
CHAPTER   5 Applications to problems with

numerically simulated

response

5.1 Introduction

Design optimization uses numerical models to simulate the behaviour of engineering

systems.  These simulation models are often computationally expensive because they

involve numerical tools such as the finite element method.  Instead, approximations

can be constructed from a set of computer experiments using the original numerical

model of the system (numerical simulation).

In this chapter, the genetic programming methodology is applied with two

purposes.  In the first three examples, different aspects of the approximation model

building are studied based on simulated data from models known in advance.  The

fourth example deals with the damage recognition in steel structures based on the

approximation of a response obtained by a finite element model.
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5.2 Role of the number of exper iments

Generally, a large number of points in the plan of experiments is desirable in order to

provide more information to the genetic programming algorithm. To ill ustrate these

aspects, the following expression has been tested:

( )( ) ( )2e4sin30 11
xxx −++ (5.1)

Two tests were performed with data generated with a plan of experiments of 10

points (Figure 5.1) and 20 points (Figure 5.2). The sine and exponential functions

were included in the functional set.  Results show that the higher the number of

experiments, the better the approximation.  A history of runs is presented in Figure

5.3.
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Figure 5.1 Approximation with 10 point plan of experiments
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Figure 5.2 Approximation with 20 point plan of experiments (same as original)
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Figure 5.3 History of runs (best fitness as defined in (4.4) )
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5.3 Three-bar truss

Functions in the three-bar truss optimization problem described in Haftka and Gurdal

(1993) have been approximated.  The two design variables x1 and x2 describe the

cross-sectional areas of individual bars (Figure 5.4), the objective function is the

volume of the material and the constraints limit the stresses in all bars and the

displacement of the free node.  The set of response data was generated using the plan

of experiments (3.8), which was then used to build the global approximations of the

objective function and the constraints.
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Figure 5.4 Three-bar truss approximation problem

The output of the algorithm still needs some manual post-processing in order to

get rid of those terms in the expression that give a null or tiny contribution, for

example when the same value is added and subtracted.  It can be suggested to run the

problem several times in order to identify, by comparison, the most likely

components.  The optimization problem is reduced to the approximated one shown in

Table 5.1.
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Table 5.1 Results of three-bar truss function approximation

Original Functions Approximations
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5.4 Rosenbrock's function and the use of sensitivity information

Rosenbrock's valley function is a classic optimization problem. The significance of

this function is that it has "banana-shaped" contours, making it diff icult for nonlinear

programming algorithms. The global optimum is inside a long, curved and narrow

valley.  The function is defined as follows:

( ) ( ) ( )21
22

1221 1100, xxxxxF −+−∗= (5.2)

Figure 5.5 shows the contour plot and the surface plot of expression (5.2).
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Figure 5.5 Rosenbrock's function

With a population of 200 individuals, the approximation of Rosenbrock's function

has been tested with and without the use of sensitivity information.

5.4.1 Approximation without sensitivity information

GP has been run with a plan of experiments of 5 and 10 points.  In the case of 5

points, a solution with good fitness has been evolved, but leading to a completely

different model as compared to (5.2).
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F(x1, x2)   =   -11433.909897  -  7272.990034  *  √(x1) / x2  +

7300.037743  *  x2  +  3847.116717  *  x1 
2  -  3829.663346  *  x2  *  x1

(5.3)

The reason for this difference is that insuff icient information was passed to GP

to represent an accurate solution. When approximated with 10 points, the solution

was identical to function (5.2).

5.4.2 Approximation with sensitivity information

When first order derivatives, as defined in (3.3), were included in the approximation

of Rosenbrock's function with a plan of experiments of 5 points, the algorithm

exactly matched the original expression (5.2).  This suggests that, if available,

derivatives provide with more information, thus improving the convergence

characteristics.  If the derivatives are not available, the inclusion of more points in

the plan of experiments will be necessary. Figure 5.6 shows a history of the runs

where the vertical axis is in logarithmic scale.
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Figure 5.6 History of runs for Rosenbrock's function



Applications to problems with numerically simulated response 72

5.5 Recognition of damage in steel structures

5.5.1 Introduction

Visual inspection and field testing are usually employed to identify the location and

degree of damage of an engineering structure.  However, this can be expensive and

time consuming. Alternatively, changes in the dynamic structural characteristics

provide a non-destructive method of testing. In this application, natural frequencies

have been obtained by measurements at a number of points of the structure (Ravaii et

al., 1998). These characteristics can be used to calculate a local decrease in the

stiffness of the structure that indicates the presence of structural damage.

The damage recognition problem has been formulated as an optimization

problem and solved using the response surface methodology.  The analytical

expressions, representing response surfaces, have been built using the genetic

programming methodology in order to obtain high quali ty approximations. The

advantage of this approach is that the resulting optimization problem is simple and,

therefore, does not require extensive computations as compared to a finite element

analysis.

5.5.2 Identification problem formulation

In the finite element formulation, the presence of damage is defined in terms of the

stiffness and mass matrix because variations in these matrices result in changes of the

frequency response.  The optimization variables x have been introduced such as
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sectional properties or material parameters.  An individual variable xi describes the

extent of possible damage at i-th location.

The damage identification problem can be formulated as follows (Ravaii et al.,

1998): find the values of the optimization variables x by minimizing the differences

between the frequencies m
iω  measured in the course of laboratory experiment or

operation and the frequencies ( )xa
iω  obtained by the finite element analysis:
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(5.4)

where M is the total number of modes of vibration used for the identification, Ai and

Bi are appropriate lower and upper bounds on the optimization variables and the

weights wi describe the relative importance of the match between the frequencies of

the i-th mode.

