


Principles of Network
and System Administration
Second Edition

Mark Burgess
Oslo University College, Norway





Principles of Network
and System Administration
Second Edition





Principles of Network
and System Administration
Second Edition

Mark Burgess
Oslo University College, Norway



Second edition copyright c© 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

First edition copyright c© 2000 John Wiley & Sons Ltd
Cover painting: Man + Air + Space, 1915 (oil on canvas) by Lyubov’ Sergeena Popova
(1889-1924) State Russian Museum, St Petersburg, Russia/Bridgeman Art Gallery

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
W1T 4LP, UK, without the permission in writing of the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a computer system for
exclusive use by the purchase of the publication. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Burgess, Mark, 1966–
Principles of network and system administration / Mark Burgess. – 2nd ed.

p. cm.
ISBN 0-470-86807-4 (Paper : alk. paper)

1. Computer networks – Management. 2. Computer systems. I. Title.
TK5105.5.B863 2003
005.4′3 – dc22

2003019766

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86807-4

Typeset in 10/12pt Bookman by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.



Contents

Preface to second edition xi

1 Introduction 1
1.1 What is network and system administration? . . . . . . . . . . . . 1
1.2 Applying technology in an environment . . . . . . . . . . . . . . . 2
1.3 The human role in systems . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Ethical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Is system administration a discipline? . . . . . . . . . . . . . . . . 3
1.6 The challenges of system administration . . . . . . . . . . . . . . . 4
1.7 Common practice and good practice . . . . . . . . . . . . . . . . . 5
1.8 Bugs and emergent phenomena . . . . . . . . . . . . . . . . . . . . 6
1.9 The meta principles of system administration . . . . . . . . . . . . 6
1.10 Knowledge is a jigsaw puzzle . . . . . . . . . . . . . . . . . . . . . . 7
1.11 To the student . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.12 Some road-maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 System components 11
2.1 What is ‘the system’? . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Handling hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Processes and job control . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 IPv4 networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Address space in IPv4 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9 IPv6 networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Networked communities 75
3.1 Communities and enterprises . . . . . . . . . . . . . . . . . . . . . 75
3.2 Policy blueprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 System uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 User behavior: socio-anthropology . . . . . . . . . . . . . . . . . . 78
3.5 Clients, servers and delegation . . . . . . . . . . . . . . . . . . . . 78
3.6 Host identities and name services . . . . . . . . . . . . . . . . . . . 80



vi CONTENTS

3.7 Common network sharing models . . . . . . . . . . . . . . . . . . . 82
3.8 Local network orientation and analysis . . . . . . . . . . . . . . . . 86

4 Host management 109
4.1 Global view, local action . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Physical considerations of server room . . . . . . . . . . . . . . . . 109
4.3 Computer startup and shutdown . . . . . . . . . . . . . . . . . . . 111
4.4 Configuring and personalizing workstations . . . . . . . . . . . . . 114
4.5 Installing a Unix disk . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.6 Installation of the operating system . . . . . . . . . . . . . . . . . . 124
4.7 Software installation . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.8 Kernel customization . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 User management 147
5.1 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2 User registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3 Account policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Login environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.5 User support services . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.6 Controlling user resources . . . . . . . . . . . . . . . . . . . . . . . 163
5.7 Online user services . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.8 User well-being . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.9 Ethical conduct of administrators and users . . . . . . . . . . . . 173
5.10 Computer usage policy . . . . . . . . . . . . . . . . . . . . . . . . . 186

6 Models of network and system administration 195
6.1 Information models and directory services . . . . . . . . . . . . . . 196
6.2 System infrastructure organization . . . . . . . . . . . . . . . . . . 201
6.3 Network administration models . . . . . . . . . . . . . . . . . . . . 207
6.4 Network management technologies . . . . . . . . . . . . . . . . . . 213
6.5 Creating infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.6 System maintenance models . . . . . . . . . . . . . . . . . . . . . . 223
6.7 Competition, immunity and convergence . . . . . . . . . . . . . . . 225
6.8 Policy and configuration automation . . . . . . . . . . . . . . . . . 227
6.9 Integrating multiple OSs . . . . . . . . . . . . . . . . . . . . . . . . 228
6.10 A model checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7 Configuration and maintenance 235
7.1 System configuration policy . . . . . . . . . . . . . . . . . . . . . . 236
7.2 Methods: controlling causes and symptoms . . . . . . . . . . . . . 237
7.3 Change management . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.4 Declarative languages . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.5 Policy configuration and its ethical usage . . . . . . . . . . . . . . 240
7.6 Common assumptions: clock synchronization . . . . . . . . . . . . 241
7.7 Human–computer job scheduling . . . . . . . . . . . . . . . . . . . 242
7.8 Automation of host configuration . . . . . . . . . . . . . . . . . . . 248
7.9 Preventative host maintenance . . . . . . . . . . . . . . . . . . . . 252



CONTENTS vii

7.10 SNMP tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.11 Cfengine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.12 Database configuration management . . . . . . . . . . . . . . . . . 268

8 Diagnostics, fault and change management 281
8.1 Fault tolerance and propagation . . . . . . . . . . . . . . . . . . . . 281
8.2 Networks and small worlds . . . . . . . . . . . . . . . . . . . . . . . 283
8.3 Causality and dependency . . . . . . . . . . . . . . . . . . . . . . . 285
8.4 Defining the system . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.5 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.6 Cause trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.7 Probabilistic fault trees . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.8 Change management revisited . . . . . . . . . . . . . . . . . . . . . 303
8.9 Game-theoretical strategy selection . . . . . . . . . . . . . . . . . . 304
8.10 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
8.11 System performance tuning . . . . . . . . . . . . . . . . . . . . . . 314
8.12 Principles of quality assurance . . . . . . . . . . . . . . . . . . . . 324

9 Application-level services 331
9.1 Application-level services . . . . . . . . . . . . . . . . . . . . . . . . 331
9.2 Proxies and agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9.3 Installing a new service . . . . . . . . . . . . . . . . . . . . . . . . . 333
9.4 Summoning daemons . . . . . . . . . . . . . . . . . . . . . . . . . . 333
9.5 Setting up the DNS nameservice . . . . . . . . . . . . . . . . . . . 337
9.6 Setting up a WWW server . . . . . . . . . . . . . . . . . . . . . . . . 353
9.7 E-mail configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.8 OpenLDAP directory service . . . . . . . . . . . . . . . . . . . . . . 373
9.9 Mounting NFS disks . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.10 Samba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
9.11 The printer service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
9.12 Java web and enterprise services . . . . . . . . . . . . . . . . . . . 382

10 Network-level services 391
10.1 The Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
10.2 A recap of networking concepts . . . . . . . . . . . . . . . . . . . . 392
10.3 Getting traffic to its destination . . . . . . . . . . . . . . . . . . . . 393
10.4 Alternative network transport technologies . . . . . . . . . . . . . 397
10.5 Alternative network connection technologies . . . . . . . . . . . . 400
10.6 IP routing and forwarding . . . . . . . . . . . . . . . . . . . . . . . 401
10.7 Multi-Protocol Label Switching (MPLS) . . . . . . . . . . . . . . . . 407
10.8 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
10.9 Competition or cooperation for service? . . . . . . . . . . . . . . . 413
10.10 Service Level Agreements . . . . . . . . . . . . . . . . . . . . . . . . 415

11 Principles of security 423
11.1 Four independent issues . . . . . . . . . . . . . . . . . . . . . . . . 424
11.2 Physical security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426



viii CONTENTS

11.3 Trust relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
11.4 Security policy and definition of security . . . . . . . . . . . . . . . 427
11.5 RFC 2196 and BS/ISO 17799 . . . . . . . . . . . . . . . . . . . . . 430
11.6 System failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . 432
11.7 Preventing and minimizing failure modes . . . . . . . . . . . . . . 440
11.8 Some well-known attacks . . . . . . . . . . . . . . . . . . . . . . . . 445

12 Security implementation 453
12.1 System design and normalization . . . . . . . . . . . . . . . . . . . 453
12.2 The recovery plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
12.3 Data integrity and protection . . . . . . . . . . . . . . . . . . . . . . 454
12.4 Authentication methods . . . . . . . . . . . . . . . . . . . . . . . . 463
12.5 Analyzing network security . . . . . . . . . . . . . . . . . . . . . . . 469
12.6 VPNs: secure shell and FreeS/WAN . . . . . . . . . . . . . . . . . . 477
12.7 Role-based security and capabilities . . . . . . . . . . . . . . . . . 478
12.8 WWW security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
12.9 IPSec – secure IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
12.10 Ordered access control and policy conflicts . . . . . . . . . . . . . 483
12.11 IP filtering for firewalls . . . . . . . . . . . . . . . . . . . . . . . . . 485
12.12 Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
12.13 Intrusion detection and forensics . . . . . . . . . . . . . . . . . . . 493
12.14 Compromised machines . . . . . . . . . . . . . . . . . . . . . . . . 494

13 Analytical system administration 499
13.1 Science vs technology . . . . . . . . . . . . . . . . . . . . . . . . . . 499
13.2 Studying complex systems . . . . . . . . . . . . . . . . . . . . . . . 500
13.3 The purpose of observation . . . . . . . . . . . . . . . . . . . . . . . 502
13.4 Evaluation methods and problems . . . . . . . . . . . . . . . . . . 502
13.5 Evaluating a hierarchical system . . . . . . . . . . . . . . . . . . . 504
13.6 Deterministic and stochastic behavior . . . . . . . . . . . . . . . . 518
13.7 Observational errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
13.8 Strategic analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

14 Summary and outlook 539
14.1 Information management in the future . . . . . . . . . . . . . . . . 540
14.2 Collaboration with software engineering . . . . . . . . . . . . . . . 540
14.3 Pervasive computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
14.4 The future of system administration . . . . . . . . . . . . . . . . . 541

A Some useful Unix commands 543

B Programming and compiling 549
B.1 Make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
B.2 Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
B.3 WWW and CGI programming . . . . . . . . . . . . . . . . . . . . . . 574

C Example telnet session 581



CONTENTS ix

D Glossary 591

E Recommended reading 597

Bibliography 599

Index 623





Preface to second edition

This book grew originally out of a one-semester course in Network and System
Administration which has now run successfully for six years at Oslo College,
Norway. This first course is an introductory course and involves about thirty
percent theory and seventy percent practical work [40]; it assumes knowledge
equivalent to a typical college course on Operating Systems as well as some basic
computer skills. The purpose of this book was to provide a mixture of theory and
practice for a such course in system administration; to extract those principles
and ideas of system administration which do not change on a day-to-day basis;
and to present them in a defensible manner [188].

In writing the second edition, I have not only corrected shortcomings and
anachronisms in the original edition, but have attempted to compile a textbook
that goes beyond a single introductory course, and paints a larger picture. This
has been a very difficult task, and my book is very imperfect. It attempts to strike
a balance between completeness and selective tasting to satisfy the needs of a
student with a limited budget. It cannot hope to cover everything that a system
administrator ought to know, but it can provide a beginning. The resulting book
forms a sufficient basis for two or more courses at university level, assuming a
previous knowledge of operating systems. Indeed, this book is now the hub of our
Masters Degree in Network and System Administration at Oslo University College.
It makes contact with more traditional areas of computer science and engineering,
and provides an overview of material that will help to bind other more specific
works into a coherent whole. Although it covers material sufficient for more than
one course, it did not seem appropriate to divide the book into smaller parts, as it
also functions as an initial reference work for the field.

On a personal note, I never want to write a book like this again! Maintaining
this book is far harder than maintaining computers – and I can’t do it with
cfengine. The possibility for error and anachronism is enormous and the amount
of work to compile, maintain and generalize these concepts huge. To assemble
the book, I have reviewed the research work of many authors, most of which
has centered around the USENIX organization and its many groundbreaking
conferences. In spite of a desire for completeness, I have resisted the temptation
to include every possible detail and fact which might be useful in the practical
world. Several excellent books already exist, which cover this need, and I see no
reason to compete with them (see the recommended reading list). I have therefore
limited myself to examples of each which are either practical or illustrative. If any
operating systems have been unfairly brought into focus, I hope it is only the Free



xii PREFACE TO SECOND EDITION

operating systems such as GNU/Linux and the BSD’s, from which no one other
than their users will benefit.

