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- Preface

The study of dynamical systems actually dates back many years but the
last three decades have seen intensive studies which have been prompted by
the discovery of chaos. Initially, chaos was seen purely as a mathematical
curiosity and elsewhere, although irregular or unpredictable behaviour may
have been noted, this was often attributed to random influences.
Correspondingly in engineering, and in particular in electrical systems,
the appearance of chaos was usually regarded as a nuisance and thus
designed out where possible. Changes came about with publication of seminal
works by Lorenz, Feigenbaum, Smale, and May, coupled with numerical
simulations by a host of researchers, notably early work by Ueda in
electrical engineering, so that modern studies have now confirmed that chaotic
phenomena are completely deterministic, occurring in a variety of nonlinear
problems in physical and natural systems. Mathematically, the study of
chaotic systems has proved extremely useful since the latter form archetypal
dynamical systems exhibiting various types of interesting behaviour, some
of which remains unexplained even today. The intriguing properties and
tantalising possibilities of chaos have thus created considerable interest in the
mathematics world, thus leading to a mass of new definitions and results in
the general field of nonlinear dynamics which encompasses chaos and systems
aoam

Outside of the field of mathematics the natural question to ask is how can
we utilise the properties of chaos to our practical advantage? Answering this
question forms one of the most active fields of research today, being carried
out by scientists in a wide variety of subject areas. On the one hand, chaotic
motion is unpredictable and ‘random-like’ opening up possibilities e.g. for
encouraging the creation of an effective tool in ergodic, mixing properties, in
improving chemical reactions. Meanwhile, embedded within a chaotic system
lies a myriad of periodic solutions whose behaviour may prove to be useful
in certain circumstances. Implementation of specifically adapted techniques
to_control the system from the irregular chaotic motion on to one or more of
these more desirable solutions is proving beneficial in a number of physical
experiments, thus causing growing interest among engineers and applied
scientists. The fact that a large number of potentially useful solutions are
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available for control means that the same system set-up can be used for a
selection of outcomes, so providing greater flexibility.

As a consequence of this dual front of research, advances have been made in
various disciplines. The cross fertilisation of ideas, while wholly commendable,
means that names and methods are used and developed which may be altered
when ‘rediscovered’ in a different context. Correspondingly, many of the terms
now in place stem from different sources so that one drawback encountered
by researchers and students in this rapidly expanding field is the proliferation
of new terminology.

There is soéﬂm..mmmmmlsm array of elementary, and not so elementary, texts
available which cover various aspects of dynamics, with each giving some
background, while specifically covering in more detail the research areas of
interest to the writers. Researchers_and students who are new to the field
therefore have difficulty in finding one single text which explains all of the
concepts agm% require.

Qur aim here is to help students and researchers coming from a broad
scientific base by listing many (but obviously not all) of the equations, terms,
theorems, etc., which arise in the study of nonlinear dynamical systems. In so
doing, new mathematical ideas are described and explained with mxlmsc_mm,
including illustrative figures where they aid the understanding. In many cases,
remarks are added to underline important aspects and simplify the meaning
where possible. On the other hand; the need for mathematical rigour is
emphasised with precise definitions. For some readers, these brief descriptions
will be sufficient to allow them to continue their own investigations but, should
more detail or proofs be required, further references are given.

In compiling this dictionary, where alternative terms are possible an entry
is placed under the name in most common usage, with cross-references
being given under other names. In addition, if it is considered that further
understanding will accrue, then full additiona] cross-referenced entries are
provided. .

This dictionary is generally appropriate for postgraduate students and
researchers in engineering, mathematics, physics and applied sciences who
have some introductory background in the theory of vibrations and dynamical
systems. For undergraduates, some mathematical knowledge would be
required for particular entries; specifically, elementary courses in ordinary
differential equations and linear algebra. The overall approach is to apply
mathematical rigour in an engineering context, naturally reflecting the authors
styles — an approach which we hope readers will find useful.

In developing this dictionary the authors have greatly benefited from
various discussions with a number of colleagues. Tomasz Kapitaniak would
like to thank John Brindley, Leon O. Chua, Celso Grebogi, Mohamed S.
El Naschie, Tom Mullin, Maciej Ogorzalek, Willi-Hans Steeb and Jerzy
Wojewoda for helpful suggestions. Meanwhile, Steve Bishop would like to
note his appreciation for comments made by colleagues at UCL, particularly
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Jaroslav Stark, Rua Murray, Gert van der Heijden, Riccardo Carretero
Gonzales and Giovanni Santoboni. This said, the final responsibility for
interpretation lies entirely with ourselves.

Tomasz Kapitaniak and Steven Bishop
July 1998.
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transpose of the matrix 4
determinant of the matrix A

the set of complex numbers

the n-dimensional complex linear space
class of r differentiable functions
capacity dimension

correlation dimension

Hausdorff dimension

information dimension

Lyapunov dimension

topological dimension

nth iteration of the map f

inverse of the map f

composition of mappings (f o 9)(z) = fg(x))
average value of f(t)

V-1

identity matrix

imaginary part of the complex number z
Lyapunov exponent or eigenvalue

LP space (family of all integrable functions)
the space of functions f with | f| integrable in the sense
of Lebesque

gﬂm’bﬂmggm of the set S
probability measure of the set A

the set of rational numbers

the set of real numbers

non-negative real numbers

the n-dimensional real linear space

real part of the complex number z

circle of length T

sign function (1ifz >0 and -1 if z < 0)
time

period of function
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the tangent space of the manifold M at the point
unit step function

U(z) = 1for z € [a,b] and U(z) = 0 for z ¢ [a, b

stable manifold

unstable manifold

the set of integers

norm

exterior product (let a,b € R? then a A b = a,by — azby)

A

a-limit set (see alpha-limit set)
The point p belongs to an o-limit set of an orbit v: a(y) if p is an a-limit
point (see limit point).

a-pseudo orbit
Consider a one dimensional map

ZTnv1 = f(zp,0)

where z € R, and ¢ € R is a control parameter. An orbit is given by the
sequence of iterates z — f(z,c) = f®(z,c) — ..., etc. A change of a single
digit in z can yield an entirely different orbit which diverges exponentially
from that generated by the original z.

Let [0,1] be the phase space and z be 3 digit string, i.e.

X
LA €1€2...€
= - = €1€3...
=1 tu
where ¢; = 0,1,2,..., 4~ 1 and 4 > 2 is an integer. Then a positive Lyapunov

exponent A (see Lyapunov exponents) can be understood as
AN ~In &
n

where n is the number of iterations that may be performed before an error in
the N-th digit of z creates an error in the leading digit of the iterate f(™) (z, c).

By a computable a-pseudo orbit we mean any computable sequence z,,, such
that

[f(zn,c) - Zny1| <
with n > 0 and the difference

f(@n,¢) = zpyy = é(zp,c)
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being due to a deterministic truncation or round-off error.

The map f(zn,c) is said to have the shadowing property if for every 8 >0
there is an a(B) such that every o-pseudo orbit z, can be B-shadowed by
some exact orbit Z,, as defined by

_uma l.ﬂa_ <B

for all n > 0. If this holds, then Z, is said to be a f-shadow of the pseudo
orbit z,,.

Reference: McCauley and Palmore (1986).

Abel equation
The first order ordinary differential equation
dz
pri ao(t) + a1 (t)z? + as(t)z®
where z € R and ao,1,2(t) are continuous bounded functions of time ¢, is called
the Abel equation. .

abrupt bifurcation
A bifurcation at the transition from regular to chaotic scattering (see also
bifurcation, chaotic scattering).

abstract dynamics
The concept of viewing dynamics in the abstract form of pure mathematics.

Ezample: A dynamical system can be defined in the following way. Let M
be a smooth manifold, 1 a measure on M defined by a continuous positive
density, and f* : M — M a one-parameter group of measure-preserving
diffeomorphisms. The collection (M, u, f) is then called a classical dynamical
system.

Reference: Arnold and Avez (1968).

action-angle variables
Consider a conservative Hamiltonian system with N degrees of freedom so that
the phase space is R*Y with canonical co-ordinates Di, qi, wherei = 1,2,...,,N.
Let H be the Hamiltonian function and assume that the system evolution
has N first integrals (see first integral), I} = H, Fj, ..., Fiy which are in
involution, i.e. for all i, §

OF; 0F; OF; OF;

= =0.
%Qs. %@.ﬂ. mﬁ.. %Qu.
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The constants of motion are given by the hypersurfaces, /i = f;,..., Fy = In-

The real constants fi,..., fv are given by the initial values p(0), ¢(0). The
construction of action-angle variables in R2N = {(p, q)} is as follows:

Let 7,...,7~ be a basis for the one-dimensional cycles on the torus M ¢ (the
increase of the coordinate ¢; on the cycle «y; is equal to 27 if § = 7 and 0 if

i # j)- The coordinate ¢ (= (¢1,...¢x)) on M; is called an angle variable. If
we now define

1

1
0 =5 $ 0= 5 [ (dat .+ prdan)

then the N quantities I;(f) so defined are called the action variables.

Remarks:

(i) The transformation (p,q) — (I, @) is canonical, i.e.
N N
D_dpj Adg; = > dI; A de;
J=1 J=1

where A denotes the exterior product (dgi A dg; = —dg; A dg;).

(ii) For the given values f; of the N first integrals Fj, if the N quan-
tities I; are independent, then in the neighbourhood of the torus
M; we can take the variables (7, ¢} as coordinates.

(iil) The action-angle variables are not uniquely defined.

Ezxample: Let N = 1. We can take

I' = I + constant

for the action variable and
¢' = ¢+ c(I)

for the angle variable.
References: Arnold (1988); Steeb (1991).

adaptive control

A term used in control theory. A control procedure which adapts to slow

.%msmmm in the system and which is not sensitive to the external perturbations
is called adaptive.

Reference: van Campen (1997).
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adiabatic invariant

Quantities which are asymptotically preserved under a sufficiently slow
variation of the parameters of a Hamiltonian system are called adiabatic
invariants.

Ezample: Consider the Hamiltonian system

du
— =V(u, A
= =V,
where A € R is a parameter. A function I of the pair consisting of the point
u in the phase space and the parameter ), is called an adiabatic invariant
if, for any smooth function A(7) of the slow time 7 = et, the variation of
I (u(t), Met)) along a solution of the equation
du
—_— =V
= V() |
remains small within the time interval 0 < 7 < 1/e¢ provided that e is
sufficiently small.

References: Arnold (1988), Steeb (1991).

affine map
A map f: R? - R? which is of the form f(z1,z2) = (az; + bza +e,c21 +

dzs + J), where a~J are real numbers, is called a two-dimensional affine map.

An affine map can be generalised to any dimension

Reference: Falconer (1985).

algorithmic complexity
A sequence, z(n) = Zq, ..., £n—1, is defined to be random:

(i) if it passes statistical tests of randomness;
or

(ii) if there exists no finite size description of a ‘law’ which is able to
reproduce the sequence with arbitrary length.

The latter requirement can be represented in terms of algorithmic complexity
theory. The algorithmic complexity H(z(n)) of a sequence z(n) is the minimal
program length necessary to output x(n) on a computer, i.e. if p symbolises
a program running on a computer model C, then

H(z(n)) = O%ﬁﬂﬂaﬂ?v length(p).

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOQS 5

A sequence is defined to be random if, as z(n) increases in length n, H(z(n))
increases in such a way that

lim [n — H(z(n))] < oo.

n—co

Remark: The above definition implies that a random sequence cannot be
substantially ‘compressed’ by computational effort.

References: Chaitin (1987); Steeb (1991).

N—BOma-ﬂm&m.o&n function
A vector or matrix function f(t), defined and continuous for ~oco < t < o0,
is said to be almost periodic in ¢ if for any € > 0 there exists an | = I(¢) > 0

such that in any interval of length { there is the so-called translation number
T independent of ¢, such that

FE+7) - f)l <e
for all t € R.

A function f(z,t), defined and continuous in A x R, where A is a compact
subset of R™, is called almost periodic in ¢ uniformly with respect to z in A,
if the quantities [ and 7 in the definition of an almost-periodic function can
be chosen independently of ¢ € A.

Reference: Kapitaniak (1991).
Andronov—Hopf bifurcation (see Hopf bifurcation)

Anosov diffeomorphism
Let f : M — M be a diffeomorphism of a compact manifold M. Assume that:

(i) The tangent space of M is decomposed into the direct sum of two
subspaces at every point of M, i.e. .

TM=X,0Y,

where £ € M and & denotes the direct sum.

(ii) The fields of the planes X = {X.;} and Y = {Y¥;} are continuous
and invariant with respect to A.

(iii) For some Riemannian metric, the map A contracts the planes of
the first field and expands the planes of the second field. This
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means that there exists a number A < 1 such that for any point

zof M . L
|4+l < AllCI and || Aunll < A7 Hn|

for all ( € X; and n € Y,. Then f is called an Anosov
diffeomnorphism.

Reference: Arnold (1988).

Anosov system .
Let M be a compact smooth manifold, V a vector field on M without fixed

points and {g'} the corresponding phase flow. Assume that:

(1) At each point of M, the tangent space of M can be represented
as the direct sum of three subspaces

TM=X,0Y,® 2,
forr e M.

(ii) The vector fields X,Y and Z of the planes are continuous and
invariant with respect to the phase flow {g*}.

(iil) The vector field Z is generated by the field of phase velocity.

(iv) For some positive constants, ¢ and A, and for some Riemannian
metric on M, we have

llg*lx Il < ce™

for ¢t > 0, and . "
llg*lv |l < ce*.

Then the phase flow is said to be an Anosov flow and the ordinary differential
equation g
z
@ = V@

an Anosov system.

Reference: Arnold (1983).

Anosov theorem
This theorem says that any Anosov system is structurally stable.

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 7

Ezample: The torus automorphism 4 : T2 —s T2 defined by the matrix

(1)

is structurally stable in the C'-topology, i.e. every diffeomorphism B which
is sufficiently close to 4 and the derivative of B sufficiently close to the
derivative of A, is conjugate with A by means of some homeomorphism H
so B=H-14H.

Reference: Arnold (1983).

aperiodic function
A function f which is not periodic is said to be aperiodic.

Appolonian gasket

The Appolonian gasket is a subset of the plane R? obtained as a limit of
the sets Cp: n = 0,1,..., in the following construction. As the first step,
three mutually tangent circles with radius 1 are plotted. The set Cp is the
area enclosed by three arcs (see Figure 1). Each C,, consists of some regions
bounded by three mutually tangent circular arcs. To obtain Cy4;, remove
from C, a circle which is tangent to all three of the arcs. The boundary of

the circle remains so the Appolonian gasket is the limit intersection of the
sets Ch,.

Reference: Steeb (1991).

approximation methods

There are several traditional methods for finding approximate solutions to
dynamical systems which can be split into either approximation methods
(weighted residual, Galerkin, harmonic balance and finite element methods)
or perturbation methods (expansion, Linstedt-Poincaré, multiple scales,
averaging methods).

Figure 1 First steps in the construction of the Appolonian gasket
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area—preserving map (see volume preserving map)
Arnold cat map (see cat map)

Arnold diffusion

Let N be the number of degrees of freedom of a Hamiltonian system. If
N > 2 then the N-tori are not separatrices in the (2N — 1)-dimensional
surfaces H(p,q) = E, so a chaotic orbit is not constrained by invariant tori.
In numerical studies, it is found that the evolution of the action variable
apparently has no directional character, i.e. it represents a ‘random-like’
wandering in the resonance region between the invariant tori. This process
is called Arnold diffusion.

Reference: Arnold (1988).

Arnold tongues
Consider the circle map
K
Opp1 =0, +Q — 5 sin 2#6,, mod 1,
where 2 and K are constant. The rotation number (see also winding
number) is defined as follows:

N
. 1
p= >w~|Hw~00 m M _Qﬁ - %:I_._ mod 1,
n=

when the limits exists. The (K,Q) parameter space of this system is
characterised by the fact that for K < 1 the limit always exists, but can be
either a rational or irrational number.

The regions in (K, {2) parameter space where unique rational values of p exist
are called Arnold tongues.

Remark: Arnold tongues are characteristics of periodically forced systems.

Reference: Arnold (1983).
artificial neural networks (see neural networks)

asymmetric tent map
The map f : [0,1] — [0, 1], defined as

az+(a+b—ab)/b : 0<z<ec

\AHVHA bl-z) : c<z<1

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 9

wherec = (6—1)/b,a>0,b>1and a+b > ab, is called the as mmetric
tent map or skew-tent map. BYMEe

asymptotic stability (see stability, attractor)

attractor

Despite its obvious importance, a strict mathematical definition of an
attractor is not universally agreed upon. It is possible, however, to write
definitions which convey ituch of the concept.

The invariant subset A of a phase space R™ of the differential equation

.

d
5 = fw

where u € R™, which is reached asymptotically as t — oo (t — —o0), is called
an attractor (repellor).

An attractor xw is stable if it is Lyapunov-stable and its basin of attraction
B(A) has positive Lebesgue measure (see basin of attraction).

An attractor A is asymptotically stable if it is Lyapunov-stable and B(A)
contains a neighbourhood of A,

Remark: The difference between Lyapunov-stable and asymptotically stable
attractors is illustrated in Figures 2 and 3.

Ezample: For a three-dimensional dissipative system whose steady state
solutions are governed by three eigenvalues: A: (A1, Ay, As) there are three
possible stable types of solutions, namely X: (—, —, —) point-like attractor, A:
(0, —, —) limit cycle, and A:(0,0, —) focus two-frequency quasi-periodicity. In

Figure 2 Lyapunov-stable attractor
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Figure 3 Asymptotically stable attractor

addition, there are non-trivial attractors with \: (+,0,—) whenever

M:U A <0.
i=1

Attractors with positive Lyapunov exponents (see Lyapunov exponents)
are called chaotic attractors, and the solution of the differential equation
1s sald to be chaotic I at least one one-dimensional Lyapunov exponent is
positive.

Remark: In a chaotic attractor, the positive Lyapunov exponent indicates
exponential spreading within the attractor in the direction transverse to the
flow, while the negative exponent indicates exponential contraction on to the
attractor. Under the action of such a flow, phase-space volumes evolve into

sheets, as shown in Figure 4.

Exponential divergence of nearby trajectories within a compact subspace
requires a folding action. A simple example of this process is shown in Figure 5.
Trajectories first diverge exponentially within a sheet, then the sheet folds and
then connects back to itself (A4 is connected with Al, and B with B!), thus

=
“

Figure 4 Exponential spreading and contraction of trajectories on an attractor
with (+,0, —) Lyapunov exponents

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 11

producing the attractor shown in Figure 6.

A B
Figure 5 Folding of sheets

Generally, this type of attractor is not simply a sheet with a single fold, but
a sheet folded and refolded infinitely by a flow.

Figure 6 Attractor obtained after connection of A —+ A and B — B!

References: Guckenheimer and Holmes (1983); Kapitaniak (1991); Milnor
(1985); Ruelle (1981); Thompson and Stewart (1986).

Aubry—Mather theorem

Let f: 8! - 81 be a homeomorphism of the circle S! and suppose that
there is a continuous function f R — R such that n(f(z)) = f (m(z)), where
7(z) =z mod 1 =6 (6 is the angular displacement at the centre of the circle
related to a reference radius 7). Then f is called a lift of f:8* > S onto R.

Let f be a twist map. A closed set, then the f-invariant set £ C A is a Mather
set if the following apply:

(i) E is the graph of a continuous function & defined on a closed
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subset K of a circle 8! taking values in [0,1);

(ii) the lift f preserves the order on the covering of E.

Theorem:

Let f be an area-preserving twist homeomorphism of the annulus
A = 8! x [a,b]. Then, for every p € [a,b], f has a Mather set with rotation
number p (see winding number).

Reference: Arrowsmith and Place (1990).
autocatalytic system (see self-exciting system)

autocorrelation function

1. Discrete function:
Let X be an open subset of R. Then the mapping f : X — X can be written
as the difference equation

Tnt1 = f(zn)

where ¢ € X is the initial value and n =0, 1,2, ..., etc. Let
1 T
(zn) = lim = MU Zn

Tooo T
n=0

be the time average of x,, where z,, and (z,) depend upon z,. The
autocorrelation function Cy; is defined as

H,
Qan?.vuln Hw.wnm_wo Wu M?: IAS:VXH:T.I AH:VV
n=0

where 7 =0,1,2,..., and C;; depends on the initial value zg.
2. Continuous function:

Let f(t) be a bounded function for ¢ € R*; the autocorrelation function is
then defined as

limre0 % fo (F() = (FON(F(E +7) — (F()))dt
limr oo f7 (F(8) — (F(2)))2dt

where the time average (f(t)) is given by

Cys(r) =

T
(F(®) = lim = \o Ft)dt.

Taco T
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Ezample: Let f(t) = sin Ot, then the autocorrelation function is Cy; = cos Q7.

Reference: Eckmann and Ruelle (1985).

automorphism
This term is used to describe a map S which is measure-preserving and
invertible (see also homeomorphism, measure-preserving).

Reference: Lasota and Mackey (1985).

autonomous system
Consider the first-order system of ordinary differential equations

du

3 =W, ult) = u
where t € R* and D is an open subset of R™ (u € D C R™). A system of
differential equations of this form, in which the independent variable ¢ does
not occur explicitly, is called autonomous.

Ezample: Physical systems to which no external energy is supplied during the

——

motion (e.g. the'simple pendulum and the Lorenz model) or constant energy

——

(self-excited systems) are autonomous.

averaging methods
Consider a nonlinear differential equation of the form

%: ac
.nmw.T:HmWAQ.MMV (1)

where ¢ is a small real parameter 0 < ¢ < 1. If ¢ is sufficiently small then one
can assume a solution of the form

u(t) = a(t) cos (¢ + (1)) (2)

where a and ¢ are slowly varying functions of time compared to the fast
variables v and du/dt. Differentiating this approximation (2) and substituting
into the differential equation (1) leads to a further set of equations which may
be solved for da/dt and d¢/dt. These may be approximately solved using the
first approximation introduced by Krylov and Bogoliubov by expanding the
components F'sin (¢ + ¢(t)) in a Fourier series and neglecting all terms except
the first.

Reference: Huntley and Johnson (1983).
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Axiom-A diffeomorphism

Let M be a compact smooth manifold, 7, M the tangent space of M at the
point z, and f : M — M a diffeomorphism. In addition, let 4 be the set of all
non-wandering points a € M (see wandering point). i the non-wandering
set A is hyperbolic (see hyperbolic set) and if the periodic points of the map
f are dense in A, then f is called an Axiom-A diffeomorphism.

Reference: Eckmann and Ruelle (1985).

Axiom-A flow

Consider the flow f* (t € R) on the m-dimensional manifold M. Let T, M be
the tangent space of M at the point z, and A a set of all non-wandering points
a € M (see wandering point). If the non-wandering set A is hyperbolic (see
hyperbolic set), and if the periodic orbits and fixed points are dense in 4,
then f* is called an Axiom-A flow.

Reference: Eckmann and Ruelle (1985).

axon
An axon is a part of a nerve cell which can display chaos. Physical experiments
show that the giant squid axon undergoes a self-sustained oscillation when
stimulated by a sinusoidal force. In the rest state, when excited by a pulse
train force, the giant squid axon has been also shown to behave chaotically.

Reference: Winfree (1988).

B

Biécklund transformation

Suppose that we have two uncoupled partial differential equations, in two
independent variables z and ¢. In addition, for the two functions u and v,
assume that the two equations are expressed as P(u) = 0 and Q) = 0,

where P and Q are two operators which are, in general, nonlinear. Let R; =
be a pair of relations

du du dv dvw
Ri(u,v, —, —, — = . =
o @ @ @ e =0
with 7 = 1,2, between the two functions u and v. Then R; is a Bicklund
transformation if it is integrable for v when P(u) = 0 and if the resulting v is
a solution of Q(v) = 0, and vice versa,

If P = Q, so that » and v satisfy the same relationship, then R; = 0 is called
an auto-Backlund transformation.

Reference: Drazin and Johnson (1989),

baker map
The map f:[0,1] x [0,1] — [0, 1] x [0, 1], where
_ (22,3y) for 0<z<l
f(=z,y) A (22 -1,y +1)) for W.Aamw

is called ﬂ.wm baker map. The dynamics of this two-dimensional map are akin
to the actions used when kneading dough in the bread making process. First

basin of attraction

In dissipative nonlinear Systems, it is possible for more than one attractor
to exist Tor a single parameter setting. Different initial conditions will evolve
E@nam one or other of the co-existing attractors. The closure of the set of
Initial conditions which approaches a given attractor is called the basin of

"basn” : cuonca  “Haead" - ewagar swoc:wr " e wesa, peste,
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attraction of that attractor. In the case of two or more co-existing attractors,
the boundary between one basin of attraction and another is called the basin
boundary (see Figure 7).

basin boundary

Figure 7 Schematic representation of basins of attraction of three co-existing
attractors, 41, A2 and A3

Ezample I: Consider the case of a particle moving in one dimension (along
z) under the action of friction and the symmetric two-well potential V(zx)
shown in Figure 8(a). Trajectories from almost every initial condition come to
rest at one of the stable fixed points, i.e. =z or z = ~z¢. In Figure 8(b),
we show schematically the basins of attraction for these two attractors in
the (z,dz/dt) phase plane of the system. Initial conditions starting in the
cross-hatched region decay on to the attractor at = = o, dz /dt = 0, while
initial conditions starting in the uncrossed (blank) region decay on to the
attractor at = = —xo, dz/dt = 0. In this case, the basins of attraction are
separated by a simple curve (the basin boundary). This curve passes through
the unstable fixed point, z = dz/dt = 0. The initial conditions on the basin
boundary generate a trajectory that approaches the unstable fixed point, i.e.
the basin boundary is the stable manifold of an unstable fixed point, which
in this case forms the separatrix between the two attractors.

Ezample 2: Consider the resonance curve of Duffing’s equation

d’y | . dy 3
35 Tag, Ty byt = coswt +¢) (1),
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V&) ﬁ

-
ek
———{

()

dx
ds

®)

.m,mm:nm 8 (a) Potential V(z) for a point particle moving in one
dimension. (b) The basins of attraction for the attractors at z = z,
(cross-hatched) and z = —z, (blank)

with b > 0 (shown in Figure 9

. ). Three basic types of final states are possible
for this system:

(i) large amplitude oscillations on the upper branch (resonant);
(ii) small amplitude oscillations on the lower branch (non-resonant);

(iii) trajectories which diverge, or escape to infinity.

Basins of attraction of (i)-(iii) attractors are indicated in Figure 10.

_v\_a- escape to infinity
A
4+ i
! resonant
N § t
non-resonant
0 Y T
0 0.5 1.0 @

Figure 9 Resonance curve of Duffing’s equation, with b > 0

(SN
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(a) (b)
4 15
Vo)

non-resonant

“y
&g

15 y 15

Figure 10 (a) Potential function and (b) basins of attraction for a Duffing
oscillator

In these examples, as well as in Figure 7, the basin boundaries are smooth,
continuous lines. This implies that when the initial conditions are away from
the boundary, small perturbations will not qualitatively affect the response.
However, it has been shown that in nonlinear systems, ﬁmm. vo:.uamaw may
change so that it is not smooth but has a fractal & structure; in this case ;. is
called a fractal basin boundary. Of course in this case, any small uncertainties
in initial conditions may lead to uncertainties in the outcome of the system,

with this being termed as final-state sensitivity.

Ezample 3: Figure 11 shows the basin structure of the forced damped
pendulum

d2z dz o
= + o.HMM +sinz = 2cost.

Figure 11 Fractal basin boundary of a driven pendulum
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In this case, there are two periodic attractors that have the same period as the
forcing. The orbit for one of these attractors has an average clockwise motion
(a negative average value of dz /dt), while the orbit for the other attractor has
an average counter-clockwise motion.

In Figure 11, the black region represents initial values of z and dz/d¢ that tend
to the attractor whose orbit has an average counter-clockwise motion, while
the white region represents initial values that generate a clockwise motion.
We can see that there is a small-scale structure on which the black and white

regions appear to be finely interwoven, i.e. the basin boundary shows fractal
nature.

Reference: McDonald et al, (1985).

basin-boundary metamorphoses
As_control parameters of the dynamical system are varied, the character

of a basin boundary can change. These changes are called basin-boundary

metamorphoses.
—— P105eS

Reference: Ott (1992).

basin erosion

After a homoclinic or heteroclinic tangency in driven oscillators, the basin
of attraction for the locally stable solution becomes typically eroded as
parameters vary, so that increasingly more and more conditions now lead
to alternative co-existing solutions.

Reference: Thompson and Bishop (1994).

The BDS test
The Brock-Dechert-Scheinkman test is applied in economic modeling, which
uses the correlation dimension to test the null hypothesis that 2 given time

Reference: Grebogi and Yorke (1997).

Belousov-Zhabotinskij reaction
The Belousov-Zhabotinskii (BZ) reaction was originally proposed by Belousov
when investigating how cells break down food. Belousov noticed that the
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Consider the chemical reaction

k
A+BdE

Ml\w = —ktAB + k;C — (A - Ap)

8 b AB 4+ kO — 5 - Bo)

% =ktAB - k,C —rC

chemica] concentrations. 4y and By are the reactant concentrations at the
input port (Cy = 0). The experimental arrangement is shown in Figure 12.

reactant concentration

probes
reactant u output
Input reactor

stirrer

Figure 12 Experimental arrangement of a chemical reaction with
reactant flow; the probes monitor the reactant concentrations (adapted
from Swinney (1983))

If 7 is zero, then the reaction evolves to a state of equilibrium, while for large
values of r the materialg are exhausted from the container before they have
time to react. For intermediate values of T, the system has both periodic
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B 4 B

(a) ®)

A

Figure 13 Phase-space trajectories for the B reaction: (a) periodic
behaviour; (b) chaotic behaviour

Reference: Swinney ( 1983).

Bénard cells

Cells formed in a heated convecting fluid are called Bénard cells (see
Rayleigh~Bénard convection).

Bendixson’s criterion
Consider a system of the coupled differential equations

dz

Nln. = .\.Anﬁ. @v
and d

m.w = g(z,y)

where (z,y) € U C R2?, and in which S and g are sufficiently smooth. On 4
simply connected region D C R?, if the expression, 8f/8z + 8g/8y, is not

identically zero and does not change sign, then the system has no closed orbits
lying entirely in D,

Reference: Drazin (1992).

Bernoulli shift map

Themap f : [0, 1) = [0,1) where F(z) = 2z mod 1 is called the Bernoulli shift

map. More usua, ¥, We consider any full shift on n symbols,

Reference: Jackson (1990).

bifurcation
Consider a dynamical system

dz
Q,w = .\.AH. nv

I = Canbio, calto ) wewuitendo
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where £ € R™, ¢ € R which has unique solutions z(t,zo,c). A bifurcation
occurs when a change in the control (bifurcation) parameter, ¢, produces a
change in the topology of the phase portrait. The partitioning of the control
or parameter space, ¢ € R", into regions where the phase portraits are
topologically equivalent is called the control parameter space of the dynamical
system. The boundary of these regions in the control parameter space is
sometimes called the bifurcation set.

A plot of a variable representative of the dynamics (say ) versus the
bifurcation parameter is referred to as a bifurcation diagram.

Ezample I: Bifurcations of the system

QHH = —z

dt ~ 72
and

QHM _

a -

subject to the condition K (z,¢') = z(t + c) —z(t) = 0.
Ezample 2: Bifurcations of the fixed points of the one-dimensional map

Tn+1 = f(zy, c) D)

where f is continuous and differentiable. Bifurcations of a period-n orbit can
be reduced to consideration of the map iterated n times, map f*, for which
each point of the period n orbit is a fixed point.

We shall consider only generic bifurcations, i.e. such bifurcations whose basic
character cannot be altered by arbitrarily small continuous and differentiable
perturbations. There are three generic types of bifurcations of continuous and
differentiable one-dimensional maps:

(i) the supercritical (stable) period-doubling (flip) bifurcation;

>

ii) the tangent bifurcation;
(i) g o5

(iii) the subcritical period-do ling bifurcation. p
These are illustrated in Figure £4 in the form of a bifurcation diagram. Dashed
lines are used for solution paths corresponding to unstable orbits and solid
lines for stable orbits. The parameter ¢ is assumed to increase to the right.
Additionally in Figure 14, we define forward and backward bifurcations. In
Figure 15, we show how the three forward bifurcations dan occur as the shape
of the map changes with an increase in the control paragmeter c.

>
INKCV

ST
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Figure 14 Bifurcation diagrams for generic bifurcations of
one-dimensional maps
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Figure 15 Behaviour of a one-dimensional map before and after
generic bifurcations: (a) supercritical period-doubling; (b) tangent; (c)
subcritical period-doubling



24 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

Ezample 3: Local bifurcations of a fixed point z = 0 of a flow, together with
examples of systems in which they occur, are shown in Figure 16.

x x
> —f - >
~ ¢ c
-~
dx/dr=cx-x* dx/dt=cx-x'
saddle-node supercritical pitchfork
x4 A
—_— e »  —t - >
\\\ [+ ¢
’ d ’
dx/dr=cx-x" dx/de=cx+x’
transcritical subcritical pitchfork

Figure 16 Bifurcations of the fixed point

Ezample 4: Consider the dynamical system

Q.HH 2
5 =G +tcexa+ x5 + 1120
dt
and
QHN -z
d v

The fixed points of this system are z; = 0, and z, = —1/2¢y £ 1/2[c% — 4¢,]/2,
provided that ¢ > 4c¢,. These fixed points are degenerate along the curve

¢3 = 4cy in the parameter space.

If the system evolves so that ¢; or ¢ cross this curve, then there is a localised
change in the phase space, namely two fixed points come together and vanish.
From consideration of the Poincaré index (see Poincaré index) one finds
that these simple fixed points must be a saddle and a node. The transition
from a saddle point to a node is called a saddle-node bifurcation. In addition
to the bifurcations determined by this local degeneracy of fixed points, it turns
out that, in the region ¢ > 4c;, there is both a curve associated with a Hopf
bifurcation, and a curve associated with global bifurcation. These curves are
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shown in Figure 17. The bifurcation lines are labelled (SN~,SN* H,S ),
which divide the control space into regions (4, B, C, D). The local saddle—
node and Hopf bifurcations occur across the lines SN+ and H, respectively,
whereas across the curve SC a global bifurcation occurs which is called a
saddle connection (homoclinic) bifurcation. The phase portraits corresponding
to the above regions are shown in Figure 18 (see also global bifurcation,
Hopf bifurcation, Neimark bifurcation, period doubling bifurcation,
symmetry—breaking bifurcation).

G SN°
th D, |
no fixed points
D, \
s

dx/dt=cx-x* !
D, A

SC

< SN*
B, Vﬂ. By
limitcycle |~
AH

Figure 17 Bifurcation diagram

Remark: The saddle-node bifurcation is also sometimes called a fold because
of the nature of the response curve near the bifurcation.

References: Arnold (1984); Jackson (1990); Thom (1975); Thompson and
Stewart (1986).

bifurcation diagram (see bifurcation)

bifurcation parameter (see bifurcation)

anyectivo
bijection / fee
A one-to-one and onto map is called a bijection or a bijection mapping.

