

THE NEXT WAVE IN COMPUTING,
OPTIMIZATION, AND
DECISION TECHNOLOGIES

OPERATIONS RESEARCH/COMPUTER SCIENCE
INTERFACES SERIES

Series Editors
Professor Ramesh Sharda
Oklahoma State University

Prof. Dr. Stefan Voß
Universität Hamburg

Other published titles in the series:

Greenberg /A Computer-Assisted Analysis System for Mathematical Programming Models and
Solutions: A User's Guide for ANALYZE

Greenberg / Modeling by Object-Driven Linear Elemental Relations: A Users Guide for MODLER

Brown & Scherer / Intelligent Scheduling Systems
Nash & Sofer / The Impact of Emerging Technologies on Computer Science & Operations

Research
Barth / Logic-Based 0-1 Constraint Programming
Jones / Visualization and Optimization
Barr, Helgason & Kennington / Interfaces in Computer Science & Operations Research:

Advances in Metaheuristics, Optimization, & Stochastic Modeling Technologies
Ellacott, Mason & Anderson / Mathematics of Neural Networks: Models, Algorithms &

Applications
Woodruff / Advances in Computational & Stochastic Optimization, Logic Programming, and

Heuristic Search
Klein / Scheduling of Resource-Constrained Projects
Bierwirth / Adaptive Search and the Management of Logistics Systems
Laguna & González-Velarde / Computing Tools for Modeling, Optimization and Simulation
Stilman / Linguistic Geometry: From Search to Construction
Sakawa / Genetic Algorithms and Fuzzy Multiobjective Optimization
Ribeiro & Hansen / Essays and Surveys in Metaheuristics
Holsapple, Jacob & Rao / Business Modelling: Multidisciplinary Approaches — Economics,

Operational and Information Systems Perspectives
Sleezer, Wentling & Cude/Human Resource Development And Information Technology: Making

Global Connections
Voß & Woodruff / Optimization Software Class Libraries
Upadhyaya et al / Mobile Computing: Implementing Pervasive Information and Communications

Technologies
Reeves & Rowe / Genetic Algorithms—Principles and Perspectives: A Guide to GA Theory
Bhargava & Ye / Computational Modeling And Problem Solving In The Networked World:

Interfaces in Computer Science & Operations Research
Woodruff / Network Interdiction And Stochastic Integer Programming
Anandalingam & Raghavan / Telecommunications Network Design And Management
Laguna & Martí / Scatter Search: Methodology And Implementations In C
Gosavi/ Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement

Learning
Koutsoukis & Mitra / Decision Modelling And Information Systems: The Information Value Chain
Milano / Constraint And Integer Programming: Toward a Unified Methodology
Wilson & Nuzzolo / Schedule-Based Dynamic Transit Modeling: Theory and Applications

THE NEXT WAVE IN COMPUTING,
OPTIMIZATION, AND
DECISION TECHNOLOGIES

Edited by

BRUCE GOLDEN
University of Maryland

S. RAGHAVAN
University of Maryland

EDWARD WASIL
American University

Springer

eBook ISBN: 0-387-23529-9
Print ISBN: 0-387-23528-0

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

ixPreface

Part I Networks

On the Complexity of Delaying an Adversary’s Project
Gerald G. Brown, W. Matthew Carlyle, Johannes O. Royset, and R. Kevin Wood

Contents

3

A Note on Eswaran and Tarjan’s Algorithm for the Strong Connectivity
Augmentation Problem

S. Raghavan
19

Part II Integer and Mixed Integer Programming

Generating Set Partitioning Test Problems with Known Optimal Integer Solutions
Edward K. Baker, Anito Joseph, and Brenda Rayco

29

Computational Aspects of Controlled Tabular Adjustment: Algorithm and
Analysis

Lawrence H. Cox, James P. Kelly, and Rahul J. Patil
45

The SYMPHONY Callable Library for Mixed Integer Programming
Ted K. Ralphs and Menal Güzelsoy

61

Part III Heuristic Search

Hybrid Graph Heuristics Within a Hyper-Heuristic Approach to Exam
Timetabling Problems

Edmund Burke, Moshe Dror, Sanja Petrovic, and Rong Qu
79

Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem
Raffaele Cerulli, Andreas Fink, Monica Gentili, and Stefan Voß

93

A New Tabu Search Heuristic for the Site-Dependent Vehicle Routing Problem
I-Ming Chao and Tian-Shy Liou

107

A Heuristic Method to Solve the Size Assortment Problem
Kenneth W. Flowers, Beth A. Novick, and Douglas R. Shier

121

vi

Heuristic Methods for Solving Euclidean Non-Uniform Steiner Tree Problems
Ian Frommer, Bruce Golden, and Guruprasad Pundoor

133

Modeling and Solving a Selection and Assignment Problem
Manuel Laguna and Terry Wubbena

149

Solving the Time Dependent Traveling Salesman Problem
Feiyue Li, Bruce Golden, and Edward Wasil

163

The Maximal Multiple-Representation Species Problem Solved Using
Heuristic Concentration

Michelle M. Mizumori, Charles S. ReVelle, and Justin C. Williams
183

Part IV Stochastic Modeling

Fast and Efficient Model-Based Clustering with the Ascent-EM Algorithm
Wolfgang Jank

201

Statistical Learning Theory in Equity Return Forecasting
John M. Mulvey and A. J. Thompson

213

Sample Path Derivatives for S) Inventory Systems with Price Determination
Huiju Zhang and Michael Fu

229

PartV Software and Modeling

Network and Graph Markup Language (NAGML) - Data File Formats
Gordon H. Bradley

249

Software Quality Assurance for Mathematical Modeling Systems
Michael R. Bussieck, Steven P. Dirkse, Alexander Meeraus, and Armin Pruessner

267

Model Development and Optimization with Mathematica
János Pintér and Frank J. Kampas

285

Verification of Business Process Designs Using MAPS
Eswar Sivaraman and Manjunath Kamath

303

ALPS: A Framework for Implementing Parallel Tree Search Algorithms
Yan Xu, Ted K. Ralphs, Laszlo Ladányi, and Matthew J. Saltzman

319

Part VI Classification, Clustering, and Ranking

Tabu Search Enhanced Markov Blanket Classifier for High Dimensional
Data Sets

Xue Bai and Rema Padman
337

Dance Music Classification Using Inner Metric Analysis
Elaine Chew, Anja Volk (Fleischer), and Chia-Ying Lee

355

vii

Assessing Cluster Quality Using Multiple Measures - A Decision Tree Based
Approach

Kweku-Muata Osei-Bryson
371

Dispersion of Group Judgments
Thomas L. Saaty and Luis G. Vargas

385

This page intentionally left blank

Preface

This book is the companion volume to the Ninth INFORMS Computing So-
ciety Conference (ICS 2005), held in Annapolis, Maryland, from January 5 to
7, 2005. It contains 25 high-quality research articles that focus on the interface
between operations research/management science (OR/MS) and computer sci-
ence (CS).

The articles in this book were each carefully reviewed and revised accord-
ingly. We thank the authors and a small group of academics and practitioners
for serving as referees. The book is divided into six sections. The first section
contains two papers on network models. The second section focuses on integer
and mixed integer programming. The third section contains papers in which
heuristic search and metaheuristics are applied. Three papers using stochastic
modeling comprise the fourth section. In the fifth section, the unifying theme
is software and modeling. The sixth section contains four papers on classifica-
tion, clustering, and ranking.

Taken collectively, these articles are indicative of the state-of-the-art in the
interface between OR/MS and CS and of the high-caliber research being con-
ducted by members of the INFORMS Computing Society.

We thank the University of Maryland, American University, and George
Mason University for sponsoring ICS 2005. In addition, we thank the authors
for their hard work and professionalism and Stacy Calo for her invaluable help
in producing this book. Finally, we note, with great pride, that two of us (BG
and EW) have attended each and every one of the nine ICS conferences. The
three of us hope to attend many more.

BRUCE GOLDEN, S. RAGHAVAN, AND EDWARD WASIL

This page intentionally left blank

NETWORKS

I

This page intentionally left blank

ON THE COMPLEXITY OF DELAYING
AN ADVERSARY’S PROJECT

Gerald G. Brown,1 W. Matthew Carlyle, 2 Johannes O. Royset,3 and
R. Kevin Wood4

Naval Postgraduate School
Monterey, CA 93943

2mcarlyle@nps.edu

3
joroyset@nps.edu

4 kwood@nps.edu

Abstract A “project manager” wishes to complete a project (e.g., a weapons-
development program) as quickly as possible. Using a limited interdic-
tion budget, an “interdictor” wishes to delay the project’s overall com-
pletion time by interdicting and thereby delaying some of the project’s
component tasks. We explore a variety of PERT-based interdiction
models for such problems and show that the resulting problem com-
plexities run the gamut: polynomially solvable, weakly NP-complete,
strongly NP-complete or NP-hard. We suggest methods for solving the
problems that are easier than worst-case complexity implies.

Keywords: Interdiction, PERT, NP-complete

1. Introduction
Brown et al. (2004) (see also Reed 1994 and Skroch 2004) model the

completion of an adversarial nation’s nuclear-weapons program using
general techniques of PERT. (See PERT 1958 and Malcolm et al. 1959
for the original descriptions of PERT, and see Moder et al. 1983 for a
comprehensive review.) Brown et al. (2004) ask the question: How do
we most effectively employ limited interdiction resources, e.g., military
strikes or embargoes on key materials, to delay the project’s component
tasks, and thereby delay its overall completion time? They answer the
question by describing an interdiction model that maximizes minimum
project-completion time. This model is a Stackelberg game (von Stack-

1 gbrown@nps.edu

4

elberg 1952), formulated as a bilevel integer-linear program (Moore and
Bard 1990).

Brown et al. (2004) consider a highly general model for project net-
works. Specifically, they (i) allow the interdictor to employ various
interdiction resources, (ii) allow the project manager to “crash” the
project to speed project completion by applying various, constrained,
task-expediting resources, and (iii) allow the project manager to employ
alternative technologies to complete the project. The authors success-
fully test an algorithm that solves a realistic example of the resulting
interdiction problem, but we shall see that the most general problem
is NP-hard. Thus, other large, general problems could be extremely
difficult to solve.

This paper therefore asks: How hard is the “project interdiction prob-
lem” when full modeling generality is unnecessary? Can we assure ana-
lysts that their version of the problem is not too difficult if modeling a
single interdiction resource suffices; or crashing is impossible; or only a
single technology, or modest number of technologies, need be modeled?

We show that these less general problems are, in fact, easier to solve,
and go on to describe special solution techniques for them. All of these
techniques are simpler than the decomposition algorithm described by
Brown et al. (2004), which requires that an alternating sequence of two
integer-linear programs be solved. Thus, simpler, more accessible and
more efficient solution methods may be employed for these problem re-
strictions.

Before beginning mathematical developments, we note that we have
chosen the activity-on-arc (AOA) model of a project network rather than
the interchangeable activity-on-node (AON) model. The AON model is
the more common of the two nowadays; however, the mathematics in
this paper prove easier to describe using the AOA model, so we adopt
that model from the outset.

The next section provides basic definitions for our project interdiction
problems. Section 3 describes the most general model, which includes
multiple technologies and project crashing. Subsequent sections discuss
restricted model variants and solution techniques for them.

2. Basic Definitions
Let G = (N, A) denote a directed acyclic graph with node set N and

arc set Since G is acyclic, there exists a topological ordering,
or labeling, of the nodes such that for each
arc For graphs of interest in this paper, the first node
in any such ordering is unique, as is the last node The forward star of

5

node is the set of all arcs of the form the reverse
star of node is the set of all arcs of the form

G represents the activity-on-arc diagram used in a PERT model of a
project, controlled by a project manager (e.g., Elmaghraby 1977). Each
arc corresponds to a task which must be completed in order to
finish the project. For each node all tasks must be
completed before any task can begin. Every node
represents a milestone event that occurs when all predecessor tasks, i.e.,
all are complete. A milestone event might be something
important like “completion of the weapon delivery system,” or might
simply correspond to the completion of a group of simpler tasks along
the course of the project. The latter situation may occur frequently in
AOA representations of projects which often have many dummy nodes
(and arcs). Node is the project-completion event and, because event
may also be viewed as the start of follow-on tasks node is
the project-start event.

Each activity has associated with it a nominal task completion time
and a variable which denotes the reduc-

tion in the activity’s completion time achieved by applying expediting
resources. No matter how much expediting resource is a applied, how-
ever, task cannot be completed any faster than the crashed duration,

For simplicity in writing models, but without loss of generality,
we assume that only a single expediting resource exists (e.g., money);
the unit cost of expediting task is and a total expediting budget of

monetary units is available to the project manager. We assume that
the project manager schedules tasks in order to minimize the project’s
completion time. It is well known that the shortest completion time, for
fixed expediting decisions, corresponds to a longest path in G.

An interdictor who wishes to disrupt the project possesses a set of
interdiction resources with which to effect this disruption. Interdiction
of arc consumes units of each interdiction-resource type

and results in adding a delay, to the completion time
of task The total interdiction budget for resource is

If we assume that no expediting will occur, the project-interdiction
model looks much like the shortest-path interdiction model of Israeli
and Wood (2002). There, the interdictor attacks a road network using
limited interdiction resources, and the “network user,” analogous to the
project manager, moves along a post-interdiction shortest path in the
network. In that model, an interdiction plan is evaluated by solving a
shortest-path in a general network. Our simplest model can evaluate an
interdiction plan by solving a longest-path problem in an acyclic net-
work. However, this evaluation will require the solution of a more gen-

6

eral linear or integer-linear program if the project manager can crash his
project or can employ multiple technologies, as described below. Thus,
project interdiction is truly a “system-interdiction problem” (Israeli and
Wood 2002), not a network-interdiction problem.

Crowston and Thompson (1967) describe an extension of project man-
agement models in which the project manager can complete a project
using alternative technologies. Brown et al. (2004) use this extension to
model different means of uranium enrichment. Crowston and Thompson
create graphical constructs to represent alternative technologies in their
AON model, but they boil down to this in the mathematical model:
Using binary variables to represent whether or not a particular technol-
ogy is used, certain precedence relationships will be enforced and certain
others will be relaxed.

Brown et al. (2004) also include in their model several different types
of precedence relationships between tasks (Elmaghraby 1977). We do
not specify details, but all models in this paper can be easily adjusted
for these more general precedence relationships. A fixed “lag time” may
also be interjected between any pair of tasks, if required.

3. Project Interdiction Model

Here we define the general project interdiction model, MAXMIN0.
We assume the unit of time is “(one) week” and that each interdiction
resource is measured in

MAXMIN0

Indices and Index Sets
generic milestone events
project start event and project completion event, respectively
tasks and precedence relationships

Data [units]
task duration [weeks]
per-unit expediting cost of task [dollars/week]
total expediting budget [dollars]
maximum expediting of task [weeks]
interdiction delay of task [weeks]
interdiction cost for task resource
total amount of interdiction resource available

M a sufficiently large constant, e.g.,
(used to relax precedence constraints)

7

Decision Variables [units]
completion time of event [weeks]
amount that task is expedited [weeks]
1 if technology at node is used, else 0
1 if task is interdicted, else 0

Formulation (MAXMIN0)

where

and where the set represents all feasible combinations of
alternative technologies.

For a fixed interdiction plan the inner minimization in MAX-
MIN0 is the project manager’s problem: Compute the earliest project-
completion time through the objective (1), subject to standard prece-
dence constraints (2). Assuming all so that all terms

these constraints state that if activity exists between events
and then event can occur no sooner than For

the term simply relaxes all constraints for
when the alternative technology associated with is not used, i.e., if

Constraint (4) reflects the project manager’s limited budget for
expediting tasks.

The interdictor controls the vector x, and will use his limited inter-
diction resources (constraints 11) to maximize the project manager’s
minimum time to project completion. This is represented by the outer
maximization in MAXMIN0.

8

The formulation MAXMIN0 clarifies the opposing forces in our
“Stackelberg interdiction game.” The key features of this game are: (i)
A “leader,” i.e., the interdictor, first takes his actions, (ii) the “follower,”
i.e., the project manager, sees these actions and responds optimally, and
(iii) the game finishes. Randomized strategies, as in two-person zero-
sum games, are irrelevant here because the leader has complete infor-
mation regarding the follower’s behavior, and the follower will not act
until after obtaining complete information about the leader’s actions.

If we view MAXMIN0 as the interdictor’s optimization problem

where defines the value of the resulting minimization problem for
any value of x, it is easy to see that the problem may be unusually
difficult: Just to evaluate a potential interdiction plan i.e., just to
compute requires the solution of an integer-linear program (ILP).
If that ILP corresponds to an NP-hard problem, then MAXMIN0 is
NP-hard. In the following, we consider some special cases that are not
quite that difficult.

4. One Technology, No Expediting

Suppose that a fixed set of technologies will be used, so and
for all Further, assume that expediting is impossible, i.e.,
for all Then, MAXMIN0 simplifies to:

MAXMIN1

For the time being, we will also assume that only a single interdiction
resource (e.g., dollars) need be modeled, so that X is replaced by

For fixed the inner minimization of MAXMIN1 is a linear
program (LP) with a corresponding dual. In fact, the inner minimization
in MAXMIN1 is the well-known “earliest project completion time”

9

problem with the longest-path problem as its dual (e.g., Ahuja et al. 1993
pp. 732-737). Hence, fixing x temporarily, manipulating MAXMIN1
slightly, taking the dual of the inner minimization, and releasing x leads
to the following useful model:

A max-max problem is a “simple” maximization, but the nonlinear,
nonconcave objective function (18) is problematic. This model linearizes
easily, however: Replace each arc with a pair of arcs, and with
fixed lengths and respectively, and let control which arc is
part of the project manager’s model:

MAXMAX1

THEOREM 1 MAXMAX1 is solvable in time, i.e., in pseudo-
polynomial time.
Proof: MAXMAX1 represents a singly-constrained longest-path prob-
lem in which traversal of arc consumes units of interdiction re-
source and traversal of arc consumes none. Thus, MAXMAX1
may be solved through the following dynamic-programming recursion
in time:

10

Our next task is to show that MAXMIN1 is weakly NP-complete.
Later in the paper we will require the formality of decision problems to
show NP-completeness, but here the reader should have no difficulty in
seeing the equivalence of certain optimization problems and how that
equivalence implies NP-completeness.

THEOREM 2 MAXMIN1 is weakly NP-complete.
Proof: Define the binary knapsack problem (BKP) as

BKP is known to be NP-complete (e.g., Garey and Johnson 1979, p.
247) and can be modeled as an instance of MAXMAX1 as follows:

1 Let for all

2 Let each item in the knapsack correspond to an arc with length
and with “traversal cost”

3 Place all arcs in series.

4 In parallel with each arc place an arc with length and
no traversal cost.

This transformation shows that MAXMAX1 is NP-hard. But Theo-
rem describes a pseudo-polynomial solution procedure for MAXMAX1,
so it must, in fact, be weakly NP-complete. Since MAXMAX1 is equiv-
alent to MAXMIN1, the result follows.

If the interdictor is only limited by a specific number of interdictions,
MAXMIN1 becomes even easier:

COROLLARY 3 MAXMIN1 is solvable in time when
for all

11

Proof: In this case, any value of is equivalent to
since no path in G can have more than arcs. The complexity
result in Theorem 2, plus equivalence of models, then yields the result.

Being able to solve these problems by dynamic programming means
that fairly large problems can be solved quite effectively. However, dy-
namic programming can, in fact, bog down and we suggest using the
constrained-shortest-path algorithm of Carlyle and Wood (2003), which
converts directly to longest paths in directed acyclic paths. These au-
thors show orders of magnitude speedups over previously known meth-
ods, including standard dynamic-programming formulations. (See Han-
dler and Zang 1980 for a basic reference on this topic.)

5. One Technology With Expediting

Suppose the project manager can expedite certain tasks, but still, only
a single set of technologies exists. MAXMIN0 simplifies to:

MAXMIN2

Similar to MAXMIN1, for fixed x, the inner minimization in MAX-
MIN2 is an LP and we may thus take its dual. Doing that and manip-
ulating the resulting model slightly leads to the following ILP:

MAXMAX2

12

We will next prove that MAXMIN2 is NP-complete, or rather,
that its associated decision problem, MAXMIN2d, is NP-complete.
We need the formality of decision problems now, and the definition of
MAXMIN2d is:

DEFINITION 4 MAXMIN2d. Given: Data for MAXMIN2 and thre-
shold Question: Does there exist an interdiction plan x* such that the
optimally expedited project (optimal for the project manager) has length
at least

And, we will use a transformation from SETCOVERd in the proof:

DEFINITION 5 SETCOVERd. Given:
the “ground set” to be covered; subsets for

and threshold Question: Does there exist a set
with such that

For our purposes, it is easier to use SETCOVERd defined through
the bipartite graph where

for some
Does there exist a set with such that

THEOREM 6 MAXMIN2 is strongly NP-complete.
Proof: Since the decision version of MAXMIN1 is NP-complete and
it is a special case of MAXMIN2d, MAXMIN2d must be NP-hard.
Because we can formulate an ILP to represent the optimization problem,
MAXMIN2d must, in fact, be NP-complete. The only open questions
is whether MAXMIN2d is NP-complete in the strong or weak sense.
We will show that a standard set-covering problem, SETCOVERd,
well-known to be strongly NP-complete, can be transformed into an in-
stance of MAXMIN2d. The transformation will obviously not require
an exponential increase in the size of this instance’s data, so it will follow
that MAXMIN2d is strongly NP-complete.

We are given an instance of SETCOVERd, defined as in Definition 5
through the bipartite graph and the threshold parame-
ter Next, we form a corresponding instance of MAXMIN2d Create

13

the directed, acyclic project network from by adding two
nodes, and and two sets of arcs so that and

where and
Let for all let for all arcs and
otherwise; assume each arc can be expedited by
let the unit cost of expediting be 1; and assume a total of units
of expediting resource are available. The number carries over
directly from above.

So, we have created a directed acyclic network with three echelons of
arcs, but only those in the first echelon may be interdicted (with any
effect), and only those in the last may be expedited. The instance of
MAXMIN2d is defined as: Does there exist a set of or fewer in-
terdictions of arcs in such that the longest path in G, with optimal
expediting has length strictly greater than 3? The answer to this prob-
lem is “yes,” if and only if the answer is “yes” to the original set-covering
problem.

To see this, suppose that every collection of subsets leaves at
least one element of uncovered. The corresponding interdiction plan
interdicts arc for each subset Because at least one node
is left uncovered in the set-covering problem, at least one arc is not
on an interdicted path. This means there is at least one path of length
3 in the network. Furthermore, the units of expediting resource
suffice to reduce the length of all arcs in that are on interdicted
paths to 0, and, hence, every interdicted path’s length is dropped from
4 to 3. So, if the answer to SETCOVERd is “no,” the answer to the
corresponding instance of MAXMIN2d must be “no.”

On the other hand, suppose that the answer to SETCOVERd prob-
lem is “yes.” Interdict arcs corresponding to the cover as above. Then,
the interdicted but unexpedited length of each path is 4, and the
units of expediting resource only suffice to reduce those path lengths to

So, the answer to the corresponding instance of MAXMIN2d
is “yes.”

Note that Theorem 6 holds also in the special case of
for all Since MAXMAX2 is a (linear) ILP, it

can be solved by a standard LP-based branch-and-bound algorithm. In
addition, MAXMAX2 motivates a solution approach for the general
problem MAXMINO as described in the following.

6. Alternative Technologies

The discussion at the end of Section 2 implies that adding alterna-
tive technologies into the mix, i.e., going from MAXMIN2 to the com-

14

pletely general model MAXMIN0, may move us from the realm of NP-
complete problems into NP-hard problems that may not be in NP. This
will be the case if, for fixed the solution of MAXMIN0 requires
the solution of an NP-complete ILP. That is, just checking whether the
interdictor’s objective exceeds a specified threshold for a candidate
solution requires the solution of an NP-complete problem, rather than
the application of some polynomial-time procedure.

However, if no expediting is allowed we would like to know the re-
sulting complexity of evaluating That is, faced with a fixed set
of task lengths the project manager would like to solve
the DCPM, the “decision CPM problem,” (Crowston and Thompson
1967), which selects a set of alternative technologies by choosing
to minimize project completion time. We state DCPMd, the decision
version of DCPM, in terms of deleting technologies (and represent the
remaining technologies after deleting w by 1 – w) to help show its NP-
completeness:

DEFINITION 7 DCPMd. Given: A project network G = (N, A) with
arc lengths constraints indicating feasible sets of alter-
native technologies; and threshold Question: Does there exist
a set of technologies represented by with such that the
longest path in is no longer than given

We will show that DCPMd is strongly NP-complete through a trans-
formation of VERTEXCOVERd (Garey and Johnson 1979, pp. 79,
190). We note that De et al. (1997) prove the NP-completeness of the
“discrete time-cost tradeoff problem for project networks” (i.e., optimal
project crashing with discrete expediting quantities), and that proof can
be applied to DCPMd. However, our proof is substantially shorter
than that of De et al., and we believe its inclusion is warranted for that
reason, as well as for the sake of completeness.

DEFINITION 8 VERTEXCOVERd. Given: An undirected graph G =
(N, A) and threshold Question: Does there exist a set of nodes, (a
“vertex cover,” or “node cover”), with such that
every edge is incident to at least one node in ?

Note that is a node cover if consists of a set of
completely disconnected nodes.

THEOREM 9 DCPMd is strongly NP-complete.
Proof: We are given an instance of VERTEXCOVERd with G =
(N, A) and will show how to construct an instance of DCPMd with

15

project network such that with is a node
cover for G if and only if the longest path in has length (where

has been translated into appropriately). is the solution
to an instance of DCPMd where simply requires

for all and

1 Convert G into a directed acyclic graph by orienting
arcs appropriately, and place the nodes N in topological ordering

2 Create by adding to N a set of “parallel” nodes
plus an extra node denoted Node will be the project
start node, and node will be the project completion node.

3 Define for all

4 Create by adding to A the following arcs, all with

(a) for
(b) for and
(c) for

This construction creates a directed acyclic graph that may be inter-
preted as a project network. And, a small example should convince the
reader that is a node cover for G if and only if has a longest
path length of 0: (i) If is a cover, then contains none of the
original edges from A and all paths must have length 0 (and such paths
do exist), and (ii) if has a path of length greater than 0, then
at least one edge remains in so that is not a cover.

The fact that we transform a strongly NP-complete problem into
DCPMd, and do not substantially change the size of the data required
to describe the problem, implies that DCPMd is strongly NP-complete.

So, MAXMIN0, even without expediting, is NP-hard and may not
be a member of NP. But, when the number of alternative technologies
is limited to a few (e.g., Spears 2001), MAXMIN0 can be solved by
solving the ILP MINMAX2 just a few times. Specifically, enumerate
all possible combinations of technologies, i.e., for each feasible vector

solve the resulting instances of MAXMAX2, and choose
the best interdiction plan from among those solutions. The instances
of MAXMAX2 would be polynomially solvable, pseudo-polynomially
solvable or would be ILPs with exponential worst-case complexity. How-
ever, the most difficult of these solution techniques, solving a few ILPs,
is likely to be easier than devising an effective, and completely general
algorithm for MAXMIN0 .

16

7. Conclusions

This paper has investigated the computational complexity of variants
of an interdiction model that uses limited resources to delay tasks of
an adversary’s project in order to delay the project’s overall comple-
tion time. We show that the most general “project-interdiction prob-
lem,” and certain variants, are NP-hard. However, we also show that
potentially useful variants may be strongly NP-complete, weakly NP-
complete, or even solvable in polynomial time.

Furthermore, in practice, the NP-hard problems may not be as diffi-
cult as they appear at first glance. Their complexity derives from binary
variables that model alternative technologies; however, in the real world,
the number of such options will often be quite small. For example, if
the project’s manager must use one of, say, three mutually exclusive
technologies, then only three instances of a simpler project-interdiction
problem need be solved. Each of these would be an integer-linear pro-
gram, a dynamic program, or a simple network-optimization problem.

Acknowledgments

Kevin Wood thanks the Naval Postgraduate School and the Univer-
sity of Auckland for their research support. Gerald Brown and Kevin
Wood thank the Office of Naval Research and the Air Force Office of Sci-
entific Research for their research support. Johannes Royset expresses
his thanks for financial support from the National Research Council’s
Associateship program.

References
Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993). Network Flows: Theory, Algo-

rithms, and Applications: Upper Saddle River, NJ: Prentice-Hall.
Brown, G.G, Carlyle, W.M., Harney, R. C., Skroch, E. M. and Wood, R. K., (2004).

“Interdicting a Nuclear Weapons Project,” draft, May 9.
Carlyle, W.M. and Wood, R.K., (2003). “Lagrangian Relaxation and Enumeration

for Solving Constrained Shortest Paths,” Proceedings of the 38th Annual ORSNZ
Conference, University of Waikato, Hamilton, New Zealand, 21-22 November, pp.
3–12.

Crowston, W. and Thompson, G.L. (1967). “Decision CPM: A Method for Simulta-
neous Planning, Scheduling, and Control of Projects,” Operations Research, 15,
pp. 407–426.

De, P., Dunne, E.J., Ghosh, J.B., Wells, C.E. (1997). “Complexity of the Discrete
Time-Cost Tradeoff Problem for Project Networks,” Operations Research, 45, pp.
302–306.

Israeli, E. and Wood, R.K. (2002). “Shortest-path Network Interdiction,” Networks,
40, pp. 97–111.

Elmaghraby, S.E. (1977). Activity Networks. New York: Wiley.

17

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability. A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman and Co.

Handler, G.Y. and Zang, I. (1980). A Dual Algorithm for the Constrained Shortest
Path Problem, Networks, 10, pp. 293–310.

Hindelang, T.J. and Muth, J.F. (1979) “A Dynamic Programming Algorithm for
Decision CPM Networks” Operations Research, 27, pp. 225–241.

Malcolm, D.G., Roseboom, J.H., Clark, C.E., and Fazar, W. (1959) “Application
of a Technique for Research and Development Program Evaluation,” Operations
Research, 7, pp. 646–669.

Moder, J.J., Phillips, C.R., and Davis, E.W. (1983). Project Management with CPM,
PERT and Precedence Diagramming, 3rd ed. New York: Van Nostrand Reinhold
Company Inc.

Moore, J.T. and Bard, J.F. (1990). “The Mixed Integer Linear Bilevel Programming
Problem,” Operations Research, 38, pp. 911-921.

PERT. (1958). “Program Evaluation Research Task, Phase 1 Summary Report,” Spe-
cial Projects Office, Bureau of Ordinance, 7, Department of the Navy, Washington,
D.C., pp. 646-669.

Reed, B. K. (1994). “Models for Proliferation Interdiction Response Analysis,” Mas-
ters Thesis, Naval Postgraduate School, Monterey, California, September.

Skroch, E. (2004). “How to Optimally Interdict a Belligerent Project to Develop a Nu-
clear Weapon,” Masters Thesis, Naval Postgraduate School, Monterey, California,
September.

Spears, D. (ed.). (2001). “Technology R&D for Arms Control. Arms Control and Non-
proliferation Technologies”, US Department of Energy, National Nuclear Security
Administration, Defense Nuclear Nonproliferation Programs, Washington, D.C.

von Stackelberg, H. (1952). The Theory of the Market Economy, (trans. from Ger-
man). London: William Hodge & Co.

Wood, R.K. (1993). “Deterministic Network Interdiction,” Mathematical and Com-
puter Modelling, 17, pp. 1–18.

This page intentionally left blank

A NOTE ON ESWARAN AND TARJAN’S
ALGORITHM FOR THE STRONG
CONNECTIVITY AUGMENTATION PROBLEM

S. Raghavan
The Robert H. Smith School of Business
University of Maryland, College Park

Abstract In a seminal paper Eswaran and Tarjan [1] introduced several augmentation
problems and presented linear time algorithms for them. This paper points out
an error in Eswaran and Tarjan’s algorithm for the strong connectivity augmen-
tation problem. Consequently, the application of their algorithm can result in
a network that is not strongly connected. Luckily, the error can be fixed fairly
easily, and this note points out the remedy yielding a “corrected” linear time
algorithm for the strong connectivity augmentation problem.

1. Introduction
Approximately 30 years ago Eswaran and Tarjan introduced the strong con-

nectivity augmentation problem that can be described as follows. Let D =
(N, A) be a directed graph with node set N and arc set A. The strong connec-
tivity augmentation problem is the problem of finding a minimum cardinality
set of arcs such that is strongly connected.

Eswaran and Tarjan also describe an elegant linear time algorithm for the
problem. Their algorithm consists of three steps. It first condenses the directed
graph by shrinking every strongly connected component of the directed graph
to obtain an acyclic digraph. A node with no incoming arc in this acyclic graph
is called a source, and a node with no outgoing arc in this acyclic graph is called
a sink. The second step of their algorithm constructs a particular ordering of
sources and sinks with a desired set of properties. Their third step then adds
arcs to strongly connect this acyclic digraph. (They show that it suffices to
solve the augmentation problem on the condensed graph.) The correctness of
their procedure relies on the second step of their algorithm, where an ordering
of sources and sinks with a set of desired properties is constructed.

In this note we point out an error in Eswaran and Tarjan’s strong connectivity
augmentation algorithm. Specifically, we show that the algorithm described in

20

their paper does not provide an ordering of sources and sinks with the desired
set of properties. Consequently, the application of their augmentation algo-
rithm (as will be shown with a counterexample) can lead to a directed graph
that is not strongly connected. We also provide a corrected procedure for the
second step of their algorithm that runs in linear time.

2. The Algorithm and the Error

We now review Eswaran and Tarjan’s algorithm and elaborate on the error
within it. We note that our notation differs slightly from Eswaran and Tarjan.

Given a directed graph D = (N,A) the first step of their procedure is to
create its condensation obtained by shrinking every
strongly connected component of contains one node for every strong
component of D, and there is an arc in if there is an arc in D from
any node in the strong component corresponding to node to any node
in the strong component corresponding to node For notational con-
venience they define the two mappings and as follows. For every
let be the node in corresponding to the strong component in D that
contains node For every defines any node in the strongly
connected component of D corresponding to node Eswaran and Tarjan show
the following lemma, proving that it suffices to solve the augmentation prob-
lem on

LEMMA 1 Let X be an augmenting set of arcs which strongly connects D.
Then is a set of arcs
which strongly connects Conversely, let Y be an augmenting set of arcs
which strongly connects Then is a
set of arcs which strongly connects D.

In the acyclic digraph a source is defined to be a node with outgoing
but no incoming arcs, a sink is defined to be a node with incoming but no
outgoing arcs, and an isolated node is defined to be a node with no incoming
and no outgoing arcs. Let and denote the number of source nodes, sink
nodes, and isolated nodes respectively in and assume without loss of
generality

The second step of the algorithm finds an index and an ordering
of sources of of sinks of with the following

properties:

1 there is a path from to for

2 for each source there is a path from to some
and

21

3 for each sink there is a path from some
to

Let denote the set of isolated nodes of They show that
a minimal augmentation of is obtained from the arc set.1

Eswaran and Tarjan show that is a lower bound on the num-
ber of arcs needed to augment so that it is strongly connected.2 Note
that the augmenting set contains arcs. To see that the addition
of these arcs strongly connects observe that by construction the nodes

are on a
directed cycle (denoted by and thus strongly connected. For

the correctness of their procedure relies on Proper-
ties (2) and (3). Due to Property (2) there is a path from each

to some node and thus by construction to every node
in the cycle From Property (3), and the addition of the arcs
for there is a path from every node in the cycle to each

A similar argument shows that there is a directed path
from the nodes in the cycle to each and from each

to the nodes in the cycle
The Eswaran and Tarjan paper provides the algorithm ST shown in Fig-

ure 1. We note that for any ordering of sources and sinks satisfying Proper-
ties (1)–(3), arbitrarily permuting the ordering of sources
sinks and isolated nodes results in an or-
dering that continues to satisfy Properties (1)–(3). Consequently the algo-
rithm focuses on obtaining and the ordering of sources and

of sinks satisfying Property (1), while ensuring that the re-
maining sources and sinks satisfy the desired Properties (2) and (3). The au-
thors state that it is obvious that the algorithm ST finds a sequence of sources

1There is a typographical error in the first line of the equation shown on page 657 of [1] that is corrected
here.
2 Since there are nodes with no incoming arcs, at least arcs are needed to augment so
that it is strongly connected. Similarly, as there are nodes with no outgoing arcs, at least arcs
are needed to augment so that it is strongly connected.

22

Figure 1. Eswaran and Tarjan’s algorithm to find an ordering of sources and sinks that satisfies
Properties (1)–(3).

and sinks satisfying Properties (1)–(3). We now show that this statement is not
true, and the algorithm can produce an ordering of sources and sinks that does
not satisfy Property (2). For convenience, we also display in Figure 2 Eswaran
and Tarjan’s algorithm for the strong connectivity augmentation problem.

Consider the example shown in Figure 3. The acyclic digraph shown in
Figure 3(a) has two sources nodes and and two sinks nodes and There
is a directed path from source node to sink node and the first arc on this
path is There is also a directed path from source node to sink node
and the first arc on this path is There is a directed path from source node

to sink node and the paths from to and to are identical from node
onwards. Suppose the search starts from (i.e., is the first unmarked source
selected in line 12), and suppose that in line 7 of the algorithm arc is
considered before arc Then the procedure will first find sink and set

23

Figure 2. Eswaran and Tarjan’s algorithm to solve the strong connectivity augmentation
problem.

Figure 3. Counterexample that shows algorithm ST does not find an ordering of sources and
sinks that satisfies Property (2). (a) Running algorithm ST gives

(b) Augmenting by adding arcs and
results in a digraph that is not strongly connected.

(in line 5). It will then continue the search from considering arc
in line 7 of the algorithm. This will result in traversing the path from

to and marking nodes and It will then set and in
lines 17 and 18. Since all sinks are marked the procedure stops. Eswaran and
Tarjan’s procedure will also set and Observe
now that there is no path from to node and thus this ordering does not
satisfy Property (2). The augmentation procedure adds the arcs

and The resulting digraph shown in Figure 3(b) is
obviously not strongly connected.

24

3. The Correction

As the example indicates algorithm ST fails to find an ordering that satisfies
Property (2). The problem within the algorithm is that the search continues
from a source that has found an unmarked sink. This search may mark un-
marked sinks (and thus these sinks would be ordered with an index of
or greater) that are the only sinks an unmarked source has a directed path to,
leading to a violation of Property (2).

We now show how to rectify the problem by modifying algorithm ST so that
it obtains an ordering of sources and sinks that satisfies Properties (1)–(3). The
corrected algorithm is called STCORRECT and is displayed in Figure 4. It is
identical to ST except for the following modest changes. A boolean variable
sinknotfound is added that is true if the search from a source node has not yet
encountered an unmarked sink. Further, in line 11 the search continues until all
sources are marked (as opposed to ST where the search continues until all sinks
are marked). At the start of a search from an unmarked source sinknotfound is
set to true (line 13a). Within the procedure SEARCH, if an unmarked sink is
found then and the boolean variable sinknotfound is set to false (lines
5, 5a, 5b). This has the effect of stopping the search (in line 7a) as soon as an
unmarked sink is found in a search from an unmarked source node. We now
prove the correctness of algorithm STCORRECT.

THEOREM 1 The algorithm STCORRECT finds an ordering of sources and
sinks satisfying Properties (1)–(3) in time.

Proof:
Observe that in line 7 an arc is examined no more than once proving that the
algorithm runs in time proportional to the number of arcs in the acyclic digraph.
We now show a very useful property of algorithm STCORRECT that will be
invaluable in our proof.

LEMMA 2 All nodes marked by STCORRECT have a directed path to some
sink node in

Proof:
We show this by induction. Since the digraph is acyclic, the first time STCOR-
RECT searches from an unmarked source it marks all nodes on a unique path to
an unmarked sink node. At that point the search initiated from the unmarked
source stops, and the unmarked source is set to and the unmarked sink
just found is set to Observe that all marked nodes have a directed path
to Consider what happens at any later point in the algorithm when the
search is initiated from an unmarked source. The search marks nodes along a
path until it encounters a marked node (in which case we do not search from
but the search from the unmarked source continues) or encounters an unmarked

25

Figure 4. A “corrected” linear time algorithm to find an ordering of sources and sinks that
satisfies Properties (1)–(3).

26

sink (in which case the search stops). Assume the inductive argument is true
at the conclusion of the search from the previous unmarked source in the algo-
rithm. By induction the marked node has a path to a sink in
thus all nodes in the path to have a path to a sink in In the
case the procedure encounters an unmarked sink all nodes on the path to the
unmarked sink are marked in the search from the unmarked source, and since
the unmarked source and sink are now marked and added as and
with the marked nodes on the path from to have a path to a
sink in

Consider the search from any unmarked source. The search successfully
finds a directed path from the unmarked source to an unmarked sink (and these
are added as and with or it fails to find a path to an un-
marked sink (in which case the source has an index Failure occurs only
if there is a marked node on every path from the unmarked source to every
unmarked sink. By Lemma 2 these marked nodes have a path to some sink
in proving that the ordering STCORRECT provides satisfies
Property (2).

Suppose the ordering STCORRECT provides does not satisfy Property (3).
Then there is an unmarked sink node with no directed path from any source
in The unmarked sink node must then have a path from some
source for Consider this path, and consider the last marked
node on this path to the unmarked sink. Node could not have been marked
by any source with If it had been, then the search from

would have found the unmarked sink and both the source and the
unmarked sink would have been added to the ordering with an index less than
or equal to But that means that must have been marked in the search from
one of the sources in Consequently, there is a directed path
from a source in to the unmarked sink yielding a contradiction
to our assumption.

References

[1] K. P. ESWARAN AND R. E. TARJAN, Augmentation problems, SIAM Journal on
Computing, 5 (1976), pp. 653–665.

II

INTEGER AND MIXED INTEGER
PROGRAMMING

This page intentionally left blank

GENERATING SET PARTITIONING TEST
PROBLEMS WITH KNOWN OPTIMAL
INTEGER SOLUTIONS

Edward K. Baker1, Anito Joseph1 and Brenda Rayco2

1Department of Management Science, University of Miami, Coral Gables, Florida 33124;
2Department of Mathematics, Southern Illinois University, Edwardsville, Illinois 62026

Abstract: In this work, we investigate methods for generating set partitioning test
problems with known integer solutions. The problems are generated with
various cost structures so that their solution by well-known integer
programming methods can be shown to be difficult. Computational results are
obtained using the branch and bound methods of the CPLEX solver. Possible
extensions are considered to the area of cardinality probing of the solutions

Key words: integer programming; test problems; branch and bound; cardinality probing

1. INTRODUCTION

The set partitioning (SP) problem considers a set of m objects that
must be partitioned into mutually exclusive and collectively exhaustive
subsets. Let if object i is contained in subset j, and equal to zero
otherwise. Similarly, let if subset j is used in the solution, and zero
otherwise. Let be the cost of subset j. The set partitioning problem may
then be specified as follows:

Minimize

Subject to:

30

The set partitioning model is quite flexible and has had many
successful applications. Balinski and Quandt (1964), for example, used the
set partitioning model to solve a version of the vehicle routing problem.
Arabeyre et al. (1969), Marsten (1974), and Mingozzi et al. (1999) among
others, have used the model to solve the airline crew scheduling problem.
Garfinkel and Nemhauser (1970) and, more recently, Mehrotra, Johnson, and
Nemhauser (1998) considered the model’s use in the solution of political
districting problems, while Yildiz (2004) used the model in the solution of
large scale coloring problems.

Because of its general applicability, the solution of the set
partitioning problem has attracted the attention of a number of researchers
and numerous methods have been proposed for its solution. Garfinkel and
Nemhauser (1969) proposed an enumeration algorithm for the set
partitioning problem. Marsten (1974) considered a linear programming
relaxation–based branch and bound algorithm for the problem, while Thiriez
(1969) developed a solution method based on group theoretic techniques.
Crainic and Rousseau (1987) proposed a column generation technique for
the model and Hoffman and Padberg (1993) described a branch-and-cut
solution procedure.

The set partitioning problem continues to be used on a regular basis
in the solution of many important real world applications. Major airlines, for
example, use the model daily to solve their crew scheduling problems. As
this one application alone has enormous cost implications, researchers
continue to seek methods that will find optimal solutions to ever larger
problem instances. In the development of new algorithms for the problem, a
need arises to be able to generate test problems of various sizes with known
optimal integer solutions. This study represents an initial step in the
development of a framework for the construction of such test problems.

1.1 Sources for mathematical programming test
problems

The need for test problems in the demonstration of new algorithms is part
of the experimental process. In many cases, the first sets of test data came
from the applications that inspired the problem. In the set partitioning arena,
the papers of Marsten and Shepherdson (1981) and Baker et al. (1979), for
example, consist entirely of problems from industry. An alternate approach
is to generate test problems by a random process. The papers of the Hillier
(1969), Joseph (1995) and Joseph et al. (1998) provide such problems for
various mixed integer programming scenarios. As interesting problems
became known, noted researchers compiled libraries of these problems.

31

Libraries of test problems for various classes of mathematical
programming models have been developed over the years from a number of
sources. The Netlib of David Gay (Gay 1985) provided one of the first
widely accepted libraries of test problems for linear programming
algorithms. In 1990, John Beasley made the popular OR-Library (Beasley
1990) available for a variety of problem classes including assignment,
scheduling, location, cutting stock, and multidimensional knapsack
problems. MIPLIB (Bixby et al. 1996), developed soon thereafter, is a
collection of real world and theoretical integer and mixed-integer
programming problems contributed by number of researchers. The current
version, MIPLIB 2003 is maintained by Thorsten Koch, Alexander Martin
and Tobias Achterberg. MIPLIB 2003 may be found at http//miplib.zib.de. A
comprehensive collection of test problems for constrained optimization
algorithms was initially proposed by Floudas and Pardalos (1990) and has
recently appeared in handbook form (Floudas et al. 1999).

Although these test problem libraries are extremely valuable in
providing a consistent framework within which researchers may evaluate
mathematical programming techniques (see Mulvey 1982), the instances
available are limited. Test problems for the set partitioning problem, for
example, are frequently obtained from real world crew scheduling
applications. These problems possess a certain legitimacy, however, they
also tend to possess similar structures. For example, the number of rows
covered by a particular column in a crew scheduling problem is typically
less than 10 and the density of the problem constraint matrix is typically less
than five percent.

In this paper we consider the generation of test problems that have
densities as great as 50% and that have cost structures that produce rather
narrow duality gaps. It will be shown that these types of problems are not
well suited for solution by traditional branch and bound methods and hence
suggest the development and use of more flexible and adaptive algorithmic
solutions.

2. GENERATING SET PARTITIONING TEST
PROBLEMS

2.1 Optimal integer solutions

The generation of a set partitioning problem with a known optimal
integer solution is, in one sense, straightforward. The unique structure of the
set partitioning constraint matrix requires that each row in the matrix be
covered exactly once. If one is free to assign costs to the columns of the

32

problem, then any feasible solution, to the problem can be made
the optimal solution by assigning costs in the following manner:

1.

2.

3.

Let be the sum of the elements in column j. That is, ,j =
1,2, ...,n.

Cost each of the columns j, in the proposed optimal solution
as

Cost all other columns j, in the problem as

The optimal solution to the set partitioning problem, will
have a value equal to

The columns of a set partitioning constraint matrix contain m rows,
the coefficients within which may be either 0 or 1. The number of possible
columns one might generate in a set partitioning problem of m rows is then

For example, in a problem with m = 3 rows there would be
possible columns. These would appear as shown in Table 1.

Since the last column of all zeroes is not a possibility in the partition, and
would not be in any such enumeration, the number of possible columns in a
set partitioning problem with m rows is then In the initial part of this
work, we will consider problems for which all possible columns have been
generated for the set partitioning problem.

2.2 Test problems for simplex-based solution approaches

A number of methods proposed for the solution of the set
partitioning problem are based upon finding an initial solution using the
simplex algorithm for linear programming. The use of simplex-based
procedures was perhaps encouraged by the seemingly favorable properties
possessed by the set partitioning constraint matrix. Several interesting
extreme point properties of partition solutions are discussed by Garfinkel
and Nemhauser (1972) and by Padberg and Balas (1972).

33

2.3 Causing the simplex algorithm to find a non-integer
optimal solution

If one wishes to divert a simplex-based solver away from an optimal
integer solution, one must provide a feasible fractional solution of lower
cost. This is easily accomplished. Consider, for example, the m columns
containing m-1 values equal to one and exactly one zero. In an m = 5 row
problem, these five columns would appear as in Table 2.

A feasible fractional solution to the set partitioning problem may be
found by assigning each column a value of .25. To allow this solution to be
the minimal cost solution to the relaxation of the set partitioning problem,
cost each of the above columns the set of columns in the fractional
solution, in the following manner:

1.

2.

Cost each of the columns j, in the proposed optimal fractional
solution where

Cost all other columns j in the problem

The optimal fractional solution to the set partitioning problem will have a
value equal to

3. SIMPLEX-BASED BRANCH AND BOUND
PROCEDURES

Most commercial solver systems provide a simplex-based branch
and bound procedure for the solution of integer programming problems. The
branch and bound technique (Land and Doig, 1960) progressively divides
the solution space into mutually exclusive subspaces by choosing a variable
and fixing its value. In a binary linear program this is done by fixing a
particular decision variable, say to one in the first subspace and to zero in
the second. The bounds come about by solving the relaxation problem
defined by each of the subspaces. By carefully controlling the enumeration

34

process and by using the bounds in an intelligent way, the branch and bound
method has been shown to be highly effective in solving many integer
programming instances.

The success of any particular search, however, depends largely on
the sequence of nodes selected for the search. Many approaches for the
systematic selection of nodes have been investigated in the literature. We
provide a brief overview of several of these methods in the paragraphs
below.

Node selection strategies can be broadly classified into two groups: (1)
methods based on simple selection rules, e.g. Best-First, Depth-First, and (2)
methods that try to predict the effect on the objective function value for a
given node, e.g., Best-Estimate.

The Best-First approach seeks to minimize the size of the search tree
and hence, the overall solution time. In this approach, the subproblem with
the best bound is chosen for processing, so that the search tree tends to be
relatively smaller. One disadvantage of this approach is that it does not
necessarily find feasible solutions quickly. If good bound information is not
found early in the search, the candidate list of subproblems to be solved can
become very large and lead to memory storage problems.

Where there are limitations on memory, Depth-First search is
preferred. Depth-First search always selects the most recently created node
for processing. Therefore, the candidate list of nodes for processing tends to
be relatively small. This approach also tends to find feasible integer
solutions quickly relative to other node selection strategies. Again, if good
bound information is not obtained early in the search, it can result in very
large search trees.

Estimation methods (Forrest et al. 1974, Mitra 1973, Benichou et al.
1971) choose nodes based on their potential for finding a better integer
solution. To select the next node for processing, the Best-Projection criterion
uses the objective function value of the relaxed subproblem combined with
an estimate of the change in objective function that it would take to correct
the integer feasibilities of the subproblem solution. The Best-Estimate
criterion tries to account for the individual contribution of fractional
variables to the objective function value. Each fractional integer variable of
the subproblem solution is associated with two pseudo-costs. The pseudo-
costs estimate the degradation in objective function value that would be
observed by fixing the variable to one or zero. An estimate of the best
solution possible at branching is then obtained and that determines the next
node for processing.

Hybrid approaches combine different strategies to capitalize on the
strengths of the chosen methods, e.g. Depth-First followed by Best-Estimate.

35

Linderoth and Savelsbergh (1999) conducted a comprehensive study of node
selection strategies and found that while Depth-First search performed
poorly in practice, “there is no node selection method which clearly
dominates the others...” (p. 185). They recommended that many different
node selection strategies should be available in sophisticated MIP solvers.

4. COMPUTATIONAL RESULTS

4.1 Generation of the test problems

In the computational testing that follows, each problem generated
has variables, where m is the number of rows for the problem.
In these preliminary tests, values of m = 10, 11, 12, 13, and 14 were used.
The test problem characteristics are shown in Table 3.

Three distinct cost structures were employed for each problem size.
Each of the cost structures is described below.

4.1.1 Cost structure I

For constants and the objective function coefficients, were set as
follows.

In this implementation, the values and were used. This
cost structure creates a sequence of fractional solutions that leads the
simplex solver “away” from the optimal integer solution with increasingly
smaller fractional solution values.

36

4.1.2 Cost structure II

For the objective function coefficients, were
set as follows.

In this implementation, the value was used. Cost structure II has
the least cost fractional solution in the columns and leads the
simplex solver “toward” the optimal integer solution with increasingly larger
fractional solution values.

4.1.3 Cost structure III

The cost structure III coefficients are defined in the same manner as the
cost structure II coefficients, except for the in the range

There are two cases; one for when the number of rows,
m, is even and the other for when m is odd.

When m is even, we have:

And, when m is odd, we have:

In cost structure III, a “scalloped” cost effect is created in the sequence of
fractional solutions that track toward the optimal integer solution.

37

Allowing to denote the objective coefficient for column j in cost
structure k, and again letting the objective function coefficients
for the case when m = 12 are shown in Table 4.

4.2 Solving the test problems

The test problem instances were solved using the MIP Solver of
CPLEX. All three of the solver node selection strategies were investigated.
The possible strategies are as follows.

The Depth-First (DF) Search Strategy chooses the most recently
created node.
The Best-Bound (BB) Strategy chooses the node with the best
objective function for the associated LP relaxation.
The Best-Estimate (BE) Strategy chooses the node with the best
estimate of the integer value that would be obtained from a node
once all integer feasibilities are removed.

Furthermore, CPLEX makes use of a Backtrack parameter that controls
the frequency with which backtracking is performed during the branching
process. At each node, the objective function value or estimated integer
objective value is compared to the corresponding values at parent nodes.
The Backtrack parameter value provides a measure of how much
degradation is tolerated before backtracking. A small parameter value tends
to increase the amount of backtracking, thereby making the search more of a
Best-Bound strategy. Conversely, higher values make the search more of a
pure Depth-First strategy.

38

In our experimentation, we found that all three node selection strategies
produced very similar results across all of the test problem instances. To
illustrate our findings, the results of the Best-Bound search strategy using a
Backtrack parameter value of 0.01 are presented in Table 5. For the most
part, the column labels are self-explanatory, the “Node, Best Integer” label of
column four, however, is the first node in the search process at which the
optimal integer solution was identified.

The results of the initial tests indicated that Best-Bound and Best-
Estimate searches were not able to outperform a basic Depth-First search,
even when the cost structure might suggest that they should. This is caused
partially because CPLEX uses an additional parameter to set the rule for
selecting the branching variable at the node which has been selected for
branching.

The variable selection options available in CPLEX are as follows:

the Maximum Infeasibility rule which selects the variable with the
largest fractional value;
the Minimum Infeasibility rule which selects the variable with the
smallest fractional value;
a variable selection rule based on pseudo-costs which are derived
from pseudo-shadow prices; and,

39

a strong branching rule that causes variable selection based on
partially solving a number of sub-problems with tentative branches
to determine which branch is most promising.

When the default value is used, CPLEX automatically selects the rule
based on the problem. In our experimentation, the default was used, and the
Maximum Infeasibility rule was invariably selected.

In an attempt to allow cost Structure III to be exploited more fully by the
algorithm, we solved the problems specifying the Strong Branching
alternative using the Best-Bound search strategy and a Backtrack parameter
value of 0.01. Although, the number of nodes examined and the number of
simplex iterations required using the Strong Branching option was less, the
computation times were significantly higher. In the case of the 14 row
problems for example, cost structure I required 5.2 hours to solve.

4.3 Possible extensions

The apparent lack of success in solving the proposed relatively small test
problems suggests several avenues into which this research may be
extended. First, the proposed test problems are far denser than most test
problems currently available for the set partitioning problem. An interesting
exercise would be to test the efficiency of the solution approaches as a
function of problem density. We are able to see some evidence of this
relationship in the results of the airline crew scheduling problems solved in
Table 7.

As a second possible extension, it is noted that the focus of this study was
on branch and bound procedures and did not investigate the possibility of
adding various cuts to the test problems. A number of branch and cut
methods are available in CPLEX (see Bixby et al. 1999), although the
density of our test problems tends to create many clique cuts for the problem
that do not eliminate the fractional solutions. The success of Hoffman and
Padberg (1993), for example, with branch and cut methods makes this a
promising area for future research.

Finally, it is noted that the cardinality of the optimal integer solution to
each of the proposed test problems was two. This suggests that, in addition
to the local cardinality implications of cliques and odd-cycles, the cardinality
of the final solution should be another dimension of the global search
process. Joseph (2003) was able to show effective results by including a
single optimal cardinality cut in a number of airline crew scheduling
problems from the literature. In cases of small optimal cardinality, the
probing techniques of Savelsbergh (1994) may be very effective as well.

40

To combine some of the effects of a branch and cut approach with the
purpose of probing for a low order cardinality solution, the test problems
were solved including a single cardinality cut at a value equal to the
cardinality of the optimal integer solution. These results are presented in
Table 6. The first six column labels are the same as in Table 5. The CPU
Ratio in column seven represents the ratio of the CPU times reported in
Table 6 divided by the corresponding CPU times reported in Table 5.

In addition to the generated test problems, three of the airline crew
scheduling problems, NW4, AA1 and AA4, from Hoffman and Padberg
(1993) were solved. These real world problems had densities that varied
from 20.2 to one percent. The computational results of these problems are
presented in Table 7.

The results of these additional tests accomplish two purposes. First, the
selected results presented show the extent to which the branch and bound
procedure may be sharply curtailed with the addition of a single cardinality
cut. In the instance where m=12 for cost structure II, the augmented linear

41

programming relaxation solved to the optimal integer solution. Generally,
the cardinality of the optimal integer solution is not known before the
problem is solved; however, given the limited range of cardinalities in set
partitioning integer solutions a “cardinality probe” may prove a fruitful
endeavor.

The second point observed in these results is the effectiveness of the
cardinality cut in the real world airline crew scheduling problems. Through
the examination of the specially constructed test problems, a method of
solution is suggested that may have important consequences in the solution
of a number of real world problems.

5. CONCLUSIONS

A linear programming simplex-based solver is frequently an essential
component in the solution of set partitioning problems. In this paper, we
have shown that it is relatively easy to construct set partitioning test
problems that a linear programming-based solver will find difficult. In
examining the nature of the search process in these problems, it was
observed that the addition of an optimal cardinality cut tends to focus the
search and leads more quickly to the discovery of the optimal integer
solution. Similar results were shown for three airline crew scheduling
problems obtained from the literature.

Although the computational results of this paper are far from exhaustive,
the preliminary conclusion one would draw from this work is that the
selection of the most effective branch and bound procedure for a particular
set partitioning problem instance requires extensive knowledge of the
problem structure. Future research in this area would include, for example,
the initial screening of the research problem to include data density as a
measure of the problem’s breadth. Additionally, preprocessing and probing
the cardinality of the optimal integer solution was shown to offer a
promising avenue of investigation. The incorporation of a robust cardinality
probe within the solution process may prove to be very effective. Finally, it
is noted that the test problem instances and cost structures considered here
may be better suited for solution by parallel processing algorithms; however,
this is an area for future research.

6. REFERENCES

Arabeyre, J., Fearnley, J., Steiger, F., and Teather, W., 1969, The airline
crew scheduling problem: a survey, Transportation Science 3: 140-163.

42

Baker, E.K., Bodin, L.D., Finnegan, W.F. and Ponder, R.J., 1979,
Efficient heuristic solutions to an airline crew scheduling problem, AIIE
Trans. 11: 79-85.

Balinski, M. and Quandt, R., 1964, On an integer program for a delivery
problem, Operations Research 12: 300-304.

Beasley, J.E., 1990, OR-Library: Distributing test problems by electronic
mail, Journal of the Operational Research Society 41: 1069-1072.

Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G. and
Vincent, O., 1971, Experiments in mixed-integer linear programming, Math.
Prog. 1: 76-94.

Bixby, R., Boyd, A., Dadmehr, S., and Indovina, R., 1996, The MIPLIB
mixed integer programming library, Mathematical Programming Society
Committee on Algorithms, Bulletin 22: 2-5.

Bixby, R.E., Fenelon, M., Zonghao, G., Rotheberg, E., and Wunderling,
R., 1999, MIP: Theory and practice - closing the gap, System Modeling and
Optimization Methods, Theory and Applications, M.J.D Powell and S.
Scholtes, eds., Kluwer, The Netherlands.

Crainic, T.G. and Rousseau, J.M., 1987, The column generation principle
and the airline crew scheduling problem, INFOR 25:136-151.

Floudas, C.A. and Pardalos, P.M., 1990, A collection of test problems for
constrained optimization algorithms, Lecture Notes in Computer Science,
No. 455. Springer-Verlag, Heidelberg, Germany.

Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus,
S.T., Harding, Z.H., Klepeis, J.L., Meyer, C.A., and Schweiger C.A., 1999,
Handbook of Test Problems in Local and Global Optimization, Nonconvex
Optimization and Its Applications. Kluwer, Dordrecht, The Netherlands.

Forrest, J.J.H., Hirst J.P.H. and Tomlin, J.A., 1974, Practical solution of
large scale mixed integer programming problems with UMPIRE,
Management Science 20: 736-773.

Garfinkel, R.S. and Nemhauser, G.L., 1969, The set–partitioning
problem: set covering with equality constraints, Ops. Res. 17: 848-856.

43

Garfinkel, R.S. and Nemhauser, G.L., 1970, Optimal political districting
by implicit enumeration techniques, Management Science 14: B495-B508.

Garfinkel, R.S. and Nemhauser, G.L., 1972, Integer Programming. J.
Wiley and Sons. New York.

Gay, D.M. 1985. Electronic mail distribution of linear programming test
problems. Mathematical Programming Society COAL Newsletter.

Hillier, F., 1969, Efficient heuristic procedures for integer linear
programming with an interior, Operations Research 17: 600-637.

Hoffman, K.L. and Padberg, M., 1993, Solving airline crew scheduling
problems by branch-and-cut, Management Science 39: 657-682.

Joseph, A., 1995, A parametric formulation of the general integer linear
programming problem, Computers and Operations Research 22: 883-892.

Joseph, A., Gass, S. I., and Bryson, N., 1998, An objective hyperplane
search procedure for solving the general integer linear programming
problem, European Journal of Operational Research 104: 601-614.

Joseph, A., 2003, Cardinality corrections for set partitioning, Research
Report, Mgt. Science Department. Univ. of Miami, Coral Gables, Florida.

Land, H. and Doig, A.G., 1960, An automatic method for solving discrete
programming problems, Econometrica 28: 497-520.

Linderoth, J.T. and Savelsbergh, M.W.P., 1999, A computational study
of search strategies for mixed integer programming, INFORMS Journal on
Computing 11: 173-187

Marsten, R.E., 1974, An algorithm for large set partitioning problems,
Management Science 20: 774-787.

Marsten, R.E. and Shepherdson, F., 1981, Exact solution of crew
scheduling problems using the set partitioning model: recent successful
applications, Networks 11: 165-177.

Mitra, G., 1973, Investigation of some branch and bound strategies for
the solution of mixed integer linear programs, Math. Prog. 4: 155-170.

44

Mingozzi, A., Boschetti, M.A., Ricciarde S., and. Bianco, L., 1999,
A set partitioning approach to the crew scheduling problem, Operations
Research 47: 873-888.

Mehrotra, A., Nemhauser, G.L. and Johnson, E., 1998, An Optimization-
Based Heuristic for Political Districting, Mgt. Sci. 44: 1100 – 1114.

Mulvey, J. M. (ed.) 1982. Evaluating Mathematical Programming
Techniques, Lecture Notes in Economics and Mathematical Systems 199,
Springer-Verlag, Berlin.

Padberg, M. and Balas, E., 1972, On the set-covering problem,
Operations Research 20: 1152-1161.

Savelsbergh, M.W.P., 1994, Preprocessing and probing for mixed-integer
models. Computational Optimization and Applications 3: 317-331.

Thiriez, H., 1969, Airline crew scheduling: a group theoretic approach,
MIT Department of Aeronautics and Astronautics Report R69-1. Cambridge,
MA.

Yildiz, H., 2004, A large neighborhood search heuristic for graph
coloring, Working Paper, Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, PA.

COMPUTATIONAL ASPECTS OF
CONTROLLED TABULAR
ADJUSTMENT:ALGORITHM AND ANALYSIS

Lawrence H.Cox, James P. Kelly, and Rahul J. Patil
National Center for Health Statistics, 3311 Toledo Road, Room 3211, Hyattsville, MD 20782;
OptTek Systems,Inc, 1919 Seventh Street, Boulder, CO 80302 ; University of Colorado, Leads
School of Business, Boulder, CO 80309-0419

Abstract: Statistical agencies have used complementary cell suppression to limit
statistical disclosure in tabular data for four decades. Cell suppression results
in significant information loss and reduces the usefulness of published data,
significantly so for the unsophisticated user. Furthermore, computing optimal
complementary cell suppressions is known to be an NP-hard problem. In this
paper, we explore a recent method for limiting disclosure in tabular data,
controlled tabular adjustment (CTA). Based on a mixed integer-programming
model for CTA, we present a procedure that provides a lower bound on the
objective, which is demonstrated to decrease the computational effort required
to solve the model. We perform experiments to examine heuristics for CTA
proposed elsewhere that can be used to convert the MIP problem into linear
programming problems while preserving essential information.

Key words: Statistical Disclosure Limitation; Mixed Integer Programming

1. INTRODUCTION

Government agencies and commercial organizations that collect, store
and publish data typically have a responsibility to protect the confidentiality
of data pertaining to individual respondents. For tabular data, respondent
risk is evaluated for each tabulation cell, based, e.g., on the number of
respondents contributing to the cell (for count data such as totals by age,
race or sex) or the distribution of the contributions (for magnitude data such
as total retail sales or total farm acreage). Cells representing unacceptable
risk are identified as sensitive cells. The Federal Committee on Statistical

46

Methodology (1994) provides an overview of the statistical disclosure and
disclosure limitation methods.

Over the last four decades, different procedures have been proposed to
protect sensitive cells in tabular data. Complementary cell suppression (Cox
1980) has been extensively practiced by statistical agencies to protect
sensitive cells from disclosure through the manipulation of additive
relationships in statistical tables. Though widely used, this methodology has
many fundamental limitations, which undermine its efficiency. Cell
suppression results in missing data, which complicates and can thwart
thorough analysis. Though suppressed entries can be replaced by interval
estimates of their hidden values, interval data present analytical challenges
and destroy additivity to totals. Complementary cell suppression is an NP-
hard problem (Kelly et al. 1992). Even worse, under cell suppression, a data
intruder can estimate expected values of the suppressed entries, and often
these estimates are close to the original values.

In this paper, we examine a recently proposed method for statistical
disclosure limitation in tabular data that overcomes the drawbacks of the
complementary cell suppression--controlled tabular adjustment (CTA)
(Dandekar and Cox 2002; Cox and Dandekar 2003). A combination of
mixed integer programming (MIP) and the CTA concept can be used to
protect sensitive cells in a tabular data while releasing a full, unsuppressed
table or set of tables of arbitrary dimensionality or complexity. We
introduce a procedure that computes a useable lower bound for a typical data
loss criteria, expressed as a linear objective function of the adjustment
variables. We demonstrate that this bound can improve computational
efficiency for the MIP solver by providing better information for the branch
and bound algorithm. Still, not all MIPs can be solved optimally. So, we
critically examine three heuristics proposed elsewhere for reducing the MIP
to an LP. This is important because most statistical organizations are bound
to resort to heuristics at least some of the time.

The literature on CTA is recent but growing. Cox (2000) published the
first formal mathematical statement of the problem as an MIP, but provided
little elaboration. Dandekar and Cox (2002, unpublished) is the first full
paper devoted to the problem. That paper is based on heuristics for MIP to
LP reduction, examined critically here. It also introduced a number of
relevant measures of data distortion expressed as linear objective functions
in the adjustment variables, including “total absolute cell adjustment,” used
here to illustrate our methods.

Section 2 presents the underlying concept of the controlled tabular
adjustment and an associated mixed integer programming (MIP) formulation
from Cox and Kelly (2004). We propose a method for computing a lower
bound for the CTA objective, that we use both as a cutting plane and to

47

improve the efficiency of the MIP branch-and-bound. Section 3 illustrates
the use of general CTA formulation and a lower bounding procedure for a 2-
dimensional table. Section 4 extends the approach to a 3-dimensional
example. Section 5 examines three different heuristics for converting the
MIP formulation to an LP formulation and compares their performance to
the exact method. The 3-dimensional example and heuristics were
introduced in Dandekar and Cox (2002). Section 6 provides some
concluding remarks.

2. MATHEMATICAL MODEL FOR CONTROLLED
TABULAR ADJUSTMENT AND LOWER
BOUNDING ALGORITHM

2.1 Mathematical Model for CTA

Controlled tabular adjustment (CTA) aims to closely mimic original
tabular data, subject to providing sufficient confidentiality protection to the
sensitive cells. The original CTA formulation (Cox 2000; Dandekar and
Cox 2002) accomplishes this by setting each sensitive cell to either its lower
or its upper protection limit and adjusting the values of nonsensitive cells to
restore tabular additivity. The original procedure controlled data by
minimizing a global quality measure expressed in the form of a linear
function in the adjustments such as total absolute cell adjustment, total
absolute relative cell adjustment, etc. Adjustments to nonsensitive cells can
be controlled in various ways. For example, by means of capacity
constraints, selected nonsensitive cells such as zero cells can be exempted
from change and other adjustments can be confined to within meaningful
limits such as sampling variability (Cox and Dandekar 2003).

Mixed integer linear programming is used to model the CTA problem, as
follows. Tabular systems with marginal totals are represented by a system
of equations in matrix form: MX = 0, where column vector X represents the
ordered set of values of the tabulation cells comprising the system and
matrix M, the aggregation matrix, represents the tabular structure between
the cells and contains only -1, 0, and +1 entries. Each row of M represents
one tabular equation in which “+1” corresponds to a contributing internal
cell and “-1” represents a contributing marginal cell. The following mixed
integer programming formulation models the general mathematical structure
of the CTA problem, analogous to that introduced in Cox (2000) and
extended in Cox and Kelly (2004). Notation is as follows:

i = 1,...,p: denote the p sensitive cells

i = p+1,... ,n: denote the n – p nonsensitive cells

= binary variable representing choice of downward (0) or upward (1)
adjustment to sensitive cell i = 1,…,p

= minimum downward adjustment necessary to protect
sensitive cell i = 1,...,p

= minimum upward adjustment necessary to protect
sensitive cell i = 1,...,p

= upward adjustment to cell value i = 1,..., n

= downward adjustment to cell value i = 1,..., n

= upper capacity on upper adjustment

= upper capacity on lower adjustment

= cost per unit adjustment to value of cell i

Unit costs in CTA are nonnegative. Downward/upward adjustments
generally have equal unit cost (as suggested by our notation), but not
necessarily. Protection limits and are often
equal, but not necessarily (see Table 1). Zero cells are often exempt from
adjustment, but not necessarily. Cells of lower quality or importance can be
targeted for adjustment (via or permitted larger adjustment (via

MILP for Controlled Tabular Adjustment

Subject to:

48

49

For i = 1,…,n:

For i= 1,...,p:

Equation 1 describes the objective function, which minimizes the cost
due to cell adjustments. Three linear cost functions commonly used in
practice, each defined over adjustment variables are as follows.
The first has coefficients corresponding to minimizing the distortion
measure “total absolute cell adjustment” (see Table 1). The second has cost
coefficient equal to the corresponding cell value, and the third has

for nonzero cells, corresponding to minimizing total relative
absolute adjustment. Protection limits for a sensitive cell equal the
minimum amounts, which must be added or subtracted from the true value to
make the sensitive cell “safe”. Cox (1980, 2001) and Willenborg and de
Waal (2001) discuss protection limits theory in detail. CTA perturbs the
sensitive cells until they are safe, i.e., sensitive cell values are adjusted
sufficiently far from their original values. Equations 5 and 6 ensure that
values for the sensitive cells are safe and that downward and upward
adjustments to each sensitive cell are complementary. Adjustments to the
sensitive cells create inconsistency in the tabular system, as sums may no
longer be maintained; Equation 2 maintains tabular consistency. The
process of restoring the tabular consistency can incur unacceptably large
adjustments to the nonsensitive cells. For example, large negative
adjustments can make the nonsensitive cell value negative. Equations 3 and
4 are used to constrain the nonsensitive cell adjustments to be feasible and
acceptably small. Usually, these capacity constraints are computed using
the estimated measurement errors for each nonsensitive cell. It can be noted
that CTA provides additional confidentiality protection inherently, as
sensitive cells are not highlighted or in any other way distinguished from
nonsensitive cells. Moreover, in general, the intruder has no way to
determine the direction of perturbation. After solving the model using MIP,
the new tabular data i s given by where denotes the
original value of cell i.

50

2.2 Lower bounding algorithm

Solving the LP relaxation of CTA directly will result in values of 0.5 for
all decision variables in the symmetric protection limit case, corresponding
to a value of 0 for the objective. This weak LP relaxation fails to provide a
tight lower bound for the branch and bound tree. The integer programming
literature has widely recognized the importance of developing tighter lower
bounds to speed up the solution process. A tight lower bound constraint
introduced at the root node acts as a cutting plane for eliminating certain
non-optimal solutions from the search. At each branching node, a lower
bound based on the current states of the solution vector and constraint
system can be computed. Whenever this bound is greater than (or equal to)
the current best solution, progress along the branch can cease. This
motivates us to develop a method that computes a useable lower bound.