For the new edition, I must add my thanks to several individuals. I am most
grateful to Steven Jenkins and Nick Christenson for both thorough, heroic readings
and razor-sharp critiques of the almost finished manuscript. Steve VanDevender
and Æleen Frisch also provided helpful comments and corrections. Thanks to
Jonathan Laventhol for interesting discussions about company policy in the UK
and for providing me with real-world examples, and the permission to adapt and
reproduce them here. Thanks to Hal Miller and Lee Damon for permission to
reproduce their versions of the SAGE code of ethics. Part of the section on SNMP is
based on Jürgen Schönwälder’s excellent writings; I’m grateful to him for allowing
me the indulgence, and for reading the result. Rob Apthorpe also allowed me to
base the discussion of fault trees on his LISA paper that I whipped and beat him
for a year earlier. I have benefited from my lunch discussions with Kyrre Begnum
and Assi Gueye.

From the original edition, I offer my special thanks to Tina Darmohray for
her comments and encouragement, as well as for allowing me to adapt some
firewall examples from her excellent notes. Russ Harvey of the University of
California, Riverside also made very positive and useful criticisms of the early
materials. Special thanks to Per Steinar Iversen for making detailed comments
and constructive criticisms on the manuscript from his near-infinite reservoir of
technical expertise. Thanks also to David Kuncicky, Sigmund Straumsnes and
Kjetil Sahlberg for their careful readings and suggestions for improvement. Any
remaining errors must be entirely someone else’s fault (but I haven’t figured out
who I can blame yet). Thanks to Knut Borge of USIT, University of Oslo, for
moderating the course on which this book is based and for teaching me many
important things over the years; also to Tore Øfsdahl and Harald Hofsæter, our
system administrators at Oslo College who constantly help me in often intangible
ways. Sigmund generated the graphs which appear in this volume. In addition
to them, Runar Jørgensen and Hårek Haugerud commented on the manuscript.
Ketil Danielsen has provided me with both tips and encouragement. Thanks to
Greg Smith of the NASA Ames Research Center for performance tips and to
Steve Traugott for discussions on infrastructure. I’m grateful to Cami Edwards of
USENIX for making copies of old LISA proceedings available from the archives.
I was shocked to discover just how true is the panel debate: why do we keep
reinventing the wheel? I should also like to thank all of the students at Oslo
University College who have attended my lectures and have inspired me to do
better than I might otherwise have done. Finally, all credit to the SAGE/USENIX
association for their unsurpassed work in spreading state of the art knowledge
about computing systems of all sizes and shapes.

Mark Burgess
Oslo University College



Chapter 1

Introduction

1.1 What is network and system administration?

Network and system administration is a branch of engineering that concerns
the operational management of human–computer systems. It is unusual as an
engineering discipline in that it addresses both the technology of computer systems
and the users of the technology on an equal basis. It is about putting together
a network of computers (workstations, PCs and supercomputers), getting them
running and then keeping them running in spite of the activities of users who tend
to cause the systems to fail.

A system administrator works for users, so that they can use the system to
produce work. However, a system administrator should not just cater for one or
two selfish needs, but also work for the benefit of a whole community. Today, that
community is a global community of machines and organizations, which spans
every niche of human society and culture, thanks to the Internet. It is often a
difficult balancing act to determine the best policy, which accounts for the different
needs of everyone with a stake in a system. Once a computer is attached to the
Internet, we have to consider the consequences of being directly connected to all
the other computers in the world.

In the future, improvements in technology might render system administration
a somewhat easier task – one of pure resource administration – but, today, system
administration is not just an administrative job, it is an extremely demanding
engineer’s job. It’s about hardware, software, user support, diagnosis, repair and
prevention. System administrators need to know a bit of everything: the skills are
technical, administrative and socio-psychological.

The terms network administration and system administration exist separately
and are used both variously and inconsistently by industry and by academics.
System administration is the term used traditionally by mainframe and Unix
engineers to describe the management of computers whether they are coupled
by a network or not. To this community, network administration means the
management of network infrastructure devices (routers and switches). The world
of personal computers (PCs) has no tradition of managing individual computers
and their subsystems, and thus does not speak of system administration, per se.
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To this community, network administration is the management of PCs in a
network. In this book, we shall take the first view, since this is more precise.

Network and system administration are increasingly challenging. The complex-
ity of computer systems is increasing all the time. Even a single PC today, running
Windows NT, and attached to a network, approaches the level of complexity that
mainframe computers had ten years ago. We are now forced to think systems not
just computers.

1.2 Applying technology in an environment
A key task of network and system administration is to build hardware configura-
tions, another is to configure software systems. Both of these tasks are performed
for users. Each of these tasks presents its own challenges, but neither can be
viewed in isolation.

Hardware has to conform to the constraints of the physical world; it requires
power, a temperate (usually indoor) climate, and a conformance to basic standards
in order to work systematically. The type of hardware limits the kind of software
that can run on it. Software requires hardware, a basic operating system infras-
tructure and a conformance to certain standards, but is not necessarily limited by
physical concerns as long as it has hardware to run on.

Modern software, in the context of a global network, needs to inter-operate
and survive the possible hostilities of incompatible or inhospitable competitors.
Today the complexity of multiple software systems sharing a common Internet
space reaches almost the level of the biological. In older days, it was normal to
find proprietary solutions, whose strategy was to lock users into one company’s
products. Today that strategy is less dominant, and even untenable, thanks to
networking. Today, there is not only a physical environment but a technological
one, with a diversity that is constantly changing. Part of the challenge is to knit
apparently disparate pieces of this community into a harmonious whole.

We apply technology in such an environment for a purpose (running a business or
other practice), and that purpose guides our actions and decisions, but it is usually
insufficient to provide all the answers. Software creates abstractions that change
the basic world view of administrators. The software domain .com does not have
any fixed geographical location, but neither do the domains .uk or .no. Machines
belonging to these software domains can be located anywhere in the world. It is not
uncommon to find foreign embassies with domain names inside their country of
origin, despite being located around the world. We are thus forced to think globally.

The global view, presented to us by information technology means that we
have to think penetratingly about the systems that are deployed. The extensive
filaments of our inter-networked systems are exposed to attack, both accidental
and malicious in a competitive jungle. Ignore the environment and one exposes
oneself to unnecessary risk.

1.3 The human role in systems
For humans, the task of system administration is a balancing act. It requires
patience, understanding, knowledge and experience. It is like working in the
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casualty ward of a hospital. Administrators need to be the doctor, the psychologist,
and – when instruments fail – the mechanic. We need to work with the limited
resources we have, be inventive in a crisis, and know a lot of general facts and
figures about the way computers work. We need to recognize that the answers
are not always written down for us to copy, that machines do not always behave
the way we think they should. We need to remain calm and attentive, and learn a
dozen new things a year.

Computing systems require the very best of organizational skills and the most
professional of attitudes. To start down the road of system administration, we
need to know many facts and build confidence though experience – but we also
need to know our limitations in order to avoid the careless mistakes which are all
too easily provoked.

1.4 Ethical issues

Because computer systems are human–computer communities, there are ethical
considerations involved in their administration. Even if certain decisions can
be made objectively, e.g. for maximizing productivity or minimizing cost, one
must have a policy for the use and management of computers and their users.
Some decisions have to be made to protect the rights of individuals. A system
administrator has many responsibilities and constraints to consider. Ethically,
the first responsibility must be to the greater network community, and then to the
users of our system. An administrator’s job is to make users’ lives bearable and to
empower them in the production of real work.

1.5 Is system administration a discipline?

Is system administration a science? Is computer science a science? The same
question has been asked of many disciplines. We can answer the question in like
mind here. Unlike physics, chemistry or biology, system administration is lacking
in a systematic body of experimental data which would give its rules and principles
an empirical rigor. However, that is not to say that system administration cannot
be made to follow this scientific form. Indeed, there is good reason to suppose
that the task is easier in the administration of systems than in fields like software
engineering, where one cannot easily separate human subjective concerns from
an objective empiricism.

System administration practices, world-wide, vary from the haphazard to the
state of the art. There is a variety of reasons for this. The global computer commu-
nity has grown considerably, operating systems have become increasingly complex,
but the number of system administrators has not grown in proportion. In the past,
system administration has been a job which has not been carried out by dedicated
professionals, but rather by interested computer users, as a necessary chore in
getting their work done. The focus on making computers easy to use has distracted
many vendors from the belief that their computers should also be easy to manage.
It is only over the gradual course of time that this has changed, though even today,
system administrators are a barely visible race, until something goes wrong.
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The need for a formal discipline in system administration has been recognized
for some time, though it has sometimes been met with trepidation by many
corners of the Internet community, perhaps because the spirit of free cooperation
which is enjoyed by system administrators could easily be shattered by too
pompous an academic framework. Nonetheless, there are academics and software
engineers working on system administration, and it is quite common for system
administrators to spawn from a scientific education.

Academic concerns aside, the majority of computer systems lie in the private
sector, and the Internet is only amplifying this tendency. In order to be good
at system administration, a certain amount of dedication is required, with both
theoretical and practical skills. For a serious professional, system administration
is a career in engineering. There is now an appreciable market for consulting
services in security and automation of system administrative tasks. Not only
is system administration a fascinating and varied line of work, it can also be
lucrative.

1.6 The challenges of system administration

System administration is not just about installing operating systems. It is about
planning and designing an efficient community of computers so that real users will
be able to get their jobs done. That means:

• Designing a network which is logical and efficient.

• Deploying large numbers of machines which can be easily upgraded later.

• Deciding what services are needed.

• Planning and implementing adequate security.

• Providing a comfortable environment for users.

• Developing ways of fixing errors and problems which occur.

• Keeping track of and understanding how to use the enormous amount of
knowledge which increases every year.

Some system administrators are responsible for both the hardware of the network
and the computers which it connects, i.e. the cables as well as the computers.
Some are only responsible for the computers. Either way, an understanding of
how data flow from machine to machine is essential as well as an understanding
of how each machine affects every other.

In all countries outside the United States, there are issues of international-
ization, or tailoring the input/output hardware and software to local language.
Internationalization support in computing involves three issues:

• Choice of keyboard: e.g. British, German, Norwegian, Thai etc.

• Fonts: Roman, Cyrillic, Greek, Persian etc.

• Translation of program text messages.
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Inexperienced computer users usually want to be able to use computers in
their own language. Experienced computer users, particularly programmers, often
prefer the American versions of keyboards and software in order to avoid the
awkward placement of commonly used characters on non-US keyboards.

1.7 Common practice and good practice

In a rational world, every choice needs a reason, even if that reason is an arbitrary
choice. That does not undermine the need for a book of this kind, but it cautions
us about accepting advice on trust. This is just the scientific method at work:
informed scepticism and constant reappraisal.

If this book does nothing else, it should encourage a critical approach to
network and system engineering. One can spend a career hearing advice from
many different sources and not all of it will be good advice. The best generic advice
anyone can give in life is: think for yourself; pay attention to experts but don’t
automatically believe anyone.

In the system administration world, it is common to speak of ‘best practice’.
A scientific mind is immediately suspicious of such a claim. In what sense is a
practice best? When and for whom? How should one evaluate such a claim. This
is one of the things we wish to consider in this book.

Clearly, it is always a good idea to see what others have done in the past, but
history has no automatic authority. There are three reasons why ideas catch on
and ‘everyone does it’:

• Someone did it once, the idea was copied without thinking and no one has
thought about it since. Now everyone does it because everyone else does it.

• Experts have thought a lot about it and it really is the best solution.

• An arbitrary choice had to be made and now it is a matter of convention.

For example, in the British Isles it is a good idea to drive on the left-hand
side of the road. That’s because someone started doing so and now everyone does
it – but it’s not just a fad: lives actually depend on this. The choice has its roots in
history and in the dominance of right-handed sword-wielding carriage drivers and
highwaymen but, for whatever reason, the opposite convention now dominates in
other parts of the world and, in Britain, the convention is now mainly preserved
by the difficulty of changing. This is not ideal, but it is reasonable.

Some common practices, however, are bizarre but adequate. For instance, in
parts of Europe the emergency services Fire, Police and Ambulance have three
different numbers (110, 112 and 113) instead of one simple number like 911
(America) or, even simpler, 999 (UK). The numbers are very difficult to remember;
they are not even a sequence. Change would be preferable.

Other practices are simply a result of blind obedience to poorly formulated
rules. In public buildings there is a rule that doors should always open outwards
from a room. The idea is that in the case of fire, when people panic, doors should
‘go with the flow’. This makes eminent sense where large numbers of people
are involved. Unfortunately the building designers of my College have taken this
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literally and done the same thing with every door, even office doors in narrow
corridors. When there is a fire (actually all the time), we open our doors into the
faces of passers-by (the fleeing masses), injuring them and breaking their noses.
The rule could perhaps be reviewed.

