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Methodol ogy

4.1 Introduction

Identification o approximation functions in the resporse surface methoddogy is
fundamental. The function identificaion poblem is to find a functional model in

symbadlic form that fits a set of experimental data.

In a wnventiona linear or norlinear regresson, the mathematicd problem is
reduced to finding the wefficients for a prespedfied function. In contrast, if the
seach process works smultaneously on bdh the model spedfication problem
(structure of the gproximation) and the problem of fitting coefficients (tuning

parameters), the technique is cdl ed symbalic regresson (Koza, 199).

To oltain the best quality approximation, the formulation d the symbadlic
regresson poblem shoud na spedfy the size or the structura complexity of the
model in advance Insteal, these features of the problem shoud emerge during the
problem-solving process as part of the solution. With these premises, the search
spaceis clearly too vast for a blind randam search. We need to search it in some

intelli gent and adaptive way.
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Evolutionary agorithms (EA) are search tedhniques based on computer
implementations of some of the esolutionary mechanisms foundin reture, such as
seledion, crosover and mutation, in order to solve aproblem. Structures do nd just
happen, bu rather evolve and smultaneously sample the search space. EAs are often
referred to as global optimization methods because they can effedively explore very
large solution spaces withou being trapped by locd minima. EAs are robust, global
and may be gplied withou problem-spedfic heuristics. This makes EAswell suited

to symbalic regresson.

In structural optimization, Xie and Steven (1997 have developed a design
method cdled Evolutionary Structural Optimization (ESO). However, despite the
similarities of its name, this technique falls in a different caegory to EAs. The
concept isto gradually remove inefficient material (lightly stressed) from a structure
at the same time as it is being designed, so that the structure evolves to its optimum

shape.

EAs maintain a popuation d structures that evolve according to the rules of
natural selection and the sexual operators borrowed from natural genetics such as
reproduction a crossover. Eadh individua in the popuation receves a measure of
its fitnessin the airrent environment, i.e. how good the individual is at competing
with the rest of the popdation. At each generation, a new popuation is created by
the process of seleding individuals according to their fitness and lreeding them
together using the genetic operators. Figure 4.1 shows the evolution system for each

generation.
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Figure 4.1 Genetic system using EAs

Two types of EAs are considered in this thesis, genetic dgorithms and genetic
programming. The former isused in parameter optimization, whil e the latter evolves

the structure of the goproximation model.

4.2 Genetic Algorithms

A genetic dgorithm (Holland, 19%) is a madine learning technique modelled upon
the natural process of evolution. It uses a stochastic, directed and hghly parall el
seach based on pinciples of popuation genetics that artificially evolve solutions to

agiven problem.

Genetic dgorithms differ from conventional optimization techniques in that
they work on a whole popuation d individual objeds of finite length, typicaly
binary strings (chromosomes), that encode candidate solutions using a problem-
spedfic representation scheme. These strings are decoded and evaluated for their

fitness which isameasure of how well each solution solves the problem objedive.
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GAs are problem-independent. To guide the seach in highly norinear and
multidimensional spaces, GAs do nd have aty knowledge &ou the problem
domain, except the information povided by the fitness measure and the
representation scheme. In practice GAs are dficient in seaching for the optimum

solution.

The genetic dgorithm attempts to find the best solution to the problem by
geneticdly breeding the popuation d individuals over a number of generations.
Following Darwin's principle of survival of the fittest, strings with higher fitness
values have ahigher probabili ty of being seleded for mating purpases to producethe

next generation d candidate solutions.

Seleded individuals are reproduced through the gplicaion d genetic
operators. A string seleded for mating is paired with another string and with a
cetain probability each pair of parents undergo crosover (sexua recombination)
and mutation. The strings that result from this process the dildren, become

members of the next generation d candidate solutions.

In this thesis, a variant of the generational GAs is used in which almost the
whole popdation is replaced in ead generation, except the dite (see Sedion 4.2.7,
as oppased to steady-state seledion where only a few individuals are replaced in

ead generation, wually a small number of the least fit individuals.

This processis repeaed for many generations in order to artificially evolve a
popuation d strings that yield a very good solutionto a given problem. Theoreticd

work and pradicad applicaions of genetic dgorithms (Goldberg, 198) reved that
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these dgorithms are robust and capable of efficiently locaing the regions of seach

spaces that yield highly fit solutions to anonlinea and multidimensional problem.

