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ABSTRACT

The focus of this paper is on the development and implementation of a methodology for

automated design of discrete structural systems. The research is aimed at utilizing Genetic

Algorithms (GAs) as an automated design tool. Several key enhancements are made to the

simple GA in order to increase the efficiency, reliability and accuracy of the GA methodology for

code-based frame design. The AISC-ASD design code is used to illustrate the design

methodology. Small as well as large-scale problems are solved. Simultaneous sizing, shape and

topology optimal designs of structural framed systems subjected to static and dynamic loads are

considered. Comparisons with results from prior publications and solution to new examples show

that the enhancements made to the GA do indeed make the design system more efficient and

robust than a simple GA.
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INTRODUCTION

The simple GA while powerful, is perhaps too general to be efficient and robust for

structural design problems. First, function (or, fitness) evaluations are computationally expensive

since they typically involve finite element analysis. Second, the (feasible) design space is at times

disjointed with multiple local minima. Third, the design space can be a function of boolean,

discrete and continuous design variables. The use of GA to find the optimal solution(s) of

engineering design problems is still an open research area. Experience with GA has indicated

that more often than not, tuning the GA strategy and parameters can lead to more efficient

solution process for a class of problems. Researchers have proposed modifications, such as

parameters-pace size adjustment and adaptive mutation for continuous problems1, which focus

on refining the searching space adaptively, niching genetic algorithms that emphasizing on

repeating the fitter individuals2 and special modification for construction time-cost optimization

problems3. Research has also made it possible to combine genetic algorithms and gradient-

based techniques for handling constraints for aerodynamic shape optimization problems4.
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In this paper, the proposed improvements to the simple GA are discussed. The basic

terms related to any methodology are explained first.

Efficient: A methodology is defined as being efficient if it finds an acceptable solution with minimal

computational effort.

Reliable: A methodology is defined as being reliable if it finds an acceptable solution regardless of

the problem nuances or the starting point used.

Accurate: A methodology is defined as being accurate if it finds the best possible solution to a

problem.

Robust: A methodology that is generally efficient, reliable and accurate.

FORMULATION OF THE DESIGN PROBLEM

The design of three-dimensional frames can be stated as follows.
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where x  is the design variable vector, )(xf  is the objective function, ni  is the number of

inequality constraints, ne  is the number of inequality constraints, nb  is the number of boolean

design variables, nd  is the number of discrete design variables selected from a list of nq

values, and ns  is the number of continuous design variables. All structural design problems do

not lend themselves to a simultaneous consideration of all of the above-mentioned constraints

and design variables. Design problems are usually categorized as sizing, shape or topology

design problems or combinations thereof.

This paper deals with the solution to the above-mentioned problem. The specific tasks,

methodologies and GA enhancements are discussed next.



3

GENETIC ALGORITHM AS A DESIGN AUTOMATION TOOL

Adaptive Penalty Function for Constraints

GAs were developed to solve unconstrained optimization problems. However,

engineering design problems are usually constrained. They are solved by transforming the

problem to an unconstrained problem. The transformation is not unique and one possibility is to

use the following strategy.
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where ic  and jc are penalty parameters used with inequality and equality constraints.

Determining the appropriate penalty weights ci  and c j  is always problematic. We propose an

algorithm here where the penalty weight is computed automatically and adjusted in an adaptive

manner. First the objective function is modified as
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The following rules are used to select ca .

(1) If there are feasible designs in the current generation, ca  is set as the minimum f among all

feasible designs in the current generation. The rationale is that for the design with minor

violations and smaller objective value, the probability of survival is not eliminated. If, on the

other hand, the maximum f among all feasible designs is used, infeasible designs will have a

smaller probability to survive even if the constraint violations are small.

(2) If there is no feasible design, ca  is set as the f that has the least constraint violation. The

motivation idea has the effect of both pushing the design into feasible domain as well as

preserving the design with the smallest fitness.

