on faith or give up on deciding the issue.

3.4 Operator precedence

As mentioned in section 3.2.1, we can describe traditional arithmetic expressions by
grammar 3.2. Note that num is a terminal that denotes all integer constants and that,
here, the parentheses are terminal symbols (unlike in regular expressions, where they
are used to impose structure on the regular-expressions).

This grammar is ambiguous, as evidenced by, e.g., the production

Exp→ Exp+Exp

which has the form that in section 3.3.1 was claimed to imply ambiguity. This am-
biguity is not surprising, as we are used to the fact that an expression like 2+3*4 can
be read in two ways: Either as multiplying the sum of 2 and 3 by 4 or as adding 2
to the product of 3 and 4. Simple electronic calculators will choose the first of these
interpretations (as they always calculate from left to right), whereas scientific calcula-
tors and most programming languages will choose the second, as they use a hierarchy
of operator precedences which dictate that the product must be calculated before the
sum. The hierarchy can be overridden by explicit parenthesisation, e.g., (2+3)*4.

Most programming languages use the same convention as scientific calculators,
so we want to make this explicit in the grammar. Ideally, we would like the expres-
sion 2+3*4 to generate the syntax tree shown in figure 3.10, which reflects the op-
erator precedences by grouping of subexpressions: When evaluating an expression,

3.4. OPERATOR PRECEDENCE 57

Exp
�

�
@

@
Exp + Exp

�
�

@
@

2 Exp * Exp

3 4

Figure 3.10: Preferred syntax tree for 2+3*4 using grammar 3.2

the subexpressions represented by subtrees of the syntax tree are evaluated before the
topmost operator is applied.

A possible way of resolving the ambiguity is to use precedence rules during syntax
analysis to select among the possible syntax trees. Many parser generators allow this
approach, as we shall see in section 3.15. However, some parsing methods require
the grammars to be unambiguous, so we have to express the operator hierarchy in the
grammar itself. To clarify this, we first define some concepts:

• An operator ⊕ is left-associative if the expression a⊕ b⊕ c must be evaluated
from left to right, i.e., as (a⊕b)⊕ c.

• An operator ⊕ is right-associative if the expression a⊕b⊕ c must be evaluated
from right to left, i.e., as a⊕ (b⊕ c).

• An operator ⊕ is non-associative if expressions of the form a⊕b⊕c are illegal.

By the usual convention, - and / are left-associative, as e.g., 2-3-4 is calculated as
(2-3)-4. + and * are associative in the mathematical sense, meaning that it doesn’t
matter if we calculate from left to right or from right to left. However, to avoid am-
biguity we have to choose one of these. By convention (and similarity to - and /) we
choose to let these be left-associative as well. Also, having a left-associative - and
right-associative +, would not help resolving the ambiguity of 2-3+4, as the operators
so-to-speak “pull in different directions”.

List construction operators in functional languages, e.g., :: and @ in SML, are
typically right-associative, as are function arrows in types: a -> b -> c is read as a
-> (b -> c). The assignment operator in C is also right-associative: a=b=c is read
as a=(b=c).

In some languages (like Pascal), comparison operators (like < or >) are non-
associative, i.e., you are not allowed to write 2 < 3 < 4.

3.4.1 Rewriting ambiguous expression grammars
If we have an ambiguous grammar

58 CHAPTER 3. SYNTAX ANALYSIS

E → E ⊕ E
E → num

we can rewrite this to an unambiguous grammar that generates the correct structure.
As this depends on the associativity of ⊕, we use different rewrite rules for different
associativities.

If ⊕ is left-associative, we make the grammar left-recursive by having a recursive
reference to the left only of the operator symbol:

E → E ⊕ E ′

E → E ′

E ′ → num

Now, the expression 2⊕3⊕4 can only be parsed as

E
�

�
@

@
E

�
�

@
@

⊕ E ′

E ⊕ E ′ 4

E ′ 3

2

We get a slightly more complex syntax tree than in figure 3.10, but not enormously so.
We handle right-associativity in a similar fashion: We make the offending produc-

tion right-recursive:

E → E ′ ⊕ E
E → E ′

E ′ → num

Non-associative operators are handled by non-recursive productions:

E → E ′ ⊕ E ′

E → E ′

E ′ → num

Note that the latter transformation actually changes the language that the grammar
generates, as it makes expressions of the form num⊕num⊕num illegal.

So far, we have handled only cases where an operator interacts with itself. This
is easily extended to the case where several operators with the same precedence and
associativity interact with each other, as for example + and -:

3.4. OPERATOR PRECEDENCE 59

Exp → Exp+Exp2
Exp → Exp-Exp2
Exp → Exp2
Exp2 → Exp2*Exp3
Exp2 → Exp2/Exp3
Exp2 → Exp3
Exp3 → num
Exp3 → (Exp)

Grammar 3.11: Unambiguous expression grammar

E → E +E ′

E → E -E ′

E → E ′

E ′ → num

Operators with the same precedence must have the same associativity for this to work,
as mixing left-recursive and right-recursive productions for the same nonterminal makes
the grammar ambiguous. As an example, the grammar

E → E +E ′

E → E ′ ⊕ E
E → E ′

E ′ → num

seems like an obvious generalisation of the principles used above, giving + and ⊕ the
same precedence and different associativity. But not only is the grammar ambiguous, it
doesn’t even accept the intended language. For example, the string num+num⊕num
is not derivable by this grammar.

In general, there is no obvious way to resolve ambiguity in an expression like
1+2⊕3, where + is left-associative and ⊕ is right-associative (or vice-versa). Hence,
most programming languages (and most parser generators) require operators at the
same precedence level to have identical associativity.

We also need to handle operators with different precedences. This is done by using
a nonterminal for each precedence level. The idea is that if an expression uses an
operator of a certain precedence level, then its subexpressions cannot use operators of
lower precedence (unless these are inside parentheses). Hence, the productions for a
nonterminal corresponding to a particular precedence level refers only to nonterminals
that correspond to the same or higher precedence levels, unless parentheses or similar
bracketing constructs disambiguate the use of these. Grammar 3.11 shows how these
rules are used to make an unambiguous version of grammar 3.2. Figure 3.12 show the
syntax tree for 2+3*4 using this grammar.

60 CHAPTER 3. SYNTAX ANALYSIS

Exp
�

�
@

@
Exp + Exp2

�
�

@
@

Exp2 Exp2 * Exp3

Exp3 Exp3 4

2 3

Figure 3.12: Syntax tree for 2+3*4 using grammar 3.11

3.5 Other sources of ambiguity
Most of the potential ambiguity in grammars for programming languages comes from
expression syntax and can be handled by exploiting precedence rules as shown in sec-
tion 3.4. Another classical example of ambiguity is the “dangling-else” problem.

Imperative languages like Pascal or C often let the else-part of a conditional be
optional, like shown in grammar 3.3. The problem is that it isn’t clear how to parse,
for example,

if p then if q then s1 else s2

According to the grammar, the else can equally well match either if. The usual
convention is that an else matches the closest not previously matched if, which, in
the example, will make the else match the second if.

How do we make this clear in the grammar? We can treat if, then and else as a
kind of right-associative operators, as this would make them group to the right, making
an if-then match the closest else. However, the grammar transformations shown in
section 3.4 can’t directly be applied to grammar 3.3, as the productions for conditionals
don’t have the right form.

Instead we use the following observation: When an if and an else match, all ifs
that occur between these must have matching elses. This can easily be proven by
assuming otherwise and concluding that this leads to a contradiction.

Hence, we make two nonterminals: One for matched (i.e. with else-part) con-
ditionals and one for unmatched (i.e. without else-part) conditionals. The result is
shown in grammar 3.13. This grammar also resolves the associativity of semicolon
(right) and the precedence of if over semicolon.

An alternative to rewriting grammars to resolve ambiguity is to use an ambiguous
grammar and resolve conflicts by using precedence rules during parsing. We shall look
into this in section 3.15.

All cases of ambiguity must be treated carefully: It is not enough that we eliminate
ambiguity, we must do so in a way that results in the desired structure: The structure

3.6. SYNTAX ANALYSIS 61

Stat → Stat2;Stat
Stat → Stat2
Stat2 → Matched
Stat2 → Unmatched
Matched → if Exp then Matched else Matched
Matched → id:=Exp
Unmatched → if Exp then Matched else Unmatched
Unmatched → if Exp then Stat2

Grammar 3.13: Unambiguous grammar for statements

of arithmetic expressions is significant, and it makes a difference to which if an else
is matched.

3.6 Syntax analysis
The syntax analysis phase of a compiler will take a string of tokens produced by the
lexer, and from this construct a syntax tree for the string by finding a derivation of the
string from the start symbol of the grammar.

This can be done by guessing derivations until the right one is found, but random
guessing is hardly an effective method. Even so, some parsing techniques are based
on “guessing” derivations. However, these make sure, by looking at the string, that
they will always guess right. These are called predictive parsing methods. Predictive
parsers always build the syntax tree from the root down to the leaves and are hence
also called (deterministic) top-down parsers.

Other parsers go the other way: They search for parts of the input string that
matches right-hand sides of productions and rewrite these to the left-hand nontermi-
nals, at the same time building pieces of the syntax tree. The syntax tree is eventually
completed when the string has been rewritten (by inverse derivation) to the start sym-
bol. Also here, we wish to make sure that we always pick the “right” rewrites, so we
get deterministic parsing. Such methods are called bottom-up parsing methods.

We will in the next sections first look at predictive parsing and later at a bottom-up
parsing method called SLR parsing.

3.7 Predictive parsing
If we look at the left-derivation in figure 3.6, we see that, to the left of the rewritten
nonterminals, there are only terminals. These terminals correspond to a prefix of the
string that is being parsed. In a parsing situation, this prefix will be the part of the input
that has already been read. The job of the parser is now to choose the production by

62 CHAPTER 3. SYNTAX ANALYSIS

which the leftmost unexpanded nonterminal should be rewritten. Our aim is to be able
to make this choice deterministically based on the next unmatched input symbol.

If we look at the third line in figure 3.6, we have already read two as and (if the
input string is the one shown in the bottom line) the next symbol is a b. Since the
right-hand side of the production

T → aTc

starts with an a, we obviously can’t use this. Hence, we can only rewrite T using the
production

T → R

We are not quite as lucky in the next step. None of the productions for R start with a
terminal symbol, so we can’t immediately choose a production based on this. As the
grammar (grammar 3.4) is ambiguous, it should not be a surprise that we can’t always
choose uniquely. If we instead use the unambiguous grammar (grammar 3.9) we can
immediately choose the second production for R. When all the bs are read and we are
at the following c, we choose the empty production for R and match the remaining
input with the rest of the derived string.

If we can always choose a unique production based on the next input symbol, we
are able to do this kind of predictive parsing.

3.8 Nullable and FIRST

In simple cases, like the above, all but one of the productions for a nonterminal start
with distinct terminals and the remaining production does not start with a terminal.
However, the method can be applied also for grammers that don’t have this property:
Even if several productions start with nonterminals, we can choose among these if
the strings these productions can derive begin with symbols from known disjoint sets.
Hence, we define the function FIRST, which given a sequence of grammar symbols
(e.g. the right-hand side of a production) returns the set of symbols with which strings
derived from that sequence can begin:

Definition 3.2 A symbol c is in FIRST(α) if and only if α ⇒ cβ for some sequence β

of grammar symbols.

To calculate FIRST, we need an auxiliary function Nullable, which for a sequence α of
grammar symbols indicates whether or not that sequence can derive the empty string:

Definition 3.3 A sequence α of grammar symbols is Nullable (we write this as Nullable(α))
if and only if α⇒ ε.

A production N → α is called nullable if Nullable(α). We describe calculation of
Nullable by case analysis over the possible forms of sequences of grammar symbols:

3.8. NULLABLE AND FIRST 63

Algorithm 3.4

Nullable(ε) = true
Nullable(a) = false
Nullable(αβ) = Nullable(α)∧Nullable(β)
Nullable(N) = Nullable(α1)∨ . . .∨Nullable(αn),

where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of grammar symbols
and ε represents the empty sequence of grammar symbols.

The equations are quite natural: Any occurence of a terminal on a right-hand side
makes Nullable false, but only one production is required to be nullable for the nonter-
minal to be so.

Note that this is a recursive definition since Nullable for a nonterminal is defined in
terms of Nullable for its right-hand sides, which may contain that same nonterminal.
We can solve this in much the same way that we solved set equations in section 2.6.1.
We have, however, now booleans instead of sets and several equations instead of one.
Still, the method is essentially the same: We have a set of boolean equations:

X1 = F1(X1, . . . ,Xn)
...

Xn = Fn(X1, . . . ,Xn)

We initially assume X1, . . . ,Xn to be all false. We then, in any order, calculate the
right-hand sides of the equations and update the variable on the left-hand side by the
calculated value. We continue until all equations are satisfied. In section 2.6.1, we
required the functions to be monotonic with respect to subset. Correspondingly, we
now require the boolean functions to be monotonic with respect to truth: If we make
more arguments true, the result will also be more true (i.e., it may stay unchanged,
change from false to true, but never change from true to false).

If we look at grammar 3.9, we get these equations for nonterminals and right-hand
sides:

Nullable(T) = Nullable(R)∨Nullable(aTc)
Nullable(R) = Nullable(ε)∨Nullable(bR)

Nullable(R) = Nullable(R)
Nullable(aTc) = Nullable(a)∧Nullable(T)∧Nullable(c)
Nullable(ε) = true
Nullable(bR) = Nullable(b)∧Nullable(R)

In a fixed-point calculation, we initially assume that Nullable is false for all nontermi-
nals and use this as a basis for calculating Nullable for first the right-hand sides and

64 CHAPTER 3. SYNTAX ANALYSIS

Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R f alse f alse true true

aTc f alse f alse f alse f alse
ε f alse true true true
bR f alse f alse f alse f alse

Nonterminal
T f alse f alse true true
R f alse true true true

Figure 3.14: Fixed-point iteration for calculation of Nullable

then the nonterminals. We repeat recalculating these until there is no change between
two iterations. Figure 3.14 shows the fixed-point iteration for the above equations. In
each iteration, we first evaluate the formulae for the right-hand sides and then use the
results of this to evaluate the nonterminals. The right-most column shows the final
result.

We can calculate FIRST in a similar fashion to Nullable:

Algorithm 3.5

FIRST(ε) = /0

FIRST(a) = {a}

FIRST(αβ) =
{

FIRST(α)∪FIRST(β) if Nullable(α)
FIRST(α) if not Nullable(α)

FIRST(N) = FIRST(α1)∪ . . .∪FIRST(αn)
where the productions for N are
N → α1, . . . , N → αn

where a is a terminal, N is a nonterminal, α and β are sequences of grammar symbols
and ε represents the empty sequence of grammar symbols.

The only nontrivial equation is that for αβ. Obviously, anything that can start a
string derivable from α can also start a string derivable from αβ. However, if α is
nullable, a derivation may proceed as αβ ⇒ β ⇒ ···, so anything in FIRST(β) is also
in FIRST(αβ).

The set-equations are solved in the same general way as the boolean equations for
Nullable, but since we work with sets, we initailly assume every set to be empty. For
grammar 3.9, we get the following equations:

3.9. PREDICTIVE PARSING REVISITED 65

Right-hand side Initialisation Iteration 1 Iteration 2 Iteration 3
R /0 /0 {b} {b}

aTc /0 {a} {a} {a}
ε /0 /0 /0 /0

bR /0 {b} {b} {b}
Nonterminal

T /0 {a} {a, b} {a, b}
R /0 {b} {b} {b}

Figure 3.15: Fixed-point iteration for calculation of FIRST

FIRST(T) = FIRST(R)∪FIRST(aTc)
FIRST(R) = FIRST(ε)∪FIRST(bR)

FIRST(R) = FIRST(R)
FIRST(aTc) = FIRST(a)
FIRST(ε) = /0

FIRST(bR) = FIRST(b)

The fixed-point iteration is shown in figure 3.15.
When working with grammars by hand, it is usually quite easy to see for most pro-

ductions if they are nullable and what their FIRST sets are. For example, a production
is not nullable if its right-hand side has a terminal anywhere, and if the right-hand side
starts with a terminal, the FIRST set consists of only that symbol. Sometimes, however,
it is necessary to go through the motions of solving the equations. When working by
hand, it is often useful to simplify the equations before the fixed-point iteration, e.g.,
reduce FIRST(aTc) to {a}.

3.9 Predictive parsing revisited
We are now ready to construct predictive parsers for a wider class of grammars: If the
right-hand sides of the productions for a nonterminal have disjoint FIRST sets, we can
use the next input symbol to choose among the productions.

In section 3.7, we picked the empty production (if any) on any symbol that was
not in the FIRST sets of the non-empty productions for the same nonterminal. We
must actually do this for any production that is Nullable. Hence, at most one produc-
tion for a nonterminal may be nullable, as otherwise we would not be able to choose
deterministically between the two.

We said in section 3.3.1 that our syntax analysis methods will detect ambiguous
grammars. However, this isn’t true with the method as stated above: We will get unique

66 CHAPTER 3. SYNTAX ANALYSIS

choice of production even for some ambiguous grammars, including grammar 3.4. The
syntax analysis will in this case just choose one of several possible syntax trees for a
given input string. In many cases, we do not consider such behaviour acceptable.
In fact, we would very much like our parser construction method to tell us if we by
mistake write an ambiguous grammar.

Even worse, the rules for predictive parsing as presented here might for some un-
ambiguous grammars give deterministic choice of production, but reject strings that
actually belong to the language described by the grammar. If we, for example, change
the second production in grammar 3.9 to

T → aTb

this will not change the choices made by the predictive parser for nonterminal R. How-
ever, always choosing the last production for R on a b will lead to erroneous rejection
of many strings, including ab.

Hence, we add to our construction of predictive parsers a test that will reject am-
biguous grammars and those unambiguous grammars that can cause the parser to fail
erroneously.

We have so far simply chosen a nullable production if and only if no other choice
is possible. However, we should extend this to say that we choose a production N → α

on symbol c if one of the two conditions below are satisfied:

1) c ∈ FIRST(α).

2) Nullable(α) and c can validly follow N in a derivation.

This makes us choose nullable productions more often than before. This, in turn, leads
to more cases where we can not choose uniquely, including the example above with the
modified grammar 3.9 (since b can follow R in valid derivations) and all ambiguous
grammars that are not caught by the original method.

3.10 FOLLOW

For the purpose of rejecting grammars that are problematical for predictive parsing, we
introduce FOLLOW sets for nonterminals.

Definition 3.6 A terminal symbol a is in FOLLOW(N) if and only if there is a deriva-
tion from the start symbol S of the grammar such that S ⇒ αNaβ, where α and β are
(possibly empty) sequences of grammar symbols.

In other words, a terminal c is in FOLLOW(N) if c may follow N at some point in a
derivation.

To correctly handle end-of-string conditions, we want to detect if S ⇒ αN, i.e., if
there are derivations where N can be followed by the end of input. It turns out to be
easy to do this by adding an extra production to the grammar:

3.10. FOLLOW 67

S′→ S$

where S′ is a new nonterminal that replaces S as start symbol and $ is a new termi-
nal symbol representing the end of input. Hence, in the new grammar, $ will be in
FOLLOW(N) exactly if S′⇒ αN$ which is the case exactly when S ⇒ αN.

The easiest way to calculate FOLLOW is to generate a collection of set constraints,
which are subsequently solved. A production

M → αNβ

generates the constraint FIRST(β) ⊆ FOLLOW(N), since β, obviously, can follow N.
Furthermore, if Nullable(β) the production also generates the constraint
FOLLOW(M)⊆ FOLLOW(N) (note the direction of the inclusion). The reason is that,
if a symbol c is in FOLLOW(M), then there (by definition) is a derivation S′⇒ γMcδ.
But since M → αNβ and β is nullable, we can continue this by γMcδ⇒ γαNcδ, so c is
also in FOLLOW(N).

If a right-hand side contains several occurrences of nonterminals, we add con-
straints for all occurrences, i.e., splitting the right-hand side into different αs, Ns and
βs. For example, the production A→ BcB generates the constraint {c} ⊆ FOLLOW(B)
by splitting after the first B and the constraint FOLLOW(A)⊆ FOLLOW(B) by “split-
ting” after the last B.

We solve the constraints in the following fashion:
We start by assuming empty FOLLOW sets for all nonterminals. We then handle

the constraints of the form FIRST(β)⊆ FOLLOW(N): We compute FIRST(β) and add
this to FOLLOW(N). Thereafter, we handle the second type of constraints: For each
constraint FOLLOW(M) ⊆ FOLLOW(N), we add FOLLOW(M) to
FOLLOW(N). We iterate these last steps until no further changes happen.

The steps taken to calculate the follow sets of a grammar are, hence:

1. Add a new nonterminal S′ → S$, where S is the start symbol for the original
grammar. S′ is the start symbol for the extended grammar.

2. For each nonterminal N, locate all occurrences of N on the right-hand sides of
productions. For each occurrence do the following:

2.1 Let β be the rest of the right-hand side after the occurrence of N. Note that
β may be empty.

2.2 Let m = FIRST(β). Add the constraint m ⊆ FOLLOW(N) to the set of
constraints. If β is empty, you can omit the constraint, as it doesn’t add
anything.

68 CHAPTER 3. SYNTAX ANALYSIS

2.3 If Nullable(β), find the nonterminal M at the left-hand side of the produc-
tion and add the constraint FOLLOW(M) ⊆ FOLLOW(N). If M = N, you
can omit the constraint, as it doesn’t add anything. Note that if β is empty,
Nullable(β) is true.

3. Solve the constraints using the following steps:

3.1 Start with empty sets for FOLLOW(N) for all nonterminals N (not includ-
ing S′).

3.2 For each constraint of the form m ⊆ FOLLOW(N) constructed in step 2.1,
add the contents of m to FOLLOW(N).

3.3 Iterating until a fixed-point is reached, for each constraint of the form
FOLLOW(M)⊆FOLLOW(N), add the contents of FOLLOW(M) to FOLLOW(N).

We can take grammar 3.4 as an example of this. We first add the production

T ′→ T $

to the grammar to handle end-of-text conditions. The table below shows the constraints
generated by each production

Production Constraints
T ′→ T $ {$} ⊆ FOLLOW(T)
T → R FOLLOW(T)⊆ FOLLOW(R)
T → aTc {c} ⊆ FOLLOW(T)
R→
R→ RbR {b} ⊆ FOLLOW(R), FOLLOW(R)⊆ FOLLOW(R)

In the above table, we have already calculated the required FIRST sets, so they are
shown as explicit lists of terminals. To initialise the FOLLOW sets, we use the con-
straints that involve these FIRST sets:

FOLLOW(T) = {$, c}
FOLLOW(R) = {b}

and then iterate the subset constraints. Of these, only FOLLOW(T)⊆ FOLLOW(R) is
nontrivial, so we get

FOLLOW(T) = {$, c}
FOLLOW(R) = {$, c,b}

Which is the final values for the FOLLOW sets.
If we return to the question of predictive parsing of grammar 3.4, we see that for the

nonterminal R we should choose the empty production on the symbols in FOLLOW(R),
i.e., {$, c,b} and choose the non-empty production on the symbols in FIRST(RbR),
i.e., {b}. Since these sets overlap (on the symbol b), we can not uniquely choose a
production for R based on the next input symbol. Hence, the revised construction of
predictive parsers (see below) will reject this grammar as possibly ambiguous.

3.11. LL(1) PARSING 69

3.11 LL(1) parsing
We have, in the previous sections, looked at how we can choose productions based on
FIRST and FOLLOW sets, i.e. using the rule that we choose a production N → α on
input symbol c if

• c ∈ FIRST(α), or

• Nullable(α) and c ∈ FOLLOW(N).

If we can always choose a production uniquely by using these rules, this is called
called LL(1) parsing – the first L indicates the reading direction (left-to-right), the
second L indicates the derivation order (left) and the 1 indicates that there is a one-
symbol lookahead. A grammar that can be parsed using LL(1) parsing is called an
LL(1) grammar.

In the rest of this section, we shall see how we can implement LL(1) parsers as
programs. We look at two implementation methods: Recursive descent, where gram-
mar structure is directly translated into the structure of a program, and a table-based
approach that encodes the decision process in a table.

3.11.1 Recursive descent

As the name indicates, recursive descent uses recursive functions to implement predic-
tive parsing. The central idea is that each nonterminal in the grammar is implemented
by a function in the program. Each such function looks at the next input symbol in or-
der to choose a production. The right-hand side of the production is then parsed in the
following way: A terminal is matched against the next input symbol. If they match, we
move on to the following input symbol, otherwise an error is reported. A nonterminal
is parsed by calling the corresponding function.

As an example, figure 3.16 shows pseudo-code for a recursive descent parser for
grammar 3.9. We have constructed this program by the following process:

We have first added a production T ′→ T $ and calculated FIRST and FOLLOW for
all productions.

T ′ has only one production, so the choice is trivial. However, we have added
a check on the next input symbol anyway, so we can report an error if it isn’t in
FIRST(T ′). This is shown in the function parseT’.

For the parseT function, we look at the productions for T . FIRST(R) = {b}, so the
production T → R is chosen on the symbol b. Since R is also Nullable, we must choose
this production also on symbols in FOLLOW(T), i.e., c or $. FIRST(aTc) = {a}, so we
select T → aTc on an a. On all other symbols we report an error.

For parseR, we must choose the empty production on symbols in FOLLOW(R) (c
or $). The production R → bR is chosen on input b. Again, all other symbols produce
an error.

70 CHAPTER 3. SYNTAX ANALYSIS

function parseT’ =
if next = ’a’ or next = ’b’ or next = ’$’ then

parseT ; match(’$’)
else reportError

function parseT =
if next = ’b’ or next = ’c’ or next = ’$’ then

parseR
else if next = ’a’ then

match(’a’) ; parseT ; match(’c’)
else reportError

function parseR =
if next = ’c’ or next = ’$’ then

doNothing
else if next = ’b’ then

match(’b’) ; parseR
else reportError

Figure 3.16: Recursive descent parser for grammar 3.9

The function match takes as argument a symbol, which it tests for equality with
the next input symbol. If they are equal, the following symbol is read into the variable
next. We assume next is initialised to the first input symbol before parseT’ is called.

The program in figure 3.16 only checks if the input is valid. It can easily be ex-
tended to construct a syntax tree by letting the parse functions return the sub-trees for
the parts of input that they parse.

3.11.2 Table-driven LL(1) parsing

In table-driven LL(1) parsing, we encode the selection of productions into a table in-
stead of in the program text. A simple non-recursive program uses this table and a
stack to perform the parsing.

The table is cross-indexed by nonterminal and terminal and contains for each such
pair the production (if any) that is chosen for that nonterminal when that terminal is
the next input symbol. This decision is made just as for recursive descent parsing: The
production N → α is in the table at (N,a) if a is in FIRST(α) or if both Nullable(α) and
a is in FOLLOW(N).

For grammar 3.9 we get the table shown in figure 3.17.
The program that uses this table is shown in figure 3.18. It uses a stack, which at

any time (read from top to bottom) contains the part of the current derivation that has
not yet been matched to the input. When this eventually becomes empty, the parse is

3.11. LL(1) PARSING 71

a b c $
T ′ T ′→ T $ T ′→ T $ T ′→ T $
T T → aTc T → R T → R T → R
R R→ bR R→ R→

Figure 3.17: LL(1) table for grammar 3.9

stack := empty ; push(T’,stack)
while stack <> empty do

if top(stack) is a terminal then
match(top(stack)) ; pop(stack)

else if table(top(stack),next) = empty then
reportError

else
rhs := rightHandSide(table(top(stack),next)) ;
pop(stack) ;
pushList(rhs,stack)

Figure 3.18: Program for table-driven LL(1) parsing

finished. If the stack is non-empty, and the top of the stack contains a terminal, that
terminal is matched against the input and popped from the stack. Otherwise, the top of
the stack must be a nonterminal, which we cross-index in the table with the next input
symbol. If the table-entry is empty, we report an error. If not, we pop the nonterminal
from the stack and replace this by the right-hand side of the production in the table
entry. The list of symbols on the right-hand side are pushed such that the first of these
will be at the top of the stack.

As an example, figure 3.19 shows the input and stack at each step during parsing
of the string aabbbcc$ using the table in figure 3.17. The top of the stack is to the left.

The program in figure 3.18, like the one in figure 3.16, only checks if the input is
valid. It, too, can be extended to build a syntax tree. This can be done by letting each
nonterminal on the stack point to its node in the partially built syntax tree. When the
nonterminal is replaced by one of its right-hand sides, nodes for the symbols on the
right-hand side are added as children to the node.