In operating systems, many conventions have arisen, e.g. the conventions for
naming the ‘correct’ directory for installing system executables, like daemons,
the permissions required for particular files and programs and even the use of
particular software; e.g. originally Unix programs were thrown casually in usr/bin
or etc; nowadays sbin or libexec are used by different schools of thought, all of
which can be discussed.

As a system administrator one has the power to make radical decisions about
systems. Readers are encouraged to make logical choices rather than obedi-
ent ones.

1.8 Bugs and emergent phenomena

Operating systems and programs are full of bugs and emergent features that were
not planned or designed for. Learning to tolerate bugs is a matter of survival for
system administrators; one has to be creative and work around these bugs. They
may come from:

• Poor quality control in software or procedures.

• Problems in operating systems and their subsystems.

• Unfortunate clashes between incompatible software, i.e. one software pack-
age interferes with the operation of another.

• Inexplicable phenomena, cosmic rays, viruses and other attacks.

A system administrator must be prepared to live with and work around these
uncertainties, no matter what the reason for their existence. Not all problems can
be fixed at source, much as one would prefer this to be the case.

1.9 The meta principles of system administration

Many of the principles in this book derive from a single overriding issue: they
address the predictability of a system. The term system clearly implies an operation
that is systematic, or predictable – but, unlike simple mechanical systems, like say
a clock, computers interact with humans in a complex cycle of feedback, where
uncertainty can enter at many levels. That makes human–computer systems
difficult to predict, unless we somehow fix the boundaries of what is allowed, as a
matter of policy.

Principle 1 (Policy is the foundation). System administration begins with a
policy – a decision about what we want and what should be, in relation to what
we can afford.
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Policy speaks of what we wish to accomplish with the system, and what we
are willing to tolerate of behavior within it. It must refer to both the component
parts and to the environment with which the system interacts. If we cannot secure
predictability, then we cannot expect long-term conformance with a policy.

Principle 2 (Predictability). The highest level aim in system administration is
to work towards a predictable system. Predictability has limits. It is the basis of
reliability, hence trust and therefore security.

Policy and predictability are intertwined. What makes system administration
difficult is that it involves a kind of ‘search’ problem. It is the hunt for a stable
region in the landscape of all policies, i.e. those policies that can lead to stable
and predictable behavior. In choosing policy, one might easily promote a regime
of cascading failure, of increasing unpredictability, that degenerates into chaos.
Avoiding these regimes is what makes system administration difficult.

As networks of computers and people grow, their interactions become increas-
ingly complex and they become non-deterministic, i.e. not predictable in terms of
any manageable number of variables. We therefore face another challenge that is
posed by inevitable growth:

Principle 3 (Scalability). Scalable systems are those that grow in accordance
with policy; i.e. they continue to function predictably, even as they increase in
size.

These meta-themes will recur throughout this book. The important point to
understand about predictability is that it has limits. Human–computer systems
are too complex and have too many interactions and dependencies to be deter-
ministic. When we speak of predictability, it must always be within a margin of
error. If this were not the case, system administration would not be difficult.

1.10 Knowledge is a jigsaw puzzle

Factual knowledge, in the world of the system administrator, is almost a disposable
commodity – we use it and we throw it away, as it goes out of date. Then we need to
find newer, more up-to-date knowledge to replace it. This is a continual process;
the turn-around time is short, the loop endless, the mental agility required
demanding. Such a process could easily splay into chaos or lapse into apathy. A
robust discipline is required to maintain an island of logic, order and stability in
a sea of turbulent change.

This book is about the aims and principles involved in maintaining that
process – i.e. it is about the core of knowledge and ideas that remain constant
throughout the turnover. It is supplemented with some practical, example recipes
and advice. When you master this book you will come to understand why no single
book will ever cover every aspect of the problem – you need a dozen others as well.1

True knowledge begins with understanding, and understanding is a jigsaw puzzle

1Later you might want to look at some of the better how-to books such as those in the recommended
reading list, refs. [223, 123, 122, 211].
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you will be solving for the rest of your life. The first pieces are always the hardest
to lay correctly.

1.11 To the student

To study this subject, we need to cultivate a way of thinking which embodies a
basic scientific humility and some core principles:

• Independence, or self-sufficiency in learning. We cannot always ask someone
for the right answer to every question.

• Systematic and tidy work practices.

• An altruistic view of the system. Users come first: collectively and only then
individually.2

• Balancing a fatalistic view (the inevitability of errors) with a determination to
gain firmer control of the system.

Some counter-productive practices could be avoided:

• The belief that there exists a right answer to every problem.

• Getting fraught and upset when things do not work the way we expect.

• Expecting that every problem has a beginning, a middle and an end (some
problems are chronic and cannot be solved without impractical restructur-
ing).

We can begin with a checklist:

• Look for answers in manuals and newsgroups.

• Use controlled trial and error to locate problems.

• Consider all the information; listen to people who tell you that there is a
problem. It might be true, even if you can’t see it yourself.

• Write down experiences in an A–Z so that you learn how to solve the same
problem again in the future.

• Take responsibility for your actions. Be prepared for accidents. They are
going to happen and they will be your fault. You will have to fix them.

• Remember tedious jobs like vacuum cleaning the hardware once a year.

• After learning about something new, always pose the question: how does this
apply to me?

2The needs of the many outweigh the needs of the few (or the one)...
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American English is the language of the net. System administrators need it to be
able to read documentation, to be able to communicate with others and to ask
questions on the Internet. Some sites have even written software tools for training
novice administrators. See for instance, ref. [278]. Information can be found from
many sources:

• Printed manuals

• Unix manual pages (man and apropos and info commands)

• The World Wide Web

• RFCs (Requests for comment), available on the web

• Newsgroups and discussions

• Papers from the SAGE/Usenix LISA conferences [22]

• More specialized books

Asupplement to thisbook,withacollectionofuseful recipesand facts, isprovided
as a resource for system administrators at http://www.iu.hio.no/SystemAdmin.
More detailed online course materials relating to the Oslo University Colleges Mas-
ters Degree are available at http://www.iu.hio.no/teaching/materials.

1.12 Some road-maps

This book contains many overlapping themes. If you are browsing through the
book with a specific aim, the following road-maps might help you to shorten your
journey.

1. Resource management: Chapters 2, 4, 5, 6, 7, 8, 9

2. Human management: Chapters 3, 5, 8, 11

3. IP networking: Chapters 2, 3, 6, 8, 10, 11, 12

4. System analysis: Chapters 3, 6, 8, 13

5. Security: Chapters 3, 5, 6, 7, 8, 11, 12

Much of the thinking behind the security policy recommendations in ISO 17799
permeate the book.

Exercises

Self-test objectives

1. What kinds of issues does system administration cover?

2. Is system administration management or engineering?
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3. Why does the physical environment play a role in system administration?

4. Describe why ethics and human values are important.

5. Is system administration a science? Why/why not?

6. State the top-most principles that guide network and system administrators.

Problems

As a practical, hands-on subject, network and system administration exercises are
heavily dependent on what equipment is available to students. Course instructors
should therefore use the exercises in this book as templates for customizing their
own exercises rather than viewing them as literal instructions.

1. Browse through this whole book from start to finish. Browsing information
is a skill you will use a lot as a system administrator. Try to get an overall
impression of what the book contains and how it is laid out.

2. List what you think are the important tasks and responsibilities of a system
administrator. You will have the opportunity to compare this with your
impressions once we reach the end of the book.

3. Locate other books and information sources which will help you. These might
take the form of books (such as the recommended reading list at the end of
this book) or newsgroups, or web sites.

4. Buy an A–Z notebook for systemizing the facts and knowledge that you pick
up along the way.

5. What is an RFC? Locate a list of RFCs on a WWW or FTP server.



Chapter 2

System components

In this chapter we assemble the components of a human–computer community,
so as to prepare the way for a discussion of their management.

2.1 What is ‘the system’?

In system administration, the word system is used to refer both to the operating
system of a computer and often, collectively the set of all computers that cooperate
in a network. If we look at computer systems analytically, we would speak more
precisely about human–computer systems:

Definition 1 (human–computer system). An organized collaboration between
humans and computers to solve a problem or provide a service. Although comput-
ers are deterministic, humans are non-deterministic, so human–computer systems
are non-deterministic.

For the machine part, one speaks of operating systems that govern the operation
of computers. The term operating system has no rigorously accepted definition.
Today, it is often thought of as the collection of all programs bundled with a
computer, combining both in a kernel of basic services and utilities for users;
some prefer to use the term more restrictively (see below).

2.1.1 Network infrastructure

There are three main components in a human–computer system (see figure 2.1):

• Humans: who use and run the fixed infrastructure, and cause most problems.

• Host computers: computer devices that run software. These might be in a
fixed location, or mobile devices.

• Network hardware: This covers a variety of specialized devices including the
following key components:
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– dedicated computing devices that direct traffic around the Internet.
Routers talk at the IP address level, or ‘layer 3’,1 simplistically speaking.

– Switches: fixed hardware devices that direct traffic around local area
networks. Switches talk at the level of Ethernet or ‘layer 2’ protocols, in
common parlance.

– Cables: There are many types of cable that interconnect devices: fiber-
optic cables, twisted pair cables, null-modem cables etc.

Users

Installation

Maintenance

Upgrade

Hosts

Services

Physical network

Team network

Network Community

Figure 2.1: Some of the key dependencies in system administration. The sum of these
elements forms a networked community, bound by human ties and cable ties. Services
depend on a physical network, on hosts and users, both as consumers of the resources
and as teams of administrators that maintain them.

2.1.2 Computers

All contemporary computers in common use are based on the Eckert–Mauchly–von
Neumann architecture [235], sketched in figure 2.2. Each computer has a clock
which drives a central processor unit (CPU), a random access memory (RAM) and
an array of other devices, such as disk drives. In order to make these parts
work together, the CPU is designed to run programs which can read and write to
hardware devices. The most important program is the operating system kernel. On
top of this are software layers that provide working abstractions for programmers
and users. These consist of files, processes and services. Part of ‘the system’ refers
to the network devices that carry messages from computer to computer, including
the cables themselves. Finally, the system refers to all of these parts and levels
working together.

1Layer 3 refers loosely to the OSI model described in section 2.6.1.



2.2. HANDLING HARDWARE 13

Disk

Memory

CPU

Clock / pulse

Figure 2.2: The basic elements of the von Neumann architecture.

2.2 Handling hardware

To be a system administrator it is important to have a basic appreciation of the
frailties and procedures surrounding hardware. In our increasingly virtual world
of films and computer simulations, basic common-sense facts about the laws
of physics are becoming less and less familiar to us, and people treat fragile
equipment with an almost casual disregard.

All electronic equipment should be treated as highly fragile and easily damaged,
regardless of how sturdy it is. Today we are far too blasé towards electronic
equipment.

• Never insert or remove power cords from equipment without ensuring that it
is switched off.

• Take care when inserting multi-pin connectors that the pins are oriented the
right way up and that no pins are bent on insertion.

Moreover:

• Read instructions: When dealing with hardware, one should always look for
and read instructions in a manual. It is foolish to make assumptions about
expensive purchases. Instructions are there for a reason.

• Interfaces and connectors: Hardware is often connected to an interface by
a cable or connector. Obtaining the correct cable is of vital importance.
Many manufacturers use cables which look similar, superficially, but which
actually are different. An incorrect cable can result in damage to an interface.
Modem cables in particular can damage a computer or modem if they are
incorrectly wired, since some computers supply power through these cables
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which can damage equipment that does not expect to find a power supply
coming across the cable.

• Handling components: Modern day CMOS chips work at low voltages (typically
5 volts or lower). Standing on the floor with insulating shoes, you can pick up
a static electric charge of several thousand volts. Such a charge can instantly
destroy computer chips. Before touching any computer components, earth
yourself by touching the metal casing of the computer. If you are installing
equipment inside a computer, wear a conductive wrist strap. Avoid wearing
rubber sandals or shoes that insulate you from Earth when dealing with
open-case equipment, since these cause the body to build up charge that
can discharge through that equipment; on the other hand it is a good idea to
wear rubber soles when working around high voltage or current sources.