Improving Crossover Operators Using the Association String

As discussed by some researchers5,6, the one-point crossover is preferred for continuous

domains, and the uniform crossover for discrete domains. However, schema representation still

plays a pivotal role in the efficiency of the GA. If one uses a one-point crossover then it is obvious

that the ordering of the design variables is an important issue. Since the characteristic of one-

point crossover is that the shorter schema has a better chance to surviveError! Bookmark not

defined., if two variables that have less of an interdependency are placed adjacent to each other,

or two variables with a strong relationship are placed far away from each other, the crossover

operation will make it more difficult for the GA to search the design space efficiently. To
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implement this strategy, we introduce an additional string called the association string. The details

of this scheme can be found in a previous publication [Chen and Rajan5,7]. Results show that the

association string improves the robustness of the solution process.

Mating Pool Selection

The selection scheme (for generating the mating pool) together with the penalty function

dictate the probability of survival of each string. While it is very important to preserve the diversity

in each generation, researchers have also found that sometimes it may be profitable to bias

certain schema8. However, results from most of the selection rules, like roulette wheel, depend

heavily on the mapping of fitness function.

In this paper, the tournament selection9 is used. There are at least two reasons for this

choice. First, tournament selection increases the probability of survival of better strings. Second,

only the relative fitness values are relevant when comparing two strings. In other words, the

selection depends on individual fitness rather than ratio of fitness values. This is attractive since

in this research, the fitness value contains the penalty function and does not represent the true

objective function.

Elitist Approach

The elitist approach was proposed by De Jong10. Research5,6 has shown GA with the

incorporation of the elitist approach can be more reliable and efficient than the ones without. This

approach is used in the current research.

Repeating Chromosome

It is found that, during the evolutionary process, the same chromosomes at times are

repeatedly generated11. Since the fitness evaluation in structural design involves finite element

analysis, a computationally expensive step, all generated chromosome and the associated fitness

information are saved in memory. In this way, if a chromosome is repeated, a finite element

analysis is not necessary. Saved chromosomes may also be helpful for further processing of the

design history.

Population Size and Stopping Criteria

In the first section we suggested that the initial population should contain uniformly

distributed alleles. By this, it is meant that no chromosome pattern should be missed. Each

chromosome is represented by n bits with each bit being either 1 or 0. If the distribution of 1's in

each bit location is to be uniform, the initial population size should be at least n. During the

evolution, it is expected that that the chromosome converges to some special pattern with the (0-

1) choice decided for n locations.
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Assume that the choice of each bit is independent of all the other bits. Since the

population size is n in each generation, after every generation from the statistical viewpoint we

can expect to learn about at least one bit. Ideally then after n generations, one can expect to

learn about all the n bits forming the chromosome. However, since each bit is not independent of

the others, more than n generations are perhaps necessary to obtain a good solution. This

suggests that the population size and the number of generations should be at least n. Previous

work suggests that using population and generation size of 2n leads to reasonable results

efficiently5,10.

The Improved GA Optimizer

As mentioned before selective improvement can be made to obtain a more robust

solution methodology for a class of problems. The primary focus in this research is to make the

GA a powerful and reliable optimizer for structural optimization. Table 1 shows the proposed

improvements.

Table 1 Differences Between Traditional and Proposed GA

Traditional GA Proposed GA

Penalty Function ad hoc Automatic

Schema ad hoc Ordered

Cross-over Probability ad hoc Adaptive

Population/Max Generation Size ad hoc Suggested as 2n

The optimizer is written in ANSI FORTRAN. The programming interface is full

modularized, and requires little effort in meshing the program with a simulation program. A total of

21 combinations of the options have been proposed for testing in the previous publication. While

the combinations are not exhaustive, they provide most of the major ones. The complete data can

be found in previous publication5,7. The results show that the proposed algorithm performance

better than all others in efficiency, accuracy and reliability5,7.

