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Preface

Extremum seeking, a popular tool in control applications in the 1940s-1960s,
has seen a return as an exciting research topic and industrial real-time opti-
mization tool in the 1990°s. Extremum seeking is also a method of adaptive
control but it does not fit into the classical paradigm or model reference and
related schemes, which deal with the problem of stabilization of a known ref-
erence trajectory or set point.

A second distinction between classical adaptive control and extremum seek-
ing is that the latter is not model based. As such, it provides a rigorous, high
performance alternative to control methods involving neural networks. Its
non-model based character explains the resurgence in popularity of extremum
seeking in the last half a decade: the recent applications in fluid flow, com-
bustion, and biomedical systems are all characterized by complex, unreliable
models.

Extremum seeking is applicable in situations where there is a nonlinear-
ity in the control problem, and the nonlinearity has a local minimum or a
maximum. The nonlinearity may be in the plant, as a physical nonlinearity,
possibly manifesting itself through an equilibrium map, or it may be in the
control objective, added to the system through a cost functional of an opti-
mization problem. Hence, one can use extremum seeking both for tuning a
set point to achieve an optimal value of the output, or for tuning parameters
of a feedback law. The parameter space can be multivariable, a case we cover
extensively in this book.

This book overviews the efforts made over the last seven years to put
extremum seeking on a rigorous analytical footing and to make improvement
of performance in extremum seeking schemes systematic. Stability guidelines
that have been developed are applicable not only to static maps but also
to systems that combine static maps with dynamics in virtually any form,
with the single restriction that the dynamics be open loop stable.!The main
accomplishment during the recent period, to which this book is dedicated,
is achieving convergence to the optimum on a time scale comparable to the

ix
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time scale of the plant dynamics. In other words, one does not have to try
one set of parameters, wait for the plant transient to settle, try another set
of parameters, wait again, compare the results, try again, and so on. The
convergence of the parameters (set points, gains, etc.) occurs over a period
comparable to the length of the plant transients.

Several books in the 1950s—60s have been exclusively or partly dedicated
to extremum seeking, including Tsien [109] (1954), Feldbaum [39] (1959),
Krasovskii [66] (1963), Wilde [119] (1964), and Chinaev [29] (1969).

A student of history of control should note that extremum seeking was
the original method of “adaptive control,” first appearing in the 1920s, and
developing intensely in the 1940s, especially in the USSR. In the 1960s, ex-
tremum seeking branches in two directions. On one side, the emergence of
computers (however rudimentary by today’s standards) steered the effort on
real-time optimization toward general-purpose optimization algorithms. On
the other side, a distinction between stabilization and optimization objectives
for adaptive control crystallized, and model reference adaptive control meth-
ods appeared, which are analytically tractable by simpler, Lyapunov tools.
As a result, extremum seeking as a research topic goes dormant for some 30
vears. The account of the revival of extremum seeking is given in the Notes
and References sections at the ends of chapters.

The book has two parts. Part 1 is dedicated to comprehensive analysis
of perturbation based extremum seeking and its systematic performance im-
provement. Part II presents various applications that have been successful in
recent years and show promise for further development.

Chapter 1 develops stability tests for single parameter extremum seek-
ing and Chapter 2 for multiparameter extremum seeking, and both chapters
present systematic design guidelines to satisfy the stability test using stan-
dard linear single-input single-output (SISO) control tools. The results render
possible rates of adaptation as fast as the plant dynamics. Analysis and de-
sign results on extremum seeking are generalized in Chapter 3 to develop
slope seeking, a new idea for non-model based control that involves operat-
ing a plant at a commanded slope of its reference-to-output map. Chapter 4
presents stability analysis for discrete time extremum seeking with sinusoidal
perturbation. Chapter 5 presents the stability analysis for extremum seeking
for general non-affine nonlinear systems and Chapter 6 presents stability and
performance analysis for limit-cycle minimization via extremum seeking.

The second part of the book presents the successful use of extrerum seeking
in five applications of immense engineering significance: Chapter 7 presents
traction maximization between the wheel and the road; Chapter 8 presents
vield maximization of bioreactors; Chapter 9 presents development and appli-
cation of the first comprehensive design procedure with performance guaran-

! Open loop unstable dynamics are also admissible by using an internal stabilization loop
around which the optimizing, extremum seeking loop, is closed.
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tees for minimum power demand formation flight; Chapter 10 presents sup-
pression of gas turbine combustor instabilities in a AMW combustor at United
Technologies Research Center; and Chapters 11 and Chapter 12 present ex-
tremum seeking design for maximization of compressor pressure rise, and ex-
perimental results on a rig at Caltech along with design for near-maximal
compressor pressure rise via slope seeking respectively.

Chapters 5, 6, 8, 11, and 12 2 are based on dissertation work of Hsin-Hsiung
Wang. Chapter 4 is based on the research of Joon-Young Choi, and Chapter 7
on that of Zhonghua Li. Chapter 10 is joint work of Andrzej Banaszuk and
Kartik Ariyur. Chapter 9 is joint work of Paolo Binetti and Kartik Ariyur.
The rest of the book is based on the dissertation research of Kartik Ariyur.
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Chapter 1

SISO Scheme and Linear
Analysis

The mainstream methods of adaptive control for linear [7, 46, 57, 78, 89]
and nonlinear [69] systems are applicable only for regulation to known set
points or reference trajectories. In some applications, the reference-to-output
map has an ertremum (i.e., a maximum or a minimum) and the objective
is to select the set point to keep the output at the extremum value. The
uncertainty in the reference-to-output map makes it necessary to use some sort
of adaptation to find the set point which extremizes {maximizes or minimizes)
the output. This problem, called extremum control or self-optimizing control,
was popular in the 1950s and 1960s [21, 36, 42, 59, 63, 81, 82, 83, 85, 90, 92],
much before the theoretical breakthroughs in adaptive linear control of the
1980's. In fact, the emergence of extremum control dates as far back as the
1922 paper of Leblanc [73], whose scheme may very well have been the firsi,
“adaptive” controller reported in the literature. The method of sinusoidal
perturbation used in this work has been the most popular of extremum-seeking
schemes. In fact, it is the only method that permits fast adaptation, going
beyond numerically based methods that need the plant dynamics to settle
down before optimization. It is therefore on these extremum seeking schemes
that this book is focused.

The purpose of this chapter is to lay a conceptual foundation for extremum
seeking and develop familiarity with the methods used for analysis and thereby
ease understanding of the more intricate analysis in subsequent chapters. Sec-
tion 1.1 provides the stability test of the simplest possible extremum seeking
scheme—a static map, to ease the reader into the problem. Section 1.2 pro-
vides the problem formulation, with Section 1.2.1 supplying linear time-varying
(LTV) stability analysis, Section 1.2.2 a linear time-invariant (LTT) stability
test, and Section 1.2.3 a design algorithm for a general single parameter ex-
tremum seeking scheme. To impress upon the reader the process of design,
and the power of the method, we present a simulation study with a difficult

3



4 SISO SCHEME AND LINEAR ANALYSIS

o f* Plant
‘4
4 y
= f(8) >
g k £ s L
_; 1——@« s+ h <
asinwt sin wit

Figure 1.1: Basic extremum seeking scheme

toy model in Section 1.3.

1.1 Extremum Seeking for a Static Map

Figure 1.1 shows a basic extremum seeking loop for a static map. We posit

f(8) of the form:

"

fO)=f+ 5 (06 (1.1)

where f” > 0. Any C? function f(0) can be approximated locally by Equ. (1.1).
The assumption f” > 0 is made without loss of generality. If f” < 0, we just
replace k (k > 0) in Figure 1.1 with —k. The purpose of the algorithm is
to make # — §* as small as possible, so that the output f(6) is driven to its
minimum f*.

The perturbation signal asinwt fed into the plant helps to get a measure
of gradient information of the map f(6). We give next an elementary intuitive
explanation as to how the scheme "works” with a rigorous analysis to follow
in the subsequent sections.

We start by noting that §in Figure 1.1 denotes the estimate of the unknown
optimal input §*. Let

g=0"-19¢

denote the estimation error. Thus,

0 — 6 = asinwt — 0,

which, when substituted into Eqn. (1.1), gives

"

y::f*-l—f?(é—asinwtf. (1.2)



1.1 EXTREMUM SEEKING FOR A STATIC MAP 5%

Expanding this expression further, and applying the basic trigonometric iden-
tity 2sin?wt = 1 — cos 2wt, one gets

"o . 2
y = f*+f—92—af"€sinwt—l—a2f sin? wt (1.3)
f/l 1t . - az 1t
= f*+ + 2-0% — o f"0 sinwt + —— cos 2wt. 1.4
2 4
The washout (high pass) filter
s
s+ h,
applied to the output, serves to remove f*, namely,
" 2 g
i [yl = f —af"0sinwt + LT cos2ut. (1.5)

s+ h
This signal is then ”demodulated” by multiplication with sinwt, giving
2 g1

Er f— 2 sinwt — af"fsin? wt + 7 cos wt sinwt. (1.6)

As we shall see, it is the second term, and specifically the DC component (or
constant) in sin® wt, that is crucial. Again applying 2sin®wt = 1 — cos 2wt, as
well as the identity

2 cos 2wt sinwt = sin 3wl — sin wi,

we arrive at

- —afll f/l
£~ 2

Noting that, because 8* is constant,

2fl/ ) ) fll

(sin wt — sin 3wt) + —2—52 sinwt.  (1.7)

g cos 2wt +

6 =0,

we get

. k " "
0 =~ ;[ fQ—t———Hcosth

2 pir "

{(sinwt — sin 3wt) + %—52 sinwt| . (1.8)

+

First, we neglect the last term because it is quadratic in § and we are interested
only in local analysis:

~ k at” -

0 ~ - [——[-9

] 2

H .
f cos 2wt

az "

+ (sinwt — sin 3wt)| . (1.9)
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The last two rows are high frequency signals. When passed through an inte-
grator, they get greatly attenuated. Thus, we neglect them, getting

- k af” ~
b2 [——2— } (1.10)
or . k f”
g~ ——“2—67. (1.11)

Since kf” > 0, this is a stable system. Thus, we conclude that # — 0, or, in
terms of the original problem, é(t) converges to within a small distance of 8*.

Looking back at our "hand waving” analysis, it is important to note that
our approximations hold only when w is large (in a qualitative sense) relative
to k,a,h, and f”. We shall explore this further in the coming sections. The
following bare-bones result sums up the properties of the basic extremum
seeking loop in Figure 1.1:

Theorem 1.1 (Extremum Seeking) For the system in Figure 1.1, the out-
put error y — f* achieves local exponential convergence to an O(a® + 1/w?)
neighborhood of the origin provided the perturbation frequency w is sufficiently

large, and 1_&—(5) is asymptotically stable, where

ka fu
We omit the rigorous proof as this result is subsumed in a more general
result we prove in the following section. We draw the reader’s attention to the
fact that ﬁ},—(ﬁ is always asymptotically stable. We make the wording of this
theorem tautological for symmetry with the more general results to come where
m has to be made asymptotically stable by design. The convergence result
in the theorem is second order, i.e., O(a®? + 1/w?), because we are operating

around a point of zero slope.

1.2 Single Parameter Extremum Seeking
for Plants with Dynamics

Figure 1.2 shows the nonlinear plant with linear dynamics along with the
extremum seeking loop. We let f(6) be a function of the form:
"

£O)= £+ 5 0- 0 ), (113)

where " > 0 is constant but unknown. The purpose of extremum seeking is
to make § — 8*(t) as small as possible, so that the output F,(s)[f(8)] is driven
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Aare(f) (\frf(S) Plant
0 Yy
Fi(s) » f(8) Fo(s) >
ARETREIS KE -
asin(wt) sin(wt — ¢)

Figure 1.2: Extension of the extremum seeking algorithm to non-step changes
in 6* and f*

to its extremum Fu(s){f*(¢)]. The optimal input and output, * and f*, are
allowed to be time varying. Let us denote their Laplace transforms by

L{0*(t)} = Xlo(s)
LB} = ATp(s).

If * and f* happen to be constant (step functions),

cerwy =
Ly = 2L

While Ay and A; are unknown, the Laplace transform (qualitative) form of 6*
and f* is known, and is included in the washout filter
Cols) s

Ff(s) s+h

(where in the static case we had chosen C,(s) = 1/(s+h)) and in the estimation

algorithm
1

Ci(s)Ty(s) = 3
(where in the static case we had chosen Cj(s) = 1). Let us first shed more
light on I'¢(s) and I'f(s) and then return to discuss C;(s) and C,(s).

By allowing 6*(t) and f*(¢) to be time varying, we are allowing for the
possibility of having to optimize a system whose commanded operation is
non-constant. For example, if we have to ramp up the power of a gas turbine
engine, we know the shape of, say, f*(¢),

i@ =21
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but we don’t know A; (and Ag). We include T's(s) = 1/s* into the extremum
seeking scheme to compensate for the fact that f* is not constant. The in-
clusion of T'y(s) and I's(s) into the respective blocks in the feedback branch
of Figure 1.2 follows the well known internal model principle. In its simplest
form, this principle guides the use of an integrator in a proportional-integral
(PI) controller to achieve a zero steady-state error. When applied, in a very
generalized manner, to the extremum seeking problem, it allows us to track
time-varying maxima or minima.

We return now to the compensators C,(s) and C;(s). Their presence is
motivated by the dynamics F,(s) and F;(s), but also by the reference signals
T's(s) and I'f(s). For example, if we are tracking an input ramp,

1
Fg(S) = g,

we get a double integrator in the feedback loop, which poses a threat to sta-
bility. Rather than choosing C;(s) = 1, we would choose Ci(s) = s+ 1 (or
something similar) to reduce the relative degree of the loop. The compensators
Ci(s) and C,(s) are crucial design tools for satisfying stability conditions and
achieving desired convergence rates.

We now make assumptions upon the system in Figure 1.2 that underlie the
analysis to follow:

Assumption 1.2 Fi(s) and F,(s) are asymptotically stable and proper.

Assumption 1.3 I'f(s) and T'e(s) are strictly proper rational functions and
poles of Ty(s) that are not asymptotically stable are not zeros of F(s).

This assumption forbids delta function variations in the map parameters
and also the situation where tracking of the extremum is not possible.

Assumption 1.4 Iq—)‘j% and Cy(s)Ty(s) are proper.

This assumption ensures that the filters g;gg and Ci(s)'y(s) in Figure 1.2
can be implemented. Since C;i(s) and C,(s) are at our disposal to design,
we can always satisfy this assumption. The analysis does not explicitly place
conditions upon the dynamics of the parameters I'y(s) and I'f(s), however,
for any design to yield a nontrivial region of attraction around the extremum,
they cannot be faster than plant dynamics in Fi(s) and Fy(s). The signal n

in Figure 1.2 denotes the measurement noise.

1.2.1 Single Parameter LTV Stability Test

We first provide background for the result on output extremization below.
The equations describing the single parameter extremum seeking scheme in
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Figure 1.2 are:

I

y = F(s) [0+ 50-6) (1.14)
0 = F{s)asin(wt) — Ci(s)Te(s)[£]] {1.15)
e Cols)

€ = ksin(wt— @) T,(s) ly+mn]. (1.16)

For the purpose of analysis, we define the tracking error 6 and output error §:
6 = 0°(t)—6+6, (1.17)

By = Fi(s)[asin{wt)] (1.18)

g = y—F(s)[f @) (1.19)

In terms of these definitions, we can restate the goal of extremum seeking as
driving output error § to a small value by tracking #*(¢) with 6. With the
present method, we cannot drive 7 to zero because of the sinusoidal perturba-
tion By. We now provide a minimally restrictive stability test for the system
in Figure 1.2:

Proposition 1.5 (Single Parameter Extremum Seeking: LTV Test)
For the system in Figure 1.2, under Assumptions 1.2, 1.8, and 1.4, the output
error § achieves local exponential convergence to an O(a?) neighborhood of the
origin provided n =0 and:

1. +jw is not a zero of F,(s).
2. Zeros of I'4(s) that are not asymptotically stable are also zeros of Cy(s).
3. Poles of Ty(s) that are not asymptotically stable are not zeros of Cy(s).

4. Co(s) is asymptotically stable and the eigenvalues of the matriz ®(T,0)
lie inside the unit circle, where T = 2x/w and ®(T,0) is the solution at
time T of the matriz differential equation

& = A(t)®(t,0), (0,0) =1, (1.20)

and x = A(t)x(t,0), x(0) = xp s a state space representation of the
LTV differential equation

den{H;(s)}[6] = —f"num{H;(s)} [sin(wt — ¢) Ho(s) [6o()6]], (1.21)
where
Hi(s) = Ci(s)Te(s)Fi(s)

Co(s)
T (s) Fo(s).

I

Hy(s) = k
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Proof of Proposition 1.5: Setting n = 0 and substituting Eqns. (1.15)
and (1.18) in Eqn. (1.17) yields

§ = 0" + Hy(s)[¢] (1.22)

Further, substitution for £ from Eqn. (1.16) and for y from Eqn. (1.14) yields
H

6 = 0" + Hy(s) [sin(wt — ¢V H,(s) [f* + ?(6 - 9*)2H . (1.23)

Using 8 — 0* = 0y — 0 from Eqn. (1.17), we get

§ = 0+ Hi(s) [sin(wt — $)H,(s) [f* + ﬂ(ﬂo — 5)2H

Il

6 + Hy(s) [sm(wt — $)H,(s) { P L8 ~ 2000 + 9%” . (1.24)

We drop the higher order term 62 (this is justified by Lyapunov’s first method,
as we have already written the system in terms of error variable # thus trans-
forming the problem to stability of the origin) and simplify the expression in
Eqn. (1.24) using Lemmas A.1, A.2, Assns. 1.2, 1.3, and 1.4 and asymptotic
stability of gﬂ(—% and Cy(s):
sin(wt — @) Ho(8)[f*(t)] = Apsin(wt — @)L (Hy(s)I'4(s))
=sin(wt — ¢)(e™") =" (1.25)
sin(wt — ¢)H,(s)[62] = Cra? sinwt + ) + Coa® sin(3wt + p2) + € {1.26)

where Cy, Cy, fi1, y2 are constants (these can be determined from the frequency
response of H,(s)), and ¢ ¢ denotes exponentially decaying terms. Now denote
1

u3(t) = aQ—‘fz— [Cy sin(wt + p1) + Cosin(3wt + pe2)] . (1.27)

The tracking error equation, Eqn. (1.24) after linearization (effected simply by
dropping 62 terms as we have expressed the system as an ODE in 9) can be
rewritten as

6= 0"+ Hy(s) [usa(t) + €7 — f"sin(wt — ) Ho(s) [60] ] - (1.28)
Multiplying both sides of Eqn. (1.28) with the denominator of H;(s), we get

den{H,(5)}[6] = €™ + num{H;(s)} [u1a(t) + € — " sin(wt — $) Ho(s) [000]]
(1.29)
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The 8* term drops out or becomes an exponentially decaying term when op-
erated upon by den{T'¢(s}} contained in den{H;(s)}. We now write a state
space representation of the LTV system in Eqn. (1.29):

x =A()x+ Bup(t), Af+T)=At), T =2n/w. (1.30)
The system has a state transition matrix ®(t,0) given by the solution of
® = A(1)®(t,0), $(0,0) =L (1.31)

The system is exponentially stable if the eigenvalues of the matrix ®(T,0)
(numerically calculated above) lie within the unit circle by Property 5.11 in
reference [97]. As the persistent part of the non-homogenous forcing term
in Eqn. (1.29) is O(a?), we have convergence of 6 to O(a?)! and therefore the

convergence of § = y— F,(s)[f*(1)] = F,(s) [f”/2(§ - 90)2] to O(a?). Q.E.D.

1.2.2 Single Parameter LTI Stability Test

While the result above permits determination of stability of extremum seek-
ing loops in a wide variety of cases, it is not a convenient design tool as it
requires calculation of the state transition matrix of an LTV system. For this
purpose, we provide a result below that permits systematic design in a variety
of situations. To this end, we introduce the following notation:

Col) () 2 Houp(s) Hotp(s) 2 Hogl5)(1 + HIE,(5)) (1.32)
T4(s)

where H,gp(s) denotes the strictly proper part of H(s) and H,,(s) its biproper
part, and k is chosen to ensure

Hy(s) = k

lir% Hyep(s) = 1. (1.33)
Now we make an additional assumption upon the plant:

Assumption 1.6 Let the smallest in absolute value among the real parts of
all of the poles of Hyyy(s) be denoted by a. Let the largest among the moduli
of all of the poles of Fy(s) and Hayy(s) be denoted by b. The ratio M = a/b is
sufficiently large.

!Exponential stability of the homogenous part of the linear system in Eqn. 1.29 implies
L-stability of the system with forcing. Boundedness of the inhomogenous forcing vields
boundedness of the solution of the forced system as in Example 6.3 in Khalil [64], and the
bound on the forcing gives the order of 6.



12 SISO SCHEME AND LINEAR ANALYSIS

With this assumption, we separate the slow and fast dynamics in the LTV
system in Eqn. (1.29) as

den{H;(s)}[] = €'+ num{H;(s)} [Um(t) +et — fsin{wt — gb))ygsp}

y;sp = (1 + H:l?p(s))[yosp} (134)
Yosp = Hosp(s) [Qoé] ; (1.35)
and write the following state-space representation for the fast dynamics:
1. -
Mxosp = Aospxosp + Bosp [906] (136)
Yosp = CospXosp, (1.37)

where the eigenvalues of M A, are the poles of H,s(s). Reduction of the fast
dynamics in Eqn. (1.36) by singular perturbation yields the substitution

Yosp = CospAgjpBosp[gOé} = 6063, (138)

using Eqn. (1.33) to form a reduced order model.

The purpose of this assumption is to use a singular perturbation reduction
of the output dynamics and provide the LTI SISO stability test of the theorem
stated below. If the assumption were made upon the output dynamics Fy(s)
alone, the design would be restricted to plants with fast output dynamics
F,(s). Hence, for generality in the design procedure, the assumption of fast
poles is made upon the strictly proper factor H,gp(s) of H,(s). Its purpose
is to deal with the strictly proper part of F,(s). If we have slow poles in a
strictly proper Fy(s), we can introduce a biproper %8 with an equal number

of fast poles to permit analysis based design. For example, if

1

1
F(s) = m, and F,(s) = m7

with constant f* and 8* (giving T's(s) = I's(s) = 1/5) we may set

T
Cels) = T35+ 6)
and k = 60 to give
_ Cyls) B 60s(s + 4)
Hols) = 1 5 Pl = i D@ 136+ 96 7 6

We can factor the fast dynamics as

30

ol = G o)
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and the slow biproper dynamics as

1.5(s—1)

obp

This gives, in the terms of Assumption 1.6, the smallest pole in absolute value
in Hoep(s), @ = 5, the largest of the moduli of poles in Fi(s) and Hpp(s)
as b = 1.5, giving their ratio M = a/b = 3.33. The singular perturbation
reduction reduces the fast dynamics Hop(s) = (3——4_5% to its unity gain, and
we deal with stability of the reduced order model via the method of averaging
to deduce stability conditions for the overall system in the theorem below.
Hence, for all situations, we can first perform systematic design, and then, if
necessary, reduce the order of the output filter and check for stability using
the LTV test above.

To keep the proof brief, we make an additional assumption:
Assumption 1.7 H;(s) s strictly proper.

This assumption is very easy to satisfy. Either Fi(s) is strictly proper or, if
it is biproper, one would choose C;(s)T'y(s) strictly proper. For example, if
F;(s) is biproper and Ty(s) = 1/s, C;(s) = 1 satisfies this assumption. The
assumption is made only for the purpose of keeping the proof of the following
theorem brief. The formation of a state space representation of the reduced
order system for averaging becomes more intricate when H;(s) is biproper,
because of the need to account for a factor of w when time varying terms are
differentiated, and this distracts from the main theme of the proof.

Theorem 1.8 (Single Parameter Extremum Seeking) For the system
in Figure 1.2, under Assumptions 1.2-1.7, the output error § achieves lo-
cal exponential convergence to an O{a® + 6%) neighborhood of the origin, where
0 =1/w+1/M provided n =0 and:

1. Perturbation frequency w is sufficiently large, and Ljw is not a zero of
Fi(s).

2. Zeros of I'y(s) that are not asymptotically stable are also zeros of C,(s).
8. Poles of T'y(s) that are not asymptotically stable are not zeros of Ci(s).

4. Co(s) and ﬁ%@ are asymptotically stable, where

L) = L Re(e By (ju)} Hifs). (1.39)
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Proof. We rewrite the linearized model Egn. (1.28)? after reduction of the
fast dynamics H,e,(s) to its unity static gain (from Assumption 1.6 and
Eqn. (1.38)) and get

6= 0"+ His) [wis(t) + e — fsinwt — ¢)(1+ HE,(s)) [660]] . (1.40)

Using Lemmas A.1, and A.2, we obtain?

8 = 6+ Hys) [um(t) + et — af” /4Re{e™ F,(jw)}0 + v + ’02] (1.41)
v = af"/4Re{d® I (jw)}d (1.42)
vy = sin(wt— ¢)H} (s) [vs] (1.43)
vs = |F(jw)|sinwt + LF(jw))d. (1.44)

We next move the term af”/4Re{e’*F,(jw)}H;(s)d = L(s)d to the left hand
side, and divide both sides of Eqn. {1.41) with 1 + L(s):

1 * —i
=~ 5L [9]+Y()[u13(t)+e + vy + 0]
= ¢ " +Y(s) [uas(t) + v+ va], (1.45)

where Y;(s) = ITL(Z) = nz‘:n“{lgjﬁ)s%} is asympfotically stable because the poles of

H;(s) are cancelled by zeros of and is asymptotically stable; zeros

Ti(si cancel poles in 8*(s) = Aglg(s) resulting in exponentially decaying
terms which are all consolidated (the asymptotically stable transfer function
Yi(s) acting on exponentially decaying terms produces exponentially decaying
terms). Now, Yi(s) is strictly proper from Assumption 1.7, and can therefore
be written as Yi(s) = - +p0Y,L' (s), where Y/(s) is proper and pp is a pole of
Yi(s) (and therefore asymptotically stable). In terms of thelr partial fractlon
expansions, we can write Y/(s) = Aq -+ Xry Eﬁ;’ and Hyp (s) = 37 S—JFJIE
Multiplying both sides of Eqn. (1.45) with s+ py and using the partial fraction

expansions, we get

in

§+ pgg =¢t -+ Ag(ulg(t) + v+ Ug)

2The use of Lyapunov’s first method in the proof of Proposition 1.5 and here is what
makes the stability result of Theorem 1.8 local.

SNote that Eqn. (1.41) contains an additional term of the form H;(s)[sin(wt —
#)H,(s)[e™*8]] which comes from ¢~ in 0o(t) = eIm{F;(jw)e’!} + ¢~t. We drop this
term from subsequent analysis because it does not affect closed loop stability or asymptotic
performance. It can be accounted for in three ways. One is to perform averaging over an
infinite time interval in which all exponentially decaying terms disappear. The second way
is to treat €78 as a vanishing perturbation via Corollary 5.4 in Khalil [64], observing that
€t is integrable. The third way is to express ¢! in state space format and let ¢4 be
dominated by other terms in a local Lyapunov analysis.
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Z 13k (t) + V16 + Vo] (1.46)
k=1
m

vy = sin(wt — @) > _(v3;)

A Ay
S+ P

U3,k =

k
Va,k Vg, V35 = U3
s+pe 7 s+py

Now, we can write the system above in state-space form®:

X = A(t)x + Algxe + B’LL13(t>, 0= Iy (14;7)
%, = Ax.. (1.48)

Eqn. (1.48) is a representation for the e *. We get Eqgns. (1.47), (1.48) into
the standard form for averaging by using the transformation 7 = wt, and then
averaging the right hand side of the equations w.r.t. time from 0 to T = 27 /w,
ie., %fOT(~)dT treating states x, x. as constant to get:

dX g 1 o
? = ; (Aauxav + A12Xem}) 3 ga’u = Tiav (149)
%?'=é&mm (1.50)

which is a state-space representation of the system in the 7 = wit time-scale,
and Ag, = £ f§ (A(r))dr. This gives

éwu + pOécw =e"
i
+ Z [ulB,k,av + V1,k,av + '02,k,rw] (151)
k=1

dlS,k,av + PrUis ko0 = 05 ﬁl,k,a’u + P kav = 0

Vv + PkV2kar = 0, V3400 + PjU3 400 = 0
in the original time-scale. As all of the poles p; for all & and p; for all j are
asymptotically stable (from asymptotic stability of Hy(s) and 1 L(s)) all of the

terms on the right hand side of Equn. (1.51) for 0, are exponentially decaying,
i.e., we have

N 1 B
%-8+mk}, (1.52)
which decays to zero because s—_:p; is asymptotically stable by asymptotic sta-

bility of ;175 L( 3 Hence, by a standard averaging theorem such as Theorem 8.3

4Note that A(t) here is different from A(t) in the proof of Proposition 1.5.
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in Khalil [64], we see that if w, a, ¢, Ci(s) and C,(s) are such that 5 +L(s)
asymptotically stable, and w is sufﬁc1ently large relative to other parameters of
the state-space representation, solutions starting from small initial conditions
converge exponentially to a periodic solution in an O(1/w) neighborhood of
zero. Hence, the output A(t) goes to a periodic solution Gper(t) = O (1/w).
We now proceed to put the system in the standard form for singular per-
turbation analysis through making the transformation 66 = 0(¢) — Bper(t) in
Eqns. (1.34), (1.35) and get:

den{H;(5)}[60 + O,e]

= ' + num{Hi(s)} [usa(t) + € — " sin(wt — ¢))/}e,)

Yosp = (1 + Ho(5)) [Yosy] (1.53)
Yosp = Houp(5) [60(80 + fper)| (1.54)

By linearity of the system described by the Eqns. {1.53), (1.54), we have that
the reduced model in the new coordinates (replacing Hoep(s) with its unity
static gain) is given by

den{ H;(s)}[66]
= — f"mum{ H;(s)} [sin(wt — ¢))(1 + HE,(5))0680)],  (1.55)
which has the state space representation
x = Alt)x; 60 =, (1.56)

where A(t) is the same as in Eqn. (1.47). Hence 86 converges exponentially to
the origin. This shows that the reduced model is exponentially stable. From
exponential stability of H,g,(s), we have exponential stability of the boundary
layer model

Zl; = Aospy - (157)

Hence, by the Singular Perturbation Lemma A.3, we have that in the overall
unreduced system in Eqns. (1.53), (1.54), the solution converges to an O(1/M)
neighborhood of the origin. Hence, 66(t) converges to a O(1/M) neighborhood
of the origin. Therefore, # converges exponentially to a O(1/w) + O(1/M) =
0O(8) neighborhood of the origin. Further, the output error § decays to
O (a® +82):

j = F,(s) {f”(e 0*)]— o()[f"(e 9)] Ofa? + 8%), (1.58)

which completes the proof. Q.ED.

From Eqn. (1.39), we notice that Ci(s) appears linearly in L(s) (through
H;(s) = Cy(s)Tg(s)Fi(s)). This property allows systematic design using linear
control tools. The conditions of Theorem 1.8 motivate the steps of a design
algorithm below.
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1.2.3 Single Parameter Compensator Design

In the design guidelines that follow, we set ¢ = 0 which can be used separately
for fine-tuning.

Algorithm 1.2.1 (Single Parameter Extremum Seeking)

1. Select the perturbation frequency w sufficiently large and not equal to any
frequency in noise, and with +jw not equal to any tmaginary azxis zero

of Fi(s).

2. Set perturbation amplitude a so as to obtain small steady state outpul
erTor §.

3. Design Co(s) asymptotically stable, with zeros of I'¢(s) that are not
asymptotically stable as its zeros, and such that ?—;% is proper. In the
case where dynamics in F,(s) are slow and strictly proper, use as many
fast poles in Co(s) as the relative degree of Fy(s), and as many zeros
as needed to have zero relative degree of the slow part Huy(s) to satisfy

Assumption 1.6.

4. Design Ci(8) by any linear SISO design technique such that it does not
include poles of Ty(s) that are not asymptotically stable as its zeros,
Ci(s)e(s) 1s proper, and IT},(E is asymptotically stable.

We examine these design steps in detail:

Step 1: Since the averaging assumption is only qualitative, we may be able
to choose w only slightly larger than the plant time constants, as we show
in the examples in Sections 1.3 and 2.3. Choice of w equal to a frequency
component persistent in the noise n can lead to a large steady state tracking
error 4. In fact, our analysis can be adapted to include a bounded noise signal
satisfying limr o0 7 I nsinwtdt = 0. Finally, if +jw is a zero of Fi(s), the
sinusoidal forcing will have no effect on the plant.

Step 2: The perturbation amplitude a should be designed such that
a|Fi(jw)| is small; a itself may have to be large so as to produce a measurable
variation in the plant output.

Step 3: In general, this design step will need designing a biproper

?"Esg when
8
we have a slow and strictly proper Fi(s) in order to satisfy Assumpftion 1.6.
The use of fast poles in g;gzg raises a possibility of noise deteriorating the
feedback; however, the demodulation coupled with the integrating action of
the input compensator prevents frequencies other than that of the forcing from
entering into the feedback. While we have used the gain k in analysis to satisfy
Assumption 1.6, this is not strictly necessary in design.

Step 4: We see from Algorithmm 1.2.1 that C;(s) has to be designed such
that Cj(s)T(s) is proper; hence, for example, if Ty(s) = %, an improper
Ci(s) = 1+d,s+dys? is permissible. In the interest of robustness, it is desirable
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to design C;(s) and C,(s) to ensure minimum relative degree of C;(s)Tg(s) and
1?;—&3. This will help to provide lower loop phase and thus better phase margins.
Simplification of the design for C;(s) is achieved by setting ¢ = —/(Fi(jw)),
and obtaining

L(s) = wm@.

The attraction of extremum seeking is its ability to deal with uncertain
plants. In our design, we can accommodate uncertainties in f”, F,(s), and
F;(5), which appear as uncertainties in L(s). Methods for treatment of these
uncertainties are dealt with in texts such as [123]. Here we only show how
it is possible to ensure robustness to variations in f”. Let j/"T’ denote an a
priori estimate of f”. Then we can represent ; +i(s) as +1£( 1= (1+ A;{,i )P(S),

where Af” = "~ 7 and P(s) = f,,L( s), which is at our disposal because f”
in P(s) gets cancelled by f” in L(s). We design C;(s) to minimize HH_LPH Heoo

which maximizes the allowable Af” < f7/ || 251 s, under which the system
is still asymptotically stable.

1.3 Single Parameter Example

To illustrate the power of the method, we present a difficult toy benchmark
problem. Bounded noise n is present in all simulations. Simulation results are
plotted with f*(¢t},8*(¢) in dotted lines and y, & in solid lines.

Benchmark Example. We use F(s) = 32+3s+2, F,(s) = S}H, f(0) =)+
(6 — 6*(1))?, where f*(t) = 0.01u(t — 10), giving A;Ty(s) = 20 g=(¢) =
0.01e*%, giving AI'g(s) = 22, and u(t — 7) denotes the unit step at time 7.
The benchmark example prov1des all the elements of difficulty that a design
can face: a large relative degree of F;(s)F,(s); unstable I'y(s); non-minimum
phase Fi{s).

Using Algorithm 1.2.1 for the design, we set w = 5 rad/sec, a = .05,

Pl = &, & = —L(Fi(j5)) = .7955, and Ci(s)Te(s) = 107.7:3;.

The design attains the desired goal of output minimization. The response
in Figure 1.3 shows a slow transient and noise sensitivity in the parameter
tracking. But, we note that because of the attenuation of the high frequency
perturbation in the plant, the output y tracks the minimum f*(¢) well. We
note that we used C,(s) = 1/(s + 5)— a fast pole- as the pole in F,(s) is slow,
and F,(s) is strictly proper.
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Figure 1.3: A simple C;(s) =s—4

Notes and References

Several books in the 1950-60s have been exclusively or partly dedicated
to extremum seeking, including Tsien [109] (1954), Feldbaum [39] (1959),
Krasovskii [66] (1963), Wilde [119] (1964), and Chinaev [29] (1969). Among
the surveys on extremum seeking, we find the one by Sternby [105] particu-
larly useful, as well as Section 13.3 in Astrom and Wittenmark [7] which puts
extremum control among the most promising future areas for adaptive control.
Among the many applications of extremum control overviewed in {105] and [7]
are combustion processes (for IC engines, steam generating plants, and gas
furnaces), grinding processes, solar cell and radio telescope antenna adjust-
ment to maximize the received signal, and blade adjustment in water turbines
and wind mills to maximize the generated power.