One important aspect of GAs is the baance between exploration and
exploitation. An efficient algorithm uses two tedhniques, exploration to investigate
new and unknevn areas in the search space, and exploitation to make use of the
knowledge gained by exploration to read better positions in the seach space
Compared to classcd search agorithms, randam walk is goodat exploration, bu has

no exploitation. Hill climbing isgoodat exploitation, bu has littl e exploration.

The main factors that make GA different from traditional methods of seach

and optimization are:

1. GAs work with a cding of the design variables as oppased to the design

variables themsalves;

2. GAswork with apopuation d points as oppcsed to a single point, thus reducing

therisk of getting stuck at locd minima;

3. GAs require only the objedive function value, na the derivatives. This aspect

makes GAs appli cation problem-independent;

4. GAs are afamily of probabili stic seach methods, na deterministic, making the

seach highly exploitative.

GAs have been widely applied in design optimization. Haela (1992 and
Hajela and Lin (1992 have implemented genetic search methods in multicriteria
design optimization with a mix of continuous, integer and dscrete design variables.

Dhingra and Lee (1994) have studied single and multiobjedive structural
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optimization with dscrete-continuows variables. The problem of parameter
identificalion with GAs has been studied by Worden and Deacon (1996, Nair and

Mujumdar (1996 and Wright (1997).

Other work can be foundin the papers by Le Riche and Haftka (1993), Kosigo
et a. (1999, Grierson (19%), Parmee (1998, Bladcut (1997), Wright and Holden

(1998, Keane and Brown (1996),, Mahfouz et al. (1998, Weldali and Saka (1999.

The next sedions will describe the main e ements of a GA medanism.

4.2.1 Therepresentation scheme

In most GAs, finite-length hinary-coded strings of ones and zeros are used to
describe the parameters for each solution. In a multi parameter optimization problem,
individual parameter codings are usually concatenated into a cmplete string (Figure

4.2).

1|0{1(1|0(0(1|1|0|1|(Of1]|O|1(2|21|1(O|21]|1|j1|1|2|[O|O|2[2]|O|1|0O
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Figure 4.2 Binary representation d adesignin aGA

To demde astring, substrings of spedfied length are extraded successvely

and mapped to the desired interval in the arrespondng solution space.

Let us assume that each variable x;, i=1..N is coded with a substring of length n
and that each pasitionin the substring is defined by g, j=1..n, where g; U [0,1]. A

candidate solution to the problem is represented as a string of length n*N. To decode
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a substring and map it to a particular interval in the solution space the design

variable x; is defined as foll ows;

_ . min X - Ximin C -1 _
X = X + n— Z q” 2 , 1=1L..N (41)
2 _l le

For the 3 design variables example in Figure 4.2 dcfined in the interva

[-100,10Q0 and represented by a 10-bit binary string, Table 4.1 shows the

correspondng mapping:

Table 4.1 Mapping of design variables

Binary string  Real value

1 1011001101 40.176
2 0101111011 -25.904
3 1110011010 80.254

Red coded GAs have dso been proposed for continuous variable optimization

problems (Golberg, 1990,Wright, 1991)).

422 Fitness

The evolutionary processis driven by the fitness measure. The fitness assgns a
value to each fixed-length charader string in the popdation. The nature of the

fitnessvaries with the problem.

For unconstrained maximization poblems, the objedive function can be used

for the formulation d the fitnessfunction. The fitnessfunction can be defined as the



Genetic programming methodology 37

inverse of the objective function a the diff erence between an ugper limit value of the

objedive function and the objedive value for each individual.

For constrained optimal design problems, an exterior penalty function can be
adopted to transform a mnstrained optimization problem into an urconstrained ore.
Penalty functions can be applied in the eterior or in the interior of the feasible
domain. With the exterior penalty function, constraints are gplied ony when they
are violated. Generally, this penalty is proportiona to the square of a violation and

forces the design to move in the infeasible domain.