• Disks: Disk technology has been improving steadily for two decades. The most
common disk types, in the workplace, fall into two families: ATA (formerly IDE)
and SCSI. The original IDE (Integrated Drive Electronics) and SCSI (Small
Computer Software Interface) had properties that have since evolved faster
than the prejudices about them. ATA disks are now generally cheaper than
SCSI disks (due to volume sales) and excel at sequential access, but SCSI
disks have traditionally been more efficient at handling multiple accesses
due to a multitasking bus design, and are therefore better in multitasking
systems, where random access is important. However, filesystem design also
plays an important role in determining the perceived performance of each; i.e.
how operating systems utilize buses during updates is at least as important
as bus performance itself. Interesting comparisons show that IDE technology
has caught up with the head start that SCSI disks once had [322] for many
purposes, but not all.

SCSI [208] comes in several varieties: SCSI 1, SCSI 2, wide SCSI, fast-wide
etc. The difference has to do with the width of the data-bus and the number
of disks which can be attached to each controller. There are presently three
SCSI standards: SCSI-1, SCSI-2 and SCSI-3. The SCSI-2 standard defines
also wide, fast and fast/wide SCSI. Each SCSI disk has its own address (or
number) which must be set by changing a setting on the disk-cabinet or by
changing jumper settings inside the cabinet. Newer disks have programmable
identities. Disk chain buses must be terminated with a proper terminating
connector. Newer disks often contain automatic termination mechanisms
integrated into the hardware. The devices on the SCSI bus talk to the
computer through a controller. On modern PCs the SCSI controller is usually
connected to the PCI bus either as an on-board solution on motherboards or
as a separate card in a PCI slot. Other buses are also used as the carrier of
the SCSI protocol, like FireWire (IEEE 1394) and USB. The SCSI standard
also supports removable media devices (CD-ROM, CD-R, Zip drives), video
frame grabbers, scanners and tape streamers (DAT, DLT).

• Memory: Memory chips are sold on small pluggable boards. They are sold in
different sizes and with different speeds. A computer has a number of slots
where they can be installed. When buying and installing RAM, remember
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– The physical size of memory plugins is important. Not all of them fit into
all sockets.

– Memory is sold in units with different capacities and data rates. One
must find out what size can be used in a system. In many cases one may
not mix different types.

– There are various incompatible kinds of RAM that work in different ways.
Error correcting RAM, for instance, is tolerant to error from external noise
sources like cosmic rays and other ultra short wave disturbances. It is
recommended for important servers, where stability is paramount.

– On some computers one must fill up RAM slots in a particular order,
otherwise the system will not be able to find them.

Another aspect of hardware is the extent to which weather and environment
are important for operation.

• Lightning: strikes can destroy fragile equipment. No fuse will protect hardware
from a lightning strike. Transistors and CMOS chips burn out much faster
than any fuse. Electronic spike protectors can help here, but nothing will
protect against a direct strike.

• Power: failure can cause disk damage and loss of data. A UPS (uninterruptible
power supply) can help.

• Heat: Blazing summer heat or a poorly placed heater can cause systems to
overheat and suddenly black out. One should not let the ambient temperature
near a computer rise much above 25 degrees Centigrade. Clearly some
equipment can tolerate heat better than other equipment. Bear in mind that
metals expand significantly, so moving parts like disks will be worst affected
by heat. Increased temperature also increases noise levels that can reduce
network capacities by a fraction of a percent. While this might not sound like
much, a fraction of a percent of a Giga-bit cable is a lot of capacity. Heat
can cause RAM to operate unpredictably and disks to misread/miswrite.
Good ventilation is essential for computers and screens to avoid electrical
faults.

• Cold: Sudden changes from hot to cold are just as bad. They can cause
unpredictable changes in electrical properties of chips and cause systems to
crash. In the long term, these changes could lead to cracks in the circuit
boards and irreparable chip damage.

• Humidity: In times of very cold weather and very dry heat, the humidity
falls to very low levels. At these times, the amount of static electricity
builds up to quite high levels without dissipating. This can be a risk to
electronic circuitry. Humans pick up charge just by walking around, which
can destroy fragile circuitry. Paper sticks together causing paper crashes
in laser printers. Too much humidity can lead to condensation and short
circuits.
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2.3 Operating systems

An operating system has a number of key elements: (i) a technical layer of software
for driving the hardware of the computer, like disk drives, the keyboard and the
screen; (ii) a filesystem which provides a way of organizing files logically, and (iii)
a simple user interface which enables users to run their own programs and to
manipulate their files in a simple way.

Of central importance to an operating system is a core software system or
kernel which is responsible for allocating and sharing the resources of the system
between several running programs or processes. It is supplemented by a number
of supporting services (paging, RPC, FTP, WWW etc.) which either assist the kernel
or extend its resource sharing to the network domain. The operating system can
be responsible for sharing the resources of a single computer, but increasingly
we are seeing distributed operating systems in which execution of programs and
sharing of resources happens without regard for hardware boundaries; or network
operating systems in which a central server adds functionality to relatively dumb
workstations. Sometimes programs which do not affect the job of sharing resources
are called user programs.

In short, a computer system is composed of many subsystems, some of which
are software systems and some of which are hardware systems. The operating
system runs interactive programs for humans, services for local and distributed
users and support programs which work together to provide the infrastructure
which enables machine resources to be shared between many processes. Some
operating systems also provide text editors, compilers, debuggers and a variety
of other tools. Since the operating system (OS) is in charge of a computer, all
requests to use its resources and devices need to go through the OS kernel. An OS
therefore provides legal entry points into its code for performing basic operations
like writing to devices.

For an operating system to be managed consistently it has to be possible to
prevent its destruction by restricting the privileges of its users. Different operating
systems vary in their provisions for restricting privilege. In operating systems
where any user can change any file, there is little or no possibility of gaining true
control over the system. Any accident or whim on the part of a user can make
uncontrollable changes.

Today it important to distinguish between a user interface and an operating
system. A windowing system is a graphical user interface (GUI); an operating sys-
tem shares resources and provides functionality. This issue has been confused by
the arrival of the operating systems collectively called Windows, which include a
graphical user interface. In principle, an operating system can have any number
of different windowing interfaces, one for every taste.

Operating systems may be classified both by how many tasks they can perform
‘simultaneously’ and by how many users can be using the system ‘simultane-
ously’. That is: single-user or multi-user and single-tasking or multitasking. A
multi-user system must clearly be multitasking. The table below shows some
examples.
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OS Users Tasks Processors

MS/PC DOS S S 1

Windows 3x S QM 1

Macintosh System 7.* S QM 1

Windows 95/98/ME S M* 1

AmigaDOS S M 1

Unix-like M M n

VMS M M n

NT-like S/M M n

Windows 2000/XP M M n

OS390 (zOS) M M n

The first of these (MS/PC DOS/Windows 3x) are single-user, single-task systems
which build on a ROM-based library of basic input–output functions called
the BIOS. Windows also includes a windowing library. These are system calls
which write to the screen or to disk etc. Although all the operating systems can
service interrupts, and therefore simulate the appearance of multitasking in some
situations, the DOS environment cannot be thought of as a multitasking system
in any sense. Only a single user application can be open at any time. Note that
Windows 3x is not really a separate operating system from DOS; it is a user
interface to DOS.

The Macintosh System 7 could be classified as single-user quasi-multitasking
(QM). Apple’s new Mac OS X has a Unix-like emulator running on top of a Mach
kernel. That means that it is possible to run several user applications simulta-
neously. A window manager can simulate the appearance of several programs
running simultaneously, but this relies on each program obeying specific rules in
order to achieve the illusion. Prior to Mac OS X, the MacIntosh was not a true
multitasking system; if one program crashed, the whole system would crash. Sim-
ilarly, Windows 9x purported to be pre-emptive multitasking but many program
crashes would also crash the entire system.

Windows NT is now a family of operating systems from Microsoft (including
Windows 2000 and XP), based, in part, on the old VAX/VMS kernel from the
Digital Equipment Corporation and the Windows 32 API. It has virtual memory and
multi-threaded support for several processors. NT has a built-in object model and
security framework which is amongst the most modern in use. Windows NT has
been reincarnated now in the guise of Windows 2000 and XP, which adopt many of
the successful features of the Novell system, such as consistent directory services.
Later versions of Windows NT and Windows 2000 (a security and kernel enhanced
version of NT) allow true multitasking and multiple logins also through a terminal
server. Windows 2000 thus has comparable functionality to Unix in this respect.
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IBM S/370, S/390 mainframe and AS/400 mini-computers are widely used in
banks and large concerns for high level processing. These are fully multitasking
systems of high calibre, supporting virtual machine architectures. These main-
frame computers are now referred to as the IBM z-series computers, and the
operating system is z/OS. Z/OS has a virtual hosting manager that can support
multiple concurrent operating systems. Z-series computers have enjoyed a revival
with the advent of GNU/Linux. IBM has reported running many thousands of
concurrent Linux virtual kernels on their mainframe computers.

Unix is arguably the most important operating system today, both for its
widespread use and its historical importance. We shall frequently refer to Unix-
like operating systems below. ‘Unix’ (insofar as it is correct to call it that now)
comes in many forms, developed by different manufacturers and enthusiasts.
Originally designed at AT&T, Unix split into two camps early on: BSD (Berkeley
Software Distribution) and System V (or System 5) (AT&T license). The BSD version
was developed as a research project at the University of California Berkeley
(UCB). Many of the networking and user-friendly features originate from these
modifications. With time, these two versions have been merged back together and
most systems are now a mixture of both worlds. Historically BSD Unix has been
most prevalent in universities, while System 5 has been dominant in business
environments. In the 1990s Sun Microsystems and Hewlett Packard started a move
towards System V, keeping only the most important features of the BSD system,
but later suppressed the visible System V aspects in favor of BSD again. Today,
the differences are few, thanks to a de-facto standardization. A standardization
committee for Unix called POSIX, formed by the major vendors and independent
user groups, has done much to bring compatibility to the Unix world. Here are
some common versions of Unix.

Unix-like OS Manufacturer Type

BSD Univ. California Berkeley BSD

SunOS (Solaris 1) Sun Microsystems BSD/Sys V

Solaris(2) Sun Microsystems Sys V/BSD

Tru64 DEC/Compaq/HP BSD/Sys V

HPUX Hewlett Packard Sys V

AIX IBM Sys V / BSD

IRIX Silicon Graphics Sys V

GNU/Linux GPL Free Software Posix (Sys V/BSD)

MacOS X Apple BSD/Sys V

Unixware Novell Sys V

Note that multiple mergers have now stirred this mixture: Ultrix, OSF/1 and
Digital Unix were products of DEC before the Compaq merger, Tru64 was what
Compaq renamed Digital Unix after the merger, and now it is called HP Tru64
Unix.
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The original BSD source code is now available to the public and the GNU/Linux
source code is free (and open source) software. Unix is one of the most portable
operating systems available today. It runs on everything from palm-computers
to supercomputers. It is particularly good at managing large database appli-
cations and can run on systems with hundreds of processors. Most Unix-like
operating systems support symmetric multi-threaded processing and all support
simultaneous logins by multiple users.

2.3.1 Multi-user operating systems

The purpose of a multi-user operating system is to allow multiple users to share
the resources of a single host. In order to do this, it is necessary to protect users
from one another by giving them a unique identity or user name and a private
login area, i.e. by restricting their privilege. In short, we need to simulate a virtual
workstation for each individual user, with private files and private processes.

2.3.2 The legacy of insecure operating systems

The home computer revolution was an important development which spread cheap
computing power to a large part of the world. As with all rapid commercial devel-
opments, the focus in developing home operating systems was on immediate
functionality, not on planning for the future. The home computer revolution pre-
ceded the network revolution by a number of years and home computer operating
systems did not address security issues. Operating systems developed during this
period include Windows, MacIntosh, DOS, Amiga-DOS. All of these systems are
completely insecure: they place no limits on what a determined user can do.

Fortunately these systems will slowly be replaced by operating systems which
were designed with resource sharing (including networking) in mind. Still, there is
a large number of insecure computers in use and many of them are now connected
to networks. This should be a major concern for a system administrator. In an age
where one is forced to take security extremely seriously, leaving insecure systems
where they can be accessed physically or by the network is a potentially dangerous
situation. Such machines should not be allowed to hold important data and they
should not be allowed any privileged access to network services. We shall return
to this issue in the chapter on security.

2.3.3 Securable operating systems

To distinguish them from insecure operating systems we shall refer to operating
systems like Unix and NT as securable operating systems. This should not give
the impression that Unix and NT are secure: by its nature, security is not an
achievable goal, but an aspiration that includes accepted levels of risk (see section
11.4). Nevertheless, these operating systems do have the mechanisms which make
a basic level of preventative security possible.

