charter 5 Applications to problems with
numerically simulated

response

5.1 Introduction

Design optimization uses numericd models to simulate the behaviour of engineering
systems. These simulation models are often computationally expensive because they
involve numericd tods sich as the finite dement method. Instead, approximations
can be @nstructed from a set of computer experiments using the origina numerical

model of the system (numerical simulation).

In this chapter, the genetic progranming methoddogy is applied with two
purposes. In the first three examples, different aspects of the goproximation model
building are studied based onsimulated data from models known in advance The
fourth example deds with the damage recognition in sted structures based on the

approximation d aresporse obtained by afinite dement model.
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5.2 Roleof thenumber of experiments

Generaly, alarge number of paintsin the plan of experimentsis desirable in order to
provide more information to the genetic programming agorithm. To ill ustrate these

aspeds, the following expresson hes been tested:
(30+ xq sin(x)) (4 +e X2 ) (5.1)

Two tests were performed with data generated with a plan of experiments of 10
points (Figure 5.1) and 20 paonts (Figure 5.2). The sine and exporentia functions
were included in the functional set. Results dow that the higher the number of
experiments, the better the goproximation. A history of runs is presented in Figure

5.3.

Figure 5.1 Approximation with 10 pant plan of experiments
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Figure 5.3 History of runs (best fitnessas defined in (4.4) )
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5.3 Three-bar truss

Functions in the three-bar trussoptimization problem described in Haftka and Gurdal
(1993 have been approximated. The two design variables x; and x, describe the
crosssectional areas of individual bars (Figure 5.4), the objective function is the
volume of the material and the cnstraints limit the stresses in al bars and the
displacement of the free node. The set of resporse data was generated using the plan
of experiments (3.8), which was then used to buld the global approximations of the

objedive function and the cnstraints.

4 I 94 g 4

Xl:AA:AC
X2:AB

E = 200 KN/mn?

P=10KN

J L =1000mm

Figure 5.4 Three-bar trussapproximation problem

The output of the dgorithm still needs sme manual post-processng in order to
get rid of those terms in the expresson that give anul or tiny contribution, for
example when the same value is added and subtraded. It can be suggested to run the
problem severa times in oder to identify, by comparison, the most likely
comporents. The optimization problem is reduced to the goproximated ore shown in

Table5.1.
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Table 5.1 Results of threebar trussfunction approximation

Original Functions Approximations
Fo = 1000* (4% xg + xp) - min Fo = 4000* x; +1000* X, - min
Subjed to:
400 ~ 10637340
FH=———<1 F = <1
0.25* X1 + X2 66.48* X1 + 26594* Xo
c - EKO'ZS* \/é + 6)* xq + 3* X H< L I—:~2 _ —-1729279* X1 - 465576* X2
2 = * < s
H 3* X1 * Xp +0.75* x12 H - (32256* X2 +80.65* Xl)* X1
200 ~ - 4188667
Fg = — <1 F3 = <1
0.25* xq + Xp -5235* xq — 20941* xo
EK‘ 0.25* /3 + 6)* xq - 3% x5 = _ 817086* x - 254218* xp
Fq = 25% 5 gst 4= <
H 3% x*xp+075 x> (17612* xp +4403* x1)* x

5.4 Rosenbrock'sfunction and the use of sensitivity infor mation

Rosenbrock's valley function is a dasgc optimization problem. The significance of
thisfunctionisthat it has "banana-shaped" contours, making it difficult for nonlinear
programming algorithms. The global optimum is inside along, curved and rarrow

valley. Thefunctionis defined asfoll ows:

F(x, %) = 100D(x2—x12)2 + (1-%)? (5.2

Figure 5.5 shows the mntour plot and the surface plot of expresson (5.2).



Applications to problems with numerically simulated response 70

2,
1
1
1 (1,1) optimum
Xa
0,
_1 T T T 1
-2 -1 0 1 2
X
(a) Contour plot
3000+
(1,1) optimum,
2000- \

(b) Surfaceplot

Figure 5.5 Rosenbrock's function

With a popdation d 200 individuals, the gproximation d Rosenbrock's function

has been tested with and withou the use of sensitivity information.