The dhoice of the fitnessfunction is criticd because this value is the basis for
the seledion strategy, discussed later in this chapter. If a few members of the
popuation have avery high fitnessin relation to the others, more fit individuals
would quckly dominate and result in premature @nvergence Figure 4.3 compares
two fitnessfunctions F = 1/f and F = f-f, where f, is a seleded upper limit value for
the fitnessand f is a function to be minimised. Clealy, the latter example maintains

diversity, while the former would dred the search toward alocd optimum.
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4
4
1
@ (b)
members b)
(@) (
of f, fu-fi
1/1, )
population (fu = Fnin + Frnax)
1 0.2 5 5
2 1 1 4.2
3 2 0.5 3.2
4 5 0.2 0.2

Figure 4.3 Definition d the fitnessfunction for diversity

4.2.3 Selection scheme

The seledion operator improves the average quality of the popudation by giving
individuals with higher fitness a higher probability to undertake aly genetic
operation. An important feature of the selection mechanism is its independence of
the representation scheme, as only the fitnessis taken into accourt. The probabili stic
feaure dlocaes to every individual a chance of being seleded, allowing individuas

with poa fitness to be seleded occasionadly. This mechanism ensures that the
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information carried ou by unfit strings is not lost prematurely from the popuation.

The GA isnot merely a hill -climbing algorithm due to this nonlocd behaviour.

The most popuar of the stochastic seledion strategies is fitness propartionate
seledion, also cdled hiased roulette whed selection. It can be regarded as all ocating
pie slices on a roulette whed, with each dice propationa to a string's fitness
Seledion d a string to be aparent can then be viewed as a spin o the whed, with
the winning slice being the one where the spin ends up. Although thisis a randam
procedure, the dhance of a string to be seleded is diredly propational to its fitness
and the least fit individuals will gradually be driven ou of the popdation. For
example, if we generate arandam number C between 0 and 1 and we get the value

0.61,string 3 in Figure 4.4would be seleded.

1
30.8 %

P,+P,<C<P,+P,+P,

Fi Pi = Fi / ZFi

1 9.8 0.308
2 9 0.283
3 0.252
4 5 0.157

C=0.61(0<sC<1larandam)

Figure 4.4 Fitnesspropartionate method
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A magjor drawbadk of fithesspropationate seledionisthat, for relatively small
popuations, ealy in the search a small number of strings are much fitter than the
others and will quickly multiply. There is a high risk of premature convergence of
the popdation characterized by a too hgh exploitation d highly fit strings at the

expense of exploration d other regions of the search space

A second selection strategy is cdled tournament selection (Goldberg and Deb,
1991). A subpopuation d individuasis chosen at random. The individua from this
subpopuation with the highest fitnesswins the tournament. Generally, tournaments
are held between two individuals (binary tournament). However, this can be
generalised to an arbitrary group whose size is cdled the tournament size. This
algorithm can be implemented efficiently as no sorting of the popuation is required.
More important, it guarantees diversity of the popuation. The most important
feaure of this sledion scheme is that it does not use the value of the fitness
function. It is only necessary to determine whether an individual is fitter than any

other or nat.

Other selection schemes and their comparative analysis have been reviewed by

(Goldberg and Deb, 199).

424 Crossover

The aossver operator is resporsible for combining good information from two
strings and for testing new points in the seach space. The two offsprings are
compased entirely of the genetic material from their two parents. By recombining

randamly certain effedive parts of a charader string, there is a good chance of
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obtaining an even more fit string and making progress towards slving the

optimization poblem.

Several ways of performing crosover can be used. The simplest but very
effective is the one-point crosover (Goldberg, 1989. Two individua strings are
seleded at randam from the popdation. Next, a qosver point is €leded at
randam along the string length, and two new strings are generated by exchanging the
substrings that come dter the aossover point in bah parents. The mechanism is

illustrated in Figure 4.5.

Parent 1|1|0{1{1]|0|0(1]1|0(1 Offspring 1|1(0{1(1|0{1|1|0|1|1

Parent 2|0|1|0{1|1|1[1]|0|1(1 Offspring 2|0{1(0(1|1{0|1|1]|0|1

Figure 4.5 GA Crossover
A more general case isthe multi point crosover (De Jong, 1979 in which parts
of the information from the two parents are swapped among more string segments.
An example is the two-point crossover, where two crosover points are seleded at

randam and the substrings lying in between the points are swapped.

Uniform crossover (Syswerda, 199) is the method d choice in this thesis.
Eadh hit of the offspring is created by copying the correspondng bit from one or the

other parent seleded at randam with equal probabili ty, as snown in Figure 4.6.