A fundamental prerequisite for security is the ability to restrict access to certain
system resources. The main reason why DOS, Windows 9x and the MacIntosh
are so susceptible to virus attacks is because any user can change the operating
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system’s files. Properly configured and bug-free Unix/NT systems are theoretically
immune to such attacks, if privilege is not abused, because ordinary users do
not have the privileges required to change system files.2 Unfortunately the key
phrases properly configured and bug-free highlight the flaw in this dream.

In order to restrict access to the system we require a notion of ownership and
permission. Ordinary users should not have access to the hardware devices of a
secure operating system’s files, only their own files, for then they will not be able
do anything to compromise the security of the system. System administrators
need access to the whole system in order to watch over it, make backups and keep
it running. Secure operating systems thus need a privileged account which can
be used by the system administrator when he/she is required to make changes to
the system.

2.3.4 Shells or command interpreters

Today it is common for operating systems to provide graphical window systems
for all kinds of tasks. These are often poorly suited to system administration
because they only allow us to choose between pre-programmed operations which
the program designers foresaw when they wrote the program. Most operating
systems provide an alternative command line user interface which has some form
of interpreted language, thus allowing users to express what they want with more
freedom and precision. Windows proprietary shells are rudimentary; Unix shells
are rich in complexity and some of them are available for installation on Windows.
Shells can be used to write simple programs called scripts or batch files which
often simplify repetitive administrative tasks.

2.3.5 Logs and audits

Operating system kernels share resources and offer services. They can be asked
to keep lists of transactions which have taken place so that one can later go back
and see exactly what happened at a given time. This is called logging or auditing.

Full system auditing involves logging every single operation that the computer
performs. This consumes vast amounts of disk space and CPU time and is
generally inadvisable unless one has a specific reason to audit the system. Part
of auditing used to be called system accounting from the days when computer
accounts really were accounts for real money. In the mainframe days, users would
pay for system time in dollars and thus accounting was important since it showed
who owed what [133], but this practice remains mainly on large super-computing
installations today and ‘computing farms’.

Auditing has become an issue again in connection with security. Organizations
have become afraid of break-ins from system crackers and want to be able to
trace the activities of the system in order to be able to look back and find out the
identity of a cracker. The other side of the coin is that system accounting is so
resource consuming that the loss of performance might be more important to an
organization than the threat of intrusion.

2Not all viruses have to change system files, it is also possible to infect programs directly in memory
if process security is weak.
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For some organizations auditing is important, however. One use for auditing
is so-called non-repudiation, or non-denial. If everything on a system is logged,
then users cannot back away and claim that they did not do something: it’s all
there in the log. Non-repudiation is a security feature which encourages users to
be responsible for their actions.

2.3.6 Privileged accounts

Operating systems that restrict user privileges need an account which can be used
to configure and maintain the system. Such an account must have access to the
whole system, without regard for restrictions. It is therefore called a privileged
account.

In Unix the privileged account is called root, also referred to colloquially as
the super-user. In Windows, the Administrator account is similar to Unix’s root,
except that the administrator does not have automatic access to everything as
does root. Instead he/she must be first granted access to an object. However
the Administrator always has the right to grant themself access to a resource
so in practice this feature just adds an extra level of caution. These accounts
place virtually no restriction on what the account holder can do. In a sense, they
provide the privileged user with a skeleton key, a universal pass to any part of the
system.

Administrator and root accounts should never be used for normal work: they
wield far too much power. This is one of the hardest things to drill into novices,
particularly those who have grown up using insecure operating systems. Such
users are used to being able to do whatever they please. To use the privileged
account as a normal user account would be to make the systems as insecure as
the insecure systems we have mentioned above.

Principle 4 (Minimum privilege). Restriction of unnecessary privilege protects
a system from accidental and malicious damage, infection by viruses and prevents
users from concealing their actions with false identities. It is desirable to restrict
users’ privileges for the greater good of everyone on the network.

Inexperienced users sometimes aspire to gain administrator/root privileges as
a mark of status. This can generate the myth that the purpose of this account is
to gain power over others. In fact the opposite is true: privileged accounts exist
precisely because one does not want to have too much power, except in exceptional
circumstances. The corollary to our principle is this:

Corollary to principle (Minimum privilege). No one should use a privileged root
or Administrator account as a user account. To do so is to place the system in
jeopardy. Privilege should be exercised only when absolutely necessary.

One of the major threats to Internet security has been the fact that everyone
can now be root/Administrator on their own host. Many security mechanisms
associated with trusted ports, TCP/IP spoofing etc. are now broken, since all
of the security of these systems lies in the outdated assumption that ordinary
users will not have privileged access to network hardware and the kernel. Various
schemes for providing limited privilege through special shells, combined with the
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setuid mechanism in Unix, have been described. See refs. [152, 64]. See also the
amusing discussion by Simmons on use and abuse of the superuser account in
ref. [286] and an administration scheme where local users have privileges on their
own hosts [91].

2.3.7 Comparing Unix-like and Windows computers

The two most popular classes of operating system today are Unix-like operating
systems (i.e. those which are either derived from or inspired by System V or BSD)
and Microsoft Windows NT-like operating systems. We shall only discuss Windows
NT and later derivatives of the Windows family, in a network context. For the sake
of placing the generalities in this book in a clearer context, it is useful to compare
‘Unix’ with Windows.

The file and directory structures of Unix and Windows are rather different, but
it is natural that both systems have the same basic elements.

Unix-like OS Windows

chmod CACLS

chown CACLS

chgrp No direct equivalent

emacs Wordpad or emacs in GNU tools

kill kill command in Resource Kit

ifconfig ipconfig

lpq lpq

lpr lpr

mkfs/newfs format and label

mount net use

netstat netstat

nslookup nslookup

ps pstat in Resource Kit

route route

setenv set

su su in resource kit

tar tar command in Cygnus tools

traceroute tracer

Table 2.1: Comparison of Unix and Windows shell commands.
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Unix-like operating systems are many and varied, but they are basically similar
in concept. It is not the purpose of this book to catalogue the complete zoological
inventory of the ‘Unix’ world; our aim is to speak primarily of generalities which rise
above such distinctions. Nonetheless, we shall occasionally need to distinguish
the special features of these operating systems, and at least distinguish them
from Windows. This should not detract from the fact that Windows has adopted
much from the Unix cultural heritage, even though superficial attempts to hide
this (e.g. renaming / with \ in filenames, changing the names of some commands
etc.) might obscure the fact.

Windows NT, 2000, XP are multitasking operating systems from Microsoft
which allow users to log in to a console or workstation. The consoles may be
joined together in a network with common resources shared by an NT domain.
An NT host is either a network server or a personal workstation. The basic
Windows distribution contains only a few tools which can be used for network
administration. The Resource Kit is an extra package of documentation and
unsupported software which nonetheless provides many essential tools. Other
tools can be obtained free of charge from the network.

Windows did not have a remote shell login feature like Unix at the outset. One
may now obtain a Terminal Server which gives Windows telnet-like functionality.
This adds an important possibility: that of direct remote administration. The

Unix-like OS Windows

/usr %SystemRoot% usually points to C:\WinNT

/bin or /usr/bin %SystemRoot%\System32

/dev %SystemRoot%\System32\Drivers

/etc %SystemRoot%\System32\Config

/etc/fstab No equivalent

/etc/group %SystemRoot%\System32\Config\SAM* (binary)

/etc/passwd %SystemRoot\%\System32\Config\SAM* (binary)

/etc/resolv.conf %SystemRoot%\System32\DNS\*

/tmp C:\Temp

/var/spool %SystemRoot%\System32\Spool

Table 2.2: Comparison of Unix and Windows directories and files.

free Perl Win32 package and related tools provides tools for solving a number of
problems with NT from a script viewpoint.

Although we are ignoring many important operating systems by comparing
just two main players, a comparison of Unix-like operating systems with NT
covers most of the important differences. The latest offerings from the MacIntosh
world, for instance, are based on emulation of BSD 4.4 Unix and MacOS on a
Mach kernel, with features designed to compete with NT. IBM’s z-series operating
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Unix-like OS Windows

Standard libraries WIN32 API

Unix libraries Posix compatibility library

Symbolic/hard Links Hard links (short cuts)

Processes Processes

Threads Threads

Long filenames Long filenames on NTFS

Mount disk on directory Mount drive A: B: etc

endl is LF endl is CR LF

UID (User ID) SID (Subject ID)

groups groups

ACLs (non standard) ACLs

Permission bits (Only in ACLs or with Cygwin)

Shared libraries DLL’s

Environment variables Environment variables

Daemons/services/init Service control manager

DNS/DHCP/bootp (free) DNS/DHCP (NT server)

X windows X windows

Various window managers Windows GUI

System admin GUI (non-standard) System Admin GUI (Standard)

cfengine cfengine as of 1.5.0

Any client-server model Central server model

rsh limited implementation in server

Free software Some free software

Perl Perl + WIN32 module

Scripts Scripts

Shells DOS Command window

Primitive security Primitive security

Dot files for configuration System registry

Pipes with comm1 | comm2 Combinations comm1 | comm2

Configuration by text/ascii files Config by binary database

Table 2.3: Comparison of Unix and Windows software concepts.
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system for mainframes has experienced a revival of interest since the GNU/Linux
system was ported to run on its virtual engine.

Unix is important, not only for its endurance as the sturdy workhorse of the
network, but also for its cultural significance. It has influenced so many other
operating systems (including Windows) that further comparisons would be largely
redundant. Let us note briefly then, for the record, the basic correspondences
between Unix-like operating systems and Windows. Many basic commands are
very similar. Tables 2.1, 2.2 and 2.3 give some comparisons between Unix and
Windows concepts.

Note: there are differences in nomenclature. What Windows refers to as pipes3

in its internal documentation is not what Unix refers to as pipes in its internal
documentation.

A major problem for Windows has been the need for compatibility with DOS,
through Windows 9x to NT. Since both DOS and Windows 9x are insecurable
systems, this has led to conflicts of interest. Unix vendors have tried to keep step
with Microsoft’s impressive user interface work, in spite of the poor public image of
Unix (often the result of private dominance wars between different Unix vendors)
but the specially designed hardware platforms built by Unix vendors have had a
hard time competing with inferior but cheaper technology from the PC world.

2.4 Filesystems

Files and filesystems are at the very heart of what system administration is
about. Almost every task in host administration or network configuration involves
making changes to files. We need to acquire a basic understanding of the principles
of filesystems, so what better way than to examine some of the most important
filesystems in use today. Specifically what we are interested in is the user interfaces
to common filesystems, not the technical details which are rather fickle. We could,
for instance, mention the fact that old filesystems were only 32 bit addressable
and therefore supported a maximum partition size of 2GB or 4GB, depending on
their implementation details, or that newer filesystems are 64 bit addressable and
therefore have essentially no storage limits. We could mention the fact that Unix
uses an index node system of block addressing, while DOS uses a tabular lookup
system: the list goes on. These technical details are of only passing interest since
they change at an alarming pace. What is more constant is the user functionality
of the filesystems: how they allow file access to be restricted to groups of users,
and what commands are necessary to manage this.

2.4.1 Unix file model

Unix has a hierarchical filesystem, which makes use of directories and subdirec-
tories to form a tree. All file systems on Unix-like operating systems are based on a
system of index nodes, or inodes, in which every file has an index entry stored in a
special part of the filesystem. The inodes contain an extensible system of pointers

3Ceci n’est pas une pipe!
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to the actual disk blocks which are associated with the file. The inode contains
essential information needed to locate a file on the disk.

The top or start of the Unix file tree is called the root filesystem or ‘/’. Although
the details of where common files are located differ for different versions of Unix,
some basic features are the same.

The file hierarchy

The main subdirectories of the root directory together with the most important file
are shown below. Their contents are as follows.

• /bin Executable (binary) programs. On most systems this is a separate
directory to /usr/bin. In SunOS, this is a pointer (link) to /usr/bin.

• /etc Miscellaneous programs and configuration files. This directory has
become very messy over the history of Unix and has become a dumping
ground for almost anything. Recent versions of Unix have begun to tidy up
this directory by creating subdirectories /etc/mail, /etc/inet etc.

• /usr This contains the main meat of Unix. This is where application software
lives, together with all of the basic libraries used by the OS.

• /usr/bin More executables from the OS.

• /usr/sbin Executables that are mainly of interest to system administrators.