The lower bound on the amount of perturbation required to protect a
tabulation system is obtained as follows. To simplify notation, we consider
first the case of a 2-dimensional table and later show how this can be
generalized. The method is applicable to any data loss criterion expressed as
a linear objective function in the adjustment variables. In Sections 3 and 4,
we illustrate the method for the data loss criterion “total absolute cell
adjustment” (all

For any row or column equation, if there is only one sensitive cell (by
abuse of notation, denoted i), a lower bound on perturbation required within
this summation equals Otherwise,
a lower bound is obtained by solving a small partition problem, as follows.
Given two or more sensitive cells (indexed by i) in a row or column,
protection limits and and directions for
down/upward adjustment a lower bound on total perturbation required
within the row or column subject to these choices equals the sum of the
following quantities: the total of cost-weighted lower protections for cells
selected for downward adjustment (denoted the total of cost-weighted
upper protections for cells selected for upward adjustment (denoted and
the absolute value of the difference (representing net cost-weighted
adjustment of nonsensitive cells required). A lower bound for the row or
column equals the minimum over all choices of direction, namely, z = min

Let denote the sum of lower bounds over rows, and
denote the sum of lower bounds over columns. Then, a lower bound on

cost-weighted adjustment to the entire table is given by max
Consequently, for each row and column, we must solve the following small
set partitioning problem.

51

For higher dimensional tables, the procedure is the same only the
maximum is taken across each dimension. For complex tabulation
structures, a similar approach can be applied based on linearly independent
sets of summations treated like dimensions.

The set-partitioning model attempts to make the best mutual use of the
sensitive cells to compute the minimum extra cost-weighted adjustment
needed for a particular total. In practice, sensitive adjustments beyond
minimum feasible safe values are undesirable and avoided for data quality
purposes (by means of high per unit costs), but are sometimes necessary to
ensure feasibility, necessitating minimal increases from protection limits.
This situation does not affect the utility of our lower bound; however, as per
unit adjustment costs are nonnegative. This is important; otherwise we must
solve a nonlinear program and replaced by
the and and not a MIP.

3. ILLUSTRATION OF THE MATHEMATICAL
MODEL FOR A 2-DIMENSIONAL TABLE

Consider the following example, which illustrates how the mathematical
programming formulation can be used to protect the sensitive cells in a 2-
dimensional table as shown in Table 1. Cells (3, 1), (1, 2), and (3, 2) shown
in bold have been identified as sensitive cells and the associated protection
limits are shown in the brackets. The upper and lower capacities on
adjustments to the nonsensitive cells are set at 30% of the original cell
values. Note that the size and magnitude of the protection limits in relation
to the cell values in this example are unrealistic. This was done deliberately
for clarity of presentation. Table 2 shows the tabular data after solving the
MIP. Cells with * indicate that they are perturbed.

52

The explicit mathematical programming formulation for “total absolute
cell adjustment” is:

Minimize :

subject to :

We now illustrate the lower bounding procedure for the 2-dimensional
example. After solving the set partitioning problem (as necessary) for each
row and column, lower bounds on the objective are 34, 0, 20, 0, respectively,
for the rows, and 2, 40, 0, 0 for the columns. For example, for column 2 the
following binary integer program yields an optimal objective value of 40
with

53

Minimize

In a similar manner, the optimal objective for row 3 is 20 with
The lower bound for the table is thus 54 (= 34 + 0 + 20 +0) compared

to optimal total absolute cell adjustment of 82. The LP relaxation (without a
lower bound constraint) gave an objective value of 0. Thus, the lower bound
procedure provides a much tighter bound for the MIP.

4. ILLUSTRATION OF THE MATHEMATICAL
MODEL FOR A 3-DIMENSIONAL TABLE

The preceding example involved a small problem that would not
meaningfully benefit from speed-up (only branches for complete
enumeration) but did provide a simple, comprehensive illustration of the
effectiveness of the lower bounding method. CTA can be applied to tables
of arbitrary dimensionality or size. We next illustrate the method for a 3-
dimensional table, containing 10 columns, 6 rows and 4 levels from
Dandekar and Cox (2002). The table contains 191 non-zero cells, of which
24 cells are sensitive cells. As is customary, we exempt zero cells from
adjustment, and assume symmetric protection, viz.,

The location of the sensitive cells, their cell values and
required cell protection limits are illustrated in Table 3.

54

Using traditional complementary cell suppression techniques, Dandekar
and Cox (2002) report that, following Kelly et al. (1992), this example
required 39 complementary suppressions to protect the 24 sensitive cells.
This results in significant information loss, reducing the usefulness and
usability of the table useless for many practical applications.

To generate a CTA table that mimics the original table while limiting
disclosure as specified in Table 3, we use the procedure described in Section
2. Again, all costs equal 1. Table 3 summarizes the cell locations and
magnitude of the controlled adjustments to true cell values. We have
marked sensitive cells with a symbol w, so that readers can easily verify that
adjustments to sensitive cells are at either of their respective protection
limits. The original table appears in Table 4.

55

Adjustments to Table 4 appear in Table 5. The full table after controlled
tabular adjustment appears in Table 6. Zero cells appear as blanks for
readability. In a real application only the CTA values are published (viz., no
w’s).

In the CTA adjusted Table 6, true values are published for 106 cells. For
the remaining 85 cells, published cell values are adjusted sufficiently from
their true values to protect the sensitive cell values from disclosure within
their protection intervals. Most of the cell values of the marginal cells are
unaffected in the CTA table, and the table is additive in all dimensions.

To assess the effectiveness of the lower bounding algorithm described in
Section 2.2, two experiments are performed. The first experiment simply
applies a single lower bound at the root of the branch and bound tree. A
single lower bound constraint reduces the computation time by 65%
compared to the model without a lower bound constraint. The number of
nodes explored in the branch and bound tree is reduced by 64%. In the
second experiment, a lower bound is calculated at each node of the branch
and bound tree. Although more computation time is spent on lower
bounding calculations, the search is more efficient due to the tighter dynamic
bounds. The number of nodes explored in the branch and bound tree is
reduced by 67% compared to the model without lower bounds.

56

Unfortunately, due to the computational cost of the lower bounding
algorithm applied at each node, the overall time is only reduced by 25%.
More efficient data structures may result in reduced computation times. It is
anticipated that as the problem size increases, the effectiveness of the lower
bounding algorithm will also increase extending this approach to larger
tables.

5. COMPARISON OF THREE HEURISTIC
METHODS FOR CTA WITH EXACT METHOD

In general, the mixed integer linear programming exact method is
suitable for solving small to medium-sized problems (less than 1,000
entries). The exact method takes a prohibitively long time to solve larger
size instances to optimality, even with the lower bounding speed-up. Cox et
al. (2004) argue that statistical agencies are interested in finding good
solutions albeit not necessarily optimal solutions in reasonable amounts of
time. Once the desiderata and essential elements of the problem (e.g., lower
bounds) have been expressed as constraints, most if not all feasible solutions

57

will provide an acceptable solution to the data confidentiality or
confidentiality/quality problem. In this context, MIP techniques would
appear to remain a viable solution mechanism.

Heuristic methods for selecting the individual directions for change of
sensitive cells are still of interest, however. If a heuristic method is used to
specify the binary directional variables then the remaining mathematical
program becomes a linear programming problem. Linear programming
software can be used to solve problems with hundreds of thousands of
variables in reasonable amounts of time, and also to solve many problems
related to the same publication. Heuristics were proposed in Dandekar and
Cox (2002) to set the directions for the sensitive cells. We consider the
following heuristics.

The “Ordering Heuristic” first sorts the sensitive cells in descending
order and then assigns the directions for the sensitive cells in an alternating
fashion. In our example from the last section, the sorting procedure gives
the following sequence for the sensitive cells: (1,2), (3,2), (3,1). We set the
alternating directions for these sensitive cells as 1, 0, 1 respectively. We can
convert the MIP formulation into an LP formulation by setting the binary
variables as

The “Max” heuristic sets the “UP” directions for all the sensitive cells.
In our example, it can be accomplished by setting binary variables as

The “Min” heuristic sets the “DOWN” direction for all the sensitive cells.
In our example, it can be done by assigning the binary variables values as

We examine the performance of these heuristics on our two examples.
After applying each heuristic, we used the ILOG CPLEX solver to solve the
resulting linear programs. Table 7 shows the performance of the heuristics
compared to the exact MIP method. The “Ordering” and “Min” heuristics
performed reasonably well, given the solution efficiency. Unfortunately, the
“Max” heuristic forced changes to the sensitive cells that in some cases were
too large to be offset by adjustments to nonsensitive cells within their
respective capacities, resulting in an infeasible system of constraints.

58

A similar analysis was performed on the 3-dimensional example. The
results are shown in Table 8.

Tables 7 and 8 indicate that better heuristics are needed for this problem.
This is the focus of on-going research.

6. CONCLUDING COMMENTS

We have examined computational and algorithmic aspects of controlled
tabular adjustment as a method for statistical disclosure limitation in tabular
data. CTA efficiently generates useful, nonconfidential tabular data for
publication. It can be extended to preserve the analytical and statistical
usability of the original data (Cox and Kelly 2004; Cox et al. 2004). CTA
offers a superior option for disseminating information contained in
tabulations than the conventional method, complementary cell suppression.

A lower bounding procedure provided a tighter lower bound on a wide
class of data loss criterion in the MIP formulation, illustrated here for “total
absolute cell adjustment,” and has been demonstrated to reduce the required
computational effort need to solve the MIP. Heuristics proposed elsewhere
for converting the MIP problem into an LP problem were compared to the
exact method. It would appear that a combination of improved algorithmic
and heuristic methods is necessary to solve the range of problems
encountered in practice. This is under investigation.

REFERENCES

Cox, L.H., 1980, Suppression Methodology and Statistical Disclosure control, Journal of the
American Statistical Association 75: 377-385.

Cox, L.H., 1995, Network Models for Complementary Cell Suppression, Journal of the
American Statistical Association 90: 1453-1462.

Cox, L.H., 2000,Discussion (on Session 49: Statistical Disclosure Control for Establishment
Data), ICES II: The Second International Conference on Establishment Surveys-Survey
methods for businesses, farms and institutions, Invited Papers, Alexandria, VA: American
Statistical Association, 904-907.

Cox, L.H., 2001, Chapter 8: Disclosure Risk for Tabular Economic Data, in: Confidentiality,
Disclosure and Data Access: Theory and practical applications for statistical agencies,

59

P.Doyle, J.I. Lane, J.J.M. Theeuwes, and L.V. Zayatz, eds, Amsterdam: North-Holland,
167-184.

Cox, L.H., and Dandekar, R.A., 2003,A New Disclosure Limitation Method for Tabular Data
That Preserves Accuracy and Ease of Use, Proceedings of the 2002 FCSM Statistical
Policy Seminar, Washington, DC: U.S. Office of Management and Budget, in press.

Cox, L.H., and Kelly, J.P., 2004, Balancing Quality and Confidentiality for Tabular Data,
Monographs of Official Statistics, Luxembourg: Euro stat, in press.

Cox, L.H., Kelly, J.P., and Patil, R.J., 2004, Balancing Quality and Confidentiality for Multi-
Variate Tabular Data, Lecture Notes in Computer Science 3050, New York: Springer
Verlag, to appear.

Dandekar, R.A., and Cox, L.H., 2002, Synthetic Tabular Data-An Alternative to
Complementary Cell Suppression, unpublished manuscript.

Federal Committee on Statistical Methodology, 1994, Statistical Policy Working Paper 22:
Report on Statistical Disclosure ad Statistical Disclosure Limitation Methodology,
Washington, D.C.: US Office of Management and Budget.

Kelly, J .P., Golden, B.L., and Assad A.A., 1992, Cell Suppression: Disclosure Protection for
Sensitive Tabular Data, Networks 22:397-417.

Willenborg, L., and Waal, T. de., 2001, Elements of Statistical Disclosure Control, Lecture
Notes in Statistics, 155, New York: Springer.

This page intentionally left blank

THE SYMPHONY CALLABLE LIBRARY
FOR MIXED INTEGER PROGRAMMING

Ted K. Ralphs
Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem PA 18015

tkr2@lehigh.edu

Menal Güzelsoy
Dept. of Industrial and Systems Engineering, Lehigh University, Bethlehem PA 18015

megb@lehigh.edu

Abstract SYMPHONY is a customizable, open-source library for solving mixed-
integer linear programs (MILP) by branch, cut, and price. With its large
assortment of parameter settings, user callback functions, and compile-
time options, SYMPHONY can be configured as a generic MILP solver
or an engine for solving difficult MILPs by means of a fully customized
algorithm. SYMPHONY can run on a variety of architectures, includ-
ing single-processor, distributed-memory parallel, and shared-memory
parallel architectures under MS Windows, Linux, and other Unix oper-
ating systems. The latest version is implemented as a callable library
that can be accessed either through calls to the native C application
program interface, or through a C++ interface class derived from the
COIN-OR Open Solver Interface. Among its new features are the abil-
ity to solve bicriteria MILPs, the ability to stop and warm start MILP
computations after modifying parameters or problem data, the ability
to create persistent cut pools, and the ability to perform rudimentary
sensitivity analysis on MILPs.

Keywords: Integer Programming, Software, Branch and Bound, Branch and Cut,
Sensitivity Analysis

1. Introduction
As recently as a decade ago, the software available for solving generic

mixed-integer linear programs (MILPs) was relatively limited. In the
last 10 years, this has changed dramatically. There are now more than
a dozen solvers available, many of which are open source. Among
the academic and research codes available for solving generic MILPs

62

are MINTO [Nemhauser et al., 1994], MIPO [Balas et al., 1996], bc-
opt [Cordier et al., 1997], SBB [Forrest, 2004], GLPK [Makhorin, 2004]
bonsaiG [Hafer, 1999], PARINO [Linderoth, 1998] and FATCOP [Chen
and Ferris, 2001]. Commercial offerings include ILOG’s CPLEX, IBM’s
OSL (soon to be discontinued), and Dash’s XPRESS. In addition, there
are a number of frameworks available, including BCP [Ladányi and
Ralphs, 2001], ABACUS [Jünger and Thienel, 2001], ALPS [Ralphs
et al., 2004a], and PICO [Eckstein et al., 2000].

The Computational Infrastructure for Operations Research (COIN-
OR) Foundation is a recently formed non-profit foundation that evolved
from an initiative launched by IBM in 2001 [Lougee-Heimer, 2003]. The
primary goal of COIN-OR is to promote the development of open source
software for operations research. The COIN-OR software repository cur-
rently hosts a dozen open source projects, all available for free download.
SYMPHONY is an open-source callable library for solving MILPs that
originated as a framework authored by Ralphs and Ladányi for solving
difficult combinatorial problems. The original has since spawned two
derivative frameworks, SYMPHONY and BCP [Ladányi and Ralphs,
2001]. BCP is a C++ framework that is more general than SYM-
PHONY, but has a steeper learning curve and cannot be used “out
of the box.” SYMPHONY has recently been integrated with the COIN-
OR libraries and outfitted as a generic MILP solver. The source code is
available for download from www.BranchAndCut.org/SYMPHONY.

The core solution methodology of SYMPHONY is a branch, cut, and
price algorithm that incorporates most of the solution management fea-
tures available in other codes. Features not yet included, but under
development, include an integer presolver, a primal heuristic, and better
support for column generation. The absence of the first two features
hurt SYMPHONY’s performance as a generic MILP solver, but it is
otherwise full-featured and well-suited for implementing the customized
algorithms required for solving very difficult classes of problems. It also
performs well in parallel [Ralphs et al., 2003]. SYMPHONY depends
on several other open source libraries for specific functionality, including
the Cut Generation Library, the Open Solver Interface, and the MPS
file parser maintained by COIN-OR, GLPK’s GMPL file parser, and a
third-party solver for linear-programming problems (LPs), such as the
one maintained by COIN-OR (CLP).

2. The Application Program Interface
SYMPHONY 5.0 is the first version of SYMPHONY to be imple-

mented as a callable library with a new interface derived from the COIN-

63

OR Open Solver Interface (OSI). This change markedly improves SYM-
PHONY’s usability and flexibility. SYMPHONY and solvers built using
SYMPHONY have been the subject of a number of papers, most re-
cently [Ralphs et al., 2003], [Ralphs, 2003a], and [Ralphs et al., 2004b].
SYMPHONY’s legacy features are well-detailed in the SYMPHONY
User’s Manual [Ralphs, 2003b], so we focus here on new features, such as
the application program interface (API), the bicriteria solver, the ability
to warm start MILP computations, and the ability to perform rudimen-
tary sensitivity analysis. To our knowledge, these features are not yet
available in other MILP codes and should be of interest to potential
users. Below, we briefly describe the new C API, the C++ interface,
and the use of the user callback functions. We assume the reader is
familiar with the fundamentals of mixed-integer linear programming.

2.1 The Callable Library

SYMPHONY’s callable library consists of a complete set of subrou-
tines for loading and modifying problem data, setting parameters, and
invoking solution algorithms. The user invokes these subroutines through
the API specified in the header file symphony_api.h. Some of the basic
commands are described below. For the sake of brevity, the arguments
have been left out.

sym_open_environment(): Opens a new environment, and returns a
pointer to it. This pointer then has to be passed as an argument
to all other API subroutines (in the C++ interface, this pointer is
maintained for the user).

sym_parse_command_line(): Invokes the built-in command-line parser
for setting commonly used parameters.

sym_load_problem(): Reads the problem data and sets up the root sub-
problem (see Section 2.3).

sym_solve(): Solves the currently loaded problem from scratch. This
method is described in more detail in Section 3.1.

sym_warm_solve(): Solves the currently loaded problem from a warm
start. This method is described in more detail in Section 3.2.

sym_mc_solve(): Solves the currently loaded problem as a multicriteria
problem. This method is described in more detail in Section 3.3.

sym_close_environment(): Frees all problem data and deletes the en-
vironment.

64

Figure 1. A generic MILP solver with implemented with SYMPHONY in C.

By default, SYMPHONY reads an MPS or GMPL file specified by the
user, although this behavior can be overridden by implementing a user
callback that reads the data from a file in a customized format (see Sec-
tion 2.3). SYMPHONY can also be used easily with FLOPC++ [Hult-
berg, 2004], an open-source modeling system that accesses solvers thro-
ugh the OSI. As an example of the use of the library functions, Figure 1
shows the code for implementing a generic MILP solver with default pa-
rameter settings. Note that the user does not have to invoke a command
to read the MPS file. During the call to sym_parse_command_line(),
SYMPHONY determines that the user wants to read in an MPS file.
During the subsequent call to sym_load_problem(), the file is read and
the problem data stored. To read an MPS file called sample.mps and
solve it using this program, the following command would be issued:

symphony -F sample.mps

The code of Figure 1 is identical for both sequential and parallel com-
putations. The choice between sequential and parallel execution modes
is made at compile-time. In addition to the parts of the API just de-
scribed, there are a number of standard subroutines for accessing and
modifying problem data and parameters. These can be used between
calls to the solver to change the behavior of the algorithm or to modify
the instance being solved.

2.2 The OSI Interface
The OSI is a C++ interface class maintained by COIN-OR that pro-

vides a standard API for accessing a variety of solvers for mathematical
programs. A code implemented using calls to the methods in the OSI
base class can be linked with any solver for which there is an OSI im-
plementation. This allows development of solver-independent codes and
eliminates many portability issues. The current incarnation of OSI sup-

65

Figure 2. A generic MILP solver implemented with SYMPHONY using OSI.

ports only solvers for linear and mixed-integer linear programs. A new
version supporting a wider variety of solvers is currently under develop-
ment.

We have implemented an OSI interface for SYMPHONY 5.0 that
allows any solver built with SYMPHONY to be accessed through the
OSI. For each method in the OSI base class, there is a corresponding
method in the C API. The OSI methods are implemented simply as
wrapped calls to the C library. When an OSI object is constructed,
sym_open_environment() is called and a pointer to the environment is
stored. When the OSI object is destroyed,sym_close_environment() is
called and the environment is deleted. To fully support SYMPHONY’s
capabilities, we have extended the OSI interface to include some methods
not in the base class, such as a parseCommandLine() method. Figure
2 shows the program of Figure 1 implemented using the OSI interface.
The code would be exactly the same for accessing any customized SYM-
PHONY solver, sequential or parallel.

The current version of the OSI is geared primarily toward support of
LP solvers. One reason for this is that LP solvers based on the sim-
plex algorithm support much richer functionality than do typical MILP
solvers. In SYMPHONY 5.0, we have begun to extend some of this
functionality to the realm of MILP solvers. For example, our OSI imple-
mentation supports warm starting and some basic sensitivity analysis.
The implementation of this functionality is rudimentary at the moment,
but will be improved in future versions.

2.3 User Callback Functions

The user’s main avenues for customization are the tuning of param-
eters and the implementation of one or more of over 50 callback func-
tions. The callback functions allow the user to override SYMPHONY’s
default behavior for many of the functions performed as part of its al-

66

gorithm, including branching, cutting-plane generation, management of
the cut pool, management of the LP relaxation, search and diving strate-
gies, program output, etc. Callbacks in SYMPHONY are implemented
slightly differently than in other popular libraries. Each callback func-
tion is called from a SYMPHONY wrapper function that interprets the
user’s return value and determines what action should be taken. If the
user performs the required function, the wrapper function exits without
further action. If the user requests that SYMPHONY perform a certain
default action, then this is done. All callback functions have names that
begin with the prefix “user.” Files containing default function stubs
for the callbacks are provided along with the SYMPHONY source code.
These can then be modified by the user as desired. Makefiles and Mi-
crosoft Visual C++ project files are provided for automatic compilation.
Below is a sampling of commonly used callback functions.

user_initialize_root_node(): The user can specify a core relaxation
consisting of cuts and variables that are to be present in every
subproblem. These cuts and variables are never considered for
removal and need not be included in the description of each search-
tree node, so specifying a core can potentially save memory and
increase efficiency.

user_display_solution(): The user can specify a custom output for-
mat for feasible solutions. This is useful for combinatorial problems
where a simple list of variables and values is not interpretable by
a human.

user_create_subproblem(): Rather than specifying the model directly
using an MPS or GMPL file, the user can write a function that
creates the initial LP relaxations at each node “on the fly.”

user_find_cuts(): The user can generate custom classes of cutting
planes by separating the current relaxed solution.

user_is_feasible(): The user can determine whether a given solution
is feasible or not. This is needed in cases where integrality does
not necessarily imply feasibility.

user_select_candidates(): The user can select candidates for strong
branching.

user_compare_candidates(): After presolving, the user can choose a
candidate to be used for branching.

user_generate_column(): The user can generate columns using this
function.

67

user_logical_fixing(): The user can tighten bounds or fix variables
based on implicit problem structure.

A full list of callbacks is contained in the SYMPHONY User’s Man-
ual [Ralphs, 2003b].

3. Solution Procedures

Because SYMPHONY is designed to allow parallel execution, both
the internal library and the set of user callback functions are divided
along functional lines into five separate modules. This modularization
facilitates the parallel implementation and eases code maintenance. The
five modules are the master, tree manager, cut generator, cut pool, and
node processor modules. Only the master module is persistent and the
environment pointer described earlier is a pointer to the master module.
Other modules encapsulate the specific functionality needed to execute
the algorithms and exist only while a solve call is active. Each module
can function as an independent remote process for parallel execution. A
more complete description of the modular design of SYMPHONY can
be found in [Ralphs et al., 2003].

For LPs, the OSI has two function calls for solving the loaded model,
initialSolve() andresolve(). The first call is used when solving a
problem from scratch and the second is used when re-solving after having
modified the problem in some way. SYMPHONY’s OSI implementation
extends this idea to MILPs. We have also implemented a third solve call
for solving bicriteria MILPs. In the next few sections, we describe some
of the details of how these methods are implemented.

3.1 Initial Solve

CallinginitialSolve() solves a given MILP from scratch, as de-
scribed above. The first action taken is to create an instance of the
tree manager module that will control execution of the algorithm. If
the algorithm is to be executed in parallel on a distributed architecture,
the master module spawns a separate tree manager process that will
autonomously control the solution process. The tree manager, in turn,
creates the modules for processing the nodes of the search tree, gener-
ating cuts, and maintaining cut pools. These modules work in concert
to execute the solution process, communicating either through shared
memory or through a message-passing protocol, such as PVM [Geist
et al., 1994].

The overall flow of the algorithm is similar to other branch-and-bound
implementations and is described in detail in [Ralphs et al., 2003]. A
priority queue of candidate subproblems available for processing is main-

68

tained at all times and the candidates are processed in an order deter-
mined by the search strategy. The algorithm terminates when the queue
is empty or when another specified condition is satisfied. A new fea-
ture in SYMPHONY 5.0 is the ability to stop the computation based on
exceeding a given time limit, exceeding a given limit on the number of
processed nodes, achieving a target percentage gap between the upper
and lower bounds, or finding the first feasible solution. After halting
prematurely, the computation can be restarted after modifying parame-
ters or problem data. This enables the implementation of a wide range
of dynamic solution algorithms, as we describe next.

3.2 Solve from Warm Start

Among the utility classes maintained by COIN-OR is a base class
for describing the data needed to warm start the solution process for a
particular algorithm. To support this option in SYMPHONY, we have
implemented such a warm start class for MILPs. The main content of
the class is a compact description of the search tree at the time the com-
putation was halted. This description contains complete information
about the subproblem corresponding to each node in the search tree,
including the branching that created the node, the list of active vari-
ables and constraints, and warm-start information for the subproblem
itself (which is a linear program). All information is stored compactly
using SYMPHONY’s native data structures, which store only the dif-
ferences between a child and its parent. In addition to the tree itself,
other relevant information regarding the status of the computation is
recorded, such as the current bounds and best feasible solution found
so far. Using the warm start class, the user can save a warm start to
disk, read one from disk, or restart the computation at any point after
modifying parameters or the problem data itself. This allows the user
to easily build in fault tolerance by periodically backing up warm-start
information to disk, to design dynamic algorithms in which the parame-
ters are modified after the gap reaches a certain threshold, or to modify
problem data during the solution process if needed.

The ability to re-solve after modifying problem data has a wide range
of applications in practice. One obvious application is to allow modi-
fication of problem data after the solution procedure has already been
initiated. Another obvious application arises when the solution of a
family of related MILPs is required, as occurs, for instance, in decompo-
sition algorithms, in parametric and stochastic programming algorithms,
in multicriteria optimization algorithms, and in algorithms for analyzing
infeasible mathematical models.

69

Figure 3. Implementation of a dynamic MILP solver with SYMPHONY.

Modifying Parameters. The most straightforward use of the warm
start class is to restart the solver after modifying problem parameters.
The master module automatically records the warm-start information
resulting from the last solve call and restarts from that point if a call
to resolve() is made, unless external warm-start information is loaded
manually. To start the computation from a given warm start when the
problem data has not been modified, the tree manager simply traverses
the tree and adds those nodes marked as candidates for processing to
the node queue. Once the queue has been reformed, the algorithm is
then able to pick up exactly where it left off. Figure 3 shows the code
for implementing a solver that changes from depth first search to best
first search after the first feasible solution is found. The situation is
more challenging if the user modifies problem data in between calls to
the solver. We address this situation next.

Modifying Problem Data. If the user modifies problem data in
between calls to the solver, SYMPHONY must make corresponding mod-
ifications to the leaf nodes of the current search tree to allow execution
of the algorithm to continue. Changes to the original data that do not
invalidate the subproblem warm-start data, i.e., the basis information
for the LP relaxation, are the easiest to accommodate. Our current pro-
cedures only handle modifications to the right-hand side and objective
function vectors of the original MILP. Note that modifications may inval-
idate valid inequalities that have been previously generated. Currently,
we discard such cuts. Methods for handling other modifications, such

70

Figure 4. Use of SYMPHONY’S warm starting capability.

as the addition and deletion of columns and rows or the modification of
the constraint matrix itself, will be added in the future. To initialize the
algorithm, each leaf node, regardless of its status after termination of the
previous solve call, must be inserted into the queue of candidate nodes
and reprocessed with the modified input data. After this reprocessing,
the computation can continue as usual.

Code illustrating the use of the warm start facility is shown in Fig-
ure 4. In this example, the solver is allowed to process 100 nodes and
then save the warm-start information. Afterward, the original problem
is solved to optimality, then is modified and re-solved from the saved
warm start. As an illustration of the use of warm starting procedures
in practice, Table 1 shows the results of solving a set of 2-stage stochas-
tic integer programming instances modified from [Holmes, 2004; Felt,
2004; Ahmed, 2004] with the dual decomposition algorithm of [Caroe
and Schultz, 1999]. We used a straightforward implementation of the
subgradient algorithm to solve the Lagrangian duals and SYMPHONY
to solve the subproblems, with and without warm starting from one it-
eration to the next. SUTIL [Linderoth, 2004] was used to read in the
instances. The presence of a gap indicates that the problem was not
solved to within the gap tolerance in the time limit. Although the run-
ning times are not competitive overall because of the slow convergence of

71

our subgradient algorithm, one can clearly see the improvement arising
from the use of warm starting.

Persistent Cut Pools. To complement the ability to save the search
tree, the user can also save and reuse the global cut pool. When saving
the search tree, only the cuts that are currently active in some leaf
node and are needed to restart the search process are saved. At times,
however, it may be advantageous to save the entire global cut pool,
including cuts that were generated, but are not currently active. If this
is desirable, the user can direct SYMPHONY to maintain one or more
persistent cut pools. Such pools exist as part of the master module and
are attached to the tree manager whenever a solve call is made.

3.3 Bicriteria Solve
A bicriteria MILP is a generalization of a standard MILP in which one

considers a second objective function. One notion of solving a bicriteria
MILP consists of generating all Pareto outcomes. An outcome is the pair
of objective function values corresponding to a given feasible solution.
The Pareto outcomes are those for which there is no other outcome
for which both components are at least as small, and at least one is
strictly smaller. In some cases, we are only be interested in the supported
outcomes, which are those corresponding to solutions to a MILP with
a single objective function formed by a convex combination of the two
original objectives. For those readers not familiar with bicriteria integer
programming, surveys of methodology are provided in [Climaco et al.,
1997] and more recently in [Ehrgott and Gandibleux, 2000; Ehrgott and
Gandibleux, 2002] and [Ehrgott and Wiecek, 2004].

72

In [Ralphs et al., 2004b], we describe an asymptotically optimal algo-
rithm for solving bicriteria MILPs. SYMPHONY 5.0 contains a generic
implementation of this algorithm, along with a number of methods for
approximating the set of Pareto outcomes. To support these capabilities,
we have extended the OSI interface so that it allows the user to define
a second objective function and have also added a method for invoking
the bicriteria solver called multiCriteriaBranchAndBound(). Imple-
menting this algorithm requires the underlying solver to have the ability
to generate, among all optimal solutions to a MILP with a primary ob-
jective, a solution minimizing a given secondary objective. We added
this capability to SYMPHONY through the use of optimality cuts, as
described in [Ralphs et al., 2004b].

The algorithm itself consists of the solution of a sequence of MILPs
with identical feasible region, but differing objective functions. Thus,
it is possible in principle to use warm starting to improve efficiency.
Although the objective function is nonlinear in the case of generating
Pareto outcomes, it can be linearized through a standard reformulation.
This reformulation does require modification of the constraint matrix
from iteration to iteration, but it is easy to show that these modifications
do not invalidate the basis, allowing the warm start to be loaded very
efficiently.

In [Ralphs et al., 2004b], we report on our experience using the bicri-
teria solver to analyze the tradeoff between fixed and variable costs for a
class of network routing problems. Applying our rudimentary version of
warm starting to this problem over the same test set, we have achieved
promising results, improving solution times in almost all cases. A sum-
mary of results is shown in Figure 5, with the dark bars representing
running times with warm starting and the light bars representing run-
ning times without warm starting over two data sets described in [Ralphs
et al., 2004b]. The effect is evident, although it is also clear that further
refinements to our procedures are still needed.

4. Sensitivity Analysis
Besides yielding the ability to closely examine the tradeoffs between

competing objectives, the bicriteria solver can be used to solve para-
metric MILPs, which are families of MILPs parameterized by a single
scalar. Typically, parametric MILPs are obtained by parameterizing ei-
ther the objective function or the right-hand side, replacing the usual
single vector with a combination of two vectors. The goal is to determine
the complete set of optimal values that occur as the parameter is varied
over a given interval. This set characterizes how the optimal value varies

73

Figure 5. Results of using warm starting to solve multicriteria optimization prob-
lems.

as a function of change in either the objective function or the right-hand
side in one dimension and is an elementary form of global sensitivity
analysis (see [Bertsimas and Tsitsiklis, 1997] for a discussion of this in
the case of linear-programming models).

As an example, consider the following simple parametric MILP.

Taking the first objective function to be (8,1) and the second objective
function (0,1), we can determine how the optimal value of the MILP
varies as a function of the second objective coefficient simply by
invoking the bicriteria solution algorithm to enumerate all supported so-
lutions. Figure 6 shows the code for performing this analysis. Applying
the bicriteria solver of Figure 6 results in the function shown in
Table 2.

In addition to the sensitivity analysis that can be undertaken by using
SYMPHONY’s bicriteria solver, we have also implemented the method
suggested in [Schrage and Wolsey, 1985] for performing approximate
sensitivity analysis on the right-hand side vector and some related pro-
cedures. The method in [Schrage and Wolsey, 1985] is based on con-
structing an approximate dual price function from the dual solutions
obtained while solving the LP relaxations in each search-tree node. The

74

Figure 6. Performing sensitivity analysis with SYMPHONY’S bicriteria solver.

price function does not have a simple closed form, and must be com-
puted for each change in the right-hand side. This price function can be
used to obtain approximate sensitivity information quickly when there
is not enough time for a complete re-solve. Figure 7 shows a program
that uses this sensitivity analysis function. This code will produce a
lower bound for a modified problem with new right-hand side values of
7000 and 6000 in the and rows. Similar functions are provided
for obtaining quick upper and lower bounds after changing either the
right-hand side or objective function vectors.

5. Conclusions
We have described the main features of the SYMPHONY 5.0 callable

library. SYMPHONY includes implementations of a number of tech-
niques useful for performing sensitivity analysis, re-solving MILPs from
a warm start, and analyzing bicriteria MILPs. To our knowledge, these
techniques are not available in other solvers. The computational results
presented here are very preliminary, but show promise. These capabil-
ities are still being refined and new techniques developed, and we hope
to improve them in future versions of the library. This is an area of
active research that we believe has a great deal of potential and has

75

Figure 7. Performing sensitivity analysis with SYMPHONY

received relatively little attention in the literature. However, it remains
to be seen how well these methods will work in practice. In future work,
we plan to extend and generalize the methods presented here to allow
greater flexibility on the type of problem modifications and sensitivity
analyses that can be performed and to further improve the power of the
bicriteria solver.

Acknowledgments. This research was partially supported through
NSF grant ACI-0102687 and the IBM Faculty Partnership Program.

References
Ahmed, S. (2004). SIPLIB. Available from http://www.isye.gatech.edu/sahmed/si-

plib.
Balas, E., Ceria, S., and Cornuéjols, G. (1996). Mixed 0-1 programming by lift-and-

project in a branch-and-cut framework. Management Science, 42:1229–1246.
Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear Optimization. Athena

Scientific, Belmont, MA, USA.
Caroe, C. and Schultz, R. (1999). Dual decomposition in stochastic integer program-

ming. Operations Research Letters, 24:37–45.
Chen, Q. and Ferris, M. C. (2001). FATCOP: A fault tolerant Condor-PVM mixed

integer program solver. SIAM Journal on Optimization, 11:1019–1036.
Climaco, J., Ferreira, C., and Captivo, M. E. (1997). Multicriteria integer program-

ming: an overview of different algorithmic approaches. In Climaco, J., editor, Mul-
ticriteria Analysis, pages 248–258. Springer, Berlin.

Cordier, C., Marchand, H., Laundy, R., and Wolsey, L. (1997). bc-opt: A branch-and-
cut code for mixed integer programs. Mathematical Programming, 86:335.

76

Eckstein, J., Phillips, C., and Hart, W. (2000). PICO: An object-oriented framework
for parallel branch and bound. Technical Report RRR 40-2000, Rutgers University.

Ehrgott, M. and Gandibleux, X. (2000). A survey and annotated bibliography of
multiobjective combinatorial optimization. OR Spektrum, 22:425–460.

Ehrgott, M. and Gandibleux, X. (2002). Multiobjective combinatorial optimization—
theory, methodology and applications. In Ehrgott, M. and Gandibleux, X., editors,
Multiple Criteria Optimization—State of the Art Annotated Bibliographic Surveys,
pages 369–444. Kluwer Academic Publishers, Boston, MA.

Ehrgott, M. and Wiecek, M. M. (2004). Multiobjective programming. In Ehrgott, M.,
Figueira, J., and Greco, S., editors, State of the Art of Multiple Criteria Decision
Analysis, Boston, MA. Kluwer Academic Publishers.

Felt, A. (2004). Stochastic linear programming data sets. Available from
http://www.uwsp.edu/math/afelt/slptestset.html.

Forrest, J. (2004). Simple branch and bound. Available from http://www.coin-or.org.
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.

(1994). PVM: Parallel Virtual Machine. The MIT Press, Cambridge, MA.
Hafer, L. (1999). bonsaiG: Algorithms and design. Technical Report SFU-CMPTTR

1999-06, Simon Frazer University Department of Computer Science.
Holmes, D. (2004). Stochastic linear programming data sets. Available from

http ://users.iems.nwu.edu/ jrbirge/html/dholmes/post.html.
Hultberg, T. (2004). FlopC++. Available from http://www.mat.ua.pt/thh/flopc/.
Jünger, M. and Thienel, S. (2001). The ABACUS system for branch and cut and

price algorithms in integer programming and combinatorial optimization. Software
Practice and Experience, 30:1325–1352.

Ladányi, L. and Ralphs, T. (2001). COIN/BCP User’s Manual. Available from
http://www.coin-or.org.

Linderoth, J. (1998). Topics in Parallel Integer Optimization. PhD thesis, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Linderoth, J. (2004). SUTIL.
Lougee-Heimer, R. (2003). The common optimization interface for operations re-

search. IBM Journal of Research and Development, 47:57–66.
Makhorin, A. (2004). Introduction to GLPK. Available from

http://www.gnu.org/software/glpk/glpk.html.
Nemhauser, G. L., Savelsbergh, M., and Sigismondi, G. (1994). MINTO, a Mixed

INTeger Optimizer. Operations Research Letters, 15:47–58.
Ralphs, T. (2003a). Parallel branch and cut for capacitated vehicle routing. Parallel

Computing, 29:607–629.
Ralphs, T. (2003b). SYMPHONY Version 4.0 User’s Manual. Technical Report 03T-

006, Lehigh University Industrial and Systems Engineering.
Ralphs, T., Ladányi, L., and Saltzman, M. (2003). Parallel branch, cut, and price for

large-scale discrete optimization. Mathematical Programming, 98:253–280.
Ralphs, T., Ladányi, L., and Saltzman, M. (2004a). A library hierarchy for implement-

ing scalable parallel search algorithms. Journal of Supercomputing, 28:215–234.
Ralphs, T., Saltzman, M., and Wiecek, M. (2004b). An improved algorithm for biob-

jective integer programming and its application to network routing problems. To
appear in Annals of Operations Research.

Schrage, L. and Wolsey, L. A. (1985). Sensitivity analysis for branch and bound linear
programming. Operations Research, 33:1008–1023.

III

HEURISTIC SEARCH

This page intentionally left blank

HYBRID GRAPH HEURISTICS WITHIN A
HYPER-HEURISTIC APPROACH TO EXAM
TIMETABLING PROBLEMS

Edmund Burke1, Moshe Dror2, Sanja Petrovic1 and Rong Qu1

1Automated Scheduling Optimization & Planning Group, School of CSiT, University of
Nottingham, Nottingham, NG8 1BB, UK; 2Department of Management Information Systems
Eller College of Business and Public Administration, University of Arizona, Arizona 85721

Abstract: This paper is concerned with the hybridization of two graph coloring heuristics
(Saturation Degree and Largest Degree), and their application within a hyper-
heuristic for exam timetabling problems. Hyper-heuristics can be seen as
algorithms which intelligently select appropriate algorithms/heuristics for
solving a problem. We developed a Tabu Search based hyper-heuristic to
search for heuristic lists (of graph heuristics) for solving problems and
investigated the heuristic lists found by employing knowledge discovery
techniques. Two hybrid approaches (involving Saturation Degree and Largest
Degree) including one which employs Case Based Reasoning are presented
and discussed. Both the Tabu Search based hyper-heuristic and the hybrid
approaches are tested on random and real-world exam timetabling problems.
Experimental results are comparable with the best state-of-the-art approaches
(as measured against established benchmark problems). The results also
demonstrate an increased level of generality in our approach.

Key words: case based reasoning, exam timetabling problems, graph heuristics, hyper-
heuristics, knowledge discovery, tabu search.

1. INTRODUCTION

1.1 Timetabling Problems

Timetabling problems have been attracting the attention of the scientific
research community across Artificial Intelligence and Operational Research
for more than 40 years1-10.

80

A general timetabling problem includes assigning a set of events (exams,
courses, sports matches, meetings, etc) into a limited number of timeslots
(time periods), while satisfying a set of constraints. These constraints are
usually grouped into two types, which are described below:

Hard constraints which cannot be violated under any circumstances. For
example, a person cannot be assigned to two different events at the same
time. Solutions which do not violate any of the hard constraints are called
feasible solutions.
Soft constraints are desirable but not essential. In most real world
situations no solutions can be found which satisfy all of stipulated soft
constraints.
In the early days of timetabling research, graph heuristics11, 12, 13 were

widely studied. They represent simple techniques but tend to be impractical
for complex problems (at least when implemented on their own). Integer
linear programming14 is an exact solution method which tends to be
computationally very expensive when solving large timetabling problems.
Over the years, constraint programming methods have also been investigated
at some length15, 16, 17. Meta-heuristics18 have been shown to be very
successful on a variety of timetabling problems. Examples include Tabu
Search19, 20, Simulated Annealing21, 22 and Evolutionary Algorithms23, 24.
Other new methods studied for timetabling problems include Case Based
Reasoning25 (for educational timetabling26,27,28 and nurse scheduling29).

The work presented in this paper investigates the benefits of hybridizing
two well-studied graph heuristics11, 12, 13 by using a hyper-heuristic on
timetabling. The term hyper-heuristic can be taken as a ‘heuristic that
searches for heuristics’30. A hyper-heuristic searches a space of heuristics
rather than problem solutions. Our hyper-heuristic approach searches from a
set of lower level heuristics according to different problem solving situations
that might occur, and then applies those heuristics to the particular problem
in hand. Different higher level heuristics/techniques employed within a
hyper-heuristic framework include Case Based Reasoning25, choice
functions31 and meta-heuristic methods32,33.

Many of the current state of the art approaches in exam timetabling
employ specially tailored heuristic/meta-heuristics methods20, 22, 34-39. This
kind of approach is also typical for other scheduling problems. The purpose
of this paper is to describe our initial attempts at developing an approach
which is fundamentally more general than the above methods. The goal is
not necessarily to ‘beat’ those methods but to obtain comparable results by
only employing general methods that can ‘pick’ appropriate heuristics and
which would be applicable to a broader range of problems.

1.2 Case Based Reasoning (CBR)

81

CBR25 is a knowledge-based technology that solves the problems in hand
(target cases) by using knowledge obtained by solving previous similar
problems. In a CBR system, a case base stores a set of previously solved
problems with their good solutions or problem solving strategies (called
source cases). A similarity measure, usually defined as a formula, is used to
assess the similarities between the target case and source cases. The good
solutions or problem solving strategies of the most similar source case are
reused to tackle the target case.

The basic idea of CBR is to avoid solving new problems from scratch
when the knowledge of solving similar problems is available. Our previous
work using CBR on course and exam timetabling has presented successful
results, either by reusing good partial solutions of problems whose
constraints are structurally similar with current problems26,27, or by reusing
good heuristics in similar problem solving situations28. This has provided the
foundation for the research presented in this paper.

The next section presents our Tabu Search based hyper-heuristic (TSHH)
on two graph heuristics. The results obtained by TSHH are utilized to
propose two hybrid graph heuristics (including one which employs CBR).
This is followed by experiments on both random and real-world problems.
We conclude by briefly discussing the impact of the work and potential
future research directions.

2. A TABU SEARCH BASED HYPER-HEURISTIC

In our previous work CBR was studied as the higher level searching
technique to suggest different constructive heuristics during the exam
timetabling problem solving process28. At each step of the solution
construction, we select the heuristic (stored in the case base) that made the
least penalty schedule in a previous similar situation. Employing this
knowledge can help in finding good heuristics in new similar situations and
in generating better quality solutions compared with those generated using
single heuristics.

2.1 Tabu Search in a Hyper-heuristic Framework

In this paper we will employ Tabu Search as the higher level searching
algorithm within a hyper-heuristic methodology that searches for the best
combinations of heuristics (heuristic lists) for constructing the solutions for
exam timetabling problems. This means that the heuristic list found not only

82

represents good heuristics at each particular step (as before28 where the least
penalty schedules are made), but also it represents problem solving context
(heuristics used and costs occurred before the current step, etc). A Tabu
Search methodology within a hyper-heuristic framework has already been
demonstrated as a successful, general methodology across very different
problems (for course timetabling and nurse rostering32).

The search space of the TSHH consists of all of the possible permutations
of the Saturation Degree (SD) and Largest Degree (LD), as shown below.
Starting from an initial list of heuristics, a move within the TSHH is to
change one of the heuristics in the heuristic list. The heuristics in the list are
then employed, one by one, to construct the solution for the problem. The
objective of TSHH is to find the heuristic list that generates the best quality
solutions. TSHH stops after a certain number of iterations (5 times the
number of the exams in the problem being considered).

SD and LD are two widely studied graph heuristics for applications to
timetabling problems11, 12, 13. They are sequential methods that order the
exams to be scheduled according to the difficulty of scheduling them. They
then assign them one by one into feasible timeslots without violating any
hard constraint and with the lowest penalty (i.e. the lowest total number of
violations of soft constraints). They can be described as follows:

Largest Degree (LD): Exams are ordered decreasingly by the number of
conflicts they have with other exams. This heuristic aims to schedule the
most conflicting exams first.
Saturation Degree (SD): Exams that are not yet scheduled are ordered
increasingly by the number of feasible timeslots available at that time.
The priorities of the exams thus change dynamically according to the
situations encountered at each step of the solution construction.
The heuristic lists selected to construct the solutions may not generate

feasible solutions once they are performed, because the moves in the TSHH
concern the changes of heuristics in the heuristic list, not the actual
assignment of each exam. The search space of the TSHH is thus very large,
containing a large number of non-valid heuristic lists. We add three
mechanisms into the TSHH to reduce the size of the search space. They are
described below:

The parts of heuristic lists that generate infeasible assignment are stored
in the searching process of the TSHH. At each move, the heuristic list
selected will be checked before it is applied to see if it contains any
stored infeasible heuristic lists. For example, if a heuristic list with the
part ‘SD LD ..’ is stored because LD make an infeasible schedule at that
step, all the heuristic lists selected later such as ‘SD LD SD ..’ or ‘SD LD
LD ..’ will be ignored in the searching process. This mechanism

83

significantly cuts the size of the search space by ignoring non-valid
sections.
At each step of the solution construction, we schedule a number of exams
at once (we choose 3 here) by the given heuristic in the heuristic list. This
is motivated by the observation28 that the heuristics in the best heuristic
lists tend to switch to others after a number of events have been
scheduled. This mechanism also significantly reduces the size of the
search space of TSHH.
The initial heuristic list of TSHH is set as a list of SD only. We observe
that in most cases SD is superior to LD, thus it is expected that the
appearance of SD will be higher than that of LD in the best heuristic lists.

2.2 Experiments on Random Data Sets

The data sets we use are generated by using the same process as that of
Carter et al38 which simulates real-world exam timetabling problems. Each
time a student is created and r exams are assigned (following a discrete
uniform distribution in [2, 6]). This process is repeated until the defined
density of conflict matrix is met, which is calculated as the number of
conflicts among exams to the total number of exams. This generates 6 types
of problems of 200 to 400 exams with density of 0.05, 0.15 and 0.25, namely
‘200-5’, ‘200-15’, ‘200-25’, ‘400-5’, ‘400-15’ and ‘400-25’.

The hard constraints consider the ‘conflict’ between exams with students
in common. The soft constraints under consideration concern spreading out
the students’ exams evenly. The cost function that evaluates the solutions is
the same as that of Carter et al38. The objective is to minimize the cost per
student. For each problem type, 20 distinct problems are tested on using the
SD and LD heuristics alone, and the TSHH. The average costs and time
spent by these approaches are presented in Table 1.

The best results in the table are presented in bold. For all the problems,
the TSHH works much better than using SD and LD alone. The values in ‘()’
represents the number of times infeasible solutions are obtained by the

84

corresponding approach. Compared with SD or LD alone, TSHH takes a
much longer time, especially for larger problems with higher densities. Note
that in real world situations, exam timetables are usually generated weeks (or
months) in advance and thus the time does not usually have much impact on
the usefulness of the methodology.

The column under the title of ‘density’ in Table 1 presents the average
densities of the LD in the best heuristic lists obtained by TSHH. We can see
that for all of the problem types, the densities of LD in the best heuristic lists
are almost the same, ranging from 0.23-0.26. This motivated us to build one
of the hybrid approaches, whose details are presented in the next section.

3. HYBRID GRAPH BASED APPROACHES

By investigating the TSHH, we propose two hybrid approaches. They are
SD injected with LD by 23%, and by a CBR system built using knowledge
discovery techniques that extract the knowledge of TSHH. They are
presented in the following two sub-sections.

3.1 SD Injected with 23% LD

In the first hybrid approach, LD is randomly injected into the heuristic
list (of SD) to form 23% of it. This hybridization is proposed by using the
density of LD that appears in the best heuristic lists. Our aim is to investigate
whether such a heuristic list is good for all of the problem instances.

The results of this approach on all types of problems are presented in the
column entitled SD+23%LD in Table 1. They are compared with the results
obtained by using SD and LD heuristics alone. Please note that it presents
the cost per student thus small differences from different approaches may
indicate large differences in costs.

Compared with the results obtained by using SD and LD alone, the
hybrid approaches perform on all of the problems, except for ‘400-25’,
where the same results (3.70) are obtained by SD+23%LD and SD+CBR.
For problem type ‘400-25’, LD failed to obtain feasible solutions for any pf
the problem instances (indicated by ‘n/f’ in the table). The values in Table 1
present the average penalties for only the feasible solutions obtained.

Among the approaches, LD takes the least amount of time as the ordering
of exams will not change during the problem solving process. The time spent
by SD+23%LD is less than that of SD, which orders the exams that are not
yet scheduled at each step of the problem solving process. This hybrid
approach is superior to SD on both the solution quality and the problem
solving time.

85

3.2 SD Injected with LD by CBR

We present another hybrid approach using a CBR system developed by
investigating the heuristic lists obtained from the TSHH described above.
The idea is to inject the LD by the suggestions from the CBR system which
stores the appropriate heuristics in different problem solving situations. At
each step of the scheduling process, the current problem solving situation is
input into the CBR system as the target case, and the most similar source
case is retrieved. The heuristic of this retrieved source case is employed to
select and schedule the exams in the next step of solution construction.

In the CBR system, we use a list of feature-value pairs to represent the
cases. The similarity measure employs a nearest neighborhood approach to
sum up the differences of values for each pair of features in the target and
source cases. The most similar source cases will be retrieved and the
corresponding heuristics will be suggested for use in the next step of
scheduling.

Knowledge discovery is carried out by using the best heuristic lists
obtained from the TSHH. The objective is to discover the most relevant
features to be used in the list of features to represent cases so that the correct
heuristic can be selected by CBR. We collected a set of initial training
features that describe the problem solving situations. They can be grouped
into two types, which are presented below.
1. Simple features: this can also be grouped into two types:

Features that describe the problems. These include: the no. of exams,
students, timeslots, the total no. of conflicts among all the exams, the
density of the conflict matrix, the no. of the conflicts for the most
conflicting exams and the no. of the most conflicting exams.

Features with values that are changeable during problem solving. These
include: the no. of exams that have been scheduled in a particular
timeslot, the heuristic employed before the current step, the increased
penalty occurred by the last step schedule, and the cost of the partial
solution concerning the violations of only the soft constraints.

2. A Combination of the simple features: the ratios between each pair of the
simple features.
At each particular scheduling step during the TSHH, the problem solving

situations (values of all of the training features presented above) are recorded
for each problem solved. These situations along with the best heuristics at
that step in the process form the cases to be used in the knowledge discovery
process. All of the cases obtained are randomly divided into two groups: one
group is stored as source cases in the case base and the other will be the
training cases used just in the knowledge discovery process for training
purposes.

86

A Tabu Search (not the same one used in TSHH but just for knowledge
discovery) is used to discover the best feature list for the case representation.
All of the possible feature lists form the search space of Tabu Search. An
initial feature list is randomly selected and a move is a change of a feature
and its weight. All of the training cases (whose heuristic is already obtained
beforehand by TSHH) are input one by one into the system. If the heuristic
of the most similar source case retrieved (by similarity measure upon the set
of features for the training) is the same as that of the training case obtained
beforehand, it will be seen as a successful retrieval. The total number of the
successful retrievals indicates the system performance. The objective of the
Tabu Search is to find the feature list upon which the highest system
performance is obtained for all of the training cases. The most relevant
features found by the first stage of knowledge discovery are: ‘the increase in
penalty in the previous step of scheduling’ with weight 100, and ‘the number
of exams already scheduled at that step’ with weight 1.

The second stage of knowledge discovery aims to refine the case base.
The best feature list is obtained from the first stage each time a source case is
removed from the case base. If the system performance is decreased, the
removed source case will be added back into the case base as it contains
useful information for the heuristic selection in that particular problem
solving situation; otherwise the source case will be removed permanently as
it contains either redundant or wrong information that is harmful for the
heuristic selection.

The column entitled SD+CBR in Table 1 presents the results obtained by
the hybrid SD with CBR on the same problems tested using other
approaches. We can see that it outperforms SD and LD alone on all
problems except on problem ‘400-25’, where the same result is obtained by
SD alone. Compared with SD+23%LD, it obtained slightly better solutions
but with longer time occurred on searching the case base. On all of the
problem types except ‘400-25’, both of the two hybrid approaches
outperform the SD and LD alone. Among all of the approaches tested TSHH
works the best. Note, though, that the two hybrid approaches are much
quicker than the TSHH although (as we already mentioned) time is not
usually a critical issue in exam timetabling.

These results show that by embedding knowledge of employing different
heuristics during problem solving, the hybrid approaches work better than
those of the single heuristics. The hybrid approaches have the ability to
choose appropriate heuristics in different situations thus have significant
potential for being more generally applicable than the current state of the art.

87

4. EXPERIMENTS ON REAL-WORLD PROBLEMS

We carried out another set of experiments on 4 real-world benchmark
exam timetabling problems presented by Carter et al38. These problems
cover a range of characteristics (i.e. on number of exams and conflict matrix
density). Table 2 presents the best results for these 4 problems by all of the
approaches presented above, except LD which failed to generate feasible
solutions for all of the problems.

We can observe that for real-world problems, the results obtained from
the hybrid approaches show different characteristics compared with those on
random data sets. The reason may be that the knowledge discovered from the
random data sets may not cover enough problem solving situations of real
world problems with different characteristics.

SD+CBR shows promising results and is reasonably reliable over both
random and real-world problems, as the injection of LD is made by using
knowledge concerning different problem solving situations and thus can help
to solve more types of problems. However, to be able to solve more types of
problems, the CBR system needs to be trained to store more knowledge of
problem solving over a wider range of problems (including both the random
and real-world problems) with a variety of problem features.

One observation is that the densities of LD (presented in ‘()’ in Table 2)
in the best heuristic lists found are different for different problems, and none
of them has a value that is within 0.23-0.26. Thus SD+23%LD will not be
the appropriate approach for solving the real-world problems presented here.

The TSHH shown in Table 2 outperforms all of the other approaches
described in this paper on real problems. Table 2 also presents the current
best published results on these benchmarks by 8 other approaches reported in
the literature20,22, 34-39. The best results are presented in bold. Note that TSHH

88

gets into the same region as these sophisticated approaches which are ‘tailor
made’ for exam timetabling.

Also note that except Carter et al38 and Asmuni et al34 all the other
approaches are improving approaches that are based on initial solutions
obtained beforehand. Our approaches are simple constructive methods that
are independent of the initialization process and obtained comparable results
from the reported approaches on the benchmark problems, for which most
simple constructive methods failed to obtain feasible solutions. Moreover,
this approach is far simpler and more generic than those approaches. It
selects appropriate simple heuristics during the search process. These simple
heuristics can be employed in many other timetabling and scheduling
problems.

5. CONCLUSIONS AND FUTURE WORK

The overall goal of this paper is to investigate the development of
approaches/systems which can operate at a higher level of generality than
current approaches/systems. The TSHH uses only very simple heuristics (SD
and LD) and clearly outperforms the heuristics on their own and the other
two hybrid approaches we have described in this paper.

The heuristic selection methods described here represent a framework
which can easily be applied to other timetabling and scheduling problems.
They take simple heuristics and we demonstrated that those heuristics can be
better employed by intelligent selection at appropriate points in the solution
construction process. These methods are comparable to the bespoke methods
even though the overall goal of this approach is to be more generally
applicable rather than to produce the ‘best’ results on benchmark problems.
Note also that the methods employed here use only the generally applicable
graph coloring heuristics that can be easily employed for many timetabling
and scheduling problems. The work can be extended in two ways: 1) extra
graph heuristics can be added to the framework to give more choices; and 2)
the same framework can be extended to other scheduling problems as little
domain specific knowledge is employed. The searching time of TSHH needs
further improvement upon larger problems with a higher number of
constraints. This may be investigated and compared on other meta-heuristics
such as Simulated Annealing and evolutionary approaches, etc.

For the randomly generated data sets, the two hybrid approaches produce
better results than those obtained by using the graph heuristics alone,
meaning that the knowledge extracted from the TSHH on random data helps
in solving problems, avoiding the time and effort required for development
of problem specific algorithms for timetabling problems. SD+CBR is able to

89

provide appropriate heuristics within particular problem solving situations
using the knowledge discovered beforehand, enabling it to underpin a more
general approach for a wider range of problem types. More dedicated
knowledge discovery techniques and machine learning methods can be
investigated to discover more accurate knowledge within the critical area of
learning in hyper-heuristic methodology for solving general timetabling
problems.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

V. Bardadym. Computer-Aided School and University Timetabling: The New
Wave. In: 2, pp. 22-45. (1995).
E. Burke and P. Ross eds. Selected Papers from the 1st International Conference
on the Practice and Theory of Automated Timetabling, LNCS 1153, Springer-
Verlag, 1996).
E. Burke and M. Carter eds. Selected Papers from the 2nd International
Conference on the Practice and Theory of Automated Timetabling, LNCS 1408.
(Springer-Verlag, 1998).
E. Burke and W. Erben, W. eds. Selected Papers from the 3rd International
Conference on the Practice and Theory of Automated Timetabling, LNCS 2079,
(Springer-Verlag, 2001).
E. Burke, K. Jackson, J Kingston and R. Weare. Automated Timetabling: The
State of the Art. The Computer Journal, 40(9): 565-571, (1997).
E. Burke and P. Causmaecker, eds. Selected Papers from the 4th International
Conference on the Practice and Theory of Automated Timetabling, LNCS 2740.
(Springer-Verlag, 2003).
M. Carter and G. Laporte. Recent Developments in Practical Examination
Timetabling. In:2, pp. 3-21. (1995).
M. Carter and G. Laporte. Recent Developments in Practical Course
Timetabling. In:3, pp. 3-19.
A. Schaerf. A Survey of Automated Timetabling. Artificial Intelligence Review.
13(2): 87-127. (1999).
E. Burke and S. Petrovic, Recent Research Directions in Automated
Timetabling. EJOR, 140(2): 266-280. (2002).
D. Brelaz, New Methods to Color the Vertices of a Graph. Communications of
the ACM, 22(4): 251-256. (1979).
de Werra, Graphs, Hypergraphs and Timetabling. Methods of Operations
Research. 49: 201-213. (1985).
E. Burke, J. Kingston and D. de Werra, Applications to Timetabling, Handbook
of Graph Theory, (J. Gross and J. Yellen eds.), pp. 445-474, (Chapman
Hall/CRC Press, 2003).
M. Carter, A Lagrangian Relaxation Approach to the Classroom Assignment
Problem. IFOR 27(2): 230-246. (1986).
B. Deris, S. Omatu, H. Ohta and D. Samat. University Timetabling by
Constraint-based Reasoning: A Case Study. JORS. 48(12): 1178-1190. (1997).
K. Nonobe T. and Ibaraki. A Tabu Search Approach to the Constraint
Satisfaction Problem as a General Problem Solver. EJOR. 106: 599-623. (1998).

90

17.

18.
19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

D. Banks, P. Beel and A. Meisles. A Heuristic Incremental Modelling Approach
to Course Timetabling. Proceedings of the Canadian Conference on Artificial
Intelligence, pp. 16–29. (1998).
F. Glover, and G. Kochenberger, Handbook of Metaheuristics, Kluwer. 2003.
D. Costa. A Tabu Search for Computing an Operational Timetable. EJOR. 76:
98-110. (1994).
L. Di Gaspero and A. Schaerf, Tabu Search Techniques for Examination
Timetabling, In: 4, pp. 104-117. (2000).
K. Dowsland, Off the Peg or Made to Measure”, In: 3, 37-52. (1998).
S. Casey, J. Thompson, A Hybrid Algorithm for the Examination Timetabling
Problem. In: 6, pp. 205-230. (2002).
E. Burke, J. Newall and R. Weare, R. Initialization Strategies and Diversity in
Evolutionary Timetabling. Evolutionary Computation, 6(1): 81-103. (1998).
E. Burke and J. Newall. A Multi-Stage Evolutionary Algorithm for the
Timetabling Problem. The IEEE Transactions on Evolutionary Computation.
3(1): 63-74. (1999).
D. Leake ed. Case-based Reasoning: Experiences, Lessons and Future
Directions. (AAAI Press, Menlo Park, CA. 1996).
E. Burke, B., MacCarthy, S. Petrovic and R. Qu, Structured Cases in Case-
Based Reasoning - Re-using and Adapting Cases for Time-tabling Problems.
Knowledge-Based Systems, 13(2-3): 159-165. (2000).
E. Burke, B. MacCarthy, S. Petrovic and R. Qu, Multiple-Retrieval Case-Based
Reasoning for Course Timetabling Problems. Technical Report NOTTCS-TR-
2004-3, School of CSiT, University of Nottingham, U.K. (accepted by JORS,
2004).
E. Burke, S. Petrovic and R. Qu, Case Based Heuristic Selection for
Examination Timetabling. Technical Report NOTTCS-TR-2004-2, School of
CSiT, University of Nottingham, U.K. (To appear in Journal of Scheduling,
2005).
S. Petrovic, G. Beddoe and G. Vandem Berghe, Storing and Adapting Repair
Experiences in Employee Rostering. In: 6, pp. 148-165. (2003).
E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross and S. Schulenburg, Hyper-
heuristics: an Emerging Direction in Modern Search Technology. In: F. Glover
and G. Kochenberger eds., Handbook of Meta-Heuristics, (Kluwer, 2003), pp.
457-474.
G. Kendall, P. Cowling and E. Soubeiga, Choice Function and Random
HyperHeuristics. Proceedings of SEAL’02, pp. 667-671. (2002).
E. Burke, G. Kendall. G and E. Soubeiga, A Tabu Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics. 9(6). (2003).
L. Han and G. Kendall. Investigation of a Tabu Assisted Hyper-Heuristic
Genetic Algorithm. Congress on Evolutionary Computation, Canberra,
Australia, 2230-2237. (2003).
H. Asmuni, E. Burke, and J. Garibaldi. Fuzzy Multiple Ordering Criteria For
Examination Timetabling. To appear in the International Conference on the
Practice and Theory of Automated Timetabling. Pittsburgh, USA. Aug 2004.
E. Burke, Y. Bykov, J. Newall and S. Petrovic. A Time-Predefined Local
Search Approach to Exam Timetabling Problems. IIE Transactions on
Operations Engineering, 36(6), 509-528, (2004).
E. Burke and J. Newall, Enhancing Timetable Solutions with Local Search
Methods. In: 6, pp. 195-206. (2002).

91

37.

38.

39.

M. Caramia, P. Dell’Olmo and G. Italiano, New Algorithms for Examination
Timetabling. In: S. Naher and D. Wagner eds. LNCS 1982, pp. 230-241. (2001).
M. Carter, G. Laporte and S. Lee, Examination Timetabling: Algorithmic
Strategies and Applications, JORS, 47: 373-383. (1996).
L. Merlot, N. Boland, B. Hughes and P. Stuckey. A Hybrid Algorithm for the
Examination Timetabling Problem. In: E. Burke and P. De Causmaecker (eds.)
Proceedings of the 4th International Conference on Practice and Theory of
Timetabling, pp. 348-371. (2002).

This page intentionally left blank

METAHEURISTICS COMPARISON FOR
THE MINIMUM LABELLING SPANNING
TREE PROBLEM

Raffaele Cerulli,1 Andreas Fink,2 Monica Gentili1 and Stefan Voß2

1 Computing Science Department, University of Salerno
Via Ponte don Melillo - 84084, Fisciano (Salerno), Italy

raffaele@unisa.it, mgentili@unisa.it

2 Institute of Information Systems, University of Hamburg
Von-Melle-Park 5, 20146 Hamburg, Germany

andreas.fink@uni-hamburg.de, stefan.voss@uni-hamburg.de

Abstract We study the Minimum Labelling Spanning Tree Problem: Given a
graph G with a color (label) assigned to each edge (not necessarily
properly) we look for a spanning tree of G with the minimum number
of different colors. The problem has several applications in telecommuni-
cation networks, electric networks, multimodal transportation networks,
among others, where one aims to ensure connectivity by means of ho-
mogeneous connections. For this NP-hard problem very few heuristics
are presented in the literature giving good quality solutions. In this
paper we apply several metaheuristic approaches to solve the problem.
These approaches are able to improve over existing heuristics presented
in the literature. Furthermore, a comparison with the results provided
by an exact approach existing in the literature shows that we may quite
easily obtain optimal or close to optimal solutions.

Keywords: Minimum Labelling Spanning Tree Problem, Simulated Annealing, Re-
active Tabu Search, Pilot Method, Variable Neighborhood Search

1. Introduction
Many real-world problems can be modelled by means of graphs where

a label or a weight is assigned to each edge and the aim is to optimize
a certain function of these weights. In particular, we can think of prob-
lems where the objective is to find homogeneous subgraphs (respecting
certain connectivity constraints) of the original graph. This is the case,
e.g., for telecommunication networks (and, more generally, any type of

94

communication networks) that are managed by different and competing
companies. The aim of each company is to ensure the service to each
terminal node of the network by minimizing the cost (i.e., by minimiz-
ing the use of connections managed by other companies). This kind of
problem can be modelled as follows. The telecommunication network
is represented by a graph G = (V, E) where with each edge is
assigned a set of colors and each color denotes a different company
that manages the edge. The aim of each company is to define a span-
ning tree of G that uses the minimum number of colors. When the
graph represents a transportation network and the colors, assigned to
each edge, represent different modes of transportation, then looking for
a path that uses the minimum number of colors from a given source to
a given destination means to look for a path connecting and using
the minimum number of different modes of transportation.

Many other problems may be modelled by looking for multicolored cy-
cles, i.e., cycles with edges of different color (see, e.g., [3]), or monochro-
matic cycles (i.e., cycles whose edges have the same color). In this paper
we focus on the Minimum Labelling Spanning Tree Problem (MLST):
Given a graph G with a label (color) assigned to each edge (not neces-
sarily properly) we look for a spanning tree of G with the minimum num-
ber of different colors. This problem was initially addressed by Broersma
and Li [2]. They proved, on the one hand, that the MLST is NP-hard
by reduction from the Minimum Dominating Set Problem, and, on the
other hand, that the “opposite” problem of looking for a spanning tree
with the maximum number of colors is polynomially solvable. Indepen-
dently, Chang and Leu [5] provided a different NP-hardness proof of the
problem by reduction from the Set Covering Problem. They also devel-
oped two heuristics to find feasible solutions of the problem and tested
the performance of these heuristics by comparison with the results of an
exact approach based on an A* algorithm.

Krumke and Wirth [11] formulated an approximation algorithm with
logarithmic performance guarantee and showed also that the problem
cannot be approximated within a constant factor (in the sequel this
algorithm will be referred to as the MVCA heuristic; see Section 2). Wan
et al. [14] provided a better analysis of the greedy algorithm given in [11]
by showing that its worst case performance ratio is at most
Recently, Xiong et al. [16] obtained the better bound where each
color appears at most times. Moreover, Xiong et al. [15] proposed a
genetic algorithm to solve the MLST and provided some experimental
results. A variant of the problem has been studied by Brüggemann et al.
[4], where the MLST with Bounded Color Classes has been addressed.
In this variant, each color of the graph is assumed to appear at most

95

times. This special case of the MLST is polynomially solvable for
and NP-hard and APX-complete for Local search algorithms for
this variant, that are allowed to switch up to of the colors used in a
feasible solution have been studied, too. For they showed that
any local optimum yields an of the global optimum,
and this bound is best possible. For every there exist instances
for which some local optimum is a factor of away from the global
optimum.

In this paper we present several metaheuristic approaches to solve
the problem (namely, Simulated Annealing, Reactive Tabu Search, the
Pilot Method and Variable Neighborhood Search) and compare them
with the results provided by the MVCA heuristic presented in [11, 15].
The sequel of the paper is organized as follows. Section 2 describes the
metaheuristics we implemented. Section 3 reports some computational
results. Conclusions and further research are considered in Section 4.

2. Different Metaheuristic Approaches

The purpose of our study is to show that immediate adaptations of ex-
isting metaheuristics may lead to high quality results for the MLST. For
achieving this goal, in this section we briefly describe the implemented
metaheuristics: Simulated Annealing (SA), Reactive Tabu Search (RTS),
the Pilot Method and Variable Neighborhood Search (VNS). All these
metaheuristics should be implemented without time-consuming param-
eter tuning to get some insight into the different approaches and their
robustness. To achieve this goal we follow an ad-hoc implementation for
the VNS as well as an approach of applying an existing metaheuristics
framework without time-consuming calibration (HOTFRAME; see [7]) for
the remaining ones.1

Before going into detail we introduce some notation and the descrip-
tion of the neighborhood structure used in all our proposed strategies.
Given an undirected graph G = (V, E) with V being the set of nodes
and E denoting the set of edges, let be the color (label) associated
with edge and be the set of all the colors.
We denote by the set of colors assigned with edges in

Any spanning tree T of G can be represented by the set of its
colors C(T). Given a set of colors C, it is feasible for the MLST if and
only if the corresponding set of edges defines a connected subgraph
that spans all the nodes of G.

1We assume that the reader is familiar with some basic concepts of metaheuristics. For a
recent survey the reader is referred to [13].

96

We use the following family of neighborhoods, already defined in [4].
Let be a fixed integer, and let be a feasible solu-
tion for some instance of the MLST, we can define the following different
feasible neighbors of C:

- Switch Neighborhood
A set if and only if we can get the color set from the
color set C by removing up to colors from C and adding up to new
colors. That is, and

If we assume and allow one color either to be added or to be re-
moved we obtain the elementary “bit-flip” neighborhood which is based
on representing the selection of colors as a binary vector. That is, if

is a solution for some instance of the MLST, this
selection of colors may be represented by a binary vector
of length with if and otherwise. With this
representation we can define the following set of neighbors of C:

Bit-Flip Neighborhood
with and

A transition from one solution to another is called a move. A move
in accordance with the 1 - Switch Neighborhood corresponds to two
moves in accordance with the Bit-Flip Neighborhood. For example, if

and C = {1,2,3} represents the current solution, is
within the 1 - Switch Neighborhood of C, which corresponds to two bit
flips (i.e., color 3 is removed and color 4 is added).

In the following we use the - Switch Neighborhood for the VNS
and the Bit-Flip Neighborhood for SA, RTS and the Pilot method. In
connection with the Bit-Flip Neighborhood we also consider infeasible
solutions as neighbors. Infeasibilities are taken into account by adding
appropriate penalty values to the objective function. In particular, if the
subgraph induced by the activated current colors is separated into
connected components, the penalty value is calculated as
for a small value

2.1 MVCA
Assuming that we have a binary representation for the problem in the

sense that every color is either chosen or not we may apply simple steep-
est descent approaches using the bit-flip neighborhood. The first one
(add approach) starts with an infeasible solution (0,0,...,0) and adds

97

Figure 1. The MVCA heuristic.

colors as long as necessary to reduce the number of disconnected com-
ponents with respect to the corresponding vector and its resulting graph.
The second one (drop approach) could start with all colors included, i.e.
(1, 1,..., 1), and consecutively drops colors as long as connectivity of the
remaining graph is ensured.