Lo 5o erestec Kvo

Remark: A bijection mapping can be discontinuous.
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7\ /um.ur\q x, X,
7S KT K7

\m‘\ﬁrpm‘ TV =
BN N

Figure 18 Phase portraits
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billiard

Let Q be a connected domain in the plane R? with a piecewise smooth
boundary 6Q. By a billiard in Q we mean the dynamical system arising from
the uniform motion of a point mass inside Q with elastic reflections.

Reference: Berry (1989).

Birkhoff ergodic theorem
Let (X, B,m) be a probabilistic space. Suppose that the mapping

T:(X,B,m)— (X,B,m)
is measure-preserving and f ¢ ! (m). Then
1 n—1 .
- 2 F(T)
i=0
converges almost everywhere to a function freL(m). In addition,
xl o QJ - \*

almost everywhere, and if m(X) < oo then

\.\;QSN\.\.QS.

References: Arnold and Avez (1968); Steeb (1991).

Birkhoff limit sets

a-limit sets and w-limit sets are called Birkhoff limit sets (see alpha-limit
set and omega-limit set).

Birkhoff-Shaw attractor

The chaotic attractor of d
T

— ol - 2
I 102(0.1 — y )
and d
v _ .
e 0.25sin1.57¢

which is equivalent to the velocity-forced van der Pol equation is called a
Birkhoff-Shaw attractor.

Reference: Thompson and Stewart (1986).
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bistability
If a dynamical system has two attractors then we say that the system is in a
state of bistability. If there are more than two attractors we have multistability.

Bloch theory (see Floquet theory)

blowout bifurcation
Assume that the dynamical system

d
IQW ”\AH.OV

where z € R™ and c € R, has an attractor A located on an m-dimensional
(m < n) invariant subspace of the n-dimensional phase space for ¢ Leco If
for ¢ > ¢p, the attractor A is replaced by the n-dimensional attractor B, then
the bifurcation which occurs at ¢o is called a blowout bifurcation.

blue-sky catastrophe (see crisis)

Bogdanov—Takens bifurcation (see Takens—-Bogdanov bifurcation)

Borel sets

Let X be a topological space. All sets which belong to the o-algebra (see
o-algebra) spanned by the all open subsets of the space X are called Borel
sets.

bouncing ball

An example of a mechanical system that leads to a nonlinear map is a ball
bouncing on a vibrating table. The model, which includes two parameters,
Serves as a conceptually easy bridge between the discrete map and important
three-and four-parameter experiments, such as the driven nonlinear oscillator
and the dynamics of the forced pendulum.

Consider the model shown in Figure 19 in which an elastic ball is falling
under gravitational force on to a sinusoidally vibrating table. The equations
of motion of the table and of the ball are as follows:

A(t) Ay sin(wt), (1)
Z(t) = Zo+Vt-gt2/2,

i

where Z;, Ay and w are the initial position of the ball, the amplitude and
the frequency of the table vibration, respectively, and g is the gravitational
acceleration. The motion of the table A(t) and the motion of the ball Z (t) are
constrained through the nonelastic impact (defined as A(T) = Z(t)) in which
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Asin(w?)

Figure 19 Bouncing-ball model

K=_ A,—\sﬁav n .&.:Q:vv AMV
AQ:Q:V - \A:Q:vv

where U,, V,, and A, are, respectively, the absolute velocities of the
approaching ball, the departing ball and the table, K is the coefficient of
restitution, and ¢, is the time of the nth impact. In some studies, it is assumed
that the distance that the ball moves between impacts under the influence of
gravity is large compared with the displacement of the table. In this case, the
time interval between impacts can be approximated as

2V,
thy1 — ity = .l.mm.. (3)
and the velocity of approach at the (n + 1)st impact is given by
Q.:Q:.THV = !S.Q,:v. 4)

From equations (1)~(4), one obtains, after non-dimensionalising, the
recurrence relationship between the state of the system at the (n + 1)st and
nth impacts in the form of a nonlinear map:

Pnt1 = On + Un va
Unt1 = Kup — 8 cos(e, + Un),

where ¢ = wt, v = 2wV/g and § = 2w3(1 + K)Ao/g.

Reference: Holmes (1982).

boundary

The boundary 84 of a closed set A is the set of points which belong to A4,
but which are not in the interior of A.

boundary layer
The boundary layer is a term used in fluid dynamics to represent the thin
layer close to an object within a flow field at which a no-slip condition holds.
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bounded stability (see stability)

Bowen—Ruelle theorem (Sinai-Ruelle~Bowen theorem)
For an Axiom-A system, except for an initial set of Lebesgue measure zero,
time averages exist for continuous phase functions.

More precisely, except for this initial set, a solution z; tends to some attractor
A ast — co. The attractor 4 has a canonical invariant ergodic measure called
the SRB measure g, and if ¢ is a continuous function of the space, then

1 T
Jim 7 \o B(z,)dt = \s ddp.

Remark: This theorem applies to almost all solutions with respect to ordinary
Lebesgue measure on the space, but the asymptotic behaviour is described by
the measure p.

References: Eckmann and Ruelle (1985); Steeb (1991).
box-counting dimension (see dimension of sets)

braid

The projection of the periodic solutions of driven oscillators on to the (z,t)
plane in the interval of one period of the applied forcing produces a braid.
Analysis of the crossings within a braid enables the solution to be classified
and, moreover, the linking with other orbits and bifurcational precedences
may be evaluated.

References: Ghrist and Holmes (1996); Thompson and Bishop (1994).

branch point
This is another term used for a bifurcation point, in particular for equilibria.

Brouwer’s fixed-point theorem

For any continuous map z,,; = f(zn) of the unit interval into itself, there
must exist at least one fixed point.

Reference: Collet and Eckmann (1980).

Brusselator equation

The equations
dz

I =a+z’y~(1+b)z+ Acost
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and 4
Y 2
—=bzr—yzx
at v
where a,b, A and Q are constants, are called the Brusselator equations. These
equations have their origin in the study of various chemical reactions carried

out by a group at the Free University of Brussels.

Reference: Prigogine and Lefever (1968).

Burger’s equation
The partial differential equation with nonlinearity and dissipation:

O¢(z, t) 9¢(z,t) _ 9%¢(z,t) _
o T+l TR

is called the Burger’s equation. This equation particularly arises in the theory
of solitons. .

butterfly
One of the elementary catastrophes (see Thom’s theorem).

butterfly effect

It had been known for some time that certain dyn were sensitive
to initial conditions (e.g. consider the inverted position of a simple pendulum).
H. Poincaré was certainly aware of this limitation for predictability and
many researchers had noted this phenomenon in simulations (e.g. Y. Ueda
has reported early chaotic attractors dating back to 1960). However, one
of the earliest, and certainly most quoted computational demonstrations of
SensHivity 1o initial conditions in a chaotic systems was given by Lorenz in
his paper ‘Does the flap of a butter. y’s wings in Brazil set off a tornado in
Texas’. Hence the phenomenon of sensitive de endence is often referred to as
the butterfly effect. The fact that the chaotic attractor produced by Lorenz,
when plotted in the phase space (see Lorenxz model), has the shape of a
butterfly, reinforced this as an appropriate name for this effect (see sensitive
dependence on initial conditions).

Reference: Lorenz (1963).



C

Cantor set
A Cantor set I is a closed set with the following properties:

(i) the largest connected subset of T is a point;

(ii) every point of I' is a limit point of I,

Ezample: The triadic Cantor set is a subset of the line R. A sequence
of approximations is first defined as follows: start with the closed interval
Co = [0,1)], and the set C} is then obtained by removing the ‘middle third’
from [0, 1], leaving [0, 1 /3]U [2/3,1). The next set C: is defined by removing
the middle third of each of the two intervals of C1. This leaves

C2 =1[0,1/9]u[2/9, 1/3]U[2/3,7/9|u (8/9,1)
and so on (see Figure 20). The triadic Cantor set is the imit’ C' of the

sequence Cl, of the sets. The sets decrease in the order: Co C ¢, € c-
etc. and we define the ‘limit’ to be the intersection of the sets,

C= ) C.
keN

16 = -- .- - - .- .- -

Figure 20 The triadic Cantor set
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capacity dimension (see dimension of sets)

cardiac arrhythmias

The normal heart rhythm is set by the sinoatrial node in the atria of the
heart, but abnormal rhythms or arrythmias can occur, some of which can be
life threatening. Over recent years there have been attempts to use a nonlinear
dynamic approach to modelling heart rhythms as the behaviour is similar to
that seen in coupled oscillators (see Figure 21).

23:04:51 Scale (25 mm/sec, 1mV = 10 mm) pulse rate: 115p/min
o D D D D PD D D D D D D [+] [+]
; 1343 ﬁ > 421 > 437 > 3504 4218 3s0| 460 | 308 | 463 | 27| s23 578

e .

SRRV TN

12 exc. Start: 23:04:53, duration: 4.8 sec,
Figure 21 Example of cardiac arrythmia — tachycardia

Reference: Grebogi and Yorke (1997).

cat map

Let T2 = { (z,y) mod 1} be the two-dimensional torus. The automorphism
f:T? 5 T? defined by

f(z,y) = (z+y,z+2y) mod 1

is called the cat map. This map is also sometimes referred to as the Arnold
cat map, after Arnold and Avez ( 1968) illustrated the dynamics of such a map
by showing how a drawing of a cat’s head was altered by f! and f2, as seen
in Figure 22.

References: Arnold and Avez(1968); Drazin (1992).
catastrophe set (see bifurcation)

catastrophes
Catastrophes are sudden changes representing discontinuous responses of
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e
</
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7

Figure 22 Representation of a cat map

systems to smooth changes in the external conditions (see bifurcation).

Catastrophe theory investigates and classifies these changes (see also Thom’s
theorem).

Reference: Arnold (1984).

caustics
Caustic is the term which arises in the use of a system of rays to describe
the propagation of disturbances. The propagation of a disturbance inside an

ellipse can be described by using the family of internal normals to the ellipse,
as shown in Figure 23.

Figure 23 Propagation of disturbances inside an ellipse

The family of normals has an envelope which is called a caustic.

Ezample: A rainbow in the sky is due to the caustic of the system of rays that
have been completely reflected by water droplets.

Reference: Arnold (1984).

celestial mechanics
The investigation of the motions of stars and planets is referred to as celestial
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mechanics. In recent years, there has been considerable renewed interest in
celestial mechanics since the use of high-speed computers allows the long-term
integration of equations which govern planetary motion. Of particular interest
for nonlinear dynamics is the chaotic behaviour of hyperion, and questions
relating to whether the solar system is stable or not; notable work concerning
the latter has been carried out by Lasker.

References: Dankowicz (1997); Laskar (1989), Moser (1973), Sussman and
Wisdom (1992).

cell map

A cell map is a plot in initial-condition space of the basins of attraction
for the various co-existing solutions at fixed parameter values. A crude way
of determining the basins is to consider a portion of the phase space and
then divide it into a small grid so that each grid point defines an initial
condition. Each grid point can then be integrated forward to determine the
subsequent long-term behaviour. While simple and effective, this (‘carpet-
bombing’) approach is numerically inefficient. The cell mapping method, or
cell-to-cell mapping method, was devised by Hsu to minimise the necessary
computations. By considering cells (portions of the phase space), rather than
grid points, a cell is characterised by its central point which may be integrated
forward in time as before, the subsequent attracting solution noted, and all
cells visited during the evolution (rather than just the one point) contoured
since they represent initial conditions which would lead to the steady-state
solution. If the evolution of a further cell at some time coincides with a cell
already labelled as leading to an attractor, then the evolution routine can be
terminated and all cells labelled accordingly as before. An example of a cell
map for the escape equation (see escape equation) is shown in Figure 24.
Different shading corresponds to initial conditions which converge to different
attracting solutions, i.e. pale grey represents an escape to infinity, while dark
grey and black represent solutions within the well.

Reference: Hsu (1987).

cellular automata

A cellular automata (CA) is a spatially extended dynamical system with
discrete space, discrete time and discrete state space. If the state space is
continuous, this leads to a coupled map lattice (see coupled map lattice).
Consider a discrete lattice £ and let S be a discrete, finite set of possible
states. Let z;(t) € S be a dynamical variable at site i € £ and consider N (%)
to be a finite neighbourhood of 7 in £. A cellular automata maps {z; W} jen
into z;(t + 1).
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Figure 24 A cell map for the escape equation

Cellular automata are usually classified by their asymptotic behaviour as fol-
lows:

Class I, fixed homogeneous states;

Class II, periodic patterns;

Class III, chaotic aperiodic patterns;

Class IV, complex spatio-temporal patterns.

Reference: Wolfram (1986).
centre (center) (see fixed points)

centre manifold theorem
The centre manifold theorem provides a means for systematically reducing the

&Bm:mmouomgmvrmmmmvmomﬁaarzmmamno_umnoumamnma when analysing
bifurcation problems. .

Let f be a C” vector field on R™, vanishing at the origin, i.e. f(0) = 0, and
let A be the Jacobian matrix of f (0). Divide the eigenvalues of A into three
parts o5, 0., 0, with
<0 if Xeo,
Red:{ =0 if Aeo,
>0 if A€oy,

Let the generalised eigenspaces of 0s,0¢, and o, be E* E°, and F%,
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respectively. Then there exist C™ stable and unstable manifolds, W* and W,
tangent to E° and E* at 0, and a C™~! centre manifold W€, tangent to E€ at
0. The manifolds W?, W* and W* are all invariant for the flow f. The stable
and unstable manifolds are unique, but W¢ need not necessarily be unique.

Remarks:

1. If f is C*°, then we can find a C™ centre manifold for any r < oo.

2. In the control-phase space the surface which contains only
periodic solutions is a centre manifold (see Hopf bifurcation).

References: Carr (1981); Guckenheimer and Holmes (1983).

chaos

Chaos is a technical expression for a specific type of irregular motion produced
by a deterministic system. Chaos is a long term phenomenon and therefore
when energy dissipation occurs, for example in mechanical systems, then
a_continuous input of energy is required to maintain the chaotic response
otherwise any viewed irregularity will only be transient. Chaos has now been
viewed in a wide variety of physical systems including mechanical, fluid,
electronic, chemical and even biological experiments. Chaos lies within a well
ordered structure and as such is not chaotic in the everyday sense of the
word. To describe this type of motion, Ueda used the expression "randomly
transitional phenomena” but following its usage by Li and Yorke the word
chaos is now firmly fixed as the term used.

More mathematically, consider a typical orbit v evolving on the attractor of
the dynamical system

dz
5 = @)

where £ € R™. The orbit v is chaotic when 7 is characterised by at least

one positive Lyapunov exponent, while the sum of all Lyapunov exponents
1s less or equal to zero (less refers to the gradient, and equal to conservative
systems).

Amap f: S5 — S, where S C R", is chaotic if at least one Lyapunov exponent

if positive.

Let X be a set. A map f: X — X is said to be chaotic on X if:

(i) f has sensitive dependence on initial conditions, i.e. there exists
0 >0 such that, for any z € X and any neighbourhood U of z,
there exists y € X and » > U such that )= ) > o;
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(i)

is topologically transitive, i.e. for any pair of open sets V,W ¢
X there exists k > 0 such that 75(V) N W # 0;

(iii) periodic points are dense in X.

References: Kapitaniak (1991); Li and Yorke (1975); Ueda (1979); Steeb
(1991).

chaos—chaos intermittency (see crisis, intermittency)

chaotic saddle

A chaotic invariant set A is a chaotic saddle if there is a neighbourhood U of
A such that b(A) N U, where b(A) is the basin of attraction of A, is greater
than A but has zero Lebesque measure.

Remark: A saddle fixed point also satisfies this definition.

A is a normally repelling chaotic saddle if it is an attractor in the invariant

subspace, but all points not lying on this subspace eventually leave a
neighbourhood of A.

Reference: Ashwin et al, (1994).

chaotic scattering

Counsider a classical scattering problem for a conservative dynamical system,
i.e. the motion without friction of a point particle in a potential V(z) for
which V(z) is zero outside some finite region of the space which is called the
scattering region. Thus the particle moves along straight lines sufficiently far
outside the scattering region. We envisage that a particle moves towards the
scattering region from outside, interacts with the scatterer, and then leaves
the scattering region. The main problem is the dependence of the motion far
from the scatterer on the motion close to the scatterer, before scattering takes

place. The transition from regular to chaotic scattering occurs via an abrupt
or massive bifurcation.

Ezxample: Consider the example given in Figure 25, which shows a scattering
problem in two dimensions. The incident particle has a velocity parallel to the
T-axis at a vertical displacement ¥ = b. After interaction with the scatterer,
the particle moves off to infinity, with its velocity vector making an angle ¢
to the z-axis. The quantities b and ¢ are termed the impact parameter and
scattering angle, respectively.

Now consider the functional dependence of ¢ on b. If the function &(b) is
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T

Figure 25 Scattering in two dimensions

Figure 26 Illustrations of (a) regular and (b) chaotic scattering
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continuous, e.g. as shown in Figure 26(a), then we have regular scattering.

However, if this function is of the type shown in Figure 26(b), we refer to the
behaviour as chaotic scattering.

Reference: Ott (1992).

characteristic function
Let A C R™; then a function

Fa= 1 for z€ A
A=Y 0 for zg A

is called the characteristic function of the set

characteristic multipliers (number) (see Floquet theory)

Chua’s circuit

The electronic circuit which is shown in Figure 27 is known as a Double-Scroll
or Chua’s circuit. This is a third-order circuit which has only one nonlinear
element, namely a piecewise linear resistor (see Figure 28).

R
W=

+ o+ +

g R Ve Ve
-, c.
. ._.
- - - Ny

Figure 27 Chua's (double-scroll) circuit

The state equations of Chua’s circuit are as follows:

d
1= = Glve, = vo,) = flucy) (1a)
dve, .
C, I =G(ve, —vg,) + i, (1b)

and

hlmn =0, AHOV
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4

I

Figure 28 Characteristic form of the nonlinear element

where G = 1/R, and a three-segment piecewise linear ve, — 4, characteristic
of the nonlinear element, is defined by

1
flve,) = move, + 5(m1 = mo)(lve, + By| - |vg, — By|).
This relationship is shown graphically in Figure 28; where the slopes in the
inner and outer regions are m; and ™o, respectively, and +B, denotes the

break points.

Equations (1a—c) can be rewritten in the dimensionless forms

& =oay -z~ f(z)) (2a)
V=z—-y+z (2b)

and
2=y (2¢)

where z = v¢, /B, y = ve,/Bp, z = i/BpG, a = Cy/Cy, B = Cy/G*L,
f(@) =bz+1/2(a = Dllz +1| - [z — 1]}, a = m1/G, and b = mo .

Chua’s circuit is one of the simplest electronic circuits which can display
chaos and possibly the most studied in this sense. Chaos cannot occur in an
autonomous circuit (modelled by nonlinear-state equations) with fewer than
three energy storage elements (capacitors and inductors), and at least one
nonlinear active element is needed even for oscillation to be possible.

Ezample: For the conditions o = 10, 3 =14.87, a = —1.27 and b = —-0.68,

Chua’s circuit operates on the chaotic double-scroll attractor shown in
Figure 29.

References: Chua (1992); Matsumoto (1984).
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Figure 29 Double scroll attractor

circle map
A map defined as

Ont1 = ¢n + 27K + Vsin ¢, mod 27,

where K and V are real parameters, is called a circle map.

Reference: Schuster (1984).

C* function

A function is C* (k = 0,1,2,...,00) if it is k-times differentiable and its kth
derivative is continuous.

closed orbits
Closed orbits in phase space correspond to periodic solutions.

closed set

The set A is closed if it contains all of its limit points, i.e. if z,, is a sequence
in A converging to a point z, then z isin A.

closure _
"The closure A of a set A is the union of 4 and its set of limit points.

codimension

"The codimension of a k-dimensional submanifold of an n-dimensional manifold
isn—k.

The codimension of a bifurcation is the number of parameters that have to
be specified in order to define the bifurcation.
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Remark: The knowledge of the codimension of the bifurcation is very useful
in the further analysis. Usually the considered system is embedded in a
parameterized family of systems transverse to the bifurcation surface with
the number of parameters equal to codimension of the bifurcation. These
pbarameterized systems are called unfoldings and, if they contain all possible
qualitative dynamics that can occur near the bifurcation, they are called
universal unfoldings.

Reference: Wiggins (1991).

co-existing
Dynamical systems in general and nonlinear systems in particular may
typically have co-existing solutions at certain fixed parameter values.

Ezample: The simplest case is possibly the resonant and non-resonant motions
of a driven oscillator due to a nonlinear restoring force. For example, consider
a driven oscillator with a softening spring force f(z) given by
2
mm + oMIHM + f(z) = coswt.
The amplitude response curve of period-one motions bends to the left as shown
in Figure 30.

amplitude

Figure 30 Nonlinear softening amplitude response curve

During the hysteresis, say for example near w = w,, there exist two stable
solutions, namely a large-amplitude resonant motion (R), and a small-
amplitude nonresonant motion (NR), together with an unstable saddle (S)
solution with the same frequency.
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Alternatively, at some Parameter value, say w = w2, a period-two solution
(P2) may co-exist with the harmonic period-one solution (P1).

collision of attractors or basins (see crisis)

compact set

The set 4 is compact if and only every open cover has a finite subcover, and
vice versa.

Remark: For subsets of Euclidean Space, any compact set is closed and
bounded.

compact support

A function f: R* 5 R has compact support if the set of points z, such that
f(z) # 0, is bounded.

complexity

Complexity is the term which refers to all of the science of complex adaptive
systems.

conjugate (see topological conjugate)

Conley—Moser conditions

The necessary conditions to prove that a two-dimensional invertible map
f:R™ 5 R™ has an invariant Cantor set on which the dynamic is
topologically conjugate to a full shift on N symbols, where NV 2 2, are called

Conley—Moser conditions.

Reference: Wiggins (1990).

connected
A set S is not connected if there exist two open sets Uy and U, such that

() UinT; =0 for i # j;
(i) UsnS# @ fori= 1,2;
TEV Sc U, U U,.
conservative system

If we choose, for t = 0, an initial closed (n—1)-dimensional surface So enclosing
a volume V(0) in n-dimensional phase space, and then evolve each point on
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the surface Sy forward in time by using these as initial conditions of the
dynamical system

dzx
T f(z)

where £ € R™, then the closed surface So evolves to a closed surface S,
enclosing a volume V (t) at some later time ¢. If for all t, V(t) = V(0) then the
dynamical system is said to be conservative (see also Hamiltonian system).

Conservative systems are measure preserving (see measure—preserving).

Reference: Ott (1992).

constants of motion
Consider an autonomous system

dz
Mmlﬂ.. = .\.An\.uOv AHV

where z,c € R™. The general solution of this equation is of the form

z(t) = X(t,20) (2)
where 2(0) = X (0, z0) = z0 is an initial condition. Equation (2) can be viewed
as a mapping in the phase space Xt : z5 — z, which carries the initial point
To to the point z(t). If the dynamical solution exists and is unique, then for
any given z and t there is a unique initial point zy, i.e. one can write

zo = K(z,1). (3)

The functions K (z,t) in (3) are the n constants of the motion, since the initial
conditions z¢ are obviously constant, so for all ¢t/ > ¢

K(z(t),t) = K(z(t'),1). (4)

Any function K (z(t),t) which satisfies (4), when z(t) satisfies (1), is called a
constant or integral of motion.

HReferences: Jackson (1990), Steeb (1991).
control parameter (see bifurcation)

controlling chaos

This is a procedure whereby a systematic control algorithm is applied to
replace the chaotic evolution of a dynamical system by a more desirable
periodic or steady-state response.
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We can divide strategies for the chaos control into two broad categories:
first those in which the actual trajectory in the phase space of the system is
monitored, and some feedback process is employed to stabilise the trajectory
on to a desired mode, and secondly, non-feedback methods in which some
other property or knowledge of the system is used to modify or exploit the
chaotic behaviour.

Ott, Grebogi and Yorke have, in an important series of papers, proposed and
developed the method by which chaos can always be suppressed by shadowing
one of the infinitely many unstable periodic orbits (or perhaps steady states)
embedded in the chaotic attractor. The basic assumptions of this method are
as follows:

(i) The dynamics of the system can be described by an n-dimensional
map of the form *

Crt1 = f(énsp)- (1)

This map in the case of continuous-time systems can be con-
structed, e.g. by introducing a Poincaré map.

(ii) The variable p is some accessible system parameter which can be
changed in some small neighbourhood of its nominal value p* at
which the system behaves chaotically.

(iii) For the value of p*, there is a periodic orbit within the attractor
around which we would like to stabilise the system.

(iv) The position of this orbit varies smoothly with small changes in
the parameter p.

Let zr be a chosen fixed point of the map f of the system existing for the
parameter value p*. In the close neighbourhood of this fixed point we can
assume with good accuracy that the dynamic is linear and can be expressed
approximately by

Cnt1 = {p = M(Cn — CF). (2)
The elements of the matrix M can be calculated by using the measured chaotic
time series and analysing its behaviour in the neighbourhood of the fixed point.
Furthermore, the respective stable and unstable eigenvalues, e, and €y, and
the eigenvectors, v, and vy, of this matrix can be found; the latter determine
the stable and unstable manifolds in the neighbourhood of the fixed point.

Denoting by f, and f,, the respective contravariant eigenvectors

foVs = fuvy, =1
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Figure 31 An illustration of the basic concept of the
Ott~Grebogi-Yorke method

and
fsvo = Sfuvs = 0,

we can find the linear approximation which is valid for small |pn. — p*|; namely

Cn+1 = Dng + _Hmceﬁ.\.: + mueu\mzﬂ: ~ Png|
where
_ %0
op
The main idea of this method is to choose p, so that Cn+1 should fall on the
stable manifold of (# such that f,(nyy = 0:

_ eulafu
Pn = (ew — 1)gfu ) ®)

g _u+u. .

The concept of the Ott-Grebogi-Yorke (OGY) algorithm is schematically
represented in Figure .

The main properties of the method are as follows:

(i) it is a feedback method;

(ii) any accessible system parameter can be used as a control param-
eter;
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(iii) noise can destabilise the controlled orbit, thus resulting in occa-
sional chaotic bursts;

(iv) Before approaching the desired periodic orbit, the trajectory
exhibits a long chaotic transient.

Ezample: As an example of the application of this method, consider the control
of chaos in Chua’s circuit (see Chua’s circuit) operating on the single scroll
chaotic attractor. The block diagram of the implemented system is shown in
Figure 32.

X, X
data Y
) o .
MWMMM z ] acquisition | z | computer
system
control control

Figure 32 A practical implementation of the Ott-Grebogi-Yorke method

Figure 33 shows the stabilisation of period-one and period-two unstable
periodic orbits (denoted by black curves). Before the control is achieved, the
trajectories exhibit chaotic transients (shown in grey).

(a) Yo

C2 c2

Figure 33 Control of (a) period-one and (b) period-two orbits

The OGY approach has stimulated a great deal of research activity, including
both theoretical and experimental studies (Kapitaniak 1996). The efficiency
of the technique was demonstrated by Ditto et al. (1991) in a periodically
forced system, converting its chaotic behaviour into period-one and period-
two orbits, and the application of the method to stabilise higher-periodic
orbits in a chaotic diode resonator was demonstrated by Hunt (1991). Another
interesting application of the method is the generation of a desired aperiodic



50 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

orbit ~ Mehta and Henderson (1991}, while Tel (1991) was able to demonstrate
controlled transient chaos. Related work by Dressler and Nitsche (1992) used
time-delay techniques to control chaos.

References: Kapitaniak (1996); Ott et ol (1990).
correlation dimension (see dimension of sets)
correlation integral (see correlation dimension)

cosine map
The one-dimensional map
Tpy1 = COSTy

where x € R, is called the cosine map.
Couette—Taylor flow (see Taylor—-Couette flow)
Coulomb friction (see damping)

coupled map lattice

A coupled map lattice (CML) is a spatially extended dynamical system with
discrete space, discrete time and continuous state space. If the state space is
discrete it yields to a cellular automata (see cellular automata). Consider a
discrete lattice £, let x;(¢t) € R™ be the dynamical variable at site i € £ and
consider N (i) to be a finite neighbourhood of <. A CML maps {z;(¢)};¢ N()
into z;(t + 1).

The most widespread one-dimensional model of a CML is the so-called
diffusive CML:

zi(t +1) = (1= ) f(@:(0) + 5 (f@ima(t) + F@es1 (1))
where € € [0, 1] is the coupling parameter.

Reference: Kaneko (1993).

coupled systems
Two dynamical systems (A) and (B) described by the following equation

aX :
o =~ FXY) (A) ,,
@\1 = G(X,Y) (B)

dt
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where X,Y € R", are coupled if functions F and G depend on both X and
Y.

If F = F(X) and G = G(Y), then the systems (A) and (B) are uncoupled.

If G = G(Y), but F = F(X,Y), we say that the systems (A) and (B)
are unidirectionally coupled. There is no feedback and such systems are also
referred to as drive-response systems.

crisis
Sudden qualitative changes of an attractor, which occur at bifurcation

vmwaoam:\m.EmmSrmnogmwgamoﬁowoo:aomé?rwncumﬁmzm ozowe.mnmom:ma
crises. :

If the sudden destruction of a chaotic attractor occurs when the attractor
collides with a periodic orbit on its basin boundary then the crisis is called a
boundary crisis or blue-sky catastrophe.

If the sudden increase in the size of a chaotic attractor occurs when the
periodic orbit with which the chaotic attractor collides is in the interior of
its basin, this it is called an interior crisis.

In an attractor-merging crisis two or more chaotic attractors simultaneously
collide with a periodic orbit or orbits on the basin boundary which separates
them.

Remark: After a boundary crisis, we observe transient chaos.

Following an interior crisis or an attractor-merging crisis, we observe a
crisis induced intermittency. This type of intermittency is characterised by
permanent jumps between two chaotic attractors. It is also called chaos—chaos
intermittency.

References: Grebogi et al. (1982), Thompson and Stewart (1986).

critical damping (see damping)

critical points (see fixed points)

cubic map
A map [0,1] — [0, 1], given by

ettty

Tpyy = s&w +(1-r)z,



52 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

where r € R, is called a cubic map.

cusp
One of the elementary catastrophes (see Thom’s theorem).

cusped-diamond
One of the elementary catastrophes (see Thom’s theorem).

cycle
This is a term which is sometimes used to represent a periodic orbit or limit
cycle, typically in autonomous systems.

D

damping

When considering structural systems, positive damping is the mechanism
which models the dissipation of energy which results in a reduction in the
amplitude of motion. In some cases, for instance in the van der Pol equation,
the damping is negative, thus leading to an increase in the amplitude of
motion. Damping typically occurs due to interactions between the system and
its surroundings (e.g. via the damped base in a vibrating beam or interaction
with the surrounding fluid — in this case, air) but may also be due to internal
interactions (see also van der Pol equation).

Damping also occurs due to the interaction between a moving body and the
surface on which it moves. When the contact between the two bodies is dry
the force F* which opposes the motion is caused by microscopic irregularities of
the sliding surfaces. Often in this situation the friction force is called Coulomb
damping. When an external force P is applied to the mass (as in Figure 34)
the friction force increases until it reaches a critical value Fyo(= uN), at which
stage the mass begins to move. The term y is called the static coefficient of
friction and N is the normal force acting between the mass and the surface
(see also stick-slip systems).

If the surfaces are separated by a thin film of lubricant then the friction
force becomes fluid in nature and the term viscous damping is used. One

>

@ F
N
£y

v

dx
dr

Figure 34 Dry friction force (Coulomb damping)
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approximation is to consider the force to be proportional to the velocity, i.e.
F = bdz/dt, representing a so-called linear viscous damping force.

If an immersed body moves through a fluid at high Reynolds numbers then
the flow can separate and the drag force is approximately governed by the
velocity squared

d?z
= b—r.
F de?
Critical damping:
Consider the oscillator
&’z +2¢ mm +z=
de? dt -

For { < 1 in the phase plane, we have a spiral evolution of transients towards
the stable fixed point dz/dt = z = 0 in the phase plane corresponding to a
focus. When ¢ > 1, the transient rapidly decays to the equilibrium state which
is now a node; when ¢ = 1 we say that the system has critical damping.

dangerous bifurcation
This is a discontinuous bifurcation at which a jump occurs to some remote
solution (see also crisis, jump phenomenon).

Reference: Thompson and Stewart (1986).

degeneracy conditions for 2-dimensional equilibrium
Let f : R? -+ R? be a smooth vector field with a non-hyperbolic fixed point
at z* = 0. There are four possibilities:

(1) A(0) = [8fi/0z;]% ;.1|s=0 has real eigenvalues and one of them

is zero, i.e. det A(0) = 0, TrA(0) # 0;
(if) A(0) has pure imaginary eigenvalues, i.e. TrA(0) = 0, det A(0) > 0;

(i) both eigenvalues of A(0) are zero but A(0) is not a null matrix,
i.e. TrA(0) = det A(0) = 0, A(0) # 0;
(iv) A(0)=0.

The equalities (inequalities) in (i)-(iv) are called degeneracy conditions.

Ezample: Consider a differential equation of normal form:

dz phind
= (r > awt | + O(lzV+Y

i=1
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and

a@ 2 .. 2+H
55 = 2 b’ + O(la|V+)

=2

where N > 2, a;, and b; are constants, and b, #0.

A non-hyperbolic fixed point z* with this normal form is said to be of the
saddle-node type. It is characterised by the degeneracy conditions,

det A(z*) =0 and TrA(z*) £0,
and the non-degeneracy condition,

by #0.
Reference: Arrowsmith and Place (1990).

degenerate Hopf bifurcation (see Hopf bifurcation)

degenerate node

A node (see fixed points) with equal real eigenvalues is called a degenerate
node. The names improper node and inflected node are also used.

degrees of freedom
The number of independent coordinates necessary to describe the position and

momentum of the system in the Euclidean space is referred to as the number
of degrees of freedom.

Ezample: A particle moving on a line has one degree of freedom. The same
particle moving in the three-dimensional Euclidean space has three degrees
of freedom. The rigid body in the three-dimensional Euclidean space has six
degrees of freedom (three translations and three rotations).

Remark: In order to describe the dynamics an N -degree-of-freedom system one
needs 2N first order ordinary differential equations so that the corresponding
dynamical system is 2/N-dimensional.

degree of ODE

The highest-order derivative in an ordinary differential equation (ODE)
indicates the degree of the equation.

Ezample: The degree of the following equation is equal to n

d"z + d" 1z + ~0
Gt g e te =0,
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delay coordinates reconstruction

An experimental system for which the equations of motion are unknown
presents obvious difficulties when we try to mathematically model the
dynamics. In this case, the attractor corresponding to a steady state has
to be reconstructed from the measured time series z(t). The idea, which
is justified by embedding theorems (Takens (1980); Whitney (1936)), is as
follows: for a generic observable z(t) and time delay 7, an m-dimensional
portrait constructed from the vectors

[2(t0), 2(to + T),y ..oy 2(to + (m — 1)7)]

can have the same properties (the same Lyapunov exponents) as the original
attractor. The graphical description of this idea for the embedding dimension
m = 3 is shown in Figure 35.

[Tk

time series point of reconstructed
pseudo-state space

Figure 35 Reconstruction of the attractor from time series

Ezample: In Figure 36, we consider the projection of the attractor of the
Roéssler equations for @ = b = 0.2,andc = 5.7 (see Réssler equations). In
Figure 36(a), we have the attractor obtained from direct integration of the
Réssler equations, while Figure 36(b) shows the attractor reconstructed from
time series.