• /usr/local This is where users’ custom software is normally added.

• /sbin A special area for (often statically linked) system binaries. They are
placed here to distinguish commands used solely by the system administrator
from user commands, and so that they lie on the system root partition, where
they are guaranteed to be accessible during booting.

• /sys This holds the configuration data which go to build the system kernel.
(See below.)

• /export Network servers only use this. This contains the disk space set aside
for client machines which do not have their own disks. It is like a ‘virtual
disk’ for diskless clients.

• /dev and /devices A place where all the ‘logical devices’ are collected. These
are called ‘device nodes’ in Unix and are created by mknod. Logical devices are
Unix’s official entry points for writing to devices. For instance, /dev/console
is a route to the system console, while /dev/kmem is a route for reading
kernel memory. Device nodes enable devices to be treated as though they
were files.

• /home (Called /users on some systems.) Each user has a separate login
directory where files can be kept. These are normally stored under /home by
some convention decided by the system administrator.
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• /root On newer Unix-like systems, root has been given a home-directory
which is no longer the root of the filesystem ‘/’. The name root then loses its
logic.

• /var System V and mixed systems have a separate directory for spooling.
Under old BSD systems, /usr/spool contains spool queues and system data.
/var/spool and /var/adm etc. are used for holding queues and system log
files.

Every Unix directory contains two ‘virtual’ directories marked by a single dot and
two dots.

ls -a
. ..

The single dot represents the directory one is already in (the current directory).
The double dots mean the directory one level up the tree from the current location.
Thus, if one writes

cd /usr/share
cd ..

the final directory is /usr. The single dot is very useful in C programming if one
wishes to read ‘the current directory’. Since this is always called ‘.’ there is no need
to keep track of what the current directory really is. ‘.’ and ‘..’ are hard links to
the current and parent directories, respectively.

Symbolic links

A symbolic link is a pointer or an alias to another file. The command

ln -s fromfile /other/directory/tolink

makes the file fromfile appear to exist at /other/directory/tolink simulta-
neously. The file is not copied, it merely appears to be a part of the file tree in two
places. Symbolic links can be made to both files and directories.

A symbolic link is just a small file that does not appear explicitly to the user,
and which contains the name of the real file one is interested in. Unlike Windows’s
short-cuts, symbolic links cannot be seen to be files with a text editor; they are
handled specially at the level of the operating system. Application programs can
choose whether they want to treat a symbolic link as a separate file object, or
simply as an alias to the file it points to. If we remove the file a symbolic link
points to, the link remains – it just points to a non-existent file.

Hard links

A hard link is a duplicate directory reference to an inode in the filesystem. It is
in every way equivalent to the original file reference. If a file is pointed to by a
number of hard links, it cannot be removed until all of the links are removed. If a
file has n hard links, all of them must be removed before the file can be removed.
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The number of hard links to a file is stored in the filesystem index node for the
file. A hard link is created with the ln command, without the -s option. Hard
links are, in all current Unix-like operating systems, limited to aliasing files on the
same filesystem. Although the POSIX standard specifies the possibility of making
hard links across disk partitions with separate filesystems, this has presented
an insurmountable technical difficulty because it would require inodes to have a
global numbering scheme across all disk partitions. This would be an inefficient
overhead for an additional functionality of dubious utility, so currently this has
been ignored by filesystem designers.

File access control

In order to restrict privilege to files on the system, and create the illusion of a
virtual host for every logged-on user, Unix records information about who creates
files and also who is allowed to access them later. Unix makes no policy on what
names files should have: a file can have any name, as long as it does not contain
illegal characters such as forward-slash. A file’s contents are classified by so-called
magic numbers which are 16 or 32 bit codes kept at the start of a file and defined
in the magic number file for the system. Magic numbers tell the system what
application a file type belongs to, or how it should be interpreted (see the Unix
command file). This is in contrast to systems like Windows, where file extensions
(e.g. .EXE) are used to identify file contents. Under Unix, file extensions (e.g. .c)
are only discretionary.

Each user has a unique username or loginname together with a unique user id
or uid. The user id is a number, whereas the login name is a text string – otherwise
the two express the same information. A file belongs to user A if it is owned by user
A. User A then decides whether or not other users can read, write or execute the
file by setting the protection bits or the permission of the file using the command
chmod.

In addition to user identities, there are groups of users. The idea of a group is
that several named users might want to be able to read and work on a file, without
other users being able to access it. Every user is a member of at least one group,
called the login group and each group has both a textual name and a number
(group id). The uid and gid of each user is recorded in the file /etc/passwd (see
chapter 6). Membership of other groups is recorded in the file /etc/group or on
some systems /etc/logingroup.

The following output is from the command ls -lag executed on a SunOS type
machine.

lrwxrwxrwx 1 root wheel 7 Jun 1 1993 bin -> usr/bin
-r--r--r-- 1 root bin 103512 Jun 1 1993 boot
drwxr-sr-x 2 bin staff 11264 May 11 17:00 dev
drwxr-sr-x 10 bin staff 2560 Jul 8 02:06 etc
drwxr-sr-x 8 root wheel 512 Jun 1 1993 export
drwx------ 2 root daemon 512 Sep 26 1993 home
-rwxr-xr-x 1 root wheel 249079 Jun 1 1993 kadb
lrwxrwxrwx 1 root wheel 7 Jun 1 1993 lib -> usr/lib
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drwxr-xr-x 2 root wheel 8192 Jun 1 1993 lost+found
drwxr-sr-x 2 bin staff 512 Jul 23 1992 mnt
dr-xr-xr-x 1 root wheel 512 May 11 17:00 net
drwxr-sr-x 2 root wheel 512 Jun 1 1993 pcfs
drwxr-sr-x 2 bin staff 512 Jun 1 1993 sbin
lrwxrwxrwx 1 root wheel 13 Jun 1 1993 sys->kvm/sys
drwxrwxrwx 6 root wheel 732 Jul 8 19:23 tmp
drwxr-xr-x 27 root wheel 1024 Jun 14 1993 usr
drwxr-sr-x 10 bin staff 512 Jul 23 1992 var
-rwxr-xr-x 1 root daemon 2182656 Jun 4 1993 vmunix

The first column is a textual representation of the protection bits for each file.
Column two is the number of hard links to the file, for regular files, or the number
of objects contained in a subdirectory. The third and fourth columns are the user
name and group name and the remainder show the file size in bytes and the
creation date. Notice that the directories /bin and /sys are symbolic links to
other directories.

There are sixteen protection bits for a Unix file, but only twelve of them can be
changed by users. These twelve are split into four groups of three. Each three-bit
number corresponds to one octal number.

The leading four invisible bits give information about the type of file: is the file
a plain file, a directory or a link etc. In the output from ls this is represented by a
single character: -, d or l.

The next three bits set the so-called s-bits and t-bit which are explained below.
The remaining three groups of three bits set flags which indicate whether a file

can be read r, written to w or executed x by (i) the user who created them, (ii)
the other users who are in the group the file is marked with, and (iii) any user
at all.

For example, the permission

Type Owner Group Anyone
d rwx r-x ---

tells us that the file is a directory, which can be read and written to by the owner,
can be read by others in its group, but not by anyone else.

Note about directories. It is impossible to cd to a directory unless the x bit is set.
That is, directories must be ‘executable’ in order to be accessible.

Here are some examples of the relationship between binary, octal and the
textual representation of file modes.

Binary Octal Text

001 1 --x
010 2 -w-
100 4 r--
110 6 rw-
101 5 r-x
- 644 rw-r--r--
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It is well worth becoming familiar with the octal number representation of these
permissions, since they are widely used in literature.

chmod

The chmod command changes the permission or mode of a file. Only the owner of
the file or the superuser can change the permission. Here are some examples of
its use. Try them.

# make write-able for everyone
chmod a+w myfile

# add the user (owner) ’execute’ flag for directory
chmod u+x mydir/

# open all files for everyone
chmod 755 *

# set the s-bit on my-dir’s group
chmod g+s mydir/

# descend recursively into directory opening all files
chmod -R a+r dir

New file objects: umask

When a new file is created, the operating system must decide what default
protection bits to set on that file. The variable umask decides this. umask is
normally set by each user in his or her .cshrc file (see next chapter). For
example

umask 077 # safe
umask 022 # liberal

umask only removes bits, it never sets bits which were not already set in 666. For
instance

umask Permission

077 600 (plain)
077 700 (dir)
022 644 (plain)
022 755 (dir)

Making programs executable

A Unix program is normally executed by typing its pathname. If the x execute bit
is not set on the file, this will generate a ‘permission denied’ error. This protects
the system from interpreting nonsense files as programs. To make a program
executable for someone, you must therefore ensure that they can execute the file,
using a command like
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chmod u+x filename

This command would set execute permissions for the owner of the file;

chmod ug+x filename

would set execute permissions for the owner and for any users in the same
group as the file. Note that script programs must also be readable in order to be
executable, since the shell has to interpret them by reading.

chown and chgrp

These two commands change the ownership and the group ownership of a file. For
example:

chown mark ~mark/testfile
chgrp www ~mark/www/tmp/cgi.out

In newer implementations of chown, we can change both owner and group
attributes simultaneously, by using a dot notation:

chown mark.www ~mark/www/tmp/cgi.out

Only the superuser can change the ownership of a file. This is to prevent users
from being able to defeat quota mechanisms. (On some systems, which do not
implement quotas, ordinary users can give a file away to another user but not get
it back again.) The same applies to group ownership.

Making a group

The superuser creates groups by editing the file /etc/group. Normally users other
than root cannot define their own groups. This is a historical weakness in Unix, and
one which no one seems to be in a hurry to change. It is possible to ‘hack’ a solution
to this which allows users to create their own groups. The format of the group file is:

group-name:: group-number: comma-separated-list-of-users

The Unix group mechanism is very convenient, but poorly conceived. ACLs go
some way to redressing its shortcomings (see below) but at an enormous price,
in terms of computer resources. The group mechanism is fast and efficient, but
clumsy for users.

s-bit and t-bit (sticky bit)

Apart from the read, write and execute file attributes, Unix has three other flags.
The s- and t- bits have special uses. They are set as follows:

Name Octal form Text form

Setuid bit chmod 4000 file chmod u+s file

Setgid bit chmod 2000 file chmod g+s file

Sticky bit chmod 1000 file chmod +t file
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The effect of these bits differs for plain files and directories and also differs between
different versions of Unix. Check particularly the manual page man sticky on
each system. The following is common behavior.

For executable files, the setuid bit tells Unix that regardless of who runs the
program it should be executed with the permissions and rights of the owner of the
file. This is often used to allow normal users limited access to root privileges. A
setuid-root program is executed as root for any user. The setgid bit sets the group
execution rights of the program in a similar way.

In BSD Unix, if the setgid bit is set on a directory then any new files created
in that directory assume the group ownership of the parent directory and not
the login group of the user who created the file. This is standard policy under
System V.

A directory for which the sticky bit is set restricts the deletion of files within
it. A file or directory inside a directory with the t-bit set can only be deleted or
renamed by its owner or the superuser. This is useful for directories like the mail
spool area and /tmp which must be writable to by everyone, but should not allow
a user to delete another user’s files.

Access control lists

ACLs, or access control lists are a modern replacement for file modes and per-
missions. With access control lists we can specify precisely the access rights to
files for each user individually. Although ACLs are functionally superior to the old
Unix group ownership model, experience shows that they are too complicated for
most users in practice. Also, the overhead of reading and evaluating ACLs places
a large performance burden on a system.

Previously the only way to grant access to a file to a known list of users, was to
make a group of those users, and use the group attribute of the file. With ACLs this
is no longer necessary. ACLs are both a blessing and a nightmare. They provide a
functionality which has long been missing from operating systems, and yet they are
often confusing and even hopelessly difficult to understand in some filesystems.
One reason for this is when filesystems attempt to maintain compatibility with
older protection models (e.g. Unix/Posix permissions and ACLs, as in Solaris). The
complex interactions between creation masks for Unix permissions and inherited
properties of ACLs make ACL behavior non-intuitive. Trying to obtain the desired
set of permissions on a file can be like a flirtation with the forces of mysticism.
This is partly due to the nature of the library interfaces and partly due to poor or
non-existent documentation.