CODE-BASED DESIGN

The Ninth Edition of Allowable Stress Design procedure from AISC12 is used. There are

primarily two reasons for this choice. First, this is the newest ASD code from AISC. Second, since

it is computationally expensive to carry out plastic analysis of structural systems and given the

fact that linear elastic analysis is carried out in this research, using the ASD design code is a

natural choice. It should be noted that the ASD code still enjoys widespread use in the industry.

For the purpose of code checks, the finite element analysis is performed first. The

member force vector for each member is calculated. Using the cross-sectional property, the axial
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stress af , bending stress along major axis bxf , bending stress along minor axis byf , shear stress

in the major and minor axis directions ( vyvx ff , ) are calculated. The allowable stress is then

obtained as per code provisions, and the Code-based constraint equations are used. For each

member, whenever appropriate, these checks are carried out at three internal points in addition to

the ends of the member.

Basic Constraint Equations

Axial Compression and Bending: For the member in axial compression and bending, the normal

stress of a beam should be proportioned appropriately. In general the requirements are as

follows. If 15.0>
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Cm = 0 85.  with sway

2

14.06.0
M
M

Cm −=  : braced against sway, no transverse loading.

Cm = 0 85. :  braced against sway, with transverse loading, no rotations, both ends

Cm = 10.  braced against sway, with transverse loading, with rotations, both ends

Cm  can be conservatively taken as 1.0 (7)
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Eqn. (7) defines the reduction factor, which is taken from the code. However, some conditions are

not well-defined. (For example, for members braced against sway, with transverse loading, with

rotation on one end and without on the other end, the factor is not defined.)

Axial Tension and Bending: For the member in axial tension and bending

f
F

f
F

f

F
a

t

bx

bx

by

by

+ + ≤ 10. (8)

In the above equations, fa  is the normal stress caused by axial stress, fbx  is the normal stress

caused by bending about local x axis (major axis of the cross-section), fby  is the normal stress

caused by bending about local y axis (minor axis of the cross-section), and aF  and bF  are the

allowable axial and bending stress, which is defined in the code.

Shear Stress: For the shear stress
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where f vx  is the shear stress in the local x (major axis of the cross-section) direction, and f vy  is

the shear stress in the local y (minor axis of the cross-section) direction. The code provides a

complex procedure to arrive at the allowable normal stress for various sections under different

stress and loading conditions. A flow chart outlining the checks is available7 to explain the

program flow.

The Effective Length Factor

One of the most intriguing portion of the code deals with the effective length factor, K.

The factor is heavily used not only where hot-rolled steel members are used, but also in the use

of cold-formed steel members such as those governed by the AISI-LRFD13 design manual.

Typically, engineers use the Alignment Charts14. Some researchers have raised important

questions about the applicability of these charts 15,16. Research aimed at deriving the equation for

K-Factor based on the end restraint conditions of each member17,18,19 under certain

circumstances have been carried out. In Johnston's book14, the use of the K-Factor is described

for two commonly encountered situations. First, it is used to predict the buckling of an axial-

loaded column. Second, it is used as an amplification factor, for considering the P − ∆  effect in

eccentrically loaded beam-column. That is,
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where δ0  is the deflection without P − ∆  effect, and δm  is the deflection accounting for the

effect. This equation implies that, as the load approaches the critical load, the deflection tends to

infinity. Furthermore, it is also stated that in a complex structure the K-Factor depends on the final

buckling mode of the structure. Therefore, an alternative way is to find the member capacity is to

carry out the elastic buckling analysis. A linear elastic buckling analysis of the structure is

described by the following equation.

PKK =⋅+ GE λ (110)

Here EK  is the elastic stiffness matrix, P  the load vector and GK  the geometric stiffness

matrix, which is a function of the axial load for each element. To implement the computations

associated with Eqn. (21), a linear static analysis is first performed with the P  vector to obtain the

axial force in each member. Equation (21) is then recast to obtain a nontrivial solution by setting

P  to zero. This requires an eigenvalue analysis and λ  is the lowest eigenvalue as well as the

critical load factor for the system. The results from a linearized buckling analysis can be

converted to equivalent K-Factor in each member as

P
EI

l
K

⋅
=

λ
π

(12)

where P is the axial force in the member. Note that the factor should be calculated for bending

about both major ( xK ) and minor ( yK ) bending axis using the appropriate I  value for each

axis.