Remark: Strictly speaking, the phase portrait obtained by this procedure gives
an embedding of the original manifold. The choice of the time delay 7 is
almost, but not completely, arbitrary.

If we have a system modelled by partial differential equations, or we have
experimental time series, we do not know how to choose the embedding
dimension m. According to embedding theorems, if it is possible to follow
N independent variables, then m satisfies the inequality

m> 2N +1.
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Figure 36 Rassler attractors: (a) original; (b) reconstructed from a
generated time series

mo€m<m.~. in most cases an unambiguous phase portrait can be obtained with
fewer dimensions than the inequality requires.

F vnwoa.mom m, is increased sequentially until the correlation dimension (see
dimension of sets) fails to increase.

References: Takens (1981); Whitney (1936).
RO

delay-differential equation

A differential equation of the form

d
= = Ha(®),3(t - 1)

where z € R™ and 7 is constant, is called a delay-differential or retarded

equation. One has to specify the initial condition f i ;
i or a delay-diff
equation z on the interval [—7,0]. y-differential

The phase space of a delay-differential equation is infinite dimensional.

Denjoy’s theorem
If an orientation-preserving diffeomorphi i i
phism of a circle f: 8! — 8% is of cl
; : ass
C? and the rotation number Pf) =B €eR\Q,ie is irrational, then f is

topologically conjugate to the pure rotation Rg(8) = (8 + ) mod 1.
Reference: Arrowsmith and Place (1990).
dense set

(i) Theset A C Y, where Y is a metric space, is a dense subset of Y,
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if, for every y €Y and every § > 0, there is some a € A satisfying
la —y| <.

(ii) A is a dense subset of Y, where Y is a topological space, if, for
any open subset S CY, the intersection S N A is non-empty.

mminln Definitions (i) and (ii) are equivalent.

The set A C R™ is dense in itself if, in every neighbourhood of any point
a € A, there is another point of A, i.e. every point of Aisa limit point.

An open set A is dense if every point in the compliment of A can be
approximated arbitrarily close by points in A (as A is dense in R"™), but no
point in A can be approximated arbitrarily close by points in the compliment

of A (because A is open).

Ezample: Consider a curve on the plane R?, e.g. T = y?. The compliment of
this curve is a dense open set, X. If zo # y2, then there are points (z,y) € X
such that, if |zo — | and lyo — y| are sufficiently small, then z # y2, so that
X is open. In addition, if (zo,y0) € R™, one can find an (z,y) € R™ as close
to (zo,Yo) as desired and such that z # y?, thus proving that X is dense.

Reference: Iyanaga and Kawada (1980).

derived set
The set of limit points of X is called the derived set of X, and is denoted

by X'.

describing function
This is used particularly in control and electrical systems where initially a
harmonic balance method is utilised. The describing function & of a time-

invariant nonlinearity ¢ is obtained from

ME .:.\E
®(a) = - #(asinwt) sinwtdt for a #0.

0

Reference: Iyanaga and Kawada (1980).

deterministic system
If the dynamics of a system can be described without the inclusion of any
Tandom processes (functions in the probability space) then such a system 1s

said to be deterministic.
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detuning

This is a term used in vibration studies of forc i
ed oscillato: :
A is defined as rs where the detuning

D = MAEO|EV

where wg is the system’s natural frequenc ivi
y and w the driving fi
and wp are usually close in value). § frequency (v

Reference: Stokes (1959).

devil’s staircase

A devil’s staircase is a set on the plane constructed in i

.m,»mmﬁ the interval [0, 1] is divided into three equal parts mHMWm&MM_WMMMMW MMWM
is stipulated in such a way that the function is equal to 1/2 (see Figure 37)
Then we divide the left and right thirds into three equal parts and mavimnm.
that the function equals 1/4 from 1/9 to 2/9 and equals 3/4 from 7/9 to
8/9. Now we have four intervals in which the function is not defined: [0,1/9]
[2/9,1/3], [2/3,7/9] and [8/9,1]. We now divide each of these into three macwm
parts and set the function equal to 1/8, 3/8, 5/8 and 7/8, respectively, on

the four middle pieces. By continuing thi :
. is proce 5 :
staircase. g process, we will obtain a devil’s

]

Figure 837 First steps in the construction of a devil’s staircase

References: Steeb (1991).

diffeomorphism

k . -
A C*-diffeomorphism (k = 0,1,2,..) f : M — N, is a mapping f which is
w.u!o.eo-ouo, ontg, and hasThe property that both it and its inverse are k times
Mmmumnsg_m, aRd that the kth derivative is continuous.

W N -
e e .
ifference equation (see discrete dynamical system)
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diffusion equation
The partial differential equation

ou(z,t) _ wmu:?kv
at Oz

where k is constant, is called the nonlinear diffusion equation.

—ud(z,t)

dimension of sets
There are several measures which allow estimation of the dimension of sets.

Topological dimension

The strict mathematical definition of topological dimension is complex. One
interpretation is the number of real parameters one has to use in order to
indicate the position of a point in a set A; this is called a topological dimension
dr.

Remark: A topological dimension only takes integer values.

Ezample: Let sets A, B and C be, respectively, a point, a curve and a plane.
Then dr(A) =0, dr(B) =1, and dr(C) = 2.

Hausdorff dimension

Let S be a set in R™. We then define the Hausdorfl measure of S, indexed by
the parameter 6 > R, in the following way. Define:

I5(S) = lim 15,(9),

e—0t+

where s
?_mAMV = inf _W.._ s
K() ek (o)

in which |B;| is the volume of the ball B; and where the infimum bound is
takenover all of the coverings K (¢) of the set S made of balls B; of diameter
Smaller then e. The Hausdorff dimension of S, du (S), is then defined as the

smaler MAeh &
unique value of § such that 15(S) is finite, i.e.

§ > dg(S) = 1s(S) =0

5 < dg(S) = 15(S) = +oo.

Let us note that here dg can take non-integer values. The Hausdorff measure

associated with the dimension dy is lay, and is associated with the Lebesgue

measure in R™. Thus, in order to evaluate the relative ‘sizes’ of two given sets,
measurs .
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osmu:mﬁbmmamnooovanonvmwummzmaon.a. . .
imensions an
the values of their Hausdorff measures. s and, if they are equal,

Capacity dimension —» N.b?afar‘bhﬂbrr & R0 divasasos de ﬂﬁrfrﬁ:«wo

The capacity or bozr-counting dimensi i
g _dimension was introduced by Kolmo
(1958). Let S be a subset of R™ and K(e) a covering of S with ,cmhw_o%. MM.

diameter €. Let N{e) be the minimal number of i
ball i
of S, d.(S), is then defined as the limit > 210 218 The capacity

= 1 In N(e)
&nﬁrm.v nwluvu%+ sup .IIIFAH\mV .

ManSEmN“Hrmmm:masm&ﬁmummos .
a . .
set are equal: nd the capacity dimension of the empty

da () = d.(#) = —o0
and in this case the topological dimension dr is not defined.

Ezample 2: For sets such as points, segments of a line or surfaces, the Hausdorff

dimension dy and the capaci i i
i i pacity dimension d, are equal t i
dimension, which is 0, 1 and 2, respectively. ) ? © the toplogical

Ezample 3. Oosmm@ma the triadic Cantor set. At the nth step of the construction
m:_uunmmm. the set is made of 2" intervals of equal length 3=". Thus, the
: % m_mmﬁ mﬂmwmﬁm of the triadic Cantor set obtained when n — o0 is 0 Ewa its
pological dimension dr is also 0. Let us consider th i :
. e covering corres i
to the nth step of the construction process, which is made &m ponding

sz‘mmv = 2"

intervals of size € = 3=™. When ¢
of siz . goes to 0 (n — o0), one thus ded
the capacity dimension of the triadic Cantor set is & educes that

In2

& P i
c= i3 0.6309....

The Hausdorff dimension can be obtained in a similar way and is found to be

%mmmgmg&_moﬁrmﬁam&n . .
dimoncions n OmbﬁoHmmfmgmznvmﬂ.@oﬁonmon by the following

and
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Information dimension

The capacity dimension gives the scaling of the number of cubes needed to
Cover an attractor. In the case of a strange atiractor the frequency with which
Tifferent cubes are visited is vastly different from cube to cube, so for very
small € 1t is common that only a very small number of the cubes needed to
cover the chaotic attractor contain the vast majori of the natural measure
on the attractor. In order to take into account different natural measures of
the cubes, 1t 15 necessary to introduce another definition of dimension, namely

the information dimension. The quantity
N
%H = nwn.. dr = lim - Mu..”u..ﬁmv piln pi

€—0 In(1/¢€)
—

where p; = 1/N(€), is called the information dimension; u; can be considered
as a probability with which a trajectory visits the ith cube.

Correlation dimension (Grassberger-Procaccia dimension)

Let z; be a trajectory on an attractor. We can compute the correlation integral
which is approximated by a sum

k—o0

K
) 1
Cle) = lim 5> Ule -z = 20)
W?ﬂ.

where U(.) is the unit step function (U(z) =1 for z = 0 and U(z) = 0 for
T # 0). The quantity C(e) may be shown to scale with e in the following way

deorr = lim EAQﬁmvv
e=0 Ine

where dgory is called the correlation dimension.

References: Edgar (1990); Falconer (1985); Grassberger and Procaccia (1983);
Kolmogorov (1958); Mandelbrot (1982).

discrete dynamical system
A discrete dynamical system is one in which the evolution of the variables is

Tmeasured in discrete steps. The behaviour of the system is governed by an
equation ot the form:

Tntl = .\.AHSV

which is known as a difference equation, an iterated map, or simply a map.
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The sequence of points, g,z To,... etc., is called an orbit. The term

trajectory is also used but usually this refers specifically to orbits of continuous
systems, i.e. flows.

dissipative system (see gradient system)

m?mu.mmu:um
Sense 1: If a trajectory moves away from a specific point in phase space then

it may be said to diverge, e.g. a trajectory which evolves towards an attractor
at infinity.

Sense 2: Let dz/dt = f(x), where £ € D C R™. The divergence of the vector
field f(x) at each point z € D is given by

0fi , 0fs of,
v.f=2  Of Ofn
f Bz, + B2, + .+ Bz,

In dissipative systems V - f < 0.

double point
Consider a dynamical system

d
NVM. “%AH.OV

where £ € R™, and ¢ € R. Let a bifurcation point (zg,co) be a fixed point,
8f/0z|o = 0 and 8f/8clo = 0. In the neighbourhood of the bifurcation point

we can set T = zo + dx, and ¢ = ¢ + de and expand f(x,¢). Then the lowest
order terms remaining in the Taylor expansion are

f(zo +dz,co +dc) = .w. AM.MIMVQ (dz)® + A o' voaa%fw A.@Hv (de)®* =
0

8zdc ac?

= a(dz)? + 26dzdc + y(de)?. 1)

Hm. @ﬁ dc) are along the solution set, so that f(z,c) = 0, then (1) yields two
distinct roots for the tangents (e.g. de/dz) if and only if

D=pg~ay>0. (2)

If A.wv is satisfied, the bifurcation point is called a double point. The bifurcation
which occurs at double point is transcritical.

Reference: Jackson (1990).
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double-scroll attractor
Attractor formed by the chaotic response of the Chua or double-scroll circuit
- see Chua’s circuit.

dripping tap

A common experiment for displaying interesting dynamics can readily be
carried out by using a dripping tap (or leaky faucet in American parlance).
The flow rate is adjusted while the rate at which drops emerge is monitored.
Controlled experiments reveal a detailed period-doubling sequence and chaotic
behaviour.

Reference: Alligood et al. (1997).

driven oscillator
The dynamical system described by an ordinary differential equation of the
form

— +b—+k(z) = F(¢)

where b is constant, £ € R and F(t) is a periodic function, is called a driven
oscillator.

dry friction
This friction is a friction between two surfaces due to the microscopic
interaction of the sliding surfaces (see damping).

dual cusp
One of the elementary catastrophes (see Thom’s theorem).

Duffing equation
The second-order differential equation

d? d
al%+amm+3+nawno (1)

where a, b and c are constant, and a > 0, is called the Duffing equation.

The periodically forced Duffing equation has the following form

d’z dz 3
M&ﬂ+nﬂ+@&+g = Bcoswt (2)

where B and w are, respectively, the amplitude and frequency of the forcing.

Remark: The Duffing equation describes the dynamics of a number of
engineering systems and is sometimes referred to as the Duffing oscillator.
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Figure 38 (a) Phase portrait and (b) Poincaré map of the Duffing equation

m_uwnéim“ Fora=01,b=0,c=1, B =10 and w = 1, the forced Duffing
equation (2) displays chaotic behaviour, as seen in the phase portrait of Figure
38(a) and Poincaré map of Figure 38(b).

References: Guckenheimer and Holmes (1983); Kapitaniak (1991).

Duffing double-well equation
The Duffing equation, written as
d’z dz 3
= + o +z—-2"=0
where a is constant, so that the potential energy function has two symmetric

potential wells (as shown in Figure 39), is called the Duffing double-well
equation.

Dulac’s criterion

This criterion shows that if the function B(z,y) is C' and is such that
0(BP)/0r + 8(BQ)/8y does not change sign in a simply connected region,
then there is no periodic solution of

dr
|Q|n. = NUAH.QV

and d
vy _
ﬁ: - Oﬂﬁ.@v
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v

NS

Figure 39 Potential function of Duffing double well

.
»

X

in that region.

Reference: Jackson (1990).

dynamical system
The dynamical system defined by

du
Fri fw)

where u € D C R™", is the mapping

®:R"xD - R"

which is defined by the solution u(t) = ®(t,u(0)).

Ezample: Consider the harmonic oscillator

2
m|:.+:uo, uo = u(0), %MMS = Uo.

dt?
In order to obtain the corresponding system of differential equations, we put
u = u;, and du/dt = ug. This yields

Q\:;. _ Q:m _
— = u2, - = —u.

dt dit

The solution of the initial-value problem is given by
u; (t) = ugcost + tpsint

and
ug(t) = —ugsint + g cost.

Thus, the dynamical system is characterised by the mapping

®(t, ug, wo) = (uo cost + Ugsint, —up sint + g cost)
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where ® : R+ x R? = R2,

dynamical systems theory

Hﬁm theory is the collection of ideas, theorems and numerical algorithms
which are applied to dynamical systems.
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ECG

Electrocardiography: the measurgthent of electrical activities of the heart
which has been shown to display periodic and chaotic behaviour (see
Figure 40).

06:55:44 Scale (25 mm/sec; 1 mV = 1 mm) freq = 69 p/min
[3} D 0 [} [} D PD D LI
’>\“~\ol\, >€ 756 78 1031 ss | 515 dé
M S SN W >.;!>Z>

v

bbby

e | .
Trregular part - exc. no = 1135, freq = 71, duration = 16:00

Figure 40 Irregular part of the ECG record of a 72 year old man
Reference: Glass and Mackey (1988).

EEG
Electroencephalography: the measurement of electrical activity in the brain
which has been shown to display temporal and spatial patterns (see Figure 41).

Reference: Glass and Mackey (1988).

eigenvalue and eigenvector
Let A be an n x n dimensional matrix. The eigenvalues ); ..., \, are the
solutions of the characteristic equation

det(A — AI) = 0, (1)
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Figure 41 Example of an EEG record
where I is the n x n identity matrix. Any vector v # 0 satisfying the equation
(A-ADv=0 2)
is called an eigenvector.
Ezample: Consider the equation du/dt = Au, where
=(a1)

In order to find the eigenvalues, we have to consider the matrix

1-X 1
= (700

and obtain :
det(A—AI)=(1-X)2—-4=0.
Thus, the eigenvalues are Ay = —1 and Ag = 3. Let v; be the corresponding
eigenvector for A\; = —1. Then (2) becomes
21
A 4 9 v vy = 0.
A non-trivial solution is .
V] = A ) v .
Note that there is no unique eigenvector corresponding to A; = —1, since any

multiple of v is also an eigenvector. In the similar way, one can also find the
eigenvector for Ay = 3.

Reference: Hirsch and Smale (1974).
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elastica

This is a long thin flexible beam displaying in-plane and out-of-plane motion
when compressed. Spatial behaviour of beams is a fundamental problem in
civil engineering. The configuration of the beam, assumed to be planar, is
most conveniently described by u(£), the angle which the beam makes with
the horizontal, as a function of the arc length ¢ (see Figure 42).

Figure 42 Coordinates on the beam

Let us normalise the rod to have length . The displacement (z(£), y(¢)) may
be calculated from the formulae

13 [
2(6) = [ cosu(e)ag, aen\ﬁisﬁ.
0 0

The equilibria of the beam are characterised by the two-point boundary
problem
v dnu=0 w/(0)=w(m) =0 1
grroi sinu=0 u'(0)=u'(r)= (1)
where A is the compressive force applied to the beam. This equation is just
the first variation of a minimisation problem with constraints. It is derived
under the following two assumptions:

(i) The beam is incompressible but capable of bending, with the
stored energy function being proportional to

Nm@&

where k = du/d€ is the curvature.

(ii) The ends of the rod are hinged free, thus freely permitting
rotation, but are constrained to lie on a fixed line.

The last equation is mathematically identical to that of a planar mathematical
pendulum. There is, however, one important difference between the two
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equations because the pendulum is an initial-value problem while the elastica
is strictly speaking a boundary-value problem. Under the assumption that our
elastica is infinite, we can treat (1) as an initial-value problem:

du

—= +sinu = 0. 2)

a *

The spatial plots representing the above are shown in Figure 43.

Figure 43 The spatial plots for equation (2)

References: El Naschie (1988); El Naschie and Al Athel (1989).
elliptic functions {see Jacobi elliptic functions)

elliptic integrals o
These integrals arise in the analytical solutions of ODEs. The elliptic integral
of the first kind is

T Q.w\
zﬁsum_c-%élm%%;

or 4o

_ ]
Figk) = \o (1 — k?sin? 6)172

where k% < 1, and the transformation z = sin ¢ connects the two variables.

The elliptic integral of the second kind is
T 1-— knﬁu 1/2
= —_ d
Bwi = [ (FEF) a

¢
B(o, k) = \ (1 - k?sin? 6)/2dg.
0

or
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The quantity k (k% < 1) is called the modulus of the elliptic integral of the
third kind and ¥/, given by k2 =1 — k2, the complementary modulus.

Reference: Byrd and Friedman (1971).

elliptic point
This is a different name for centre (see fixed points).

El-Nifio event

El-Nifio may be defined as the appearance of anomalously warm water in the
eastern equatorial Pacific. Associated with this is a weakening and sometimes
a reversal of the trade-wind field. Major El-Nifio-southern-oscillation (ENSO)
have events occurred in 1957, 1965, 1972 and 1982.

8 m4

.W 4] 57 65 72

3

£ 2

2

e

m o L ¥ L L] T L —"
1906 year 1976

Figure 44 Mean monthly precipitation on Nauru Island

The various events differ in detail and intensity but appear to have broadly
similar overall features. El-Nifio has major economic consequences and
possibly global climatic effects. This type of event can be determined by
the observation of certain meteorological data. For example, Figure 44
demonstrates the variability of rainfall on Nauru Island in the West Pacific.
The time series shows the characteristic that usually very little, if any,
precipitation falls in this region of the central Pacific, with large amounts
of precipitation only occurring during E}-Nifio,

A simple, but realistic model can be described which explains all of the broad
qualitative features of the phenomenon. Imagine an equatorial ocean to be a
box of fluid characterised by temperatures in the east and west (7, and Tw)
and a current u, as shown in Figure 45. The current is driven by a surface
wind U, which is in part generated by the temperature gradient (Te - Tw) Az,
where Az is the distance between points e and w. A cooler temperature in the
east (T. < T.,) produces a westward surface wind across the ocean, because
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U
—_—
wind partially driven by: (T, - T,) Upper ocean
temperatures
T wind-driven horizontal m%aocww T, and horizontal
W advection
N i
upwelling downwelling
! Deep ocean
T « Ax . T at constant
‘ - " " temperature

Figure 45 Model of the ocean-atmosphere system

of the convective tendency for air to rise (sink) over warm (cool) water. Thus
we write: d B(T, - T.)
U _ 2T w oyt
dt 2Azx Clu—u)

where B and C are constants. The term
[B(Te — Tw)/Az] + Cu*

represents wind-produced stress, and —Cu represents mechanical damping,
while a negative value for the constant u would represent the effect of the
mean tropical surface easterly. Variations in pressure have been neglected as
they do not qualitatively affect the model behaviour.

The temperature field is advected by the current. Assuming a deep ocean of
constant temperature T, the simplest finite difference approximation to the
temperature equation of fluid flow is

dTy, _ u(T —-Te)
dt = 2Az

- A(T, —T")

and
dT. _ u(Ty —-T)

de 2Azx
The first terms on each right-hand side represent horizontal advection and
upwelling, and the second terms forcing and thermal damping (4 and T*
are constants). T is the temperature to which the ocean would relax in
the absence of motion and therefore represents radiative processes and heat
exchange with the atmosphere. o

— AT, —T™).

Reference: Vallis (1988).
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embedding

A homeomorphism f which maps the set X into a space Y is called a
homeomorphic embedding of X and Y.

If X has dimension dimX and dimX < n, then X can be m.wEvmaama inY if
dimY < 2n+1. Furthermore, the homeomorphisms are dense in the sense that

every mapping of X into Y can be made a homeomorphism by an arbitrary
small modification.

A differentiable map f : X — Y of a smooth manifold X into Y is called an
embedding of X in Y if f(X) C Y is a differentiable submanifold of ¥ and
f: X = f(X) is a diffeomorphism.

An m-dimensional differentiable manifold can be embedded in R”™ if n > 2m.

References: Jackson (1990); Whitney (1936).

endomorphism

The word endomorphism is used for measure preserving, but not necessarily
invertible maps.

Nm\m}w:oﬂ Lasota and Mackey (1985).

entrainment
A different name for mode locking (see mode locking).

entropy (see measure theoretic entropy, topological entropy)

equilibrium
Consider the dynamical system

S = @)

where z € R™. A point z* such that
f&")=0
is called an equilibrium point (see also fixed points).

ergodic theory Ofvun‘,ﬁk.ﬂ
This theory investigates the statistical properties of a Eowmzno.mnm\mmnibm
mapping T of the phase space M on to itself. . T
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Ezample: The Hamiltonian equations of motion

dg; _ OH
dt Iﬁ.wﬁ.ﬂ.

d
= dp; _ _OH
dt — g

with § = 1, ..., N, gives a mapping T* of the phase space M on itself, since for
each point, (p,q) = z € M determines an appropriate point z; = Tz € M,
where T, M is a manifold tangent to M in the point z, and due to the Liouville
theorem the initial phase volume is preserved.

A system is ergodic :ua\mn\a.rm map f if the measure of every invariant set,

A= f(A) mod 0, is mmﬁrmn&% .,\QY& .

Remark: The above definition says that for ergodic systems invariant Mmem
either have measure zero, or else represent all states except for a set of measure
zero. y

- -]
i Nat
An endomorphism T is ergodic if every measurable set A which is invariant

under T' (T"TA = A) has either measure zero or 1.

References: Jackson (1990); Steeb (1991).

escape to infinity
Consider the dynamical system

dz
FTi f(=z)

where £ € R™. The situation in which the unbounded solution z(t) grows to
infinity as t — oo is referred to as escape to infinity.

escape equation
The second-order differential equation
d’z dz

Mﬂﬂ+ﬂm+al%nﬁm5€»

is referred to as the escape equation.

This equation, which is originaly attributed to Helmholz and recently the
focus of intensive study by Thompson and co-workers, is sometimes also called
referred Thompson-Helmholz equation, describes the escape of a particle from
a canonical potential well.

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 77

Reference: Thompson (1989).

Euler method
This method is the simplest method for numerical integration of ordinary

differential equations dzdt = f(z,t), given zo = z(t = 0). The numerical
solution is given by the iterates

tn, = to +nh
and
Tntl = Zn + &%A.&:, s:v

where n = 1,2, ..., and the integration step h is constant.

Reference: Press et al. (1986).

excitability
The ability of a system to respond to a sufficient stimulus producing some

large excursion and then return to its prior, relatively quiescent state. There
are many degrees and kinds of excitability.

Reference: Winfree (1988).

excitable medium

An excitable system distributed in space with coupling between adjacent
cells/pieces so that excitation can propagate as a wave.

Reference: Winfree (1988).

existence and uniqueness theorem for solutions to ODEs

Let U C R™ be an open subset of real Euclidean space (or of a differentiable
manifold M). Let f : U - R™ be a continuously differentiable C* map
and let o € U. Then there exists a constant ¢ > 0 and a unique solution
#(xo,.) : (—¢,¢) = U satisfying the differential equation

d
5 = 1@

with the initial condition z(0) = zy.

Reference: Hirsch and Smale C,o.?c.

explosive instabilities
This is a different name for crisis (see crisis).
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exponential divergence

This is the property of chaotic systems where two initially close trajectories
rapidly (exponentially) diverge and become uncorrelated (see sensitive
dependence on initial conditions).

extended phase space
Consider the dynamical system
d’z

aa
e +\Amv8,$ Io.

X3

v

X,

(2)

®

x=t
Figure 46 (a) Phase plane and (b) extended phase space

The phase-space trajectory can be visualised in the phase plane defined by the
(z1, %) plane where z; = z and zp = dz/dt. If we additionally put z3 = t,
we will have the three-dimensional dynamical system

— =123

dt

dz
.MW = —f(z1,%2,%3)

d
an dzs

rralah
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The space (z1,%2,73) is called the /extended phase space or full phase space.

The difference between phase plane and extended phase space is illustrated
in Figure 46.



F

Farey sequence
Let n be a natural number and set x5 = 0,y =z, =1, and y;, = n; then
produce further iterates according to the formulae

Y +n
Tk+2 = || Tg41 — x4
Yk+1 .
Ye +n
Yet+2 = | =1 Yk+1 — Yk
Yk+1

where [a] denotes the greatest integer not greater than a. The quantity z; /y; is
called the Farey fraction, and zo/yo, z; /¥1,... etc. is called the Farey sequence.

Ezample: If n = 5, then in the interval [0,1] we have the following Farey
sequence: 0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/5, 2/3, 3/4,4/5, 1/1.

Reference: Falconer (1985).

fast variables (see averaging methods)

fat fractals (see fractal sets)

faucet (see dripping tap)

feedback controlling methods (see controlling chaos)

m.mmmmhvwﬂs.m. constant
A sequence of period-doubling bifurcations leading to chaos has an interesting
property. Consider the following ratio:
Opn — Qp
P = n n—1
Ant1 — Qn
where a, are the values of the parameter at which the period-doubling
bifurcations occur, as shown in Figure 47. It was observed by Feigenbaum
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that

e n =0
where 8 = 4.66920... . Feigenbaum’s numerical computations and the

analytical results of Collet, Eckmann and Lanford (1970) based on
renormalisation theory (see renormalisation group theory) show that the
period-doubling cascade has some universal properties.

a, a, a

= => = - =

Figure 47 Cascade of period-doubling bifurcations as a parameter value is varied

References: Collet et al. (1970); Feigenbaum (1978).

Feigenbaum’s scenario

The cascade of period-doubling bifurcations viewed in the form of a bifurcation
diagram, i.e. plotting a representative state variable z versus a bifurcation
parameter a;, as shown in Figure 48, is called Feigenbaum’s scenario (see also
Feigenbaum’s constant).

a; ay ... a

Figure 48 The Feigenbaum’s scenario
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Fermi—Pasta—Ulam model
The system with the Hamiltonian function

N
1 1 1
H(p,q)=> Tﬁw + 500 - gi1) + (@i - S.vw_

=1

where g; = g;1n is a periodic boundary condition and N = 64, is called the
Fermi-Pasta~Ulam model.

Reference: Fermi (1965).

Fibonacci numbers
These numbers are defined by the difference equation

Fo=Fy 1 +F,_,
wheren > 2, Fy =0 and F} = 1.

Ezample: The first Fibonacci numbers are 1, 2, 3, 5.

Reference: Schroeder (1984).

final-state sensitivity

If a system possesses more than one attracting solution and the boundaries
which separate their basins of attraction are fractal then the system is said to
possess final-state sensitivity. Two close-by initial conditions chosen close to
or on this boundary can arbitrarily evolve to give different solutions.

Reference: Ott (1992).

first integral
Let V be a vector field on a differentiable manifold, and g: M - R be a C”
function (r > 1). A first integral of V is a C! function g : M — R, which is
constant along trajectories of the dynamical system defined by V, ie.

dx

d
9@ =Vg- % = Ve V).

Ezample: Consider the autonomous system

&Su = Tox
ar = Lak3
d

T =
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and @ ..
ar - o1
defined on R3. The associated vector field is given by
7] o)
V= Hu&w®|§. + HwHw@'&n + z11200z3.

The first integrals are

g1(z) = aw - aw

and ) )
S?vﬂaul&w.

Reference: Steeb (1991).

first-order ODE o
If the highest-order derivative in the ordinary differential equation is the first
derivative, then the equation is first order.

Ezample: The differential equation

m.fﬁno

where u € R, is the first-order ODE.
first return map (see Poincaré map, return map)

fixed points
The point u* € R", such that

fw) =0

is called a fixed, equilibrium or critical point of the dynamical system given
by du/dt = f(u).

Ezample: Consider a two-dimensional linear system, du/dt = Au, where the
matrix A is 2 x 2 dimensional. As the dimension of the phase space is two,
the eigenvalues A\; and A, are both real or they are complex conjugates. The

behaviour of the solutions
At
— Cc1€
20)= (2% )

At nyn
2(t) = A cert + cpte v

cpet

for A\; # Az, and
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for Ay = X2 = X are very different for various choices of A; and As.

If the eigenvalues are real and have the same sign, the fixed point is called a
node. Moreover, when ); < 0,2 < 0, then the critical point is an attractor
i.e. a stable fixed point, and if A\; > 0, X, > 0, then it is a repellor (see Figure
49). It is easy to verify that in the phase-space the orbits are straight lines
through the origin when A; = Ay = ).

u

a) b)

Figure 48 The node; as: (a) an attractor; (b) a repellor

A fixed point with real, equal eigenvalues is called an improper, degenerate
or inflected node.

If the eigenvalues are real but have different sign, then the critical point is
called a saddle. In the phase space the orbits are given by

|u1] = clug| =P/l

with ¢ as constant. In this case, the critical point is neither an attractor nor
a repellor. There exist two solutions with the property (u;(t),ua(t)) = (0,0)
for ¢ =+ oo, and two solutions with this property for t = —oo (Figure 50). The
first two of these solutions are the stable subspace of the saddle point, with
the other two being the unstable subspace.

When the eigenvalues \; and A, are the complex conjugate,
Al = ptwi

with pw # 0, the complex solutions are of the form exp((u % wi)t). The linear
combination of the complex solutions leads to real independent solutions of
the form

e’ coswt, ePtsinwt.
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A

U,
A U,

Figure 50 Saddle point

A A

— ] —el

. o
—/

v
Ve

U

-/

Figure 51 The focus as: (a) an attractor; (b) a repellor

(2) ®

The orbits spiral in for 4 < 0, or out for p > 0, with respect to the origin,
and the critical point is called a focus (Figure 51).

The latter case is when the eigenvalues are purely imaginary. If

v&.m = $wi
then the critical point is called a centre. The solutions can be written as
a combination of coswt and sinwt and the orbits in the phase space are
concentric ellipses (Figure 52). It is clear that in this case a critical point

is neither an attractor nor a repellor.

Reference: Thompson and Stewart (1986).

flip bifurcation (see period-doubling bifurcation)
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Figure 52 Representation of the critical point as a centre

Floquet theory

This theory is concerned with the solution of ordinary differential equations
with periodic coefficients, e.g.

m»e
i +w(tly=0

where w(t + T') = w(t). If y;(t) i = 1,2 are two independent solutions, then
yi(t + T) are also independent solutions. Therefore

2
vilt+T) = ayy;()

J=1

for the constants a; ;. For the general solution

2
> ()

f=x]

(t)

with constants c;, one has

2
> aie;(t).

i,4=1

F(t+T)

The relationship
Ft+T)=0oF(t)

is :d.ﬁ:ma E\. %.2\» - oI) = 0, where A = [ay] and I is the identity
matrix. In this situation, bt defining the characteristic Floquet multipliers
p by o = exp(uT'), one can write the general solution as

F(t) = exp(ut)p(t)
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with ¢(t) as a T-periodic function.
Remark: The Floquet theory is sometimes called the Bloch theory.

References: Steeb (1991); Jordan and Smith (1988).

flow
Let M be a manifold and {g*} be a family of the maps g* : M — M, such
that for all s,t € R

bi.u — stu
and ¢ is the identity. The pair (M, {g*}) is called a flow.

Consider a dynamical system

dz

= 1

— = /() &)
where £ € R™ and f : U —» R™ is a smooth function defined on some subset
U C R™. We say that the vector field f generates a flow ¢; : U — R"™, where

¢:(z) = P(z,t) is a smooth function defined for all x € U and ¢ in some
interval I = (a,b) C R, and ¢ satisfies (1) in the sense that

(9@ Dlemr = 1($(@7))
forallz € U and 7 € I.

References: Arnold (1983); Guckenheimer and Holmes (1983).

flutter .
Structural self-excited oscillations with growing amplitudes caused E\.mcam
flowing across plates and strings, inside tubes, or involving more complicated
structures, are known as flutter.

The occurrence of flutter is often connected with the Hopf bifurcation in
various models.

focus (see fixed points)

fold
One of the elementary catastrophes (see Thom’s theorem).

The term fold is sometimes used as an abbreviation for a fold bifurcation or
saddle-node bifurcation (see bifurcation).

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 89

folded-band attractor

The name sometimes used to describe the attractor produced by the Rossler
equations (see Rossler equations).

follower force

Consider the clamped-free column in Figure 53, which is loaded by a special
type of force which acts along tangents to the free tip of the deformed column.
This type of loading is called a follower force.

Figure 53 Column loaded by a follower force

Reference: Thomsen (1997).

forced systems (see nonautonomous system)

fractal dimension

If the dimension (either Hausdorff or capacity) of the set A is non-integer, it
1s said to be fractal (see dimension of sets).

Reference: Mandelbrot (1982).

fractal sets

Mandelbrot originally suggested that a fractal set should be defined as a set
whose Hausdorff dimension is strictly greater than its topological dimension.
This definition is adequate for many sets, but there exists a class of sets (of
the same type as the triadic Cantor set) whose Lebesgue measure 1s finite and

whose Hausdorff dimension, dy = 1, is equal to the topological dimension, so
a new definition had therefore to be introduced.

Ezample 1: Consider the rational numbers in the interval [0, 1]. These numbers
are dense in [0,1], since any irrational number can be approximated by a
rational number to arbitrary accuracy. The rationals are also countable, since
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we can arrange them in a linear ordering such as

11213123411

2 s 22 2,5, 5, . ete
vakuhqu mumgmumuavﬂq «Qﬂu

To the nth rational on this list (denoted by s,), we now associate an interval

I, = (1 2 ()

n=%T2\2) "2 \2

of length 27" 1. We are interested in the set S formed by taking the interval
{0,1] and then successively removing I1,I2,...,In in the limit n — co.