ACLs existed in several operating systems prior to Unix, but were introduced to
Unix in the DOMAIN OS by Apollo, and were later adapted by Novell, HP and other
vendors. A POSIX standard for ACLs has been drafted, but as of today there is
no adopted standard for ACLs and each vendor has a different set of incompatible
commands and data-structures. Sun Microsystems’ Solaris implementation for
NFS3 is based on the POSIX draft and includes ACLs. We shall follow Solaris ACLs
in this section. GNU/Linux and the BSD operating systems do not have ACLs at
all. If we grant access to a file which is shared on the network to a machine which
doesn’t support ACLs, they are ignored. This limits their usefulness in most cases.
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ACLs are literally lists of access rights. Each file has a list of data structures
with pairs of names and permissions:

Groups

NT objUnix obj

(rwx+)Owner

ACLOwnerOwner Others

(rwx)

(rwx)

(rwx)

(rwx)

Usernames

Others

Groups

Owner

ACL

(rwx)(rwx)(rwx)

Groups

Usernames

(rwx+)

(rwx+)

Figure 2.3: The standard permission model for file objects in Unix and Windows.

An ACL is specified by saying what permissions we would like to grant and which
user or group of users the permissions should apply to. An ACL can grant access
or deny access to a specific user. Because of the amount of time required to
check all the permissions in an ACL, ACLs slow down file search operations.
Under Solaris, the commands to read and write ACLs have the cumbersome
names

• getfacl file Examine the ACLs for a file.

• setfacl file -s permission Set ACL entries for a file, replacing the entire list.

• setfacl file -m permission Set ACL entries for a file, adding to an existing
list.

For example, if we create a new file, it ends up with a default ACL which is based
upon the Unix umask value and any ACL masks which are set for the parent
directory. Suppose umask is 077, and no directory ACLs are set, giving minimal
rights to others:

mercury% touch testfile

mercury% getfacl testfile

# file: testfile
# owner: mark
# group: iugroup
user::rw-
group::--- #effective:---
mask:---
other:---
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This tells us that a new file is created with read/write permission for the owner
(mark) of the file, and no other rights are granted. To open the file for a specific
user demos, one writes

mercury% setfacl -m user:demos:rw- testfile

mercury% getfacl testfile

# file: testfile
# owner: mark
# group: iugroup
user::rw-
user:demos:rw- #effective:---
group::--- #effective:---
mask:---
other:---

To open a file for reading by a group iugroup, except for one user called robot,
one would write:

mercury% setfacl -m group:iugroup:r--,user:robot:--- testfile

mercury% getfacl testfile

# file: testfile
# owner: mark
# group: iugroup
user::rw-
user:robot:--- #effective:---
user:demos:rw- #effective:---
group::--- #effective:---
group:iugroup:r-- #effective:---
mask:---
other:---

Notice that this is accomplished by saying that the group has read permission
whilst the specific user should have no permissions.

2.4.2 Windows file model

The Windows operating system supports a variety of legacy filesystems for back-
ward compatibility with DOS and Windows 9x. These older filesystems are
insecure, in the sense that they have no mechanisms for restricting access to
files. The filesystem NTFS was introduced with NT in order to solve this problem.
The filesystem has gone through a number of revisions and no doubt will go
through many more before it reaches constancy.
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NTFS, like the Unix file system, is a hierarchical file system with files and
directories. Each file or directory has an owner, but no group membership. Files
do not have a set of default permission bits, as does Unix; instead they all have
full-blooded ACLs, which assign a set of permission bits to a specific user. NTFS
ACLs are similar to other access control list models, in filesystems such as the
AFS and DCE/DFS. They have all of the flexibility and all of the confusions which
accompany ACLs, such as inheritance of attributes from parent directories and
creation masks. The NTFS file system is indexed by a master file table, which
serves an analogous function to Unix’s inodes, though the details are somewhat
different.

Filesystem layout

Drawing on its DOS legacy, Windows treats different disk partitions as independent
floppy disks, labelled by a letter of the alphabet:

A: B: C: D: ...

For historical reasons, drive A: is normally the diskette station, while drive C:
is the primary hard disk partition. Other drive names are assigned at random,
but often H: is reserved for partitions containing users’ home directories. Unlike
Unix, different devices are not sewn seamlessly into a unified file tree, though
this will probably change in a future release of Windows. Originally, DOS chose
to deviate from its Unix heritage by changing the subdirectory separator from /
to \. Moreover, since each device is treated as a separate entity, there is a root
directory on every disk partition:

A: B: C: ...

and one has a notion of current working drive, as well as current working directory.
These distinctions often cause confusion amongst users who work with both Unix
and Windows.

The layout of the Windows filesystem has changed through the different ver-
sions, in an effort to improve the structure. This description relates to NT 4.0.
The system root is usually stored in C:\WinNT and is generally referred to by the
system environment variable %SystemRoot%.

• C:\I386 This directory contains binary code and data for the Windows
operating system. This should normally be left alone.

• C:\Program Files This is Windows’s official location for new software.
Program packages which you buy should install themselves in subdirectories
of this directory. More often than not they choose their own locations,
however, often with a distressing lack of discipline.

• C:\Temp Temporary scratch space, like Unix’s /tmp.

• C:\WinNT This is the root directory for the Windows system. This is mainly for
operating system files, so you should not place new files under this directory
yourself unless you really know what you are doing. Some software packages
might install themselves here.
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• C:\WinNT\config Configuration information for programs. These are gen-
erally binary files so the contents of Windows configuration files is not very
interesting.

• C:\WinNT\system32 This is the so-called system root. This is where most
system applications and data-files are kept.

File extensions

Whereas files can go by any name in Unix, Microsoft operating systems have always
used the concept of file extensions to identify special file types. For example:

file.EXE An executable program

file.DOC Word document

file.JPG Graphic file format

Links and shortcuts

Like Unix, Windows also has ways of aliasing files in the filesystem. Windows has
hard links, or duplicate entries in the master file table, allowing one to associate
several names with a given file. This is not a pointer to a file, but an alternative
entry point to the same file. Although the filesystem structure of NTFS is different
from the Unix filesystem, the idea is the same. Hard links are created from the
POSIX compatibility subsystem, using the traditional Unix command name ln. As
with Unix, hard links can only be made to files on the same disk partition. Most
users will not use these hard links, however.

Windows also has short cuts. A short cut is a small file which contains the
name of another file, like a short script. It is normally used for aliasing scripts or
programs. Unlike Unix’s symbolic links, short cuts are not handled transparently
by the operating system, they are actual files which can be opened with a text
editor. They must be read and dealt with at the application level. Short cuts
can be given any name, but they always have the file extension .LNK. This
suffix is not visible in the graphical user interface. They are created from the
graphical user interface by right-clicking on the item one wishes to obtain a
pointer to.

Unix compatibility packages like Cygwin32 use short cuts to emulate symbolic
links. However, since short cuts work at the application level, what one package
does with a short cut is not guaranteed to apply to other software, so the usefulness
of short cuts is limited.

Access control lists

Windows files and directories have the following attributes. Access control lists
are composed of access control entries (ACEs) which consist of these.
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Permission bit Files Directories

R (Read) See file contents See directory contents

W (Write) Modify file contents Modify directory contents

X (Execute) Executable program Can cd to directory

D (Delete) Deletable Deletable

P (Permission) Permissions changeable Permissions changeable

O (Ownership) Ownership changeable Ownership changeable

The read, write and execute flags have the same functions as their counterparts
in Unix. The execute flag is always set on .EXE files. The additional flags allow
configurable behavior, where behavior is standardized in Unix. The delete flag
determines whether or not a particular user has permission to delete an object
(note that a user which has write access to the file can destroy its contents inde-
pendently of this). The permission and ownership flags likewise determine whether
or not a specified user can take ownership or modify the permissions on a file.

Access control lists, or Access control entries are set and checked with either
the Windows Explorer program (File/Properties/Security/Permissions menu) or
the cacls command. This command works in more or less the same way as the
POSIX setfacl command, but with different switches. The switches are

/G Grant access to user.

/E Edit ACE instead of replacing.

/T Act on all files and subdirectories.

/R Revoke (remove) access rights to a user.

/D Deny access rights to a given user.

For example:

hybrid> CACLS testfile
C:\home\mark\testfile BUILTIN\Administrators:F

Everyone:C
MT AUTHORITY\SYSTEM:F

hybrid> CACLS testfile /G ds:F

Are you sure(Y/N)?

hybrid> CACLS testfile
C:\home\mark\testfile HYBRID\ds:F

In this example the original ACL consisted of three entries. We then replace it
with a single entry for user ds on the local machine HYBRID, granting full rights.
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The result is shown in the last line. If, instead of replacing the ACE, we want to
supplement it, we write

hybrid> CACLS testfile /E /G mark:R
{\var wait for 30 seconds}
Are you sure(Y/N)?

hybrid> CACLS testfile
C:\home\mark\testfile HYBRID\ds:F

HYBRID\mark:R

New files: inheritance

Although the technical details of the NTFS and its masking schemes are not well
documented, we can note a few things about the inheritance of permissions. In the
absence of any ACL settings on a parent directory, a new file is created, granting
all rights to all users. If the parent directory has an ACL, then a new file inherits
that ACL at the time of its creation. When a file is moved, it keeps its NTFS
permissions, but when a file is copied, the copy behaves like a new file, inheriting
the attributes of its new location.

2.4.3 Network filesystem models

Unix and Windows have two of the most prevalent filesystem interfaces, apart
from DOS itself (which has only a trivial interface), but they are both stunted
in their development. In recent years, filesystem designers have returned to an
old idea which dates back to a project from Newcastle University, called the
Newcastle Connection, an experimental distributed filesystem which could link
together many computers seamlessly into a single file tree [35]. To walk around
the disk resources of the entire network, one simply used cd to change directory
within a global file tree.

This idea of distributed filesystems was partially adopted by Sun Microsystems
in developing their Network File System (NFS) for Unix-like operating systems.
This is a distributed filesystem, for mainly local area networks. The use of open
standards and a willingness to allow other vendors to use the technology quickly
made NFS a de-facto standard in the Unix world, overtaking alternatives like
RFS. However, owing to vendor disagreement, the Network File System has been
limited to the lowest common denominator Unix filesystem-model. Vendor-specific
improvements are available, but these do not work in a heterogeneous environment
and thus NFS is relatively featureless, by comparison with the functionality
available on local disk filesystems. In spite of this, there is no denying that NFS
has been very effective, as is testified by the huge number of sites which use it
unconditionally.

Other filesystems that are gaining in popularity include the Andrew File System
(AFS), since it was released as an OpenAFS version. AFS became popular in
institutions such as high energy physics laboratories that needed to share large



2.4. FILESYSTEMS 39

Flag Rights acquired by named user, group, other in ACL

r Ability of open and read a file or

directory contents.

w Ability to open and write to a file or

to add files to a directory.

x Ability to execute files as programs

or enter directories.

d Ability to erase (delete) a file or

directory.

c Ability to modify file attributes

including rename.

i Ability to add files to a directory.

Table 2.4: DFS permissions. New files inherit the initial object ACL of their parent directory.
These flags can be applied to named lists of users, or groups or others, in the Unix sense.

amounts of experimental data with colleagues all over the world. The local network
domain model of NFS was not sufficient for this task. AFS has an Access Control
List (ACL) model, thus improving on Unix file security. A further improvement
came with the Distributed Computing Environment (DCE) filesystem DFS, that
provided further enhancements and a sanitized ACL model (see table 2.5).

AFS and DFS have been embraced widely in this context, allowing collabora-
tors in Japan, Europe and the United States to be connected simply by changing
directory to a new country, organization and site (see section 3.8.7). These filesys-
tems also employ Access Control Lists, based on, but not limited by, the Unix
permission model (see table 2.4). AFS now has an OpenAFS implementation.

Note that the DCE/DFS filesystem is not related to Windows’s DFS filesystem,
though the idea is similar.

As we can see, many of these file systems have drawn on the pioneering ideas
of experimental filesystems. Today, most filesystems work in a similar way, with
Unix lagging behind in sophistication, but not in functionality. Ironically, for all
the flexibility that ACLs offer, they have proved to be confusing and difficult to
understand and the extra functionality they provide is dwarfed by the feeling of
dread which they instill in administrators and users alike. On systems with only
ACLs, file permissions tend to be set inappropriately more often than on Unix-like
systems. Unix’s simpler approach, while basically old and simplistic, is a more
palatable and manageable alternative for all but the most sophisticated users.

Another major filesystem, in a similar vein, is the Novell Netware filesys-
tem. This is an interesting filesystem which can also create a seamless file
tree called the Novell Directory Service (NDS) within an organization. Here files
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Flag Rights acquired by named user, group in ACL

r Ability of open and read a file or

directory contents.

l Lookup within a directory.

w Ability to open and write to a file.

i Ability to insert files in directories.

d Ability to erase (delete) a file or

directory.

a Ability to modify file attributes

including rename.

k Lock files.