SIZING, SHAPE AND TOPOLOGY OPTIMIZATION OF SPACE FRAMES

The structural optimization problem involving sizing, topology and shape parameters has

always been a difficult problem to handle. Some of the design variables are discrete, the design

space is disjoint and traditional gradient-based methods cannot be employed. The design

problem of a three-dimensional frame can be stated as shown in Eqn. (1).

Researchers working in this area have divided the existing algorithms for discrete

variables into three types - branch and bound, approximation, and ad-hoc methods20. The

solution techniques such as approximation methods21, branch and bound methods, and ad hoc

strategies of adapting continuous design variables in NLP techniques22,23 suffer from several

drawbacks. These methods either are inefficient, or do not really converge to the optimal solution

or can be used under very restrictive conditions. For example, the approximation method allows

the candidate solution to be discrete, but still require the whole design domain to be differentiable

and continuous.

In the case of topology optimization, approximation methods and branch and bound

techniques cannot be applied since the methods cannot handle the presence or absence of
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members as design variables. Instead, approaches like the homogenization methods have been

widely discussed24,25. Researchers have also used simultaneous analysis and design method to

solve the topology design problem26. However, these methods consider only the minimization of

the compliance of the structure instead of handling the problem described by (1). Furthermore, it

is not clear how the final structure is formed once the material distribution is obtained. The design

problem can be solved more easily using GAs since they can be adapted to work with discrete

and boolean design variables.

Design Variable Linking

As shown in Eqn. (1), GAs essentially can handle three types of design variables –

discrete or integer, real, and boolean. These design variables capture all the possible structural

design parameters. The sizing design variables considered in this dissertation are either cross-

sectional dimensions or available cross-section. The former can be described using continuous

design variables since these dimensions can vary continuously. The latter is described in terms of

integers (an integer index that points to a row in a table of available cross-sections). The table

search is carried out by using a table of ordered available cross-sections with the lower and upper

bound candidate cross-sections specified by the user. The shape design variables are the nodal

locations. These are real design variables. The topology (boolean) design variables can be

structural parameters such as the presence or absence of members, and presence or absence of

fixity conditions at supports or connections.

Table 2 Linking of Design Variables and the Physical Meaning

Optimization Physical Meaning Design

Variable Type

in GA

Note

Topology Element Existence Boolean

Sizing Cross-sectional selection Integer Search through a given

table

Shape Nodal Coordinates Real Varies between upper and

lower bounds

Special Considerations

When topology design is considered, several problems should be handled very carefully.

(i) There may be elements not connected to the structure during design, if topology design is

performed. This can be detected by examining the singularity of the stiffness matrix.
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(ii) There may be "null" nodes during the design. A null node is one to which no element is

attached. Such nodes need to be suppressed (from the finite element analysis) in order to find the

response of the remaining structure.

(iii) Sometimes, crisscrossing members are not allowed in frame structures. This situation is

detected by testing the possible intersection of a member with all other members. It should be

noted that handling such a constraint by traditional (gradient-based) optimization approach can

be very challenging.

NUMERICAL EXAMPLES

Two numerical examples are solved in this paper. The purpose of solving these

examples is to show the robustness of the proposed algorithm. The first example is taken from

prior research publications. The second example is a larger problem and involves a building

frame. All tests are performed on a Pentium Pro 180 PC running Windows NT. For the cases

where our GA methodology is used, the crossover probability is 0.9 and mutation is 0.03.

Roof Frame Design

This example is taken from Grierson and Lee 's paper22. The structure is shown in Figure

1. The dead, live and wind load intensities define the service load level. The material properties

and other design data of the original publication are listed in Table 3.