Since the total length of all of the removed intervals is given by

MAWV::H:

we have the Lebesgue measure of S, denoted as p(S), satisfying

w(S)>1-n

which is positive if n < 1. The ‘greater than’ symbol appears because some of
the removed intervals overlap.

As the Lebesgue measure of S is positive, its capacity dimension d. is the
same as the space in which S lies, i.e. dc =1 and is equal to the Hausdorft
and topological dimensions.

Sets similar to that introduced in the above example are called fat fractals
and can be defined in the following way: a set S lying in an n-dimensional
Euclidean space is a fat fractal if, for every point x € S, and every € > 0, a
Dall of radius € centred at the point x contains a non-zero volume of points in
the set and a non-zero volume outside the set.

As fat fractals are not strictly fractals according to the above definition, we
say that a fractal set is a set which has some sell-similar properties in the
Sense that its structure is the same on any scale.

This definition is much wider than the one based on the Hausdorff dimension
and, as we will see elsewhere, can be easily applied to strange attractors.

Ezample 2: In order to show that chaotic attractors have a fractal structure,
let us consider a three-dimensional chaotic attractor A on which a typical
trajectory is characterised by the following Lyapunov exponents: A1 > 0,
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(e)

Figure 54 Geometrical structure of a chaotic attractor

A2 =0, A3 <0, and

3

MU PYR !X

§=1
Consider the stretching and folding model of the chaotic attractor (see
attractor). We will analyse the evolution of an interval AB in which almost
all points belong to the attractor A and evaluate its evolution in time
(schematically shown in Figure 54). For small values of t, we practically
observe no changes in any gecmetrical structure, with points 4 and B being
transposed, respectively, into A’ and B’ (Figure 54(b)). As the sum of all
Lyapunov exponents is negative the length of A’ B’ cannot increase to infinity,
so we have to observe folding of the surface ABA' B’ (Figure 54(c,d)) and ﬁrm
creation of an arc A'CB’. The geometrical structure of an attractor can be
achieved by connecting points A’ and B’ (by ‘pressing’) and ‘sticking‘ point
x».AH B') with A, and C with B. As a result, we have the structure shown in
Figure 55(e). Due to the continuity of trajectories on the mﬁmwmm attractor, it is
necessary for an infinite number of surfaces like the one shown in Figure wm?v
to .mucme in the real attractor. In order to detect these surfaces, consider the
Poincaré map obtained by the cross-section S shown in Figure 55.

By enlarging parts S’ and S’, we can detect the self-similar structure of the
attractor, thus showing that the latter is a fractal set.

References: Falconer (1985); Kapitaniak (1991); Mandelbrot (1982).
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Figure 55 Successive enlargements of the Poincaré map of a chaotic attractor

frequency locking (see mode locking)

frequency response diagram
This is a plot of the maximum amplitude of displacement versus the variation
in frequency; it is also called a response curve.

Frobenius—Perron operator (Perron—Frobenius operator)
Let (X,B,u) be a measurable space. A map § : X — X is measurable if
S—1(B) e Bforall B € B. T

A measurable map S : X — X on a measure space (X, B, 1) is non-singular
if u(S~1(B)) = 0 for all B € B such that u{B) =0.

Let (X,B,u) be a measurable space. If S : X — X is a non-singular
transformation, then the unique operator P : L' — L, defined by

\ Pf(z)p(dz) = \ f(@)u(dz)
B s-1(B)

for all B € B, is called the Frobenius—-Perron operator corresponding to S.

The Frobenius—Perron operator has the following properties:

i) POfi + dof2) = MPfi + A Pfp for all f1,fo € L', and
A1, A2 € R, so P is a linear operator;

(ii) Pf20if f >0

(i) [y Pf(z)u(dz) = [y f(z)u(dz);

(iv) if S, = So..0S and P, is the Frobenius—Perron operator
corresponding to Sy, then P, = P™, where P is the Frobenius-
Perron operator corresponding to S.
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Ezample 1: If X = [a,b] is an interval on the real line R and B = [q, z], then
the Frobenius—Perron operator can be given in the explicit form

\ Pf(z)ds H\. f(s)ds
a 5-1({a,z))
and by differentiating

d
Pf(z) = iz -1 (faa] f(s)ds.

Ezample 2: Let S(x) = exp z. Thus, we have

Pf(2) = = f(lnz).

Reference: Lasota and Mackey (1985).



G

Galerkin method

This method is a procedure for the reduction of a set partial differential
equation to a set of ordinary differential equations, used for continuous (i-e.
in space and time) systems. Assuming a spatial variation and using the
orthogonality of linear mode shapes, i.e. the solution is assumed in the form

N
wz,t) =Y un(t)pn(z)

n=1

where N — oo, and where ¢,(x) are linear natural modes of the system, this
method produces an approximate model based on coupled nonlinear ordinary
differential equations.

Reference: Nayfeh and Mook (1979).

Gauss map
The map zp41 = f(z,), given by

0 if z=0
NEHAH\H £ 220

is called the Gauss map.

Remark: This map preserves the Gauss measure
1 1
tET m.m\», Is%

where A C [0,1) and integration in the Lebesgue sense is over the whole
interval [0, 1).

generic property
The term generic is often used in nonlinear dynamics to mean typical in the
sense that a generic property implies that small, continuous and differentiable
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perturbations do not alter the system configuration. A strict mathematical
definition of generic property is not easy to prescribe (see Jackson (1990) for
more details).

Reference: Jackson (1990).

geodesic flow

Let M be a compact connected smooth Riemannian manifold and define
the sphere bundle ¥ as the set of all pairs (m,£¢), where m is an
arbitrary point of M and § is a unit tangent vector starting at m
(B={(m,&) :m e M, &€ Ty,||&|| =1}). It can be proved that T, with an
appropriately defined metric, is also a Riemannian manifold with a measure
uz. In a physical interpretation, M is the configuration space of a system that
moves with constant speed and ¥ is its phase space. Let y: R = M be a C!
curve. The latter is called a geodesic if for every point mg = v(¢,) there is an
€ > 0 such that for every m; = y(t,), with |t; — ¢o| < ¢, the length of the arc
< between the points mg and m; is equal to the distance between mg and m;.

It can be proved that, for every (m, &) € T, there exists exactly one geodesic
satisfying

¥0)=m, ¥ (0)=¢ [W®ll=1 (1)
forall t € R.

Define a dynamical system {S;} , with t € R on Z, by
Se(m, &) = (v(£),7'(t) (2)

where the geodesic -y satisfies (1). This system is called a geodesic flow.

Reference: Lasota and Mackey (1985).
giant squid axon (see axon)

Ginzburg-Landau equation
The partial differential equation

dw Pw 2

e Q€+QMMM + yw|w|
where w is a complex-valued function of space and time, and the control
parameters o, 8 and <y are complex, is called the one-dimensional Ginzburg—
Landau equation.

Remark: This equation is studied in connection with the spatio-temporal
behaviour of fluids, superconductors, etc.

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 97

Reference: Drazin and Johnson (1989).

global

This term is applied to properties which cannot be analyzed in arbitrarily
small neighbourhoods of a single point.

global bifurcation
Assume that the topological character of the phase portrait of the dynamical
system changes when a control parameter is varied without changing the

type of any fixed points of the system. Such a bifurcation is called a global
bifurcation (see also bifurcation).

Remark: In the case of a global bifurcation the change in the phase portrait
is not noticeable in the neighbourhood of any fixed point and can only be
discerned on a global scale.

Reference: Guckenheimer and Holmes (1983).

golden mean
The number w = 1/2(+v/5 — 1) is called the golden mean.

Remark: The golden mean is considered as the most irrational number in the
sense that it is the irrational number least easily approximated by rationals.

gradient system
Let V: R™ - R be any function. The n-dimensional system

dz
M«l = IQ<AHV

is called a gradient system.

Remark: Gradient systems for which all fixed points are hyperbolic and all
intersections of stable and unstable manifolds are transversal, are structurally
stable.

Reference: Hirsch and Smale (1974).
Grassberger—Procaccia dimension (see dimension of sets)

Grossman-Hartman (Hartman—Grossman) theorem for flows
Let A:R™ — R" be a linear transformation and let all eigenvalues A be such
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that |A| # 1. Every local diffeomorphism B, where
B:(R™,0) = (R™,0)

with the linear part A at the fixed point O, is topologically conjugate to A in
a sufficiently small neighbourhood of O.

Remark: In some texts this name is given as Grobman.

References: Arrowsmith and Place (1990); Irwin (1980); Steeb (1991).

H

Hamiltonian function

The Hamiltonian function H is the function defined in terms of the Lagrangian
function L, as follows:

:a. a
Hp,qt) =3 gt - L(g, ) Y
..Hw

where the coordinates ¢ = (g1, ...,gx)T represent the generalised coordinates
of an n-degree-of-freedom system and dg/dt = (dg,/dt,...,dq,/dt)T are
the generalised velocities. The canonical momenta, p; are obtained from the
Lagrangian according to
— |...@W.| (2)
P = g/

The Lagrangian is obtained as the difference between the kinetic T(dg/dt)
and potential V(g,t) energies in the usual way

dg ., _ . (dg\ _
e 50 =T (F) -V,

We use (2) to find dg;/dt = dgi(p, ¢)/dt and thereby eliminate the dependence
in (11) on the velocities in favour of a dependence on the canonical momenta,
and generalised coordinates.

Hamiltonian system .
A Hamiltonian system is a dynamical system given by

dg _on
dt ~ op
d
” dp _ _0H
dt = ¢

where p, g € R?™ and where H is a Hamiltonian function.
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If the Hamiltonian function does not depend on ¢, i.e. H(p,q,t) = H(p,q),
then the Hamiltonian system is said to be conservative.

References: Arnold (1988); Rasband (1990).

harmonic balance method

This is a method of approximation to periodic solutions of differential
equations. If we assume that solutions are periodic with period T = 27 /w,
then in line with a weighted residual approach a trial solution is considered
of a form:

N N
Z=ap+ M az;i—1 cos(iwt) + MU az; sin(iwt) 1)
i=1 i=1
i.e. a Fourier type basis.
If, for example we consider solutions of the form (1) to the differential equation
i+ f(z, %) = acos(wt + ¢) + G, 2)
then substitution of (1) into (2) yields terms involving products of powers of
sin(iwt) and cos(iwt). These latter terms can be expanded using trigonometric
identities to leave all terms as sums of cosines and sines. We can now ‘balance’
the harmonic terms by equating to zero all the coefficients of cosines and sines
(ignoring higher order terms), to yield expressions for the various coeflicients
in the approximation (1).

References: Hayashi (1964); Kapitaniak (1990).

harmonic oscillator
The dynamical system described by the linear equation

is called the harmonic oscillator; Q is the frequency of the oscillations or
natural frequency.

Hartman—Grossman theorem (see Grossman-Hartman theorem)
Hausdorff dimension (see dimension of sets)

Hausdorff measure (see dimension of sets)
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heat equation

This is a partial differential equation which is used in the study of heat
conduction and is given by

2
Ou _ 20

ot oz
where typically a? is the thermal diffusivity.

Heighway’s dragon

This refers to a set in the plane. It is defined as a limit P of the sequence of
piecewise linear curves P, where F, is a line segment of length 1. P; results
from P, by replacing the line segment by a piecewise linear curve with two
segments of length 1/v/2, joined at a right angle. The two ends are the same as
before. For P,, each line segment in P is replaced by a piecewise linear curve
with two segments each having length 1/+/2 times the length of the segment

that is replaced, etc. The first steps in the construction of Heighway’s dragon
are shown in Figure 56.

Figure 56 First steps in the construction of Heighway’s dragon
Hénon—Heiles system
The Hamiltonian system generated by

1 1 "1
H(p,q) = 5 +p3) + 50} + ) + a1} — 34

is called a Hénon-Heiles system.
Reference: Hénon and Heiles (1964).

Hénon map
The two-dimensional map

Tntl = Yn + 1 —az?
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and
Ynt+1 = bxn

where a and b are positive constants is called the Hénon map.

Ezample: For a = 1.44 and b = 0.3, iterations of this map appear to be chaotic,
as shown in Figure 57.

In

-2

-2 Xn 2

Figure 57 Chaotic attractor of the Hénon map

Reference: Hénon (1976).
heteroclinic point (see heteroclinic trajectory)

heteroclinic trajectory

This is a trajectory between distinct points u} and u} which tends towards
u] in reversed time and towards u3 in forward time. Any point which maps
u} in forwards and u3 in backwards time is a heteroclinic point.

Ezample: Consider a mathematical pendulum

m|~.m +sinu=0

dt? -
for u € [—m, w]. It can be shown that the fixed point (0,0) is a centre and the
fixed points (—m,0) and (w,0) are saddles. The phase-space portrait of the
pendulum is shown in Figure 58.

Consider the orbit I';, which starts at the unstable manifold U; of the saddle
at — and finishes at the saddle at 7 approaching it on the stable manifold
Sy of . The orbit I';, which starts at the unstable manifold of the saddle at
m of Uz and connects to the other saddle via S;, has a similar property.
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A

Figure 58 Phase-space portrait of a pendulum

The orbit v C 'y UT; is called a heteroclinic orbit.

Hilbert’s 16th problem

This problem concerns the number, and stability properties, of limit cycles
for systems described by

dz

5 =Fay
and

dy _

MM = G(z,y).

Even when F and G are simple polynomials, the solution to Hilbert’s 16th
problem, remains an open question.

Reference: Drazin (1992).

Hill’s equation
An ordinary differential equation of the form

d*z
Az +P(t)z =0

where P(z) is a periodic function, is called Hill’s equation.

Hill’s equation was derived as an approximation to the 3-body problem.
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hill-top saddle .
The term hill-top saddle refers to the global unstable saddle-type mo._cﬁwa
around a global maximum in the governing potential energy function in
problems relating to escape from a potential well.

Ezample: Consider the dynamics of the unforced Thompson-Helmholz escape
equation

This system has"a potential function V(z), as shown in Figure 59(a), with
a hill-top saddle global maximum (z = 1) which corresponds to an unstable
fixed point.

A Q.N Av
Vix) y 5
@ b= () x

Figure 59 (a) Potential function, and (b) Poincére map of Thompson-Helmholz
escape equation

When small forcing is applied, then this point may be associated with a small
unstable periodic orbit. When the system is stroboscopically sampled, then
this solution produces a single point which corresponds to a saddle point in
the Poincaré phase plane, as shown in Figure 59(b).

Hodgkin—Huxley equation

The fundamental equations of electrophysiology, namely the prototype .mo.n an
exact description of the dynamics of voltage and of specific ion conductivities
in cell membranes.

Reference: Winfree (1988).

Holling—Tanner model .
This is a model for population dynamics of the vnovrvwmmmﬁoﬂ. type which
involve oscillations which are structurally stable. It is described by the
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following equations:

@lﬁA HﬂvH WIT1Ty
de — !

with r, s, k, D,andr > 0.
Reference: Arrowsmith and Place (1990).
homeomorphism

This is a one-to-one and onto map f : X — Y for which both f and inverse
f~! are continuous.

Reference: Jackson (1990).

homoclinic point (see homoclinic trajectory)

ot ARG A
homoclinic tangle
Let M be a compact two-dimensional manifold and f be C! diffeomorphism
on M with the hyperbolic saddle point zg. If the stable W* and unstable
W* manifolds of the hyperbolic saddle point z¢ intersect at some point z7,
then they must intersect infinitely many times. Figure 60 illustrates the effect
that this constraint has on the two manifolds if we attempt to return them
directly to o itself. As the unstable manifold approaches the saddle point
the loops between adjacent homoclinic points are stretched parallel to W*
and squeezed parallel to W*. The manifold therefore undergoes oscillations of
increasing amplitude and decreasing period. The fate of the stable manifold is
similar under reverse iterations, thus resulting in the homoclinic tangle shown
in Figure 60. The parallelogram R has images Ry = fV(R) and Ry = f~N(R),
intersecting in a horseshoe configuration.

homoclinic trajectory
This is a trajectory of a point u* which tends to u* in both forward and
reverse time. Each point which tends to u* is called a homoclinic point.

Example: Consider the equation

d?u 3
Froy bu+cu® =0

where b < 0 and ¢ > 0 are constant. The homoclinic orbit to the fixed point
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Figure 60 The homoclinic tangle occuring at a hyperbolic saddle point

u(t) = ,\wa sec h(£(—1)Y2(t — to))
du(t)

= L;\mmg h(£(—=1)Y2(t — to) tanh(£ (=) /2(t — to)).

(0,0) is given by

and

References: Kapitaniak (1991); Wiggins (1990).

homogeneous function
The function P(z,)), where A € R is a homogeneous function of degree n
(n=1,2,..) if P(z,A) = A"P(z).

homotopy
This theory is the branch of topology which deals with the continuous
deformations of sets.

Let X and Y be two topological spaces, and f and g two continuous maps
f:X =Y ,and g: X = Y. Then f is said to be homotopic to g if there
exists a map h : X x [¢g] = Y, continuous in (z,t) such that h(z,0) = f and
h(z,1) = g.

Two spaces X and Y are called homotopically equivalent if there exist maps
f: X =Y and g : Y = X such that the composite maps fg: Y — Y and
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gf : X — X are homotopic to their respective identity maps I : ¥ — ¥ and
I'X—-X.

. . trv/vbhkﬁ)
Hopf bifurcation A
The womuom&l,»saaon%lg bifurcation, which is frequently simply called
the Hopf bifurcation, involves the change in stability of a focus in a dynamical
system

dx
Qﬁvm = \.Aau Ov AHV
where £ € R?, and c € R, mm a control parameter c is varied, together with
the birth of a periodic orbit, as illustrated in Figure 61. The Hopf bifurcation
can occur in any (larger than one) dimensional system and can be studied via
a two-dimensional centre manifold.

change ¢ change ¢
® = - © =
unstable focus stable focus
stable focus + unstable focus +
enclosing limit cycle enclosing unstable
ST ST ) limit cycle
o P
oy U B

" Figure 61 Generic Hopf bifurcations

The bifurcations can be viewed mure completely in the response-control space,
where the bifurcation point is taken to be ¢ = 0. In this space, one can see
that there is a surface which contains only periodic solutions of the nonlinear
equation (1). This surface is called the centre manifold (see centre manifold
theorem) in the response-control space.

Periodic solutions are either stable or unstable limit cycles. If the surface
consists of stable limit cycles, as in Figure 62(a), then the bifurcation is said
to be supercritical (or soft excited, since if ¢ is only slightly positive, the
motion away from the fixed point is very small since there is a nearby stable
limit cycle). If the centre manifold consists of unstable limit cycles ) (see
Figure 62(b)), the bifurcation is referred to as subcritical (or hard excited; as
a small perturbation can take the state ‘outside’ the unstable limit cycle; the
trajectory will then continue to some distant part of the phase space).

A degenerate Hopf bifurcation is a bifurcation in which as a parameter moves
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[

supercritical
(soft)

®) subcritical
unstable (hard)

Figure 62 (a) Supercritical and (b) subcritical Hopf bifurcations

through the bifurcation point the equilibrium position changes from a stable
spiral to an unstable spiral but for which no unique periodic orbit exists.

Reference: Jackson (1990).

Hopf theorem
Let G be an open connected domain in R™, with 4 > 0, and let F be a real
analytic function defined on G' x [—p, u}. Consider the differential system

dz
MM = N‘JAHuOY G.v

where z € G, |c| < u. Suppose that there is a real analytic, vector function
g defined on [—p, y] such that F(g(c),c) = 0. Expand F(z,c) about g(c) to
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F(z,¢) = L& + F*(3,0), 2

in which Z = z—g(c), and where L, is an n x n real matrix which depends only
on ¢, and F*(Z,c) is the nonlinear part of F. Suppose that there exist exactly
two complex conjugate eigenvalues, a(c) and a(c), of L, with the properties

Re ((«(0)) =0
and
Re Aamﬂnsv #0

Then there exists a periodic solution P(t,e) with period T(e) of (1) with
¢ = c(e), such that ¢(0) = 0, P(t,0) = g(0) and P(t,e) # g(c(e)) for all
sufficiently small ¢ # 0. Moreover, c(e), P(t,e), and T(€) are analytic at
¢ = 0, and T(0) = 27/|Im «(0)]. These ‘small’ periodic solutions exist for
exactly one of three cases, namely either only for ¢ > 0,c<0,0rc=0.

Reference: Chow and Hale (1982).

Hopfield model

This is a model of a neural network, which can be formed by an electric
resistance—capacitance (RC) circuit connecting amplifiers. The input voltage
u and output voltage V are characterised by the function V = g(u), as shown
in Figure 63.

Figure 63 Relationship between input « and output V voltages in the
Hopfield model

Reference: Drazin (1992).

Hopf-Landau theory (of hydrodynamic turbulence) (see Landau—
Hopf theory)
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horseshoe map

This map is specified geometrically in Figure 64. The map takes the square
S, uniformly stretches it vertically by a factor > 2, and then uniformly
compresses it horizontally by a factor A € (0,1/2). The long strip is next bent
into a horseshoe shape with all the bending deformations taking place in the
uncrossed-hatched regions of the Figure. The horseshoe (the transformed set
F(S)) is placed on the top of the original square, so that the map is now
confined to a subset of the original unit square. If the entire sequence of
operations is repeated, then four stripes appear from the original two and so
on. The repetition of the process n times leads to 2" stripes, and a cut across
the stripes would, in the limit of large n, lead to a fractal, or more precisely, a
Cantor set. Note that in each iteration a certain fraction of the original area
of the square S is mapped to the region outside the square, and in the limit
n — oo almost every initial condition with respect to Lebesque measure leaves
the square, so that the Cantor-like limit set is dynamically unstable.

N

1 > > /
N
S 5

A

=

—

vTE
V>

N N

S S

N\

SN fS)

-

Figure 64 Construction of the horseshoe map (two iterations)

A configuration similar to the horseshoe map occurs in the phase space
of dynamical systems where there are regions with strong contraction and
expansion. For example, in the neighbourhood of saddle points, trajectories
approach fixed points most rapidly along the stable manifold, and depart most
rapidly along the unstable manifold.

Tangent vectors along the stable manifold are contracting (negative Lyapunov
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mxvﬁs.mbnmy and tangent vectors along the unstable manifold are expanding
(positive Eﬁv.cug exponent). Any region of phase space where these two
types of behaviour are in close proximity may exhibit stretching and folding.

Ezample: Consider a damped unforced pendulum modelled by the equation

$o | dz
i naw+m~=alo.

After a fixed-point analysis, one arrives at the phase plane shown in Figure 65.
The stable and unstable manifolds of the saddle-type fixed point at z = =+,

where dz/dt = 0, are the trajectories that approach and depart most quickly
from the unstable fixed points.

. \
Figure 65 Phase plane of the damped unforced pendulum

Now consider the lightly driven pendulum

ana.f aa+ )
i QMM sinz = fcost

s&oa.m f << 1. In this case, the plot of Figure 65 can be approximately
nozm&mnm&. as a Poincaré map of the three-dimensional phase space, except
that the lines should be regarded as a sequence of dots (mapping points)

corresponding to successive passages of the trajectories through the cross-
section.

When the forcing is increased, the stable and unstable manifolds can cross
for example at the point ;. We can observe that each crossing is mapped ::..ov
another one which is closer to the saddle point, thus leading to an infinite
number of intersections, I, I, ..., etc. (Figure 66).
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Figure 66 Intersection of stable W* and unstable W* manifolds on
the Poincaré map of the forced pendulum

A small rectangular section of the Poincaré map near I; undergoes stretching
and folding much like that of the horseshoe map, due to the strong bending
of the manifolds near the saddle point.

Remark: Generally, it is shown that the intersection of stable and unstable
manifolds (for example, between I; and I,) is topologically equivalent to
(i.e. can be smoothly transformed into) the interated Smale horseshoe. This
horseshoe configuration of the Poincaré map shows that two points which are
initially close together will move apart after a few iterations. Therefore, a
horseshoe map can be considered as a prototype of chaotic dynamics.

References: Newhouse (1980); Wiggins (1988).

hyperbolic fixed point
Let u* be a fixed point of

du
T = f(u)

where u € R™ and A is the matrix A; ; = (8f;)/0z:lu- - Then u* is a hyperbolic
point if A has no purely imaginary eigenvalues.

hyperbolic set

Let M be a compact smooth m-dimensional manifold with T, M the tangent
space to M at the point z, and let f : M — M be a diffeomorphism. Let
A be a closed subset of M, invariant under the diffeomorphism f. Assume
that we have linear subspaces E_ andE} of T, M for each z € A, depending
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continuously on z such that

.M =E; +E}

and
dimE; +dimE} =m
and that
T.fE; = fo
furthermore
T.fE} = EY .

EZ and E} form a continuous invariant splitting of TM over A. The subset

A is called a hyperbolic set if there exist constants C > 0 and © > 0 such
that , for alln > 0

Tz | gme < CO™jull,
where ||.|| is a norm in T, M if u € Ef, and

Tz f"vllgne < CO™o|l,
ifve E;.

hyperbolic system (see Axiom-A diffeomorphism, Axiom-A flow)

hyperchaos

Let the n-dimensional dynamical system have an orbit with a spectrum of
Lyapunov exponents, A\; > Ay > A 2.2 A K

M:Uv:. <0
i=1

and at least méo Lyapunov exponents are positive, then the orbit evolves on
a hyperchaotic attractor. This type of behaviour is referred to as hyperchaos.

Reference: Rossler (1983).

hysteresis

This is the term used to represent global behaviour whereby a function or
system response is different for increasing or decreasing parameter values.

@&3.:1@” Consider a vibrating mass whose motion is governed by a softening
nonlinear spring, as shown in Figure 67(a).

A response-curve plot of the maximum amplitude of the displacement, |z,
shown in Figure 67(b), bends over to the left so that for increasing w the
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x()
k(x) _
(a) m ®) |

<>
cos(wt)

Figure 67 (a) Model of a vibrating system, and (b) the corresponding response
curve

system jumps at A to the resonant motion, while for decreasing w the system
would evolve along the resonant branch to the point B where a jump to the
non-resonant motion would occur.

Tkeda map
Let z be a complex number, z = z + iy, where z,y € R. The map given by
the relationship

. c
Zny1 T+ C2zexp T AD - M.H“ﬂinﬂvg

where 7, ¢1,2 3 are real parameters, is called the Ikeda map.

Ezample: For r = 0.85, ¢; = 0.4, ¢c; = 0.9 and ¢35 = 7.2789, this map shows
chaotic behaviour, as illustrated in Figure 68.

1.5

-1.0 * 2.5

Figure 68 Chaotic behaviour of the Ikeda map

impact oscillator
An the name implies, this describes an oscillator with impacts. Consider a
mass moving along z which is driven, but also undergoes repeated impacts
caused by a motion-limiting constraint at z = a. The simplest form considers
the motion to be linear between impacts and may be modelled by

d’z dz

M“M+~VMM +x = Fcoswt
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for z < a and

¥t =rz

for x = a, where r+ and z~ denote the velocity before and after impact,
respectively, and r is the coefficient of restitution. Such systems are also
referred to as vibro-impact systems.

References: Foale and Bishop (1994); Kobrinskii and Kobrinskii (1973);
Nordmark (1991); Shaw and Holmes (1982).

imperfect bifurcation .
Bifurcations which occur due to the imperfection of physical materials are
referred to as imperfect bifurcations.

magnets

Figure 69 A strip with two magnets

Ezxample: Consider a light, stiff metal strip (shown in Figure 69) with its
bottom edge attached to a table, and two magnets on opposite sides of the
strip (to maintain symmetry), which can be moved up or down the strip at
a distance I from the bottom (used here as a control parameter). The strip
is initially vertical with the weights at the bottom (I = 0). Assume that the
torque generated by the strip about the bottom axis, when it is displaced
by an angle 8, is simply proportional to 8, i.e. the strip’s torque = —n(l)0,
where 77 is the torsional stiffness of the strip. Newton’s equation, when the
strip experiences a damping force ud4/dt, is

2
Eum = m_lw —nf + Mglsin@
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where g is the gravitational acceleration, and ignoring the inertial effect
|ud8/dt| > |M1%d*0/dt?|)
which gives the approximate equation

& 5, MG

MM = 1..\..@.% + ﬂNmmbw = .m._A%Lv
The equilibrium states are then given by
I,
g = P sin 0, (1)

where [ = 3\3.5. One readily concludes that [ = D is the bifurcation point,
as shown in Figure 70(a) where the ship buckles. The symmetry is broken if

the strip is not orientated vertically (due to the physical imperfections) when
= 0. In this case (1) is replaced by

.
6= ) sin(8 + ¢) (2)
and this leads to the imperfect bifurcation shown in Figure 70(Db).

6 6

_ID

-~

(@) (b)

Figure 70 (a) Ideal and (b) imperfect bifurcation diagrams

References Jackson (1990).

implicit function theorem
Let F(z,y) = 0 be a system of n equations, and let A € R™ and B € R™ be

regions mco.r that, for z € A and y € B, this system has a real solution, and
the determinant of the Jacobian does not vanish, i.e.

m..m — QA.NUH.. ....Nﬂ_:v
QA.&: seey nu:v

det

oz, # 0.
Then there is a region C' C B, such that for y € C there is a unique solution

T = g(y)
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for z € A, which is continuous in y, such that

F(g(y),y) =0
foryeC.

Remark: Note that the size of the region C is not specified, only that it exists.
Therefore the unique inversion may only be local.

References: Guckenheimer and Holmes (1983); Hirsch and Smale (1974);
Jackson (1990).

improper node (see fixed points)

indeterminate bifurcation . . .
This is the term used when a bifurcation occurs for which the basin boundaries
are fractal, such that for very small changes in a control vwa.w:wmamn the .m%mamB
may jump from a steady state to any of a number of co-existing solutions.

Reference: Thompson (1992).
inflected node (see fixed point)
information dimension (see dimension of sets)

inset .
Another name for a stable manifold (see invariant set).

integrable
Let H be a Hamiltonian function

H(p,q) =) === +U(q)

MS..

i=1
with N degrees of freedom. If the N first integrals in involution exist
with linearly independent gradients (see action-angle variables), then the
Hamiltonian system is said to be integrable.

Remark: One of the first integrals is the Hamiltonian function ?.mm:. Hﬂo. first
integrals, I; and Iz, are in involution if {I, >} = 0, where {.} is the Poisson
bracket.

Ezample: Consider the Hamiltonian function

1 _
H(p,q) = 5(p} +p3) + =7
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Then a first integral, in addition to the Hamiltonian function, is
I(p) = p1 + p2.

Reference: Steeb (1991).

integrals of motion (see constants of the motion)

interior
The interior of a set A, int A, is the largest open set contained in A.

intermingled basins (see riddled basins)

intermittency

By intermittency we mean the occurrence of fluctuations that alternate
‘randomly’ between long periods of regular behaviour and relatively short
irregular bursts, i.e. the motion is nearly periodic with occasional irregular

bursts. Typical time historiy of such intermittent transitions are shown in
Figure 71.

period-3 ’ chaos

Figure 71 Typical time series of intermittent behaviour

It has been found that the density of chaotic bursts increases with an external
control parameter, which shows that intermittency presents a continuous route
from regular to chaotic behaviour.

There are three types of intermittency corresponding to the three types of
generic bifurcation of one-dimensional maps (see bifurcation). The first type
is characterised by the loss of stability when the real eigenvalue of the fixed
point crosses the unity circle at +1 and a tangent bifurcation occurs. The
second type is characterised by the simultaneous crossing of the two complex
eigenvalues of the unit circle, i.e. the system undergoes subcritical Hopf
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bifurcation. When the real eigenvalue crosses the unit circle at —1, i.e. the
system undergoes subcritical period-doubling bifurcation, this corresponds to
a third type of intermittency.

Reference: Pomeau and Manneville (1980).

invariant measure
A measure u is said to be invariant for the map f : R" — R”, if for any set
XCR®

wX) = p(f71X)

where f~!'X are all of the points that map on to X.

invariant set (manifold)
Let A C R" and f : R™ — R™. Then the set A is an invariant set if f(4) = A.

Ezample: Fixed points are invariant sets.

An invariant set which is also a manifold is called an invariant manifold.

A stable manifold is also sometimes known as the inset.

Reference: Thompson and Stewart (1986).

inverse map
The inverse of the map f : X = Y at y € Y, is the collection of all of the
points z in X such that y = f(z).

Remark: f~':Y — X is a map only if f(X) is both one-to-one and onto.

invertible map
A map whose inverse exists and is unique, is said to be invertible (see inverse
map).

iterated function system
This consists of a complete metric space (X, d) together with a finite set of
contraction maps

i XX

with respective contractivity factors s,, for n = 1,2,..., N. The notation for
the iterated function system is

{X; fo,n=1,2,..,N}
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and its contractivity factor is

s =max{sp:n=1,2,..,N}.

Reference: Barnsley (1988).

Ito equation

Lete m:m. J betwo ?:osonm. @.OB [0,T)xQ to R, where Q is a set of elementary
events, with mcnr measurability and integrability properties that the ordinary
and stochastic integrals appearing in the following formula (1) make sense.

By the stochastic differential Ito equation we mean an expression

dXi(w) = e(t,w)dt + f(t,w)dW; (w) 1)

where W;(w) is a Wiener stochastic process. Expression (1)

of writing Is a symbolic way

8

¢ t
Xew) = Xu() = [ etwwitu+ [ fw,wamw)
8
with probability 1, for any 0 < s <t<T.

Reference: Kloeden and Platen (1992).



J

Jacobi elliptic functions
These elliptic functions are the inverses of elliptic integrals (see elliptic
integrals). There are five elliptic functions, defined as follows:

-1 _ e dy _
e = [ G s = P

and L q
-1 _ y _
k) = | e -
for (0 <z <1)and ¥ =1 - k?;

F([1-2?)'/2 k)

H H ﬁw MN
%(an \a = c%e+ w7 = P =272/ )

for (' <z <1);

tn”(z, k) = \ﬁ“a = QNXMN. k2y2]i/z = F([z*/(1 + 2*/% k)

for (0 < z < o0);
dé

am™(¢,k) = \.s
’ o [1— k2sin?g)1/2

Jacobi elliptic functions, as well as elliptic integrals, frequently appear as the
solutions of particular nonlinear differential equations.

= F(sin ¢, k).

Reference: Byrd and Friedman (1971).

Jacobian matrix
Let f : A — R™ be a function, where A4 is an open subset of R™. Assume that
the component functions possess first-order partial derivatives. The matrix

(a2)
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where j

1,..,nand k = 1,...,m, is the Jacobian matrix of f.

When n

m, the determinant of the Jacobian matrix is called the Wronskian.

Japanese attractor
A term used by David Ruelle to describe the chaotic attractor of Ueda’s
equation:

d’z dz =,

% + O“_.N.M. + z* = 10cost.

(see Ueda’s equation).

Jordan form (Jordan normal form)

The Jordan normal form of an (n x n)-dimensional matrix 4 is a matrix
B = PAP™!, where P is an invertible (n x n)-dimensional matrix with the
non-zero entries of B in the form of diagonal blocks:

Reference: Hirsch and Smale (1974).