Extremum seeking witnessed a resurgence of interest after the publication
of the stability studies in [70] and [67]. Several analyses of extremum seeking
schemes [16, 37, 96, 113, 122] were presented at ACC 2000. The need for rig-
orous design guidelines guaranteeing performance was strongly felt in [67, 96].
Besides, numerical optimization based extremum seeking methods were used
successfully. Extremum seeking via triangular search as in Zhang [122], was
employed to attenuate combustor thermoacoustic oscillations and minimize
diffuser losses at United Technologies Research Center (UTRC); extremum
seeking via sliding modes, introduced by Korovin and Utkin [65], and ana-
lyzed and applied by Ozguner and co-workers [35, 51] and others [28, 106] on
a variety of automotive problems. Even more recently, extremum seeking has
been used for control of electromechanical valves [93], and for optimization of
IC engine cam timing [94].

The first stability analysis of extremum seeking for a general nonlinear
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plant was developed in [70]. In [67], dynamic compensation was proposed for
providing stability guarantees and fast tracking of changes in plant operating
conditions for single parameter extremum seeking. The result in [5], on which
this chapter is based, supplies the systematic design, and moreover, limits
adaptation speed only by the speed of the plant dynamics.
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Chapter 2

Multiparameter Extremum
Seeking

Many problems that require feedback optimization are inherently multivari-
able: cancellation of oscillations, formation flight, and minimization of air-
frame drag are a few examples of problems whose practical solution will be
enabled by the ability to systematically design multivariable extremum seeking
schemes. This chapter supplies this need and treats the analysis based design
of multivariable extremum seeking schemes:

1. It provides a multiparameter extremum seeking scheme for general time-
varying extrema (Section 2.1).

2. Derives a stability test in a simple SISO format (Section 2.1).

3. Presents a systematic design algorithm based on standard LTI control
techniques to satisfy the stability test (Section 2.2).

4. Supplies an analytical quantification of the level of design difficulty in
terms of the number of parameters and in terms of the shape of the
unknown equilibrium map (Section 2.2).

Section 2.3 presents simulation examples that compare performance of the
multiparameter design and its three variations presented in Section 2.2, first
for step changes, and then for more general (linear dynamic) variations in the
extremuin.

2.1 Output Extremization in Multiparameter
Extremum Seeking

Figure 2.1 shows the multiparameter extremum seeking scheme. Analogous to
the single parameter case in Section 1.2, we let f(#) be a function of the form:

F0) = 1) + (0 = 0*(1))"P(6 - 6°(t)), (2.1)

21
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Ty(s) MTr(s)  Plant
L

g
Fi(s)—| £(6) —{Fu(s) !

Y

n
C gp kpCop(8)
—Cip(5)Tep(5) ‘_C?“ T'¢(s)
ap sin(wyt + By) sin(wyt + Bp — ¢p)
Figure 2.1: Multiparameter extremum seeking with p =1,2,...,1{. For p odd,

Wpt1 = Wy, Bp = 0, and fpy1 = 7/2.

where Py = PT > 0,0 = [6,...0]7, 6*(t) = [0;(t)...0; ()], L{6*(t)} =
To(s) = MTor(s) ... NTa(s)]T, and L{f*(£)} = AsL's(s). Any vector function
J(#) with a quadratic minimum at 6* can be approximated by Eqn. (2.1). In
seeking maxima, i.e., P < 0, we only need to replace Cj,(s) with —Cip(s). Fur-
ther, the method need not confine itself to seeking only extrema; convergence
to saddle points, and any points with zero first derivative may be attained us-
ing the designs developed here simply by setting C;,(s) the same sign as P,
We further note here that we propose diagonal compensation in the scheme in
Figure 2.1 for two reasons: while we can obtain a multiple-input single-output
(MISO) sensitivity design problem, there are no systematic means of multi-
variable design when there is an unknown matrix gain (P) in the plant; use of
a multiple-input multiple-output (MIMO) compensator also leads to an O(l)
increase in the steady-state output deviation from the extremum.

The broad principle of using m frequencies for identification/tracking of
2m parameters holds here. Forcing frequencies w; < wg < ... < wgp_1 are
used, where m = [HTQ] ([z] is the greatest integer less than z). We make
assurptions analogous to the single parameter case:

Assumption 2.1 Fy(s) = [F;1(s) ... Fu(s)|T and F,(s) are asymptotically sta-
ble and proper.

Assumption 2.2 Ty(s) and T's(s) are strictly proper, and Fy,(s) does not
contain zeros equal to poles in Tgy{s) that are not asymptotically stable.

Assumption 2.3 Cy,(s)Tg,(s) and %’% are proper for allp=1,2,...,L.

As in the single parameter case, the signal n in Figure 2.1 denotes measure-
ment noise. In the multiparameter case, we make an additional assumption
upon the perturbation frequencies:
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Assumption 2.4 w, +w, #w, for any p,q,r=1,2,...,L

The purpose of this assumption is to preclude bias terms arising from
demodulation in the case of a quadratic nonlinearity. We can always satisfy
this assumption since the choice of frequencies is at our disposal. We expatiate
further upon this assumption at the end of this section.

Finally, we note that if the frequencies wy, . . ., wy,, are rational, they can be
written as wy, 2_1“"1’ %wl, cees Zqi"i‘—iwl. The time periods in the system are %,
-

2 2 2 2 _

m,w,, # Wy, (w,,qu)’ (wp+w:—wr)’ and (w,,+w:+ur)? mag,r=1,...,m, all of
which are rational multiples of 27. Thus, the overall time-period of the system
T can be calculated as the lowest common multiple of these time-periods. We
make use of this fact in Subsections 2.1.1 and 2.1.2 below.

2.1.1 Multivariable LTV Stability Test

The equations governing the p'* loop of the multiparameter scheme in Fig-
ure 2.1 are as follows:

y = Fos)[f"+(0~6)P(O~6")] (22)
0p = Fip(s)lapsin(wpl + B,) — Cip(s)Top(5)[6]] (2.3)
o Cop(s)
& = sin(wpt + G — ¢p) T, () ly + nl, (2.4)
where 0 W
» PO
b = { Z , peven (2.5)

and, for p odd, wpt1 = w,. The definitions of tracking error ép and output
error §j analogous to the single parameter case are:

0 = O —0p+00; 0=1[6...0]" (2.6)
é)op = Ep(S)[(lp sin(wpt + ,Bp)]; 90T = [901 " 9DZ]T (27)
i = y—F(s)[f"]=Fo(s) [(6 — 6P — 6%)] . (2.8)

We now state our first result on multiparameter output extremization:

Proposition 2.5 (Multiparameter Extremum Seeking: LTV Test)
For the system in Figure 2.1, under Assumptions 2.1-2.4, the output error
7 achieves local exponential convergence to an O(I %! 1 af,) neighborhood of
zero provided n = 0 and:

1. Perturbation frequencies wy < w3 < ... < Wam—1 are rational, and Ljw,
is not a zero of Fip(s).

2. Zeros of T's(s) that are not asymptotically stable are also zeros of Cpy(s),
forallp=1,...,L
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3. Poles of Tgy(s) that are not asymptotically stable are not zeros of Ciy(s),
foranyp=1,....1

4. Cop(s) are asymptotically stable for allp = 1,...,1 and the eigenvalues of
the matriz ®(T,0) lie inside the unit circle, where T is the time period of
the system and ®(T,0) is the solution at time T of the matriz differential
equation

b = A(t)®(t,0), #(0,0)=1, (2.9)

and x = A(t)x(¢,0),x(0) = xq is a state space representation of the LTV
differential equations

den{Hin(s)}fn] = num{Hin(s)} [sin(wat + B — én)

X Hon () [i zlj 2Pméqeop(t)] } . (2.10)

p=lg=1

and

Hiyp(s) = Cip(8)lap(8)Fip(s)
Hy(s) = kp?;’;((;))Fa(s).

Proof: We expand 0, in Eqn. (2.6), substituting for 6,, &, and y from
Equs. (2.3), (2.4), and (2.2) respectively and get:

B = 03 + Hin(s) [sin(wnt + Bp — ) Hon(8)[f" + (6 — 07)TP(0 — 6")]]
— 6+ Hin(s) [sin(wnt + Bo — 6) Hon(5) " + (6 — 60) P — 60)]], (2.11)
using 8 — 8* =6y — 6 from Eqn. (2.6). Here, in addition to terms encountered

in the single parameter case, we have to consider linear terms and higher order
terms that arise due to coupling from the quadratic form:

~ i~ l l ~ -~ o~
(6= 60)"P(0—00) =35 Poy (B + Oonbog — Opbog — Bfp)  (212)

p=1g=1

The term containing f*(¢), and 6y, in Eqn. (2.11) can be simplified using
Lemma A.l as in the proof of Theorem 1.8, using Assns. 2.1, 2.2, 2.3, and
asymptotic stability of C,,(s):

11
sin(wat + By — ¢n)Hon(8)[f* + 3. Y Pubopbog] = walt) + €7, (2.13)

p=1g=1
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where ¢! denotes exponentially decaying terms, and

[
wy(t) = Z Z Prpgtpag { Cpgy sin [(wn + wp + wy)t — fipg]
p=lg=1

+Chq2 8in [(wn + wp — we)t — fipg2]

+Cry3 Sin [(wn, — wp + we)t — Hypga)
+Cpqa sin [wn — wp — we)t — pipgal}, (2.14)
where
Coqt = Cpga = | Fip(Jwp) Fig(Jwg) Hon (5 (wp + wy))| (2.15)
Cogz = Cpga = |Fip(jwp) Fig(jwg) Hon (§(wp — wy))l, (2.16)

and the constants ppe, 7 = 1,...,4 depend upon ¢, and the phases of
Fip(jwy), Fia(jwy), and Hyp,(j(wy, £ wy)). The function wy(t) is of order
O(Xho) Sy apag) = O(1 YL_1a2) and does not contain constant terms
since from Assn. 24, w, + wg # w, for any p,g,r = 1,...,I. Using
Eqns. {2.12), (2.13), and symmetry of P, we can now rewrite Eqn. (2.11)
as follows after dropping the second order terms!:

6, = 0% + Hin(s) [sin(wnt + By — u)Hon {Z Z 2qu9 Bop

p=1g¢=1

+wn(t) + E_t] . (2.17)

Multiplying both sides in Eqns. (2.17) with den{H;,(s)} gives the following
set of LTV differential equations:

den{Hin(s)}[fn] = €~

Lo
+num{H;,(s)} {sm(wnt + G — on(8) [Z > 2P,.4, 90,,}
+wy(t) + e_t] . (2.18)

The 8; term drops out or becomes an exponentially decaying term when op-
erated upon by den{T'y,(s)} contained in den{H;,(s)}. We now write a state
space representation of the LTV system in Eqn. (2.10), which is the homoge-
nous part of the LTV system in Eqn. (2.18):

= A(t)x, A(t+T) = A(t). (2.19)

1As in the single parameter case, this is justified by Lyapunov’s first method, as we have
already written the system in terms of error variables 8,, @ = 1,...,] thus transforming
the problem to stability of the origin.



26 MULTIPARAMETER EXTREMUM SEEKING

The system has a state transition matrix ®(z,0) given by the solution of
o = A(t)®(t,0), ®(0,0)=1L (2.20)

The system is exponentially stable if the eigenvalues of the matrix ®(7, 0) (nu-
merically calculated above) lie within the unit circle by Property 5.11 in [97].
As the persistent part of the non-homogenous forcing term in Eqn. (2.18) is

0132}, a2), we have convergence? of § to O(I3°}_, a2) and therefore the con-

vergence of § = y — F,(s)[f*(t)] = Fu(s) [(5 — 6)TP(6 — Hg)] to O(I ), a2).
Q.E.D.

2.1.2 Multivariable LTI Stability Test

As in the single parameter case, we provide a result permitting systematic de-
sign under an additional assumption (which can always be satisfied by design).
To this end, we introduce the following notation:

Hap(s) = kp%—’fj)la(@ 2 Hoopp(5) Hotp(5)
2 o)1+ H, (5)) (2.21)

where Hogpp(s) denotes the strictly proper part of Hop(s) and Hop,p(s) its
biproper part, each of the &, is chosen to ensure

lir% Hogpp(s) = 1. (2.22)
o
We now present the multiparameter analog of Assumption 1.6:

Assumption 2.6 Let the smallest in absolute value among the real parts of
all of the poles of Huepp(s) for all p be denoted by a. Let the largest among
the moduli of all of the poles of Fiy(s) and Hoy,p(s) for all p, be denoted by b.
The ratio M = a/b is sufficiently large.

With this assumption, we separate the slow and fast dynamics in the LTV
system in Eqn. (2.18) as

den{H;n(s)}n] = €*
+num{ Hin(8)} [$in(@nt + B — Gn)Yhupn + wa(t) + €]

y:)sp,n =(1+ ng)p,n(s))[yoszl,n] (2.23)
I {
Yospn = Hospn(8) [Z Z 2P, pq0q90p:| ) (2.24)
p=1¢g=1

2Fxponential stability of the homogenous part of the linear system in Eqn. 2.18 implies
L-stability of the system with forcing. Boundedness of the inhomogenous forcing yields
boundedness of the solution of the forced system as in Example 6.3 in Khalil [64], and the
bound on the forcing gives the order of 4.
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and write the following state-space representation for the fast dynamics
H,spp(s) acting on the term [Zi,ﬂ Yo 2qu9q00p]:

1 . i I .
—HXOSP,TL = Aosp,nxospyn -+ Bosp,n [Z Z 2qu9q90p] (225)

p=1lg=1
Yospon — Cosp,nxosp,m

where the eigenvalues of M A, are the poles of Hyep,(s). Reduction of the
fast dynamics in Eqn. (2.25) by singular perturbation yields the substitution

11 _ U1 ~
Z Z QPPQHQHOP:I = Z Z 2PP¢19(19013} o (2.26)
p=1g=1

p=1g=1

using Eqn. (2.22) to form a reduced order model. The purpose of this assump-
tion is to use a singular perturbation reduction of the output dynamics and
provide the LTI SISO stability test of the following theorem. As in Assump-
tion 1.6 in Chapter 1 the assumption is made upon H,(s) for generality. As in
the discussion after Assumption 1.6, its purpose is to deal with the slow strict
proper part of F,(s), and perform systematic design irrespective of the speed
of poles in F,(s), or its relative degree. As in the single parameter case, we
make an additional assumption:

_ -1
Yospp = Cosp,pAosp,pBosp,p

Assumption 2.7 H;,(s) is strictly proper for all p.

The theorem below also holds without this assumption, which has been made
for the same reason as Assumption 1.7-brevity and clarity of the proof.

Theorem 2.8 (Multiparameter Extremum Seeking) For the system in
Figure 2.1, under Assumptions 2.1-2.7, the output error § achieves local ex-
ponential convergence to an O(A? +1YL_, af,) netghborhood of zero, where
A=1/w 4+ 1/M, provided n = 0 and:

1. Perturbation frequencies wq < w3 < ... < wam—1 are rational, sufficiently
large, and Ljw, is not a zero of Fip(s).

2. Zeros of I's(s) that are not asymptotically stable are also zeros of Cyp(s),
forallp=1,...,1

3. Poles of T'gy(s) that are not asymptotically stable are not zeros of Ciy(s),
foranyp=1,...,1L

4. Cop(s) are asymptotically stable for allp = 1,...,1 and mix—(s)) s

asymptotically stable, where Xp,(s) denote the elements of X(s) and

qu(s) = PpgapLy(s) + Pp+5,qap+6Mp(5)a g=1,...,1 (2.27)

Ly(s) = Hyls)Refe™ Fyljuy)) (2.28)
My(s) = ~Hy(s)Re{e D, s(jw,)), (2.29)

4
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where 6 =1 for p odd and 6 = —1 for p even.

Proof. We rewrite the linearized model® in Eqn. (2.17) after reduction of

the fast dynamics Hygp () to its unity static gain (from Assumption 2.6 and
Eqn. (2.26)) and get

N 1
b, = 07 + Hin(s) [sin(wnt + B — ¢a)(L+ HE, . (s) {z Y. 2P0, aop]

p=lg=1
+wy,(t) + GMt}

=07 + Hn(s) [sin(wnt + Bp — [Z Z Qque 9%]

+sin(wnt + Bn — Gu)n(t) + walt) + ¢ '] (2.30)
i !
va(t) = Hsgpn s) [z_: Z 2qu!Fip(jwp)| Sin(wpt + Zﬂp(jwp))éqil . (2.31)

Using Lemmas A.1, and A.2, we obtain*

Hin(s) [sin(wnt + Bn — 6n)[2Ppu0a80p)| = Hin() [Trupalfa] — Kopalfi]] . (2.32)
where

Toalfal = Phgay [Re {ej((wn+wp)t+ﬁn—¢n+ﬁp)§q}] (2.33)

Kupal0g] = Pogty [Re {e/rmonti=tntontfilg 1] (2.34)

We now rewrite Eqn. (2.30) after moving terms linear in 6, to the left hand
side:

0 + Hm !:Z Z npg n [é ] - Sin(wnt + Bn — ¢n)vn(t)J
= 0, + Hin(s) [wn(t) + €] (2.35)

We consider below the terms H;y,(s)[Kpp,) in Eqn. (2.32) in the following cases
to explicitly show the time invariant terms:

8As in the single parameter case in Chapter 1, linearization is what yields a local con-
vergence result.

*Note that Eqn. (2.32) contains additional terms of the form Hi,(s)[sin{wnt + Bn —
$n)Hon(s)[e™*0,]] which comes from e~ in g, (t) = alm{F,(jw,)e?*#*} +¢ . We drop this
term from subsequent analysis because it does not affect closed loop stability or asymptotic
performance. It can be accounted for in three ways. One is to perform averaging over an
infinite time interval in which all exponentially decaying terms disappear. The second way
is to treat e“e as a vanishing perturbation via Corollary 5.4 in Khalil [64], observing that
¢t is integrable. The third way is to express ¢* in state space format and let E_tf) be
dominated by other terms in a local Lyapunov analysis.
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1. ¢ =n, p = n: We get the term familiar from the single parameter case
in Eqn. (1.41), Hin(8)[Kupgl = PantnLn(s).

2. g=n, p=n+8 We get Hu(5)[Knpgl = PrtsntnisMn(s).
g #mn, p=n: We get a term H;,(8)[Knpq] = PrgtnLn(s).

g#n, p=n+d We get a term H;,(8)[Knpgl = Potsg@nisMn(s).

oo W

g # n,p # n+ 6 Kypg is time-varying.

Using the above, we can rewrite Eqn. (2.30) in a form that shows separately
the time invariant terms:

0, +Zan )[64)

+H;n(s) Z Z (Knpg — Tnpq) 164]

pERn+E G
Z Z leq[éq] — sin(wnt + By — ¢n)vn(t)
p=n,n+é ¢
= 0 + Hin(s) [wa(t) + 7] . (2.36)

The rest of the proof shows how only the time invariant terms in Eqn. (2.36)
need be considered for stability of the system. We now proceed to put the
Eqns. (2.35) in a form suitable for applying averaging. Dividing both sides of
Eqn. (2.35) with det(I + X(s)), we get

1
det(T+ X(s))

+Yin(8) ZZ g — Trpa) [0g] — sin(wnt + B — qﬁn)vn(t)]

q

0]

1
e Yals) [wn(t) + ¢ 2.
T ey o)+ Yorl®) [wa(®) + €7 (2.37)
where Yi,(s) = 3 etﬁ":ggs)) = num“?g;gz}j‘rg?()s 77 is asymptotically stable because

poles of H;,(s) that are not asymptotically stable are cancelled by zeros in
a&m (using condition 3 of Theorem 2.8), and d—e_t(l-i—x(s)—) is asymptotically
stable. By noting also that zeros in Ee—t(l—i—X(—sjj cancel poles in 8%(s) = ApT'gn(s)
that are not asymptotically stable (using condition 3 of Theorem 2.8), and
using asymptotic stability of aat(li—x(s))’ we get

a(ﬁﬂ + Yin(s }: Z wpa — Tupa) [0g] — sin(wnt + Bn — ¢n)vn(t)
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= € + Yin(s) [wn ()] (2.38)
1 . e
mwn] + Yin(s) [6 ]} , (2.39)

where £ is exponentially decaying Now, Y;,(s) is strictly proper, and can

therefore be written as Yi(s) = - 0)/;’n( s), where Y, (s) is proper. In terms

of their partial fraction expanswns we can write Y} (s) = Apo + Ypr, Aak

k=1 sfp,i’
and Hyp, .(s) = X7 5 +p . Multiplying both sides of Eqn (2.38) with § + po,
expanding operators ICm,q and 7y,,,,and using the partial fraction expansions,

we rewrite Eqn. (2.38) as

é,’n + ané;L
+Ano (un(t) - wn(t) - Sin(wnt + By — ‘bn)'”n(t))
+ kz_: (unk(t) - wnk(t) - Unk(t))

—(s+ pno)[i] (2.40)
0 = det(T + X(s)) [6n]

un(t) = 33 Pyt (Re {e/(rmonit-fntontinlf) |
r g
~Re {efl(ntenlttinminthig 1) (2.41)

nk(®) = S 2 (O], wk(0) = 55 {un(0)

on(t) = - f”;nk [sin(wnt 4 B — dn)va(t)]

My
= Z U;j (t)
i=1

B {
— Z Z 2Bq| Fip(juwyp)| sin(wyt + ész(pr))

s+p Dnj p=14g=1

‘U;j (t)=

The system of Eqns. (2.40) can be written as a set of time-varying linear
differential equations that can be put into the state space form®:

X = A(t)x+ Apx.+Bw(t); 6=Cx+Cpx, (2.42)
X = Ax,, (2.43)

where w(t)T = [wi(t),...,w;(t)], and Eqn. (2.43) is a representation for the

exponentially decaying term €. As all forcing frequencies wy, . .., wy,, and con-
sequently their linear combinations, are rational, there exists a period T, which

5A(¢), B and C in this state space representation are different from those in Proposi-
tion 2.5.
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is the lowest common multiple of all the time-periods in the system, such that
the system in Eqn. (2.42) is T-periodic. We get Eqns. (2.42), (2.43) into the
standard form for averaging by using the transformation 7 = wyf, and then
averaging the right hand side of the equations w.r.t time from 0 to T, i.e.,
% foT ()dr treating states x, x, as constant. The averaged equations are:

dimj w1 (Am Xy + A12Xeav) 3 ea'v szw 12-5eav ( ' )
e —1 Aexem s ( ) )

where A,, = % [ A()dr. This yields

pu 4

on,av + pnogqln,av

—Ang (un,av - vn,av(t)) + Z (unk,av — Wnk,an — 'Unk',av)

k=1
= (5 + Pno) €] (2.46)
é, = —1ﬁ [én,m)]

mav = Get (T + X(5))
Unaw = Ape Y. Y Pugayp (Re {ej (¢n—Bn+1p) éq,av})

p=n,nt+é ¢
ﬂnk,lw(t) + pnkunk,av(t) = Unp,qu; wnk,av + PrnkWnkav = 0

i)nk,m) + PukUnk,av = Unau

Mn
_ ’
Un,av = Z Unj,a'u
=1

.7 ! _
vnj,au + PnjVUpjan = 05

in the original time-scale. As all of the poles py for all n, k and p,; for all n, j
are asymptotically stable (from asymptotic stability of H,,(s) for all n and
m), all of the terms on the right hand side of Eqn. (2.46) for 6, ,, are
exponentially decaying for all n, i.e., we have

1 -
dei(i+ X(5))

3 Z Ppya,Re {ej(¢n—ﬁn+ﬁp) [éq,tw]}}

p=n.n+8 ¢

= (s +pno)m {é‘n,av + ;an(uq) [éq,av]}

(5 + pnO)

+Y;.(s)

= (S + pno) (247)

1
et T X))
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incorporating all exponentially decaying terms into €. Dividing both sides of
Eqn. (2.47) with (s + pno), we get

1 - ~
dt T+ X(3) [en,zw + Z; an(s)[gq,av]]
1
= X)) (248)
which can be rearranged to give
e B+ X KoVl = e )+ Vi) [
det(I+X(s)) | ™™ S " det(I+ X(s)) ™" m
1
= (ot + H.(s) []], 2.4
qoi X o+ Ha() 7] (249)
using Vi, (s) = d'et?—f:}(((_sj’ and Eqn. 2.39 for . Equ. (2.49) represents a system

of equations that can be written in matrix form as
Boy = (T+X(s)) 7 [0 + HLi(s) [71]], (2.50)

where H;(s) = [Hu(s), - .., Hy(s)]. f4 decays to zero because (I + X(s))™! is
asymptotically stable (owing to asymptotic stability of m), and zeros
in (I+ X(s))™* cancel unstable poles in 6* and H;(s). Hence, by a standard
averaging theorem such as Theorem 8.3 in Khalil [64], we see that if w,, a,,
¢p, Cip(s) and Cyy(s) for all p = 1,...,1 are such that mj—x(—;ﬁ is asymp-
totically stable, Cop(s) is asymptotically stable, wy is sufficiently large relative
to parameters of the state-space representation, solutions starting from small
initial conditions converge exponentially to a periodic solution in an O(1/w;)
neighborhood of zero. Hence, 8 goes to a periodic solution Hper = O(1/un).
We now proceed to put the system in the standard form for singular per-

turbation analysis through making the transformation 66 = (t) — fpe,(t) in
Eqns. {2.23), (2.24) and get:

den{ Hi(5)}[80, + Opern) = €
+num{ Hyn(s)} [sin(wnt + B = $n)lpepn + wn(t) + €7 (2.51)
yéspn - (1 + H obp,n (S)){yo'spv ]

]
yosp, - Hosp n Z Z 2qu 69 + 9}261‘ q)GOp . (2.52)

p=1g=1

By linearity of the system described by the Eqns. (2.51), (2.52), we have that
the reduced model in the new coordinates (replacing Hygp () with its unity
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static gain) is given by

den{ Hin(5)}[00n + Opern] = num{ Hin(s)} [sin(wnt + Br — ¢n)y;sp,n]
L
y::sp,n =1+ ijpm(s)) Z Z 2P,4(60; + Oper,)B0p (2.53)

p=1g=1
which has the state space representation
x = A(t)x; 40 =Cx, {2.54)

where A(t) and C are the same as in Eqn. (2.42). Hence @ converges expo-
nentially to the origin. This shows that the reduced model is exponentially
stable. From exponential stability of Heyepn($), we have exponential stability
of the boundary layer models

dy 0sp,n

ar AsspnYospn- (2.55)

Hence, by the Singular Perturbation Lemma A.3, we have that in the overall
unreduced system in Eqns. (2.51), (2.52), the solution converges to an O(1/M)
neighborhood of the origin. Therefore, 8(t) — fper(t) converges to a O(1/M)
neighborhood of the origin. Hence, 8 converges exponentially to a O(1/w;) +
0O(1/M) = O(A) neighborhood of the origin. Further, the output error §
decays to O(A2+ 1%}, a2):

i = Fo(s)[(8—0°)TP(0—0%)] = Fo(s)[(6 — 60)TP(8 — 6y)]
F,(s)[07PO + 61P8, — 267 P4,]

= O(A%+ i i ay0,) = O(A% +1 Elj a?). (2.56)

p=1g=1 p=1

Il

Q. E. D.

We have proved Theorem 2.8 for the case where a single frequency is used
for tracking of two parameters. Because of the coupling this introduces through
the M, (s) terms in each of the X,,(s), the process of multiparameter design
may become difficult. When it is possible to use more frequencies, the design
may be simpler. Hence, we provide here a corollary to Theorem 2.8 when a
forcing frequency is dedicated to tracking only one parameter instead of two:

Corollary 2.9 If forcing frequencies wy < wg < ... < wg, 2m —1 < ¢ <
[ are chosen for the scheme in Figure 2.1, and all the other conditions of
Theorem 2.8 hold, its result also holds with X,4(s) = PygapLy(s) for each p
where wy, # wy for any r # p, and X,,(8) is given by Eqn (2.27) otherwise.
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The result follows from the fact that the coupling terms M,(s) vanish when
a forcing frequency is used only for one tracking loop.

Now, we briefly discuss Assumption 2.4. From Eqns. (2.13), (2.14) it is
clear that the assumption precludes constant terms in w,(¢) only when the
nonlinearity is quadratic. For a general nonlinearity, the frequencies can be
designed incommensurate, and the analysis result arrived at by infinite time
averaging. Even without this assumption, exponential convergence of § to a
neighborhood of the origin can be attained if the constant terms in w,(¢) are
small, but the analysis is longer, since we would have to linearize equations
for 6, about those constant terms, and then perform averaging.

2.2 Multiparameter Design

The process of design for the multiparameter case can be divided into the fol-
lowing sequential steps: selection of frequencies wy, ws, . . ., w;, selection of per-
turbation amplitudes a1, ag, ..., a;, design of compensators Cyy(s) and Ciy(s)
for each p, to satisfy the conditions of Theorem 2.8.

The complexity of multiparameter design arises from the need for asymp-
totic stabilization of E(_IiT(s)_)’ which is intricately coupled. Methods of decen-
tralized control, such as those in [104], do not apply to our problem because
the coupling between different subsystems enters through the compensators
Cip(s) due to a single output being used for measurement. We propose here a
method of reducing the general problem to allow independent SISO design of
each of the compensators Ci,(s). The method involves domination of the off
diagonal terms in I+ X(s) by the diagonal terms, and may be termed diagonal
domination design.

Before we proceed, we remind the reader of the notion of a permanent of
a matrix. The permanent of a matrix A is defined as perA = 3", I[iL) @005,
where the sum runs over all n! permutations ¢ of {1,...,n}, and o(4) is the
it" element of the permutation . We note that the permanent of a matrix
is simply the sum of all the terms in its determinant, with all the produects
[1is, @00y entering with coefficient 1 instead of a power of —1.

Proposition 2.10 Let p; denote the unique solution in the interval (0,1] of

1 p e p

the polynomial equation per (E(p)) = 2, X(p) = p .1 : L If
. T - p
p p 1 IxI

_Llfx,,(ps()s) are asymptotically stable and Hﬁ%‘;“ He < pf Jor all p # q, where

Xpq(8) are defined in Eqn. (2.27), then m is asymptotically stable.

From the definition of the permanent of a matrix, per {£(p)) is a polynomial
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Table 2.1: Design difficulty in general design increases with dimension !

I 12} 3 4 5 6 7 8 9 10
pi 1110503239 0.2367 | 0.1855 | 0.1520 | 0.1284 | 0.1111 | 0.0978

with positive integer coefficients and thus a monotonically increasing function
of p when p > 0. Since per (2(0)) = 1 and per (£(1)) > 2, we have by
continuity, a unique solution to the equation per (£(p)) = 2 in the interval
(0,1]. The equation per (£(p)) = 2 expands as p? = 1 and 2p® +3p®> = 1 in
two and three dimensions, respectively, yielding p§ = 1, and pj = 0.5. Thus
the crux of Proposition 2.10 is that if the transfer functions ﬁ(ﬁgi&% are norm
bounded by a number p} that depends only upon the dimension of the problem
1, we have asymptotic stability of m. For convenience, we list values

of pf upto { = 10 in Table 2.1. It can be shown that pi* <V -1
1

Proof of Proposition 2.10: We first rewrite the determinant of (I + X(s))
as follows:

1 X1a(s) Xia(s) ... _Xu(s)
4+Xa1(s)  14+X11(s) 1+X11(a)
X1 (s) 1 X23(s L _Xals)
det(I+ X(s)) = det | () Hra(s) HXale)
Xnl)  Xel) Xl 1
4+Xu(s)  1+Xup(s)  1+Xu(s)
l
x [T{1+ Xpp(s)) {(2.57)
p=1
l
= det(Y(s)) [T (1 + Xpp(s)) (2.58)
p=1
14
= L+ W)+ Xp(s)), (2.59)

p=1

where Eqns. (2.57), (2.58), and (2.59) define Y(s) and W{s). Therefore, we

have

1 1
det(T+ X(5)) ~ (1+ W (s (14 Xpp(s))” (2.60)

Now, we note that as ﬁ% € H,, for each p, each of ﬁl;;i_ﬁ is asymp-
totically stable. Hence, if we can achieve |W||n,, < 1, we have asymptotic

stability of am. Using 1 + W(s) = det(Y{s)), we have:

1
W(s) =) sgno [] 0w (s), (2.61)

o i=1
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where the sum runs over {! — 1 permutations o of {1,...,1} excluding the
permutation {1,...,!} to account for the cancellation of unity in Eqn. (2.61),
sgno is positive or negative depending upon whether the number of pairwise
interchanges needed to arrive at the permutation ¢ from the permutation
{1,...,1} is even or odd, and o (%) is the i** element of the permutation o.

We are now in a position to bound the Hy, norm of W{(s) through repeated
application of the triangle inequality and the submultiplicative property of the
H,, norm:

]
Wl < 211 1:[1yi,a(i) )| aa < ZH 191,06 (8) || oo - (2.62)

o =1

Substituting ||1 5 lz. < pf for all p,q, in Eqn. (2.62), and using the fact

that pf is the unique solution of the equation per (£(p)) = 2 in the interval
(0,1], we have

[Wlla,. < per¥(o]) —1=1. (2.63)
From asymptotic stability of each of ﬁm’ and of m, we have asymp-
totic stability of (m(li—x(s)) from Eqn. (2.60). Q.E.D.

While Proposition 2.10 provides a sufficient condition for asymptotic stabil-
ity of m, it does not provide means to guarantee it. Hence the problem
has now to be transformed to permit systematic design of the compensators

Cip(s) to achieve || = ||, < pf for all p,q. To this end, we express the

Trx
off diagonal terms of X( ) as perturbations of the diagonal terms in the case
where different forcing frequencies wy < ws < ... < w; are chosen for each of
the parameter tracking loops. In this case, from Corollary 2.9, we have

Xpg(8) = PrqtpLip(s) (2.64)
because the coupling terms Mp(s) do not arise. Thus, we have

Xpq(5) _ _Pp_q Xp(s)
1+ X,5(s)  Pppl+ Xpp(s)

(2.65)

Taking the H,, norm of both sides of Eqn. (2.65), and using the submulti-
plicative property of the H,, norm, we get the following corollary to Proposi-
tion 2.10:

Theorem 2.11 Consider the system from Theorem 2.8 with separate forcing

frequencies wy < ws < ... < wy for each of the pammeter tracking loops. If
_x>_lf§pis()s) are asymptotz‘cally stable and |P,y| < ——r‘T—Ppp for each q # p,
1+XPP Hoo

then &m is asymptotically stable.
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X .
T || o for each p, which max-

imizes the allowable i%ﬁ]. Diagonal dominance in a positive definite matrix P

Hence, we can design Cjp(s) to minimize ||

simply means that the coordinate axes of the level surfaces (8 — 6*)TP(6 — 6*)
are close to the principal axes in orientation. The need for dominance of di-
agonal terms in the Hessian of the nonlinearity P thus has a simple geometric
interpretation: the inputs 8 should be close to being along the principal axes
of the level surfaces of the nonlinearity. Clearly, the difficulty of control design
increases with dimension as pj decreases roughly as 1/1. For high dimensions,
the problem may not have a solution. For the important case of optimiz-
ing a static map, where Fi,(s) = F,(s) = 1, Igy(s) = 1/s for each p, and
I's(s) = 1/s, we can choose separate forcing frequencies for each of the param-
eter tracking loops, Cyp(s) = 1/(s+ h),h > 0, for all p, Cy(s) = k, > 0, and
obtain X,,(s) = ’WL‘;PEE. We have stability of (I+X(s))™! via a passivity argu-
ment: X(s) can be written as the product of a diagonal matrix of integrators
and the positive definite matrix P of the nonlinearity, which is SPR.

To sum up the process of design, we state a multiparameter design algo-
rithm:

Algorithm 2.2.1 (Multiparameter Design Algorithm)

1. Select wy,ws, . ..,w; sufficiently large, not equal to frequencies in noise,
and with £jw, not equal to imaginary azxis zeros of Fiy(s).

2. Set perturbation emplitudes a, so as to obtain small steady state output
error .

3. Design each Cyp(s) asymptotically stable, with zeros that include the zeros
of T'f(3) that are not asymptotically stable, and such that %Eé—%l is proper.
In the case where dynamics in F,(s) are slow and strictly proper, use as
many fast fast poles in Cyp(s) as the relative degree of F,(s), and as many
zeros as needed to have zero relative degree of the slow part Heppp(s) to

satisfy Assumption 2.6.

4. For each p = 1,...,1, design Cip(s) such that it does not include poles
of Top(s) that are not asymptotically stable as its zeros, Ciy(s)Tep(s) is

proper, and m is asymptotically stable. Asymptotic stability of

TGy ™ey be achieved by designing Cy(s) to minimize H%f{;“ Heo
for each p, using the result in Theorem 2.11.

We note that the theory permits the forcing frequencies to be very close,
and we use close frequencies in our simulation studies in Section 2.3. Further,
the condition wy,+wy # wy foreach p,q,r = 1,...,l used in [96] is not necessary
for the output to converge to a neighborhood of the extremum, but helpful
in simplifying the analysis; it ensures that the averaged Equ. (2.44) has its
equilibrium at the origin, in the case of a quadratic nonlinearity.
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We can either use a separate frequency for each parameter tracking loop
or use one frequency for every two parameter tracking loops, or something in
between. In general, using a single frequency to force two parameter tracking
loops leads to greater coupling, and consequent difficulty of design.