5.4.1 Approximation without sensitivity information

GP has been run with a plan of experiments of 5 and 10 paonts. In the cae of 5
paints, a solution with good fitness has been evolved, bu leading to a cmpletely

different model as compared to (5.2).
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F(x, X2) = -11433.909897 - 7272.990034 * V(x) / % +

(5.3
7300.037743 *x, + 3847.116717 *x;° - 3829.663346 *x; * X

The reason for this difference is that insufficient information was passed to GP
to represent an accurate solution. When approximated with 10 pants, the solution

was identicd to function (5.2).

5.4.2 Approximation with sensitivity information

When first order derivatives, as defined in (3.3), were included in the gproximation
of Rosenbrock’'s function with a plan of experiments of 5 padnts, the dgorithm
exadly matched the original expresson (5.2). This suggests that, if available,
derivatives provide with more information, thus improving the @nwvergence
characteristics. If the derivatives are not avail able, the inclusion d more paints in
the plan of experiments will be necessary. Figure 5.6 shows a history of the runs

where the vertical axisisin logarithmic scde.
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Figure 5.6 History of runs for Rosenbrock's function
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5.5 Reawmgnition of damagein sted structures

5.5.1 Introduction

Visual inspedion and field testing are usually employed to identify the locaion and
degree of damage of an engineering structure. However, this can be expensive and
time @nsuming. Alternatively, changes in the dynamic structural charaderistics
provide anon-destructive method d testing. In this application, retural frequencies
have been oltained by measurements at a number of points of the structure (Ravaii et
al., 1999. These dharaderistics can be used to cdculate alocal decrease in the

stiff nessof the structure that indicaes the presence of structural damage.

The damage recognition problem has been formulated as an optimization
problem and solved using the resporse surface methoddogy. The analyticd
expressons, representing resporse surfaces, have been bult using the genetic
programming methoddogy in order to oltain high quality approximations. The
advantage of this approach is that the resulting optimization problem is smple and,
therefore, daes not require extensive mmputations as compared to a finite dement

analysis.

5.5.2 ldentification problem formulation

In the finite dement formulation, the presence of damage is defined in terms of the
stiff nessand massmatrix becaise variations in these matrices result in changes of the

frequency resporse. The optimization variables x have been introduced such as
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sedional properties or material parameters. An individual variable x; describes the

extent of possble damage & i-th locaion.

The damage identification problem can be formulated as follows (Ravaii et al.,

1998: find the values of the optimization variables x by minimizing the differences

between the frequencies w™ measured in the @urse of laboratory experiment or

operation and the frequencies w? (x) ohtained by the finite dement analysis:

M m _ 2 g
Wi Hw, F(x) - min
0 0
=1 O w" O (5.4)
Aj<x;<Bj, j=1..N

where M is the total number of modes of vibration used for the identificaion, A; and
B are gpropriate lower and ugper bound on the optimization variables and the
weights w; describe the relative importance of the match between the frequencies of

thei-th mode.

Acoording to the resporse surface methoddogy, the origina optimization

problem (5.4) isreplaced by a simpler mathematicd programming problem
F(x) - min, Aj<x;<Bj, j=1..N (5.5
The function E(X) presents a global approximation d the @rrespondng

original function F(x) in (5.4) and the solution d the problem (5.5) is considered as

an approximation d the solution d the problem (5.4).
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Alternatively, each of the individual frequencies w®(x),i =1,..M in (5.4) can

be gproximated by simpler expressons @2 (x) and the objedive function F(x) can

be assembled similarly to (5.4) using the goproximated frequencies:

M -
'E(X) = Wi Hw'm_w'a(x)BZ -~ min
'O m |
1 0 o 0 (5.6
A <x;<Bj, j=1..N

The avantage of the formulation (5.6) is that the goproximations &),a(x) can

be built once and then used many times for damage detection in a new structure of

the same geometry using new sets of the experimental data w™(x),i =1,..M .

5.5.3 Experimental results

The test structure used in the investigation (Ravaii et al., 1998 was a stedl portal
frame & down in Figure 5.7. The damage was applied at the location close to the
apex, reducing the cross dion areato 54% of the origina value for the undamaged

structure.