Josephson junction array

A Josephson junction is a superconducting device capable of generating high

frequency voltage oscillations. Mechanical analogies result in an equation of

the form of a driven pendulum:
d’¢ . d¢
& e

where b is constant and F is an applied torque.

+bsing = F

Reference: Strogatz (1994).

Julia set
Let Cx(z) be a mapping in the complex plane. The Julia set of C, denoted
J(C)), is the closure of the set of repelling periodic points.

Remark: A complex-valued point 29 € C is periodic if C{(zp) = zp for some
n, where C} denotes the n-fold composition of Cy with itself. This periodic
point is repelling if [(C})'(20)| > 1.

Ezample: The Julia set for the map f(2) = 22 + ¢, where ¢ = —0.12256117 +
0.74486177%, is shown in Figure 72.
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Figure 72 Representation of a Julia set

References: Barnsley (1988); Steeb (1991).

jump phenomenon
Consider a periodically forced system

aus a
|I+€NH+\. Aﬁ %M.v H\poOmbﬁ 6y
where A, w and  are constants. Assume that equation (1) has an approximate

periodic solution, C cos(Q + ¢). The plot C versus Q is called the resonance
curve.

Y

Figure 73 A typical resonance curve
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Now consider the typical resonance curve shown in Figure 73 for a function
f with a so called hardening characteristic. Beginning with Q4 if one slowly
decreases the excitation frequency 2, then the corresponding point on the
resonance curve moves from A to B;. If  is reduced still further from Q g, then
the system suddenly encounters strong non-stationary (transient) oscillations
which jump in magnitude, settling on to a stationary oscillation corresponding
to the point By. For any further decrease in §2 the representative point on the
resonance curve travels from B, in the direction of D. For an increase of the
2 from 0, the point on the resonance curve moves from D to C2, where it then
jumps to Cp, as soon as ¢ is exceeded. The sudden transitions, By — B,
and Cy — (), are called jump phenomena.

A jump phenomenon is a simple example of crisis (see crisis) or saddle-node
bifurcation, while the process of different patterns of response for increasing
and decreasing parameters is called hysteresis.

K

KAM (Kolmogorov—Arnold—Moser) theorem
Consider a near-integrable system with a Hamiltonian

.m.”.m.oANvuTmmmANu%v Au.v
where I,6 € R™ and
WNN _ OH
dt ~ 86,
and
d0 OH
dt ol

and w. = 1,...,n. Near-integrable means that ¢ is sufficiently small for the
following results to hold. Here H, is periodic in 6y, ...,0, and

2w
\o ...\m;hs%r..%; =0,
so that
N
Hy(1,6) = Y hi (D). @)
k=1

We now look for a generating function, S(I',0), of the canonical
transformation

S=I'0+eS; + €Sy + ... 3)
in which
as
I=T+e=24 ..
+ € 30 +
and
' @.m‘u
mlm+m|%+:. (4)

transforming the Hamiltonian to a function of only the new actions I'. We

obtain P
—_— 1 mo %.mm %.m‘o @.m.n
N&oc.v |moANv+ml%.M&+mM%|®N.+QAmwv AmV
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and
6H, 85,
m.m.wﬁ.ﬂ,%v "mmwAN\.%vnme%l@IQﬂ.nToAmwv. Amv
Adding (5) and (6), the term proportional to € can be made to vanish provided
that
(]
oI XD — (1 6), ™

If H; is analytic in a strip about the real § axes and periodic in 8, then H, (,6)
is a quasi-periodic function. Also (7) represents a quasi-periodic function for

81 = 32 Au(I)e™ ®)
k
provided that, for all integer component vectors k
lkw| > C k|~ (9)
In this case e (1)
n _ Wk
Ax(I) = kw(I")
where w(I) = 0Ho(I)/01. As S is quasi-periodic, the series in (8) converges.
The subsequent iterations for S3,S3,..., etc. will similarly all give quasi-

periodic functions. The frequencies w can be chosen to satisfy (9) providing
that they are independent functions of I, i.e.

82Ho(I)

If (10) holds, then most of the tori will fulfill (9) (with g = N + 1, with the
measure going to 1 as ¢ — 0). However, resonant tori are densely scattered
in the phase space, for which (9) is not satisfied, and for which the series (3)
diverges. The KAM theorem shows that for most of the tori which fulfill (9),
the infinite series of quasi-periodic functions (3) converges for small e.

Let Q be an open set of R™ and let H(/,#,¢€) be a real analytic function for
all I € Q,0 <8 < 2w, and € near € = 0. Assume also that H(I,6,¢) has
period 27 in each 64,05, ...,0N, and that

Ho(I) = H{I,6,0)

is independent of 8. It is further assumed that for I € @Q, equation (10) is
satisfied and that the corresponding frequencies w(l) = 0Hg/dI fulfill the
condition

|kw| > Clk|~
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for all integer vectors |k} = |ky| + ... + |kn| > 1. Then, for sufficiently small ¢
there exist solutions of (1) on invariant tori, defined by

6 =6+ F(9,¢)
and
I'=T+G(8,¢

where F' and G are real analytic functions of ¢, and 0, having period 27 in

each 6y, ...,6x, and which vanish for € = 0. Moreover, on these tori the flow
satisfies

da ~ “* T 1
for k = 1,2,..., N. Finally, the measure of the states on the energy surface

which lie on such invariant tori approaches 1 as € — 0, i.e. for sufficiently
small ¢, the measure of the states on invariant tori is large.

References: Arnold (1983), Jackson (1990).
Kaplan-Yorke conjecture (see Lyapunov dimension)

KdV (Korteweg—de Vries) equation
The partial differential equation

dé(z, t : ?
o + L+ 9,0 288 | B0y

is called the Korteweg—de Vries or KdV equation.

The KdV equation is one of the fundamental equations in the theory of
solitons.

Reference: Drazin and Johnson (1989).

Kermack—-McKendrick model
This model is used to describe the evolution of an epidemic and is given by

and
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where z ia the number of susceptible (S) people, y is the number of infected
(I) people, z is the number of removed (R) people, ! is the rate at which
sick people die, and k is the rate at which healthy people become sick. The
abbereviation, the SIR model, is sometimes used.

Reference: Strogatz (1994).

kicked rotor

This is a rotor with rotary inertia, as shown in Figure 74. A bar, of inertial
moment I and length [, is fastened at one end to a frictionless pivot. At the
other end, the bar is subjected to a vertical periodic impulsive force K/I,
applied at times ¢t = 0, 7, 27, ..., etc. In addition, it is assumed that there is no
gravity.

R it

%, periodic impulse

Figure 74 A kicked rotor

The kicked rotor is a Hamiltonian system for which, unlike most dynamical
systems, an analytic expression is derivable for the Poincaré map. The map
reduces to

Ont1 = (0n + pn) mod (2)

and
ﬁ:-fﬂ = Pn -+ Nmmb %w.-l_uu
where p,, and 6, denotes, respectively, the values of the angular momentum

and angular position of the rotor at times t = 0, 7, 27, ..., etc., and it is assumed
that /I = 1.

This map is also called the standard map and has proven to be a very
convenient model for the study of typical chaotic behaviour in Hamiltonian

systems.

Reference: Ott (1992).
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Klein bottle

This bottle is the simplest example of a non-orientable manifold without a
boundary. Consider the diffeomorphism f which maps a circle S? into itself,
ie. f:S! — S'. Then construct a manifold M, which is the product space
of S* and the unit interval I = (0,1):

M=8"x1I
and which satisfies the relationship (z,0) = (f(z), 1).

If f(z) is orientation-preserving, then M is a two-torus T'2.

If f(z) is orientation-reversing, then M is a Klein bottle, as shown in
Figure 75.

M)

Figure 75 A Klein bottle

Reference: Nitecki (1971).

Klein—Gordon equation
The partial differential equation for studying wave dynamics

Py H%u
7 o =)

where z € R, is called the Klein~Gordon equation.

The sine-Gordon equation (see sine—Gordon equation) is a particular form
of the Klein-Gordon equation.

kneading theory
Let f:10,1] — [0,1] be a map with negative Schwarzian derivative. Assume

that f(0) = f(1) = 0, and that J has a single critical point ¢, i.e. where

df(c)/dz = 0 in the interval [0, 1].
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Let f, : [0,1] — [0, 1] be a one-parameter family of mappings with u € [uo, 1],
which satishes the above hypothesis and

.?oﬁnv =c

and
S, [ AQV =1
Such a family is called a full family.

Describing the way in which periodic orbits appear in a full famil
using symbolic dynamics is called a kneading theory. It describes most of
the structure of am Mmdtvidust map and determines much of the bifurcation
structure in the family.

A symbolic description of a map f can be phrased in terms of the partition
of the interval [0, 1] into the two sub-intervals, Iy = [0, ¢), and I; = (¢, 1], and
the point C = {c}. The intervals Iy and I, are the laps of f. If z € I, the nth
address An(z),n >01is Iy,C or I as f*(z) € Iy, f*(z) =¢, or f*(z) € L.
The itinerary of z, A(z), is the sequence {A,(Z)} Of its successive addresses.
The itinerary of f(c) is called the kneading sequence.

References: Guckenheimer and Holmes (1983); Milnor and Thurston (1977).

knots
A knot is a simple closed curve in a R3.

A collection of periodic orbits of a three-dimensional flow forms a disjoint
union of knots, or a braid (link).

Two knots are said to be equivalent if they are topologically equivalent (see
topological equivalence).

Ezample I: There exists an open set of parameters 8 € {6.5,10.5] for which
periodic solutions to the differential equations

dzx
S =Ty - 9(z)]
dy
Fri r—y+=z
and d
z
i -By
where

2 .
8(z) = 5z — oille + 1] =1z ~ 1]
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contain representatives from every knot and link equivalence class.

A template or knot-holder is a compact branched two-manifold fitted with
a smooth expansive semiflow and built from a finite number of joining and

* splitting charts.

Ezample 2: The simplest non-trivial template is the Lorenz template shown
in Figure 76.

Figure 76 The Lorenz template

Reference: Ghrist and Holmes (1996).
Koch curve
Consider the construction of the set shown in Figure 77 which is used as the

.mmbmnmas (each segment length is 1/3 on the unit interval). The generator
is then used on each of these straight segments and the process is continued

infinitely to form a Koch curve.

Figure 77 First steps in the construction of a Koch curve
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Kolmogorov—Arnold-Moser theorem (see KAM theorem)
Kolmogorov capacity dimension (see dimension of sets)

Krylov-Bogoliubov method (see averaging methods)

K-set
The catastrophe set (see Thom’s theorem) is called a K-set.

The catastrophe K-set is a set of bifurcation points.

Reference: Thom (1975).

L

Laffer curve
This is the curve that relates the taxation rate to the government’s revenue.

This curve is discussed in connection with the application of nonlinear
dynamics to economy.

Reference: Jackson (1990).
Lagrange stability (see stability)

lammbda (\) lemma

Let f be a diffeomorphism of the plane f : R? - R2 and let p be a hyperbolic
saddle (fixed point) of f. Suppose that a curve L crosses the stable manifold
of p transversally. Then each point in the unstable manifold of p is a limit
point of Upsof™(L).

This lemma is used to explain sudden changes in the appearance of chaotic
attractors as parameters vary.

.

References: Alligood et al. (1997); Palis and de Melo*(1982).

Landau equation
An ordinary differential equation

where £ € R, and a, and b are constants, is called the Landau equation.

This equation was used by Landau to investigate the stability of the steady
flow of a Newtonian fluid.

Reference: Drazin (1992).
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Landau—Hopf theory

The classical theory of turbulence which, at the onset of turbulence, generates
a countably infinite number of frequencies (after a countably infinite number of
Hopf bifurcations) is called the Landau-Hopf theory. This may be contrasted
to the Ruelle-Takens approach to turbulence.

Laplace’s equation
The partial differential equation given by

0%*u  B%u
==+ == =0
dz2 = By?
where z,y € R, is called Laplace’s equation.
The equation can be extended to any dimension n.

This equation was initially developed by Laplace and is now used for problems
involving steady-state heat flow and vibrating shells, among other things.

Reference: Smith (1969).
lattice maps (see cellular automata and coupled map lattice)

Lebesgue measure
This measure represents the ‘length’ of a set generalised to R™ (or any
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A non-empty closed set S C R is either a closed interval or else can be
obtained from a closed interval by removing a finite or countably infinite
family of disjoint open intervals whose end points belong to S. Thus a closed

Riemannian manifold). ©
LG
dn‘v
Let SCRbea bourided non-empty open set. It can be represented as the

union of a finite or a countably infinite number of disjoint open intervals whose

end points do not belong to S, i.e.
\

/h..u‘rvvaa S= Ca?&.orv.

The Lebesgue measure of the open set S is

#(S) =D (bk —ax).

k

Having a Lebesgue measure gy in the measurable space (R.B,u) we can

generalise them to R™ by defining the product space R"™, B", and u”, where
RP=RXRx..xR

with B" being the smallest o-algebra containing all sets of the form S; x...x S,
with S; € B and
E\:A'm.w X ... X .W:v = tﬁkﬁwvt?ﬁav

set S can be expressed as

S =[a,b] - ) _(ax — bx).

k
The Lebesgue measure of the closed set S is
#(S) = (b—a) = ) (bk —ax).
k

References: Edgar (1990), Ott (1992).
Liapunov (see Lyapunov)

Liénard’s method

This is a graphical method of solving second-order differential equations of
the special type

d’z dz
MW...T\AMWV.THIO. (1)
By putting y = dz/dt, equation (1) becomes

dy _ z+f(@y)
dz y

Assuming that z(0) = ¢ and dz(0)/dt = y, then the initial point in the phase
space is (%o, y0). Liénard’s method starts by drawing the curve z + f(y) = 0
in the phase space, as shown in Figure 78.

4
g 7 P, (initial point)

P,

A 4

x+f(y)=0

Figure 78 Illustration of Liénard’s method



138 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

A line parallel to the z-axis is drawn from the initial point Po(zo,y0), to
intersect z + f(y) = 0 at Q. The line QR is perpendicular to the z-axis at R.
It is easily shown that the gradient of the line RF, is

Yo ___ 1
zo + f(¥o) (dy/dz)o

Therefore, the integral curve though P, is perpendicular to RF,. A small
segment P,P; is drawn perpendicular to RFp and the process is repeated
starting from P;.

Reference: Huntley and Johnson (1983).

limit cycle
A periodic orbit A of the autonomous system

dx
T f(z)

where = € R", is called a limit cycle, where the latter may be stable or
unstable. If A is asymptotically stable, then the limit cycle is stable. If A is
not asymptotically stable, then the limit cycle is unstable.

limit point
The point z is a limit point of a set A if every neighbourhood of z contains a
point in A — {z}.

A point g is an w(-y)-limit point of zo if there exists a sequence of times {tx},
where t; — oo as k = oo, and such that ¢ is the limit of the orbit y(xo) in
the future, i.e.

lim z(tk,xo) = g, ty — oo.

k—o0
A point ¢ is an a(v)-limit point of zo if there exists a sequence of times {tx},
where t; — —oo0 as k — 00, and such that g is the limit of the orbit y(zo) in
the past, i.e.

lim z(tg,zo) = q, ty — —o0o0.
ko0

Reference: Jackson (1990).

Lindstedt—Poincaré method

This method is a perturbation method for the solution of nonlinear ordinary
differential equations producing uniformly valid expansions. Typically, this
method is an improvement on the straightforward expansion method, allowing
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flexibility to ‘remove’ non-uniform terms as they appear, and which uses a
frequency w, dependent upon a dimensionless time T = wt.

FEzample: Consider the equation

nwn|:+=+ =0
g €U =

where € < 1. With the change of variable 7 = wt, this equation becomes
w? d’u +u+eud=0
32 eu’® = 0.

The solution is approximated by

u(r,€) = up(7) + eus (1) + ua(r) + ...

and
w=1+ew; + wy + ...
where w,, are constants to be determined from the condition corresponding

to the vanishing of secular terms. Then u and w are substituted into the

differential equation and terms including powers of ¢ are collected together
(see also averaging methods).

Reference: Nayfeh (1985).

linearisation
Let u* be a fixed point of du/dt = f(u) u € R, i.e.

fum) =0.

In analyzing fixed points, we linearise the differential equation in a
neighbourhood of the fixed point. Let us assume that f is analytic. Thus
we have a Taylor-series expansion of f around u*. Linearising means that we
neglect second- and higher-order terms. In the case of

d
5 =W

we can write in the neighbourhood of the fixed point u*

du Of

5= MMA: —u") + higher-order terms

and study the linear differential equation

aﬁlml.\.

il u*)(u — u*).
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The n x n matrix 8f/0u is called the Jacobian matriz. In order to simplify
the notation, the fixed point u* is shifted to the origin of the phase space by
7 = u - u*. Thus

a7 _8f , ..

Friadrw O
We often write 8f(u*)/Ou as A, i.e. a (n xn)-dimensional matrix with constant
coefficients. Omitting the bar, the linearised system in the neighbourhood of
a fixed point u* is of the form

dy
L = A 1
it Y 1)

and if the linearisation is hyperbolic then we can analyse the linear dynamics.

Linearised equations of the form (1) are also sometimes called variational
equations, essentially when linearised about a periodic solution.

Ezample: Consider the mathematical pendulum

$u +sinu=0

dt? -
where u is the angular variable indicating the deviation from the vertical, so
u € (—m, ). After setting u = uy, and du/dt = u, one obtains the following;:

IQS II.Q:N sinu
= Ug = — 1-
dt ’

dt

Linerisation in the neighbourhood of (0,0) yields

duy _ duz _ _,
FT dat - T

Linearisation in the neighbourhood of (+,0) gives

SR P
a ® e~ T

Liouville theorem

Let D(0) represent an arbitrary domain in the phase space at £ = 0, and let
D(t) represent this domain at the time ¢; therefore D(¢) is the set of all points
z(t,z%) which evolve according to the relationship

dz

MM = .\AH. c, nv A“_.v
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where z € R", and ¢ € R™, and such that z(0) = z° is contained in D(0).
Consider the integral of some function p(z,t) : R" x R = R over this moving

domain D(t):
I(t) H\\ p(z,t)dz...dz,.
D(t)

The theorem states that the integral I (t) is an integral invariant of equation
(1), if and only if

22+ V(o(e, 01(z, ) = . )

I(t) is called an integral invariant of 1).
Equation (2) is called Liouville’s equation.

Remark: When p(z,t) = 1 for all z € R", and t € R then the phase volume
is preserved.

Reference: Jackson (1990).

Lipschitz condition

The function f(z) : D — R™ fulfills the Lipschitz condition if there exists a
constant X < oo such that

1) - f(z)| < Kly - =
for all z,y € D.

local

A property is local if it can be analysed in an arbitrarily small neighbourhood
of a given point.

Li—Yorke chaos

The term chaos was first used by TY Liand J A Yorke in a paper entitled
‘Period three implies chaos’. This paper examined the Sarkovskii theorem and
proposed a method to prove the existence of an infinite number of solutions
for a particular class of maps (see also Sarkovskii theorem). The idea of
Li-Yorke chaos is related to a topological horseshoe (see horseshoe map).

The map f: I — I, where I is a closed interval, is called chaotic in the sense
of Li-Yorke if:

(i) f has points z € I of an arbitrary long period;
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(ii) there is an uncountable set S (S C I) consisting of non-periodic
points which only satisfying the following conditions:

(a) for every z,y € S withz # y
lim sup|f™(z) — f"(y)| >0

n— oo

and
lim inf|f™(z) — f*(y)| >0

n~—+oo

(b) for every z € S and every periodic point y € I
lim sup|f"(x) — f"(y)| > 0.

n—oQ

Reference: Li and Yorke (1975).

lobe .
This is.a term used in geometric investigations of a homoclinic (or wmmmnoomﬁov
tangle, i.e. the intersection of the stable W* and unstable W* manifolds of a
saddle point S. The lobe is a portion of the phase space trapped between two
consecutive crossings of the manifolds, as shown in Figure 79.

lobe

Figure 79 Illustration of a lobe

Reference: Wiggins (1990).

local bifurcations . o
Bifurcations which occur in the neighbourhood of fixed points or periodic

orbits are referred to as local bifurcations.

logistic equation .
The first-order ordinary differential equation
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where ¢ > 0, is called the logistic equation.

The logistic equation was formulated by the Belgian social statistician Pierre-
Francois Verhulst ension of th i f a
population. The equation is usually given in the form

dN(t) N(t)
= (- v

where N(t) is the population at time %, r is a constant which represents
fecundity, and N(oo) the maximal population size (see also Malthusian
growth).

In population dynamics, it is often assumed that the reproduction is episodic
rather than continuous Im time, so that for example the population each year
can be expressed as a function of the previous year, thus leading to a discrete
form of the equation

Zpt1 =7Za(1 - z,)
which has very different dynamics to the flow defined by equation (1).

logistic map
The quadratic map

Tni1 = azn(l — z,) (1)
is called the logistic map.

H 1< a <3, the fixed point at z* = 1 — 1/a is an attractor (as shown
in Figure 80(a)), and the system settles to the stable point. At a = 3, the

e R g
system bifurcates, to give a cycle of period 2 (Figure 80(b)), which is stable for

3 <a < (1++/6). As a increases beyond this, successive bifurcations give rise
to a cascade of period-doublings, producing cycles of periods 4 (Figure 80(c)),
8, 16, ..., 2. With a further increase of a, we observe an apparently chaotic
régime, in which trajectories look like sample functions of random processes

(Figure 80(d)).

On a fine scale, the chaotic régime is in fact comprised of infinitely many
windows of a-values in which basic cycles of period k& are born stable
(accompanied by unstable twins). These undergo cascades of period-doublings
to give stable harmonics of period k x 2*, and become unstable; this sequence
of events recapitulates the process seen more clearly for the basic fixed point
of period 1. The bifurcation diagram for 2.9 < a < 4 is shown in Figure 81;
for a > 4 all trajectories diverge.

The nature of the chaotic régime for such ‘maps of the interval’ is often
misunderstood. In detail, the chaotic régime is largely a mosaic of stable cycles,

e ———
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Figure 80 Different types of attactors of a logistic map — equation (1):

(a) fixed point; (b) period 2; (c) period 4; (d) chaos
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Figure 81 Bifurcation diagram of the logistic map
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with one giving way to another with great rapidity as a increases. This point
is exemplified by the Lyapunov exponent which is often computed as an index
of chaotic behaviour. These exponents are analogous to the eigenvalues that
characterise the stability properties of simpler systems. They are typically
calculated by iterating difference equations, and calculating the geometric
average value of the slope of the map at each iterate, i.e. for the difference
equation

ZTnt1 = f(zn)

the Lyapunov exponent ) is given by . <7
.1y 4 2&
A= :ano n ..MW In dz ) )

For generic quadratic maps, there are unique attractors for most values of a in
the chaotic régime. Therefore in calculation (2), if carried out exactly, or if the
iterations are carried out for long enough, ) is typically found to be positive
in the chaotic régime. A plot of the Lyapunov exponent for the Logistic map
is shown in Figure 82.

/X a0

Figure 82 Lyapunov exponent of the logistic map

References: Feigenbaum (1978); Ott (1992).

Lorenz model

In 1963, E. Lorenz proposed a three-dimensional model for the atmospheric
convective flow produced by truncation of the Navier-Stokes equation. The
dynamical system given by the equations

dzx
G =-o-y)
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dy _
s zz+rr—y
and d
z
Pk bz (1)

where ¢, and b are dimensionless parameters, is called the Lorenz system.

Ezample: For § = 10,b = 8/3 and r = 28, the Lorenz system shows chaotic
behaviour.

Figure 83 shows a projection of the phase-space trajectory on to the zz plane.
The points C; and C, represent projections of fixed points which are unstable
for the considered parameter values. It can be observed that the solution
spirals outward from one of the fixed points C; or C; for some time, then
switches to spiraling outward from the other fixed point. This pattern repeats
forever with the number of revolutions around a fixed point before switching,
varying in an apparently random manner.

Figure 83 Phase-space trajectory of the Lorenz system

Let m,, be the n-th maximum of the function z(t). If we plot m,4+; versus
™My, we obtain a one-dimensional map as shown in Figure 84, whose dynamic
is very similar to the so-called tent map:

1
Hn.fw“u.lw—llunn .

2

References: Lorenz (1963); Sparrow (1982).
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m,. s

uoo I 1 I L
300 400

Figure 84 One dimensional map of mn41 versus my,

Lotka—Volterra equations
These equations, given by

du
1% = au; — gwﬁn
and d
Ug _ _
el bujug — cus

with u;,us >0, and where a,b,c are positive constants, describe the
interaction of two species, where u; denotes the population density of the
prey and uz the population density of the predator.

Reference: Ebeling and Peschel (1985).

low-dimensional systems

These systems are typically taken to mean flows of dimension d < 3, or maps
of dimension d < 2.

Lozi map
The two-dimensional real map

Tnt1 = 1+ yn — alzy,|
and
Ynt1 = bzp
where z,y € R, a,b € R, a,b > 0 is called the Lozi map.

Remark: The Lozi map is a simplification, or piecewise linear version, of the
Hénon map.
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Figure 85 Chaotic behaviour of Lozi map in the (z,y) plane

Ezample: For a = 1.7 and b = 0.5, there exists the strange attractor shown in
Figure 85.

LP-space
Let (X, B, u) be a measure space and p a real number 1 < p < co. The family
of all possible real-valued measurable functions f : X — R satisfying

[ f@P wido) < o0
is the LP(X, B, u) space.
Reference: Lasota and Mackey (1985).

Lyapunov dimension

The dimension of a fractal chaotic attractor can be associated with the
corresponding Lyapunov exponents. Let a typical trajectory on an attractor
be characterised by the following Lyapunov exponents

\/T\/u. veey Y: A\/u N >».+: 1= H.M, ey — Hv
The Lyapunov dimension di, is defined by

DY
dp = j+ &=L
[Aj+af

where j is the maximum index for which

Kaplan and Yorke shows that for commonly found attractors, the Lyapunov
dimension is numerically close to the information dimension.
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Reference: Kaplan and Yorke (1979).

Lyapunov exponents
These exponents, named after the Russian mathematician A.M. Lyapunov,

can be used to obtain a measure of the sensitive dependence of initial
conditions for a solution of the system

du n
MMI.RS, u€DCR™

Lyapunov exponents are a generalisation of the eigenvalues of a fixed point.
The linearised equation is given by

d
2 = 2 (@uoly)

where 4o = u(t = 0). The solution of this system can be written as
y(t) = U yo

where Uf  is the matrix of fundamental solutions. The fund
satisfies the chain rule

t+s _ rrt s
Q:o - Q‘:o ° Q.zo

The asymptotic behaviour of the fundament
characterised by the following exponents

matrix for ¢ = oo can be

t t t
A(V¥, 1) = lim In Upe1 AU  ex A  AU; ex
’ t—o0 |lex Aeg AL . Aegll ’

where A indicates the outer product.

Let my(t),...,mu(¢) be the eigenvalues of the solution of
dy
Ayl
dt (uo)y

given by

y(t) = eAto)t
where

\:HOV = IWMACOV.

The Lyapunov exponents of zo are

Aiuo) = lim ~ ln jma(8)|

t—oo t
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whenever the limit exists. For the existence of Lyapunov exponents, see
Oseledec theorem.

Ezample: Consider the Lyapunov exponents of the fixed point u*. Let
M, ..., An, be the eigenvalues of A(u*); then m;(t) = e*t, and

A= lim ZlnjeM!| = Jim < Re [\t = Re[Ai].
As shown in the above example, Lyapunov exponents are equal to the real
parts of the eigenvalues of the fixed point. They indicate the rate of contraction
(when ); < 0) or expansion (when A; > 0) close to the critical point. The

subspaces in which the expansion or contraction occurs are determined by the
appropriate eigenvectors of A(u*).

Remark: Positive one-dimensional Lyapunov exponents mean that two nearby
trajectories (trajectories for slightly different initial conditions) diverge
exponentially.

References: Benettin et al. (1980); Wolf et al. (1985).

Lyapunov first theorem
Consider the system

dz
T =)
where £ € R"™, for which z¢ is a fixed point. This theorem states that z¢ is
A
Y1 Fx)

%4

\
\
\

strict
L(x)

Figure 86 Representation of the Lyapunov function

a stable fixed point if there exists a function L(z) such that:
(i) L(zo) = 0 and L(z) > 0, if £y # = in some region Q2 about zo;
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(ii) f-VL <0in 2, where V is a gradient operator.

The function L(z) which satisfies these conditions is called a Lyapunov
function. An example of such a function is shown in Figure 86.

If f-VL <0, then L is called a strict Lyapunov function.

Reference: Jackson (1990).
Lyapunov function (see Lyapunov first theorem)

Lyapunov stability (see stability)
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Mackey—Glass equation

This is the differential-delay equation
dX = aX(t-5s)
dt = 1+ [X(t-s)°

- bX(t)
where a, b, ¢ and the time delay s are constant.

This equation models neutrophil dynamics. For a = 0.2, b = 0.1, ¢ = 10.0 and
s = 31.8, the equation shows chaotic behaviour.

Reference: Glass and Mackey (1988).

magneto-elastic mechanical oscillator

A magneto-elastic mechanical oscillator is a physical model consisting of a
sinusoidally driven beam whose free end oscillates between two magnets. The
model was proposed by Moon and Holmes and is modelled by a Duffing
equation.

Reference: Guckenheimer and Holmes (1983).

Malthusian growth
At the end of the eighteenth century, T.R. Malthus discussed the rate of
growth of a population size in terms of the present population N(t). In present-

day terms, we represent this growth by the equation
dN(t)

—= =7rN(t

- = TN®)

where r represents the fecundity of the population (i.e. how good the
population is at reproducing). If, at some time ¢t = 0, the population has
a size N(t = 0) = Np, then at some later time the population will be given by

N(t) = Npexp(rt).
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For r > 0 we have exponential growth, for 7 < 0 exponential decay, and for
r = 0 the population size remains constant. For a general r, the only way to

achieve a constant population is to have N(t) = 0, i.e. no population at all!

Reference: Grebogi and Yorke (1997).

Mandelbrot set . .
Let € be the Riemmanian sphere, i.e. C = C U {oo}. Consider the family

{C: fa=22-)}

where the parameter spaceis P =C,ie. A € Q Then, the Mandelbrot set M
for the family of the dynamical systems {C : 22 — )} is defined as

M ={X€ P:J(})), is connected}.

An example of a Mandelbrot set is shown in Figure 87.

e

Figure 87 Illustration of a Mandelbrot set

Remaeark: The Mandelbrot set is not self-similar.

Reference: Mandelbrot (1982).

manifold = O nb?w.n.\raﬁ\v
An n-dimensional manifold M C R™ is a set for which each £ € M has an
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If each element of ¥ is associated with some element of X, then the mapping
is said to be onto, i.e. f(X) = Y, or surjective. Ogmnéam, it is into, i.e.

fxcy. Fv 9wﬁ.roob..orr ffk;ﬁ.fﬁf

If no two elements of X are associated with the same element of Y, then
the map is said to be one-to-one or injective (see also discrete dynamical

system). s b.ﬁvﬁnhn.ﬁhm; JSA@D#Z:Q.

Markov property

In a deterministic dynamical system X,; = f(X,), only the present value
z} of X, is needed to determine the future value of Xnt1; the past values
Om X1, X0,.... X5, are involved indirectly in that they determine the value
of X,. This is just the common law of causality for which there is a
stochastic analogue called the Markov property, expressed by the conditional

probabilities

P(Xp41 = 2| Xp = 2}) = P(Xpg1 = 2| Xy =28, Xa = 73,..., X, =

:I..:

for all possible z;,z},...,z7, and all n = 1,2, ..., etc..

A sequence of discrete valued random variables with this property is an
example of a Markov chain.

open neighbourhood U for which there is a homeomorphism ¢, such that for
any open set D C R™ we have ¢ : D = U (n < N).

map
A map f: X = Y associates with each element 2 € X one element y € Y,
and is denoted by y = F(ZJ.

Reference: Kloeden and Platen (1992).

massive bifurcation

A bifurcation at the transition from regular to chaotic scattering (see also
bifurcation and chaotic scattering).

Mather set (see Aubry—-Mather theorem)

Mathieu equation
This equation, given by

QN

Tl +(a+ fcost)z =0 (M

or the nonlinear version

QN

Tl + (a + Bcost)sinz =0 (2)

where z € R, and a and 3 are constant, describes a parametrically excited
system which physically may be related to the behaviour of a pendulum whose
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pivot is vertically driven, and is an example of a driven system which can
display a state of equilibrium or fixed point.

The linear Mathieu equation (1) is a particular form of Hill’s equation.

Maxwell-Bloch equations

These equations are a model for laser dynamics, describing the dependence of
an electric field E, the mean polarisation P of the atoms and the amount of
population inversion D:

dE
T —kE 4+ kP
dP
and
dD

— =Yo(A+1)-Y,D

g ~ PR+ -T
where the decay rate in the laser cavity is given by k, the decay rate of the
atomic polarisation is given by Yj, the decay rate of the population inversion
is given by Y3, and A is the pumping energy parameter.

These equations can exhibit chaos, although most lasers'do not operate at the
parameter values which lead to chaos.

Reference: Grebogi and Yorke (1997). /v&«\
" A &QIV,C V.WQFGC._O
measure P
A nmm._émaa function y on a g- of all subsets of B is a measure if:

() p(®) =0
(i) u(B) > 0 for all B € B;

(iil) w(UkBk) = 3, #(Be) if {Bsk} is a finite or infinite sequence of
pairwise disjoint subsets of B, i.e. is B; N B; = { for i # j.

o
Remark: MrwmoMMmstos does not exclude the possibility that 4 = oo for some
BeB.

Let B be a o-algebra of subsets of X, and if u is a measure on B, then the

/“\\
The sets belonging to B are called measurable sets.

Wrﬂni%(

triple (X, B, ) is called a measure space. & ( /Qh\..b Oa Bael A

.~

: AL
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Let (X,Bsf1) be a measure space. A real-valued function f: X9 R is

measurable it 7~ "(A] € B for every interval & C R.

References: Edgar (1990); Lasota and Mackey (1985).

e o
measure-préserving

Let (X1,B1,m,), and (X2, By, m3) be probability spaces.

A transformation T : X; — X, such that

TY(B,) C B,

ie.

Yo
is termed measurable. .
Orern V!An\/bfﬂ\

A transformation T : X; — X, is measure-preserving if T' is measurable and

Bs € By = H._ln.mu € B;

m1(T~(Bz)) = ma(B,)

for all B; € By. We say that the transformation T : X 1 = X, is an invertible
measure-preserving transformation if T is measure-preserving, bijective, and
T~ is also measure-preserving.

Reference: Arnold and Avez (1968).

measure-preserving maps (see volume preserving maps)
=7 - W\
~2 .
measure theodretic entropy

Let (X, B,m) be a probability space, and let

T: (X,B,m) - (X, B,m)

be an invertible measure-preserving transformation. If we now let A be a finite
sub-algebra of B such that

m T"A=B

n=—oo

then
h(T) = K(T, A)

where

h(T) = sup h(T, A).
A

NN

A.fvﬁv.

L VI
oﬂ\.%
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In this case h(T) is called a measure theoretic entropy.

Reference: Walters (1982).

Meissner’s equation
The ordinary differential equation
&’z
@ +a’ft)z=0

and where .
Zalﬁ -1 : lxt<l
and f has period 1, fora >0 is called Meissner’s equation.