Design Variations. The design procedure for multiparameter extremum
seeking offers theoretical guarantees of local stability and performance. The
results rest upon an averaging analysis that averages out oscillatory terms
in Yin(s)[wn(t)] = O( £:=1 Eé:l apag) and in Yin(s) [Zp 2y Tupglbs] — ’Cnpq[oq]]
(see Equ. (2.38)). The magnitude of these oscillations can be large, and can
mean a highly oscillatory output about the extremum, or even loss of stability.
Here we propose design variations within the framework of the analysis above
that enhance the practical utility of the design algorithm by attenuation of
the oscillatory terms by a factor e as they pass through the plant (F;(s) and

F,(s)) and filters (%}f‘((s—s)) and Ci, () g, (8)):

1. Attenuation through plant dynamics, ¥;(s) and F,(s) (High frequency
design):

(a) Select wy such that Fi,(jQ) < eforeachn =1,...,1, and |F,(j)] <
¢ for all Q > w;.

(b) Choose each of the other frequencies wy, large enough to attain |wy, —
wp —wq| > wy for all n,p,qg =1,...,1. This will yield |Fj,(j(wn —
wp — we))l, [Fo(d(wn — wp — wy))| < e

(c) Perform steps 2, 3, 4 in Algorithm 2.2.1.

If both F;(s) and F,(s) are relative degree zero, we will not be able to
achieve arbitrary attenuation e.

2. Attenuation through tracking compensator Cy,(s):

(a) Perform steps 1, 2, 3 of Algorithm 2.2.1 and write Cjy,(s) =
Cin(8)FLPn(s)-

(b) Design an asymptotically stable, minimum phase low-pass filter
Frpn(s) such that |Frp,(7Q)| < € for all Q@ > |w, — wp — wy| for
alln,pg=1,...,L

(c) Design each Cf,(s) as the Ci,(s) in step 4 of Algorithm 2.2.1 with
Ton(s) replaced by Frpn(s)Te.(s) with the additional constraint
that poles and zeros in it do not cancel any poles or zeros of Fipy,(s).

3. Attenuation through output compensator Cp,(s):

(a) Perform steps 1, and 2 of Algorithm 2.2.1 and write Cou(s) =
Con(8)Fpn(s)-
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Figure 2.2: Step changes in plant: Basic design

(b} Design an asymptotically stable, minimum phase band-pass filter
Fppn(s) such that [Fpp,(jQ)| <€ ¢ for all Q # w,, where Q €
{wp,wp L wg,wy £wp Lwe}, nupg=1,...,L

(c) Design each C?,(s) as the C,,(s) in step 3 of Algorithm 2.2.1 with
I'(s) replaced by %, with the additional constraint that poles
and zeros in it do not cancel any poles or zeros of Fgpy(s).

(d) Perform step 4 of Algorithm 2.2.1 as before.

It is clear that each one of these three design variations, whose objective is
to attenuate the effect of the probing signals, will make stability more difficult
to achieve.

2.3 Multiparameter Simulation Study

In this section, we simulate multiparameter extremum seeking designs gener-
ated using the methods proposed in Section 2.2. We first consider step changes
in plant parameters and then more general changes. The examples we pro-
vide can be used as benchmarks for further design improvements. Simulation
results are plotted with 6;(t), f*(t) in dotted lines and 6,, y in solid lines
(p = 1,...,4). In all the examples considered below, ¢, = 0,p = 1,...,4 is
used.
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Figure 2.3: Step changes in plant: High frequency design

2.3.1 Step Variations in 6*(¢t) and f*(¢)

The plant we consider has Fi,(s) = 1 for p = 1,...,4, F,(s) = ﬁ, f(8) =
@)+ 0 —6@)"P(# — 6°(t)), Py =1if p =g, and P, = 0.5 otherwise.
The plant variations are 8 (t) = u(t — 1), 05(¢) = —u(t — 2), 65(t) = —u(t —3),
05(t) = u(t — 4), and f*(¢) = 0.5u(t — 5). We list the four designs applied to
the plant:

1. Basic design (Figure 2.2): w; = ws = 5.48rad/sec, ws = wy =
6.32rad/sec, a, = 0.05, f,‘;”((;’)) = =2, and Cjp(s)Tgy(s) = 101+0013

for p = 1,...,4. We found that, with this design, we could not
achieve tracking with the initial conditions above, hence we show sim-
ulation results with plant variations an order of magnitude smaller,
ie, 6f(t) = 0.1u(t — 1), 65(t) = —0.1u(t — 2),05(¢) = —0.1u(t — 3),
05 (t) = 0.1u(t — 4), and f*(t) = 0.05u(t — 5) in Figure 2.2.

2. High frequency design (Figure 2.3): wy = wy = Hrad/sec, wy = wy =
14.14rad/sec, a, = 0.1, %—‘}%) = 32z, Cip(8)Tap(s) = k22 for p =
‘,4 and k1 :k2:30, k3=k4=50

3. Low pass filter design (Figure 2.4): w; = wy = 5.48rad/sec, w3 = wy =
6.32rad/sec, a, = 0.05, S = 5. (s)Tyy(s) = 200420 o (s),

" Ty(s) — 545
FLpp():;/%j—j,Z=25 andc=w3—w; =084 forp=1,...,4.
4. Band pass filter design (Figure 2.5): w; = wy = 5.48rad/sec, w3 =
wy = 6.32rad/sec, a, = 0.05, %’% = ;S‘L;FBP;;(S), Fgpp(s) =

.0025 ;;;;421112, and Cyp(s)gp(s) = 251208 for p=1,...,4.
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Figure 2.4: Step changes in plant: Low pass filter design

Comparing the four figures, we find that the three design variations shown
in Figures 2.3, 2.4 and 2.5 perform equally well, and significantly better than
the basic design in Figure 2.2 in tracking as well as output minimization, with
initial conditions an order of magnitude larger.

2.3.2 General Variations in 6*(t) and f*(t)

The plant in this case has Fi,(s) = 1 for p = 1,...,4, Fo(s) = %5, f(f) =
@)+ 0 -6@)"P(# — 6°(t)), Poy = 1 if p = g, and P,; = 0.5 otherwise.
The plant variations are

6;(t) = 0.1u(t — 20),
F¥(t) = 0.01u(t — 30).
We list the four designs applied to the plant below.

1. Basic design (Figure 2.6): wy = wqy = Srad/sec, wy = wy = 6.32rad/sec,
a, = 05, Lopls) = ;_‘:—5, C’“(s)l“m(s) = 109ﬁ8—+§ Ciz(s)rgg(s) =

) T(s) . s—0.01 *
10240545, Oy (s)Tga(s) = 105HRIEL, and Cig(s)Tag(s) = 100005420
for p = 1,...,4. As in the case of step variations in plant parame-

ters, we found that, with this design, we could not achieve tracking
with the initial conditions above, hence we show simulation results with
plant variations 10 times smaller, ie., 65(t) = 0.001e%%Y, 85(¢) = 0.02¢,
05(t) = 0.01sint, 65(¢) = 0.01u(t — 20), f*(¢) = 0.001u{t — 30).
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Figure 2.5: Step changes in plant: Band pass filter design

2. High frequency design (Figure 2.7): w; = ws = brad/sec, wy = wy =
14.14rad/sec, a, = .05, CF‘—‘;”(%—) = 35, and Cy(8)lgy(s) the same as in
design 1, forp=1,...,4.

3. Low pass filter design (Figure 2.8): w; = wy = bHrad/sec, wz =
wyg = 6.32rad/sec, a, = 0.05, ?‘}”8 = 35 Cuw(8)le(s) =
Cip(8)Tap(8) Frpp(s),

0.01s+5 2 +6s+5

Ci(s)To1(s) = 10m7 1a(s)To2(s) = 10

52 ’

2 +10.1 1 .01 10
SO and 01{4(8)1194(5):1500_51’__

6,53(8)1—‘93(8) =15 o2 1 s

,FLPP(S)Z%%, z=250,and e=ws—w; =132, forp=1,...,4.

4. Band pass filter design (Figure 2.9): w; = ws = 5rad/sec, wy =

wy = 6.32rad/sec, a, = 0.05, %}%? = 35FBrp(s), Frpp(s) =
'0025“)12)(%%%%5’ Cip(s)Tap(s) the same as Cy(s)Tgp(s) in design 1, for
p=1,...,4

A comparison of performance of the four designs again shows a significant per-
formance improvement by the three design variations shown in Figures 2.7, 2.8,
and 2.9 over the basic design in Figure 2.6.
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Figure 2.6: General plant variation: Basic design

Notes and References

Rotea [96] and Walsh [113] provided the first studies of multiparameter ex-
tremum seeking schemes. Their results were for plants with constant param-
eters. A systematic design procedure is absent in both [67, 70] and [96, 113].
This chapter is based upon [5] which supplied stability analysis for general
multiparameter extremum seeking and systematic design guidelines for stabil-
ity/performance. The need for Assumption 2.4 was recognized in [96].
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Figure 2.8: General plant variation: Low pass filter design
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Chapter 3

Slope Seeking

Slope seeking is a recent idea for non-model based adaptive control introduced
in [6]: 4t tnvolves driving the output of a plant to a value corresponding to
a commanded slope of its reference-to-output map. Extremum seeking is a
special case of slope seeking where the commanded slope is zero. Motivations
for the development of slope seeking are: problems where operation at the
extremum of the plant reference-to-output map is susceptible to destabilization
under finite disturbances, such as maximum pressure rise in deep hysteresis
aeroengine compressors [116], antiskid braking for aircraft [110], minimum
power demand formation flight [20], and problems in nuclear fusion where
there is a need to stay away from the extremum (such as a maximal energ
release condition) [55]. In all these problems, there is significant uncertainty
in the models, and the set-points are unknown.

The results obtained herein constitute a generalization of perturbation-
based extremum seeking, which seeks a point of zero slope, to the problem of
seeking a general slope. With a small modification, the results on convergence
in extremum seeking and the design guidelines derived in Chapter 1 and 2
are extended to permit system operation at a point of arbitrary slope on the
reference-to-output map. The modification involves setting a reference slope
in the algorithm, which, in extremum seeking, is implicitly set to zero. This
chapter supplies the following results for enabling attainment of slope seeking
feedback using sinusoidal perturbation:

1. Provides the problem formulation for the case of the plant being a sim-
ple static map (Section 3.1), the setting for classical extremum seeking
schemes. It next supplies the formulation of single parameter slope seek-
ing for the general case where the map is embedded within dynamics
with time-varying parameters (Section 3.2).

2. Presents derivation of a stability test for single parameter slope seeking
{Section 3.2) and systematic design guidelines using standard linear SISO
control design methods to satisfy the stability test (Section 3.3).

47
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Figure 3.1: Basic slope seeking scheme

3. Supplies the extension of the above results to the multivariable case of
gradient seeking (Section 3.4).

For ease of understanding of the method, we present the result with slope
seeking on a static map in Section 3.1 accompanied by an illustrative simula-
tion. Section 3.2 presents the analysis, and Section 3.3 the design algorithm
for generalized single parameter slope seeking; Section 3.4 supplies results on
multiparameter gradient seeking.

3.1 Slope Seeking on a Static Map

Figure 3.1 shows a basic slope seeking loop for a static map. We posit f(8) of

the form:
/74

50) = 1"+ Jieg(0 - 0%) + - (0 - 6)? (31)

where f,; is the commanded slope we want to operate at, and f” > 0. Any
C? function f(#) can be approximated locally by Eqn. (3.1). The assumption
7 > 0 is made without loss of generality. If f” < 0, we just replace k (k > 0)
in Figure 3.1 with —k. The purpose of the algorithm is to make § —8* as small
as possible, so that the output f(6) is driven to its optimum f*.

The perturbation signal asinwt into the plant helps to give a measure
of gradient information of the map f(#). This is obtained by removing f*
from the output using the washout filter Py (h > 0), and then demodulating
the signal with sinwt. In a sense, this can also be thought of as the online
extraction of a Fourier coefficient. The input r(fy,;) serves as a slope set point
which is explicitly calculated below.

Output Optimization. The following bare-bones result sums up the prop-
erties of the rudimentary slope seeking loop in Figure 3.1:
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Theorem 3.1 (Slope Seeking) For the system in Figure 3.1, the output er-
ror y— f* achieves local exponential convergence to an O(a+1/w) neighborhood

of the origin provided the perturbation frequency w is sufficiently large, H-;l,(s)
is asymptotically stable, where
kaf"
L{s) = —— 2
(5) = 5L, (32)
and provided
’ a’fvl'ef jw
=— . 3.3
T(fref) 9 Re jw +h ( )

We omit the proof as this result is subsumed in a more general result we
prove in the following section. The result in Theorem 3.1 has the following
salient features:

1. Like the analogous result on extremum seeking in Chapter 1, it provides
a linear stability test permitting design using linear SISO control tools.

2. Provided we know the sign of the second derivative f” in the neighbor-
hood, we can create a feedback that drives the system to operate at
a prespecified slope f;.; of the input-output map; this is done exactly

through setting the reference r(f;.;) = —i;e"'—Re {w% .

3. Unlike the extremum seeking result, the convergence is only first order,
ie., O(a+ 1/w); this is because we are seeking a point of non-zero slope.
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Simulation Example. We present an example to illustrate the method pro-
posed above. Simulation results are plotted with f*(¢),6*(t) in dotted lines
and y, 8 in solid lines. We use the static map f(#) = f*+0.5(0 —6*)+(6—0%),
where f*(t) = 5.0, and 6* = 0.5.

To satisly the conditions in Theorem 3.1, we set w = 5 rad/sec, a = 0.05,

washout filter -2 with A = 5.0, integrator gain £ = 10, and slope setting

s+h
T(fref) = a—fﬂRe {]5+5 = —0.00625 for operating at the slope f;.; = 0.5.

Substituting all parameters in Eqn. (3.2) we get

1
= — 4
Ls) = 1 (3.4
and attain stable slope seeking (Figure 3.2) through stability of 5 +L(S) An

extremum seeking design for the same plant with r(f},;) = 0, and other design
parameters the same as for slope seeking, is shown in Figure 3.3 for comparison.
Extremum seeking tracks a slope set point of zero, the minimum at 8 = 0.25
of the map f(f) (f(0.25) = 4.9375 < f(0.5) = b).

3.2 General Single Parameter Slope Seeking

The generalized scheme differs from the rudimentary scheme of Figure 3.1 in
the following ways: the map has time varying parameters and is embedded
amidst linear dynamics; the slope seeking loop incorporates parameter dy-
namics for tracking parameter variations. Figure 3.4 shows the time-varying
nonlinear map embedded amidst linear dynamics along with the slope seeking
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Figure 3.4: Generalized slope seeking

loop. We posit f(6) with time-varying parameters of the form:

H

FO) = F1(8) + Fre(0 = 07(1) + 5 (0 - 6°(1))° (3-5)

where f” > 0, and f],; is the commanded slope. Any C? function f(6) can be
approximated locally by Eqn. (3.5). The assumption f” > 0 is made without
loss of generality. If f” < 0, we just replace C;(s) in Figure 3.4 with —C;(s).
The purpose of the algorithm is to make 6 —8* as small as possible, so that the
output F,(s)[f(#)] is driven to its optimum F,{s)[f*(¢})]. As in Chapters 1, 2,
n denotes measurement noise. Before proceeding to the analysis, we make the
following assumptions:

Assumption 3.2 Fi(s) ond F,(s) are asymptotically stable and proper.

Assumption 3.3 L{f*(t)} = As(s) and L{0* ()} = AeTp(s) are strictly
proper rational functions and poles of Tg(s) that are not asymptotically stable
are not zeros of Fy(s).

This assumption forbids delta function variations in the map parameters and
also the situation where tracking of the extremum is not possible.

Assumption 3.4 ?;Ezg and C;(8)Te(s) are proper.

This assumption ensures that the filters %%3 and C;(s)Ty(s) in Figure 3.4 can
be implemented. Since C;(s) and C,(s) are at our disposal to design, we can
always satisfy this assumption.

Although LTV stability tests can be given for general slope seeking loops
analogous to the results in Propositions 1.5, 2.5 simply by introducing a slope
setting, we do not provide them here in the interest of compactness. We
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provide only the results through which systematic design is possible. To this
end, we introduce the following notation:

Culs)
Ts(s)

where H,,,(s) denotes the strictly proper part of H,(s) and Hy,(s) its biproper
part, k is chosen to set

Hy(s) = kZZ2Fy(s) 2 Hogp(5) Hotp(s) S Houp(s)(1 + HL(s)) (3.6)

1iH(l) Hosp(s) =1,. (3.7
The two assumptions below are analogous to Assumptions 1.6, 1.7:

Assumption 3.5 Let the smallest in absolute value among the real parts of
all of the poles of H,s,(s) be denoted by a. Let the largest among the moduli
of all of the poles of Fi(s) and Huy(s) be denoted by b. The ratio M = a/b is
sufficiently large.

Assumption 3.6 H;(s) is strictly proper.

Output Optimization. We first provide background for the result on slope
seeking below. The following equations describe the single parameter slope
seeking scheme in Fig. 3.4:

R R N R )

0 = Fys) [asin(wt) — Ci(s)Ta(s)[€ + (frep)]] (3.9)
= sin{wt — gﬂ n
£ = sin(wt ¢)krf(3) [y +n]. (3.10)

For the purpose of analysis, we define the tracking error 6 and output error 7

6 = 6°(t)—0+6 (3.11)
fo = Fi(s)[asin(wi)] (3.12)
§ = y—F(s)lf"(t)] (3.13)

In terms of these definitions, we can restate the goal of slope seeking as driving
output error § to a small value by tracking #*(¢) with 8. With the present
method, we cannot drive § to zero because of the sinusoidal perturbation 8.
We are now ready for our single parameter result:

Theorem 3.7 (Slope Seeking) For the system in Figure 3.4, under As-
sumptions 3.2-3.6, the output error § achieves local exponential convergence
to an O(a + &) neighborhood of the origin, where § = 1/w + 1/M, provided
n =0 and:



3.2 GENERAL SINGLE PARAMETER SLOPE SEEKING 53
1. Perturbation frequency w is sufficiently large, and +jw is not a zero of
Fi(s).
2. Zeros of T';(s) that are not asymptotically stable are also zeros of C,(s).
3. Poles of Tg(s) that are not asymptotically stable are not zeros of Ci(s).

4. Co(s) and 7y +L(s) are asymptotically stable, where

L(s) = f”Re{ewF(yw)}H() (3.14)

Hy(s) = i(sm() Fi(s). (3.15)
5. r(fle) = —“EeL Re{e 9 H,(jw) Fi(jw)}-

Proof: Using n = 0 and substituting Eqns. (3.9} and (3.12) in Eqn. (3.11)
yields

0= 0+ H()E + (i) (316)
Further, substitution for ¢ from Eqn. (3.10) and for y from Eqn. (3.8) yields

f H

§ = 6"+ Hy(s) [Sin(wt — $)H,(s) [ F* 4 Fie(0—67) + (0 - 9*)2} + 1 ,_ef)}

) (3.17)
Using # — 6* = 8y — 0 from Eqn. (3.11), we get

0 = 0* + Hy(s) [sin(wt — @) Ho(s) [f* + fles(Bo — ) + i (6o~ b) } r( mﬂ}

= 6"+ Hy(s) [sin(wt - q&)Ho(s)[f* + freffo — frefg + f”

) @19

We drop the higher order term! 62 and simplify the expression in Eqn. (3.18)
using Lemmas A.1, A.2, Assns. 3.2, 3.3, and 3.4 and asymptotic stability of

g"gzg and Cy(s):

sin(wt — &) Hy(s)[f*
= sin(wt — ¢)(e7%)
sin(wt — ¢) H,(s)[03

(6 - 2008 + 52)}

1] = Ay sin(wt — §)L™ (Ho(s)T5(5))

€ (3.19)

= C1a® sin(wt + p11) + Cpa® sin(3wt + pg) + €{3.20)

. f e - :

sin(wt — @) Ho(s)[ fres00] = =2 (Re{e ¥ H,(jw) Fi(jw)}

—Re{ej““t*@Ha(jwmww)}) +e, (3.21)

!As in the proof of Proposition 1.5, this is justified by Lyapunov’s first method, as we

have already written the system in terms of error variable ¢ thus transforming the problem

to stability of the origin. As in the proof of Theorem 1.8, this is responsible for the result
in the theorem being local.
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where C, Ca, j1, jo are constants (these can be determined from the frequency
response of H,(s)), and e ' denotes exponentially decaying terms. Hence,
after substituting Equs. (3.19), (3.20), (3.21) in Eqn. (3.18) we can write the
linearization of Equ. (3.18) as

6 = 60"+ Hys) [sm(wt — @) H,(s) [ mf(? f”HUH} +w(t) + e_t] (3.22)

w(t) = azfz_ [Ch sin(wt + ) + Cosin(3wt + )]
]
+“—2’€£Re{eﬁ‘<2w‘-¢>ﬂo(jw)H(jw)}, (3.23)

where we have used

r(Fig) = 2 Refe 8, (j0) ).

Applying the reduction of H,(s) from Assumption 3.5 and Lemmas A.1, A.2
in succession to the terms containing 26,6 and f!, fH in Eqn. (3.22), we ge’c2

Hy(s) [sin(wt — ¢) Ho(s)[— 000 — f/,0]
= Hy(s) [sin(wt — ¢)(1+ Hyg(s)[—f"000+ fre0]]  (3.24)

= T[] - L()[0] — S[0] + Hi(s)[sin(wt — p)vo(t)], (3.25)

where
L)l = o) [Re e mGw)A1)] (3.26)
7l = “LH ) [Re {0 RG] (327)

SWB] = frepHi(s)[sin(wt — §)0)] (3.28)
w(t) = Hep(s) [~/ Im{aF(w)e™ Y+ fio,8] . (3.20)
Finally, substtituting Eqn. (3.25) in Eqn. (3.22), and moving the terms linear
in @ to the left hand side, we get

(1+ L(s) = T + 8)[0] — Hi(s)[sin(wt — ¢)vo(t)]
= 0" + Hi(s) [w(t) + 7] (3.30)

\_/
!

ZNote that Eqn. (3.25) contains an additional term of the form H;(s)[sin(wt ~
@) H,(s)[e7*8]] which comes from e~ in 6y(t) = alm{F(jw)e’™*} + ¢t We drop this
term from subsequent analysis because it does not affect closed loop stability or asymptotic
performance. It can be accounted for in three ways. One is to perform averaging over an
infinite time interval in which all exponentially decaying terms disappear. The second way
is to treat e *@ as a vanishing perturbation via Corollary 5.4 in Khalil [64], observing that
et is integrable. The third way is to express et in state space format and let ¢ 4 be
dominated by other terms in a local Lyapunov analysis.
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We now divide both sides of Eqn. (3.30) with 1 + L(s) and rewrite it as

0 — Yi(s) [af"/2Re{e/ =98} + af],; sin(wt — $)f + sin(wt — ¢)vo(t)]
1 % -1
= m[e ]+ Yils) [w(t) + 7], (3.31)

where Y;(s) = 111’52) = nﬁ‘;ﬂ“‘{’{f&g} is asymptotically stable because the poles

of H;(s) are cancelled by zeros of I +£(S), and 7 +}J(S) is asymptotically stable.
By noting also that zeros in I +i(s) cancel poles in 6*(s) = AgT's(s), and using
asymptotic stability of ——, we get

1+L(s

6 — Yi(s) [af"/ZRe{é(%t 90} + afl,, sin(wt — ¢)0 + sin(wt — (b)vg(t)]

'+ Yi(s) [w(t)] (3.32)
Now, Y;(s) is strictly proper, and can therefore be written as Y;(s) = S+p0 Y/(s),
where Y/(s) is proper. In terms of their partial fraction expansions, we can
write Y{(s) = A + X7 1;;; and Hyp(s) = 20, —ﬁ;—j. Multiplying both
sides of Equ. (3.32) with s + py and using the partial fraction expansions, we
get

é’+poé Ap(uo(t) + sin(wt — @)uo(t) — w(t))

- Z up(t) + v (t) — wi(t)) =€ * (3.33)
uo(t) =a f”/zRe{eN?wt—@é} + af}es sin(wt — ¢)0

uat) = 2 ug(t)], ve() =

A .
o [sin(wt — @)vo(t)]

s+ P
A
wilt) = 2 {u(0)]
Zvu og(t) = 2 [ Im{aR e + £ 8] (334)
3

We can write the system of linear time varying differential equations above in
the state-space form (as was done in Chapter 1):

x = A({)x+Apx.+Bu(); 0= (3.35)
X, = Adx.. (3.36)

Eqgn. (3.36) is a representation for the e=*. We get Equs. (3.35), (3.36) into
the standard form for averaging by using the transformation 7 = wt, and then
averaging the right hand side of the equations w.r.t. time from 0 to T = 27 /w,
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ie., %fOT(-)dT treating states x, X, as constant to get:

dXay 1 j

? = ; (Aavxav + A12xetw) s Oav = Traw (3'37)
d Cay 1

‘%"‘ = aAexeam (338)

which is a state-space representation of the system in the 7 = wi time-scale,
and Agy = 1 JT(A(T))dr. This gives

n

écw + poéav - Z(uk,av + Ukav — wk,av) =¢t (339)
k=1
Uk ap + Pklikay = 0, Upav + PrVkov = 0, Whay + DeWrow = 0
Uo,av = Zvlj,avv 'blj,tw +pj'U1j,av = ijql-efaav- (340)
=1

in the original time-scale. As all of the poles p; for all £ and p3 for all j are
asymptotically stable (from asymptotic stability of H,(s) and 13 L(s)) all of the

terms on the right hand side of Eqn. (3.39) for 0,y are exponentially decaying,
i.e., we have

Bav + poblay = € *, (3.41)

which decays to zero because pp, a pole of 1—;%@ is asymptotically stable.
Hence, by a standard averaging theorem such as Theorem 8.3 in Khalil [64],
we see that if w, a, ¢, Ci(s) and C,(s) are such that 5 +L( ; is asymptotically
stable, and w is sufficiently large relative to other parameters of the state-
space representation, solutions starting from small initial conditions converge
exponentially to a periodic solution in an O(l /w) neighborhood of zero. Hence,
4(t) goes to a periodic solution By, (1) = O (1/w). We now proceed to put the
system in the standard form for singular perturbation analysis through making
the transformation 66 = (t) — Oper(t) in the unreduced linearized system in
Eqn. (3.22) and get:

60+ Bper(t) = 0"+ Hy(s) [sin(wt — §)[ghep] + wit) + 7] (3.42)
y;sp = (1+Hg, (3))[.%3?]
Yoo = Hospl) [("60 — Fiog) (60 + Orer)] (3.43)
By linearity of the system described by the Eqns. (3.42), (3.43), we have that

the reduced order model in the new coordinates (replacing Hos,(s) with its
unity static gain) is given by

88 = Hi(s) [sin(wt — §)[yhuy)]
y:Jsp = _(1 + obp( )) [(f"ao + .fv’-ef)éé] ’ (344)
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which has the state space representation
x = Alt)x; 60 =z, (3.45)

where A(t) is the same as in Eqn.( 3.35). Hence 66 converges exponentially to
the origin. This shows that the reduced order model is exponentially stable.
From exponential stability of Hoe,(s), we have exponential stability of the
boundary layer model

ospY s (346)

where (Aqgsp, Bosp, Cosp) is @ state space representation of H,e,(s), with
CopAs;Bopy = 1 from Eqn. (3.6). Hence, by the Singular Pertur-
bation Lemma A.3, we have that in the overall unreduced system in
Eqns. (3.42), (3.43), the solution converges to an O(1/M) neighborhood of
the origin. Hence, 60(t) converges to a O(1/M) neighborhood of the origin.
Therefore, § converges exponentially to a O(1/w)+ O(1/M) = O(8) neighbor-
hood of the origin. Further, the output error 7 decays to O (a + 6):

7 = Rl |fag6=0)+ 00

— Rs) [f;ﬂé—%ﬂ%(é—%)?} —O(a+d),  (347)

dropping second order terms, which completes the proof. Q.E.D.

The output error § converges to an O{a+ 1/w) neighborhood of the origin.
Thus, the deviation of the output from the desired output will be larger than
that achievable in extremum seeking, where we track a point on the map with
zero first derivative. We next provide rigorous design guidelines that satisfy
the conditions of Theorem 3.7. We now note that for r(f/.;) = 0, the slope
seeking scheme reduces to the extremum seeking scheme in Chapter 1.

3.3 Compensator Design

Ini the design guidelines that follow, we set ¢ = 0 which can be used separately
for fine-tuning.

Algorithm 3.3.1 (Single Parameter Slope Seeking)

1. Select the perturbation frequency w sufficiently large. Also, w should not
equal any frequency in noise.

2. Set perturbation amplitude a so as to obtain small steady state output
error g.
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Figure 3.5: Multiparameter gradient seeking with p=1,2,...,L.

3. Design C,(s) asymptotically stable, with zeros of T'g(s) that are not

asymptotically stable as its zeros, and such that ?}’8 is proper. In the
case where dynamics in F,(s) are slow and strictly proper, use as many
fust fast poles in C,(s) as the relative degree of Fy(s), and as many zeros
as needed to have zero relative degree of the slow part Hp,(s) to satisfy

Assumption 3.5.

4. Design Ci(s) by any linear SISO design technique such that it does not
include poles of Te(s) thal are notl asymptotically stable as ils zeros,
Ci(s)Te(s) is proper, and Ti@ is asymptotically stable.

5. Set 1(flef) = — " Re{e 9 H, (jw) Fi(jw)}.

Steps 1,..., 4 are discussed fully in Chapter 1. The setting of r(f;,;) requires
knowledge of the frequency response of Fi(s) and F,(s) at w. We note here
that seeking large slopes is difficult because § will be correspondingly large
from Equn. (3.47).

Convergence of the scheme requires asymptotic stability of m, and this
requires knowledge of the second derivative f” of the map at 8%, or robustness
to a range of values of f”. This is dealt with in Chapter 1.

3.4 Multiparameter Gradient Seeking

The results on multiparameter extremum seeking presented in Chapter 2 can
be extended to gradient seeking through setting reference inputs in each of
the parameter tracking loops. Figure 3.5 shows the multiparameter gradient
seeking scheme with reference inputs r, (r, = 0 in each loop corresponds to
the multiparameter extremum seeking scheme in Chapter 2). Analogous to
the single parameter case in Section 3.2, we let f(#) be a function of the form:

F(0) = f(8) + IT(0 — (1)) + (6 — 6"(£))"P (6 — 0" (1)), (3.48)
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where Py = PT, 0 = [6;...0]7, 60*(t) = [0;(2)...6;()]F, L{0*(1)} = Ty(s)
= [MDai(s),..., Ala(s)T, L{f*(O)} = MTy(s), and I = [, Jo,..., Ji] s
the commanded gradient. Any twice differentiable vector function f(#) can
be approximated by Eqn. (3.48). As in multiparameter extremum seeking,
the broad principle of using m frequencies for identification/tracking of 2m
parameters applies; but for simplicity of presentation, we only present the case
where a separate forcing frequency is used in each parameter tracking loop,
i.e., we use forcing frequencies w; < wz < ... < w;. We make assuraptions
identical to those made to prove Theorem 2.8:

Assumption 3.8 F;(s) = [F;1(s)... Fy(s)]T and Fy(s) are asymptotically sta-
ble and proper.

Assumption 3.9 I'y(s) and I'y(s) are strictly proper.
Assumption 3.10 Cj,(s)Tgp(s) and %”k—%) are proper for allp=1,2,...,1

Assumption 3.11 w, +wy # w, for any p,q,r=1,2,...,1

As for multiparameter extremum seeking in Chapter 2, we introduce the fol-
lowing notation for the next assumption:

Hup(5) = by T2 E(5) 2 Hon5) g ()
£ Houpp(s)(1+ H3, (5)) (3.49)

lim H, s)=1
50 USIJ,)?( 3

where Hogp,»(s) denotes the strictly proper part of Hyp(s) and Hyppp(s) its
biproper part, kp,p = 1,...,[ is chosen to normalize the static gain of H,gp ()
to unity.

Assumption 3.12 Let the smallest in absolute value among the real parts of
all of the poles of Hospp(s) for all p be denoted by a. Let the largest among
the moduli of all of the poles of Fip(s) and Heuy,p(8) for all p, be denoted by b.
The ratioc M = a/b is sufficiently large.

Theorem 3.13 (Multiparameter Gradient Seeking) For the system in
Figure 3.5, under Assumptions 3.8-8.12, the output y achieves local exponen-
tial convergence to an O(Zﬁ,zl a, + A) neighborhood of Fo(s)[f*(t)] provided
n=_0 and:

1. Perturbation frequencies wy < wa < ... < w; are rational, sufficiently
large, and *jw, is not a zero of Fp(s).

2. Zeros of T';(s) that are not asymptotically stable are also zeros of Cop(s),
forallp=1,...,1L
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3. Poles of Tgp(s) that are not asymptotically stable are not zeros of Ciy(s),
foranyp=1,...,1.

4. Cop(s) are asymptotically stable for allp = 1,...,1 and m 18
asymptotically stable, where X,,(s) denote the elements of X(s) and

Xpo(8) = PpgapLyp(s), ¢g=1,...,1 (3.50)
Lyls)= 3 Hp()Re{e Fylivy), (351)

where Hip(s) = Cip(8)Tep(8) Fip(s) and A =1/w + 1/M.
§. The reference is chosen as

apJ, s . .
Tp(Jp) = —LQ—ERe{e 3% H o (jwp) Fip(Gwp)}, p=1,...,1

The proof is a simple extension of the proof of Theorem 2.8. Additional terms
produced by the gradient term in Eqn. (3.48) are handled without any diffi-
culty by the method of averaging. The key point to note in this result is that
the greater the number of parameters, the poorer the convergence. Further-
more, the design guidelines in 2.2 apply to gradient seeking with the added
specification of the components of the gradient, v (J1),m2{Js),...,r(J;) by
Theorem 3.13.

Notes and References

In work on aircraft antiskid control, Tunay [110] used a slope set point in
an extremum seeking loop to ameliorate the problem of system instability at
the point of maximal friction. This chapter is based upon the results in [6]
which developed analysis based design of slope seeking. The results obtained
therein constitute a generalization of perturbation-based extremum seeking,
which seeks a point of zero slope, to the problem of seeking a general slope.
With a small modification, the results on convergence in extremum seeking
and the design guidelines derived therefrom [5] were extended to permit sys-
tem operation at a point of arbitrary slope on the reference-to-output map.
The modification involves setting a reference slope in the algorithm, which, in
extrernum seeking, is implicitly set to zero.
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Chapter 4

Discrete Time Extremum
Seeking

This chapter treats a sinusoidal perturbation based extremum seeking scheme
for discrete-time systems. The plant model and control algorithm have the
same structure as in Chapter 1. Nevertheless, it turns out that the stability
analysis of the discrete-time case is quite different from that of the continuous-
time case because the frequency in discrete time systems lies between 0 and
271 and does not yield the time-scaling used for averaging in the continuous
time case. By using two-time scale averaging theory [10] necessary in the
discrete time case, we derive a sufficient condition under which the plant output
exponentially converges to an O(c?) neighborhood of the extremum value,
where « is the magnitude of the modulation signal.

This chapter is organized as follows. Section 4.1 describes the discrete-time
extremum seeking algorithm. Section 4.2 organizes the equations of the closed-
loop system in a way convenient for stability analysis. Section 4.3 states and
proves stability, and derives ultimate bounds on error signals, and Section 4.4
provides a simulation example and discussions.

4.1 Discrete-Time Extremum Seeking Control

The implementation is depicted in Figure 4.1 and takes the same structure as
that of continuous time extremum seeking algorithm in Chapter 1. Both of
the linear blocks, F;(z) and F,(z), are required to be exponentially stable. The
high-pass filter ;L;}l is designed as 0 < A < 1, and the modulation frequency w
is selected such that w = am, 0 < |a] < 1, and a is rational. Without loss of
generality, the static nonlinear block f(f) is assumed to have a minimum at

6 = 0*, and to be of the form
f0) =+ (6 -6 (4.1)

61
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Figure 4.1: Extremum seeking control scheme for discrete-time systems

Cubic and higher order terms are omitted for notational convenience as they
are negligible in local stability analysis via averaging.

4.2 Closed-Loop System

In the subsequent discussion, the following notation and definitions are used.
A transfer function in front of a bracketed time function, such as G(2)[u(k)],
means a time-domain signal obtained as an output of G{z) driven by u(k).
¢ denotes exponentially decaying terms.