3.11.3 Conflicts

When a symbol a allows several choices of production for nonterminal N we say that
there is a conflict on that symbol for that nonterminal. Conflicts may be caused by
ambiguous grammars (indeed all ambiguous grammars will cause conflicts) but there
are also unambiguous grammars that cause conflicts. An example of this is the un-

72 CHAPTER 3. SYNTAX ANALYSIS

input stack
aabbbcc$ T ′

aabbbcc$ T $
aabbbcc$ aTc$
abbbcc$ Tc$
abbbcc$ aTcc$
bbbcc$ Tcc$
bbbcc$ Rcc$
bbbcc$ bRcc$
bbcc$ Rcc$
bbcc$ bRcc$
bcc$ Rcc$
bcc$ bRcc$
cc$ Rcc$
cc$ cc$
c$ c$

$ $

Figure 3.19: Input and stack during table-driven LL(1) parsing

ambiguous expression grammar (grammar 3.11). We will in the next section see how
we can rewrite this grammar to avoid conflicts, but it must be noted that this is not
always possible: There are languages for which there exist unambiguous context-free
grammars but where no grammar for the language generates a conflict-free LL(1) ta-
ble. Such languages are said to be non-LL(1). It is, however, important to note the
difference between a non-LL(1) language and a non-LL(1) grammar: A language may
well be LL(1) even though the grammar used to describe it isn’t.

3.12 Rewriting a grammar for LL(1) parsing
In this section we will look at methods for rewriting grammars such that they are more
palatable for LL(1) parsing. In particular, we will look at elimination of left-recursion
and at left factorisation.

It must, however, be noted that not all grammars can be rewritten to allow LL(1)
parsing. In these cases stronger parsing techniques must be used.

3.12.1 Eliminating left-recursion
As mentioned above, the unambiguous expression grammar (grammar 3.11) is not
LL(1). The reason is that all productions in Exp and Exp2 have the same FIRST sets.

3.12. REWRITING A GRAMMAR FOR LL(1) PARSING 73

Overlap like this will always happen when there are left-recursive productions in the
grammar, as the FIRST set of a left recursive production will include the FIRST set
of the nonterminal itself and hence be a superset of the FIRST sets of all the other
productions for that nonterminal. To solve this problem, we must avoid left-recursion
in the grammar.

When we have a nonterminal with some left-recursive and some non-left-recursive
productions, i.e.,

N → Nα1
...

N → Nαm
N → β1

...
N → βn

where the βi do not start with N, we observe that this is equivalent to the regular
expression (β1 | . . . |βn)(α1 | . . . |αm)∗. We can generate the same set of strings by the
grammar

N → β1N′

...
N → βnN′

N′ → α1N′

...
N′ → αmN′

N′ →
This will, however, change the syntax trees that are built from the strings that are

parsed. Hence, after parsing, the syntax tree must be re-structured to obtain the struc-
ture that the original grammar intended. We will return to this in section 3.16.

As an example of left-recursion removal, we take the unambiguous expression
grammar 3.11. This has left recursion in both Exp and Exp2, so we apply the trans-
formation to both of these to obtain grammar 3.20. The resulting grammar 3.20 is now
LL(1).

The rewriting above only serves in the simple case where there is no indirect left-
recursion. Indirect left-recursion can have several faces:

1. There are productions

N1 → N2α1
N2 → N3α2

...
Nk−1 → Nkαk−1
Nk → N1αk

74 CHAPTER 3. SYNTAX ANALYSIS

Exp → Exp2 Exp′

Exp′ → + Exp2 Exp′

Exp′ → - Exp2 Exp′

Exp′ →
Exp2 → Exp3 Exp2′

Exp2′ → * Exp3 Exp2′

Exp2′ → / Exp3 Exp2′

Exp2′ →
Exp3 → num
Exp3 → (Exp)

Grammar 3.20: Removing left-recursion from grammar 3.11

Stat → id:=Exp
Stat → if Exp then Stat Aux
Aux → else Stat
Aux →

Grammar 3.21: Left-factorised grammar for conditionals

2. There is a production N → αNβ where α is Nullable.

or any combination of the two. More precisely, a grammar is (directly or indirectly)
left-recursive if there is a non-empty derivation sequence N ⇒Nα, i.e., if a nonterminal
derives a sequence of grammar symbols that start by that same nonterminal. If there is
indirect left-recursion, we must first rewrite the grammar to make this into direct left-
recursion and then use the method above. We will not go into this here, as in practise
almost all cases of left-recursion are direct left-recursion. Details can be found in [4]

3.12.2 left-factorisation
If two productions for the same nonterminal begin with the same sequence of symbols,
they obviously have overlapping FIRST sets. As an example, in grammar 3.3 the two
productions for if have overlapping prefixes. We rewrite this in such a way that the
overlapping productions are made into a single production that contains the common
prefix of the productions and uses an auxiliary nonterminal for the different suffixes.
See grammar 3.21. In this grammar3, we can uniquely choose one of the productions
for Stat based on one input token.

3We have omitted the production for semicolon, as that would muddle the issue by introducing more
ambiguity.

3.13. SLR PARSING 75

However, in this particular example the grammar still isn’t LL(1): We can’t uniquely
choose a production for Aux, since else is in FOLLOW(Aux) as well as in the FIRST
set of the first production for Aux. This shouldn’t be a surprise to us, since, after all,
the grammar is ambiguous and ambiguous grammars can’t be LL(1). The equivalent
unambiguous grammar (grammar 3.13) can’t easily be rewritten to a form suitable
for LL(1), so in practice grammar 3.21 is used anyway and the conflict is handled by
choosing the non-empty production for Aux whenever the symbol else is encountered,
as this gives the desired behaviour of letting an else match the nearest if. Very few
LL(1) conflicts caused by ambiguity can be removed in this way, however.

3.12.3 Construction of LL(1) parsers summarized
1. Eliminate ambiguity

2. Eliminate left-recursion

3. Perform left factorisation where required

4. Add an extra start production S′→ S$ to the grammar.

5. Calculate FIRST for every production and FOLLOW for every nonterminal.

6. For nonterminal N and input symbol c, choose production N → α when:

• c ∈ FIRST(α), or

• Nullable(α) and c ∈ FOLLOW(N).

This choice is encoded either in a table or a recursive-descent program.

3.13 SLR parsing
A problem with LL(1) parsing is that most grammars need extensive rewriting to get
them into a form that allows unique choice of production. Even though this rewriting
can, to a large extent, be automated, there are still a large number of grammars that can
not be automatically transformed into LL(1) grammars.

A class of bottom-up methods for parsing called LR parsers exist which accept a
much larger class of grammars (though still not all grammars). The main advantage of
LR parsing is that less rewriting is required to get a grammar in acceptable form, but
there are also languages for which there exist LR-acceptable grammars but no LL(1)
grammars. Furthermore, as we shall see in section 3.15, LR parsers allow external
declaration of operator precedences for resolving ambiguity instead of requiring the
grammar itself to be unambiguous.

We will look at a simple form of LR-parsing called SLR parsing. While most parser
generators use a somewhat more complex method called LALR(1) parsing, we limit
the discussion to SLR for the following reasons:

76 CHAPTER 3. SYNTAX ANALYSIS

• It is simpler.

• In practice, LALR(1) handles few grammars that are not also handled by SLR.

• When a grammar is in the SLR class, the parse-tables produced by SLR are
identical to those produced by LALR(1).

• Understanding of SLR principles is sufficient to know how a grammar should be
rewritten when a LALR(1) parser generator rejects it.

The letters “SLR” stand for “Simple”, “Left” and “Right”. “Left” indicates that the
input is read from left to right and the “Right” indicates that a right-derivation is built.

LR parsers are table-driven bottom-up parsers and use two kinds of “actions” in-
volving the input stream and a stack:

shift: A symbol is read from the input and pushed on the stack.

reduce: On the stack, a number of symbols that are identical to the right-hand side of
a production are replaced by the left-hand side of that production. Contrary to
LL parsers, the stack holds the right-hand-side symbols such that the last symbol
on the right-hand side is at the top of the stack.

When all of the input is read, the stack will have a single element, which will be the
start symbol of the grammar.

LR parsers are also called shift-reduce parsers. As with LL(1), our aim is to make
the choice of action depend only on the next input symbol and the symbol on top of the
stack. To achieve this, we construct a DFA. Conceptually, this DFA reads the contents
of the stack, starting from the bottom. If the DFA is in an accepting state when it
reaches the top of the stack, it will cause reduction by a production that is determined
by the state and the next input symbol. If the DFA is not in an accepting state, it will
cause a shift. Hence, at every step, the action can be determined by letting the DFA
read the stack from bottom to top.

Letting the DFA read the entire stack at every action is not very efficient, so, in-
stead, we keep track of the DFA state every time we push an element on the stack,
storing the state as part of the stack element.

When the DFA has indicated a shift, the course of action is easy: We get the state
from the top of the stack and follow the transition marked with the next input symbol
to find the next DFA state.

If the DFA indicated a reduce, we pop the right-hand side of the production off
the stack. We then read the DFA state from the new stack top. When we push the
nonterminal that is the left-hand side of the production, we make a transition from this
DFA state on the nonterminal.

With these optimisations, the DFA only has to inspect a terminal or nonterminal
at the time it is pushed on the stack. At all other times, it just need to read the DFA
state that is stored with the stack element. Hence, we can forget about what the actual

3.14. CONSTRUCTING SLR PARSE TABLES 77

symbols are as soon as the DFA has made the transition. There is, thus, no reason to
keep the symbols on the stack, so we let a stack element just contain the DFA state.
We still use the DFA to determine the next action, but it now only needs to look at the
current state (stored at the top of the stack) and the next input symbol (at a shift action)
or nonterminal (at a reduce action).

We represent the DFA as a table, where we cross-index a DFA state with a symbol
(terminal or nonterminal) and find one of the following actions:

shift n: Read next input symbol, push state n on the stack.
go n: Push state n on the stack.

reduce p: Reduce with the production numbered p.
accept: Parsing has completed successfully.

error: A syntax error has been detected.

Note that the current state is always found at the top of the stack. Shift and reduce
actions are found when a state is cross-indexed with a terminal symbol. Go actions
are found when a state is cross-indexed with a nonterminal. Go actions are only used
immediately after a reduce, but we can’t put them next to the reduce actions in the
table, as the destination state of a go depends on the state on top of the stack after the
right-hand side of the reduced production is popped off: A reduce in the current state
is immediately followed by a go in the state that is found when the stack is popped.

An example SLR table is shown in figure 3.22. The table has been produced from
grammar 3.9 by the method shown below in section 3.14. The actions have been ab-
breviated to their first letters and error is shown as a blank entry.

The algorithm for parsing a string using the table is shown in figure 3.23. As
written, the algorithm just determines if a string is in the language generated by the
grammar. It can, however, easily be extended to build a syntax tree: Each stack element
holds (in addition to the state number) a portion of a syntax tree. When doing a reduce
action, a new (partial) syntax tree is built by using the nonterminal from the reduced
production as root and the syntax trees attached to the popped-off stack elements as
children. The new tree is then attached to the stack element that is pushed.

Figure 3.24 shows an example of parsing the string aabbbcc using the table in
figure 3.22. The stack grows from left to right.

3.14 Constructing SLR parse tables

An SLR parse table has as its core a DFA. Constructing this DFA from the grammar
is not much different from constructing a DFA from a regular expression as shown in
chapter 2: We first construct an NFA using techniques similar to those in section 2.4
and then convert this into a DFA using the construction shown in section 2.5.

However, before we do this, we extend the grammar with a new starting production.
Doing this to grammar 3.9 yields grammar 3.25.

78 CHAPTER 3. SYNTAX ANALYSIS

a b c $ T R
0 s3 s4 r3 r3 g1 g2
1 a
2 r1 r1
3 s3 s4 r3 r3 g5 g2
4 s4 r3 r3 g6
5 s7
6 r4 r4
7 r2 r2

Figure 3.22: SLR table for grammar 3.9

stack := empty ; push(0,stack) ; read(next)
loop

case table[top(stack),next] of
shift s: push(s,stack) ;

read(next)

reduce p: n := the left-hand side of production p ;
r := the number of symbols

on the right-hand side of p ;
pop r elements from the stack ;
push(s,stack) where table[top(stack),n] = go s

accept: terminate with success

error: reportError
endloop

Figure 3.23: Algorithm for SLR parsing

3.14. CONSTRUCTING SLR PARSE TABLES 79

input stack action
aabbbcc$ 0 s3
abbbcc$ 03 s3
bbbcc$ 033 s4
bbcc$ 0334 s4
bcc$ 03344 s4
cc$ 033444 r3 (R→) ; g6
cc$ 0334446 r4 (R→ bR) ; g6
cc$ 033446 r4 (R→ bR) ; g6
cc$ 03346 r4 (R→ bR) ; g2
cc$ 0332 r1 (T → R) ; g5
cc$ 0335 s7
c$ 03357 r2 (T → aTc) ; g5
c$ 035 s7
$ 0357 r2 (T → aTc) ; g1
$ 01 accept

Figure 3.24: Example SLR parsing

0: T ′ → T
1: T → R
2: T → aTc
3: R →
4: R → bR

Grammar 3.25: Example grammar for SLR-table construction

80 CHAPTER 3. SYNTAX ANALYSIS

Production NFA

T ′→ T -����
A -T �������

B
0

T → R -����
C -R �������

D
1

T → aTc -����
E -a ����

F -T ����
G -c �������

H
2

R→ -�������
I

3

R→ bR -����
J -b ����

K -R �������
L

4

Figure 3.26: NFAs for the productions in grammar 3.25

The next step is to make an NFA for each production. This is done exactly like in
section 2.4, treating both terminals and nonterminals as alphabet symbols. The accept-
ing state of each NFA is labelled with the number of the corresponding production.
The result is shown in figure 3.26. Note that we have used the optimised construction
for ε (the empty production) as shown in figure 2.6.

The NFAs in figure 3.26 make transitions both on terminals and nonterminals.
Transitions by terminal corresponds to shift actions and transitions on nonterminals
correspond to go actions. A go action happens after a reduction, whereby some ele-
ments of the stack (corresponding to the right-hand side of a production) are replaced
by a nonterminal (corresponding to the left-hand side of that production). However,
before we can do this, the symbols that form the right-hand side must be on the stack.

To achieve this we must, whenever a transition by a nonterminal is possible, also
allow transitions on the symbols on the right-hand side of a production for that non-
terminal so these eventually can be reduced to the nonterminal. We do this by adding
epsilon-transitions to the NFAs in figure 3.26: Whenever there is a transition from state
s to state t on a nonterminal N, we add epsilon-transitions from s to the initial states
of all the NFAs for productions with N on the left-hand side. Adding these graphi-
cally to figure 3.26 would make a very cluttered picture, so instead we simply note the
transitions in a table, shown in figure 3.27.

Together with these epsilon-transitions, the NFAs in figure 3.26 form a single, com-
bined NFA. This NFA has the starting state A (the starting state of the NFA for the
added start production) and an accepting state for each production in the grammar. We
must now convert this NFA into a DFA using the subset construction shown in sec-
tion 2.5. Instead of showing the resulting DFA graphically, we construct a table where
transitions on terminals are shown as shift actions and transitions on nonterminals as
go actions. This will make the table look similar to figure 3.22, except that no reduce

3.14. CONSTRUCTING SLR PARSE TABLES 81

state epsilon-transitions
A C, E
C I, J
F C, E
K I, J

Figure 3.27: Epsilon-transitions added to figure3.26

DFA NFA Transitions
state states a b c T R

0 A, C, E, I, J s3 s4 g1 g2
1 B
2 D
3 F, C, E, I, J s3 s4 g5 g2
4 K, I, J s4 g6
5 G s7
6 L
7 H

Figure 3.28: SLR DFA for grammar 3.9

or accept actions are present yet. Figure 3.28 shows the DFA constructed from the
NFA made by adding epsilon-transitions in 3.27 to figure 3.26. The set of NFA states
that forms each DFA state is shown in the second column of the table in figure 3.28.
We will need these below for adding reduce and accept actions, but once this is done
we will not need then anymore, and we can remove then from the final table.

To add reduce and accept actions, we first need to compute the FOLLOW sets for
each nonterminal, as described in section 3.10. For purpose of calculating FOLLOW,
we add yet another extra start production: T ′′→ T ′$, to handle end-of-text conditions
as described in section 3.10. This gives us the following result:

FOLLOW(T ′) = {$}
FOLLOW(T) = {c,$}
FOLLOW(R) = {c,$}

We then add reduce actions by the following rule: If a DFA state s contains an NFA
state that accepts production p : N → α, we add reduce p as action to s on all symbols
in FOLLOW(N). Reduction on production 0 (the extra start production that was added
before constructing the NFA) is written as accept.

In figure 3.28, state 0 contains NFA state I, which accepts production 3. Hence, we
add r3 as actions at the symbols c and $ (as these are in FOLLOW(R)). State 1 contains
NFA state B, which accepts production 0. We add this at the symbol $ (FOLLOW(T ′)).

82 CHAPTER 3. SYNTAX ANALYSIS

As noted above, this is written as accept (abbreviated to “a”). In the same way, we add
reduce actions to state 3, 4, 6 and 7. The result is shown in figure 3.22.

Figure 3.29 summarises the SLR construction.

1. Add the production S′→ S, where S is the start symbol of the grammar.

2. Make an NFA for the right-hand side of each production.

3. For each state s that has an outgoing transition on a nonterminal N, add epsilon-
transitions from s to the starting states of the NFAs for the right-hand sides of
the productions for N.

4. Convert the combined NFA to a DFA. Use the starting state of the NFA for the
production added in step 1 as the starting state for the combined NFA.

5. Build a table cross-indexed by the DFA states and grammar symbols (terminals
including $ and nonterminals). Add shift actions at transitions on terminals and
go actions on transitions on nonterminals.

6. Calculate FOLLOW for each nonterminal. For this purpose, we add one more
start production: S′′→ S′$.

7. When a DFA state contains an NFA state that accepts the right-hand side of the
production numbered p, add reduce p at all symbols in FOLLOW(N), where N
is the nonterminal on the left of production p. If production p is the production
added in step 1, the action is accept instead of reduce p.

Figure 3.29: Summary of SLR parse-table construction

3.14.1 Conflicts in SLR parse-tables

When reduce actions are added to SLR parse-tables, we might add one to a place
where there is already a shift action, or we may add reduce actions for several different
productions to the same place. When either of this happens, we no longer have a
unique choice of action, i.e., we have a conflict. The first situation is called a shift-
reduce conflict and the other case a reduce-reduce conflict. Both may occur in the
same place.

Conflicts are often caused by ambiguous grammars, but (as is the case for LL-
parsers) even some non-ambiguous grammars may generate conflicts. If a conflict is
caused by an ambiguous grammar, it is usually (but not always) possible to find an
equivalent unambiguous grammar. Methods for eliminating ambiguity were discussed
in sections 3.4 and 3.5. Alternatively, operator precedence declarations may be used to
disambiguate an ambiguous grammar, as we shall see in section 3.15.

3.15. USING PRECEDENCE RULES IN LR PARSE TABLES 83

But even unambiguous grammars may in some cases generate conflicts in SLR-
tables. In some cases, it is still possible to rewrite the grammar to get around the
problem, but in a few cases the language simply isn’t SLR. Rewriting an unambiguous
grammar to eliminate conflicts is somewhat of an art. Investigation of the NFA states
that form the problematic DFA state will often help identifying the exact nature of the
problem, which is the first step towards solving it. Sometimes, changing a production
from left-recursive to right-recursive may help, even though left-recursion in general
isn’t a problem for SLR-parsers, as it is for LL(1)-parsers.

3.15 Using precedence rules in LR parse tables
We saw in section 3.12.2, that the conflict arising from the dangling-else ambiguity
could be removed by removing one of the entries in the LL(1) parse table. Resolving
ambiguity by deleting conflicting actions can also be done in SLR-tables. In general,
there are more cases where this can be done successfully for SLR-parsers than for
LL(1)-parsers. In particular, ambiguity in expression grammars like grammar 3.2 can
be eliminated this way in an SLR table, but not in an LL(1) table. Most LR-parser
generators allow declarations of precedence and associativity for tokens used as infix-
operators. These declarations are then used to eliminate conflicts in the parse tables.

There are several advantages to this approach:

• Ambiguous expression grammars are more compact and easier to read than un-
ambiguous grammars in the style of section 3.4.1.

• The parse tables constructed from ambiguous grammars are often smaller than
tables produced from equivalent unambiguous grammars.

• Parsing using ambiguous grammars is (slightly) faster, as fewer reductions of the
form Exp2→ Exp3 etc. are required.

Using precedence rules to eliminate conflicts is very simple. Grammar 3.2 will gener-
ate several conflicts:

1) A conflict between shifting on + and reducing by the production
Exp→ Exp+Exp.

2) A conflict between shifting on + and reducing by the production
Exp→ Exp*Exp.

3) A conflict between shifting on * and reducing by the production
Exp→ Exp+Exp.

4) A conflict between shifting on * and reducing by the production
Exp→ Exp*Exp.

84 CHAPTER 3. SYNTAX ANALYSIS

And several more of similar nature involving - and /, for a total of 16 conflicts. Let us
take each of the four conflicts above in turn and see how precedence rules can be used
to eliminate them.

1) This conflict arises from expressions like a+b+c. After having read a+b, the next
input symbol is a +. We can now either choose to reduce a+b, grouping around
the first addition before the second, or shift on the plus, which will later lead
to b+c being reduced and hence grouping around the second addition before the
first. Since + is left-associative, we prefer the first of these options and hence
eliminate the shift-action from the table and keep the reduce-action.

2) The offending expressions here have the form a*b+c. Since we want multiplica-
tion to bind stronger than addition, we, again, prefer reduction over shifting.

3) In expressions of the form a+b*c, we, as before, want multiplication to group
stronger, so we do a shift to avoid grouping around the + operator and, hence,
eliminate the reduce-action from the table.

4) This case is identical to case 1, where a left-associative operator conflicts with
itself and is likewise handled by eliminating the shift.

In general, elimination of conflicts by operator precedence declarations can be sum-
marised into the following rules:

a) If the conflict is between two operators of different priority, eliminate the ac-
tion with the lowest priority operator in favour of the action with the highest
priority. The operator associated with a reduce-action is the operator used in the
production that is reduced.

b) If the conflict is between operators of the same priority, the associativity (which
must be the same, as noted in section 3.4.1) of the operators is used: If the
operators are left-associative, the shift-action is eliminated and the reduce-action
retained. If the operators are right-associative, the reduce-action is eliminated
and the shift-action retained. If the operators are non-associative, both actions
are eliminated.

c) If there are several operators with declared precedence in the production that is
used in a reduce-action, the last of these is used to determine the precedence of
the reduce-action.4

Prefix and postfix operators can be handled similarly. Associativity only applies to
infix operators, so only the precedence of prefix and postfix operators matters.

Note that only shift-reduce conflicts are eliminated by the above rules. Some parser
generators allow also reduce-reduce conflicts to be eliminated by precedence rules (in

4Using several operators with declared priorities in the same production should be done with care.

3.16. USING LR-PARSER GENERATORS 85

which case the production with the highest-precedence operator is preferred), but this
is not as obviously useful as the above.

The dangling-else ambiguity (section 3.5) can also be eliminated using precedence
rules: Giving else a higher precedence than then or giving them the same precedence
and making them right-associative will handle the problem, as either of these will make
the parser shift on else instead of reducing Stat → if Exp then Stat when this is
followed by else.

Not all conflicts should be eliminated by precedence rules. Excessive use of prece-
dence rules may cause the parser to accept only a subset of the intended language
(i.e., if a necessary action is eliminated by a precedence rule). So, unless you know
what you are doing, you should limit the use of precedence declarations to operators
in expressions.

3.16 Using LR-parser generators
Most LR-parser generators use an extended version of the SLR construction called
LALR(1). In practice, however, there is little difference between these, so a LALR(1)
parser generator can be used with knowledge of SLR only.

Most LR-parser generators organise their input in several sections:

• Declarations of the terminals and nonterminals used.

• Declaration of the start symbol of the grammar.

• Declarations of operator precedence.

• The productions of the grammar.

• Declaration of various auxiliary functions and data-types used in the actions (see
below).

3.16.1 Declarations and actions
Each nonterminal and terminal is declared and associated with a data-type. For a ter-
minal, the data-type is used to hold the values that are associated with the tokens that
come from the lexer, e.g., the values of numbers or names of identifiers. For a nonter-
minal, the type is used for the values that are built for the nonterminals during parsing
(at reduce-actions).

While, conceptually, parsing a string produces a syntax tree for that string, parser
generators usually allow more control over what is actually produced. This is done by
assigning an action to each production. The action is a piece of program text that is
used to calculate the value of a reduced production by using the values associated with
the symbols on the right-hand side. For example, by putting appropriate actions on
each production, the numerical value of an expression may be calculated as the result

86 CHAPTER 3. SYNTAX ANALYSIS

of parsing the expression. Indeed, compilers can be made such that the value produced
during parsing is the compiled code of a program. For all but the simplest compilers it
is, however, better to build some kind of syntax representation during parsing and then
later operate on this representation.

3.16.2 Abstract syntax
The syntax trees described in section 3.3.1 are not always suitable for compilation.
They contain a lot of redundant information: Parentheses, keywords used for grouping
purposes only, and so on. They also reflect structures in the grammar that are only
introduced to eliminate ambiguity or to get the grammar accepted by a parser genera-
tor (e.g. left-factorisation or elimination of left-recursion). Hence, abstract syntax is
introduced.

Abstract syntax keeps the essence of the structure of the text but omits the irrelevant
details. An abstract syntax tree is a tree structure where each node corresponds to a set
of nodes in the (concrete) syntax tree. For example, the concrete syntax tree shown in
figure 3.12 may be represented by the following abstract syntax tree:

PlusExp
�

�
@

@
NumExp(2) MulExp

�
�

@
@

NumExp(3) NumExp(4)

Here the names PlusExp, MulExp and NumExp may be constructors in a data-type or
they may be elements from an enumerated type used as tags in a union-type.

There is much freedom in the choice of abstract syntax. Some forms of abstract
syntax may retain all of the information available in the concrete syntax trees plus
additional positioning information used for error-reporting. Other forms may contain
just the essentials necessary for compilation.

Exactly how the abstract syntax tree is built and represented depends on the lan-
guage used to write the parser. Normally, the action assigned to a production can access
the values of the terminals and nonterminals through specially named variables (often
called $1, $2, etc.) and produces its value either by assigning it to a special variable
($0) or letting it be the return value of the action.

The data structures used for building abstract syntax trees depend on the lan-
guage. Most statically typed functional languages support tree-structured datatypes
with named constructors. In such languages, it is natural to represent abstract syn-
tax by one datatype per syntactic category (e.g., Exp above) and one constructor for
each instance of the syntactic category (e.g., PlusExp, NumExp and MulExp above). In
Pascal, each syntactic category can be represented by a variant record type and each
instance as a variant of that. In C, a syntactic category can be represented by a union of

3.16. USING LR-PARSER GENERATORS 87

structs, each representing an instance of the syntactic category. In object-oriented lan-
guages a syntactic category can be represented as an abstract class or interface where
each instance is a concrete class that implements the abstract class or interface.

In most cases, it is fairly simple to build abstract syntax using the actions for the
productions in the grammar. It becomes complex only when the abstract syntax tree
must have a structure that differs nontrivially from the concrete syntax tree.

One example of this is if left-recursion has been eliminated for the purpose of
making an LL(1) parser. The intended abstract syntax is in most cases similar to the
concrete syntax tree of the original left-recursive grammar rather than that of the trans-
formed grammar. As an example, the left-recursive grammar

E → E +num
E → num

gets transformed by left-recursion elimination into

E → numE ′

E ′ → +numE ′

E ′ →

Which yields a completely different syntax tree. We can use the actions assigned to the
productions in the transformed grammar to build an abstract syntax tree that reflects
the structure in the original grammar.

In the transformed grammar, E ′ should return an abstract syntax tree with a hole.
The intention is that this hole will eventually be filled by another abstract syntax tree.

• The second production for E ′ returns just a hole.

• In the first production for E ′, the + and num terminals are used to produce a tree
for a plus-expression with a hole in place of the first operand. This tree is used
to fill the hole in the tree returned by the recursive use of E ′. The result is a new
tree with a hole.