According to the response surface methodology, the original optimization

problem (5.4) is replaced by a simpler mathematical programming problem

( ) NjBxAF jjj ,...,1,,min
~ =≤≤→x (5.5)

The function ( )xF
~

 presents a global approximation of the corresponding

original function ( )xF  in (5.4) and the solution of the problem (5.5) is considered as

an approximation of the solution of the problem (5.4).
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Alternatively, each of the individual frequencies ( ) Mia
i ,...1, =xω  in (5.4) can

be approximated by simpler expressions ( )xa
iω~  and the objective function ( )xF

~
 can

be assembled similarly to (5.4) using the approximated frequencies:
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(5.6)

The advantage of the formulation (5.6) is that the approximations ( )xa
iω~  can

be built once and then used many times for damage detection in a new structure of

the same geometry using new sets of the experimental data ( ) Mim
i ,...1, =xω .

5.5.3 Experimental results

The test structure used in the investigation (Ravaii et al., 1998) was a steel portal

frame as shown in Figure 5.7.  The damage was applied at the location close to the

apex, reducing the cross section area to 54% of the original value for the undamaged

structure.

For the finite element model, Ravaii et al. (1998) assumed that damage could

only occur at a joint.  Because of the symmetry, the optimization problem is reduced

to three variables, one at the apex, next to the corner and at the base (Figure 5.7). In

order to determine the smallest number of modes necessary to use to reliably detect

the damage, the number of modes was incremented one by one and found to be four,

as reported by Ravaii et al. (1998).
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Figure 5.7 Experimental setup

5.5.4 Results of damage recognition

In the formulation of the optimization problem (5.4) the number of optimization

variables N = 3, the number of used frequencies M = 4, and x1, x2, x3 describe the

percentage of reduction of cross-sectional area in three locations as shown in Figure

5.7.  The description of actual damage corresponds to the following set of

optimization variables: x1 = 100, x2 = 54, x3 = 100, i.e. damage in second location.

 The approximation procedure using GP has been carried out following two

different approaches as described in section 5.5.2: approximation of the original
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optimization problem (5.4), as defined in (5.5), and approximation of the individual

frequencies corresponding to the first four modes of vibration, as defined in (5.6).

For the 3-dimensional graphical representation, the approximation functions

have been plotted fixing one of the three optimization variables, corresponding to

possible damage locations, i.e. x1 = 100, x2 = 54, x3 = 100.

Figure 5.8 shows the original function (5.4) and the overall approximation

functions as defined by expression (5.5) using the values of the function (5.4) at P =

20 and P = 50 points of the optimization variable space.

The solution of the simpli fied optimization problem (5.5) has been obtained in

two steps of approximation building. In the first step the following values of lower

and upper bounds have been selected: Aj = 10 and Bj =110,  j =1, 2, 3. In the second

step the size of the search domain of the optimization variable space, defined by Aj

and Bj, has been reduced by half and the new approximations have been constructed.

When the approximation have been built using 20 points, the following solution has

been obtained: x1 = 72.50, x2 = 50.80, x3 = 110.0. Using 50 points, the following

solution has been obtained: x1 = 96.61, x2 = 49.51, x3 = 106.63 (Table 5.2).
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Table 5.2 History of the approximation

I teration Move limits Optimum

1

10.0 ≤ x1 ≤ 110.0

10.0 ≤ x2 ≤ 110.0

10.0 ≤ x3 ≤ 110.0

x1 = 69.97

x2 = 61.11

x3 = 110.0GP

20 points

2

44.96 ≤ x1 ≤ 94.96

36.11 ≤ x2 ≤ 86.11

85.0 ≤ x3 ≤ 110.0

x1 = 72.50

x2 = 50.80

x3 = 110.0

1

10.0 ≤ x1 ≤ 110.0

10.0 ≤ x2 ≤ 110.0

10.0 ≤ x3 ≤ 110.0

x1 = 71.61

x2 = 74.50

x3 = 85.40GP

50 points

2

46.61 ≤ x1 ≤ 96.61

49.51 ≤ x2 ≤ 99.51

60.39 ≤ x3 ≤ 110.0

x1 = 96.61

x2 = 49.51

x3 = 106.63

When the approximation functions were obtained as a combination of

approximations for the individual frequencies, as defined by the expression (5.6), the

following solutions have been obtained in one step: x1 = 79.7, x2 = 51.1, x3 = 89.6

using 20 points and x1 = 92.6, x2 = 50.1, x3 = 110.0 using 50 points.  Figure 5.9

shows the approximation of individual frequencies for x1 = 100, Figure 5.10 for x2 =

54 and Figure 5.11 for x3 = 100. Figure 5.12 shows the final expression as defined in

(5.6).
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The equations corresponding to all the approximations are described in

Appendix A.

Both sets of the obtained results, corresponding to two alternative formulations

of the approximation, allowed to recognise position of the damage as the value of x2

is consistently smaller than the values of x1 and x3, thus indicating the presence of

damage in the second location.

Interim results of this section have been reported in Toropov and Alvarez

(1999a, 1999b) and Chapman et al. (1999).

5.6 Conclusion

GP has been successfully applied to problems with numerically simulated response.

Two important aspects of RSM have been considered that confirm the following

points:

• A larger number of points in the plan of experiments is desirable to obtain a

better quali ty of the approximation (examples 5.1 and 5.4).

• The use of derivatives, if available, helps to reduce the necessary number of

points necessary in the plan of experiments (example 5.3).

Example 5.4 has also demonstrated that GP is able to provide a solution even if

a very large range of the optimization variables is adopted.

Interim results of this section have been reported in Toropov and Alvarez

(1998b, 1998c, 1998d).