The extremum seeking system depicted in Figure 4.1 is governed by the
following equations:

y(k) = Fo(2)[f*+ (0k) — 7Y, (4.2)
o(k) = E(z>[acos<wk>—i[§<k>1], (43)
&) = Flu(®) (44)

For the convenience of analysis, the following terms are defined:

99(1@) = (z)[acos(wk)], (4.5)
= & —0(k) + Hg(k), (4.6)
yk) = y(k)— 7], (4.7)

where (k) is the tracking error and §(k) is the output error. Substitution of
Eqns. (4.3) and (4.5) in Eqn. 4.6 yields

0(k) = 0" + = F()[ER), (48)
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which can be transformed into a difference equation
O(k + 1) = 6(k) + vF(2)[E(K)]- (4.9)

Further, substitution for £ from Eqn. (4.4) and for y from Eqn. (4.2) yields

0 +1) = 8() = V() [Belh) =BG+ 000, @410
where
c(wk) £ cos(wk ~ ¢).
Using 6 — 0* = 6y — § by rearrangement of Eqn. (4.6), we obtain
s+ 1) = 8(k) = 1Fi(z) [Belwk) = B + (60~ 7]
= eF(2) [c(wk);—in(z) 0% — 290é]]

+eFy(2) [c(wk)j—;fl—lFo(z)[ f*+ 93]] , (4.11)
where

A
e=~0.

Applying the modulation Lemmas B.2, B.3, B.4 in succession to the term
containing 26,0 in Eqn. (4.11), we obtain

R [elwh) (z)[—zeoél]

—ﬁ Fy(ez)[0]}

= aeFi(2) {S(ka)lm{F (&)

vy —
ey + h

—c(2wk)Re{ Fy(e™) © £ ()] }}

—aeF;(2) {Re {eW’F (e’“’) F,(e2)[0 ]} + e’k] . (4.12)

z+ h
where
s(2wk) = sin(2wk - ¢)
c{2wk) 2 cos(2wk — o).

Finally, substituting Eqn. {4.12) in Eqn. (4.11) we obtain the whole closed-loop
system

Ok +1) — 6(k) = e(L(2)[0] + @ (k) + ®2(k)) + 6(k), (4.13)
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L(z) = ——%Fi(z) (M (2, &) + M (z,e7)),
O.(k) = aF(2) [s(Zwk)Im{M(z, &)[6]} — c(2wk)Re{ M(z, ej”)[é]}} ,
2,() = Fo)[elwo) 2 RG],

eF(2) {c(wk)i_—lFo(z)[f* + 03+ as“k} ,
ey —
zZ+ h

o
s~

>
p—_g

fl

M(z,e™) = F() =

Fy(ez).

The various terms in Eqn. (4.13) can be characterized in view of 6 as follows:
L(2)[f] is linear time-invariant; ®, (k) is linear time-varying; ®,(k) is nonlinear
time-varying; and 8(k) is time-varying, independent of 6, and found to satisfy
the following property:

Lemma 4.1 §(k) exponentially converges to an O(ea?) neighborhood of zero:
6()| < &7 4 Kyea?, (4.14)

where K1 18 o constant.

Proof. The term 02(k) in §(k) is calculated as

02(k) = ;a2 i(ej'“’)f(l + cos(2kw + 21111)) +e7F (4.15)

where ¥ = L(E-(e”)). Then, 6(k) is rearranged as
&(k) = b1(k) + 62(), (4.16)
where

5i(k) = eF(z)[cos(wk O F(z)[f b2 aQ]F(eJ“’)l ]]+a—k, (4.17)

baik) = se?|Fi(e)|’

2
x Fy(z) [cos(wk (,b) F o(2) [cos(Qk:w + 21,01)]} {4.18)
Since the high-pass filter f;—,ll has zero DC gain, 6,(k) in Eqn. (4.16) contains

only exponentially decaying terms. On the other hand, by using Lemma B.1,
d2(k) is calculated as

Sa(k) = %eazchi(z) [cos(wk — ¢) cos(2wk + wg)] (4.19)
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ieaQClF}(z) [cos(ka — ¢+ 1Pa) + cos(wk + ¢+ wg)] (4.20)

- iea%l( )} cos(3wk — ¢ + ¢3)
j )‘ cos(wk + ¢+ 104)) (4.21)
< e, (4.22)
where ¢; = |Fi(e’) i Z__;:;}ll o(e7%)), = 2¢1 + ’{( (eﬂw)) l(géz_}’ll)’

Yo = o+ (™), de = vo + ((F(e™) and s = da(|RE)] +
i(ej“’)D. QE.D.

From Lemma 4.1, it is clear that the bound on §(k) can be adjusted by the
magnitude of the modulation signal « independently of . By exploiting this
property of 8(k), we present a stability analysis for the system in Eqn. 4.13 with
two steps. At first, regarding §(k) as a perturbation, we analyze the system in
Eqn. (4.13) without §(k). Then, we consider the whole system including (k).

4.3 Stability Analysis

First, we consider the homogeneous part of the f-error system Eqn. (4.13)
O(k + 1) = B(k) = e(L(2)[6] + 1(k) + ®5(k)), (4.23)

which depends on time k periodically. The following theorem presents a suffi-
cient condition under which the f-error system Eqn. (4.23) is locally exponen-
tially stable at the origin:

Theorem 4.2 If H(l)Re{eWF}(ej“);]:;}LF (e"")} > 0, then there ezists a
positive constant € such that the state-space realization of the 8-error system
Eqn. (4.23) is locally exponentially stable at the origin for all0 < (= ~f) < €*.

Proof: Since ®;(k) and ®y(k) in Eqn. (4.23) take the same structure
as G(z )[cos(wlc — ) H(2)[v(k) ]] in Lemma B.5, we can choose minimal
state space realizations of L(z), ®1(k), and ®y(k) as (A, By, Ci,D1),
(Ax(k), Ba(k), Co(k), Do(k)), and (As(k), Bs(k), Cs(k), D3(k)), respectively.
Moreover, since all of the poles in L(z), ®,(k), and ®»(k) are inside the unit
circle, Ay, A»(k), and Az(k) are exponentially stable. Now, the f-error system
Eqn. (4.23) can be transformed into a state space form

P(k+1) = AR (k) + (k. 0(K)) (1.24)
Bk+1) = B(k)+ef' (k, 6(k), ' (K)), (4.25)
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where
A 0 0
Alk) = | 0 Ak) ©
0 0 Ak
W(k,0k) = [BIG| BI(k) | BY(1)F]

£k, 0(k), ' (k)

Il

D16 + Do+ Do + [C1 | Calk) | Ca(k)] (k).

Since A(k) is exponentially stable, the state space form Eqns. (4.24) and (4.25)
is adequate for the application of the two-time scale averaging theory [10].
Define the function
k=1
wik,0) =3 W(k,i+1)h(3,0), (4.26)

i=0

k=1
where ¥(k,i) = [I Ali + k —1—1), and construct the transformation

I=i

z(k) = 2'(k) — w(k, ). (4.27)
Then, the transformed system is represented as
z(k+1) = Ak)z(k)+ eg(k,0,z) (4.28)
6(k+1) = 0(k)+ef(k,6,z), (4.29)
where
g(k,0,z) = —(/0 ‘Z‘; (k+1,80(k+1)+ (1 — s)é(k))ds)f'(k, 0,z + w(k,6))

flk,0,2) = f'(k,0(k),z+w(k,0)).
The averaged system of Eqn. (4.29) is defined by

Oau (K + 1) = Bau (k) + €fan(Bau (k) (4.30)
where f,, is calculated by the averaging operator AVG{-} [10] defined as

ful@) = AVG{f(k,0,0)}

s+T
L2 Jim = ¥ f(k8,0).
Tooo T k=s+1

On the other hand, f(k,8,0) can be reconverted into Z-domain as follows:
f(ka é, 0) = fl(ka éu w(k7 é))
= D6 + Dyl + Dyf?
-1
. - o1 T
+[C1 | Calk) | Ca(k)] Y- W(kyi + 1)[BTG | B ()6 | BY (5)6”]
=0

= L(2)[0] + @1(k) + ®a(k),
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where @ is regarded as a constant. Hence fm,(é) can be reformulated as
fun(0) = AVG{L(2)[6] + ®1 (k) + Do (k) }. (4.31)

Using Lemma B.1 and regarding 6 as a constant leads to the following deriva-
tions:

AVG{®,(k)} = AVG{aE(z) [s(20k) Im{ M (z, &) [u, (k)] }
—c(2wk)Re{M(z, ejw)[us(k)]}]é} ~0, (4.32)
AVG{®y(k)} = AVG{}«}(z)[c(wk)%m(z)[us(k)]]é?}=o,(4.33)

where u,(k) denotes the unit step sequence, s(2wk) = sin(2wk — @), c(2wk) =
cos(2wk — ¢), and c(wk) = cos(wk ~ ¢). Hence,

fw@) = AVG{L(z)[f]}
AVG{ = SR (M (2 6%) + M (z,0)) [us(K)}0)
) (4.34)

It

|

where

w = SR(Re{o?R(E) ()
- 1F,,(e"“’)l cos(¢ur + @),

Fi(ejw)e?w +h

= B

and ¥y = [(Fz(eﬁ“") :::;}LFO(e"“)). Substituting Eqn. (4.34) into Eqn. (4.30)

results in the averaged system

Oan(k +1) = (1 — Kpea )b (K), (4.35)

where if ks > 0, G,y is exponentially stable for all 0 < € < N%a Consequently,
according to Theorem 2.2.4 in [10], this theorem is proved. QED.

It is observed from the sufficient condition of Theorem 4.2 that the local
exponential stability of Eqn. (4.23) is closely related to positive realness of
linear parts of the plant but only at the modulation frequency w. This is a
very mild condition.

Now, we consider the stability of the overall system Eqn. (4.13). For this
purpose, it is necessary to investigate the perturbed averaged system

Oau(k + 1) = (1 — Kgea)bao (k) + 6(k). (4.36)


Administrator
ferret


68 DISCRETE TIME EXTREMUM SEEKING

Since |3(k)] < £7* + kiea® from Lemma 4.1, it is obvious that 8,,(k) in
Eqn. (4.36) exponentially converges to an O(«) neighborhood of zero. On
the other hand, it is known from [10] and [98] that the exponential conver-
gence rate of @ in the original system Eqn. (4.13) tends to that of 640 in the
averaged system, as € tends to zero. Therefore, we can conclude the following
theorem.

Theorem 4.3 Suppose that the conditions of Theorem 4.2 are satisfied. Then,
Jor sufficiently small «, there ezists €;, 0 < & < €, such that 6 in the original
system Egqn. (4.13) locally exponentially converges to an O(a) neighborhood of
zero for all 0 < e < €7,

Note that the requirement that ¢ be small translates into a requirement
that v be small. With the result of Theorem 4.3, the convergence property of
the output error (k) is described as:

Corollary 4.4 Under the conditions of Theorem 4.3, the output error §{k)
defined in Eqn. (4.7) locally exponentially converges to an O(a?) neighborhood
of zero.

Proof: We have that
§(k) = Fo(2)[(8 = 0°)?] = Fo(2)[ (0 — 60)?], (4.37)

where 6 locally exponentially converges to an O(a) neighborhood of zero
from Theorem 4.3 and 6y exponentially converges to an O(«) neighborhood of
zero. Hence, (k) locally exponentially converges to an O(a?) neighborhood
of zero. Q.E.D.

4.4 Example

In order to test the feasibility of the proposed extremum seeking algorithm,
we conduct a simulation study for a plant with transfer functions

z+ 0.4 z—0.2

(z+0.5)(z+0,6) and Fo(z) = Z+O.6. (4.38)

Fi(z) =

Other design parameters are selected as: #* = 3, f* =2, h = 0.9, a = 0.05,
3 = 0.05, and ¢ = 0. Simulation is conducted for w = 77 and w = %, s0
that it can be calculated that ’M(eﬂﬁ) = 4.57, A(M(ejﬁ)) = ~0.75 rad,
| M(e7%)| = 2.68, £(M(e'75)) = 0.93 rad, and F;(1) = 0.58, where M(e/) =
F’i(ej"’):,'::;;Fo(ej“’). Since cos (L(M(ejill))) > 0, cos (Z(M(ej%)n > 0,
and Fi(1) > 0, the sufficient condition of Theorem 4.2 is satisfied for both w =
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Figure 4.3: Responses for w = {5 rad/sample and v = 2.1

75 and {%. Accordingly, it is certain that the system is exponentially stable,
which is illustrated in Figures 4.2 and 4.3. If is also shown from Figures 4.2
and 4.3 that 8(k) converges to 8* with larger magnitude of oscillation than that
in the convergence of y(k) to Fo(2)[f*]. This observation illustrates the results
of Theorem 4.3 and Corollary 4.4 that 6(k) and §(k) locally exponentially

converge to O(a) and O(a?) neighborhoods of zero, respectively.

Notes and References

This chapter is based upon Choi et al. [30]. By using the two-time scale
averaging theory [10], the authors derived a very mild sufficient condition under
which the system output converges exponentially to an O(a?) neighborhood of
the extremum value. The sufficient condition is related to positive realness of
linear parts of the plant but only at the modulation frequency w. Future study
subjects should include: development of a method to improve and analyze
the transient performance; rejection of measurement noise; tracking of time-
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varying f* and 6*; and practical design guidelines for selecting modulation
signal frequency w, phase shift of demodulation signal ¢, and various other
gains. Other works on discrete time extremum seeking have essentially been
based upon traditional search [122] and nonlinear optimization methods [107]
which require assuming a fast plant, or, conversely, slow convergence to the
optimum.



Real-Time Optimization by Extremum-Seeking Control. Kartik B. Ariyur and Miroslav Krsti¢
Copyright 00 2003 John Wiley & Sons, Inc.
ISBN: 0-471-46859-2

Chapter 5

Nonlinear Analysis

In this chapter we present the general problem where the nonlinearity with an
extremum arises as a reference-to-output eguilibrium map of a general nonlin-
ear (non-affine in control) system. Such a system is assumed to be stable or
stabilizable at each of these equilibria by a local feedback controller. We con-
sider the single parameter problem in this chapter. In relation to Chapter 1,
this chapter can be viewed as a generalization where F,(s) is allowed to be
nonlinear {while F;(s) is required to be constant, or very fast).

An example of such a problem is the compressor stall and surge prob-
lem, presented in Chapters 11 and 12. In fact, the equilibrium map with the
extremum there is nonunique-it has multiple bifurcating branches.

We employ the tools of averaging and singular perturbations to show that
solutions of the closed-loop system converge to a small neighborhood of the ex-
tremum of the equilibrium map (in this and the following chapter, the problem
is posed to seek maxima). The size of the neighborhood is inversely propor-
tional to the adaptation gain and the amplitude and frequency of a periodic
signal used to achieve extremum seeking. Our analysis highlights a fundamen-
tally nonlinear mechanism of stabilization in an extremum seeking loop. After
stating the problem in Section 5.1 and giving the extremum seeking scheme in
Section 5.2, our proof is presented in Sections 5.3 and 5.4.

5.1 Extremum Seeking: Problem Statement

Consider the nonlinear model

& = f(z,u) (5.1)
y = h(z), (5.2)
where z € IR™ is the state, u € IR is the input, ¥ € IR is the output, and
f R*"xR — IR” and h : R* — R are smooth. Suppose that we know a

smooth control law
u=alz,0) (5.3)

71
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parameterized by a scalar parameter §. The closed-loop system
&= f(z,0(z,0)) (5.4)

then has equilibria parameterized by 8. We make the following assumptions
about the closed-loop system.

Assumption 5.1 There exists a smooth function ! : R, — R" such that
flz,a(z,8)=0 if and only if  x=1(6). (6.5)

Assumption 5.2 For each § € R, the equilibrium z = 1(8) of the system
(5.4) is locally exponentially stable.

Hence, we assume that we have a control law (5.3) which ezponentially
stabilizes any of the equilibria that 8 may produce. Except for the requirement
that Assumption 5.2 holds for any § € IR (which we impose only for notational
convenience and can easily relax to an intervel in IR), this assumption is not
restrictive. It simply means that we have a control law designed for local
stabilization and this control law need not be based on modeling knowledge
of either f(z,u) or I(8).

The next assumption is central to the problem of peak seeking.

Assumption 5.3 There exists 8 € IR such that

(hol)' (6% = 0 (5.6)
(hol)"(6%) < 0. (5.7)

Thus, we assume that the output equilibrium map y = h (1(#)) has a maz-
wnum at @ = 6*. Qur objective is to develop a feedback mechanism which
maximizes the steady state value of y but without requiring knowledge of
either #* or the functions h and {. Our assumption that & o[ has a maxi-
mum is without loss of generality—the case with a minimum would be treated
identically by replacing y by —y in the subsequent feedback design.

5.2 Extremum Seeking Scheme

The extremum seeking scheme is shown in Figure 5.1. The low pass filter ﬁu‘)—i,
which did not appear in previous chapters, is not necessary, but it is helpful
in filtering out a cos 2wt signal after the multiplier (demodulator). The design

parameters are selected as
wp = wwy = whwy = O(wd) (5.8)

Wy wwp = wiw) = O(wd) (5.9)
k= wK = wéK' = O(wé), (5.10)

Il
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4 ~ ;t:f(m,oz(x,ﬁ)) Yy
y = h(z)
g k| € wy -} _s |
s 8+ wy s+wy |
o sin wit

Figure 5.1: Extremum seeking scheme.

where w and é are small positive constants and wfy, w}, and K’ are O(1)
positive constants. As it will become apparent later, o also needs to be small.

From (5.8) and (5.9) we see that the cut-off frequencies of the filters need
to be lower than the frequency of the perturbation signal. In addition, the
adaptation gain k needs to be small. Thus, the overall feedback system has
three time scales:

o fastest—the plant with the stabilizing controller,

s mediumm—the periodic perturbation,

o slow—the filters in the extremum seeking scheme.

The analysis that follows treats first the static case from Figure 5.2 using
the method of averaging (Section 5.3). Then we use the singular perturbation

method (Section 5.4) for the full system in Figure 5.1.
Before we start our analysis, we summarize the system in Figure 5.1 as

T = f (a:, o(z,0 + asin wt)) (6.11)
0 = ke (5.12)
£ = —wf+wly—nasinwt (5.13)
n = —wpl+why. (5.14)
Let us introduce the new coordinates
0 = 0-¢ (5.15)
7 n—hol(6). (5.16)
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Y

5+ wy 5+ wp

asinwt

Figure 5.2: If perturbation a sinwt is slow, the plant can be viewed as a static
map.

Then, in the time scale 7 = wt, the system (5.11)—(5.14) is rewritten as
dx

wo— = f (:E, ax, 0 + 0 + asin 'r)) (5.17)
a0 K'¢
o €| = 6| —wiE+uwi(h(x)—hol(d)—fasinT | . (5.18)
"7 —wiyfl + wy (h(z) — ho l(87))

5.3 Averaging Analysis

The first step in our analysis is to study the system in Figure 5.2. We “freeze”
z in {5.17) at its “equilibrium” value

z=1 (9*+§+asin7') (5.19)

and substitute it into {5.18), getting the “reduced system”

RN K&
- { £, ] =4 —w'Lfrr -+ w'L (u (91, + asinT) — ﬁr) asinT , (5_2())
dr | 2 . e .
Ui —Wyhy +wyV ((9,, + asin T)
where
v (é, + asin'r) =hol (0* + 6, + asin'r) —hol(6Y). (5.21)

In view of Assumption 5.3, it is obvious that

v(0) = 0 (5.22)
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Y(0) = (hol) () =0 (5.23)
V'(0) = (hol)"(97) <0. (5.24)

The system (5.20) is in the form to which the averaging method is applicable.
The average model of (5.20) is

[ . K&
[ ¢ } =5 | —wiEe+ ﬁ j‘?" (0“ + asin cr) sinodo | | (5.25)
Ao — Wil + (8‘1 + asin 0) do

i

First we need to determine the average equilibrium (5,‘}5 He, ) which sat-
isfies

goe =0 (5.26)
o (9” ® 4 g sin (7) sinodo =0 (5.27)
e =Ly (Bﬂ’e + asin 0) do . (5.28)
By postulating éﬁ*e in the form
0° = bia + bya® + O(a®), (5.29)

substituting in (5.27), using (5.22) and (5.23), integrating, and equating the
like powers of a, we get +”(0)b; = 0 and v”(0)b; + §2(0) = 0, which implies
na.e __

that
V’”(O)
T 8u(0)
Another round of lengthy calculations applied to (5.28) vields

a®+0(a%). (5.30)

e — i‘))a +0(a?) (5.31)

Thus, the equilibrium of the average model (5.25) is

gae Sr:”((?)) 2 + O( 3)
gre | = 0 . (5.32)
i Y062 4 O(a?)
The Jacobian of (5.25) at (é,f, ﬁ):e is
0 K’ 0
JE=6 Efr‘a ey (9“ + asin 0) sinodoc —wj 0 . (5.33)

2
55} o '(9“+asm0)d0 0 —wy
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Since J? is block-lower-triangular we easily see that it will be Hurwitz if and
only if

2 ~
/ v (93’8 + asin a) sinodo < 0. (5.34)
0

More calculations that use (5.22) and (5.23) give
2% ~
/ v (9,‘?‘8 + asin 0) sinodo = 7" (0)a + O(a®). (5.35)
0

By substituting (5.35) into (5.33) we get

52 IK't ”

m%(AI——JE)::(Azﬁ—&JiA—— (0)a -+cx523))(A-+5w;),

(5.36)
which, in view of (5.24), proves that J? is Hurwitz for sufficiently small a. This,
in turn, implies that the equilibrium (5.32) of the average system (5.25) is ex-
ponentially stable for a sufficiently small a. Then, according to the Averaging
Theorem [64, Theorem 8.3] we have the following result.

Theorem 5.4 Consider the system (5.20) under Assumption 5.3. There exist
& and @ such that for all§ € (0,8) and a € (0, &) the system (5.20) has a unique
exponentially stable periodic solution (éf”('r),ﬁf"( ), B2 (T )) of period 2w and
this solution satisfies
)+
2 (r) <08 +0(d®), Vvr>0. (5.37)
e (r) — ke

This result implies that all solutions (9}(7) L& (T) ,ﬁr('r)), and, in partic-

ular, their 8,(r)-components, converge to an O(& + a2)-neighborhood of the
origin. It is important to interpret this result in terms of the system in Fig-
ure 5.2, Since y = hol (9* +0,.(1) + asin'r) and (hol)' (6*) =0, we have

y—hol(f) = (hol)" (6) (ér + asin 'r)2 +0 ((ér + asin 7)3) . (5.38)
where
O ; _ A _ g2n A2 (h © l)m (9*) 2
8. +asinT = (6,. o ) + (97. + 3o (8 hol) (0*)66

(ho)"(6%) 5

Shol)’ (6*)0, +asinT. (5.39)
Since the first term converges to zero, the second term is O (§ + a®), the third
term is O (a?) and the fourth term is O(a), then

() + asin 'r‘ =0{a+9). (5.40)

T—00
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Thus, (5.38) yields
limsup |y(7) — ho l(6%)| = O (a2 + 52) . (5.41)

The last expression characterizes the asymptotic performance of the ex-
tremum seeking scheme in Figure 5.2 and explains why it is not only important
that the periodic perturbation be small but also that the cut-off frequencies
of the filters and the adaptation gain £k be low.

Another important conclusion can be drawn from (5.37). The solution 6,.(7)

7™

8(](1—1105)1)7((90—*))(12' Since (ho1)” (8*) < 0, the
sign of this quantity depends on the sign of (ko )" (8*). If (hol)” (8*) > 0
(respectively, < 0), then the curve h o [(f) will be more “Hat” on the right
(respectively, left) side of f = #*. Since 8, will have an offset in the direction
of sgn {(h ol)” (0*)}, then 6,.(t) will converge to the “flatter” side of h o I(6).
This is precisely what we want—to be on the side where hol(6) is less sensitive
to variations in € and closer to its maximum value.

will converge O (& + a®)-close to —

5.4 Singular Perturbation Analysis

Now we address the full system in Figure 5.1 whose state space model is given
by (5.17) and (5.18) in the time scale 7 = wi. To make the notation in our
further analysis compact, we write (5.18) as

dz
— =4 .

7 G(r,z,z), (5.42)
where z = (5,5 ,77). By Theorem 5.4, there exists an exponentially stable
periodic solution 227(7) such that

dzf(r)

- =0G (r,L(7,2"(n)) ,2"(r)) , (5.43)

where L(r,z) =1 (6* + 6 + asin T). To bring the system (5.17) and (5.42)
into the standard singular perturbation form, we shift the state z using the
transformation

5=z 22 (1) (5.44)
and get
dz 5 .
el 0G (1,2 ,%) (5.45)
wg{ = F(r,z,3), (5.46)
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where

G(r,z,z) = G ('r,:c,é + zf"('r)) -G (’I’,L ('r,zf"(r)) ,zf”(r))(5.47)

F(r,z,%) ! (m,a (x,@* + 6 — 627 (1) +077 (1) + asin'r)) . (5.48)
—_———

<1

We note that

z=1L ('r JEF zf’r('r)) (5.49)
is the quasi-steady state, and that the reduced model
ds?‘ e s 2 = 27
e oG (T L (T B+ 2t (7')) B+ 22 (7')) (5.50)

has an equilibrium at the origin z. = 0 (cf. (5.47) with (5.49)). This equilib-
rium has been shown in Section 5.3 to be exponentially stable for sufficiently
small a.

To complete the singular perturbation analysis, we also study the boundary
layer model (in the time scale { = 7/w):

% = F’(T,mb+L(7,§+zf"(7')) ,2)
= flz+100),a(x+1(8),8), (5.51)

where 6 = 6* + 6 + asin 7 should be viewed as a parameter independent from
the time variable ¢. Since f (1(8),a (I(8),6)) = 0, then z; = 0 is an equilibrium
of (5.51). By Assumption 5.2, this equilibrium is exponentially stable.

By combining exponential stability of the reduced model (5.50) with the
exponential stability of the boundary layer model (5.51), using Tikhonov’s
Theorem on the Infinite Interval (64, Theorem 9.4], we conclude the following:

e The solution z(7) of (5.42) is O{w)-close to the solution z.(r) of (5.50),
and therefore, it converges exponentially to an O(w)-neighborhood of the
periodic solution 227(7), which is O(6)-close to the equilibrium z%¢. This,
in turn, implies that the solution () olf (5.18) converges exponentially to

o IV (9

%%az +0 (a3). It follows then

that 6(7) = 6" +8(7)+asin 7 converges exponentially to an O(w+45+a)-

neighborhood of #*.

an O(w + 8)-neighborhood of —

e The solution z(7) of (5.46) (which is the same as (5.17)) satisfies
2(r) = 1 (6" + 6,(r) + asin7) — z4(t) = Ow), (5.52)

where 6,(7) is the solution of the reduced model (5.20) and z,(t) is the
solution of the boundary layer model (5.51). From (5.52) we get

(1) = 1(#*) = O(w) +1 (9* +6,(1) + asinw'r) —1(6*) — zp(t). (5.53)
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Since @,(7) converges exponentially to the periodic solution 627(7), which

(ho )" (0
Wﬂz +0 (Ga), and
since the solution x;(t) of (5.51) is exponentially decaying, then by (5.53),
z(7) — 1(6*) exponentially converges to an O(w + & + a)-neighborhood of
zero. Consequently, y = h(z) converges exponentially to an O{w+§+a)-
neighborhood of its maximal equilibrium value A o 1{8*).

is O(8)-close to the average equilibrium

We summarize the above conclusions in the following theorem.

Theorem 5.5 Consider the feedback system (5.11)-(5.14) under Assump-
tions 5.1-5.8. There exists a ball of initial conditions around the point
(m,é,f,n) = (1(6*),0%,0,hol(0")) and constants @, 0, and @ such that for
allw € (0,@),6 € (0,6), and a € (0,4a), the solution (;v(t) NIOR0) ,n(t))
converges exponentially to an Olw + & + a)-neighborhood of that point. Fur-
thermore, y(t) converges to an O(w + & + a)-neighborhood of h o [(8*).

A considerably more elaborate analysis would lead to the following stronger
result, which we give without proof.

Theorem 5.6 Under the conditions of Theorem 5.5, there exists a unique
exponentially stable periodic solution of (5.11)-(5.14) in an Olw + § + a)-
neighborhood of the point (:r .0, 5,77) = (I(6*),6%,0,hol(6%)).

Notes and References

This chapter is based upon [70], where the first proof of stability of extremum
seeking appeared. The pioneering averaging studies of Meerkov [81, 82, 83]
stand out as a precursor to the stability results presented in [70]. This analysis
was instrumental in reviving interest in analysis and design for extremum
seeking control. On a brief comparison of the results in this chapter with the
results in Chapters 1, 2, we can infer that the filters of the extremum seeking
scheme need not be very slow as was assumed here. Moreover, the low pass
filter after demodulation is theoretically unnecessary, but useful in practice.
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Chapter 6
Limit Cycle Minimization

Limit cycles occur in numerous areas of application. In particular, there are
systems in which feedback control can ounly reduce the size of the limit cycle
but cannot completely eliminate it. The inability to remove the limit cycle and
achieve equilibrium stabilization may be associated with actuator constraints,
such as magnitude and rate saturation. In this situation, the best control
requirement is to enforce a stable, “smallest” limit cycle.

This chapter extends the extremum seeking scheme and its analysis in
Chapter 5 to the case where equilibrium operation is not possible and the
system is always in a limit cycle. The objective of the scheme is to reduce the
size of the limit cycle to & minimum.

We start in Section 6.1 with a scheme for general feedback systems in
limit cycle. This scheme incorporates a block for detection of the “amplitude”
of the limit cycle. In Section 6.2 we apply the scheme to a Van der Pol
oscillator example for which the simulations demonstrate the effectiveness of
the scheme. Finally, in Section 6.3 we present stability/performance analysis
which involves two steps of averaging with one step of singular perturbation
analysis in between. The conclusions drawn are valid on O(1) time intervals.

6.1 Scheme for Limit Cycle Minimization

We consider systems of the form

= f(:L’ ’ u)
h(z), {6.1)

where z € IR" is the state, u € IR is the input, ¥y € R is the output, and
f R*xR — R" and h : R® — IR are smooth. Suppose that we know a
smooth control law

u=afz,d) (6.2)
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t=f(z,a(z,0)) Y__,| Detector of limit L
y = h(z) cycle amplitude

k ¢ wy n—r —S

; s+ wy 8+ Wh )

asinwt

Figure 6.1: Extremum seeking scheme for limit eyele minimization. The z-

system is assumed to be in a limit cycle for any constant 6 (despite the use of
feedback a(z, 0)).

parameterized by a scalar parameter 6 such that the closed-loop system

= flz,a(z,) (6.3)

has a stable limit cycle corresponding to each 8. Our objective is to tune 8 to
minimize the “amplitude” of the limit cycle.

Only a small modification is needed to adapt the extremuin seeking scheme
in Chapter 5 to the problem of limit cycle minimization. We add the detector
block shown in Figure 6.2 to the overall extremum seeking scheme in Figure 6.1.
The idea of the detector is simple. We assume that the output of the system
in a limit cycle is sinusoidal, y(t) = Yy + rsin(wgt + ¢). The high pass filter is

supposed to eliminate the DC component Y. The expected result, 7 sin(wot +
2

¢}, is squared to get % (1 + cos(2wyt + ¢)), and then passed through a low pass
2

filter to extract only %— The last block results in the amplitude of the limit

cycle r. This idea is, of course, based on the assumption that wg > €y, (.
The design parameters of the entire scheme are selected as wg 3> Oy, >
w > wh,w, k.

6.2 Van der Pol Example

Consider a Van der Pol equation parameterized by # as follows:

Etef(@—m0)’—1-(0- 0] &+ pu?(x—m) =0, (6.4)
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Figure 6.2: Detector of limit cycle amplitude
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Figure 6.3: Characteristic of the limit cycle “amplitude” r with respect to 6.

where § — 6* is a parameter that controls the amplitude of oscillation and xg
is a parameter for the offset of z. We assume that 0* is constant and # is
available as the input to the system. The system (6.4) will be in a limit cycle
for any # and 6*. This example is contrived to emulate problems in which
feedback control can reduce the size of a limit cycle but cannot eliminate it
completely.

We first study the relationship between the limit cycle amplitude and the
parameter f for the system (6.4). The relationship is shown in Figure 6.3. Since
the characteristic has a minimum, we feed —r to the input of the extremum
seeking block (see Figure 6.1).

We perform simulations from both sides of the extremum. In both cases,
we set {1 = 075, & =002, w =01, wyg = 0.02, k =4, 20 = 6, 8* = 3,
and € = p = 1. In the first case, we set the initial value of the integrator
6(0) = 5. We run the simulation without extremum seeking for 100 seconds
and then start the extremum seeking controller. The oscillation of x is shown
in Figure 6.4 and the process of convergence of the parameter 8 to 8* = 3 is
shown in Figure 6.5. In the second case, we consider the initial value 0(0) = 1.
The oscillation of x is shown in Figure 6.6 and the process of convergence of
8 to 6* = 3 is shown in Figure 6.7. In both cases the limit cycle is reduced to
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Figure 6.4: Time response of state z of the Van der Pol system with large

4(0).

its minimal possible size.

6.3 Analysis

To simplify the analysis, we replace the amplitude detector block with a
quadratic function. We also drop the low pass filter from the extremum seek-
ing scheme to make the proof as simple as possible. The resulting extremum
seeking scheme with the Van der Pol system is shown in Figure 6.8. Denoting

# =0 —0* and y = x — zo, the system can be written as

0 = §—e¢ (1 + (A + asinwt)? — yz) U+ uly (6.5)
1= (¥ —nwn
0 = —ka(y®—n)sinwt (6.7)

To represent the Van der Pol system in polar coordinates, let

y=rsing, 7= Urcosg. (6.8)
Then, we have
F = ercos’¢o [1 + (é + asin wt)2 — r2sin? (;S} (6.9)
q'ﬁ = p—ecospsing {1 + (§+ asinwt)2 — r2sin? ¢] .
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Figure 6.5: Time response of parameter ¢ of the Van der Pol system with large

6(0).

The overall system

represented as

dr
do
dé
d¢

do
dt

where

A2

is shown in (6.6)-(6.7) and (6.9)-(6.10). We treat ¢ as a
state and use ¢ as an independent variable. Then the whole system can be

- 2
rcos® ¢ [l + (0+a sin wt) —r2sin? (ﬁ]

- E — (6.11)
_ %a(rz sinzlqﬁ_—An) sin wt (6.12)
_ %7‘2 siniqi— n (6.13)
- ,%1_-13 (6.14)
5 cos ¢sin ¢ [1 + (5 +asin wt)2 — r?sin? gi)] . (6.15)
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Figure 6.6: Time response of state z of the Van der Pol system with small
6(0).

1
Now averaging with respect to ¢ for — small, we obtain
H

TR (ESC SO R
5‘% = Fasnur (Q—n) (6.17)
Z_Z _ i (6.19)

. . w .
Note that t* = ? in this average system. Denote ¢, = —? By using the

H
relationship w > wy , &, (6.16)—(6.18) can be expressed as

dr® 1 éa 3 . 2 a\2

w——d;T =ert [ + —i—2asm¢o F_ (TS) ] {6.20)
A (rv?
b = ——Jasmng ( 5 1 ) (6.21)
dna B _ﬂ (,,41)2 o

This system is in the standard singular perturbation form.
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Figure 6.7: Time response of parameter 6 of the Van der Pol system with small
6(0).

The next step in our analysis is to study the system (6.20)—(6.22). We
freeze r* in (6.20) at its “quasi-steady state” value

(r")? =41+ (0" + asing,)?] . (6.23)

Substituting (6.23) into (6.21) and (6.22), we obtain the “reduced model”

e k. o o N2 d

. :—;asm oy [2+2(9r+asm¢r) —nr] (6.24)
diy _ wh Ga . 2 .a

do = 2720 +asing) ] (6.25)

Since wy, , k < w, the system (6.24) and (6.25) is in the form to which the
averaging method is applicable. The average model of (6.24) and (6.25) is

dég“ k n noa : 2 oo
d. = —2%(1/0 sin @ [2 + 2(82* +asin ¢, ) —nt ] d¢, (6.26)
dnaa wh 2 - . 9

r — *h aa _ a0 .. 9
do. 5 /0 [2 + 2(62% + asin ¢, )° — nf ] deo (6.27)

Performing the integrations, the average systerm becomes

faa 2
‘Z"; = —2%9;.m (6.28)
‘i’z - % [_ (nee —2—a?) +2 (ég“)z] (6.29)
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Figure 6.8: Simplified extremum seeking scheme for limit cycle minimization.