Parentl 1011001101
V)
Offspring 1 of1|1|0

e o
e o
o
H
e o

[

o

0|1
T
Parent2 010

Figure 4.6 GA Uniform crossover
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Uniform crosover has the alvantage that the ordering of bits is entirely
irrelevant because there is no linkage between adjacent bits. Multipoint crossover
takes half of the material from each parent in aternation, while uniform crossover
deddes independently which parent to chocse. When the popdation hes largely
converged, the exchange between two similar parents leads to a very similar
offspring. This is less likely to happen with unform crossover particularly with

small popuation sizes, and so, gives more robust performance

425 Mutation

Mutation pevents the popuation from premature convergence or from having
multiple copies of the same string. This fedure refers to the phenomenon in which
the GA loses popuation dversity because an individual that does not represent the
global optimum becmes dominant. In such cases the dgorithm would be unable to

explore the posshili ty of abetter solution.

Mutation consists of the randam dteration d a string with low probability. It
isimplemented by randamly seleding a string locaion and changing its value from 0

to 1 a viceversa, as shownin Figure4.7.

'_\
'_\

Parent (1|0{1|1|0|0

0|1 Offspring (1(0|1|1|0|0]|0|1|0[1

Figure4.7 GA Mutation
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426 Mathematical foundation

GA implicitly processes in paralel alarge anourt of useful information concerning
schemata (Holland, 1975. A schemais a set of points from the search space with
cetain specified similarities. The schema is described by a string with a certain
alphabet (0 and 1if the dphabet is binary) and a "don't cae" symbad dencted by an
asterisk. For example, 1**0 represents the set of al 4-bit strings that begin with 1

and end with 0.

The GA creaes individual strings in such a way that each schema can be
expeded to be represented in propation to the ratio o its schema fitness to the
average population fitness (Koza  a, 1999. The schema fitness is the average of
the fitness of al the paints from the search space ontained in the popudation and
contained in the schema. The average population fitness is the average of the fitness
of al the pants from the search space ontained in the popudation. The schema
theorem (Holland, 195) explains that an individua's high fitnessis due to the fact
that it contains good schemata. The optimum way to explore the search spaceis to
allocae reproductive trials to individuals in propattion to their fitnessrelative to the
rest of the popdation. In this way, good schemata receive exporentialy increasing

number of trialsin successve generations.

Acoording to the building block hypothesis (Golberg, 198), the power of GA
isin its ability to find good building blocks. These are schemata of short defining
lengths consisting of bits working well together that tend to lead to improved

performancewhen incorporated into an individual .
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4.2.7 Implementation of the GA

In this thesis, GAs are used to find an initia guess which serves as inpu to a
gradient-based optimization algorithm (Madsen and Hegelund, 199} in order to
obtain the tuning parameters ain (3.2) or (3.3) of the gproximate model, combined
with a norlinea regresson agorithm. Generaly, GAs work well even if the space
to be seached islarge, na smoacth or not well understood, a if the fitnessfunctionis
noisy and, in addition, when finding a good solution (not necessarily the exad global

optimum) is sufficient.

Figure 4.8 shows a flowchart of the implementation o the GA used in this
thesis. Asauming we have n tuning parameters encoded with |-bit strings, GA works

asfollows:
1) Start with arandamly generated popuation d individuals of length n*|-bits.
2) lteratively perform the foll owing steps on the popuation:

a) cdculate the fitnessof eadh chromosome by least-squares,

b) sort the popuation,

C) crede anew popuation:

i) In the reproduction stage astrategy must be adopted as to which strings
shoud de: ether to kill t he individuals with fitnessbelow the arerage or,
aternatively, to kill a small percentage of the individuals with the worst
fitness The second approach is preferred in this thesis as it provides

more diversity.
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ii) Calculate the €elite (De Jong, 1975 according to inpu parameter Pe,
which is an additional operator that transfers unchanged a relatively small
number of the fittest individuals to the next generation. Such individuals
can belost if they are not selected to reproduceor if they are destroyed by
crosover or mutation. In this thesis, Pe=20% of the popuation has been

used.

i) Fill up the popuation with the surviving strings aacording to tournament

seledion o size 2.

iv) Seled apair of individuals from the aurrent popuation. The same string
can be sededed more than orce to bewme a parent. Remmbine
substrings using the uniform crossover. Two new off springs are inserted

into the new popuation.

v) With the probability Py, taken as 0.01in this thesis, mutate a randamly

seleded string at arandamly selected pant.