The original publication used assumed Kl/r factors, and the allowable stress is calculated

on the assumed values. In the current research, the linearized buckling analysis is used to

compute the slenderness factor of each member. The values of material properties as used in the

current research are listed in Table 3. Figure 2 through Figure 6 show the layout of the five

different load cases considered in the design.

Table 4 lists the load values for the five load cases. In addition to the stress constraint,

displacements in the Y-direction at node 8 and 11 are limited to 4 inches. The problem is

formulated as

{ }sectionstandardAISCis,295,....1

ntsdisplacemeallowabletheuuu                           

ASD-AISCbydefined    :  toSubjected
structure  theofWeight : minimize To

membereachofxsectionCross:Find

aa

aa

ii bib =∈

≤

≤

−

x

σσσ (13)
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Table 3 Material Properties and Design Data

Rafter and Chord Web Rafter and Chord Web
Density 0.283 lb/in3 0.283 lb/in3 0.283 lb/in3 0.283 lb/in3

Young's Modulus 30,000 ksi 30,000 ksi 30,000 ksi 30,000 ksi
Yield Stress 44 ksi 36 ksi 44 ksi 36 ksi

Ultimate Stress  N/A N/A 60 ksi 58 ksi
Allowable Stress 26.4 ksi 21.5 ksi AISC AISC

Kl/r Assumed Assumed Buckling Analysis Buckling Analysis

Current ResearchGrierson and Lee

Table 4 Load Values for the Five Load Cases

W1 0.04783 W6 0.01179
W2 0.02873 W7 0.03586
W3 0.00783 W8 0.01344
W4 0.01792 W9 0.00698
W5 0.00931

Units = k/in

Grierson and Lee consider only sizing design variables. The members are divided into

three property groups. The first group consists of the rafters, top chords and bottom chords. CISC

W sections are used as rafters. The top and bottom chords are structural T's positioned

appropriately. The second group is the vertical web member, and inclined webs form the third

group. In the second and third groups, CISC Standard Double Angle (DL) sections are used.

We consider two test cases - TEST1 and TEST2. Only sizing design variables are used

in TEST1. However, sizing and topology design variables are used in TEST2. In addition, we

consider only AISC W sections (a total of 295 AISC standard W sections are considered). The

design variables used in TEST1 and TEST2 are listed in Table 5. For each test, two GA

strategies labeled F and D are considered. The choice is based on our prior work5 The F operator

denotes the proposed algorithm, and D the traditional one-point crossover5. The design results

are shown in Table 6.Error! Reference source not found.. The chromosome length for TEST1

and TEST2 are 36 and 44 respectively. The population size and number of generations is taken

to be 72 for TEST1 and 88 for TEST2.

Table 5 Design Variables Linking

Grierson and Lee (1984) TEST1 TEST2

Sizing DV Section Sizing DV Section Sizing DV Topology Section

Rafter 1 CISC W 1 AISC W 1 N/A AISC W

Top Chord 1 CISC WT 2 AISC W 2 N/A AISC W

Bottom Chord 1 CISC WT 2 AISC W 2 N/A AISC W

Vertical Web 2 CISC DL 3 AISC W 3 1~4 AISC W

Inclined Web 3 CISC DL 4 AISC W 4 5~8 AISC W
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Table 6 Final Design Results

Grierson TEST1-F TEST1-D TEST2-F TEST2-D

Section Section Section Section Exist Section Exist

Rafter W460x61 W6X25 W8X24 W8X24 ALL W8X24 ALL

Top Chord WT230x30.5 W12X14 W12X14 W12X14 ALL W12X14 ALL

Bottom Chord WT230x30.5 W12X14 W12X14 W12X14 ALL W12X14 ALL

Vertical Web DL100x90x6 W12X14 W6X9 W6X9 25~29 W6X9 25~29

Inclined Web DL 55x35x4 W6X9 W6X9 W14X74 NONE W18X50 NONE

Weight (lb) 2918.5 2445.2 2319.6 1818.1 1818.1

CPU Time (sec) 669 865 1147 1309

Function Evals. N/A 3279 4326 6145 7101

The results are encouraging. With only sizing design variables, the final weight is about

20% less than those reported in the earlier publication. With the addition of topology design

variables the savings are even greater – about 40%. It should also be noted that in TEST2 the

proposed GA (operator F) uses much less computation time and function evaluation (about 13%

less) than the traditional GA (operator D), with similar results. The final topology of TEST2 is

shown on Figure 7.