Define
e = — (24 a%). (6.30)
Then the average system is
dfee ka? -
= —2—§° 6.31
dd)‘r w 97‘ ( )
ant®  Wh [ g ~oo\2
el [—n,‘f +2 () ] (6.32)
The Jacobian at the average equilibrium §$“ =7 =0is
- ICLICI
JB = (L)u | (6.33)
w

Obviously, J?* is Hurwitz. This implies that the average equilibrium is expo-
nentially stable. Then, according to the averaging theorem [64, Theorem 8.3]
all solutions (6%(¢,), 7%(¢,)) converge exponentially to an O(§)-neighborhood
of the origin where

_ max{k,wp}
= ” .
Since (6.24)—(6.25) is the reduced model of the singularly perturbed system
(6.20)-(6.22), by the Tikhonov-type theorem on the infinite interval [64, The-
orem 9.4], we have that

5 (6.34)

5 (6r) - (o) = O)
(6.35)

(@) ~ 4 [L+ (B(en) +asing,)’] =% 0(w?)
(6.36)
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because it is easy to verify that the boundary layer model

Tme)g)

(6.37)

dt

dTb (Tb+2\/—_6ﬁ) (1+02 ( 4

has an exponentially stable equilibrium at r, = 0 for all 8. The above conclu-
sions imply that

(¢,) =B 0 +w) (6.38)
(r*(¢-))" =B 4+0 (a2 + 6%+ w2) . (6.39)

Since (6.20)-(6.22) is the average system of (6.11)—(6.14), from the aver-
aging theorem it follows that

6(¢p) — O (5 +w+ i) (6.40)
1
r{¢) — 2+O(a+5+w+;) (6.41)

(at least on an O(u) interval for ¢). By an argument similar to that in [64,
Theorem 8.4], we establish the same properties for § and r as functions of
time, i.e.,

) — O ((5 +w+ %) (6.42)
r(t) — 2+O(a+5+w+i) (6.43)

(at least on an O(1) interval for ¢). This, in turn, implies that
y(t)2+¥—>2+0(a+5+w+%). (6.44)

The last statement means that extremum seeking brings the limit cycle am-
plitude to within O (a +é+w+ ﬁ) of its minimum.
Notes and References

This chapter is based on the results in [114]. Combustion instability control
{Chapter 10) is an application of the idea developed in this chapter.
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APPLICATIONS
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Chapter 7
Antilock Braking

To ease the reader into applications of extremum seeking, we start Part 11 of
the book with a simple example, which is not a research result, but an illustra-
tion of the theoretical ideas from Part 1. Antilock braking systems (ABS) are
currently an important tool in automotive vehicles. They stop faster and make
safer turns when their wheels are prevented from locking. When the wheels
are locked, they start slipping and steering becomes impossible, leading to loss
of control of the vehicle.

ABS design was proposed to deal with braking on a slippery surface, i.e., to
prevent the wheels from locking and skidding. In principle, the idea of an ABS
is: by measuring a wheel’s angular velocity and possibly linear acceleration, a
decision is made if the wheel is about to lock. If it is, the pressure in the brake
cylinder has to be reduced until the angular velocity of the wheel exceeds some
threshold value. At this time the pressure is allowed to increase again. In this
way, the wheels are prevented from locking. This process basically mimics
the braking action of an experienced human driver. Due to nonlinearity and
uncertainty in the braking process, the design of an ABS is difficult.

The characteristic of the friction force acting on the tires has a maximum
for a low (nonzero) wheel slip and decreases as the slip increases. Standard
ABS sgystems apply braking pressure in a rapid intermittent fashion. In some
of them, the purpose of the intermittent action is to “seek” the maximum of
the friction characteristic. In this chapter, we apply the extremum seeking
feedback scheme of Chapter 5 to an ABS.

7.1 Model of a Slipping Wheel

We consider only one wheel, (the ‘unicycle’ model) depicted in Figure 7.1. The
tire dynamics are described by the following two equations

mi = —Nu(d) (7.1)
I = —BQ+ NRu(\) — 13, (7.2)

93
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Figure 7.1: The wheel forces.

where u is the linear velocity and €2 the angular velocity of the wheel, m the
mass, and NV = mg the weight of the wheel, R the radius of the wheel, I the
moment of inertia of the wheel, B2 the bearing friction torque, 75 the breaking
torque, p(A) the friction force coefficient, and the wheel slip A is defined as

A, Q) = u— RQ

(7.3)

for the case of braking when R{} < u. The friction force coefficient p(A) is
shown in Figure 7.2, from which it is seen that there exists an optimum g* at
A%

To formulate our problem into the extremum seeking setting, let us intro-
duce a constant (which is unknown) A and define A = A — Ag. The governing
equation for X is:

i . . REBE R

Since % is measurable via an accelerometer (they are also in use for airbags),
it is easy to see that the simple feedback linearizing controller

Ty = _C_II%E()\ —Xo) — BQ— %u — mRu, (7.5)
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Figure 7.2: Friction force coefficient p().

where ¢ is a positive constant, makes the equilibrium Ag of the system (7.4)

exponentially stable, giving A = —cA. Note that in the control 75 we do not
require knowledge of the unknown function p(A).

To maximize the friction force /N is to maximize u(A). Thus we can define
the output for the system (7.4) as y = p{)\) and maximize y. If p(A) is known,
Ag can chosen to be at the optimum point A*, then A will converge, exponen-
tially, to the optimum value and the maximum friction force will be reached.
However, Ap could not be exactly chosen at the optimum point because p(A)
is not known and, as we can see from Figure 7.2, the optimum value differs
for different road conditions. In the next section, we employ the extremum
seeking scheme to search for the optimal value of A in the face of uncertain
road conditions.

7.2 ABS via Extremum Seeking

Fitting into the nomenclature of Section 1.2, the wheel model under feedback
Eqn. (7.5) can be written as a cascade of input dynamics and a static map:

1.
E)\ = —A+XN (7.6)
y = p). (7.7)
We apply the scheme given in Figure 7.3 with

Ao = Ao +asinwt. (7.8)
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Figure 7.3: Extremum seeking scheme for the wheel model (7.1), (7.2).

For simulations, we use a simple function which qualitatively matches p())
in Figure 7.2: )

BN = 20 5 (79)
This function has a maximum at A = A\*, whose value is p(A*) = p*. We
run the test for A* = 0.25 and p* = 0.6. As we mentioned before, neither
the controller 75 nor the extremum seeking scheme use the knowledge of the
function u(A).

The wheel/quarter car parameters are chosen as: m = 400kg, B =
0.01, R = 0.3m. Initial conditions are: linear velocity, u(0) = 120km/hr
33.33m/s; angular velocity, w(0) = 400/3.6, which makes A(0) = 0.

Our simulation employs the extremum seeking scheme with o =0.01, w =
3, wp, =106, w =08, and k = 1.5. For A{0) = 0.1, the simulation results
are shown in Figure 7.4. It is seen that during braking, maximum friction
force is reached and the car is stopped within the shortest time and distance.
The low pass filter in this design can be removed without loss of stability, i.e.,
w; = 0. Its purpose is to attenuate noise in the loop.

I

Notes and References

This chapter is based on Chapter 9 of [74]. Several results exist where sliding-
mode control was used [28, 35, 106, 110] to search for the optimum. While
sliding mode control may cause chattering, the oscillations used in extremum
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seeking are much slower than those that noise would induce in sliding mode

control.
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Chapter 8

Bioreactors

Although not as complex as applications in subsequent chapters, the applica-
tion in this chapter is more challenging than the ABS application in Chap-
ter 7. The use of modern model-based techniques for optimization and control
of bioreactors is hampered by a major bottleneck: the difficulty of identifying
reliable first principle models for these highly nonlinear and widely uncertain
systemns.

It is, however recognized that even small performance improvements may
result in substantial economic benefits. This chapter presents an ”extremum
seeking” approach for the optimization of bioreactors which allows automated
seeking of the best operating point while being robust against a large un-
certainty regarding the process kinetics. It uses the results of Chapter 5 for
general nounlinear plants.

In this chapter, we maximize the productivity of a continuous stirred tank
bioreactor. Compared to classical adaptive and neural net methods, the ad-
vantages of our approach are twofold: first the optimization objective (produc-
tivity maximization) is an explicit ingredient of the formulation of the adap-
tive control law, i.e., the optimization objective is guaranteed to be achieved
when the control is convergent; second, this approach does not require any
parametrization nor structural formalization of the modeling uncertainty {even
under the form of a black box model like neural nets).

As a benchmark for our demonstration, we use a simple model of a
continuous stirred tank biological reactor with numerical parameter values
from [34, 54]. The optimization objective is to maximize the biomass produc-
tion, more precisely the mass outflow rate of produced microorganisms. The
steady states of the process can be characterized by a non-monotonic map
relating the biomass production to the dilution rate which is our control in-
put. The purpose of the extremum seeking method is to iteratively adjust the
dilution rate in order to steer the process to the maximum of the map which
corresponds to a maximum productivity.

This chapter is organized as follows. In Section 8.1 we describe the dynam-
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Figure 8.1: Bioreactor with continuous culture

ical model of the bioreactor under consideration, with Monod and Haldane
kinetics and in Section 8.2 we state the control objective. In Section 8.3, we
study the open loop stability of these models. We apply extremum seeking
to the system in Section 8.4 and show simulation results. In Section 8.5 we
design a stabilizing controller with a washout filter to extend the operating
range for the Haldane model.

8.1 Dynamic Model of a Continuous Stirred
Tank Reactor

In this section, we present the dynamic model of a continuous stirred tank
bioreactor where a single population of micro-organisms is cultivated on a
single limiting substrate. The bioreactor is shown in Figure 8.1.

The limiting substrate is fed into the culture vessel with a constant con-
centration sg at a volumetric flow rate f. The culture medium is withdrawn
at the same volumetric rate f so that the culture volume v in the vessel is

kept constant. The dilution rate D is defined as D = —5 and is the inverse of

the residence time.

It is assumed that the other required substrates (including oxygen if
needed) are provided in excess, that the culture medium is perfectly mixed
and that the environmental conditions (temperature and pH) are regulated at
appropriate constant values.

The dynamic behavior of this bioreactor is then deseribed by the following
standard mass balance model (see e.g. [17]):

z = p(s)z— Dz (8.1)

D(sg—s)— u(;)m (8.2)

where z is the biomass concentration, s the substrate concentration, u(s) the

3

it
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specific growth rate function, and Y the yield coefficient.

Many analytical expressions for the function u(s) have been proposed em-
pirically or experimentally and we consider the two most commonly used, but
many others could be considered as well. The most classical function is the
Monod model:

1(s) = pm ( K; S) (8.3)

where U, is the maximum growth rate constant and K is a saturation con-

stant. If substrate inhibition is considered, the function p(s) may be given by

the Haldane model: L
ue) = —f— (5.4

1+ =24 =
S K1

where K is an inhibition constant.
Hence, for Monod kinetics the bioreactor model is:

. HmS
- () .
. o bm s
§ = D(sgp—3s) v (Ks n s) (8.6)
and for Haldane kinetics the model is:
fim
* S Kz
. Hm T
8§ = D(SR—‘S)*—?—T—S. (88)
I+ =+ —
S Kz

. 1 .
To normalize the model, we use Ysg, 85, thn, — a8 the units of z, s, D, and

m
t, respectively. So the nondimensional models become

i =z (Kls+ - D) (8.9)
§ = D(l—s)—Kfcj_s (8.10)

for the Monod model and

& =z 1+_Iﬁ+s—D (8.11)
) KQ
§ = D(1-s)— Kzf - (8.12)
1+ =L+ =
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K, K;
for the Haldane model, where Ky = — and Ky = —.
SR Sp

8.2 Optimization Objective

Let us assume that the industrial goal of the process is the production of
micro-organisms. As an optimization objective, it is then natural to consider
the maximization of the amount of biomass harvested per unit of time which
can be measured by the biomass outflow rate:

y=2zD. (8.13)

We shall see in the next section that the steady states of the process are
characterized by a non-monotonic map relating the biomass outflow rate (the
controlled output) y to the dilution rate D which is our control input. The
purpose of the extremum seeking method is then to iteratively adjust the
dilution rate in order to steer the process to the maximum of this map.

It is important to understand that we do not assume that the function
u(8) is a priori known: the Monod and Haldane models presented above must
be viewed as a theoretical benchmark to illustrate and analyze the efficiency
of the extremum seeking approach. Our aim will be to show that the best
operating point can be discovered by a extremum seeking algorithm which is
completely “ignorant” of the form of the kinetics.

8.3 Bifurcation Analysis of the Open-Loop
System

8.3.1 Monod Model

To investigate the stability of the open-loop system with a Monod model, we
first calculate equilibria corresponding to a constant dilution rate D = Dj.
Let the right-hand side of (8.9) and (8.10) be zero. After some calculations we
obtain two equilibria; one is (xg = 0,59 = 1) and the other can be expressed
as a function of Dy as follows

KDy
11— (1+K)Do
2 = Ty (8.15)

The equilibrium (zq = 0,89 = 1) is called the wash-out steady state since the
concentration of the micro-organism is reduced to zero.
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The Jacobian of the system at (zg, sq) is

) K]_Sg
K1+80_D0 (K1 + s0)?
— 1+ S0
J = " s Ky 5 (8.16)
Ky + 5o (K1 + 80)? °
It is easy to show that
1. the wash-out equilibrium (2o = 0,3, = 1) is stable when Dp > 7K
1
1
and unstable when Dy < H——KI
2. at the other equilibrium, the Jacobian can be written as
_ 0 B-Dy
J = { Do -B } (8.17)
where L Doy
g2 0Dl (8.18)
K

1
This equilibrium is defined only for Dy < T and is stable for all the

+ K,
values of Dy for which it is defined.

The steady state output can be expressed as
_ Do (1 — (14 K1)Dyp)
1— Dy '

To obtain the extremum value y of yp we differentiate (8.19) with respect to
Dy and get

Yo (8.19)

K,
DY = 1-— 8.20
1+ K, ( )

§F = \/K1(1+K1)—K1 (821)
Tt = 1+K1—\/K1(1+K1). (822)

For bifurcation analysis we select the parameters provided by Herbert et al. [54]
as: pim = lhr''Y = 0.5, K, = 0.2g/1,sp = 10g/l. So K; = K,/sg = 0.02.
By substituting K into (8.20)-(8.22), we get

ye=0754  for  D*=0.860,s" =0.123,z* = 0.877. (8.23)

Since the second derivative of gy with respect to Dy is negative, this point is a
maximum. The bifurcation diagram parameterized by the dilution rate for the
steady state output is shown in Figure 8.2 in which the solid line represents
stable equilibria and the dashed line represents unstable equilibria.
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Figure 8.2: Bifurcation diagram of output of micro-organism w.r.t. dilution
rate for a Monod model.

8.3.2 Haldane Model

To study the stability of the open-loop system with the Haldane model, we
also calculate equilibria corresponding to a constant dilution rate D = D.
Let the right-hand side of (8.11) and (8.12) be zero. Calculations show that
the system has a unique equilibrium or multiple equilibria, depending on the
value of Dy. The wash-out state always exists, i.e., (zp = 0,5, = 1). For

1
Dy < —————— there are two additional equilibria:
1+2/5

Ty = l—sg,

_ Ky(1-Dy) 1 |[Ka(1-Dp)\ (8.24)
Sp1 = 5D, 5 Dy — 4K 1 K,
Zozg = 1-sp

_ K(1-Dp) 1| (K(1—Dp)\* (8.25)
S = ot T o) Tk
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Figure 8.3: Bifurcation diagram of output of micro-organism w.r.t. dilution
rate for a Haldane model.

The Jacobian at (2, sg) is

_ ) 1K .
1 —DO 0 Kg 5‘%
J= so Ky 8( . K2K1 . (8.26)
o | — — —
1 K2 50)
L _DQ+(1+£1_+80)2
L s Ky sg Ko/ |

It is easy to show that

1. the wash-out equilibrium (zo = 0,sp = 1), is stable for
1+ 2 1+ &
+ and unstable for Dy < 5.
(1+Ki+4)

2. at the other branch of equilibria, the Jacobian is

0o -H
J=[_D0 #DM_H] (8.27)

where

A 1 Ky
HE gD | —-—5]. 8.28
oo (Kz 5(2)) (8.28)
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We choose the parameters proposed by D’Ans and Kokotovi¢ [34]: K; =
0.1 and K3 = 0.5. Substituting these values into the Jacobian at the
mazimum point, it becomes

0 05099
= [ —~0.5099 —1.01977} ‘ (8.29)

It is easy to check that the Jacobian is Hurwitz. A complete stability
analysis along equilibria is shown in Figure 8.3.

The steady state output can be expressed as

yo = Dy (I—Mild (M)2_4K1K2) . (8.30)

2D, 2 Dy

To obtain the extremum value of yo, we differentiate (8.30) with respect to Dy
and get

KQS*
Dr = 8.31
(S*)2+K25*+K1K2 ( )
. VEIKG + K\K3 + K1 Ky — K\ K»
g = K (8.32)
K}K2+ K\ K2+ K Ky — K1 K
&= l—\/ 1443 183 1Ry 1z (8.33)

1+ Ky

Substituting the values of K7 and K5 into (8.31)—(8.33), the maximum output
is

y" =0.4322 for D* =0.5099, s = 0.1523, z* = 0.8477. (8.34)

Since the second derivative is negative this point is a maximum. The bifurca-
tion diagram for the output equilibrium parameterized by the dilution rate is
shown in Figure 8.3.

8.4 Extremum Seeking via the Dilution Rate

Owing to the uncertainty and time-varying properties of biological processes
the maximum operating point is hard to predict precisely. It is therefore of
interest to implement extremum seeking control which is model-free and able
to automatically tune the dilution rate in the right direction. A block diagram
for extremum seeking implemented on a bioreactor is shown in Figure 8.4.
The output performance index is the biomass outflow rate. The parameters
are chosen as follows:

speed of nonlinear dynamics = O(1) > w > wy,a,k. (8.35)
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Figure 8.4: Extremum seeking scheme for a bioreactor.

We now demonstrate by simulations the ability of extremum seeking to adapt
the dilution rate to optimize the biomass flow rate. We apply the (same)
scheme to both the Monod and Haldane models.

8.4.1 Monod Model

For the Monod model, from Figure 8.2 we know that the peak occurs at D* =
0.86,s* = 0.123 ,2* = 0.877. Our purpose is to tune D to D*. We implement
the extremum seeking scheme with the following choice of parameters:

wp=004,w=0.08,a=0.03,k=5.

We start from an initial dilution rate lower than the optimum rate. Fig-
ure 8.5 shows how the extremum seeking approaches the peak along the equi-
librium curve. The time response of the output is shown in Figure 8.6 and
the time response of the tuning parameter is shown in Figure 8.7. The second
simulation starts from a dilution rate larger than the optimum value. The
results are shown in Figures 8.8-8.10.

From Figure 8.6, the settling time is 272 hours and the improvement in
performance to the maximum output is 26.7%, which means the performance
is improved with a rate of about 0.1%/hr. This rate of improvement is sat-
isfactory but it is certainly not impressive. Since the time constants of the
system at the peak are on the order of 10, this means that the convergence
to the peak takes about 27 time constants. The convergence to the peak can
be made faster by tuning the parameters of the scheme and by introducing
an appropriate phase shift in the perturbation sinusoid. However, we do not
do this here for two reasons. First, our primary objective is to qualitatively
demonstrate the possibility of finding the peak, and not to optimize the tran-
sients. Second, and more important, if we chose parameters which make the
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Figure 8.5: Maximum seeking process for the Monod model with initial dilu-
tion rate Dy = 0.6.

convergence from the left side of the peak faster, they are too aggressive for
the right side of the peak and may lead to instability. As evident by compar-
ing Figures 8.6 and 8.9, the same parameters which result in relatively slow
convergence from the left, result in fast convergence from the right. Since we
do not assume to know the location of the peak, the adaptation must proceed
cautiously. The oscillations of the output 3 in Figure 8.6 are about 3% of the
peak equilibrium value of y.

8.4.2 Haldane Model

For the Haldane model, from Figure 8.3 we know that the peak occurs at
D* =0.5099, s* = 0.1523, z* = 0.8477, y* = 0.4322. Again our purpose is to
tune D to D*. We implement the extremum seeking scheme with the same
parameters as those used with the Monod model.

We start from an initial dilution rate lower than the optimum value. Fig-
ure 8.11 shows how the extremum seeking approaches the peak along the
equilibrium curve. The time response of the output is shown in Figure 8.12
and the time response of the tuning parameter is shown in Figure 8.13. If we
increase the initial Dy so that it is to the right of the optimum value, the time
response of the output in Figure 8.14 shows that the system falls to the wash-
out steady state. This is because the Haldane model has unstable equilibria
underneath the maximum point. This motivates us to apply feedback control
to stabilize the equilibrium branch under the maximum point, which is the
subject of Section 8.5.
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Figure 8.6: Time response of the output with extremum seeking for the Monod
model with initial dilution rate Dy = 0.6.

8.5 Feedback with Washout Filters for the
Haldane Model

A washout filter

W(s) = (8.36)

is a high pass filter that preserves the equilibrium structure and affects only
the transient response and stability type.

In this section we assume the full state is measurable, and apply feedback

D = Dy+ky(z—xz5)+ki(s—ss) (8.37)
WsTs + W (8.38)
8, = W8+ wWsS. (8.39)

I

s
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Figure 8.7: Time response of the tuning parameter with extremum seeking for
the Monod model with initial dilution rate Dy = 0.6.

8.5.1 Control Design

The Jacobian for the closed-loop system (x,s,zs,s;) at the equilibrium
(-To »y 805 Zo, Sﬂ) is

- 1 Kl -
o K2 S%

—kzTo - kyxg kszo

Kl So 2
(1+S—0+_—1{—2) —k’sﬂl‘o

x ( 1 Kl)
ol ———
K. 2
kxx()*—DQ —Do‘|‘ks.'L‘0+ 2 %0

K1 8p 2
14 =2 4 22
( + Sp + K2>
Wy 0 —Ws 0
0 Wy 0 —Wy

—kzIO "'ksxﬂ

(8.40)
The eigenvalues of this fourth order matrix are difficult to calculate. However,
we know that the eigenvalues are continuous. Therefore, for small w,, two of
the eigenvalues will be approximately w;, and the other two will be approx-
imately equal to the eigenvalues of the closed-loop system without washout
filters. The characteristic polynomial at the peak is readily shown to be {us-
ing the values in D’Ans and Kokotovié [34])

p(X) = A2+ (0.8477(k, — ky) + 1.0198) X\ 4 0.4322(k, — k,) + 0.26.  (8.41)
By the Routh-Hurwitz method, the stability condition is
ky — ks +1.20>0 and kr + ks < 0.60. (8.42)
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Figure 8.8: Maximum seeking process for the Monod model with initial dilu-

tion rate Dy = 0.9.

By choosing &, = 0 and k, = —0.2, stability condition (8.42) is satisfied.
The bifurcation diagram with Dy as the parameter is shown in Figure 8.15.
Note that a small amount of gain is sufficient to stabilize the entire branch
of equilibria under the maximum point. We use this feedback gain for the
extremum seeking simulation.

8.5.2 Simulation Results

As the starting point selected from Section 5.2, the initial dilution rate is 0.52.
The parameters are selected as follows:

ke =0,k=-02,0,=004,w=008,0=003,k=2, and w, =0.01.

The seeking process is shown in Figure 8.16 and the time responses for the
output y and the tuning parameter IJ are shown in Figures 8.17 and 8.18,
respectively. Extremum seeking, combined with a small amount of stabilizing
feedback, drives the system to the optimal equilibrium from a broad region of
initial conditions. Thus, the stabilizing feedback improves the operating range
of the system.

By applying extremum seeking to both Monod and Haldane models, we
have shown that it can optimize the steady-state operation of a continuous
stirred tank reactor in the face of uncertainty in the kinetics. The feedback is
passed through a washout filter to keep the same structure of equilibria but
only affect their stability type. As a result, the operating range of the system,
and thus the region of applicability of extremum seeking, is extended.
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Figure 8.9: Time response of the output with extremum seeking for the Monod
model with initial dilution rate Dy = 0.9.

Notes and References

An extensive introduction to the modeling and control issues for bioreactors
can be found in the tutorial paper [18]. For the feedback control of these pro-
cesses, in order to cope with the modeling uncertainties, adaptive techniques
have been mainly investigated in the literature (see, e.g., [17, 25, 111]) includ-
ing more recently adaptive neural network models [24, 108, 121]. This chapter
is based on [115]. In the Haldane model, a subcritical bifurcation prevents op-
eration with a satisfactory stability region near the maximum of the biomass
outflow rate. For this reason, a local stabilizing feedback is applied in [115]
to soften the bifurcation. This provides a good candidate for optimization by
the slope seeking method presented in Chapter 3. By doing so, we can achieve
operation at a point below the maximum and will not need a locally stabilizing
controller to stabilize the equilibria around the maximum (whose design needs
some knowledge of the local dynamics).



NOTES AND REFERENCES

0.91

1] TR SOTTSRINEY

0.8t

088

0.87

0.86

0.85

I

I
S SR

\

[

P

i

VAR AR AP

0 200

1 ' 3
800 800 1000

t

1 1
1200 1400 1600

L
1800

2000

113

Figure 8.10: Time response of the tuning parameter with extremum seeking

for the Monod model with initial dilution rate Dy = 0.9.
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Figure 8.14: Time response of the output with extremum seeking for the
Haldane model with initial dilution rate Dy = 0.52. The system starts at an
unstable equilibrium and falls into the wash-out steady state.
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Figure 8.15: Bifurcation diagram of output of micro-organism w.r.t. dilution
rate for a Haldane model with washout filters,
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Figure 8.17: Extremum seeking time response of the output with state feed-

back for the Haldane model with initial dilution rate Dy
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Chapter 9

Formation Flight

By flying in formation, similar to migratory birds [32], two or more aircraft can
achieve a significant (up to 20% per aircraft) reduction in power demand [26,
56], which can be exploited to improve cruise performance, such as range
and speed, or to increase the payload. This more efficient flight condition is
attained through aerodynamic interference, by the wingman (the "follower”
aircraft) riding upon the upwash field of the leader, like a glider in a thermal.

A distribution of wake velocity at two wingspans behind a C5-Galaxy is
shown in Figure 9.1: the lateral distance y and vertical digtance z from the
aircraft are normalized by its wingspan b. This shows the existence an opti-
mal configuration of the formation which yields maximal reduction in power
demand. Roughly, this is a configuration where the wingman rides upon the
peaks of the velocity distribution. This configuration can be reached and
maintained with dedicated automatic control on the wingman. In fact, at the
safe longitudinal separation of two wingspans, maintained between the aircraft
(specifically, between the wing of the leader and the wing of the wingman) for
collision avoidance [87], the effect of aerodynamic interference on the leader is
marginal (weak dependence of formation flight benefits upon longitudinal sep-
aration permits freedom in setting it [56]) and, in any case, beneficial. Thus, in
order to attain maximum-efficiency formation flight, only the wingman needs
to be controlled, while the leader can be assumed to be stabilized in straight
and level flight by an ordinary autopilot [27]. However, the sharp peaks of the
velocity distribution in Figure 9.1 also indicate a high sensitivity of formation
benefits to positioning error-this is shown in Figure 9.3. The figure plots rel-
ative range (relative to out of formation flight) versus lateral positioning error
of the wingman from the optimum gy, normalized by wingspan b. This brings
out clearly the criticality of accurate tracking in this problem.

The wingman control system is based on a formation-hold autopilot (an
autopilot capable of tracking relative position reference signals, i.e. wingman-
leader separations signals), which is fed an estimate of the optimal separation.
The estimate can be calculated from an aerodynamic interference model, or it

119
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Figure 9.1: Distribution of wake velocity.
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Figure 9.2: A cruise in formation.

can be generated by an adaptive feedback control scheme. Both these strate-
gies have been adopted in studies on the problem, which has lately been a
focus of intense interest, given the potential payoffs, and the availability of
enabling avionics and control algorithms.

Here, we present a generally applicable design procedure for minimum power
demand formation flight with performance guarantees and easily measurable
objective for extremum seeking. This goal is attained through the following
steps:

1. Modeling of aerodynamic interference as a multiple feedback nonlinearity
in the aircraft dynamics.

2. The design of a new wake robust formation hold autopilot.

3. Transformation of the closed loop aircraft dynamics to a form in which
the rigorous design procedure for extremum seeking from Chapter 2 is
applicable.

4. Application of the design procedure from Chapter 2 to attain stable



121

22

12 ship formation

-
[s1]

—
[+2}

5 ship formation

Relative range
-
N

1.2

2 ship formation

{03 30 T O T T T T T T T T T T T I Y T B
0 0.1 0.2 0.3 0.4 0.5

.y_Yapr
b
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extremum seeking minimizing the pitch angle of the wingman, an easily
measurable objective, accounting for wake induced uncertainties.

We apply the design procedure on a formation of Lockheed C-5bs, extend-
ing the use of maximum performance formation flight to large transports (the
C-5’s size is around that of the Boeing-747, and it is the largest military trans-
port used by NATQ). We use available experimental wake data of the C-5, to
develop a model of the aircraft in the wake that models aerodynamic interfer-
ence a8 feedback nonlinearities. Thus, this chapter presents stable extremum
seeking for a plant with nonlinear feedback. The choice of the C-5 for study
is motivated by the following: large transports flying long missions, mostly in
a cruise condition, can get a high economical payoff from the system; the C-5
has a consistent fleet, which will stay in service for 40 more years with new
avionics and engines [62, 95]; and experimental data on the wake of the C-5 is
available [43].

The chapter is organized as follows. In Section 9.1 we model wingman
dynamics in the wake of the leader. Section 9.2 details design of the new
formation-hold autopilot. Section 9.3 provides the transformation of the op-
timal formation flight problem to the framework for extremum seeking de-
sign, and the extremum seeking design for the C-5s in formation. Section 9.4
presents simulations {all simulations in this chapter were performed in MAT-
LAB and SIMULINK) of optimal formation flight of the C-5s in both calm air
and in turbulent conditions.
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Figure 9.4: Wake vortex roll-up and decay. (Reproduced from [49].)

9.1 Wingman Dynamics in Close Formation
Flight

The dynamics of an aircraft in close formation flight is much more complex
compared to the dynamics in free flight because of aerodynamic interference
{wake-induced forces and moments, which mean new terms in the equations)
that arises from the wake generated by other aircraft. Since this formation
flight phenomenon significantly alters wingman dynamics, its effects have to
be sufficiently captured in modeling for control design, to ensure reliable per-
formance of the control system in the real operating environment.

We solve the problem in four steps. We first develop a model of the wake
of the leading C-5 from available wake data [43], neglecting influence of the
wingman “far behind”. Based on this model, aerodynamic forces and moments
on the wingman in the wake of the leader are computed. Then an equilibrium
study for the wingman in the wake is performed, yielding powerful insight into
the physics of close formation flight benefits. Finally, the dynamics of the
wingman in the wake is derived from free flight dynamics.

9.1.1 Wake Model

The wake of an aircraft can be described by: vortex sheet generation and
roll-up, rolled-up wake structure, vortex transport, and vortex decay [49] (Fig-
ure 9.4). Two simplifying assumptions can be made immediately, thanks to the



9.1 WINGMAN DyYNAMICS IN CLOSE FORMATION FLIGHT 123

LH RH

vortex axis vortex axis

T\

Figure 9.5: Aircraft trailing vortices.

value of the longitudinal separation between the aircraft. In fact, the safe two-
wingspan figure is large enough for the roll-up to be complete, yet small enough
to neglect the slow vortex decay process [99]. Vortex transport, which involves
a change in orientation and a distortion of the vortex axes from their modeled
configuration, is difficult or impossible to predict [49]. This phenomenon trans-
lates into uncertainties of the order of 20 ft [49] on the optimal separations
of the wingman, enough to cut formation flight benefits by 50% [22]. Hence,
we model the rolled-up wake structure as two counter-rotating semi-infinite
straight vortices trailing from the wing [50], parallel to the flight path (the
leader is assumed to be in straight and level flight all the time), and separated
by a distance equal to the reduced wing span, b,.4, as shown in Figure 9.5
and later design the adaptation to account for the position uncertainty due
to vortex transport. For this purpose, the NASA-Burnham-Hallock tangential
velocity profile [22] is used, because it correlates well with experimental data:

_r_”
© 2mr (r2 4 r2)’

Vol(r) (9.1)
where V4 is the tangential velocity, I' is the circulation, r is the radial distance
from the vortex axis, and r. is the core radius of the vortex. The circulation
is given by

w
F = —-—————— .
pVoob'red’ (9 2)
and the reduced wingspan by
T
breqa = Zb’ (9.3)

where W is the aircraft weight, p is the air density, V. is the reference airspeed,
and b is the aircraft wingspan. Finally, based on experimental data [43], a 5
ft vortex core radius is estimated for the C-5 in the high altitude cruise flight
condition. The wake-induced velocity field obtained with this model is given
in Appendix C.
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9.1.2 Forces and Moments on the Wingman in the
Wake

Using the wake-induced velocity field, forces and moments on the wingman
in the wake of the leader are calculated, with an emphasis on simple model-
ing. This choice is crucial, because the alternative is to re-calculate the entire
straight and level aerodynamic database of the C-5 for flight in the wake, a
formidable task [23].

The closeness of aircraft conditions in the wake to trim conditions permits
splitting the forces and moments on the aircraft into two terms: a free flight
term, and an extra term due to flight in the wake. In this subsection we shall
only be concerned with the latter, for which some powerful simplifications can
be made. First of all, since the aircraft fly nearly straight and level and par-
allel, it can be assumed that extra forces and moments depend only on the
relative position, i.e. separations, between the two aircraft, and on no other
states. The relative position, Z,, and its components, the longitudinal, the
lateral, the vertical separations, respectively, x, v, z, are defined in Figure 9.6.
A second assumption can be made on the same grounds that allow decoupling
between longitudinal and lateral-directional dynamics in free flight. It refers
to specific forces and moments: the longitudinal and vertical forces, and the
pitching moment depend only on the upwash distribution; the lateral force
and the yawing moment are only due to the sidewash. No such simplification
is possible for the rolling moment which depends on both the upwash and the
sidewash distribution.

To determine the longitudinal and vertical forces, and the pitching mo-
ment, we assume that the effect of the upwash distribution is equivalent to
that of a uniform distribution obtained by averaging the actual one along the
wingspan [91]. Then we use the available stability derivatives to compute the
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forces and the moment in one shot. The average upwash, Wiuie, is given by

- 1 b
Wwake(m$ Y, Z) = ‘5/0 Wwake($, Yy + s, Z)C(S)dss (94)

where b is the wingspan, Wy is the upwash, ¢(s) is the chord distribution,
used as a weight for the average, and s is the lateral coordinate along the
wingspan originating at the left wingtip.

The rolling moment due to the upwash, Ly, is calculated using modified
strip theory [49]:

1 b
Luake(T, 9, 2) = —mipuVooaO/O Woake(Z, ¥ + 5, 2)c(s)Q(s)sds, {9.5)

Q(s) = E\J 1— F(S__b_b.@] , (9.6)
1 3TR—1
m= L = 9.7

where Q(s) is an elliptical weight, m is a correction factor, ap is the two-
dimensional lift curve slope, AR is the aspect ratio, and TR is the taper ratio.
A value of 5.67 is used for ap, as recommended in [49]. The rolling moment is
given in terms of the rolling moment factor R.M.F = —J-M&

Side-force and lateral-directional moments due to the ‘sidewash were calcu-
lated assuming a uniform distribution, equal to the value of sidewash at the
centerline, V(& . We use this simplification because sidewash-induced effects
are small compared to other wake effects. The sign convention for V.Ck | is
opposite to the one for Vygke.

With this simple modeling, both the longitudinal dynamics forces and mo-
ment, and the rolling moment are overestimated (although, a more careful
choice of the weights can improve accuracy). This, however, shall not be a
concern, because an overestimate of formation flight benefits leads to con-
servative design of the control system. More refined modeling, like vortex
lattice [22, 79], can be used for fine tuning and analysis.

The average upwash, Wygke, the rolling moment, Lyqke, and the sidewash,
VEL,, fields are shown in Figs. 9.7, 9.8, and 9.9, as functions of the lateral
separation, y, and of the vertical separation, z, at a longitudinal separation,

= 2b. In fact, there is no significant dependence upon the longitudinal
separation: hence a constant value of two wingspans will be used for all aero-
dynamic interference calculations.
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9.1.3 Wingman Equilibrium in the Wake

A comparison of horizontal rectilinear flight of the wingman in and out of
formation provides an estimate of formation flight benefits and links them to
a measurable quantity, which is needed for the adaptive online optimization.

The use of the average upwash concept to model wake-induced forces in the
vertical plane, permits proceeding in analogy with flight in uniform rising air.
Conclusions can then be reached with simple application of small perturbation
theory.

While in the wake, the wingman experiences the leader-induced upwash
field, which translates into an inerease of the angle of attack and thus of lift,
unless speed is reduced at the same time. Then, in order to maintain vertical
equilibrium at the same speed, the wingman has to pitch down. The more it
pitches down, the more the weight helps thrust balance drag, as shown in Fig-
ure 9.10, where V,;, is the airspeed, L is the lift, D is the drag, T is the thrust,
and the subscript form refers to steady-state in formation. Hence, thrust re-
duction, i.e., formation flight benefits, are related to the average upwash and
to the wingman steady-state pitch angle. The relationship is proportional and
specifically:

7 b~ —6 —S—T%Mdeg, (9.8)
where the subscript 0 refers to steady-state out of formation. Tj is 30,000 lb.