• In the production for E, the hole in the tree returned by the E ′ nonterminal is
filled by the number that is the value of the num terminal.

The best way of building trees with holes depends on the type of language used to
implement the actions. Let us first handle the case where a functional language is
used.

The actions shown below for the original grammar will build an abstract syntax
tree similar to the one shown above.

E → E +num { PlusExp($1,NumExp($3)) }
E → num { NumExp($1) }

In functional languages, an abstract syntax tree with a hole can be represented by a
function. The function takes as argument what should be put into the hole and returns

88 CHAPTER 3. SYNTAX ANALYSIS

a syntax tree where the hole is filled with this argument. The hole is represented by the
argument-variable of the function. In terms of actions, this becomes

E → numE ′ { $2(NumExp($1)) }
E ′ → +numE ′ { λx.$3(PlusExp(x,NumExp($2))) }
E ′ → { λx.x }

where λ builds a new function. In SML, λx.e is written as fn x => e, in Haskell as
\x -> e and in Scheme as (lambda (x) e).
The imperative version of the actions in the original grammar is

E → E +num { $0 = PlusExp($1,NumExp($3)) }
E → num { $0 = NumExp($1) }

In this setting, NumExp and PlusExp aren’t constructors but functions that allocate and
build a value and return this. Functions of the kind used in the solution for functional
languages can not be built in most imperative languages, so holes must be an explicit
part of the data-type that is used to represent abstract syntax. These holes will be
overwritten when the values are supplied. E ′ will, hence, return a record holding both
an abstract syntax tree and a pointer to the hole that should be overwritten. As actions
(using C-style notation), this becomes

E → numE ′ { $2->hole = NumExp($1);
$0 = $2.tree }

E ′ → +numE ′ { $0.hole = makeHole();
$3->hole = PlusExp($0.hole,NumExp($2));
$0.tree = $3.tree }

E ′ → { $0.hole = makeHole();
$0.tree = $0.hole }

This may look bad, but when using LR-parser generators, left-recursion removal is
rarely needed, and parser generators based on LL(1) often do left-recursion removal
automatically and transform the actions appropriately. An alternative approach is to let
the parser build an intermediate (semi-abstract) syntax tree from the transformed gram-
mar, and then let a separate pass restructure the intermediate syntax tree to produce the
intended abstract syntax.

3.16.3 Conflict handling in parser generators
For all but the simplest grammars, the user of a parser generator should expect conflicts
to be reported when the grammar is first presented to the parser generator. These
conflicts can be caused by ambiguity or by the limitations of the parsing method. In
any case, the conflicts can normally be eliminated by rewriting the grammar or by
adding precedence declarations.

3.16. USING LR-PARSER GENERATORS 89

NFA-state Textual representation
A T’ -> . T
B T’ -> T .
C T -> . R
D T -> R .
E T -> . aTc
F T -> a . Tc
G T -> aT . c
H T -> aTc .
I R -> .
J R -> . bR
K R -> b . R
L R -> bR .

Figure 3.30: Textual representation of NFA states

Most parser generators can provide information that is useful to locate where in
the grammar the problems are. When a parser generator reports conflicts, it will tell in
which state in the table these occur. This state can be written out in a (barely) human-
readable form as a set of NFA-states. Since most parser generators rely on pure ASCII,
they can not actually draw the NFAs as diagrams. Instead, they rely on the fact that
each state in the NFA corresponds to a position in a production in the grammar. If we,
for example, look at the NFA states in figure 3.26, these would be written as shown in
figure 3.30. Note that a ‘.’ is used to indicate the position of the state in the production.
State 4 of the table in figure 3.28 will hence be written as

R -> b . R
R -> .
R -> . bR

The set of NFA states, combined with information about on which symbols a conflict
occurs, can be used to find a remedy, e.g. by adding precedence declarations.

If all efforts to get a grammar through a parser generator fails, a practical solution
may be to change the grammar so it accepts a larger language than the intended lan-
guage and then post-process the syntax tree to reject “false positives”. This elimination
can be done at the same time as type-checking (which, too, may reject programs).

Some languages allow programs to declare precedence and associativity for user-
defined operators. This can make it difficult to handle precedence during parsing, as
the precedences are not known when the parser is generated. A typical solution is
to parse all operators using the same precedence and then restructure the syntax tree
afterwards, but see also exercise 3.20.

90 CHAPTER 3. SYNTAX ANALYSIS

3.17 Properties of context-free languages

In section 2.10, we described some properties of regular languages. Context-free lan-
guages share some, but not all, of these.

For regular languages, deterministic (finite) automata cover exactly the same class
of languages as nondeterministic automata. This is not the case for context-free lan-
guages: Nondeterministic stack automata do indeed cover all context-free languages,
but deterministic stack automata cover only a strict subset. The subset of context-free
languages that can be recognised by deterministic stack automata are called determin-
istic context-free languages. Deterministic context-free languages can be recognised
by LR parsers.

We have noted that the basic limitation of regular languages is finiteness: A fi-
nite automaton can not count unboundedly and hence can not keep track of matching
parenthesis or similar properties. Context-free languages are capable of such counting,
essentially using the stack for this purpose. Even so, there are limitations: A context-
free language can only keep count of one thing at a time, so while it is possible (even
trivial) to describe the language {anbn | n ≥ 0} by a context-free grammar, the lan-
guage {anbncn | n ≥ 0} is not a context-free language. The information kept on the
stack follows a strict LIFO order, which further restricts the languages that can be de-
scribed. It is, for example, trivial to represent the language of palindromes (strings that
read the same forwards and backwards) by a context-free grammar, but the language
of strings that can be constructed by repeating a string twice is not context-free.

Context-free languages are, as regular languages, closed under union: It is easy to
construct a grammar for the union of two languages given grammars for each of these.
Context-free languages are also closed under prefix, suffix, subsequence and reversal.
Indeed, the language consisting of all subsequences of a context-free language is ac-
tually regular. However, context-free languages are not closed under intersection or
complement. For example, the languages {anbncm | m,n≥ 0} and {ambncn | m,n≥ 0}
are both context-free while their intersection {anbncn | n≥ 0} is not.

3.18 Further reading

Context-free grammars were first proposed as a notation for describing natural lan-
guages (e.g., English or French) by the linguist Noam Chomsky [11], who defined
this as one of three grammar notations for this purpose. The qualifier “context-free”
distinguishes this notation from the other two grammar notations, which were called
“context-sensitive” and “unconstrained”. In context-free grammars, derivation of a
nonterminal is independent of the context in which the terminal occurs, whereas the
context can restrict the set of derivations in a context-sensitive grammar. Unrestricted
grammars can use the full power of a universal computer, so these represent all com-
putable languages.

Context-free grammars are actually too weak to describe natural languages, but

3.18. FURTHER READING 91

were adopted for defining the Algol60 programming language [13]. Since then, vari-
ants of this notation has been used for defining or describing almost all programming
languages.

Some languages have been designed with specific parsing methods in mind: Pas-
cal [16] has been designed for LL(1) parsing while C [19] was originally designed to
fit LALR(1) parsing, but this property was lost in subsequent versions of the language.

Most parser generators are based on LALR(1) parsing, but a few use LL(1) parsing.
An example of this is ANTLR (http://www.antlr.org/).

“The Dragon Book” [4] tells more about parsing methods than the present book.
Several textbooks exist that describe properties of context-free languages, e.g., [15].
The methods presented here for rewriting grammars based on operator precedence

uses only infix operators. If prefix or postfix operators have higher precedence than
all infix operators, the method presented here will work (with trivial modifications),
but if there are infix operators that have higher precedence than some prefix or postfix
operators, it breaks down. A method for handling arbitrary precedences of infix, prefix
and postfix operators is presented in [1].

Exercises

Exercise 3.1

Figures 3.7 and 3.8 show two different syntax trees for the string aabbbcc using
grammar 3.4. Draw a third, different syntax tree for aabbbcc using the same grammar
and show the left-derivation that corresponds to this syntax tree.

Exercise 3.2

Draw the syntax tree for the string aabbbcc using grammar 3.9.

Exercise 3.3

Write an unambiguous grammar for the language of balanced parentheses, i.e. the
language that contains (among other) the sequences

ε (i.e. the empty string)
()

(())
()()

(()(()))

but none of the following

92 CHAPTER 3. SYNTAX ANALYSIS

(
)
)(
(()

()())

Exercise 3.4

Write grammars for each of the following languages:

a) All sequences of as and bs that contain the same number of as and bs (in any
order).

b) All sequences of as and bs that contain strictly more as than bs.

c) All sequences of as and bs that contain a different number of as and bs.

d) All sequences of as and bs that contain twice as many as as bs.

Exercise 3.5

We extend the language of balanced parentheses from exercise 3.3 with two symbols:
[and]. [corresponds to exactly two normal opening parentheses and] corresponds
to exactly two normal closing parentheses. A string of mixed parentheses is legal if and
only if the string produced by replacing [by ((and] by)) is a balanced parentheses
sequence. Examples of legal strings are

ε

()()
((]
[]
[)(]
[(])

a) Write a grammar that recognises this language.

b) Draw the syntax trees for [)(] and [(]).

3.18. FURTHER READING 93

Exercise 3.6

Show that the grammar

A → −A
A → A− id
A → id

is ambiguous by finding a string that has two different syntax trees.
Now make two different unambiguous grammars for the same language:

a) One where prefix minus binds stronger than infix minus.

b) One where infix minus binds stronger than prefix minus.

Show the syntax trees using the new grammars for the string you used to prove the
original grammar ambiguous.

Exercise 3.7

In grammar 3.2, replace the operators − and / by < and :. These have the following
precedence rules:

< is non-associative and binds less tightly than + but more tightly than :.

: is right-associative and binds less tightly than any other operator.

Write an unambiguous grammar for this modified grammar using the method shown
in section 3.4.1. Show the syntax tree for 2 : 3 < 4 + 5 : 6 ∗ 7 using the unambiguous
grammar.

Exercise 3.8

Extend grammar 3.13 with the productions

Exp → id
Matched →

then calculate Nullable and FIRST for every production in the grammar.
Add an extra start production as described in section 3.10 and calculate FOLLOW

for every nonterminal in the grammar.

94 CHAPTER 3. SYNTAX ANALYSIS

Exercise 3.9
Calculate Nullable, FIRST and FOLLOW for the nonterminals A and B in the grammar

A → BAa
A →
B → bBc
B → AA

Remember to extend the grammar with an extra start production when calculating
FOLLOW.

Exercise 3.10
Eliminate left-recursion from grammar 3.2.

Exercise 3.11
Calculate Nullable and FIRST for every production in grammar 3.20.

Exercise 3.12
Add a new start production Exp′ → Exp$ to the grammar produced in exercise 3.10
and calculate FOLLOW for all nonterminals in the resulting grammar.

Exercise 3.13
Make a LL(1) parser-table for the grammar produced in exercise 3.12.

Exercise 3.14
Consider the following grammar for postfix expressions:

E → E E +
E → E E ∗
E → num

a) Eliminate left-recursion in the grammar.

b) Do left-factorisation of the grammar produced in question a.

c) Calculate Nullable, FIRST for every production and FOLLOW for every nonter-
minal in the grammar produced in question b.

d) Make a LL(1) parse-table for the grammar produced in question b.

3.18. FURTHER READING 95

Exercise 3.15
Extend grammar 3.11 with a new start production as shown in section 3.14 and calcu-
late FOLLOW for every nonterminal. Remember to add an extra start production for
the purpose of calculating FOLLOW as described in section 3.10.

Exercise 3.16
Make NFAs (as in figure 3.26) for the productions in grammar 3.11 (after extending it
as shown in section 3.14) and show the epsilon-transitions as in figure 3.27. Convert
the combined NFA into an SLR DFA like the one in figure 3.28. Finally, add reduce
and accept actions based on the FOLLOW sets calculated in exercise 3.15.

Exercise 3.17
Extend grammar 3.2 with a new start production as shown in section 3.14 and calculate
FOLLOW for every nonterminal. Remember to add an extra start production for the
purpose of calculating FOLLOW as described in section 3.10.

Exercise 3.18
Make NFAs (as in figure 3.26) for the productions in grammar 3.2 (after extending it as
shown in section 3.14) and show the epsilon-transitions as in figure 3.27. Convert the
combined NFA into an SLR DFA like the one in figure 3.28. Add reduce actions based
on the FOLLOW sets calculated in exercise 3.17. Eliminate the conflicts in the table
by using operator precedence rules as described in section 3.15. Compare the size of
the table to that from exercise 3.16.

Exercise 3.19
Consider the grammar

T → T -> T
T → T * T
T → int

where -> is considered a single terminal symbol.

a) Add a new start production as shown in section 3.14.

b) Calculate FOLLOW(T). Remember to add an extra start production.

c) Construct an SLR parser-table for the grammar.

d) Eliminate conflicts using the following precedence rules:

96 CHAPTER 3. SYNTAX ANALYSIS

– * binds tighter than ->.

– * is left-associative.

– -> is right-associative.

Exercise 3.20
In section 3.16.3 it is mentioned that user-defined operator precedences in program-
ming languages can be handled by parsing all operators with a single fixed precedence
and associativity and then using a separate pass to restructure the syntax tree to reflect
the declared precedences. Below are two other methods that have been used for this
purpose:

a) An ambiguous grammar is used and conflicts exist in the SLR table. Whenever
a conflict arises during parsing, the parser consults a table of precedences to
resolve this conflict. The precedence table is extended whenever a precedence
declaration is read.

b) A terminal symbol is made for every possible precedence and associativity com-
bination. A conflict-free parse table is made either by writing an unambiguous
grammar or by eliminating conflicts in the usual way. The lexical analyser uses
a table of precedences to assign the correct terminal symbol to each operator it
reads.

Compare all three methods. What are the advantages and disadvantages of each method?.

Exercise 3.21
Consider the grammar

A → a A a
A → b A b
A →

a) Describe the language that the grammar defines.

b) Is the grammar ambiguous? Justify your answer.

c) Construct a SLR parse table for the grammar.

d) Can the conflicts in the table be eliminated?

Chapter 4

Symbol Tables

4.1 Introduction

An important concept in programming languages is the ability to name objects such as
variables, functions and types. Each such named object will have a declaration, where
the name is defined as a synonym for the object. This is called binding. Each name
will also have a number of uses, where the name is used as a reference to the object to
which it is bound.

Often, the declaration of a name has a limited scope: a portion of the program
where the name will be visible. Such declarations are called local declarations, whereas
a declaration that makes the declared name visible in the entire program is called
global. It may happen that the same name is declared in several nested scopes. In
this case, it is normal that the declaration closest to a use of the name will be the one
that defines that particular use. In this context closest is related to the syntax tree of the
program: The scope of a declaration will be a sub-tree of the syntax tree and nested
declarations will give rise to scopes that are nested sub-trees. The closest declaration
of a name is hence the declaration corresponding to the smallest sub-tree that encloses
the use of the name.

Scoping based in this way on the structure of the syntax tree is called static or lexi-
cal binding and is the most common scoping rule in modern programming languages.
We will in the rest of this chapter (indeed, the rest of this book) assume that static
binding is used. A few languages have dynamic binding, where the declaration that
was most recently encountered during execution of the program defines the current use
of the name. By its nature, dynamic binding can not be resolved at compile-time, so
the techniques that in the rest of this chapter are described as being used in a compiler
will have to be used at run-time if the language uses dynamic binding.

A compiler will need to keep track of names and the objects these are bound to, so
that any use of a name will be attributed correctly to its declaration. This is typically
done using a symbol table (or environment, as it is sometimes called).

97

98 CHAPTER 4. SYMBOL TABLES

4.2 Symbol tables

A symbol table is a table that binds names to objects. We need a number of operations
on symbol tables to accomplish this:

• We need an empty symbol table, in which no name is defined.

• We need to be able to bind a name to an object. In case the name is already
defined in the symbol table, the new binding takes precedence over the old.

• We need to be able to look up a name in a symbol table to find the object the
name is bound to. If the name is not defined in the symbol table, we need to be
told that.

• We need to be able to enter a new scope.

• We need to be able to exit a scope, reestablishing the symbol table to what it was
before the scope was entered.

4.2.1 Implementation of symbol tables

There are many ways to implement symbol tables, but the most important distinction
between these is how scopes are handled. This may be done using a persistent (or
functional) data structure, or it may be done using an imperative (or destructively-
updated) data structure.

A persistent data structure has the property that no operation on the structure will
destroy it. Conceptually, a new copy is made of the data structure whenever an oper-
ation updates it, hence preserving the old structure unchanged. This means that it is
trivial to reestablish the old symbol table when exiting a scope, as it has been preserved
by the persistent nature of the data structure. In practice, only a small portion of the
data structure is copied, most is shared with the previous version.

In the imperative approach, only one copy of the symbol table exist, so explicit
actions are required to store the information needed to restore the symbol table to a
previous state. This can be done by using a stack. When an update is made, the
old binding of a name that is overwritten is recorded (pushed) on the stack. When a
new scope is entered, a marker is pushed on the stack. When the scope is exited, the
bindings on the stack (down to the marker) are used to reestablish the old symbol table.
The bindings and the marker are popped off the stack in the process, returning the stack
to the state it was in before the scope was entered.

Below, we will look at simple implementations of both approaches and discuss
how more advanced approaches can overcome some of the efficiency problems with
the simple approaches.

4.2. SYMBOL TABLES 99

4.2.2 Simple persistent symbol tables
In functional languages like SML, Scheme or Haskell, persistent data structures are the
norm rather than the exception (which is why persistent data structures are sometimes
called functional). For example, when a new element is added to a list or an element is
taken off the head of the list, the old list still exists and can be used elsewhere. A list
is a natural way to implement a symbol table in a functional language: A binding is a
pair of a name and its associated object, and a symbol table is a list of such pairs. The
operations are implemented in the following way:

empty: An empty symbol table is an empty list.

binding: A new binding (name/object pair) is added (cons’ed) to the front of the list.

lookup: The list is searched until a matching name is found. The object paired with
the name is then returned. If the end of the list is reached, an indication that this
happened is returned instead. This indication can be made by raising an excep-
tion or by letting the lookup function return a type that can hold both objects and
error-indications, i.e., a sum-type.

enter: The old list is remembered, i.e., a reference is made to it.

exit: The old list is recalled, i.e., the above reference is used.

The latter two operations are not really explicit operations but done in the compiler by
binding a symbol table to a name before entering a new scope and then referring to this
name again after the scope is exited.

As new bindings are added to the front of the list, these will automatically take
precedence over old bindings as the list is searched from the front to the back.

Another functional approach to symbol tables is using functions: A symbol table
is quite naturally seen as a function from names to objects. The operations are:

empty: An empty symbol table is a function that returns an error indication (or raises
an exception) no matter what its argument is.

binding: Adding a binding of the name n to the object o in a symbol table t is done by
defining a new symbol-table function t ′ in terms t and the new binding. When
t ′ is called with a name n1 as argument, it compares n1 to n. If they are equal,
t ′ returns the object o. Otherwise, t ′ calls t with n1 as argument and returns the
result that this call yields.

lookup: The symbol-table function is called with the name as argument.

enter: The old function is remembered (referenced).

exit: The old function is recalled (by using a reference).

Again, the latter two operations are mostly implicit.

100 CHAPTER 4. SYMBOL TABLES

4.2.3 A simple imperative symbol table
Imperative symbol tables are natural to use if the compiler is written in an imperative
language. A simple imperative symbol table can be implemented as a stack, which
works in a way similar to the list-based functional implementation:

empty: An empty symbol table is an empty stack.

binding: A new binding (name/object pair) is pushed on top of the stack.

lookup: The stack is searched top-to-bottom until a matching name is found. The
object paired with the name is then returned. If the bottom of the stack is reached,
we instead return an error-indication.

enter: The top-of-stack pointer is remembered.

exit: The old top-of-stack pointer is recalled and becomes the current.

This is not quite a persistent data structure, as leaving a scope will destroy its symbol
table. This doesn’t matter, though, as in most languages a scope won’t be needed again
after it is exited.

4.2.4 Efficiency issues
While all of the above implementations are simple, they all share the same efficiency
problem: Lookup is done by linear search, so the worst-case time for lookup is propor-
tional to the size of the symbol table. This is mostly a problem in relation to libraries: It
is quite common for a program to use libraries that define literally hundreds of names.

A common solution to this problem is hashing: Names are hashed (processed) into
integers, which are used to index an array. Each array element is then a linear list of
the bindings of names that share the same hash code. Given a large enough hash table,
these lists will typically be very short, so lookup time is basically constant.

Using hash tables complicates entering and exiting scopes somewhat. While each
element of the hash table is a list that can be handled like in the simple cases, doing this
for all the array-elements at every entry and exit imposes a major overhead. Instead, it
is typical for imperative implementations to use a single stack to record all updates to
the table such that they can be undone in time proportional to the number of updates
that were done in the local scope. Functional implementations typically use persistent
hash-tables, which eliminates the problem.

4.2.5 Shared or separate name spaces
In some languages (like C) a variable and a function in the same scope may have the
same name, as the context of use will make it clear whether a variable or a function
is used. We say that functions and variables have separate name spaces, which means

4.3. FURTHER READING 101

that defining a name in one space doesn’t affect the other. In other languages (e.g. Pas-
cal or SML) the context can not (easily) distinguish variables from functions. Hence,
declaring a local variable might hide a function declared in an outer scope or vice versa.
These languages have a shared name space for variables and functions.

Name spaces may be shared or separate for all the kinds of names that can appear
in a program, e.g., variables, functions, types, exceptions, constructors, classes, field
selectors etc. Sharing can exist between any subsets of these name spaces, and which
name spaces are shared is language-dependent.

Separate name spaces are easily implemented using a symbol table per name space,
whereas shared name spaces naturally share a single symbol table. However, it is
sometimes convenient to use a single symbol table even if there are separate name
spaces. This can be done fairly easily by adding name-space indicators to the names.
A name-space indicator can be a textual prefix to the name or it may be a tag that is
paired with the name. In either case, a lookup in the symbol table must match both
name and name-space indicator of the symbol that is looked up with the entry in the
table.

4.3 Further reading
Most algorithms-and-data-structures textbooks include descriptions of methods for
hashing strings and implementing hash tables. A description of efficient persistent
data structures for functional languages can be found in [26].

Exercises

Exercise 4.1
Pick some programming language that you know well and determine which of the
following objects share name spaces: Variables, functions/procedures and types. If
there are more kinds of named objects (labels, data constructors, modules, etc.) in the
language, include these in the investigation.

102 CHAPTER 4. SYMBOL TABLES

Chapter 5

Type Checking

5.1 Introduction

Lexing and parsing will reject many texts as not being correct programs. However,
many languages have well-formedness requirements that can not be handled exclu-
sively by the techniques seen so far. These requirements can, for example, be static
type-correctness or a requirement that pattern-matching or case-statements are exhaus-
tive.

These properties are most often not context-free, i.e., they can not be checked by
membership of a context-free language. Consequently, they are checked by a phase
that (conceptually) comes after syntax analysis (though it may be interleaved with it).
These checks may happen in a phase that does nothing else, or they may be com-
bined with the actual translation. Often, the translator may exploit or depend on type
information, which makes it natural to combine calculation of types with the actual
translation. We will here, for the sake of exposition, assume that a separate phase is
used for type checking and related checks, and similarly assume that any information
gathered by this phase is available in subsequent phases.

5.2 Attributes

The checking phase operates on the abstract syntax tree of the program and may make
several passes over this. Typically, each pass is a recursive walk over the syntax tree,
gathering information or using information gathered in earlier passes. Such informa-
tion is often called attributes of the syntax tree. Typically, we distinguish between two
types of attributes: Synthesised attributes are passed upwards in the syntax tree, from
the leaves up to the root. Inherited attributes are, conversely, passed downwards in the
syntax tree. Note, however, that information that is synthesised in one subtree may be
inherited by another subtree or, in a later pass, by the same subtree. An example of
this is a symbol table: This is synthesised by a declaration and inherited by the scope
of the declaration. When declarations are recursive, the scope may be the same syntax

103

104 CHAPTER 5. TYPE CHECKING

Program → Funs

Funs → Fun
Funs → Fun Funs

Fun → TypeId (TypeIds) = Exp

TypeId → int id
TypeId → bool id

TypeIds → TypeId
TypeIds → TypeId , TypeIds

Exp → num
Exp → id
Exp → Exp + Exp
Exp → Exp = Exp
Exp → if Exp then Exp else Exp
Exp → id (Exps)
Exp → let id = Exp in Exp

Exps → Exp
Exps → Exp , Exps

Grammar 5.1: Example language for type checking

tree as the declaration itself, in which case one pass over this tree will build the symbol
table as a synthesised attribute while a second pass will use it as an inherited attribute.

Typically, each syntactical category (represented by a type in the data structure for
the abstract syntax tree or by a group of related nonterminals in the grammar) will
have its own set of attributes. When we write a checker as a set of mutually recursive
functions, there will be one or more such functions for each syntactical category. Each
of these functions will take inherited attributes (including the syntax tree itself) as
arguments and return synthesised attributes as results.

We will, in this chapter, focus on type checking, and only briefly mention other
properties that can be checked. The methods used for type checking can in most cases
easily be modified to handle such other checks.

5.3. A SMALL EXAMPLE LANGUAGE 105

5.3 A small example language
We will use a small (somewhat contrived) language to show the principles of type
checking. The language is a first-order functional language with recursive definitions.
The syntax is given in grammar 5.1. The shown grammar is clearly ambiguous, but
that doesn’t matter since we operate on the abstract syntax, where such ambiguities
have been resolved.

In the example language, a program is a list of function declarations. The functions
are all mutually recursive, and no function may be declared more than once. Each
function declares its result type and the types and names of its arguments. There may
not be repetitions in the list of parameters for a function. Functions and variables
have separate name spaces. The body of a function is an expression, which may be
an integer constant, a variable name, a sum-expression, a comparison, a conditional, a
function call or an expression with a local declaration. Comparison is defined both on
booleans and integers, but addition only on integers.

5.4 Environments for type checking
In order to type-check the program, we need symbol tables that bind variables and
functions to their types. Since there are separate name spaces for variables and func-
tions, we will use two symbol tables, one for variables and one for functions. A vari-
able is bound to one of the two types int or bool. A function is bound to its type,
which consists of the types of its arguments and the type of its result. Function types
are written as a parenthesised list of the argument types, an arrow and the result type,
e.g., (int,bool) → int for a function taking two parameters (of type int and bool,
respectively) and returning an integer.

5.5 Type-checking expressions
When we type-check expressions, the symbol tables for variables and functions are
inherited attributes. The type (int or bool) of the expression is returned as a synthe-
sised attribute. To make the presentation independent of any specific data structure for
abstract syntax, we will let the type checker function use a notation similar to the con-
crete syntax for pattern-matching purposes. But you should still think of it as abstract
syntax, so all issues of ambiguity etc. have been resolved.

For terminals (variable names and numeric constants) with attributes, we assume
that there are predefined functions for extracting these. Hence, id has an associated
function name, that extracts the name of the identifier. Similarly, num has a function
value, that returns the value of the number. The latter is not required for type checking,
though, but we will use it in chapter 6.

For each nonterminal, we define one or more functions that take an abstract syntax
subtree and inherited attributes as arguments and return the synthesised attributes.

106 CHAPTER 5. TYPE CHECKING

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,name(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,name(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)→ t0) = t
[t ′1, . . . , t

′
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t ′1, . . . , tn = t ′n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable′ = bind(vtable,name(id), t1)

CheckExp(Exp2,vtable′, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 5.2: Type checking of expressions

5.5. TYPE-CHECKING EXPRESSIONS 107

In figure 5.2, we show the type checking function for expressions. The function for
type checking expressions is called CheckExp. The symbol table for variables is given
by the parameter vtable, and the symbol table for functions by the parameter ftable.
The function error reports a type error. To allow the type checker to continue and
report more than one error, we let the error-reporting function return. After reporting
a type error, the type checker can make a guess at what the type should have been and
return this guess, allowing the type checking to continue. This guess might, however,
be wrong, which can cause spurious type errors to be reported later on. Hence, all but
the first type error message should be taken with a grain of salt.

We will briefly explain each of the cases handled by CheckExp.

• A number has type int.

• The type of a variable is found by looking its name up in the symbol table for
variables. If the variable is not found in the symbol table, the lookup-function
returns the special value unbound. When this happens, an error is reported and
the type checker arbitrarily guesses that the type is int. Otherwise, it returns the
type returned by lookup.

• A plus-expression requires both arguments to be integers and has an integer re-
sult.