Ten-Story Frame

The structure has four bays in both directions and is twenty story in height. The details of

the frame are shown in Figure 8, Figure 9 and Figure 10. A linear, elastic, small displacement

finite element analysis is carried out to compute the structural response. All connections are

assumed to be rigid. The base of each column is assumed to be rigidly supported. For each story,

the members are divided into five groups - corner column, outer column, inner column, outer

beam and inner beam. The material properties of steel are listed in Table 7.

The loading on the frame includes the dead load (in the negative Z direction) on each

floor, and the wind load on left and right sides of the building (in the positive X direction). The

dead load is taken to be 0.75 pound per square inch on the bottom nine stories, and 0.347

pounds per square inch on the roof. The inward wind load (acting on the left side of the building)

is 0.07 pound per square inch, and the outward wind (acting on the right side of the building) is

0.04375 pound per square inch. The distributed loading on the floors is transferred as equivalent

line distributed load on all members surrounding the loaded area.

The (sizing) design problem is formulated as follows.
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{ }sectionstandardAISC anis,,....1
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To make the overall design process systematic and efficient, the design is carried out in

two steps. In the first step, only forty-nine candidate AISC W sections are considered for each

beam or column group. The candidate AISC standard W sections for the first level design are

listed in Table 8, and the design variable linking for each story is shown in Table 9. With this

definition of the design variables, the chromosome length is 300. The population size and number

of generations are both taken to be 300. The results for this first level design are shown in

Table 10 and Table 11.

Table 7 Material Properties of Steel (ksi)

Steel
Young's Modulus 29,000

Yield Stress 36
Ultimate Stress 58
Poison's Ratio 0.3

Table 8 Candidate AISC W Sections in the First Step Design

Rank Section Rank Section Rank Section Rank Section Rank Section
1 W4X13 11 W10X45 21 W14X82 31 W18X311 41 W30X581
2 W5X19 12 W10X112 22 W14X132 32 W21X57 42 W33X169
3 W6X16 13 W12X22 23 W14X426 33 W21X93 43 W33X619
4 W6X25 14 W12X35 24 W14X730 34 W21X402 44 W36X256
5 W8X15 15 W12X50 25 W16X31 35 W24X62 45 W36X848
6 W8X21 16 W12X58 26 W16X57 36 W24X103 46 W40X183
7 W8X28 17 W12X336 27 W16X100 37 W24X492 47 W40X655
8 W8X67 18 W14X26 28 W18X46 38 W27X129 48 W40X328
9 W10X19 19 W14X38 29 W18X71 39 W27X539 49 W44X285
10 W10X30 20 W14X53 30 W18X119 40 W30X148

Table 9 Design Variable Linking for Each Story

DV Type Lower Upper
Corner Column AISC W 1 49
Outer Column AISC W 1 49
Inner Column AISC W 1 49
Outer Beam AISC W 1 49
Inner Beam AISC W 1 49
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Table 10 Results for First Step Design, Story One to Six

1st Story 2nd Story 3rd Story 4th Story 5th Story 6th Story
Corner Column W27X129 W12X35 W8X28 W14X426 W24X103 W16X31
Outer Column W30X148 W12X58 W40X183 W27X129 W18X71 W10X45
Inner Column W14X132 W18X311 W18X119 W36X256 W44X285 W16X100
Outer Beam W33X169 W18X46 W16X57 W18X46 W14X132 W18X71
Inner Beam W12X50 W18X46 W21X93 W10X112 W12X35 W12X35