These conclusions have two important applications. First of all, they allow

AT = Tyorm — To & W
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estimation of both the maximum thrust reduction and the relative position at
which it is realized, by inspection of the average upwash plot, Figure 9.7:

ATpin _
ATy = ~130001b, ATy = —Z = —43%,  fnin = —1.13deg, (9.9)
0

Yopt = —24.64ft, 2, = O ft, (9.10)

where the subscript opt refers to the optimal configuration. Secondly, the
pitch angle of the wingman, which can be easily measured, can be fed to the
adaptive loop to achieve online optimization.

9.1.4 Wingman Dynamics in the Wake

The model is based on standard linearized decoupled dynamics in free flight,
since state deviations from trim conditions are small. The reference condition
chosen for design is cruise at Mach 0.77, 40000 ft, and 650,000 1b. Dynamics
are then given by

x = Ax + Bu,, (9.11)

where X = (Xing Xiat )T, U = (Ugony Ucrn )T and A =
diag (Aiong Aiat), B = diag(Biong Biat), and the subscript long stands
for longitudinal dynamics, and the subscript lat stands for lateral-directional
dynamics. The states, Xjong, Xiar, and the control inputs, Ucigng, Uere, are
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Figure 9.9: Sidewash at centerline.

given in Appendix C; stability derivatives are given in [53]. The dynamics
and the saturation points of the conventional controls of the C-5 have been
assumed, due to lack of data; they are given in Appendix C. The states can
all be measured with accelerometers and gyros, coupled with DGPS (Differ-
ential Global Positioning System) and datalink between the two aircraft for
separations [120]. From 2003, ring-laser gyros and DGPS will be standard
equipment on the C-5. The measurement of angle of attack in the highly
non-uniform wake-induced velocity field is not meaningful. Hence, its use in
feedback should be avoided.

While perfectly adequate for free flight, linear modeling is not suitable for
formation flight. Hence the dynamics of the wingman in the wake is derived
from free flight dynamics, by incorporating formation-related extra forces and
moments as feedback nonlinearities (see Figure 9.11):

X = Ax + Bu. + Fuyere(y, 2), (9.12)
where
ke 2) = (Woke2)  Luake(®,2) Vika(n,2)) | (9.13)
and
F:(gw gL FS) (9.14)

The wake influence matrix, F, is given in Appendix C, through its three
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Figure 9.11: Wingman in the wake.

non-zero partitions, along with the units and the sign conventions for the
wake-induced inputs, Wyage(y, 2).

9.2 Formation-Hold Autopilot

The task of the formation-hold autopilot is to drive the wingman to the relative
position (with respect to the leader in rectilinear flight) prescribed by the
extremum seeking algorithm. This translates into the capability of tracking
reference longitudinal, lateral and vertical separation signals.

The use of the autopilot in an adaptive loop with the purpose of maximum-
efficiency flight in an uncertain wake-induced velocity field, produces unique
design specifications:
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Figure 9.12: Formation-hold autopilot.

1. High speed tracking in a neighborhood of the optimal configuration to
ensure closed loop stability and speed of convergence with adaptation.

2. Ability to track large reference position signals to enable formation join-
in from afar.

3. Robustness of tracking performance to aerodynamic interference (This
is crucial to extremum seeking design).

The uniqueness of these requirements dictate a new design approach, de-
spite the availability of other formation-hold autopilots [45, 91, 101].

Architecture and Design. The structure of the autopilot is shown in Fig-
ure 9.12. It uses full state measurement (available through an Inertial Nav-
igation System, a DGPS, and a datalink between the aircraft). It consists
of the following: a relative velocities tracking loop (which includes a turn
coordination loop based on the sideslip angle &) designed in the error space
with the internal model principle [41] with the feedback gain designed by lin-
ear quadratic regulation (LQR) (this is implemented through the two internal
loops in Figure 9.12, one proportional to the state, the other proportional to
the integral of relative velocities error); a separations tracking loop with clas-
sically designed proportional derivative (PD) compensators in the outer loop,
along with rate limiters, placed between the inner and the outer loop. High
speed tracking is attained by using high gains; actuator and engine saturation
and integrator windup due to large join-in reference signals are prevented by
the rate limiters. The following is a compact representation of the closed loop
dynamics in Figure 9.12:

x=Ax+ B[E‘S/’—e‘ [(PDr — V, )] — Kyx — —I% Bl + Fuyake(y, 2), (9.15)
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where

T = Xrelper — ireh irel = (X Y Z)T ) Vrel = (Vx Vy VZ)T (916)

and
e _{ Kv. 0 Ky
Ky = diag (Kxpny Kope)» Kv,o = ( 0" Ky, 0 ) . (9.17)
and
kpz -+ /CDmS 0 0
PD = 0 kipy -+ kDyS 0. (918)
0 0 kp,+kp.s

All autopilot parameters are supplied in Appendix C.5.

Robustness to Aerodynamic Interference. This requires that the closed
loop dynamics in Eqn. (9.15) be stable at all points in the wake. Linearizing
Eqn. (9.15) about a point (g, 2), in the wake, we get

X—AX+B[ Vel [(PDI'“ rel)]_ x__[ﬁ]]+Fa—<(§’z)(C_C—)7

(9.19)
where ¢ = (y, ), and { = (7, £). The requirement of closed loop stability at all
points (7, Z) in the wake translates to stability of the system in Eqn. (9.19) for
a range of gradients 6—‘1“2.“&%(;1;, Z) of the feedback nonlinearity. The structure
of Eqn. (9.19) has motivated design of high autopilot gains to achieve desired
robustness of tracking performance to aerodynamic interference. The stability
of the autopilot so designed has been checked by root locus calculations for the
range of gradients expected in the wake. As a sample, Figure 9.13 shows the
root locus (poles are shown with crosses and zeros with circles; some very large
zeros in the transfer function are not shown) of the transfer function between
average upwash Wyake and vertical separation z for the range of gradients
in the average upwash field [—0.345, +0.345](ft/s)/ft. Figure 9.14 presents a
zoomed in version to show that the dominant poles hardly change resulting
in performance practically identical to free flight operation. Robustness to
aerodynamic interference is also illustrated by the simulation results below.

Simulation Results. Figs. 9.15, 9.16 show a typical approach to the opti-
mum assuming perfect knowledge of its position. The wingman is initialized
20 ft below and 20 ft to the right of the optimal position.

Two sets of time histories are shown for comparison: solid lines represent
the autopilot performance with aerodynamic interference, while dashed lines
represent autopilot performance without aerodynamic interference, which is
the condition in which it has been designed. Vertical and lateral scparation
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Figure 9.13: Autopilot root locus analysis: stability robustness in wake oper-
ation.

time histories exhibit almost identical performanece with and without aerody-
namic interference. The longitudinal separation error is not a concern, because
it does not have any significant effect on formation flight benefits, and because
it is well within safety margins for collision avoidance.

Elevator and ailerons deflections reach maximum values almost instantly,
to gnarantee maximum performance: longitudinal convergence time of 5 s, and
lateral convergence time of 10 8. Vertical acceleration (not shown) does not
exceed a peak of 0.3 g; lateral acceleration (not shown) is negligible, thanks
to turn coordination. Other simulation runs (not shown here for space rea-
sons) demonstrated good operation of the system starting at any distance from
the leader, without reaching actuator saturation. Far away, the rate limiters
set vertical approach speed at 500 ft/min and lateral approach speed at 250
£t /min.

As the optimum is reached, thrust is reduced by about 40%, as the aircraft
pitches down by about one degree, consistently with the equilibrium analysis in
section 9.1. The ailerons deflect by about 20 deg, compensating wake-induced
rolling moment. Like thrust reduction, this is an overestimate due to the ap-
proximate calculation of aerodynamic interference; yet it suggests that high
aileron trim drag is to be expected. A method to eliminate it is presented in
the discussion in Section 9.4.
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Figure 9.14: Autopilot root locus analysis: performance robustness in the
wake.

9.3 Extremum Seeking Control of Formation
Flight

The problem of minimizing power demand through formation flight appears
to fit intuitively into the framework of extremum seeking control. The choice
of objective used in this work (the pitch angle 8), however does not permit
the problem to fit into the standard extremum seeking framework for which a
rigorous design method is available. Hence, we transform our problem to fit
into the standard framework, and then perform design. We, the transformation
of our problem to fit the standard scheme of Chapter 2 in Subsection 9.3.1,
and our design in Subsection 9.3.2.

9.3.1 Formulation as a Standard Extremum Seeking
Problem

We show here that the extremum seeking scheme in Figure 9.17 can be trans-
formed to the form in Figure 2.1, in which we can then use the available design
algorithm. We achieve this objective through the following steps:

1. Write state space representations of the dynamics from the output of
extremum seeking (Yref, 2ref) to the relative position (y, z), and to the

pitch angle 6:

klo‘ng = Alung "Blonngl,m Xiong
g
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Figure 9.17: Extremum seeking for formation flight.

K
+Blong[TVZ[(kPa: + kDo) [Trey — 2] — Vo]
K _
+Blong[TVZ[(sz + szs)[Zref - Z] - Vtz]] + FWWwake(yv z)
2z = CzXlgng, f= Cﬁxlong' (920)
and
Xlat = (Alat - Blathmt) Xiat
Ky,

5 (kpy + k) rer — 8]~ Vil — 22 3]

+FLLwake(y7 z) + FVV&Lke(y: Z)
Yy = CyXia, (9.21)

+Blat[

where K, = (Kg,, Kg,) . Now let the transfer functions in free flight
{with all wake terms zero) from the reference positions to the position
be:

y(8) = Fu(8)yres(s) (9.22)
2(s) = Fo(8)zres(s). (9.23)

2. Since the autopilot has been designed to be asymptotically stable at all
points in the wake, we can write the following transfer function repre-
sentations from the linearizations of Eqns. (9.20), and (9.21) at a point
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{9, Z) in the wake:

dy(s)
§z(s)

Fia(s)(1 + A1(8))6yres(s) (9.24)
Fia(s)(1 + Ag(5))02zpes(s), (9.25)

where the uncertain transfer functions A;(s) and Ay(s) arise from the
wake feedback nonlinearities.

Use the free flight dynamics with the autopilot to estimate the contribu-
tion to pitch angle 8, of the vertical separation reference signal z,es:

jf'(lrmg = (Along - Blonnggang) ilang
K
+Biomgl (K + kpys) ey — 2] = Va]

K;
+Bl0ﬂ!)[—;&[(k1’z + szS)[z’fﬂf - Z] - ‘/Z]]
02 = Cﬂilonga (926)

Subtract 8, from # to estimate the pitch angle due to the upwash @,

élang = (Along - Blonnglong) elo'ng + FWWwake(y, Z)
Oy = CoClong, (9.27)

where -1

e =x— % If we define F,(s) = Cp (SI - (Along — BgonnglQng)) Fw,
the linearization of Eqn. (9.27) at some point (7, Z) in the wake yields
08y, = Fo(s)(1+ Ay(s))d2res(s) where A,(s) depends upon the gradient
of the wake field at (7, 2) and F,(s){1+ A,(s)) is exponentially stable at
all points in the wake from autopilot design. Finally, closed loop aircraft
dynamics in Fy(s) are much faster than those in the position tracking
dynamics.

Using the fact that the wake nonlinearities are bounded, we use the
following representations for the purpose of extremum seeking design:
4(s) = Fia(5)res(s) +1y), 2(5) = Fia(8)(zres(s) + ns) and O,(s) =
Fo(8)(Wsare(y, 2)). Treatment of the wake terms as bounded noise does
not alter performance of the extremum seeking scheme [5]. The finite
range of slopes (from 0 to a maximum value) of the wake nonlinearities,
and the small variation of system poles during motion in the wake due
to the high gain autopilot design ensures that the dynamics are linearly
stable at all points in the wake.

The wake nonlinearity Wyue(y, 2) maps the outputs of the transfer func-
tions Fj;(s) and Fis(s) to the input of F,(s). Since it has a minimum, it
can be represented locally around the minimum in the form in Eqn. (1.13)
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Figure 9.18: Equivalent block diagram for extremum seeking design.

with piecewise constant 8* and f*. Hence, we can write the closed loop
adaptive system in Figure 9.17 in the form in Figure 9.18 for the purpose
of extremum seeking design. An alternative means of transforming the
system for design of stable extremum seeking is to directly analyze the
closed loop adaptive system using the methods of averaging and singular
perturbation, a lengthy procedure.

Thus, we have a system that satisfies the conditions in of Theorem 2.8
under which the design algorithm for extremum seeking can be applied. For
the purpose of design, we use the transfer functions in free flight as the nominal
system and perform extremum seeking design upon it in the next subsection
taking into account the wake-induced uncertainty. This is justified by the fact
that operation in the wake produces only small changes in the closed loop
dynamics with autopilot.

9.3.2 Extremum Seeking Design for Formation Flight

We observe that the extremum seeking design for minimum power demand
formation flight must, for practical implementation, satisfy the following re-
quirements: achieve stable tracking of the optimal position from afar (at least
as much as the uncertainty in vortex position) in the face of wake induced un-
certainty in the transfer functions A;(s), As(s) and A,(s) and the map second
derivative; converge to the extremum fast enough to enable maximal extraction
of formation benefits under varying conditions; avoid positioning the wingman
far into the downwash region of the leader {where control authority may not be
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sufficient to stabilize aircraft) by avoiding overshoot in the transient response,
and provide reasonable robustness of performance to unexpected atmospheric
turbulence.

We design two extremum seeking loops: one for attaining optimal ver-
tical separation, and the other for attaining optimal lateral separation be-
tween the aircraft. For the process of design, we assume step variations in
the optimal separations, i.e., ['y(s) = I';(s) = 1/s, and in the magnitude of
average upwash velocity at the optimal position I'y,  (s) = 1/s. We also
simplify the design for C;,(s) by setting ¢, = —Z(F,(jw,)), and obtaining
Xpg(s) = %H’Ep(jwp)[ﬂrip(s)-

We first apply the Design Algorithm 2.2.1 to design of the vertical sepa-
ration optimization loop that sets the reference z,.; for the longitudinal air-
craft dynamics with autopilot. We choose forcing frequency w; = 3 rad/s
{about twice the speed of the dominant poles of the longitudinal dynam-
ics with autopilot) to ensure separation of time scales. Forcing amplitude
a; = 0.1/]F1(jw)| = 1.22 ft is chosen so as to achieve an oscillation of
0.1 ft in aircraft vertical separation z. The output compensator is chosen
as Co1(8) = 1/(s+ hy) with hy = wy = 3 to achieve washout action. The phase
of the demodulation signal is chosen as ¢y = —/Fy; (jw;) = —1.8 rad. Finally,
the input compensator is chosen as a simple gain Cj(s) = ki = 700.

Next, we apply the Design Algorithm 2.2.1 to design of the lateral sepa-
ration optimization loop that sets the reference y.s for the lateral-directional
aircraft dynamics with autopilot. We choose forcing frequency we = 1.5 rad/s
(about twice the speed of the dominant poles of the lateral-directional dy-
namics with autopilot) to ensure separation of time scales. Forcing ampli-
tude ag = 0.1/|Fj2(jws)| = 1.58 ft is chosen so as to achieve an oscillation of
0.1 ft in aircraft lateral separation y. The output compensator is chosen as
Co2(s) = 1/(s+ hz) with h; = ws = 1.5 to achieve washout action. The phase
of the demodulation signal is chosen as ¢3 = —/Fj3(jws) = 1.45 rad. Finally,
the input compensator is chosen as a simple gain Ci(s) = ko = 175.

9.4 Simulation Study

We present here two sets of simulation results showing time trajectories of
relative position, extremumn seeking objective fy,, and actuator and engine
outputs: one in calm air (Fig. 9.19), and the other showing a brief encounter
with clear air turbulence, or CAT (Fig. 9.20). For the simulation in calm
air, such as that for the autopilot simulation run, the wingman is initially 20
ft below and 20 ft to the right of the optimal position (this will in practice
be the best available estimate of the optimal position due to the uncertainty
introduced by vortex transport [49]). The simulation of the brief encounter
with CAT starts in calm air (this is typical, as the system would not be
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used in known turbulent conditions), at the optimal position with turbulence
beginning at 40 seconds.

The states of the longitudinal dynamics, with the exception of the elevator
servo states and the engines state, are initialized close to their trim condition in
the wake. This initialization, or trimming, is essential for stable functioning of
the system as extremum seeking offers only a local stability guarantee. No such
initialization is needed for the lateral-directional dynamics as the objective 6,
is a function of states in the longitudinal dynamics only. The turbulence model
includes vertical and lateral gusts with standard Dryden spectrum for CAT
at 40000 ft. The plots show steady state values in dashed lines and system
performance in solid lines.

The overall result is that engines output is in the neighborhood of steady-
state reduction after 80 seconds, although convergence is complete only after
about 120 seconds. The speed of convergence of the adaptation is ultimately
limited by the speed of the aircraft dynamics with autopilot. Here, the gains
usable in extremum seeking design are limited by the presence of nonminimum
phase zeros in the aircraft dynamics. A possible solution to this problem may
be to use direct lift control. The simulation results show several aspects of the
design that render practical application of the design procedure in this chapter
feasible:

1. Ensures that there is no overshoot in the lateral separation (y) tracking.
This is essential to prevent the wingman from entering the downwash
region of the leader’s wake where roll-control authority may not be suf-
ficient to stably maintain aircraft position.

2. The amplitude of steady-state pitch angle oscillation 8, is 0.2 degrees,
which is sufficient for accurate measurement.

3. Steady-state actuator oscillations are reasonable: elevator oscillations
are about 2 degrees at a frequency of 3 rad/s; ailerons and rudder oscil-
lations are, respectively, about 4 degrees, and 1 degree at a frequency of
1.5 rad/s. To reduce actuator wear due to the probing signals, extremum
seeking can be switched on or off using dead-zone nonlinearities before
the extremum seeking integrators depending upon the distance from the
optimum.

4, Actuators do not hit saturation.

The performance in clear air turbulence (CAT) reveals some fundamental
limitations of the extremum seeking method. In fact, the average upwash in the
wake has a peak of about 15 ft/s, and the CAT has velocity fluctuations of the
order of 10 ft/s. This produces several transient local maxima in the upwash
field that mislead the extremum seeking algorithm, which is based essentially
on gradient estimation of the upwash field. A practical solution to this problem



NOTES AND REFERENCES 141

is switching off the extremum seeking when the vertical acceleration exceeds
an acceptable level of 0.2g. This approach was implemented with the addition
of a relay and two switches to the scheme, and has been successfully tested in
simulation (the results are not shown here due to space limitations).

This study did not consider trim drag due to flight in a wake. Aileron
trim drag, which is the most persistent, can be balanced by asymmetric fuel
loading—more fuel on the left wing tank. If the aircraft has an aft fuel tank,
fuel shifting can be applied to cancel elevator trim drag; in any case this
contribution is negligible, because the angle of attack change from free to
formation flight is almost zero. Finally rudder trim drag can be eliminated
using slightly asymmetric thrust.

Notes and References

The model-based open-loop approach for minimizing power demand in forma-
tion has been employed in prior work [45, 91, 101]. Its effectiveness is limited
by the uncertainty of aerodynamic interference modeling, accompanied by high
sensitivity of power demand reduction to positioning: an error of just 10% of
the aircraft wingspan can reduce the benefits by half [22]. The need for ac-
curate steady state performance in the presence of modeling uncertainty calls
for adaptive feedback control. This has been done through extremum seeking
algorithms [27, 56]. In [56], a simple discrete time extremum seeking algorithm
to maximize aileron deflection was used to attain a power demand reduction of
20% in experimental flight tests of two Dornier aircraft in formation. In [27],
simulation studies of a continuous time extremum seeking algorithm to maxi-
mize induced lift were presented. This chapter is based upon [20].

Our design can be extended to the case of maneuvering flight. The ar-
chitecture of the lateral-directional part of the autopilot has to be changed,
in order to track the heading reference signals, instead of lateral separation
signals. An outer loop has also to be added to this and can be designed as
in [91] . The longitudinal part of the autopilot does not need any modifi-
cation. The extremum seeking algorithm used is capable of tracking general
time variations in the location and the value of the maximum upwash velocity.
Designs for formations involving more aircraft will need to consider issues of
string stability.
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Chapter 10

Combustion Instabilities

Lower emission requirements have motivated development of lean premixed
combustors for industrial gas turbines. Their susceptibility to thermoacoustic
pressure oscillations, and subsequent decreased durability have motivated a
large body of research on combustion instability control. Prior experimental
results and model-based analysis show that pressure measurement and a simple
phase-shifting controller with an appropriately chosen phase-shift to actuate
either fuel-injection or a loudspeaker is sufficient for suppression of oscillations,
given enough control authority [12, 31, 52, 71]. The difficulty in determining
the optimal phase shift that minimizes pressure oscillations, either by analysis
or by experiment, especially in large industrial-scale combustors that operate
over a wide range of conditions, has led researchers to call for the use of
adaptive schemes [103].

This chapter provides an adaptive scheme to find the optimal phase shift
online (from pressure measurement to fuel-injection), that is based on ex-
tremum seeking and motivated by physical modeling; identifies a closed loop
model with phase-sghifting control of combustion instability from experimental
data; supplies stability analysis of the adaptive scheme based upon the iden-
tified model; develops stable extremum seeking designs and provides the first
successful result on oscillation minimization in an industrial-scale 4AMW gas
turbine combustor'. The algorithm achieved the objective of monotonically
reducing oscillation amplitudes below uncontrolled levels from all initial condi-
tions. An Extended Kalman Filter [72] based frequency tracking observer [15]
was used to reliably detect the in-phase and quadrature components of the
dominant bulk mode of pressure oscillation over a wide range of operating
conditions (bulk mode frequency varying from 150Hz to 250Hz). This pre-
vented other frequencies and noise from entering the phase-shifting feedback.
The control phase was updated using classical perturbation-based extremum
seeking (Chapter 1) while the control gain was fixed.

!Conducted on a single nozzle rig at United Technologies Research Center (UTRC) in
August 1998. Followed by experiments in [61] and [86].

143
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The chapter is organized as follows: Section 10.1 presents experimental
closed loop identification of an averaged model of pressure magnitude dynam-
ics; Section 10.2 presents control-phase tuning by extremum seeking along with
stability analysis, Section 10.3 presents adaptive oscillation attenuation on the
4MW single nozzle rig, and Section 10.4 discusses instability suppression dur-
ing engine transient conditions.

10.1 Identification of Averaged Pressure Mag-
nitude Dynamics

Closed loop identification experiments were conducted with the purpose of
identifying an average model of pressure magnitude dynamics:

iy = —aff) (zo — g(fe)) (10.1)
A = zg+u, (10.2)

where a(f.) > 0 are the time constants of the exponential relaxation pro-
cesses at the equilibria A = g(6,) of (10.1) , A is the measured instantaneous
pressure magnitude, and v is a colored noise modeling pressure magnitude
fluctuation (due to turbulent velocity fluctuation in the nozzle). The form of
this model was motivated both by model analysis and by the nature of ex-
perimental data. In experiments the control phase input 8.(¢) is provided and
response of the pressure magnitude estimate A(t) from the frequency tracking
Extended Kalman Filter described in [15] is recorded. The equilibrium map
¢(6,) is obtained by fitting a curve through the equilibria found from steady
state experiments, and decay rates a(f,) at these equilibria are estimated from
cumulative averaging of several step responses (the steps are in the controller
parameter) to eliminate noise. A linear colored noise model (independent of 6,)
is obtained to fit the spectrum of the fluctuating component v in experimental
data?.

Identification of Equilibrium Map. An experimental equilibrium map is
obtained by varying 8. in a phase ramp/staircase of discrete steps from 0° to
360°: B.(t) = 8s[t], where [¢] denotes the greatest integer less than time ¢, and
f.; = 15° is the discrete increment in 8, in each step. The duration of steps
is sufficiently long (1 sec) to allow for the transients in pressure magnitude to
settle down. The steady-state values are estimated by averaging the magnitude
data after the transient is over. From experimental data at 60% full combustor
power shown in Fig. 10.1, there does seem to be a smooth variation of the
steady-state magnitudes of thermoacoustic instability with 8, along a single

2Youping Zhang fit the output noise model using combustion data and implemented the
identified model in SIMULINK.
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curve, and there is a definite minimum oscillation magnitude at a certain phase.
A parametrization for the static map, motivated in part by analysis [11] and
in part by the shape of the experimental static map itself, is:

B 1+ Lsin(f, — 0* —n/2)
9(6c) “7{1+Msin(96—-9* *W/Q)}

(10.3)

where 6, is the phase of the phase shifting controller, and g(f,) is the steady-
state oscillation magnitude. Note that the map is parametrized with only four
parameters. The parameters are obtained by fitting the parametrization to the
experimental data by a nonlinear least squares fit. For the experiment at 60%
full combustor power, the parameters obtained were v = 0.1246, n = .7659,
¢ = 0.6286, 8* = —0.6094.

Identification of Decay Rates. Experimentally, the magnitude transients
are obtained by introducing a large square wave variation in the control phase.
The duration of the pulses is long enough (2 sec) to allow settling of the
transients of each step, and the upper and lower values of 8, in the pulses are
chosen so as to ensure an observable difference in equilibrium magnitude g(d.),
typically 90 degrees.

To eliminate noise in the transient measurements, a cumulative averaging
of the various step responses in a given square wave response is performed.
We assume that the noise is zero mean, its autocorrelation function decays
to zero within half pulse period T, and that the magnitude transients settle
within half pulse period T. Time traces of transient responses are averaged
cumulatively to obtain the N** estimate of the magnitude time-trace:

(/7]
A= /Tl T L Al (10.4)

where A(?) is the measurement of magnitude as in the previous section, T' = 2
sec is the time period of the pulses, and [t/T] denotes the greatest integer
less than ¢/T. The transients due to the upward and downward steps are
averaged separately, since they represent transients at different equilibria. The
corresponding final averages are shown in Figure 10.2. In the figures, the
smooth curves of the exponential fits are superimposed over the rough curves
from cumulative averages.

In the case where we can measure the magnitude perfectly without noise,
direct integration of Eqn. (10.1) yields a(fg,) as

A —Alt+9)
a(fgy) = 2 Ao)do — sg(fgn)

Yt st [%] =’f(t—;s—)] , and Vs < T/2, where g, is the final phase of
the phase step. However, since we do not have noise-free data, we estimate

(10.5)
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Figure 10.1: Static map from control phase #, to oscillation amplitude A

the exponent from the N cumulative average of the measured transients
(Eqn. (10.4)) as follows:

A(NT) — A(NT + Tyetste)
II\IJ\'T;+TSSttlE A(a)do - T:settleg(gﬁn) ’

() = (10.6)
Here, we approximate A(NT) = g(6;,), and A(NT +Tyesie) = g{0ga), where 85,
is the starting phase of the phase step, NT is a step time instant, and Tiee is
such that the magnitude transients settle within it. The exponents &(6,.) {4, in
degrees) thus calculated are indicated on Figure 10.2. The identified pressure
magnitude dynamics and the colored noise model have been implemented in
SIMULINK for simulation studies of the adaptive algorithm to narrow the
range of adjustable parameters and thereby minimize experimental time and
expernse.

10.2 Controller Phase Tuning via Extremum-
Seeking

The optimal phase shift, being a function of the operating conditions, and be-
ing dependent upon several unknown parameters that are difficult to estimate
(like heat release time delay 7) is tuned online by extremum seeking for the
following reasons:
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Figure 10.2: Estimate of the decay rate

1. The stable combustion process and actuator dynamics (around 200Hz)
are much faster than the pressure magnitude dynamics (= 10Hz) as ver-
ified by experiment in Section 10.1, and therefore permit the problem
to be reduced to simply the reduction of the pressure amplitude (the
dynamics of the frequency tracking observer are also as fast as the com-
bustion process dynamics it observes).

2. Direct availability of the phase-shift 8, for tuning, and the magnitude
A(t) = {/pc(t)? + po(t)? for measurement as an objective to minimize,
through the frequency tracking observer (p.(¢) refers to in phase compo-
nent, and pqy(t) refers to the quadrature component).

3. The equilibrium map g(#.) of pressure amplitude versus control phase is
smooth, unique, and has a unique minimum.

4. Perturbation-based extremum seeking provides guarantees of stability
and convergence of 6, to its optimum; this can be proved as in Chapter 5
using the separation of time-scales between the slow update of 6, and
the faster magnitude dynamics.

A modified version of the classical extremum seeking scheme implemented
for phase-shift tuning is shown in Figure 10.3. The extremum-secking algo-
rithm used in this chapter relies on a small sinusoidal variation of 8, with
frequency w and amplitude ¢ to obtain a measure of the gradient of the map
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v

Figure 10.3: Extremnm seeking scheme

g(6.)®. Instead of a simple washout filter, it uses a magnitude observer to
extract the in-phase and quadrature components of the magnitude estimate
of A at the frequency w. The magnitude observer decomposes the magnitude
estimate signal into constant, in-phase, and quadrature component (the last
two relative to the phase perturbation signal sin{wt)). The transfer functions
from the magnitude estimate to the in-phase and quadrature components are
given below:

_ lgS + u)l1
Culs) = 83+ (o + 13)s% + (w? + hiw)s + [w? (107)
Cu(s) hs = wly (10.8)

58 + (lg + l3)52 + (CUQ + llw)s + lg(.dz ’

where [; = —0.016, [, = 1.996 and [3 = 1.996 were chosen for stable observa-
tion. The sine and cosine components of A are demodulated by asinwt and
a coswt respectively, and then summed up and passed through the integrator
which has a gain k.

Parameter Selection. To aid selection of extremum seeking parameters
w, a and k to ensure stable extremum seeking, we performed simulation stud-
ies with extremum seeking applied to the averaged model identified in Sec-
tion 10.1. Systematic design with Algorithm 1.2.1 is not possible here as the
range of forcing frequencies used (6 — 90rad/s) overlapped with the range of
plant time constants a(f,) € [15,45] rad/sec in the identified models. Here,
in hindsight, we can use the time-varying stability test of Chapter 1 to deter-
mine a priori the variation of performance of the extremum seeking scheme
with design parameters. It can especially be used a priori to rule out destabi-
lizing designs, or designs that are sensitive to noise frequencies in the operating
environment.

3 A different approach in [122] uses the triangular search algorithm, which uses three past
sampled average magnitude values to determine the new control phase.
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Figure 10.4: UTRC single-nozzle combustion rig (4 MW)

10.3 Experiments with the Adaptive Algo-
rithm

A cost-effective alternative to both engine and full annular combustor testing
is to test a sector cut from the full combustor annulus containing one or several
fuel nozzles. In this section we present results of experiments in United Tech-
nologies Research Center conducted on 4 MW Single Nozzle Rig in August
1998 using full-scale engine fuel nozzle at realistic operating conditions. Rig
schematics are presented in Figure 10.4. About 10% of the net fuel was mod-
ulated for control purposes using a linear proportional valve (For more details
on the UTRC experimental rigs see [31).). The control gain is fixed and only
the control phase is updated using the algorithm described in Section 10.2.

Performance specifications for the adaptive algorithm have been defined
for algorithm initialization transients and engine acceleration transients: when
initialized with a phase corresponding to amplification of oscillations, the algo-
rithms should quickly produce and maintain phases corresponding to suppres-
sion of the oscillations; during engine acceleration transients the algorithms
should bhe able to suppress oscillations relative to uncontrolled levels.

The dependence of the mean pressure magnitude and frequency of the cor-
responding mode on the control phase has been determined experimentally at
several power conditions, so that the optimal control phase 8 was known a
priori. This information let us check the performance of the extremum-seeking
algorithm. To test the transient performance of the adaptive algorithm, initial-
ization transients are introduced, where the initial control phase 6,(0) differs
significantly from @7. We show time traces of control phase and pressure mag-
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Figure 10.5: Initialization transient for higher power: Time traces of control
phase (top) and pressure magnitude (bottom).

nitude as functions of time during initialization transients in Figure 10.5 for
combustor operation at 73% of full power, and in Figure 10.6 for combustor
operation at 60% of full power. The parameters for the extremum secking for
the higher and lower power experiments are respectively f = 1Hz, a = 15°,
k = 1000, 6,,(0) = 60° and f = 1Hz, a = 15°, k = 150, 6,,(0) = 115°. The
pressure is in pounds per square inch. The optimal control phase is shown
as a dotted line in the upper half of the figures, the bottom halves of the fig-
ures show the magnitude of the pressure oscillation amplitude with a low pass
filtered average superimposed. Also shown in the bottom half of the figures
are the average magnitude of oscillations without feedback control (as a solid
line) and the minimal oscillation amplitude attained by extremum seeking
(as a dotted line). Figures 10.7 and 10.8 show dependence of low-pass filtered
pressure magnitude on the control phase overlaid over a sketch of the map rep-
resenting the mean pressure magnitude dependence on the control phase from
control ramp experiments. For the frequency f = w/2r of sinusoidal variation



10.3 EXPERIMENTS WITH THE ADAPTIVE ALGORITHM 151

file r56p35 ,Date & Time of Capture: Wed Aug 19 11:57:17 1998

control phase

magnitude of bulk mode

o NI e ¢
0 5 10 15 20 25 30
Performance measure 1 = 4.22786, Performance measure 2 = 5.375

time (seconds)

Figure 10.6: Initialization transient at lower power: Time traces of control
phase (top) and pressure magnitude (bottom).

introduced in the control phase below 10Hz (corresponding to a separation
of time-scales), integrator gain k ranging from 150 to 1000, and amplitude of
forcing a = 10°,15°, the algorithm behaved very well at high power condi-
tion (medium noise and small pressure oscillations) and reasonably well at low
power conditions (large noise and pressure oscillations). On reaching a neigh-
borhood of the optimal value, the control phase usually stayed in a reasonably
small neighborhood of that value, rarely produced control phases correspond-
ing to level higher than uncontrolled levels, and always provided better average
pressure oscillations levels than uncontrolled levels. For further details on the
experimental attenuation of pressure oscillations using the extremum seeking
algorithm described in this chapter, see [14].

It has been inferred that the major factor affecting the performance of
the extremum-seeking schemes is the "noise” present in the pressure magni-
tude. This noise component (denoted by v} was introduced in the model in
Section 10.1; the noise can be attributed to an effect of turbulent flow in the
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Figure 10.7: Initialization transient for higher power: pressure magnitude as
a function of control phase.

nozzle. The changes in operating conditions appearing during engine acceler-
ation and deceleration are likely to resemble the transients between different
power levels on the single nozzle rig. In experiments, the frequencies of the
pressure modes, the mean pressure magnitude levels, and noise levels varied
significantly between power levels.

It was determined that in order to work in a simulated transient from low
to high power conditions, the classical algorithm would have to be modified to
allow for adaptive gain change (by a factor of five). One fixed gain k& would
not work at both low and high power conditions.

10.4 Instability Suppression during Engine
Transient

In this section, we simulate an extremum seeking design under an engine tran-
sient upon the closed loop model identified in Section 10.1. For the purpose
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of our simulation example, we use parameters identified from data at 60%
power and 73% power. At 60% power, v = 0.1246, n = 0.7659, * = —0.6094
and ¢ = 0.6286. At 73% power, v = 0.0454, n = 0.4323, §* = —0.4001, and
¢ = —0.2419. The curve fit for () from [100] used in the simulations is:

o) = a1 sin(8 — 6* + az) + as, (10.9)

where a; = 26.15, ay = 0.6094, a3 = 44.8750. Above, we showed successful at-
tenuation of oscillations in experiments at fixed combustor power. A problem
that remains is to attain attenuation of oscillations during fast engine tran-
sients, where all the map parameters change. Here, we show in simulations
that fast tracking can be achieved.

We simulate the engine transient as a ramping of all the model pa-
rameters in Eqn. (10.1) from their values at 60% power to those at 73%
power in 5 seconds, starting at time 10 seconds. For the purpose of de-

signing the extremum seeking controller, we use Fi(s) = 1, Fy(s) = e
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Figure 10.9: Large amplitude modulation

o € [18,71], Dy(s) = 1, Tg(s) = . We design w = 30rad/s, Co(s) = 3, and
Ci(s) = k(.01 + 1.01s + 1) that satisfy the stability test in Proposition 1.5.
We illustrate two designs, one with & = 300, ¢ = 0.3, in Figure 10.9, and
the other with & = 600, a = 0.04 in Figure 10.10 (Note that A*(¢) and 9*(¢)
are in dotted lines and A and # are in solid lines). Comparison of the two
simulations shows that a large amplitude modulation signal a greatly reduces
noise sensitivity and produces a more oscillatory output. But as we see from
the Figure 10.9, this can be acceptable since the sinusoidal forcing is greatly
attenuated as it passes through the plant. Another point to be noted is that
the designs are robust to the change of second derivative of the map from one
operating point to another (the change in f” here is about a factor of 10). In
both cases, the algorithms were initialized at worst case amplitude Aq = .13.