• Comparison requires that the arguments have the same type. In either case, the
result is a boolean.

• In a conditional expression, the condition must be of type bool and the two
branches must have identical types. The result of a condition is the value of one
of the branches, so it has the same type as these. If the branches have different
types, the type checker reports an error and arbitrarily chooses the type of the
then-branch as its guess for the type of the whole expression.

• At a function call, the function name is looked up in the function environment
to find the number and types of the arguments as well as the return type. The
number of arguments to the call must coincide with the expected number and
their types must match the declared types. The resulting type is the return-type
of the function. If the function name isn’t found in ftable, an error is reported
and the type checker arbitrarily guesses the result type to be int.

• A let-expression declares a new variable, the type of which is that of the ex-
pression that defines the value of the variable. The symbol table for variables is
extended using the function bind, and the extended table is used for checking the
body-expression and finding its type, which in turn is the type of the whole ex-
pression. A let-expression can not in itself be the cause of a type error (though
its parts may), so no testing is done.

108 CHAPTER 5. TYPE CHECKING

CheckFun(Fun, f table) = case Fun of
TypeId (TypeIds) = Exp (x, t0) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp,vtable, f table)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of
int id (name(id), int)
bool id (name(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

bind(emptytable,x, t)
TypeId , TypeIds (x, t) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
if lookup(vtable,x) = unbound
then bind(vtable,x, t)
else error(); vtable

Figure 5.3: Type-checking a function declaration

Since CheckExp mentions the nonterminal Exps and its related type checking function
CheckExps, we have included CheckExps in figure 5.2.

CheckExps builds a list of the types of the expressions in the expression list. The
notation is taken from SML: A list is written in square brackets with commas between
the elements. The operator :: adds an element to the front of a list.

5.6 Type checking of function declarations

A function declaration explicitly declares the types of the arguments. This informa-
tion is used to build a symbol table for variables, which is used when type checking
the body of the function. The type of the body must match the declared result type
of the function. The type check function for functions, CheckFun, has as inherited at-
tribute the symbol table for functions, which is passed down to the type check function
for expressions. CheckFun returns no information, it just checks for internal errors.
CheckFun is shown in figure 5.3, along with the functions for TypeId and TypeIds,
which it uses. The function GetTypeId just returns a pair of the declared name and type,
and CheckTypeIds builds a symbol table from such pairs. CheckTypeIds also checks if all
parameters have different names. emptytable is an empty symbol table. Looking any
name up in the empty symbol table returns unbound.

5.7. TYPE-CHECKING A PROGRAM 109

5.7 Type-checking a program

A program is a list of functions and is deemed type-correct if all the functions are type
correct, and there are no two function definitions defining the same function name.
Since all functions are mutually recursive, each of these must be type-checked using
a symbol table where all functions are bound to their type. This requires two passes
over the list of functions: One to build the symbol table and one to check the function
definitions using this table. Hence, we need two functions operating over Funs and two
functions operating over Fun. We have already seen one of the latter, CheckFun. The
other, GetFun, returns the pair of the function’s declared name and type, which consists
of the types of the arguments and the type of the result. It uses an auxiliary function
GetTypes to find the types of the arguments. The two functions for the syntactic category
Funs are GetFuns, which builds the symbol table and checks for duplicate definitions,
and CheckFuns, which calls CheckFun for all functions. These functions and the main
function CheckProgram, which ties the loose ends, are shown in figure 5.4.

This completes type checking of our small example language.

5.8 Advanced type checking

Our example language is very simple and obviously doesn’t cover all aspects of type
checking. A few examples of other features and brief explanations of how they can be
handled are listed below.

Assignments. When a variable is given a value by an assignment, it must be verified
that the type of the value is the same as the declared type of the variable. Some compil-
ers may check if a variable is potentially used before it is given a value, or if a variable
is not used after its assignment. While not exactly type errors, such behaviour is likely
to be undesirable. Testing for such behaviour does, however, require somewhat more
complicated analysis than the simple type checking presented in this chapter, as it relies
on non-structural information.

Data structures. A data structure may define a value with several components (e.g.,
a struct, tuple or record), or a value that may be of different types at different times
(e.g., a union, variant or sum). To type-check such structures, the type checker must
be able to represent their types. Hence, the type checker may need a data structure that
describes complex types. This may be similar to the data structure used for the abstract
syntax trees of declarations. Operations that build or take apart structured data need to
be tested for correctness. If each operation on structured data has well-defined types
for its arguments and a type for its result, this can be done in a way similar to how
function calls are tested.

110 CHAPTER 5. TYPE CHECKING

CheckProgram(Program) = case Program of
Funs f table = GetFuns(Funs)

CheckFuns(Funs, f table)

GetFuns(Funs) = case Funs of
Fun (f , t) = GetFun(Fun)

bind(emptytable, f , t)
Fun Funs (f , t) = GetFun(Fun)

f table = GetFuns(Funs)
if lookup(f table, f) = unbound
then bind(f table, f , t)
else error(); f table

GetFun(Fun) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

[t1, . . . , tn] = GetTypes(TypeIds)
(f ,(t1, . . . , tn)→ t0)

GetTypes(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

[t]
TypeId TypeIds (x1, t1) = GetTypeId(TypeId)

[t2, . . . , tn] = GetTypes(TypeIds)
[t1, t2, . . . , tn]

CheckFuns(Funs, f table) = case Funs of
Fun CheckFun(Fun, f table)
Fun Funs CheckFun(Fun, f table)

CheckFuns(Funs, f table)

Figure 5.4: Type-checking a program

5.8. ADVANCED TYPE CHECKING 111

Overloading. Overloading means that the same name is used for several different
operations over several different types. We saw a simple example of this in the exam-
ple language, where = was used both for comparing integers and booleans. In many
languages, arithmetic operators like + and − are defined both over integers and float-
ing point numbers, and possibly other types as well. If these operators are predefined,
and there is only a finite number of cases they cover, all the possible cases may be tried
in turn, just like in our example.

This, however, requires that the different instances of the operator have disjoint
argument types. If, for example, there is a function read that reads a value from a
text stream and this is defined to read either integers or floating point numbers, the
argument (the text stream) alone can not be used to select the right operator. Hence,
the type checker must pass the expected type of each expression down as an inherited
attribute, so this (possibly in combination with the types of the arguments) can be used
to pick the correct instance of the overloaded operator.

It may not always be possible to send down an expected type due to lack of in-
formation. In our example language, this is the case for the arguments to = (as these
may be either int or bool) and the first expression in a let-expression (since the
variable bound in the let-expression is not declared to be a specific type). If the type-
checker for this or some other reason is unable to pick a unique operator, it may report
“unresolved overloading” as a type error, or it may pick a default instance.

Type conversion. A language may have operators for converting a value of one type
to a value of another type, e.g. an integer to a floating point number. Sometimes these
operators are explicit in the program and hence easy to check. However, many lan-
guages allow implicit conversion of integers to floats, such that, for example, 3+3.12
is well-typed with the implicit assumption that the integer 3 is converted to a float be-
fore the addition. This can be handled as follows: If the type checker discovers that the
arguments to an operator do not have the correct type, it can try to convert one or both
arguments to see if this helps. If there is a small number of predefined legal conver-
sions, this is no major problem. However, a combination of user-defined overloaded
operators and user-defined types with conversions can make the type checking process
quite difficult, as the information needed to choose correctly may not be available at
compile-time. This is typically the case in object-oriented languages, where method
selection is often done at run-time. We will not go into details of how this can be done.

Polymorphism / Generic types. Some languages allow a function to be polymorphic
or generic, that is, to be defined over a large class of similar types, e.g. over all arrays
no matter what the types of the elements are. A function can explicitly declare which
parts of the type is generic/polymorphic or this can be implicit (see below). The type
checker can insert the actual types at every use of the generic/polymorphic function
to create instances of the generic/polymorphic type. This mechanism is different from
overloading as the instances will be related by a common generic type and because a

112 CHAPTER 5. TYPE CHECKING

polymorphic/generic function can be instantiated by any type, not just by a limited list
of declared alternatives as is the case with overloading.

Implicit types. Some languages (like Standard ML and Haskell) require programs to
be well-typed, but do not require explicit type declarations for variables or functions.
For such to work, a type inference algorithm is used. A type inference algorithm gath-
ers information about uses of functions and variables and uses this information to infer
the types of these. If there are inconsistent uses of a variable, a type error is reported.

5.9 Further reading
Overloading of operators and functions is described in section 6.5 of [4]. Section 6.7
of same describes how polymorphism can be handled.

Some theory and a more detailed algorithm for inferring types in a language with
implicit types and polymorphism can be found in [23].

Exercises

Exercise 5.1
Add the productions

Exp → floatconst

TypeId → float id

to grammar 5.1. This introduces floating-point numbers to the language. The opera-
tor + is overloaded so it can do integer addition or floating-point addition, and = is
extended so it can also compare floating point numbers for equality.

a) Extend the type checking functions in figures 5.2-5.4 to handle these extensions.

b) We now add implicit conversion of integers to floats to the language, using the
rules: Whenever an operator has one integer argument and one floating-point
argument, the integer is converted to a float. Similarly, if an if-then-else ex-
pression has one integer branch and one floating-point branch, the integer branch
is converted to floating-point. Extend the type checking functions from question
a) above to handle this.

Exercise 5.2
The type check function in figure 5.2 tries to guess the correct type when there is a
type error. In some cases, the guess is arbitrarily chosen to be int, which may lead

5.9. FURTHER READING 113

to spurious type errors later on. A way around this is to have an extra type: unknown,
which is only used during type checking. If there is a type error and there is no basis for
guessing a correct type, unknown is returned (the error is still reported, though). If an
argument to an operator is of type unknown, the type checker should not report this as a
type error but continue as if the type is correct. The use of an unknown argument to an
operator may make the result unknown as well, so these can be propagated arbitrarily
far.

Change figure 5.2 to use the unknown type as described above.

114 CHAPTER 5. TYPE CHECKING

Chapter 6

Intermediate Code Generation

6.1 Introduction
The final goal of a compiler is to get programs written in a high-level language to run
on a computer. This means that, eventually, the program will have to be expressed as
machine code which can run on the computer.

This doesn’t mean that we need to translate directly from the high-level abstract
syntax to machine code. Many compilers use a medium-level language as a stepping-
stone between the high-level language and the very low-level machine code. Such
stepping-stone languages are called intermediate code.

Apart from structuring the compiler into smaller jobs, using an intermediate lan-
guage has other advantages:

• If the compiler needs to generate code for several different machine-architec-
tures, only one translation to intermediate code is needed. Only the translation
from intermediate code to machine language (i.e., the back-end) needs to be
written in several versions.

• If several high-level languages need to be compiled, only the translation to in-
termediate code need to be written for each language. They can all share the
back-end, i.e., the translation from intermediate code to machine code.

• Instead of translating the intermediate language to machine code, it can be in-
terpreted by a small program written in machine code or a language for which a
compiler already exists.

The advantage of using an intermediate language is most obvious if many languages
are to be compiled to many machines. If translation is done directly, the number of
compilers is equal to the product of the number of languages and the number of ma-
chines. If a common intermediate language is used, one front-end (i.e., compiler to
intermediate code) is needed for every language and one back-end is needed for each

115

116 CHAPTER 6. INTERMEDIATE CODE GENERATION

machine, making the total equal to the sum of the number of languages and the number
of machines.

If an interpreter for the intermediate language is written in a language for which
there already exist compilers on the target machines, the interpreter can be compiled
on each of these. This way, there is no need to write a separate back-end for each
machine. The advantages of this approach are:

• No actual back-end needs to be written for each new machine.

• A compiled program can be distributed in a single intermediate form for all ma-
chines, as opposed to shipping separate binaries for each machine.

• The intermediate form may be more compact than machine code. This saves
space both in distribution and on the machine that executes the programs (though
the latter is somewhat offset by requiring the interpreter to be kept in memory
during execution).

The disadvantage is speed: Interpreting the intermediate form will in most cases be a
lot slower than executing translated code directly. Nevertheless, the approach has seen
some success, e.g., with Java.

Some of the speed penalty can be eliminated by translating the intermediate code
to machine code immediately before or during execution of the program. This hybrid
form is called just-in-time compilation and is often used for executing the intermediate
code for Java.

We will in this book, however, focus mainly on using the intermediate code for
traditional compilation, where the intermediate form will be translated to machine code
by a back-end program.

6.2 Choosing an intermediate language
An intermediate language should, ideally, have the following properties:

• It should be easy to translate from a high-level language to the intermediate
language. This should be the case for a wide range of different source languages.

• It should be easy to translate from the intermediate language to machine code.
This should be true for a wide range of different target architectures.

• The intermediate format should be suitable for optimisations.

The first two of these properties can be somewhat hard to reconcile. A language that
is intended as target for translation from a high-level language should be fairly close
to this. However, this may be hard to achieve for more than a small number of similar
languages. Furthermore, a high-level intermediate language puts more burden on the

6.3. THE INTERMEDIATE LANGUAGE 117

back-ends. A low-level intermediate language may make it easy to write back-ends,
but puts more burden on the front-ends. A low-level intermediate language, also, may
not fit all machines equally well, though this is usually less of a problem than the
similar problem for front-ends, as machines typically are more similar than high-level
languages.

A solution that may reduce the translation burden, though it doesn’t address the
other problems, is to have two intermediate levels: One, which is fairly high-level, is
used for the front-ends and the other, which is fairly low-level, is used for the back-
ends. A single shared translator is then used to translate between these two intermedi-
ate formats.

When the intermediate format is shared between many compilers, it makes sense to
do as many optimisations as possible on the intermediate format. This way, the (often
substantial) effort of writing good optimisations is done only once instead of in every
compiler.

Another thing to consider when choosing an intermediate language is the “graini-
ness”: Should an operation in the intermediate language correspond to a large amount
of work or to a small amount of work.

The first of these approaches is often used when the intermediate language is inter-
preted, as the overhead of decoding instructions is amortised over more actual work,
but it can also be used for compiling. In this case, each intermediate-code operation
is typically translated into a sequence of machine-code instructions. When coarse-
grained intermediate code is used, there is typically a fairly large number of different
intermediate-code operations.

The opposite approach is to let each intermediate-code operation be as small as
possible. This means that each intermediate-code operation is typically translated
into a single machine-code instruction or that several intermediate-code operations
can be combined into one machine-code operation. The latter can, to some degree,
be automated as each machine-code instruction can be described as a sequence of
intermediate-code instructions. When intermediate-code is translated to machine-code,
the code generator can look for sequences that match machine-code operations. By as-
signing cost to each machine-code operation, this can be turned into a combinatorial
optimisation problem, where the least-cost solution is found. We will return to this in
chapter 7.

6.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate language,
as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 9, so a “program” in our
intermediate language will, for the time being, correspond to the body of a function or
procedure in a real program. For the same reason, function calls are initially treated as
primitive operations in the intermediate language.

118 CHAPTER 6. INTERMEDIATE CODE GENERATION

Program → [Instructions]

Instructions → Instruction
Instructions → Instruction , Instructions

Instruction → LABEL labelid
Instruction → id := Atom
Instruction → id := unop Atom
Instruction → id := id binop Atom
Instruction → id := M[Atom]
Instruction → M[Atom] := id
Instruction → GOTO labelid
Instruction → IF id relop Atom THEN labelid ELSE labelid
Instruction → id := CALL functionid(Args)

Atom → id
Atom → num

Args → id
Args → id , Args

Grammar 6.1: The intermediate language

6.4. GENERATING CODE FROM EXPRESSIONS 119

The grammar for the intermediate language is shown in grammar 6.1. A program
is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

• A binary operator applied to a variable and an atomic expression, with the result
stored in a variable.

• A transfer from memory to a variable. The memory location is an atomic ex-
pression.

• A transfer from a variable to memory. The memory location is an atomic expres-
sion.

• A jump to a label.

• A conditional selection between jumps to two labels. The condition is found by
comparing a variable with an atomic expression by using a relational operator
(=, 6=, <, >, ≤ or ≥).

• A function call. The arguments to the function call are variables and the result is
assigned to a variable. This instruction is used even if there is no actual result (i.e,
if a procedure is called instead of a function), in which case the result variable is
a dummy variable.

An atomic expression is either a variable or a constant.
We have not specified the set of unary and binary operations, but we expect these

to include normal integer arithmetic and bitwise logical operations.
We assume that all values are integers. Adding floating-point numbers and other

primitive types isn’t difficult, though.

6.4 Generating code from expressions
Grammar 6.2 shows a simple language of expressions, which we will use as our initial
example for translation. Again, we have let the set of unary and binary operators be
unspecified but assume that the intermediate language includes all those used by the
expression language. We assume that there is a function transop that translates the
name of an operator in the expression language into the name of the corresponding
operator in the intermediate language. The tokens unop and binop have the names of
the actual operators as attributes, accessed by the function opname.

120 CHAPTER 6. INTERMEDIATE CODE GENERATION

Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)

Exps → Exp
Exps → Exp , Exps

Grammar 6.2: A simple expression language

When writing a compiler, we must decide what needs to be done at compile-time
and what needs to be done at run-time. Ideally, as much as possible should be done at
compile-time, but some things need to be postponed until run-time, as they need the
actual values of variables, etc., which aren’t known at compile-time. When we, be-
low, explain the workings of the translation functions, we might use phrasing like “the
expression is evaluated and the result stored in the variable”. This describes actions
that are performed at run-time by the code that is generated at compile-time. At times,
the textual description may not be 100% clear as to what happens at which time, but
the notation used in the translation functions make this clear: The code that is written
between the square brackets is executed at run-time, the rest is done at compile-time.

When we want to translate the expression language to the intermediate language,
the main complication is that the expression language is tree-structured while the in-
termediate language is flat, requiring the result of every operation to be stored in a
variable and every (non-constant) argument to be in one. We use a function newvar
to generate new variables in the intermediate language. Whenever newvar is called, it
returns a previously unused variable name.

We will describe translation of expressions by a translation function using a nota-
tion similar to the notation we used for type-checking functions in chapter 5.

Some attributes for the translation function are obvious: It must return the code as
a synthesised attribute. Furthermore, it must translate variables and functions used in
the expression language to the names these correspond to in the intermediate language.
This can be done by symbol tables vtable and f table that bind variable and function
names in the expression language into the corresponding names in the intermediate lan-
guage. The symbol tables are passed as inherited attributes to the translation function.
In addition to these attributes, the translation function must use attributes to decide
where to put the values of sub-expressions. This can be done in two ways:

1) The location of the values of a sub-expression can be passed up as a synthesised
attribute to the parent expression, which decides on a position for its own value.

2) The parent expression can decide where it wants to find the values of its sub-

6.4. GENERATING CODE FROM EXPRESSIONS 121

expressions and pass this information down to these as inherited attributes.

Neither of these is obviously superior to the other. Method 1 has a slight advantage
when generating code for a variable access, as it doesn’t have to generate any code,
but can simply return the name of the variable that holds the value. This, however,
only works under the assumption that the variable isn’t updated before the value is
used by the parent expression. If expressions can have side effects, this isn’t always
the case, as the C expression “x+(x=3)” shows. Our expression language doesn’t have
assignment, but it does have function calls, which may have side effects.

Method 2 doesn’t have this problem: Since the value of the expression is created
immediately before the assignment is executed, there is no risk of other side effects
between these two points in time. Method 2 also has a slight advantage when we later
extend the language to have assignment statements, as we can then generate code that
calculates the expression result directly into the desired variable instead of having to
copy it from a temporary variable.

Hence, we will choose method 2 for our translation function TransExp, which is
shown in figure 6.3.

The inherited attribute place is the intermediate-language variable that the result
of the expression must be stored in.

If the expression is just a number, the value of that number is stored in the place.
If the expression is a variable, the intermediate-language equivalent of this variable

is found in vtable and an assignment copies it into the intended place.
A unary operation is translated by first generating a new intermediate-language

variable to hold the value of the argument of the operation. Then the argument is
translated using the newly generated variable for the place attribute. We then use an
unop operation in the intermediate language to assign the result to the inherited place.
The operator ++ concatenates two lists of instructions.

A binary operation is translated in a similar way. Two new intermediate-language
variables are generated to hold the values of the arguments, then the arguments are
translated and finally a binary operation in the intermediate language assigns the final
result to the inherited place.

A function call is translated by first translating the arguments, using the auxiliary
function TransExps. Then a function call is generated using the argument variables
returned by TransExps, with the result assigned to the inherited place. The name of the
function is looked-up in f table to find the corresponding intermediate-language name.

TransExps generates code for each argument expression, storing the results into
new variables. These variables are returned along with the code, so they can be put
into the argument list of the call instruction.

6.4.1 Examples of translation
Translation of expressions is always relative to symbol tables and a place for storing
the result. In the examples below, we assume a variable symbol table that binds x,

122 CHAPTER 6. INTERMEDIATE CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
num v = value(num)

[place := v]
id x = lookup(vtable,name(id))

[place := x]
unop Exp1 place1 = newvar()

code1 = TransExp(Exp1,vtable, f table, place1)
op = transop(opname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1,vtable, f table, place1)
code2 = TransExp(Exp2,vtable, f table, place2)
op = transop(opname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . ,an]) = TransExps(Exps,vtable, f table)
f name = lookup(f table,name(id))
code1++[place := CALL f name(a1, . . . ,an)]

TransExps(Exps,vtable, f table) = case Exps of
Exp place = newvar()

code1 = TransExp(Exp,vtable, f table, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp,vtable, f table, place)
(code2,args) = TransExps(Exps,vtable, f table)
code3 = code1++code2
args1 = place :: args
(code3,args1)

Figure 6.3: Translating an expression

6.5. TRANSLATING STATEMENTS 123

y and z to v0, v1 and v2, respectively and a function table that binds f to _f. The
place for the result is t0 and we assume that calls to newvar() return, in sequence, the
variables t1, t2,

We start by the simple expression x-3. This is a binop-expression, so the first we
do is to call newvar() twice, giving place1 the value t1 and place2 the value t2. We
then call TransExp recursively with the expression x. When translating this, we first
look up x in the variable symbol table, yielding v0, and then return the code [t1 := v0].
Back in the translation of the subtraction expression, we assign this code to code1 and
once more call TransExp recursively, this time with the expression 3. This is trans-
lated to the code [t2 := 3], which we assign to code2. The final result is produced by
code1++code2++[t0 := t1−t2] which yields [t1 := v0, t2 := 3, t0 := t1−t2]. We
have translated the source-language operator - to the intermediate-language operator
-.

The resulting code looks quite suboptimal, and could, indeed, be shortened to
[t0 := v0−3]. When we generate intermediate code, we want, for simplicity, to treat
each subexpression independently of its context. This may lead to superfluous as-
signments. We will look at ways of getting rid of these when we treat machine code
generation and register allocation in chapters 7 and 8.

A more complex expression is 3+f(x-y,z). Using the same assumptions as above,
this yields the code

t1 := 3
t4 := v0

t5 := v1

t3 := t4−t5

t6 := v2

t2 := CALL _f(t3,t6)
t0 := t1+t2

We have, for readability, laid the code out on separate lines rather than using a comma-
separated list. The indentation indicates the depth of calls to TransExp that produced
the code in each line.

6.5 Translating statements

We now extend the expression language in figure 6.2 with statements. The extensions
are shown in grammar 6.4.

When translating statements, we will need the symbol table for variables (for trans-
lating assignment), and since statements contain expressions, we also need f table so
we can pass it on to TransExp.

Just like we use newvar to generate new unused variables, we use a similar function
newlabel to generate new unused labels. The translation function for statements is

124 CHAPTER 6. INTERMEDIATE CODE GENERATION

Stat → Stat ; Stat
Stat → id := Exp
Stat → if Cond then Stat
Stat → if Cond then Stat else Stat
Stat → while Cond do Stat
Stat → repeat Stat until Cond

Cond → Exp relop Exp

Grammar 6.4: Statement language

shown in figure 6.5. It uses an auxiliary translation function for conditions shown in
figure 6.6.

A sequence of two statements are translated by putting the code for these in se-
quence.

An assignment is translated by translating the right-hand-side expression using the
left-hand-side variable as target location (place).

When translating statements that use conditions, we use an auxiliary function TransCond .
TransCond translates the arguments to the condition and generates an IF-THEN-ELSE
instruction using the same relational operator as the condition. The target labels of this
instruction are inherited attributes to TransCond .

An if-then statement is translated by first generating two labels: One for the
then-branch and one for the code following the if-then statement. The condition
is translated by TransCond , which is given the two labels as attributes. When (at run-
time) the condition is true, the first of these are selected, and when false, the second is
chosen. Hence, when the condition is true, the then-branch is executed followed by
the code after the if-then statement. When the condition is false, we jump directly to
the code following the if-then statement, hence bypassing the then-branch.

An if-then-else statement is treated similarly, but now the condition must choose
between jumping to the then-branch or the else-branch. At the end of the then-
branch, a jump bypasses the code for the else-branch by jumping to the label at the
end. Hence, there is need for three labels: One for the then-branch, one for the else-
branch and one for the code following the if-then-else statement.

If the condition in a while-do loop is true, the body must be executed, otherwise
the body is by-passed and the code after the loop is executed. Hence, the condition is
translated with attributes that provide the label for the start of the body and the label for
the code after the loop. When the body of the loop has been executed, the condition
must be re-tested for further passes through the loop. Hence, a jump is made to the
start of the code for the condition. A total of three labels are thus required: One for the
start of the loop, one for the loop body and one for the end of the loop.

A repeat-until loop is slightly simpler. The body precedes the condition, so

6.5. TRANSLATING STATEMENTS 125

TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,name(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 6.5: Translation of statements

126 CHAPTER 6. INTERMEDIATE CODE GENERATION

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f]

Figure 6.6: Translation of simple conditions

there is always at least one pass through the loop. If the condition is true, the loop is
terminated and we continue with the code after the loop. If the condition is false, we
jump to the start of the loop. Hence, only two labels are needed: One for the start of
the loop and one for the code after the loop.

6.6 Logical operators

Logical conjunction, disjunction and negation are often available for conditions, so we
can write, e.g., x = y or y = z. There are typically two ways to treat logical operators
in programming languages:

1) Logical operators are similar to arithmetic operators: The arguments are evalu-
ated and the operator is applied to find the result.

2) The second operand of a logical operator is not evaluated if the first operand is
sufficient to determine the result. This means that a logical and will not evaluate
its second operand if the first evaluates to false, and a logical or will not evaluate
the second operand if the first is true.

The first variant is typically implemented by using bitwise logical operators and uses 0
to represent false and a nonzero value (typically 1 or −1) to represent true. In C, there
is no separate boolean type. The integer 1 is used for logical truth1 and 0 for falsehood.
Bitwise logical operators & (bitwise and) and | (bitwise or) are used to implement the
corresponding logical operations. Logical negation is not handled by bitwise negation,
as the bitwise negation of 1 isn’t 0. Instead, a special logical negation operator ! is
used. This maps any non-zero value to 0 and 0 to 1.

The second variant is called sequential logical operators. In C, these are called &&
(logical and) and || (logical or).

Adding non-sequential logical operators to our language isn’t too difficult. Since
we haven’t said exactly which binary and unary operators exist in the intermediate

1Actually, any non-zero value is treated as logical truth.

6.6. LOGICAL OPERATORS 127

language, we can simply assume these include relational operators, bitwise logical op-
erations and logical negation. We can now simply allow any expression2 as a condition
by adding the production

Cond → Exp

to grammar 6.4. We then extend the translation function for conditions as follows:

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f]

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f]

We need to convert the numerical value returned by TransExp into a choice between
two labels, so we generate an IF instruction that does just that.

The rule for relational operators is now actually superfluous, as the case it handles
is covered by the second rule (since relational operators are assumed to be included in
the set of binary arithmetic operators). However, we can consider it an optimisation, as
the code it generates is shorter than the equivalent code generated by the second rule.
It will also be natural to keep it separate when we add sequential logical operators.

6.6.1 Sequential logical operators
We will use the same names for sequential logical operators as C, i.e., && for logical
and, || for logical or and ! for logical negation. The extended language is shown in
figure 6.7. Note that we allow an expression to be a condition as well as a condition to
be an expression. This grammar is highly ambiguous (not least because binop overlaps
relop). As before, we assume such ambiguity to be resolved by the parser before code
generation. We also assume that the last productions of Exp and Cond are used as little
as possible, as this will yield the best code.

The revised translation functions for Exp and Cond are shown in figure 6.8. Only
the new cases for Exp are shown.