The MVCA (Maximum Vertex Covering Algorithm) or some of its
modifications, respectively, corresponds to the add approach (see, e.g.,
[5, 11, 15]). A more detailed description of the heuristic is given in
Figure 1. That is, this strategy follows the idea of a simple steepest
descent oriented construction procedure. Note that at the end it could
be beneficial to try the drop approach while retaining feasibility.

2.2 Simulated Annealing
Simulated Annealing extends basic local search by allowing moves to

worse solutions [10]. The basic concept of SA may be described as fol-
lows: Starting from an initial solution (we started in our implementation
from an empty set of activated colors), successively, a candidate move is
randomly selected; this move is accepted if it leads to a solution with a
better objective function value than the current solution, otherwise the
move is accepted with a probability that depends on the deterioration
of the objective function value. The acceptance probability is computed
according to the Boltzmann function as using a temperature T
as control parameter.

Various authors describe robust realizations of this general SA con-
cept. Following [9], the value of T is initially high, which allows many
worse moves to be accepted, and is gradually reduced through multipli-
cation by a parameter coolingFactor according to a geometric cooling
schedule. Given a parameter sizeFactor, candidate moves
are tested (note that denotes the neighborhood size) before the tem-

98

perature is reduced. The starting temperature is determined as follows:
Given a parameter initialAcceptanceFraction and based on an abbre-
viated trial run, the starting temperature is set so that the fraction
of accepted moves is approximately initialAcceptanceFraction. A fur-
ther parameter, frozenAcceptanceFraction is used to decide whether the
annealing process is frozen and should be terminated. Every time a
temperature is completed with less than frozenAcceptanceFraction of
the candidate moves accepted, a counter is increased by one, while
this counter is re-set to 0 each time a new best solution has been ob-
tained. The whole procedure is terminated when this counter reaches
a parameter frozenLimit. For our implementation we follow the pa-
rameter setting of [9], which was reported to be robust for different
problems. Namely, we use initialAcceptanceFraction = 0.4,
frozenAcceptanceFraction = 0.02, sizeFactor = 16 and frozenLimit = 5.

2.3 Reactive Tabu Search

The basic paradigm of tabu search is to use information about the
search history to guide local search approaches to overcome local opti-
mality (see [8] for a survey on tabu search). In general, this is done by a
dynamic transformation of the local neighborhood. Based on some sort
of memory certain moves may be forbidden, we say they are set tabu
(and appropriate move attributes such as a certain index indicating a
specific color put into a list, the so-called tabu list). As for SA, the
search may imply acceptance of deteriorating moves when no improving
moves exist or all improving moves of the current neighborhood are set
tabu. At each iteration a best admissible neighbor may be selected. A
neighbor, respectively a corresponding move, is called admissible, if it is
not tabu.

Reactive TS aims at the automatic adaptation of the tabu list length
[1]. The idea is to increase the tabu list length when the tabu memory
indicates that the search is revisiting formerly traversed solutions. A
possible specification can be described as follows: Starting with a tabu
list length of 1, it is increased to every
time a solution has been repeated, taking into account an appropriate
upper bound (to guarantee at least one admissible move). If there has
been no repetition for some iterations, we decrease it to

To accomplish the detection of a repetition of a solution,
one may apply a trajectory based memory using hash codes.

For RTS [1], it is appropriate to include means for diversifying moves
whenever the tabu memory indicates that we are trapped in a certain
region of the search space. As a trigger mechanism one may use, e.g., the

99

combination of at least three solutions each having been traversed three
times. A very simple escape strategy is to perform randomly a number
of moves (depending on the average of the number of iterations between
solution repetitions). For our implementation of RTS we consider as
initial solution (as for the SA) an empty set of activated colors. As
termination criterion we consider a given time limit.

2.4 Pilot Method

Using a basic algorithm such as a greedy construction heuristic (e.g.,
MVCA) as a building block or application process, the pilot method [6] is
a meta-heuristic with the primary idea of performing repetition exploit-
ing the application process as a look ahead mechanism. In each iteration
(of the pilot method) one tentatively computes for every possible local
choice (i.e., move to a neighbor of the current so-called master solution)
a so-called pilot solution, recording the best results in order to extend
at the end of the iteration the master solution with the corresponding
move. One may apply this strategy by successively performing, e.g., a
construction heuristic for all possible local choices (i.e., starting a new
solution from each incomplete solution that can result from the inclusion
of any not yet included element into the current incomplete solution).

We apply the pilot method in connection with a greedy local search
strategy which operates on a solution space that includes incomplete
(infeasible) solutions and a neighborhood that considers the addition of
colors (alike the MVCA). We take into account infeasibilities by adding
appropriate penalty values computed as mentioned above. The pilot
strategy successively chooses the best local move (regarding the addi-
tional activation of one color) by evaluating such neighbors with a steep-
est descent until a local optimum, and with that a feasible solution, is
obtained. (Note that as for the MVCA, at the end it may be beneficial
to greedily drop colors while retaining feasibility.) As there are up to

iterations of the outer-level search loop and for each master solution
there up to local choices that are to be evaluated, the overall time
complexity results as times the time complexity of the MVCA.

2.5 Variable Neighborhood Search

Variable Neighborhood Search goes back to Mladenovic and Hansen
[12]. The underlying idea of VNS is to generalize the classical local search
based approaches by considering a multi-neighborhood structure, i.e., a
set of pre-selected neighborhood structures such
that is the set of solutions in the neighborhood

100

Figure 2. The basic VNS algorithm.

of C. The basic VNS algorithm, applied to solve the MLST, is described
in Figure 2.

In particular, we consider the neighborhood as described
above, where The procedure starts from an initial
feasible solution C provided by the MVCA heuristic. At each generic
iteration the VNS: (i) selects at random a feasible solution in the
neighborhood (ii) applies a local exchange strategy that, for
a maximum number of iterations, tries to decrease the size of

to obtain a possible better solution and, (iii) defines the new
neighborhood to be explored in the next iteration. In our implementa-
tion of VNS, we let parameter vary during the execution, that is

where is the size of the current feasible solution
whose neighborhood is being explored. The overall time complexity re-
sults as Indeed, the VNS strategy explores sequentially

neighborhoods. The first neighborhood is explored so many
times as the number of improvements of the initial solution C; the total
number of improvements is at most that, in the worst case, leads us
to explore at most neighborhoods. Moreover, since for each
neighborhood we carry out at most iterations and we
have the above mentioned time complexity.

As our idea here was to test the overall option of using robust imple-
mentations of different metaheuristics we keep content with the above
implementation of the VNS for this paper.

3. Experimental Results
Computational results for the MLST for different algorithms have

been reported in only a very limited number of references. In our pa-
per we follow the idea of Xiong et al. [15] to compare the results of
any heuristic (a genetic algorithm in their case) with the results of the
MVCA. Unfortunately, data from other researchers were not provided
to us so that we re-implemented the data generation mechanism to have
at least a certain comparability with respect to the results of [15], who

101

report that their genetic algorithm is able to produce competitive results
and typically outperforms MVCA in many cases by a small percentage.

Below we report some of our computational results. We considered
different groups of instances (according to the ones considered in [15])
in order to evaluate how the performance of the algorithms is influenced
by both (i) the structures of the networks and (ii) the distribution of
the labels on the edges. In particular, we defined two different groups
of scenarios based on different parameter settings: number of nodes
of the graph, total number of colors assigned to the graph, total
number of edges of the graph computed by where is a
measure of density of the graph. Parameter settings for scenarios in
Group 1 are: and for a total
of 12 different scenarios. Instances in Group 2 are characterized by

and for
a total of 24 different scenarios. For each scenario we generated ten
different instances. All the generated data are available upon request
from the authors.

Results are reported in Tables 1 – 6. In each table the first three
columns show the parameters characterizing the different scenarios
and The remaining columns give the results of the MVCA heuristic
and of our metaheuristics: Variable Neighborhood Search, Simulated
Annealing, Reactive Tabu Search and the Pilot Method, respectively.
More specifically, Table 1 gives the objective function values found by
the algorithms for the Group 1 scenarios; all the values are average
values over ten different instances. Tables 2 and 3 give the objective
function values for the Group 2 scenarios with and
respectively (again all the values are average values over 10 different
instances). Computational times of the algorithms are reported in Table
4 for the instances of Group 1 and in Tables 5 and 6 for the instances of
Group 2.

Looking at Tables 4 – 6 we can see that the computational times of
all the algorithms (but RTS) increase with larger graphs and decrease
with more dense graphs, as it was expected.2 From Tables 1 – 3 we can
see that all the algorithms either get the same average solution value
of MVCA or return a better average value (but the SA approach that
for the instances of Group 2 with and 125 performs a
little worse). In particular, by considering the detailed results obtained
for the whole set of instances (a total of 120 instances for Group 1 sce-
narios and of 240 instances for Group 2 scenarios, that are not reported

2The MVCA and the VNS run on Xeon 2.8Ghz Linux SUSE9, while the SA, RTS and Pilot
run on a Pentium 4 / 2.4 GHz PC.

102

here for space reason) we can observe that: both the VNS strategy and
the Pilot method never return a worse solution value than the one com-
puted by the MVCA; the SA approach is worse than MVCA on 14 %
instances of Group 2 with and on 2% instances of Group 2 with

finally, the RTS strategy performs worse than MVCA on 1%
instances of Group 1 and 6 % instances of Group 2 with for
all the other cases, the four algorithms either return the same solution
value or a better solution value than the one provided by MVCA. Note
that for dense graphs (i.e., in most cases all the algorithms find
the same solution. This happens also for some instances with
see, in particular, Table 1 where Table 2 where and
Table 3 where The pilot method seems to obtain the best results
in most of the scenarios. In particular, it attains the best results (not
considering those instances where all the approaches perform the same)
on 17 instances, SA on 10 instances, VNS on 8 instances and RTS on
7. More in detail, SA seems to be more effective on low density graphs
(see Table 2 with while the pilot strategy and the VNS work
better on larger instances (see Table 3). In particular, the VNS method
starts from the feasible solution provided by MVCA and explores dif-
ferent neighborhoods to improve it. The best improvement is obtained
for the instances of Group 2 with and (up to
12%). On the other hand, the solution cannot be improved for the most
dense instances (those with where all the algorithms perform
the same and likely MVCA already finds a good solution. Moreover, we
can see that, generally, improvements are attained for instances where
the number of different neighborhoods ex-
plored is large enough (e.g., those instances with a feasible solution value
ranging between 10 and 12).

For the smaller problem instances of Group 1 our re-implementation
of the exact approach of [5] reveals that at least one of the metaheuris-
tics finds the optimal solution. If the optimal solution is not found, it
usually means that the found solution just differs by one color. CPU
times for this approach are within the range of a few seconds with one
exception for The improvements of our algorithms over
MVCA are in the range of those of the genetic algorithm reported in
[15] or better, especially for the pilot method. Our approaches follow
the same idea of having a robust (and somewhat auto-adaptive) ap-
proach and it seems that we succeeded in reaching this goal. Of course
the pilot method operates with a considerable number of computational
repetitions and our robust ad-hoc application of the method using the
HOTFRAME optimization framework leaves many options for improving
those CPU-times.

103

4. Conclusions and Further Research
In this paper we have considered the Minimum Labelling Spanning

Tree Problem. This problem has been recently studied and has many
important applications in the field of communication networks. Pre-
vious research provides algorithms with approximation guarantee ratio
and some local search schemes based on the simple neighbor-
hoods. Recently, a genetic algorithm has been presented in [15] and some
computational results are given. In this paper we show that one may
successfully adapt existing metaheuristics and provide computational
experience based on the comparison of various metaheuristics tested on
different scenarios. We compared our approaches with the results pro-

104

vided by the approximation guaranteed algorithm given in [11]. We
considered different groups of instances in order to evaluate how the
performance of the algorithms is influenced by both (i) the structures of
the networks and (ii) the distribution of the labels on the edges.

As our implementations were addressing the option of having a ro-
bust instead of a specialized implementation there is considerable room
for improving the computation times. Moreover, our further research is
focused on (i) extending our computational experience in order to eval-
uate the algorithms on larger networks and on different graph classes re-
producing real case networks; (ii) implementing different neighborhood
structures that could lead to an improved performance when embedded,

e.g., into a VNS (ideas may include new classes of neighborhoods in the
sense that we exchange colors by taking into account the number of the
connected components of the induced subgraphs of included colors as
well as the size of the spanned node set); (iii) studying some variants of
the problem inspired by real world applications. In particular, we will fo-
cus our attention on the Multilabel Spanning Tree Problem: looking for
the minimum labelling spanning tree when multiple labels are assigned
with each edge. When the colors assigned with edges have different
weights, then the weighted version of the MLST and of the multilabel
spanning tree problem are interesting objects of research. If edges are
assigned also with costs (weights), one could think of the bi-objective

105

106

version of these problems when both the total number of different colors
and the total weight of the spanning tree have to be minimized.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Battiti. Reactive search: Toward self-tuning heuristics. In V.J. Rayward-
Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors, Modern Heuristic
Search Methods, pages 61–83. Wiley, Chichester, 1996.

H. Broersma and X. Li. Spanning trees with many or few colors in edge-colored
graphs. Discussiones Mathematicae Graph Theory, 17:259–269, 1997.

H. Broersma, X. Li, and S. Zhang. Paths and cycles in colored graphs. Electronic
Notes in Discrete Mathematics, 8, 2001.

T. Brüggemann, J. Monnot, and G.J. Woeginger. Local search for the minimum
label spanning tree problem with bounded color classes. Operations Research
Letters, 31:195–201, 2003.

R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees. Information
Processing Letters, 63:277–282, 1997.

C.W. Duin and S. Voß. The pilot method: A strategy for heuristic repetition
with application to the Steiner problem in graphs. Networks, 34:181–191, 1999.

A. Fink and S. Voß. HOTFRAME: A heuristic optimization framework. In S. Voß
and D. Woodruff, editors, Optimization Software Class Libraries, pages 81–154.
Kluwer, Boston, 2002.

F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, 1997.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization
by simulated annealing: An experimental evaluation; part I, graph partitioning.
Operations Research, 37:865–892, 1989.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.
S.O. Krumke and H.-C.Wirth. On the minimum label spanning tree problem.
Information Processing Letters, 66:81–85, 1998.

and P. Hansen. Variable neighbourhood search. Computers &
Operations Research, 24:1097–1100, 1997.

S. Voß. Meta-heuristics: The state of the art. In A. Nareyek, editor, Local
Search for Planning and Scheduling, volume 2148 of Lecture Notes in Artificial
Intelligence, pages 1–23. Springer, Berlin, 2001.

Y. Wan, G. Chen, and Y. Xu. A note on the minimum label spanning tree.
Information Processing Letters, 84:99–101, 2002.

Y. Xiong, B. Golden, and E. Wasil. A one-parameter genetic algorithm for
the minimum labeling spanning tree problem. Technical report, University of
Maryland, 2003.

Y. Xiong, B. Golden, and E. Wasil. Worst-case behavior of the MVCA heuristic
for the minimum labeling spanning tree problem. Technical report, University
of Maryland, 2003.

A NEW TABU SEARCH HEURISTIC FOR THE
SITE-DEPENDENT VEHICLE ROUTING
PROBLEM

I-Ming Chao1 and Tian-Shy Liou2

1Department of Industrial Engineering and Management, I-Shou University, 1 Sec. 1,
Shiuecheng Rd., Dashu Township, Kaohsiung County, 840, Taiwaun, R.O.C., 2Department of
Business Administration, Cheng Shiu University, 840 Chengcing Rd., Niaosong Township,
Kaohsiung County, 833, Taiwaun, R.O.C.

Abstract: The site-dependent vehicle routing problem takes into account some real-life
applications of the basic vehicle routing problem when there are compatible
dependencies between customers (sites) and vehicle types. Every customer is
associated with a set of allowable vehicle types and has to select only one of
them. A series of basic vehicle routing problems are solved over the customers
that select the same vehicle type. The objective is to minimize the total
distance traveled (or the total travel cost incurred) by the fleet and all
constraints for the basic vehicle routing problem as well as the site-
dependency constraints must be satisfied. In this paper, we present a new
heuristic method based on tabu search combined with the deviation of the
deterministic annealing method to carry out the intensification and
diversification search by varying the values of the deviations within two
different ranges respectively. We test the method on a set of 23 benchmark
problems taken from literature, and the computational results show that the
new method can solve the problem quite effectively.

Key words: Vehicle Routing, Site-dependent Vehicle Routing, Heuristic, Tabu Search,
Deterministic Annealing

1. INTRODUCTION

In the basic vehicle routing problem (VRP), a set of routes is designed
for dispatching a homogeneous or heterogeneous fleet of vehicles to service
a set of customers from a single distribution depot or terminal. Each vehicle
has a fixed capacity and each customer has a known demand that must be

108

fully satisfied. Each customer must be serviced by exactly one visit of a
single vehicle and each vehicle must depart from and return to the depot.
Each route has a route length constraint that limits the distance traveled by
each vehicle. The objective is to provide each vehicle with a sequence of
visits so that all customers are serviced and the total distance traveled by the
fleet (or the total travel cost incurred by the fleet) is minimized.

The site-dependent vehicle routing problem (SDVRP) extends the basic
VRP to take a real-life application situation into account. In the SDVRP, the
fleet of heterogeneous vehicles is dispatched to service a set of customers,
but there exist compatible dependencies between customers (sites) and
vehicle types. The fleet consists of several vehicle types in which each type
has limited number of vehicles (for example, five small capacity, seven
medium capacity, and three large capacity vehicles). In the VRP, any type of
vehicle can visit each customer, but in the SDVRP not every type of vehicle
can service every customer. Some customers with extremely high demands
may require large vehicles; some customers located in congested areas may
require small or medium vehicles, while the remaining customers can be
serviced with any type of vehicle without site-dependent restrictions. For
each customer i, there is a set of allowable vehicle types associated with it,
denoted by and called associated types of customers i. For example, there
are ={Type 1, Type 3}, = {Type 1, Type 2, Type 3}, and = {Type
3}, etc. In the SDVRP, we select an allowable vehicle type for each
customer i from its associated and then solve a basic VRP for each
vehicle type over the customers selecting the vehicle type such that the total
distance traveled by all types of vehicles is minimized.

As a VRP-variant application, the SDVRP can be summarized as follows.
For N customers surrounding a single distribution depot and each requiring a
service by a vehicle of its associated types, we seek to design a set of routes
for each type of vehicle in the fleet that minimizes the total distance traveled
by the fleet and satisfies the following constraints:
(1)

(2)

(3)

(4)
(5)

(6)

each customer i selects exactly one allowable vehicle type from its
associated
a particular type of vehicle is able to visit a customer i only if the
allowable vehicle type from its is selected by i;
no vehicle can travel between two customers unless both customers select
the same vehicle type;
if a vehicle visits a customer, then it leaves that customer;
a vehicle can be used at most once and it must start and finish at the
depot;
the total load of a route cannot exceed the capacity of the assigned type
of vehicle;

109

(7)

(8)

the number of routes designed for a vehicle type is not more than the
available number of the type of vehicles;
If the model takes the route length constraint into account, the total
distance of a route cannot exceed the bound.
The SDVRP can be shown to be NP-hard by starting with the VRP (see

[7]). As the associated allowable vehicle types for each customer i contain
all vehicle types, namely, every type of vehicle can service every customer,
the SDVRP becomes the VRP; therefore, the SDVRP is at least as hard as
the VRP. To solve a practical size SDVRP, an exact method would require a
large amount of computing time. Accordingly, we should tackle a moderate-
size SDVRP problem using heuristics, and note that all existing SDVRP
approaches are heuristics.

The SDVRP can be used to model many real-life application problems.
Rochat and Semet [14] encountered the SDVRP-related problem in
delivering pet food and flour that occurs in a major company producing pet
food and flour in the French part of Switzerland. The great variety of
location of all customers (center of a city, village, isolated farm, and so on)
makes the access of all vehicles to all customers unlikely. They modeled the
problem as an SDVRP-variant and solved it heuristically. Semet and Taillard
[15] solved an SDVRP-variant, real-world problem that involved 45 grocery
stores located in the cantons of Vaud and Lalais in Switzerland. Some stores
received deliveries by a road train (a truck pulling a trailer) or by a truck
only, while others received deliveries by a truck only and no road trains.
This type of the practical problem can be modeled as a SDVRP or SDVRP-
variant whenever there exist dependencies amongst customer sites and
vehicle types.

The basic VRP and its many variants have attracted the attention of many
researchers over the last two decades; however; to our knowledge only a few
papers have presented solution approaches for solving the SDVRP. Nag [12]
and Nag et al. [13] were the first to take dependencies amongst customers
(sites) and vehicle types into account. They presented four heuristics for
solving the SDVRP and a set of twelve SDVRP test problems. A description
of the heuristics and the solutions to test problems are reviewed in detail in
Chao et al. [2].

Chao, Golden, and Wasil [1,2] presented an SDVRP solution approach
that is a two-phase heuristic. In the first phase, they generated an initial
solution quickly by balancing the workload amongst the different vehicle
types and accomplished this by solving a relaxation of an integer program. In
the second phase, they improved the initial solution by deterministic
annealing [9]. They used the record-to-record travel procedure of Dueck [5]
and Dueck and Scheurer [6]. The improvement phase considers a series of
uphill and downhill one-point movements that move one customer at a time.

110

Cordeau and Laporte [4] first viewed the SDVRP problem as a special
case of the period Vehicle Routing Problem (PVRP), and adopted the Tabu
Search Method for solving the PVRP to solve the SDVRP. Their method
outperformed all existing methods in the literature.

In this paper, we develop a method that combines tabu search with
deterministic annealing to solve the SDVRP. Besides the frequency-based
tabu restriction, we define the deviation as a new type of tabu restriction.
The values of deviation are self-adjusted within two ranges, one with the
smaller deviation values to cany out the intensification search, and the other
one with the larger deviation values to carry out the diversification search. In
addition; customers are moved and exchanged strategically within or
amongst vehicle types. We hope that by using the self-adjusted deviation
values and strategically moving or exchanging customers, the new heuristic
will consistently outperform all existing heuristics for the SDVRP.

The rest of this paper is organized as follows. In the next section, we
describe the new heuristic method in detail. In the third section, we test the
new method on 23 benchmark test problems taken from the literature. Our
conclusions are given in section 4.

2. A NEW TABU SEARCH HEURISTIC FOR THE
SDVRP

In this section, a new heuristic method based on the tabu search
combined with a new type of tabu restriction is developed for solving the
SDVRP. This new method has two phases: the construction phase for
generating an initial solution easily and quickly, and the improvement phase
for improving the initial solution with a variant of tabu search. Next, we
describe each step in detail, and then integrate each of them into a new
heuristic for solving the SDVRP.

2.1 The Construction Phase

In the construction phase, we generate an initial solution which is the
starting point for the search procedure. First, we select an allowable vehicle
type for each customer, and then solve a basic VRP for each vehicle type. In
Chao, Golden, and Wasil [1,2], the vehicle type selection considers
balancing the workload amongst the different vehicle types and solving a
sequence of 0-1 integer programs to get a feasible solution. In this paper, the
balance of workload amongst the vehicle types is no longer a consideration.
Instead, the percentage of total capacity of each vehicle type is adjusted by

111

solving a series of relaxed generalized assignment problems. The
generalized assignment program is giving by

subject to

where = the selection cost of customer i selecting vehicle type j, where

if customer i chooses vehicle type j; and 0, otherwise,
if and 0, otherwise,

= the total capacity of type j vehicle,
M = number of vehicle types,

= the used percentage of total capacity for vehicle type j.

For computing a seed point is generated for each vehicle type j as the

center of gravity for customers whose allowable vehicle types contain j. The
coordinates of the seed point of the vehicle type j can be computed

as , and where is the

Euclidean coordinate of customer i, and we compute the selection cost as

where is the distance between customer i and seed point j, and 0 denotes
depot. The objective function (1) minimizes the total selection cost.
Constraints (2) and (4) ensure that exactly one allowable vehicle type is
selected for customer i from Constraint (3) ensures the maximum load

112

of each vehicle type j to be less than or equal to percent of its total
capacity. In our LP relaxation, we replace the integrality restrictions (4) with

As proved in Chao, Golden, and Wasil [1], solving the LP (1),(2),(3), and
(6) produces a solution that contains at most 2M of the with fractional
values whenever the LP is feasible and bounded. That is, at most M
customers will not have integer valued solutions (either 0 or 1) and are not
assigned a vehicle type in an optimal solution to the relaxed linear program.
In most SDVRP problems, the number of vehicle types M is much smaller
than the number of customers N. After solving the relaxed assignment
problem, we round the largest for customer i to 1 in order to assign
exactly one vehicle type to customer i.

After the relaxed assignment problem assigns one vehicle type for each
customer, we use the Clarke and Wright savings algorithm [3] to solve the
basic VRP for each vehicle type over customers that select it. Due to the
rounding of noninteger variables or the tightness of capacity, the savings
algorithm may generate an infeasible solution for some vehicle type; that is,
a solution generated by the savings method may require more vehicles of a
certain type than are available. If this occurs for a certain vehicle type j, we
reduce the capacity rate (initially, it’s set equal to 1) by one percent and
uses the adjusted to solve the LP (1), (2), (3), and (6). The savings
algorithm is then used to generate a solution to the problem, and the of
construction phase continues until a feasible solution is generated.

2.2 Improvement Phase

In this section, we describe the steps used by tabu search (TS) in the
improvement phase. The basic form of TS for globally optimal solutions
with the assistance of adaptive memory procedures usually explores the
search space by moving from a solution to its best neighbor, even if this
results in a deterioration of the objective value, in order to increase the
likelihood of moving out of a poor local optimum. Solutions that were
recently examined with a certain attribution are forbidden or declared tabu
for a specified number of iterations unless it is overridden by aspiration
criteria. This type of tabu restriction is usually called frequency-based tabu
restriction and the number of iterations is called the tabu duration. An
intensification strategy is carried out by moving from the current solution to
its near neighbors. A diversification strategy usually moves solution the
current to a further neighbor by performing some less-frequently executed
candidates. Intensification and diversification are usually applied to

113

accentuate and broaden the search in the solution space. Tabu search has
enjoyed successes in a variety of problem settings such as scheduling,
transportation, and layout and circuit design. Glover and Laguna [8]
provided a detail survey and description of TS.

In this paper, we adopt the idea of the deviation in deterministic
annealing [5,6,9] to define a new kind of tabu restriction called objective-
based tabu restriction., Our idea is to carry out intensification and
diversification by using two different ranges of the values of the deviation.
In the next several sections, we design two types of movements, one-point
movement and two-point exchange, to generate neighbor candidates of a
solution, and both tabu restrictions and aspiration criterion are used in both
movements. We now describe each of them.

2.2.1 Tabu restriction and aspiration criterion

Two types of tabu restrictions are used in the new TS heuristic for the
SDVRP. The first is the frequency-based tabu restriction (FTB) that forbids
a customer being moved back to a certain route where it is just removed out
for a specified of tabu duration. The second is the objective-based tabu
restriction (OTB) that is the deviation or threshold in deterministic
annealing. A candidate with the objective function value greater than the
best objective function value plus the deviation will be forbidden as an OTB.
In deterministic annealing, it is not easy to choose the value of deviation
since a prescribed deviation does not work consistently well. We allow the
deviation is designed to move between a range of values, smaller values for
intensification and larger values for diversification. For intensification, we
set the initial deviation ratio (D) equal to 0.01 and the deviation equal to D
times the objective function value of the best solution obtained so far. If no
candidate move can be implemented after trying all possible non-tabu
candidates with current D, then D is increased by increment d=0.01, and the
intensification terminates when D increases up to 0.2. For diversification,
initially we set D equal to 0.2, and d equal to 0.05. The diversification
terminates when at least two iterations have been tried and a new solution is
generated, that is, the search procedure has reached a new solution region,
and we restart to perform the intensification and descent steps. We explain
this in more detail in the section on stopping rules.

In the tabu search algorithm, the aspiration criterion is introduced to
determine when tabu restrictions can be overridden. We use the criterion
aspiration by objective that overrides the tabu restriction whenever a
movement produces a solution with an objective function value less than the
current best value. To generate the candidate neighborhood of a current
solution, we use two types of movements: (1) a one-point movement to

114

move a customer from one route to another route feasibly, and (2) a two-
point exchange to move two customers between two different routes
feasibly. Both movements involve two types of tabu restrictions and the
aspiration criterion and they take the site-dependencies and the other
restrictions into account to preserve feasibility. The details of two types of
movements are presented in the next subsections.

2.2.2 Neighborhood Generators

The One-Point Movement (OPM) tries to move one customer at a time
from one route to another rout. In the intra-type OPM (Intra OPM), we try
move a customer to another route in the same vehicle type while checking
both tabu restrictions and the aspiration criterion. We outline the steps in
Table 1.

The inter-type one point movement (Inter OPM) is performed similarly to
the intra OPM. However, the inter OPM tries to move a customer to a route
with a different allowable vehicle type. The detailed steps are listed in Table
2.

The difference between intra OPM and inter OPM is that the site-
dependent constraints need to be checked in the inter OPM. We check two
types of tabu restrictions and the aspiration criterion to carry out the cheapest
insertion. The movement with the smallest objective function value but
belonging to an FTB cannot be treated as a candidate unless it meets the

115

aspiration criterion. The OTB is used as the second tabu restriction to make a
decision of whether nor not to make the candidate move. The amount of the
OTB deviation adjusts automatically in the small and large ranges of values
to carry out intensification and the diversification search, respectively.

Our two-point exchange (TPE) also has intra-type and inter-type steps.
The intra and inter TPE (intra TPE and inter TPE) exchange two customers
in two different routes in the same vehicle type and in different vehicle
types, respectively. The intra TPE does not need to take into account site-
dependent constraints, but the inter TPE needs to check the site-dependent
constraints in both routes to preserve the feasibility. The tabu restrictions
and the aspiration criterion are used in the same way as those in the OPM.
The intra TPE and the inter TPE are listed in detail in Table 3 and Table 4,
respectively.

2.2.3 Local Clean-up

To improve a solution locally, the 2-opt procedure (see Lin [10]) is
applied to every route. The 2-opt will not accept any uphill move and the
solution is improved without alternating the assignment of allowable vehicle
type of any customer. Furthermore, the tabu restrictions and aspiration
criterion are not applied in the local 2-opt procedure.

116

2.2.4 Stopping Rules

The improvement phase has three stages: the intensification stage, the
descent stage, and the diversification stage (See Table 5). The intensification
stage searches the best neighbor by using smaller values of the deviation; the
descent stage allows no uphill moves. The diversification stage leads the
searching procedure to explore a new solution region by using larger values
of the deviation given the high quality solution generated in the
intensification and the descent stages. Three stages are performed
consecutively and each terminates by checking three different local stopping
rules. The intensification stopping rule (ISR) has two parts, either the loop is
running full, (namely, k > K in Table 5) or the deviation ratio increases up to
a certain prescribed threshold (namely, D>0.2 in Table 5). The
diversification stopping rule (DSR) terminates the loop when at least two
iterations have been performed and at least one candidate move has been
made. The descent stopping rule (DSR) terminates the loop when no better
solution has been generated.

The global stopping rule (GSR) is used to terminate the entire search
procedure. We perform the three stages at least 30 times and if no better
solution appears in 10 consecutive iterations, then we terminate the entire
search procedure. At first, intensification is applied to improve initial
solution produced in the construction phase. The descent stage is applied to
locally improve the best solution obtained in the intensification stage.
Finally, the diversification stage is applied to generate a new search region to
generate a new initial solution for the next iteration. The iterations are

117

performed consecutively in attempt to fine a global optimal solution to the
problem. After trying at least 30 times and no better solution generated in 10
consecutive iterations, we terminate the procedure. Our new heuristic to
solve the SDVRP is shown in Table 6.

3. COMPUTATIONAL TESTING

In this section, we apply the new tabu search method for the SDVRP
(TSSDVRP) to the set of 23 test problems taken from literature. Problems 1
to 6 are due to Nag et al. [13], problems 7 to 18 are from Chao et al. [2], and
problems 19 to 23 are converted from five well-known basic VRPs in Chao
et al. [2]. The dimensions and summaries of all test problems are available in
Chao et al. [2], where the number of customers ranges from 25 to 325, the
site-dependent constraints are involved in all problems, the vehicle types are
between two and three, and allowable vehicle type combinations ranges from
4 to 6 (see Tables 2, 6, and 7 in [2]).

The TSSDVRP was coded in Fortran, compiled with Digital Visual
Fortran 5.0, and run on a 1.7 Ghz Pentium IV-based PC. The XMP code of
Marsten [11] was used to solve the relaxation of the generalized assignment
in the initialization phase.

We compare the results by the TSSDVRP with those produced by
Cordeau and Laporte (CL)[4] whose approach outperforms each of previous
methods due Nag et al. [13] and Chao et al. [2]. We used one set of
parameter values in TSSDVRP to solve 23 benchmark problems. We
compared the solutions obtained by TSSDVRP to the best solutions founded
by CL [4] in Table 7.

We compare the performance of our new heuristic with one set of
parameter values (denoted by TSSDVRP (A) in Table 7) to the performance
of the heuristic of Cordeau and Laporte [4] with one set of parameters values
(denoted by CL-one (B) in Table 7) on the 23 problems. TSSDVRP
produces the best objective function value on 13 problems, CL-one produces
the best objective function value on six problems, and the two heuristic are
tied on four problems. On average, the objective function values of the
solutions produced by TSSDVRP are 0.42% lower than those generated by
CL-one. TSSDVRP is very fast-one average it takes 3.43 minutes to solve a
problem. Overall, TSSDVRP finds five new best-known solutions (problems
13, 14, 15, 21 , 23).

118

4. CONCLUSIONS

In this paper, we developed a new tabu search algorithm for solving the
SDVRP and tested it on 23 test problems taken from literature. Besides the
frequency-based tabu restriction, we also applied the objective-based tabu
restriction to solve the SDVRP, and varied the amount of the objective-based
tabu restriction to carry out the tabu intensification and diversification
search. The new tabu search method is simple, easy to code, and works
effectively and efficiency. Compared with the deterministic annealing
method, our new method involves two types of tabu restrictions that avoid
cycling and help to escape setting trapped in a poor local optimal solution.
The values of deviation are more easily set to those in the threshold
acceptance method. Clearly, the new TS method solves the SDVRP quite
effectively. In the further work, we hope to apply our objective-based tabu
search method to other optimization problems.

119

Acknowledgments
This research is supported by the National Science Council of the

Republic of China in Taiwan under grants number NSC88-2416-h-145-001.
This support is gratefully acknowledged.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

I. M. Chao, B. L. Golden, and E. A. Wasil, A new algorithm for the site-dependent vehicle
routing problem, in: Advances in Computational and Stochastic Optimization, Logic
Programming, and Heuristics Search, edited by D. L. Woodruff (Kluwer Academic
Publishers, The Netherlands, 1998), pp. 301-312.
I. M. Chao, B. L. Golden, and E. A.Wasil, A computational study of a new heuristic for the
site-dependent vehicle routing problem, INFOR: Information Systems and Operational
Research 37(3), 319-336 (1999).
G. Clarke, and J. W. Wright, Scheduling of vehicles from a central depot to a number of
delivery points, Operations Research 12, 568-581(1964).
J. F. Cordeau, and G. Laporte, A Tabu Search Algorithm for The Site Dependent Vehicle
Routing Problem with Time Windows, INFOR: Information Systems and Operational
Research 39(3), 292-298 (2001).
G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-
record travel, Journal of Computational Physics 104, 86-92 (1993).
G. Dueck, and T. Scheurer, Threshold accepting: a general purpose optimization
algorithm, Journal of Computational Physics 90, 161-175 (1990).
M. R. Garey, and D. S.Johnson, Computers and Intractability: A Guide to The Theory of
NP-Completeness (Freeman, San Francisco, 1979).
F. Glover, and M. Laguna, Tabu search, in: Modern Heuristic Techniques for
Combinatorial Problems, edited by C. R. Reeves (John Wiley & Sons, New York, 1993)
pp. 70-150.
B. L. Golden, E. A. Wasil, J. Kelly, and I. M. Chao, The Impact of Metaheuristics on
Solving the Vehicle Routing Problem: Algorithms, Problem Sets, and Computational
Results, in: Fleet Management and Logistics, edited by T. Crainic and G. Laporte (Kluwer
Academic Publishers, Dordrecht, The Netherlands 1998), pp.33-56.
S. Lin, Computer Solutions of the Traveling Salesman Problem, Bell System Technical
Journal 44, 2245-2269 (1965).
R. E. Marsten, The Design of the XMP Linear Programming Library, ACM Transactions
on Mathematical Software 7(4), 481-497 (1981).
B. Nag, Vehicle Routing in the Presence of Site/Vehicle Dependency Constraints (Ph.D.
Dissertation, College of Business and Management, University of Maryland at College
Park, 1986).
B. Nag, B. L. Golden, and A. Assad, Vehicle Routing with Site Dependencies, in: Vehicle
Routing; Methods and Studies, edited by B. L. Golden and A. Assad (North Holland,
Amsterdam, 1988), pp.149-159.
Y. Rochat, and F. Semet, A Tabu Search Approach for Delivering Pet Food and Flour in
Switzerland, Journal of Operational Research Society 45(11), 1233-1246 (1994).
F. Semet, and E. Tailard, Solving Real-life Vehicle Routing Problems Efficiently Using
Tabu Search, Annals of Operations Research 41, 469-488 (1993).

This page intentionally left blank

A HEURISTIC METHOD TO SOLVE THE SIZE
ASSORTMENT PROBLEM

Kenneth W. Flowers1, Beth A. Novick2, Douglas R. Shier2

1Department of Mathematics and Computer Science, Georgia College and State University,
Milledgeville, GA 31061

2Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975

Abstract This paper considers the size assortment problem, in which a large number of
size distributions (e.g., for retail stores) need to be aggregated into a relatively
small number of groups in an optimal fashion. All stores within a group are then
allocated merchandise according to their common size distribution. A neigh-
borhood search heuristic is developed to produce near-optimal solutions. We
investigate the use of both random and “intelligent” starting solutions to initiate
the heuristic. The intelligent starting solutions are based on efficiently solving
one-dimensional versions of the original problem and then combining these into
consensus solutions. Computational results are reported for some small specially
structured test problems, as well as some large test problems obtained from an
industrial client.

Keywords: Clustering, heuristic, matching, minimum clique, neighborhood search

1. Introduction
Merchandise optimization systems are increasingly being incorporated into

large retail organizations to guide decisions using a variety of optimization
models [15]. The current work is motivated by a particular merchandise opti-
mization problem brought to our attention by an industrial client. Specifically,
a nationwide company produces a particular item, sold in a variety of sizes by
its many retail stores. Each store has a known demand for sales of the item by
size. The parent company cannot supply the item to meet exactly the demand
distribution at every individual store. Rather the stores are to be grouped into
a fixed number of bins with the stores comprising each bin being
treated similarly. Namely, each store in a given bin is allocated merchandise
according to the same size distribution. This grouping into a fixed number of
bins should be done in an optimal or near-optimal fashion relative to an appro-
priate objective measure. (The allocation into a fixed number of bins reflects

122

the constraints imposed by the industrial client.) As will be seen, this size as-
sortment problem is a type of clustering problem that combines both the and

distance metrics in a novel way.
To begin, we formulate the problem as follows. Suppose that there are

given stores, selling an item available in sizes. The demand at store
for items of size is denoted so the total (sales)

volume generated by store is then The distribution of the
sizes (or profile) for store is given by the normalized values for

We wish to aggregate the stores into exactly bins
where the center of bin is given by the average of all store profiles in that
bin, weighted by the store volumes That is, for

Notice that the center is itself a valid probability distribution (profile). To
measure the degree of similarity between the profile for store and the center
of bin define the distance as the weighted sum of absolute differences
between these two distributions:

Thus measures the number of items of store that are misclassified by using
the (common) distribution instead of Then the total misallocation cost
associated with the set of bins is given by

The size assortment problem requires finding a collection of bins that
minimizes the total misallocation cost

We remark that requiring the center of bin to itself be a distribution leads
to the definition (1) of as a centroid, which in turn minimizes the (weighted)
sum of squared deviations between and each in bin On the other hand,
using the sum of absolute values in (2) is appropriate since we want to measure
the total number of misallocated items. Thus the current problem represents
an interesting (and natural) blend of both and distances. This problem is
different from other multidimensional clustering [8, 12, 14, 17] and location
problems [1,9] previously studied in the literature.

To illustrate these concepts, consider the example having stores and
sizes, whose demands are displayed in Table 1a together with the

store volumes The normalized store profiles are given in Table 1b. Consider

123

the candidate set of bins From
(1) the center of bin is the weighted average of the profiles for stores
2,5,7: namely Within this bin, the distances
from each store to the center of the bin are given by (2):

so the misallocation cost within bin is 10.333. The
corresponding misallocation cost for bin is 2.286 and for bin is 2.265,
giving a total misallocation cost which turns out to be the
smallest cost possible. Hence this given set of candidate bins is in fact optimal.

2. The Size Assortment Heuristic

Although finding an optimal set of bins for stores can be accomplished
by evaluating the objective function for all possible partitions of the

stores into groups, the number of such partitions is the Stirling number
of the second kind [6], which grows exponentially (asymptotically

like Indeed, even for stores and bins, the number of
partitions is 1,096,190,550. Consequently, checking all possible partitions is
not feasible. In general, this optimization problem (like most clustering prob-
lems in higher dimensions) is NP-hard [2] and so a reasonable approach is to
seek heuristic solutions that can be computed in a modest amount of time. The
remainder of this section describes the components of a multistart, interchange
heuristic combined with a variable neighborhood search.

2.1 Bin-Center Algorithm

First we describe an important part of a heuristic tailored to this particu-
lar problem. Let us suppose that we are given an initial set of bins

(Various techniques for generating an initial set of bins will

124

be discussed in Section 3.) From this set of bins, a corresponding set of
centers can be computed using (1). Next we can assign each

store to its nearest center with respect to the distance defined in (2). This
assignment phase in general results in a new set of bins and the entire pro-
cess can thus be repeated. Such an alternating sequence of computing centers
from bins and assigning stores to bins (based on the distance to the nearest
center) is repeated until there is no change in the bins from the previous itera-
tion. This Bin-Center (BC) algorithm follows an alternating strategy familiar
in location-allocation approaches in the location literature [7, 11] as well as in
the HMEANS clustering algorithm [8, 14].

The feasible solution (set of bins) resulting from applying the BC algorithm
is not guaranteed to be a globally optimal solution, or even a locally optimal so-
lution. Accordingly, a more involved heuristic that employs the BC algorithm
as an integral part will be described next.

2.2 Local Improvement Phase

Once the BC algorithm has terminated, finding no further changes to the
current set of bins, we can invoke a local improvement phase [3, 7, 8, 11].
This phase will produce a locally optimal solution, one that cannot be further
improved by a simple interchange.

To describe this local improvement phase, let the current solution be de-
fined by an allocation vector relative to the stores.
That is, means that store is currently allocated to bin where

The misallocation cost associated with the allocation vector
X is denoted Also, define a neighbor of the allocation vector X to be
any allocation vector Y that differs from X in exactly one component. The
neighborhood N(X) of X, which consists of all neighbors of X, contains

vectors. With this notation, the local improvement phase is defined
by the pseudocode in Figure 1. In our implementation, the neighborhood of X
is explored in a natural sequential order, changing the allocation of store

in turn to each For each neighbor Y
of X, we first invoke the BC algorithm. If the resulting vector has a smaller
objective function value than X, then it replaces X and the process continues
anew. The local improvement phase continues until there is no neighbor of the
current solution that can be used to improve the misallocation cost. To ver-
ify that we have a locally optimal solution X, we must consider all
neighbors of X, which can be time consuming if is large.

2.3 Multistart Algorithm
Starting from a given initial solution we can use the BC algorithm fol-

lowed by the local improvement phase to obtain a local solution

125

Figure 1. Pseudocode for the local improvement phase

Figure 2. Pseudocode for the multistart heuristic

a function of the initial solution Moreover, as we vary the initial solu-
tion the final solution can vary also. In order to explore
various regions of the (vast) solution space of possible allocation vectors, and
to avoid getting trapped in inferior local solutions, we systematically vary the
starting configuration and then keep track of the best solution Y* (in terms
of objective function value) obtained over imax iterations. Pseudocode for
this multistart heuristic, similar to that used in [3, 9, 11], is given in Figure 2,
where it is assumed that has been initialized appropriately.

2.4 Postprocessing Phase

Upon termination of the multistart algorithm we obtain a locally optimal
solution Y*, which represents the best solution found in imax runs. Thus, no
improvement in the objective function value is possible by changing a single
component of the allocation vector Y*. That is, the neighborhood of Y* con-
tains no improving allocation vectors. It may however be useful to explore a
“higher order” neighborhood of the solution Y*. Consequently, let the
order neighborhood of an allocation vector X consist of all allocation
vectors that differ from X in exactly components. Since the size of
is quite large it is not feasible to explore the entire order neighborhood of
the current solution X. As in [3, 7, 11] we randomly sample a fixed number of
times (rmax) from each higher order neighborhood. Each such sampled Y is

126

then explored for improvement using the BC algorithm. Once a given neigh-
borhood is explored without an improvement, the next higher order neighbor-
hood is explored up to kmax neighborhoods. If at any point an improvement is
detected, we restart the process by resetting the value to 1. This postprocess-
ing phase, which carries out a variable neighborhood search [10], is described
by the pseudocode in Figure 3.

Figure 3. Pseudocode for the postprocessing phase

3. Initial Solutions

Application of the heuristic algorithm presupposes that we have in hand an
initial allocation of stores to bins. Several different techniques for generating
an initial solution were investigated. The first method for initially allocating

stores to bins is the random binning method. That is, taking each store
in turn, we randomly and independently select one of the bins and allocate
store to that bin. This method has the property that on average all bins will
have the same size (contain approximately stores).

A second method of constructing initial solutions is based on solving one-
dimensional versions of the original store allocation problem. Specifically, let
us fix the size and consider the one-dimensional problem
defined by the quantities and the weights

That is, we wish to determine bins that minimize

where is the one-dimensional centroid (1) of the demands in bin for
size If we assume that the stores are re-ordered so that

then there is an optimal solution for (3) in which each bin consists
of consecutively numbered stores [12, 17]. This “string property” can then be
exploited to develop a dynamic programming solution algorithm. Namely, let

127

be the minimum value of (3) achievable for stores and using
exactly bins. By conditioning on the smallest store in the last bin we
obtain the recursion

where represents the cost of grouping together stores into
a single bin. Using the initial conditions one can apply (4) to
successively calculate for and thus the
required

By use of the above recursion, we can obtain optimal one-dimensional par-
titionings of for all different sizes in time plus the time
to calculate all which can be done in time. Each of these parti-
tionings can be used as an initial binning for the multistart heuristic described
in Section 2. We term this method intelligent binning, in contrast to the random
binning method described earlier.

For the 8 store example in Table 1 a, sorting the stores in nondecreasing order
by the values places stores in the order 1,3,2,5,7,6,8,4. Applying
the recursion (4) then produces the optimal bins {1,3}, {2,5}, {7,6,8,4} for
size 1. Similar calculations yield the optimal bins {4,8,6,1,3}, {7,5}, {2} for
size 2 and the optimal bins {2,7}, {5,8,4,6}, {1,3} for size 3. When these
three intelligent starting solutions are used to initiate the multistart heuristic
we obtain total misallocation costs of 17.949, 14.884, and 14.884 respectively
(without postprocessing). Thus in two of the three cases, we obtain the op-
timal solution to the original 3-dimensional size assortment problem. (When
postprocessing is applied to the solution with objective function value 17.949,
then the optimal solution is also obtained.) Computational results on larger test
examples will be reported in Section 4.

Since each one-dimensional solution focuses only on a single size it
seems natural to investigate combining the individual solutions into one (or
several) “consensus” solutions for initiating the multistart heuristic. Let de-
note the optimal binning obtained by solving problem Hence is an

of into nonempty subsets or blocks. We therefore want
to obtain a consensus of from
In general, consensus problems of this type are known to be NP-hard [4] so we
will investigate some simple, computationally efficient techniques to deliver
partitions that provide near-consensus solutions.

To this end, rather than seeking the partitions directly, we first search for a
set of “leaders” or “representatives” that in some sense will represent the
blocks of More precisely, suppose that we identify a set of representatives

By using the distance measure, as in (2), we
can allocate each store to a closest representative creating a collection of

bins and thus an Ideally, we would like the representatives

128

to be consistent with each of the given partitions Namely, each of
occurs in a separate block of for We call such

a set a simultaneous system of distinct representatives
for the

When it is not difficult to obtain a 2-SDR, or to determine that none
exists, by means of bipartite matching. Namely, suppose that has blocks

and that has blocks Define the bipartite graph G
having vertex set and edges when-
ever Then a perfect matching M of G provides the required
2-SDR. That is, for each edge select On the
other hand, if no perfect matching exists, then there can be no 2-SDR. To rem-
edy this situation, we can more generally seek an approximate 2-SDR. Namely,
let now be the complete bipartite graph with partite sets and

Define the weight of edge to be the minimum dis-
tance between any two profiles where We
then seek a minimum weight perfect matching in For each matching
edge we can select a representative that achieves the
minimum distance between and

Unfortunately, for the problem becomes NP-hard, based on
a reduction from the 3-dimensional matching problem [5]. Consequently, one
approach to finding a near-consensus partition for is to apply the
minimum weight perfect matching approach to successive pairs of partitions.
Specifically, let be a partition derived from by first obtaining a set of

representatives (via a minimum weight perfect matching) and then assigning
each store to a nearest such representative. Next, apply the same procedure to

and to obtain and so forth, eventually obtaining a near-consensus
partition

A somewhat more direct, and satisfying, approach directly models the inter-
actions between all the partitions We will employ the conflict
graph CG, having vertices that correspond to stores and edges that correspond
to “conflicts.” To this end, let the label on vertex be where

is the number of the (unique) block that contains store in
partition An edge exists for all and has the associated
weight indicating the number of components for which We
seek then a minimum weight clique consisting of exactly vertices of CG.
Since this problem is NP-hard, we describe a simple heuristic to obtain an

of low total weight, which in turn provides a set of representatives. If
the total clique weight is 0, then we have in fact obtained an

The heuristic algorithm given Figure 4 when applied to the weighted graph
first sorts the vertices by their weighted degree

Starting with the first vertex, it successively appends a new vertex
to the current set S of selected vertices. Vertex is chosen to have minimum

129

Figure 4. Pseudocode for the minimum weight clique heuristic

contribution to the total weight of the clique induced by in the case
of ties, the lowest indexed such vertex is appended. This process continues
until In practice the algorithm min_clique can be implemented by a
suitable modification of Prim’s minimum spanning tree algorithm [16],
which is particularly appropriate since CG is dense. Variations on this basic
algorithm are possible. For example we could randomly sort all vertices having
the same weighted degree rather than break ties based on indices. Or we could
simply sort all vertices randomly, thus ignoring their weighted degree.

4. Computational Results

We report on computational experiments in which we used synthetic test
problems of varying sizes as well as some real-world problems. Our objective
is to see how well the heuristic approach performs, possibly augmented by the
postprocessing phase. We also wish to compare random binning (which pro-
duces a diverse set of initial solutions) with intelligent binning choices (based
on solving one-dimensional problems). By injecting randomness into the sort-
ing phase of min_clique, we can combine both intelligence with diversifica-
tion to produce a variety of consensus solutions.

Preliminary computational studies revealed that, especially for larger prob-
lems, the local improvement phase, which thoroughly searches the neighbor-
hood of each successive solution X, can be time consuming. In particular, the
local improvement phase takes steps simply to verify local optimality
at termination. In our empirical testing we observed that if an improvement is
found, it is generally found quite early in the exploration of the neighborhood
N(X) . Therefore, we propose exploring only a certain fraction (say 10%) of
the neighbors at each step. Throughout the computational results re-
ported here, we have adopted this strategy of purposely limiting the exploration
of each N(X).

The first set of test problems involved stores having
sizes and bins. To generate these test problems, we began with
beta distributions, each representing a distinctive shape, obtained by varying

130

the beta parameters Each such beta distribution was discretized
to produce a “base” probability distribution over the sizes. Then we
perturbed each of the base probabilities by a random
multiplicative factor drawn uniformly from After normalization
this produced a set of “sibling” profiles associated with the given base
distribution The volume was randomly generated to yield the demands

for each store In our computational study, we varied the parameter
Five replications (test data sets) were generated for

each pair The test data sets are available at the web site [13], together
with the best known solutions.

Results for this suite of test examples are summarized in Table 2, in which
we compare the use of two types of initial starting solutions within the
multistart heuristic: random binning and one-dimensional binning. For the for-
mer, we generated imax = 30 random starting solutions, while for the latter
we simply used the available one-dimensional solutions. Table 2 shows
the overall percent of time the best known solution was achieved by each pro-
cedure (RANDOM or 1-D) after the local improvement phase was executed.
In fact for every one of the 45 test problems, the multistart heuristic (without
postprocessing) was able to determine the best known binning by using at least
one of the imax = 30 random starts or one of the one-dimensional
starts. As observed in Table 2, the 1-D starts are much more effective, ob-
taining the best known solutions in 50–80% of the cases, whereas the random
starts are succcessful in only 19–45% of the cases. It is interesting to note that
for random starts this “yield” percent did increase for larger values of Even
for the largest test problems the heuristic was fast, requiring only
2–4 seconds to execute all imax = 30 random starts on a desktop computer
running at 533 MHz.

131

We also applied the heuristic approach to a pair of larger, proprietary prob-
lems supplied by an industrial client. In both examples, postprocessing was
used with the parameters kmax = 10 and rmax = 100. The first industrial
problem had stores, sizes, and bins. When we com-
pared random and 1-D starts, a better solution was found using the multistart
heuristic with imax = 30 random starts, followed by postprocessing. Post-
processing decreased the misallocation cost (objective function value) by only
0.05%. Using the multistart heuristic with the one-dimensional starts
and postprocessing produced a solution with cost 0.5% higher than the best
random solution. On the other hand, the time to find this solution (9 seconds
in total) was only one-fifth of that required to find the best random solution.

We also investigated the use of consensus solutions to initiate the multistart
heuristic. In particular we generated 10 consensus solutions (from the three
1-D initial solutions) by applying the min_clique algorithm. The best solution
was obtained by randomly ordering all vertices rather than ordering them by
their weighted degree This produced a solution with clique weight 1 and
cost 0.09% lower than the best random solution obtained in imax = 30 runs.

The second industrial problem had stores, sizes, and
bins. The best solution was found using the multistart heuristic with imax =
30 random starts, followed by postprocessing. Postprocessing decreased the
objective function value by only 0.04%. Using the multistart heuristic with the

one-dimensional starts and postprocessing produced a solution with cost
0.5% higher than the best random solution in 192 seconds, one-fourth of the
time needed to obtain the best random solution.

Ten consensus solutions were generated from the six 1-D initial solutions
using the min_clique algorithm, ordering vertices by their weighted degree. In
every case we got a clique with total weight 1, and found a solution (after
postprocessing) with cost 0.03% higher than the best random solution. When
vertices were randomly ordered within the min_clique algorithm, we obtained
a solution with clique weight 3 and cost 0.3% higher than the best random
solution.

In conclusion, the preliminary computational tests conducted here showed
that the overall multistart heuristic was effective in solving all synthetically
generated test problems. Also for two larger, real-world problems the use of
random (diverse) starts consistently gave high quality solutions, when aug-
mented by postprocessing. (In fact our solutions were 7–10% better in objec-
tive value compared with the solutions being used by our industrial client.) The
intelligent 1-D starts were almost as good as the random starts and were com-
putationally less demanding. Since the number of such 1-D solutions is limited
by the problem parameter we also investigated the generation of consensus
solutions from these 1-D solutions to initiate the multistart heuristic. Using
the best solution from 10 such consensus starts provided a slight improvement

132

over using 1-D starts alone, though it did not show a clear advantage over us-
ing 30 random starts. Our tentative conclusion is that generating diverse solu-
tions (random starts) seems to work quite well for the size assortment problem.
Additional computational testing on large, structured test problems (combined
with exploring the effects of varying the algorithm parameters) is certainly war-
ranted to verify this conclusion. We believe that the use of 1-D solutions and
the derived consensus solutions seems promising and may prove to be useful
in other contexts. This too is an area for further research.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

I. Bongartz, P. H. Calamai, and A. R. Conn, A projection method for norm location-
allocation problems, Mathematical Programming 66 (1994), 283–312.
P. Brucker, On the complexity of clustering problems, in Optimization and Operations
Research, M. Beckmann and H. P. Kunzi (eds.), Lecture Notes in Economics and Math-
ematical Systems 157, Springer, Berlin, 1978, pp. 45–54.

S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro, Local search with perturbations for
the prize-collecting Steiner tree problem in graphs, Networks 38 (2001), 50–58.

W. H. E. Day and F. R. McMorris, Axiomatic Consensus Theory in Group Choice and
Biomathematics, SIAM, Philadelphia, 2003.
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.
R. P. Grimaldi, Discrete and Combinatorial Mathematics, 5th edition, Pearson Addison
Wesley, Boston, 2004.

P. Hansen and Variable neighborhood search for the Location
Science 5 (1997), 207–226.

P. Hansen and J-MEANS: a new local search heuristic for minimum sum
of squares clustering, Pattern Recognition 34 (2001), 405–413.

P. Hansen, and E. Taillard, Heuristic solution of the multisource Weber
problem as a problem, Operations Research Letters 22 (1998), 55–62.

and P. Hansen, Variable neighborhood search, Computers & Operations
Research 24 (1997), 1097–1100.

and P. Hansen, Solving the problem with tabu search
and variable neighborhood search, Networks 42 (2003), 48–64.
M. R. Rao, Cluster analysis and mathematical programming, Journal of the American
Statistical Association 66 (1971), 622–626.
D. Shier, http://www.math.clemson.edu/faculty/Shier/Shier, Test problems for the size
assortment problem, July 2004.

H. Späth, Cluster Analysis Algorithms for Data Reduction and Classification of Objects,
Ellis Horwood, Chichester, 1980.
Sun Microsystems, http://www.sun.com/br/retail_415/feature_merch.html, Merchandise
optimization drives the sales, 2003.
R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983.
H. D. Vinod, Integer programming and the theory of grouping, Journal of the American
Statistical Association 64 (1969), 506–519.

HEURISTIC METHODS FOR SOLVING
EUCLIDEAN NON-UNIFORM
STEINER TREE PROBLEMS

Ian Frommer,1 Bruce Golden,2 and Guruprasad Pundoor2

1Department of Mathematics, University of Maryland
College Park, MD 20742

2 R.H. Smith School of Business, University of Maryland
College Park, MD 20742

Abstract We consider a variation of the Euclidean Steiner Tree Problem in which
the space underlying the set of nodes has a specified non-uniform cost
structure. This problem is significant in many practical situations, such
as laying cable networks, where the cost for laying a cable can be highly
dependent on the location and the nature of the area through which it is
to be laid. We empirically test the performance of a genetic-algorithm-
based procedure on a variety of test cases of this problem. We also
consider the impact on solutions of charging an additional fee per Steiner
node. This can be important when Steiner nodes represent junctions
that require the installation of additional hardware. In addition, we
present a novel way of visualizing the performance and robustness of
the genetic algorithm.

1. Introduction
The minimal spanning tree (MST) problem deals with connecting a

given set of nodes in a graph in a minimal cost way. In a Steiner tree,
we are allowed to use additional nodes, known as Steiner nodes, if doing
so reduces the total cost. Steiner tree problems find applications in
various areas such as the design of communication networks, printed
circuits, and the routing of transmission lines [1, 2, 4]. There are many
versions of the Steiner tree problem. In the Steiner problem in graphs,
a graph G = (V, E) is given, where V is a set of nodes and E is a set
of edges connecting nodes in V. The goal is to obtain a least-cost-tree
configuration which contains all of the nodes in a specified subset of
V. Nodes in V that are not in the given subset may also be used. In

134

the Euclidean Steiner problem, a given set of nodes is to be connected
in Euclidean space. Another version involves rectilinear configurations,
in which the arcs have to be either vertical or horizontal. A modified
version of this involves nodes located on a hexagonal grid [2, 4].

In general, Steiner tree problems have been shown to be NP-hard.
So, exact techniques proposed to find optimal solutions have exponen-
tial computational complexity in the worst case [5, 6], although special
cases are solvable in polynomial time. For the NP-hard cases, heuristic
approaches have been proposed to find near-optimal solutions. Gröpl et
al. [7] reviews several mostly greedy algorithms that have been applied
to the Steiner problem in graphs. Numerous randomized algorithms
exist as well. Barreiros [8] uses a genetic algorithm (GA) to solve the
Euclidean Steiner problem. Ribeiro and de Souza [9] use tabu-search-
based techniques for solving Steiner tree problems on graphs, where a
candidate set of Steiner nodes is prespecified. For the same problem with
directed arcs, simulated-annealing-based procedures have been proposed
in [10]. Julstrom [11, 12] applies various GA’s, including one using an
edge-set encoding, to the rectilinear Steiner tree problem. Coulston [4]
applies a genetic algorithm using a full-components-based encoding to
the non-uniform problem. Coulston’s work is closest to the work be-
ing presented here, but he considers any path between two nodes to be
an edge, while we restrict edges to be straight-line connections between
nodes. This restriction is relevant to some applications, such as circuit
design, in which components are connected by straight-line segments
of rigid wire. Another difference is our consideration of the impact of
charging additional penalties for Steiner nodes.

We consider the problem of finding near-optimal, non-directed Steiner
trees on a non-uniform grid. Each location in the grid has an associated
cost and a given set of nodes has to be connected in the form of a
spanning tree. This kind of problem is of relevance to many practical
situations, such as laying cable networks. There may be regions where
laying cable is prohibitively expensive, such as a prime location in a
metropolitan area, or other regions where it is cheaper. So the objective
is to find a set of additional nodes in the grid that can be used to connect
all the given nodes at a minimum cost.

In order to represent the cost structure of the space underlying the
nodes, it is necessary to use some type of grid. A hexagonal grid is a
reasonable choice since hexagons are the highest degree regular polygon
that can tile the plane, and such a tiling has the desirable property
that distances between centers of adjacent cells are equal [4]. While the
size of the cells may affect that quality of the solution, for the purposes
of this paper, we focus on finding the lowest cost Steiner tree for a

135

cost structure using a prespecified cell size. Note the use of a grid cost
structure will also simplify the search for optimal solutions because it
reduces an otherwise uncountable search space to one of a finite size. In
effect, this approach reduces the non-uniform variant of the Euclidean
Steiner problem we are studying, to a Steiner problem in a graph. The
two-dimensional Euclidean space is divided into hexagonal cells as shown
in Fig.1. Each cell has a cost associated with it and may contain at most
one of the nodes in the graph. Two nodes can be connected directly only
if a straight line of cells can be drawn between the cells containing the
two nodes. For example, in Fig.1, cells A and B can be connected, but
not cells A and C.

We are given a set of nodes, called terminal nodes, which have to be
connected in the cheapest way possible. As in the usual Steiner problem,
additional nodes not in the terminal node set may be used to connect the
terminal nodes. These additional nodes are the Steiner nodes. When
an edge is drawn connecting two cells such as A and B, the cost of
the edge is calculated as the sum of the costs associated with all the
intermediate cells. The cost of the tree is calculated as the sum of the
costs corresponding to all the edges plus the costs corresponding to each
node in the tree. We may also charge an additional fee for each Steiner
node.

Figure 1. Hexagonal tiling of a 2-dimensional space.

136

2. Genetic Algorithm: Queen Bee Selection
with Spatial-Horizontal Crossover

2.1 The Algorithm

The optimal solution to a Steiner tree problem is known as the Steiner
minimal tree (SMT). We implement a straightforward genetic algorithm
(GA) to find a Steiner tree (ST) whose cost is as close as possible to
that of the SMT. This GA was the top performer out of several variants
we tested, some of which were similar to ones used to solve the uniform
problem. The algorithm is as follows:

1.
2.

Input: terminal node set, grid cost structure
Generate Initial Population randomly
Steps 3–7 repeated for TMAX iterations
3.
4.
5.
6.
7.

Find Fitness (= ST cost) of each individual
Queen Bee Selection to select parents
Spatial-Horizontal Crossover on parents to produce offspring
Mutation 1 – add Steiner nodes at arc crossings
Mutation 2 – randomly move Steiner nodes

8. Output: final Steiner tree, time series of best Steiner tree costs,
MST on the terminal node set (for rough comparison), and total run
time.

2.2 Explanation
Input. The problem instances in this paper consist of various termi-
nal node sets and grid cost structures (see Figures 2 and 3).1 Some of
the grid cost structures used were uniform, one hill, two hills, one pit,
and two pits. The hill is essentially a discretized 2-dimensional Gaussian
distribution. The cost, C, of a cell is given by

where and are parameters. Letting be the center of
the grid causes the distribution to be centered on the grid. The standard
deviations, and control the shape of the hill. Variations on this
basic formula are used to create grid cost structures with two hills, one
pit (or negative hill), and two pits.

1To our knowledge, besides [4], there are no other test cases for this non-uniform problem.
Again, since [4] uses a different edge definition, any comparison would be indirect.

137

Figure 2. Sample hexagonal grid cost structures. The lighter the shading, the more
costly the cell. Clockwise from upper left: small hill, large hill, large 2-pit, small
2-hill.

We generated random terminal node sets and also constructed termi-
nal node sets of specific structures, such as a ring-like structure. Recall
from Sect. 1 that due to the hexagonal grid structure, it is not always
possible to connect any two nodes. Hence, given a set of terminal nodes
it may not necessarily be possible to connect them in a tree. Since we
wanted to use the minimal spanning tree as a rough comparison for our
GA Steiner tree, we generated our terminal node sets so that all of the
nodes in them could be connected by a tree. In Table 1, we define the
set of problems that we consider in this paper.

Initial Population. We use a population size of 40. Each individual
is represented by a fixed-length chromosome that can hold up to 1.1 N
Steiner node locations where N is the number of terminal nodes. The
locations are randomly generated from a uniform distribution of grid
locations. An example of a chromosome for N = 10 and a grid size of
20 by 20 is:

138

Figure 3. The node sets.

where each of the 11 (=1.1N) pairs represents a Steiner node location.
Checks are performed to ensure that the Steiner node locations do not
coincide with the terminal node locations. No information from the

139

original problem other than the grid size, the number of terminal nodes
and their locations, is used to construct the initial population; the initial
population is otherwise random.

Fitness. For each individual in the population, the algorithm de-
termines the Steiner tree as follows. Given the complete graph over the
terminal nodes and the Steiner nodes encoded in a particular individual,
a MST is found. Degree-1 Steiner nodes and their incident arcs are re-
moved as described in Sect. 3, to yield the individual’s Steiner tree. The
fitness of the individual is the cost of its Steiner tree. This cost includes
the cost of the cells containing tree edges and nodes, and possibly an
additional charge for each Steiner node used (see Sect. 7). This method
for finding a Steiner tree is quick, though not necessarily optimal for the
individual’s set of Steiner nodes.

Queen Bee Selection. The fittest individual (the Queen Bee) mates
with the remainder of the population [13]. Out of the resulting set of
offspring, the 40 fittest individuals are chosen to replace the current pop-
ulation. The mating procedure used is the spatial-horizontal crossover
described below.

Spatial-Horizontal Crossover. This operator produces two off-
spring from two parents by first splitting the grid into a top and bottom
(see Fig. 4). The exact location of the horizontal line is the vertical mid-
point of the grid plus a normal random variable (of mean 0 and positive
standard deviation). The Steiner nodes from Parent 1 that are below
the horizontal line are combined with the Steiner nodes from Parent 2
that are above the horizontal line to form Offspring 1. Likewise, Off-
spring 2 is formed from the Steiner nodes of Parent 1 that are above
the horizontal line combined with the Steiner nodes from Parent 2 that
are below the horizontal line. The Queen Bee is always one of the two
parents.

Mutation 1. It is possible that some of the arcs in the Steiner tree
found for a given individual, may cross each other. It is advantageous
to add Steiner nodes at these crossing locations. Within the algorithm,
these new Steiner nodes replace Steiner nodes in the individual’s chro-
mosome that are unused in the current tree. In practice, the percentage
of Steiner nodes in an individual that are used in a tree tends to be
small. Thus, there are typically many free locations into which a new
Steiner node may be added.

140

Figure 4. Horizontal crossover. The small dots in each plot represent the terminal
nodes. In the top two plots, stars represent the Steiner nodes for the two parents.
In the bottom two plots, triangles and squares represent the Steiner nodes in each
offspring that came from Parents 1 and 2, respectively. The horizontal crossover
location is indicated by the dotted line. The solid line segments indicate the Steiner
tree arcs.

Mutation 2. This operator randomly moves Steiner nodes belonging
to a given individual. The two fittest individuals in the population are
not subject to this mutation. A randomly chosen Steiner node is moved
to a random location with probability 0.20. This helps prevent solutions
from stagnating at local minima.

Output. Steps 4 through 8 are repeated TMAX times. Testing
indicated a value of 70 for TMAX was reasonable. At the conclusion of
a run, the following are reported:

a)

b)

the coordinates of the Steiner nodes in the best final Steiner tree,

a record of the Steiner tree cost of the fittest individual in the pop-
ulation after each iteration, and

141

c) the time it took for the algorithm to run.

In addition, the MST over the terminal nodes and the best final Steiner
tree are displayed along with the terminal nodes and Steiner nodes over
a color or gray-scale image of the grid cost structure (e.g., see Figures 5
through 7). The MST on the terminal nodes, found by Prim’s algorithm,
serves as a very rough comparison for the best final Steiner tree.

3. Improvement Procedures

The GA utilizes additional procedures in order to improve each Steiner
tree and to run more efficiently. These procedures remove degree-1
Steiner nodes, suggest potential Steiner nodes from arc intersections (see
Sect. 4), and reduce the amount of time spent finding potential arcs.

The degree of a node is calculated as the number of arcs having an
end-point at that node. If there are any degree-1 Steiner nodes in a
Steiner tree, then removing those nodes will lead to an improvement in
the solution value. Removing such Steiner nodes might lead to the degree
at some other Steiner node dropping to one. Those Steiner nodes can
also be removed from the tree. Hence, the GA employs a procedure to
iteratively remove degree-1 Steiner nodes while finding the Steiner tree.
Note that these Steiner nodes are not needed to connect the terminal
nodes.

As was mentioned previously, if there are any intersecting arcs in the
Steiner tree, the solution value might be improved by converting the
intersection node into a new Steiner node. This is because one of the
four arcs originating at that intersection can be deleted from the tree if
that node is converted into a Steiner node. This is implemented in the
GA as a mutation as described in Sect. 4. This procedure may not be
useful if the fee for additional Steiner nodes is very high.

In a straightforward implementation of the tree-finding routine, one
has to compute all the possible arcs during each iteration. This can be
a very time consuming task. One way to reduce the run time is to use
an arc saving approach in which we store the arc set at the end of each
iteration. This way, during the next iteration, if a node gets added, one
has to compute only those arcs that are new. This procedure leads to a
significant reduction in the run time.

4. Progressive Addition of Steiner Nodes

Since the formulation of this problem is unique, it is not possible to
directly compare our results with previous research. As a basis for com-
parison, we developed a simple enumerative algorithm named progressive
addition (PA). The idea behind this approach is to add a Steiner node at

142

each stage that gives the best Steiner tree. So Steiner nodes are added
in a sequential manner, one at a time. To begin with, each non-terminal
node in the hexagonal grid is tried as a potential Steiner node. The node
that gives a tree with the lowest cost is made permanent. In the next
stage, a second Steiner node is chosen that gives the minimum value
when used along with the terminal nodes and the first Steiner node.
This procedure is repeated until there is no further reduction in the tree
cost upon addition of new Steiner nodes.

This procedure is very time consuming since each potential Steiner
node in the grid is considered during each iteration. Similar to the
arc saving approach, we can implement an arc exchange approach here.
When one Steiner node replaces another, remove all the arcs correspond-
ing to the removed node and add only those arcs that originate from the
newly added node. But even with this improvement, the procedure is
very computationally burdensome.

5. Computational Experiments
We ran each algorithm (GA and PA) on numerous test cases using the

grid and node sets described in Sect. 2.2. We report the results on seven
of them in Table 2. In each case, the GA was run seven times for 70
iterations each time and the mean of the best fitness found in each of the
runs is reported. Seven runs is generally not sufficient to provide good
statistics. But additional experiments indicated that the final fitness
distribution for the GA is fairly tight about the mean. Overall, the
results indicate that the performances of the GA and PA are about even
and both are much better than the MST. The MST performs so poorly
because of the restriction on node connections imposed by the hexagonal
grid. Steiner nodes provide a way around this restriction.

We present examples of the final minimal spanning tree and best final
Steiner trees in Figures 5 through 7. Figure 5 illustrates how the GA
nicely finds a tree which avoids the high cost central region. This can
also be seen in Fig. 6. Note that in Fig. 5, the right-most Steiner node

143

Figure 5. MST (top, cost=6.38) and best final GA Steiner tree (bottom, cost=3.38)
for Problem # 6. Black circles indicate terminal nodes. White triangles indicate
Steiner nodes. The lighter the shading, the more costly the cell.

is superfluous; it can be removed without affecting the cost of the tree.
In Sect. 7, we consider charging an additional fee for Steiner nodes that
will help prevent the occurrence of superfluous ones. In Fig. 7, Steiner
nodes can be seen to cluster in the two low cost pits.