Notes and References

Control of thermoacoustic instabilities has of late been a focus of intense re-
gearch. Many researchers have developed successful experimental controllers
(see [2, 3] for references). Several control strategies have been applied to sup-
press thermoacoustic instabilities, some model-based, and some empirical. All
the control strategies sense the pressure fluctuation in the combustor, and feed
it back through actuation by loudspeaker, by an auxiliary fuel source, or by
modulating the main fuel supply. Most of them have been applied to the case
where the acoustics are dominated by a single harmonic, and the control objec-
tive is then to reduce its amplitude. Many of the controls, that actuate the fuel
flow with time-delayed/phase-shifted measured pressure fluctuation have been
motivated by the Rayleigh criterion. Extremum seeking was applied in [11]
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Figure 10.10: Small amplitude modulation

for the suppression of thermoacoustic instabilities in a gas turbine combustor.
Extremum seeking was used to tune the phase-shift 8 of a Rayleigh-criterion
motivated phase-shifting controller that uses pressure measurement and ac-
tuates fuel-flow. This chapter is based on [5, 11]. The material presented
can also be viewed as an application of the scheme of Chapter 6 as actuator
limitations preclude complete suppression of the combustion oscillations.
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Chapter 11

Compressor Instabilities: Part I

In recent years, aeroengine compressor systems have become a subject of
major interest to control engineers. There are two types of instability in
compressors—rotating stall and surge. While surge can lead to engine dam-
age, rotating stall can cause a sudden drop in performance. Feedback control
is necessary to avoid these two instabilities.

A basic understanding of the effects of rotating stall can be gained by
considering the operating characteristic in Figure 11.1. Since, in the operation
of a compressor, the objective is to increase the pressure rise ¥, the operating
peint is moved along the axisymmetric characteristic to lower values of flow
®. If the operating point is moved beyond the peak, the compressor drops
into a regime with drastically reduced pressure rise. Moreover, an attempt to
return immediately to the regime of high pressure is defeated by the presence
of a hysteresis.

Frequencies of higher-order modes of fluid dynamic phenomena, participat-
ing in rotating stall and surge far exceed the bandwidth of available actuators.
For this reason, the most meaningful approach to control design is via low-
order models. The simplest model that adequately describes the basic dynam-
ics of rotating stall and surge and their interaction is the three-state nonlinear
model of Moore and Greitzer [84] —MG3—which is a Galerkin approximation
of a higher-order partial differential equation (PDE) model. Even though this
model represents a simplification of the dynamics of a real compressor, it has
been the cornerstone of some of the most successful feedback control designs
which have been validated experimentally.

The basic MG3 model, besides having three states, models the compressor
nonlinearity with a third order (cubic) polynomial. Many experimental com-
pressors [77, 19] have non-cubic characteristics that create a deeper hysteresis
in the rotating stall diagram. Figure 11.1 gives an example of an experimental
characteristic [19] for a compressor in the laboratory of Richard Murray at
California Institute of Technology. The deep hysteresis denoted by diamonds
is not seen on a corresponding MG3 model.

157
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Figure 11.1: Axisymmetric and rotating stall characteristics of an experimental
compressor at Caltech. The stall characteristic exhibits deep hysteresis.

It was first observed by Jankovié [60] that the deeper hysteresis intro-
duces a fundamental obstacle to control design. The source of this obstacle
is a (nonlinear) nonminimum-phase property not present in the MG3 model.
Sepulchire and Kokotovié [102] developed a “two-sine” model that can describe
deep-hysteresis compressors in the region of nominal operation and explored
conditions for feedback stabilization of these compressors. However, [102] uses
Bessel functions, which prevents easy comparison with the basic MG3 model
and its bifurcations [80].

In this chapter we present a new parameterization which is based on a con-
vex combination of the cubic compressor characteristic and another simple but
non-polynomial function. With this combination, we achieve deeper hysteresis
compressor characteristics which can be used to model compressors with the
deep-hysteresis property. The model uses a single parameter € to describe an
entire family of compressors. We develop a family of controllers which are
applicable not only to the particular e-MG3 model, but also to general Moore-
Greitzer type one-mode models with arbitrary compressor characteristics. We
show that each of our controllers achieves a supercritical (soft) bifurcation,
that is, instead of an abrupt drop into rotating stall, it guarantees a gentle
descent with a small stall amplitude.

Deep-hysteresis compressors were dubbed right-skew by Art Krener, and
low-hysteresis compressors were termed left-skew. We shall use this terminol-
ogy here. The stabilization designs we present in this chapter require minimal
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Figure 11.2: Compression system.

modeling knowledge—only the angles of arrival of the stall characteristic at
the stall inception point—which are easy to determine from experimental bi-
furcation diagrams. QOur results confirm experimentally observed difficulties
for control of compressors that have a high value of Greitzer’'s B parameter.

As the main result of this chapter, we employ extremum seeking to achieve
maximization of the compressor pressure rise in the presence of an uncertain
“compressor characteristic” whose argument of the maximum is unknown.
Actuation (and sensing) requirements for extremum seeking are much less
demanding than those for stabilization of stalled equilibria.

This chapter is organized as follows. In Section 11.1 we derive a model
that we refer to as the e-MG3 model and in Section 11.2 we show that its
equilibrium structure exhibits a deep hysteresis. Section 11.3 contains a for-
mal definition of the notion of skewness and a derivation of the skewness as
a function of €. In Section 11.4 we study stability of equilibria by computing
bifurcation diagrams. In Section 11.5 we prepare the terrain for the control
design by defining the so-called “critical slopes.” Section 11.6 presents and an-
alyzes control designs which stabilize stalled equilibria. Finally, Sections 11.7,
11.8, and 11.9 present extremum seeking control to tune a stabilizing controller
for maximum pressure rise. We relegate some details of technical derivations
to the appendices.
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Table 11.1: Notation in the Moore-Greitzer model

P $ — annulus-averaged flow coefficient
b=0/W-1-9 ° L o
/ Ol w o — compressor characteristic semi-width
v=/H ¥ — plenum pressure rise o o
H — compressor characteristic semi-height
A=A/W A — rotating stall amplitude
B mass flow through the throttle/W — 1
9 angular {circumferential} position
2H
8= WB B — Greitzer stability parameter
[, — effective length of inlet duct
oo 3L, normalized by compressor radius
C om+p m — Moore expansion parameter
¢ — compressor inertia within blade passage
H . . . .
t= Wi t t — (actual time) x (rotor angular velocity)

11.1 Model Derivation

The simplest model that adequately describes the dynamics of rotating stall
and surge in axial-flow compression systems shown in Figure 11.2 is the three-
state Moore-Greitzer model [84]:

A = 2 [T g (®+ Asin) sin 06 1.1
= 3_71'/0 o (®+ Asin ) sin (11.1)
. 1 2 .

b = —\IJ+%/O Ve (@ + Asin ) df (11.2)
. 1

b= @) (11.3)

The quantities appearing in this model are listed in Table 11.1.

Equation (11.3) is mass conservation in the plenum: the time rate of change
in plenum pressure is proportional to the difference between mass flow entering
and exiting the plenum. Equation (11.2) is a momentum balance: the accel-
eration of the fluid in the upstream and downstream ducts is proportional to
the difference in the pressure rise across the compressor and the pressure rise
in the plenum. The steady-state, annulus-averaged pressure rise across the
compressor is given via the S-shaped compressor characteristic Uc(-) shown
as the solid curve in Figure 11.1. Equation (11.1) is obtained from the same
momentum balance PDE as (11.2) by applying the Galerkin approximation.

A standard compressor characteristic introduced by Moore and Greitzer is
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the cubic characteristic

1
Ue (B) = Wgo+ 1+ —gcp - 5<1>3. (11.4)

This characteristic is adequate only for left-skew compressors. We replace it by

a convex combination of a cubic characteristic (11.4) and the function T

3 1 20
Ve (®) = Ueo+ 1+ (1— ) (§q> - 5@) e (11.5)

. 2¢
where € €[0,1]. The function Tra

1. the integrals in (11.1) and (11.2) have a closed-form solution,

is carefully chosen so that:

2. it exhibits the qualitative properties of right-skew compressors,

3. it retains a connection with the familiar cubic characteristic. In partic-

3 1
ular, both §¢) — 531')3 and 1 achieve extrema +1 at ® = +1.

(DZ
Substituting (® + Asinf) as the argument of ¥¢, we get
Ve (@ + Asind)
_ 3 lgs 3 2\
= Ug+1+(1—¢) (5@ 5@ +—2-A(1——<I> )smH

2(®+ Asind)
1+ (® + Asin)?

1
-%A% sin? @ — 5A3 sin® 9) +e€ (11.6)

which we use to compute the integrals in (11.1) and (11.2). First, the integral
in (11.2) reduces to

prid
/ Ve ( + Asind) df
o

= 27 (Weo+ 1)+ 2n(1 — ¢) <§<1> - l<1>3)
2(® + Asind)
14 (® 4+ Asing)®

——7rA2<I> +e / (11.7)

Using MATHEMATICA (see Appendix D for details), we get

2
/ Ve (® + Asin ) df
0

Zﬂwsgn(q))
(@2 — 42 - 1)? + 49°

]1/2

x {[(qﬂ — A1) 497 (@7 a2 - 1)}1/2 . (118)
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Second, the integral in (11.1) reduces to

2m
/ Do (@ + Asin6) sin §dd
n

= (1-¢) (gﬂ'A(l —®%) - gﬂAB) + e-/o

With MATHEMATICA (see Appendix D), we get

27 2(® + Asin)siné
I+ (®+ Asinf)?

d6(11.9)

27
/0 U (@ + Asin6) sin 0d6

2 \/§
= 29
A { (@2 — 42 — 1) + 497]

/2
X [(((@2 - 1) (9* - A2 - 1) + 4c1>2)2 + 4<I>2A4)1/2
(@ —1) (@ - A1) + 4@2]1/2} . (11.10)

R= (2)2 (11.11)

and substituting (11.7)—(11.10) into (11.1)—(11.3), the compressor model be-
comes

Defining

R = o{(1-e)R(1-2*-R)

I
3

1
Va[(@? - 4R - 1) +492] "

X ((((‘1’2 —1)(®* 4R 1) _,_4@2)2 N 64‘1>QR2)1/2

1—

+(®2-1) (@2 -4R-1) + 4@2)1/2]} (11.12)

& = Ut Uop+l4(l—e) (gd)— %@3—3@)
V/2sgn(®)
+¢€ 172
(82 — 4R — 1) + 497
) 12 1/2

X {[(@2 —4R-1) + 4@2] +(@* — 4R~ 1)} (11.13)

¥ = i(cb—cpT). (11.14)

:82
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We refer to this model as the e-MG3 model. Note that, even though (11.13)
contains sgn (@), this equation is not discontinuous because the term multi-
plied by sgn{®) vanishes at ® = 0 for all values of R. For ¢ = 0, the model
(11.12)-(11.14) reduces to the standard MG3 model

R = oR(1-%*-R) (11.15)
d = -\I!+\IJCQ+1+§<I>—%<I>3—3<I>R (11.16)
. 1

¥ = @(qn%), (11.17)

where the quantities are defined in Table 11.1, and the throttle flow & is
related to the pressure rise ¥ through the throttle characteristic

1
U= -7—2(1+<1>CD+«1>T)2. (11.18)

The parameter ¢ spans an entire family of compressor models whose equilib-
rium structure we now study.

11.2 Equilibria in the e-MG3 Model

There are two sets of equilibria of the model (11.12)-(11.14). The no-stall
equilibria are:

R 0
| = d |, PeR. (11.19)
v Ve (Do)
The stall equilibria are:
R Ry .
& | =| ®pe(R) |, Ro€l0,R]. (11.20)
o Uy (Ry)

The functions @, (R) and @ _(R) are obtained as solutions of (11.12) with
R=0and R #0,

N 1
SR 2@ - 4R - 1) + 492"

[0 0 =m0 a0y )

0 = (1-¢(1-2*-R)

+ (22~ 1) (82— 4R - 1) +4<1>2]”2}. (11.21)
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Note that since the expression in (11.21) is a function of ®2, we get two solu-
tions ®_(R) = —®p. (R). The functions ¥g,(R) and g (R) are obtained
as solutions of (11.13} with ® = 0, that is, by substituting ® = &g, (R) into

1
U = Uot+1+(1—e) (-g-cp— 5@”—3@3)
e v/2sgn (®) -
(@2 — 4R — 1) + 497

X {{(@2 —4R - 1)2 + 4@2] g (2 — 4R - 1)}1/2 . (11.22)

The plots of equilibria of the e MG3 model are given in Fig. 11.3 (e = 0),
Fig. 114 (e = 0.5), Fig. 11.5 (e = 0.8), and Fig. 11.6 (¢ = 0.9). The corre-
sponding R (@) curves and R (¥) curves are shown in Fig. 11.7 and Fig. 11.8,
respectively.

The quantity R in (11.20) represents the maximum equilibrium value of R.
As we can see from Fig. 11.7, R increases as € increases. Furthermore,

limR(e) = 1 (11.23)
lin}R(e) = o0. (11.24)

An important question is how to determine the value of € from steady-
state experimental data for a given compressor. Our approach is to select €
to match the axisymmetric characteristic. For example, ¢ = 0.83 provides a
reasonable match of the axisymmetric characteristic in Figure 11.1. However
selecting a value of € to match the shape of the axisymmetric characteristic
does not guarantee that the stall characteristic will be perfectly matched.
The resulting difference between the e-MG3 model and an actual compressor
would be primarily due to neglected higher-order modes of rotating stall. The
contribution of higher-order modes is to further deepen the hysteresis [1, 77)].
Despite the imperfect match of the stall characteristic with the one-mode e-
MG3 model, this is the best match possible for a three-state Moore-Greitzer
type model with a sinusoidal mode of rotating stall.

11.3 Skewness

A key property affecting the ability to design feedback controllers for compres-
sor models is the "skewness” of the compressor characteristics. To formally
define the notion of skewness, we consider the stall diagrams in Fig. 11.7. We
define the skewness of a stall characteristic as

D, (R)

E=—""T"—+ . 11.25
il (11.25)
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4l

Figure 11.3: Equilibria of the e-MG3 model with ¢ = 0.

A compressor whose diagram at (R = 0, ® = 1) has a negative slope is said
to be ”left-skew”, while a compressor with a positive slope is referred to as
"right-skew.”

Let the relation between R and @ be given by the implicit expression
F(R,®) =01in (11.21). Then it is easy to show that

OF (R, ®)

_ ___OR
S= -7 hw) . (11.26)

oP

§=—15£=05 (11.27)

Thus a compressor is right skew when ¢ > 0.5 and left skew when € < 0.5.

11.4 Open-Loop Bifurcation Diagrams

We now study stability properties of the open-loop compressor model by com-
puting its bifurcation diagrams. Figures 11.3-11.8 show equilibria of the sys-
tem obtained by setting R=®=0. By setting, in addition, ¥ = 0 in (11.14),
we get ® = Py, where the flow through the throttle ®7 is related to the
compressor pressure rise via the throttle characteristic whose form is usually
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Figure 11.4: Equilibria of the e~-MG3 model with € = 0.5.

assumed to be quadratic:
1 2
= —72 (1 (I)CO (I)T) ) (1128)

where -y is the throttle opening. While Figures 11.3-11.8 show possible equilib-
ria of the system, the actual equilibria are determined by the value of #, in the
intersection of the throttle characteristic with the compressor and stall charac-
teristics. We now illustrate the results of the previous sections via bifurcation
diagrams with v as the bifurcation parameter.

We consider a three-stage compressor studied in [88] whose parameters are
Uep = 0.72 and ¢ = 4. We study both a low-speed case § = 0.71 and a
high-speed case 8 = 1.42, and both a left-skew case ¢ = 0 and a right-skew
case ¢ = 0.9. Figure 11.9 shows a bifurcation diagram for ¢ = 0, § = 0.71.
The solid thick line represents stable equilibria, while the dashed thin line
represents unstable equilibria. Figure 11.10 is for the right-skew case e = 0.9
with the same low = 0.71. The right-skew case results in a much deeper
hysteresis; while for € = 0 the interval of ~ participating in the hysteresis is
0.17, for e = 0.9 it is 0.66, which indicates that a recovery from rotating stall
for ¢ = 0.9 would be much more difficult. There is only a slight difference
between the bifurcation diagram in Figure 11.10 for § = 0.71 and that for
8 = 1.42. However, the transient behavior for the low-speed (G = 0.71)
and high-speed (3 = 1.6) case is quite different, with the former resulting in
rotating stall while the latter results in surge, as shown in Figure 11.12. Note
that the trajectory for 8 = 0.71 is strongly influenced by the presence of a
saddle point on the axisymmetric characteristic, just left from the peak.
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Figure 11.5: Equilibria of the e-MG3 model with € = 0.8,

11.5 Pre-Control Analysis: Critical Slopes

A critical parameter for the control of a compressor model is the " direction”
of the stall characteristic at the stall inception point. We now determine the
slope of the projection of the stall characteristic to each of the three coordinate
planes:

d®r; (R)
S5 = —5 (11.29)
dR g,
d¥ry (R)
S5y = ——— (11.30)
AR |p_,
d¥Us(®) So
= 0 =2 11.31
5 e |, S’ (1131)
where Wg(®) is the stall characteristic shown in Figs. 11.3-11.6.
First, we note that
S5 =8. (11.32)
Second, defining (11.22) as ¥ = G (R, &), we get
g, — dg (R, ®py (R))
y, = —n B
dR R0
_ 0G(R,®) 9G (R, ®)
= R | + o | S1. (11.33)
F=1 Q;l
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Figure 11.6: Equilibria of the e-MG3 model with ¢ = 0.9.

Table 11.2: Critical slopes as functions of e.

L —~ c=0]e=1]
e— 0.
51 —1.5E ~15 —05| 15
S 2(e — 1.5) -3 -1
4(e—1.5)*
Ss 3 (e 05) 6 | —0.67
From (E.10), we can easily see that
99 (R, @)
—_— =0 11.34
5 | s (11.34)
F=1
and hence,
_0G(R,®)
Sy = TR |ase (11.35)
=1
With (E.9) we get
Sy =2(e — 1.5). (11.36)

Table 11.2 summarizes the critical slopes as functions of e.
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Figure 11.7: R vs. ® relationship with varying e.

11.6 Control Design

We address a general class of Moore-Greitzer type compressor models:

R = oRF(R,®) (11.37)
® = —V+G(R D) (11.38)
T = %(@—@T), (11.39)

where the functions F(R, ®) and G(R, @) are given by

1 27 . .

F(R®) = —r /0 Ve (2 +2VRsin6)sinfdd  (11.40)
1 o .

G(R®) = ﬁfﬂ g (@ +2vRsinf) df. (11.41)

The throttle flow @ is related to the pressure rise ¥ through the throttle
characteristic )
7
where v is the throttle opening. We apply control action by varying the
opening 7.

A full-state feedback controller for the model (11.37)—(11.39) would employ
the measurements of all three states, R, ®, and ¥, for feedback. In addition,

the experiments in [38] show that & can be measured successfully and used
for feedback.

U= = (1+ oo + Br)?, (11.42)
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Figure 11.8: R vs. W relationship with varying e.

However, we are motivated to look for partial-state feedback controllers to
reduce the sensing requirements. For example, for lefi-skew compressors, it
was shown in [68] that stabilization is possible using a controller of the form

T4 3% (cgV — co®)
f){ N b
i.e., without using R and &. As we shall see later in this chapter, controlling

a right-skew compressor will require a measurement of either R or . Thus,
we postulate that the controller will be of the form

(11.43)

T+ 62 (C\I;\I/ - C@@ + CRR - d@@)
7 N '
The controller development in this section is independent of the form of com-

pressor characteristic. We only require that ¥¢(1) = 0 and ¥§(1) < 0, i.e.,
that ¥¢(®) has a maximum at @ = 1.

(11.44)

11.6.1 Enforcing a Supercritical Bifurcation
With the controller (11.44), the system (11.37)-(11.39) becomes

R = oRF(R,®) "(11.45)
® = —V+G(R®) (11.46)
. 32 N 1+ P -T

¥ = % (—CRR+ cx® —cy ¥ + d@‘I)) -+ —‘;TO‘— , (11.47)



11.6 CoNTROL DESIGN 171

3 2
25
1
R’ @
15 o
1 s o, P
osf H -
, .
4] (R CUIUUUE AR ——— _o
005 1 15 2 v a5 1 15 2
Y vy
4 4
3 3
Rt R v
2 - o, S . 2 , - ;
o, ¢ A s
7 it %
1 - g 1 ", i -
) )
o o5 1 15 2 2 4 ) 1 2
~y Lo

Figure 11.9: Bifurcation diagrams for the open-loop system with ¢ = 0 and
3 = 0.71. The throttle opening -y is the bifurcation parameter.

where )
Cy = Cq + ik (11.48)

Let us consider an equilibrium on the stall characteristic. The equilibrium is
determined by the value of I", which is given as

T(Rp) =1+ ®co + B2 [—crRo + cu®Pry (Ro) — cuWrs (Ro)] (11.49)

at an equilibrium with R = Ry. For the bifurcation at the stall inception point
to have a supercritical character with respect to I', we need to achieve

lim 2LF)

Eat W <0. (1150)

Noting that
. dI{R)
Rli%lwt dR

we conclude that the bifurcation will be supercritical if and only if

= —(? (cr — Sics + Sacy) | (11.51)

cr — Sic, + Sy > 0. (1152)

Since large I' means lower stall amplitude R, we also require that in no-stall
operation ® increases with I' (accompanied by a decreasing pressure rise ¥).
In other words, we consider an axisymmetric equilibrium with

I(®o) = 1+ oo + 52 (e:Po — co ¥ (Po)) (11.53)
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Figure 11.10: Bifurcation diagrams for the open-loop system with ¢ = 0.9 and
8=0.71.

and require that

. dT(®)
—_— . 1.54
am g >0 (11.54)
Noting that
. dr(®) o,
(I}Lnll+ —d—q)— = ,8 Cy (1155)
we conclude with the requirement
e > 0. (11.56)

11.6.2 Linearization at a Stall Equilibrium

We consider an equilibrium R = Ry, ® = ®p(Ry), ¥ = ¥ (Rp) and define
the error coordinates

r = R—Ry (11.57)
¢ = & Dgri(Ry) (11.58)
Y o= U—TUgp(R). (11.59)

The linearization of the system (11.45)—(11.47) is readily shown to be

ro= —a1(Ro) (=1 (Ro)7 + ¢) (11.60)
(32 (Ro) + ag (Ro) X1 (Ro))r — az (Ro) ¢ — % (11.61)
§ = w(—car+cd— oyt +ded) , (11.62)
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=\ 2
where K = (g) and

a{(R) = —-oR

G (R, T)

tion diagrams for the open-loop system with ¢ = 0.9 and

OF (R, ®)

e (11.63)

P=Pr(R)

5 (11.64)

OF (R, ®)

P=®g(R)

T (R) = ___OR

OF (R, ®)
8@ ¢=®R+(R)

d® g, (R)

9G (R, ®)

0G (R, @)

d¥zy(R)

R (11.65)

dR
d®r; (R)

3G (R, ®)
+ iR

dR 0P

=D (R) d=0p, (R)

- GQ(R)Zl (R)

OR

S=0 5 (R)

= (11.66)

Before we derive our stabilization criteria, we establish some fundamental
properties of the functions a;(R),az(R),Z1(R), and Xo(R). As everything
else in this chapter, these properties are independent of a specific form of the
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-1 o

Figure 11.12: Transient responses for throttle opening v = 1.15, slightly below
the value for the stall inception point. A low value of 8 (8 = 0.71) results in
rotating stall, while a high value of 8 (8 = 1.6) results in surge.

compressor characteristic.

Lemma 11.1 For a compressor characteristic that has a maximum at ® =1,
that is, with Ue(1) = 0 and VL(1) < 0, we have the following properties for
the functions a1(R), ax(R), Z1(R), and 33(R) at the stall inception point:

[£5] 0)
0)
)

a

!
- V)
. Eam TN TN

25 (0)

Proof. See Appendix F.

0 (11.67)

0 (11.68)
_1wg(1)

S =5 (11.69)

Sy = W(1) (11.70)
2

—~3532 >0 (11.71)

518, (11.72)

Sea_ 1 () 5 4 )

S - 15 (351\110 0+ 820 (11.73)

—3528, + %\118”(1) (11.74)

Now we turn our attention to the stability conditions for the linearized
model (11.60)—(11.62). Substituting (11.61) into {11.62), we get the Jacobian
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of the system (11.45)—(11.47):
a13n —aq 0
22 + 0221 —y -1 . (1175)
K [(22 + (ngl) de — CR] K (C* — (lgd@) —K (dq) + C\p)

The characteristic polynomial of the Jacobian {11.75) is
p(s) = $*+[x(ds +cy) + (a2 — a1 51)] 5
+ [KZC* + K (CLg — a121) Cy + a4y (22 — K,Eldq;)] 8
+ra1 {cr — T1ce + Tacy) . (11.76)
By applying the Routh—Hurwitz method, the necessary and sufficient condi-
tions for stability of the system (11.60)—(11.62) are
K (dcp + C\[;) + (GQ - a121) > 0 (1177)
KCy + K (a2 — alzl) Cy + (25} (Eg - Klzldq)) > 0 (1178)
Kaq (CR — e, + EQC{I}) > 0 (1179)
[k (de + cg) + (a2 — a15))] [kew + 5 (a2 — a1%1) o
a1 (Eg — kE1do)] — [kay (cr — Zica + Tacy)] > 0 (11.80)
Since, by Lemma 11.1,

az (R) —a1 (R) %, (R) = O(R), (11.81)
then

co +do >0 (11.82)
guarantees that (11.77) is satisfied near the stall inception point. Noting that
a1 (R) = a{(0)R + O(R?), (11.83)

and that
LiR) = S$i+0(R) (11.84)
(R) = S;+0O(R), (11.85)

we conclude that the condition
e >0 (11.86)

guarantees that condition (11.78) is satisfied near the stall inception point.
Furthermore, since af{0) > 0, the condition

cp — 8¢, + Socy > 0 (1187)

guarantees that condition (11.79) is satisfied near the stall inception point.
Noting that the expression in (11.80) is k*(dg + cg)c + O(R), we conclude
that it is satisfied near the stall inception point whenever (11.82) and (11.86)
are satisfied. We point out that condition (11.87) coincides with the bifurcation
condition (11.52), and (11.86) coincides with (11.56). The stability conditions
are summarized in Table. 11.3.
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Table 11.3: The stability conditions for the system (11.45)—(11.47).

cr — S1 (Cq»—!- /82) + Syey > 0

Cq>+ﬁ2
cy +de >0

11.6.3 Stability at the Bifurcation Point

Our analysis showed that we can stabilize stall equilibria near the stall in-
ception point but it did not include the stall inception point itself because
@1(0) = 0 implies that the characteristic polynomial (11.76) has one root at
s = 0. For the stall inception point, the analysis based on linearization is
inconclusive. Therefore, at this point we apply a center manifold technique.

The one-dimensional center manifold of the equilibrium B = 0, & = 1,
¥ = We(1) of the system (11.45)—(11.47) is readily shown to belong to

) = 1+mR+O(R2) (11.88)

U(R) = ¥o(l)+ SR+ O(R?). (11.89)
Then its reduced system becomes

— Sie. + Sice
1c 20

B= gasg [CR 0 (R)] R (11.90)

Since ¥E(1) = S < 0, the system (11.90) is asymptotically stable if the
stability conditions of Table 11.3 are satisfied. Therefore, by the reduction
principle [64, Theorem 4.2], the equilibrium B = 0, ® = 1, ¥ = U(1) of
(11.45)—(11.47) is asymptotically stable.

11.7 Pressure Peak Seeking for the Surge
Model

For clarity of presentation, we first consider the model (11.15)—(11.17) re-
stricted to the invariant manifold R = 0:

b = —U+Ts () (11.91)

. 1

b = (@+en). (11.92)
This model is, in fact, the surge model introduced by Greitzer [47], which
describes limit cycle dynamics in centrifugal compressors. The function ¥ ()
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Figure 11.13: Compressor characteristic ¥¢(®).

represents the “compressor characteristic,” whose typical S-shape is given in
Figure 11.13. Our objective is to converge to the peak of this characteristic and
operate the compressor with maximum pressure. Thus, we denote z = (@, )
and y = ¥. In [68] it was showed that a control law of the form

T+ 2 (cqV - co®)
T NET

stabilizes equilibria parameterized by I'. If the design parameters are chosen
to satisfy 8% > 3, cy > 0, ¢, = cp + % > 0, and

(11.93)

Ca d\IjC((I})
a > mgx 4P

(11.94)

(which is finite), then the control law (11.93) achieves global ezponential sta-
bility of equilibria parameterized by I

To apply the peak seeking scheme, we first check that all three assumptions
from Section 5.1 are satisfied:

1. From (11.18), (11.91)-(11.93), I is given by
['=Tg(®) = 1+ Pgp + 5 (ca®y — cu Ve (D)) , (11.95)

where ®p is the equilibrium value of ®. In view of (11.94), it is clear
that the function I' (+) is invertible. Thus, for each value of T, there is
only one equilibrium (&, ¥) = (1"51 I, ¥¢ (I‘gl (F))) , which means
that Assumption 5.1 is satisfied.
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2. As we indicated above, it was proved in [68] that (11.94) guarantees that
the equilibrium is exponentially stable not only locally but also globally,
hence Assumption 5.2 is satisfied.

3. Following the notation in Section 5.1, y = h o [(T") 2y, (Ffpl (F)) The
Moore-Greitzer model (11.15)-(11.17) is scaled so that Un(®) always
has a maximum at ® = 1. Since Iy (+) is bijective, U¢ (F;jl (I’)) has a
maximum at

I =1+ ®cy+ 4% (ce ~ cuTc (1)), (11.96)

that is,
(voorg!) (™) = 0 (11.97)
(¥oorzt) () < 0. (11.98)

Hence, Assumption 5.3 is satisfied.

Since Assumptions 5.1-5.3 are satisfied, we can apply the peak seeking
scheme given in Figure 11.14 with

=1 +asinwt. (11.99)

By Theorem 5.5, for sufficiently small w, §, and a, ®(t) converges to an O(w +
d + a)-neighborhood of 1 and ¥(¢) converges to an O(w + § + a)-neighborhood
of its maximum value ¥¢(1).

The application of the peak seeking scheme to the surge model (11.91),
(11.92) makes clearer its application to the full Moore-Greitzer model (11.15)—
(11.17) in the next section.

11.8 Peak Seeking for the Full Moore-Greitzer
Model

Now we consider the full Moore-Greitzer model (11.15)—(11.17). In Sec-
tion 11.6 we studied the stabilization of this model using the family of control
laws

T+ 3 (cw — cp® + cgR — dq,<i>)
,Y - \/.ﬁ 3

and gave conditions for selecting the parameters cy, cg, cg, and dg, such that
local stabilization near the peak of the compressor characteristic is achieved.
Figure 11.14 shows bifurcation diagrams with respect to the parameter T', for
the control law (11.100) with ds = 0, applied to the MG model with the
compressor characteristic

(11.100)

Vo(®) = Uoo+ 1+ (1— ) (g@— %@3) +e

28
1+ 827

(11.101)
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I WU Surge model N
(11.91), (11.92)

Stabilizing feedback J
BQ(C\I;‘I/ — CQ@)

i@\ N I - ven | s |
PN\ b s | s+ w S+ wy ;
asinwt Peak seeking feedback

.......................................................................................

Figure 11.14: Peak seeking scheme for the surge model (11.91), (11.92).

Treating (R, ®, W) as the state z, the equilibrium map z = [(T)) is given
by the bifurcation diagrams in Figure 11.15. The solid curves represent sta-
bilized equilibria, while the dashed curves represent unstable equilibria. As
in Section 11.7, we take y = U as the output that we want to maximize us-
ing the peak seeking scheme. Unfortunately, none of the three assumptions
in Section 5.2 is satisfied: (1) the function z = [(T") is multi-valued, (2) the
equilibrium at the peak is asymptotically stable but not exponentially stable,
and (3) the output equilibrium map y = hol(I") has a maximum but it is not
necessarily continuously differentiable. In spite of violating the assumptions,
the peak seeking scheme can be applied to the full MG model. The scheme is
given in Figure 11.16. The closed loop system is

. 27
R = 5”%-\/1‘2/ e (@ +2vRsinA)sinAdX, R(0) 20 (11.102)
0

. 1 27
b = —v+ —/ Ve (@ +2vRsinA) dA (11.103)
27 Jo

. 1 ~
-5 [1+®cy — '~ asinwt

—B (co¥ — ca® + cpR — dod)] (11.104)
f o= ke (11.105)
£ = —wé+w (¥ —n)asnwt (11.106)
7 —wpn + why - (11.107)
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Figure 11.15: Bifurcation diagrams for the case ¢ = 0.9, # = 1.42, with the
full-state controller. The control gains are cg = 30, ¢y = 7 and cq = 20.

The multiple equilibria in the full MG model make the closed-loop system
(11.102)—(11.107) considerably more difficult to analyze than the closed-loop
system in the surge model. The solid curve in the ¥ vs. ' — I'* plot in
Figure 11.15 plays the role of the function #(-) in the averaging analysis. Even
though v is not continuously differentiable, we can show that the average
equilibrium is O(a)-close to the point (R, ®, ¥) = (0, 1, (1)), that it is
to the right of the peak (on the flat side of the solid curve on the ¥ vs. T'—T™*
plot), and that it is exponentially stable. The singular perturbation analysis
consists of a study of the reduced model and the boundary layer model. The
averaging analysis establishes the existence of an exponentially stable O(w+a)-
small periodic orbit of the reduced model—a conclusion no different than for
the surge model. The difference comes in the analysis of the boundary layer

model:
dR, o e . .
— = ﬁ‘/Rbfg Yo (@b + 2@3111 )\) sin AdA,
y>0

R(0 (11.108)
dd 1 pom
4% _ _\p,,+—/ e (cbb+2 Rbsin)\) d\
dt 27 Jo

(11.109)
d, 1 .
o = E[1+<I>CO—I‘—asmwt
_ dd
—ﬂz (C\p\I/b — oy + cpRy — d@*{-ﬁ—b)} . (11110)

Except for the equilibrium for I' = T'*, the equilibria of interest in the boundary
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Figure 11.16: Peak seeking scheme for the full Moore-Greitzer model (11.15)—
(11.17).

layer model are exponentially stable. The equilibrium for I' = I'* is only
asymptotically stable. However any ball (with arbitrarily small but nonzero
radius) around this equilibrium is exponentially stable. Or, to put it differently,
the equilibrium for I' = I'™* is exponentially practically stable with an arbitrarily
small residual set. This set can be selected to be O(w + a + §)-small. Then
by invoking Tikhonov’s theorem on the infinite interval, we can draw the
same conclusions as in Theorem 5.5, namely, that, for sufficiently small w,
4, and a, the solution (R(t), (1), ¥@t), T@), €0, n(t)) converges to an
O(w + a + d)-neighborhood of the point (0, 1, ¥(1), T*, 0, Ta(l)).

11.9 Simulations for the Full MG Model

We now present simulations of the peak seeking scheme from Figure 11.16 for
a compressor with ®gg =0, Vg =072, 3 =142, ¢ = 0.9, 0 = 4, and with
a stabilizing controller whose parameters are 3 = 1.42, cg =2, cg = 4, cg =
7, dg =0.

Our first simulation employs a peak seeking scheme with a = 0.05, w =
0.03, wp, = 0.03, w; = 0.01, and k = 0.4. The trajectory is shown in Fig-
ure 11.17, where the darker curve represents the trajectory and the lighter lines
represent the axisymmetric and stall characteristics. The trajectory starts
from an equilibrium on the stall characteristic and converges to a small peri-
odic orbit near the peak of the compressor characteristic. If the peak seeking
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Figure 11.17: Trajectory under the peak seeking feedback for w = 0.03 and
k=04.

parameters are selected differently, for example, if &k increased to k = 1.5,
the new shape of the trajectory is shown in Figure 11.18. In this case the
convergence is smoother and faster but the periodic orbit is farther from the
peak. (Note, however, that, given more time, the periodic orbit would slowly
approach the peak.) Even though faster adaptation throws the periodic orbit
further to the right of the peak, the periodic orbit remains in the “flat” region
of the compressor characteristic where variations in mass flow @ result in only
minor variations of the pressure rise W.

As explained in the section 11.8, the convergence of the trajectory to a close
neighborhood of the peak is the result of regulating f(t) to a neighborhood
of I*. Figure 11.19 shows the time traces of I'(t) — I*(0) for the trajectories
in Figures 11.17 and 11.18. In this case '(0) = —1.2 and T* = —0.90, which
means that ' — f‘(()) = (.30. This explains why the trajectory in Figure 11.17
converges closer to the peak than that in Figure 11.18.