As expressions, true and false are the numbers 1 and 0.
A condition Cond is translated into code that chooses between two labels. When

we want to use a condition as an expression, we must convert this choice into a number.
We do this by first assuming that the condition is false and hence assign 0 to the target

2If it has the right type, which we assume has been checked by the type checker.

128 CHAPTER 6. INTERMEDIATE CODE GENERATION

Exp → num
Exp → id
Exp → unop Exp
Exp → Exp binop Exp
Exp → id(Exps)
Exp → true

Exp → false

Exp → Cond

Exps → Exp
Exps → Exp , Exps

Cond → Exp relop Exp
Cond → true

Cond → false

Cond → ! Cond
Cond → Cond && Cond
Cond → Cond || Cond
Cond → Exp

Grammar 6.7: Example language with logical operators

6.6. LOGICAL OPERATORS 129

TransExp(Exp,vtable, f table, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2,vtable, f table)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(opname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f]

true [GOTO labelt]
false [GOTO label f]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 label1 = newlabel()

code1 = TransCond(Cond1, label1, label f ,vtable, f table)
code2 = TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL label1]++code2

Cond1 || Cond2 label1 = newlabel()
code1 = TransCond(Cond1, labelt , label1,vtable, f table)
code2 = TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL label1]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f]

Figure 6.8: Translation of sequential logical operators

130 CHAPTER 6. INTERMEDIATE CODE GENERATION

location. We then, if the condition is true, jump to code that assigns 1 to the target
location. If the condition is false, we jump around this code, so the value remains 0.
We could equally well have done things the other way around, i.e., first assign 1 to the
target location and modify this to 0 when the condition is false.

It gets a bit more interesting in TransCond , where we translate conditions. We have
already seen how comparisons and expressions are translated, so we move directly to
the new cases.

The constant true condition just generates a jump to the label for true conditions,
and, similarly, false generates a jump to the label for false conditions.

Logical negation generates no code by itself, it just swaps the attribute-labels for
true and false when translating its argument. This negates the effect of the argument
condition.

Sequential logical and is translated as follows: The code for the first operand is
translated such that if it is false, the second condition is not tested. This is done by
jumping straight to the label for false conditions when the first operand is false. If
the first operand is true, a jump to the code for the second operand is made. This is
handled by using the appropriate labels as arguments to the call to TransCond . The call
to TransCond for the second operand uses the original labels for true and false. Hence,
both conditions have to be true for the combined condition to be true.

Sequential or is similar: If the first operand is true, we jump directly to the label
for true conditions without testing the second operand, but if it is false, we jump to the
code for the second operand. Again, the second operand uses the original labels for
true and false.

Note that the translation functions now work even if binop and unop do not contain
relational operators or logical negation, as we can just choose the last rule for expres-
sions whenever the binop rules don’t match. However, we can not in the same way
omit non-sequential (e.g., bitwise) and and or, as these have a different effect (i.e.,
they always evaluate both arguments).

We have, in the above, used two different nonterminals for conditions and expres-
sions, with some overlap between these and consequently ambiguity in the grammar.
It is possible to resolve this ambiguity by rewriting the grammar and get two non-
overlapping syntactic categories in the abstract syntax. Another solution is to join the
two nonterminals into one, e.g., Exp and use two different translation functions for
this: Whenever an expression is translated, the translation function most appropriate
for the context is chosen. For example, if-then-else will choose a translation func-
tion similar to TransCond while assignment will choose a one similar to the current
TransExp.

6.7 Advanced control statements

We have, so far, shown translation of simple conditional statements and loops, but
some languages have more advanced control features. We will briefly discuss how

6.7. ADVANCED CONTROL STATEMENTS 131

such can be implemented.

Goto and labels. Labels are stored in a symbol table that binds each to a corre-
sponding label in the intermediate language. A jump to a label will generate a GOTO
statement to the corresponding intermediate-language label. Unless labels are declared
before use, an extra pass may be needed to build the symbol table before the actual
translation. Alternatively, an intermediate-language label can be chosen and an entry
in the symbol table be created at the first occurrence of the label even if it is in a jump
rather than a declaration. Subsequent jumps or declarations of that label will use the
intermediate-language label that was chosen at the first occurrence. By setting a mark
in the symbol-table entry when the label is declared, it can be checked that all labels
are declared exactly once.

The scope of labels can be controlled by the symbol table, so labels can be local to
a procedure or block.

Break/exit. Some languages allow exiting loops from the middle of the loop-body
by a break or exit statement. To handle these, the translation function for statements
must have an extra inherited parameter which is the label that a break or exit state-
ment must jump to. This attribute is changed whenever a new loop is entered. Before
the first loop is entered, this attribute is undefined. The translation function should
check for this, so it can report an error if a break or exit occurs outside loops. This
should, rightly, be done during type-checking (see chapter 5), though.

C’s continue statement, which jumps to the start of the current loop, can be han-
dled similarly.

Case-statements. A case-statement evaluates an expression and chooses one of sev-
eral branches (statements) based on the value of the expression. In most languages, the
case-statement will be exited at the end of each of these statements. In this case,
the case-statement can be translated as an assignment that stores the value of the ex-
pression followed by a nested if-then-else statement, where each branch of the
case-statement becomes a then-branch of one of the if-then-else statements (or,
in case of the default branch, the final else-branch).

In C, the default is that all case-branches following the selected branch are exe-
cuted unless the case-expression (called switch in C) is explicitly terminated with a
break statement (see above) at the end of the branch. In this case, the case-statement
can still be translated to a nested if-then-else, but the branches of these are now
GOTO’s to the code for each case-branch. The code for the branches is placed in se-
quence after the nested if-then-else, with break handled by GOTO’s as described
above. Hence, if no explicit jump is made, one branch will fall through to the next.

132 CHAPTER 6. INTERMEDIATE CODE GENERATION

6.8 Translating structured data
So far, the only values we have used are integers and booleans. However, most pro-
gramming languages provide floating-point numbers and structured values like arrays,
records (structs), unions, lists or tree-structures. We will now look at how these can
be translated. We will first look at floats, then at one-dimensional arrays, multi-
dimensional arrays and finally other data structures.

6.8.1 Floating-point values
Floating-point values are, in a computer, typically stored in a different set of registers
than integers. Apart from this, they are treated the same way we treat integer values:
We use temporary variables to store intermediate expression results and assume the
intermediate language has binary operators for floating-point numbers. The register
allocator will have to make sure that the temporary variables used for floating-point
values are mapped to floating-point registers. For this reason, it may be a good idea to
let the intermediate code indicate which temporary variables hold floats. This can be
done by giving them special names or by using a symbol table to hold type information.

6.8.2 Arrays
We extend our example language with one-dimensional arrays by adding the following
productions:

Exp → Index
Stat → Index := Exp
Index → id[Exp]

Index is an array element, which can be used the same way as a variable, either as an
expression or as the left part of an assignment statement.

We will initially assume that arrays are zero-based (i.e.. the lowest index is 0).
Arrays can be allocated statically, i.e., at compile-time, or dynamically, i.e., at run-

time. In the first case, the base address of the array (the address at which index 0 is
stored) is a compile-time constant. In the latter case, a variable will contain the base
address of the array. In either case, we assume that the symbol table for variables binds
an array name to the constant or variable that holds its base address.

Most modern computers are byte-addressed, while integers typically are 32 or 64
bits long. This means that the index used to access array elements must be multiplied
by the size of the elements (measured in bytes), e.g., 4 or 8, to find the actual offset
from the base address. In the translation shown in figure 6.9, we use 4 for the size of
integers. We show only the new parts of the translation functions for Exp and Stat.

We use a translation function TransIndex for array elements. This returns a pair
consisting of the code that evaluates the address of the array element and the variable
that holds this address. When an array element is used in an expression, the contents

6.8. TRANSLATING STRUCTURED DATA 133

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address) = TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) = case Index of
id[Exp] base = lookup(vtable,name(id))

t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code2 = code1++[t := t ∗4, t := t +base]
(code2, t)

Figure 6.9: Translation for one-dimensional arrays

of the address is transferred to the target variable using a memory-load instruction.
When an array element is used on the left-hand side of an assignment, the right-hand
side is evaluated, and the value of this is stored at the address using a memory-store
instruction.

The address of an array element is calculated by multiplying the index by the size
of the elements and adding this to the base address of the array. Note that base can be
either a variable or a constant (depending on how the array is allocated, see below), but
since both are allowed as the second operator to a binop in the intermediate language,
this is no problem.

Allocating arrays

So far, we have only hinted at how arrays are allocated. As mentioned, one possibil-
ity is static allocation, where the base-address and the size of the array are known at
compile-time. The compiler, typically, has a large address space where it can allocate
statically allocated objects. When it does so, the new object is simply allocated after
the end of the previously allocated objects.

Dynamic allocation can be done in several ways. One is allocation local to a pro-
cedure or function, such that the array is allocated when the function is entered and
deallocated when it is exited. This typically means that the array is allocated on a stack
and popped from the stack when the procedure is exited. If the sizes of locally allo-
cated arrays are fixed at compile-time, their base addresses are constant offsets from
the stack top (or from the frame pointer, see chapter 9) and can be calculated from this
at every array-lookup. However, this doesn’t work if the sizes of these arrays are given

134 CHAPTER 6. INTERMEDIATE CODE GENERATION

1st column 2nd column 3rd column · · ·
1st row a[0][0] a[0][1] a[0][2] · · ·
2nd row a[1][0] a[1][1] a[1][2] · · ·
3rd row a[2][0] a[2][1] a[2][2] · · ·
...

...
...

... . . .

Figure 6.10: A two-dimensional array

at run-time. In this case, we need to use a variable to hold the base address of each
array. The address is calculated when the array is allocated and then stored in the cor-
responding variable. This can subsequently be used as described in TransIndex above.
At compile-time, the array-name will in the symbol table be bound to the variable that
at runtime will hold the base-address.

Dynamic allocation can also be done globally, so the array will survive until the end
of the program or until it is explicitly deallocated. In this case, there must be a global
address space available for run-time allocation. Often, this is handled by the operating
system which handles memory-allocation requests from all programs that are running
at any given time. Such allocation may fail due to lack of memory, in which case the
program must terminate with an error or release memory enough elsewhere to make
room. The allocation can also be controlled by the program itself, which initially asks
the operating system for a large amount of memory and then administrates this itself.
This can make allocation of arrays faster than if an operating system call is needed
every time an array is allocated. Furthermore, it can allow the program to use garbage
collection to automatically reclaim arrays that are no longer in use. Garbage collection
is, however, beyond the scope of this book.

Multi-dimensional arrays

Multi-dimensional arrays can be laid out in memory in two ways: row-major and
column-major. The difference is best illustrated by two-dimensional arrays, as shown i
Figure 6.10. A two-dimensional array is addressed by two indices, e.g., (using C-style
notation) as a[i][j]. The first index i indicates the row of the element and the second
index j indicates the column. The first row of the array is hence the elements a[0][0],
a[0][1], a[0][2], . . . and the first column is a[0][0], a[1][0], a[2][0],3

In row-major form, the array is laid out one row at a time and in column-major
form it is laid out one column at a time. In a 3×2 array, the ordering for row-major is

a[0][0], a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

For column-major the ordering is

a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

3Note that the coordinate system following computer-science tradition is rotated 90◦ clockwise com-
pared to mathematical tradition.

6.8. TRANSLATING STRUCTURED DATA 135

If the size of an element is size and the sizes of the dimensions in an n-dimensional ar-
ray are dim0,dim1, . . . , dimn−2,dimn−1, then in row-major format an element at index
[i0][i1] . . . [in−2][in−1] has the address

base+((. . .(i0 ∗dim1 + i1)∗dim2 . . .+ in−2)∗dimn−1 + in−1)∗ size

In column-major format the address is

base+((. . .(in−1 ∗dimn−2 + in−2)∗dimn−3 . . .+ i1)∗dim0 + i0)∗ size

Note that column-major format corresponds to reversing the order of the indices of a
row-major array. i.e., replacing i0 and dim0 by in−1 and dimn−1, i1 and dim1 by in−2
and dimn−2, and so on.

We extend the grammar for array-elements to accommodate multi-dimensional ar-
rays:

Index → id[Exp]
Index → Index[Exp]

and extend the translation functions as shown in figure 6.11. This translation is for
row-major arrays. We leave column-major arrays as an exercise.

With these extensions, the symbol table must return both the base-address of the
array and a list of the sizes of the dimensions. Like the base-address, the dimension
sizes can either be compile-time constants or variables that at run-time will hold the
sizes. We use an auxiliary translation function CalcIndex to calculate the position of an
element. In TransIndex we multiply this position by the element size and add the base
address. As before, we assume the size of elements is 4.

In some cases, the sizes of the dimensions of an array are not stored in separate
variables, but in memory next to the space allocated for the elements of the array. This
uses fewer variables (which may be an issue when these need to be allocated to regis-
ters, see chapter 8) and makes it easier to return an array as the result of an expression
or function, as only the base-address needs to be returned. The size information is
normally stored just before the base-address so, for example, the size of the first di-
mension can be at address base−4, the size of the second dimension at base−8 and so
on. Hence, the base-address will always point to the first element of the array no matter
how many dimensions the array has. If this strategy is used, the necessary dimension-
sizes must be loaded into variables when an index is calculated. Since this adds several
extra (somewhat costly) loads, optimising compilers often try to re-use the values of
previous loads, e.g., by doing the loading once outside a loop and referring to variables
holding the values inside the loop.

Index checks

The translations shown so far do not test if an index is within the bounds of the array.
Index checks are fairly easy to generate: Each index must be compared to the size of

136 CHAPTER 6. INTERMEDIATE CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address) = TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp2,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) =
(code1, t,base, []) = CalcIndex(Index,vtable, f table)
code2 = code1++[t := t ∗4, t := t +base]
(code2, t)

CalcIndex(Index,vtable, f table) = case Index of
id[Exp] (base,dims) = lookup(vtable,name(id))

t = newvar()
code = TransExp(Exp,vtable, f table, t)
(code, t,base, tail(dims))

Index[Exp] (code1, t1,base,dims) = CalcIndex(Index,vtable, f table)
dim1 = head(dims)
t2 = newvar()
code2 = TransExp(Exp,vtable, f table, t2)
code3 = code1++code2++[t1 := t1 ∗dim1, t1 := t1 + t2]
(code3, t1,base, tail(dims))

Figure 6.11: Translation of multi-dimensional arrays

6.8. TRANSLATING STRUCTURED DATA 137

(the dimension of) the array and if the index is too big, a jump to some error-producing
code is made. Hence, a single conditional jump is inserted at every index calculation.

This is still fairly expensive, but various methods can be used to eliminate some of
these tests. For example, if the array-lookup occurs within a for-loop, the bounds of
the loop-counter may guarantee that array accesses using this variable will be within
bounds. In general, it is possible to make an analysis that finds cases where the index-
check condition is subsumed by previous tests, such as the exit test for a loop, the test
in an if-then-else statement or previous index checks.

Non-zero-based arrays

We have assumed our arrays to be zero-based, i.e., that the indices start from 0. Some
languages allow indices to be arbitrary intervals, e.g.,−10 to 10 or 10 to 20. If such are
used, the starting-index must be subtracted from each index when the address is calcu-
lated. In a one-dimensional array with known size and base-address, the starting-index
can be subtracted (at compile-time) from base-address instead. In a multi-dimensional
array with known dimensions, the starting-indices can be multiplied by the sizes of the
dimensions and added together to form a single constant that is subtracted from the
base-address instead of subtracting each starting-index from each index.

6.8.3 Strings
Strings are usually implemented in a fashion similar to one-dimensional arrays. In
some languages (e.g. C or pre-ISO standard Pascal), strings are just arrays of charac-
ters.

However, strings often differ from arrays in that the length is not static, but can
vary at run-time. This leads to an implementation similar to the kind of arrays where
the length is stored in memory, as explained in section 6.8.2. Another difference is that
the size of a character is typically one byte (unless 16-bit Unicode characters are used),
so the index calculation does not multiply the index by the size (as this is 1).

Operations on strings, e.g., concatenation and substring extraction, are typically
implemented by calling library functions.

6.8.4 Records/structs and unions
Records (structs) have many properties in common with arrays. They are typically
allocated in a similar way (with a similar choice of possible allocation strategies), and
the fields of a record are typically accessed by adding an offset to the base-address of
the record. The differences are:

• The types (and hence sizes) of the fields may be different.

• The field-selector is known at compile-time, so the offset from the base address
can be calculated at this time.

138 CHAPTER 6. INTERMEDIATE CODE GENERATION

The offset for a field is simply the sum of the sizes of all fields that occur before it. For
a record-variable, the symbol table for variables must hold the base-address and the
offsets for each field in the record. The symbol table for types must hold the offsets for
every record type, such that these can be inserted into the symbol table for variables
when a record of this type is declared.

In a union (sum) type, the fields are not consecutive, but are stored at the same
address, i.e., the base-address of the union. The size of an union is the maximum of
the sizes of its fields.

In some languages, union types include a tag, which identifies which variant of
the union is stored in the variable. This tag is stored as a separate field before the
union-fields. Some languages (e.g. Standard ML) enforce that the tag is tested when
the union is accessed, others (e.g. Pascal) leave this as an option to the programmer.

6.9 Translating declarations
In the translation functions used in this chapter, we have several times required that
“The symbol table must contain . . . ”. It is the job of the compiler to ensure that the
symbol tables contain the information necessary for translation. When a name (vari-
able, label, type, etc.) is declared, the compiler must keep in the symbol-table entry
for that name the information necessary for compiling any use of that name. For scalar
variables (e.g., integers), the required information is the intermediate-language vari-
able that holds the value of the variable. For array variables, the information includes
the base-address and dimensions of the array. For records, it is the offsets for each
field and the total size. If a type is given a name, the symbol table must for that name
provide a description of the type, such that variables that are declared to be that type
can be given the information they need for their own symbol-table entries.

The exact nature of the information that is put into the symbol tables will depend
on the translation functions that use these tables, so it is usually a good idea to write
first the translation functions for uses of names and then translation functions for their
declarations.

Translation of function declarations will be treated in chapter 9.

6.9.1 Example: Simple local declarations
We extend the statement language by the following productions:

Stat → Decl ; Stat
Decl → int id
Decl → int id[num]

We can, hence, declare integer variables and one-dimensional integer arrays for use in
the following statement. An integer variable should be bound to a location in the sym-
bol table, so this declaration should add such a binding to vtable. An array should be

6.10. FURTHER READING 139

TransStat(Stat,vtable, f table) = case Stat of
Decl ; Stat1 (code1,vtable1) = TransDecl(Decl,vtable)

code2 = TransStat(Stat1,vtable1, f table)
code1++code2

TransDecl(Decl,vtable) = case Decl of
int id t1 = newvar()

vtable1 = bind(vtable,name(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable,name(id), t1)
([t1 := HP, HP := HP+(4∗ value(num))], vtable1)

Figure 6.12: Translation of simple declarations

bound to a variable containing its base address. Furthermore, code must be generated
for allocating space for the array. We assume arrays are heap allocated and that the
intermediate-code variable HP points to the first free element of the (upwards grow-
ing) heap. Figure 6.12 shows the translation of these declarations. When allocating
arrays, no check for heap overflow is done.

6.10 Further reading

A comprehensive discussion about intermediate languages can be found in [25].
Functional and logic languages often use high-level intermediate languages, which

are in many cases translated to lower-level intermediate code before emitting actual
machine code. Examples of such intermediate languages can be found in [17], [6]
and [5].

Another high-level intermediate language is the Java Virtual Machine [21]. This
language has single instructions for such complex things as calling virtual methods and
creating new objects. The high-level nature of JVM was chosen for several reasons:

• By letting common complex operations be done by single instructions, the code
is smaller, which reduces transmission time when sending the code over the
Internet.

• JVM was originally intended for interpretation, and the complex operations also
helped reduce the overhead of interpretation.

• A program in JVM is validated (essentially type-checked) before interpretation
or further translation. This is easier when the code is high-level.

140 CHAPTER 6. INTERMEDIATE CODE GENERATION

Exercises

Exercise 6.1
Use the translation functions in figure 6.3 to generate code for the expression 2+g(x+y,x*y).
Use a vtable that binds x to t0 and y to t1 and an f table that binds g to _g. The re-
sult of the expression should be put in the intermediate-code variable r (so the place
attribute in the initial call to TransExp is r).

Exercise 6.2
Use the translation functions in figures 6.5 and 6.6 to generate code for the statement

x:=2+y;
if x<y then x:=x+y;
repeat

y:=y*2;
while x>10 do x:=x/2

until x<y

use the same vtable as in exercise 6.1.

Exercise 6.3
Use the translation functions in figures 6.5 and 6.8 to translate the following statement

if x<=y && !(x=y || x=1)
then x:=3
else x:=5

use the same vtable as in exercise 6.1.

Exercise 6.4
De Morgan’s law tells us that !(p || q) is equivalent to (!p) && (!q). Show that these
generate identical code when compiled with TransCond from figure 6.8.

Exercise 6.5
Show that, in any code generated by the functions in figures 6.5 and 6.8, every IF-THEN-ELSE
instruction will be followed by one of the target labels.

6.10. FURTHER READING 141

Exercise 6.6
Extend figure 6.5 to include a break-statement for exiting loops, as described in sec-
tion 6.7, i.e., extend the statement syntax by

Stat → break

and add a rule for this to TransStat . Add whatever extra attributes you may need to do
this.

Exercise 6.7
We extend the statement language with the following statements:

Stat → labelid :
Stat → goto labelid

for defining and jumping to labels.
Extend figure 6.5 to handle these as described in section 6.7. Labels have scope

over the entire program (statement) and need not be defined before use. You can as-
sume that there is exactly one definition for each used label.

Exercise 6.8
Show translation functions for multi-dimensional arrays in column-major format. Hint:
Starting from figure 6.11, it may be a good idea to rewrite the productions for Index
so they are right-recursive instead of left-recursive, as the address formula for column-
major arrays groups to the right. Similarly, it is a good idea to reverse the list of
dimension sizes, so the size of the rightmost dimension comes first in the list.

Exercise 6.9
When statements are translated using the functions in figure 6.5, it will often be the
case that the statement immediately following a label is a GOTO statement, i.e., we have
the following situation:

LABEL label1
GOTO label2

It is clear that any jump to label1 can be replaced by a jump to label2, and that this
will result in faster code. Hence, it is desirable to do so. This is called jump-to-
jump optimisation, and can be done after code-generation by a post-process that looks
for these situations. However, it is also possible to avoid most of these situations by
modifying the translation function.

142 CHAPTER 6. INTERMEDIATE CODE GENERATION

This can be done by adding an extra inherited attribute endlabel, which holds the
name of a label that can be used as the target of a jump to the end of the code that is
being translated. If the code is immediately followed by a GOTO statement, endlabel
will hold the target of this GOTO rather than a label immediately preceding this.

a) Add the endlabel attribute to TransStat from figure 6.5 and modify the rules so
endlabel is exploited for jump-to-jump optimisation. Remember to set endlabel
correctly in recursive calls to TransStat .

b) Use the modified TransStat to translate the following statement:

while x>0 do {
x := x-1;
if x>10 then x := x/2

}

The curly braces are used as disambiguators, though they are not part of gram-
mar 6.4.

Use the same vtable as exercise 6.1.

Chapter 7

Machine-Code Generation

7.1 Introduction

The intermediate language we have used in chapter 6 is quite low-level and not un-
like the type of machine code you can find on modern RISC processors, with a few
exceptions:

• We have used an unbounded number of variables, where a processor will have a
bounded number of registers.

• We have used a complex CALL instruction for function calls.

• In the intermediate language, the IF-THEN-ELSE instruction has two target la-
bels, where, on most processors, the conditional jump instruction has only one
target label, and simply falls through to the next instruction when the condition
is false.

• We have assumed any constant can be an operand to an arithmetic instruction.
Typically, RISC processors allow only small constants as operands.

The problem of mapping a large set of variables to a small number of registers is
handled by register allocation, as explained in chapter 8. Function calls are treated in
chapter 9. We will look at the remaining two problems below.

The simplest solution for generating machine code from intermediate code is to
translate each intermediate-language instruction into one or more machine-code in-
structions. However, it is often possible to find a machine-code instruction that covers
two or more intermediate-language instructions. We will see how we can exploit the
instruction set this way.

Additionally, we will briefly discuss other optimisations.

143

144 CHAPTER 7. MACHINE-CODE GENERATION

7.2 Conditional jumps

Conditional jumps come in many shapes on different machines. Some conditional
jump instructions embody a relational comparison between two registers (or a register
and a constant) and are, hence, similar to the IF-THEN-ELSE instruction in our inter-
mediate language. Other types of conditional jump instruction require the condition
to be already resolved and stored in special condition registers or flags. However, it
is almost universal that conditional jump instructions specify only one target label (or
address), typically used when the condition is true. When the condition is false, ex-
ecution simply continues with the instructions immediately following the conditional
jump instruction.

This isn’t terribly difficult to handle: IF c THEN lt ELSE l f can be translated to

branch_if_c lt
jump l f

where branch_if_c is a conditional jump instruction on the condition c.
It will, however, often be the case that an IF-THEN-ELSE instruction is immedi-

ately followed by one of its target labels. In fact, this will always be the case if the
intermediate code is generated by the translation functions shown in chapter 6 (see ex-
ercise 6.5). If this label happens to be l f (the label taken for false conditions), we can
simply omit the unconditional jump from the code shown above. If the following label
is lt , we can negate the condition of the conditional jump and make it jump to l f , i.e.,
as

branch_if_not_c l f

Hence, the code generator should test which (if any) of the target labels follow an
IF-THEN-ELSE instruction and translate it accordingly. Alternatively, a pass can be
made over the generated machine-code to remove superfluous jumps.

It is possible to extend the translation function for conditionals to use extra inher-
ited attributes that tell which of the target labels (if any) immediately follow the con-
dition code and use this to generate code such that the false-labels of IF-THEN-ELSE
instructions immediately follow these (inserting GOTO instructions if necessary).

If the conditional jump instructions in the target machine do not allow conditions
as complex as those used in the intermediate language, code must be generated to
calculate the condition and put the result somewhere where it can be tested by the
conditional jump instruction. In some machine architectures (e.g., MIPS and Alpha),
this “somewhere” can be a general-purpose register. Other machines (e.g. PowerPC
or Intel’s IA-64) use special condition registers, while yet others (e.g. IA-32, Sparc,
PA-RISC and ARM) use a single set of arithmetic flags that can be set by comparison
or arithmetic instructions. A conditional jump may test various combinations of the
flags, so the same comparison instruction can, in combination with different conditions,

7.3. CONSTANTS 145

be used for testing equality, signed or unsigned less-than, overflow and several other
properties. Usually, an IF-THEN-ELSE instruction can be translated to two instructions:
One that does the comparison and one that does the conditional jump.

7.3 Constants
The intermediate language allows arbitrary constants as operands to binary or unary
operators. This is not always the case in machine code.

For example, MIPS allows only 16-bit constants in operands even though inte-
gers are 32 bits (64 bits in some versions of the MIPS architecture). To build larger
constants, MIPS includes instructions to load 16-bit constants into the upper portions
(most significant bits) of a register. With help of these, an arbitrary 32-bit integer can
be entered into a register using two instructions. On the ARM, a constant can be any
8-bit number positioned at any even bit-boundary. It may take up to four instructions
to build a 32-bit number using these.

When an intermediate-language instruction uses a constant, the code generator
must check if it fits into the constant field (if any) of the equivalent machine-code
instruction. If it does, a single machine-code instruction is generated. If not, a se-
quence of instructions are generated that builds the constant in a register, followed by
an instruction that uses this register in place of the constant. If a complex constant is
used inside a loop, it may be a good idea to move the code for generating this outside
the loop and keep it in a register inside the loop. This can be done as part of a general
optimisation to move code out of loops, see section 7.5.

7.4 Exploiting complex machine-code instructions
Most instructions in our intermediate language are atomic, in the sense that they each
correspond to a single operation and can not sensibly be split into several smaller steps.
The exceptions to this rule are IF-THEN-ELSE, which is described above, and CALL,
which will be detailed in chapter 9.

While the philosophy behind RISC (Reduced Instruction Set Computer) proces-
sors advocates that machine-code instructions should be atomic, most RISC proces-
sors include a few non-atomic instructions. CISC (Complex Instruction Set Computer)
processors have composite (i.e., non-atomic) instructions in abundance.