Reference: Drazin (1992).

Melnikov method

This is an analytical method that can be useful in investigations of chaotic
behaviour. The main idea behind this method was proposed by Melnikov in
1063. He considered an ‘unperturbed’ system of a planar ordinary differential
equation

dz
I = f(z)

where z € R", to have a hyperbolic fixed point connected to itself by a
homoclinic orbit. Then the perturbed system with a time-periodic excitation
is such that the hyperbolic fixed point becomes a hyperbolic periodic orbit,
whose stable and unstable manifolds may intersect transversely. In many
systems this intersection is a necessary condition for chaotic dynamics.

References: Guckenheimer and Holmes (1983); Melnikov (1963); Wiggins
(1988).

Menger sponge .

Consider the unit cube subdivided into 27 smaller cubes by trisecting the
edges. Now remove the centre cube and the 6 cubes in the centre of the faces;
this means that 20 cubes remain. The boundary of these 20 cubes must also
remain, so that the set will be compact. We continue in the same way by
dividing the smaller cubes, etc. The Menger sponge is the limit set of this
process. The first steps in the construction of the Menger sponge are shown
in Figure 88.

Reference: Steeb (1991).
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Figure 88 First steps in the construction of the Menger sponge

metric space

which satshes the following eonditionss o 4T AX AT
(i) d(z,y) > 0 with equality if and only if z = y;
(i) d(z,y) = d(y,z);

(iii) d(z,y) + d(y,z) > d(z, z), - namely the triangle inequality.

mixing
The endomorphism T is mixing if, for any two measurable sets Ag and A4;
b

- — O —_—
Hm p(T~% AeT % A1) = p(Ao)u(A1)

n-—+o0

for any non-negative integer sequences (k?,k3,...), (k1, k2, -..), satisfying

i 0 _ 1
Am [kn — kn| = oco.

Mobius strip

The non-orientable manifold M C R3, with a boundary formed by gluing the

ends of a strip after i i : . ; g
strip. p after inserting a twist (shown in Figure 89), is called a Mbius

mode locking

Consider a periodically forced nonlinear system and choose the frequenc

wbm.mav._;:amm of forcing as control parameters. When the amplitude of ?M
mon,o_sm. ".ﬂmdw_ is zero, the frequency of the driven system is independent of
the driving frequency. As the amplitude of the forcing is increased, one finds
bands of frequencies over which the driving frequency and the m%mnmb.a response

frequencies are related by rational numbers. Thi i
. This phenomeno
(or frequency) locking. d non s called mode
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Figure 89 A Mébius strip

Reference: Nayfeh and Mook (1979).

monodromy matrix
Let
du 1

— = A(t)u 1)
3 (t) |
where © € R™ and A(t) is a (n x n)-dimensional matrix of periodic mzsoﬁwbm
with period T, be a system of ordinary differential equations. By ommmmwow_
Floquet theory, any fundamental matrix ®, which is defined as a non-singular
matrix satisfying s

— = AQR)®(¢

— = A()3()
can be given as

®(t) = P(t)elt™,

P(t) is a non-singular matrix of periodic functions with the same period %,.mb.m
R is a constant matrix, whose eigenvalues (A1, ..., \,) are called characteristic

exponents of the dynamical system (1).

Given a choice of the fundamental matrix ®(t), we have
munmuﬁﬂmv = OQOVAHVQO + N._v

which does not depend on the initial time to. The matrix M(T) = exp(TR)
is called the monodromy matrix of (1).

Morse—Smale system
This system is one for which:

(i) the number of fixed points and periodic orbits is finite and each
is hyperbolic;
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(ii) all stable and unstable manifolds intersect transversally;

(iii) a non-wandering set consists only of fixed points and periodic
orbits.

Reference: Guckenheimer and Holmes (1983).

Moser’s theorem

This theorem shows that in a neighbourhood of a transverse homoclinic point
there exists an invariant Cantor set on which the dynamics are topologically
conjugate to a, full shift on NV symbols.

Reference: Wiggins (1990).

Moser’s twist theorem

This theorem guarantees the existence of invariant circles in area-preserving
maps.

Consider the unperturbed integrablé map
I-17 (1)
with 6 — 8 + a(I), defined on the annulus
A={(1,8) e R* x SYIe (I, L]}

where S is a one-dimensional circle and the perturbed map

I—>1+f(1,6) (2)
in which

6 = 0+ a(l) + g(1,6)

and with f and g also defined on A. In order for (2) to be a perturbation of

(1), f and g must be small. Let C" (A) denote the class of CT functions defined
as follows:

Otip
oripggs

he€C™(A) = |hl, = sup
Aitj<r

Moser’s twist theorem: Let € > 0 be a positive number with o(I) € C7, r > 5,
and |8a/81] > v > 0 in A. Then there exists a 6, depending on ¢, r, and a(r),
such that (2) with f,g € C"(A),r > 5, and

1£(2,6) ~ Il + 19(1,6) — a(I)], < 6
possesses an invariant circle in 4 with the parametric representation

I'=T+u(t), 0 =t+u(t), t € [0,2m)
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where u and v are C! with period 27 and satisfy

Juli + jula < €
with I € [I1, I2]. Moreover, the map restricted to this invariant circle is given

by
tot+w, te[0,2m)

where w is incommensurate with 27 and satisfies the infinitely many conditions

2797 3)

for some v,7 > 0 and all integers p,¢ > 0. In fact, each choice of
w € [Q(I1), Q(I2)] satisfying (3), gives rise to such an invariant circle.

Reference: Wiggins (1990).

multifractals
Multiscale, non-uniform fractals are called multifractals.

Remark: Fractals found in nature or complicated dynamical systems are
statistically but not geometrically self-similar. A geometrically self-similar
fractal is constructed by iterating a single first-generation length ! repeatedly,
so that all of the I,, have the same length in the nth-generation (for example,
see Koch curve). A multifractal is constructed by repeated iteration of two
or more first-generation length scales and the result is a non-uniform fractal.

Reference: Peitgen et al. (1992).

multiple scales method

This is a perturbation method for the approximate solution of ordinary
differential equations which uses a representation of the response as a function
of multiple independent variables, or scales.

Reference: Nayfeh (1985).

multistability (see bistability)

S

>
N R
O~ N -
CV&Y..\ v N g
W - /ﬁ.mv
natural measures AV ¢ S\
An ergodic invariant measure is one whose initial set has positive Lebesgue

measure, 1.e. if y is a natural measure, and ¢ ( i
s i(z9) a flow of t
system, such that f € L!, then o) he dynomical

.1 (T
Jim 7 [ foutanat = \ fdu.

for a positive measure set of initial conditions zg.

mmﬂa.lmx. Natural measures have associations with experimentally measurable
quantities such as .Wmoam._l&ﬁmbmwon and Lyapunov exponents. They are time
averages of dynamical response and generally fall into the area of mathematics

that we call ergodic theory. One such measure i
. ure is the so-call
named after Sinai, Ruelle and Bowen. °d SRB measure,

Reference: Lasota and Mackey (1985).

Navier-Stokes equation

Hrw vwnﬁ.m_ differential equation which governs the velocity field in the flow
of linear, incompressible, viscous Newtoman fluid, given by

* du 1 ) 1
=+ @wVu=-Vp+ -—V323 Q :

(L B¢ R, .o© \x : w

where u is the velocity vector, V the gradient operator, p the density, p the

pressure, p the viscosity, and R, the Reynolds number. ] i
S et , e y er, is called a Navier—

negative damping (see damping)

negative-resistance oscillator

,H.Em is the basic oscillator used in electronic circuit shown schematically in
Figure 90(a), where the inductor and capacitor are assumed to be linear, time
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invariant and passive, i.e. L > 0 and C > 0. The resistive element in an active
circuit is characterised by the voltage-controlled function ¢ = h(V), shown in
Figure 90(b).

it

L 4

A 4

\ 14

ie iy

h
~
resistive element
™~

Figure 90 (a) Negative-resistance circuit and (b) characteristic of the
resistive element

By using Kirchoff’s current law one obtains
ic+ip+1=0
and hence w1
QMM + I \.|8 V(s)ds + (V) =0.
Umm.m.wmsawasm with respect to the time and multiplying by L yields

d*v dh dV

If we use the change of variables, 7 = Q.M..N“ and € = /L/C the above
equation produces

which is a special form of Liénard’s equation

av dv
3 + f(V) ” + g(V)

When h(V) = =V + V3/3 the current takes the form

d*v 2 dV
- - —_ =0
3 e(l <v& +V

which is the well-known van der Pol equation.

neighbourhood . o .
A neighbourhood of a point z is a set U which contains z in its interior.
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Neimark bifurcation

A local bifurcation in which a T-periodic limit cycle is replaced by a quasi-
periodic trajectory on a T'?-torus is called a Neimark bifurcation.

The Neimark bifurcation is effectively a Hopf bifurcation for maps and is
sometimes called the Neimark-Sacker bifurcation.

Reference: Kuznetsov (1995)
nerve axon (see axon)

neural networks
A cellular automata in which each site acting as one neuron can interact with

all sites (neurons) in the system is called an artificial neural network or more
simply neural network.

Neural networks are used as models for parallel processing.

Reference: Rietman (1989).

Newhouse orbits
Newhouse showed that for parameter values close to those which result in

homoclinic tangencies (see Melnikov method), infinite sets of stable periodic
orbits exist. These orbits are called Newhouse orbits or sinks.

Reference: Guckenheimer and Holmes (1983).

Newton’s laws

There are the three fundamental laws of mechanics developed by Sir Isaac
Newton.

1. Every body continues in its state of rest or of uniform rectilinear

motion, except if it is compelled by forces acting on it to change
that state.

2. The change of motion is proportional to the applied force and
takes place in the direction of the straight line along which that
force acts.

3. To every action there is always an equal and opposite reaction,
or the mutual actions of any two bodies are always equal and
oppositely directed along the same straight line.
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Newton method . .
Let f(z) be a complex-valued function and zy be an approximate solution of

flz)=0.

The Newton method is a numerical process to locate the zeros of f. The
routine finds the next approximation

.\ANav

s rTeory
n

Zn

where n = 0,1,2, ..., etc., provided that df(z,)}/dz, # 0.

One calls

f(z)
fa

the Newton transformation of the function f(2).

9(z) =z -

Remark: The expectation of the Newton method is that a typical orbit
{f*(20)}, which starts from any initial point z € C, will converge to one
of the roots of f(z).

Reference: Press et al. (1986).
node (see fixed points)
non-autonomous system

Consider the following system of differential equations

du
& =St &)

where u(to) = uo,u € D C R™, and ¢t € R*. If the right-hand side depends

explicitly on time, then (1) is called non-autonomous.

Remark: An nth-order non-autonomous system can always be converted into
an (n + 1)th-order autonomous system by appending an extra variable, e.g.

2nt
@ _ ﬂ-

The autonomous system is given by

.W.m = .\.Aﬁc @v“ QQOV = Uo
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and

27t
O(to) = -aﬂm

The non autonomous dynamical system

du
7 FfW =710
is called an externally forced system.

The non autonomous dynamical system

du
G HIW® =0
is called a parametrically forced system or parametrically excited system.

non-hyperbolic

A fixed point z* of the vector field f (z) = Az, where z € R™ and A is an
(n x n)-dimensional matrix, is non-hyperbolic if at least one of the eigenvalues
of A has a zero real part.

A fixed point of a nonlinear vector field is non-hyperbolic if its linearisation
is non-hyperbolic.

nonlinear function

A linear function is one which has the same local and global form.
Mathematically, a linear function f(z), where = € R is one for which
f(z) = ax+b, where a and b are constants, for all z (strictly b # 0 is an affine
function), whereas a nonlinear function is one which cannot be described in

this manner.
B ——————

Typical examples are the square function f(z) = 22, or the piecewise-linear
function, f(z) =z for £ < 1 and f(z) =2z for z > 1.

Nonlinear equations involve terms which are not all linear, e.g.

d’z  dr 3
Ty MM+H+.8 =0.

non-singular map
A measurable map S: X — X, on a measure space (X, B, u), is non-singular
if u(S~1(B)) = 0 for all B € B, such that u(B) =0.
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non-uniqueness . . .
The case when the solution of ordinary differential equations is not unique is
called non-uniqueness.

Non-uniqueness occurs at bifurcation points.

Ezample: We throw a mass m vertically up in the air along direction z. Its
vertical velocity is given by

m d’z
de?

m (dz)*
2\ \dt

where g is the gravitational acceleration and E its potential energy. Therefore
the upward velocity of the mass is governed by the equation

I
[
3
<

or

E —-mgz

dz 2F

This equation of motion does not satisfy the Lipschitz condition at
z = 2E/mg. At this point, this equation will put us on the spurious branch

2F
HQV = SI.Q

with dz/dt = 0, rather than on the physical branch
dz 2F
- =/ — —gz=.
-dt m

Reference: Jackson (1990).

non-wandering point .
A point p is non-wandering under f, if and only if, for any neighbourhood U
of p there exists an n # 0 such that f*UNU # 0.

The set of all non-wandering points of f is called the non-wandering set Q(f).

normal form

The normal-form method is based on the use of a nonlinear change of
coordinates which simplifies the system as much as possible. To first-order,
the normal form is the Jordan normal form. It is particularly used for studying

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOQOS 169

the properties of a flow (or map) close to bifurcation for which we can reveal
the qualitative behaviour of the system.

Given a smooth vector field f(z) on R™ with f(0) =0, there is a polynomial
transformation to new coordinates Y, such that the differential equation
dz/dt = f(z) takes the form

N
5 =Y 2w () + O(yN Y

r=2

where J is the real Jordan form of A = Eb\mau._w"mnu_ano and w, € G™,G" is
a complementary subspace in H" of B" = L, 4(HT), HT is the real vector space
of vector fields whose components are homogeneous polynomials of degree r
and L4(H") is an operator which acts on the vector fields in such a way to
produce their Lie bracket with Ay.

Reference: Arrowsmith and Place (1990).

normal mode
Consider the linear system

3 =4z (1)

where z € R™. From linear algebra it is known that there exists a real non-
singular matrix T such that T-1AT is in the Jordan normal form. If the n
eigenvalues are different, then 7-1AT is in diagonal form with the eigenvalues
as diagonal elements so that the linear transformation y = Tz leads to a
simplification. One finds

dz
NJH. = \ﬁN._N

or

m_.m =T AT, (2)

Usually the Jordan normal form T AT is simple and we can integrate (1)

immediately, from which y = Tz follows. Components of the vector z(t) are
called normal modes.

Ezample: Consider the linear system

d d
Iﬁ“mm = —uj — 3us, &2 = 2ugy AWV

which can be written in the form (1) with the matrix

>MAIW |wv
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The eigenvalues of A4 are A; = —1 and A3 =2, with the corresponding
eigenvalues being given by

ae(3): ==()
(1)

[ -1 0
kalA omv.

Then, under the coordinate transformation z = 7~1u, we obtain

If we take T to be

one obtains

dan _ . $2_,
a -~ v a7

which can be solved to obtain normal modes in the form of

z1(t) = cre”t, 23(t) = cze?

where c;, co depend on the initial conditions. Returning to the original
coordinates, u; and ugz, one then obtains

-t m»v
b

ur(t) =cre t +ep(et —e 2t

uz(t) = coe

nowhere dense set
A subset X of Y is nowhere dense in Y if X has no accumulation points (see
also fractal sets).

O

omega-limit set (w-limit set)
A point p belongs to an w-limit set of an orbit v : w(v) if p is an w-limit point
(see limit point).

on—off intermittency

Let a set A be an attractor in an m-dimensional phase space on a manifold M
for all p, where p is a control parameter. For p < p*, let A be an attractor on
the higher n-dimensional phase space, i.e. manifold NV for which M, (M C N)
is an invariant manifold. Assume that for p > p*, A is not an attractor
in N. When p is slightly larger than p*, a typical orbit initiated near the
invariant manifold M will eventually drift away from it. However, the orbit
can repeatedly revisit the vicinity of the former attractor A. This phenomenon
is called on—off intermittency.

open set

A set U in a metric space is open if for each x € U there is an € > 0 such
that d(z,y) < ¢, (where d(z,y) denote the distance between z and y), implies
yeU.

orbit
Consider a map f : A — A. Then the set

{z, f(z), f*(z), .}

where z € A4, and f" denotes the nth iteration of map f, is called the orbit
under .

A trajectory of a flow is also referred to as an orbit.

Ezample: Consider the logistic map f : [0,1] — [0,1] with f(z) = 4z(1 — z)
and z = 1/5. Then the set {1/5,16/25,576/625, ...} is the orbit of 1/5.

Reference: Devaney (1989).
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orbital stability (see stability)

ordinary point
Any point in the phase space of a system

dzx
Tl f(z)

where z € R™, which is not a fixed point, is said to be an ordinary point.

Reference: Arrowsmith and Place (1990).

organising centre
This is a term used to describe how qualitatively different types of bifurcation

can interact, thus leading to more complex behaviour.

Reference: Mullin (1993).

orientation-preserving
A homeomorphism f : X —» Y is orientation-preserving if a right-handed
Coordinate system in X is mapped into a right-handed system in Y.

Ezample: Orientation-preserving and non-orientation-preserving homeomor-
phisms are illustrated in Figure 91.

Vs

3¢)
b4

Y2

= A
®)

Figure 91 (a) Orientation-preserving and (b) non-orientation-preserving
homeomorphisms

A diffeomorphism f : R® — R? is orientation preserving if the Jacobian is
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positive, i.e.

of;
mmiw.ml._Vo
3

at every point z € R3.

Remark: If the phase portraits of two d

dz

T3 =@
with z € R3, and

dy

3 =)

. W .
with y € R®, can be related by an orientation-preserving homeomorphism
then the systems are topologically orbitally equivalent. ,

Oseledec theorem Q../Nw/vvn?

HH.:m ﬁwﬂQOhAwMHu Mﬂpﬂxmn..mwwh HL%”.U;HHOC @unﬁvozmu—ﬂm are S@:. Ammmwﬁ.m; Oor a ve, t W e
M 3y —Q

H.Lmﬁ M Um a uHHWN.mchﬁHWMWHVHNHm ﬂHm_‘HHanHmumewwnHﬂ nm wrm ﬁH““mruw:.O Mmum
Anm“m- :v. Hme m

A: X — L(R*,RF) o

be measurable and suppose that Ch.rav.a\n\ bt
X e
1 <
In ||A(2)]| € L*(m) Vo e
&S

where L!(m) denotes the space of the functions f with |f | integrable in the

sense of Lebesgue. There exists B € B, with TB .
) Cc B — :
the following properties: and SAmNYrr/wv with

— S Cd/””&ﬁv

(i) There is a measurable function s : B — Z+ with
s-T=s.
(ii) If z € B there are real numbers
A0 () < AO)(z) < ... < @) (g)
where A®) could be —oo.
\geere 20

(iii) If x € B there are linear subspaces of R*, i.e.

{0} =vO cv® ¢ . cveE) =gk
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(iv) f z € B and 1 <i < s(x) then

lim = In[|A(T™a) .. A(T%) - Aol = A (2)

n—oo 1
for all v € V() \ V- (z).
(v) The functions A(*) are defined and measurable on {z : s(z) > i}

and . ,
AO(Tz) = AU (x)

on this set.
(vi) If s(z) > ¢, then
A(z)(VO(z)) c VO (T2).
Remark I: It should be noted that the most important assumption is (iv),
while the others are only technicalities.
Remark 2: This theorem is also called a multiplicative ergodic theorem.
The numbers A()(z), ..., A(8(®) are the Lyapunov exponents.

References: Oseledec (1968); Steeb (1991).

outset .
This is a term used for the unstable manifold of a saddle fixed point.

Reference: Thompson and Stewart (1986).

P

Painlevé’s theorem

If the only singularities of the general solution of the ordinary differential
equation
d

MM "\AHVNV Awu

where
z € Rand z € C

in the complex z-plane are movable poles (singularities in a complex plane
which depend on the initial conditions) of any finite order, then we say that
equation (1) has the Painlevé property and is a P-type ordinary differential
equation.

Any system of type (1) which has the Painlevé property is integrable.

Remark: There exist integrable systems of ordinary differential equations
which do not have the Painlevé property.

The Painlevé test which gives the necessary, but not the sufficient conditions
for equation (1) to have the Painlevé property consists of three steps:

(i) Find the dominant singular behaviour.

(i) Find the resonances, i.e. the powers (degrees) associated with the
arbitrary coefficients.

(iii) Determine all of the constants of integration.
Reference: Steeb and Euler (1988).
parametric excitation (see nonautonomous system)

parametrically forced system (see nonautonomous system)
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partial differential equation (PDE)

A relationship involving one or more functions of several variables and their
partial derivatives is called a partial differential equation, e.g. the heat
equation, which typically also has associated boundary conditions.

Peano curve

This curve is the limit of the following construction. At the first step we have
a line segment. Going from one step to another, each line segment is repiaced
by nine segments with one third of the length, in the way shown in Figure 92.
In the limit, the Peano curve fills the plane.

Figure 92 First steps in the construction of the Peano curve

Reference: Becker and Dorfler (1989).

Peixoto’s theorem

Based on the earlier work of Poincaré, M.M. Peixoto developed a theorem for
the structural stability of two-dimensional flows, and in particular guaranteed
that they typically contain only invariant sets which are either sources, sinks,
saddles or closed orbits (repelling or attracting).

Theorem: A CT vector field on a compact two-dimensional manifold M? is
structurally stable, if and only if the following apply:

(i) the number of fixed points and closed orbits is finite, and each is
hyperbolic;

(ii) there are no orbits connecting saddle points;

(iii) the non-wandering set consists of only fixed points and periodic
orbits.
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Moreover, if M? is orientable, the set of structurally stable vector fields is
open-dense in the set of all C" vector fields on two-dimensional manifolds.

Reference: Guckenheimer and Holmes (1983).

pendulum

The motions of a pendulum of mass m and length I (shown in Figure 93) have
been used often to study dynamical behaviour.

Figure 93 Pendulum

The motions of the simple pendulum can be described by the equation

SN%Q + ingd=0
3z Tmesinb =

with a natural frequency w = g/l.

periodic function
If there exists a T > 0 such that a function £(¢) fulfills the following condition:

fE+T) = f(t)

for all ¢, then the function f(u, t) is said to be time-periodic with period T'.

periodic motion

This type of motion is one for which the solution describing the motion x(z)
is such that

z(t+T) =z(t)

for some time interval T, where T is the minimal interval of this property,
and is called the period of the motion.

period-doubling bifurcation

A bifurcation in which a period-T' response of a dynamical system is replaced
by a period-2T solution, or more generally a period - 2"T (n = 0,1,...)
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solution, and which is then further replaced by a period — 2*+1T solution, is
called a period-doubling bifurcation.

Ezample: Consider the dynamics of the van der Pol equation:

doy _,
a =~ ?

d

..Mwm = —u(x? - 1)z — wiz; +pcoszs

and d

T3
—Z = . 1
- = 1)

The bifurcation diagram in Figure 94(a) shows the projections of the -
attractors in the Poincaré cross-section onto the coordinate z; for a variation

in w. The plot of the largest non-zero Lyapunov exponent versus w is shown

in Figure 94(b). Starting with the following values of the system parameters,
p=25,wy=1,p=25 and w = 2.457, we observe a period-four oscillation.

1.96
_.Nm_ ..
0.60
%1 -0.06
-0.724

-1.38

-2.04
0.27

0.0 1
) Y

077
2.457 o 2.466

Figure 94 (a) Bifurcation diagram of the van der Pol’s equation, and
(b) plot of the largest non-zero Lyapunov exponent versus w

With a further increase of w, the system undergoes period-doubling
bifurcations. Examples of 4 x 2™, (n = 0, 1, 2}, periodic oscillations are shown,
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respectively, in Figure 95(a~c). This cascade of per; i i i
. ] . period-doubling bifurcat
culminates in the chaotic attractor shown in Figure 95(d). ¥ wen

x
2 X2

(a) X (c) X

x
2 X2

(b) M@ %

Figure 95 Period-doubling cascade (van der Pol equation):
(a) w = 2.457; (b) w = 2.460; (c) w = 2.462; (d) w = 2.463

For another example of period-doubling bifurcation, see logistic map.

Remark: The period-doubling bifurcation is i
tema sometimes al
ot e P so referred to as a

References: Feigenbaum (1978); Thompson and Stewart (1986).

period-n point

OOSMHAM@H a HuHN\mu H.—.Tu = ‘Aa@v. > Uouhwﬁ T 18 mm.:m _U: —VQ a _um_ _..::: _Zv:: :_
. .

z = f*(z)
and f¥(z) # z for k < n.

The non-periodic point z* is said to be eventually periodic if
z = f"(z*)

is a periodic point for some finite m.

Erample 1: For n = 1, z is a fixed point.
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Ezample 2: For the logistic map (see logistic map) with a = 3, the point
¥ =1/3

is eventually periodic with m = 1.

Reference: Devaney (1989).

perturbation analysis . .
This form of analysis may be used to assess the stability of fixed points and
periodic solutions. Consider the system

dz
P f(z)

where £ € R", which exhibits an equilibrium point at z = z* such that
f(z*) = 0. The stability is examined by superimposing a mbs. vmg.:ncmaon.
¢. Replacing = by z* +(, expanding f(x) as a Taylor series and ignoring terms
of ¢? and higher, leads to the variational equation

o _ 4f(@)

dt dz
Therefore, for stability we require the real parts of the eigenvalues of the
Jacobian matrix J to be negative (see also linearisation).

_HHa. = J(.

perturbation methods . )
These methods are used for finding approximate solutions to differential
equations which usually involve a small parameter. For example consider the
equation

i+z=cf(z, ) 1)

where ¢ is called the perturbation.

Various methods exist to find approximate solutions z(t,e) including the
Lindstedt-Poincaré method and the method of multiple scales. Typically
substitution of a trial solution into the equation (1) yields an expression from
which coefficients in powers of € can be equated with a truncation of higher
order terms (since e is small).

Pesin equality .

This states that when the measure is smooth, the measure theoretic entropy
is then equal to the sum of the positive Lyapunov exponents (see also
variational principle for entropy).

phase portrait (see phase space)
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phase space
Consider the equation

£ - j(a) @

where z € D C R". The set D is called the phase space.

Generally, phase space is the collection of variables needed to have a
deterministic evolution,

"The solutions of (1) for different initial conditions generate a family of oriented
phase curves in the phase space, with the former being called a phase portrait.

The phase portrait of a solution is a plot in phase space of the orbit evolution.

A global phase portrait illustrates both steady states and transients leading
to any steady state.

piecewise-linear function
Consider a function f(z), where z € (a,b) C R. If the interval (a,b) can be
divided into sub-intervals (a, c1), (c1, €2), .., (€, b) (n > 1), In such a way that

in each sub-interval the function f(z) is affine, then () is called piecewise-

linear.
—

pitchfork bifurcation (see bifurcation)

Plykin attractor
This is the simplest known non-trivial planar hyperbolic attractor, being
named after R. Plykin who published its details in 1974. A modified version

consists of a compact subset D C R? with three holes which each contain a
source, as shown in Figure 96.

In each hole we define f : D — R? geometrically so that f(D) lies inside the
interior of D as shown. The attractor is A = Np<of™(D).

References: Guckenheimer and Holmes (1983); Newhouse (1980); Plykin
(1974). .

Poincaré—Andronov—Hopf bifurcation (see Hopf bifurcation)

Poincaré—Bendixon theorem

Suppose that the trajectory ®:(ug) of the differential equation du/dt = f(u),
where u € R?, with flow ®;, is contained in a bounded region D of the phase
space for t > 0. Then the only possible w-limit or a-limit sets for ®,(ug) are
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)N

SD)

f(B)

Figure 96 The Plykin attractor

a critical point or periodic solution.
Remark 1: This is only a two-dimensional result.

Remark 2: This is a powerful result since it proves the existence of a periodic
orbit in D when there are no fixed points in D.

There are a number of criteria that guarantee the existence of limit cycles for

certain classes of equations. Consider the second-order ordinary differential
equation

QN: Q:Q: I H
S (w5) 5w =o M

Provided that the following conditions hold, then equation (1) has at least
one limit cycle.

(i) ug(u) > 0 for all u > 0;
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(i) \b?va: = o0;
0

(i) f(0,0) < 0 and there exists a up > 0 such that f(u, du/dt) > 0
for |u| > up and every du/dt;

(iv) there exists a constant M > 0, such that f(u, du/dt) > —M for
ju| < ug;

u
(v) there exists a u; > ug such that \ Flu, d(u))du > Mu,
Ug

where ¢ is an arbitrary positive and monotonically decreasing function of wu.

Reference: Andronov et al. (1966).

Poincaré-Birkoff theorem

Consider an annulus A = {(f,7)la < 7 < b,0 < 8 £ 27} and an area-
preserving twist map T, as follows:

T:(0,7) = (6 + a(r),7).
We now define the following perturbation to 7'
M(6,7) = (6 + a(r) + f(6,7,€), 7 + g(8, 7, €),
where da(7)/dT # 0, and f, g are 2r-periodic in § with
f(8,7,0) = g(8,7,0) =0.

We will suppose that M, is defined on an annulus a <71 <b a<band that
it is area-preserving for all values of ¢, i.e.

\ 7d8 = \ 7d6
r M.T

for any closed curve I in the annulus.

-

Theorem: Given any rational number, p/q, between a(a)/2n and a(b)/2m,
then there are 2q fixed points of M2 : (4,7) — (84, 7,) satisfying

(6g,7¢) = (6 + 27p, 7)

provided that € is sufficiently small.
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The periodic points which are predicted by this theorem are called Poincaré—
Birkhoff periodic points.

Reference: Arrowsmith and Place (1990).

Poincaré index
Consider a closed curve v C R? and a vector field (P, Q):

dz
3 = Fley)
and
dy _
T = Q). )

At each point of ~, consider the direction of the vector field, as illustrated in
Figure 97.

Figure 97 An example a of Poincaré index “

After going around 7, either this record of field vectors rotates around the
intersection point with 4, or else it does not. The number of rotations of the
field vectors about the intersection points with + is called the Poincaré index
I, of the curve y, with I, > 0 (I, < 0) if the rotation is in the same (opposite)
sense as the rotation carried out along « in the plane.

The Poincaré index, for the vector field determined by (1), can be calculated
”w .
1 1 QY _ N

.NQ = MQI_H g d Aﬁg wv =

H m@m’ﬁ wml WWV _wu 2-1,
MM:?M.I %vai?& 5y ) | (P*+ @)
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If v goes around either a single centre, focus or node, then the Poincaré index
I, = 1. If it goes around a saddle point, I, = —1.

If I, # 0, then there is at least one fixed point in the region enclosed by .

Consider the closed curve v which encloses only one fixed point; the index I,
is then called a Poincaré index of the fixed point.

Reference: Jackson (1990).

Poincaré map

This map is a classical device due to Henri Poincaré and is used for analyzing
dynamical systems. The main idea is to replace the flow of an nth-order
continuous-time system with an (n —1)th order discrete-time system. The
latter is constructed by viewing the phase-space diagram stroboscopically on
a plane of a section in such a way that the motion is observed not continuously
but at a given discrete sequence of times.

The definition of the Poincaré map is slightly different for autonomous
and non-autonomous systems. Consider an nth-order autonomous system
dz/dt = f(z), where z € R"™, and assume that it has a limit cycle I, as
illustrated in Figure 98.

T

Figure 98 The Poincaré map for a three-dimensional autonomous system

Strictly speaking, the definition of a Poincaré map does not require the
existence of a periodic orbit; however, for illustration let z* be a point on
the limit cycle. Let £ be an (n —1)-dimensional surface transverse to T" at z*.
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The orbit starting from z* will cross £ at z* after a period T of a limit
cycle. Trajectories starting on ¥ in a sufficiently small neighbourhood of z*
will intersect X in the vicinity of =*. Hence the equation dz/dt = f(z) and
% define a mapping P of some neighbourhood U C ¥ of z* onto another
neighbourhood V' C T of z*. P is a Poincaré map of the autonomous system.

The transverse surface ¥ is called the surface of section.

This definition of the Poincaré map is rarely used in simulations and
experimental settings because it requires advanced knowledge of the position
of a limit cycle. In practice, one chooses an (n — 1)-dimensional surface X,
which divides R™ into two regions. If X is chosen properly, then the trajectory
under observation will repeatedly pass through X, as shown in Figure 99. A
Poincaré map is built out of these crossing points.

Figure 99 Practical construction of a Poincaré map for an autonomous system

Ezample 1: Consider a three-dimensional autonomous system. A Poincaré map
can be defined as the set

3 = (), ua(®))

Unfortunately, there is no guarantee that such a map is well-defined, since
u(t) may never intersect . In the case of a system in Euclidean phase space,
with bounded behaviour which does not approach an equilibrium point, there
is always some choice of I for which the Poincaré map is well-defined locally.

t = tg, .:wcwwv = OOSm&v .

Consider now a non-autonomous system of the n-th order. For a time-periodic
non-autonomous system with a forcing period 7', which can be transformed
into an (n + I)th-order autonomous system in the cylindrical phase space
R™ x S!, the Poincaré map can be defined in the following way. Consider the
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n-dimensional surface £ € R™ x S!;
%= {(u,0) € R" x §! :0=16o}.

After every period T', the orbit u(t) intersects ¥ (see Figure 100). The resulting
map

P:S5% (R"=RY)
which maps u(t) — u(t + T') is a globally defined Poincaré map.

Figure 100 The Poincaré map of a one-dimensional non-autonomous system

Ezample 2: Consider the forced Duffing equation

d%u du 3
FTe +9Nm + bu + cu® = F cos(Qt)

where a, b, ¢, F and § are constants. This equation is invariant under the
following transformation

s {2 i)
"1 (du/dt,t) - (du/dt,t+ 27/0)

and a Poincaré map can be defined as the set
{(u(t),du/dt) : t = to + 2kn /0, k = 1,2,...}.
This map is also sometimes called the return map:

Reference: Guckenheimer and Holmes (1983).



188 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

Poisson bracket
Let M be a differentiable manifold. The Poisson bracket of the two functions
f,9 € C®(M) is the function [f, g] € C=(M), defined by

_N~(9f08g _8f dg
[fel=3 Aml&ms 8g; m@.v.

The Poisson bracket is anti-symmetric in f and g, i.e. [f,g] = —[g, f]-

The Poisson bracket satisfies the Jacobi identity

Lf:[h, gl + (A [f, 9]l + [9,[R, f} = ©
for f,g,h € C°(M).

Reference: Arnold (1983).

polynomial nonlinearities
Nonlinear functions in the form of a polynomial,

P(z) = ap + a1z + apx? + ... + a,z",

where n > 1, describe polynomial nonlinearities.

population dynamics

This is the term used to consider the growth in population size of various
species which can be modelled either continuously or discretely (see logistic
map, Ricker map).

Poston’s catastrophe machine

The Poston machine is a simple system which may be used to illustrate
catastrophe theory. It consists of a uniform wheel of mass m and radius r,
with a mass M attached at a distance c < r from its axis, as shown in Figure
101.

Figure 101 Poston machine
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By changing the parameter ¢, one can observe various catastrophes (see also
Zeeman’s catastrophe machine).