In terms of run times, PA tends to be quicker than the GA for the
small problems (21 x 17), but is often significantly slower for the large
problems (50 x 50) due to its combinatorial complexity. For example,

144

running in MATLAB on a 3.0 GHz machine with 1.5 GB of RAM, PA
usually took under 10 seconds on the small problems, compared with
2 to 3 minutes for the GA. On the large problems, PA took as long as
20 minutes, compared with 10 minutes for the GA. In addition, as the
problem size grows, the GA finds reasonably good solutions much more
quickly than the PA. For example, on a problem with an 80 x 80 grid,
the GA found a solution within 10% of the best solution found by either
algorithm, in under 10 minutes. The PA took over 30 minutes to do the
same. The GA found a solution within 20% of the best solution found by
either algorithm in under 2 minutes, while the PA took over 18 minutes.

6. Additional Methods of Visualization

Since the GA has randomness built in at many stages (e.g., initial
population, crossover, mutation, selection), it may not give the same
results each time it is run on the same problem. We can superimpose
all of the Steiner nodes from the best final trees of 50 runs of the GA
on a particular problem, on top of the grid. This image gives us an idea
of where most of the useful Steiner nodes reside. Not surprisingly, it
reveals that most Steiner nodes lie in low cost regions of the grid.

7. Effect of Imposing Additional Costs on
Steiner Nodes

In this section, we analyze the effect of imposing an additional cost for
each Steiner node. For example, Steiner nodes may represent junctions
that require the installation of additional hardware. We analyzed the
effect of varying the additional Steiner cost on Problem #1 (see Table 1)
by varying the cost per Steiner node from a low value of 0.1 to a high
value of 1. We tried ten different values of Steiner costs in this range and
for each value ran ten iterations. In addition to looking at the effect on
the number of Steiner nodes, we also analyzed the effect on the search
space. Table 3 gives the results obtained.

It can be observed that the cost of the final tree increases with an
increase in the additional cost for Steiner nodes. Also, we note that
the average number of Steiner nodes drops as we increase the Steiner
cost. Both of these are straightforward effects. What is more interesting
is the effect of the Steiner cost on the search space. Table 3 shows
that the standard deviations of the final tree cost and final number of
Steiner nodes both drop as we increase the penalty for adding Steiner
nodes. This indicates that the final results tend to be clustered together
more closely when the penalty is higher. This is because, in the case of
low penalties, even those Steiner nodes that lead to a slight reduction

145

in the MST cost get added since the slight reduction may more than
compensate for the increase in cost due to the additional Steiner node.
On the other hand, when the penalty is high, each Steiner node gets
added only if it results in a significant reduction in the MST cost. So, in
effect, the search space becomes smaller when we increase the penalty
for Steiner nodes.

8. Conclusions
In conclusion, we have considered a variation of the Euclidean Steiner

tree problem with non-uniform underlying cost structure. Using a ge-
netic algorithm with fairly simple operators we have found solutions
significantly better than those of the minimal spanning tree and compa-
rable to those of our enumerative algorithm, progressive addition. We
point out, however, that the GA scales better with increasing problem
size than the PA. The solution trees are able to correctly avoid high cost
areas while finding low cost regions. We have also indicated a novel way
of visualizing the set of solutions. And we have shown the impact on
the solutions of charging additional fees for the Steiner nodes.

Ongoing work includes developing standardized test cases using node
sets from Beasley’s OR library [14] and grids similar to the ones used
here. We plan to solve the smaller cases exactly using a scheme such
as the Dreyfus-Wagner algorithm [15]. At the same time, we aim to
improve upon the results of our current algorithms. In particular, we
plan to employ smarter (but still simple) operators in the GA. One
possibility is to find the exact solution for some individuals, such as

146

the queen bee, rather than approximating them by the MST. Another
potential research direction is the rectilinear version of the non-uniform
problem, which easily lends itself to discretization using a square grid.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Winter, P.: The Steiner problem in networks: A survey. Networks 17 (1987)
129–167.

Thurber, P.A., Xue, G.: Computing hexagonal Steiner trees using PCX. In:
International Conference on Electronics, Circuits and Systems. (1999) 381–384.

Coulston, C.: Constructing exact octagonal Steiner minimal trees. In: Proceed-
ings of the 13th ACM Great Lakes Symposium on VLSI 2003, Washington, DC,
USA, ACM (2003) 1–6.

Coulston, C.: Steiner minimal trees in a hexagonally partitioned space. Inter-
national Journal of Smart Engineering System Design 5 (2003) 1–6.

Ganley, J.L., Cohoon, J.P.: A faster dynamic programming algorithm for exact
rectilinear Steiner minimal trees. In: Proceedings of the Fourth Great Lakes
Symposium on VLSI, University of Notre Dame, Notre Dame, IN, USA (1994)
238–241.

Hakimi, S.L.: Steiner’s problem in graphs and its implications. Networks 1
(1971) 113–133.

Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.J.: Approximation algorithms
for the Steiner tree problem in graphs. In: Steiner Trees in Industry. Kluwer
Academic Publishers, Dordrecht, The Netherlands (2001).

Barreiros, J.: An hierarchic genetic algorithm for computing (near) optimal
euclidean Steiner trees. In: Proceedings of the Genetic and Evolutionary Com-
putation - GECCO 2003, Chicago, IL, USA, Springer-Verlag (July 12-16, 2003)
56–65.

Ribeiro, C.C., de Souza, M.C.: Tabu search for the Steiner problem in graphs.
Networks 36 (2000) 138–146.

Osborne, L.J., Gillett, B.E.: A comparison of two simulated annealing algo-
rithms applied to the directed Steiner problem on networks. ORSA Journal on
Computing 3 (1991) 213–225.

Julstrom, B.A.: A scalable genetic algorithm for the rectilinear Steiner problem.
In: Proceedings of the 2002 Congress on Evolutionary Computation, IEEE, New
York (2002) 1169–1173.

Julstrom, B.A.: A hybrid evolutionary algorithm for the rectilinear Steiner prob-
lem. In: Proceedings of the Genetic and Evolutionary Computation - GECCO
2003, Chicago, IL, USA, Springer-Verlag (July 12-16, 2003) 49–55.

Jung, S.H.: Queen-bee evolution in genetic algorithms. IEEE Electronic Letters
39 (2003) 575–576.

Beasley, J.E.: OR-library: distributing test problems by electronic mail. Journal
of the Operational Research Society 41 (1990) 1069–1072.

Prömel, H.J., Steger, A.: The Steiner Tree Problem: a tour through graphs, al-
gorithms, and complexity. Vieweg, Braunschweig/Wiesbaden, Germany (2002).

147

Figure 6. MST (top, cost=56.24) and best final GA Steiner tree (bottom,
cost=29.01) for Problem # 1. Black circles indicate terminal nodes. White trian-
gles indicate Steiner nodes. The lighter the shading, the more costly the cell.

148

Figure 7. MST (top, cost=57.81) and best final GA Steiner tree (bottom,
cost=39.41) for Problem # 2. Black circles indicate terminal nodes. White trian-
gles indicate Steiner nodes. The lighter the shading, the more costly the cell.

MODELING AND SOLVING A SELECTION AND
ASSIGNMENT PROBLEM

Manuel Laguna and Terry Wubbena
Leeds School of Business, University of Colorado, Boulder, CO 80301 and OptTek Systems,
1919 Street, Boulder CO 80304

Abstract: In this paper, we first provide an MIP formulation of a selection/assignment
problem and then we discuss a solution method based both on the use of a
commercial general-purpose scatter-search and a simple implementation of
tabu search. This optimization problem is related to a research project
supported by the Office of Naval Research where sailors need to be selected to
perform a set of jobs that require specific skill levels. The results of our
computational experiments indicate the usefulness of the software system for
workforce planning that we have developed.

Key words: assignment/selection problem; bin packing; metaheuristic optimization.

1. INTRODUCTION

The optimization problem that we address in this paper is part of a
workforce planning problem in the U.S. Navy. The problem may be
described as follows. A set of jobs J= {1, …, m} must be completed during
a fixed planning period (e.g., a week). Each job j requires hours from a
single sailor during the planning period. There is a set I = {1, …, n} of
available sailors. The availability of sailor i during the planning period is
hours. For the purpose of efficiency, a sailor must perform a minimum
number of hours of any job to which he/she is assigned, but at the
same time, no sailor may be assigned to more than jobs during the
planning period. Sailors have different skills and therefore there is a set
associated with each sailor, which consists of the jobs that sailor i is
qualified to perform. No more than t sailors may be assigned during the
planning period. In other words, at most t sailors may be chosen from the set
I of n sailors and the subset of selected sailors must be capable of completing

150

all the jobs. The objective is to find a feasible solution that optimizes a
given objective function. The problem falls within the general area of
manpower planning and scheduling. Burke, at al. (2001) and Ernst, et al.
(2004) are two recent references in the subject.

In our model, we assume that there is a cost of assigning sailor i to job
j and formulate the optimization problem as follows:

if sailor i is assigned to job j

otherwise

if sailor i is selected

otherwise

= number of hours that sailor i is assigned to perform job j

= set of sailors that are qualified to perform job j

Minimize

Subject to

151

In the model above, the objective function (1) minimizes the total
assignment cost. Constraint set (2) limits the number of hours for each
selected sailor. If a sailor is not chosen, then this constraint does not allow
any assignment of hours. Constraint set (3) enforces the job requirements, as
specified by the number of hours needed during the planning period.
Constraint set (4) limits the number of jobs that a chosen sailor is allowed to
perform. Constraint set (5) enforces the requirement that a sailor may not
perform a job for less than a minimum number of hours. At the same time,
this constraint set does not allow the assignment of hours if the sailor has not
been assigned to a given job. Finally, constraint set (6) limits the number of
sailors chosen during the current planning period.

The same model may be used to optimize a different objective function,
for instance, the minimization of the total assignment cost on an hourly basis
or the maximization of an aggregate preference value. However, as
mentioned above, we assume that the decision maker wants to minimize the
total assignment cost as calculated in (1).

The most common mathematical model used to assign jobs to resources
(e.g., machines, agents or workers) is the formulation of the generalized
assignment problem (GAP). The GAP is a well-known combinatorial
optimization problem and it would be advantageous to make use of solution
procedures and strategies that the extensive GAP literature has to offer
(Cattrysse and van Wassenhove, 1992). There are, however, significant
differences between our assignment problem and the GAP. First of all, only
a subset of the sailors in the pool may be assigned to jobs during the
planning period. This adds a layer of decision-making that the GAP does
not have. Another difference is that although resources may work on more
than one job, splitting of jobs is not allowed in the GAP. Since in our
problem some of the demand values may be greater than the capacity
values we must consider job splitting in the solution process.

The problem at hand is also related to the capacitated facility location
problem (CFLP) as well as the capacitate p-median problem (Aardal, 1998;
Klose, 1999). In fact, our location-allocation problem reduces to a CFLP if
the complicating constraints (4)-(6) are relaxed in a Lagrangean manner.

In the remainder of this paper, we describe a metaheuristic procedure for
the solution of the selection/assignment problem represented by (1)-(6). The
development of the metaheuristic procedure was triggered by the realization
that commercial off-the-shelf MIP solvers would be incapable of solving
even fairly small instances of the problem at hand. In particular, we
attempted the solution of a problem with n = 20, m = 20 and t = 10 using
Cplex 8.1 (with default parameter settings) on a Pentium 4 machine at 2.53

152

GHz and after 6.7 hours of CPU time the branch-and-bound search
terminated in an out-of-memory error and an optimality gap of 71.41%.
(The problem was generated using the data generator described at the
beginning of section 3.) In order to avoid the out-of-memory error, we
changed the node selection strategy in Cplex from its default value of 1
(best-bound search) to the value of 0 (depth-first search). We attempted the
solution of the small problem with the new parameter setting and after 8
hours of CPU time, the best solution was worst than the solution found when
the process ran out of memory in our first attempt.

2. SOLUTION APPROACH

The approach that we present in this section decomposes our problem
into two interacting phases: selection and assignment. The selection phase
consists of instantiating the y-variables in our model. The assignment phase
consists of assigning work to the sailors chosen in the selection phase.

2.1 Selection Phase

For the selection phase we make use of the commercial implementation
of scatter search known as OptQuest (Laguna and Martí 2002 and 2003).
The optimization problem is simply stated as:

Minimize f(y)

Subject to

Since OptQuest is a general-purpose optimizer, the objective function
does not need to be specified in mathematical form, such as a linear or
nonlinear relationship of the decision variables. OptQuest is capable of
searching for optimal values of the decision variables without knowing the
structure of the objective function. In other words, OptQuest treats the
evaluation of the objective function as a black-box process that maps the

153

decision variables into an objective function value (i.e.,
Constraint (7) is added to eliminate instantiations of the y-variables that do
not include enough total capacity. This constraint, however, does not
guarantee that a feasible assignment will be found in the assignment phase
because the sailors can perform only a subset of the jobs.

The evaluation of f(y) entails the assignment of jobs to the sailors
selected by the OptQuest engine. Therefore, the black-box evaluation of f(y)
is the assignment phase of our procedure. The assignment phase is launched
for each new set of values for the y-variables. The number of time the
selection phase is executed during the search process is controlled by the
input parameter SelectIter.

2.2 Assignment Phase

For a given set of sailors, the assignment phase consists of solving the
optimization problem defined by expressions (1) to (5) with a reduced set of
variables and constraints. The reduced set includes all x- and z-variables
associated with each sailor where as specified in the
selection phase. Solving the resulting assignment problem optimally with a
commercial solver such as Cplex turns out to be impractical. The main
reason for this is that the LP relaxation of the resulting problem is weak,
resulting in a long branch-and-bound search.

The problem remains difficult even after fixing the values of the y-
variables due to the nature of constraint set (5). This set of constraints
specifies that any sailor i is assigned to a job j must work at least hours
on the assigned job. This constraint creates a minimum “block of hours”
that must be allocated to a sailor if the sailor is to perform a given job.
Hence, if a job is split to accommodate its demand, the resulting parts of a
job must not be smaller than hours. With this in mind, our approach

divides each job j with demand into items. There are

items of size and 1 item of size We denote the

size (or weight) of the item of job j by We let be the set of items
associated with job j.

Once the jobs have been divided into items, the problem becomes to
assign items to sailors in such a way that capacity constraints (2) and (4) are
not violated. An optimal assignment of items to sailors may be found by
solving the following integer program:

154

Subject to

The IP above may be infeasible for certain values of the y-variables as
specified in the selection phase. For instance, if then the
assignment problem (8)-(11) is infeasible. If the assignment problem is
infeasible, the assignment phase returns f(y) = M, where M is a large positive
number.

The problem of assigning items to sailors may be viewed as a special
case of the well-known bin packing problem, where the goal is to
accommodate a set of items of different weights into a set of bins with a
fixed capacity. Other versions of this problem include minimizing the
number of bins used to fit all items or minimizing the capacity of the largest
bin (Coffman, Garey and Johnson, 1996). If we equate sailors with bins, the
special features of our bin packing problem are:

155

1.

2.
3.

There is a cost associated with assigning items to specific bins.
Therefore, optimality is not simply defined by successfully packing all
items into the available bins.
Not all the assignments of items to bins are possible.
The capacity of a bin is defined by both total weight and a function of the
number of items. (For instance, if two items were originated by the same
job then they count as one instead of two different items.).

Considering the characteristics of our special bin packing problem, we
search for a high-quality assignment with a construction and improvement
procedure. The construction is greedy in nature and the improvement
employs a simple tabu-search memory structure. For a complete description
of the tabu search methodology and its applications see Glover and Laguna
(1997).

2.2.1 Construction

Given the set of selected sailors Y, we know that there is a total capacity

of hours, while the total demand is hours. We define

the target relative load for each sailor as

Before initiating the construction process, we order the items in non-

increasing values, where for and This ordering

gives preference to the heaviest items that have the least amount of
flexibility (that is, those items associated with jobs that not many sailors can
perform). We then construct a solution in the following way:

1.

2.

3.

Select the next item in the ordered list. Let this item be the item of the
job.

Let be the current load of bin i, where the load is the sum of the weights
of the items already assigned to the bin. Calculate the updated load

Build the list of candidate bins (CL) to assign the item identified in step
1. We first try to build the list with bins whose updated load is not

greater than That is, If

then we try to build the candidate list with those bins for which
the updated load does not exceed the capacity but is at least as large as
the target load. That is, If

156

4.

then we try to build the candidate list with those bins that remain feasible
after the load is updated. That is, If the

candidate list is still empty, it means that we will have to make an
infeasible assignment. The candidate list then consists of all bins with
minimum infeasibility (as measured by the number of hours that the load
exceeds the available capacity).
Select the bin from CL that minimizes the cost of assigning the item to it.
If we have reached the end of the ordered list of items then we stop.
Otherwise we go to 1.

This construction procedure does not guarantee the construction of a
feasible solution with respect to constraint set (2). Feasibility with respect to
constraint set (4) is managed by the procedure by not allowing the
assignment of items to bins that will exceeds the total number of jobs
The greedy construction can be modified to accommodate other strategies,
such as those based on semi-greedy rules. An instance of this family of
approaches is the one known as GRASP, where the bin to be selected would
be randomly chosen from a reduced candidate list. See Feo and Resende
(1995) for a detailed description of GRASP. In our experimentation we use
the deterministic construction procedure described above.

2.2.2 Improvement

The improvement method starts from an initial assignment, which may or
may not be feasible with respect to (2), and performs exchanges in search for
an improved outcome. Two types of exchanges are performed: swaps and
inserts. A swap is an exchange of the bin assignment of two items. An
insert is a move of an item from one bin to another. These exchange
mechanisms result in a neighborhood that is a special case of what Osman
(1995) refers to as If the initial solution yielded by the
construction procedure is infeasible, then the improvement procedure first
focuses on finding a feasible assignment in the following way:

1.

2.

3.

4.

Identify all the infeasible bins. An infeasible bin is one for which its load
is larger than its capacity.
Evaluate the change in the current infeasibility value that results from
swapping an item from an infeasible bin to a feasible one. Only swaps
for which the heavier item is moved to the feasible bin are considered.
Evaluate the change in the current infeasibility value that results from
moving items currently assigned to infeasible bins to feasible ones.
Perform the exchange that minimizes the resulting infeasibility and
update the tabu structures and the best solution found.

157

In steps 2 and 3 above, the procedure verifies that an exchange is possible
in terms of not violating constraints (4) and (5). It also makes sure that when
moving an item to a bin, the corresponding sailor is qualified to perform the
job that originated the item.

The tabu structure that we employ simply records the time (i.e., iteration
number) that the bins participating in the current move are allowed to
exchange items again. The evaluation of exchanges in steps 2 and 3 above is
done only for those bin-pairs that are not tabu-active. Note that at this stage
of the improvement procedure it is not necessary to evaluate the swaps of
items with the same weight, given that this move does not change the
infeasibility of the current solution.

If AssignIter exchanges are performed without improving the infeasibility
of the best solution, then the procedure stops and it returns f(y) = M to the
selection phase. However, if a feasible solution is found, the search focuses
on finding a solution with an improved assignment cost. The search is
modified as follows:

1.
2.

3.

4.

Identify all pairs of bins.
Evaluate the change in the current infeasibility value and the change in
the assignment cost that results from swapping items in all the bin-pairs
identified in step 1. The swaps include items with the same weight.
Evaluate the change in the current infeasibility value and the assignment
cost that results from eliminating one item from a bin and inserting it in
another one, considering all the bin-pairs identified in step 1.
If the current assignment is infeasible, then perform the exchange that
minimizes the infeasibility of the resulting assignment. Otherwise,
perform the exchange that minimizes the total assignment cost. Update
the tabu structures and the best solution found.

Note that the swaps in step 2 include those that exchange the bin
assignment of two items with the same weight. While this is a “null
exchange” in typical bin packing procedures, in our case, the assignment
cost may improve as a result of such an exchange. For example, suppose
that job 1 is divided into 3 items with corresponding weights of 14, 10 and
10. Also suppose that items 1 and 2 of job 1 are currently assigned to bin 6,
while item 3 is assigned to bin 8. Finally, suppose that an item with weight
10 from another job is assigned to bin 6 and that a swap is being considered
that will exchange this item with item 3 of job 1 that is currently assigned to
bin 8. Clearly, this exchange does not modify the load of neither bin 6 nor
bin 8, because the swapping items have the same weight; however, the swap
“consolidates” all items of job 1 into one bin (number 6). In terms of the

158

objective function value, the swap saves the assignment cost of sailor 8 to
job 1.

The improvement procedure returns the objective function value of the
best solution found during the search. The search stops after AssignIter
exchanges without improvement. The tabu-search memory structure utilized
by the improvement procedure consists of a two dimensional n×n array
labeled TabuTime. The (i, element of the array indicates the iteration
number at which bin i is allowed to exchange items with bin The array is
initialized with a value of zero for all elements. After a swap or an insert
involving bins i and in iteration iter, the TabuTime array is updated as
follows:

where

and U(a, b) is a discrete uniform probability distribution with parameters a
and b.

At iteration iter, if the following expression is true, then bin i is allowed
to exchange items with bin

Most tabu search implementations incorporate what is known as the
aspiration level criteria. Due to the computational burden associated with
implementing even the simplest aspiration level version, our implementation
operates without it.

3. COMPUTATIONAL EXPERIMENTS

In order to test the merit of our metaheuristic procedure, we generated
artificial problem instances. Given the values of n, m, and t the problem
instances were generated with the following characteristics:

159

where

The generator establishes a relationship between the flexibility of a sailor
and his/her assignment cost. That is, sailors that are able to perform more
jobs have larger assignment costs. Also, the range for relative to
makes the resulting problem instances difficult, because the “items” in the
bin packing problem associated with the Assignment Phase of the procedure
are relatively large with respect to the capacity of the bins. We referred to
these problems as “unstructured”. Slightly easier (from the point of view of
a branch-and-bound approach) problems can be constructed by using a small
value of for example 4, and making the demand values a multiple of

We refer to these problems as “structured”. We address the
performance of the proposed procedure in both cases.

Note that the problem generator uses as the limit for the expected
relative load of each sailor. For our first experiment, 10 unstructured
problems were generated with the following parameter values:

Instead of generating a different capacity value for each sailor, our set
of problems has a single value This makes constraint (7) of the
selection problem redundant. We use the set of problems to compare the
solutions obtained with our metaheuristic procedure and those obtained
solving the MIP formulation (1)-(6) with Cplex 8.1. All experiments were
performed on a Pentium 4 machine at 2.53 GHz. Cplex was terminated after
1 hour of CPU time and all default parameter values were used. The
parameter values used for the stopping rules within the metaheuristic were:

n = 20
m = 20
t = 10

SelectIter = 5000
AssignIter = 500

Category of sailor i = U(0, 2)
(1 + Category of sailor i)

and

160

Although these parameter values were set after limited experimentation,
they were not customized to make the procedure perform best on the set of
test problems presented below. The parameters were set using problem
instances that are not part of the 10 that appear in our computational results
summarized in Table 1.

Table 1 shows the best solutions found by both Cplex (Upper Bound) and
our metaheuristic procedure (Best Solution). This table also shows the
optimality gap calculated against the best lower bound found by the Cplex
branch-and-bound process. The total search time for Cplex was 1 CPU hour,
while the total metaheuristic search time averaged 305.5 seconds. The best
upper bound values were found on an average of 2091.5 seconds. The best
metaheuristic solutions were found on an average of 156.8 seconds. The
table indicates that our procedure has merit, both in terms of the quality of
the solutions found (when compared to those produced by Cplex) and the
CPU time needed to find them. Only in one instance (Problem 7) Cplex was
able to find a better solution than the one found by our approach. In
addition, the metaheuristic was, on the average, at least one order of
magnitude faster than Cplex at arriving to the best solutions.

As mentioned above, the problem instances in Table 1 are difficult
because not only the value is large relative to the values but also the

is close to 1. This combination complicates the search for feasible
assignments and weakens the LP relaxation, which cripples Cplex’s ability
to find and confirm optimal solutions. For our next experiment, we
construct a set of problems for which is set to 4 and the values are
generated as before and then adjusted as follows:

161

where mod(x,y) returns the remainder of x/y. The problem generator
parameters are set as before: n = m = 20, t = 10 and Table 2 shows
the results of solving the MIP formulation with Cplex and applying the
proposed metaheuristic.

The results in Table 2 indicate that the structured problems make the
solution of the MIP formulation with a branch-and-bound code such as
Cplex a viable alternative. Cplex is capable of solving six out of the ten
problems to optimality (with the default value of a 0.01% gap). The average
optimality gap for the metaheuristic is a respectable 6.75%, but the
procedure is unable to find any of the known optimal solutions.

4. CONCLUSIONS AND FUTURE WORK

We have described the development of a solution procedure for a
problem in the area of manpower planning and scheduling. The solution
procedure takes advantage of existing commercial software by coupling it
with a specialized heuristic. The merit of the proposed approach is
established with comparisons to upper bounds found by a truncated branch-
and-bound search.

Additional experiments are necessary to confirm the usefulness of our
approach. In particular, we seek to solve instances of a larger size that are
typical in the setting that trigger the investigation of this problem. A typical
problem size in the real setting consists of n ~ 200, m ~ 200 and t ~ 100.

To deal with these large problems, a specialized heuristic for the
selection phase of our approach must be developed. The heuristic must use

162

context information to strategically select sets of sailors for the application
of the assignment phase. The specialized heuristic should replace the
generic OptQuest optimizer and the assignment phase should not be treated
as a black-box evaluator. Additionally, the assignment phase should be
examined, given that the current partition of items is quite arbitrary.
Specifically, we currently are unable to show that our partition can lead to
optimal solutions.

Another avenue for investigation consists of the application of constraint
programming. The objective functions discussed in this paper are somewhat
artificial, given that the Navy would be hard-pressed to find accurate cost or
preference information to be able to address the current situation as an
optimization problem. Therefore it is likely that a constraint programming
approach that simply seeks to find “interesting” and feasible sailor selections
and assignments may be more applicable in practice.

REFERENCES

Aardal, K. (1998) Capacitated Facility Location: Separation Algorithm and Computational
Experience, Mathematical Programming, vol. 81. pp. 149-175.

Burke, E. K., P. Cowling, P. De Causmaecker and G. Vanden Berghe (2001) “A Memetic
Approach to the Nurse Rostering Problem,” Applied Intelligence, vol. 15, no. 3, pp 199-
214.

Cattrysse, D. G. and L. N. van Wassenhove (1992) “A Survey of Algorithms for the
Generalized Assignment Problem,” European Journal of Operational Research, vol. 60,
pp. 260-272.

Coffman, E. G., M. R. Garey and D. S. Johnson (1996) “Approximation Algorithms for Bin
Packing: A Survey,” in Approximation Algorithms for NP-hard Problems, D. Hochbaum
(ed.), pp. 46-93, PWS Publishing, Boston.

Ernst, A. T., H. Jiang, M. Krishnamoorthy and D. Sier (2004) “Staff Scheduling and
Rostering: A Review of Applications, Methods and Models,” European Journal of
Operational Research, vol. 153, no. 1, pp3-27.

Feo, T. and M. G. C. Resende (1995) “Greedy Randomized Adaptive Search Procedures,”
Journal of Global Optimization, vol. 2, pp. 1-27.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.
Klose, A. (1999) An LP-based Heuristic for Two-stage Capacitated Facility Location

Problems, Journal of the Operational Research Society, vol. 50, pp. 157-166.
Laguna M. and R. Martí (2002) “The OptQuest Callable Library,” Optimization Software

Class Libraries, Stefan Voss and David L. Woodruff (eds.), Kluwer Academic Publishers,
Boston, pp. 193-218.

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers, Boston, ISBN 1-4020-7376-3, 312 pp.

Osman, I. H. (1995) “Heuristics for the Generalized Assignment Problem: Simulated
Annealing and Tabu Search Approaches,” OR Spektrum, vol. 17, pp. 211-225.

SOLVING THE TIME DEPENDENT TRAVELING
SALESMAN PROBLEM

Feiyue Li,1 Bruce Golden,2 and Edward Wasil3

1Department of Mathematics
University of Maryland
College Park, Maryland 20742

lify@math.umd.edu

2 R.H. Smith School of Business
University of Maryland
College Park, Maryland 20742

bgolden@rhsmith.umd.edu

3Kogod School of Business
American University
Washington, DC 20016

ewasil@american.edu

Abstract In the standard version of the traveling salesman problem (TSP), we are given
a set of customers located in and around a city and the distances between each
pair of customers, and need to find the shortest tour that visits each customer
exactly once. Suppose that some of the customers are located in the center of the
city. Within a window of time, center city becomes congested so that the time
to travel between customers takes longer. Clearly, we would like to construct
a tour that avoids visiting customers when the center of the city is congested.
This variant of the TSP is known as the time dependent TSP (TDTSP). We re-
view the literature on the TDTSP, develop two solution algorithms, and report
computational experience with our algorithms.

Keywords: Traveling salesman problem; heuristics.

1. Introduction

In the standard version of the traveling salesman problem, we are given a
set of customers located in and around a city and the distances between each
pair of customers, and need to find the shortest tour that visits each customer
exactly once. The TSP has been studied for more than 50 years and a wide
variety of heuristics has been developed. Applegate et al. (2004), Johnson and

164

McGeoch (1997), and Junger et al. (1995) are excellent sources for algorithmic
and computational aspects of the TSP.

In this paper, we consider the following variant of the TSP. Suppose that
some of the customers are located in the center of the city. Within a window
of time, center city becomes congested so that the time to travel between cus-
tomers takes longer. Clearly, we would like to construct a tour that avoids
visiting customers when the center of the city is congested. This variant of the
TSP is known as the time dependent traveling salesman problem.

Recently, Bentner et al. (2001) and Schneider (2002) have studied the TD-
TSP. They considered the Bier 127 problem from TSPLIB (Reinelt, 2001) and
defined a region in the city center in which traffic jams occurred in the after-
noon. In Figure 1, we show Bier127 with the locations of 127 beer gardens
in and around Augsburg, Germany. Congestion occurred in the afternoon for
beer gardens in the dashed rectangle (the traffic jam region), so that the time
to drive between two locations in the rectangle was multiplied by a jam factor

Figure 1. Bier127 with the location of 127 beer gardens in and around Augsburg. Afternoon
traffic jams occur in the dashed rectangular region.

Bentner et al. and Schneider varied the value of the jam factor and gen-
erated tours for Bier 127 using simulated annealing. As the value of the jam
factor increased, they found that locations in the jam factor region were typ-
ically avoided in the afternoon. In addition, Bentner et al. compared differ-

165

ent traffic jam regions and found that, when the region was small, the sales-
man could detour and avoid the traffic jam without greatly increasing the tour
length. However, when the traffic jam region was large, short detours were not
always possible.

In Section 2, we develop two algorithms for solving the TDTSP. In Section
3, we conduct computational experiments with both algorithms on Bier127. In
Section 4, we consider the time dependent vehicle routing problem (TDVRP)
and present limited computational results. In Section 5, we give our conclu-
sions.

2. Algorithms for the TDTSP
In this section, we present two algorithms for solving the TDTSP: one based

on record-to-record travel and one based on the chained Lin-Kernighan proce-
dure.

2.1 Record-to-record Travel Algorithm

Our record-to-record travel algorithm (RTR) is based on the procedure that
we developed to solve the vehicle routing problem (Li et al., 2004). We de-
scribe RTR in Table 1. The initial solution is generated by the modified Clarke
and Wright algorithm (Golden et al., 1977). We then use two-opt moves and
one-point moves, and allow uphill moves. Finally, we try to improve the cur-
rent solution by allowing only downhill moves.

2.2 Chained Lin-Kernighan Algorithm
We also developed a variant of the chained Lin-Kernighan algorithm (CLK)

to solve the TDTSP (Applegate et al., 1999). Our variant is described in Ta-
ble 2. In Algorithm 7, the outer loop runs for min{number of nodes/2, 100}
iterations. We use a neighbor list with 25 nearest neighbors.

At the end of Algorithm 7, we perturb the current solution. We use the
double-bridge kick shown in Figure 2 (see Applegate et al., 1999 for more
details). In Figure 2a, we randomly select four pairs of nodes from the current
solution. We re-link them as shown in Figure 2b. This changes the structure of
the current solution and will hopefully lead to a better local optimum.

In Algorithm 8, we apply an iterative operation on each node that exploits
possible two-opt moves. In the traditional two-opt move, each node is exam-
ined and only downhill moves are made. In Algorithm 9, we do not finish
processing a node immediately if there is no downhill move. Instead, we do
the two-opt move and apply Algorithm 9 (recursively) to the new solution. We
do this four times. If a downhill move is found, we accept it. Otherwise, we
restore the solution that was generated before the recursive call.

166

Figure 2. Double-bridge kick.

Figure 2a. Four pairs of adjacent nodes.

Figure 2b. Re-linked nodes.

167

168

169

170

171

3. Computational Experiments
In this section, we report the results of two computational experiments. We

use the Bier127 problem. The traffic jam region (rectangle) has lower left-
corner coordinates (7080, 7200), a width of 6920, and a height of 9490. The
starting node (node 1) has coordinates (9860, 14152). A salesman starts at 9
am and finishes at 3 pm. The traffic jam occurs from 12 pm to 3 pm. The
travel speed is computed by dividing the total distance of the optimal TSP tour

172

(118293.524) by the number of hours in the workday (six). The travel speed is
held constant for all values of the jam factor. It is not necessary that a tour fills
the work day exactly.

3.1 Old Assumption
In Bentner et al. (2001) and Schneider (2002), traffic jams occur on all edges

with both end points in the rectangle. We refer to this as the old assumption.
We apply our record-to-record travel algorithm to Bier 127 with the old as-

sumption. The computational results are given in Table 3. We present results
for 20 different values of the jam factor. The computation time is in minutes on
an Athlon 1 GHz computer. We see that RTR finds the best-known solution for
four jam factors (1, 1.20, 1.38, and 1.39) and, on average, is 0.30% above the
best-known solution. In Figures 3 and 4, we show the best-known solution for
different values of the jam factor The salesman starts the tour at the circle.
The last edge is not shown in order to indicate the direction of the tour.

Figure 3. Best-known solution for

3.2 New Assumption
With the old assumption, a salesman starts at 9 am and finishes at 3 pm. The

traffic jam occurs at noon. An edge is penalized during the traffic jam only if
the following two conditions are satisfied: (1) is traveled after noon and (2)
both end points of are inside the traffic jam region.

173

174

Figure 4. Best-known solution for

The second condition is not realistic in practice. A salesman might travel
along an edge with end points and after noon, where is outside the traffic
jam region and is inside the region. Under condition 2 of the old assumption,
this edge would not be penalized. We would like to penalize this edge in pro-
portion to the length inside the traffic jam region and use the following revised
conditions, called the new assumption. An edge is penalized during the traf-
fic jam only if the following two conditions are satisfied: (1) some part of is
traveled after noon and (2) some part of is inside the traffic jam region and
only that part is penalized. Thus, we penalize that part of inside the traffic
jam region that is traveled after noon.

We apply our record-to-record travel algorithm and our chained Lin-Kernig-
han algorithm to Bier127 with the new assumption. The computational results
are given in Tables 4 and 5. We present results for 13 different values of the
jam factor. The computation time is in minutes on an Athlon 1 GHz computer.
In Table 5, the results for chained Lin-Kernighan are from 10 runs of the algo-
rithm (randomness is introduced into each run since we use the double-bridge
kick). We report the best tour length found in the 10 runs and the total running
time for the 10 runs. We see that CLK generates nearly all of the best-known
solutions. RTR performs nearly as well — it quickly generates solutions that
are, on average, within 0.75% of the best-known solutions.

We now examine the objective function of the TDTSP. Let the value of
the objective function be defined by where is the total
distance traveled without being penalized, is the total distance traveled being

175

176

177

penalized, and is the jam factor. We see that is a linear function of that
can be rewritten as The first term represents the
objective function of the underlying TSP and the second term represents the
time-dependent part. If we denote the first term by then each configuration
in the TDTSP is uniquely determined by the pair

If we allow the jam factor to change continuously, there are several boundary
values for where the best configuration for the TDTSP changes. In Table
6, we give six boundary intervals for Bier127 with the new assumption. In
Figures 5 to 8, we show the best configuration for four different boundary
intervals. The bold edges are traveled after noon in the traffic jam region. We
see that as the value of the jam factor increases (in moving from Figure 5 to
Figure 8) the number of bold edges decreases, that is, the salesman travels
fewer edges after noon in the traffic jam region since these edges incur a high
penalty. Stated differently, as the value of increases, increases slightly
and decreases rapidly.

Figure 5. Best-known solution for

4. Time Dependent Vehicle Routing Problem
In the traditional vehicle routing problem, we need to generate a sequence of

deliveries for fixed-capacity vehicles in a homogeneous fleet based at a single
depot so that all customers are serviced and the total distance traveled by the
fleet is minimized. In the time dependent vehicle routing problem (TDVRP),

178

Figure 6. Best-known solution for

Figure 7. Best-known solution for

179

Figure 8. Best-known solution for

we define a traffic jam region, so that, at a specific time, the center of the
city becomes congested and travel time between customers in the region takes
longer.

To illustrate the TDVRP, we use the 50-node benchmark vehicle routing
problem of Christofides et al. (1979). The traffic jam region is a rectangle with
lower left-corner coordinates (15, 20), a width of 30, and a height of 40. A
truck starts delivery at 8 am and finishes at 5 pm. The traffic jam starts at 12
pm. The travel speed is computed by dividing the distance of the longest route
in the optimal solution to the VRP by the number of hours in the work day
(nine). The travel speed is held constant for all values of the jam factor. It is
not necessary that a route fills the work day exactly.

We applied our record-to-record travel algorithm (Li et al., 2004) to the 50-
node problem with the new assumption. The results are illustrated in Figures
9 to 12.

As increases in value, we see that fewer customers are serviced in the
traffic jam region after noon (the bold edges are traveled after noon) and the
value of increases. The average running time for the four different jam
factors is about 2.4 minutes on an Athlon 1 GHz computer.

180

Figure 9. Best-known solution for

Figure 10. Best-known solution for

181

Figure 11. Best-known solution for

Figure 12. Best-known solution for

182

5. Conclusions

In this paper, we described the time dependent traveling salesman problem,
extended the problem to include a realistic travel assumption, and developed
two solution algorithms — record-to-record travel and chained Lin-Kernighan
— to solve it. We applied both algorithms to a problem from the literature and
showed how the configurations of tours changed as the value of the jam factor
was increased. We extended the notion of time dependency to the vehicle rout-
ing problem and used record-to-record travel to solve a benchmark problem
with a traffic jam region.

References
Applegate, D., Bixby, R., Chvatal, V., and Cook, W., 1999, Finding tours in the TSP, Fors-

chungsinstitut fur Diskrete Mathematik, Report No. 99885, Universitat Bonn;
http://www.tsp.gatech.edu/papers/index.html.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W., 2004, Solving traveling salesman prob-
lems; http://www.math.princeton.edu/tsp/index.html.

Bentner, J., Bauer, G., Obermair, G., Morgenstern, I., and Schneider, J., 2001, Optimization of
the time-dependent traveling salesman problem with Monte Carlo methods, Physical Review
E.64:036701.

Christofides, N., Mingozzi, A., and Toth, P., 1979, The vehicle routing problem, in: Combina-
torial Optimization, N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, eds., John Wiley &
Sons, Chichester, UK, pp. 315-338.

Golden, B., Magnanti, T., and Nguyen, H., 1977, Implementing vehicle routing algorithms,
Networks 7:113-148.

Johnson, D., and McGeoch, L., 1997, The traveling salesman problem: A case study in local
optimization, in: Local Search in Combinatorial Optimization, E. Aarts and J. K. Lenstra,
eds., Wiley, London, pp. 215-310.

Junger, M., Reinelt, G., and Rinaldi, G., 1995, The traveling salesman problem, in: Network
Models, M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, eds., North-Holland, The
Netherlands, pp. 225-330.

Li, F., Golden, B., and Wasil, E., 2004, Very large-scale vehicle routing: New test problems,
algorithms, and results, forthcoming in Computers & Operations Research.

Reinelt, G., 2001, TSPLIB;
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/index.html.

Schneider, J., 2002, The time-dependent traveling salesman problem, Physica A. 314:151-155.

THE MAXIMAL MULTIPLE-REPRESENTATION
SPECIES PROBLEM SOLVED USING
HEURISTIC CONCENTRATION

Michelle M. Mizumori, Charles S. ReVelle and Justin C. Williams
Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21210

Abstract: The Maximal Multiple-Representation Species Problem (MMRSP) is
formulated here and examined using two different integer program
formulations solved by LP plus branch and bound as well as the metaheuristic
known as Heuristic Concentration (HC). It is seen that for some instances of
this problem, the exact method can be allowed to run for a long time (> 1 day)
without termination while HC can find optimal or near-optimal solutions to the
same instances in a few seconds. In one such case, LP-IP was allowed to run
for 1,000 times longer than HC and still found a worse solution. Furthermore,
HC found the optimal solution in 72.3% of cases and had an objective value
gap of less than 1 % in 94% of cases. Even when HC takes longer than LP-
IP,the longest run-time was under 20 minutes. Therefore, HC is a valuable tool
for approaching the MMRSP.

Key words: Maximal Multiple-Representation Species Problem, heuristic concentration

1. INTRODUCTION

The original Maximal Covering Species Problem (MCSP) examines
nature reserve selection by maximizing the number of species that occur at
least once in a set of p parcels of land given n potential parcels. Practically,
this means that if those p parcels are chosen as a nature reserve, the greatest
number of species will be preserved. This problem was first identified by
Underhill (1994), but was not mathematically formulated until Camm et al.
(1996) and Church et al. (1996).

Church et al. (1996) recognized this problem as a counterpart to the
classic Maximal Covering Location Problem (Church and ReVelle, 1974),
and solved it as such. Csuti et al. (1997) also examined this formulation of

184

the MCSP with various heuristic methods as well as LP plus branch and
bound. Both found that MCSP was very integer friendly and solved quickly.

The Maximal Multiple-Representation Species Problem (MMRSP) is a
variation of the classic MCSP that can require species to be represented
multiple times. It is understood by conservation biologists that a single
representation of a species in a reserve system does not ensure long-term
survival. Multiple representations increase the probability of long-term
survival. Thus the MMRSP would require b representations for a species to
be considered covered. However, some species occur less than b times in
the entire study area. It is therefore impossible for those species to be
represented b times in the selected reserve. Such species are considered to
be covered when each and every parcel that they occur in is chosen. We
define to be the actual goal representation for species i, and to be the
number of times that species i occurs in the original study area. Therefore, if

is less than b, then we would set the goal representation for species i, to
For the remaining species, the goal representation, remains equal to b.
ReVelle et al. (2002) discussed how many reserve selection models have

counterparts in location modeling. The location counterpart to the MMRSP
is the Maximum Availability Location Problem (MALP). The MALP was
first presented by ReVelle and Hogan (1989) and later examined by
Marianov and ReVelle (1996). In this location version, the population
covered by at least servers within a time or distance standard is maximized
when p total servers are selected, in order to maximize the probability of
availability of a server. ReVelle and Hogan (1989) and Marianov and
ReVelle (1996) both used linear programming plus branch and bound as
necessary to solve this problem.

2. FORMULATING THE MMRSP

Two different IP formulations of the MMRSP are explored in this paper.
We will call the first formulation the integer-coefficient (IC) model. This
model uses the following notation:

i,I = the index and set of species;
j,J = the index and set of available parcels of land;

= the set of parcels, j, that contain species i;
p = the number of parcels to be selected;

it is 1 if a parcel j is selected for a reserve, 0 otherwise; and
it is 1 if species i is represented times in the reserve, 0

otherwise.
The IC model can thus be defined mathematically in non-standard form

as:

185

Maximize

Subject to

Marianov and ReVelle (1996) found that for the MALP numerical
experience showed that this type of formulation tended to lead to many
fractional solutions and thus extensive branching and bounding. They
therefore formulated a ‘counting variables’ version, which has more
variables and constraints, but was expected to be more integer-friendly. A
similar counting variables (CV) formulation can be used for the MMRSP.
The counting variable formulation of the MMRSP would use a new variable:

it is 1 if species i is represented at least k times in the reserve
network, 0 otherwise.

The mathematical formulation would then be:
Maximize

Subject to:

Marianov and ReVelle (1996) also noticed that only the and the
need to be defined as 0,1 variables. When is equal to 1, all of the

other for the same species will also be forced to 1 by the second set of
constraints. When is equal to 0, the values of the other for the same
species are unimportant because they have no impact on the objective value
or the values of any other variables.

3. REVIEW OF HEURISTIC CONCENTRATION

Heuristic Concentration (HC) is a two or three stage metaheuristic
originally designed to approach large instances of the p-median problem
(Rosing and ReVelle, 1997). The basic structure of HC is illustrated in

186

Figure 1. The first stage consists of q runs of a fairly simple base heuristic
with some random element. This randomness allows the multiple runs to
find several different good solutions, whereas if the algorithm contained no
random element, each run would arrive at the same solution. The multiple
good solutions allow for the creation of Concentration Sets, which lie at the
heart of HC. These concentration sets are then used to allow a more
complex algorithm to be used in stage 2.

Figure 1. HC Schematic

The main concentration set, CS, is the union of the best m unique
solutions from all of the runs of the base heuristic. In other words, it is every
item that was ever selected in any of the top m solutions. It is thought that
the members of CS possess some good quality to have been selected in the
top solutions, and therefore the optimal solution is thought likely to be a
subset of CS. Thus, the CS is used as the reduced eligible set of items to be
chosen from in the second stage.

The other concentration set, is the intersection of the best m unique
solutions from all of the runs of the base heuristic. This differs from the CS
because it only includes an item if that item was selected in every single one
of the best solutions. It is thought that if an item was selected in all of these
good solutions, it will also be selected in the optimal solution. Therefore,
the members of are required to be selected in every solution considered
in the second stage, thus further reducing the feasible solution set.

The second stage consists of s runs of a more complex algorithm, using
the concentration sets to reduce the feasible region as described above.
Notice that if this algorithm has no randomness, for example an exact
method, the number of repetitions, s, should equal one. However, if there is
a random element to the algorithm, then the number of repetitions can be
greater than one.

The optional third stage takes the best solution from the second stage and
tries to improve upon it by performing another heuristic on the original
eligible set. This way, if the second stage algorithm did not find the optimal
solution, the third stage allows for further improvement.

For examples and analyses of different versions of HC, see Rosing and
ReVelle (1997), Rosing et al. (1998), Rosing et al. (1999), Rosing (2000)
and Rosing and Hodgson (2002).

187

4. APPLYING HC TO THE MMRSP

In this study, we used the version of HC with 1-opt as the first stage, 2-
opt as the second stage and 1-opt again as the third stage (Rosing et al.,
1999). The 1-opt algorithm begins with a random initial solution of any p
selected items. A selected item is then exchanged for each unselected item
and, if there was an improvement, the best exchange is kept. The next
selected item is then exchanged in the same manner. These exchanges are
made iteratively until no one-for-one exchange can be made that improves
the objective value. The solution at this point is a local optimum, and the
current run of 1-opt is complete. (Teitz and Bart, 1968). Each run of the 1-
opt algorithm then uses a new random start.

The second stage of this version of HC consists of a 2-opt algorithm.
This algorithm is similar to the 1 -opt, except that two-for-two exchanges are
used instead of one-for-one exchanges. In this version, the runs of 2-opt
began with each of the top s solutions from the first stage. If we used the
entire eligible set, the 2-opt algorithm would have had excessive run times,
but by using the concentration sets created from the first stage, the amount of
computation necessary is reduced to a reasonable level. For the third stage,
1-opt was run again, this time using the best second stage solution as the
initial solution and the original study area as the eligible set.

In the first stage, we used q = 30 random starts of 1-opt. We chose to
vary the number of unique solutions that enter the concentration sets, m, in
order to determine a good value for that parameter. Values of 5, 10 and 15
were used. Finally, we used the s = 5 best stage one solutions as the initial
solutions for the 2-opt algorithm in the second stage.

Thus far, the HC literature has only examined the p-median problem for
which it was originally designed. This work is the first step in showing that
HC can be used to address many combinatorial problems. The versions
using 1-opt and 2-opt have the further requirement that the objective
function can be defined to be immediately evaluable with the sole constraint
that p items are to be selected. Notice that this definition of the objective
function need not be linear. The HC formulation of the MMRSP can be
written:

Maximize

Subject to:

where all of the are 0 or 1, and means ‘floor’, or the largest integer

less than the value inside. In the objective function, if, for a given species,

188

is less than then the fraction will be less than one, the floor function

will yield a zero, the minimum in the brackets will be zero, and that species
will not be counted in the summation. On the other hand, if is greater

than or equal to then the floor function will be greater than or equal to
one, the minimum in the brackets will be one, and the species will be
counted exactly once in the summations. Therefore, the objective function
becomes the number of species that occur at least times.

5. DATA AND COMPUTER SPECIFICATIONS

Data on the distribution of 426 terrestrial vertebrate species in the state of
Oregon have been developed as part of a cooperative national biodiversity
mapping effort known as the Biodiversity Research Consortium (Master et
al., 1995). In this data set, 441 regular hexagons with areas of were
defined that completely or partly overlap the political borders of Oregon
(White et al., 1992). The likelihood of occurrence of each species in each
hexagon was rated in one of the following categories: 1) confident - a
sighting of the species has been verified in the past two decades; 2) probable
– the parcel contains suitable habitat for the species, there have been verified
sightings of the species in nearby sites, and a local expert believes that it is
highly probable that the species occurs in the site; 3) possible – there have
been no verified sightings of the species at the site, the habitat is of
questionable suitability for the species, and a local expert believes it is
possible that the species occurs at the site; and 4) not present – the habitat is
unsuitable for the species. For the purposes of this study, a species was
assumed to be present at the site if it had a ranking of confident or probable,
and was assumed to be absent at the site if it had a ranking of possible or not
present. This is consistent with the MCSP work done by Csuti et al. (1997).

HC was coded in Visual Fortran version 6 on a 2.66 GHz, Pentium 4 Dell
Inspiron with 256 MB of memory. The LP models were solved using
XpressMP release 2003f on the same computer.

6. RESULTS

The first comparison to examine is that of the integer-coefficient (IC)
model and the counting-variables (CV) model. The run-times and number of
branch and bound nodes for b=2,3 can be found in Tables 1 and 2. Notice
that b=1 is the classic MCSP, and there is only one version so no comparison

189

is necessary. Some runs did not terminate because either the computer ran
out of memory or the model ran for more than a day, and these runs are so
noted. It is clear that for most of the runs that did terminate, the integer-
coefficient model solved in less time and with fewer branch and bound
nodes than the counting variables model. In the cases where the counting
variable model terminated more quickly than the integer-coefficient model,
the difference in time is generally negligible.

190

In the HC runs of this problem, various values of m, the number of
solutions to enter the concentration sets, were used in order to find a good
value. The objective values and run times obtained are displayed in Tables
3, 4, and 5. The gray squares indicate that there was an improvement in
objective value over the next lower value of m. In 14 out of the 83 instances
examined, using a value of m = 10 yielded a better objective value than using
m = 5, and yielded the same objective in the other cases. However, using a
value of m = 15 yielded a better objective value than m = 10 in only 3 out of
83 cases. There were instances where using m=10 doubled the run time
when compared to m=5 and instances where m=15 further doubled run time
when compared to m=10. However, since m=10 yielded so many
improvements over m=5 and using m=15 yielded so few improvements over
m=10, we decided to use m=10 as a good compromise between run time and
objective value.

191

192

The effect of each stage of HC can also be examined. Table 6 compares
the stages of HC in terms of average run time and number of improvements
over the previous stage using m=10. As p and b increase, the second and
third stages make more improvements and run times increase.

193

Since it appears that the integer-coefficient model is the better exact
model and that using m = 10 is the better HC model, it is now prudent to
compare those two methods. Tables 7, 8, and 9 portray run times and
objective values obtained by these two solution methods. In the cases where
the exact model was cut-off before termination, the value in the Objective
column is the objective value of the best integer solution found at the time of
cut-off.

In 53 out of 83 cases, HC found the best known solution. In 78 out of 83
cases, the gap (defined as (100*(LP-IP Objective Value – HC Objective
Value)/LP-IP Objective Value)) is less than 1%. The biggest overall gap is
5.98%. Furthermore, in one case where LP-IP was cut-off, HC found a
better solution than LP-IP.

It has been argued that LP-IP plus branch and bound should always be
used because even when it does not terminate, it still finds a good integer

194

solution (Onal, 2003; Rodrigues and Gaston, 2002). In order to dispute this
argument and show that HC is a good option, we also recorded the best
integer solution objective value that LP plus branch and bound found in the
time that HC terminated. These objective values are compared with the best
overall LP-IP solution known and the HC solution for the cases where HC
took less time to terminate than LP-IP in Tables 8 and 9. In 19 cases, HC
found a solution with a better objective value that LP-IP in the same amount
of time.

195

7. DISCUSSION

It is interesting to find that the integer-coefficient IP model seems to
perform more quickly and with fewer branch and bound nodes than the
counting variables version, because the MALP literature tends to use the
counting variable version. Marianov and ReVelle (1996) said that
computational experience led them to believe that the counting variable
version would be faster, but it would be interesting to perform an extensive

196

comparison on MALP, to see whether this holds true. It is also notable that
while the classic MCSP is highly integer friendly, both versions of MMRSP
can require a great deal of branching and bounding in some instances.

In the HC runs, as b, p, and m grew, so did the run time. The effects of
raising p and m can be expected because of the combinatorial nature of these
parameters. The number of feasible solutions to the problem is where n
is the number of parcels, and the notation is the ‘choose’ function and
equals a!/(b!)(a-b)!. Therefore, the number of combinations peaks at p =
n/2 and declines to either side of n/2. Thus, for p < n/2, the number of
combinations increases as p increases. This in turn increases the complexity
of the algorithm, and thus the run time.

As m is increased, the CS gets larger and gets smaller. This is
thought to increase the chances that the optimal solution (or at least a better
solution) can be found in the second stage, because there are more options to
choose from. However, a larger CS and smaller also increase the
complexity of the algorithm by increasing the number of eligible solutions in
the second stage. Notice the number of eligible solutions is
From the earlier definition of the choose function, it is clear that as

grows gets larger and/or gets smaller), the numerator grows
more quickly than the denominator, so there are more eligible solutions.

Within the HC runs, it seems that a very good value for this problem for
the parameter, m, the number of solutions that enter the concentration set, is
ten. The extra run time compared to m=5 is generally within the same order
of magnitude. This additional run time allows for an improvement in
objective value in 16.87% of cases. Therefore, m=10 appears to provide a
good compromise between objective value and run time. This is the same
value that Rosing (2000) chose for the p-median problem. It will be
interesting to see whether this is a pattern that holds true for other problems.

We compare this version of HC with both the version with no third stage
and with a simple 1-opt by examining the improvements and run times of
each stage. Notice from Table 6 that Stage 2 makes improvements in 42 out
of 83 cases. Since the average run time of Stage 2 is under three minutes
and the maximum total run time of HC is under 20 minutes, this high
number of improvements seems to justify the additional run time. Stage 3
makes only one improvement, but the average run time is well under 1
second. This time is negligible when compared to the total run time, and
therefore seems to validate the use of Stage 3 for the possible improvements.

In comparing HC to the exact method, it useful to compare the b=1 case
(the classic MCSP) separately from the b=2 and b=3 cases. In the classic
MCSP, the exact method always terminated very quickly, often faster than
HC. In the few cases where HC did terminate faster than the LP, the
difference in time was negligible. This is likely true because the classic

197

MCSP problem is very integer friendly, as Church et al. (1996) and Csuti et
al. (1997) found. Therefore, for the b=1 case, it would be preferable to use
the exact method because it guarantees optimality and solves in a reasonable
amount of time.

For the b=2 and b=3 cases, LP-IP tends to have much more branching
and bounding than for b=1. Particularly, the cases where b=2 and p=3,5, and
where b=3, p=4,5,7,8 had extraordinarily long run times. In the case of b=3,
p=5, LP-IP was allowed to run over 1000 times longer than HC, and HC still
found a superior solution. This is possible because HC is compared to the
best known integer solution obtained in the allowed time, not necessarily the
optimal. In the cases of b=3, p=4 up to p=16, HC had substantially lower
run times than LP-IP and had a maximum objective value gap of 2.02%.
Although in several cases LP-IP is preferable to HC because it guarantees
optimality and solves in less time, the above cases also show that there are
times when the LP-IP runtime blows up and becomes unreasonable. It is in
these cases that HC becomes a valuable tool. Furthermore, Tables 8 and 9
show that in many cases, LP-IP did not find any integer solutions in the time
that it took HC to terminate. It is clear from all of the instances that HC
finds solutions with near-optimal objective values, and is therefore a good
choice for those cases where LP-IP cannot be used. Such instances are
difficult to predict, but since HC always found good solutions and had a
maximum run time under 20 minutes and in all but 3 cases solved in under
10 minutes, HC can be used in all cases with little lost in time or objective.

8. CONCLUSIONS

We presented the formulation of a new species representation problem,
the Maximal Multiple-Representation Species Problem. It is a variation on
the classical Maximal Covering Species Problem with the goal of promoting
long-term survival by encouraging multiple representations in the reserve
system. The mathematical differences also allow MCSP to be very integer
friendly, while MMRSP can require substantial branching and bounding.

This problem was solved using both linear programming plus branch and
bound and the heuristic known as Heuristic Concentration. In several
instance of the MMRSP, the run time of LP plus branch and bound can
become quite excessive, while HC can find near-optimal solutions in much
less time. All of the cases in this paper indicate that HC finds very good, if
not optimal, solutions. Therefore, when time or memory make the branch
and bound algorithm infeasible, HC is a very valuable tool.

198

ACKNOWLEDGEMENTS

This research was supported by a grant from the David and Lucille
Packard Foundation, Interdisciplinary Science Program. We gratefully
acknowledge their support. Dash Optimization has provided an academic
partnership including the use of XpressMP. The research reported here
constitutes a portion of the doctoral dissertation of Michelle M. Mizumori.

REFERENCES

Camm, J.D., Polasky, S., Solow, A., and Csuti, B., 1996, A note on optimal algorithms for
reserve site selection, Biological Conservation 78:353-355.

Church, R.L., Stoms, D.M., and Davis, F.W., 1996, Reserve selection as a maximal covering
location problem, Biol. Conserv. 76:105-112.

Csuti, B., Polasky, S., Williams, P.H., Pressey, R.L., Camm, J.D., Kershaw, M., Kiester, A.R.,
Downs, B., Hamilton, R., Huso, M., and Sahr, K., 1997, A comparison of reserve selection
algorithms using data on terrestrial vertebrates in Oregon, Biol. Conserv. 80:83-97.

Marianov, V., and ReVelle, C., The Queueing Maximal Availability Location Problem: A
model for the siting of emergency vehicles, 1996, Eur. J. of Oper. Res., 93:110-120.

Master, L., Clupper, N., Gaines, E., Bogert, E., Solomon, R., and Ormes, M., 1995,
Biodiversity Research Consortium Species Database Manual, The Nature Conservancy,
Boston.

ReVelle, C., and Hogan, K., Maximum Availability Location Problem, 1989, Transport. Sci.,
23:192-200.

Rosing, K.E., 2000, Heuristic Concentration: a study of stage one, Envir. and Plan.-B,
27:137-150.

Rosing, K.E. and Hodgson, M.J., 2002, Heuristic concentration for the p-median: an example
demonstrating how and why it works, Comp. and Oper. Res., 29:1317-1330.

Rosing, K.E., and ReVelle, C.S., 1997, Heuristic Concentration: Two stage solution
construction, Eur. J. of Oper. Res. 97:75-86.

Rosing, K.E., ReVelle, C.S., Rolland, E., Schilling, D.A., and Current, J.R., 1998, Heuristic
Concentration and Tabu search: A head to head comparison, Eur. J. of Oper. Res. 104:93-
99.

Rosing, K.E., ReVelle, C.S., and Schilling, D.A., 1999, A gamma heuristic for the p-median
problem, Eur. J. of Oper. Res., 117:522-532.

Rosing, K.E., ReVelle, C.S., and Williams, J.C., 2002, Maximizing species representation
under limited resources: A new and efficient heuristic, Envir. Mod. and Assess. 7:91-98.

Teitz, M.B. and Bart, P., 1968, Heuristic methods for estimating the generalized vertex
median of a weighted graph, Oper. Res. 16:955-961.

Underhill, L., 1994, Optimal and suboptimal reserve selection algorithms, Biol. Cons. 35:85-
87.

White, D., Kimerling, A.J., and Overton, W.S., 1992, Cartographic and geometric
components of a global sampling design for environmental monitoring, Cart. and Geog.
Info. Sys., 19:5-22.

IV

STOCHASTIC MODELING

This page intentionally left blank

FAST AND EFFICIENT MODEL-BASED
CLUSTERING WITH THE ASCENT-EM
ALGORITHM

Wolfgang Jank*
Department of Decision and Information Technologies, The Robert H. Smith School of Business,
University of Maryland

Abstract In this paper we propose an efficient and fast EM algorithm for model-based
clustering of large databases. Drawing ideas from its stochastic descendant, the
Monte Carlo EM algorithm, the method uses only a sub-sample of the entire
database per iteration. Starting with smaller samples in the earlier iterations for
computational efficiency, the algorithm increase the sample size intelligently to-
wards the end of the algorithm to assure maximum accuracy of the results. The
intelligent sample size updating rule is centered around EM’s highly-appraised
likelihood-ascent property and only increases the sample when no further im-
provements are possible based on the current sample. In several simulation
studies we show the superiority of Ascent-EM over regular EM implementa-
tions. We apply the method to an example of clustering online auctions.

Keywords: Clustering; Monte Carlo EM algorithm; Mixture model.

1. Introduction
The EM (expectation-maximization) algorithm is a very popular tool in

many areas of application, in particular for clustering problems. Part of EM’s
popularity stems from the fact that it can handle situations in which some of the
data is unobserved. Clustering problems appeal to this situation by assuming
that the data originates from a finite mixture of populations, but that the cluster
membership of each data point is not observed.

While the EM algorithm is a very popular method for clustering problems,
its practical usefulness is often limited by its computational efficiency. In fact,
one of the common criticism of the EM algorithm is, compared to other op-
timization methods like Newton-Raphson, that it converges only at a linear
rate. The convergence can be especially slow if the proportion of unobserved-

*This research was partially funded by the NSF grant DMI-0205489

202

to-observed information is large (Meng, 1994). In the context of clustering,
another drawback of EM is that, in every iteration, it passes through all of
the available data. Thus, if the size of the data is very large, even one single
iteration of EM can become computationally intense.

One of the reasons for EM’s computational intensity is that, in every new it-
eration, it requires re-evaluation of the conditional expectation of the data. This
conditional expectation is calculated by evaluating all points of the database.
Related research has shown, however, that an exact calculation of this condi-
tional expectation based on all the data may not be necessary. In fact, since the
EM algorithm typically takes larger steps in the earlier iterations (especially
when the starting values are far from the final values), an approximation may
suffice. The Monte Carlo EM algorithm (Wei and Tanner, 1990) is an example
of an EM implementation which only uses an approximation to the conditional
expectation. In the clustering context, this means that by using only a sample
of the entire database one can still advance the progress of the algorithm while
significantly reducing the computational burden.

While using only a sample of the entire data can lead to enormous efficiency
gains, especially in the early iterations, attention has to be paid to the trade-off
between computational efficiency and accuracy of the results. Indeed, by using
only a small sample of the entire data, one runs the serious risk of obtaining
very inaccurate results. In fact, the EM algorithm will not converge to the
correct value unless the sample size is increased successively. However, de-
termining the exact amount by which the sample size should be increased is a
challenging task (Booth and Hobert, 1999; Levine and Casella, 2001; Levine
and Fan, 2003; Caffo et al., 2004). In this work we propose the Ascent-EM
algorithm that increases the sample size in an intelligent manner. Specifically,
motivated by the fundamental likelihood-ascent property of the original EM
algorithm, Ascent-EM increases the sample size only if the current sample
does not contain any more additional information towards the progress of the
algorithm.

This paper is organized as follows. In Section 2 we describe the background
for model-based clustering and explain the EM algorithm in that context. Sec-
tion 3 describes the Ascent-EM algorithm. In Section 4 we provide several
simulation studies which show the computational superiority of Ascent-EM
over regular EM implementations. Section 5 provides an example of cluster-
ing a large database of eBay’s online auctions.

2. Model-Based Clustering and EM
We start out be describing the mixture model useful for clustering. We then

continue by discussing how this model can be estimated with the help of the
EM algorithm.

203

Finite Mixture Models for Model-Based Clustering

The mixture model assumes that the observed vectors
arise from a mixture of a finite number of groups in some un-

known proportions Specifically, we assume that the mixture den-
sity of the data point can be written as

where the sum of the mixture proportions is one and the
group-conditional densities depend on an unknown parameter vec-
tor Quite often, the group-conditional densities are assumed to be normal
(Ng and McLachlan, 2003). In that case, we can write

where denotes the multivariate normal distribution
with mean and covariance matrix Let
the vector of unknown parameters. Then, the log-likelihood is given by

The goal of model-based clustering is to determine the parameter vector that
maximizes the likelihood (3). We will refer to as the maximum likelihood
estimate (MLE).

One can maximize the log-likelihood in (3) assuming that some of the in-
formation is unobserved. Specifically, assume that each of the arises from
one of the groups. Let denote the corresponding
group-indicator vectors. That is, let the element of be one if and only if

originates from the group. Notice that the group-indicator vectors are
unobserved. Let us write for the observed (or incomplete)
data and similarly for the unobserved (or missing) data. Then
the complete data is y = (x, z) and the complete data log-likelihood of can
be written as

where denotes the component of

The EM algorithm
The EM algorithm (Dempster et al., 1977) is an iterative procedure useful

to estimate the MLE in incomplete data problems. In each iteration, the EM

204

algorithm performs an expectation and a maximization step. Let denote
the current parameter value. Then, in the iteration of the algorithm, the E-
step computes the conditional expectation of the complete data log-likelihood,
conditional on the observed data and the current parameter value,

For the mixture model in (1), this conditional expectation simplifies to

where is the posterior probability that belongs

to the component of the mixture. The EM update, maximizes (6).
That is satisfies

for all in the parameter space. This is also known as the M-step. Given an
initial value the EM algorithm produces a sequence
that, under regularity conditions (see Boyles, 1983; Wu, 1983), converges to

the (at least local) maximizer of in (3).
In case of the normal mixture model in (2), the E-step and M-step of EM are

available in closed form. Specifically, in the E-step we calculate the conditional
expectation of the via

for all and The normal case allows significant com-
putational advantages by working with the corresponding sufficient statistics,

205

Thus, in the M-step, we update the corresponding parameter estimates using
only the sufficient statistics

The E-step and M-step are repeated until convergence; that is, generally,
they are repeated until the improvements in the parameter estimates and/or
the likelihood function are negligibly small. Notice that, in every iteration,
the E-step in (8) has to be evaluated for every data point and for every
group Thus the computational effort of EM depends linearly on the size
of the data and the number of groups. For large data sets, EM can therefore
be computationally very burdensome, especially when the number of required
iterations is large, that is, when the starting values are far form the MLE.

3. Ascent-EM
Since EM makes a pass through all of the available data in every iteration,

it can be computationally challenging. In order to improve its computational
efficiency, we propose a sampling-based implementation of EM whose mo-
tivation is founded in the highly-appraised likelihood-ascent property. Unar-
guably, one of the most outstanding properties of the EM algorithm is that,
unlike many other optimization methods, it guarantees an improvement of the
likelihood function in every update of the algorithm. Specifically, it can be
shown (Dempster et al., 1977) that any parameter value that satisfies

results in an increase of the likelihood function; that is,
This likelihood-ascent property of EM is a simple consequence of Jensen’s in-
equality applied to (15).

The likelihood-ascent property has many important implications. While
(15) implies that the output of EM will maximize the likelihood function (which
is in contrast to, say, Newton-Raphson, which upon convergence requires ad-
ditional verification that the output is not a minimizing point), the likelihood-
ascent property can be taken advantage of in far more different ways. For
instance, in many applications of EM the M-step can be very complicated. In
fact, recall that the M-step requires a full maximization of the Q-function in
(5), which can be hard or even impossible depending on the complexity of the
model. The likelihood-ascent property alleviates this problem. In fact, any
parameter value that satisfies (15) will contribute to the overall maximization
of the likelihood function. This version of EM is often referred to as a Gen-
eralized EM (GEM) algorithm (Dempster et al., 1977). (Meng and Rubin,

206

1993, on the other hand, propose a related version in which the parameter is
split into components and in every iteration of EM the conditional likelihood
is maximized with respect to the current component, conditional on the other
components.) In this work we will take advantage of the likelihood ascent
property in a different form. Specifically, we will use the relationship in (15)
to estimate the amount of information about the MLE that is contained in only
a sub-sample of the entire data.

Let be a randomly chosen subset of size
of the data. We can approximate the Q-function in (6) by

In that form, in (16) resembles the Monte Carlo EM algorithm (Wei and
Tanner, 1990). Notice that as Thus, if we use instead
of Q, we sacrifice accuracy (by using only an approximation to the Q-function)
for computational efficiency (by using only a small subset instead
of the entire database). In the following, our goal will be to find a good balance
between accuracy and computational efficiency for each iteration of EM.

A word of caution is necessary at this point. Notice that for any sample
size is an approximation for Q. Thus, one could be tempted to pick a
small value of and simply run EM with Q replaced by keeping fixed.
While this approach would certainly result in a tremendous computational re-
duction, that version of EM would never converge to the true MLE because of
a persevering sampling error (Booth et al., 2001). For the same reason, EM’s
likelihood-ascent property also does not carry over. Therefore, the sample size
should be increased in an intelligent fashion as the algorithm progresses. Caffo
et al., 2004, in the context of MCEM, recently developed a new implementa-
tion that increase the sample size in an intelligent manner. (See also Booth and
Hobert, 1999, Levine and Casella, 2001, or Levine and Fan, 2003 for related
approaches.) In this work, we will modify the approach of Caffo et al., 2004,
for a sampling-based implementation of EM.

Let denote the previous parameter value and let denote the max-
imizer of based on the sample It is well-known
that the EM algorithm takes rather large steps in the early iterations, especially
when the starting values are far from the MLE (Rubin, 1991). Thus, in the early
iterations, a rather rough approximation of Q will suffice to ensure progress of
the algorithm and hence we initialize at a relatively small value. More-
over, for the sake of computational efficiency, we only want to increase if
the current sample does not contain any more additional information about the
maximum likelihood estimate One way to measure the amount of additional

207

information is via the difference in the likelihood functions

In particular, if then the current parameter value does not
provide any more additional information about compared to the previous

value Thus, since is based on only a sub-sample of
the entire data, we conclude that we need a larger sample in order to obtain
further information about and is consequently increased.

In practice, while one could compute exactly, it would require the
evaluation of the likelihood function in (3) for all of the points of the database.
However, since computational reduction is one of our goals, we would like to
estimate based on the much smaller sample of size We can do so
by appealing to the likelihood-ascent property. Specifically, recall that by (15)
one can check whether by checking whether

Moreover, an estimate of the left hand side of (18) is readily available and
given by

Notice that the estimate in (19) is based on the current sample
and is computed automatically throughout the algorithm at no extra computa-
tional expense. We also estimate the variability of in order to derive
appropriate confidence bounds. Write the right hand side of (19) as

where we define

Let denote the sample variance of the Then, an
approximate lower confidence bound for is given by

where denotes the of the normal distribution.
The Ascent-EM algorithm proceeds as follows. If the lower bound in (21) is

positive, then we conclude that there is sufficient evidence that increases
the likelihood. Moreover, we conclude that the current sample may contain
additional information about the maximum likelihood estimate hence, we
continue with the next iteration using the same sample as before. Conversely,

208

if the lower bound is negative, then we conclude that current sample does not
contain any more additional information about the maximum likelihood esti-
mate. Thus we increase and continue with the next iteration. We increase
the sample size at an exponential rate, setting where is
an integer number, typically 3, 4 or 5. This guarantees that eventually
Once we stop the algorithm using standard EM stopping rules, e.g.
we stop the method when the relative change in the parameter updates is suffi-
ciently small.

4. Small Simulation Study

We conducted a series of simulation studies to investigate the computational
efficiency of Ascent-EM. The general set-up of these simulation studies is as
follows. For given values of and we simulate data points from the
mixture density in (1). We first use the regular EM algorithm to estimate the
model parameters, running the algorithm from a fixed set of starting values
until convergence. Convergence is declared when the relative change in the
parameter estimates is less than a threshold value. We then repeatedly apply
Ascent-EM to the same set of data using the same starting values as for regular
EM. Once Ascent-EM’s sample size reaches (i.e. once Ascent-EM uses
the entire database and hence essentially switches to EM), we apply the same
stopping rule as for regular EM. We repeat this experiment for different values
of and

We performed two experiments. In the first experiment we simulated data
from the mixture distribution with and groups, comparing three
different data sizes of and 10, 000. We performed a similar
second experiment, now changing the parameters to and groups.