To exploit these composite instructions, several intermediate-language instructions
must be grouped together and translated into a single machine-code instruction. For
example, the instruction sequence

[t2 := t1 +116, t3 := M[t2]]

can be translated into the single MIPS instruction

lw r3, 116(r1)

146 CHAPTER 7. MACHINE-CODE GENERATION

where r1 and r3 are the registers chosen for t1 and t3, respectively. However, this is
only possible if the value of t2 isn’t required later, as the combined instruction doesn’t
store this intermediate value anywhere.

We will, hence, need to know if the contents of a variable is required for later
use, or if it is dead after a particular use. When generating intermediate code, most
of the temporary variables introduced by the compiler will be single-use and can be
marked as such. Any use of a single-use variable will, by definition, be the last use.
Alternatively, last-use information can be obtained by analysing the intermediate code,
as we shall see in chapter 8. For now, we will just assume that the last use of any
variable is marked in the intermediate code.

Our next step is to describe each machine-code instruction in terms of one or more
intermediate-language instructions. For example, the MIPS instruction lw rt , k(rs) can
be described by the pattern

[t := rs + k, rt := M[t last]]

where t last indicates that t can’t be used afterwards. A pattern can only be used to
replace a piece of intermediate code if all last annotations in the pattern are matched
by last annotations in the intermediate code. The converse, however, isn’t true: It
is not harmful to store a value even if it isn’t used later, so a last annotation in the
intermediate language need not be matched by a last annotation in the pattern.

The list of patterns that describe the machine-code instruction set must cover all of
the intermediate language. In particular, each single intermediate-language instruction
must be covered by a pattern. This means that we must include the MIPS instruction
lw rt , 0(rs) to cover the intermediate-code sequence [rt := M[rs]], even though we
have already listed a more general form for lw. If there are intermediate-language in-
structions for which there are no equivalent machine-code instruction, a sequence of
machine-code instructions must be given for these. Hence, an instruction-set descrip-
tion is a list of pairs, where each pair consists of a pattern (a sequence of intermediate-
language instructions) and a replacement (a sequence of machine-code instructions).

When translating a sequence of intermediate-code instructions, the code generator
can look at the patterns and pick the replacement that covers the largest prefix of the
intermediate code. A simple way of achieving this is to list the pairs in order of pref-
erence (e.g., longest pattern first) and pick the first pattern that matches a prefix of the
intermediate code.

This kind of algorithm is called greedy, because it always picks the choice that
is best for immediate profit. It will, however, not always yield the optimal solution
for the total sequence of intermediate-language instructions. If costs are given for
each machine-code instruction sequence in the code-pairs, optimal (i.e., least-cost)
solutions can be found for straight-line (i.e., jump-free) code sequences. The least-
cost sequence that covers the intermediate code can be found, e.g., using a dynamic-
programming algorithm. We will not go into detail about optimal solutions, though.
For RISC processors, a greedy algorithm will typically get close to optimal solutions,
so the gain by using a better algorithm is small.

7.4. EXPLOITING COMPLEX MACHINE-CODE INSTRUCTIONS 147

As an example, figure 7.1 describes a subset of the instructions for the MIPS mi-
croprocessor architecture in terms of the intermediate language. Note that we exploit
the fact that register 0 is hard-wired to be the value 0 to, e.g., get the addi instruc-
tion to generate a constant. We assume we, at this point, have already handled the
problem of too-large constants, so any constant remaining in the intermediate code
can be used as an immediate constant in an instruction. Note that we make special
cases for IF-THEN-ELSE when one of the labels follow the test. Note, also, that we
need (at least) two instructions from our MIPS subset to implement an IF-THEN-ELSE
instruction that uses less-than as the relational operator, while we need only one for
comparison by equal. Figure 7.1 does not cover all of the intermediate language, nor
does it cover the full MIPS instruction set, but it can be extended to do either or both.

The instructions in figure 7.1 are listed in order of priority. This is only important
when the pattern for one instruction sequence is a prefix of a pattern for another in-
struction sequence, as is the case with addi and lw/sw and for the different instances
of beq/bne and slt.

We can try to use figure 7.1 to select instructions for the following code sequence:

a := a+blast ,
d := c+8,
M[dlast] := a,
IF a = c THEN label1 ELSE label2,
LABEL label2

Only one pattern (for the add instruction) in figure 7.1 matches a prefix of this code,
so we generate an add instruction for the first intermediate instruction. We now have
two matches for prefixes of the remaining code: sw and addi. Since sw is listed first,
we choose this to replace the next two intermediate-language instructions. Finally, beq
match the last two instructions. Hence, we generate the code

add a, a, b
sw a, 8(c)
beq a, c, label1

label2 :

Note that we retain label2 even though the resulting sequence doesn’t refer to it, as
some other part of the code might jump to it. We could include single-use annotations
for labels like we use for variables, but it is hardly worth the effort, as labels don’t
generate actual code and hence cost nothing1.

7.4.1 Two-address instructions
In the above we have assumed that the machine code is three-address code, i.e., that
the destination register of an instruction can be distinct from the two operand registers.

1This is, strictly speaking, not entirely true, as superfluous labels might inhibit later optimisations.

148 CHAPTER 7. MACHINE-CODE GENERATION

lw rt , k(rs) t := rs + k,
rt := M[t last]

lw rt , 0(rs) rt := M[rs]
lw rt , k(R0) rt := M[k]
sw rt , k(rs) t := rs + k,

M[t last] := rt
sw rt , 0(rs) M[rs] := rt
sw rt , k(R0) M[k] := rt
add rd , rs, rt rd := rs + rt
add rd , R0, rt rd := rt
addi rd , rs, k rd := rs + k
addi rd , R0, k rd := k
j label GOTO label
beq rs, rt , labelt IF rs = rt THEN labelt ELSE label f ,

label f : LABEL label f
bne rs, rt , label f IF rs = rt THEN labelt ELSE label f ,

labelt : LABEL labelt
beq rs, rt , labelt IF rs = rt THEN labelt ELSE label f
j label f
slt rd , rs, rt IF rs < rt THEN labelt ELSE label f ,
bne rd , R0, labelt LABEL label f

label f :
slt rd , rs, rt IF rs < rt THEN labelt ELSE label f ,
beq rd , R0, label f LABEL labelt

labelt :
slt rd , rs, rt IF rs < rt THEN labelt ELSE label f
bne rd , R0, labelt
j label f

label: LABEL label

Figure 7.1: A subset of the MIPS instruction set

7.5. OPTIMISATIONS 149

It is, however, not uncommon that processors use two-address code, where the desti-
nation register is the same as the first operand register. To handle this, we use patterns
like

mov rt , rs rt := rs
add rt ,rs rt := rt + rs
move rd , rs rd := rs + rt
add rd,rt

that use an extra copy-instruction in the case where the destination register is not the
same as the first operand. As we will see in chapter 8, the register allocator will often
be able to remove the extra copy-instruction by allocating rd and rs in the same register.

7.5 Optimisations
Optimisations can be done by a compiler in three places: In the source code (i.e., on the
abstract syntax), in the intermediate code and in the machine code. Some optimisations
can be specific to the source language or the machine language, but it makes sense to
perform optimisations mainly in the intermediate language, as the optimisations hence
can be shared among all the compilers that use the same intermediate language. Also,
the intermediate language is typically simpler than both the source language and the
machine language, making the effort of doing optimisations smaller.

Optimising compilers have a wide array of optimisations that they can employ, but
we will mention only a few and just hint at how they can be implemented.

Common subexpression elimination. In the statement a[i] := a[i]+2, the ad-
dress for a[i] is calculated twice. This double calculation can be eliminated by stor-
ing the address in a temporary variable when the address is first calculated, and then
use this variable instead of calculating the address again. Simple methods for common
subexpression elimination work on basic blocks, i.e., straight-line code without jumps
or labels, but more advanced methods can eliminate duplicated calculations even across
jumps.

Code hoisting. If part of the computation inside a loop is independent of the vari-
ables that change inside the loop, it can be moved outside the loop and only calculated
once. For example, in the loop

while (j<k) {
sum = sum + a[i][j];
j++;

}

a large part of the address calculation for a[i][j] can be done without knowing j.
This part can be moved out to before the loop so it will only be calculated once. Note

150 CHAPTER 7. MACHINE-CODE GENERATION

that this optimisation can’t be done on source-code level, as the address calculations
aren’t visible there. For the same reason, the optimised version isn’t shown here.

If k may be less than or equal to j, the loop body may never be entered and we may,
hence, unnecessarily execute the code that was moved out of the loop. This might even
generate a run-time error. Hence, we can unroll the loop once to

if (j<k) {
sum = sum + a[i][j];
j++;
while (j<k) {

sum = sum + a[i][j];
j++;

}
}

The loop-independent part(s) may now without risk be calculated in the unrolled part
and reused in the non-unrolled part. Again, this optimisation isn’t shown.

Constant propagation. Some variables may, at some points in the program, have
values that are always equal to some constant. If these variables are used in calcula-
tions, these calculations may be done at compile-time. Furthermore, the variables that
hold the results of these computations may now also become constant, which may en-
able even more compile-time calculations. Constant propagation algorithms first trace
the flow of constant values through the program and then eliminate calculations. The
more advanced methods look at conditions, so they can exploit that after a test on, e.g.,
x==0, x is indeed the constant 0.

Index-check elimination. As mentioned in chapter 6, some compilers insert run-
time checks to catch cases when an index is outside the bounds of the array. Some
of these checks can be removed by the compiler. One way of doing this is to see if
the tests on the index are subsumed by earlier tests or ensured by assignments. For
example, assume that, in the loop shown above, a is declared to be a k×k array. This
means that the entry-test for the loop will ensure that j is always less than the upper
bound on the array, so this part of the index test can be eliminated. If j is initialised to
0 before entering the loop, we can use this to conclude that we don’t need to check the
lower bound either.

7.6 Further reading
Code selection by pattern matching normally uses a tree-structured intermediate lan-
guage instead of the linear instruction sequences we use in this book. This can avoid
some problems where the order of unrelated instructions affect the quality of code

7.6. FURTHER READING 151

generation. For example, if the two first instructions in the example at the end of sec-
tion 7.4 are interchanged, our simple prefix-matching algorithm can not include the
address calculation in the sw instruction, and would hence need one more instruction.
If the intermediate code is tree-structured, the order of independent instructions is left
unspecified, and the code generator can choose whichever ordering gives the best code.
See [25] or [7] for more details.

Descriptions of and methods for a large number of different optimisations can be
found in [4], [25] and [7].

The instruction set of one version of the MIPS microprocessor architecture is de-
scribed in [27].

Exercises

Exercise 7.1

Add extra inherited attributes to TransCond in figure 6.8 that, for each of the target
labels, indicate if this immediately follows the code for the condition. Use this to make
sure that the false-labels of IF-THEN-ELSE instructions immediately follow these. You
can use the function negate to negate relational operators. Make sure the new attributes
are maintained in recursive calls and modify TransStat in figure 6.5 so it sets these
attributes when calling TransCond .

Exercise 7.2

Use figure 7.1 and the method described in section 7.4 to generate code for the follow-
ing intermediate code sequence:

[d := c+8,
a := a+blast ,
M[dlast] := a,
IF a < c THEN label1 ELSE label2,
LABEL label1]

Compare this to the example in section 7.4.

Exercise 7.3

In figures 6.3 and 6.5, identify guaranteed last-uses of temporary variables, i.e., places
where last-annotations can safely be inserted.

152 CHAPTER 7. MACHINE-CODE GENERATION

Exercise 7.4
Choose an instruction set (other than MIPS) and make patterns for the same sub-
set of the intermediate language as covered by figure 7.1. Use this to translate the
intermediate-code example from section 7.4.

Exercise 7.5
In some microprocessors, aritmetic instructions use only two registers, as the desti-
nation register is the same as one of the argument registers. As an example, copy
and addition instructions of such a processor can be as follows (using notation like in
figure 7.1):

MOV rd , rt rd := rt
ADD rd , rt rd := rd + rt
ADDI rd , k rd := rd + k

As in MIPS, register 0 (R0) is hardwired to the value 0.
Add patterns to the above table for the following intermediate code instructions:

rd := k
rd := rs + rt
rd := rs + k

Use only sequences of the MOV, ADD and ADDI instructions to implement the interme-
diate code instructions. Note that neither rs nor rt have the last annotation, so their
values must be preserved.

Chapter 8

Register Allocation

8.1 Introduction
When generating intermediate code in chapter 6, we have freely used as many vari-
ables as we found convenient. In chapter 7, we have simply translated variables in the
intermediate language one-to-one into registers in the machine language. Processors,
however, do not have an unlimited number of registers, so something is missing in this
picture. That thing is register allocation. Register allocation must map a large number
of variables into a small(ish) number of registers. This can often be done by letting
several variables share a single register, but sometimes there simply aren’t registers
enough in the processor. In this case, some of the variables must be temporarily stored
in memory. This is called spilling.

Register allocation can be done in the intermediate language prior to machine-code
generation, or it can be done in the machine language. In the latter case, the machine
code initially uses symbolic names for registers, which the register allocation turns
into register numbers. Doing register allocation in the intermediate language has the
advantage that the same register allocator can easily be used for several target machines
(it just needs to be parameterised with the set of available registers).

However, there may be advantages to postponing register allocation to after ma-
chine code has been generated. In chapter 7, we saw that several instructions may be
combined to a single instruction, and in the process a variable may disappear. There
is no need to allocate a register to this variable, but if we do register allocation in the
intermediate language we will do so. Furthermore, when an intermediate-language
instruction needs to be translated to a sequence of machine-code instructions, the ma-
chine code may need an extra register (or two) for storing temporary values. Hence,
the register allocator must make sure that there is always a spare register for temporary
storage.

The techniques are, however, the same regardless of when register allocation is
done, so we will just describe the register allocation in terms of the intermediate lan-
guage introduced in chapter 6.

As in chapter 6, we operate on the body of a single procedure or function, so when

153

154 CHAPTER 8. REGISTER ALLOCATION

we below use the term “program”, we mean it to be such a body.

8.2 Liveness
In order to answer the question “When can two variables share a register?”, we must
first define the concept of liveness:

Definition 8.1 A variable is live at some point in the program if the value it contains
at that point might conceivably be used in future computations. Conversely, it is dead
if there is no way its value can be used in the future.

We have already hinted at this concept in chapter 7, when we talked about last-uses
of variables.

Loosely speaking, two variables may share a register if there is no point in the
program where they are both live. We will make a more precise definition later.

We can use some rules to determine when a variable is live:

1) If an instruction uses the contents of a variable, that variable is live at the start of
that instruction.

2) If a variable is assigned a value in an instruction, and the same variable is not
used as an operand in that instruction, then the variable is dead at the start of the
instruction, as the value it has at that time isn’t used.

3) If a variable is live at the start of an instruction, it is alive at the end of the
immediately preceding instructions.

4) If a variable is live at the end of an instruction and that instruction doesn’t assign
a value to the variable, then the variable is also live at the start of the instruction.

Rule 1 tells how liveness is generated, rule 2 how liveness is killed and rules 3 and 4
how it is propagated.

8.3 Liveness analysis
We can formalise the above rules into equations. The process of solving these equa-
tions is called liveness analysis, and will for all points in the program determine which
variables are live at this point. To better speak of points in a program, we number all
instructions as in figure 8.2

For every instruction in the program, we have a set of successors, i.e., instructions
that may immediately follow the instruction during execution. We denote the set of
successors to the instruction numbered i as succ[i]. We use the following rules to find
succ[i]:

8.3. LIVENESS ANALYSIS 155

Instruction i gen[i] kill[i]
LABEL l /0 /0

x := y {y} {x}
x := k /0 {x}
x := unop y {y} {x}
x := unop k /0 {x}
x := y binop z {y,z} {x}
x := y binop k {y} {x}
x := M[y] {y} {x}
x := M[k] /0 {x}
M[x] := y {x,y} /0

M[k] := y {y} /0

GOTO l /0 /0

IF x relop y THEN lt ELSE l f {x,y} /0

x := CALL f (args) args {x}

Figure 8.1: Gen and kill sets

1) The instruction numbered j (if any) that is listed just after instruction number i
is in succ[i], unless i is a GOTO or IF-THEN-ELSE instruction. If instructions are
numbered consecutively, j = i+1.

2) If the instruction numbered i is GOTO l, (the number of) the instruction LABEL l
is in succ[i].

3) If instruction i is IF p THEN lt ELSE l f , (the numbers of) the instructions LABEL lt
and LABEL l f are in succ[i].

Note that we assume that both outcomes of an IF-THEN-ELSE instruction are possible.
If this happens not to be the case (i.e., if the condition is always true or always false),
our liveness analysis may claim that a variable is live when it is in fact dead. This is
no major problem, as the worst that can happen is that we use a register for a variable
that isn’t going to be used. The converse (claiming a variable dead when it is in fact
live) is worse, as we may overwrite a value that may actually be used later, and hence
get wrong results from the program. Precise liveness is not computable, so it is quite
reasonable to allow imprecise results, as long as we err on the side of safety.

For every instruction i, we have a set gen[i]. gen[i] lists the variables that may be
read by instruction i and hence are live at the start of the instruction, i.e., the variables
that i generate liveness for. We also have a set kill[i] that lists the variables that may be
assigned a value by the instruction. Figure 8.1 shows which variables are in gen[i] and
kill[i] for the types of instruction found in intermediate code. x, y and z are (possibly
identical) variables and k denotes a constant.

156 CHAPTER 8. REGISTER ALLOCATION

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a+b
8: a := b
9: b := t

10: n := n−1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 8.2: Example program for liveness analysis

For each instruction i, we use two sets to hold the actual liveness information : in[i]
holds the variables that are live at the start of i, and out[i] holds the variables that are
live at the end of i. We define these by the following equations:

in[i] = gen[i]∪ (out[i]\ kill[i]) (8.1)

out[i] =
[

j∈succ[i]

in[j] (8.2)

These equations are recursive. We solve these by fixed-point iteration, as shown in
section 2.6.1: We initialise all in[i] and out[i] to the empty set and repeatedly calculate
new values for these until no changes occur.

This works under the assumption that all variables are dead at the end of the pro-
gram. If a variable contains, e.g., the output of the program, it isn’t dead at the end
of the program, so we must ensure that the analysis knows this. This can be done by
letting out[i], where i is the last instruction in the program, contain all variables that are
live at the end of the program. This definition of out[i] replaces (for the last instruction
only) equation 8.2.

Figure 8.2 shows a small program that we will calculate liveness for. Figure 8.3
shows succ, gen and kill sets for the instructions in the program.

We assume that a contains the result of the program (i.e., is live at the end of it), so
we set out[13] = {a}. The other out sets are defined by equation 8.2 and all in sets are
defined by equation 8.1. We initialise all in and out sets to the empty set and iterate.

The order in which we treat the instructions doesn’t matter for the final result of the
iteration, but it may influence how quickly we reach the fixed-point. Since the informa-
tion in equations 8.1 and 8.2 flow backwards through the program, it is a good idea to

8.4. INTERFERENCE 157

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6,13 n,z
6 7
7 8 a,b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 8.3: succ, gen and kill for the program in figure 8.2

do the evaluation in reverse instruction order and to calculate out[i] before in[i]. In the
example, this means that we will calculate in the order out[13], in[13], out[12], in[12], . . . ,out[1], in[1].

Figure 8.4 shows the fixed-point iteration using this backwards evaluation order.
Note that the most recent values are used when calculating the right-hand sides of
equations 8.1 and 8.2, so, when a value comes from a higher instruction number, the
value from the same column in figure 8.4 is used.

We see that the result after iteration 3 is the same as after iteration 2, so we have
reached a fixed-point. We note that n is live at the start of the program, which means
that n may be used before it is given a value. In this example, n is a parameter to the
program (which calculates the n’th Fibonacci number) so it will be initialised before
running the program. In other cases, a variable that is live at the start of a program
may be used before it is initialised, which may lead to unpredictable results. Some
compilers issue warnings in such situations.

8.4 Interference
We can now define precisely the condition needed for two variables to share a register.
We first define interference:

Definition 8.2 A variable x interferes with a variable y if x 6= y and there is an instruc-
tion i such that x ∈ kill[i], y ∈ out[i] and the instruction isn’t of the form x := y.

Two different variables can share a register precisely if neither interferes with the other.
This is almost the same as saying that they should not be live at the same time, but there

158 CHAPTER 8. REGISTER ALLOCATION

Initialisation Iteration 1 Iteration 2 Iteration 3
i out[i] in[i] out[i] in[i] out[i] in[i] out[i] in[i]
1 n,a n n,a n n,a n
2 n,a,b n,a n,a,b n,a n,a,b n,a
3 n,z,a,b n,a,b n,z,a,b n,a,b n,z,a,b n,a,b
4 n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b
5 a,b,n n,z,a,b a,b,n n,z,a,b a,b,n n,z,a,b
6 a,b,n a,b,n a,b,n a,b,n a,b,n a,b,n
7 b, t,n a,b,n b, t,n a,b,n b, t,n a,b,n
8 t,n b, t,n t,n,a b, t,n t,n,a b, t,n
9 n t,n n,a,b t,n,a n,a,b t,n,a

10 n n,a,b n,a,b n,a,b n,a,b
11 n,z,a,b n,a,b n,z,a,b n,a,b
12 n,z,a,b n,z,a,b n,z,a,b n,z,a,b
13 a a a a a a

Figure 8.4: Fixed-point iteration for liveness analysis

are small differences:

• After x := y, x and y may be live simultaneously, but as they contain the same
value, they can still share a register.

• It may happen that x isn’t used after an instruction that kills x. In this case x is
not technically live afterwards, but it still interferes with any y that is live after
the instruction, as the instruction will overwrite the register that contains x.

The first of these differences is essentially an optimisation that allows more sharing
than otherwise, but the latter is important for preserving correctness. In some cases,
assignments to dead variables can be eliminated, but in other cases the instruction
may have another visible effect (e.g., setting condition flags or accessing memory) and
hence can’t be eliminated.

We will do global register allocation, i.e., find for each variable a register that it can
stay in at all points in the program (procedure, actually, since a “program” in terms of
our intermediate language corresponds to a procedure in a high-level language). This
means that, for the purpose of register allocation, two variables interfere if they do so
at any point in the program.

We can draw interference as a graph, where each node in the graph is a variable,
and there is an edge between nodes x and y if x interferes with y or y interferes with
x. The interference graph for the program in figure 8.2 is shown in figure 8.5. This
interference is generated by the assignments in figure 8.2 as follows:

8.5. REGISTER ALLOCATION BY GRAPH COLOURING 159

a
H

H
H

HH

�
�

�
�

�
�

��

�
�
�
��

b
B

B
B

B
B

B
BB

�
�

�
��

�
�
�
�
�
�
��

n
A

A
A

AA

Q
Q

Q
Q

Q
Q

QQ
z t

Figure 8.5: Interference graph for the program in figure 8.2

Instruction Left-hand side Interferes with
1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b
11 z n,a,b

8.5 Register allocation by graph colouring
In the interference graph, two variables can share a register if they aren’t connected by
an edge. Hence, we must assign to each node in the graph a register number such that

1) Two nodes that share an edge have different register numbers.

2) The total number of different register numbers is no higher than the number of
available registers.

This problem is well-known in graph theory, where it is called graph colouring (in this
context a “colour” is a register number). It is known to be NP-complete, which means
that no effective (i.e., polynomial-time) method for doing this optimally is known, nor
is one likely to exist. In practice, this means that we need to use a heuristic method,
which will often find a solution but may give up in some cases even when a solution
does exist. This is no great disaster, as we must deal with non-colour-able graphs
anyway, so at worst we get slightly slower programs than we would get if we could
colour the graph optimally.

160 CHAPTER 8. REGISTER ALLOCATION

The basic idea of the heuristic method we use is simple: If a node in the graph
has strictly fewer than N neighbours, where N is the number of available colours (i.e.,
registers), we can set this node aside and colour the rest of the graph. When this is
done, the less-than-N neighbours of the selected node can’t possibly use all N colours,
so we can always pick a colour for the selected node from the remaining colours.

We can use this method to four-colour the interference graph from figure 8.5:

1) z has three neighbours, which is strictly less than four. Hence, we remove z from
the graph.

2) Now, a has less than four neighbours, so we remove this.

3) Only three nodes are now left (b, t and n), so we give each of these a number,
e.g., b = 1, t = 2 and n = 3.

4) Since a neighbours b, t and n, we must choose a fourth colour for a, i.e., a = 4.

5) z has a, b and n as neighbours, so we choose a colour that is different from 4, 1
and 3, i.e., z = 2.

this is easy enough. The problem comes if there are no nodes that have less than N
neighbours. This in itself is no guarantee that the graph isn’t colour-able. As an ex-
ample, a graph with four nodes arranged and connected as the corners of a square can,
even though all nodes have two neighbours, be coloured with two colours by giving
opposite corners the same colour. This leads to the following so-called “optimistic”
colouring heuristics:

Algorithm 8.3

initialise Start with an empty stack.

simplify If there is a node with less than N neighbours, put this along with a list of its
neighbours on the stack and remove it and its edges from the graph.

If there is no node with less than N neighbours, pick any node and do as above.

If there are more nodes left in the graph, continue with simplify, otherwise go to
select.

select Take a node and its neighbour-list from the stack. If possible, give the node a
colour that is different from the colours of its neighbours. If this is not possible,
give up on colouring the graph.

If there are more nodes on the stack, continue with select.

The point of this heuristics is that, even though a node has N or more neighbours,
some of these may be given identical colours, so it may, in select, be possible to find a
colour for the node anyway.

8.6. SPILLING 161

There are several things left unspecified by algorithm 8.3: Which node to choose in
simplify when none have less than N neighbours, and which colour to choose in select
if there are several choices. If an oracle chooses perfectly in both cases, algorithm 8.3
will do optimal colouring. In practice, we will have to make do with qualified guesses.
We will, in section 8.7, look at some possibilities for doing this. For now, we just make
arbitrary choices.

8.6 Spilling
If select can not find a colour for a node, algorithm 8.3 can not colour the graph. If this
is the case, we must give up on keeping all variables in registers at all times. We must
hence select some variables that (most of the time) reside in memory. This is called
spilling. Obvious candidates for spilling are variables at nodes that can not be given
colours by select. We simply mark these as spilled and continue doing select on the
rest of the stack, ignoring spilled neighbours when selecting colours for the remaining
nodes. When we finish algorithm 8.3, several variables may be marked as spilled.

When we have chosen one or more variables for spilling, we change the program
so these are kept in memory. To be precise, for each spilled variable x we:

1) Choose a memory address addressx where the value of x is stored.

2) In every instruction i that reads or assigns x, we rename x to xi.

3) Before each instruction i that reads xi, insert the instruction xi := M[addressx].

4) After each instruction i that assigns xi, insert the instruction
M[addressx] := xi.

5) If x is live at the start of the program, we add an instruction M[addressx] := x to
the start of the program. Note that we use the original name for x here.

6) If x is live at the end of the program, we add an instruction x := M[addressx] to
the end of the program. Note that we use the original name for x here.

After this rewrite of the program, we do register allocation again. This includes re-
doing the liveness analysis, since the xi have different liveness than the x they replace.
We may optimise this a bit by doing liveness analysis only on the spilled variables, as
the other variables have unchanged liveness.

It may happen that the new register allocation too will fail and generate more spill.
There are several reasons why this may be:

• We have ignored spilled variables when selecting colours for the other nodes, but
the spilled variables are replaced by new ones that may still interfere with some
of these nodes and cause colouring of these to fail.

162 CHAPTER 8. REGISTER ALLOCATION

Node Neighbours Colour
n 1
t n 2
b t,n 3
a b,n, t spill
z a,b,n 2

Figure 8.6: Algorithm 8.3 applied to the graph in figure 8.5

• The order in which we select nodes for simplification and colouring has changed,
and we might be less lucky in our choices, so we get more spills.

If we have at least as many registers as the number of variables used in a single in-
struction, all variables can be loaded just before the instruction and the result can be
saved immediately afterwards, so we will eventually be able to find a colouring by re-
peated spilling. If we ignore the CALL instruction, no instruction uses more than two
variables, so this is the minimum number of registers that we need. A CALL instruction
can use an unbounded number of variables as arguments, possibly even more than the
total number of registers available, so it needs special treatment. We will look at this
in chapter 9.