3) Chedk the termination criterion. If not satisfied, perform the next iteration.
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Figure 4.8 Flowchart of the GA

Eadh iteration d this process is cdled a generation. The enitire set of
generations is cdled arun. At the end of the run, there are one or more highly fit
strings in the popuation. Generdly, it is necessary to make multiple independent

runs of a GA to oltain aresult that can be considered succes<ul for a given problem.
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In this thesis, GA only performs 1 run with 30 generations due to computing
time @nstraints and the fact that the solutionis only used as a starting guessfor the

gradient-based optimization technique.

A limitation in the gplicaion d GAs is the fixed-length representation
scheme and the need to encode the variables. These two aspeds do nd provide a
convenient way of representing general computational structures like a symbalic
regresson model. In addition, GAs do nd have dynamic variability as they require
the string length to be defined in advance. To ded with this problem, Koza (1992
implemented an extension d the genetic model of GAs with parse trees cdled

genetic programming.

4.3 Genetic Programming

Genetic Programming (GP) is a generalization and an extension d GAs. The same
description d GA given in Section 4.2is applicable to GP, so oy new concepts and

diff erences with resped to GAs will be discussed in this dion.

GP combines a high-level symbdli c representation with the search efficiency of
the GA. Its basis is the same Darwinian concept of survival of the fittest. The
innovation d the GP is the use of more cmplex structures. While aGA uses a string
of numbers to represent the solution, the GP creaes computer programs with a tree
structure. In the cae of design optimization, a program represents an empiricd
model to be used for approximation d resporse functions in the origina

optimization poblem.
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These randamly generated programs are general and herarchicd, varying in
size and shape. GP's main goal isto solve aproblem by searching highly fit computer
programs in the space of al possble programs that solve the problem. This asped is
the key to finding nea globa solutions by keging many solutions that may
potentially be dose to minima (locd or global). The creaion d the initial popuation
isablind randam seach o the space defined by the problem. In contrast to a GA, the

output of the GP is a program, whereas the output of a GA is a quantity.

The main advantages of using GP for symbalic regresson are that the size and
shape of the gproximation function do nd nead to be spedfied in advance and that
the problem spedfic knowledge can be included in the search process throughthe

use of the gopropriate mathematicd functions.

The term symbdlic regressonin genetic progranming (Koza, 1999 stands for
the processof discovering bdh the functional form of the gproximation and all of
its tuning parameters. Unfortunately, a weakness of GP is the difficulty of finding
the numerica constants due to their representation as tree nodes and the fad that the
genetic operators only affed the structure of the tree. Although GP can generate
constants, dividing for example one variable by itself, the process beammes very
inefficient (Evett and Fernandez, 1999. For this reason, in this thesis the tuning
parameters are not modified by the evolutionary processbut identified by a nonlinea

least-squares surfacefitting using an optimization method.

The evolutionary processin GP proceeals in a similar way to standard GA. GP
starts with a popuation d randamly generated programs built from a library of

avail able mathematical functions. These trees are assgned afitnessvalue and evolve
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by means of the genetic operators of seledion, crosover and mutation foll owing the

Darwinian principle of survival and reproduction d the fittest, similar to GAs.

GP has been applied to systems identification by Watson and Parmee (1996,
McKay et a. (1996 and Gray et a. (1996 among others. Other applications can be

in foundin Kinnea (199%).

4.3.1 Representation scheme

The structures in GP are computer programs represented as expresson trees. They
are hierarchicd and can dynamicdly change the size and shape during the evolution
process A typica program representing the expresson (Xu/¥o+xs)? is sown in

Figure 4.9.

Términal Nddes

Figure 4.9 Typicd tree structure for Exl + X3 g

X2 0

The programs are composed of nodes that are dements from aterminal set and

afunctional set, as described in Table 4.2.
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Table 4.2. Definition o the termina and functional set

Terminal Set Design variables: X1 , X2 , ...,Xn

Mathematica operators that generate the regresson model:

Functional Set
{+ * /,x etc. }

The functional set can be subdvided into binary nodes, which take aay two
arguments (like aldition), and unary nodes, which take one agument, e.g. a square
root. The solution damain is creaed by the reaursive mmposition d elements from
the functional set for any interna node and from the terminal set for any external

nodes (leaves).