Reference: Poston and Stewart (1978).

potential well
The dynamics of many physical systems can be viewed in terms of the
behaviour of a particle moving in a potential well. This is especially true
for mechanical systems governed by equations of the form

&’z  dz

—— 4= =F

where the associated potential-energy function V (z) is found from

a\?“v"\v\ﬁav&a

and where F'(t) is a small excitation.

power spectra

When a function f(t) is not periodic or is quasi-periodic, then it can be
expressed in terms of oscillations with a continuum of frequencies. Such a
representation is called the Fourier transform of f. In this case, the spacing

.between the frequency components becomes infinitesimally small and the

discrete spectrum of the frequency components becomes continuous.

Consider the following transformations in a Fourier series (see spectral
analysis):
T - oo, nwoe — w

where w is a continuous variable, and
a, — a{w)dw.

This transformation allows the transition from the Fourier series to the Fourier
transform.

The appropriate limits lead to the Fourier transform a(w) of the function F(#):
H o0
—_ iwt
aw) = 5- \ Flt)eitdt, (1)
—oo

The inverse transform is given by

o0

@) = \DAEvml.EaaE.

—00
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The Fourier transform a(w) can often be complex. Therefore it is useful to
define a real-valued function:

Sw) = la)|*

which is called the power spectrum. This is a quantity which is very :mm?_.wb
a number of practical applications, for example it allows the main frequencies
of the considered system to be determined so that their resonances can be

avoided in experiments.

Ezample: Let us consider the solution of the damped linear oscillator

which is given by ]
QQV — x#mlnam:ton

where ¢ is the damping coefficient, wo is the mnmncmb.nx .Om cbaﬁﬂvmm
oscillations and A is a constant which depends on the initial conditions.
Application of (1) allows the calculation of the integral for a(w):

A
27[e — i(w — wo)]

a(w) =

and the power spectrum is as follows:

1

S(w) = 4n2[c? + (w — wo)?]

This power spectrum is given in Figure 102, showing that S(w) is symmetric
about the dominant frequency wp, which is the natural frequency of the

undamped system.

h

4
S(w)

®, ®
Figure 102 Power spectrum of the response of a damped linear oscillator

Reference: Kaplan (1973).
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predator—prey equations
These are a set of equations which models the evolutions of species of predators
and their prey (see Lotka—Volterra equations).

predictability .
This is the ability to determine the future state of a dynamical system, say
for t > t;, based on the state for ¢ < 71,

Remark: In chaotic systems, lack of practical predictability results from the
inability to make physical measurements of initial conditions or numerical
computations, with infinite precision. Therefore, the sensitivity due to initial
conditions produces the divergence of initially close-by conditions.

primary resonance

In continuum systems or systems with many degrees of freedom, such as a
vibrating beam, different modes of vibration will exist which can be excited
into resonance by the appropriate choice of the frequency of excitation. The
primary resonance occurs when the system is excited with frequencies close
to its fundamental mode, thus producing the largest amplitudes of response.

probability density function

Let the mean value of a random variable R(w), in which the basic events w
are countably specifiable, be given by

<R>=) Pw)R(w)

where P(w) means the probability of the set containing only the single event w.

In the case of a continuous variable, the probability density function p(w) can
be defined in the following way. Let A(wp,dws) be a set

(wo £ w < wp + dwy)

which gives
plwo)dwo = P[A(wp,dwy)] = p(wo, dwp).

Reference: Gardiner (1990).

probability measure
A measure u on a set A is a probability measure if plA)=1.
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probability space .
Let X be a set. A o-algebra of subsets of X is a collection B of subsets B of

X satisfying:

XeB
BeB=>X\BeB

and
B,eB=3UX,B,€B

where n > 1. We call (X, B) a measurable space.

A measure space is a triple (X, B,m) where X is a set, B is a o-algebra of
subsets of X, and m is a function m : B —» R satisfying

m(U) =3 m(By)
n=1

if { By} is a pairwise-disjoint sequence of elements of B. We say that (X, B,m)
is a probability space if m(X) = 1.

Reference: Steeb (1991).
Proudman—Johnson equation
The partial differential equation

o _ 10
o0tdy® ~ R Oyt

&®f 0ofd%f
T o T By

where f = F1, and 8f/0y = 1 at y = %1, is called the Proudman~Johnson
equation.

This equation describes the unsteady, non-parallel flow of a viscous fluid in a
channel.

Reference: Drazin (1992).

pseudo-orbit (see a-pseudo orbit)

Q

quadratic map
A one dimensional uni-modal map, written as one of the following

2

Tyl = aTy, — bz

Tny1 =1—az2

or

2
Ty =Cc—zp,

is called the quadratic map.
A further variation of the quadratic map is the logistic map.

quantum chaology

Following M. Berry, quantum chaology is the study of semiclassical, but
nonclassical, phenomena characteristic of systems whose classical counterparts
exhibit chaotic behaviour. ‘Semiclassical’ means as the Planck constant A
tends to zero. The limit is non-trivial because quantum mechanics, considered
as depending on the parameter h, is essentially singular at the ‘classical’
origin h = 0, in ways that differ from System to system. This non-analytic
property is present in all waves in the limits of vanishing wavelengths. The
most understood aspects are associated with caustics in integrable systems,
and can be expressed in terms of scaling laws involving exponents whose
determination involves catastrophe theory. Because of the essential singularity
at h =0, the classical limit of quantum mechanics (and also the geometrical-
optics limit of electromagnetism) is complicated and conceals a rich variety
of phenomena. Quantum theory is a non-perturbative extension of classical
mechanics. ‘Nonclassical’ is incorporated into the definition in order to exclude
the trivial sense in which classical unpredictability could be regarded as
quantum chaos on the grounds that every classical system is really the h = 0
limit of a quantum system.

References: Berry (1989); Steeb (1991).
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quantum chaos

Consider a chaotic Hamiltonian system with a Hamiltonian function H. Let
H be the associated Hamiltonian operator (spectrum). The study of H is
summarised as quantum chaos.

There is no unique definition of quantum chaos (see also quantum
chaology).

Reference: Steeb (1991).

quasi-linear function
A function f(z) is called quasi-linear if

f(z) = g(z) + eh(x)
where g(z) is linear, h(z) is nonlinear and ¢ is small.

quasi-periodic function
An almost periodic function

\..Aﬁv = QAC.:&, Ewﬁq eey Ea&.v

where g(.) is 27r-periodic in each argument and the frequencies wy are not
rationally related, is called a quasi-periodic function.

quasi-periodic route to chaos (see route to chaos)

quasi-stationary process
This is a term typically used to describe an experiment in which, for instance,
the amplitude of excitation force is held fixed while the frequency is slowly
varied, i.e.

z(t) = zcoswt

where w =wg +7t, and r « 1.

R

random dynamical system

This is a general framework for investigating random systems by analyzing
‘non-autonomous’ systems where parameters evolve stochastically, which has
been particularly studied by L. Arnold and co-workers.

References: Arnold (1974); Kloeden and Platen (1992).

randomly transitional phenomena

This is a term used by Y. Ueda to describe chaotic motion essentially before
the term chaos was universally accepted. The term usefully describes the
motion where a system moves close to, and then away from an infinite number
of unstable solutions in an apparently random manner. Employing similar
concepts, Lorenz has described chaotic motion as the motion of a ball on an
infinitely long bagatelle board.

Reference: Lorenz (1993); Ueda (1979).

Rayleigh—Bénard convection

This occurs when a horizontal layer of fluid is heated from below with
a sufficiently large heat flux Q to generate flow. In a classical example,
the convection of a fluid between two plates which are held at different
temperatures T and T 4 AT (as shown in Figure 103) is considered. As the
temperature difference AT is increased, convective vertical rolls of fluid occur.

Reference: Busse (1980).

Rayleigh equation
The ordinary differential equation

aua aawaa
S%IT |D+&Amv .MW+NH|O

where a,b > 0, is called the Rayleigh equation.
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Figure 103 Illustration of Rayleigh~Bénard convection

reconstructed phase space

The phase space constructed from a time series of measurements by
using delay coordinates is called the reconstructed phase space (see also
embedding).

recurrence theorems

Let T : X — X be a measure-preserving transformation of a probability space
(X,B,m), and let E € B with m(E) > 0. Then almost all points of E return
infinitely often to E under positive iteration by T'.

Remark: There exists F' C E with m(F) = m(E), such that for each z € F
there is a sequence, n; < ng < n3 < ... < n;, of natural numbers with
T™i(z) € F for each ¢.

Let g be a volume-preserving continuous one-to-one map which maps a
bounded region D of Euclidean space onto itself; i.e. gD = D. Then on any
neighbourhood U of any point of D there is a point £ € U which returns to
U,ie. g"z € U for some n > 0.

Reference: Arnold (1988).

reflection map
A map (z,y) — (z,-y), where z,y € R produces a reflection about the
z-axis, is called the reflection map.

relaxation oscillations
Consider the van der Pol equation

d*z o\ dz _

For large k, the solution z(t) has the form shown in Figure 104.
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Figure 104 Relaxation oscillations of the van der Pol equation

The time intervals indicated on the orbit, exhibit regions of fast and slow
motion in the phase space. Systems which are self-excited (there is no periodic
force), producing periodic response which have such fast (during 67 intervals)
and slowly varying states (during AT intervals) in their periods, are referred
to as relaxation oscillations.

Reference: Huntley and Johnson (1983).

renormalisation group theory

This theory describes semi-groups of scaling transformations, which through
theorems such as those of Sharkovskii and Li and Yorke, determine the
universal behaviour of a wide class of maps. Feigenbaum used renormalisation

group theory to account for the universal scaling of maps during period-
doubling.

Reference: Guckenheimer and Holmes (1983).

Renyi dimension

Let 4 be a probability measure on a d-dimensional phase space X, where an
appropriate partition is chosen that divides the phase space into small cells
of volume D?. The Renyi dimensions are defined as

I . S
for g € R and ¢ # 1, and

_ o 2ipilnp
Dlg) = bmmwo ln D94

where, for ¢ = 1:

pi = \ du(z).
ith cell
References Steeb (1991).
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repellor
An attractor which is unstable is called a repellor (see attractor).

resonance
Consider the forced oscillator

d’z dz

—-— —) = Acos .

= T3
The phenomenon in which the solution z(t) attains a large amplitude at
specific values of the driving frequency (2, is called a resonance.

The principal resonance occurs in the neighbourhood of Q = wj,,, and is known
as the natural frequency of the oscillations.

The resonance which occurs at a sub-harmonic frequency is called a sub-
harmonic resonance.

resonance curve

This is used in engineering to visualise the response of a system upon variation
of a parameter, and is usually seen as the modulus of the maximum amplitude
of displacement |z| versus the variation of the excitation frequency w.

restoring force . o
This is the force exerted on a body which is displaced from its equilibrium
position (see also spring force).

return map

Let V,, (n € I) be a time series, where [ is a countable set. The map in which
the (n + 1)th point is plotted as a function of the preceding nth point V;, is
called a return map (or Poincaré map).

The construction of a return map is visualised in Figure 105 where an orbit
in phase space is investigated at each crossing of a plane.

Reference: Lorenz (1963).
reverse bifurcation (see bifurcation).

Reynolds number

This is a dimensionless parameter used in describing the characteristics of a
viscous fluid in motion and is given by R = UL/T, where U is the flow speed,
L is a characteristic length scale of the flow, and T is the kinematic viscosity.
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\'\.ll S~ LIEY) . A.f:n <=+_u
me._. v;) . e

* ﬁ<~. v;)

Figure 105 Construction of a return map

Typically, a large Reynolds number suggests that viscous effects are negligible,
but often at high Reynolds numbers steady flow is usually unstable so that the
most likely visible motion is turbulent. On the other hand, a low Reynolds

number suggests that the fluid is highly viscous, often resulting in laminar
flow.

Riccati equation
The first-order ordinary differential equation

dzx

5= ao(t) + a1(t)z + aa(t)z?

where z € R and ao,,,2 are continuous bounded functions of time t, is called
the Riccati equation.

Richardson model

This is a set of logistic equations which were developed by L.F. Richardson
in the 1960s to model the arms race between two nations. In discrete form,
these are given by

Tni1 = 4ayn(l ~ yp)
and
Ynt1 = AOH:AH - sz

where z,, and y,, and a, b are constants. The variables Tn, and y,, denote the
fractions of available resources that two countries devote to agreement.

Reference: Alligood et al. (1997).
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Ricker map
This is the one-dimensional map

Tyl = Tpexplr(l — z,)]

where r is a constant, which was used originally by W.E. Ricker to model the
dynamics of populations of fish species.

riddled basins

A riddled basin is one for which every neighbourhood of a point in the basin
contains a portion of another attractor’s basin. If rg is any point in a riddled
basin of an attractor, then a ball in phase space of radius € about r¢ has
non-zero fraction of its volume in some other attractor’s basin. Furthermore,
this holds true no matter how small the value of ¢.

If the second basin is also riddled by the first basin, then we say that the
basins are intermingled.

Remark 1. There is always a positive probability that an arbitrarily small
perturbation in rg can move an initial condition in a riddled basin to another
attractor.

An attractor A, whose basin b(A) has a positive Lebesgue measure, has a
locally riddled basin if there exists an € > 0 such that for every point z € b(4)
any arbitrary small ball centred on z contains a positive measure set of points
whose orbits exceed a distance ¢ from A.

Remark 2: This second definition generalises the previous one to include the
possibility that b(A) contains an open neighbourhood of A.

The differences between a fractal basin boundary, and riddled and
intermingled basins, are visualised in Figure 106. In Figure 106(a), basins of
attractor A (white) and attractor Ay (black) have fractal basin boundary.
The basin of attractor A is riddled by basins of attractor B in Figure 106(b),
while basins of attractors A and B are intermingled in Figure 106(c).

References: Alexander et al. (1992); Ashwin et al. (1994).

Rikitake model
The Rikitake model describes the earth’s magnetic field by the use of the

following equations:
dz 1

at
dzs
dt

= —UI; + Y1

= —vzry + (y — a)zy
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Figure 106 Illustration of the differences between (a) fractal basin
boundaries, (b) riddled basins and (c) intermingled basins; the basin of
attractor A (line at y = 0) is riddled by basins of attractor B in (b),
while basins of attractors A and B are intermingled in (c) (Aand B
indicated in black and white, respectively)

201
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and n_lﬁ s

i 1Z2
where z; and z2 are the currents in two eddies in the earth’s core, y is the
angular velocity of one eddy, a > 0 is the constant difference between the
angular velocities of the two eddies, and r is the ratio of the mechanical time

scale to the magneto-diffusion time scale.

Reference: Drazin (1992).

RLC circuit

An RLC circuit is an electrical circuit with a resistor R, an inductor L and a
capacitor C. Currently, the most cited nonlinear circuit is the Chua or double-
scroll circuit. Mathematical models consisting of a set of ordinary differential
equations can be derived to describe the behaviour of the circuit (see Chua’s
circuit).

robust

Models, or solutions, that are insensitive to small perturbations in the
governing parameters are said to be robust (see also structural stability).

rotation number (see winding number)

routes to chaos
There are basically four ways in which a system can become chaotic as a result
of a change in parameters:

(i) period-doubling (Feigenbaum);
(ii) intermittency (Pomeau and Manneville);
(iii) subcritical instability;
(iv) a sequence of global bifurcations (Ruelle-Takens—Newhouse).

Reference: Ott (1992).

Rossler equations
The ordinary differential equations

dz _ _ ., _,
at - Y
dy
mm.la+a@
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and d
z
P b+z(z—c)

where a,b and ¢ are constants, are called the Réssler equations.

@&aﬁvmmn Fora =b=1/5, and ¢ = 4.0 and 5.7, the Rossler equations have,
respectively, the periodic and chaotic attractors shown in Figure 107.

Figure 107 (a) Periodic and (b) chaotic attractor of the Rossler system

Reference: Rossler (1976).

Runge-Kutta method

.2:89&3_ solutions of differential equations and difference equations are
Nﬁvogga tools in the study of nonlinear systems. Most of the nonlinear
differential equations which can be found in practical applications are difficult,

if not impossible, to solve analytically. In these cases, we typically rely on the
use of numerical methods.

Among the many successful codes designed to integrate initial-value problems
of ordinary differential equations, Runge-Kutta-type methods appear to be
the most popular. Combined with the error formulae of Fehlberg, these
methods have proved to be robust and widely applicable. We focus on the
non-stiff situation and present the formulas on which Runge-Kutta-Fehlberg
method of order four is based. Suppose that the initial-value problem

d
F=f0w,  ulto) = u
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where u € R", is to be integrated. A typical integration step approximates u
at t =tp + A, where A is the step length. The formulae are

4
:H=o+>M9&A$

k=0

5
G=up+AY &f®

k=0
with
(i
.\A ) = .\..Qovﬁnvv
and
k—1
) ;
F®) = f(to + arA,uo + A M Bri F9).
=0
TABLE 1
k oar  PBro Br1 Bra Bra Bra  ck Cr
25 16
0 0 0 316 135
1 1 i 0 0
9 3 3 s 1408 6656
8 33 33 2565 12825
3 12 1932 7200 7206 2197 28561
13 3197 2197 2197 4104 56430
439 3680  _ B45 1 _9
4 1 216 -8 513 4104 3 50
5 L _8 o  _3s44 1859 _u 2
2 27 2565 1104 10 55

Both u and 4 approximate the exact solution, with @ being the approximation
of higher order. The difference u — % serves as an estimate of the error in u.

Reference: Press et al. {1986).

Ruelle inequality
The inequality is defined as

hu < YN

A; <0

where {);} are Lyapunov exponents, and h,, is the measure theoretic entropy.
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Ruelle-Takens route to chaos

This concept was first proposed by D. Ruelle and F. Takens in 1971, and
latter modified with the assistance of S. Newhouse (hence it is moSmSBmm also
referred to as the Ruelle-Takens-Newhouse route to chaos), as a transition
to turbulent motion in a fluid. A quasi-periodic solution with more than
three frequencies is in general unstable, so that after only a few bifurcations
turbulence occurs with the break up of a homoclinic orbit. (Compare this

S.z.& the period-doubling route in which chaos occurs after an infinity of
bifurcations.)

The typical scenario is thus: steady state — periodic (w;) — quasi-periodic
(w1,ws) — chaos.

Reference: Ruelle and Takens (1971).
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saddle (see fixed point)

saddle connection (see global bifurcations)
saddle-node bifurcation (see bifurcation)
saddle point (see hill-top saddle)

safe (continuous) bifurcation

This is a bifurcation in which the attracting set is continuous in control-
parameter phase space, as the parameter goes through the bifurcation point,
e.g. a supercritical Hopf bifurcation.

Reference: Thompson and Stewart (1986).

Sarkovskii (Sharkovsky) theorem
bmeﬂﬂ\,\ggmoamummmmnAwkmkﬂk...AwaAme.Amxﬂ.A
...AmewAmemA%qu....Am.AAAwAS.HQ\NNLNHB‘:“
be a smooth map such that f(0) = f(1) = 0, which has a single fixed point.
If m < n relative to the order in the set T, and f has a periodic point with a
prime (i.e., shortest) period m, then f has a periodic point of period n (see
also Li-Yorke chaos).

References: Devaney (1989); Sharkovsky (1964).
sawtooth map (see Bernoulli shift map)

Schrodinger equation
The partial differential equation

@ , @w )
%00 1 T80 | gt tigta i = 0

1
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where i = /=1, 2 € R and t € R*, is called the nonlinear Schrédinger
equation.

Schwarzian derivative
This derivative, Sf(z), of a smooth function f(z) is given by

3 2 2
s < £ 3 Aa \&V .

dffde ~ 2 \dz? dz

Remark: The Schwarzian derivative has the following properties:

(i) Suppose that Sf < 0 and Sg < 0, then S(fg) <o0.

(ii) Suppose that Sf < 0 and f has n critical points, then f has at
most (n - 2) attracting periodic PoOInts.

The Schwarzian derivative is used in the theory of S-unimodal maps.

Ezample: Consider the function f(z) = 4z(1 — z2), the Schwarzian derivative

is then given by
Sf(z) = _3 2 ’
T 4\2w-1)

Reference: Devaney (1989).
secular terms (see small parameter methods)

secure communication

It has been proposed that the ability of coupled chaotic systems to synchronise
may be used to mask the information of an input signal I(t) by adding it to a
larger chaotic signal n(t) and transmitting the superposition of both signals.
Information can be recovered after comparison of the received signal I(t)+n(t)
with the original chaotic noise n(t). In this procedure, chaotic signals in the
transmitter and receiver systems must be synchronised. As this way of sending
information is difficult to unmask and hence is called secure communication.
The main idea of secure communication is illustrated in Figure 108.

Reference: Cuomo and Oppenheim (1993).

self-exciting system
This term means that the system has no external source of energy upon which
it can draw. Self-excited system is also sometimes called autocatalytic system.
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Transmitter

I n(y I0)+n(
annnn_ *>

information signal chaotic noise

Receiver

S
I9+n(y n( I

received signal

chaotic noise received information

Figure 108 The idea of secure communication

Ezample: Consider the Rayleigh equation

ama aamma
3|a.+ I.D-T@Amv MN+WH”O

with a,b > 0. The term

dz\?| dz

—a+b{— —

(%) |5

means that for small dz/dt the dissipation is negative and energy is injected

into the system. The fixed point (0,0) is unstable, so that with any

perturbation from this point the system is self-excited, and the system remains
bounded only due to the presence of the term b(dz/d¢)3.

self-organised criticality

This is a mechanism proposed to explain the physics of fractals. A
spatially extended dynamical system evolves spontaneously into barely stable
structures of critical states at which the spatial features of the system have self-
similarity. This self-organised criticality is the common underlying mechanism

for many self-similar and fractal phenomena. It is primarily studied in models
of cellular automata.

Reference: Bak et al. (1987).

self-similarity
The property of an object or set of points such that the _geometric structure

is repeated at different scales or magnifications is known as self-similarity (see
also fractal sets).
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sensitive dependence on initial conditions . .
Consider a map f(z) : R®™ — R". Let 2o =~ z{ be two slightly different,
arbitrarily chosen, initial conditions and consider the two orbits

Zo, .‘.AHOY weey .\:AHOY

and
T, F(Z0)s ooy FH(TG)s --- -

If, after a finite number of iterations of the map, these Sc.o.ﬁnv;m ‘Um.owEm
completely unrelated, then we have sensitive dependence on initial conditions

(see Figure 109).

Figure 109 Illustration of sensitive dependence on initial conditions

Sensitive dependence is a characteristic property of all chaotic .m%mamsm, mw..armn
maps or flows. The term ‘butterfly effect’ is sometimes colloquially used since
this behaviour was first noticed by Lorenz in a paper entitled “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?”.

A measure of the sensitivity can be found from calculating the &<mnmm~.~om
properties of the system by determining the Lyapunov exponents Sgowl
measure the exponential divergence of close-by trajectories.

Reference: Lorenz (1993).

separatrix

Let z € R? be a saddle fixed point. An orbit which converges to the mmaﬁ.:m
point as t -+ oo is called the stable manifold, inset or incoming separatrix,
whereas if it converges to the saddle point as ¢ — —oo, it is called then
unstable manifold, outset or outgoing separatrix.
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Remark: In single-degree-of-freedom driven oscillators the inset forms the
separatrix between adjacent basins of attraction.

shadowing lemma

Let A be a hyperbolic invariant set. Then for every 8> 0, thereisan a > 0

such that every a-pseudo orbit {z:}t_,, where a <i<bin A is S-shadowed

by a point y € A.
Remark: This lemma is proved only on uniformly hyperbolic sets.

Reference: Guckenheimer and Holmes (1993).
shadowing orbit (see a-pseudo orbit)
Sharkovsky’s theorem (see Sarkovskii theorem)

shear map

Let z € R? and F : R? - R2, and f(z) be a differentiable function,
and consider the shift S(z) = (z,y + f(z)), together with the rotation
R(z) = (y, —z), where S, R : R? — R2; then the map

f(z) = S(R(S(z)))

is called a shear map.

shift operator

This operator, S, acts on the symbol sequences 3. = 805182...5k8k+1 .., €tC. in
the following way:

..m.AMU = 8182...8k8k41 ...

and
%wﬁmv = SkSk+41-...

(see also symbolic dynamics).

Shilnikov theorem

Consider m>mo€ ¢¢ in R3, which has a fixed point at the origin with a real
eigenvalue A > 0, and a pair of complex eigenvalues w and @ # w, which have
negative real parts. We introduce coordinates in such a way that the linearised
version of the stable manifold W*, i.e. the stable subspace, is contained in
the (z,y) plane and the unstable manifold W contains the z-axis. Assume
that the trajectory v in W*(0) which points upwards near 0 is a homoclinic
trajectory which enters the (z,y) plane and spirals towards the origin as
t — 00, as shown in Figure 110.
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Figure 110 A homoclinic trajectory to a saddle focus

If [Rew| < X, then the flow ¢; can be perturbed to ¢', such that ¢' has a
homoclinic orbit v’ near v and the return map of ' for ¢} has a countable set
of horseshoes.

References: Guckenheimer and Holmes (1983); Wiggins (1990).

shooting method

This is a method which applied to the numerical solution of continuum
systems. Through an iterative scheme, adjustments are made to the
parameters of a numerically computed solution to an initial-value problem
in order to satisfy far-end boundary conditions.

Reference: Press et al. (1986).

Sierpinski carpet

A Sierpinski carpet is a fractal formed when a central cross or square is
removed from an initial square and the process repeated on each of the
remaining smaller squares (as shown in Figure 111).

Sierpinski gasket

Consider the following construction (shown in Figure 112). The first step is a
filled triangle. In the second step, the central triangle is eliminated. The next
step eliminates all of the central triangles from each filled triangle. When the
number of steps increases to infinity we then obtain a fractal set which is
called the Sierpinski gasket.

Remark: The capacity dimension of the Sierpinski gasket is
D=In3/In2 = 1.58.
Reference: Barnsley (1988).
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Figure 111 Steps in the construction of a Sierpinski carpet

Figure 112 Steps in construction of a Sierpinski gasket

o-algebra (sigma algebra)
Let X be a set. A o-algebra of subsets of X is a collection B of subsets B of
X satisfying the following conditions:

XenB

BeB= X\BeB
and
B, e B= UX,B, €B.

Reference: Walters (1982).

simple harmonic motion
This is the periodic oscillatory motion governed by the linear equation

d2z
MMW.._.»”HHO

where k& > 0 is constant.

Sinai-Ruelle-Bowen (SRB) measure (see natural measure)
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sine—-Gordon equation
The partial differential equation

¢(z,t) _ 8%¢(z,1)

o7 o sin ¢(z, t)

where z € R, is called the sine-Gordon equation.

sine map
This map is a one-dimensional unimodal map

Tn41 = TSinwz,

where 0 < 7 <1, 0 € z < 1, which has a bifurcational structure similar to
that of the logistic map.

Singer’s theorem . .
This is a theorem for one-dimensional maps which states the following:

Let f : I — I be a C® map with negative Schwarzian derivative. If v is a

) 41 3 ” ! *
stable periodic orbit, then there exists a critical point z*, such that f'(z*), or
an endpoint of I whose trajectory approaches .

Reference: Thompson and Stewart (1986).
singular points (see fixed points)

sink
This is an asymptotically stable fixed point.

skinny baker map . . .
The skinny baker map is a discontinuous map on R* which contains stretching
in one direction and shrinking in the other, given for example by

(3z,2y) if

0<
m?évuﬁ (Az+2,2y-1) if i<

y<1i
y<1

(see also baker map).

Reference: Alligood et al. (1997).

slaving principle .
This is the behaviour in which one subsystem (slave) follows the ,cmswa.:o:w of
an other subsystem (master). This phenomenon is similar to synchronisation.
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The term slaving principle was notably used by Haken and applied to systems
near singularities.

Reference: Haken (1976).

slowly varying variables (see averaging methods)

Slutsky-Frisch—-Tinbergen method

This is a methodology in economic modelling method based on the use of
exogenous stochastic impulses which are transformed into oscillation patterns
through the filtering properties of the economy’s linear ‘propagation method’.

Reference: Grebogi and Yorke (1997).

Smale—Birkhoff theorem

This theorem, which is also known as the Smale-Birkhoff homoclinic theorem,
establishes a criterion for the existence of hyperbolic invariant sets in a flow.

Theorem: Let f: R™ - R™ be a diffeomorphism such that p is a hyperbolic
fixed point and there exists a point g # p of transversal intersection between
the stable W*(p) and unstable W*(p) manifolds of p- Then f has a hyperbolic

invariant set A on which f is topologically equivalent to a subshift of finite
type.

Reference: Guckenheimer and Holmes (1983).
Smale horseshoe (see horseshoe map)

small-parameter methods
This is a term used for perturbation methods. Consider the equation

d?*z dz

m.m+8wa+m\ Aevﬂm,ﬁv”o (1)
where £ € R and € << 1 is a small parameter. An approximate method for
solving (1) assumes that the periodic solution has the form of a power series

z(t) = zo(t) + €z1(t) + 22 (¢) + ... (2)

and a frequency
2

w = Ew + ea; +m~§ + ...
where a; .. are constants chosen in such a way so as to avoid secular terms

of the type tsinwt in the solution (2). Methods of this type are called small-
parameter methods.
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These methods are very useful for estimating analytical solutions of weekly
nonlinear systems.

References: Huntley and Johnson (1983); Nayfeh and Mook (1979).
snowflake (see Koch curve)

soliton

The term soliton describes a solitary, uniformly propagating disturbance,
which preserves its structure and velocity after an interaction with another
soliton. A soliton is a wave solution to a partial differential equation.

Reference: Drazin and Johnson (1989).

solution curve
This is another name for a trajectory or orbit.

source
This is an unstable fixed point with two positive eigenvalues.

spatial-temporal chaos

This term (for chaos in both space and time) describes a temporal (high-
dimensional) chaos which involves spatial pattern dynamics. There is no strict
mathematical definition but the term is used to cover a range of problems in
which a suitably complex invariant manifold exists, such as elastica, Josephson
junction arrays, turbulence in plasma, etc.

spectral analysis

Let the time evolution of a dynamical system be represented by the time
variation z(t) (time series) of its dynamical variables. In many practical cases
the time-dependent function z(¢) could be represented as a superposition of
its periodic components. The determination of these components is called
spectral analysis.

If the function z(t) is continuous and its derivative d f(¢)/dt is also continuous,
and z(t) is periodic, i.e.

z(t) = z(t + nT)

with n being a positive or a negative integer and T being the basic periodicity,
then z(t) can be expressed as a linear combination of oscillations whose
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frequencies are integer multiples of a basic frequency wy i.e.

o0
z(t) = MU (arn cos nwot + b, sin nwpt) (1)

n=—0co

or by using complex notation:

z(t) = :HMl)\ cpeinwot (2)

where a,, b, and ¢, are constants. The functional series, (1) and (2), are

omEm@ Fourier series. The amplitudes of the components of the frequency nwg
are given by

7 /wo

m:"mﬂq \ z(t) cos(nwot)dt (3a)

Wo .
b = o \ z(t) sin{nwpt)dt (30)
l.s.\Eo
or

7 /we
Wo 3
Cn = 5 z(t)e *rwotds, (3¢)

—Two

Reference: Kaplan (1973).

spiral
This is a different name for a focus (see fixed points).

spring force
Many physical systems can be modelled by an equivalent spring/mass system

in which the spring exerts a force k(z) on a mass m (as shown in Figure
113(a)).

The function k(z) is called a spring characteristic. For a linear spring,
k(z) = Kz,

srmwm K is a spring stiffness constant coefficient. For a nonlinear spring, k(z) is
momz_s.mwﬁ and we say that for a hard spring k(z) increases with displacement,
while if k(z) decreases then k() is said to be a soft spring (see Figure 113(b)).
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k(x \' hard spring
Kx
*() .
_.|||V soft spring
k(x) -
=
@ ©) . -
Figure 113 (a) Spring/mass model and (b) different characteristics of
a spring

square root singularity . )
In simple models of impact oscillators an approximation to the Poincaré map,
close to the grazing point where impacts first occur, .5&:@8 a square root
singularity. The approximation, following A. B. Nordmark, is given by

Tnt+1 = ATy +m\2 +\v

and
Ynt1 = —4z,

for z, <0, and for z, > 0 by
Tntl = —/Tn+Yn+p

and )
Ynt+l = —YT Tn.

In the above, 72 is a constant related to the coefficient of restitution, m.:a
typically v and « are fixed constants with p varying through zero at the point
of grazing.

A similar one-dimensional map has the form

Tni1 = Vd—Zp +1T0

for z < d, and
Tn4l =TTn

for £ > d, where r is a restitution coefficient.

References: Foale and Bishop (1994); Nordmark (1991).

squid axon (see axon)
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SRB measure (see natural measure)

stability
Consider any particular solution (say = = u(t)) of the equation

dz
MM = .\.AH, POV

where z € R™, and ¢ € R™. An important question is whether this solution

is stable, i.e. will small perturbations cause the system to evolve away from
this solution?

There are several definitions of stability. However, the most used commonly
are the following:

Stability in the sense of Lyapunov

(i) The solution u(t) is said to be uniformly stable if there exists a
6(e) > 0 for every € > 0, such that any other solution v(t), for
which |u — v| < d(¢) at t = to, satisfies |u(t) — v(t)] < € for all
t 2> tg. If no such d(¢) exists, then u(t) is said to be unstable.

(ii) If u(z) is uniformly stable, and in addition

lim |u(t) — v(t)] — 0

t—o00

then u(t) is said to be asymptotically stable.

Remark: These stability criteria are quite restrictive as they require that u(t)
and v(¢) remain close to each other for the same values of time ¢ in both
solutions (see time ‘ticks’ in Figure 114).

Stability in the sense of Poincaré

(1) Let I be the orbit defined by u(t) for all ¢, and I be the orbit de-
fined by the solution v(t) for all ¢. We say that T is orbitally stable
if, for any € > 0, there exists a 6(e) such that, if [u(0)—v(T)] < 8(e)
for some 7, then there exists a t/(t) such that |u(t) — u(t)| < e
for allt > 0.

(ii)) The orbit I is said to be asymptotically stable if I’ tends towards
I'ast~ o0.

Remark: Orbital stability implies that the two solutions will follow the same
evolution but possibly on different time scales, related by #' (t) (see Figure 115
- note here the difference in density of the ‘time ticks’ on the two orbits).




220 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

4

Figure 115 Illustration of orbital stability

Stability in the sense of Lagrange

The solutions of
L _ fat)
dat Y

are said to be stable in the sense of Lagrange if M < oo, and |z| < M for
all £.

Reference: Jackson (1990).

stable and unstable manifolds
Let ®:(uo) be a flow of the dynamical system

du
Py = f(u)
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where u € R™, and £(0) = 0. A set S is called a stable manifold of the critical
point u = 0 if for all initial conditions up €S

lim ®,(ug) = 0.

t—o0

In the same way, a set U is called an unstable manifold of a critical point
u = 0 if for all initial conditions uy €U

lim Q“ACOV =0.

t——o00

Ezample: Consider the Helmholtz oscillator

Let u; = u, and uy = du/dt. Then we find the two fixed points
ACH,QMV = AOVOV, A:wvﬁmV = AlH.Ov.