Table 1 compares the computational effort for the two experiments. We
can see that Ascent-EM can reduce the total run-time of EM enormously. In
the first experiment, using the smallest data set considered in this study

the average run-time of Ascent-EM is, on average, only about 60% of
EM’s. This reduction increases even further for larger sets of data. Indeed,
while for Ascent-EM converges on average in only about half of

209

EM’s run-time, it is even less than that for Similar results can
be found in the second experiment. These findings suggest that a sampling-
based approach to EM is particulary effective for large databases. But it is also
interesting to note the computational gains that can be achieved already for
smaller data sets.

Due to the stochastic nature of Ascent-EM, total run-times vary between
two different applications of the method. The standard deviations in Table 1
measure this variability. From a practical point of view, although an average
superior performance is insightful, it may be even more desirable to investigate
the minimum and maximum performance. Figures 1 and 2 show the entire
distribution of Ascent-EM’s run-times relative to that of EM. We can see that
for all three data sizes, Ascent-EM’s worst performance is still far better than
EM. In fact, for the first experiment, Ascent-EM’s worst performance results
in a run-time of about 76% of EM’s total run-time For more
challenging data problems Ascent-EM’s worst performance
is less than 60% of EM’s run-time. These finding suggest that Ascent-EM
can be a computationally much more efficient alternative than the regular EM
algorithm.

Figure 1. Experiment 1 The plots show boxplots that display the distribution
of the run-times of Ascent-EM relative to that of EM.

5. Application: Clustering Online Auctions
We apply our algorithm to a database of online auctions. This database con-

tains detailed information about 10,078 eBay auctions in a variety of different

210

Figure 2. Experiment 2 The plots show boxplots that display the distribution
of the run-times of Ascent-EM relative to that of EM.

categories like Clothing & Accessories, Sports, Jewelry, Consumer Electronics
etc. For each auction we collected information about the seller (seller feedback
rating, a proxy for experience), the bidders (average and maximum feedback
rating of all bidders participating in the auction), the seller’s auction design
choices (length of the auction and magnitude of the opening bid) and market
characteristics (number of bidders and number of bids placed which both mea-
sure the level of competition in an auction). We also collected the final price
of the auction. Since the final price depends strongly on the value of the prod-
uct (and since we consider a variety of different product types) we computed
the relative category price, relative to the maximum price of products in the
same product category. We also computed the relative opening bid, relative to
the final price, and the relative category opening bid, relative to the maximum
category price. Since all of these variables have extremely right-skewed distri-
butions, we applied log-transformations. Table 2 shows summary statistics of
the resulting 9 variables.

Auction researchers are interested in what drives bidder-seller interactions
and how these interactions affect the final price of an auction. We can explore
these relationships by applying cluster analysis to our database of auction char-
acteristics. One of the decisions that has to be made in cluster analysis is the
most appropriate number of clusters to consider. Table 3 shows the values of
the log-likelihood for different numbers of clusters. Not surprisingly, as
increases the mixture model provides a better fit to the data and consequently
the likelihood increases. Thus we also compute the log-likelihood gain (i.e.

211

the difference between two adjacent values of) and the gain relative to the
null-model (which is the mixture model with only one component). One can
see that 4 clusters improve the likelihood considerably over only 3 clusters,
while 5 or 6 cluster do not add much more to the model improvement. Thus,
we decided to investigate 4 auction clusters.

Table 4 shows the estimated cluster centers as well as the cluster propor-
tions. Cluster 1 is the largest component of the mixture model with about 32%
of the data while cluster 4 is the smallest. Interestingly, auctions in cluster 4
achieve the highest price relative to auctions in the same product category. This
cluster features bidders with the smallest average experience level. Also, the
most experienced bidders (as measured by the maximum bidder experience)
tend to not participate in auctions of that cluster. It appears that the lack of bid-
ding experience results in higher auction prices. It is also interesting to notice
that cluster 2 features the smallest opening bids but the largest number of bid-
ders and bids. Low opening bids attract many bidders which in turn results in
a high level of competition for the auction. This can also be seen in the second
highest price levels for this cluster.

212

References
Booth, James G. and Hobert, James P. (1999). Maximizing generalized linear mixed model

likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical
Society B, 61:265–285.

Booth, James G, Hobert, James P, and Jank, Wolfgang (2001). A survey of Monte Carlo al-
gorithms for maximizing the likelihood of a two-stage hierarchical model. Statistical Mod-
elling, 1:333–349.

Boyles, Russell A. (1983). On the convergence of the EM algorithm. Journal of the Royal Sta-
tistical Society B, 45:47–50.

Caffo, Brian S, Jank, Wolfgang S, and Jones, Galin L (2004). Ascent-Based Monte Carlo EM.
Journal of the Royal Statistical Society, Series B, Forthcoming.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1–22.

Levine, RA and Casella, G (2001). Implementations of the Monte Carlo EM algorithm. Journal
of Computational and Graphical Statistics, 10:422–439.

Levine, RA and Fan, J (2003). An automated (Markov Chain) Monte Carlo EM algorithm.
Journal of Statistical Computation and Simulation (forthcoming).

Meng, Xiao-Li (1994). On the rate of convergence of the ECM algorithm. The Annals of Statis-
tics, 22:326–339.

Meng, Xiao-Li and Rubin, Donald B. (1993). Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80:267–278.

Ng, Shu-Kay and McLachlan, Geoffrey J (2003). On some variants of the EM Algorithm for
fitting finite mixture models. Australian Journal of Statistics, 32:143–161.

Rubin, Donald B. (1991). EM and beyond. Psychometrika, 56:241–254.
Wei, Greg C. G. and Tanner, Martin A. (1990). A Monte Carlo implementation of the EM algo-

rithm and the poor man’s data augmentation algorithms. Journal of the American Statistical
Association, 85:699–704.

Wu, C. F. Jeff (1983). On the convergence properties of the EM algorithm. The Annals of Statis-
tics, 11:95–103.

STATISTICAL LEARNING THEORY IN EQUITY
RETURN FORECASTING

John M. Mulvey1 & A. J. Thompson2

Princeton University
Bendheim Center for Finance &
Department of Operations Research & Financial Engineering
1mulvey@princeton.edu, 2ajt@princeton.edu

Abstract We apply Mangasarian and Bennett’s multi-surface method to the problem of
allocating financial capital to individual stocks. The strategy constructs market
neutral portfolios wherein capital exposure to long positions equals exposure to
short positions at the beginning of each weekly period. The optimization model
generates excess returns above the S&P 500 , even in the presence of reasonable
transaction costs. The trading strategy generates statistical arbitrage for trading
costs below 10 basis points per transaction.

Keywords: Statistical Learning Theory, Data Mining, Financial Forecasting, Financial Op-
timization, Market-Neutral Investing, Hedge Fund Investing.

1. Introduction to Statistical Learning Theory
This paper applies statistical learning theory (SLT) to forecasting finan-

cial time series. The general question of the predictability of financial asset
prices has been examined from numerous perspectives. As a part of this work
researchers have investigated potential implications on market efficiency hy-
potheses, asset allocation, and factor modeling; these studies have tested a
variety of asset classes and time horizons. In some cases, the form of the pre-
dictive model is chosen to reflect a particular structural relationship; however,
in many others the model selected for convenience. In fact popular parametric
models are quite easy to fit, have strong theoretical foundations, and produce
results which allow for ready analysis and intuitive interpretation. Nonetheless,
they usually prescribe strong structural assumptions on potential relationships
in the data. Often, there is no a priori reason to expect the data to adhere to
these assumptions. This idea is certainly not unique to economic and financial
data as witnessed by the range of non-parametric statistical techniques avail-
able for uncovering general statistical relationships. Statistical learning theory
falls into this category, thus providing an approach to establish more general
predictive models for financial time series.

214

In this paper, we apply the multi-surface classification method for financial
forecasting in equity markets. First we provide a brief background in order
to develop the basic framework, describe several common techniques, and il-
lustrate the extension to time series. Next, we discuss our formulation for
forecasting equity returns and building portfolios. Last, we present empiri-
cal results from historical back-testing, highlighting practical considerations
as well as the economic significance of the results.

The general supervised learning problem involves predicting some unknown
value, based on a known set of information In the sequel, we
refer to as the feature space and as a feature vector. Additionally, is
called the response space. This problem identifies a function such
that “best” predicts where in the general framework we allow both x
and to be stochastic. Statistical learning theory provides methodologies for
finding an estimator of from a class of functions that minimizes the
risk functional:

where L is the loss function and is the joint probability measure over the
product space These methodologies identify such an using previ-
ously observed pairs as training data. One obvious approach
might be to use the training data to approximate As Vapnik [16] discusses,
however, this problem of density estimation is in general ill-posed, requiring
many training observations to achieve good convergence. Instead, statistical
learning theory suggests approaches for recasting the risk minimization prob-
lem in (1) to avoid solving the more general density estimation as an inter-
mediate step. Consider the classification case (which we will for the remain-
der of the paper), where is a discrete space made up of a finite number of
classes. For a given prediction function the pre-image

separates the feature space into different regions corresponding to
the classes of The borders of these regions define the decision boundaries
of these boundaries completely specify the prediction function. The SLT
approach approximates these boundaries directly, thereby avoiding the need to
approximate

A popular technique of SLT classification approximate the decision bound-
aries via affine functions on the feature space. Consider the two-class case
where, without loss of generality, we assume The resulting de-
cision function is then [8]. Decision functions of this
type are intuitively attractive, computationally tractable, and possess bounds on
prediction error. While linear boundaries may seem restrictive, in fact, these
models are readily extendable to non-linear decision boundaries. The proce-
dure maps the original feature space into a new, potentially high-dimensional,
transformed feature space, and then approximate affine decision boundaries

215

in this transformed space. Depending on the approximation technique, this
extension may be simplified further. As alluded, there are several different
techniques for finding the “best” affine decision boundaries; we briefly review
two of these: the multi-surface method and support vector machines.

Multi-Surface Method

The Multi-Surface Method (MSM) is a separating hyperplane learning model
developed by O. Mangasarian and K. Bennett [2]. The methodology finds a
unique separating hyperplane if one exists, otherwise it minimizes the aver-
age sum of the distance of misclassification. A key advantage is that given
training observations, it can be formulated as a linear program:

subject to:

where:

Once the optimal hyperplane is found, the training data is split by this bound-
ary. The model can be reapplied separately to the training examples falling
in each halfspace. This leads to piecewise hyperplanar decision boundaries.
The MSM has demonstrated strong predictive ability in a number of cases,
including the successful application to breast cancer diagnosis [14].

Support Vector Machines
Support vector machines (SVMs) find the separating hyperplane with the

widest margin while controlling the extent of misclassification [16]. Training
points closer to the boundary have more influence on the approximated hy-
perplane. This property has intuitive appeal as it is the prediction of points in
these areas that is most sensitive to small changes in the resulting model. More
importantly, this sensitivity results in the model’s strong generalization ability,
allowing SVMs to perform well even in feature spaces with large dimension
and over small training samples. Another key advantage involves the proper-
ties of the model formulation. In the primal form of the 2-Norm Soft Margin
case shown below, fitting the model is equivalent to solving a convex quadratic

216

programming problem:

subject to:

where represents the distance inside the margin for a point and C is a
predefined “trade-off constant between the complexity term in the objective
function (first term) and the prediction error over the training set (second term).

The dual formulation offers opportunities for computational efficiency [5]:

subject to:

The corresponding decision function for a new input vector X is then expressed
as:

with chosen such that:

Three aspects of the dual formulation are especially appealing. First, the
constraints are simpler in structure than those of the primal problem. Second,
the size of the problem grows only in the number of training examples, not
in the dimensionality of the feature space. Third, the feature vectors of the
training examples enter the problem only through their inner products with
other examples. The last property can be exploited by the non-linear trans-
formation procedure described above to simplify the extension to non-linear
decision boundaries.

Also, the dual formulation highlights the fact, mentioned earlier, that sup-
port vector methods place more “weight” on points closer to the hyperplane.
The dual variables, correspond to the inequality constraints of equation (4)
in the primal problem. From the KKT conditions, for any constraint, that is
not ‘binding at the solution will have a corresponding [5]. This non-
tightness occurs for points that are outside of the margin of the hyperplane. The

217

fundamental effect of the relationship between the primal constraints and the
dual variables is observed through decision function in equation (6). This func-
tion depends only on training points, with or those points “close”
to the resulting hyperplane. These points, deemed support vectors, encode all
of the knowledge of the training set via the decision function. Many results on
the generalization ability of support vector machines stem from this property;
some error bounds depend directly on the number of support vectors.

2. Forecasting Financial Time Series
Next, we discuss the results of a series of empirical experiments. This re-

search focuses on answering the question of whether the separating hyperplane
classification models can be successfully trained to predict financial time se-
ries innovations. The tests conducted so far examine this question via historical
time series of equity returns.

Forecasting equity returns as a classification problem and not a regression is
analogous to the strategy of focusing on the decision boundaries of the feature
space rather than the conditional probability distribution. In many cases, the
primary concern is whether or not a position (long or short) should be taken
in a particular security. Thus, formulating the prediction problem as a binary
forecast (positive or negative) provides an answer to this question. In addition,
it avoids the (potentially) more difficult task of estimating an exact value for
the expected return in the coming period.

Historical Testing Scenario

The historical experiments examine one-week forward equity returns. Ini-
tial tests employed the AMPL optimization platform (CPLEX optimizer) to fit
the separating hyperplane [1][11]. More recently, we migrated to the DASH
Optimizer (embedded Xpress-MP solver [6]). The raw data consists of daily
price time series from August 1980 to August 2003 for 42 Large-Cap equities1.
Back-testing results were obtained by making forecasts for the return re-
ceived from investing in time and holding until time at each week
historically. To pose the this forecast as a two-class classification problem, we
encoded the training examples according to whether the next period return for
that example was above or below a pre-specified threshold, Thus for each
training example, if else if Initial research
efforts focused on the factors in the feature set. Tests were run using all combi-
nations of two to six of the following factors: weekly return last period,
weekly return for two periods ago, cumulative returns over previous 4,
13, and 52 weeks, 10-day and 20-day volatility, and a ratio of two price moving
averages with different window lengths.

218

Similar to other applications, such as in [14], if the feature set consisted of
more than two features, there was noticeable degradation in the prediction abil-
ity. This may be attributable to problems related to the curse of dimensionality,
since the density of the training data within the feature space decreases dra-
matically as the dimension of the feature space increases. Further tests were
conducted using the best performing pair of features, and yield-
ing the feature space In period the training data set,

was drawn from the time series data using the most recently observed
feature–response pairs, yielding Fig-
ure 1 provides an example of the training data represented in the feature space
(the light and dark circles), the optimal hyperplane, and the prediction point
for the next week (the light triangle directly left of the origin on the horizontal
axis).

Figure 1. Modeling Scenario

Empirical Results

To apply the model several parameters must be specified. In the empiri-
cal results, we show how different specifications can impact the results. To
test the predictive performance of these different specifications, we construct
a portfolios from the forecasts of the various models. At each backtesting pe-
riod the model is re-trained by “sliding” the training data
window forward one step. We can then obtain a new forecast based on the

219

re-trained model and present feature vector, to update the portfolio weights
accordingly. Portfolio performance is then calculated using the next-period re-
turns. Because the next-period return data is not used to train the model, all
results portfolio results exhibited are out-of-sample.

Given historical equity returns in the United States, there is a positive bias in
the data. To reduce the impact of this bias, we constructed the portfolios to be
dollar market-neutral (for every dollar invested into a long position, there is a
dollar of exposure in short positions). Whether the portfolio will be long, neu-
tral, or short a particular equity for a given period, is based on the forecasts of
two different classification models. The first, termed the “Long Model”, where

and the second, a “Short Model” where The two models
each produce a forecast of 1 or–1 and are denoted by and respec-
tively. To create a single investment signal for each security the two individual
forecasts are combined into a single composite forecast,
taking the values 1, 0, or –1 corresponding to a long, neutral, or short position
in The choice of portfolio weights, introduces more flexibility
into the model specification. To start, we consider an equal weighting strategy
where if else if Now normalizing
the to enforce the market neutrality condition yields the weights:

First we compare two different approaches for defining the training set data.
In the first method, called the individual plane model, we fit the classification
scheme described above separately for each security. This straight-forward ap-
proach yields a pair of hyperplanes (long and short models). These hyperplanes
capture any existing relationships between and Since we al-
low the model to fit a different set of planes for each security, these relation-
ships can vary from security to security. In practice, however, we noticed that
the planes lead to frequently similar results. The second approach, termed the
single plane model, aggregates the training observations cross-sectionally, pro-
ducing forty-two training observations at each time period. Fitting the model
over this training set produces a single pair of hyperplanes at each time pe-
riod. This pair underpins the forecast every security. While this model loses
the flexibility to capture differences in the feature-response relationship, the
significant increase in the number training points allows us to infer more struc-
tural (and potentially persistent) market microstructure effects. Additionally,
the increase in the size of the feature space helps suppress the effects of the
curse of dimensionality. Finally, since the single plane model fits over a large

220

range of securities, it helps us to deduce more general qualitative properties of
equities markets.

Table 1 and figure 2 show a comparison of the individual and single plane
models. Also included in this and later figures for bench marking purposes are
the S&P 500 and a Naïve Rebalancing portfolio, which is a fixed-mix portfolio2

distributed equally across the forty-two stocks being considered. For both the
individual and single plane models we set the response encoding parameters to

and for the long and short sub-models, respectively. We
also used training periods to fit both. As these results indicate, both
the individual and single plane models out perform each benchmark. Com-
pared to one another, however, there is not a significant difference in this case.
It is promising to see that the single plane performed as well as the individual
planes. If the present feature space was extended by adding additional features
or applying a non-linear transformation to the feature space, the significantly
larger training set in the single plane model would provide it an advantage in
face of increased feature space dimensionality.

Figure 2. Portfolio Performance – Individual v/s Single Hyperplane Model

221

It is also interesting to examine the hyperplanes produced by the model to
see if they offer any qualitative insight. Figure 3 depicts the hyperplane pro-
duced by the single-plane long model for the first trading week of each year in
the backtesting period. As expected considering the length of the training pe-
riod, these planes are reasonable stable through time, even though the training
sets of 1991 and 2003 share no data point is common. Also note that the de-
cision boundaries generally have very “steep” slopes and intercepts near
zero. This suggests that the model forecasts are most sensitive to the sign of
the prior week return. In particular, the side of the decision bound-
ary corresponds to a positive forecast for next weeks return, As a result the
model generally predicts return reversals, so the portfolios constructed from
these forecasts are highly contrarian over a week long horizon. A survey of
economics literature would suggest that these findings are not surprising. In
[13], Lehmann investigates a reversal trading strategy and finds evidence that
such strategies produce significant excess returns. In our case we find similar
results using a similar strategy, but our tests were not limited to these rever-
sal strategies, and in fact the model uncovered them on its own. While in this
situation we have not discovered a “new” economic relationship, our ability
to draw qualitative conclusions from the model suggests that such discover-
ies may be possible working in more complex or transformed feature spaces.
This characteristic stems from the flexibility inherent to SLT techniques and
illustrates an important reason they are valuable analytic tools.

Figure 3. Changes in Optimal Hyperplanes Through Time

222

Next, we investigate an alternate method for constructing portfolio weights.
Recall the general decision function for a linear learning machine

The term within the sign function represents the distance inside
the decision boundary. If we interpret this distance as a proxy for the level of
forecast confidence we define the alternative portfolio weighting scheme as
follows:

Again, we normalize according to equation (7) to maintain market neutrality.
As shown in table 2 and figure 4, this alternative method for selecting portfolio
weights makes a dramatic improvement in the overall performance. These
results are particularly striking, because the position direction (long, neutral,
or short) for each security is identical at every period, only the size is different.
This improvement confirms our interpretation of the distance inside the plane
as a measure of confidence in a particular forecast.

Figure 4. Portfolio Performance – Equal v/s Variable Weighted Portfolios

223

Table 3 and figure 5 display the model’s sensitivity to the encoding param-
eters and This graph demonstrates the performance for threshold levels
of ±0.5%, ±1.0%, and ±2.0% under the equally-weighted portfolio scheme.
As evidenced, there is some decrease in performance as the “threshold band”
narrows. This is most likely attributable to the fact that the model finds more
“investable” securities each period, but these securities are closer to the de-
cision boundary. As discussed above, empirically these positions are not as
profitable. This is further substantiated by table 4 and figure 6, where the same
sensitivity analysis is shown for the variable weighted portfolios. In this case
the portfolio weights are dominated by those points further from the bound-
aries. Since these weights are less sensitive to small changes in the boundaries,
the differences in portfolio composition are small leading to negligible changes
in performance.

Figure 5. Long/Short Threshold Analysis – Equally Weighted

224

Figure 6. Long/Short Threshold Analysis – Variable Weighted

Last, an analysis on the impact of transaction costs to the portfolio perfor-
mance is presented in table 5 and figure 7. As expected in a weekly trading
model, market friction has a significant impact on compounded portfolio per-
formance. The results demonstrate this effect for transaction cost level of five,
ten, and twenty basis points per trade. Transaction costs at a twenty basis-point
level all but eliminate the excess returns produced by the model portfolios, but
at lower levels these portfolios are still attractive from a risk/return perspective.
Even an individual investor with a reasonable sized portfolio, under some con-
servative assumptions on brokerage fees bid-ask spreads, and slippage could
experience total transaction costs below ten basis points and in certain cases
approaching five basis points for large-cap equities such as those studied in the
model. Furthermore, the advent of new products such as single stock futures
offer the potential for reducing the cost further as well as allowing for greater
leverage.

225

Figure 7. Portfolio Performance – Transaction Cost Analysis

Economic Significance - Testing for Statistical Arbitrage

The aforementioned results offer evidence that the hyperplane portfolio mod-
el is capable of generating excess returns at moderate portfolio volatility lev-
els. However, it is not clear that this “strong” performance is economically
significant. In particular, the efficient market hypothesis states that it should
be theoretically impossible for a model such as ours to provide trading ad-
vantages over time. Thus, to draw broader conclusions from the results we
must establish their statistical significance. Clearly,

the hyperplane strategy does not constitute
an arbitrage in the traditional sense. In [9], Jarrow, et. al. present the concept
of a statistical arbitrage for long horizon strategies that generate riskless profit
over time.

DEFINITION 1 (STATISTICAL ARBITRAGE)
[9] A statistical arbitrage is a zero initial cost, self-financing trading strategy

with cumulative discounted value such that:

226

1

2

3

4

and

Under this definition, the existence of a statistical arbitrage strategy violates
conditions necessary for the market to be in any equilibrium, and consequently,
rejects the efficient market hypothesis [12]. As a result, statistical arbitrage
provides a tool for examining market efficiency with respect to the hyperplane
trading strategy.

In addition, Jarrow, et. al. [9] also presents a statistical framework for testing
this long-term form of arbitrage. To apply this test, we consider the cumulative
trading profits, from the portfolio holding $1 of nominal exposure in the
self-financing strategy3. At each period any profit or loss from the trading
strategy is rebalanced into the money market account. Then the discounted
cumulative trading profits, are defined from and we make the following
assuption:

ASSUMPTION 1 Assume the discounted trading profits, follow:

for where are i.i.d. random variables.

Using this assumption, the MLE estimates for and are determined
from the log likelihood equation:

Theorem 1 below establishes values for which the parameter estimates imply
the presence of statistical arbitrage, [9].

THEOREM 1 [9] A trading strategy generates a statistical arbitrage with
confidence if the following conditions are satisfied:

with the sum of the p-values forming an upper bound for the test’s Type I error.
Thus, the sum of the p-values associated with the individual hypotheses must
be below to conclude that a trading strategy generates statistical arbitrage.

We calculated the statistical arbitrage parameter estimates for the variable-
weighted hyperplane strategy. Table 6 below shows the parameter estimates
and total p-value for various levels of transaction costs.

if

227

The parameter and p-values demonstrate support for the hypothesis that the
hyperplane strategy represents a statistical arbitrage opportunity even at mod-
erate transaction cost levels. Not surprisingly, however, at higher levels trans-
action costs present a barrier to exploiting these opportunities. While the ex-
istence of statistical arbitrage in the hyperplane trading strategy’s historical
performance provides evidence against the efficient market hypothesis, these
empirical tests were conducted with historical data, and there is no guarantee
that such a simple feature space would perform well in a real-world investment
system.

3. Conclusion
This paper demonstrates an application of statistical learning theory tech-

niques to the analysis of financial time series. The forecasting model for equity
returns is an example of how the models of this class may offer improvements
to more traditional parametric models. While the training process for many
of the SLT models is more involved, these models impose fewer a priori con-
straints on the functional form of the predictor and offer techniques capable
of generalizing structural relationships in the data even over relatively small
training sets. Our empirical tests on equity return time series provide an ex-
ample of the possibilities. There are a number of interesting extensions. The
price series of other classes of traded assets could be modeled in a manner
similar the equity series in our analysis. There are also questions that arise
surrounding the time horizon. While we examine weekly forecasts, there are
examples in the neural network literature of modeling intra-day data. Another
promising avenue for study involves the cross-sectional relationships between
securities or other economic factors. For example, Hong, et. al. [10] finds that
significant lead-lag relationships in equity sectors and Sharpe [15] presents a
series of risk factors for assessing portfolio management style and measuring
performance. SLT techniques are well suited to investigate such dependencies.
In particular, the systematic methods for feature selection presented in [3], [4],
and [7] can be applied to explore potential nonlinear relationships in economic

228

variables that are non-obvious using traditional measures of dependence such
as correlation.

Notes

1. The equities selected were those that have single stock futures (SSF) traded and have historical data
running over the period from August 1980 – August 2003.

2. In the fixed mix portfolio weights are rebalanced to constant target proportions at each period

3. At each investment period the hyperplane portfolio model rebalances to a dollar market neurtral
position. In this sense the portfolio is zero cost, because the short sales finance the long positions.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

AMPL Optimization LLC. AMPL Modeling Language.

K. Bennett and O. L. Mangasarian. Robust Linear Programming Discrimination of Two
Linearly Inseparable Sets. Optimization Methods and Software, 1:23–34, 1992.

J. Bi, K. Bennett, M. Embrechts, C. M. Breneman, and M. Song. Dimensionality Re-
duction via Sparse Support Vector Machines. Journal of Machine Learning Research,
3:1229–1243, March 2003.

P. S. Bradley and O. L. Mangasarian. Feature Selection via Concave Minimization and
Support Vector Machines. In J. Shavlik, editor, Machine Learning Proceedings of the
Fifteenth International Conference(ICML ’98), pages 82–90, San Francisco, CA, 1998.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

Dash Optimization Inc, Englewood Cliffs, NJ. Xpress-MP Optimizer.

G. M. Fung and O. L. Mangasarian. A Feature Selection Newton Method for Support
Vector Machine Classification. Computational Optimization and Applications, 28:185–
202, 2004.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, New York, 2001.

S. Hogan, R. Jarrow, M. Teo, and M. Warachka. Testing market efficiency using statisti-
cal arbitrage with applications to momentum and value strategies. Journal of Financial
Economics, forthcoming.

H. Hong, W. Torous, and R. Valkanov. Do Industries Lead Stock Markets? July 2003.

ILOG CPLEX Division, Incline Village, NV. CPLEX Optimizer.

R. Jarrow. Finance Theory. Pretince-Hall, 1988.

B. Lehmann. Fads, Martingales, and Market Efficiency. The Quarterly Journal of Eco-
nomics, 105(1):1–28, February 1990.

O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast Cancer Diagnosis and
Prognosis via Linear Programming. Operations Research, 43(4): 570–577, Jul–Aug 1995.

W. Sharpe. Asset Allocation: Management Style and Performance Measurement. The
Journal of Portfolio Management, pages 7–19, Winter 1992.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1999.

SAMPLE PATH DERIVATIVES
FOR INVENTORY SYSTEMS
WITH PRICE DETERMINATION

Huiju Zhang1 and Michael Fu2

1University of Maryland
College Park, MD 20742

huizhang@rhsmith.umd.edu

2University of Maryland
College Park, MD 20742

mfu@rhsmith.umd.edu

Abstract We consider the problem of simultaneous price determination and inventory
management. Demand depends explicitly on the product price and the in-
ventory control system operates under a periodic review ordering policy.
To minimize long-run average loss, we derive sample path derivatives that can
be used in a gradient-based algorithm for determining the optimal values of the
three parameters in a simulation-based optimization procedure. Nu-
merical results for several optimization examples are presented, and consistency
proofs for the estimators are provided.

Keywords: inventory management, sample path derivatives

1. Introduction

This paper addresses an important problem in the interface between mar-
keting and inventory planning, specifically that of simultaneously finding the
optimal price and the optimal inventory control parameters in the face of uncer-
tain price-dependent demands. More particularly, we study a periodic-review,
single-product, stationary and infinite-horizon inventory system with the ob-
jective of minimizing the average long-term loss rate (maximizing the average
long-term profit rate), where the demands faced by the system depend on the
constant price and the system adopts the control policy, in which an
order is placed when and only when its inventory level falls below the level

and the order amount is such that it will bring the inventory level up to S.
The policy has been proved to be the optimal policy for inventory sys-

230

tems with fixed ordering costs and other inventory costs. Scarf (1960) showed
that policy was optimal for the finite horizon dynamic inventory sys-
tem in which the ordering cost was linear plus a fixed reorder cost and hold-
ing/penalty costs were convex. Clark and Scarf (1960) extended the results
to multi-echelon inventory systems. Iglehart (1963) extended Scarf’s study to
the infinite horizon case and considered non-zero delivery lead-times, obtain-
ing bounds on and S, and investigating the limiting behavior of pairs.
Veinott and Wagner (1963) developed a computational approach for finding an
optimal inventory policy for the fully backlogged model with fixed set-
up cost, linear purchase cost and i.i.d. discrete random demands. A detailed
review on the evolution of inventory theory can be found in Scarf’s (2002)
paper.

Thomas (1974) incorporated pricing decisions into the control policy,
and the resultant strategy is referred to as an policy. In this policy, the
optimal price is set to be contingent upon the inventory level and can change
from one period to another. Federgruen and Heching (1999) characterized
the structure of an optimal combined pricing and inventory strategy for both
finite and infinite horizon models with variant price change restrictions. Feng
and Xiao (2000) considered a continuous-time model with multiple prices and
reversible changes in prices. They found that the optimal price level was based
on the length of remaining sales time and on-hand inventory. Recently, Chen
and Simchi-Levi (2002) used dynamic programming to determine price and
inventory levels simultaneously at the beginning of each period. They showed
that an policy is optimal when the demand model is additive.

Dynamic pricing may not be desirable in some industries or for some com-
panies. Under many circumstances, a more stable pricing policy than the afore-
mentioned inventory-contingent ones is preferred, e.g., Wal-Mart’s “Everyday
Low Prices”. Also for mature products with stable demand that generally in-
corporate little seasonal effect or advanced technologies, there is relatively lit-
tle price fluctuation, so the single price model is appropriate. Furthermore,
Gallego and Van Ryzin (1994) showed that the optimal fixed-price policy is
nearly as good as the optimal inventory-contingent one under rather mild as-
sumptions.

In this paper, we assume there is a fixed price to be selected that influences
the future demand levels in a known way, and an policy is used to con-
trol the inventory. We use a gradient-based search optimization algorithm to
find the optimal parameters. Reviews of techniques for simulation-based op-
timization can be found in Jacobson and Schruben (1989), Safizadeh (1990),
and Fu (1994, 2002); see also Spall (1999) for a detailed review on stochas-
tic optimization. To use simulation-based optimization requires sample path
derivatives, the main focus of our work.

231

Fu (1994a) developed sample path derivatives using perturbation analysis
(PA) for an inventory system adopting the control policy, and Fu and
Healy (1997) investigated their use in simulation-based optimization. System-
atic and thorough reviews on gradient estimation via perturbation analysis can
be found in Glasserman (1991), Ho and Cao (1991) and Fu and Hu (1997). We
also use PA to derive our sample path derivatives. Similar to Fu’s (1994a) ap-
proach, we implement infinitesimal perturbation analysis (IPA) and smoothed
perturbation analysis (SPA) to estimate the derivatives. In Fu’s model, demand
is assumed to be exogenously specified, whereas in our model it depends on
product price, which allows demand to be adjusted according to product prop-
erties such as price elasticity. The inclusion of price in the model makes the
derivation more complicated.

The rest of the paper is organized as follows. Section 2 reviews the
model and the demand structure. The IPA analysis is presented in Section 3,
and the SPA analysis is developed in Section 4. Section 5 presents a numer-
ical example where the estimators are used to search for the optimal setting
of the parameters Section 6 concludes the paper with a brief sum-
mary. Consistency proofs for the infinite horizon model are contained in the
Appendix.

2. Model Formulation
Consider a firm that has to make production and price decisions under sta-

tionary independently and identically distributed (i.i.d.) demand that depends
on a constant product price. For each period let

in period i.i.d.,with p.d.f. and c.d.f. F,
price,

where the demand function is of the general form

with and nonincreasing functions and assumed to be i.i.d. The
cases and are often referred to as the additive and multi-
plicative models, respectively. We use additive stochastic demand functions in
our model with where is the price elasticity.

In this paper, we assume that the ordering decision is made at the beginning
of the period, and the demand for the period is subtracted at the end of the
period. We also assume order lead-time is zero, so that the inventory position
and inventory level coincide. Let be the inventory level at the beginning
of period before placing an order, and be the inventory level at the begin-
ning of period after placing an order. Hence, if no order is made,
and if an order is placed at the beginning of period The or-
dering cost includes both a fixed cost and a variable cost proportional to the
amount ordered. Demand that cannot be met from inventory on hand is fully

232

backordered. The inventory carrying and stockout costs all depend on the size
of the end-of-the-period inventory level and shortfall. The objective is to find

to minimize long-run average loss L:

where is the fixed cost of placing an order, is the variable order cost co-
efficient, is the holding cost coefficient, is the shortage cost coefficient,
is the revenue coefficient, I{.} is the indicator function, and

3. IPA Estimation

Our goal in this section is to develop derivative estimators for with re-
spect to the control parameters where S, and Without loss of
generality, we assume that We define for notational conve-
nience in the analysis that follows.

According to the definition of and the recursive dynamic equation for
is given by

That is to say, if the beginning inventory level is greater than the
reorder point otherwise, an order is placed so that Thus

With the initial condition we have

According to (4), we have for all because
which is independent of or Thus,

By applying above recursive dynamic equation backwards, for the no-order-
decision-made-period, if we have

233

where is the most recent period that an order is placed before So we can
rewrite equation (5) as

If we place an order in period the inventory level will be brought back to
S in the same period since ordering lead time is zero. Recall that ordering cost
consists of a fixed set-up cost and a variable cost proportional to the ordering
amount, so the ordering cost in period can then be formulated as

The first derivative of ordering cost in period is straightforward:

When applying the recursive dynamic relation described in equation (4) and
(5) for the case of we have

The derivative of holding cost with respect to and is the holding cost
coefficient itself for all the periods, considering the demand is independent on

or and specifically, Similarly, the
derivative of shortage cost to and is Applying equation (6), we obtain
the direct differentiation of holding/shortage cost to price in period

and

The sample path derivative of the revenue term in period with respect
to and is 0, since they rely only on price, not stock levels, whereas the
sample path derivatives with respect to is Combining all the
analyses, we obtain the complete IPA estimator for the time-average loss:

234

4. SPA Estimation

In sample path analysis of the model, Fu (1994a) concluded that IPA
alone is sufficient for estimating the derivative with respect to but not
for where an additional SPA (smoothed perturbation analysis) term
must be added. This conclusion also holds for our model, so we need to use
SPA.

We consider a positive change in Fig. 1 shows the perturbation path for
a small positive change in the reorder point The sample path moves
upward by smoothly, i.e., the sample performance is continuous, so IPA
alone suffices for (assuming is held constant). However, for it is
possible that an ordering decision changes from order to not order in a period.
Fig.2 represents the sample path for change in and period is the order-
decision-change period. Since is an infinitesimal amount and demand is
finite, the demand during will lead to an order decision in the next period.
The perturbed path for inventory position can be constructed from the nominal
path with an appropriate extra period “inserted”. The beginning inventory in
this period is Then, an SPA term based upon conditional
expectation is added to smooth the discontinuity:

where and is the set of
periods in which orders are placed.

Note that in the rest of the derivation, we will often drop the subscripts for
notational convenience. The latter term can be estimated explicitly from the
original sample path, given the demand distribution:

235

Figure 1. Effect on sample path with p, q fixed and s perturbed

Figure 2. Effect on sample path with s, p fixed and q perturbed

Figure 3. Effect on sample path with s, q fixed and p perturbed

236

Hence,

We have the performance measure from the perturbed path as

and

Taking we get

Incorporating (15) and (16) and reinstalling our subscripts into (14), we have

The final estimator for the derivative with respect to is the sum of the IPA
and SPA parts:

As the price changes from to demand will decrease in each period
by the amount of Figure 3 illustrates the sample path with

237

An additional SPA term is needed for the estimator with respect to since
the order decision may change. The sample path is similar to that for but
instead of a change there is an accumulated change
where Otherwise, the analysis is the same as for First we
define
Then we have

Let and the p.d.f. and c.d.f.,
respectively, of We have

where the second equality is due to the independence between Therefore,

We also notice that the inserted period has inventory level so

238

Therefore,

Summing IPA and SPA terms gives derivative of loss function to

5. Optimization Example
Our goal is to find that solves where C represents a con-

straint set defining the allowable values for the parameters For local opti-
mization, a necessary condition when L is continuously differentiable is that

satisfies: Using a Robbins-Monro stochastic approximation
algorithm (cf. Kushner and Yin 1997) and the gradient estimator derived in the
previous section, we apply the following iterative gradient-based procedure to
update the parameter values, in order to reach a local optimum:

where is the iteration number, and the gain sequence is a version of the
accelerated harmonic series given by where

239

with and is the sign function of a vector of parameters. The step
size changes only when all three signs of the vector elements change simulta-
neously. Since and must be positive, we project back to the previous
point whenever the algorithm brings or negative. The values of
and are updated every T periods, with the PA estimator reinitialized at each
update. Furthermore, we take the starting point to be
and where and are the lower bound and
upper bound of price range, respectively. We expect that the parameters and
T greatly affect the initial convergence rate of the algorithm.

Our numerical study is based on the data collected from a specialty retailer
of high-end women’s apparel (Federgruen and Heching 1999). Table 1 summa-
rizes all parameters for the base scenarios pertaining to the dress. The variables

are normally distributed with zero mean and standard deviation
with a specified coefficient of variation, and truncated at to preclude
negative demand realizations.

Following the previously described procedure, the initial values of the pa-
rameters are set at We choose the update period
T = 100 and run 10 replications. Each simulation replication is terminated
when the sum of the gradient estimate components for the three parameters
is less than 0.001 or the number of iteration is greater than 50,000. Table 2
shows 95% confidence intervals of optimal values for three cases correspond-
ing to different fixed cost and holding cost with

Case 1
Case 2
Case 3

The optimal value of is small for zero fixed ordering cost, substantially
smaller than expected demand. In this situation, holding costs dominate, since
frequent ordering is not penalized. Comparing case 1 and case 2, we find that
and S decrease as holding cost increases. In case 3, where holding cost is small

240

compared with fixed ordering cost, is relatively large, decreasing the number
of ordering cycles. In all three cases, price doesn’t differ much, i.e., price does
not appear to be a major determinant for the various inventory-related cost
scenarios.

Figures 4, 5, 6 and 7 illustrate the convergence rate of three cases based on
one common run for L, and S, respectively. The figures show that the
algorithm converges very fast at the beginning. The fluctuations in case 3 are
due to a large initial step size.

Figure 4. Expected loss as function of
iteration number

Figure 5. Selling price as function of
iteration number

Finally, we investigate the impact of price elasticity by modifying the slope
of the demand function to and with and

Table 3 shows the values of the control parameters and total loss.
Price decreases dramatically as increases. Demand elasticity measures the
change of demand to change of price; thus, when it goes up, a manufacturer
has to reduce price to attract more consumers so as to increase revenue.

Some general observations from the simulation results:

Figure 6. Base stock level as function of
iteration number

Figure 7. Reorder stock level as function
of iteration number

1. T = 100 is not sufficient for reaching steady state for large fixed ordering
cost, since iterate updates are not carried out at regenerative points, so we have
the ‘last period effect’.

2. In some simulations, periodic behavior occurs in the iterates, due to the
implementation of the gain sequence, which only decreases if all three compo-
nents in the gradient change signs.

6. Conclusions
This paper presents a period review inventory model with price-dependent

uncertain demand. The proposed inventory control policy reflects a common
practice in some industries. To minimize the expected loss, management de-
termines both the optimal stock level and price. Using perturbation analysis,
we developed sample path derivatives for this S, inventory model, which
could be incorporated into gradient-based algorithms to select optimal values
for the three controllable parameters. Some numerical results for simulation
optimization are presented using a Robbins-Monro stochastic approximation
algorithm. Consistency proofs are provided for the infinite horizon case. For
future research, useful extensions of our model include non-zero lead-time sce-
narios.

Appendix: Consistency Proof
Our goal is to prove: where

loss in the period t.
Let X and Y denote the steady-state random variables for and Then, we have

 and From Fu’s derivation

(1994a), We already know and In our

model, we have X = Y – D, therefore,
The long run average cost per period for infinite horizon is given by equation (2):

For any stable policy, the average per period production amount is always E[D]. According to
PA estimator equations (12) and (17), we have w.p.1 that

241

242

According to Fu’s paper, we have

We also have

Therefore, consistency proof is completed for and
Consistency proof for is more complicated. First we define to be the counting process

for the demand renewal process:

then for we have and
Hence,

and for and

243

Therefore,

For PA analysis of price, according to equation (21), we have w.p.1 that:

(i)

(ii)

(iii)

244

The first term on the right hand side is derived as follows: take then
we have

(iv)

The first term on the right hand side is given by the similar derivation as (iii)

(v)

For (i), we have

245

and hence,

This is consisted with the limit derived in part (i).
For (ii), we have which is consisted with the result from (ii).
For (iii), applying the similar approach by Fu (1994a), we have

and

where
Differentiate the expected value with respect to price, we have,

This is also consisted with the limit derived in part (iii).
For (iv)

matching the limit in part (iv).
For (v), we have

which is equal to the result from part (v).
This completes the consistency proof for the PA estimator with respect to price

246

References
Chen, X. and Simchi-Levi, D., Coordinating Inventory Control and Pricing Strategies with Ran-

dom Demand and Fixed Ordering Cost: The Finite Horizon Case, working paper, 2002.
Clark, A and Scarf, H., Optimal Policies for a Multi-Echelon Inventory Problem, Management

Science, 6, pp475-490, 1960.
Federgruen, A. and Heching, A., Combined Pricing and Inventory Control Under Uncertainty,

Operations Research, 47, pp454-475, 1999.
Feng, Y. and Xiao B., A Continuous-Time Yield Management Model with Multiple Prices and

Reversible Price Changes, Management Science, 46, pp644-657, 2000.
Fu, M., Sample Path Derivatives for S) Inventory Systems, Operations Research, 42, pp351-

364, 1994a.
Fu, M., Optimization Using Simulation: A Review, Annals of Operations Research, 53, pp199-

248, 1994b.
Fu, M. and Healy, K., Techniques for Simulation Optimization: An Experimental Study on an

S) Inventory System, IIE Transactions, Vol.29, No.3, pp 191-199, 1997.
Fu, M., Optimization for Simulation: Theory vs. Practice, INFORMS Journal on Computing,

Vol.14, No.3, pp192-215, 2002.
Fu, M. and Hu, J., Conditional Monte Carlo: Gradient Estimation and Optimization Applica-

tions, Kluwer Academic Publishers, 1997.
Gallego, C. and Van Ryzin, G., Optimal Dynamic Pricing of Inventories with Stochastic De-

mand over Finite Horizons, Management Science, 40, pp999-1020, 1994.
Glasserman, P., Gradient Estimation Via Perturbation Analysis, Kluwer Academic Publishers,

1991.
Ho, Y.C. and Cao X. R., Discrete Event Dynamic Systems and Perturbation Analysis, Kluwer

Academic, 1991.
Iglehart D., Optimality of S) Policies in the Infinite Horizon Dynamic Inventory Problem,

Management Science, 9, pp259-267, 1963.
Jacobson, S. and Schruben, L. W., A Review of Techniques for Simulation Optimization, Oper-

ations Research Letters, 8, pp1-9, 1989.
Kushner, H.J., and Yin, G., Stochastic Approximation Algorithms and Applications, Springer-

Verlag, New York, 1997.
Spall, J. C., Stochastic Optimization, Stochastic Approximation and Simulated Annealing, in

Encyclopedia of Electrical and Electronics Engineering (J. G. Webster, ed.), Wiley, New
York, 20, pp529-542, 1999.

Safizadeh, M. H., Optimization in Simulation: Current Issues and the Future Outlook. Naval
Research Logistics, 37, pp807-825, 1990.

Scarf, H., The Optimality of S) Policies in they Dynamic Inventory Problem, Mathematical
Methods in the Social Sciences, Stanford University Press, 1960.

Scarf, H. Inventory Theory, Operations Research, 50, pp186-191, 2002.
Thomas, L. J., Price and Production Decision with Random Demand, Operations Research, 22,

pp513-518, 1974.
Veinott, A. and Wagner, H., Computing Optimal S) Inventory Policies, Management Sci-

ence, 11,pp525-552, 1963.

V

SOFTWARE AND MODELING

This page intentionally left blank

NETWORK AND GRAPH MARKUP LANGUAGE
(NaGML) - DATA FILE FORMATS

Gordon H. Bradley
Operations Research Department, Naval Postgraduate School, Monterey, CA 93943,
bradley@nps.edu

Abstract: The Network and Graph Markup Language (NaGML) is a family of
Extensible Markup Language (xml) languages for network and graph data
files. The topology, node properties, and arc properties are validated against
the user’s specification for the data values. NaGML is part of a component
architecture that reads, validates, processes, displays, and writes network and
graph data. Because it implements a family rather than a single xml language,
NaGML offers (1) flexibility in choosing property names, data types, and
restrictions, (2) strong validation, and (3) a variety of data file formats. This
paper demonstrates these points with a sampling of the possible data file
formats.

Key words: networks; graphs; Extensible Markup Language; xml; XML Schema; open
source; data file format.

1. INTRODUCTION

The Network and Graph Markup Language (NaGML) is the centerpiece
of an open source software project, the Network and Graph Project (Bradley,
2004a), that is constructing a suite of tools to read, validate, process, display,
and write networks and graphs. NaGML is a family of xml languages to
represent the topology (nodes, arcs, node sets, arc sets, and subgraphs), node
properties, and arc properties. The author of a data file specifies the name
and data type for each property as well as additional restrictions on the data
values. The topology and values of the node and arc properties are validated
using XML Schema technology. The NaGML family supports a variety of
data file formats that correspond to common data formats for networks and
graphs.

250

Figure 1 is a network that is represented in a NaGML xml language. The
specific NaGML language is specified in a description that appears in the
first few lines of the figure. Figures 2-6 are partial data files of different
networks each represented in a different NaGML language. All NaGML data
files are processed by a single program that uses the description in each file
to automatically construct a XML Schema for the file and then use it to
validate the network topology and the property values in the file. Thus
NaGML users have the full power of XML Schema validation without
mastering the (complex) task of constructing a comprehensive schema for
their data. The description of the NaGML language in each file is used by a
program that reads the data and constructs data structures to hold the
network topology and property values. This paper introduces the NaGML
languages and presents a sampling of the possible data file formats.

NaGML is intended to support the widest possible audience of people
who use networks and graphs as well as people who construct algorithms for
them. The NaGML system has simple entry points that help the casual user
construct and manipulate small instances. It is also scales well for the large
instances that may be constructed and consumed by production programs.
This surprising capability to support a wide range of users with a variety of
requirements is based on the flexibility of NaGML. NaGML achieves this by
being not a single xml language, but rather a family of xml languages each
with its own XML Schema whose construction is hidden from the user. Each
user employs the capabilities of a custom-built xml language with a schema
that is automatically constructed and applied.

The Network and Graph Project software has a component architecture
that includes separate programs to read data files, validate the topology and
properties, construct internal data stores, execute algorithms, display static
and dynamic views, link to external systems (for example, spreadsheets and
databases), and construct data files. The architecture is “loosely coupled” in
the sense that it consists of components with well-defined interfaces that
allow multiple implementations of each component. This allows users to
construct a system from components that best meets their needs and it allows
contributors to the Network and Graph Project to construct their own
components that work with other components in the system.

Relational databases and SQL are the de facto standards for data storage
and data access; xml has become the de facto standard for sharing data
among applications. Xml is preferred for data exchange among organizations
because providing xml files is preferable to allowing direct access to
databases. Also since xml is character based (rather than binary) it is
platform and operating system independent and thus ideal for transmission
over the Internet. Recently xml has been introduced into document and
spreadsheet programs to allow interoperability of content, for example, see

251

(Goldfarb, Walmsley, 2004). There has been significant interest in
developing xml languages for many data domains (Hunter, 2002; Ray,
2001).

NaGML has been designed to support the vigorous and diverse
community of people who use networks and graphs for many purposes in a
variety of contexts. Applications involve problem instances that range from a
handful of nodes to ones with thousands and even millions of nodes and
arcs. Network and graph instances are constructed to model, analyze, solve,
design, display, and entertain. For example, mathematicians and social
scientists analyze structure, operations researchers and computer scientists
compute optimal flows and efficient structures, engineers design roads and
computer chips, planners develop land use, contractors schedule projects,
graphic artists develop static and dynamic displays, scientists map molecules
and solar systems, and intelligence analysts try to “connect the dots.”

2. NETWORKS AND GRAPHS

A graph is a non-empty set of nodes, together with a set of arcs that are
defined as pairs of nodes. The arcs can be directed (one node is the tail, the
other the head) or undirected. A network is a graph with one or more
properties associated with each node and arc. Each property has a fixed data
type; there is a wide range of possible data types, for example, integer,
double, boolean, string, etc. Nodes might have properties such as location (x-
y or lat-long), cost, and description. Arc properties might be length, name,
cost, open-shut, etc.

Common examples are road and street networks, water and power grids,
and communications networks. In addition to these obvious physical
networks, networks (and sometimes graphs) model a wide variety of other
applications such as assigning people to jobs, scheduling, bid evaluation,
organization charts, and circuit board layout. Virtually all the applications
envisioned for NaGML have node or arc properties (or both) and are thus
networks rather than graphs; the “and graphs” was added to distinguish
NaGML from markup for other networks that do not have nodes and arcs. In
the subsequent discussion we drop the “and graphs.”

Network data files are often input for a variety of algorithms that
construct shortest paths, determine the flow of goods, schedule activities,
design chips, etc. Some applications use networks as a data model to
structure data. These applications use networks to store, and perhaps
visualize, data. Some applications may involve only nodes and node
properties; for example, data about locations (nodes) displayed on a map.
NaGML capabilities support these diverse applications.

252

3. INTRODUCTION TO XML AND NaGML

Xml is a metalanguage for defining xml documents. It is not a language
itself; instead it is a set of rules to define and construct xml documents.
Markup is text that is added to a document to add meaning and structure that
can then be used to automate processing of the document. This modest
description hides the full range of capabilities that have been built around
and on top of xml and that have lead to the rapid and widespread use of xml
and xml-related technologies. See (Hunter, 2002; Ray, 2001) for a discussion
of xml, see (Bradley, 2003a; Bradley, 2003b) for a discussion with
operations research examples.

Xml is an open source standard that was developed by, and is supported
by, the World Wide Web Consortium (W3C) see (World Wide Web
Consortium). It is platform independent. There are a number of free, open
source, and proprietary tools available for the efficient construction and
processing of xml documents.

As shown in Figure 1, xml markup consists of elements and attributes.
The elements are enclosed by a start tag: <Node nodeID=“1”> that begins
with the name of the element and optionally includes name-value pairs
called attributes. Each element must be closed with a matching end tag:
</Node>. Elements can include other elements and text (also called
PCDATA). The text of an element is everything between the start tag and
the end tag that is not enclosed in another element. NaGML follows common
practice that limits an element to contain other elements or text, but not both.
Elements are fully nested in that any start tag must be matched with its end
tag inside any enclosing element. An element may also be an “empty”
element that combines the start and end tags: <Arc tail =“2” head=“1”/>

Each xml document must have a unique “root” element. An xml
document is a rooted tree that is almost always written in the indented format
of Figure 1. By convention, element names begin with upper case letters.
The name of an attribute is always followed by an equal sign and the value
of the attribute in double quotes: name=“Length” dataType=“xs:double”.
We follow the convention that attribute names begin with lower case letters;
in the text of this paper we will italicize attribute names and element names
to make them stand out.

253

Figure 1. Simple data file format that uses defaults for node and arc identification.

254

Since the network and graph community is international in scope, and
since a data file format standard should be constructed to survive many
years, it is appropriate that NaGML use xml and fully embrace the
internationalization that choice allows. Xml is not “ANSI-centric” nor is it
“English-centric.” It is character based (as opposed to binary) and contains
full support for all character sets and all human languages. In addition to
support for English, there are over 35 different encodings. The practical
reality is that today (2004) few of the 35+ encodings that have been designed
have been implemented into working code. However, by providing for
multiple encodings, xml has laid the foundation for full internationalization,
and thus made it likely that xml will remain a dominant data store format for
decades, if not centuries.

An xml language (also called a tag set, an xml vocabulary, document
type, xml dialect) is a specification for a set of xml documents that places
restrictions on the names of elements and attributes, the structure of the
elements, and the values of the data. Each xml language should have a
schema that is a formal specification of these restrictions. An xml document
is an instance of a particular xml language if it conforms to the schema that
defines the language; this is determined by validating parser (Duckett et al.,
2001; Hunter et al., 2001; van der Vlist, 2002).

There are several different kinds of schemas associated with xml (DTD,
XML Schema, RELAX NG, etc.) (Duckett et al., 2001; van der Vlist, 2002).
The most widely used of the comprehensive schemas (this excludes DTD) is
the XML Schema defined by the W3C (World Wide Web Consortium). The
schema is distinguished from its competitors by the capitalization of the X,
M, L, and S characters. Every XML Schema document is also an xml
document. Each kind of schema has its own characteristics that influence the
definition of an xml language and determine what errors are found by
validation. Here we discuss XML Schema exclusively. XML Schema is
good for expressing data types for element and attribute data values. XML
Schema provides 44 built-in data types that cover numbers, strings, boolean,
time, dates, etc. In the figures the data types all have the prefix “xs:”. This
indicates the Namespace associated with XML Schema; the prefix will be
omitted when discussing the data types in the text. Data values can be further
constrained with restrictions to these types, by applying patterns expressed
as regular expressions, or by enumerating choices. The figures below give
some idea of the range and detail that is possible. XML Schema is a so-
called “closed” schema in which the structure of the document and the name
of all elements must be included in the schema. A NaGML user selects the
names, data types, and restrictions for their data (and thus describes an xml
language for their data files) and a NaGSchemaConstruct component
automatically constructs an XML Schema to validate the data.

255

Defining a new xml language is a difficult task that often involves some
serious trade-offs. One goal is to make the language comprehensible and
flexible, so that as many people as possible adopt it as a standard. Wide
adoption supports interoperability of data and can lead to the development of
associated software to read, write, process, transform, and visualize data
files. Another goal is to make the xml language extensible, so that it can
accommodate evolving user requirements. The final goal is that the schema
be detailed and comprehensive, so that it enforces strong validation on xml
documents.

New and emerging requirements for interoperability of valid data
(particularly across the Web) place a new set of demands on network and
graph data representations. Fast, high-volume exchange of data between
different organizations and tightly coupled applications that do not have
humans in the process must be concerned that data file errors (in structure
and in data values) do not corrupt downstream processing. Thus, each data
producer and consumer must guard against a variety of data errors. Much of
this responsibility can be shifted to xml validating parsers and thus greatly
reduce the amount of error checking that must be included in application
software. The producer of data can validate a data file before sending it to
someone or some application for further processing. The validation by the
data producer helps identify data errors as the data is produced—this is the
time and place where it is most effective to correct errors. Consumers of
validated data know that the data file conforms to the schema and thus does
not contain certain errors in structure and content.

The schema defines the structure and the content of the data file and
identifies as errors only deviations from this. The “strength” of a validation
is a measure of the number, scope, and kinds of errors that can be identified.
The construction of the schema determines which errors will be caught by
validation. For example, a data item that should be “A123” could be
validated to be a string (and thus, “this is data” would be valid), or a string
with no spaces and beginning with a letter, or as an English upper case letter
followed by exactly three digits, etc. The figures below show some of the
validation that XML Schema supports. The construction of a schema for an
xml language can be a complex engineering task with critical issues such as
how much detail to include—more detail identifies more possible errors, but
simultaneously reduces the number of documents that conform to the
schema. Validation cannot catch all data errors (for example, entering
“3187” instead of “3817”), but many errors can be caught and using
validating parsers to check the data is preferable to writing application-
specific code.

The NaGML design philosophy has been to make schemas as “strong” as
possible and thus include as many checks as possible in the validation. This

256

minimizes the error checking that a NaGReader must do. The reference
implementation of the NaGSchemaConstruct has achieved this. However,
validation for large data files can be demanding on computer time and space
resources. It is anticipated that, in particular situations, some of these errors
may not be possible given how the data is constructed, thus it is unnecessary
to check for them during validation. For some applications (particularly
those with larger data files) it may be efficient to move some error checking
from the validation to the reader. Also, the effort to validate a data file can
be reduced if the user selects only certain data formats.

4. NETWORK AND GRAPH PROJECT LOOSELY
COUPLED COMPONENTS ARCHITECTURE

From its inception, NaGML has been much broader than a markup
language. The Network and Graph Project includes a design for a
comprehensive software system for networks that supports the full spectrum
of processing including: construct, read, validate, store, solve, display, link,
and write. This includes multiple data structures so that an algorithm can be
paired with a data structure that best supports its calculations, visualization
of both static structures and dynamic processes so that algorithms can be
animated and analyzed, and linking to external systems for display and
computation. The system is not “read data, apply algorithm, print solution,”
instead, the viewpoint is that the network data model is central and read,
validate, solve, display, link, and write are just operators that transform the
data.

The Network and Graph Project has a component architecture to support
the operations mentioned above. The components have well-defined
interfaces and are “loosely coupled” in the sense that the interfaces are
minimal and abstract, and thus encourage the development of multiple
implementations for each component.

The architecture of the Network and Graph Project presumes there will
be multiple implementations for each component. This encourages the
development of an open source community, where sharing of components
allows users to select the combination of components that best supports their
application. This also allows individuals who want to develop a new
algorithm, innovative data structure, visualization tool, or analysis technique
to concentrate on their interest, while using components constructed by
others. This component architecture supports innovation by allowing easy
access to, and testing of, new components.

One important activity of an open source component architecture project
is to construct reference implementations that demonstrate that components

257

that satisfy the interface can be effectively constructed. Currently (summer
2004), there are reference implementations for two NaGReaders, a
NaGSchemaConstruct, a hash table based data store, a visualization tool to
construct tables, a visualization system to animate time series data over a
map (the application mentioned below), and a NaGWriter that constructs
NaGML data files and comma-separated output to link to an Excel
spreadsheet. NaGReaders access a data file and, guided by information in the
file, optionally invoke another program that constructs a schema (XML
Schema) for the file; optionally validates the file using a schema; and always
processes the file to construct a “dataStore” that is the internal representation
of the network. Following xml practice, if the data file fails validation, it
should not be processed. The details of the flexible data formats that
NaGML allows do not persist into the dataStore, thus an application can
select from various data format/NaGReader combinations to construct the
same dataStore, which then interacts with the other components.

5. DATA FORMATS

One of the goals of NaGML is to provide flexible data formats that
support the full range of common network data formats. The focus of this
paper is to demonstrate the variety of data file formats that are supported and
the data validation that is provided.

The first thing to notice about the examples is that the user chooses the
names for node and arc properties. This seems like a fairly basic
requirement, but in fact, the design that permits this is the most innovative
part of the NaGML design. XML Schema supports the development of a
range of different languages, but in each specific language the names of the
elements are fixed. The NaGML mechanism to allow users to select their
own names for node and arc properties, and to specify data types and further
restrictions for data values, is described in a companion paper (Bradley,
2004b) written for an xml audience. It is not exaggeration to say that the
Network and Graph Project would not have been possible without this
innovation to common xml practice.

The second thing to notice is the wide variety of data types that are
supported. While it might seem sufficient for most operations research
applications to have only integer and double properties, the extension to
strings, booleans, times, dates, lat-long, URLs, etc. is essential for the full
range of network applications. As mentioned below, the first application of
NaGML was an operations research analysis where only a few of the
properties are integer or double. Finally note the quite different ways the
data files can be defined.

258

The first example is shown in Figure 1. The Description element contains
the specification of each property. The NaGReader reads the data file and
invokes a NaGSchemaConstruct program to construct the appropriate
schema and then validates the topology and property data values. It then
constructs a dataStore that contains the topology, properties, and data type
information.

Each node and each arc has a unique identifier, nodeID and arcID. In
Figure 1, the defaults are used; nodeID is an integer and is assigned in each
Node element. The nodeID values need not be in order in the data file or
contiguous integers (or even positive). The validation process checks that
each nodeID is a legal integer and each node has a unique value. The default
for arcID is integers 1, 2, ... assigned in the order the arc appears in the data
file (called “document order”). The validation checks that each head and tail
attribute is assigned to one of the nodes declared in the data file. The
validation process checks that each Xpixel and Ypixel data value is a non-
negative integer and each Length is a legal double value.

This format shows that with only a small amount of training a user can
quickly construct a small network. The plans for the Network and Graph
Project include having input from spreadsheets, databases, forms, and Web
browsers that will allow even simpler access to NaGML capabilities.

This data format allows any number of nodes and arcs. There is no
restriction on the ordering of nodes and arcs and no requirement that nodes
precede arcs.

In the subsequent figures, the defaults are explicitly included in order to
show where and how the parameters of the system are specified. In Figure 2,
the nodeID is still integer, however, the user has specified the exact number
of nodes and their nodeID by specifying the attribute declared = “10 to 13.”
The validation enforces that there will be exactly 4 nodes with the specified
nodeIDs. The arcID is specified to be a string and the attribute declared =
“Arcs only” indicates that they will be specified in the Arc elements. The
arcIDs can be any string, but the string must be unique for each arc.
Duplicate arcs (each with a different arcID) are allowed. The validation
checks each property value, which now includes string, date, and boolean
values. The integer node properties Xpixel and Ypixel specify pixel locations
so that a NaGViewer can display the network. The non-negative integers are
further restricted so the nodes will appear inside a window that is 400 by 600
pixels. All the values for node property DateConstructed must be correctly
formatted XML Schema dates (for example, 2001-04-23). The arc property
RoadOpen values must be boolean.

Due to page limitations, the following figures are only partial data files.
See (Bradley, 2004a) for an extended version of this paper with complete
data files, several tables with data from the figures, and links to the files.

259

Figure 2. Partial data file with nodeID 10 to 13 and arcID declared in each Arc element.

In the previous figures there is a Node element for each node. Some
networks have no node properties; a common data format for this lists only
the arcs with the implication that there should be a node created for the tail
and head nodes specified. The NodeID declared = “Nodes then Arcs”
indicates that a node is created for each Node element in the data file. In
addition, absent a Node element, any node referred to in an Arc element is
created. This option can be used even if there are node properties; in that
case, a Node element is required only if the node has a non-empty property.

Figure 3 shows that it is possible to enumerate the possible values that an
arc (or node) property can assume. The figure shows this for a string
property but this works equally well for other data types.

Many network algorithms use a “forward star” data store where all the
arcs with the same tail node are stored contiguously. Sometimes it is
convenient to have this reflected in the data file Figure 4 shows data in
forward star form. NaGML also supports reverse star, which is not shown.
Forward star and reverse star data formats can be combined with any of the
formats shown in the previous figures.

260

Figure 3. Partial data file with nodes implicitly declared and an arc property enumerated.

Figure 4. Partial data file with forward star format and lists of nodeIDs and arcIDs.

As shown in Figure 4, the user can specify lists of nodeIDs and arcIDs
that must be used in the Data element. The validation checks that these, and
only these, are used in the Data element. Lists of values in xml must be
space-separated (comma-separated lists can be used, but they are treated as a
single string and thus are not subject to the validation of the individual
values that we demand). This means that values in lists cannot contain
leading, trailing, or embedded spaces. Thus, while “San Francisco” can be
used as a nodeID, arcID, or property, it cannot be used in a list. The XML
Schema data types include a restricted string type, NMTOKEN, that does not
allow leading, trailing, or embedded spaces. If the user intends to forbid

261

spaces in the nodeID, arcID, or a property, specifying this restricted data
type allows the validation to enforce the no-space decision.

The loosely coupled components architecture guarantees that the data file
format is completely independent of the dataStore.

One of the advantages of xml is that the data is represented as character
data (as opposed to binary formats that may be computer dependent) so it is
“human readable.” This encourages the descriptive (and often long) names
for the properties that help to document the data files. In the resulting data
files the ratio of markup to data values can be high. This is appropriate for
files that are constructed and read by people. For large data files, and for
data files that are constructed and consumed by computer programs without
human interaction with the data, it is useful to reduce this markup. (Note: It
is not clear that reducing the markup is necessary even for large data files
because xml files can be efficiently and effectively compressed.) One
mechanism is to shorten the property names as shown in Figure 5. For
NodeProperty and ArcProperty elements, there is an optional attribute label
that provides a name that can be used in generating reports or when the data
is viewed by people.

There are several other ways to reduce markup. As shown for the Node
element “123,” non-empty node data can be included as attributes. This
format is also a compact way to keep all the data associated with a node (or
arc) together in the data file. Node property Location is entered so that the
values of a single property are kept together in the data file. The data is in a
space-separated list. The order of the data must conform to the order of the
nodes in the data file. This ordering is unambiguous for each of the four
different ways to assign nodeIDs (and each of the four ways to assign
arcIDs).

Assigning default values for node or arc properties (see arc property
Value) can reduce the size of the data file. The default value is passed to the
dataStore; a NaGReader places the value into the dataStore only if the
attribute defaultInsert is specified (see arc property AnotherValue).

Figure 6 shows the use of NodeList elements that offer yet another way to
organize the data file. This format is useful if the property values are non-
empty for only a recognized subset of the data. In addition to data entry,
node sets and arc sets are useful to specify a part of the structure of the
network and can be used to specify subgraphs. All node and arc sets and
subgraphs are carried on into the dataStore so they can be used in
algorithms, displays, and output files.

262

Figure 5. Partial data file: short property names, properties as attributes, and property lists.

Figure 6. Partial data file with node list and multiple property elements.

It is sometimes convenient to group some of the node properties into a
list. This may be to reduce markup or just to keep related data values
together. A MultipleNodeProperties element is defined by a list of node
properties. The basic philosophy behind NaGML is that every data value
should be subject to validation and that validation should be as “strong” as
possible. XML Schema validation allows only one data type for items in a
list. For this reason, each MultipleNodeProperties element must have its own

263

data type (plus any appropriate restrictions). As shown for
MultipleNodeProperties element BothCosts, this usually means a relaxation
of the data type to allow values from all the properties. However, it can also
be used to further restrict a property value as shown for
MultipleNodeProperties element RestrictedCost1. The property Cost1 can be
entered in a Cost1 element or a RestrictedCost1 element; for the former the
validation checks that the value is double, for the later additional restrictions
are imposed.

The MultipleNodeProperties and MultipleArcProperties elements are
carried on into the dataStore. One use is to restrict the data displays for
networks with large numbers of properties or to construct custom displays
and reports or to create new data files with a subset of the properties.

The validation of each data file checks the data type and restrictions for
each nodeID, arcID, and property value and checks that nodeIDs and arcIDs
are unique. However, the great variety in the ways that a data value can be
included in the data file makes it impractical to check if a data value has
been specified in the Data element more than once. This can be viewed as a
valuable feature in that additional data can be added to the end of a (perhaps
large) data file to update a value in the file. The data file author has control
over what a NaGReader does whenever a duplicate property value is
encountered. The Notes element includes an optional element Processing
that includes directions that are passed on to a NaGReader. The user can
specify that a duplicate value replaces the previous value, is ignored, or
causes a fatal error. The specification for NaGReaders details the order that
the elements must be processed, thus the definition of “previous” is
unambiguous.

In addition to the restrictions on the data types that have been shown in
the previous figures, it is also possible to specify a regular expression (using
the attribute pattern) to further restrict the value of nodeID, arcID, and
property values. XML Schema includes a powerful regular expression
capability based on UNIX and Perl regular expressions (“based” means there
are a few non-obvious exceptions). Regular expressions are a powerful
capability to tightly specify the format and values of special data values (for
example, lat-long, non-standard times and dates, phone numbers, serial
numbers, etc.); however, the processing cost can be significant.

Graphs and networks have been around for hundreds of years and they
are used in a wide variety of contexts. It is important for NaGML to support
a wide range of data file formats in order to expedite the transition to a
standard data file format. The requirement to simultaneously support all the
data formats shown in the previous figures is indicated in the attribute
dataFormat = “general” in the Description element. This default dataFormat
is supported with the reference implementation reader, which uses the

264

JDOM API (McLaughton, 2001) to access and then process the elements in a
fixed sequence. JDOM constructs a tree structure for an xml document in
memory. This allows “random” access to all parts of the representation of
the data file, thus the dataFormat = “general” adds only a small additional
computational cost to allow the top-level elements in the Data element to
appear in any order.

For larger data files the JDOM construction is not practical; the most
effective way to read the data file is in a single pass. This can be done using
an xml SAX parser or by constructing a program to read the file directly (as
done in the second NaGReader reference implementation). The attribute
dataFormat in the Description element specifies the structure that the user
has selected for the contents of the Data element. As shown in the previous
figures, the default choice of “general” offers the greatest choice of structure
and order. The choice of “one pass” means that the schema that is
constructed for the data file must guarantee that any NaGReader can read the
data file in a single pass through the file. One pass imposes several “define
before use” restrictions that must be enforced in the validation. In particular,
since each arc requires a reference to a tail node and a head node that should
be defined before the arc, all node elements must precede all arc elements
and ArcTail and ArcHead elements are not allowed inside Node elements.
Also the NodeList and ArcList elements (in the Data element) should follow
the Node and Arc elements. The schema that is constructed enforces this
ordering.

There are a number of choices that could be made to limit the data file
format and thus allow more efficient readers. The only restriction on
extending NaGML in this way is that the schema that is constructed must
enforce the restrictions on structure and order, and any NaGReader should
refuse to read a file that has a format it cannot correctly process.

As discussed earlier, NaGML is intended for an international community
and thus has been constructed so that the visible parts of the markup
(element and attribute names) can be changed to different languages (xml
encodings). In the reference implementation, NaGReaders access the names
of elements and attributes through a list of string constants. Thus, any
change in this list changes the text of the markup without modifying any of
the code. In the same way, NaGML can be modified to construct tools for
communities that work with points and lines, but who have a vocabulary that
does not include nodes and arcs.

265

6. RELATED WORK

The first application of NaGML uses many of the components described
here (Schneider, 2004). It is an application to track military incidents and
then to analyze them for patterns that are changing over time. Each incident
(node) has 34 properties, only a few are integers or doubles. Data collection
has begun and a software system to collect, visualize, and analyze the data
has been deployed.

The author of a NaGML data file specifies the name, data type, and
restrictions for each node and arc property. This is the most innovative
feature of NaGML. Previous proposals for xml languages for networks and
graphs have defined a single xml language and thus have significant
limitations on what can be in a data file and/or what validation can be
applied (Bradley, 2003a; Brandes, et al.; Fourer, Lopes, Martin, 2004; Holt,
Schurr, Sim, Winter; Martin, 2003; Punin, Krishnamoorthy).

There are proposed xml standards for optimization that cover linear,
nonlinear, integer, and stochastic programming (Fourer, Lopes, Martin,
2004; Lopes, Fourer; Martin, 2003). Network optimization problems can be
modeled as more general optimization problems, however, these system do
not have special markup for network problems.

7. CONCLUSIONS

NaGML is a family of xml languages for network and graph data. As
shown in the previous figures, NaGML offers flexibility in choosing
property names, data types, and restrictions. NaGML has a simple syntax to
specify the name of each property and its data type from among the 44 built
into XML Schema. The data types can be modified by adding further
restrictions and by applying regular expressions. NaGML offers strong
validation. Using software from (Bradley, 2004a), a custom XML Schema is
automatically constructed and used to validate that each data value confirms
to the specified data type and restrictions. NaGML offers a variety of data
file formats. As shown in Figures 1, 2, 3, 4, 5, and 6, data values can be
specified in a variety of ways. All the possible data file formats are read by a
single software component from (Bradley, 2004a).

In addition to software components to construct schema, validate data
values, and read data files, (Bradley, 2004a) has components to display
network data and to write NaGML files. Future plans include components
for executing network algorithms and visualizing static and dynamic views
of algorithm calculations.

266

ACKNOWLEDGEMENT

This research has been supported by a grant from the Mathematical
Sciences Division, Office of Naval Research.

REFERENCES

Bradley, G., 2003a, “Extensible Markup Language (XML) with Operations Research
Examples,” tutorial given at the Eighth INFORMS Computing Society Conference,
January 2003, Chandler, AZ,
diana.or.nps.navy.mil/~ghbradle/xml/PaperMay2003/GBradleyXMLTutorialJan03.zip.