All the functions and terminals must be compatible in order to faultlesdy pass
information between each ather (closure property). The sufficiency property requires
the identification d functions and terminals 0 that their combination can yield a
valid approximation in the solution damain, e.g. including sufficient number of

variables in the terminal set to describe the optimization problem.

An expresson tree can evolve alarge number of model structures using a
relatively small functional set. Asastarting point, basic operations like + *, -, / are
sufficient. However, the general idea is to take into accourt the mathematicd
knowledge of the engineering process and make the seach more dficient. For
example, athough a sine function can be gproximated by a power series invalving
only addition and multiplicaion operations, it is better to include sine in the
functional set. Also, some functions may be alded to the function set because they

might fadlitate asolution. This is the reason why in this thesis gquare and square
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root functions are included in the functional set, even though the same result could be
obtain with multiplication and paver respectively at a more expensive computational

cost.

Table 4.3 summarizes mathematicd operators that are useful for a large range
of problems. If the functional set contains irrelevant operators or if the terminal set
contains more variables than necessary to define the problem, GP will usualy be

ableto find a solution, although the performance of the search will be degraded.

Table 4.3 The functional set

Label Description Operation
+ Addition X1+ Xo
- Subtradion X1- X2
* Multiplication X1 X Xo
X1/ X
/ Division v

if x,=0asdgn penalty

2
Q Square X
\/X]_
SQRT Square root ] .
if X, < 0asdgn penalty
EXP Exporentia e
SIN Sine Sin(x1)
COSs Cosine COoS(X1)

An important asped of the functional set is the handing of mathematicd

exceptions during fitnessevaluation. Illegal mathematical operations like division by
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zero o runtime overflow and urderflow errors need to be removed in oder to
obtain valid expresgons. In this thesis, infeasible expresson trees are assgned the

worst possble fitnessin the popuation as a penalty.

The evolution d the programs is performed through the action d the genetic

operators and the evaluation d the fitnessfunction.

4.3.2 Genetic operators

Model structures evolve through the action d three basic genetic operators:

reproduction, crosover and mutation.

In the reproduction stage, a strategy must be adopted as to which programs
shoud de. In this implementation, a small percentage of trees with worst fitnessare
killed. The popuation is then filled with the surviving trees according to a binary

tournament seledion.

Crossover (Figure 4.10 isimplemented as foll ows:

» seled two trees from the whole popuation,

e within eat o thesetrees, randamly seled one nock,

* swap the subtrees under the seleded nades, thus generating two offsprings

belonging to the new popdation.

After crosover, a smal number of random nodes are danged through

Mutation (Figure 4.11):

* randamly seled one node within arandamly selected tree
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» replace this node with another one from the same set (a function replaces a

function and aterminal replaces aterminal) except by itself,

An additional operator, elite transfer, is used to allow arelatively small number
of the fittest programs, called the dite, to be transferred unchanged to a next
generation, in order to ke the best solutions found so far. As a result, a new
popuation d trees of the same size & the original oneis creaed, bu it has a higher

average fitnessvalue.

Parent 1 Parent 2

Offspring 1 Offspring 2
Figure 4.10 GP Crossover
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o ool %

Figure4.11 GP mutation

4.3.3 Fitnessfunction

When seleding randamly a tree to perform any genetic operation, the tournament
seledion method is used here. This method spedfies the probability of seledion on

the basis of the fithessof the solution.
The fitnessof a solution shall refled:

(i) The quality of approximation d the experimental data by a arrent expresson

represented by atree
(ii) Thelength of the treein arder to oltain more compad expressons.

In problems of empirical model building, the most obvious choice for the
estimation d the quality of the model is the sum of squares of the diff erence between
the simplified model output and the results of runs of the origina model over some

chosen pan (design) of experiments.

Generally, there can be two sources of error: incorrect structure and inaccurate
tuning parameters. In order to separate these, the measure of quality Q(S) is only

cdculated for the tuned approximation, as described in Sedion 4.3.5.
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In a dimensionless form this measure of quality of the solution can be

presented as foll ows:

i (Fp B l;p)z

Qs) = 4.2

P
S e

p=1

or as (3.3) with equal weights when derivatives are used.