The linear analysis shows that the first of these fixed points is a saddle, while
the second is a centre (Figure 116).

mq

EY

Figure 116 Phase-space portrait of a Helmholtz oscillator

The total energy of the system H (the sum of the kinetic energy, (u/2)%/2,
and the potential energy, —u? /2 —u?/3) is equal to

1/du)? 1, 1,
lmmﬂv 2% 3w
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The solution curves in phase space are given by

n
Ammv I:ul mcw =C.

At the saddle point, the stable and unstable subspaces of a :bom.ammm system
E?, E* are tangent to the stable and unstable manifolds of a nonlinear system
S,U.

Remark: The stable manifold is sometimes referred to as the inset while the
term outset used for the unstable manifold.

Reference: Thompson and Stewart (1986).

stable and unstable subspaces . .

Suppose that the (n x n)-dimensional matrix A has k negative eigenvalues
M, ..., A, and (n — k) positive eigenvalues, Agq1,...,An, wn&.arme these
eigenvalues are distinct. Let {v,...,v,} be a ooﬂomvou.aﬁm set of
eigenvectors. Then the stable and unstable subspaces of the linear system
dz/dt = Az, namely E° and E“, are the linear subspaces spanned by
{vi,...,ve} and {Vg41,...,Vn}, respectively:

E? =span{vy,..., v}

and
E" =span{viy1,...,Vn}.

Ezample: Consider the linear system

and
— M:w . AU_.V

The global phase portrait of Figure 117 can be found by drawing the solution
curves defined by
u(t) = cre™t + co(et — €2),

and

uz(t) = coe?t.

The arrows in the Figure 117 indicate the evolution of the system in time,
while the lines through the origin are the stable and unstable subspaces of (1).
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N
—

L .
- L
u,

Figure 117 Phase portrait for linear system near the saddle

Note that solutions starting on the stable subspace E* approach the critical
point at origin as t — oo, and that solutions starting on the unstable subspace
E*™ approach the critical point as t — —oo.

standard map
The map of the plane given by

So(z,y) = (z+y (mod 2m);y+ asin(z +y) (mod 2m))

where z,y € [~7,7] and a is constant, is called the standard map. Sp has a
toroidal phase space (this map is similar to Arnold’s cat map).

stationary solution

A solution of ordinary or partial differential equations which is invariant in
time is called stationary.

steady state
A steady-state solution is a time-invariant motion or equilibrium.

stick—slip systems

The term stick-slip is used to describe the periodic motion induced by the
friction between two surfaces, which alternates between a sliding action (slip)
and a period in which there is no relative velocity (stick). In its simplest form,
stick—slip is a self-excited response in an autonomous system.

Ezample: Consider the motion of a spring-mounted block of mass m riding
on a conveyor belt which is being driven at a constant speed v (see Figure

118(a)).
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a?

dt

QW@%\/ >

(a)
Figure 118 (a) A model of a typical stick—slip system and (b) a phase
portrait of stick—slip motion

A typical phase portrait of stick—slip motion is shown in Figure 118(b).

Reference: Popp and Stelter (1990).

stochastic resonance

This is the phenomenon in which the signal due to a weak periodic force in a
nonlinear system is amplified by the addition of external random noise, thus
producing a spike in the power spectrum.

Reference: Benzi et al. (1982).

strange attractor
An attractor which has a fractal structure in phase space (see also attractor)
1s called a strange attractor.

strange nonchaotic attractor
If an attractor has a fractal structure in phase space, but a typical trajectory
on the attractor is characterised by non-positive Lyapunov exponents, then it

is called a strange nonchaotic attractor.

Ezample: Consider the logistic map at the accumulation point_(the
accumulation of the period-doubling cascade) a,. At this point, the Lyapunov
exponent 1s zero but the dimension of the attractor is fractal, d. = 0.54.

Remark: Strange nonchaotic attractors have been found to be common
features in quasi-periodically forced systems.

References: Kapitaniak and Wojewoda (1993); Romeiras and Ott (1987).

stretching and folding
These are the actions which typify a chaotic system. Within the attractor,
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close-by trajectories undergo exponential divergence as time evolves so that
they are stretched and move apart, while globally the nonlinearity ensures
that the trajectories are bounded by means of a folding action. This action is
often compared to a baker kneading dough when making bread.

Ezample: For the logistic map, the stretching (divergence of nearby

trajectories) and folding (confinement to bounded space), mechanisms are
shown in Figure 119.

Xty v ]
/
/

~ 7/
~ - -

bd | O m\N /// u. /_

// -~

etc.  Tom—m—————— -

Figure 119 The stretching and folding mechanism for the logistic map

stroboscopic map

A continuous system which is driven periodically may be inspected discretely

at multiples of the driving period to produce a stroboscopic map (see also
Poincaré map).

strong resonances

If we consider the way in which a two-dimensional map can become unstable
we note that the saddle-node and period-doubling bifurcations are essentially
one dimensional but that the flutter or Neimark bifurcation has a two-
dimensional centre manifold with a pair of complex conjugate eigenvalues

A crossing the unit circle. The special cases where A™ = 1 (n=1-4) are called
strong resonances.
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structural stability

A dynamical system
¥ - )
dt
is structurally stable if its phase space is topologically equivalent to that of

the system 4
z
—_— J
= (@) +6f

where §f is an arbitrary smooth C" function which is sufficiently small, i.e.
max [|6f(z)|| < e

for all £ € R™, where ||.|| is any norm in R".

Reference: Peixoto (1977).

subcritical bifurcation

This is a bifurcation in which a pre-existing steady state becomes cbmemz.m (see
bifurcation), usually resulting in the system evolving to a distant portion of
the phase space.

subharmonic resonance
Consider the forced oscillator

d?’z dr,

Y7l + f(z, .mm»v = Acos{it.

If the driving frequency 2 and the oscillation frequency w are related in the
following way:

W= —
n

where n > 1 is an integer, then the motion is subharmonic.

The resonance or large-amplitude response which occurs at
Q=nw

is called a superharmonic resonance.

submanifold o .
A submanifold M of a manifold NV is a subset of N which is a manifold.

supercritical bifurcation . .
This is a bifurcation in which a system changes its form but remains stable
as a parameter is varied (see bifurcation).
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suspension of maps

Typically the behaviour of closed orbits of a flow is evaluated by considering
the equivalent behaviour of the associated fixed point of the Poincaré map.
Conversely, for every diffeomorphism (a differential map whose inverse exists
which is also differentiable) there exists a flow whose Poincare map is precisely

the same as the diffeomorphism. This flow is called a suspension of the map
(diffeomorphism).

Remark: The topology of the suspended manifold may be complicated.

Reference: Arrowsmith and Place (1990).

swallowtail
One of the elementary catastrophes (see Thom’s theorem).

symbolic dynamics

The representation of orbits of a map or a differential equation as symbol
sequences is called symbolic dynamics.

symmetry-breaking bifurcation
This is a global bifurcation in which a symmetrical (with any type of
symmetry) attractor is replaced by two co-existing asymmetrical attractors.

Ezample: A symmetrical chaotic attractor of the Lorenz equations shown in
Figure 120(a) (0 = 10,b = 8/3,andr = 200) is destroyed by a symmetry-
breaking bifurcation at r = 203 and replaced by two asymmetric attractors
of the type shown in Figure 120(b).

synchronisation of chaos

An essential property of a chaotic trajectory is that it is not asymptotically
stable. Closely correlated initial conditions have trajectories which quickly
become uncorrelated. Despite this obvious disadvantage, it has been
established that synchronisation of two chaotic systems is possible.

The basic synchronisation procedure can be described as follows. Suppose that
an n-dimensional dynamical system

du
T = My

can be divided into the two subsystems;

dz
mlwn = \.An\.nm\v
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Figure 120 (a) A symmetrical attractor and (b) one of the two asymmetrical
attractors of the Lorenz equations

and d
Y

— 1

ar =g(z,y) (1)

where
u= AH. Qvn._u z = (u1, .., ,:i.vﬂ. f=Mh(u),.., ?BAﬁvvﬂu

Y= (Umt1y0Un)T, 9= (Rmg1(w), ..., ha(u)T.
Now create a new subsystem z which is identical to the y subsystem, substitute

the set of variables z for the corresponding variables y in the function g, and
augment equation (1) with this new system, thus giving

mm = f(z,y)
mm =g(z,y)
and d
T = 9(,2). )

The first two equations of (2) are called a driving subsystem, while the third
equation is known as the response subsystem.
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Lyapunov exponents of the response subsystem for a particular input z(t) are
called conditional Lyapunov exponents. Let y(t) be a chaotic trajectory with
initial condition y(0), and 2(t) be a trajectory started at a different initial
point z(0). It has been shown that the necessary and sufficient condition for

|2(8) - y(t)| = 0 3

that is, for the two subsystems to be synchronised, is that all of the conditional
Lyapunov exponents are negative.

We can describe this procedure by using an example of Chua’s circuit (see
Chua’s circuit) in which the dimensionless equation can be decomposed in
three different ways:

() An z-drive configuration where the state equation becomes

dz dz
m.l.\ﬁuﬂ.@v. HIQQ\IH|.\AHVV
d d
alwum?,s, %muai.fl
dz
i —By
dz - dy’ _ ' '
and &
z P !
5 = Py
(i) A y drive configuration with the state equations
dr dy _
ﬂliﬁey ik A
dy dz
IQM - QAH.vi MM = QA@ T .\.AHVV
dz
- -By
dz _ dz' _ . ,
MIQA&.NY ﬂIQQ z' — f(z'))
and
dz'
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(iii) A z drive configuration where the state equations are as follows

& oy, Y=
Y tloy), T =aw-2- @)
Wm. =r—y+=z
- R S 2)
and &'@\.HH~I@\+N.
dt

It can be shown that for a = 10, 8 = 14.87, a = —1.27, and b = —0.68, the
subsystems dy/dt = g(z,y) and dz/dt = g(z, z) can be synchronised only in
the z- and y-drive configurations as the conditional Lyapunov exponents are
[A§ = —0.05,2§ = —0.05), [\{ = —2.55,A5 = 0], and [A\{ = —5.42,7§ = 1.23],
respectively, for the z, y and z configurations.

References: Kapitaniak (1996); Pecora and Carroll (1990).

synergetics

This is an interdisciplinary field of research concerned with the co-operation
of individual parts of a system that produces macroscopic spatial, temporal
or functional structures. This field covers deterministic as well as stochastic
processes.

Reference: Haken (1976).

T

Takens—-Bogdanov bifurcation

Consider a planar system

dz

M - .\.. AH. Qv
where £ € R?, a € R? and f is smooth. Suppose that for @ = 0 this system
has a fixed point z = 0 with two zero eigenvalues, and that the Jordan normal

form of the Jacobian df/8z at the fixed point has a form

0 0

oH_

The bifurcation which occurs at a =0 is called the Takens-Bogdanov
bifurcation.

A Takens-Bogdanov bifurcation is a codimension-two bifurcation. It can be
considered as the coincidence of a saddle-node and a Hopf bifurcation.

Reference: Kuznetsov (1995).
Takens embedding theorem (see Whitney embedding theorem)
tangent bifurcation (see bifurcation)

tangent bundle

The tangent bundle T'M of an n-dimensional manifold M is a 2n-dimensional
manifold, the disjoint union of the tangent spaces of M. If U C M is an open
set and ¢ : R™ — U is a parametrisation of U, then

¢ :R" xR" -5 TyM,

defined -by
®(z,v) = (¢(z), Dé(z)v),

is a parametrisation of Ty M.
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tangent space
Let M be a manifold. For each £ € M, the set T M, of all vectors tangent to
M at z, is called the tangent space.

Reference: Arrowsmith and Place (1990).

Taylor—Couette flow

Fluid flow between two concentric cylinders which rotate independently is
called Taylor-Couette flow. The flow is sensitive to changes in the Reynolds
number, produced by adjusting the ratio of their rotation rates, displaying
pre-turbulent chaos. The first experiments in this field were carried out by
G.I. Taylor in 1923.

Reference: Swinney (1983).

tent map
The map

Tnt1r = a(l — zc)zp (zn < z.) , OA Xe A A

and

Ty = axc(l— z,) (ze <20 <)

where az (1 — z.) < 1, is called a tent map (see Figure 121).
ettty

0

0 X 1

Figure 121 A tent map

Remark: The tent map has a discontinuous derivative at £ = z. so it is not

an S-unimodal map.

Ezample: Consider the tent map for a = 4 and z. = 0.5. Let zo € [0, 1] be the
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initial point for iterations of the map. In this case one finds

1
Tn =~ cos™! (cos 2"nzo).

The iterations show chaotic behaviour with a Lyapunov exponent \ = In 2.

thermal convection

Atmospheric flow is caused by the earth’s motion and thermal convection.
The flow may form patterns such as cells or rolls as hot air rises and cool air
falls (see also Benard cells and Lorenz model).

Thompson escape equation (see escape equation)

Thom'’s theorem

Most smooth infinitely differentiable functions V(z,c), where z € R", c € R*,
and k < 5, are structurally stable. For this family V : R x R* - R and any
point (z,¢) € R™ x R* there is a choice of coordinates for ¢ in R* and for
z € R", such that = varies smoothly with ¢, in terms of which the function
V(z,c) has one of the following local forms:

a constant plus
I
but not a fixed point

2
n

R L
or non-degenerate fixed point; Morse function
Hw +cx + QK.V

fold catastrophe set
(i + 22l + c121) + (M)
cusp{+), or dual cusp(-)
3
z$ + ana» + (M)
k=1
swallowtail,

4
E(2f+ ) sk |+ (M)
k=

butterfly or dual butterfly

5
zl + Mo»s.ﬂ + (M)
k=1
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wigwam
zlzy + 23 + c32? + ca12 + 171 + (N)

hyperbolic (+), or elliptic (-) umbilic
+(x2zy + 25 + cazl + c3x? + cox2 + c171) + (V)

parabolic (and dual) umbilic

Tizo £ 25 4 c5T3 + cazd + cax? + cax2 + c171) + (V)
second hyperbolic (+) and second elliptic (-) umbilic

+(z? + 23 + cs2123 + €423 + 37172 + C2T2 + €171)
and symbolic (dual) umbilic.
(M) and (N) are given by

(M)y=z23+.+22—22 ,—..—1

and

2 2 _ 2 2
N)y=z3+..+z2,—2p g — ... —Tp.

Catastrophe sets of five elementary bifurcations are shown in Figure 122.

Remark: Thom’s theorem gives eleven elementary catastrophe sets (not
counting duals). For k > 5, the number of forms is infinite.

thermohaline convection
This expression refers to the ocean currents caused by heat and salinity which
in turn affect the buoyancy of the fluid (see also El-Nino event).

three-body problem

The aim of the three-body problem, originally posed in celestial mechanics,
is to find the general solution of the motion of three bodies all acting under
the influence of gravity. This topic provided the stimulation for H. Poincaré’s
prize-winning essay which was essentially the birth of dynamical systems.

time-delay method
This method is a useful technique for evaluating experimental data =z,
performed by plotting the time series using the delay coordinates

(z(t),z(t — 7))

where 7 is constant (see also delay coordinates reconstruction).

DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS 235

Vv

»
»

L
L x
: l‘ - ®)
_ l\“vl ﬁ

- . 3
Figure 122 Various catastrophe sets of elementary bifurcations: (a)

fold; (b) cusp; (c) swallowtail; (d) elliptic umbilic; (e) hyberbolic umbillic

time-series analysis
The study of dynamical systems based on a time series of measurements

is called time-series analysis (see also delay coordinates reconstruction,
dimension of sets).

Reference: Kantz and Schreiber (1998).

tinkerbell map
The map of the plane

flz,y) == -y +az + C2¥,2zy + c3x + cqv)

where ¢;_4 are constant, is called the tinkerbell map.

Reference: Alligood et al. (1997).
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Toda lattice
This is a model of a monocrystal as a lattice of particles connected by nonlinear
springs. The Hamiltonian is given by

1 n n-—1
Hpi,g:) =5 pi + Y exp(gi — gita)
n=1

i=1

where g; represents the generalised coordinates of the ith particle and p; the
canonical momenta.

Reference: Jackson (1990).

topological conjugate
Two maps, f : R* = R™, and g : R* — R" are said to be topologically

conjugate if

g=hfh?

for some homeomorphism A : R™* — R™ .

Ezample: Let g : [0,1] — [0,1] be the logistic map g(z) = 4z(1 — ) and let
f:[0,1] — [0, 1] be the tent map Ao.u 4 | Xe = 0.5)

_ 2r : 0<z<i
.\AHVIAMCIQV uwAHMH

It can be shown that the maps f and g are topologically conjugate with

h(z) = ngl Vz.

topological dimension (see dimension of sets)

topological entropy

Let A be a compact invariant set for a diffeomorphism f : R™ — R™. For an
integer n > U and a number € > 0, a (n, €) separated set S C A is a set which
has the property that z,y € S and z # y, implies that there 1s an integer
0 <1 < n such that the distance

d(f'(z), f () > e.

Let s(n,¢e) be the maximum cardinality of an (n,€) separated subset of A.
Define

h(f,e) = lim mcvw_bm?. €)

n-3o00
and

h(f) = lim h(f,e).

€0
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Then h(f) is called the topological entropy of f.

Let 4 be an invariant, ergodic, probability measure for f : R® — R" with
compact support and consider the set

V(z,6,n) = {y € R™d(f*(2), f'(y)) < &,0 < i < n}.

Then for almost all + with respect to y, the number

lim lim Eﬁxmsﬁiﬁm.evv = hu(f)

€e—0 n—oo

is independent of z. The number A,(f) is the p-entropy of f.

Reference: Guckenheimer and Holmes (1983).

topological equivalence
The set A is said to be topologically equivalent to the set B if there exists
homeomorphism 4 such that .

h(4) =B

i.e. h maps the two sets A and B into each other.

Two C™ maps F and G are C* equivalent or C" conjugate (k < r) if there
exists a C* homeomorphism h such that hF = Gh; C° equivalence is called

topological equivalence.

Reference: Guckenheimer and Holmes (1983).

topological invariant
This is a property which is common to all topologically equivalent sets.

topological orbital equivalence
Consider the autonomous system

dz
53 =@

where z € R". Different functions f(z), and corresponding solutions z*(t),
z*(t), ..., etc. although analytically quite different, may have a family of
trajectories in phase space that possess features which are ‘similar’ to each
other. If one family of trajectories can be continuously deformed into another
family, while still retaining the orientation of motion in the phase space, then
such systems are called topologically orbitally equivalent.
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Figure 123 [Illustration of topological orbital equivalence

Ezample: Figure 123 shows two families in R? which can clearly be
continuously deformed into each other (by stretching or contracting, but not
by cutting or connecting orbits).

torus ) ) )
The n-dimensional torus is the direct product of n copies of the circle, i.e.

T" =8 x St x §* x ... x St
Ezample: The two-dimensional torus T2 = S x S!, can be represented as the
square {z,y : 0 < £ < 27,0 < y < 27} with opposite sides pasted together,
i.e. the points (0,y) and (2m,y), as well as the points (z,0) and (x,27), are
identified.

trajectory .
The solution z(t) of an ordinary differential equation, dz/dt = f(x), where

z € R", from a given initial condition z¢ = z(¢ = 0), plotted in phase space
is called a trajectory or orbit (see topological orbital equivalence).

transcritical bifurcation (see bifurcation)

transient . .
The evolution of a dynamical system before settling to an attractor is termed
the transient.

Ezample: A transient evolution converging to the limit cycle attractor is shown
in Figure 124.

transient chaos

Consider a typical orbit ¥ of a dynamical system in a space R™ such that as
t — oo then 7 approaches a non-chaotic attractor A (A could be .oov. If for
t < 7 the evolution of the orbit - is on a subset S (SN A = @) which has all
the hallmarks of chaos, then such an evolutution is called transient chaos or
1/7 transient chaos.
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transient
limit cycle

Figure 124 Transient evolution towards the limit cycle attractor

Remark: Transient chaos is characterised by a positive transient maximum
Lyapunov exponent.

Reference: Alligood et al. (1997).

translation map
The map F : R? - R2, defined by

F(z,y) = (z +a,y+b)
where a and b are constant, is an area-preserving translation map of the plane.

transversality

The transversality theorem of differential topology implies that when two
manifolds (surfaces) of dimensions k and [ meet in an n-dimensional space,
then, in general, their intersection will be a manifold of dimension (n—(k+1)).

Remark: If k + 1 < n, then one does not expect intersections to occur at all.

In general, the meaning of transversality is given locally in terms of tangent
spaces.

Reference: Guckenheimer and Holmes (1983).

transverse intersection
This is an intersection of manifolds such that, from any point in the

intersection, all directions in the phase space can be generated by a linear
combination of vectors tangent mv\\ the manifolds.

Ezample: Consider the intersections of the curves and surfaces in R3 shown

in Figure 125, where bold arrows indicate tangents. We note that in this case
their span must be three-dimensional for transversality.
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Not transverse

3
3
Transverse

Figure 125 Transverse intersection of curves and surfaces in R3

Reference: Thompson and Stewart (1986).

transverse manifold
Consider a dynamical system

dz
at f(z)

where £ € R" with a vector field f(z), near some non-trivial orbit + (not a
fixed point). A manifold )7 is called a transverse manifold if the normal to

it, A(z), is nowhere orthogonal to f(z), for z € ¥, i.e. f(z)f(z) # 0 for all
TE€Y CR™

trapping region

If we consider a flow ¢; and a set D such that D € R™ and ¢:(D) C D for
all £ > 0, then the set D is called the trapping region. Usually, it is sufficient
to show that the vector field is directed inwards everywhere on the boundary
of D.

A similar definition also exists for maps.

Reference: Arrowsmith and Place (1992).

turbulence
If a physical system consisting of a viscous fluid (and rigid bodies) is not
subjected to any external action, it will tend to a state of rest (equilibrium).
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We now submit the system to a steady action (pumping, heating, etc.)
measured by a parameter 4. When u > 0, we obtain first a steady state, i.e. the
physical parameters describing the fluid at any point (velocity, temperature,
etc.) are constant in time. This steady situation prevails for small values of .
When 4 is increased, various new phenomena, occur, as follows:

(i) the fluid motion may remain steady but change its symmetry pat-
tern;

(ii) the fluid motion may become periodic in time;

(iii) for sufficiently large g, the fluid motion becomes very compli-
cated, irregular and unpredictable i.e. it becomes turbulent.

Reference: Ruelle and Takens (1971).

twist map
Let A be an annulus

A=S"x[a,b] = {(¢,7) :0<¢p<2ma<r<b)
A twist map is a homeomorphism T : A - A4 which has the form
T:(¢r) = (¢ +alr),r)
where da/dr # 0 for r € [a, b].

References: Arrowsmith and Place (1990); Katok (1982).
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Poincaré map shown in Figure 126 is sometimes referred to as the Ueda or
Japanese attractor.

Reference: Ueda (1992).

ultrasubharmonic
Consider the forced oscillator
d?®z dzx
M&i&! -+ .\A.&. M = Acos .
If the driving frequency 2 and the oscillation frequency w are related in the

following way: Q
m

W= —

n

where m and n are integers, and m # 1, and n # 1, then the motion is said
to be ultrasubharmonic.

ultrasuperharmonic
Consider the forced oscillator

d*z dz
o) + f(=z, Tk A cos it

If the driving frequency 2 and the oscillation frequency w are related in the
following way:
w = mfd

where m is an integer, then the motion is said to be ultrasuperharmonic or
super-harmonic.

umbilic
One of the elementary catastrophes (see Thom’s theorem).

unbounded solution (see escape to infinity)
unfolding (see codimension)

unimodal map
A continuous map

f:-1,1] > [-1,1]

such that f is strictly increasing on the interval [-1,0], and strictly decreasing

on [0,1], and such that

f-1=f1)=-1
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is called a unimodal map.

A unimodal map is called S-unimodal, if it is in the class C3 and if it also has
a negative Schwarzian derivative on [-1,1] - { 0 }.

Ezample: Let f : [~1,1] = [~1,1] be given as
flz) =1-222
Then f is a unimodal map.

Remark: The given definition can be generalised to the maps

f:la,b] = [a,b].

In this case, map f is unimodal if there exists ¢, (a < ¢ < b) such that f is
increasing in the interval [a, ] and decreasing in the interval [c, b].

L ¢ eshvickaviente
uniquely ergodic
Let X be a compact metric space. The o-algebra of Borel subsets of X will
be denoted by B(X). Let M (X) be the collection of all probability measures
defined on the measurable space (X, B(X)). A map

T: M(X) = M(X)

may be defined by
(Tw)(B) = (T B).
Now let
M(z,T) ={n€ M(X): Tp = p}.

This set consists of all € M(X), thus making T' a measure-preserving
transformation of (X, B(X), ).

A continuous transformation T : X — X is called uniquely ergodic if there is
only one T-invariant Borel probability measure on X , i.e. M(X,T) consists
of one point.

Reference: Walters (1982).

uniqueness of inversion (see implicit function theorem)

uniqueness of solution (see existence and uniqueness theorem for
solutions of ODEs)

unpredictability (see sensitive dependence on initial conditions)




U

Ueda’s equation
The second-order ordinary differential equation with cubic nonlinearity but
no linear term: ,

d“z dr 4

%..T\nmw +z° = Bcost
where k and B are constants, is called Ueda’s equation. It has been much
studied by Y. Ueda since the early 1960s.

Figure 126 Japanese attractor

Originally used to model a series-resonance electrical circuit with nonlinear
inductance, it was used by Ueda initially to study nonlinear dynamics by
using harmonic balance techniques to produce analytic approximations to
solutions but these were also compared with analogue computer simulations.
Subsequently, these solutions were compared with numerical treatments. The
system with k£ = 0.5 and B = 7.5 produces a chaotic response whose associated




246 DICTIONARY OF NONLINEAR DYNAMICS AND CHAOS

unstable manifold (see stable and unstable manifolds)

U-sequence
Consider a family of maps

Tnt1 = Cf(Tn) = F(zn,c)

where c is a real number such that 0 < ¢ < ¢, and f(z) is continuous and
differentiable, with a single maximum at £ = z,.. Consider values of ¢ such
that the point z, is a p-periodic point of F?(z, c), i.e. consider the superstable
point ¢ = &, defined by

Tm = FP(zm,Ep).

The number of &, values for different values of p is given as
1 Q.OH b= Mv. Hﬁwvg NA%Y ..wmmv“ mﬁmvu wﬁﬂv, Hmﬂmv. wmﬁwv,
for a total of 2370 &, values for p < 15.

These results were obtained from extensive computer studies carried out by
N. Metropolis, M.L. Stein and P.R. Stein. They considered the set of points
generated by one of these (&,) maps, z; = F(Zm, &p), T2 = F(&m,Cp), ..., €tC.,
starting from z,,, and considered whether z; > z,, (an R point) or z; < z,,
(an L point). Any periodic set Is then characterised by some symbolic pattern,
such as

Zym *R->L—+Lo3R—->L3R—...22n

which contains (p — 1) terms (R, L). Patterns of this form were represented
by the obvious notation, RL?RLR... . It can be shown that the sequence of
these patterns and hence the ordering of periods p, as c is increased though
the values contained 1n the set {¢,}, is independent of the function f(z), for
a large class of functions. This sequence is called the U-sequence.

Ezample: For p < 7, we have the following sequences

R, RLR, RLR®, RLR%, RLR?, RLR’LR, RL, RL?RL,
RL:RLR, RL*R, ... (+ 11 more)

where
p = (1 4+ sum of exponents) < 7.

Reference: Metropolis et al. (1973).

v

van der Pol equation

The equation
d’y 2y dy 2
%+%AH|QVM+EQIO AHV

where ¢ and w are constants, is called the van der Pol equation.

The forced system

aw@ 2,4y 2

%+mﬁlm\ VH.TE y = pcos(§t) (2)
where p and () are respectively the amplitude and frequency of the excitation
force, is called the forced van der Pol equation and was first developed by

this worker to model the behaviour of simple electrical resistance—capacitance
(RC) circuits.

Remark: Chaotic behaviour can be presented only as the forced van der Pol
equation, as according to the Poincaré-Bendixon theorem the only possible
w-limit sets of the autonomous van der Pol equation are a fixed point or a
limit cycle.

Ezample: For § = 5, p = 5, w = 2.466 and Q = 1, the forced van der Pol
equation (2) evolyes on the chagtic attractor shown in Figure 127.

/ o C/vb\nw.ofrv\
variational equation (see linearisation)

variational principle for entropy

If T is a continuous map of a compact set S, then the topological entropy
htop(T) = suph,(T), where suph,(T) represents the measure theoretic
entropy with respect to the invariant measure p.

Reference: Walters (1982).
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Figure 127 Chaotic attractor of the forced van der Pol equation

vector field
Let M be a C*° manifold, and for each point p € M, let X, be a tangent
vector to M at p. The correspondence X : p — X, is called a vector field.

Ezample: Consider the Rossler equations (see Réssler system). In this case,
M =R3 and the vector field V is given by

V= (cy-dg + ez + b+ 2 - ) o

vibro-impact system

This is the term used to represent a vibrating system which also undergoes
repeated impacts, being historically studied predominantly in the former
Soviet Union. Renewed interest in such systems concentrate on the behaviour
when impacting first begins at the so-called grazing bifurcation (see also
impact oscillator).

viscoelastic structures

In the study of nonlinear vibrations of continum systems, such as beams,
strings and plates, the response of a deformable body for small oscillations
can be adequately described by linear equations together with appropriate
boundary conditions. For larger-amplitude motions, nonlinearities will come
into play which can be geometrical, inertial or material in nature.

Volterra—Lotka equations (see Lotka—Volterra equations)

volume-preserving map
Consider a set S, C R™ and a continuous differentiable map F : R™ — R™;
we may then define S, 11 as the set F'(S,), i.e. the points 41 = F(z,) for
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all £, C Sy. In addition, define p, as the Lebesgue measure {(hypervolume)
of the set Sy. The local ratio of Hny1 to pq is given by

tmt = | det J(z,)|

where J is the m x m Jacobian matrix whose elements are 9F;/dz;.

If the modulus | det J| < 1 for all z € R™, then the hypervolume p decreases

monotonically as n increases, and the volume shrinks to zero, thus ancnwbm
an attractor whose dimension is less than m.

If the modulus [detJ| = 1 for all z € R™, then u, = po for all n, ie.
the hypervolume p,, is independent of n and we say that F is a volume-
preserving map. More precisely, if m = 2 we say area-preserving, and if m = 3
volume-preserving; otherwise, the more general term measure-preserving can
be applied.

Reference: Drazin (1992).

vortex
This term is sometimes used as another name for centre (see fixed points).




\%\%

w-limit set (see omega limit set)

Wada property

This is a term used by C. Grebogi, J.A. Yorke and their co-workers from the
University of Maryland. A basin of attraction B in phase space is said to have
the Wada property if there exists two other basins B, and Bj such that every
point on the boundary of B is also on the boundary of By and Bs.

Reference: Alligood et al. (1997).

wandering point

A point z wanders under a mapping f if it has a neighbourhood U, such that
fMUYNU #0for alln > 0.

waterwheel

A model of a waterwheel (also called the Lorenzian waterwheel) describes
thermally induced fluid convection in the atmosphere. Fluid heated from
below becomes lighter and rises, whereas heavier fluid falls under gravity.
Such motions often produce convection rolls similar to the motion of the fluid
in a circular torus. The waterwheel was one of the first examples of chaos in
a mechanical device (see also Rayleigh—Bénard convection).

References: Lorenz (1993); Moon (1992).

wave equation
The partial differential equation used in the study of waves (acoustic, fluid,
electromagnetic, etc.) given by

%y - NWW@.

a2 Oz2

where £ € R™ and c is a constant, is called the wave equation.
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Weierstrass function

The function
o0

flx) = MU A6 gin(Xig)
i=1

where 1 < s < 2 and A > 1, is called the Weierstrass function.
Remark: The Weierstrass function is continuous but nowhere differentiable.

Weierstrass functions are used to describe fractals.

Whitney embedding theorem

This theorem relates to the problem of reconstructing state space from a
time series of measurements. Assume that the state space is R* and that
trajectories are attracted towards a d-dimensional manifold M. For each state
we assume that we can make m simultaneous independent measurements at
any given time.

If we associate a function F' with the measuring process at different times
then F : RF - R™. We can evaluate F at any point of M € RK by carrying
out m measurements and then producing a vector from them.

If m > 2d, and F : R¥ — R™ is generic, then F is a one-to-one map on A.

Let M be a smooth compact manifold of dimension d. It is then a generic
property of smooth maps G : M — R2%+! that G is an embedding.

This result is valid for generic maps from M — R(24+1) but says nothing about
specific maps or even any specific subsets of maps. F. Takens also considered
the restriction of G to be delay maps reconstructed from a smooth observation
function h and the dynamics f, i.e.

f = {h(=),h(f(2)), ...h(f**(2))}.

Although generally these results are used to justify the use of embedding for
general maps, care should be taken when working with a specific set of maps
that do not produce embeddings (e.g. symmetry).

References: Whitney (1936); Takens (1981).

wigwam
One of the elementary catastrophes (see Thom’s theorem).
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winding number
Consider a circle map

K .
Ont+1 = [0n +.b ~ 5 sin(276,)]

where K, andQ are constants and the square bracket indicates that mod 27
of the enclosed expression is taken.

The winding number W for an orbit {8,} is given by

W(K,Q) = lim 22=%

n~+00 n

Remark: The winding number W (K, ) is related to the rotation number
p(K, ¢) in the following way. Let ¢,, = 276,, and & = 27Q, then

W(K,Q) = p(K, ®).
The rotation number 27p represents the time-average angular rate of rotation
of the orbit {¢,} circles around in the ¢ direction.
Ezample: Consider a map
Cnt1 = [¢n + 27w)] mod 27,
The winding number W for an orbit {(,} is equal to w, since

Cn = (o + 27nw.




Z

Zeeman’s catastrophe machine

This machine is a simple mechanism which is used as an example in
catastrophe theory. It consists of a disc of radius r, pivoted at its centre,
at which friction acts. Two rubber bands, each with an unstretched length lo,
are attached to a perpendicular peg at the edge of the disc. The other end of
one of the bands is attached to the point (—d, 0) in the plane of the disc (z,y),
where d > lp + r. This ensures that if the angle of the peg from the horizontal
@ is such that if # = =, then this rubber band is under tension. The end of
the other rubber band is put at some arbitrary control point in this plane.
There are two control parameters, (r,8) or (r.,8.), as shown in Figure 128.
Experiments show that as r. is decreased, and 8. is moved from positive to
negative values, and back again, the value of  exhibits a jump phenomenon,
as illustrated in Figure 129. The stretched lengths of the rubber bands are I
and ., respectively.

Control point

Ry

A.m.bv,,

Figure 128 Schematic representation of Zeeman’s catastrophe machine

The values of (r., 6.) where jumps occur are on two different curves, depending
on whether 6, is increasing or decreasing. Moreover, these curves intersect in
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OV/08 = -k[1(6)-1,][rd sinb/I(0)] +
+ k{1.(0)-1][7.r sin(6-6,)/1(8)] = 0

/\
~

catastrophe set

Figure 129 Ilustration of the cusp catastrophe in Zeeman’s machine

a cusp, and so locally the equilibrium surface is a, cusp-catastrophe surface.

References: Arnold (1984), Jackson (1990), Zeeman (1977).
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