For the finite dement model, Ravaii et al. (1998) assumed that damage wuld
only occur at ajoint. Because of the symmetry, the optimization problem is reduced
to threevariables, ore a the gex, next to the wrner and at the base (Figure 5.7). In
order to determine the smallest number of modes necessary to use to reliably deted
the damage, the number of modes was incremented ore by one and foundto be four,

asreported by Ravaii et a. (1998).
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Figure 5.7 Experimental setup

5.5.4 Resultsof damage reagnition

In the formulation d the optimization problem (5.4) the number of optimization
variables N = 3, the number of used frequencies M = 4, and x, Xp, X3 describe the
percentage of reduction d crosssectional areain three locaions as snown in Figure
5.7. The description d adual damage wrresponds to the following set of

optimization variables: x; = 100,x, = 54, x3 = 100, i.e. damage in secondlocation.

The gproximation pocedure using GP has been carried ou following two

different approaches as described in sedion 5.5.2 approximation d the origina
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optimization poblem (5.4), as defined in (5.5), and approximation d the individual

frequencies correspondng to the first four modes of vibration, as defined in (5.6).

For the 3-dimensional graphical representation, the gproximation functions
have been plotted fixing one of the three optimization variables, correspondng to

possble damage locaions, i.e. x; = 100,x, = 54, %3 = 100.

Figure 5.8 shows the original function (5.4) and the overal approximation
functions as defined by expresson (5.5) using the values of the function (5.4) at P =

20 and P = 50 pants of the optimization variable space.

The solution d the simplified optimization problem (5.5) has been oltained in
two steps of approximation bulding. In the first step the foll owing values of lower
and upgr bounds have been seleded: A; = 10and B; =110, j =1, 2, 3.In the second
step the size of the search damain of the optimization variable space, defined by A
and B;, has been reduced by half and the new approximations have been constructed.
When the gproximation have been bult using 20 pants, the following solution hes
been oltained: x; = 72.50,%, = 50.80,%3 = 110.0.Using 50 pants, the following

solution hes been oltained: x; = 96.61,x, = 49.51,x3 = 106.63(Table 5.2).
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Table 5.2 History of the gproximation

Iteration Move limits Optimum
10.0< %, < 110.0 X1 = 69.97
1 10.0< X, < 110.0 % = 61.11
GP 10.0<x3<110.0 x3=110.0
20points 44.96< X, < 94.96 X1 = 72.50
2 36.11< %, < 86.11 % = 50.80
85.0< X3 < 110.0 Xz = 110.0
10.0< x; < 110.0 X1 = 71.61
1 10.0< %, < 110.0 X = 74.50
GP 10.0< x3< 110.0 X3 = 85.40
50points 46.61< x; < 96.61 X1 = 96.61
2 49.51< x, < 99.51 X, = 49.51
60.39< X3 < 110.0 Xz = 106.63

When the gproximation functions were obtained as a mbination o
approximations for the individual frequencies, as defined by the expresson (5.6), the
following solutions have been oltained in ore step: x; = 79.7,% = 51.1,x3 = 89.6
using 20 pants and x; = 92.6, %, = 50.1,x3 = 110.0 wing 50 pants. Figure 5.9
shows the gproximation d individual frequencies for x; = 100, Figure 5.10for x; =
54 and Figure 5.11for x3 = 100.Figure 5.12 shows the final expresson as defined in

(5.6).
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The euations correspondng to al the goproximations are described in

Appendix A.

Both sets of the obtained results, correspondng to two aternative formulations
of the gproximation, all owed to recmgnise position d the damage & the value of x;
is consistently smaller than the values of x; and X3, thus indicaing the presence of

damage in the secondlocaion.

Interim results of this sdion have been reported in Toropov and Alvarez

(199%, 19991 and Chapman et al. (1999).

5.6 Conclusion

GP has been successully applied to problems with numericdly simulated resporse.
Two important aspeds of RSM have been considered that confirm the following

points.

o A larger number of paints in the plan of experiments is desirable to oltain a

better quality of the goproximation (examples5.1and 5.9.

* The use of derivatives, if available, helps to reduce the necessary number of

points necessary in the plan of experiments (example 5.3).

Example 5.4 has also demonstrated that GP is able to provide asolution even if

avery large range of the optimization variablesis adopted.

Interim results of this sdion have been reported in Toropov and Alvarez

(1998b, 1998, 19984.