Bradley, G., 2003b, “Introduction to Extensible Markup Language (XML) with Operations
Research Examples,” INFORMS Computing Society Newsletter, Vol. 24, Number 1,
Spring 2003, page 1 (14 pages). HTML version with live links:
http://Faculty.gsm.ucdavis.edu/~dlw/bradleyNewsletter.htm

Bradley, G., 2004a, Network and Graph Project, see http://diana.or.nps.navy.mil/~ghbradle/
NetworkAndGraphProject for a description of this open source project and a link to a
repository that contains the project code, examples, and documentation.

Bradley, G., 2004b, “Schema Construction for a Family of xml Languages” (in preparation).
Brandes, U. Eiglsperger M., Herman I., Himsolt M., and Marshall, M., “GraphML,”

http://graphml.graphdrawing.org/.
Common Optimization Interface for Operations Research (COIN-OR), http://www-

124.ibm.com/developerworks/opensource/coin/.
Duckett, J., et al., 2001, Professional XML Schemas, WROX.
Fourer, R., Lopes L., and Martin K., 2004, “LPFML: A W3C XML Schema for Linear

Programming.” http://gsbkip.uchicago.edu/fml/fml.html.
Goldfarb, C. F. and Walmsley P., 2004, XML in Office 203, Prentice Hall.
Holt, R., Schürr, A, Elliott Sim, S., and Winter A., “Graph Exchange Language,”

http://www.gupro.de/GXL/.
Hunter, D., et al., 2002, Beginning XML, edition, WROX.
Lopes, L. and Fourer R., “SNOML,” http://senna.iems.nwu.edu/xml/.
Martin, K., 2002, “A Modeling System for Mixed Integer Linear Programming Using XML

Technologies,” December 11, 2002, revised February 27, 2003, 34 pages.
http://gsbkip.uchicago.edu/xslt/pdf/xmlmodeling.pdf.

McLaughton, B., 2001, Java & XML, edition, O’Reilly.
Punin, J. and Krishnamoorthy M., “XGMML (eXtensible Graph Markup and Modeling

Language),” http://www.cs.rpi.edu/~puninj/XGMML/.
Ray, E.T., 2001, Learning XML, O’Reilly.
Schneider, P., 2004, “Multivariate Change Point Detection in Counter-Insurgency

Operations,” Master thesis in Operations Research, Naval Postgraduate School, Monterey,
CA (completion date September 2004).

van der Vlist, E., 2002, XML Schema, O’Reilly.
World Wide Web Consortium (W3C), http://www.w3.org.

SOFTWARE QUALITY ASSURANCE FOR
MATHEMATICAL MODELING SYSTEMS

Michael R. Bussieck, Steven P. Dirkse, Alexander Meeraus, Armin Pruessner
GAMS Development Corporation, 1217 Potomac Street NW, Washington, DC

{MBussieck, SDirkse, AMeeraus, APruessner}@gams.com

Abstract With increasing importance placed on standard quality assurance methodolo-
gies by large companies and government organizations, many software compa-
nies have implemented rigorous quality assurance (QA) processes to ensure that
these standards are met. The use of standard QA methodologies cuts mainte-
nance costs, increases reliability, and reduces cycle time for new distributions.
Modeling systems differ from most software systems in that a model may fail
to solve to optimality without the modeling system being defective. This ad-
ditional level of complexity requires specific QA activities. To make software
quality assurance (SQA) more cost-effective, the focus is on reproducible and
automated techniques. In this paper we describe some of the main SQA method-
ologies as applied to modeling systems. In particular, we focus on configura-
tion management, quality control, and testing as they are handled in the GAMS
build framework, emphasizing reproducibility, automation, and an open-source
public-domain framework.

Keywords: Quality assurance; software; modeling systems; mathematical programming, au-
tomation

1. Introduction
Quality Assurance (QA) has become an essential component in most indus-

trial and commercial undertakings and has increasingly become important in
most software engineering sectors. See for example, the emergence of orga-
nizations focusing specifically on quality ([10] and [2]). Unfortunately, soft-
ware quality assurance (SQA) has received much less attention in the Mathe-
matical Programming (MP) community. Historically, many innovative solver
technologies have emerged from the academic sector, where the emphasis has
generally been on performance and not on QA as in the commercial sector. On
the other hand, the commercial sector has always emphasized reliability as the
primary goal. Given this focus on performance in the (academic) MP commu-
nity, it is not surprising that the few papers addressing SQA methodologies in

268

MP focus mostly on the areas of performance testing and benchmarking. See
for example [17], [5], [4], and [11]. Bussieck et. al. [3] have examined the QA
steps necessary for reducing the risks of introducing new solver technologies
into the community, although many of these procedures and processes focused
on full system integration performance-type testing as well.

Traditional, commercial SQA techniques have always emphasized full life-
cycle testing (as opposed to system integration testing only) and usually rely
heavily on auditing and peer-review inspections. While these techniques are no
doubt effective, the latter is quite expensive, and given the small MP industry,
economically prohibitive. Note that many commercial MP companies fall into
the small business category or into specialized research groups within larger
organizations. Therefore, the focus of SQA activities for MP must rely on
reproducible and automated tools and testing. We will focus on such activities,
emphasizing how such tools and procedures improve overall product quality,
reduce cycle time for new distributions, and reduce turnaround time for bug
fixes. Furthermore, we place many of these tools in the public domain for use
by customers and researchers alike.

The public availability of such models and testing tools has several advan-
tages. In the absence of formal peer review and auditing activities, the use
of public domain models and testing tools is important in that it allows cus-
tomers and the MP community to become directly involved in the QA valida-
tion process. It also speeds up the dissemination of knowledge in the areas of
algorithms and solver technologies from academics by allowing them to have
direct access to public domain quality assurance tools. Finally, testing activi-
ties without the possibility of reproducibility are essentially meaningless since
there is no verification ability of specific quality tests by customers at a future
date.

While initial formal SQA processes were pushed for by commercial de-
mand, the use of such methods and tools should be of interest to academics, MP
software vendors, individual commercial users, as well as commercial compa-
nies. Academic users may be interested in performance testing and bench-
marking, whereas a commercial client may need to verify that the third party
MP software they receive is of quality1. The latter may have its own QA de-
partment for their products and domain-specific services, but needs assurance
of the modeling system to satisfy their customers. Solver vendors want their
solver technology to perform well in the market place and want assurance that
the modeling system functions appropriately with their respective product. Fi-

1 There is a certain imbalance between academic publication in MP and commercial jobs. Consider the un-
scientific quick-and-dirty study of finding jobs at Careerbuilder.com by keywords (May 12, 2004): “Quality
Assurance” 3,556 results, and “Mathematical Programming” 8, a ratio of 444 to 1. A Google search by
keyword on the same date results in 4,510,000 for “Quality Assurance” and 111,000 for “Mathematical
Programming, a ratio of 40 to 1.

269

nally the individual user is interested in solving models accurately and to be
able to focus on modeling instead of the solution process.

Modeling systems (and numerical software in general) differ from most soft-
ware systems in that a model may fail to solve to optimality without the model-
ing system being defective. This algorithm failure differs from the traditional
software implementation defect since the modeling system must be able handle
the failure mode and provide the user with sufficient return information to de-
termine the return state. Note that many solvers are available to developers of
modeling systems only in library form (i.e. no source), essentially limiting in-
teraction between the modeling system and the solver to black box input-output
communication. This additional level of complexity requires MP-specific QA
activities to test for such returns.

This paper is organized as follows: in §2 we describe general SQA princi-
ples, focusing on configuration management, testing, and quality control. In
§3 we describe QA activities specific to modeling systems, emphasizing how
components interact and where errors can occur. In §4 we show how these
principles are applied in the GAMS build framework and how the use of client
models can further improve quality. In §5 we give examples of client model
testing activities and finally in §6, we draw conclusions.

2. Software Quality Assurance Principles

Various software quality assurance principles (or models) have been devel-
oped by different organizations to ensure that specific standards are met and to
give guidelines on achieving these standards. Although these address the full
software lifecycle, we will focus on configuration management and automated
testing.

Standard Models

Many QA standards and models exist with a large number of choices. Ac-
cording to [12] “there are more than 300 standards developed and maintained
by more than 50 different organizations.” Popular models are the ISO 9001,
which specifies requirements for a quality management system within an or-
ganization and the Software Engineering Institute (SEI) Capability Maturity
Model (CMM), which provides a framework for continuous software process
improvement [16], although many others are used, depending on user goals.
The key notion is that they provide guidelines for conducting audits, testing
activities, and for process improvement.

The CMM approach classifies the maturity of the software organization and
practices into five levels describing an evolutionary process from chaos to dis-
cipline [16]:

270

Level 1: Initial. The software process is characterized as ad hoc, and oc-
casionally even chaotic. Few processes are defined, and success depends
on individual effort and heroics.

Level 2: Repeatable. Basic project management processes are established
to track cost, schedule, and functionality. The necessary process dis-
cipline is in place to repeat earlier successes on projects with similar
applications.

Level 3: Defined. The software process for both management and en-
gineering activities is documented, standardized, and integrated into a
standard software process for the organization. All projects use an ap-
proved, tailored version of the organization’s standard software process
for developing and maintaining software.

Level 4: Managed. Detailed measures of the software process and prod-
uct quality are collected. Both the software process and products are
quantitatively understood and controlled.

Level 5: Optimizing. Continuous process improvement is enabled by
quantitative feedback from the process and from piloting innovative ideas
and technologies.

The challenge for many MP vendors is to move from Level 1, the chaotic,
creative and exciting phase to Level 5 without losing creativity and, most im-
portantly, to stay in business.

Configuration Management

Software configuration management (SCM) refers to all activities used to (1)
identify change, (2) control change, (3) ensure that change is being properly
implemented, and (4) to report changes in the software to others who may need
to know of them [14]. This includes all activities related to version control and
change control.

Change identification is often in the form of some audit string information,
which details the product primary version number, minor version number as
well as possible incremental bug fix releases or patches. Change control is
necessary to ensure that existing source used for previous releases is not over-
written and only authorized personnel can add new source. Accurate audit
information becomes increasingly important for software consisting of a high
number of modules (GAMS currently has over 45), each of which may depend
and build on various other modules. Furthermore, configuration management
ensures that authorized changes are actually implemented in the formal build
product. Some configuration management elements that are important include

271

Audit Strings. Audit strings are necessary to determine the exact versions of
a particular product, particularly those that rely on several other modules. The
audit strings become particularly important when tracking bug reports so that
the exact configuration source (of both the actual product and the supporting
modules) can be determined and appropriate fixes can be made.

Product versions are consistent. Use of version checking tools to deter-
mine if the version used in the previous official distribution, the latest version
in the product repository, the version used for the build in the Makefile and
the version used in the audit string are identical. The accuracy and unison of
versions is necessary for bug tracking as well (See audit strings).

Product versions are frozen automatically for builds. This ensures that
developers do not accidentally overwrite existing code and informs them if
versions need to be bumped. Because of the large number of products that
exist in the GAMS portfolio, each with numerous versions, automation tools
(scripts) for tasks such as making current product directories read-only or read-
write become increasingly important.

Quality Control and Testing

All testing activities should include processes to uncover defects during the
complete life cycle of the software. The focus on full life cycle testing (as
opposed to system integration testing only) is important, because the cost of
defects rises exponentially the later the phase of the cycle [14]. The testing
activities include, but are not limited to:

Unit testing. Testing of the individual component (solver and solver link
module) using both black-box (input-output only) and white-box (known in-
ternal code structure) type tests.

Regression testing. Testing to determine if changes to the software or fixing
a defect cause any problems to other components in the system.

System Integration Testing. Testing done to ensure that the entire product
(base module plus solver modules) functions as intended and to specifications.

The emphasis of all testing activities is again on automation and repro-
ducibility. Many of the tools are available publicly in the form of model li-
braries. The models in these libraries can be used by just running them within
GAMS. In [3], some of these tools and models that are publicly available are
already described.

272

Metrics
Most engineering processes involve measurements to make accurate assess-

ments of the attributes of the product. The use of metrics is important in that it
quantifies attributes of a given process or of the product. In particular, metrics
such as number of defects of a particular type (critical, serious, cosmetic, etc.)
are used within GAMS to determine if the product is ready to move from beta
phase to a shippable product. Since development takes place continuously,
metrics should be collected continuously as well to determine quality of the
current product.

3. SQA For Modeling Languages and Systems
In this section we describe some of the special problems of maintaining soft-

ware quality in the context of modeling systems which differs from traditional
QA principles. Furthermore, we give some background on modeling systems
in general to motivate the QA principles.

Basic Technical Principles

In the early days of mathematical programming systems, the existing tech-
niques to construct, manipulate, and solve models required several manual,
time-consuming, and error-prone translations into the different, problem-spec-
ific representations required by each solution method. Furthermore, the so-
lution methods were usually tied to a specific architecture and platform and
portability of models was virtually nonexistent.

Learning from these early techniques, most modeling languages today, in-
cluding LINDO [15], GAMS [1], and AMPL [7], appearing in that chronolog-
ical order, adhere to the following basic technical principles: (1) separation of
model and solution methods, (2) computing platform independence, and (3)
multiple solvers, platforms, and model types. The adherence to these princi-
ples has many advantages which are described, for example in [3].

Description of Components
In order to understand where possible defects can occur, an overview of

the system architecture of modeling systems is necessary. The base module
(or execution system) is the core of the system and is designed to translate
the human-level algebraic model statements into the scalar formulation passed
on to the solver modules. The base module includes the language compiler,
which performs syntax and other checks to ensure the (grammatical) integrity
of the model formulation. If the compilation is successful, the base module
expands the model formulation and generates a (sparse) matrix to be passed
on to the solver module to solve the problem. Additional user-specified solver

273

options are passed on to the solver modules as well. The solver modules are
essentially black box modules which return solve and model status as well as
solution information (if it exists). Finally, there exist other external modules,
which are not solvers, but are linked to the base module in a similar manner, to
perform specific tasks. These include, for example, links to Matlab, Excel or
data base interfaces, or conversion modules such as CONVERT [3] to translate
the model into other modeling language formats or standards.

Chance of Failure

The reliability of a system is sometimes referred to as “mean time to fail-
ure.” Although in traditional SQA terminology failure implies defect, in the
MP world this refers to algorithmic failure to find a solution. While phenom-
enal progress has been made and we are now able to solve many difficult and
large-scale problems, the steady state of mathematical programming software
should conservatively still be assumed to be the failure state. Unlike other soft-
ware systems, such as database applications, control systems, or other types of
systems, where ever more detailed specifications and detailed testing can con-
tinually reduce the chance of defect (hypothetically to zero), no such paradigm
for failure-free solves exists for optimization (or other numerical) software.
In particular, it is likely that there will always exist models which cannot be
solved reliably. Indeed, many of us have likely experienced unpredictable be-
havior in models, where a change of a single equation or data item suddenly
proves to be the culprit in failing to solve. The use of SQA techniques can
help minimize this chance of failure and provide graceful return information
if no solution is found. It is because of this chance of failure that commercial
modeling systems must focus on reliability, in particular by providing infor-
mative return information in case of failure. This level of QA complexity is in
addition to QA activities associated with traditional defect prevention.

Defects (as opposed to failures) can occur at any phase of the process flow
and can result in catastrophic malfunction or undesirable return information if
a solution is not found. The defects can occur either in the compilation phase,
the data manipulation phase, the model generation (matrix generation) phase,
the solve phase by the solver modules, in the solve phase by the sub-solver
modules (for example, an MINLP solver may make use of an NLP solver), or
during the processing of the solution returned by the solver to the base module.
A solve may initiate the execution of other modeling system components. At
a minimum, any rigorous quality control testing procedures must address the
possibility of failure at each of these phases nested several levels deep.

274

Uniform Return Status

Because of the inherent chance of failure, modeling systems must be adept
at dealing with various return states. Unfortunately, solvers are not uniform
in the amount or type of information returned to the base module. At a bare
minimum this information includes the solution point, if it has been found, but
could also include dual information or infeasibilities if the model was found to
be infeasible. In order to ensure uniform return information, GAMS requires
return codes for both the model and the solver from which one can accurately
deduce the overall return state.

The solver return status refers to the status of the solver, for example nor-
mal, resource (time) interrupt, iteration interrupt, no solution, and error. For
simplicity, numerical codes from 1-13 are assigned to each of these states. The
model return status refers to the state of the entire model or of a particular
point: for example, optimal solution, locally optimal, integer solution, infeasi-
ble, locally infeasible, unbounded, or error. These are mapped from 1-19. The
status of error (13) should ideally never be returned. Rather, any return status
should be mapped more specifically to well-defined return status. As described
later in this paper, the error return code is to be treated as a serious bug in the
software. It should be clear that without uniform return codes obtained from
each solver call, regardless of the solver module, it may become increasingly
difficult to do consistent error checking.

Status code analysis is handled in GAMS by use of matrix filtering. Through
careful analysis, acceptable model/solve return status code combinations have
been pre-determined and are ranked (a higher value indicates a better return
state than a lower value). Return codes can be used in system integration
testing by using matrix filtering: flagging all model/solver combinations with
model/solver status code combinations having a ranking that is less than the
specified threshold. Roughly, the higher the threshold, the stricter the testing
pass criteria.

In Table 1, we show all possible acceptable return code combinations with
their respective ranking. Solve status codes are in the columns and model
status codes on the rows. For example a Model Status / Solve Status code
combination of optimal solution / normal completion (1,1) has a high ranking
of 9, whereas a combination of Error no Solution / Error Solver Failure (13,13)
is never acceptable (denoted by a dot.).

4. Software Quality Assurance in GAMS
GAMS is available on 7 different platforms (Windows, Linux and 5 other

UNIX environments) and consists of over 45 different modules and products.
Thus the build process is quite complex and requires a single standard reposi-
tory from which source and libraries are extracted. Software builds for the dif-

275

ferent platforms take place on different machines, which may exist in-house,
or elsewhere.

Because of the complexity of porting to a new machine, which requires
multiple compilers and utilities, initialization of a new machine requires in-
stallation of various software modules (including specialized GAMS-specific
build scripts). This step is unfortunately not automated, although the build en-
vironment is relatively stable and new porting machines are only infrequently
introduced. The build process can be described as follows for each platform:
(1) Copy general build instructions (in the form of Makefiles) from the master
repository to local environment, (2) for each product: extract product-specific
build instructions and source in the form of Makefiles, build the product, re-
deposit built product to master repository, (3) do post-build processes to create
installation files.

The description of this process is of course simplified herein, although it
should be clear that without the appropriate build automation tools, the nec-
essary steps to do a single build would be extremely time consuming and the
probability for failure high. Furthermore, because of dependencies of some

276

products on other products, it becomes increasingly difficult to sort through
dependencies manually.

The porting environment allows near-automated builds of entire distribu-
tions. Indeed, as an added SQA measure, we have fully automated the build
task for Windows and Linux, so that a full build is completed automatically
once a week. Such automated full compilation activities ensures that our port-
ing environment is continually in a buildable state. This uncovers potential
bugs early in the life cycle and in turn reduces cycle time for full release of
new distributions. The automatic build also includes installation and testing
activities so a continual analysis of porting source is possible.

Configuration Management

Within the GAMS porting environment, we use configuration management
tools to ensure that product versions are consistent and version source integrity
through automatic code freezes is maintained. Furthermore, we have a consis-
tent audit string assignment for each module.

All GAMS modules can be easily identified in terms of their version num-
bers, build date, last source date change, as well as such information for all
modules needed to build the product. Sample audit information includes the
one line audit string (here for CPLEX)

We should note that many standard source management and version con-
trol tools exist, notably for example CVS (http://www.cvshome.org/). Al-
though we do not utilize any of these, any SQA activities should include rigor-
ous version control processes to manage source. Our processes mainly focus
on the automation process in maintaining the integrity of the porting reposi-
tory. The argument for use of a simpler system is that our products consist not
only of source in a single language (such as C++), but contains products writ-
ten in various languages (or consists of modules written in various languages),
libraries, and other tools. Management of these various products and source is
simplified by maintaining a simple directory tree structure with simple main-
tenance scripts. It should also be noted that some of the libraries (or source
codes) are obtained from sources using their own source management system.
But an argument for management tools such as CVS can certainly be made.

Bug Tracking
At GAMS we use various bug tracking systems in order to communicate

effectively with our external solver developers. In-house, the system consists
of an e-mail based system which users can submit bug reports to and change
statuses. Reports can also be viewed online internally. Because outside solver
developers (or clients, if we are dealing with consulting projects) may have

277

Figure 1. (Left) Snapshot of weekly bug statistics by module (in percent). (Right) GAMS
full test. Solve aggregation by model type.

different bug tracking requirements, we also utilize different systems for noti-
fication for these parties. Flexibility is the key and we accommodate different
systems to coordinate with external contacts.

As an example, our in-house bug tracking system sends weekly e-mail bug
statistics reports of open, closed, and total number of bug reports for each
module, which can be used to determine when a stable distribution is ready.
In Figure 1 (left) we show a sample weekly statistics chart of open and closed
issues (in percent) for each product.

Testing
Our SQA activities focus mainly on testing, in particular on automated and

reproducible tests. In Figure 2 we show a flowchart of our general testing activ-
ities. The tests cover the full life cycle of development, build and integration.
It should be noted that during each testing phase, potential new relevant test
cases are added to the master list of test models, which ensures that (1) previ-
ous bugs will not occur again, (2) tests can be run automatically during system
integration testing, and (3) tests are publicly available.

This means that, for example, during unit testing, if a particular defect is
found, the relevant test to uncover the bug is added to the suite of tests, so that
during full integration testing, the bug will be uncovered if it has not been fixed.
Such activities are particularly effective in increasing software quality from
one build iteration to the next and foster an environment of continual quality
improvement. Our test cases are available in the following testing libraries (or
suites), all of which are in the public domain.

278

Figure 2. GAMS SQA testing activities.

GAMS Model Library. A collection of over 300 models, including prac-
tical models that can easily be extended to production models. The col-
lection http://www.gams.com/modlib/modlib.htm. covers all sup-
ported model types.

GAMS Testlib Quality Models. A new library of models developed for
testing and quality control. These models are designed for use by GAMS
staff and solver developers to test solver and base module correctness,
special functions, and performance. The quality and correctness tests are
integrated with the models and all failed tests are identified in a summary
report.

GAMS World Models. A collection of real-world models, as well as li-
braries from the academic literature. See http://www.gamsworld.org/.

In order to provide uniform access to these tools and models for users of
other modeling systems, models can be converted into other common formats

279

using the CONVERT utility (both as a GAMS and an online utility) for use by
non-GAMS users. See [3] for details.

Unit testing is usually performed by the developer on a limited integration
system on a local development machine. Regression testing may involve a
GAMS initial test, which solves a sample model of each model type with all
available solvers. It also includes the models from Testlib, which check the
GAMS base module for possible defects. If the results of this testing activ-
ity are satisfactory, the full system integration test is initiated. Tests are run
as pass/fail, where pass/fail is determined by the threshold limit specified for
model/solver status return code combinations. See Section 3 (Uniform Return
Status).

The full system integration test (referred to as GAMS full test) involves solv-
ing all demo GAMS models from the model library with all relevant solvers
and solver combinations. For details, see the GAMS Library model slvtest.gms
(http://www.gams.com/modlib/libhtml/slvtest.htm). This includes
a total of over 16,000 total solves for each platform. An aggregations of solves
per model type is shown in Figure 1 (right).

Furthermore, the full test also includes running the full suite of Testlib qual-
ity models. These tests include tests to verify proper behavior for failure
modes. For example, we may test for domain input violations of nonlinear
functions. The number of quality tests run on each platform differs, since not
all solvers are available for all platforms and some modules may not exist for
certain platforms. For example, the Excel interface is tested only on the Win-
dows platform. The total number of quality test models is about 140, each
containing numerous pass/fail tests. New quality tests are added continuously.

The tests are run in fully automated mode, usually after every full build,
with results sent via e-mail to the person building the system. The e-mail
includes any possible anomalies, as well as a summary of model and solve
status combinations. If there are anomalies, the model and solve combination
is revealed, so that the bug can easily be reproduced on a local machine. The e-
mail reports also serve the function of archiving test results for future analysis
and comparison.

A sample excerpt of the full test summary sent via e-mail is shown below.
The results are shown in terms of number of solves falling into each model
status and solve status return codes. The absence of a model status of 13 (Er-
ror No Solution) or solver status code of 13 (Error System Failure) generally
indicates a successful system test. In this case, a threshold of 3 has been set,
so that any model / solve status return combinations with a ranking less than
or equal to 3 are marked as failures (not shown in the Table). See Table 1 for
the model/solver return code ranking matrix.

280

Figure 3. PAVER performance of CONOPT3 with respect to previous versions. (Left) Profile
plots. (Right) Timing comparisons.

Miscellaneous Tests and QA Activities
The testing activities above uncover many deficiencies, although some other

issues may not be addressed by these tests. Quality assurance is further en-
hanced through the following procedures and using the following tools:

New development using standard I/O libraries. New solvers can be attached
to GAMS using standard FORTRAN, C or Delphi I/O libraries. The use
of standard libraries to communicate with GAMS reduces the number
of bugs that are introduced, increases reliability, as well as performance.
The libraries have been thoroughly tested for robustness, correctness and
performance over many years and provide a reliable way to introduce
new solver technologies.

Performance. Performance is still an important criterion in SQA, both
for solver developers and commercial users. Benchmarks run using
large test sets can automatically be examined using automation tools,
such as the public-domain PAVER Server [13] to verify solver perfor-
mance and compare to other solvers. For example, in [6], performance

281

of a new version of CONOPT (CONOPT3) is compared to existing ver-
sions (CONOPT1 and CONOPT2). The resulting performance profile
plots [4] (created automatically using the PAVER Server) verified that
CONOPT3 indeed does have tremendous performance increases from
previous versions. See the results in Figure 4. The left side shows
the performance profiles and the right figure the resource timings of
CONOPT1 and CONOPT3. The use of such tools enables users to
quickly identify trends in large data sets.

Client models. Since GAMS has a heavy commercial client base, which
demands reliable software, the use of model library models may not be
sufficient. The client models may be interfaced with complex databases
and make use of varying modules that interact in specific ways. Thus,
GAMS Development has started an initiative of running client models in
their full interfaced capacity. This ensures that models will solve on new
distributions as they did with previous releases.

Independent Solution Verification. The EXAMINER tool [8] can be used
for examining points and making an unbiased, independent assessment
of their merit. It is also useful when comparing the solutions returned
by two different solvers. Finally, a tool like the EXAMINER allows one
to examine solutions using different optimality tolerances and optimal-
ity criteria in a way that is not possible when working with the solvers
directly.

5. Client Model Testing
The use of client models for SQA testing is important because it generally

involves much more complex interfacing between different modules and gives
us a better idea of real, large-scale commercial applications. It also provides
a unique motivation: it gives clients assurance that their optimization applica-
tions are compatible with new GAMS system releases and gives the expected
results. By expected results, we mean not only the ability to solve, but also to
find the same solution2 and have similar performance in doing so. The latter
is important because even minor changes in solvers (for example changes in
default settings), may unexpectedly cause tremendous increases in solve time,
which may be unacceptable for the particular application time frame. In this
section we describe a client application, which we use for our in-house QA
client testing.

2To define what we mean by having the ‘same solution’ is often an unexpectedly difficult problem and a
source of frustration for the innocent user. In general, it is impossible to exactly reproduce solutions to
optimization models between different software releases, computing platforms, or real-time events. The
term ‘same solution’ needs to be defined for each application.

282

MARKAL [9] is one of the most widely used energy/environment/economy
planning models, playing a central role in Climate Change analysis for numer-
ous countries and communities around the world. Development is coordinated
by an international group, the Energy Systems Analysis Program (ETSAP).
For current information, see http://www.etsap.org/markal/main.html.
The model and its data are managed by several different application environ-
ments and the model can be operated in different modes offering an almost
infinite number of possible model instances. One particular application envi-
ronment, ANSWER, a graphical interface is shown in Figure 5. Because of the
interfacing capabilities and the large number of components in the MARKAL
suite, additional failures are possible, which may not be covered by the simpler
models in the testing suites described previously. The simpler integration test-
ing also does not do any performance analysis, which is often vital in practical
commercial modeling applications. A typical model run may involve dozens of
optimization steps and intricate data manipulation, all on very large data sets.
To make automatic testing possible, substantial restructuring of the internal
MARKAL model management is required. Isolation of the core components
and communication with the application environment is done via the GAMS
Data Exchange (GDX) format. It is now possible to automatically generate
complex job streams that can be operated outside the MARKAL application
environment. Those job streams are then used in routine application support
and may end up in the customer test suite.

The client model test set consists of a number specific of job streams with
additional pass/fail tests designed and implemented jointly with the client. The
job streams and all required data and subsystems are archived and become part
of a QA support contract. The execution of such test suites is fully automated
and QA certificates are generated and archived to allow audits on the QA pro-
cess. Exceptions are tracked, and a GAMS system will not go into a beta
release unless all exceptions have been resolved which, in some cases, may
require a redefinition of tests or even making changes in the client models. In
a more traditional manufacturing environment, one would call this preventive
maintenance.

Proprietary and confidential aspects of data and solution processes add some
additional complications. In some cases it may be necessary to encrypt certain
parts of the models and/or data before a client is ready to share a job stream.
GAMS provides a number of tools to extract and transform or hide model and
data components to meet the client’s need for not disclosing vital information.

The client models such as the MARKAL test suite become the manifestation
of the commitment to the continued process of quality assurance for both the
client and the software developer. The test suites and the automatic testing
procedures are shared by the client and the developer and thus define precisely
what quality means for a specific application. Client model testing has become

283

Figure 4. MARKAL: (Left) Integrated model overview. (Right) ANSWER user interface,
data spreadsheet and graph.

a win for both client and developer and has been made possible by automating
the testing process and by sharing the test instances.

6. Conclusions

We have addressed some of the procedures necessary for implementing soft-
ware quality assurance in mathematical modeling systems, showing how SQA
for MP software differs from SQA activities for more traditional software sys-
tems. The key steps are automated testing and automated configuration man-
agement tools, which foster continual quality improvement. In particular, the
focus of our testing activities is on reproducible full lifecycle testing. Our test-
ing framework, which includes model collections, data collection tools, and
data analysis tools, allows seamless full lifecycle testing inside the GAMS sys-
tem, with many components available for outside use by non-GAMS customers
and researchers in general. We hope that these tools will illustrate the impor-
tance of QA activities for academics, commercial users, solver vendors, and
modeling system developers and hope they can be of benefit to the mathemat-
ical community in improving their software quality assurance methodologies.

While some of the procedures described may seem disconnected, the focus
is on reaching the highest level of maturity defined by the CMM. Most MP
vendors, like GAMS, operate in a very small niche market and do not have the
resources to follow conventional QA processes used in large enterprises that
have revenues thousands of times larger than the entire MP niche market. How
can we evolve from Level 1, the exciting but chaotic phase, to Level 5, the
mature phase, and become a credible partner for other industries?

The main thrust should be to: (1) Automate the QA process and certification,
(2) build the tools into the software and share the QA process (3) make the QA

284

process transparent and reproducible, and (4) involve the clients (academic and
commercial) and make them part of the QA process.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Brooke, A. Kendrick, D., and Meeraus,A. (1988). GAMS: A User’s Guide, San Francisco,
CA: The Scientific Press.

American Society for Quality. (2004). Online at http://www.asq.org/.

Bussieck, M.R., Drud, A.S., Meeraus, A. and Pruessner, A. (2002). Quality Assurance
and Global Optimization. C. Bliek, C. Jermann, A. Neumaier, eds. Global Optimization
and Constraint Satisfaction, First International Workshop on Global Constraint Optimiza-
tion and Constraint Satisfaction, COCOS 2002, LNCS2861. Springer Verlag, Heidelberg
Berlin, (223-238).

Dolan, E.D. and (2002). Benchmarking optimization software with performance
profiles, Math. Programming, 91 (2) (201-213).

Dolan, E.D. and (2000). Benchmarking optimization software with COPS, Tech-
nical Report ANL/MCS-TM-246, Argonne National Laboratory, Argonne, Illinois.

Drud, A.S. (2002). Testing and Tuning a New Solver Version Using Performance Tests,
INFORMS San Jose, Session on “Benchmarking & Performance Testing of Optimization
Software.”. See http://www.gams.com/presentations/present.performance.pdf.

Fourer, R. and Gay, D.M. (1993). AMPL: A Modeling Language for Mathematical Pro-
gramming, Redwood City: The Scientific Press.

GAMS Development Corporation. (2004). GAMS - The Solver Manuals. GAMS Develop-
ment Corporation, Washington, DC: http://www.gams.com/solvers/allsolvers.pdf.

Hamilton, L.D., Goldstein, G.A. et al. (1992). MARCAL-MACRO: An Overview,
Biomedical and Environmental Assessment Group, Technical Report BNL-48377. Analyt-
ical Sciences Division, Department of Applied Science, Brookhaven National Laboratory,
Associated Universities.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

International Organization for Standardization. (2004). Online at http://www.iso.org.

Mittelmann, H.D. (2003). An Independent Benchmarking of SDP and SOCP solvers.
Mathematical Programming. 95, (407-430).

Moore, J.W. (1998). Software Engineering Standards: A User’s Road Map. IEEE Com-
puter Society, Los Alamitos, CA.

PAVER Server (2004). Online at http://www.gamsworld.org/performance/paver.

Pressman, R.S. (1997). Software Engineering: A Practitioner’s Approach, 4th Edition,
Boston, MA: McGraw-Hill.

Schrage, L.S. (1991). Lindo - An Optimization Modeling System, Scientific Press series,
Fourth ed., Danvers, MA: Boyd and Fraser.

Software Engineering Institute. (1994). The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley.

Shcherbina, O. Neumaier, A. Sam-Haroud, D. Vu, X.-H. and Nguyen, T.V. (2003). Bench-
marking Global Optimization and Constraint Satisfaction Codes. C. Bliek, C. Jermann,
A. Neumaier, eds. Global Optimization and Constraint Satisfaction, First International
Workshop on Global Constraint Optimization and Constraint Satisfaction, COCOS 2002,
LNCS2861. Heidelberg Berlin: Springer Verlag. (223-238).

MODEL DEVELOPMENT AND OPTIMIZATION
WITH Mathematica™

János D. Pintér1 and Frank J. Kampas2

1 Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada
jdpinter@hfx.eastlink.ca http://www.pinterconsulting.com http://www.dal.ca/~jdpinter

2 WAMSystems, Inc., Plymouth Meeting, PA, USA
fkampas@wamsystems. com http://www. wamsystems. com

Abstract: Mathematica is an integrated scientific and technical computing system, with
impressive numerical calculation, programming, symbolic manipulation,
visualization and documentation capabilities. In recent years Mathematica’s
optimization related features have been significantly expanded, both by in-
house development and by application packages. Such developments make it
an increasingly useful tool also in Operations Research studies. We review and
illustrate these features, placing added emphasis on nonlinear (global and
convex) optimization, and – within this context – discussing the application
packages MathOptimizer and MathOptimizer Professional.

Key words: Mathematica; built-in optimization functions; modeling and optimization
packages; MathOptimizer; MathOptimizer Professional; illustrative examples
and applications.

1. INTRODUCTION

Mathematica – an integrated scientific and technical computing
environment by Wolfram Research (2004) – is arguably one of the most
sophisticated software products available today. Its capabilities and range of
applications are documented in the massive Mathematica tome (Wolfram,
2003) and in the supplementary documentation. Further information is found
in nearly 400 topical books, and in thousands of articles and presentations.
According to Wolfram Research, the software is used by well over a million
people worldwide.

Mathematica can also increasingly meet the needs of Operations
Research professionals, including business analysts, model, algorithm and
software developers, researchers, professors, and students. O.R. related
features include data analysis and management, model prototyping, concise

286

programming (in several paradigms), advanced computing, visualization,
and documentation – all in the same ‘live’ notebook document, if preferred.
Such notebooks can also be directly converted to tex, html, xml, ps, and pdf
file formats. Mathematica also supports direct links to external application
packages, to other software products, and to the Internet. A significant
further advantage is portability across a broad range of hardware platforms
and operating systems, due to the standardized notebook document format.

For further general information, visit the websites of Wolfram Research,
specifically including the Mathematica Information Center (2004) that
provides extensive details and links. We also refer to a recent review of
Mathematica in ORMS Today (Sodhi, 2003), as well as to an illustrative list
of Mathematica books with a modeling and/or optimization related content
(Bahder, 1995; Schwalbe and Wagon, 1996; Gass, 1998; Bhatti, 2000;
Maeder, 2000; Jacob, 2001; Hollis, 2003; Pemmaraju and Skiena, 2003;
Kampas and Pintér, 2004). Let us note here that MathReader, a freely
available viewer, can be used to display and print Mathematica notebooks,
animate graphics, play sounds, and copy information from notebooks to
other documents; MathReader can also be used in most web browsers.

In this work we review and illustrate Mathematica’s O.R. modeling and
optimization related features. Within the broad category of optimization
models, we see particularly strong application potentials for Mathematica in
the analysis of (possibly complex) nonlinear systems when the
corresponding decision model can not be brought to simple standard forms.
In such cases, problem-specific modeling and code development are
essential, and using Mathematica as the development platform can be a good
choice. For this reason, here we shall place added emphasis on nonlinear
(global and convex) optimization, where – in addition to built-in
functionality – our packages MathOptimizer and MathOptimizer
Professional can be put to good use.

2. NUMERICAL OPTIMIZATION IN Mathematica

We start with a concise summary of built-in optimization functionality.
Most of the related Mathematica functions can be invoked in several
variations, and have a number of optional settings. Here we shall use their
basic forms with default settings; for further details, consult (Wolfram,
2003) and the Mathematica help system. We shall also refer to several
closely related articles and presentations. For simplicity, only minimization
problems are considered: several functions also have a maximization
equivalent, with identical solver functionality.

In the illustrative statements we shall use bold Courier fonts for
displaying Mathematica input and regular Courier fonts for
Mathematica output; however, in the explanatory text we retain the standard
(Times New Roman) fonts used in this article. All input/output statements

287

and calculations presented in this work are directly imported from a
corresponding Mathematica notebook.

2.1 LinearProgramming

The function LinearProgramming[c, A, b] finds a vector x that solves the
LP problem stated as min subject to and Here c and x are
(real) n-vectors; b is an m-vector and A is an m-row, n-column matrix. We
will not discuss the ConstrainedMin (and ConstrainedMax) functions since
these are also LP solvers, and both became obsolete since the release of
Mathematica version 5.

A simple example of using LinearProgramming is shown below. Let us
remark that in Mathematica vectors are denoted by lists: each component of
a list is followed by a comma, and the entire list is enclosed by curly braces
{}. The next three lines describe the model data (semicolon is used to
suppress Mathematica output that in this case would simply echo the input
lines shown):

The solution is then simply obtained by entering the statement

The result (i.e., the listed components of xopt) is shown in the row
immediately following the Mathematica input statement. The solution is
verified and the optimum value obtained by the following statements (the
symbol . denotes the matrix-vector and vector-vector (dot) products):

The solution time for this ‘mini-problem’ is less than 0.001 seconds.
Mathematica timings are usually displayed in one-thousandth of a second
precision. All illustrative timing information in this article is measured using
a Pentium 4 1.6 GHz processor based desktop machine that runs under
Windows XP Professional; we are using Mathematica version 5.0.

Let us note here that recent LP related development includes the
Mathematica implementation of the LAPACK package that has been used
worldwide to solve the most common tasks in numerical linear algebra

288

(Leyk, 2003). Another notable development is discussed by Hu (2003): a
new interior point algorithm option has been added to LinearProgramming
that is now capable of solving large-scale linear optimization problems with
hundreds of thousands of variables and equations.

2.2 FindMinimum

The function FindMinimum locally solves unconstrained nonlinear
optimization problems, optionally using various methods that include
conjugate gradient and BFGS quasi-Newton search strategies. As a simple
illustration, we shall demonstrate its application in the form FindMinimum[f,
{x, x0},{y, y0}] that uses the initial solution estimate {x0, y0} in solving the
two-variable problem min f(x,y). The multiplication symbol * is used below
for clarity: it could be replaced by a space between the multiplier constant
and the variable.

In the result received, -1 is the objective function value, and denotes a
symbol-to-value assignment. FindMinimum is a local search method: hence,
this could be – in fact, is – only one of the local or global solutions (most
likely, the one closest to the starting point). This point is illustrated by

2.3 NMinimize

The Mathematica function NMinimize[{f, cons},{x, y,...}] attempts to
find the global minimum of f, subject to the listed constraints cons. The
following simple example illustrates its application; notice the double
equality sign = = that denotes a strict equality constraint:

We will use NMinimize later on in some illustrative comparisons.

289

3. MODELING AND OPTIMIZATION PACKAGES

There is a range of application packages offered by Wolfram Research
and by independent developers with apparent O.R. relevance. A brief review
of these is provided below, for simplicity in alphabetical order. We will not
mention or display the (quite possibly changing) version numbers, when
discussing the packages: for further details see the related references and
visit the website of Wolfram Research.

All packages discussed can be seamlessly integrated into Mathematica,
when properly installed: in particular, their documentation can be directly
invoked from Mathematica’s help system. Since all packages present
detailed application examples, these can be directly used and customized to
create new model development and optimization projects.

Needless to say, we do not intend to specifically endorse any of these
applications, and – in lack of access to all listed packages – we rely partly on
the product descriptions provided by Wolfram Research and the developers.
Packages will be referred to using italics fonts.

Advanced Numerical Methods expands the functionality of the Control
System Professional package with an extensive collection of numerical
algorithms. These algorithms solve a wide class of control and linear algebra
problems.

Combinatorica extends Mathematica’s capabilities by over 450 new
functions: these serve to construct graphs and other combinatorial objects,
and to display them. The detailed guide to Combinatorica is Pemmaraju and
Skiena (2003) that can also be used as a course textbook.

Control System Professional Suite is an extensible framework of
integrated Mathematica application packages for handling common,
interdisciplinary control problems that arise in engineering, as well as in
chemistry, biology, economics and financial studies.

Database Access Kit brings Mathematica’s data analysis and
management tools to large data sets. These capabilities can be interfaced
with relational databases (including Oracle, Microsoft Access, SQLServer,
and DB2) and to a number of flat-file databases (like Excel or dBase files).

DiffEqs is a collection of individual packages that accompanies the
textbook by Hollis (2003): the book presents an introduction to
Mathematica, and to differential equations.

Experimental Data Analyst integrates a set of programs that help to
analyze experimental data, from error analysis and data fitting capabilities to
data visualization and transformation. A collection of examples based on
real experimental data is included.

Fuzzy Logic provides a set of tools for creating, modifying, and
visualizing fuzzy sets and fuzzy logic-based systems. It also includes
practical examples that introduce the basic concepts and demonstrate the
numerical solution of various system design problems.

290

Global Optimization offers a collection of functions for constrained and
unconstrained nonlinear optimization, as well as several tools of interest for
statistical studies.

Industrial Optimization is designed to solve a range of O.R. models, by
providing algorithms for linear, pure and mixed integer linear, and convex
optimization, as well as some heuristic techniques such as genetic
programming.

Mathematica Link for Excel provides Excel users with a seamless
connection to Mathematica: one can directly activate a range of advanced
Mathematica calculations and functions from the calling spreadsheet.

MathOptimizer and MathOptimizer Professional are our own application
packages (Pintér, 2002b; Pintér and Kampas, 2003): these will be discussed
in more details later on.

ModelMaker serves to build and analyze finite element (FE) models.
The package permits building parametric models, where the FE database
contains both numeric data and symbolic Mathematica expressions which
can be used to morph the model geometry.

Neural Networks provides tools to define, train, visualize, and validate
neural network models. It supports a set of network structures; it also
implements training (unconstrained local optimization) algorithms.

Operations Research offers tools for solving linear optimization,
quadratic programming, shortest path, and combinatorial optimization
problems, including both exact and heuristic approaches.

Optimization Toolbox contains programs that accompany Bhatti’s well-
written textbook (2000), targeted primarily to an undergraduate and graduate
student (and instructor) readership. Optimization theory is presented in an
informal style; pedagogical Mathematica algorithms are presented and
illustrated by examples.

Parallel Computing Toolkit brings parallel computation tools to a
computer network, or to multiprocessor machines. It implements parallel
programming primitives and includes high-level commands for the parallel
execution of operations such as animation, plotting, and matrix
manipulation.

VisualDSolve has been developed along with the textbook by Schwalbe
and Wagon (1996) that serves as its reference manual. The book covers
many of the topics in a first course in ordinary differential equations, and
provides a wide variety of tools for visualizing solutions.

291

4. Math Optimizer

4.1 Introduction and Usage

MathOptimizer (Pintér, 2002b) is a native Mathematica software
package that serves to solve general – global or local – nonlinear
optimization models stated in the form

It is assumed that all functions f, g, h are at least continuous, and that xl,
xu are finite (known) real n-vectors. All bound, equality and inequality
constraints are interpreted component-wise. Notice that the equality and
inequality constraints are treated separately: their number is denoted by m1
and m2, respectively.

In addition to MathOptimizer’s built-in local solver methodology, a
special emphasis is placed on finding the global solution of models that may
have a number of local solutions. Fairly comprehensive reviews of global
optimization are presented e.g., in the Handbooks edited by Horst and
Pardalos (1995), Pardalos and Romeijn (2002); see also the topical website
of Neumaier (2004).

MathOptimizer consists of two core solver packages and a solver
integrator package. One of these solver components is called MS,
abbreviating MultiStart (global search). MS serves for the – as a rule,
approximate – global optimization of an exact penalty function that
aggregates f, g, and h in the given n-dimensional interval range. MS uses an
adaptive stochastic search method, combined with a statistical bounding
procedure. The second component package – called CNLP, abbreviating
Constrained NonLinear Programming (for local search) – implements a
Lagrangian approach that is aimed at finding a (global or local) solution that
satisfies the Karush-Kuhn-Tucker optimality conditions. (Note that,
theoretically, this component requires smooth problem structure.) CNLP is
used for ‘precise’ local optimization, based on a given initial solution: the
latter is either produced by the global search phase, or it can be directly
provided by the user. The solver integrator package, called Optimize,
supports the individual or combined use of the two solver packages. It is
planned to add further solver components to MathOptimizer: the presence of
the integrator package directly supports this objective.

The MathOptimizer User Guide is a Mathematica notebook (currently
consisting of over 70 printed pages) that can be directly invoked through
Mathematica’s online help system. The manual presents installation and
technical notes, provides concise mathematical background information and

292

modeling tips, and discusses a number of test problems as well as several
more advanced applications.

MathOptimizer is invoked by the following Mathematica statement.
Observe the notation used to identify the entire package and the integrator
package component: the latter then indirectly activates both MS and CNLP.

The following Mathematica code illustrates the definition of a small
non-convex optimization model that is made up by decision variables
(denoted below as vars); lower/upper bounds and nominal (initial) values of
the variables (varlb, varub, and varnom); objective function to minimize
(objf); and the separate lists of equality constraints (eqs) and inequality
constraints (ineqs, by assumption, are stated in form).

The next statement calls MathOptimizer to solve the model:

The result shows the composite list of the following elements: the list of
global solution components (x1=x2=1), the optimum value (a close
numerical approximation to the theoretical value 0), as well as the lists of
constraint function values at the solution, and finally the list of violation
levels with respect to feasibility, the Kuhn-Tucker equation (defined by the
gradient of the Lagrangian), and the complementary slackness condition at
the solution found. The MathOptimizer runtime is less than 0.5 seconds.

Note that it is very easy to make changes to the model, and then to
immediately repeat the solution procedure. For example, we can replace the
constraints by defining (over-writing)

After evaluating these statements – on MS Windows machines, by using
the Shift-Enter key combination while pointing anywhere in the

293

Mathematica cell that includes the above input (so that they can be evaluated
in a single move) – we can run MathOptimizer again. Observe passing by
that the optimum value should be the same, except numerical rounding
errors, since the previously found global solution {1, 1} meets also the new
constraints.

The numerical solution received is essentially the same as the one found
above. For comparison, now we attempt to solve this model by using the
built-in function NMinimize (in default mode, similarly to MathOptimizer).
The NMinimize formulation for the model is slightly different:

The solution found by NMinimize is obviously sub-optimal. Of course,
this finding is not sufficient per se to draw far-reaching conclusions.
However, it certainly shows that the solution of nonlinear models can be
tricky, even in (very) low dimensions.

4.2 Applications

In addition to a number of relatively simple numerical test examples, the
MathOptimizer User Guide discusses illustrative applications from the
following areas: chemical equilibrium modeling, industrial design, acoustic
engineering design, and two numerical mathematics challenges (Problems 4
and 9 from Trefethen (2002)). In solving some of these – specifically, the
sonar transducer model formulated by Purcell and the numerical integration
problem of Trefethen – it is essential that MathOptimizer can handle
arbitrary computable (preferably also continuous) Mathematica functions.
This feature makes it suitable to handle ‘black box’ models defined by
functions that are evalulated by complex, numerically intensive procedures.
Pintér and Purcell (2003) discuss the sonar transducer design problem: its
solution requires a combination of the ModelMaker (Purcell, Dai, and Xue,
2001) and MathOptimizer packages.

To mention other areas of application, Kampas and Pintér (2002) solve
configuration analysis and design models using MathOptimizer: such
problems arise e.g. in applied mathematics, statistics, physics, chemistry,
and robotics. Pintér (2003c) discusses nonlinear model calibration: the

294

illustrative numerical results demonstrate that MathOptimizer produces
superior results to local search based model fitting. The article then reviews
several case studies in which global optimization has been applied to model
calibration problems related to water quality, environmental engineering,
time series analysis and photoelectron spectroscopy applications.

5. MathOptimizer Professional

5.1 Introduction and Usage

MathOptimizer Professional (Pintér and Kampas, 2003) is another
Mathematica model development and nonlinear optimization package:
however, it is based on an entirely different approach from the native
Mathematica solver systems reviewed and discussed above. MathOptimizer
Professional solves globally or locally nonlinear optimization models stated
in the following general form (notice that the m-vector function g below now
includes both equality and equality constraints):

The core of the package is the LGO external solver system that is
activated and then used via MathLink, a general-purpose interface that
supports communication between Mathematica and external programs. LGO
– originally abbreviating the Lipschitz (continuous) Global Optimizer – can
handle general (continuous) nonlinear optimization models, using a suite of
global and local search algorithms. The currently implemented LGO
algorithm options include branch-and-bound (BB), global adaptive random
search (single-start, GARS) and multi-start (MS) based search strategies, as
well as a (local) generalized reduced gradient (GRG) method. Note that in
the global search phase the model functions are aggregated applying an
exact penalty function; in the local search phase – that either automatically
follows one of the global search modes or is used as a ‘local search only’
option – all constraint functions are treated individually.

The global search methods are, in theory, globally convergent
(deterministically, or with probability 1, at least for box-constrained global
optimization models). The actual code implementations are numerical
approximations of the underlying theory. Due to the usage of an aggregated
merit function, the automatic ‘switching point’ from global to local search,
and other parameter settings, there are heuristic elements in LGO (similarly
to most – if not all – numerical optimization methods). The optional choice
of global methods often helps in solving difficult models, since BB, GARS,

295

and MS apply different search strategies. The parameterization of these
component algorithms (e.g., intensified global search) can also help to solve
difficult models, although the internally set default search effort typically
produces a close numerical approximation of the global solution. The latter
statement has been verified by solving some difficult global optimization
problems in which the solution is reproducible and publicly available: some
examples will be mentioned later on.

Note also that all LGO search algorithms are derivative-free:
specifically, in the local search phase central differences are used to
approximate gradients. This choice reflects our objective to handle models
with merely computable, continuous functions, including ‘black box’
systems.

LGO has been developed and maintained for well over a decade (as of
2004), and the software is discussed in details elsewhere: consult, e.g., Pintér
(1996, 2001, 2002a, 2004a), or the peer review by Benson and Sun (2000).
LGO is currently available for essentially arbitrary C and Fortran compiler
platforms, with seamless links to Excel, GAMS, Maple, Mathematica, and
TOMLAB (the latter provides a solver interface and a collection of solvers
for optimization using MATLAB). The details of these implementation
versions are described in the corresponding documentation: see Frontline
Systems and Pintér Consulting Services (2001); Pintér (2003a); Pintér
(2004b); Pintér, Holmström, Göran and Edvall (2004).

The computational study (Pintér, 2003b) reviews the performance of
LGO in comparison to several state-of-art local nonlinear solvers linked to
the GAMS platform. This evaluation has been done in a fully automated and
reproducible manner using publicly available GAMS model libraries: hence,
it can be considered as reasonably objective, even if the collection of models
and other circumstances (solver options and parameters) always carry
elements of arbitrariness and subjectivity. The numerical experiments
described in this study show that global optimization tools are needed to
solve nearly half of the GAMS models from the chosen library, even when –
possibly quite useful – initial solution points are provided to the local
solvers. (We conjecture that providing random starting points from a search
box that contains the feasible region would demonstrate even more
pronounced need for global scope search.)

MathOptimizer Professional combines the model development power of
Mathematica with the LGO solver suite: this leads to enhanced nonlinear
solver capabilities, and a performance (solution speed) that – especially on
larger models – is comparable to compiler-based solver implementations.

The functionality of MathOptimizer Professional is summarized by the
following steps (all steps are fully automatic, except the first one):

model formulation in Mathematica
translation of the Mathematica optimization model into C or Fortran
code (LGO model function file)
generation of LGO input parameter file

296

compilation of the C or Fortran model code into object code or dynamic
link library (dll): this step needs a suitable compiler
call to the LGO solver engine: the latter is typically provided as object
code or an executable program that is linked together with the model
object or dll file
model solution and report generation by LGO
report of LGO results back to the calling Mathematica notebook.

Obviously, the approach outlined supports ‘only’ the solution of models
defined by Mathematica functions that can be directly converted into C or
Fortran program code. This, however, still allows the handling of a broad
range of continuous nonlinear optimization models. A ‘side-benefit’ of using
MathOptimizer Professional is that Mathematica models are automatically
translated into C or Fortran format: this can be useful e.g., in generating new
test models.

Following installation, the MathOptimizer Professional User Guide
(Pintér and Kampas, 2003) can be directly invoked as part of Mathematica’s
help system. The package is activated by the following statement

Upon executing this statement, on MS Windows machines a command
window opens that serves to monitor the MathLink connection that support
external system calls to/from LGO. In our case, this window will display the
background compiler and linker operations.

The numerical solution of an optimization model now can be launched
by a single Mathematica statement of the form callLGO[f, g, {x, xl, xn,
xu}]. Here we use the notation corresponding to (2); in addition, xn is the
nominal setting of x (used in the first model function evaluation and/or as a
starting point of the ‘local search only’ LGO solver mode). The following
call illustrates the basic MathOptimizer Professional functionality:

The result shows (again, in Mathematica list format) the optimum value
found, the list of corresponding variable settings, and the maximal model
function infeasibility at the solution: all values are numerical
approximations, of course. Note that the function callLGO currently has 15
optionally set parameters: these are all documented and illustrated in the
User Guide, but their discussion is outside of the scope of this paper. For
further details, consult the manual or Pintér and Kampas (2004).

5.2 Applications

297

For over a decade, LGO has been applied in a variety of professional, as
well as academic research and educational contexts. In recent years, LGO
has been used to solve models in up to a few thousand variables and
constraints. Some recent applications and case studies – including e.g.,
model fitting in econometrics and laboratory analysis, potential energy
models in computational chemistry, laser design, cancer therapy planning,
and non-uniform sphere packings – are discussed by Pintér (200la, b,
2002a), Isenor, Pintér, and Cada (2003), Tervo et al. (2003), Kampas and
Pintér (2004a), Pintér and Kampas (2004). Note additionally that some of
the LGO software users in the financial industry, process industries,
biotechnology, etc. develop other advanced (but confidential) applications.
We expect essentially similar performance from the recently released
MathOptimizer Professional that enables the solution of sizeable,
sophisticated nonlinear models formulated in Mathematica. The role of
communication overhead between Mathematica and the external solver suite
becomes relatively less significant in solving larger models, in which the
external LGO solver time dominates.

The MathOptimizer Professional User Guide (an approximately 150-
page document when printed) describes several tens of test problems starting
with simple LP problems, through convex and non-convex nonlinear
models, to a number of fairly challenging optimization models originating
from mathematics, physics, chemistry, engineering and economics. For
illustration, we shall consider here a pair of transcendental equations:

We wish to find a solution in the region or to
numerically verify that there is no solution in the region specified. The
surface and contour plots of (this corresponds to the squared

based error function) reveal the rather complex multi-extremality of
the induced optimization model: see Figures 1 and 2.

Let us apply MathOptimizer Professional to solve this problem. First,
we define the equations (eqs), the constraints (cons: note here that the
relations eq1=eq2=0 can be expressed by using the Mathematica function
Thread), and the variables with bounds and nominal values
(varswithbounds). Then we call LGO.

298

Figure 1. Surface plot of error function in solving a system of equations.

Figure 2. Contour plot of error function in solving a system of equations.

299

As the result shows, MathOptimizer Professional finds a numerical
solution that is precise to about when substituted into the
equations. The external LGO runtime is 0.03 seconds. (In total, 7843 search
steps – model function evaluations, including gradient estimates in the local
search phase – are done in using the default MS+LS search mode with
default parameterization; all results are exactly reproducible.) Note also that
the User Guide addresses the issue of finding (possible) multiple solutions to
systems of equations and inequalities.

As for another illustrative application, in (Kampas and Pintér, 2004a) we
state and solve a challenging new model type: our objective is to find the
‘best’ non-overlapping arrangement of a set of given non-uniform size
circles in an embedding circle. The best packing is defined here by a
combination of two criteria: the size (radius) of the circumscribed circle, and
the average pair-wise distance between the centers of the embedded circles.
The relative weight of the two objective function components can be
selected as a model-instance parameter.

Detailed numerical results are reported in (Kampas and Pintér, 2004a)
for circles defined by the radii i=3,…,N, up to 40-circle
configurations. For illustration, the configuration found for the case N=20
circles using MathOptimizer Professional is displayed below. In this
example, equal consideration (weight) is given to minimizing the radius of
the circumscribed circle and the average distance between the circle centers.

Figure 3. A non-uniform circle packing result for N=20 circles.

300

Let us remark in this context that in Kampas and Pintér (2002) we have
attempted to solve instances of the circle packing problem applying the
built-in Mathematica function NMinimize, but (in default mode) it could not
find a solution of acceptable quality even for the case N=5. MathOptimizer
worked better and found good quality solutions for small configurations (up
to N=10), but – due to its native Mathematica solver functions – solution
times are increasing far more rapidly than for MathOptimizer Professional.
Again, this is just a numerical observation, as opposed to a conclusion: we
plan to make a more systematic comparison of global solvers (available for
use with Mathematica) in the near future, based on detailed numerical tests.

Let us also mention finally that both MathOptimizer and MathOptimizer
Professional are included in a recent peer review of optimization capabilities
using Mathematica (Cogan, 2003).

6. CONCLUDING REMARKS

This article discusses the potentials of Mathematica in Operations
Research related modeling and optimization studies. Within this context, we
review built-in Mathematica optimization functionality and provide an
annotated list of relevant application packages. Next, we introduce the
packages MathOptimizer and MathOptimizer Professional, and discuss their
usage by solving a few illustrative (yet non-trivial) optimization problems.
We think that integrated modeling and solver environments will have a
significant role in O.R. modeling and optimization studies, in an increasing
range of business, research, and educational contexts.

ACKNOWLEDGEMENTS

JDP wishes to acknowledge the support received from Wolfram
Research over the years, in forms of a visiting scholarship, books, software,
and professional advice. The MathOptimizer software development project
has profited from advice and comments by Dr. Christopher J. Purcell
(DRDC Atlantic Region), and it has been partially funded by DRDC
(Contract No. W7707-01-0746/001/HAL), and by NRC IRAP (Project No.
362093). We also wish to thank Dr. Mark Sofroniou (Wolfram Research) for
his kind permission to use – and to modify – the Format.m Mathematica
package in our MathOptimizer Professional development work.

The comments received from an anonymous referee helped us to
improve the content and style of the paper.

301

REFERENCES

Bahder, T.B. (1995) Mathematica for Scientists and Engineers. Addison-Wesley, Reading,
MA.

Benson, H.P. and Sun, E. (2000) LGO – Versatile Tool for Global Optimization. ORMS
Today 27 (5) 52-55. See also http://www.lionhrtpub.com/orms/orms-10-00/swr.html.

Bhatti, M.A. (2000) Practical Optimization Methods With Mathematica Applications.
Springer, New York.

Frontline Systems and Pintér Consulting Services (2001) Premium Solver Platform – LGO
Global Solver Engine for Excel. Published by Frontline Systems, Inc., Incline Village,
NV. See also http://www.solver.com/xlslgoeng.htm.

Cogan, B. (2003) How to get the best out of optimization software. Scientific Computing
World 71 (2003) 67-68. See http://www.scientific-computing.com/scwjulaug03review_
optimisation.html.

Gass, R. (1998) Mathematica for Scientists and Engineers: Using Mathematica to do Science.
Prentice Hall, Englewood Cliffs, NJ.

Hollis, S. (2003) A Mathematica Companion for Differential Equations. Prentice Hall, NJ.
Horst, R. and Pardalos, P.M., eds. (1995) Handbook of Global Optimization, Vol. 1. Kluwer

Academic Publishers, Dordrecht.
Hu, Y. (2003) Solving large linear optimization problems. Lecture presented at the 2003

Mathematica Developer Conference, Champaign, IL.
Isenor, G., Pintér, J.D., and Cada, M. (2003) A global optimization approach to laser design.

Optimization and Engineering 4, 177-196.
Jacob, C. (2001) Illustrating Evolutionary Computation with Mathematica. Morgan

Kaufmann Publishers, San Francisco, CA.
Kampas, F.J. and Pintér, J.D. (2002) Configuration analysis and design by using optimization

tools in Mathematica. The Mathematica Journal (to appear).
Kampas, F.J. and Pintér, J.D. (2004a) Generalized circle packings: model formulations and

numerical results. Proceedings of the 2004 International Mathematica Symposium,
Banff, AB.

Kampas, F.J. and Pintér, J.D. (2004b) Advanced Optimization: Scientific, Engineering, and
Economic Applications with Mathematica Examples. Elsevier, Amsterdam (to appear).

Leyk, Z. (2003) Fast linear algebra in Mathematica. Lecture presented at the 2003
Mathematica Developer Conference, Champaign, IL.

Maeder, R.E. (2000) Computer Science with Mathematica. Cambridge University Press,
Cambridge, UK.

Mathematica Information Center (2004) http://library.wolfram.com/infocenter/.
Neumaier, A. (2004) Global Optimization. http://www.mat.univie.ac.at/~neum/ glopt.html.
Pardalos, P.M. and Romeijn, H.E., eds. (2002) Handbook of Global Optimization, Vol. 2.

Kluwer Academic Publishers, Dordrecht.
Pemmaraju, S. and Skiena, S. (2003) Computational Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Cambridge University Press, Cambridge, UK.
Pintér, J.D. (1996) Global Optimization in Action. Kluwer Academic Publishers, Dordrecht.
Pintér, J.D. (2001 a) Computational Global Optimization in Nonlinear Systems: An Interactive

Tutorial. Lionheart Publishing, Atlanta, GA.
Pintér, J.D. (200 1b) Globally optimized spherical point arrangements: Model variants and

illustrative results. Annals of Operations Research 104, 213-230.
Pintér, J.D. (2002a) Global optimization: software, test problems, and applications; Chapter 15

(pp. 515-569) in: Pardalos and Romeijn, eds. Handbook of Global Optimization, Vol. 2.

302

Pintér, J.D. (2002b) MathOptimizer – An Advanced Modeling and Optimization System for
Mathematica Users. User Guide. Published and distributed by Pintér Consulting
Services, Inc., Halifax, NS, Canada.

Pintér, J.D. (2003a) GAMS/LGO User Guide. Published and distributed by the GAMS
Development Corporation, Washington, DC. See http://www.gams.com/solvers/lgo.pdf.

Pintér, J.D. (2003b) GAMS/LGO nonlinear solver suite: key features, usage, and numerical
performance. (Submitted for publication.) Available for download at http://www.gams.
com/solvers/solvers.htm#LGO.

Pintér, J.D. (2003c) Globally optimized calibration of nonlinear models: techniques, software,
and applications. Optimization Methods and Software 18, 335-355.

Pintér, J.D. (2004a) LGO – An Integrated Model Development and Solver Environment for
Continuous Global Optimization. User Guide. (Current edition.) Published and
distributed by Pintér Consulting Services, Inc., Halifax, NS, Canada.

Pintér (2004b) The Maple Global Optimization Toolbox. Published and distributed by
Maplesoft, Inc., Waterloo, ON. See http://www.maplesoft.com/products/toolboxes/
globaloptimization/index.shtml.

Pintér, J.D. and Kampas, F.J. (2003) MathOptimizer Professional – An Advanced Modeling
and Optimization System for Mathematica Users with an External Solver Link. User
Guide. Published and distributed by Pintér Consulting Services, Inc., Halifax, NS,
Canada.

Pintér, J.D. and Kampas, F.J. (2004) Global optimization in Mathematica with
MathOptimizer Professional. (Submitted for publication.)

Pintér, J.D. and Purcell, C.J. (2003) Optimization of finite element models with
MathOptimizer and ModelMaker. Lecture presented at the 2003 Mathematica Developer
Conference, Champaign, IL.

Pintér, J.D., Holmström, K., Göran, A.O. and Edvall, M.M. (2004) TOMLAB /LGO User
Guide. Published and distributed by TOMLAB Optimization AB, Västerås, Sweden and
Arcata, CA. See http://tomlab.biz/docs/TOMLAB_LGO.pdf.

Purcell, C.J., Dai, N.M. and Xue, L. (2001) Modelling, analysis & prototyping for rapid
manufacturing. Lecture presented at the 2001 Mathematica Developer Conference,
Champaign, IL.

Schwalbe, D. and Wagon, S. (1996) VisualDSolve: Visualizing Differential Equations with
Mathematica. Springer, New York.

Sodhi, M.S. (2003) Mathematica 5. ORMS Today 30 (6), 44-47.
Tervo, J., Kolmonen, P., Lyyra-Laitinen, T., Pintér, J.D., and Lahtinen, T. (2003) An

optimization-based approach to the multiple static delivery technique in radiation
therapy. Annals of Operations Research 119, 205-227.

Trefethen, N.L. (2002) A Hundred-dollar, Hundred-digit Challenge. SIAM News 35 (1), p. 3.
See also http://www.siam.org/siamnews/01-02/challenge.pdf.

Wolfram, S. (2003) The Mathematica Book. (5th Edition.) Wolfram Media, Inc., Champaign,
IL.

Wolfram Research (2004) http://www.wolfram.com/.

VERIFICATION OF BUSINESS PROCESS
DESIGNS USING MAPS

Eswar Sivaraman
Department of Systems Engineering & Operations Research
George Mason University
Fairfax, VA 22030

esivaram@gmu.edu

Manjunath Kamath
School of Industrial Engineering & Management
Oklahoma State University
Stillwater, OK 74078

mkamath@okstate.edu

Abstract Business processes form the foundation of an enterprise’s operations and de-
termine what the business does, and more importantly, how well the business
does what it does. A systematic approach to the design of business processes,
supported by a formal foundation for the specification and modeling of business
processes, is necessary to (i) capture domain knowledge in a format that is trans-
ferable across enterprises and (ii) provide a basis for re-design based on needs of
efficiency, changes in market requirements, and reproducibility of process tem-
plates for multiple products/services. The specification of a business process is
often characterized by combinations of concurrency, choice, and asynchronous
completion, the mix of which could lead to incorrect designs. This chapter high-
lights the verification issues that arise in the design of business processes, and
outlines research questions of immediate relevance to the growing interest in
business process modeling and enterprise automation solutions. We also dis-
cuss MAPS – a tool for the Modeling and Analysis of Process modelS, that has
been used effectively as a classroom aid to highlight the importance of design
verification as a necessary first step in the design of business processes.

Keywords: Business Process Modeling, Design Verification, Control Flow, Resource Re-
quirements, Enterprise Modeling

304

1. Verification of Business Process Designs: Motivation &
Relevance

A business process is an ordered sequence of tasks/activities involving peo-
ple, materials, energy, equipment, and information, designed to achieve some
specific business outcome [3]. The standard approach to designing and imple-
menting business processes is to rely on a domain expert to develop a process
configuration that is subsequently “tuned-up”; however, there is a subtle ques-
tion that is missing, namely, “what is the guarantee that the process’s config-
uration is correct?” Problems, if any, in the design of a process, are usually
detected by simulating the run-time behavior of a process. Currently, design
verification capabilities are merely syntactic checks limited to the modeling
formalism and do not provide any intelligent feedback to the process designer
about whether the process’s design is correct or not, and if not, why? There is
much scope for developing qualitative design verification techniques that will
precede any quantitative performance analysis, especially, techniques that il-
lustrate the potential for using the static structural definition of a business pro-
cess to improve its design, without recourse to simulated executions [5, 11].
Additionally, the growing interest in the automatic control and coordination
of business processes requires that the process, by design, be correct [4, 13].
This will guarantee that operational errors, if any, can be attributed to data
inconsistency, failure of IT infrastructure, etc., and not for anything lacking
in the design of the process. This paper highlights, with examples, the veri-
fication issues that arise in the design of business processes, and outlines the
major solution methodologies for the same. We also discuss a new tool called
MAPS that allows for the modeling and analysis of business process models,
and which adds immensely to harnessing the power of design verification.

The remainder of the paper is organized as follows: Section 2 outlines the
basics of business process modeling, and the verification issues therein; Sec-
tion 3 discusses the modeling and design verification capabilities of MAPS.
Section 4 concludes this paper with ideas for continuing work to help establish
design verification as a necessary first step in the design of business processes.

2. Business Processes: Design Requirements &
Correctness Issues

The design of a business process minimally requires the specification of the
process’s logic, and the specifics of resource requirements for the constituent
tasks. The logic of a process captures the flow of control among the tasks,
and is (usually) graphically represented as a collection of tasks, and logical
interconnections, as in Figure 1, the syntax of which is based on [17, 18].

The control flow model describes the process’s logic, and is interpreted as
follows – (i) Tasks represent individual activities, either atomic, or compos-

305

Figure 1. A Sample Control Flow Model

ite (i.e., sub-processes), (ii) AND-Splits (-Joins) model the concurrent creation
(asynchronous merging) of several distinct flows of control, and (iii) Exclusive-
OR, i.e., XOR-Splits (-Joins) model the creation (or merging) of exactly one
of several possible flows of control, and (iv) directed arrows capture the par-
tial and total ordering among the activities. The logic underlying any busi-
ness process can be captured using just these elements; there is some debate
about whether modeling conveniences like inclusive-ORs, forks
and joins, etc., improve modeling capabilities. Such extensions do not really
increase the modeling power beyond the four basic elements presented above,
and the syntax above is adequate for control flow representation [6].

The resource requirements for the various tasks in a business process is spec-
ified as [11]:

is the set of all resources.
number of units of resource

is a functional that specifies the number
of units of resource captured by each task, where T is the set of all
tasks, and is the set of non-negative integers.

is a functional that specifies the number of
units of resource released by each task.

It is assumed that a resource is a “re-usable element” that is captured by
tasks that require it, and released by tasks upon completion, although not nec-
essarily by the same tasks that capture it. Taken together, the specification of
control flow and resource requirements is adequate to study the static struc-
tural definition of a process, and to verify if the design is correct. Additional
details like input-output requirements, infrastructure support, etc., while nec-
essary for completing the process description, are not immediately required
for the designer to commence design verification – stated simply, the question
of verifying the correctness of a process’s design is akin to that of verifying

306

the steps in a recipe (the logic), and not of verifying if the ingredients (input-
output requirements) are present. Thus, the correctness issues relevant to de-
sign verification are (i) the correctness of control flow, and (ii) the correctness
of resource-allocation, both of which are discussed next.

2.1 Correctness of Control Flow
The first question that arises in studying the logic of a process is, can it

be verified that beginning with Start, the process will always reach Finish?
In order that the definition of correctness may be made precise, it remains to
understand what counts as an incorrect control flow model – Table 1 illustrates
a few examples.

There are three points that clarify themselves in the examples of Table 1,
namely:

1 The process must terminate exactly one – this is referred to as unique
termination.

2 The process must terminate completely, without any residual control
flows hanging in the balance – this is referred to as proper termination.

307

3 The bulk of control flow errors arise from interspersing XOR and AND
logical operands.

The correctness requirements for control flow can be stated thus: [7]

The Initiation Problem is to determine if there is a sequence of task execu-
tions that will lead to the execution of a particular task.

The Termination Problem is to determine if the flow of control in the process
will lead to a terminal state.

The question of verifying the correctness of control flow has been shown to
be NP-complete [7,11]. Several restricted versions of the control flow problem
have been addressed to date, namely, by requiring that the control flow model
be acyclic [14, 8, 9], and that Petri net constructions of the control flow model
remain free-choice [1], in order that analysis may be rendered tractable in poly-
nomial time. A more thorough review of the current approaches to control flow
verification is presented in [13].