If we take our example from figure 8.2, we can attempt to colour its interference
graph (figure 8.5) with only three colours. The stack built by the simplify phase of
algorithm 8.3 and the colours chosen for these nodes in the select phase are shown
in figure 8.6. The stack grows upwards, so the first node chosen by simplify is at
the bottom. The colours (numbers) are, conversely, chosen top-down as the stack is
popped. We can choose no colour for a, as all three available colours are in use by the
neighbours b,n and t. Hence, we mark a as spilled. Figure 8.7 shows the program after
spill-code has been inserted. Note that, since a is live at the end of the program, we
have inserted a load instruction at the end of the program. Figure 8.8 shows the new
interference graph and figure 8.9 shows the stack used by algorithm 8.3 for colouring
this graph.

8.7 Heuristics
When the simplify phase of algorithm 8.3 can’t find a node with less than N neigh-
bours, some other node is chosen. So far, we have chosen arbitrarily, but we may apply
some heuristics (qualified guessing) to the choice in order to make colouring more
likely or reduce the number of spilled variables:

• We may choose a node with close to N neighbours, as this is likely to be colour-
able in the select phase anyway. For example, if a node has exactly N neighbours,
it will be colour-able if just two of its neighbours get the same colour.

8.7. HEURISTICS 163

1: a1 := 0
M[addressa] := a1

2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body

a2 := M[addressa]
7: t := a2 +b
8: a3 := b

M[addressa] := a3
9: b := t

10: n := n−1
11: z := 0
12: GOTO loop
13: LABEL end

a := M[addressa]

Figure 8.7: Program from figure 8.2 after spilling variable a

a3 XXXXXXXXXXX

��������

a1

a2
�����������

b
B

B
B

B
B

B
BB

�
����

�
�
�
�
�
�
��

n
A

A
A

AA

Q
Q

Q
Q

Q
Q

QQ
a z t

Figure 8.8: Interference graph for the program in figure 8.7

164 CHAPTER 8. REGISTER ALLOCATION

Node Neighbours Colour
n 1
t n 2

a3 t,n 3
b t,n 3
a2 b,n 2
z b,n 2

a1 n 2
a 1

Figure 8.9: Colouring of the graph in figure 8.8

• We may choose a node with many neighbours that have close to N neighbours
of their own, as spilling this node may allow many of these neighbours to be
coloured.

• We may look at the program and select a variable that doesn’t cost so much to
spill, e.g., a variable that is not used inside a loop.

These criteria (and maybe others as well) may be combined into a single heuristic by
giving numeric values describing how well a variable fits each criteria, and then add
these values to give a weighted sum.

The other place where we have made arbitrary choices, is when we pick colours
for nodes in the select phase.

We can try to make it more likely that the rest of the graph can be coloured by
choosing a colour that is already used elsewhere in the graph instead of picking a new
colour. This will use a smaller total number of colours and, hence, make it more likely
that the neighbours of an as yet uncoloured node will share colours. We can refine this a
bit by looking at the uncoloured neighbours of the selected node and for each of these
look at their already coloured neighbours. If we can pick a colour that occurs often
among these, this increases the likelihood that we will be able to colour the uncoloured
neighbours.

8.7.1 Removing redundant moves

An assignment of the form x := y can be removed if x and y use the same register. Most
register allocators do this, and some even try to increase the number of such removed
assignments by increasing the chance that x and y use the same register.

If x has already been given a colour by the time we need to select a colour for y (or
vice versa), we can choose the same colour for y, as long as it isn’t used by any of y’s
neighbours (including, possibly, x). This is called biased colouring.

8.8. FURTHER READING 165

Another method of achieving the same goal is to combine x and y (if they don’t
interfere) into a single node before colouring the graph, and only split the combined
node if the simplify phase can’t otherwise find a node with less than N neighbours.
This is called coalescing.

The converse of coalescing (called live-range splitting) can be used as well: Instead
of spilling a variable, we can split its node by giving each occurrence of the variable
a different name and inserting assignments between these when necessary. This is not
quite as effective at increasing the chance of colouring as spilling, but the cost of the
extra assignments is likely to be less than the cost of the loads and stores inserted by
spilling.

8.8 Further reading
Preston Briggs’ Ph.D. thesis [9] shows several variants of the register allocation al-
gorithm shown here, including many optimisations and heuristics as well as consid-
erations about how the various phases can be implemented efficiently. The compiler
textbooks [25] and [7] show some other variants and a few newer developments. A
completely different approach that exploits the structure of a program is suggested
in [29].

Exercises

Exercise 8.1
Given the following program:

1: LABEL start
2: IF a < b THEN next ELSE swap
3: LABEL swap
4: t := a
5: a := b
6: b := t
7: LABEL next
8: z := 0
9: b := b mod a

10: IF b = z THEN end ELSE start
11: LABEL end

a) Show succ, gen and kill for every instruction in the program.

b) Assuming a is live at the end of the program, i.e., out[11] = {a}, calculate in and
out for every instruction in the program. Show the iteration as in figure 8.4.

166 CHAPTER 8. REGISTER ALLOCATION

c) Draw the interference graph for a,b, t and z.

d) Make a three-colouring of the interference graph. Show the stack as in figure 8.6.

e) Attempt, instead, a two-colouring of the graph. Select variables for spill, do
the spill-transformation as shown in section 8.6 and redo the complete register
allocation process on the transformed program. If necessary, repeat the process
until register allocation is successful.

Exercise 8.2
Three-colour the following graph. Show the stack as in figure 8.6. The graph is three-
colour-able, so try making different choices if you get spill.

a
@

@
@

b
�

�
�

c
�

�
�

HHH
HHHH

d
@

@
@

e f

Exercise 8.3
Combine the heuristics suggested in section 8.7 for selecting nodes in the simplify
phase of algorithm 8.3 into a formula that gives a single numerical score for each node.
Then apply that heuristics for colouring the graph in figure 8.5 with three colours. If
spilling is needed, insert spill-code and redo the colouring using the same heuristics.

Chapter 9

Function calls

9.1 Introduction

In chapter 6 we have shown how to translate the body of a single function. Function
calls were left (mostly) untranslated by using the CALL instruction in the intermediate
code. Nor did we in chapter 7 show how the CALL instruction should be translated.

We will, in this chapter, remedy these omissions. We will initially assume that all
variables are local to the procedure or function that access them and that parameters
are call-by-value, meaning that the value of an argument expression is passed to the
called function. This is the default parameter-passing mechanism in most languages,
and in many languages (e.g., C or SML) it is the only one.

9.1.1 The call stack

A single procedure body uses (in most languages) a finite number of variables. We
have seen in chapter 8 that we can map these variables into a (possibly smaller) set
of registers. A program that uses recursive procedures or functions may, however,
use an unbounded number of variables, as each recursive invocation of the function
has its own set of variables, and there is no bound on the recursion depth. We can’t
hope to keep all these variables in registers, so we will use memory for some of these.
The basic idea is that only variables that are local to the active (most recently called)
function will be kept in registers. All other variables will be kept in memory.

When a function is called, all the live variables of the calling function (which we
will refer to as the caller) will be stored in memory so the registers will be free for use
by the called function (the callee). When the callee returns, the stored variables are
loaded back into registers. It is convenient to use a stack for this storing and loading,
pushing register contents on the stack when they must be saved and popping them back
into registers when they must be restored. Since a stack is (in principle) unbounded,
this fits well with the idea of unbounded recursion.

The stack can also be used for other purposes:

167

168 CHAPTER 9. FUNCTION CALLS

• Space can be set aside on the stack for variables that need to be spilled to mem-
ory. In chapter 8, we used a constant address (addressx) for spilling a variable
x. When a stack is used, addressx is actually an offset relative to a stack-pointer.
This makes the spill-code slightly more complex, but has the advantage that
spilled registers are already saved on the stack when or if a function is called, so
they don’t need to be stored again.

• Parameters to function calls can be passed on the stack, i.e., written to the top of
the stack by the caller and read therefrom by the callee.

• The address of the instruction where execution must be resumed after the call
returns (the return address) can be stored on the stack.

• Since we decided to keep only local variables in registers, variables that are
in scope in a function but not declared locally in that function must reside in
memory. It is convenient to access these through the stack.

• Arrays and records that are allocated locally in a function can be allocated on the
stack, as hinted in section 6.8.2.

We shall look at each of these in more detail later on.

9.2 Activation records
Each function invocation will allocate a chunk of memory on the stack to cover all of
the function’s needs for storing values on the stack. This chunk is called the activation
record or frame for the function invocation. We will use these two names interchange-
ably. Activation records will typically have the same overall structure for all functions
in a program, though the sizes of the various fields in the records may differ. Often,
the machine architecture (or operating system) will dictate a calling convention that
standardises the layout of activation records. This allows a program to call functions
that are compiled with another compiler or even written in a different language, as long
as both compilers follow the same calling convention.

We will start by defining very simple activation records and then extend and refine
these later on. Our first model uses the assumption that all information is stored in
memory when a function is called. This includes parameters, return address and the
contents of registers that need to be preserved. A possible layout for such an activation
record is shown in figure 9.1.

FP is shorthand for “Frame pointer” and points to the first word of the activation
record. In this layout, the first word holds the return address. Above this, the incoming
parameters are stored. The function will typically move the parameters to registers
(except for parameters that have been spilled by the register allocator) before executing
its body. The space used for the first incoming parameter is also used for storing the
return value of the function call (if any). Above the incoming parameters, the activation

9.3. PROLOGUES, EPILOGUES AND CALL-SEQUENCES 169

· · ·
Next activation records
Space for storing local variables for spill or
preservation across function calls
Remaining incoming parameters
First incoming parameter / return value

FP −→ Return address
Previous activation records
· · ·

Figure 9.1: Simple activation record layout

record has space for storing other local variables, e.g., for spilling or for preserving
across later function calls.

9.3 Prologues, epilogues and call-sequences

In front of the code generated (as shown in chapter 6) for a function body, we need
to put some code that reads parameters from the activation record into registers. This
code is called the prologue of the function. Likewise, after the function body, we need
code to store the calculated return value in the activation record and jump to the return
address that was stored in the activation record by the caller. For the activation record
layout shown in figure 9.1, a suitable prologue and epilogue is shown in figure 9.2.
Note that, though we have used a notation similar to the intermediate language intro-
duced in chapter 6, we have extended this a bit: We have used M[] and GOTO with
general expressions as arguments.

We use the names parameter1, . . . , parametern for the intermediate-language vari-
ables used in the function body for the n parameters. result is the intermediate-
language variable that holds the result of the function after the body have been exe-
cuted.

A function call is translated into a call-sequence of instructions that will save reg-
isters, set up parameters, etc. A call-sequence suitable for the activation record lay-
out shown in figure 9.1 is shown in figure 9.3. The code is an elaboration of the
intermediate-language instruction x := CALL f (a1, . . . ,an). First, all registers that can
be used to hold variables are stored in the frame. In figure 9.3, R0-Rk are assumed to
hold variables. These are stored in the activation record just above the calling functions
own m incoming parameters. Then, the frame-pointer is advanced to point to the new
frame and the parameters and the return address are stored in the prescribed locations
in the new frame. Finally, a jump to the function is made. When the function call
returns, the result is read from the frame into the variable x, FP is restored to its former
value and the saved registers are read back from the old frame.

170 CHAPTER 9. FUNCTION CALLS

Prologue

LABEL function-name
parameter1 := M[FP+4]
· · ·
parametern := M[FP+4∗n]

code for the function body

Epilogue
{

M[FP+4] := result
GOTO M[FP]

Figure 9.2: Prologue and epilogue for the frame layout shown in figure 9.1

Keeping all the parameters in register-allocated variables until just before the call,
and only then storing them in the frame can require a lot of registers to hold the pa-
rameters (as these are all live up to the point where they are stored). An alternative is
to store each parameter in the frame as soon as it is evaluated. This way, only one of
the variables a1, . . . ,an will be live at any one time. However, this can go wrong if a
later parameter-expression contains a function call, as the parameters to this call will
overwrite the parameters of the outer call. Hence, this optimisation must only be used
if no parameter-expressions contain function calls or if nested calls use stack-locations
different from those used by the outer call.

In this simple call-sequence, we save on the stack all registers that can potentially
hold variables, so these are preserved across the function call. This may save more
registers than needed, as not all registers will hold values that are required after the call
(i.e., they may be dead). We will return to this issue in section 9.6.

9.4 Caller-saves versus callee-saves
The convention used by the activation record layout in figure 9.1 is that, before a func-
tion is called, the caller saves all registers that must be preserved. Hence, this strategy
is called caller-saves. An alternative strategy is that the called function saves the con-
tents of the registers that need to be preserved and restores these immediately before
the function returns. This strategy is called callee-saves.

Stack-layout, prologue/epilogue and call sequence for the callee-saves strategy are
shown in figures 9.4, 9.5 and 9.6.

Note that it may not be necessary to store all registers that may potentially be used
to hold variables, only those that the function actually uses to hold its local variables.
We will return to this issue in section 9.6.

So far, the only difference between caller-saves and callee-saves is when registers
are saved. However, once we refine the strategies to save only a subset of the registers
that may potentially hold variables, other differences emerge: Caller-saves need only

9.4. CALLER-SAVES VERSUS CALLEE-SAVES 171

M[FP+4∗m+4] := R0
· · ·
M[FP+4∗m+4∗ (k +1)] := Rk
FP := FP+ f ramesize
M[FP+4] := a1
· · ·
M[FP+4∗n] := an
M[FP] := returnaddress
GOTO f
LABEL returnaddress
x := M[FP+4]
FP := FP− f ramesize
R0 := M[FP+4∗m+4]
· · ·
Rk := M[FP+4∗m+4∗ (k +1)]

Figure 9.3: Call sequence for x := CALL f (a1, . . . ,an) using the frame layout shown in
figure 9.1

· · ·
Next activation records
Space for storing local variables for spill
Space for storing registers that need to be
preserved
Remaining incoming parameters
First incoming parameter / return value

FP −→ Return address
Previous activation records
· · ·

Figure 9.4: Activation record layout for callee-saves

172 CHAPTER 9. FUNCTION CALLS

Prologue

LABEL function-name
M[FP+4∗n+4] := R0
· · ·
M[FP+4∗n+4∗ (k +1)] := Rk
parameter1 := M[FP+4]
· · ·
parametern := M[FP+4∗n]

code for the function body

Epilogue

M[FP+4] := result
R0 := M[FP+4∗n+4]
· · ·
Rk := M[FP+4∗n+4∗ (k +1)]
GOTO M[FP]

Figure 9.5: Prologue and epilogue for callee-saves

FP := FP+ f ramesize
M[FP+4] := a1
· · ·
M[FP+4∗n] := an
M[FP] := returnaddress
GOTO f
LABEL returnaddress
x := M[FP+4]
FP := FP− f ramesize

Figure 9.6: Call sequence for x := CALL f (a1, . . . ,an) for callee-saves

9.5. USING REGISTERS TO PASS PARAMETERS 173

save the registers that hold live variables and callee-saves need only save the regis-
ters that the function actually uses. We will in section 9.6 return to how this can be
achieved, but at the moment just assume these optimisations are made.

Caller-saves and callee-saves each have their advantages (described above) and dis-
advantages: When caller-saves is used, we might save a live variable in the frame even
though the callee doesn’t use the register that holds this variable. On the other hand,
with callee-saves we might save some registers that don’t actually hold live values. We
can’t avoid these unnecessary saves, as each function is compiled independently and
hence don’t know the register usage of their callers/callees. We can, however, try to
reduce unnecessary saving of registers by using a mixed caller-saves and callee-saves
strategy:

Some registers are designated caller-saves and the rest as callee-saves. If any live
variables are held in caller-saves registers, it is the caller that must save these to its
own frame (as in figure 9.3, though only registers that are both designated caller-saves
and hold live variables are saved). If a function uses any callee-saves registers in its
body, it must save these first, as in figure 9.5 (though only callee-saves registers that
are actually used in the body are saved).

Calling conventions typically specify which registers are caller-saves and which
are callee-saves, as well as the layout of the activation records.

9.5 Using registers to pass parameters

In both call sequences shown (in figures 9.3 and 9.6), parameters are stored in the
frame, and in both prologues (figures 9.2 and 9.5) most of these are immediately loaded
back into registers. It will save a good deal of memory traffic if we pass the parameters
in registers instead of memory.

Normally, only a few (4-8) registers are used for parameter passing. These are used
for the first parameters of a function, while the remaining parameters are passed on the
stack, as we have done above. Since most functions have fairly short parameter lists,
most parameters will normally be passed in registers. The registers used for parameter
passing are typically a subset of the caller-saves registers, as parameters aren’t live
after the call and hence don’t have to be preserved.

A possible division of registers for a 16-register architecture is shown in figure 9.7.
Note that the return address is also passed in a register. Most RISC architectures have
jump-and-link (function-call) instructions, which leaves the return address in a register,
so this is only natural. However, if a further call is made, this register is overwritten,
so the return address must be saved in the activation record before this happens. The
return-address register is marked as callee-saves in figure 9.7. In this manner, the
return-address register is just like any other variable that must be preserved in the
frame if it is used in the body (which it is if a function call is made). Strictly speaking,
we don’t need the return address after the call has returned, so we can also argue that
R15 is a caller-saves register. If so, the caller must save R15 prior to any call, e.g., by

174 CHAPTER 9. FUNCTION CALLS

Register Saved by Used for
0 caller parameter 1 / result / local variable

1-3 caller parameters 2 - 4 / local variables
4-12 callee local variables
13 caller temporary storage (unused by register allocator)
14 callee FP
15 callee return address

Figure 9.7: Possible division of registers for 16-register architecture

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body
Incoming parameters in excess of four

FP −→ Return address
Previous activation records
· · ·

Figure 9.8: Activation record layout for the register division shown in figure 9.7

spilling it.
Activation record layout, prologue/epilogue and call sequence for a calling conven-

tion using the register division in figure 9.7 are shown in figures 9.8, 9.9 and 9.10.
Note that the offsets for storing registers are not simple functions of their register

numbers, as only a subset of the registers need to be saved. R15 (which holds the
return address) is treated as any other callee-saves register. Its offset is 0, as the return
address is stored at offset 0 in the frame.

In a call-sequence, the instructions

R15 := returnaddress
GOTO f
LABEL returnaddress

can on most RISC processors be implemented by a jump-and-link instruction.

9.6 Interaction with the register allocator
As we have hinted above, the register allocator can be used to optimise function calls,
as it can provide information about which registers need to be saved.

9.6. INTERACTION WITH THE REGISTER ALLOCATOR 175

Prologue

LABEL function-name
M[FP+offsetR4] := R4 (if used in body)
· · ·
M[FP+offsetR12] := R12 (if used in body)
M[FP] := R15 (if used in body)
parameter1 := R0
parameter2 := R1
parameter3 := R2
parameter4 := R3
parameter5 := M[FP+4]
· · ·
parametern := M[FP+4∗ (n−4)]

code for the function body

Epilogue

R0 := result
R4 := M[FP+offsetR4] (if used in body)
· · ·
R12 := M[FP+offsetR12] (if used in body)
R15 := M[FP] (if used in body)
GOTO R15

Figure 9.9: Prologue and epilogue for the register division shown in figure 9.7

176 CHAPTER 9. FUNCTION CALLS

M[FP+offsetlive1
] := live1 (if allocated to a caller-saves register)

· · ·
M[FP+offsetlivek

] := livek (if allocated to a caller-saves register)
FP := FP+ f ramesize
R0 := a1
· · ·
R3 := a4
M[FP+4] := a5
· · ·
M[FP+4∗ (n−4)] := an
R15 := returnaddress
GOTO f
LABEL returnaddress
x := R0
FP := FP− f ramesize
live1 := M[FP+offsetlive1

] (if allocated to a caller-saves register)
· · ·
livek := M[FP+offsetlivek

] (if allocated to a caller-saves register)

Figure 9.10: Call sequence for x := CALL f (a1, . . . ,an) for the register division shown
in figure 9.7

9.6. INTERACTION WITH THE REGISTER ALLOCATOR 177

The register allocator can tell which variables are live after the function call. In a
caller-saves strategy (or for caller-saves registers in a mixed strategy), only the (caller-
saves) registers that hold such variables need to be saved before the function call.

Likewise, the register allocator can return information about which variables are
used by the function body, so only these need to be saved in a callee-saves strategy.

If a mixed strategy is used, variables that are live across a function call should, if
possible, be allocated to callee-saves registers. This way, the caller doesn’t have to
save these and, with luck, they don’t have to be saved by the callee either (if the callee
doesn’t use these registers in its body). If all variables that are live across function
calls are made to interfere with all caller-saves registers, the register allocator will not
allocate these variables in caller-saves registers, which achieves the desired effect. If
no callee-saves register is available, the variable will be spilled and hence, effectively,
be saved across the function call. This way, the call sequence will not need to worry
about saving caller-saves registers, this is all done by the register allocator.

As spilling may be somewhat more costly than local save/restore around a function
call, it is a good idea to have plenty of callee-saves registers for holding variables that
are live across function calls. Hence, most calling conventions specify more callee-
saves registers than caller-saves registers.

Note that, though the prologues shown in figures 9.2, 9.5 and 9.9 load all stack-
passed parameters into registers, this should actually only be done for parameters that
aren’t spilled. Likewise, a register-passed parameter that needs to be spilled should
in the prologue be transferred to a stack location instead of to a symbolic register
(parameteri).

In figures 9.2, 9.5 and 9.9, we have moved register-passed parameters from the
numbered registers or stack locations to named registers, to which the register allo-
cator must assign numbers. Similarly, in the epilogue we move the function result
from a named variable to R0. This means that these parts of the prologue and epi-
logue must be included in the body when the register allocator is called (so the named
variables will be replaced by numbers). This will also automatically handle the issue
about spilled parameters mentioned above, as spill-code is inserted immediately after
the parameters are (temporarily) transferred to registers. This may cause some extra
memory transfers when a spilled stack-passed parameter is first loaded into a register
and then immediately stored back again. This problem is, however, usually handled by
later optimisations.

It may seem odd that we move register-passed parameters to named registers in-
stead of just letting them stay in the registers they are passed in. But these registers
may be needed for other function calls, which gives problems if a parameter allocated
to one of these needs to be preserved across the call (as mentioned above, variables that
are live across function calls shouldn’t be allocated to caller-saves registers). By mov-
ing the parameters to named registers, the register allocator is free to allocate these to
callee-saves registers if needed. If this is not needed, the register allocator may allocate
the named variable to the same register as the parameter was passed in and eliminate
the (superfluous) register-to-register move. As mentioned in section 8.7, modern reg-

178 CHAPTER 9. FUNCTION CALLS

ister allocators will eliminate most such moves anyway, so we might as well exploit
this.

In summary, given a good register allocator, the compiler needs to do the following
to compile a function:

1) Generate code for the body of the function, using symbolic names (except for
parameter-passing in call sequences).

2) Add code for moving parameters from numbered registers and stack locations
into the named variables used for accessing the parameters in the body of the
function, and for moving the function-result from a named register to the register
used for function results.

3) Call the register allocator with this extended function-body. The register alloca-
tor should be aware of the register division (caller-saves/callee-saves split).

4) To the register-allocated code, add code for saving and restoring the callee-saves
registers that the register allocator says have been used in the (extended) body.

5) Add a function-label at the beginning of the code and a return-jump at the end.

9.7 Accessing non-local variables
We have up to now assumed that all variables used in a function are local to that
function, but most high-level languages also allow functions to access variables that
are not declared locally in the functions themselves.

9.7.1 Global variables
In C, variables are either global or local to a function. Local variables are treated
exactly as we have described, i.e., typically stored in a register. Global variables will,
on the other hand, be stored in memory. The location of each global variable will be
known at compile-time or link-time. Hence, a use of a global variable x generates the
code

t := M[addressx]
instruction that uses t

The global variable is loaded into a (register-allocated) temporary variable and this
will be used in place of the global variable in the instruction that needs the value of the
global variable.

An assignment to a global variable x is implemented as

t := the value to be stored in x
M[addressx] := t

9.7. ACCESSING NON-LOCAL VARIABLES 179

Note that global variables are treated almost like spilled variables: Their value is loaded
from memory into a register immediately before any use and stored from a register into
memory immediately after an assignment.

If a global variable is used often within a function, it can be loaded into a local vari-
able at the beginning of the function and stored back again when the function returns.
However, a few extra considerations need to be made:

• The variable must be stored back to memory whenever a function is called, as
the called function may read or change the global variable. Likewise, the global
variable must be read back from memory after the function call, so any changes
will be registered in the local copy. Hence, it is best to allocate local copies of
global variables in caller-saves registers.

• If the language allows call-by-reference parameters (see below) or pointers to
global variables, there may be more than one way to access a global variable:
Either through its name or via a call-by-reference parameter or pointer. If we
cannot exclude the possibility that a call-by-reference parameter or pointer can
access a global variable, it must be stored/retrieved before/after any access to
a call-by-reference parameter or any access through a pointer. It is possible to
make a global alias analysis that determines if global variables, call-by-reference
parameters or pointers may point to the same location (i.e., may be aliased).
However, this is a fairly complex analysis, so many compilers simply assume
that a global variable may be aliased with any call-by-reference parameter or
pointer and that any two of the latter may be aliased.

The above tells us that accessing local variables (including call-by-value parameters)
is faster than accessing global variables. Hence, good programmers will use global
variables sparingly.

9.7.2 call-by-reference parameters
Some languages, e.g., Pascal (which uses the term var-parameters), allow parameters
to be passed by call-by-reference. A parameter passed by call-by-reference must be a
variable, an array element, a field in a record or, in general, anything that is allowed
at the left-hand-side of an assignment statement. Inside the function that has a call-
by-reference parameter, values can be assigned to the parameter and these assignments
actually update the variable, array element or record-field that was passed as parameter
such that the changes are visible to the caller. This differs from assignments to call-by-
value parameters in that these update only a local copy.

Call-by-reference is implemented by passing the address of the variable, array el-
ement or whatever that is given as parameter. Any access (use or definition) to the
call-by-reference parameter must be through this address.

In C, there are no explicit call-by-reference parameters, but it is possible to explic-
itly pass pointers to variables, array-elements, etc. as parameters to a function by using

180 CHAPTER 9. FUNCTION CALLS

procedure f (x : integer);
var y : integer;
function g(p : integer);
var q : integer;
begin

if p<10 then y := g(p+y)
else q := p+y;
if (y<20) then f(y);
g := q;

end;
begin

y := x+x;
writeln(g(y),y)

end;

Figure 9.11: Example of nested scopes in Pascal

the & (address-of) operator. When the value of the variable is used or updated, this
pointer must be explicitly followed, using the * (de-reference) operator. So, apart from
notation and a higher potential for programming errors, this isn’t significantly different
from “real” call-by-reference parameters.

In any case, a variable that is passed as a call-by-reference parameter or has its
address passed via a & operator, must reside in memory. This means that it must be
spilled at the time of the call or allocated to a caller-saves register, so it will be stored
before the call and restored afterwards.

It also means that passing a result back to the caller by call-by-reference or pointer
parameters can be slower than using the functions return-value, as the latter may be
done entirely in registers. Hence, like global variables, call-by-reference and pointer
parameters should be used sparingly.

Either of these on their own have the same aliasing problems as when combined
with global variables.

9.7.3 Nested scopes

Some languages, e.g., Pascal and SML, allow functions to be declared locally within
other functions. A local function typically has access to variables declared in the func-
tion in which it itself is declared. For example, figure 9.11 shows a fragment of a Pascal
program. In this program, g can access x and y (which are declared in f) as well as its
own local variables p and q.

Note that, since f and g are recursive, there can be many instances of their variables
in different activation records at any one time.

When g is called, its own local variables (p and q) are held in registers, as we have

9.7. ACCESSING NON-LOCAL VARIABLES 181

function g(var fFrame : fRecord, p : integer);
var q : integer;
begin

if p<10 then fFrame.y := g(fFrame,p+fFrame.y)
else q := p+fFrame.y;
if (fFrame.y<20) then f(fFrame.y);
g := q;

end;

procedure f (x : integer);
var y : integer;

begin
y := x+x;
writeln(g(FP,y),y)

end;

Figure 9.12: Adding an explicit frame-pointer to the program from figure 9.11

described above. All other variables (i.e., x and y) reside in the activation records of
the procedures/functions in which they are declared (in this case f). It is no problem
for g to know the offsets for x and y in the activation record for f, as f can be compiled
before g, so full information about f’s activation record layout is available for the
compiler when it compiles g. However, we will not at compile-time know the position
of f’s activation record on the stack. f’s activation record will not always be directly
below that of g, since there may be several recursive invocations of g (each with its
own activation record) above the last activation record for f. Hence, a pointer to f’s
activation record will be given as parameter to g when it is called. When f calls g, this
pointer is just the contents of FP, as this, by definition, points to the activation record
of the active function (i.e., f). When g is called recursively from g itself, the incoming
parameter that points to f’s activation record is passed on as a parameter to the new
call, so every instance of g will have its own copy of this pointer.