If Q(s;) isthe measure of quality of the solution S, Q, isan upper limit value

of the quality for all N; members of the popdation, ntp; is the number of tuning
parameters contained in the solution S and c is a wefficient penalizing the excessve
length of the expresson, the fitnessfunction ®(s,) can be expressed in the foll owing

form:

o) = Q - Q) -crnp® - max 4.3

Programs with greger fitness values o(s;) have a greater chance of being

seleded in a subsequent genetic adion. Highly fit programs live and reproduce, and

lessfit programsdie.

In terms of computer implementation d the GP paradigm, it is more
convenient and more dficient to make the best value of the fitnessO, i.e to solve a
minimization poblem. For this reason, the definition d the fitness used in the

computer program developed in thisthesisis the foll owing:
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®(§) = Q(§) + c*np® - min (4.4)

Another possble doice is the statisticd concept of correlation, which
determines and quantifies whether a relationship between two data sets exists. This

definition was used for the identification d industrial processes (McKay et a. 1999.

To evaluate the goodhessof-fit, the standard root mean square (RMS) error

will be used in this thesis acwrding to the foll owing expresson:

P
> (Fo - Fp)”
4.
RMS = | P& o
P

4.3.4 Allocation of tuning parameters

Traditional implementations use GP to generate constants that are optimized by a
norlinea regresson algorithm. In this thesis, the dgorithm implements two
different tasks. First, GP finds an appropriate symbolic model structure (withou
constant creation). Seand, an automatic procedure allocaes tuning parameters
within the regresson model in a symbadlic form as down in Figure 4.12, and
optimizes the symbolic parameters with a gradient-based optimization method

(Madsen and Hegelund, 199).
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Figure 4.12 Symbadlic dlocaion o parametersfor ag + %1 La ay X3EZ
O X2 O

This implementation hes the advantages that the mefficients are optimized in
the whole range of a prespecified interval, and subsequently, the complexity of the
expresson is reduced. In contrast, in Kozds implementation (1992, ony a few
constants to be used as coefficients were defined in the terminal set, leading to much

bigger expressons than that of the minimal solution.

The dlocaion d tuning parameters a to an indvidua tree follows basic
algebraic rules. Going through the tree downwards, tuning parameters are dlocaed
to a subtree depending on the type of the airrent node and the structure of the

subtree The different cases are described as foll ows (according to Figure 4.13):
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1. Current nockis of type binary:

* Multiplicaionand dvision operations only require one tuning parameter, e.g.
F = x0Ox O F(@) = a Ox 0%

» All other operations require two tuning parameters, e.g.

F=x+x 0 F(@)=a0x+a,dx

F=x"% 0 Fl@)=(a0x)"(a Ox)

« When F isa ombination d the previous two approacdes, tuning parameters

are only applied to operations different from multi plicaionand dvision, e.g.
F=x0k/x+x) O Fl@)=x0(@0x /x3+ap0x4)
F=(a+x) (aOx) O Fla) = (ay Oxq +ap Oxp)" (X3 Oxa)
2. Current noceis of type unary:
* Ignore
3. Current noceis of type variable (terminal nock):
* Onetuning parameter isinserted, e.g.
F=0J° 0 Fla)=(a0x)
4. Freeparameter:
* Onefreeparameter is added to the expresson, e.g.

Fla) = 4y 0x O F(a)=a Ox +ag
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Figure 4.13 Flowchart for the symbalic dlocaion d tuning parameters

4.3.5 Tuning of an approximation function

The representation d the tuning parameters is a binary multiparameter coding
mapped to the interval [-100, 100 with a 10-digit binary string, defining a precision

of 100- (-100) / (2'°- 1) = 0.196for each tuning parameter.