We [11, 12] have developed a new backtracking algorithm (the KORRECT-

NESS algorithm) for identifying the various process execution scenarios in a
control flow model, without imposing any restrictions on the structure of the
control flow model. Stated simply, the idea is to identify all paths from Start to
Finish, and to selectively combine them to identify execution scenarios (meta-
paths) for the process, and to establish that each path does indeed occur in at
least one meta-path to establish control flow correctness. Figure 2 illustrates
the two valid meta-paths, i.e., valid process execution scenarios for the control
flow model of Figure 1.

Figure 2. Process Execution Scenarios – An Illustration

308

The KORRECTNESS algorithm [11, 12] essentially keeps track of counters
that are created by each AND-Split and which must subsequently be merged
and accounted for, before completion of any instance of the process. While
a correct control flow model will present one/more valid meta-paths, where
all counters are accounted for, the value of the algorithm lies in its support
for diagnostic feedback about sources of control flow errors in control flow
models – by identifying the counters that remain to be accounted for in any
invalid meta-path, the source of the error can be precisely identified. These
ideas for the basis of MAPS, a tool for the Modeling and Analysis of Process
modelS, and which is presented in Section 3. A more thorough description of
the KORRECTNESS algorithm is contained in [12].

2.2 Correctness of Resource-Allocation

Deadlock arises when tasks that have captured some resources are blocked
indefinitely from access to resources held by other tasks. The problems that
arise in resource-sharing are best motivated with some examples, as presented
in Table 2. The convention followed for these examples is – (i) the capture and
release of resources by the tasks is specified with directed arrows entering and
leaving the task symbols, and (ii) it is assumed that there is exactly one unit
available for each resource, i.e.,

None of the deadlock situations illustrated in Table 2 are obvious – to this
end, it would be of tremendous value to be able to alert the process designer
about potential deadlock possibilities that may not be immediately evident
from the process’s design.

The design problems that may arise from resource-allocation can be catego-
rized into one of:

Release-before-Capture Improperly specified process definitions wherein re-
source units are released before they are captured.

Conservation of Resources To check that the number of times a resource is
captured is equal to the number of times it is released.

Inadequate Capacity The specified resource capacity is inadequate for
satisfying the resource requirements of a single instance of the process.

Circular-Wait The most important and the least evident problem of all, where-
in two/more tasks capture a set of resources and end up waiting for re-
sources held by one another.

Clearly, the circular-wait conditions are the most severe, and could result in
deadlocks both within a single instance of the process (Table 2, examples 1 and
2), and across multiple instances of the same process (Table 2, example 3).

309

The study of deadlock has been motivated primarily by problems in oper-
ating systems, and deadlock avoidance in run-time control of flexible man-
ufacturing systems (FMS). In the context of business process modeling, the
techniques developed for the former are not applicable, since the process, by
its own logic, imposes an ordering of the tasks which is not the case for com-
puting systems where the tasks can be executed in any order. As regards the
deadlock avoidance techniques developed for FMSs, they require simulated

310

executions and/or details of the system state advancing through time, making
them impractical for basic design verification [16, 19]. The resource-sharing
problem in the design of business processes relates to establishing that the
sharing of common resources among different tasks, either within a single- or
across multiple-instances of the process does not lead to situations wherein two
or more tasks compete for resources, without relinquishing control of currently
held resources.

The problem of correctness of resource allocation in the context of business
process modeling and design verification has not been addressed thus far – we
[11] have developed a simple Petri-net theoretic approach for (i) identifying
potential deadlocks, especially circular waits, in the process’s design, and (ii)
computing minimal resource requirements to guarantee deadlock-free execu-
tion. Our approach is unique in that it fully exploits the control flow model
to gain intuitions about the structure and behavior of the process, without ever
requiring any simulations. Also, simple rules to identify the minimal resource
requirements that guarantee successful execution of the process and maximize
in-process concurrency have been derived. A more complete discussion of our
approach is presented in [11].

3. MAPS – Modeling and Analysis of Process models
A computerized environment titled MAPS – Modeling and Analysis of

Process modelS, implemented in Tcl/Tk and Python (http://www.python.org)
has been developed to support the algorithms developed in [11]. We have
found MAPS to be very effective in supporting our lectures on systems engi-
neering, and to motivate the relevance of control flow verification to support
more traditional modeling tools like function-flow block diagrams. Ideally,
MAPS should grow into a research test-bed for new ideas and algorithms in
business process modeling. The salient features of MAPS are:

A user-friendly graphical environment for modeling and specifying busi-
ness processes.

Algorithms for verifying the correctness of control flow and diagnostic
feedback about sources of control flow error(s), if any.

3.1 Modeling Interface
The development of a process’s design in MAPS begins with the specifi-

cation of its control flow model, followed by the separate specification of its
resource requirements (this is currently under development). Figure 3 presents
a screen-shot of MAPS – it illustrates the control flow model of the counter-
example presented by Lin et al. [8] to show that the algorithms of Sadiq [10]
are incomplete; the labels indicate AND-Splits and AND-Joins, re-

311

Figure 3. A Sample Screen-shot of MAPS

spectively, and the labels indicate, respectively, XOR-Splits, and
XOR-Joins.

The major components of the graphical editor are:

1 The stencil that the user uses to select the control flow element being
drawn.

The stencil offers simple click-to-select functionality – the user selects
(left-click) the control flow element that needs to be drawn, and then
selects a position in the canvas to place them, or, if a control flow arrow
is being drawn, the user selects the “source” (from) and “destination”
(to) of the arrow with consecutive clicks inside the face of two elements
on the canvas. The model can contain only one “Start” and one “Finish”
– the corresponding stencil elements get disabled thereafter, unless those
elements are subsequently deleted from the model.

2 The canvas on which the model is drawn – the canvas supports intuitive
operations for both movement and deletion of elements in it.

312

3 The control flow elements’ tablet (or frame) that provides an easy and
accessible summary of each control flow element’s attributes.

This frame is organized as follows – a drop-down options box allows the
user to select the type of the control flow element that they need details
for, namely, Start, Finish, Task, or a logical operand. Once the selection
is made, say, “Task,” a list of all tasks is generated, ordered by their
screen IDs, individual selection of which will populate the basic fields
beneath to reveal their names, input and output elements, and on-screen
graphical coordinates. The screen IDs of the elements are prefixed with
a [‘S’, ‘F’, ‘T_’, ‘Xs’, ‘Xj’, ‘As’, ‘Aj’] to indicate that they are either
a “Start,” “Finish,” “Task,” “XOR-Split,” “XOR-Join,” “AND-Split,” or
an “AND-Join.” All of the basic fields are fixed and cannot be edited,
except for the names of tasks, which can be changed from the program-
generated “Task ” to something more meaningful, if needed.

4 The model monitor that provides continuous feedback to the modeler
about their actions through short messages, examples of whose outputs
are shown in Figure 4.

Figure 4. Feedback from the Model Monitor in MAPS – Some Examples

313

The model monitor will be indispensable when dealing with complex
models – it includes several useful features that will guide the user in the
construction of the model, and more so, when the user is contemplating
the deletion of some elements. Unlike commercial grade software with
the luxury of undos and such, the user will have to rely on the model
monitor to inject the requisite caution in dealing with mouse-clicks, right
or left.

In addition to the features listed above, help balloons have been programmed
to appear liberally across all aspects of the application to clarify the purpose of
all four components above. The models thus created can be saved and retrieved
with standard File Save operations.

3.2 Analysis and Verification Capabilities of MAPS

The current version of MAPS includes support for verifying the model syn-
tax, and the KORRECTNESS algorithm [12] for control flow verification, both
of which are described below.

Syntax Verification. The syntax checks enforced in MAPS ensure that the
model does not have any abandoned elements, that it has a “Start” and a “Fin-
ish”, and that all other elements have properly defined “from” and “to” ele-
ments, as illustrated below.

Additionally, should the user attempt to draw, say, two arcs leading into a
task (or an AND/XOR-split), or other such basic modeling errors that violate
the definition of the elements, the model monitor will alert the modeler to
the same, thereby allowing for immediate model checks as well – the syntax
verification capabilities in MAPS are dynamic and work constantly during the
development of the model.

314

Control Flow Verification. The verification of control flow correctness
follows the KORRECTNESS algorithm, in that it proceeds by generating the
set of S – F paths, the set of valid meta-paths, and the set of invalid meta-
paths, if any. Figure 5 shows a snap-shot of the application interface after the
KORRECTNESS algorithm has been applied to the control flow model shown
in Figure 3 – note that the results of the control flow verification procedure will
open up on a new page titled “Korrectness Results”.

Figure 5. Identifying the Set of Valid Meta-paths

The interfaces for browsing through the set of paths, valid, and invalid meta-
paths are all designed to be very simple, and follow a layout identical to the
control flow elements’ frame discussed for the modeling interface.

Figure 6 illustrates a snap-shot of the application interface after the KOR-

RECTNESS algorithm has been applied to an incorrect control flow model – it
illustrates one of several invalid meta-paths in the process.

Much like the “model monitor” in the modeling interface, the “Error Com-
mentary” provides feedback about the source of the control flow error – the
meta-path in Figure 6 is invalid because one of the three control flows required

315

Figure 6. Identifying the Set of Valid Meta-paths

at AND-Split is missing. This “error commentary” feature of MAPS in
unique in providing precise reasons as to the failure of a control flow design –
what is missing however, is a way to automate the correction of these control
flow errors, or at the very least, to give suggestions to fix the same.

Summary. This section outlined the use of MAPS, a computerized environ-
ment that was developed to support the algorithms developed in [11]. MAPS
has been designed to be easily extendible with new functionalities, either in
graphical modeling, or algorithmic support. We have found MAPS to be an
excellent tool for classroom instruction – there are as yet no comparable tools
for modeling and analysis of business process models, that work with just the
control flow model’s syntax. Two other verification tools currently in use are
Woflan [15] and FlowMake [10] – the former relies on Petri net formalizations
of the control flow model, and the latter works with graph-theoretic reductions.
Woflan relies on free-choice Petri net constructions to make analysis tractable,
but is not restricted to only free-choice constructions; it offers an impressive
array of diagnostic checks that support design correction efforts. While Woflan
reports outputs using Petri-net theoretic constructs, MAPS works with the syn-
tax of the control flow model allowing for easy communication between the
domain expert and the business process modeler/analyst.

MAPS is an ongoing work-in-progress, and currently includes an editor for
creating, storing, and retrieving control flow models, and analysis support to
establish control flow correctness. We are presently working to incorporate
algorithms for verifying the correctness of resource requirements for a business

316

process, and also provide interfaces to standardized exchange formats to aid in
the development of an ontological foundation for business process modeling.

4. Scope for Future Research

Automatic design verification capabilities are as yet unavailable in current
business process modeling softwares. To this end, the ideas developed in [11]
significantly advance the power and potential for development of good pro-
cesses, the designs of which are influenced both by the judgment of the do-
main expert and the objectivity of analysis. In the larger context of enterprise
modeling, design verification would be indispensable toward developing an
integrated framework for modeling and analysis of business processes that [5]:

1

2

3

4

Allows for the design and analysis of business processes to be simul-
taneous, with analysis influencing the design of effective and efficient
processes.

Clarifies ambiguities in the domain expert’s interpretation, experience,
and expectations of the business process through immediate qualitative
analysis.

Provides a seamless, almost invisible translation between the descrip-
tion of the business process, and the formalism that feeds the underlying
analysis.

Provides linkages to other analysis techniques that can be used to derive
summary metrics about the run-time performance of the process.

The following ideas merit further inquiry:

1. Automation of Business Process Redesign Suppose the process’s design,
i.e., control flow and/or resource allocation, is incorrect; can the redesign
of business processes to eliminate design errors be automated? More
specifically, can human intuition be replaced with algorithmic deduc-
tion? Currently, diagnostic checking is limited to identification; can it
be extended to include elimination? While domain knowledge cannot
be replaced, can control-flow design decisions be abstracted away from
the context of the process?

2. Automatic Reconfiguration of Business Processes Suppose the process’s
design, i.e., control flow and resource-allocation, is correct; is it pos-
sible to suggest approaches to reconfigure or “optimize” the process’s
design, based on the nature of the resource-allocation requirements and
the precedence-order relationships that are imposed by the logic of the

317

process? This would require a more precise understanding of the expec-
tations of “optimality” in business process designs – stated simply, the
domain expert has identified a particular configuration for the process;
can it be improved?

3. Standards for Business Process Specification To develop a formalism for
modeling and specification of business processes that blends the ease of
modeling intuition with the rigor required for design verification. Ide-
ally, a formalism that capitalizes on the transparency of XML, the intu-
itions of graphical models, and the support of underlying design verifi-
cation techniques would greatly enhance the value-addition of enterprise
automation.

The question raised in (3) has already been initiated and is actively being
pursued by the Business Process Management Initiative (www.bpmi.org). The
questions raised in (1) and (2) are more fundamental and as yet unexplored; to
allow for a computer to suggest a better process design is very intriguing, and
such an ability would lend new meaning to “automation” in business process
automation. The extent of the questions’ appeal is surpassed only by the vague-
ness of their answers.

Acknowledgments
This research was supported, in part, by the National Science Foundation

(grant #DMI-0075588) under the Scalable Enterprise Systems initiative. The
authors would like to thank two anonymous referees for their review and com-
ments.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

Aalst, W.M.P. (2000). “Workflow Verification: Finding Control-Flow Errors Using Petri-
Net Based Techniques”. In Aalst, W.M.P., Desel, J., and Oberweis, A., editors, Business
Process Management – Models, Techniques, and Empirical Studies, volume 1806 of Lec-
ture Notes in Computer Science,pages 161–183. Springer-Verlag.
Arkin, A. (2003). “Business Process Modeling Language”. Technical Report, Business
Process Management Initiative,http://www.bpmi.org/library.esp.
CSC Corporation (2002). “The Emergence of Business Process Management”. Computer
Sciences Corporation White Paper,http://www.bpmi.org/library.esp.
Cichocki, A., Helal, A., Rusinkiewicz, M., and Woelk, D. (1998). Workflow and Process
Automation: Concepts and Technology. Kluwer Academic Publishers.
Dalal, N.P., Kamath, M., Kolarik, W.J., and Sivaraman, E. (2004). “Toward an Integrated
Framework for Modeling Enterprise Processes”. Comm. of the ACM, 47(3):83–87.
Kiepuszewski, B., Hofstede, A.H.M., and Aalst, W.M.P. (2004). “Fundamentals of Control
Flow in Workflows”. Acta Informatica, 39(3): 143–209.
Hofstede, A.H.M., Orlowska, M.E., and Rajapakse, J. (1998). “Verification Problems in
Conceptual Workflow Specifications”. Data & Knowledge Engineering, 24(3):239–256.

318

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Lin, H., Zhao, H., Li, H., and Chen, Z. (2002). “A Novel Graph Reduction Algorithm
to Identify Structural Conflicts”. In Proceedings of the 35th Annual Hawaii International
Conference on System Science (HICSS-35’02). IEEE Computer Society Press.

Sadiq, W. and Orlowska, M.E. (2000). “Analyzing Process Models using Graph Reduction
Techniques”. Information Systems, 25(2): 117–134.

Sadiq, W. (2001). On Verification Issues in Conceptual Modeling of Workflow Processes.
PhD Dissertation, Department of Computer Science and Electrical Engineering, The Uni-
versity of Queensland, Australia.

Sivaraman, E. (2003). Formal Techniques for Analyzing Business Process Models. PhD
Dissertation, School of Industrial Engineering & Management, Oklahoma State University,
Stillwater, OK, USA.

Sivaraman, E. and Kamath, M. (2004). “An Algorithm for Verifying the Correctness of
Control Flow in Business Process Models”. Under review for publication in the INFORMS
J. of Computing.

Sivaraman, E. and Kamath, M. (2004). “Verification Issues in the Design of Business
Processes: A Review”. Under review for publication in IIE Transactions.

Straub, P. and Hurtado, C.L. (1995). “The Simple Control Property of Business Process
Models”. In Proceedings of the XV Conference of the Chilean Computer Society, Arica,
Chile, Oct. 30-Nov. 3.

Verbeek, H.M.W., Baasten, T. and Aalst, W.M.P. (2001). “Diagnosing Workflow Processes
using Woflan”. The Computer Journal, 44(4):246–279.

Viswanadham, N., Narahari, Y. and Johnson, T.J. (1990). “Deadlock Prevention and Dead-
lock Avoidance in Flexible Manufacturing Systems”. IEEE Trans. on Robotics and Au-
tomation, 6:713–723.

WfMC (1995). The Workflow Reference Model. published by
the Workflow Management Coalition, Document WFMC TC00-1003,
http://www.wfmc.org/standards/docs.htm.

WfMC (1999). Terminology & Glossary. published by the Workflow Management Coali-
tion, Document WFMC TC-1011,http://www.wfmc.org/standards/docs.htm.

Zhou, M., Jeng. M. and Fanti, M.P. (editors) (2004). Special Issues on Deadlock Resolu-
tion in Computer-Integrated Systems. IEEE Trans. on SMC– Part A, 34(1).

ALPS: A FRAMEWORK FOR
IMPLEMENTING PARALLEL TREE
SEARCH ALGORITHMS

Yan Xu
Operations R & D, SAS Institute Inc., Cary NC 27513

Yan.Xu@sas.com

Ted K. Ralphs
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem PA
18015

tkralphs@lehigh.edu

Laszlo Ladányi
Department of Mathematical Sciences, IBM T. J. Watson Research Center, Yorktown
Heights NY 10598

ladanyi@us.ibm.com

Matthew J. Saltzman
Department of Mathematical Sciences, Clemson University, Clemson SC 29634

mjs@clemson.edu

Abstract ALPS is a framework for implementing and parallelizing tree search al-
gorithms. It employs a number of features to improve scalability and
is designed specifically to support the implementation of data inten-
sive algorithms, in which large amounts of knowledge are generated and
must be maintained and shared during the search. Implementing such
algorithms in a scalable manner is challenging both because of stor-
age requirements and because of communications overhead incurred in
the sharing of data. In this abstract, we describe the design of ALPS
and how the design addresses these challenges. We present two sample
applications built with ALPS and preliminary computational results.

Keywords: Parallel Algorithm, Integer Programming, Software, Branch and Bound

320

1. Introduction
Tree search algorithms are a general class in which the nodes of a di-

rected, acyclic graph are systematically searched in order to locate one
or more goal nodes. In most cases, the graph to be searched is not known
a priori, but is constructed dynamically based on information discovered
during the search process. We assume the graph has a unique root node
with no incoming arcs, which is the first node to be examined. In this
case, the search order uniquely determines a rooted tree called the search
tree. Although tree search algorithms are easy to parallelize in principle,
the absence of a priori knowledge of the shape of the tree and the need
to effectively share information generated during the search makes such
parallelization challenging and scalability difficult to achieve. In [Ralphs
et al., 2003] and [Ralphs et al., 2004], we examined the issues surround-
ing parallelization of tree search algorithms and presented a high-level
description of a class hierarchy for implementing such algorithms. In this
abstract, we follow up on those works by presenting further details of
the search handling layer of the proposed hierarchy, called the Abstract
Library for Parallel Search (ALPS), which will soon have its first public
release.

A variety of existing software frameworks are based on tree search.
For mixed-integer programming—the application area we are most in-
terested in—most packages employ a sophisticated variant of branch
and bound. Among the offerings for solving generic mixed-integer pro-
grams are bc-opt [Cordier et al., 1999], FATCOP [Chen and Ferris,
2001], MIPO [Balas et al., 1996], PARINO [Linderoth, 1998], SIP [Mar-
tin, 1998], SBB [Forrest, 2004], GLPK [Makhorin, 2004], and bonsaiG
[Hafer, 1999]. Of this list, FATCOP and PARINO are parallel codes.
Commercial offerings include ILOG’s CPLEX, IBM’s OSL (soon to be
discontinued), and Dash’s XPRESS. Generic frameworks that facilitate
extensive user customization of the underlying algorithm include SYM-
PHONY [Ralphs, 2004], ABACUS [Jünger and Thienel, 2001], BCP
[Ladányi and Ralphs, 2001], and MINTO [Nemhauser et al., 1994], of
which SYMPHONY and BCP are parallel codes. Other frameworks
for parallel branch and bound include BoB [Benchouche et al., 1996],
PICO [Eckstein et al., 2000], PPBB-Lib [Tschoke and Polzer, 1998],
and PUBB [Shinano et al., 1995]. Good overviews and taxonomies of
parallel branch and bound are provided in both [Gendron and Crainic,
1994] and [Trienekens and Bruin, 1992]. Eckstein et al. [Eckstein et al.,
2000] also provides a good overview of the implementation of parallel
branch and bound. A substantial number of papers have been written
specifically about the application of parallel branch and bound to dis-

321

crete optimization problems, including [Bixby et al., 1995; Correa and
Ferreira, 1995; Grama and Kumar, 1995; Mitra et al., 1997].

The goal of the ALPS project is to build on the best existing method-
ologies while addressing their shortcomings to produce a framework that
is more general and extensible than any of the current options. As such,
we provide support for the implementation of a range of algorithms that
existing frameworks are not general enough to handle. Our design is
centered around the abstract notion of knowledge generation and shar-
ing, which is very general and central to implementing scalable versions
of today’s most sophisticated tree search algorithms. Such algorithms
are inherently data-intensive, i.e., they generate large amounts of knowl-
edge as a by-product of the search. This knowledge must be organized,
stored, and shared efficiently. ALPS provides explicit support for these
procedures and allows for user-defined knowledge types, making it easy
to create derivative frameworks for a wide range of specific classes of
algorithms. While our own experience is in developing algorithms for
solving mixed-integer linear programs, we have in mind to develop a
number of additional layers providing support for tree search algorithms
in other areas, such as global optimization. Although we present limited
computational results, we want to emphasize that this research is ongo-
ing and that the results are intended merely to illustrate the challenges
we still face. The main goal of the paper is to describe the framework
itself. ALPS is being developed in association with the Computational
Infrastructure for Operations Research (COIN-OR) Foundation [Lougee-
Heimer, 2003], which will host the code.

1.1 Tree Search Algorithms
In a tree search algorithm, each node in the search graph has associ-

ated data, called its description, that can be used to determine if it is
a goal node, and if it has any successors. To specify such an algorithm,
four main elements are required. The fathoming rule determines whether
a node has successors that need to be explored. The branching method
specifies how to generate the descriptions of a node’s successors. The
processing method determines whether a node is a goal node and whether
it has any successors. The search strategy specifies the processing order
of the candidate nodes.

Each node has an associated status, which is one of: candidate (avail-
able for processing), active (currently being processed), fathomed (pro-
cessed and has no successors), or processed (not fathomed, hence has
successors). The search consists of repeatedly selecting a candidate node
(initially, the root node), processing it, and then either fathoming or

322

branching. The nodes are chosen according to priorities assigned during
processing.

Variants of tree search algorithms are widely applied in areas such
as discrete optimization, global optimization, stochastic programming,
artificial intelligence, game playing, theorem proving, and constraint pro-
gramming. One of the most common variants in discrete optimization
is branch and bound, originally suggested by Land and Doig [Land and
Doig, 1960]. In branch and bound, branching consists of partitioning
the feasible set into subsets. Processing consists of computing a bound
on the objective function value, usually by solving a relaxation. A node
can be fathomed if (1) the solution to the relaxation is in the original
feasible set (in which case, the best such solution seen so far is recorded
as the incumbent), (2) the objective value of the solution to the relax-
ation exceeds the value of the incumbent, or (3) the subset is proved to
be empty.

1.2 Parallelizing Tree Search

In principle, tree search algorithms are easy to parallelize. Sophis-
ticated variants, however, involve the generation and sharing of large
amounts of knowledge, i.e., information helpful in guiding the search
and improving the effectiveness of node processing. Inefficiencies in the
mechanisms by which knowledge is maintained and shared result in par-
allel overhead, which is additional work performed in the parallel algo-
rithm that would not have been performed in the sequential one. The
goal of any parallel implementation is to limit this overhead as much as
possible.

We assume a simple model of parallel computation in which there
are N processors with access to their own local memory and complete
connectivity with other processors. We further assume that there is
exactly one process per processor at all times, though this process might
be multi-threaded. The main sources of parallel overhead for tree search
algorithms are:

Communication Overhead: time spent actively sending or receiv-
ing knowledge.
Idle Time: time spent waiting for knowledge to be transferred from
another processor (including task starvation, when the processor
is waiting for more work to do).
Redundant Work: time spent performing unnecessary work, usu-
ally due to a lack of appropriate global knowledge.
Ramp-Up/Ramp-Down: idle time at the beginning/end of the al-
gorithm during which there is not enough work for all processors.

323

The effectiveness of the knowledge-sharing mechanism is the main factor
affecting this overhead. The sources of overhead listed above highlight
the tradeoff between centralized storage and decision making, which in-
curs increased communication and idle time, and decentralized storage
and decision making, which increases performance of redundant work.
Achieving the proper balance is the challenge we face. Scalability is a
measure of how well this balance is achieved, i.e., how well an algorithm
takes advantage of increased computing resources, primarily additional
processors. Our measure of scalability is the rate of increase in over-
head as additional processors are made available. A parallel algorithm
is considered scalable if this rate is near linear. An excellent general
introduction to the analysis of parallel scalability is provided in [Kumar
and Gupta, 1994].

2. Implementation

2.1 Knowledge Sharing

In [Ralphs et al., 2004], building on ideas in [Trienekens and Bruin,
1992], we proposed a tree search methodology driven by the concept of
knowledge discovery and sharing. We briefly review the concepts from
the earlier work here. The design of ALPS is predicated on the idea
that all information required to carry out a tree search can be repre-
sented as knowledge that is generated dynamically and stored in various
local knowledge pools (KPs), which share that knowledge when needed.
A single processor can host multiple KPs that store different types of
knowledge and are managed by a knowledge broker (KB). Examples of
knowledge generated while solving mixed-integer programs include fea-
sible solutions, search-tree nodes, and valid inequalities.

The KB associated with a KP may field two types of requests on its
behalf: (1) new knowledge to be inserted into the KP or (2) a request for
relevant knowledge to be extracted from the KP, where “relevant” is de-
fined for each category of knowledge with respect to data provided by the
requesting process. A KP may also choose to “push” certain knowledge
to another KP, even though no specific request has been made.

The most fundamental knowledge generated during the search is the
descriptions of the search-tree nodes themselves. The node descriptions
are stored in KPs called node pools. The node pools collectively contain
the list of candidate nodes. The tradeoff between centralization and de-
centralization of knowledge is most evident in the mechanism for sharing
node descriptions among the processors, known as load balancing. Effec-
tive load balancing reduces both idle time associated with task starvation
and performance of redundant work. Load balancing methods have been

324

studied extensively [Fonlupt et al., 1998; Henrich, 1993; Kumar et al.,
1994; Laursen, 1994; Sanders, 1998; Sinha and Kalé, 1993], but many of
the suggested schemes are not suited for our framework. The simplest
approach is a master-worker design that stores all node descriptions in a
single, central node pool. This makes work distribution easy, but incurs
high communication costs. This is the approach we have taken in our
previous frameworks, SYMPHONY and BCP. It works well for small
numbers of processors, but does not scale well, as the central node pool
inevitably becomes a computational and communications bottleneck.

2.2 The Master-Hub-Worker Paradigm

To overcome the drawbacks of the master-worker approach, ALPS
employs a master-hub-worker paradigm, in which a layer of “middle
management” is inserted between the master process and the worker
processes. In this scheme, a cluster consists of a hub, which is responsi-
ble for managing a fixed number of workers. As the number of processes
increases, we simply add more hubs and more clusters of workers. This
scheme is similar to one implemented by Eckstein et al. in the PICO
framework [Eckstein et al., 2000], except that PICO does not have the
concept of a master. This decentralized approach maintains many of the
advantages of global decision making while reducing overhead and mov-
ing some computational burden from the master process to the hubs.
This burden is then further shifted from the hubs to the workers by
increasing the task granularity, as described below. Cluster size is com-
puted based on the number of hubs and the number of processors, which
are set by the user at run time.

The basic unit of work in our design is a subtree. Each worker is
capable of processing an entire subtree autonomously and has access to
all of the methods needed to manage a tree search. Designating a subtree
as the fundamental unit of work helps to minimize memory requirements
by enabling the use of efficient data structures for storing subtrees using
a differencing scheme similar to that used in both SYMPHONY and
BCP. In this scheme, node descriptions are not stored explicitly, but
rather as differences from their predecessors’ descriptions. This increased
granularity also reduces idle time due to task starvation, but, without
proper load balancing, may increase the performance of redundant work.

2.3 Load Balancing
Recall that each node has an associated priority that can be thought

of as indicating the node’s “quality,” i.e., the probability that the node or
one of its successors is a goal node. In assessing the distribution of work

325

to the processors, we need to consider not only quantity, but also quality.
ALPS employs a three-tiered load balancing scheme, consisting of static,
intra-cluster dynamic, and inter-cluster dynamic load balancing. Static
load balancing, or mapping, takes place during the initial phase of the
algorithm. The first task is to generate a group of successors of the root
node and distribute them to the workers to initialize their local node
pools. ALPS uses a two-level root initialization scheme, a generalization
of the root initialization scheme of [Henrich, 1993]. During static load
balancing, the master creates and distributes a user-specified number
of nodes for hubs. The hubs in turn create a user-specified number
of successors for their workers, then the workers initialize their subtree
pools and begin.

Time spent performing static load balancing is the main source of
ramp-up, which can be significant when node processing times are large.
The problem of reducing ramp-up has long been recognized as a chal-
lenging one [Gendron and Crainic, 1994; Borbeau et al., 2000; Eckstein
et al., 2000]. Two-level root initialization reduces ramp-up by paral-
lelizing the root initialization process itself. Implementation of two-level
root initialization is straightforward, but our experience has shown that
it can work quite well if the number of nodes distributed to each worker
is large enough and node processing times are short.

Inside a cluster, the hub manages dynamic load balancing. Intra-
cluster load balancing is initiated when an individual worker reports to
the hub that its workload is below a given threshold. Upon receiving
the request, the hub asks its most loaded worker to donate a subtree
to the requesting worker. In addition, the hub periodically checks the
qualities of the workloads of its workers. If it finds that the qualities are
unbalanced, the hub asks the workers with the most high priority nodes
to share their workload with the workers that have fewer such nodes.

The master is responsible for balancing the workload among hubs,
which periodically report their workload information to the master. The
master has a roughly accurate global view of the system load and the
load of each cluster at all times. If either the quantity or quality of work
is unbalanced among the clusters, the master identifies pairs of donors
and receivers. Donors are clusters whose workloads are greater than the
average workload of all clusters by a given factor. Receivers are the
clusters whose workloads are smaller than the average workload by a
given factor. Donors and receivers are paired and each donor sends a
subtree to its paired receiver.

A unique aspect of our load balancing scheme is that it takes account
of the differencing scheme for storing subtrees. In order to prevent sub-
trees from becoming too fractured for efficient storage using differencing,

326

we try at all times to ensure that the search-tree nodes are distributed in
a way such that the nodes stored together locally constitute connected
subtrees of the search tree. This means the tree structure must be taken
into account when sharing nodes during the load balancing. Candidate
nodes that constitute the leaves of a subtree are grouped, and the entire
subtree is shared, rather than just the nodes themselves. To achieve
this, each subtree is assigned a priority level, defined as the average pri-
orities of a given number of its best nodes. During load balancing, the
donor chooses the best subtree in its subtree pool and sends it to the
receiver. If a donor does not have any subtrees in its subtree pool, it
splits the subtree that it is currently exploring into two parts and sends
one of them to the receiver. In this way, differencing can still be used
effectively.

2.4 Task Management

Because each process hosts a KB and several KPs, it is necessary to
have a scheme for enabling multi-tasking. In order to maintain max-
imum portability and to assert control over task scheduling, we have
implemented our own simple version of threading. ALPS processes are
message driven—each process devotes one thread to listening for and
responding to messages at all times. Other threads are devoted to per-
forming computation as scheduled. Because each processor’s KB con-
trols the communication to and from the process, it also controls task
scheduling. The KB receives external messages, forwards them to the
appropriate local KP if needed, and forwards all locally generated mes-
sages to the appropriate remote KB. When not listening for messages,
the KB schedules the execution of computational tasks by the local KPs.
The KB decides when and for how long to process each task.

3. Class Structure
ALPS consists of a library of C++ classes from which can be derived

specialized classes that define various tree search algorithms. Figure 1
shows the ALPS class hierarchy. Each block represents a C++ class,
whose name is listed in the block. The lines ending with triangles rep-
resent inheritance relationships. For example, the AlpsSolutionPool,
AlpsSubtreePool and AlpsNodePool classes are derived from the class
AlpsKnowledgePool. The lines ending with diamonds represent asso-
ciative relationships. For instance, AlpsKnowledge contains as a data
member a pointer to an instance of AlpsEncoded. ALPS is comprised
of just three main base classes and a number of derived and auxiliary
classes. These classes support the core concept of knowledge sharing and

327

Figure 1. The ALPS class hierarchy.

are described in the paragraphs below. The classes named UserXXX in
the figure are those that must be defined by the user to develop a new
application. Two examples are described in Section 4.

AlpsKnowledge. This is the virtual base class for any type of in-
formation that must be shared or moved from one process to another.
AlpsEncoded is an associated class that contains the encoded or packed
form of an AlpsKnowledge object. The packed form contains the data
needed to describe an object of a particular type in the form of a char-
acter string. This representation typically takes much less memory than
the object itself; hence, it is appropriate both for storage of knowledge
and for communication of knowledge between processors. The packed
form is also independent of type, which allows ALPS to deal with user-
defined knowledge types. Finally, duplicate objects can be quickly iden-
tified by hashing their packed forms. ALPS has the following four native
knowledge types:

328

AlpsSolution: A description of the goal state or solution to the
problem being solved.
AlpsTreeNode: Contains the data and methods associated with a
node in the search graph. Each node contains a description, which
is an object of type AlpsNodeDesc, as well as the definitions of the
process and branch methods.
AlpsModel: Contains the data describing the original problem.
AlpsSubTree: Contains the description of a subtree, which is a hi-
erarchy of AlpsTreeNode objects, along with the methods needed
for performing a tree search.

The first three of these classes are virtual and must be defined by the
user in the context of the problem being solved. The last class is generic
and problem-independent.

AlpsKnowledgePool. The role of the AlpsKnowledgePool is described
in Section 2.1. There are several derived classes that define native knowl-
edge types. The user can define additional algorithm-specific knowledge
types.

AlpsSolutionPool: The solution pools store AlpsSolution ob-
jects. These pools exist both at the worker level—for storing solu-
tions discovered locally—and globally at the master level.
AlpsSubTreePool: The subtree pools store AlpsSubTree objects.
These pools exist at the hub level for storing subtrees that still
contain unprocessed nodes.
AlpsNodePool: The node pools store AlpsTreeNode objects. These
pools contain the queues of candidate nodes associated with the
subtrees as they are being searched.

AlpsKnowledgeBroker. This class encapsulates the communication
protocol. The KB is the driver for each processor and is responsible for
sending, receiving, and routing all data that resides on that processor.
Each KP must be registered so that the KB knows how to route each
specific type of knowledge when it arrives and where to route requests for
specific types of knowledge from other KBs. This is the only class whose
implementation depends on the communication protocol. Currently, the
protocols supported are a serial layer and an MPI [Gropp et al., 1999]
layer.

AlpsKnowledgeBrokerMPI:A KB for multiprocessor execution via
the MPI message-passing interface.
AlpsKnowledgeBrokerSerial:A KB for uniprocessor execution.

329

Figure 2. Sample main function.

4. Applications and Preliminary Results

Developing an application with ALPS consists mainly of implement-
ing derived classes, and writing the main() function. As described in
Section 3, the user must derive algorithm-specific classes from the base
classes AlpsModel, AlpsTreeNode, AlpsNodeDesc, and AlpsSolution.
The user may also want to define algorithm-specific parameters by de-
riving a class from AlpsParameterSet, or he may even want to define
new types of knowledge. A sample code formain() is shown in Figure 2.

4.1 Knapsack Solver

The binary knapsack problem is to select from a set of items a subset
with the maximum total profit and not exceeding a given total weight.
The profit is additive. By deriving classes KnapModel, KnapTreeNode,
KnapNodeDesc, KnapSolution and KnapParameterSet, we have devel-
oped a solver for the binary knapsack problem employing a very simple
branch and bound algorithm. The nodes of the search tree are described
by subproblems obtained by fixing a subset of the items in the global
set to be either in or out of the selected subset. The branching proce-
dure consists of selecting an item and requiring it to be in the selected
subset in one successor node and not in the other. Processing consists

330

of solving the knapsack problem without binary constraints (subject to
the items that are fixed) to obtain a lower bound, which is then used to
determine the node’s priority (lower is better). Fathoming occurs when
the solution to the relaxation is feasible to the binary problem or the
lower bound exceeds the value of the incumbent. The search strategy is
to choose the candidate node with the lowest lower bound (best first).

To illustrate the performance of the solver, we randomly generated
four difficult knapsack instances using the method described in [Martello
and Toth, 1990]. These results are not meant to be comprehensive.
Clearly, further testing on a much larger scale is needed and complete
performance results will be reported in a full paper to follow. Testing was
conducted on a Beowulf cluster with 48 dual processor nodes. Each node
has two 1.0-GHz Pentium III processors and 512 megabytes of RAM. The
operating system was Red Hat Linux 7.2. The message-passing library
used was LAM/MPI. Five trials were run for each instance, with two
hubs employed when the number of processors was eight or more. Table 1
shows the number of processors used (N), the wall-clock running time (in
seconds), the percentage idle time, the speedup (ratio of the sequential
and parallel running times), the parallel efficiency (ratio of the speedup
to the number of processors), and the number of nodes enumerated.
The efficiency approximates the percentage of running time devoted to
useful work and should ideally be near one. Efficiencies significantly
below one indicate the presence of overhead. We used SBB [Forrest,
2004] to produce the sequential running times for comparison. Because
our solver does not employ advanced techniques such as dynamic cut
generation or primal heuristics, we disabled these capabilities with SBB
as well. SBB still generated many fewer search-tree nodes due to its
use of strong branching. Nonetheless, the comparison provides a useful
baseline. From Table 1, we see that the speedup is near linear. Ramp-up
time is negligible, but idle time still leaves room for improvement. The
number of nodes enumerated is not increasing, which indicates that the
performance of redundant work is not a problem.

331

4.2 Mixed-integer Linear Program Solver

For the knapsack solver, node processing times were negligible and
good feasible solutions were discovered early in the solution process,
which makes scalability relatively easy to achieve. As a more strin-
gent test, we have developed a generic solver for mixed-integer linear
programs (MILPs) called ALPS Branch and Cut (ABC), employing a
straightforward branch and cut algorithm with cuts generated using the
COIN-OR Cut Generation Library [Lougee-Heimer, 2003]. ABC consists
of the classes AbcModel,AbcTreeNode, AbcNodeDesc,AbcSolution,and
AbcParameterSet. The search strategy is best first. Strong branching
is used to choose the variables to be branched on. ABC also uses the
SBB rounding heuristic as a primal heuristic.

We tested ABC using four problems: gesa3, blend2, fixnet6, and
cap6000 from MIPLIB3 [Bixby et al., 1998]. As above, these results
are meant to be illustrative, not comprehensive. As with the knapsack
example, two hubs were used when the number of processes was eight
or more. The results are summarized in Table 2.

From Table 2, we see that for generic MILPs, parallel efficiency is not
as easy to achieve. However, the source of overhead is quite problem
dependent. For gesa3 and blend2, ramp-up is a major problem, due to
large node processing time near the top of the tree. Neither gesa3 nor
blend2 exhibits signs of the performance of redundant work. Also, as the

332

number of processors increases, the number of search nodes decreases.
This is primarily due to the fact that good feasible solutions are found
early in the search process. For fixnet6 and cap6000, ramp-up is not a
problem, but the number of nodes processed increases when the number
of processes increases, indicating the presence of redundant work. For
these problems, good feasible solutions are not found until much later in
the search process. These results illustrate the challenges that we still
face in improving scalability. We discuss prospects for the future in the
final section.

5. Summary and Future Work

In this paper, we have described the main features of the ALPS frame-
work. Two applications were developed to test ALPS. The limited com-
putational results highlight the challenges we still face in achieving scala-
bility. The preliminary results obtained for ABC highlight the two most
difficult scalability issues to address for MILP—reduction of ramp-up
time and elimination of redundant work. Controlling ramp-up time is
the most difficult of these. Attempts to branch early in order to produce
successors more quickly have thus far been unsuccessful. A number of
other ideas have been suggested in the literature. Two that we are cur-
rently exploring are (1) using a branching procedure that creates a large
number of successors instead of just the current two, and (2) utilizing
the processors idle during ramp-up in order to find a good initial fea-
sible solution, thereby helping to eliminate redundant work. The first
approach seems unlikely to be successful, but the second one may hold
the key. This approach is also being explored by Eckstein et al. in the
context of PICO. As for eliminating redundant work, this can be done by
fine-tuning our load balancing strategies, which are currently relatively
unsophisticated, to ensure a better distribution of high-priority work.

In future work, we will continue to improve the performance of ALPS
by refining our methods of reducing parallel overhead as discussed above.
Also, we will continue development of the Branch, Constrain, and Price
Software (BiCePS) library, the data handling layer for solving mathe-
matical programs that we are building on top of ALPS. BiCePS will
introduce dynamically generated cuts and variables as new types of
knowledge and support the implementation of parallel branch and bound
algorithms in which the bounds are obtained by Lagrangian relaxation.
Finally, we will build the BiCePS Linear Integer Solver (BLIS) on top
of BiCePS. BLIS will be a LP-based branch, cut, and price solver for
MILPS, like ABC, but with user customization features akin to SYM-
PHONY and BCP.

333

Acknowledgments. This research was partially supported through
NSF grant ACI-0102687 and the IBM Faculty Partnership Program.

References
Balas, E., Ceria, S., and Cornuéjols, G. (1996). Mixed 0-1 programming by lift-and-

project in a branch-and-cut framework. Management Science, 42:1229–1246.
Benchouche, M., Cung, V.-D., Dowaji, S., Cun, B. L., Mautor, T., and Roucairol,

C. (1996). Building a parallel branch and bound library. In Solving Combinatorial
Optimization Problems in Parallel. Springer, Berlin.

Bixby, R., Ceria, S., McZeal, C., and Savelsbergh, M. (1998). An updated mixed
integer programming library: MIPLIB 3. Technical Report TR98-03, Department
of Computational and Applied Mathematics, Rice University.

Bixby, R., Cook, W., Cox, A., , and Lee, E. (1995). Parallel mixed integer program-
ming. Research Monograph CRPC-TR95554, Rice University Center for Research
on Parallel Computation.

Borbeau, B., Crainic, T., and Gendron, B. (2000). Branch-and-bound parallelization
strategies applied to a depot location and container fleet management problem.
Parallel Computing, 26:27–46.

Chen, Q. and Ferris, M. C. (2001). FATCOP: A fault tolerant Condor-PVM mixed
integer program solver. SIAM Journal on Optimization, 11:1019–1036.

Cordier, C., Marchand, H., Laundy, R., and Wolsey, L. A. (1999). bc-opt: A branch-
and-cut code for mixed integer programs. Mathematical Programming, 86:335–353.

Correa, R. and Ferreira, A. (1995). Parallel best-first branch and bound in discrete op-
timization: A framework. Technical Report 95-03, Center for Discrete Mathematics
and Theoretical Computer Science.

Eckstein, J., Phillips, C. A., and Hart, W. E. (2000). Pico: An object-oriented frame-
work for parallel branch and bound. Technical Report RRR 40-2000, Rutgers Uni-
versity.

Fonlupt, C., Marquet, P., and Dekeyser, J. (1998). Data-parallel load balancing strate-
gies. Parallel Computing, 24:1665–1684.

Forrest, J. (2004). Simple branch and bound. Available from http://www.coin-or.org.
Gendron, B. and Crainic, T. (1994). Parallel branch and bound algorithms: Survey

and synthesis. Operations Research, 42:1042–1066.
Grama, A. and Kumar, V. (1995). Parallel search algorithms for discrete optimization

problems. ORSA Journal on Computing, 7:365–385.
Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI. MIT Press, Cambridge,

MA, USA, 2nd edition.
Hafer, L. (1999). bonsaiG: Algorithms and design. Technical Report SFU-CMPTTR

1999-06, Simon Frazer University Computer Science.
Henrich, D. (1993). Initialization of parallel branch-and-bound algorithms. In Second

International Workshop on Parallel Processing for Artificial Intelligence(PPAI-
93).

Jünger, M. and Thienel, S. (2001). The abacus system for branch and cut and price
algorithms in integer programming and combinatorial optimization. Software Prac-
tice and Experience, 30:1325–1352.

334

Kumar, V., Grama, A. Y., and Vempaty, N. R. (1994). Scalable load balancing
techniques for parallel computers. Journal of Parallel and Distributed Computing,
22:60–79.

Kumar, V. and Gupta, A. (1994). Analyzing scalability of parallel algorithms and
architectures. Journal of Parallel and Distributed Computing, 22:379–391.

Ladányi, L. and Ralphs, T. (2001). COIN/BCP User’s Manual. Available from
http://www.coin-or.org.

Land, A. H. and Doig, A. G. (1960). An automatic method for solving discrete pro-
gramming problems. Econometrica, 28:497–520.

Laursen, P. S. (May, 1994). Can parallel branch and bound without communication
be effective? SIAM Journal on Optimization. 4:33–33.

Linderoth, J. (1998). Topics in Parallel Integer Optimization. PhD thesis, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Lougee-Heimer, R. (2003). The Common Optimization INterface for Operations Re-
search. IBM Journal of Research and Development, 47:57–66.

Makhorin, A. (2004). Introduction to GLPK. Available from
http://www.gnu.org/software/glpk/glpk.html.

Martello, S. and Toth, P. (1990). Knapsack Problems: algorithms and computer im-
plementation. John Wiley & Sons, Inc., USA, 1st edition.

Martin, A. (1998). Integer programs with block structure. Habilitation Thesis, Tech-
nical University of Berlin, Berlin, Germany.

Mitra, G., Hai, I., and Hajian, M. (1997). A distributed processing algorithm for solv-
ing integer programs using a cluster of workstations. Parallel Computing, 23:733–
753.

Nemhauser, G. L., Savelsbergh, M. W. P., and Sigismondi, G. S. (1994). Minto, a
mixed integer optimizer. Operations Research Letters, 15:47–58.

Ralphs, T. (2004). SYMPHONY Version 4.0 User’s Manual. Available from
http://www.branchandcut.org/SYMPHONY.

Ralphs, T., Ladányi, L., and Saltzman, M. J. (2003). Parallel branch, cut, and price
for large-scale discrete optimization. Mathematical Programming, 98:253–280.

Ralphs, T., Ladányi, L., and Saltzman, M. J. (2004). A library hierarchy for im-
plementing scalable parallel search algorithms. The Journal of Supercomputing,
28:215–234.

Sanders, P. (1998). Tree shaped computations as a model for parallel applications. In
ALV’98 Workshop on application based load balancing, pages 123–132.

Shinano, Y., Harada, K., and Hirabayashi, R. (1995). A generalized utility for paral-
lel branch and bound algorithms. In Proceedings of the 1995 Seventh Symposium
on Parallel and Distributed Processing, pages 392–401, Los Alamitos, CA. IEEE
Computer Society Press.

Sinha, A. and Kalé, L. V. (1993). A load balancing strategy for prioritized execution
of tasks. In Seventh International Parallel Processing Symposium, pages 230–237,
Newport Beach, CA.

Trienekens, H. W. J. M. and Bruin, A. d. (1992). Towards a taxonomy of parallel
branch and bound algorithms. Report EUR-CS-92-01, Erasmus University, Rot-
terdam.

Tschoke, S. and Polzer, T. (1998). Portable Parallel Branch and Bound Library User
Manual: Library Version 2.0. Department of Computer Science, University of
Paderborn.

VI

CLASSIFICATION, CLUSTERING, AND
RANKING

This page intentionally left blank

TABU SEARCH ENHANCED MARKOV BLANKET
CLASSIFIER FOR HIGH DIMENSIONAL
DATA SETS

Xue Bai1,2 and Rema Padman1

1The H. John Heinz III School of Public Policy and Management
Carnegie Mellon University, Pittsburgh PA 15213
USA

2Center for Automated Learning and Discovery
School of Computer Science
Carnegie Mellon University, Pittsburgh PA 15213
USA

{xbai,rpadman}@andrew.cmu.edu

Abstract Data sets with many discrete variables and relatively few cases arise in health
care, ecommerce, information security, and many other domains. Learning ef-
fective and efficient prediction models from such data sets is a challenging task.
In this paper, we propose a Tabu Search enhanced Markov Blanket (TS/MB)
procedure to learn a graphical Markov Blanket classifier from data. The TS/MB
procedure is based on the use of restricted neighborhoods in a general Bayesian
Network constrained by the Markov condition, called Markov Equivalent Neigh-
borhoods. Computational results from a real world data set drawn from the
health care domain indicate that the TS/MB procedure converges fast, is able to
find a parsimonious model with substantially fewer predictor variables than in
the full data set, has comparable or better prediction performance when com-
pared against several machine learning methods, and provides insight into pos-
sible causal relations among the variables.

Keywords: Tabu Search, Markov Blanket, Bayesian Networks

Introduction

The deployment of comprehensive information systems and online databases
has made extremely large collections of real-time data readily available. In
many domains such as genetics, clinical diagnoses, direct marketing, finance,
and on-line business, data sets arise with thousands of variables and a small
ratio of cases to variables. Such data present dimensional difficulties for clas-
sification of a target variable (Berry and Linoff, 1997), and identification of

338

critical predictor variables. Furthermore, they pose even greater challenges
in the determination of actual influence, i.e., causal relationships between the
target variable and predictor variables. The problem of identifying essential
variables is critical to the success of decision support systems and knowledge
discovery tools due to the impact of the number of variables on the speed of
computation, the quality of decisions, operational costs, and understandability
and user acceptance of the decision model. For example, in medical diagnosis
(Cooper et al., 1992), the elimination of redundant tests may reduce the risks
to patients and lower healthcare costs. In this study, we address this problem
of efficiently identifying a small subset of predictor variables from among a
large number, and estimating the causal relationship between the selected vari-
ables and the target variable, using Markov Blanket (MB) and Tabu Search
(TS) approaches.

The Markov Blanket of a variable Y, (MB(Y)), by definition, is any set of
variables such that Y is conditionally independent of all the other variables
given MB(Y). A Markov Blanket Directed Acyclic Graph (MB DAG) is the
Directed Acyclic Graph of that set. When the parameters of the MB DAG
are estimated, the result is a Bayesian Network, defined in the next section.
Recent research by the machine learning community has sought to identify
the Markov Blanket of a target variable by filtering variables using statistical
decisions for conditional independence and using the MB predictors as the
input features of a classifier. However, learning MB DAG classifiers from data
is still an open problem (Chickering, 2002). There are several challenges: the
problem of learning the graphical structure is NP hard (Chickering et al., 2003);
selecting associations in the presence of limited data is quite unreliable; and the
presence of multiple local optima in the space of possible structures makes the
learning process difficult. Given these challenges, learning the Markov Blanket
instead of the complete Bayesian Network allows us to limit the number of
associations that we want to consider.

In this paper, we propose a Tabu Search enhanced Markov Blanket proce-
dure that finds a parsimonious MB DAG. This two-stage algorithm generates
an MB DAG in the first stage as a starting solution; in the second stage, the
Tabu Search metaheuristic strategy is applied to improve the effectiveness of
the MB DAG as a classifier, with conventional Bayesian updating. Classifi-
cation using the Markov Blanket of a target variable in a Bayesian Network
has important properties: it specifies a statistically efficient prediction of the
probability distribution of a variable from the smallest subset of variables; it
provides accuracy while avoiding overfitting due to redundant variables; and it
provides both a classifier and some insight into causal relations between a re-
duced set of predictors and the target variable.The TS/MB procedure proposed
in this paper allows us to move through the search space of Markov Blanket

339

structures quickly and escape from local optima, thus learning a more robust
structure.

Metaheuristic search methods such as genetic algorithms (Holland, 1975),
Artificial Neural Networks (Freeman and Skapura, 1991), simulated annealing
(Metropolis et al., 1953, Johnson et al., 1989), Tabu search (Glover, 1997),
and others have been applied to machine learning and data mining methods
such as decision trees and Bayesian Networks (Sreerama et al., 1994, Har-
wood and Scheines, 2002) with significant success in finding good solutions
and accelerating convergence in the learning process. Recent applications in-
clude a Genetic Algorithm based approach to building accurate decision trees
in the marketing domain (Fu et al., 2004), Neural Networks applied to Hybrid
Intelligent Systems for Stock Market Analysis (Abraham et al., 2001) and hill-
climbing heuristics to model a reinforcement learning algorithm for learning
to control partially-observable Markov decision processes (Moll et al., 2000).

This paper is organized as follows: Section 2 provides some background
and literature review. Section 3 presents our proposed method and examines
several relevant issues such as move selection, neighborhood structure, and
evaluation metric for our specific problem. Section 4 details an outline of the
algorithm and experimental design. Section 5 reports computational results.
Section 6 presents our conclusions and directions for future research.

1. Representation and Background Knowledge

Bayesian Networks and Markov Blankets
DEFINITION 1 A Bayesian Network for a set of variables
consists of: (i) a network structure S that encodes a set of conditional inde-
pendence assertions among variables in X; (ii) a set of local
conditional probability distributions associated with each node and its parents.

In Definition 1, S is a directed acyclic graph (DAG) which, along with P,
entails a joint probability distribution over the nodes.

A Bayesian Network is a graphical representation of the joint probability
distribution of a set of random variables. It also has a causal interpretation: a
directed edge from one variable to another, represents the claim that
X is a direct cause of Y with respect to other variables in the DAG (Spirtes
et al., 2000, Pearl, 2000).

DEFINITION 2 P satisfies the Markov condition for S if every node in S
is independent of its non-descendants, conditional on its parents.

The Markov Condition implies that the joint distribution can be factorized
as a product of conditional probabilities, by specifying the distribution of each
node conditional on its parents (Pearl, 2000). In particular, for a given structure

340

S, the joint probability distribution for X can be written as

where denotes the set of parents of

DEFINITION 3 Given the set of variables X and target variable Y, a Markov
Blanket (MB) for Y is a subset Q of variables in X such that Y is independent
of X\Q, conditional on the variables in Q.

Given a Bayesian Network (S, P), the Markov Blanket for Y consists of
the set of parents of Y; the set of children of Y; and the set

of parents of children of Y.

Figure 1. Bayesian Network (S, P). Figure 2. Markov Blanket for Y.

For example, consider the two DAGs in Figure 1 and 2, above. The factor-
ization of entailed by the Bayesian Network (S, P) is

where C is a normalizing constant. The factorization of the conditional prob-
ability entailed by the Markov Blanket for Y corresponds to
the product of those (local) factors in equation (2) that contain the term Y.

where is a different normalizing constant.
There are a few recent studies that have applied Markov Blanket classifiers

and compared their accuracy against alternative machine learning methods us-
ing data sets with few variables or based on limiting assumptions that affect
the scalability of the methods (Koller and Sahami, 1996, Margaritis and Thrun,
1999, Tsamardinos and Aliferis, 2002). Theoretically correct Bayesian algo-
rithms (Chickering, 2002) for finding DAGs are now known, but have not been

341

applied to the problem of finding MBs for data sets with large numbers of
variables.

DEFINITION 4 MB DAGs that have the same Markov factorization for the
target node are Markov equivalent, and the set of all MB DAGs that are Markov
equivalent belong to the same Markov equivalence class.

For example, the MB DAGs shown in Figure 3 are in the same Markov
equivalence class.

Figure 3. Markov Equivalent MB DAGs for Y.

The conditional probability distribution for MB(Y) is the same for (a), (b),
and (c) in Figure 3, which is:

where is a constant.

Basic Tabu Search Heuristic
Tabu Search is a powerful meta-heuristic strategy that helps local search

heuristics to explore the solution space by guiding them out of local optima
(Glover, 1997). Its strategic use of memory and responsive exploration is
based on selected concepts that cut across the fields of artificial intelligence
and operations research. It has been applied successfully to a wide variety of
continuous and combinatorial optimization problems (Johnson and McGeoch,
1997, Toth and Vigo, 2003), capable of reducing the complexity of the search
process and accelerating the rate of convergence. In its simplest form, Tabu
Search starts with a feasible solution and chooses the best move according to
an evaluation function while taking steps to ensure that the method does not
re-visit a solution previously generated. This is accomplished by introducing
tabu restrictions on possible moves to discourage the reversal and in some
cases repetition of selected moves. The tabu list that contains these forbidden

342

move attributes is known as the short term memory function. It operates by
modifying the search trajectory to exclude moves leading to new solutions that
contain attributes (or attribute mixes) belonging to solutions previously visited
within a time horizon governed by the short term memory. Intermediate and
long-term memory functions may also be incorporated to intensify and diver-
sify the search.

2. Tabu Search Enhanced Markov Blanket Algorithm

Our algorithm first generates an initial Markov Blanket for the target vari-
able. However, the initial MB may be highly suboptimal due to the application
of repeated conditional independence tests(Spirtes et al., 2000) and propaga-
tion of errors in causal orientation (Bai et al., 2004a). Therefore, Tabu Search
is applied to improve the initial MB. Four kinds of moves are considered in the
procedure: edge addition, edge deletion, edge reversal and edge reversal with
node pruning. At each stage, for each allowed move, the resulting Markov
Blanket is computed, factored, its predictions scored, and the current MB mod-
ified with the best move. The algorithm stops after a fixed number of iterations
or a fixed number of non-improved iterations. These steps are explained in the
following subsections. The detailed algorithm is presented in the Appendix.

Creation of the Initial Solution

The InitialSolution procedure starts from an empty graph G, identifies the
associated nodes for the target node through independence and conditional in-
dependence (CI) tests. This is then repeated for the associated nodes of each
node adjacent to the target, removing edges based on CI tests among those
associates. We use statistic to test for statistical independence. After this
step, variables adjacent to the target are identified, which are the parents or
children of the target. We call this set PC. The next step is to generate PCPC,
the parents and children of the variables in PC, again removing edges based on
CI tests among the associates. The procedure then prunes away all the nodes
that are not in PC or PCPC, and starts orienting edges. The edge orientation
rules used are: Collider Orientation Rule (Spirtes et al., 2000), Meek’s Rules
(Spirtes and Meek, 1995), and two other rules, all based on causal reasoning
theory (Pearl, 2000, Spirtes et al., 2000)1. Finally, redundant, undirected, and
bidirected edges are pruned to avoid cycles. The output of InitialSolution is an
initial Markov Blanket, used as the input to the TabuSearch procedure.

Markov Equivalent Neighborhoods and Choice of Moves
Our algorithm uses the set of logical Markov equivalence classes as the set

of possible states in the search space instead of searching over the space of
DAGs. The representation scheme is MB DAGs. The set of operators are

343

the feasible moves, which transforms the current MB DAG from the Markov
equivalence class it belongs to, to an MB DAG which belongs to another
Markov equivalence class. Thus the neighborhood for any state is the set of
new Markov equivalence classes that can be constructed via one feasible move.
We call this a Markov Equivalent Neighborhood.

Figure 4. An Example of Moves in Tabu Search Enhanced Markov Blanket Procedure

We allow the following kinds of moves, as illustrated in Figure 4: edge
addition ((b) to (c)), edge deletion ((a) to (b)), edge reversal ((c) to (d)), and
edge reversal with node pruning ((d) to (e)). Moves that yield Markov Blan-
kets within the same Markov equivalent class or moves that result in cyclic
graphs are not valid moves. At each stage, for each allowed move, the result-
ing Markov Blanket is constructed, the conditional probability for the target
node is factored and computed, its prediction is scored, and the current MB is
modified with the best move.

Table 1 lists the corresponding scores of each move in Figure 4.

Tabu List and Tabu Tenure

In our implementation, the tabu list keeps a record of m previous moves,
or more precisely, of the attributes of the current solution that are changed by
these moves. By reference to this record, new solutions are classified tabu if
they contain attributes of previous solutions encountered within the m move
horizon. A move is tabu if it leads to a tabu solution. The value of m, called the

344

tabu tenure, can vary depending on the type of strategic design applied. We use
a simple design that permits m to vary for different types of moves but, once
assigned, remains constant throughout the search. We also employ aspiration
criteria to permit moves that are good enough to be selected in spite of being
classified tabu.

The magnitude of Tabu tenure can vary depending on the complexity of
the MB DAGs in different problems. When the dependency structure of the
equivalent class is very dense, the number of neighborhood states that need to
be considered can grow exponentially, and a larger Tabu tenure is preferred.
Implementations of simple versions of TS based on Tabu tenures between 7
and 12 have been found to work well in several settings where tabu restrictions
rule out a non-trivial portion of the otherwise available moves (Glover, 1997).
Our setting appears to be one of this character, and in our experiments, we use
a static Tabu tenure of 7 because the structure of the MB DAGs is not complex.
Considering the computational cost of each type of move, it is reasonable to
assign larger value of Tabu tenure to moves that are computationally more
expensive. Such moves include edge reversals that involve pruning nodes that
are no longer present in the resulting MB DAG, or edge reversals that result in
significant changes in the parent-child relations in the resulting MD DAG. It is
possible to optimize these parameters in future research and to replace the use
of a static tenure by a dynamic tenure.

Evaluation Criteria
Prediction accuracy is widely used in the Machine Learning community for

comparison of classification effectiveness. However, accuracy estimation is
not the most appropriate metric when cost of misclassification or class distri-
butions are not specified precisely (Provost et al., 1998). For example, wrong
prediction in the diagnosis and treatment of a seriously ill patient has different
consequences than incorrect prediction of the patronage of an online consumer.

345

The quality metric AUC, the area under the Receiver Operator Characteristic
(ROC) curve, takes into account the costs of the different kinds of misclassi-
fication (Hanley and McNeil, 1983). An ROC curve is a plot of true-positive
rate and false positive rate in binary classification problems as a function of
the variation in the classification threshold. This metric has gained popularity
among statisticians for evaluating diagnosis tests, and has also been adopted by
the machine learning community for general binary classification evaluation.
ROC curves are similar to the precision/recall curves used in information re-
trieval as well as lift curves used in marketing communities. AUC ranges from
0 to 100 percent. The higher the AUC is, the better the quality of the classifier.

We evaluate our algorithm using both AUC and prediction accuracy to score
each move. In experiments where AUC is used as the scoring criterion, the pro-
cedure calculates AUC for every neighborhood move and identifies the move
with the highest AUC as the best move, and similarly with prediction accuracy.

Intensification and Diversification

We alternate between intensification and diversification in the TS/MB pro-
cedure. The intensification process focuses on convergence to the best Markov
Blanket DAG in a local Markov equivalent neighborhood. The diversification
process attempts to explore MB structures that are far from the current neigh-
borhood. The distance of two Markov equivalence classes can be roughly un-
derstood as the difference in the MB structures and the resulting Markov fac-
torizations. In our experiments, we seed different starting solutions by altering
the alpha level of the independence tests and by altering the edge orientation
rules in the InitialSolution procedure. By doing this, we generate starting so-
lutions with a variety of independence structures and complexity.

3. Experimental Design

Data
We tested our algorithm on Prostate cancer (PCA) data set (Adam et al.,

2002). PCA data set has been widely used in medical informatics research (
Tsamardinos and Aliferis, 2002). The task is to diagnose prostate cancer from
analysis of mass spectrometry signal peaks obtained from human sera. 326
serum samples from 167 PCA patients, 77 patients with benign prostate hyper-
plasia (BPH), and 82 age-matched unaffected healthy men are used for learn-
ing and prediction. Peak detection was performed using Ciphergen SELDI
software versions 3.0 and 3.0.5. Powerful peaks in discriminating normal ver-
sus PCA, normal versus BPH, and BPH versus PCA were selected as features
for classification. After the clustering and peak alignment process, 779 peaks
were identified. Table 2 summarizes the characteristics of PCA data set.

346

Design of Experimental Parameters
The parameters in our experiments are: data-splits, scoring criteria, starting

solution structure, the depth of conditional independence search (d), and sig-
nificance level We split the data in two ways: 90 percent for training/10
percent for testing and 80 percent for training/20 percent for testing. The ap-
plied scoring criteria are AUC and prediction accuracy. By orienting the edges
differently, we create two different types of Markov Blanket structures for the
starting solution, as shown in Figure 5 and 6.

Figure 5. Starting solution I Figure 6. Starting solution II

At the end of the InitialSolution stage, the algorithm may terminate with
some undirected or bidirected edges incident on the target variable Y . Before
Tabu Search is applied, these edges need to be oriented. Variations in the
orientation of the undirected edges result in different starting solutions. In
Structure I, all the undirected edges associated with the target variable Y are
oriented as parents of Y, i.e., Y does not have any children. In Structure II,
all the undirected edges associated with the target variable Y are oriented as
children of Y, with possible parents of their own.

The depth of conditional independence search (d) and the significance level
are usually exogenous variables that the user has to provide. The depth

of search specifies the density or connectivity, i.e., the presumptive maximum
number of parents each node can have, of the primary graphical structure, be-
fore the edge orientation step. The alpha level is the threshold for the statisti-
cal independence tests. The smaller alpha is, the stricter the tests are and the
stronger is the dependence between two nodes with an existing edge. In our
experiments, we fixed the depth of conditional independence search (d) at 3,
which means the maximum number of parents assumed for each node in the
primary graph is 3.

347

There are thus a total of 32 configurations of parameter combinations (Ta-
ble 3). Each configuration is cross validated. For example, in a 5-fold cross
validation scheme, the data set is divided into 5 subsets. In each run, one of the
5 subsets is used as the test set and the other 4 subsets are assembled to form
a training set. Then the average error across all 5 trials is computed. The ad-
vantage of this method is that it matters less how the data gets divided. Every
data point gets to be in a test set exactly once, and gets to be in a training set
4 times. The mean and the variance of the estimated error are reduced as the
number of folds increases. In that sense, 5-fold cross validation yields more
conservative estimates than 10-fold cross validation.

We use a nested, stratified cross-validation scheme (Weiss and Kulikowski,
1991). In the inner layer, the procedure trains and optimizes the Markov Blan-
ket on training data for each parameter configuration. The configuration that
yields the best MB according to the scoring criterion is chosen as the best
configuration. The outer layer of cross-validation estimates the performance
of the optimized Markov Blanket classifier on the testing data. We report both
the AUC and prediction accuracy on the testing set to evaluate the classification
performance of the generated models.

4. Computational Results
Table 4 and Table 5 present the classification accuracy and AUC for different

combinations of the experimental parameters. The results are averaged over
cross-validation runs. The number in parentheses is the standard error.

As shown in Table 4 and Table 5, the optimal parameter configurations for
best prediction accuracy (259/67, AUC or Accuracy, Structure I, 0.05) is dif-
ferent from the optimal parameter configurations for best AUC (293/33, AUC
or Accuracy, Structure I, 0.05). In real world applications, users can choose
the evaluation criterion they deem appropriate for the application. As shown
in Figures 7 and 8, the resulting best fitting MB DAGs are also different.

In our experiments, the scoring criterion used in Tabu Search does not im-
pact the classification performance, both in terms of prediction accuracy and
AUC. Setting the alpha value at 0.05 generates the best result for both accu-

348

Figure 7. The best fitting MB DAG by
AUC

Figure 8. The best fitting MB DAG by
accuracy.

racy and AUC. The reason may be that a larger alpha value imposes fewer
constraints on accepting dependence in the independence tests. This allows
the algorithm to generate more complex MB structures and test more edges.
Furthermore, the Structure I initial solution seems to be a better configuration

349

under both evaluation criteria. All the directed edges are robust over almost
all cross validation runs, with very small variation. However, more extensive
and systematic experiments on larger data sets are necessary to explore these
relationships further.

In Tables 6, 7 and 8 we present the average best-fitting classification re-
sults when compared against several state-of-the-art classifiers in three differ-
ent ways. Comparison I presents the results when using the full set of variables
as input. Comparison II uses the same number of variables as identified by
TS/MB as input for all the other classifiers, selected by information gain crite-
rion. Comparison III uses the exact same variables as identified by TS/MB as
input variables.

We report both the AUC and prediction accuracy on the testing set as well as
the size of reduction in the set of variables. The size reduction was evaluated
based on the fraction of variables in the resulting models. All metrics (variable
size reduction, AUC, and accuracy) were averaged over cross-validation splits.

For Comparison I, we use the full data set as the input for each method.
As shown in Table 6, the TS/MB classifier produces a substantially smaller
variable set. In terms of AUC, the TS/MB classifier consistently yields the
best results; on accuracy, even with the smaller number of variables employed,
it produces results comparable to the average performance of the state-of-the-
art methods. Moreover, our algorithm identifies the 19 most discriminatory
peaks out of 779 peaks that were identified by SELDI software program and
the follow up clustering and peak alignment processes.

One might be interested to see how well these methods will do using the
same number of features. In order to do this comparison, we selected the same
number of features as the TS/MB classifier yields with the highest information
gain score, and used these as the input for the six alternative classifiers. Note

350

that information gain is just a scoring criterion that ranks the features, but does
not tell us how many of them we should use 2.

Table 7 presents the results for Comparison II. The TS/MB classifier dom-
inates other methods both in terms of AUC and accuracy. This is possible
because the TS/MB classifier encodes and takes advantage of dependencies
among predictors which all other methods fail to incorporate. For problems
where the independence assumption is not adequate, our algorithm is highly
effective, and gives more robust predictions. In Table 8, we compare the re-
sults by using exact the same variables as were selected by the TS/MB classifier
as the input variables for the other six methods. Similar to Comparison II, the
TS/MB substantially outperforms all the competitors.

5. Conclusions

351

On average, the TS/MB classifier reduces the set of predictor variables by
at least an order of magnitude from the full set of variables, in some cases
to a sufficiently small set for entry into hand calculators or paper and pencil
decision procedures in clinical and marketing decision settings. At the same
time, when compared to the state-of-the-art classification methods, the TS/MB
classifier procedures excellent classification results, especially in real world
applications where the cost of misclassification has significant implications.
Moreover, the algorithm generates a graphical structure that represents the re-
lationships between the variables and provides additional insight into causal
discovery. These experiments, as well as more results we have obtained on
data sets from other domains, such as health care, Internet marketing (Bai
et al., 2004a) and sentiment extraction (Bai et al., 2004b), suggest that for
problems where the ratio of samples to the number of the variables is small or
the independence assumption is not appropriate, the two-stage MB classifier
is superior in terms of the prediction performance, effectiveness in identifying
critical predictors, and robustness.

It is possible that different Markov Blanket graphical structures consistent
with the TS/MB classifier output would give slightly different classification re-
sults. Because any undirected and bi-directed edges are deleted after the edge
orientation step, these deletions might be suboptimal decisions. Tabu Search
iteratively investigates alternative orientations and further edge additions to
minimize the extent of sub-optimality. On the other hand, theoretically, two
DAGs that have the same Markov factorization are Markov equivalent. In our
case, two Markov Blankets can be Markov equivalent even if some edges are
oriented in a different, but statistically non-differentiable way. This research
can be extended to address the interesting problem of simultaneously building
classifiers for all variables in a large variable data set, or the problem of dis-
covering a causal model for all variables in such data. Future research could be
the exploration of heuristic approaches to global causal discovery problems.

Acknowledgments
The authors thank Professor Fred Glover of the University of Colorado at

Boulder and Professors Clark Glymour, Peter Spirtes, and Joseph Ramsey of
Carnegie Mellon University for valuable suggestions and comments.

Appendix: The Algorithm
InitialMBsearch (Data D, Target Y, Depth Significance

1

2 for
2.1.

352

3
4
5
6
7

8

G = prune
orient (G)
MB = prune (G)
MB = fineTune (MB)
MBDag = prune (MB)

return MBDag

TabuSearch (Data D, Target Y)
1

2

init (best Solution = cur rent Solution = MBDag, bestScore = 0, …)

repeat until (bestScore does not improve for consecutive iterations)

2.1.

2.2.

2.3.

2.4.

2.5.

form candidateMoves for current Solution

find bestMove among candidateMoves according to function score

update current Solution by applying bestMove

add bestMove to tabuList // not re-considered in the next iterations

if (bestScore < score (bestMove))

2.5.1. update bestSolution and bestScore by applying bestMove

3 return bestSolution //MBDag

find Adjacencies (Node Y, List of Nodes L, Depth Significance

orient (Graph G)

is dependent of Y at level1

2

3

4

for and for all distinct subsets

2.1. if is independent of Y given S at level then remove from

for

3.1.

3.2.

is dependent of at level

for all distinct subsets

3.2.1. if is independent of Y given S at level then remove from

return

1 for each triple of vertices (X , Y, Z) in G

1.1.

1.2.

if pair (X, Y) and (Y, Z) are adjacent, pair (X, Z) are not adjacent (i.e. pattern
X – Y – Z), and if then orient X – Y – Z as
(Collider Orientation Rule)

if and Y, Z are adjacent, X, Z are not adjacent (i.e.pattern
and there is no arrow into Y, then orient Y – Z as (Meek’s Rule 1).

2

3

4

if (directed path from X to Y), and (undirected edge between X and Y), then orient
X – Y as (Meek’s Rule 2)

for any undirected edge connected to X (i.e.X – Y)

3.1. if (Z, W) s.t. Z adjacent to X, W is adjacent to X, and then
orient X – Y as (Meek’s Rule 3)

return G

fineTune (Graph G, Target Y)

353

1

2

3

for any X in G s. t. or X — Y , reorient this edge as

for any X, Z in G s. t. remove the edge Z – X

return G

prune (Graph G,Target Y)

Notes
1.