To illustrate this, we have in figure 9.12 added this extra parameter explicitly to the
program from figure 9.11. Now, g accesses all non-local variables through the fFrame
parameter, so it no longer needs to be declared locally inside f. Hence, we have moved
it out. We have used record-field-selection syntax in g for accessing f’s variables
through fFrame. Note that fFrame is a call-by-reference parameter (indicated by the
var keyword), as g can update f’s variables (i.e., y). In f, we have used FP to refer to
the current activation record. Normally, a function in a Pascal program will not have
access to its own frame, so this is not quite standard Pascal.

It is sometimes possible to make the transformation entirely in the source language
(e.g., Pascal), but the extra parameters are usually not added until the intermediate
code, where FP is made explicit, has been generated. Hence, figure 9.12 mainly serves

182 CHAPTER 9. FUNCTION CALLS

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body
Incoming parameters in excess of four
Return address

FP −→ Static link (SL)
Previous activation records
· · ·

Figure 9.13: Activation record with static link

to illustrate the idea, not as a suggestion for implementation.
Note that all variables that can be accessed in inner scopes need to be stored in

memory when a function is called. This is the same requirement as was made for
call-by-reference parameters, and for the same reason. This can, in the same way, be
handled by allocating such variables in caller-saves registers.

Static links

If there are more than two nested scopes, pointers to all outer scopes need to be passed
as parameters to locally declared functions. If, for example, g declared a local function
h, h would need pointers to both f’s and g’s activation records. If there are many nested
scopes, this list of extra parameters can be quite long. Typically, a single parameter is
instead used to hold a linked list of the frame pointers for the outer scopes. This
is normally implemented by putting the links in the activation records themselves.
Hence, the first field of an activation record (the field that FP points to) will point to
the activation record of the next outer scope. This is shown in figure 9.13. The pointer
to the next outer scope is called the static link, as the scope-nesting is static as opposed
to the actual sequence of run-time calls that determine the stacking-order of activation
records1. The layout of the activation records for f and g from figure 9.11 is shown in
figure 9.14.

g’s static link will point to the most recent activation record for f. To read y, g will
use the code

FPf := M[FP] Follow g’s static link
address := FPf +12 Calculate address of y
y := M[address] Get y’s value

1Sometimes, the return address is referred to as the dynamic link.

9.8. VARIANTS 183

f:

· · ·
y
x
Return address

FP → SL
· · ·

g:

· · ·
q
p
Return address

FP → SL
· · ·

Figure 9.14: Activation records for f and g from figure 9.11

where y afterwards holds the value of y. To write y, g will use the code

FPf := M[FP] Follow g’s static link
address := FPf +12 Calculate address of y
M[address] := y Write to y

where y holds the value that is written to y. If a function h was declared locally inside
g, it would need to follow two links to find y:

FPg := M[FP] Follow h’s static link
FPf := M[FPg] Follow g’s static link
address := FPf +12 Calculate address of y
y := M[address] Get y’s value

This example shows why the static link is put in the first element of the activation
record: It makes following a chain of links easier, as no offsets have to be added in
each step.

Again, we can see that a programmer should keep variables as local as possible, as
non-local variables take more time to access.

9.8 Variants
We have so far seen fixed-size activation records on stacks that grow upwards in mem-
ory, and where FP points to the first element of the frame. There are, however, reasons
why you sometimes may want to change this.

9.8.1 Variable-sized frames
If arrays are allocated on the stack, the size of the activation record depends on the
size of the arrays. If these sizes are not known at compile-time, neither will the size of
the activation records. Hence, we need a run-time variable to point to the end of the
frame. This is typically called the stack pointer, because the end of the frame is also
the top of the stack. When setting up parameters to a new call, these are put at places
relative to SP rather than relative to FP. When a function is called, the new FP takes the
value of the old SP, but we now need to store the old value of FP, as we no longer can

184 CHAPTER 9. FUNCTION CALLS

restore it by subtracting a constant from the current FP. Hence, the old FP is passed as
a parameter (in a register or in the frame) to the new function, which restores FP to this
value just before returning.

If arrays are allocated on a separate stack, frames can be of fixed size, but a separate
stack-pointer is now needed for allocating/deallocating arrays.

If two stacks are used, it is customary to let one grow upwards and the other down-
wards, such that they grow towards each other. This way, stack-overflow tests on both
stacks can be replaced by a single test on whether the stack-tops meet. It also gives a
more flexible division of memory between the two stacks than if each stack is allocated
its own fixed-size memory segment.

9.8.2 Variable number of parameters
Some languages (e.g., C and LISP) allow a function to have a variable number of
parameters. This means that the function can be called with a different number of
parameters at each call. In C, the printf function is an example of this.

The layouts we have shown in this chapter all assume that there is a fixed num-
ber of arguments, so the offsets to, e.g., local variables are known. If the number of
parameters can vary, this is no longer true.

One possible solution is to have two frame pointers: One that shows the position
of the first parameter and one that points to the part of the frame that comes after the
parameters. However, manipulating two FP’s is somewhat costly, so normally another
trick is used: The FP points to the part of the frame that comes after the parameters,
Below this, the parameters are stored at negative offsets from FP, while the other parts
of the frame are accessed with (fixed) positive offsets. The parameters are stored such
that the first parameter is closest to FP and later parameters further down the stack.
This way, parameter number k will be a fixed offset (−4∗ k) from FP.

When a function call is made, the number of arguments to the call is known to the
caller, so the offsets (from the old FP) needed to store the parameters in the new frame
will be fixed at this point.

Alternatively, FP can point to the top of the frame and all fields can be accessed by
fixed negative offsets. If this is the case, FP is sometimes called SP, as it points to the
top of the stack.

9.8.3 Direction of stack-growth and position of FP
There is no particular reason why a stack has to grow upwards in memory. It is, in fact,
more common that call stacks grow downwards in memory. Sometimes the choice is
arbitrary, but at other times there is an advantage to have the stack growing in a par-
ticular direction. Some instruction sets have memory-access instructions that include
a constant offset from a register-based address. If this offset is unsigned (as it is on,
e.g., IBM System/370), it is an advantage that all fields in the activation record are at
non-negative offsets. This means that either FP must point to the bottom of the frame

9.9. FURTHER READING 185

and the stack grow upwards, or FP must point to the top of the frame and the stack
grow downwards.

If, on the other hand, offsets are signed but have a small range (as on Digital’s
Vax, where the range is -128 – +127), it is an advantage to use both positive and
negative offsets. This can be done, as suggested in section 9.8.2, by placing FP after
the parameters but before the rest of the frame, so parameters are addressed by negative
offsets and the rest by positive. Alternatively, FP can be positioned k bytes above the
bottom of the frame, where −k is the largest negative offset.

9.8.4 Register stacks

Some processors, e.g., Suns Sparc and Intels IA-64 have on-chip stacks of registers.
The intention is that frames are kept in registers rather than on a stack in memory. At
call or return of a function, the register stack is adjusted. Since the register stack has a
finite size, which is often smaller than the total size of the call stack, it may overflow.
This is trapped by the operating system which stores part of the stack in memory and
shifts the rest down (or up) to make room for new elements. If the stack underflows (at
a pop from an empty register stack), the OS will restore earlier saved parts of the stack.

9.9 Further reading

Calling conventions for various architectures are usually documented in the manuals
provided by the vendors of these architectures. Additionally, the calling convention for
the MIPS microprocessor is shown in [27].

In figure 9.12, we showed in source-language terms how an extra parameter can
be added for accessing non-local parameters, but stated that this was for illustrative
purposes only, and that the extra parameters aren’t normally added at source-level.
However, [6] argues that it is, actually, a good idea to do this, and goes on to show
how many advanced features regarding nested scopes, higher-order functions and even
register allocation can be implemented mostly by source-level transformations.

Exercises

Exercise 9.1

In section 9.3 an optimisation is mentioned whereby parameters are stored in the new
frame as soon as they are evaluated instead of just before the call. It is warned that this
will go wrong if any of the parameter-expressions themselves contain function calls.
Argue that the first parameter-expression of a function call can contain other function
calls without causing the described problem.

186 CHAPTER 9. FUNCTION CALLS

Exercise 9.2
Section 9.8.2 suggests that a variable number of arguments can be handled by storing
parameters at negative offsets from FP and the rest of the frame at non-negative offsets
from FP. Modify figures 9.8, 9.9 and 9.10 to follow this convention.

Exercise 9.3
Find documentation for the calling convention of a processor of your choice and mod-
ify figures 9.7, 9.8, 9.9 and 9.10 to follow this convention.

Chapter 10

Bootstrapping a compiler

10.1 Introduction
When writing a compiler, one will usually prefer to write it in a high-level language. A
possible choice is to use a language that is already available on the machine where the
compiler should eventually run. It is, however, quite common to be in the following
situation:

You have a completely new processor for which no compilers exist yet. Neverthe-
less, you want to have a compiler that not only targets this processor, but also runs on
it. In other words, you want to write a compiler for a language A, targeting language
B (the machine language) and written in language B.

The most obvious approach is to write the compiler in language B. But if B is ma-
chine language, it is a horrible job to write any non-trivial compiler in this language.
Instead, it is customary to use a process called “bootstrapping”, referring to the seem-
ingly impossible task of pulling oneself up by the bootstraps.

The idea of bootstrapping is simple: You write your compiler in language A (but
still let it target B) and then let it compile itself. The result is a compiler from A to B
written in B.

It may sound a bit paradoxical to let the compiler compile itself: In order to use
the compiler to compile a program, we must already have compiled it, and to do this
we must use the compiler. In a way, it is a bit like the chicken-and-egg paradox. We
shall shortly see how this apparent paradox is resolved, but first we will introduce some
useful notation.

10.2 Notation
We will use a notation designed by H. Bratman [8]. The notation is hence called
“Bratman diagrams” or, because of their shape, “T-diagrams”.

In this notation, a compiler written in language C, compiling from the language A
and targeting the language B is represented by the diagram

187

188 CHAPTER 10. BOOTSTRAPPING A COMPILER

C

A B

In order to use this compiler, it must “stand” on a solid foundation, i.e., something
capable of executing programs written in the language C. This “something” can be a
machine that executes C as machine-code or an interpreter for C running on some other
machine or interpreter. Any number of interpreters can be put on top of each other, but
at the bottom of it all, we need a “real” machine.

An interpreter written in the language D and interpreting the language C, is repre-
sented by the diagram

C

D

A machine that directly executes language D is written as

J
J

D

The pointed bottom indicates that a machine need not stand on anything; it is itself the
foundation that other things must stand on.

When we want to represent an unspecified program (which can be a compiler, an
interpreter or something else entirely) written in language D, we write it as

D

These figures can be combined to represent executions of programs. For example,
running a program on a machine D is written as

D
J
J

D

Note that the languages must match: The program must be written in the language that
the machine executes.

We can insert an interpreter into this picture:

10.3. COMPILING COMPILERS 189

C

C

D
J
J

D

Note that, also here, the languages must match: The interpreter can only interpret
programs written in the language that it interprets.

We can run a compiler and use this to compile a program:

A B

C

A B

J
J

C

The input to the compiler (i.e., the source program) is shown at the left of the compiler,
and the resulting output (i.e., the target program) is shown on the right. Note that the
languages match at every connection and that the source and target program aren’t
“standing” on anything, as they aren’t executed in this diagram.

We can insert an interpreter in the above diagram:

A B

C

A B

C

D
J
J

D

10.3 Compiling compilers
The basic idea in bootstrapping is to use compilers to compile themselves or other
compilers. We do, however, need a solid foundation in form of a machine to run the
compilers on.

It often happens that a compiler does exist for the desired source language, it just
doesn’t run on the desired machine. Let us, for example, assume we want a compiler
for ML to Pentium machine code and want this to run on a Pentium. We have access
to an ML-compiler that generates HP PA-RISC machine code and runs on an HP ma-

190 CHAPTER 10. BOOTSTRAPPING A COMPILER

chine, which we also have access to. One way of obtaining the desired compiler would
be to do binary translation, i.e., to write a compiler from HP machine code to Pentium
machine code. This will allow the translated compiler to run on a Pentium, but it will
still generate HP code. We can use the HP-to-Pentium compiler to translate this into
Pentium code afterwards, but this introduces several problems:

• Adding an extra pass makes the compilation process take longer.

• Some efficiency will be lost in the translation.

• We still need to make the HP-to-Pentium compiler run on the Pentium machine.

A better solution is to write an ML-to-Pentium compiler in ML. We can compile this
using the ML compiler on the HP:

ML

ML P

HP

ML P

HP

ML HP

J
J

HP

where “P” is short for Pentium.
Now, we can run the ML-to-Pentium compiler on the HP and let it compile itself1:

ML

ML P

P

ML P

HP

ML P

J
J

HP

We have now obtained the desired compiler. Note that the compiler can now be used
to compile itself directly on the Pentium platform. This can be useful if the compiler
is later extended or, simply, as a partial test of correctness: If the compiler, when
compiling itself, yields a different object code than the one obtained with the above
process, it must contain an error. The converse isn’t true: Even if the same target is
obtained, there may still be errors in the compiler.

It is possible to combine the two above diagrams to a single diagram that covers
both executions:

1When a program is compiled and hence, strictly speaking, isn’t textually the same, we still regard
it as the same program.

10.3. COMPILING COMPILERS 191

ML

ML P ML

ML P

P

ML P

HP

ML P

J
J

HPHP

ML HP

J
J

HP

In this diagram, the ML-to-Pentium compiler written in HP has two roles: It is the
output of the first compilation and the compiler that runs the second compilation. Such
combinations can, however, be a bit confusing: The compiler that is the input to the
second compilation step looks like it is also the output of the leftmost compiler. In this
case, the confusion is avoided because the leftmost compiler isn’t running and because
the languages doesn’t match. Still, diagrams that combine several executions should
be used with care.

10.3.1 Full bootstrap

The above bootstrapping process relies on an existing compiler for the desired lan-
guage, albeit running on a different machine. It is, hence, often called “half bootstrap-
ping”. When no existing compiler is available, e.g., when a new language has been
designed, we need to use a more complicated process called “full bootstrapping”.

A common method is to write a QAD (“quick and dirty”) compiler using an existing
language. This compiler needs not generate code for the desired target machine (as
long as the generated code can be made to run on some existing platform), nor does
it have to generate good code. The important thing is that it allows programs in the
new language to be executed. Additionally, the “real” compiler is written in the new
language and will be bootstrapped using the QAD compiler.

As an example, let us assume we design a new language “M+”. We, initially, write
a compiler from M+ to ML in ML. The first step is to compile this, so it can run on
some machine:

ML

M+ ML

HP

M+ ML

HP

ML HP

J
J

HP

The QAD compiler can now be used to compile the “real” compiler:

192 CHAPTER 10. BOOTSTRAPPING A COMPILER

M+

M+ HP

ML

M+ HP

HP

M+ ML

J
J

HP

The result is an ML program, which we need to compile:

ML

M+ HP

HP

M+ HP

HP

ML HP

J
J

HP

The result of this is a compiler with the desired functionality, but it will probably
run slowly. The reason is that it has been compiled by using the QAD compiler (in
combination with the ML compiler). A better result can be obtained by letting the
generated compiler compile itself:

M+

M+ HP

HP

M+ HP

HP

M+ HP

J
J

HP

This yields a compiler with the same functionality as the above, i.e., it will generate
the same code, but, since the “real” compiler has been used to compile it, it will run
faster.

The need for this extra step might be a bit clearer if we had let the “real” compiler
generate Pentium code instead, as it would then be obvious that the last step is required
to get the compiler to run on the same machine that it targets. We chose the target
language to make a point: Bootstrapping might not be complete even if a compiler
with the right functionality has been obtained.

Using an interpreter

Instead of writing a QAD compiler, we can write a QAD interpreter. In our example,
we could write an M+ interpreter in ML. We would first need to compile this:

10.3. COMPILING COMPILERS 193

M+

ML

M+

HP

HP

ML HP

J
J

HP

We can then use this to run the M+ compiler directly:

M+

M+ HP

HP

M+ HP

M+

M+ HP

M+

HP
J
J

HP

Since the “real” compiler has been used to do the compilation, nothing will be gained
by using the generated compiler to compile itself, though this step can still be used as
a test and for extensions.

Though using an interpreter requires fewer steps, this shouldn’t really be a consid-
eration, as the computer(s) will do all the work in these steps. What is important is the
amount of code that needs to be written by hand. For some languages, a QAD com-
piler will be easier to write than an interpreter, and for other languages an interpreter is
easier. The relative ease/difficulty may also depend on the language used to implement
the QAD interpreter/compiler.

Incremental bootstrapping

It is also possible to build the new language and its compiler incrementally. The first
step is to write a compiler for a small subset of the language, using that same subset to
write it. This first compiler must be bootstrapped in one of the ways described earlier,
but thereafter the following process is done repeatedly:

1) Extend the language subset slightly.

2) Extend the compiler so it compiles the extended subset, but without using the
new features.

3) Use the previous compiler to compile the new.

In each step, the features introduced in the previous step can be used in the compiler.
Even when the full language is compiled, the process can be continued to improve the
quality of the compiler.

194 CHAPTER 10. BOOTSTRAPPING A COMPILER

10.4 Further reading
Bratman’s original article, [8], only describes the T-shaped diagrams. The notation for
interpreters, machines and unspecified programs was added later in [12].

The first Pascal compiler [30] was made using incremental bootstrapping.
Though we in section 10.3 dismissed binary translation as unsuitable for porting

a compiler to a new machine, it is occasionally used. The advantage of this approach
is that a single binary translator can port any number of programs, not just compilers.
It was used by Digital in their FX!32 software [14] to enable programs compiled for
Windows on a Pentium-platform to run on their Alpha RISC processor.

Exercises

Exercise 10.1
You have a machine that can execute Alpha machine code and the following programs:

1: A compiler from C to Alpha machine code written in Alpha machine code.

2: An interpreter for ML written in C.

3: A compiler from ML to C written in ML.

Now do the following:

a) Describe the above programs and machine as diagrams.

b) Show how a compiler from ML to C written in Alpha machine code can be
generated from the above components. The generated program must be stand-
alone, i.e., it may not consist of an interpreter and an interpreted program.

c) Show how the compiler generated in question b can be used in a process that
compiles ML programs to Alpha machine code.

Bibliography

[1] A. Aasa. Precedences in specification and implementations of programming lan-
guages. In J. Maluszyński and M. Wirsing, editors, Proceedings of the Third
International Symposium on Programming Language Implementation and Logic
Programming, number 528 in LNCS, pages 183–194. Springer Verlag, 1991.

[2] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, 1996. Also downloadable from
http://mitpress.mit.edu/sicp/full-text/sicp/book/.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers; Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[5] Hassan Aït-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. MIT
Press, 1991.

[6] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[7] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[8] H. Bratman. An alternative form of the ‘uncol’ diagram. Communications of the
ACM, 4(3):142, 1961.

[9] Preston Briggs. Register Allocation via Graph Coloring, Tech. Rept. CPC-
TR94517-S. PhD thesis, Rice University, Center for Research on Parallel Com-
putation, Apr. 1992.

[10] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
1(4):481–494, 1964.

[11] Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, IT-2(3):113–124, 1956.

195

196 BIBLIOGRAPHY

[12] J. Earley and H. Sturgis. A formalism for translator interactions. Communications
of the ACM, 13:607–617, 1970.

[13] Peter Naur (ed.). Revised report on the algorithmic language algol 60. Commu-
nications of the ACM, 6(1):1–17, 1963.

[14] Raymond J. Hookway and Mark A. Herdeg. Digital fx!32: Combining emulation
and binary translation.
http://research.compaq.com/wrl/DECarchives/DTJ/DTJP01/DTJP01PF.PDF,
1997.

[15] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation, 2nd ed. Addison-Wesley, 2001.

[16] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report (2nd ed.).
Springer-Verlag, 1975.

[17] Simon L. Peyton Jones and David Lester. Implementing Functional Langauges –
A Tutorial. Prentice Hall, 1992.

[18] J. P. Keller and R. Paige. Program derivation with verified transformations – a
case study. Communications in Pure and Applied Mathematics, 48(9–10), 1996.

[19] B. W. Kerninghan and D. M. Ritchie. The C Programming Language. Prentice-
Hall, 1978.

[20] M. E. Lesk. Lex: a Lexical Analyzer Generator. Technical Report 39, AT&T Bell
Laboratories, Murray Hill, N. J., 1975.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, 2nd ed.
Addison-Wesley, Reading, Massachusetts, 1999.

[22] R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers, 9(1):39–47, 1960.

[23] Robin Milner. A theory of type polymorphism in programming. Journal of
Computational Systems Science, 17(3):348–375, 1978.

[24] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[25] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[26] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[27] David A. Patterson and John L. Hennessy. Computer Organization & Design, the
Hardware/Software Interface. Morgan Kaufmann, 1998.

BIBLIOGRAPHY 197

[28] Vern Paxson. Flex, version 2.5, a fast scanner generator.
http://www.aps.anl.gov/helpdocs/gnu/flex/flex.html, 1995.

[29] Mikkel Thorup. All structured programs have small tree-width and good register
allocation. Information and Computation, 142(2):159–181, 1998.

[30] Niklaus Wirth. The design of a pascal compiler. Software - Practice and Experi-
ence, 1(4):309–333, 1971.

Index

abstract syntax, 86, 105
accept, 77, 81
action, 36, 85, 86
activation record, 168
alias, 179, 180
allocation, 133, 183
Alpha, 144, 194
alphabet, 8
ARM, 144, 145
assembly, 2
assignment, 119
associative, 57, 59
attribute, 103

inherited, 103
synthesised, 103

back-end, 115
biased colouring, 164
binary translation, 194
binding

dynamic, 97
static, 97

bootstrapping, 187, 189
full, 191
half, 191
incremental, 193

Bratman diagram, 187

C, 4, 35, 57, 60, 88, 91, 100, 121, 126,
127, 131, 134, 178, 179, 184

call stack, 167
call-by-reference, 179
call-by-value, 167
call-sequence, 169
callee-saves, 170, 173
caller-saves, 170, 173

caller/callee, 167
calling convention, 168
CISC, 145
coalescing, 165
code generator, 144, 146
code hoisting, 149
column-major, 134
comments

nested, 37
common subexpression elimination, 149
compile-time, 120
compiling compilers, 189
conflict, 71, 75, 82, 84, 88

reduce-reduce, 82, 84
shift-reduce, 82, 84

consistent, 28
constant in operand, 145
constant propagation, 150
context-free, 103

grammar, 47, 48, 52
language, 90

dangling-else, 60, 83, 85
dead variable, 146, 154
declaration, 97

global, 97
local, 97

derivation, 51, 51, 52, 61, 70
left, 55, 69
leftmost, 52
right, 55, 76
rightmost, 52

DFA, 14, 19, 39, 76, 77
combined, 33
converting NFA to, 20, 23
equivalence of, 27

198

INDEX 199

minimisation, 27, 28, 33
unique minimal, 27

Digital Vax, 185
distributive, 22
domain specific language, 4
dynamic programming, 146

environment, 97, 105
epilogue, 169
epsilon transition, 13
epsilon-closure, 20

FA, 14
finite automaton

graphical notation, 14
finite automaton, 8, 13

deterministic, 19
nondeterministic, 14

FIRST, 62, 65
fixed-point, 21, 63, 65, 156
flag, 144

arithmetic, 144
floating-point constant, 12
floating-point numbers, 119
FOLLOW, 66
FORTRAN, 35
frame, 168
frame pointer, 168
front-end, 115
function call, 119
function calls, 143, 167
functional, 98

gen and kill sets, 155
generic types, 111
global variable, 178
go, 77, 80
grammar, 61

ambiguous, 55, 56, 59, 62, 65, 71, 82
equivalent, 56

graph colouring, 159, 160
greedy algorithm, 146

hashing, 100

Haskell, 88, 99
heuristics, 159, 162

IA-32, 144
IA-64, 144
IBM System/370, 184
imperative, 98
implicit types, 112
in and out sets, 155
index check, 135

translation of, 135
index-check

elimination, 150
instruction set description, 146
integer, 12, 119
interference, 157
interference graph, 158
intermediate code, 2, 115, 153
intermediate language, 2, 116, 143, 149

tree-structured, 150
interpreter, 3, 115, 117, 188

Java, 35, 116
jump, 119

conditional, 119, 144
just-in-time compilation, 116

keyword, 11

label, 119
LALR(1), 75, 85, 91
language, 8, 52

context-free, 90
high-level, 115, 187

left-associative, 57, 84
left-derivation, 61
left-factorisation, 74
left-recursion, 58, 59, 74, 87

elimination of, 72
indirect, 73

lexer, 7, 31, 61
lexer generator, 31, 36
lexical, 7

analysis, 7

200 INDEX

error, 35
lexical analysis, 2
lexing, 103
linking, 2
LISP, 184
live variable, 154, 167

at end of procedure, 156
live-range splitting, 165
liveness, 154
liveness analysis, 154
LL(1), 47, 69, 70, 72, 75, 83, 87, 91
local variables, 167
longest prefix, 35
lookahead, 69
LR, 75

machine code, 2, 115, 117, 143
machine language, 153
memory transfer, 119
MIPS, 144–146, 147, 151, 185
monotonic, 21

name space, 100, 105
nested scopes, 180, 182
NFA, 14, 77, 80, 89

combined, 32, 33
converting to DFA, 20, 23
fragment, 16

non-associative, 57, 84
non-local variable, 178
non-recursive, 58
nonterminal, 48
Nullable, 62, 65

operator, 119
operator hierarchy, 56, 57
optimisations, 149
overloading, 111

PA-RISC, 144
parser, 56

generator, 57, 85, 88
predictive, 61, 66
shift-reduce, 76

table-driven, 76
top-down, 61

parsing, 47, 55, 103
bottom-up, 61
predictive, 65, 66, 69
table-driven, 70

Pascal, 4, 57, 60, 86, 91, 101, 179, 180
pattern, 146
Pentium, 194
persistent, 98, 99
pointer, 179
polymorphism, 111
PowerPC, 144
precedence, 50, 56, 59, 75, 83

declaration, 83, 84, 89
rules, 57

processor, 187
production, 48, 49

empty, 48, 65
nullable, 62, 66

prologue, 169

recursive descent, 69
reduce, 76, 77, 81
register, 153

for passing function parameters, 173
register allocation, 2, 143, 153

by graph colouring, 159
global, 158

register allocator, 174
regular expression, 8, 36

converting to NFA, 15
equivalence of, 27

regular language, 27, 37
return address, 168, 173
right-associative, 57, 84
right-recursion, 58, 59
RISC, 143, 145, 173
row-major, 134
run-time, 120

Scheme, 88, 99
scope, 97

nested, 180, 182

INDEX 201

select, 160
sequential logical operators, 126, 127
set constraints, 67
set equation, 20, 20
shift, 76, 77, 80
simplify, 160
SLR, 47, 75, 83

algorithm, 78
construction of table, 77, 82

SML, 4, 35, 57, 88, 99, 101, 180
source program, 189
Sparc, 144
spill, 168
spill-code, 162
spilling, 153, 161
stack automaton, 47
stack automaton, 90
stack pointer, 183
start symbol, 48, 61
starting state, 13
state, 13, 14

accepting, 14, 16, 24, 27, 32
dead, 30
final, 14
initial, 14
starting, 13, 14, 16, 23, 32

static links, 182
subset construction, 23
symbol table, 97, 98, 105

implemented as function, 99
implemented as list, 99
implemented as stack, 100

syntactical category, 104
syntax analysis, 2, 7, 47, 51, 55, 61
syntax tree, 47, 52, 61, 73

T-diagram, 187
target program, 189
terminal, 48
token, 7, 31, 33, 36, 61
transition, 13, 14, 23, 27

epsilon, 13, 80
translation

of arrays, 132
of case-statements, 131
of declarations, 138
of expressions, 119
of function, 178
of index checks, 135
of logical operators, 126, 127
of multi-dimensional arrays, 134
of non-zero-based arrays, 137
of records/structs, 137
of statements, 123
of strings, 137
of break/exit/continue, 131
of goto, 131

type checking, 2, 103, 105
of assignments, 109
of data structures, 109
of expressions, 105
of function declarations, 108
of programs, 109

type conversion, 111
type error, 107

undecidable, 55

variable
global, 178
non-local, 178

variable name, 12

white-space, 7, 36
word length, 132
work-list algorithm, 22