Since a permanent presence of the periodic perturbation is undesirable,
we now show that it can be disconnected after a short peak seeking period.
Figure 11.20 shows the pressure transient and steady state up to ¢ = 2550, at
which time, & and o are set to zero. The disconnection of adaptation makes
the trajectory transition from the periodic orbit to an equilibrium on the
compressor characteristic, just to the right of the peak. To make the transient
more visible, we have set R(2550+0) = 0.06 because R(2550—0) is practically
zero. Figure 11.20 also shows that the pressure variations in steady state under
the peak seeking feedback are hardly noticeable, especially if compared to a
large gain in the DC value of the pressure. To show the pressure variations
more clearly, we zoom in on them in Figure 11.21.
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Notes and References

The new parameterized model derived here captures the right-skew property
of [102] while retaining the relative simplicity of the Moore-Greitzer model [84].
This model can now be easily used in simulations as a replacement of the cubic
MG3. The controllers developed are applicable to any Moore-Greitzer type
model with an arbitrary Ug(®), though we evaluate them upon the eMG3
model. The difficulties for control increase with the increase of e.

The idea to use extremum control for maximizing the pressure rise in an
aeroengine compressor is not new. As far back as in 1957, George Vasu of
the NACA (now NASA) Lewis Laboratory published his experiments in which
he varied the fuel flow to achieve maximum pressure [112]. While his engine
was apparently not of the kind that could enter either rotating stall or surge
instabilities (so local stabilizing feedback was not necessary), it is remarkable
that he recognized the opportunity to maximize the pressure by extremum
seeking feedback long before the compressor models of the 1970’s and 1980’s
have emerged and the dynamics of compression systems have been understood.

Several feedback designs to stabilize surge and stall through varying throt-
tle opening - have appeared in the literature beginning with [75], who de-
veloped a local bifurcation-based controller that changes the character of the
bifurcation at the stall inception point, from hard subecritical to soft super-
critical, thus avoiding an abrupt transition into rotating stall. The paper [§]
experimentally validated this design on a low-speed compressor and [38] de-
veloped an improved version of this design which prevents surge on high-speed
compressors. The result in [68] reduced the sensing requirement for global
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Figure 11.21: Time response of the pressure rise on a scale where the variations
are visible.

asymptotic stabilization (GAS) from three to two (¥ and ®) measurements
but is restricted to cubic compressor characteristics proposed in [84]. The
design of controllers for compressors with general characteristics is proposed
in [13]. Regions of attraction provided by linear and nonlinear controllers
were compared in [40]. This chapter draws upon [116] for modeling, and
on [117] for application of extremum seeking. More recently, in [58], an out-
put feedback controller achieves semiglobal stabilization using only pressure
sensing, and most recently, the result in [4] achieves GAS using only pressure
(¥) measurement. The result in [118] derives geometric sufficient conditions
for stabilization of the bifurcations for use in low spatial actuation authority
schemes.
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Chapter 12

Compressor Instabilities: Part
I1

This chapter presents experimental application of extremum seeking feedback
to optimize compressor operation. The experiments were performed on an
axial-flow compressor in Richard Murray’s laboratory at the California Insti-
tute of Technology. A prerequisite for experimental validation of the scheme
from Section 11.7 is the availability of a high-bandwidth bleed valve for sta-
bilization of rotating stall. However, as shown in [19], rotating stall can also
be stabilized by air injection. In this chapter we combine the air injection
rotating stall controller from [19] with the extremum seeking scheme from
Section 11.7 to achieve maximization of pressure rise. The extremum seeking
is implemented via a slow bleed valve, while rotating stall stabilization is per-
formed with air injection, as in [33]. The results demonstrate the effectiveness
of extremum seeking in maintaining maximal pressure rise while preventing
rotating stall (of either large or small amplitude).

In this chapter, we also apply slope seeking feedback in simulation to the e-
MGS3 of compressor surge and stall presented in Chapter 11 and demonstrate:
(1) near-optimal compressor operation with only pressure sensing; and (2)
robustness of the control to finite disturbances.

The laboratory implementation of extremum seeking on an axial-low com-
pressor is described in Section 12.1. The main experimental results are shown
in Section 12.2 and Section 12.3 illustrates near optimal compressor operation
under slope seeking feedback.

12.1 Extremum Seeking on the Caltech Rig

Experimental Setup. The Caltech compressor rig is a single-stage, low-
speed, axial compressor with sensing and actuation capabilities. Figure 12.1
shows a magnified view of the sensor and injection actuator ring and Fig-
ure 12.2 a drawing of the rig. The compressor is an Able Corporation model

187
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29680 single-stage axial compressor with 14 blades, a tip radius of 8.5 cm,
and a hub radius of 6 cm. The blade stagger angle varies from 30° at the
tip to 51.6° at the hub, and the rotor to stator distance is approximately 12
cm. Experiments are run with a rotor frequency of 100 Hz, giving a tip Mach
number of 0.17. Rotating stall is observed under this condition on the Cal-
tech rig with a frequency of 656 Hz while surge occurs at approximately 1.7
Hz. Data taken for a stall transition event suggests that the stall cell grows
from the noise level to its fully developed size in approximately 30 msec (three
rotor revolutions). At the stall inception point, the velocity of the mean flow
through the compressor is approximately 16 m/sec.

Six static pressure transducers with 1000 Hz bandwidth are evenly dis-
tributed along the annulus of the compressor at approximately 5.7 cm from
the rotor face. A discrete Fourier transform is performed on the signals from
the transducers, and the amplitude and phase of the first and second mode
of the stall cell associated with the total-to-static pressure perturbation are
obtained. The difference between the pressure obtained from one static pres-
sure transducer mounted at the piezostatic ring at the inlet and that from one
mounted at another piezostatic ring downstream near the outlet of the sys-
tem is computed as the pressure rise across the compressor. All of the static
pressure transducer signals are filtered through a fourth order Bessel low pass
filter with a cutoff frequency of 1000 Hz before the signal processing phase in
the software.

The air injectors are on-off type injectors driven by solenoid valves. For
applications on the Caltech compressor rig, the injectors are fed with a pressure
source supplying air at a maximum pressure of 80 psi. Due to significant losses
across the solenoid valves and between the valves and the pressure source, the
injector back pressure reading does not represent an accurate indication of
the actual velocity of the injected air on the rotor face. For example, using a
hotwire anemometer, the maximum velocities of the injected air measured at
a distance equivalent to the rotor-injector distance for 50 and 60 psi injector
back pressure are approximately 30.2 and 33.8 m/sec respectively. At the
stall inception point, each injector can add approximately 1.7% mass, 2.4%
momentum, and 1.3% energy to the system when turned on continuously at
60 psi injector back pressure. The bandwidth associated with the injectors is
approximately 200 Hz at 50% duty cycle. Extremum seeking is implemented
via a bleed valve whose bandwidth is 51 Hz.

12.1.1 Actuation for Stall Stabilization

A prerequisite for experimental validation of the scheme from Section 11.7 is
the availability of a high-bandwidth bleed valve for stabilization of rotating
stall. However, as shown in [33], rotating stall can also be stabilized by air
injection. In this section we combine the air injection rotating stall controller



190 COMPRESSOR INSTABILITIES: PART 11

b T b Caltech rig 'R
| with air injection
1 |F[_¢& KX\‘I:_" Band pass
: s \T/ filter :
a sjn wit Peak seeking feedback

Figure 12.3: Peak seeking scheme for the Caltech rig.

from [33] with the extremum seeking scheme from Section 11.7 to achieve
maximization of pressure rise.

Stall stabilization is performed by air injection in a one-dimensional on-off
fashion. When the measured amplitude of the first mode of the stall cell is
above a certain threshold, all three injectors are fully open. Otherwise they
are closed.

The set point of the compressor is varied by a bleed valve. The charac-
teristic of the pressure rise ¥ with respect to the bleed angle b is shown in
the Figure 12.4. Note that higher bleed angle means lower overall throttle
opening. There is a clear peak in the characteristic curve, sc we can apply
the extremum seeking to regulate the system to the bleed set point that max-
imizes the pressure rise. The points to the left of the peak are axisymmetric
equilibria. The points to the right of the peak are stabilized low amplitude
stall equilibria.

12.1.2 Filter Design

In the theoretical analysis presented in Chapter 11 noise was not considered
and a high-pass filter

T was employed. Because of noise in the experiment
8 T Wh

we use a band pass filter. From the power spectrum analysis, we learn that
the noise is above 150 Hz. We also know that the stall frequency is about
65 Hz. Since the filter should cut out both the high frequency noise and the
stall oscillations, as well as DC, we choose the pass band to be 4 to 6 Hz, and
implement it as a third order Butterworth filter.
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12.2 Experimental Results

12.2.1 Initial Point on the Axisymmetric Characteristic

We select the integrator gain as 600 and set the frequency of the perturbation
to 5 Hz. From Figure 12.4 we know that the peak is around 134-139°. We set
the initial bleed angle at 110°, the farthest point to the left in Figure 12.4, and
set the perturbation to 3°. The perturbed bleed angle is shown in Figure 12.5
and the pressure rise response is shown in Figure 12.6. Comparing the peak
pressure rise 0.372 of Figure 12.4 to that of Figure 12.6, we see that they are
the same. Note that the directions of b on this figure (Figure 12.4) and ® in
Figure 11.1 are opposite. In this figure, the no-stall (axisymmetric) equilibria
are to the left of the peak, while the ones to the right are the stall equilibria
(low stall, with air injection controller).

12.2.2 [Initial Point on the Nonaxisymmetric Charac-
teristic

For the compressor control, the most important issue is to control the system
to avoid the stall that causes the deep pressure drop. Since the air injection can
control stall for a reasonable interval, we can set the initial point at the stall
characteristic. We select the initial point as 150° bleed valve angle because
from Figure 12.4 we can see that 150° is the largest angle we can achieve
without a deep drop of the pressure rise. In this case we choose the gain of the
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Figure 12.5: Time response of the bleed angle initiating from the azisymmeiric
characteristic.

Figure 12.6: Time response of the pressure rise initiating from the azisymmet-
ric characteristic.
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Figure 12.7: Time response of the bleed angle initiating from the stall charac-
teristic.

Figure 12.8: Time response of the pressure rise initiating from the stall char-
acteristic.
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integrator as 400. The perturbation signal is set to 3° as in the axisymmetric
case. The perturbed bleed angle is shown in Figure 12.7 and the pressure rise
response is shown in Figure 12.8. The peak pressure in Figure 12.8 coincides
with that in Figure 12.4.

A closer look at Figures 12.7 and 12.8 shows that the rotating stall ampli-
tude is reduced as the bleed angle is reduced. The effect of extremum seeking
on a system starting in rotating stall is to bring it out of stall without pushing
the operating point away from the peak and reducing the pressure rise.

In both Figures 12.5 and 12.7 one can observe fluctuations of the mean of
the bleed angle at the peak. Comparing with Figures 12.6 and 12.8, we see that
these fluctuations occur at the same time when pressure drops resembling stall
inception occur. Extremum seeking reacts to this by pushing the operating
point further to the right on the axisymmetric characteristic and then slowly
returning it to the peak.

12.3 Near Optimal Compressor Operation via
Slope Seeking

For the purpose of our study, we consider a three-stage compressor considered
in [116] with parameters ¥ep = 0.72, o = 0 and o = 4. Furthermore we
choose the low speed case of § = 0.71 from [116]. Figures 12.9 and 12.10 show
the bifurcation diagrams for the compressor for ¢ = 0 and € = 0.9 respectively;
the solid lines showing stable equilibria and the dashed lines showing unstable
equilibria.

The performance objective for compressors is to maximize the pressure rise
¥ with respect to the mass flow ¢ without entering stall or surge instabilities.
But as seen from the ¥ versus v diagrams in Figures 12.9 and 12.10, the point
of maximum pressure rise is directly above a stable stall equilibrium, and the
stable high pressure branch ends at the maximum. The stall branch comes
very deep under the high pressure branch in the case when ¢ = 0.9, showing a
deep hysteresis characteristic of some high performance compressors.

Thus, running the compressor at maximum performance risks entering
a stall cycle under any small disturbance. Here, we illustrate achievement
of near-optimal performance of the compressor under slope-seeking feedback
that uses only the pressure measurement ¥, and actuates throttle opening +.
Through slope seeking, we can operate at a point on the compressor character-
istic that is just short of the maximum. This is done by using a slope setting
7(fres) With commanded slope

aw
fw:e = (—)
d d7 ref

small and negative in the slope seeking scheme (Figure 3.1).
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Slope Seeking Design. We design two slope seeking loops; one for the case
of low hysteresis, ¢ = 0, and for the case of deep hysteresis, € = 0.9. In both
designs, we choose forcing frequency w = 0.5 (this corresponds to an oscillation
frequency of about 16 Hz when transformed to normal time units), forcing
amplitude a = 0.025, gain k& = —0.6, and pole of washout filter A = 0.5. We
set commanded slopes f/,, = —0.9 and f;.; = —0.5 for the ¢ = 0 and € = 0.9

cases respectively obtaining values of 7(f/,;) = —%LRG, {Jw%} = 0.0056 and
0.0031 for the slope settings neglecting plant dynamics.

Simulation Results. We perform simulations (in MATLAB and
SIMULINK) with low performance initial conditions of R(0) = 1, ®(0) =
1.8565, W(0) = 1.3055, v(0) = 1.5 for the € = 0 case, and initial conditions of
R(0} =1, ®(0) = 1.4877, ¥(0) = 1.9463, v(0) = 1.5 for the € = 0.9 case. Fig-
ures 12.11 and 12.12 show the results for slope seeking (solid lines) along with
results for extremum seeking, r = 0 (in dotted lines) for the initial conditions
above. The results reveal the following features:

1. Both slope seeking and extremum seeking converge to their desired set
points: extremum seeking to the maximum pressure, and slope seeking
to a point slightly below the maximum.

2. Under a small disturbance at ¢ = 600, the system with extremur seeking
is destabilized and the system goes into the stall regime, while slope
seeking feedback recovers its performance.

Notes and References

This chapter is based upon [6, 117]. In [117], extremum seeking feedback was
used in an experiment to optimize performance of a compressor stabilized by
air-injection; this led to less demanding sensing and actuation requirements
than stabilization of stalled equilibria. In [6], slope seeking feedback is applied
to compressor optimization; the work uses only a pressure measurement, and
does not need high actuator bandwidth as it does not operate at the point of
maximum pressure rise, and therefore does not need to stabilize the compres-
sor.
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Appendix A

Continuous Time Lemmas

Lemma A.1 If the transfer function H(s) has all of its poles with negative
real parts, then for any real v,

H(s) [sin(wt — ¢)] = Im {H(jw)ej(“"“w)} +e, (A.1)
where ¢ denotes exponentially decaying terms.

This is simply the frequency response of an asymptotically stable LTI system.

Lemma A.2 For any two rational functions A(-) and B(-,"), the following is
true:

T {29 A(jus)} T {4 B, ) 0)]
_ —;Re {ej((wrwa)tw—cb)A(_jwa)B(s,jw,,)[z(t)]}
—%Re {ej((wbﬁ-wa)t‘w-(?)A(jwa)B(‘ijwb) [z(t)]} .

Proof: Follows by substituting the representations for the real and imaginary
parts of a complex number z, Re{z} = £%, and Im{z} = 5=

Lemma A.3 (Singular Perturbation) Consider the singularly perturbed
system given by the equations:

x = A()x+Bi(thu, x{ty) =£(e€) (A.2)
v = Ci(t)x

ez = Apz+Bav, z(tp) =n(e) (A.3)
u = CQZ,

where £(€) and n(€) are smooth functions of €. If Ay is Hurwitz and the origin
of the reduced LTV model

% = (Ai(t) + Bi))CrA;'BoCi (1)) % (A.4)

201
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is erponentially stable, then there exists €* > 0 such that for all 0 < e < ¢*,
the system in Eqns. (A.2), (A.8) has @ unique solution x(t,¢),z(t,¢) defined
Jor allt > tn > 0 and x(¢,€) — %(t) = O(e).

Proof: A direct consequence of Theorem 9.4 in Khalil [64].
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Appendix B

Discrete Time Lemmas

The following lemmas are used to facilitate the extremum seeking system anal-
ysis:

Lemma B.1 If the transfer function H(z) has all of its poles inside the unit
circle and real-valued impulse response, then, for any real ¥,

H(z) [cos(wk - w)} = Re{H(ej“’)ej(“’k‘w)} +e7k
= ‘H(ej“)\ cos(wk — 1 + 1) +e7F,

where g = Z(H(ej“)).

Lemma B.2 If the transfer functions G(2) and H(z) have all of their poles
inside the unit circle, the following statement is true for any real ¢ and any
uniformly bounded v(k):

G(2) [(H(z)[cos(wk = ¢)])v(k)] - Re{ej<wk~¢>H(efw)G(ev‘wz) [v(k)]} b,
(B.1)

Proof. The lemma is proved using the following straightforward calculation:

G(2)[(H (2)[cos(wk — @)])u(k)]
= G(z)[Re{H(/*)e?“* (k) + ] (by Lemma B.1)  (B.2)

= Re{e 2 HG()H(e™)V (e 2)}} +¢7* (B.3)
= Re{e/ WO H () Z7HQ(W2)V (2)}} +7F (B.4)
= Re{e!“ =9 H ()G 2)[u(k)]} + 7+ (B.5)

Q.E.D.

203
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Lemma B.3 For any two rational functions A(:) and B(.,+), the following is
true:

Re{e/“F~¥) A(e) | Re{e/ =9 B(z,e)[v(k)]}
- %Re{ejw““’)A(e“-"“’)B(z, ) (k)]}
+%Re{e7<2wk-w—¢>A(efw)B(z, ejw)[v(k)]}. (B.6)
Lemma B.4 For any rational function B(-,"), the following is true:
Re{e/“ ) B(z,e)[u(k)]} = cos(wk — ¢)Re{ B(z,¢™)[v(k)]}
—sin(wk — ¢)Im{ B(z, &) [v(k)]}. (B.7)

Lemma B.5 Suppose that the transfer functions H(z) and G(z) have all of
their poles inside the unit eircle, and have minimal state space realizations
(A1, By, Ch, D) and (A2, By, Co, Dy) respectively. Then,

G(2) [cos(wk - (b)H(Z)[U(k)]]

can be represented in a state space form as

Ay 0
A(k) - [ COS(W]C)B2C] |A2 :| ’

B(k) = [W%EBT}

C(k) [ cos(wk)DaCt | Cs |
D(k) cos(wk) Dy Dy,

Il

I

where A(k) is exponentially stable.

Proof. Let z;(k) and zo(k) be the state vectors of H(z) and G(z) respectively.
Then, G(z) [cos(wk — ¢)H(z) [v(k)]] is represented in state space form as

zi(k+1) = Aizi(k)+ Biv(k) (B.8)
wlk) = Cizi(k)+ Do(k), (B.9)
zo(k+1) = Agza(k) + Bz cos(wk — @)y (k) (B.10)
ya(k) = Coxa(k) + Dscos(wk — @)y (k), (B.11)

where y1(k) = H(z)[v(k)] and yo(k) = G(z)[ cos(wk — ¢)y1(k)]. Combining the
above two state space forms yields

zlk+1) = A(k)z(k)+ B(k)v(k) (B.12)

wa(k) = Clk)z(k) + D(k)u(k), (B.13)
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where

aT(k) = [z1( k)lffér(k)]
0

A(k) l: Ldk)BgCl Ag ]
B(k) = |: wk szl]
Clk) = [cwk)D, C1|Cy ]
D(k) = c(wk)DaDy,

and

c(wk) = cos(wk — ¢).
Therefore, (A(k), B{k),C(k),D(k)) can be a state space realization of
G(2) | cos(wk — ¢) H(=)[v (k)]
Since A; and Ay in A(k) are exponentially stable, given any Q1 = QF > 0
and @, = QF > 0, there exist P, = Pf > 0 and P, = P¥ > 0, which are the
unique solutions of the following linear equations, respectively:

A P1A1 _Ql and A P2A2 —QQ. (Bl4)
. . . P 0 T

By constructing a block diagonal matrix P = 0 Pl P =P >0, we

2
obtain ) ! r

Qu(k) | R'( }

T(kyPA(k , B.15

P - = | gL L (B.15

where Qq;(k) = Q1 — A(wk)CTBY P,B,C) and R(k) = c(wk)AY P, ByC,. For
any given QJq, we can choose (1 such that

Amaz (R(k) B (K))
/\min(QQ)

for all k£ > 0. This Q, enables —Q1;(k) and —Q, + R(k)Qi(k)RT (k) to be
negative definite for all £ > 0, and we obtain the following decomposition of
Eqgn. (B.15):

Amin(@1) > Mnaz (¢ (wk)CT B PoByCh) + (B.16)

0PaP = | ] [0 [1-aie )

“RRQT k) | T 0 |a||0] i
(B.17)

where A = —Q, + R(E)Qr!(k)RT(k) < 0 for all & > 0. Consequently,

AT(k)PA(k) — P < 0 for all k > 0, and A(k) is exponentially stable from

the Lyapunov stability theory. Q.E.D.

1
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Appendix C

Aircraft Dynamics in Close
Formation Flight

C.1 (-5 and Flight Condition Data

Quantity Symbol Measure
Wingspan b 222 ft, 8 in
Lenght l 247 ft, 11 in
Height h 65 ft, 1 in
Wing area S 6200 ft°
Root chord Cr 45 ft, 5 in
Tip chord or 15 ft, 4 in
Aspect ratio AR 7.3
Taper ratio TR 0.34
Wing 1/4-chord sweep back A 25 deg
Maximum takeoff weight Wromaz | 764,500 1b

Table C.1: C-5 Galaxy Data

C.2 'Wake-Induced Velocity Field

The wake-induced upwash distribution is:

Wwake(xa Y, 2) = WR(ZEa Y, Z) + WL(za Y, Z):

where
T Y x
Wriz,y,2) = — 1+ ,
r(@Y,2) 4wy2+22+r§( \/:r2+y?+z2)
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Figure C.1: Wake velocities

and

T y+b x
WL($7ly’ Z) - E(y + b)Q + 22 _{_1-(2: (l + \/:L,Q + (y+ b)2 + 22)5 (0.3)

are the contributions, respectively, from the right and from the left trailing
vortex. The wake-induced sidewash distribution is:

Vwake(wayaz) = VR(xayv Z) + VL(:L':y’Z)ﬂ (04)
where r
z T
Ve(2,9.%) = A y? + 22 + 12 (1+ \/m)’ (€5)
and
r z T
= — 1 .
Viloy,2) Ar (y + ) + 22 + 12 ( " 22+ (y+0)2 + z2)’ o

are the contributions, respectively, from the right and left trailing vortices.
Figure C.1 shows the origin of the coordinate system at the right wing tip of
the leader and the directions of the upwash, Wiare, and sidewash, Vi ke.

C.3 Free Flight Model Data

Tables C.2 to C.4 give the states (Xiongsx1: Xiatsx1) and the inputs of the
model, as well as the parameters of the actuators. TE indicates trailing edge.
All quantities are to be intended as perturbations from their value at the
reference condition for which linearization is performed, the exception being
the separations, z, y, and z.



C.3

FREE FLIGHT MODEL DATA

State: Symbol | Unit Positive
Ground speed V kt Forward
Vertical velocity w ft/s Down
Pitch rate q deg/s Nose up
Pitch angle g deg Nose up
Longitudinal separation z ft Behind leader
Vertical separation z ft Above leader
Elevators e deg Elevator TE up
Engines - Thrust Osn deg More thrust
Lateral velocity v ft/s Right wing
Roll Rate P deg/s | Right wing down
Yaw rate T deg/s Nose right
Bank angle %) deg Right wing down
Heading ] deg Nose right
Lateral separation Y ft Right of leader
Allerons 8 deg | Right aileron TE up
Rudder Or deg Rudder TE right

Table C.2: States of wingman dynamics

Input: Ueion, Symbol | Unit Positive
Elevators command See deg Elevator TE up
Thrust command dthe deg More thrust
Ailerons command Gae deg | Right aileron TE up
Rudder command Ore deg Rudder TE right
Average upwash Waarke | /8 Upwards
Rolling moment Lyere | Ib*ft | Right wing down
Sidewash VL | ft/s To the left

Table C.3: Inputs of wingman dynamics

Control | (Pole) Frequency | Saturation

e 10 rad/s +25/-25 deg
Sin 0.2 rad/s +10/-30 klb
&, 10 rad/s +25/-25 deg
Oy 10 rad/s +25/-25 deg

Table C.4:

Actuation(first order lags): dynamics and saturations
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—0.00380 0.0180 —0.470 -0.332 0 0 -0.0103 0.0000291
—0.102 —-0.427 13.0 —0.0343 0 0 0.28  0.00000172
—0.0214 —0.0963 —0.645 0.000367 0 0 0.938  0.00000816
A 0 0 1.00 0 0 0 0 0
tong = 1.69 0 0 0 0 0 0 0
0 —0.998 0 130 0 0 0 0
0 0 0 0 0 0 -10.0 0
0 0 0 0 00 0 —0.200
(C.7)
000000 100 0\
Bltmg_(() 00000 O 0.200) (C8)
—0.0636 0.794 —13.0 0561 0 0 —0.000679 —0.118
—0.0831 —0.706  0.233 0 0 0 0208  —0.112
0.0182 —0.0776 —0.0991 0 0 0 000618 0.324
Ay — 0 1 0.0612 0 0 0 0 0
@ 0 0 1.00 0 0 0 0 0
1.00 0 0 —0.794 13.0 0 0 0
0 0 0 0 0 0 -10.0 0
0 0 0 0 0 0 0 ~-10.0
(C.9)
00000 O0 100 0\
B“”—(o 00000 O 10.0) (C.10)

C.4 Formation Flight Model: Influence Ma-
trices

Fw =(0.0180 —0.428 —0.0965 0 0 0 0 0)7 (C.11)
Fp=(0 0000002086 0 0 0 0 0 0)7 (C.12)
Fy = (-0.0636 —0.0831 —0.0182 0 0 0 0 0)° (C.13)

C.5 Formation-Hold Autopilot Parameters

The classical separations-tracking part of the autopilot is made up by PD
compensators:

kpg = 0.030, kp, =12, kp,=25 (C.14)
kpy = 0025, kp,=0, kp,=0 (C.15)

and by rate limiters:

Valmaz = 4kt,  |[Vylmaz = 250ft/min, |Vilmae = 500ft/min  (C.16)
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The state-space relative-velocities-tracking part of the autopilot is made up by
state-proportional gain matrices:

K _ (—57.0 —909 50.1 1090 0O O 1.74 —0.0297>
Tieng T\ 20400 —8010 411 17900 0 O —0.0595 1.82
(C.17)
K = (629 123 247 -939 654 0 0.362 0.0540) (C.18)
Flat 280 1.76 29.2 -104 341 0 0.0540 0.557 '

and by the integrative part whose gain matrices are given by
15.6 —1.38
Ky, = (—2180) o Rv.= (—9‘88) (G.19)

—0.403 —13.6
Ky, = (—0.193) o Ko = (—28.5) (C.20)
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Appendix D

Derivation of Equations (11.8)
and (11.10)

Using MATHEMATICA, we get

/27' 2(® + Asinf)
0o 14 (®+ Asing)?
— 29em(®) [(@2 — A7~ 1-2)

(@A 1 2@)_1/2] (D.1)

Even though (D.1) appears to be a complex expression, we show that it is real.
Let

Q=9*-A*-1+2i® (D.2)

and denote the real part of () as Qg and the imaginary part as Oy, i.e.,
Qrn = ¥ —A%2-1 (D.3)
Q@ = 20. (D.4)

We can also write (D.1) as

/27f 2(® + Asin )
0

T+ @+ Asmop ’ — 28 (®) (@2 +Q77) (D.5)

where () is the complex conjugate of Q. For convenience, we also represent Q
in the Euler form,

Q=1Qle™. (D.6)
Now we perform the simplification of the RHS of (D.5):
Q~1/2 + Q_—l/2 — (IQ' ejw) -1/2 i (IQI e_jw)—l/Z
|er/2 (ejw/Z + €~jw/2)
= 2|Q|""2 cos (g) . (D.7)
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214 DERIVATION OF EQUATIONS (11.8) aND (11.10)

1 1/2
But from the half angle formula, cos (%) = ($> , we have
/2
1+9m\!
cos (%) = (%) . (D.B)
Thus (D.7) becomes
—1/2 | ~-1/2 2 2\ /2 2 2\ 2\ ?
QG = VR (Gh+ Q) (@rr (@4 Q)) T 09

Substituting (D.9) into (D.5) and using the definitions of Qr and @y, we get

/‘4‘” 2(d 4 Asin§)
0o 1+ (®+ Asing)?

= 2or ((«1)? —a 1)+ 4@2)—1/2

2 2 2 2\ 12 2 2 2
((cp ) +4<1>) L A1 . (D.10)

Next, using MATHEMATICA, we get

/2" 2(® + Asin ) sind
0

1+ (® + Asing)?
7 N Fan s o\ -1/2
= Z[2—(c1>—q;)(<1> — A?—1-2id)
(@ +14) (@2—A2—1+2i®)_1/2] . (D.11)

We show that this expression is real. With the definition of () as before, the
complex terms of (D.11) can be written as

(@-)Q M+ (2+4)Q?
= '%g—l[@—z‘)czl”qt(clwi)@/z]
- Wll [((@2 ~1) Qn+20Q; + (82 - 1) Q1 - 28Qx))"”

+ (22— 1) Qu+20Q +: (82 —1) Q1 — 2<I>QR))1/2] . (D.12)
Let

P = (9®-1)Qr+20Q: +i((9* —1) @ — 28Qx)
= (22-1) (22— A — 1) + 4% + 2i0A° (D.13)
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and denote the real part of P ags Pr and the imaginary part as P , Le.

Pp = (®2—1)(2*-4*-1) (D.14)
P = 20A%. (D.15)

We can now write {(D.11) as

/27r 2(® + Asinf)sin edé’ _r (2 L <P1/2 4 131/2)) ) (D.16)
0

1+ (® + Asin6)? A Q|
For convenience, we represent P in FKuler form,
P=|P|e™. (D.17)
Now we perform the simplification of the RHS of (D.16):
Py P2~ (|P] ej‘”)W + (|P|e) ik
21PM? cos (g) . (D.18)

By the half angle formula, we get

1/2

w 1+{—j.%

) QU i 17} D.19
Cos(z) ( 2 ’ (D-19)

5o (D.18) becomes
172, pl/2 2 p2\ 2}
pY2 4 pY :\/ﬁ(PR+(PR+PI) ) : (D.20)

Substituting (D.20) into (D.16) and using the definitions of Pr, A, and @), we
have

/’2“ 2(® + Asinf)sinf
0 1+ (®+ Asinb)?

- %{2— V2 {(((@2 - 1) (<I>2—A2 — 1) +4¢2>2+4®2A4)1/

+(22—1) (@ - A42—1) + 4@2]1/2} . (D.21)
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Appendix E

Derivation of the Critical Slopes

Define the RHS of {11.21) as F (R) and the RHS of (11.22) as G (R). Then
F(R,®) and G (R, ®) can be expressed as

F(R,®) = (1—-¢(1-2*-R)
2¢ 1

*3R (1 ~ V2 (R, @)

(h(R,<I’)+g(R,<I>))“2) (E.1)

GR®) = Wept1+(1—e (—23@_ %@3 —3r1>R)
\/isgn (@) e 1/2
TR R (k (R, ®) + (R, ®))/?, (E.2)
where

I(R,®) = ®*—-4R-1 (E.3)

g(R,®) = (*~1)I(R,)+ 49 (E.4)

R%(R,®) = g*(R,®)+ 640*R? (E.5)

K (R,®) = [*(R,®)+49?. (E.6)

Differentiating F and G with respect to R and &, we get

OF (R, ®) % 1
oR (6_1)"@( " V2K (R, ®)
2v/2¢
" 3RR(R,®) k3 (R, ®) (h (R, ®) + g (R, @)
x [2 (R, ®) b (R, ®) (h (R, ®) + g (R, ®))
+k? (R, @) ((1- %) (h(R,®) + g (R, ®)) + 160°R)| (E.7)

(h(R.®) +g(R, @))1/2)
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OF (R, ®) 2v/2%e

= 20(e—1)~ 5
9% h(R,®) k3 (R, ) (h(R,®) + g (R, @)/
x[(#* ~2R+1) (¢ (R, ®) +h(R,2) ¥ (R, 2))

~1(R,®) h(R, @) (h(R,®) + g (R, ®)) + 16| (E.8)
9G (R, ®) _ C e 2v/2sgn (D) e
gr - Si-9 k3 (R, @) (k (R, @) + [ (R, @)/
x [k* (R, ®) — (R, ®) (k (R, @) + 21 (R, ¥))] (E.9)
oG (R, ®) . 3 o\ V2®sgn(®)e
g~ 179 (2 (1-97) 3R) i (R, ®) (k (R, ®) +1(R, @)/

x (K (R, @) — (I (R, @) +2) (k (R, @) + 2 (R, ®))) . (E.10)
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Appendix F

Proof of Lemma 11.1

We start by rewriting (11.40) and (11.41) as

-1—3 2
IrAJo
1/2% &+ Asin0)do F.2
57 Jo c(®+ Asind)df. (F.2)

F(A2/4,9) We (® + Asin §) sin 0do (F.1)

G (A%/4,9)

Then, the partial derivatives necessary for {11.63)—(11.66) are

6“7:_(‘4;@/4’;@ = 3%_% 02" Ui, (@ + Asin6)sin 6dd (F.3)
%%Z__‘lﬂ _ %3% [% /Dz”qﬂc (@ + Asin 0) sin® 0d0

_:42_2 / "W (@ + Asin ) sin 0d (F.4)
_ag_(_i;_Zi?_) = _2}7_(/02”\116 (P + Asind) db (F.5)
@1%?}4_4»_‘1’_) - % / WL (@ + Asin) sin 6d6. (F.6)

When substituted into (11.63)—(11.66), all these expressions have to be eval-
uated at & = g (R) = $r;(A?/4). The second term in (F.4) will become
zero by definition of the function ®z,. Hence, we only need the function
U (Dry (A%/4) + Asin ). Since the Taylor expansion of ®p, is

Dpp(A2/4) =1+ 21(0)%2 + %2’1(0) (A;) +0 (4%,
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the function ¥y can be approximated by

, AT 1, [A%\? .
T 1+Asm9+5’174—+§§]1(0) (T) +O(A)

, A1 A2\?
As1n9+Slz+§E'1(0) (—-—) +O(A6)

_ "
= Ye(1) 4

2
A%\?
Asm@—f—SlA + 2’(0) (—) +0 (A%

1
5T :

2 3

A2 1, (AN 6
=50 (T) +0(4°)
9 4

14® : A Lo (A 6
+24x11 (1) [Asmﬁ—i—Sl 1 +221(0)(4 +0 (49
5

, A 1, A2\? .

+o( Asin0 + S1= + 5%1(0) (T) +0 (A

= W4(1)sinfA + (}lmg(l)sl + %xpg(n sn’ ) A°

+%xpg“(1) [Asin@ + 8,

i (1\1;"'(1)5'1 sin 6 4 %\11‘4)(1) sin® 0) A?
(32\1:"(1)2' )+ fo"’( )52
1

o) . (5) . 4 4 5
+ U185, sin? 9*51‘1’0 (1) sin a)A o). ()

By substituting (F.7) into (F.3)-(F.6), we get

JF (R, ®) _ _2_ 1 m _1_ (4)
+0 (R?) (F.8)
i?é?ﬂ o L [\Il’é(l)Sl + §mpg(1) + (éxpg(l)z’l(ﬂ)
SV + 1)+ e (1) B]
+O (RE) (F.9)
oG ((9{{2)’ ®) = (¥G(L) S + V(1) R+ 0 (R?) (¥.10)
=3, (R)
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aG (R, ®)

1
— = W)+ (B WS+ 530 () R

®=0p(R)
+0 (R?) . (F.11)
By substituting (¥.8) into (11.63), we get

ai(R) = —2—3‘1111;3 (WR+0(R?). (F.12)

By substituting (F.10) into (11.64), we get
az (R) = — (W4 (1) 8, + WG (1)) R+ O (R?) . (F.13)
By substituting (F.8) and (F.9) into (11.65), we get

Zi (R)

_ _(lg 3%
- (251+ 1w
1 §‘I"é' (1) " _1_ (4) )
o | (5 S (WS g0
1 1 5

- (UM R0 + 532 (1 82+ 90 ()8 + 580 (1)) | R

+0 (R?) . (F.14)
Since %1 (0) = 81 = — (381 + 30 (1) /W4(1)), we get

_19e(1)
2w (1)

S = . (F.15)

In a similar fashion, we determine X} (0) and get

5 (R) = —%iz 83 + [gsf _ 4%2 (3 )51+ 1—52\1/%’) 1)) #]
+0 (R?) . (F.16)

Finally, by substituting (F.11), (F.13), and (F.16) into (11.66), we get

S (R) = UL(1)+ (g% (1) 8, + %\1:559 (1)) R+0(R)

15>

S+ (355 + S (1)) R+0 (R . (F.17)

We conclude the proof by noting that (11.71) and (11.72) are obtained by
substituting Sy = —3¥¥ (1) /¥¢ (1) and Sp = WY (1) into (F.12) and (F.13).
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