2.

Details are presented in the algorithm in the Appendix.

The software was kindly provided by the Text Learning Group at Carnegie Mellon University.

References
Abraham, A., Nath, B., and Mahanti, P.K. (2001). Hybrid intelligent systems for stock market

analysis. Computational Science, pages 337–345.
Adam, B.L., Qu, Y., Davis, J.W., Ward, M.D., Clements, M.A., Cazares, L.H., Semmes, O.J.,

Schellhammer, P.F., Yasui, Y., Feng, Z., and Wright, G.L.Jr. (2002). Serum protein finger-
printing coupled with a pattern-matching algorithm distinguishes prostate cancer from be-
nign prostate hyperplasia and healthy men. Cancer Research, 62:3609–3614.

Bai, X., Glymour, C., Padman, R., Spirtis, P., and Ramsey, J. (2004a). Mb fan search classi-
fier for large data sets with few cases. Technical Report CMU-CALD-04-102, School of
Computer Science, Carnegie Mellon University.

Bai, X., Padman, R., and Airoldi, E. (2004b). Sentiment extraction from unstructured text using
tabu search-enhanced markov blanket. In Proceedings of KDD Workshop on Mining for and
from the Semantic Web (MSWKDD). Springer-Verlag Germany.

Berry, M.J.A. and Linoff, G.S. (1997). Data Mining Techniques: For Marketing, Sales, and
Customer Support. John Wiley and Sons.

Chickering, D.M. (2002). Learning equivalence classes of bayesian-network structures. Journal
of Machine Learning Research, 3:507–554.

Chickering, D.M., Meek, C., and Heckerman, D. (2003). Large-sample learning of bayesian
networks is np-hard. In Proceedings of Nineteenth Conference on Uncertainty in Artificial
Intelligence, pages 124–133. Morgan Kaufmann.

Cooper, G.F., Aliferis, C.F., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., Glymour, C.,
Gordon, G., Hanusa, B.H., Janosky, J.E., Meek, C., Mitchell, T., Richardson, T., and Spirtes,
P. (1992). An evaluation of machine-learning methods for predicting pneumonia mortality.
Artificial Intelligence in Medicine, 9:107–139.

Freeman, J. and Skapura, D. (1991). Neural Networks. Addison-Wesley.
Fu, Z., Golden, B.L., Lele, S., Raghavan, S., and Wasil, E.A. (2004). A genetic algorithm-based

approach for building accurate decision trees. INFORMS Journal on Computing, 15:3–22.
Glover, F. (1997). Tabu Search. Kluwer Academic Publishers.
Hanley, J.A. and McNeil, B.J. (1983). A method of comparing the areas under receiver operating

characteristic curves derived from the same cases. Radiology, 148:839–843.
Harwood, S. and Scheines, R. (2002). Genetic algorithm search over causal models. Technical

Report CMU-PHIL-131, Department of Philosophy, Carnegie Mellon University.

1

2

for any X ,

1.1. remove X and all the associated edges

return G

354

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., and Schevon, C. (1989). Optimization by simu-
lated annealing: an experimental evaluation. Part I, graph partitioning, Operations Research,
37:6:865–892.

Johnson, D.S. and McGeoch, L.A. (1997). The traveling salesman problem: A case study in lo-
cal optimization. In E.H.L., Aarts and J.K., Lenstra, editors, Local Search in Combinatorial
Optimization, pages 215–310. John Wiley and Sons.

Koller, D. and Sahami, M. (1996). Towards optimal feature selection. In Proceedings of the
Thirteenth International Conference on Machine Learning, pages 284–292. Morgan Kauf-
mann.

Margaritis, D. and Thrun, S. (1999). Bayesian network induction via local neighborhoods. In
Advances in Neural Information Processing System.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of
state calculations by fast computing machines. Journal. Chemical Physics, 21-6:1087–1092.

Moll, R., Perkins, T.J., and Barto, A.G. (2000). Machine learning for subproblem selection. In
Proceedings 17th International Conf. on Machine Learning, pages 615–622. Morgan Kauf-
mann, San Francisco, CA.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.
Provost, F., Fawcett, T., and Kohavi, R. (1998). The case against accuracy estimation for com-

paring induction algorithms. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 445–453.

Spirtes, P., Glymour, C., and Schemes, R. (2000). Causation, Prediction, and Search. MIT Press.
Spirtes, P. and Meek, C. (1995). Learning bayesian networks with discrete variables from data.

In Proceedings of the First International Conference on Knowledge Discovery and Data
Mining, pages 294–299. AAAI Press.

Sreerama, K. M., Kasif, S., and Salzberg, S. (1994). A system for induction of oblique decision
trees. Journal of Artificial Intelligence Research, 2:1–32.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle routing
problem. INFORMS Journal on Computing, 15:4:334–346.

Tsamardinos, I. and Aliferis, C.F. (2002). Algorithms for large-scale local causal discovery in
the presence of small sample or large causal neighborhoods. Technical Report DSL-02-08,
Vanderbilt University.

Weiss, S.M. and Kulikowski, C.A. (1991). Computer Systems That Learn. Morgan Kaufmann.

DANCE MUSIC CLASSIFICATION USING INNER
METRIC ANALYSIS

A Computational Approach and Case Study Using 101
Latin American Dances and National Anthems

Elaine Chew, Anja Volk (Fleischer) and Chia-Ying Lee*
University of Southern California Viterbi School of Engineering
Integrated Media Systems Center
Epstein Department of Industrial and Systems Engineering
3715 McClintock Avenue GER240 MC:0193, Los Angeles CA90089-0193, USA.

{echew, avolk, leechiay}@usc.edu

Abstract This paper introduces a method for music genre classification using a computa-
tional model for Inner Metric Analysis. Prior classification methods focussing
on temporal features utilize tempo (speed) and meter (periodicity) patterns and
are unable to distinguish between pieces in the same tempo and meter. Inner
Metric Analysis reveals not only the periodicity patterns in the music, but also
the accent patterns peculiar to each musical genre. These accent patterns tend to
correspond to perceptual groupings of the notes. We propose an algorithm that
uses Inner Metric Analysis to map note onset information to an accent profile
that can then be compared to template profiles generated from rhythm patterns
typical of each genre. The music is classified as being from the genre whose ac-
cent profile is most highly correlated with the sample profile. The method has a
computational complexity of where is the length of the query excerpt.
We report and analyze the results of the algorithm when applied to Latin Ameri-
can dance music and national anthems that are in the same meter (4/4) and have
similar tempo ranges. We evaluate the efficacy of the algorithm when using two
variants on the model for Inner Metric Analysis: the metric weight model and
the spectral weight model. We find that the correct genre is either the top rank
choice or a close second rank choice in almost 80% of the test pieces.

Keywords: Music information processing, genre classification, rhythmic similarity.

*The research has been funded in part by the Integrated Media Systems Center, an NSF ERC, Coopera-
tive Agreement No.EEC-9529152 and USC’s WISE program. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect those of
NSF or WISE.

356

Introduction

This paper proposes a method for genre classification by automatic extrac-
tion of rhythmic features from digital music. Accurate genre classification
is critical to the efficient retrieval of music information. Previous research
in genre classification using temporal information utilized tempo (speed) and
meter (periodicity) as distinguishing features. A problem results when such
classification methods encounter music of different genres that have the same
tempo and meter, not an infrequent occurrence. We propose an algorithm for
automatic classification that is capable of making subtle distinctions between
different musical genres that can be in the same meter and tempo. The algo-
rithm can be used either alone or as a add-on to existing classification methods.
We test the algorithm using selected Latin American dances – the tango, the
rumba, the bossa nova and the merengue – and national anthems. All test
pieces have the same 4/4 meter, that is to say, they exhibit a periodicity pat-
tern that cycles every four beats, and are typically played in a moderate tempo.
Classification techniques that use tempo and periodicity information would
not be able to distinguish between these pieces. The difference between these
dances lie in the placement of strong and weak pulses within the four-beat
framework. The entire test set consists of 101 pieces. We tested two versions
of the algorithm that compute the accent profiles using two variations on the
Inner Metric Analysis model [2, 5, 7], namely, the metric weight model and
the spectral weight model. The correct genre was ranked either first or second
in close to 80% of the test pieces. The metric weight model ranked the correct
genre first in 57 of the test pieces, and within the top two rankings in 78 of the
test pieces. The corresponding results for the spectral weight model were 71
and 79 respectively.

The perception of musical rhythm is one of the most basic human perceptual
facilities. Music consists of a succession of sounds that can be represented as
sequences of events that vary over time. The human ear possesses the innate
ability to group these events into beats, units of time marking the rhythmic
pulse of the music; the beats, in turn, coalesce into larger groups that deter-
mine the higher level metrical structures that are marked by patterns of strong
(accented) and weak beats. Several other researchers have used temporal infor-
mation to perform genre classification. This body of work use predominantly
the beat and tempo (speed) information to differentiate between pieces from
distinct genres. For example, Tzanetakis and Cook [12] use a combination
of tempi, pitch histograms and sound texture to perform genre classification
in audio files. They use beat histograms to show the predominant tempi in a
musical audio excerpt. Tzanetakis and Cook reported a 61% accuracy rate in
distinguishing between ten classes of music ranging from classical to metal,
with classical and jazz having four and six subclasses respectively. Dixon,

357

Pampalk and Widmer [1] used a combination of tempo ranges and periodicity
patterns (meter) to perform genre classification. They reported an 80% accu-
racy rate in distinguishing between fourteen styles of ballroom dance music.
Gouyon and Herreraa [4] report a high degree of success (between 81 and
95%) in distinguishing between duple and triple meters. Other work on the
use of periodicity patterns in similarity assessment includes Foote, Cooper and
Nam’s results on using self-similarity to extract periodicity patterns [3]. The
use of periodicity patterns enabled finer grain distinction between dance music
in different meters and improved upon tempo-only approaches to classification
in the temporal domain. However, these methods that use only periodicity and
tempo information encounter problems classifying music that are from differ-
ent genres but exhibit the same periodicity and tempo characteristics. Much
information is lost by not considering the structures encoded in the temporal
patterns exhibited in the pieces themselves.

Our method focuses on extracting and comparing the grouping patterns in-
duced by the note onsets present in the music. We employ the computational
method of the Inner Metric Analysis described in [2], [5] and [7] to extract
these temporal groupings from note onset time information and map them to
time series of impulses that chart the relative strength of the pulse at each point
in time. The method uses persistent and regular pulses at all grid levels and
phase shifts to induce the metrical patterns present in the piece, and can be ap-
plied to both melodic and polyphonic music. We use tempo-invariant numeric
input to bypass the problems introduced by performance tempo fluctuations
and focus on the problem of perceptual grouping of pulses as exhibited in the
piece. We compare the resulting accent profile for each piece of music to that
of template rhythms typical of each musical genre by calculating the correla-
tion coefficient between the two time series. Note that periodicity information
will emerge in the resulting profiles. The music is classified as being from the
genre whose template produces the highest correlation value. Distinct from
some previous approaches, our classification method does not require pitch or
tempo information.

The paper is organized as follows: Section 1 introduces the computational
model for Inner Metric Analysis. Section 2 describes the algorithm for quan-
tifying rhythmic similarity and presents the prototypical rhythm templates and
details of the test set. Section 3 reports our computational results. Sections 3.2
and 4 presents a discussion of the results and conclusions respectively. A
quick overview of the rhythm notation used in this paper can be found at www-
rcf.usc.edu/~echew/papers/ICS2005.

358

1. Inner Metric Analysis
We use the models for Inner Metric Analysis described by Volk in [2] and

[13] to map note onsets to numeric time series that reflect their accent strength.
In traditional Western music notation, the grouping of beats is prescribed by a
time signature in the musical score that indicates the period of the cycle and
the unit of the beat. We call the time structure imposed by the time signature
the outer meter. Each time signature imposes a particular accent pattern on the
notes in each cycle that forms the rhythmic feature of the piece. Another type
of time structure can be induced from the notes of the piece, by the groupings
that arise out of the note content itself – we call this the inner meter . The two
types of metrical structures may not always coincide. While the outer meter
usually remains constant in a piece of music, the inner meter can shift dynam-
ically according to the local grouping patterns. The correspondence, or lack
thereof, between the outer and inner meter led to Volk’s definition of metric
coherence [2, 13], which is said to exist if the the patterns in the inner meter
exhibit the same period and phase as that of the outer meter. The investiga-
tion of a wide range of compositions of different styles and epochs concerning
the occurrence of metric coherence has proven that it serves as an adequate de-
scription of the relation of the metric structure expressed by the notes of a piece
and the outer meter. In this section, we give an overview of two methods for
computing the inner meter from note onset information only. In Sections 1.1
and 1.2, we show how the inner metric structure can be generated by means of
the metric and spectral weights respectively. More detailed descriptions of the
basic concepts of Inner Metric Analysis and a software implementation can be
found in [5], [2], [7] and [11].

1.1 Metric Weights
The objective of the model for metrical coherence is the mapping of a nu-

meric weight to each note. The main concept behind the metric weight is the
idea of a local meter, a maximal and successive chain of equally spaced events.
If X denotes the set of all note onsets in a piece of music, then a local meter is
defined as a maximal subset:

where denotes the starting point or first onset, the fixed distance between
the onsets of or period, the length of The local meter, is
maximal in that there does not exist another local meter s.t.

Figure 1 shows all local meters for a short excerpt from “The Girl From
Ipanema” by Antonio Carlos Jobim, a well known example of the bossa nova
genre. The discs on the first line below the notes (labeled X) show all onsets
in the excerpt. There are three local meters present in this excerpt, namely,

359

and These three local meters are indicated as
successions of dark discs in the second (A), third (B) and fourth (C) lines
respectively. The triangles show the extensions of the local meters, to be
discussed in the next section.

Figure 1. Local Meters in excerpt from “The Girl From Ipanema.”

The intuition behind the computation of the metric weight is that longer
successions of events should contribute more weight to an onset in its chain
than shorter ones. The more stably established in a chain of successive and
regular events, the more significant the onset. Hence, the metric weight of an
onset, is the sum of a power function of the lengths of all local meters
of size at least of which is an element. Let be the set of all local
meters of size at least that is to say, The
general metric weight of an onset, is as follows:

For the purposes of this paper, we shall use the metric weight function when
and For example, the second note in the excerpt in Figure 1

is a member of three local meters – and –
each of which has a length of two segments. Hence, the metric weight of this
second note is Whereas, the third note is only a member
of one local meter, and its metric weight is Figure 2(a)
shows the metric weight profile for all notes in the excerpt of “The Girl From
Ipanema” shown in Figure 1. The higher the line in the graph, the greater the
corresponding weight.

Note that if is the length of the excerpt to be analyzed, all local meters at
a given grid level can be located in time. There are
such grid levels that are of interest. Hence, the computational complexity of
the method for generating the metric weights is The same is true for
the spectral weight method described in the section to follow.

360

Figure 2. Metric and spectral weight profiles for “The Girl From Ipanema” excerpt.

1.2 Spectral Weights
The spectral weight method [7] extends the metric weight approach. In

the metric weight approach, each local meter only contributes to the weight of
onsets that belong to that local meter. In the spectral weight approach, each
local meter contributes to the weight of onsets in its extension throughout the
piece. The spectral weight exists not only for note events, but also for silence
events (rests), on the other hand, it is not as sensitive to local changes in the
inner meter as the metric weight.

Let the extension of a local meter be In
Figure 1, the union of all symbols (circles, and triangles, on each line
(A, B and C) shows the elements in the extensions of the corresponding local
meters – and Each local me-
ter, contributes to the spectral weight of the events in its extension,

The spectral weight is defined as:

The metric and spectral weights for the “Girl From Ipanema” excerpt are
given in Figures 2(a) and (b) respectively. While the metric weight profile does
not reveal a regular grouping for this short example, the spectral weights can
be separated into three hierarchical pulse levels, corresponding to the strongest
pulses at the fourth and eighth elements in the bar, a moderate pulse on the
second and sixth elements in the bar, and the underlying pulse on the beat.

2. Measuring Rhythmic Similarity

The comparison algorithm is based on the assumption that rhythms that are
similar will generate similar distributions of strong and weak accent patterns
on the time line as represented by their metric and spectral weight profiles.
Section 2.1 outlines our method for genre classification. The test corpus is
discussed in Section 2.2 and the prototypical rhythms for each class of music
are presented in Section 2.3. An example of the classification process in action

361

is given in Section 2.4. The actual classification results for the test corpus will
be presented in Section 3.

2.1 Quantifying Similarity

The core classification process involves two stages: the pre-processing of
template rhythms representative of each class of dance music, and the classi-
fication of musical samples. In the first stage, we use template rhythms that are
known to be typical of each genre to generate metric or spectral weight profiles
that are representative of the class of music. The template rhythms are lifted
from “The Complete Book of the World’s Dance Rhythms” by Kleon Rap-
takis [9] and augmented with examples gleaned from the CD “The Fabulous
Ballroom Collection” [6].

In the calculation of the metric and spectral weights, local meters must be
at least of length to contribute to the weight of an event. As a result, the
first (and last) few events in a sample are assigned low weights that may not
correspond to their true accent strengths. To minimize this edge effect and to
get a stable accent profile, each rhythm pattern is repeated four times and a
sample profile from the middle of this test set is singled out as the prototype.
In general, the profiles for the second and third repetitions are highly similar.
In this paper, we use the profile of the second repetition. The following steps
are applied to each template rhythm:

The template rhythms and their accent profiles will be described in Section 2.3.
The second stage involves the comparison of each sample’s metric or spec-

tral weight profile to the corresponding profiles of the prototypical rhythms. A
short melodic fragment is excerpted manually near the beginning of the test
sample and treated in the same fashion as the template rhythms (repeated four
times, and middle of accent profile excerpted for comparison). We found that
using short melodic fragments from a single instrument works well enough for
classification purposes. The constant and regular succession of onsets typical
of many Latin American pieces results in a regular onsets that do not reveal
much accent differentiation when one considers the union of onsets from all
instruments. The classification stage consists of the following steps:

Stage 1: Pre-processing of template rhythms
Step 1: Repeat the template rhythm four times.
Step 2: Calculate its metric/spectral weight.
Step 3: Extract metric/spectral weight profile of 2nd repetition.
Step 4: Normalize all weights to fall between 0 and MAX (=10).

362

Stage 2: Classification of music sample
Step 1: Obtain melodic fragment near beginning of sample.
Step 2: Repeat the rhythm pattern four times.
Step 3: Calculate its metric/spectral weight.
Step 4: Extract metric/spectral weight profile of 2nd repetition.
Step 5: Normalize all weights to fall between 0 and MAX (=10).
Step 6: Extend (by repetition) both the sample profile and the template
profile to the lowest common multiple of sample and template lengths.
Step 7: Compute the correlation coefficient between the (extended) sample
and template profiles (details to follow).
Step 8: Assign piece to genre with highest correlation.

Suppose that we wish to compare two accent profiles of the same length,
and where N is large enough to represent

all events in the accent profile. if there is no accent weight at that point
in time; the same is true for We use the correlation coefficient formula:

2.2 Test Corpus

Our test corpus consists of twenty-two tangos, seventeen rumbas, twenty-
five bossa novas, seventeen merengues and twenty national anthems from Latin
America. All rhythms in the test corpus are of the same periodicity, 4/4 time,
cycling after four beats; and, all except the merengue are typically played in a
moderate tempo. Hence, the distinguishing features lie in the rhythm patterns
themselves and the instrumentation, and not the periodicity or tempi.

The sources for our tango, rumba, bossa nova and merengue test data are
listed online atwww-rcf.usc.edu/~echew/papers/ICS2005/appendix.html. The source for
the anthems was Reed and Bristow’s “National Anthems of the World” [10].
We use as input to the classification process note material from a melodic
fragment near the beginning of each piece. These melodic fragments were
extracted manually and the duration sequences encoded in a text format. In
the case of tangos, merengues, bossa novas and anthems, fragments of the
melodies were excerpted as input. In the case of the rumba, the excerpt gener-
ally came from the bass instrument.

2.3 Prototypical Rhythms
We present here the prototypical rhythms for the tango, rumba, bossa nova

and merengue. These rhythms were collected from the “Complete Book of
the World’s Dance Rhythms” [9] and augmented by templates manually tran-
scribed from the CD “The Fabulous Ballroom Collection” [6].

363

Figure 3. Prototypical rhythms with their respective metric (left chart) and spectral (chart on

right) weight profiles.

Figure 3 documents the list of template rhythms for the musical genres un-
der consideration. Each profile is derived from four repetitions of the rhythm
shown. The first template is for the four-beat March rhythm typical of many
national anthems. The typical merengue rhythms show a busy flow of notes.
The bossa nova rhythms are characterized by eighth notes on the off-beats. The
phase shift of the accent pattern to the off beats is particularly apparent in the
profiles for the second bossa nova rhythm. Rumba 1 and Rumba 3 have strong
accents on the first and third beats, as reflected in their metric and spectral
weight profiles. Rumba 3 has an equally strong accent on the second (synco-

364

pated) note. The second rumba rhythm is identical to Tango 2. The difference
between Rumba 2 and Tango 2 lies beyond the rhythmic realm, in the instru-
mentation and the pitch ornamentation employed in the pieces. For example,
the use of the bandoneon in the tango but not the rumba, and the tango is punc-
tuated by glissando-like figures that lead into important downbeats, the same
is not true for the rumba. The first template rhythm for the tango is that of
the European tango while the second is that of the Argentinian tango rhythm.
The two rhythm patterns differ only in the third note, which is sounded in the
European tango (creating a march-like rhythm) but is silent in the Argentinian
version. The Argentinian tango rhythm has a strong syncopation, an accent on
a weak beat that offsets the regularity of typical four-beat rhythm.

2.4 Classification Example
In our classification procedure, each sample piece is compared to all proto-

typical rhythms and assigned to the genre whose rhythm best matches its own
as measured by the highest correlation coefficient value. We return at this point
to “The Girl From Ipanema” (from Figure 1) to demonstrate the classification
procedure. The excerpted rhythm corresponds to the lyrics “Tall and tan and
young and love-”. This excerpt is repeated four times and its metric and spec-
tral weight profiles computed and shown in Figure 4. The profile of the second

Figure 4. Accent profiles for four repetitions of “The Girl From Ipanema” excerpt.

repetition is excerpted for comparison to all rhythm templates (see Section 2.3).
We shall refer to this as the Ipanema profile. Each rhythm template (the profile
of the second repetition of each template rhythm in Figure 3) is repeated twice
so that it is of the same length as the Ipanema example. We then compute the
correlation coefficient between the Ipanema profile and the extended rhythm
templates. The coefficient correlation values for all rhythm templates using
both metric and spectral weights are presented in Table 1 (where A = anthem,
B = bossa nova, M = merengue, R = rumba and T=tango).

Both the metric weight and the spectral weight approaches rank the Bossa
nova 2 rhythm highest, followed by the Rumba 3 rhythm. Consider the Bossa
nova 2 rhythm in Figure 3. Both the Bossa nova 2 template and the Ipanema

365

profiles (metric and spectral weights) display prominent weights on the off
beats, thus identifying the Ipanema rhythm as being from the bossa nova genre.

3. Computational Results
This section reports our computational results using the method outlined in

Section 2.1, the test corpus detailed in Section 2.2 and the rhythm templates
described in Section 2.3. Section 3.1 describes the experiments and the classi-
fication results and Section 3.2 provides a discussion of the results.

3.1 Classification Experiments and Results

We performed separate classification tests using the metric weight model
and the spectral weight model. The summary statistics on the correlation coef-
ficient values are reported in Table 2.

We first examine the rank one assignment results, that is to say, those with
the highest correlation coefficient scores. The left and right charts and tables
in Figure 5 document the rank one classification results using the metric and
spectral weight models respectively. The bar chart shows the classification
results for each test sample class. Each table is a transformed confusion matrix
that maps directly to the segments in its corresponding bar chart. The numbers
in bold indicate the correct assignments. In infrequent cases of ambiguity, a
piece is considered to have been correctly classified if the rhythm template with
which its melodic fragment achieved the highest correlation coefficient value
is one of the prototypical rhythms of its genre. Consider the identical rhythm
templates: Rumba 2 and Tango 2. If a rumba matches this rhythm template,
then it is considered to have been classified correctly.

366

Figure 5. Rank one categorization results using metric (left) and spectral (right) weight mod-
els.

Figure 6. Rank one and two (within 0.05) categorization results using metric (left) and spec-
tral (right) weight models.

367

Sometimes, a piece may be misclassified based on the top ranked assign-
ment, but a close second rank competitor may be the correct genre assignment.
Hence, we next take into account second rank results that are correct and close
to the top rank classifications. If the correlation coefficient corresponding to
the rank two classification of the sample is within, say, 0.05 of that of the rank
one classification, then the second classification is considered one of the top
choices. For this second scenario, the figures and tables in Figure 6 document
the corresponding classification results using the metric and spectral weight
models. Finally, Table 3 summarizes the classification results for each method.

3.2 Discussion and Analysis

In this section, we evaluate the results of our approach for fine-grain dif-
ferentiation of the musical genres employing the Inner Metric Analysis model
presented in Section 1.

Performance Summary. In general, the method using the spectral weights
accurately classified more of the test pieces than the one using metric weights.
Consider the top-ranked assignment results presented in Figure 5. The spec-
tral weight approach provided more accurate classifications – 70.3% correct
versus the metric weight’s 56.4% – showing a marked improvement in the
accurate classification of the merengue and march (anthem) samples. For ex-
ample, the six anthems that were incorrectly classified as rumbas (Rumba 1)
using the metric weight approach (see chart on left in Figure 5) were adjusted
to the right category in the spectral weight approach (chart on right in same
figure). The metric weight approach performed markedly better than the spec-
tral weight method only in assigning the correct classification of tango within
the first and second choices (see the two tables at the bottom of Figure 6).

In a significant portion of cases for the metric weight approach where the
first rank answer was incorrect, a close second rank answer was the correct one.
The same phenomenon was observed to a lesser degree for the spectral weights
approach. Compare the metric weight experiment results documented in the
left charts in Figures 5 and 6. In 21 out of the 44 incorrect genre assignments

368

for the dance pieces, the correct assignment was the rank two answer whose
correlation coefficient was within 0.05 of the rank one answer. For example,
all four rumba pieces misclassified as tangos (Tango 1) had as second highest
scoring template a rumba rhythm (Rumba 1 and Rumba 2). In fact, when
considering both the highest and close second highest correlation coefficient
scores, the performance of both the metric weight and spectral weight methods
were comparable as shown in Table 3.

Most Frequent Errors. We next consider the most frequent classification
errors. Referring to Figure 5, the largest segment in each bar in the graph
corresponds to the correct assignment, while the second largest segment rep-
resents the most frequent classification error. The details of these most fre-
quent classification errors for the metric weight and spectral weight methods
are summarized in Tables 4a and 4b respectively. Each table lists the most
frequent erroneous assignment for each genre as well as their probable correct
type. The probably type is the template in the correct genre that has the highest
correlation with the sample’s accent profile. For example, of the four rumbas
misclassified as Tango1 in the metric weight table, three matched the Rumba1
(R1) rhythm and one the Rumba2 (R2) template. In order to assess the degree
of error for misclassified samples, we present the similarity matrix for the tem-
plate rhythms in Table 5. The tables show the similarity matrix for the template
rhythms computed using the metric and spectral weights respectively.

The most frequent error using the metric weight profiles was the misclassi-
fication of anthems (marches) as rumbas (Rumba 1, R1, rhythm). This is not
a surprising outcome since one might expect the R1 rhythm template to be a
plausible march rhythms. In his experiments on pulse salience and metrical ac-

369

cent, Parncutt used the R1 rhythm to represent a march [8]. The second most
frequent error was the misclassification of tangos as bossa novas (B1), rumbas
as tangos (T1), and bossa novas as rumbas (R3). Consider the accent profile
of the T1 and the B1 rhythms in Figure 3: they both show strong accents on
the first and third beats, a high degree of correspondence with the outer meter,
which may explain the algorithm’s confusion between the T1 and B1
cation. The correlation between the R1 and T1rhythms is high (0.97 as shown

classifi-

in the left similarity matrix in Table 5); and, both the B2 and R3 rhythms show
strong accents on the weak beats (see Figure 3).

The most frequent error using the spectral weight profiles was the misclassi-
fication of tangos as bossa novas (B1) and bossa novas as merengues (M1). As
mentioned in the above paragraph, both the tango and B1rhythms show strong
accents on the first and third beats. Both the B1 and M1 rhythms exhibit strong
accents on beats 1, 2 and 3.

4. Conclusions
We have presented an method for music genre classification using

a computational model for Inner Metric Analysis. We have shown that the
inner metrical patterns of the music provide valuable information that can make
fine distinctions between pieces in the same tempo and meter. We tested the
algorithm on 101 Latin American dances and national anthems and ranked the
correct genre within the top two choices in close to 80% of the test pieces.

The current implementation of the algorithm utilized manual preprocessing
of the data to extract a melodic fragment for analysis. Future implementa-
tions could automate this process, introduce random selection of input data or
classification by majority vote from all tracks, and explore the sensitivity of
the algorithm to the choice of input fragments. While we have used score-
generated MIDI input to encode musical information in order to validate the
approach using data that is as precise as possible, further work needs to be

370

done to modify the algorithm to perform classification under uncertainty, for
example, irregularity of beats as would be the case in performed music.

In conclusion, the classification method we have presented can discriminate
between musical genres based on accent patterns in the same meter (periodic-
ity). Such differentiation by accent patterns provided by Inner Metric Analysis
can be used either as a standalone technique or in conjunction with tempo in-
formation as a method for genre classification that employs a more complete
set of temporal features.

References
Dixon, Simon, Pampalk, Elias and Widmer, Gerhard (2003). “Classification of Dance Mu-
sic by Periodicity Patterns,” in Proceedings of the 4th International Conference on Music
Information Retrieval, Baltimore, MD, p. 159-165.

Fleischer, Anja (2002). “A Model of Metric Coherence,” in Proceedings of the 2nd Inter-
national Conference on Understanding and Creating Music, Caserta, Italy.

Foote, Jonathan, Cooper, Matthew and Nam, Unjung (2002). “Audio Retrieval by Rhyth-
mic Similarity,” in Proceedings of the 2002 International Conference on Music Information
Retrieval at IRCAM, Paris.

Gouyon, Fabien, and Herrera, Perfecto (2003). “Determination of the meter of musical au-
dio signals: Seeking recurrences in beat segment descriptors” in Proceedings of the 114th
Convention of the Audio Engineering Society, Amsterdam, The Netherlands, 2003.

Mazzola, Guerino (2002). The Topos of Music. Basel: Birkhauser.

Murray, Arthur (1998). The Fabulous Ballroom Collection. RCA CD No.63136 (UPC:
90266313624)

Nestke, Andreas and Noll, Thomas (2001). “Inner Metric Analysis’,’ in Haluska, Jan (ed.)
Music and Mathematics. Bratislava: Tatra Mountains Mathematical Publications.

Parncutt, Richard (1994). “A Perceptual Model of Pulse Salience and Metrical Accent in
Musical Rhythms,” Music Perception, 1994, Vol. 11, No. 4, p. 409-464.

Raptakis, Kleon (1966). The Complete Book of the World’s Dance Rhythms. Astoria, N.Y.:
K. Raptakis Publications.

Reed, William L. and Bristow, Michael J. (1987). National Anthems of the World. 7th ed.
ISBN: 0713719621. London; New York: Blandford Press.

Volk, Anja and Noll, Thomas (2004). Rubato, Rubettes and related Java-Tools: A User’s
Guide. Manuscript.

Tzanetakis, George and Cook, Perry (2002). “Musical Genre Classification of Audio Sig-
nals,” IEEE Transactions on Speech and Audio Processing, 10(5), July 2002.

Volk, Anja (2004). Metric Investigations in Brahms’ Symphonies. In Mazzola, Guerino
and Thomas Noll (ed): Perspectives of Mathematical and Computer-Aided Music Theory,
epOs Music, Osnabruck.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

ASSESSING CLUSTER QUALITY USING
MULTIPLE MEASURES - A DECISION TREE
BASED APPROACH

Kweku-Muata Osei-Bryson
Department of Information Systems & The Informaton Systems Research Institute,
Virginia Commonwealth University, Richmond, VA 23284

Abstract: Clustering is a popular data mining technique, with applications in many areas.
Although there are many clustering algorithms, none of them is superior on all
datasets. Typically these clustering algorithms while providing summary
statistics on the generated set of clusters do not provide easily interpretable
detailed descriptions of the set of clusters that are generated. Further for a
given dataset, different algorithms may give different sets of clusters, and so it
is never clear which algorithm and which parameter settings is the most
appropriate. In this paper we propose the use of a decision tree (DT) based
approach that involves the use of multiple performance measures for indirectly
assessing cluster quality in order to determine the most appropriate set of
clusters.

Key words: Cluster Quality; Decision Tree; Performance Measures; Multi-Criteria
Decision Analysis

1. INTRODUCTION

Clustering (or segmentation) is a popular data mining technique (e.g.
Cristofor and Simovici, 2002; Dhillon, 2001; Ben-Dor and Yakhini, 1999;
Huang, 1997; Fisher, 1997; Benfield and Raftery, 1992) that attempts to
partition a dataset into a meaningful set of mutually exclusive clusters (or
segments). Within the context of data mining, clustering is considered to be
a form of unsupervised learning since there is no target variable to guide the
learning process. There are numerous algorithms available for doing
clustering. They may be categorized in various ways such as: hierarchical
(e.g. Murtagh, 1983; Ward, 1963) or partitional (e.g. Mc Queen, 1967),

372

deterministic or probabilistic (e.g. Bock, 1996), hard or fuzzy (e.g. Bezdek,
1981; Dave, 1992).

Typically, these clustering algorithms while providing summary
statistics on the generated set of clusters (e.g. mean of each variable, distance
between clusters), do not provide easily interpretable detailed descriptions of
the set of clusters that are generated. Further for a given dataset, different
algorithms may give different sets of clusters, and so it is never clear which
algorithm and which parameter settings (e.g. number of clusters) is the most
appropriate. For as noted by Jain et al. (1999) “There is no clustering
technique that is universally applicable in uncovering the variety of
structures present in multidimensional data sets”. They thus raised the
questions: “How is the output of a clustering algorithm evaluated? What
characterizes a ‘good’ clustering result and a ‘poor’ one?” Ankerst et al.
(1999) also commented that “Most of the recent research related to the task
of clustering has been directed towards efficiency. The more serious
problem, however, is effectivity, i.e. the quality or usefulness of the result”.
In this paper we focus on the evaluation of the quality of the output of the
clustering process.

It might seem that the best approach for identifying the most
appropriate partitioning of a given dataset should involve the use of multiple
clustering algorithms and parameter settings. One major difficulty is that
given the volume of the output data that is to be compared and bounds on
human mental processing such a comparison could be a challenging task.
This task is made no easier by the fact that it is not even meaningful to
compare some output statistics. For example, one algorithm may use
distance that is based on the L-2 norm while the other algorithm may use
distance that is based on the L-1 norm. Given this challenge the user may be
tempted to use a single algorithm with specified ranges of values for some
parameters (e.g. number of clusters) and accept the generated set of clusters
as the most appropriate one. Difficulties with this approach include how to
select the algorithm, and the fact that these algorithms are not optimal
algorithms so cannot guarantee that the value that they select from a given
range is optimal. This suggests seems that the best approach would involve
the application of multiple clustering algorithms with different parameter
settings and a non-taxing approach for comparing the various sets of clusters
that would not be generated by these algorithms. In this paper we propose
the use of a decision tree (DT) based approach that involves the use of
multiple performance measures for assessing cluster quality in order to
determine the most appropriate set of clusters.

It is fairly well known that while clustering is a form of unsupervised
learning, that application of a clustering algorithm results in a data driven
labeling (i.e. the cluster identifier) of the dataset, and as such decision tree

373

induction could be used to provide a detailed description of the set of
clusters. Thus some data mining software (e.g. SAS Enterprise Miner)
automatically generates a profile tree, which is equivalent to a decision tree
in which the target variable is the cluster identifier, and the entire dataset is
used for training. Thus what we are proposing is not entirely new. What
differs here is that we are proposing that the traditional approach to DT
induction be applied to generate the corresponding DTs (e.g. after clustering
but before DT induction, doing a partitioning of dataset into training,
validation and test subsets based on stratified sampling) and to use a multi-
criteria approach to select the best DT and thus the best set of clusters. The
latter phase is similar to that proposed by Osei-Bryson (2004).

Our work here differs from that of other researchers who have
considered the use of DT induction in clustering. For example, Liu et al.
(2000) recently proposed using DTs for generating clusters. While their
work focused on an approach for generating clusters, our work here focuses
on evaluating sets of clusters that could have been generated by any
clustering algorithm, including that proposed by Liu et al.

2. OVERVIEW ON RELATED CONCEPTS

Given that our approach for evaluating cluster output involves the use of
DT induction and multi-criteria decision making, in this section we present
an overview of concepts from each area that is relevant to our approach.

2.1 Decision Tree Induction

A DT is a tree structure representation of the given decision problem
such that each non-leaf node is associated with one of the decision variables,
each branch from a non-leaf node is associated with a subset of the values of
the corresponding decision variable, and each leaf node is associated with an
IF-THEN rule that can be used to predict the value of the target variable. A
DT is thus an explanatory as well as a predictive model.

The generation of a DT includes partitioning the model dataset into
either two parts (i.e. training and validation) or three parts (i.e. training,
validation and test). There are two major phases of the DT generation
process: the growth phase and the pruning phase (e.g. Kim and Koehler,
1995). The growth phase involves inducting a DT from the training dataset.
The pruning phase aims to generalize the DT that was generated in the
growth phase in order to avoid over fitting. Therefore in the pruning phase,
the DT is evaluated against the validation dataset in order to generate a
subtree of the DT generated in the growth phase that has the lowest error

374

rate against the validation dataset. It follows that this DT is not independent
of the training dataset or the validation dataset. Since the test dataset was not
used for generation or post-pruning of the DT, the accuracy rate of the DT
on this third partition of the original dataset is used to estimate the
generalization accuracy of the DT.

Many DM software packages (e.g. C5.0, SAS Enterprise Miner, IBM
Intelligent Miner) provide facilities that make the generation of DTs a
relatively easy task. However, it is known that for a given dataset, the use of
different splitting methods and other parameter settings might result in
different DTs, and so it may be necessary to generate multiple DTs in order to
get the most appropriate one. Most previous approaches to comparing DTs
have focused on a single performance measure, typically some measure of
accuracy, although it is usually acknowledged that multiple factors are
important for evaluating DTs (e.g. Bohanec and Bratko, 1994). Recently Osei-
Bryson (2004) proposed a multi-criteria approach for comparing multiple DTs.

2.2 Multiple Criteria Decision-Making (MCDM)

In formal terms, multiple criteria decision-making (MCDM) problems
are said to involve the prioritization of a set of alternatives in situations that
involve multiple, sometimes conflicting criteria. MCDM problems often
have no single alternative that provides the best value for each criterion.
Rather for each problem there is a set of alternatives that are said to be non-
dominated. An alternative is non-dominated if there is no other alternative
that outscores it with regard to each criterion. Given that MCDM problems
do not in general have an objectively unique ‘best’ alternative, then
procedures for addressing MCDMs aim to aid the decision-maker(s) in
analyzing the given decision-making problem, and facilitate the
identification of a ranking of the alternatives that is consistent with the
decision maker’s beliefs in the importance of the various criteria. Various
formal techniques have been proposed for addressing MCDMs including the
weighing model and outranking methods. Our solution approach will involve
the use of the weighing model formulation for MCDMs. For alternative i,
given performance vector where is alternative i’s score
with regards to performance measure j, and J is the index set of the
performance measures, then with the weighting model formulation the
composite score is where (> 0) is the weight of
performance measure “j”, and

Various approaches are available for generating weights from the
subjective inputs of evaluators, both for individual and group decision-
making contexts, and for situations when the inputs are precise or imprecise
(e.g. Saaty, 1980; Saaty, 1989; Bryson, 1995; Bryson et. al., 1995; Bryson

375

and Joseph, 2000). The application of those techniques requires estimates of
the relative importance of pairs of performance measures, and result in a
weight vector that is a synthesis of the input pairwise comparison
information. Given the nature of our evaluation problem, we will assume
that initially the evaluator is not certain about the numeric estimate of the
pairwise comparisons and as such we will provide for the evaluator to make
imprecise numeric estimates in the form of numeric intervals. For situations
involving an individual evaluator, techniques described in Bryson et al.
(1995) can be used to generate the corresponding interval weight vector,
while for situations involving a group of evaluators, techniques described in
Bryson and Joseph (2000) can be used to generate a set of consistent weights
the corresponding normalized interval weight vector.

3. OVERVIEW ON PERFORMANCE MEASURES

A major limitation of many clustering algorithms is that they do not
provide a detailed description of their output that is easily interpretable.
Although Liu et al. (2000) claim that their DT-based clustering method
provides interpretable detailed descriptions of the output clusters,
interpretability is just one of a set of performance measures that are relevant
for comparing the outputs of various clustering algorithms. In their work,
Liu et al. (2000) used accuracy and execution time as performance measures,
but only the former is relevant for comparing cluster quality. Given the fact
that we will be comparing clusters indirectly by doing a comparison of
associated DTs, we will also use other DT-oriented performance measures
that are also relevant to clustering.

Various measures have been proposed for evaluating the performance of
DTs. If a DT is being used to describe a given set of clusters then it is
important that given DT should be accurate, simple (so as not to overburden
the evaluators who have to compare multiple sets of clusters), and stable.
Further if all clusters are relevant then we would expect that each cluster
should appear in at least one leaf with strong discriminating power. We will
be using the set of measures recently used by Osei-Bryson (2004) which
includes equivalent measures. The reader should note that we do not claim
that this set of performance measures is exhaustive or that each performance
measure of this set is relevant in every situation.

3.1 Accuracy (ACC)

The most commonly used performance criterion for a DT is the
predictive accuracy rate. Let and be the accuracy rates

376

of the training, validation, and test datasets respectively. is used to
estimate the generalization of the accuracy rate of the DT.

3.2 Stability (STAB)

The stability performance criterion concerns our interest that there should
not be much variation in this predictive accuracy rate when a DT is applied
to different datasets. Thus at a minimum one might expect that there should
not be much variation in predictive accuracy of the DT on the validation
dataset when compared to that for the training dataset. Typically there is no
numeric performance measure for the stability property, but Osei-Bryson
(2004) proposed a numeric measure of stability. Let and be the
accuracy rates of leaf f based on the training and validation datasets
respectively, and be the proportion of validation cases associated with
leaf f. The stability of leaf f based on the training and validation datasets can
be defined as where with
higher values indicating higher stability. Given this measure the stability of
the DT with regards to its performance on the training and validation
datasets can be defined as where with
higher values of STAB indicating higher stability. The reader may note
STAB is just the weighted sum of the stability of the individual leaves.

3.3 Simplicity (SIMPL)

Tree simplicity has also been considered by many researchers. For some,
a measure of tree simplicity has been limited to the number of leaves in the
DT (e.g. Shafer, Agrawal and Mehta, 1996) while others have also suggested
that the sizes of the corresponding rules (i.e. number of predictor variables)
are also relevant, particularly when the rules are to be applied by human
beings rather than computers (e.g. Han and Kamber, 2001).

3.3.1 Simplicity based on Number of Leaves

It is often assumed with regards to tree simplicity, the fewer the leaves
the better. However, usually we are often not interested in a DT with only a
single leaf and for other situations even a DT with two leaves might not be
useful. In other words for different problem instances there may be different
value functions that map the number of leaves to the simplicity measure. Let
us assume that we have such a function (e.g. trapezoidal function) such that
the complexity where is the number of the leaves
in the DT, and is a concave piece-wise linear function such that

377

with higher values of indicating higher
simplicity.

3.3.2 Simplicity based on Average Chain Length

For a given rule, its length (i.e. number of predictor variables) provides
a measure of the simplicity of the rule then another simplicity measure for
the DT could be based on the average rule length of the rules in the DT. Let

be the rule length for rule The mean rule length of the DT could
be defined as which is just the weighted sum of the
length of each rule based on the validation dataset. The corresponding rule
length based simplicity measure is defined as
where is a concave piece-wise linear function such that

with higher values of indicating higher
simplicity. We will provide an example of such a function in our illustrative
example.

3.4 Discriminatory Power (DSCPR)

Ideally one would like to have leaves that are totally pure but that is
unlikely to occur. However, for a human being a given rule might not be
considered to be particularly useful if the training posterior probability of the
assigned class is less than some specified cut-off value Thus for
some situations a Discriminatory Power performance measure might also be
appropriate for evaluating the performance of the DT. For leaf f, let

if and if A measure of discriminatory power
could be defined as: where with
higher values of DSCPR indicating higher discriminatory power. The
rationale here is that predictions of those leaves whose maximum posterior
probability is less than the user defined cut-off values are questionable.

4. FORMULATING THE EVALUATION PROBLEM

As stated earlier, our approach assessing cluster quality will be based
on the multi-criteria approach for evaluating DTs that was recently presented
by Osei-Bryson (2004). For each set of clusters we will attempt to select the
DT that is the most appropriate in terms of the performance measures that were
described in the last section.

Let be the set of clustering algorithms and parameter setting
combinations (e.g. Least Squares with Ward option for combining clusters),

be the set of selected splitting methods (e.g. Entropy, Chi-Square,

378

Gini), be the set of selected values for the Minimum Number of
Cases per Leaf, be the set of selected values for the Minimum
Number of Cases for a Split Search, be the set of selected values for
the Maximum Number of Branches from a Node, be the set of
selected values for the Maximum Depth of Tree.

Specify the set of clustering algorithms and parameter setting
combinations that are to be considered.
Specify the rule for partitioning the clustering labeled dataset into
training, validation and test datasets.
Specify the set of performance measures J.
Specify the DT parameter sets:

Specify the cut-off value for rule discriminatory power.
Specify threshold values for accuracy stability and any
other performance measure.
Specify the value function for Simplicity based on the Number of Leaves,
and the value function for Simplicity based on the Chain Lengths of the
Rules.

The evaluator(s) from the DM project team specify numeric pairwise
comparison data on relevant importance of pairs of performance
measures. It is not necessary that a pairwise comparison entry be made
for each pair of performance measures but each performance measure
must be included in at least one pairwise comparison.
Generate the corresponding output consistent pairwise comparison matrix

and consistency indicator using a weight vector
generation technique (e.g. Bryson et. al., 1995; Bryson and Joseph,
2000).
If the consistency indicator value is acceptable then go to step 3,
otherwise repeat step 2.

Step 3: Generate Clusters & Decision Trees
For each
a) Generate the set of clusters
b) Using the labeled output data from 3a, for each combination of parameter

values from the DT parameter sets (i.e.
generate the corresponding and calculate the

performance measures.
Let be the set of all DTs that were generated in this step. It should be
noted that each is associated with a single but for each a

there could be multiple

a)

b)

c)
d)

e)
f)

g)

Step 1: Preparation

a)

b)

c)

Step 2: Generate Weights for the Performance Measures

Step 4: Determine Set of Relevant Decision Trees
a)

b)

Exclude from those DTs which violate any of the threshold values for
the performance criteria.
Identify and exclude dominated DTs from At this step now only
contains those non-dominated DTs that satisfy all threshold constraints.
Let be the set of non-dominated DTs that satisfy all threshold
constraints.

Step 5: Determine ‘Most Appropriate’ Set of Clusters
a)

b)

Formulate and solve problem for each

Order the DTs in in descending sequence based on their values of
Let be the top-ranked DT, then the set of clusters associated with its
corresponding is the most appropriate one.

5. ILLUSTRATIVE EXAMPLE

Our illustrative example involves clustering the Abalone dataset that was
obtained from the UCI Irvine machine library (Murphy and Aha, 1994). We
assume that the decision makers are of the belief that the appropriate set of
clusters would consist of between 3 to 6 clusters.
Step 1: Preparation

For this illustrative example there are two possible choice of clustering
algorithms, and we will label them by their distance measure: a) Least
Squares distance function with the Ward combination option (LS-Ward);
and b) Mean Absolute Deviation (MAD).
Minimum Number of Clusters = 3, Maximum Number of Clusters = 6
For DT induction, the splitting method options are: ChiSquare, Entropy,
Gini.
For each DT, the Minimum Number of Cases per Leaf parameter is to be
set to 20, and Minimum Number of Cases for a Split parameter is to be
set to 40.
The discriminatory power threshold

Specify the Simplicity value functions
For each of our simplicity measures we will be using a trapezoidal

value function that has parameters CutBot, IdealBot, IdealTop, and CutTop
where with regards to the given simplicity measure z (i.e. Number of Leaves,

379

380

Average Chain Length): the DT would be considered to be ideal if z
[IdealBot, IdealTop]; the DT would be considered to be unacceptable if z
CutBot or z CutTop; the value of other acceptable DTs would be based on
how well they compared with an ideal DT with regard to the v(z). Given
these assumptions, the value function v(z) can be defined as follows:

We assume that the following values have been specified for the relevant
value functions:

Step 2: Generate Weights for the Performance Measures
For generating our set of consistent weights, we will use the pairwise

comparison data of the illustrative example of Osei-Bryson (2004).

Step 3: Generate Clusters & Decision Trees
Clustering was done using the SAS Enterprise Miner software. The LS-

Ward approach allows the user to specify a range (i.e. Minimum Number of
Clusters = 3, Maximum Number of Clusters = 6) for the Number of Clusters
parameter, after which the software automatically selects the most
appropriate number of clusters using a heuristic. The MAD approach does

381

not allow the user to specify a range but rather a specific value for the
Number of Clusters parameter (e.g. 3, 4, 5).

For each cluster output, 3 DTs are generated, one for each splitting
method option (i.e. ChiSquare, Entropy, Gini). In some cases the DT that
was selected by Enterprise Miner had more than 8 leaves. In those cases we
selected the DT that had between 3 and 8 leaves and which provided the
highest test accuracy rates, which usually resulted in a DT with 8 leaves.
Steps 4-5: Determine Set of Relevant DTs & the Most Appropriate Set of
Clusters

First we identified the DTs that were dominated & eliminated them. Four
DTs remained (see Tables 3a and 3b).We then calculated the composite
scores of these DTs. The top two DTs were associated with the output of LS-
Ward approach, with the top DT being associated with the Chi-Square
splitting method. Thus given the decision-makers preference and value
functions, the ‘best’ set of clusters is the one that was generated using the
LS-Ward algorithm with the specified parameter values.

382

6.

In this paper we have presented a formal approach for evaluating cluster
output that involves the use of decision tree induction and multi-criteria
decision analysis. This research problem is an important one that has not
been adequately addressed in the clustering literature (e.g. Ankerst et al.,
1999; Jain et al., 1999). Jain et al. (1999) describe cluster validity as the
assessment of the set of clusters that are generated by the given clustering
algorithm. They note that there are three approaches for assessing validity: 1)
External assessment which involves comparing the generated set of clusters
with an a priori structure, typically provided by some experts; 2) Internal
assessment which attempts to determine if the generated set of clusters is
“intrinsically appropriate” for the data; and 3) Relative assessment which
involves comparing two sets of clusters based on some measures (e.g. Jain and
Dunes, 1988; Dubes, 1993) and measure their relative performance. Our
multi-criteria DT-based approach could be considered to have some
relationship to these three types of approaches:

CONCLUSION

External: Our approach does not require the decision-makers to provide
an a priori clustering structure, but does require them to provide
preference and value structures which are used to indirectly evaluate and
compare the sets of clusters.
Internal: We assess each set of clusters by assessing the associated DTs.
At least two of our performance measures (i.e. accuracy, and stability)
that would appear to provide some indication as to whether the given set
of clusters is “intrinsically appropriate” for the data.

383

Relative: Our objective is to select the most appropriate set of clusters.
Since we are never sure which algorithm/set of parameter values
combination is the most appropriate, then we experimented with multiple
combinations. However, it is almost impossible to experiment with all
possible combinations, and so the set of clusters that we select as the best
one is relative to our set of experimental combinations.

Acknowledgements

This research was supported in part by a grant from the 2004 Summer
Research Program of the School of Business of Virginia Commonwealth
University. I also wish to thank the anonymous referees for their valuable
comments that enabled me to improve the quality of this paper.

REFERENCES

Ankerst, M., Breunig, M., Kriegel, H.-P., and Sander, J. (1999) “OPTICS: Ordering Points To
Identify the Clustering Structure”, Proceedings of ACM SIGMOD’99 International
Conference on the Management of Data, pp. 49-60. Philadelphia, PA.

Banfield, J. and Raftery, A. (1992) “Identifying Ice Floes in Satellite Images”, Naval
Research Reviews 43, pp. 2-18.

Ben-Dor, A. and Yakhini, Z. (1999) “Clustering Gene Expression Patterns”, Proceedings of
the 3rd Annual International Conference on Computational Molecular Biology
(RECOMB 99), pp. 11-14, Lyon, France.

Bohanec, M. and Bratko, I. (1994) “Trading Accuracy for Simplicity in Decision Trees”,
Machine Learning 15, pp. 223-250.

Bryson, N. (1995) “A Goal Programming for Generating Priority Vectors”, Journal of the
Operational Research Society 46, pp. 641-648.

Bryson, N., Mobolurin, A., and Ngwenyama, O. (1995) “Modelling Pairwise Comparisons on
Ratio Scales”, European Journal of Operational Research 83, pp. 639-654.

Bryson, N. (K-M), and Joseph, A. (2000) “Generating Consensus Priority Interval Vectors For
Group Decision Making In The AHP”, Journal of Multi-Criteria Decision Analysis 9:4, pp.
127-137.

Bezdek, J. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York, NY.

Bock, H. (1996) “Probability Models in Partitional Cluster Analysis”, Computational
Statistics and Data Analysis 23, pp. 5-28.

Cristofor, D. and Simovici, D. (2002) “An Information-Theoretical Approach to Clustering
Categorical Databases using Genetic Algorithms”, Proceedings of the SIAM DM
Workshop on Clustering High Dimensional Data, pp. 37-46. Arlington, VA.

Dave, R. (1992) “Generalized Fuzzy C-Shells Clustering and Detection of Circular and
Elliptic Boundaries”, Pattern Recognition 25, pp. 713–722.

Dhillon, I. (2001) “Co-Clustering Documents and Words Using Bipartite Spectral Graph
Partitioning”, Proceedings of the 7th ACM SIGKDD, pp. 269-274, San Francisco, CA.

384

Dubes, R. (1993). “Cluster Analysis and Related Issues”, in Handbook of Pattern
Recognition & Computer Vision, C. Chen, L. Pau, and P. Wang, Eds. World Scientific
Publishing Co., Inc., River Edge, NJ, pp. 3–32.

Fisher, D. (1987) “Knowledge Acquisition via Incremental Conceptual Clustering”, Machine
Learning 2, pp. 139–172.

Jain, A. and Dubes, R. (1988) Algorithms for Clustering Data. Prentice-Hall Advanced
Reference Series. Prentice-Hall, Inc., Upper Saddle River, NJ.

Jain, A. and Flynn, P. (1993) Three Dimensional Object Recognition Systems. Elsevier
Science Inc., New York, NY.

Jain, A., Murty, M. and Flynn, P. (1999) “Data Clustering: A Review”, ACM Computing
Surveys 31:3, pp. 264-323.

Han, J. and Kamber, M. (2001) Data Mining: Concepts and Techniques, Morgan Kaufman,
New York, NY.

Huang, Z. (1997) “A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets
in Data Mining”, Proceedings SIGMOD Workshop on Research Issues on Data Mining
and Knowledge Discovery, Tech. Report 97-07, UBC, Dept. of CS.

Kim, H. and Koehler, G. (1995) “Theory and Practice of Decision Tree Induction”, Omega
23:6, pp. pp. 637-652.

Liu, B., Yiyuan, X., and Yu, P. (2000) “Clustering through Decision Tree Construction”,
Proceedings of the Ninth International Conference on Information and Knowledge
Management (CIKM’00), pp. 20-29.

Murphy, P., and Aha, D. (1994) UCI Repository of Machine Learning Databases. University
of California, Department of Information and Computer Science:

Murtagh, F. (1983) “A Survey of Recent Advances in Hierarchical Clustering Algorithms
which Use Cluster Centers”, Computer Journal 26, pp. 354–359.

Osei-Bryson, K.-M. (2004) “Evaluation of Decision Trees: A Multi-Criteria Approach”,
Computers & Operations Research 31:11, pp. 1933-1945.

Saaty, T. (1980) The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation, McGraw-Hill, New York

Saaty, T. (1989) “Group Decision Making and the AHP”, in B. Golden, E. Wasil, and P.
Harker (Editors), The Analytic Hierarchy Process: Application and Studies, pp. 59-67.

Ward, J. (1963) “Hierarchical Grouping to Optimize An Objective Function”, J. Am. Stat.
Assoc. 58, pp. 236–244.

DISPERSION OF GROUP JUDGMENTS
The Geometric Expected Value Operator

THOMAS L. SAATY and LUIS G. VARGAS
Joseph M. Katz Graduate School of Business, University of Pittsburgh

Abstract: To achieve a decision with which the group is satisfied, the group members
must accept the judgments, and ultimately the priorities. This requires that (a)
the judgments be homogeneous, and (b) the priorities of the individual group
members be compatible with the group priorities. There are three levels in
which the homogeneity of group preference needs to be considered: (1) for a
single paired comparison (monogeneity), (2) for an entire matrix of paired
comparisons (multigeneity), and (3) for a hierarchy or network (omnigeneity).
In this paper we study monogeneity and the impact it has on group priorities.

Keywords: reciprocal uniform distribution, geometric mean, geometric dispersion, group
cohesiveness, group liaison, principal right eigenvector, beta distribution.

1. INTRODUCTION

In all facets of life groups of people get together to make decisions. The
group members may or may not be in agreement about some issues and that
is reflected in how homogeneous the group is in its thinking. In the AHP
groups make decisions by building a hierarchy together and providing
judgments expressed on a 1 to 9 discrete scale having the reciprocal
property. Condon et al. (2003) mentioned that there are four different ways
in which groups estimate weights in the AHP: “...consensus, vote or
compromise, geometric mean of the individual judgments, and weighted
arithmetic mean.” The first three deal with judgments of individuals while
the last deals with the priorities derived from the judgments.

To achieve a decision with which the group is satisfied, the judgments,
and ultimately the priorities, must be accepted by the group members. This
requires that (a) the judgments be homogeneous, and (b) the priorities of the
individual group members be compatible with the group priorities.

386

There are three levels in which the homogeneity of group preference
needs to be considered: (1) for a single paired comparison (monogeneity),
(2) for an entire matrix of paired comparisons (multigeneity), and (3) for a
hierarchy or network (omnigeneity). Monogeneity relates to the dispersion
of the judgments around their geometric mean. The geometric mean of
group judgments is the mathematical equivalent of consensus if all the
members are considered equal. Otherwise one would use the weighted
geometric mean. Aczel and Saaty (1983) showed that the only
mathematically valid way to synthesize reciprocal judgments preserving the
reciprocal condition is the geometric mean. If the group judgments for a
single paired comparison are too dispersed, i.e., they are not close to their
geometric mean, the resulting geometric mean may not be used as the
representative judgment for the group.

Multigeneity relates to the compatibility index of the priority vectors.
The closeness of two priority vectors and

can be tested through their compatibility index (Saaty,

1994) given by where is the Hadamard or elementwise

product, and Note that for a reciprocal matrix

with principal eigenvalue and corresponding right

eigenvector Thus, one can test

the compatibility of each individual vector with that derived from the group
judgments. A homogeneous group should have compatible individuals. It is
clear that homogeneity at the paired comparisons level implies compatibility
at the group level, but the converse is not always true. At the hierarchy or
network level, it appears that it is more meaningful to speak of compatibility
than of homogeneity.

The main thrust of this paper is to study monogeneity.
Dispersion in judgments leads to violations of Pareto Optimality at both

the pairwise comparison level and/or the entire matrix from which priorities
are derived. Ramanathan and Ganesh (1994) explored two methods of
combining judgments in hierarchies but they violated the Pareto Optimality
Principle for pairwise comparisons (Saaty and Vargas, 2003), and hence,
they incorrectly concluded that the geometric mean violates Pareto
Optimality. Pareto Optimality at the pairwise level is not sufficient to ensure
Pareto Optimality at the priority level. Fundamentally, Pareto Optimality
means that if all individuals prefer A to B then so should the group. The
group may be homogeneous in some paired comparisons and heterogeneous
in others thus violating Pareto Optimality. The degree of violation of Pareto
Optimality can be measured by computing compatibility along the rows,
which yields a vector of compatibility values. What does one do when a

387

group is not homogeneous in all its comparisons? Lack of homogeneity
(heterogeneity) on some issues may lead to breaking up the group into
smaller homogeneous groups. How should one separate the group into
homogeneous subgroups? Since homogeneity relates to dispersion around
the geometric mean, and dispersion itself involves uncertainties, how much
of the dispersion is innate and how much is noise that when filtered one can
speak of true homogeneity? In other words, how does one separate random
considerations from committed beliefs?

Dispersion at the single paired comparison level affects the priorities
obtained by each group member individually and could lead to violating
Pareto Optimality. Should one combine or synthesize the priorities of the
individuals to obtain the group priority or should one combine their
judgments?

Here we develop a way to test monogeneity, i.e., how homogeneous the
judgments of the members of a group are for each judgment they give in
response to paired comparisons. This is done by deriving a measure of the
dispersion of the judgments based on the geometric mean. Computing the
dispersion around the geometric mean requires a multiplicative approach
rather than the usual additive expected value used to calculate moments
around the arithmetic mean. This leads to a new multiplicative or geometric
expected value used to define the concept of geometric dispersion. The
geometric dispersion of a finite set of values is given by the geometric mean
of the ratios of the values to their geometric mean, if the ratio is greater than
1, or the reciprocal, if the ratio is less than or equal to 1. This measure of
variability or dispersion of the judgments around the geometric mean allows
us to (a) determine if the geometric mean of the judgments of a group can be
used as the synthesized group judgment, (b) if the geometric mean cannot be
used, divide the group into subgroups according to their geometric
dispersion, and (c) measure the variability of the priorities corresponding to
the matrix of judgments synthesized for the group.

In general, unless a group decides through consensus which judgments
to assign in response to a paired comparison, the individual members may
give different judgments. We need to find if the dispersion of this set of
judgments is a normal occurrence in the group behavior. To do this, we
compare the dispersion of the group with the dispersion of a group providing
random responses to the paired comparison. Thus, we assume that an
individual’s pairwise comparison judgments about homogeneous elements is
considered random, and expressed on a discrete 1/9, ..., 1/2, 1, 2,..., 9 scale
of seventeen equally likely values. A sample consists of a set of values
selected at random from the set of seventeen values, one for each member of
the group. It is the dispersion of this sample of numbers around its
geometric mean that concerns us. This dispersion can be considered a
random variable with a distribution. Because treating the judgments as
discrete variables becomes an intractable computational problem as the

388

group size increases, we assume that judgments belong to a continuous
random distribution. For example, if there are five people each choosing one
of 17 numbers in the scale 1/9, ...,1, ..., 9, there are
possible combinations of which 20,417 are different. Thus, the dispersion of
each sample from its geometric mean has a large number of values for which
one needs to determine the frequency and thus the probability distribution.
To deal with this complexity, we use the continuous generalization instead.
This allows us to fit probability distributions to the geometric dispersion for
groups of arbitrary size. Once we have the continuous distribution of the
geometric dispersion, the parameters that characterize this distribution are a
function of the number of individuals n in the group.

To use the geometric mean to synthesize a set of judgments given by
several individuals in response to a single pairwise comparison, as the
representative judgment for the entire group, the dispersion of the set of
judgments from the geometric mean must be within some prescribed bounds.
To determine these bounds, we use the probability distribution of the sample
geometric dispersion mentioned above. We can then find how likely the
observed value of the sample geometric dispersion is. This is done by
computing the cumulative probability below the observed value of the
sample dispersion in the theoretical distribution of the dispersion. If it is
small then the observed value is less likely to be random, and we can then
infer that the geometric dispersion of the group is “small” and the judgments
can be considered homogeneous or at that specified level. On
the other hand, if the dispersion is unacceptable, then we could divide the
group of individuals into subgroups representing similarity in judgment.

The remainder of the paper is structured as follows. In section 2 we give
a summary of the geometric expected value concept and its generalization to
the continuous case that leads to the concept of product integral. In section 3
we define the geometric dispersion of a positive random variable and apply
it to the judgments of groups. In section 4 we approximate the distribution
of the group geometric dispersion. In section 5 we sketch how groups could
be divided into subgroups if the geometric dispersion is large, and in section
6 we show the impact of the dispersion of a group’s judgments on the
priorities associated with their judgments.

2. GENERALIZATION OF THE GEOMETRIC
MEAN TO THE CONTINUOUS CASE

Let X be a random variable. Given a sample from this random variable

the sample geometric mean is given by Let

us assume that not all the values are equally likely, and their absolute

frequencies are equal to with Then, the sample

geometric mean is given by: An estimate of

the probabilities is given by Thus the geometric

expected value of a discrete random variable X is given by:

In the continuous case, because P[X = x] = 0 for all x, we need to use
intervals rather than points, and hence, we obtain:

Equation (2) is known as the product integral (Gill and Johansen, 1990)
If X is defined in the interval we have

In

In general, we have

where is the domain of the variable X and

3. THE GEOMETRIC DISPERSION OF A
POSITIVE RANDOM VARIABLE

Using the geometric expected value, we define a measure of dispersion
similar to the standard deviation. Let be the geometric dispersion of a

positive random variable X given by where

389

390

For then

and It is

possible now to write where the variable has a geometric

mean equal to 1 and a geometric dispersion equal to

3.1 Geometric Dispersion of Group Judgments

Let k = 1,2,..., n be the independent identically distributed random

variables associated with the judgments. Let { k = 1, 2, ...,n} be

continuous random variables distributed according to a reciprocal uniform
i.e., the variable is a uniform random variable defined

in the interval [– ln 9, ln 9]. The probability density function (pdf) of is

given by and hence, the pdf of is given

by

The sample geometric dispersion is given by:

Let be the order statistics corresponding to the sample

k = 1,2,...,n}, i.e., if Let be a value for which

for We have

In

and hence, we obtain

For a group consisting of n individuals, the distribution of
is given by

391

where represents the number of occurrences of the event

and it is also equal to the index of the largest order statistic

less than or equal to the sample geometric mean (Galambos, 1978). Let

Since

and we

have

Thus, the density function is given by:

that is a convex combination of density functions of variables of the form

i.e., the ratio of products of reciprocal

uniform variates. These density functions are of the form

There are closed form expressions for the density function of the
geometric dispersion for a group consisting of three or less individuals, but
for groups larger than three, it is cumbersome and not much precision is
gained from it. Instead, we approximate them using simulation.

4. APPROXIMATIONS OF THE GEOMETRIC

DISPERSION OF GROUP JUDGMENTS

We computed the geometric dispersion of randomly generated samples
of size 20,000 under the assumption that the judgments are distributed
according to a continuous reciprocal uniform distribution We

did this for groups consisting of 4, 5,..., 15, 20, 25, 30, 35, 40, 45, and 50

392

individuals. We found that as the group size increases, the geometric
dispersion tends to become gamma distributed with density function given

by The parameters and

of these gamma distributions with location parameter equal to 1 are
given in Table 1.

To extend these models to groups of any size, we fit regression models to the
parameters of the gamma distributions. Regression models of the shape
and the scale parameters versus n appear to be surprisingly robust:

(R-squared = 99.9741)
(R-squared = 99.981)

In addition, the average and variance of the geometric dispersion can also be
estimated from the parameters of these models:

mean = exp(l.03505 – 1.01298/n) (R-squared = 99.8463)
(R-squared = 99.9706)

Note that as n tends to infinity, the average geometric dispersion tends to
2.81524 (99% C.I. (2.79228,2.8384)) and the variance tends to zero (99%
C.I. (1.44E-9, 2.31E-9)).

We now have the basis for a statistical test to decide if the dispersion of
a group can be considered larger than usual, i.e., that the probability of
obtaining the value of the sample geometric dispersion of the group is
greater than a pre-specified significance level (e.g., 5 percent) in the

393

distribution of the group geometric dispersion. For example, for a group of
size 6, whose judgments on a given issue are equal to {2, 3, 7, 9, 1, 2}, the
geometric dispersion of the group is equal to 1.9052169. The average
geometric dispersion is estimated to be equal to exp(1.03505 – 1.01298/6) =
2.378. Taking the usual significance level of 5 percent, we observe that

Thus, the p-value

corresponding to the sample geometric dispersion indicates that it seems rare
to observe values of the geometric dispersion smaller than the sample
geometric dispersion, and hence, the geometric dispersion of the group is not
unusually large, which in turn implies that the geometric mean can be used
as the representative preference judgment for the entire group.

5. GROUP MEMBER CLASSIFICATION BY THE
GEOMETRIC DISPERSION

Let us assume that is a group of judgments and let

be their order statistics. If

(where is

usually taken to be equal to 0.05) then the geometric mean can be used as a
representative of the group judgment. On the other hand, if

then the group

needs to discuss the paired comparisons further in an attempt to reach
consensus. To determine which members of a group disagree the most and
hence make the geometric dispersion large, we find the p-values
corresponding to the geometric dispersions of the groups of judgments given

by:

Let We give without proof

because of space limitations the following results.
Lemma 1: is a non-decreasing function of k, i.e.,

Theorem 3: Given a set of judgments with

corresponding ordered geometric dispersions if for

any k, then

394

Definition: A group of judgments k = 1, 2,...,n} is said to be

if

Definition: A member of a group of judgments is said to be a
liaison of the group if the group is not after the elimination of the
corresponding judgment from the set of judgments.
The Liaison Theorem: Given a group of n judgments, a liaison
does not exist if and only if all subgroups of cardinality (n-1) are

The existence of a liaison means that we may be able to divide a group
into two subgroups whose preferences differ, and for which the geometric
mean cannot be used as the representative group judgment. This is the
subject of further study.

6. GEOMETRIC DISPERSION AND PRIORITY
VARIATION

To study the relationship that exists between the geometric dispersion of
a group and the dispersion of the corresponding eigenvectors, we find the
range of variability of each component of the eigenvector for given sets of
group judgments. This is done by first finding the distribution of the
eigenvector components for random reciprocal matrices whose entries are
distributed according to reciprocal uniform distributions

Theorem 4: For a random reciprocal matrix with entries

distributed according to a reciprocal uniform distribution,

the components of the random variable corresponding to

the principal right eigenvector are distributed according to a beta,

where and and the

principal right eigenvector of the reciprocal matrix whose entries are given
by the geometric mean of its entries, is given by:

Let where is the geometric mean and is

the geometric dispersion of By definition,

and Thus, we have Let us assume that the reciprocal

matrix of geometric means is consistent, i.e., Then the

395

principal right (pr-) eigenvector of the matrix is given by the

Hadamard product of the pr-eigenvector of the matrix and the pr-

eigenvector of the matrix The entries of this matrix are random

reciprocal uniform variables whose geometric

dispersion is given by Since the geometric dispersion of the

variables and that of the variables is the same, because

we have Thus, bounding the dispersion of

the entries of the matrix bounds the dispersion of the entries of the

matrix For example, consider a group of five people who

provide the judgments given in the following matrix:

The geometric dispersion of each group and their corresponding p-values
(see Table 2) show that the judgments (1,3), (1,4) and (3,4) have large
geometric dispersion. This leads to large dispersion on the values of the
eigenvector components (See Table 3a) and a violation of Pareto Optimality.

Reducing the dispersion of the judgments as in the following matrix

396

leads to less dispersed eigenvectors that satisfy Pareto Optimality (See Table
3b).

7. CONCLUSIONS

In this paper we put forth a framework to study group decision-making
in the context of the AHP. A principal component of this framework is the
study of the homogeneity of judgments provided by the group. We
developed a new measure of the dispersion of a set of judgments from a
group for a single paired comparison, and illustrated the impact that this
dispersion has on the group priorities.

References
Aczel, J. and T. L. Saaty, 1983, Procedures for synthesizing ratio judgments. Journal of

Mathematical Psychology 27: 93-102.
Condon, E., B. Golden and E. Wasil, 2003, Visualizing group decisions in the analytic

hierarchy process. Computers & Operations Research 30: 1435-1445.
Galambos, J., 1978, The asymptotic theory of extreme order statistics. New York, J. Wiley.
Gill, R. D. and S. Johansen, 1990, A Survey of product-integration with a view toward

application in survival analysis. The Annals of Statistics 18(4): 1501-1555.
Ramanathan, R. and L. S. Ganesh, 1994, Group preference aggregation methods employed in

the AHP: An evaluation and an Intrinsic process for deriving member’s weightages.
European Journal of Operational Research 79: 249-269.

Saaty, T. L., 1994, Fundamentals of decision making. Pittsburgh, PA, RWS Publications.
Saaty, T. L. and L. G. Vargas, 2003, The Possibility of group choice: Pairwise comparisons

and merging functions. Working Paper, The Joseph M. Katz Graduate School of
Business, University of Pittsburgh, Pittsburgh, PA.