Table 11 Results For First Step Design, Story Seven to Ten

7th Story 8th Story 9th Story 10th Story
Corner Column W16X100 W12X336 W5X19 W36X256
Outer Column W21X93 W18X71 W40X328 W30X148
Inner Column W16X100 W18X71 W21X93 W6X25
Outer Beam W8X28 W14X53 W12X50 W8X28
Inner Beam W27X129 W14X53 W12X35 W40X183

Based on these results, the candidate member sections are refined. Only 8 AISC W sections

were considered as the possible choices for each design variable. These sections were selected

based on the final results from step 1 - using the order from AISC ASD W section tables, four

sections above the final design, three sections below, and the final section from step 1. Table 12

lists a few examples of the refined search. For this stage of the design, the chromosome length is

150; the population size and generation numbers are both taken as 150. The results of the

second level design are shown in Table 13 and Table 14, with Table 15 showing the comparison

between the two design steps in terms of the objective function value and the computational

effort.

Table 12 Candidate Design Variables for Second Level Design

Previous 
Result W27X129 W30X148 W14X132 W33X169 W12X50 W12X35 W12X58 W18X311

W27X194 W30X235 W14X193 W33X263 W12X72 W12X53 W12X87 W21X62
W27X178 W30X211 W14X176 W33X241 W12X65 W12X50 W12X79 W21X57
W27X161 W30X191 W14X159 W33X221 W12X58 W12X45 W12X72 W21X50
W27X146 W30X173 W14X145 W33X201 W12X53 W12X40 W12X65 W21X44
W27X129 W30X148 W14X132 W33X169 W12X50 W12X35 W12X58 W18X311
W27X114 W30X132 W14X120 W33X152 W12X45 W12X30 W12X53 W18X283
W27X102 W30X124 W14X109 W33X141 W12X40 W12X26 W12X50 W18X258
W27X94 W30X116 W14X99 W33X130 W12X35 W12X22 W12X45 W18X234F

u
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h
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Table 13 Result For Second Level Design, Story One to Six

1st Story 2nd Story 3rd Story 4th Story 5th Story 6th Story
Corner Column W27X102 W12X35 W8X35 W14X342 W24X76 W16X36
Outer Column W30X124 W12X72 W40X149 W27X146 W18X60 W10X39
Inner Column W14X99 W18X258 W18X119 W36X260 W44X198 W16X77
Outer Beam W33X130 W18X60 W16X40 W18X35 W14X99 W18X55
Inner Beam W12X45 W18X46 W21X73 W10X77 W12X35 W12X53

Table 14 Result For Second Level Design, Story Seven to Ten

7th Story 8th Story 9th Story 10th Story
Corner Column W18X50 W14X30 W6X15 W36X210
Outer Column W21X93 W18X65 W44X198 W30X148
Inner Column W16X77 W18X76 W21X73 W8X18
Outer Beam W8X24 W14X38 W12X40 W8X24
Inner Beam W27X94 W14X38 W12X35 W40X149

Table 15 Comparison of the Two Steps

Weight (kips) Function

Evaluations

Time (hrs)

1st Step 1,005 89,700 19

2nd Step 823 22,312 5

Clearly for this problem it was possible to separate the candidate sections into several

groups, so that one can compute a rough design (step 1) first, and then refine the search.

CONCLUDING REMARKS

In this research, a genetic algorithm based design optimization methodology is developed

and implemented for sizing, shape and topology optimization of discrete structural systems

subject to either strength considerations or code provisions. AISC ASD design checks are carried

out systematically and enforced during the design process. Enhancements have been made in

making the GA robust and efficient. New stopping criteria, penalty function, crossover operator

and schema representation have been developed and implemented. Particular attention is paid to

reducing the number of user-input optimization parameters. Basic theoretical considerations are

developed and used to arrive at minimum acceptable values for the population size and number
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of generations to consider. As evidenced by the results from several numerical experiments the

developed methodologies show promise in terms of efficiency, reliability and accuracy.
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Figure 5 Load Case 4

Figure 6 Load Case 5

Figure 7 Final Topology for Both Operators
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