The objedive function is defined here & the sum of squares of the difference
between the simplified model output with the arrent guess and the results of runs of
the original model over some dhosen pan o experiments, as defined in (3.2) with
equal weights. If, in addtion to the function values, the design sensitivity

informationis avail able, function (3.3) shoud be minimised instead.
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The main parameters controlling the GA are the popuation size ad the
maximum number of generations to be run (termination criterion). The present
algorithm works with a popuation size of 30 individuals and a number of
generations of 30. These values are @namaly low as compared to
recommendations in the literature (Mahfouz, 1999. Generadly, the greder the
number of popuations and generations (hundeds, thousands or more) the higher the
probability of finding the global optimum. The only limitations here ae the
exeautiontime and the cmputing resources avail able. In the present case, GA is nat
the main mecdhanism for finding the tuning parameters, this is why the values are
simply a compromise between low computing time and good quality of the initial

guessfor the further gradient-based optimization.

4.3.6 Implementation of GP

In this thesis, GP has been used to find the structure of the gproximation model that
will be used in the resporse surface methoddogy. The identification d the tuning
parameters is achieved by a gradient-based optimization methodin conjunction with

theinitial guessprovided by the GA.

The termination criterion for the minimization problem (4.4) is that the fitness
of the best individual foundin the adual generation has a small value, typicaly of
the order of 1.0E-19. In certain cases, if no individua in the popuation reaches a
succesdul fitness the run can terminate after a prespedfied maximum number of
generations. Asusual no solutionis 100% corred, there is a need for postprocessng

the output in order to get a better understanding of the process The purpose is to get
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rid of those terms in the expresson that give anull or tiny contribution, for example
when the same value is added and subtracted. It isthen suggested to runthe problem

several timesin order to identify, by comparison, the most likely comporents.

The two major control parameters in GP are the popdation size and the
maximum number of generations to be run when no individual reades the
termination criterion. These two parameters depend onthe difficulty of the problem
to be solved. Generaly, popuations of 500 @ more trees give better chances of
finding a global optimum. For a smal number of design variables, a starting
popuation d 100 fes proven to be sufficient. The maximum number of generations

has been chosen as 1000.

Figure 4.14 shows a flowchart of the GP methoddogy. The dgorithm works

as foll ows:
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Figure 4.14 Flowchart of the GP methoddogy
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1) Start with arandamly generated popuation d trees composed of elements from

2)

the functional set and the terminal set. The roat node of every tree must be

restricted to a function. If aterminal is chosen, that node is an endpant of the

tree To limit the cmmplexity of the initial trees, an inpu parameter defines the

maximum depth of the tree In subsequent generations, the length o the treeis

limited by the maximum allowed number of tuning parameters alocaed in the

tree

Iteratively perform the following steps on the popuation unil the termination

criterion hes been satisfied:

a)

b)

Cdculate the fitness of ead tree acording to (4.4). Prior to fitness
evauation, tuning parameters are dlocated in the tree a described in Sedion
4.3.4. A GA findstheinitial guessfor the parameters that are then optimized

by a gradient-based al gorithm (Madsen and Hegelund, 199]).
Sort the popuation acwrding to the fitness
Crede anew popuation

i) In the reproduction stage kill a small percentage of the individuals with

the worst fitness

ii) Calculate the elite according to input parameter Ptaken as 20%.

iii) Fill up the popuation with the surviving trees according to hinary
tournament seledion.

iv) Sedled a pair of individuals from the airrent popdation. The same tree

can be seleded more than orce to become aparent. Recombine subtrees
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using the crossover operation. Two new offsprings are inserted into the
new popuation. Crosver takes placestarting from the second noa, na

theroat, to avoid dupicdion d trees.

v) With probability P, taken as 0.01 in this thesis, mutate a randamly

seleded tree @ arandamly selected nock.

3) Chedk the termination criterion. If not satisfied, perform the next iteration.

4.4 Conclusion

The theory behind GAs and GP has been reviewed. They are arelatively new form of
artificial intelligence based onthe ideas of Darwinian evolution and genetics. They
use astochastic, direded and parale seach technique that makes them well suited

for global optimization.

GP is a generdization d a GA with high-level symbdlic representation. A
common dawback of GP is the difficulty to handle mnstants. Therefore, in this
thesis, the structure of the gproximation function is evolved by the GP, while the
tuning parameters are optimized using a wmbination d a GA and a gradient-based

optimization method.

The definition o the fitness function has been modified from the standard

least-squares to acommodate derivatives, if avail able.
Applicaions of this methoddogy are described in Chapters 5 and 6.

Interim results of this sdion have been reported in Toropov and Alvarez

(1998, 1998, 1998).