Table 2.5: AFS permissions. These flags can be applied to named lists of users, or groups
but not ‘others’. Four shorthand forms also exist write=rlidwk, read=rl, all=rlidwka,
and none removes an entry.

have an owner and an Access Control List, which can grant or restrict access
to named users or groups. The Windows model was presumably inspired by
this. The Netware idea is not unlike NFS or DFS in attempting to integrate
organizations’ disks into a communal file tree, but the user interface is supe-
rior, since it is not limited by compatibility issues. However Netware forces
a particular object-oriented interpretation of the network onto disks, whereas
NFS does not care about the file tree structure of hosts which incorporate
shared filesystems. With NFS, hosts do not have to subscribe to a global
vision of shared network resources, they simply take what they want and main-
tain their own private file tree: each host could be kept quite different. Oddly
enough, Windows did not embrace the model of seamless sharing, choosing
instead to mount drives on the old DOS drive letters A:, B: etc, though it
is likely that such seamless integration will come in a future version. Novell
too has to deal with this antiquity, since it serves primarily Windows based
machines.

While Solaris’ NFS does support its own brand of Access Control Lists, NFS
cannot be used to provide inter-platform ACL functionality. Netware does support
its own state of the art filesystem attributes, based on the usual object inheritance
model of directories as containers for smaller containers. Each file has an owner
and an ACL (see table 2.6).

The Common Internet File System (CIFS), based on Microsoft’s Server Message
Block (SMB) protocols sets is yet another popular way of sharing files. Windows
software and Unix’s Samba software bind together hosts using this form of Remote
Procedure Call (see section 9.10).
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Flag Rights acquired by named user in ACL

S Supervisor rights grant all rights to

a file, directory and all subdirectories.

R Ability of open and read a file or

directory contents.

W Ability to open and write to a file or

to add files to a directory.

C Ability to create new files and undelete

old ones, or create new directories.

E Ability to erase (delete) a file or

directory.

M Ability to modify file attributes

including rename.

F Ability to see files within a

directory when viewing contents.

A Ability to change access rights on file

or directory, including granting others

access rights. Also change inheritance

masks for directories.

Table 2.6: Netware 5 permissions. New file objects inherit the default permissions of their
container, minus any flags in the Inherited Rights Filter/Mask (IRF). Permissions can be
applied to named users or groups.

2.4.4 Unix and Windows sharing

Filesystems can be shared across a network by any of the methods we have
discussed above. We can briefly note here the correspondence of commands and
methods for achieving network sharing.

With AFS and DCE/DFS, used mainly on Unix-like hosts, the security model
is such that a computer becomes part of a cell or domain. Within such a cell,
disk partitions are referred to as volumes. These can be replicated and shared
with other computers. AFS cells on other server hosts can be attached to client
hosts using the afsd program. A local cell can be published to the rest of the AFS
speaking network by adding its attributes to a database. The resulting seamless
file tree is visible under /afs. The visibility of files in this model is controlled by
the Access Control Lists.
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Unix-like hosts use NFS to share filesystems, by running the daemons (e.g.
rpc.mountd and rpc.nfsd). Filesystems are made available for sharing by
adding them to the file /etc/exports, on most systems, or confusingly to
/etc/dfs/dfstab on SVR4 based Unix. The syntax in these files is particular
to the flavor of the Unix-like operating system one is using. With some operating
systems, using /etc/exports, it is necessary to run the command exportfs -a
to make the contents of the export file visible to the daemons which control access.
On SVR4 systems, like Solaris, there is a command called share for exporting
filesystems, and the file /etc/dfs/dfstab is just a shell script containing a lot of
share commands, e.g.

allhosts=nomad:vger:nomad.domain.country:vger.domain.country

share -F nfs -o rw=$allhosts /site/server/local

Here the command shareall is the equivalent for exporting all filesystems in this
file. It simply runs a shell script containing all such commands. The example above
makes the directory tree /iu/server/local available to the hosts nomad and
vger. Note that due to different name services implementations and their various
behaviors, it is often necessary to use both the unqualified and fully qualified
names of hosts when sharing.

On the client or receiving end, we attach a shared filesystem to a host by
‘mounting’ it. NFS filesystems are mounted in exactly the same way as they mount
a local disk, i.e. with the mount command, e.g.

mkdir -p /site/server/local
mount server:/site/server/local /site/server/local

Here we create a directory on which to mount a foreign filesystem and then
mount it on a directory which has the same name as the original on the server.
The original name and the new name do not have to be the same, but there
is a point to this which we shall return to later. Assuming that the server-host
granted us the right to mount the filesystem on our host, we now have access
to the remote filesystem, as though it were a local disk. The only exception is
the superuser root, who is granted the access rights of a user called nobody.
The point of this is that the administrator on the client host is not necessarily
the administrator on the server host, and has no obvious right to every users’
files there. This mapping can be overridden if convenience outweighs the minor
security it adds.

Windows filesystems on a server are shared, either using the GUI, or by
executing the command

net share alias=F:\filetree

On the client side, the file tree can then be ‘mounted’ by executing the command

net use X: \\serverhost\alias

This attaches the remote file tree, referenced by the alias, to Windows drive
X:. One of the logistical difficulties with the Windows drive model is that drive
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associations are not constant, but might change when new hardware is detected.
Drive associations can be made to persist by adding a flag

net use X: \\serverhost\alias /persistent:yes

to the mount command. This is not a perfect solution, but it works.

2.5 Processes and job control

On a multitasking computer, all work on a running program is performed by
an abstraction called a process. This is a collection of resources such as file
handles, allocated memory, program code and CPU registers that is associ-
ated with a specific running program. A cursory overview of various operat-
ing system models for running programs follows. On modern operating sys-
tems, processes can contain many concurrent threads which share program
resources.

2.5.1 The Unix process model

Unix starts new processes by copying old ones. Users start processes from a shell
command line interface program or by clicking on icons in a window manager.
Every Unix process has a process ID (PID) which can be used to refer to it, suspend
it or kill it entirely.

A background process is started from a shell using the special character & at
the end of the command line.

find / -name ’*lib*’ -print >& output &

The final & at the end of this line means that the job will be run in the background.
Note that this will not be confused with the redirection operator >& since it must
be the last non-whitespace character of the command. The command above looks
for any files in the system containing the string ‘lib’ and writes the list of files to a
file called ‘output’.

If we want to see what processes are running, we can use the ps com-
mand. ps without any arguments lists your current processes, i.e. all processes
owned by the user identity you logged in with that are connected to the shell
you are currently using. ps takes many options, for instance ps auxg will
list all user processes in detail on BSD-like systems, while ps -efl will pro-
vide a similar, if not entirely compatible, listing on System V-like systems.
Some Unix-like systems support both the BSD and System V flags to the ps
command.

Processes can be stopped and started, or killed once and for all. The kill
command does this and more. In fact, it sends generalized signals to running
processes, not only the kill signal. There are two versions of the kill command.
One of them is built into the C-shell and the other is not. If you use the C-shell
then you will never care about the difference unless the process table is full. We
shall nonetheless mention the special features of the C-shell built-ins below. The
kill command takes a number called a signal as an argument and another number
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called the process identifier or PID for short. Kill send signals to processes. Some
of these are fatal and some are for information only. The two commands

kill -15 127
kill 127

are identical. They both send signal 15 to PID 127. This is the normal termination
signal and it is often enough to stop any process from running.

Programs can choose to ignore certain signals by trapping signals with a special
handler. One signal they cannot ignore is signal 9.

kill -9 127

is a sure way of killing PID 127. Even though the process dies, it may not be
removed from the kernel’s process table if it has a parent (see next section).

2.5.2 Child processes and zombies

When we start a process, the new process becomes a child of the original. If one of
the children starts a new process then it will be a child of the child (a grandchild).
Processes therefore form hierarchies. Several children can have a common parent.
All Unix user-processes are children of the initial process init, with process ID 1.

If we kill a parent, then (unless the child has detached itself from the parent) all
of its children die too. If a child dies, the parent is not affected. Sometimes when
a child is killed, it does not die but becomes defunct or a zombie process. This
means that the child has a parent which is waiting for it to finish. If the parent
has not yet been informed that the child has died, because it has been suspended
itself for instance, then the dead child is not completely removed from the kernel’s
process table. When the parent wakes up and receives the message that the child
has terminated (and its exit status), the process entry for the dead child can be
removed.

Most Unix processes go through a zombie state, but most terminate so quickly
that they cannot be seen. A few hang around and use up valuable process slots,
which can be a problem. It is not possible to kill a zombie process, since it is
already dead. The only way to remove a zombie is to either reactivate the process
which is waiting for it, or to kill that process. Persistent zombie processes are
usually caused by software bugs.

2.5.3 The Windows process model

Like Unix, processes under Windows/NT can live in the foreground or in the
background, though unlike Unix, Windows does not fork processes by replicating
existing ones. A background process can be started with

start /B

In order to kill the process it is necessary to purchase the Resource kit which
contains a kill command. A background process detaches itself from a login
session and can continue to run even when the user is logged out.
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Generally speaking, Windows and Novell abhor processes. Threads are the
preferred method for multitasking. This means that additional functionality is
often implemented as modules to existing software, rather than as independent
objects.

The shutdown of the whole system is normally performed from the Windows
menu. Any logged on user can shut down a host. Background processes die
when this happens and updates from an administrator could fail to be applied.
A number of shutdown commands also exists for shutting down local or remote
systems; some of these are commercial third-party software.

2.5.4 Environment variables

Environment variables are text-string variables which can be set in any process
[294]. Normally they are set by users in shell environments in order to commu-
nicate user preferences or configuration information to software. In the C-shell,
they are set with the command

setenv VARIABLE value

and are not to be confused with C-shell’s local (non-inherited) variables which are
created with set variable=value. In the original Bourne shell they are set by

VARIABLE=value
export VARIABLE

The export command is needed to make the variable global, i.e. to make it
inheritable by child processes. In newer Bourne shells like ksh and bash, one can
simply write

export VARIABLE=value

The values of these variables are later referred to using the dollar symbol:

echo $VARIABLE

When a process spawns a child process, the child inherits the environment
variables of its parent. Environment variables are an important way of transmitting
preference information between processes.

On Windows systems environment variables are set in the DOS prompt inter-
face by

set VARIABLE=value

Try not to confuse this with the C-shell’s set command. Environment variables in
Windows are later dereferenced using the percent prefix and suffix:

echo %%VARIABLE%%
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2.6 Networks

The network is the largest physical appendage to our computer systems, but it
is also the least conspicuous, often hidden behind walls and in locked switching
rooms, or passing invisibly through us as electromagnetic radiation. To most
users, the network is a piece of magic which they have abruptly learned to
take for granted, and yet, without it, modern computing practices would be
impossible.

A network is a number of pathways for communication between two or more
hosts. Networking is increasingly important, as computers are used more and more
as devices for media access rather than for computation. Networking raises issues
for system management at many levels, from its deployment to its configuration
and usage. We begin here, simply, by identifying the main components involved
in this important subsystem.

The most simplistic way to ensure communication between N hosts would
be to stretch a private cable between every pair of hosts on a network. This
would require a cat’s cradle of N network interfaces and N − 1 cables per host,
i.e. N(N − 1)/2 links in total, which would be quite unmanageable and equally
expensive. The challenge of networking is therefore to provide some kind of shared
cable which is attached to several hosts simultaneously by means of a single
network interface. Some studies in setting up physical infrastructure have been
reported in refs. [196, 271]; see also discussion of load [209, 90] in Wide Area
Networks [210].

2.6.1 The OSI model

The International Standards Organization (ISO) has defined a model for describing
communications across a network, called the OSI model, for Open Systems Inter-
connect (reference model). This model is a generalized abstraction of how network
communication can be and is implemented. The model does not fit every network
technology perfectly, but it is widely used to discuss and refer to the layers of
technology involved in networking, thus we begin by recapping this model. The
OSI model describes seven layers of abstraction.

Layer Name Example

7 Application layer Program protocol commands

6 Presentation layer XDR or user routines

5 Session layer RPC / sockets

4 Transport layer TCP or UDP

3 Network layer IP Internet protocol

2 Data link layer Ethernet protocol

1 Physical layer Cables, interfaces
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At the lowest level, the sending of data between two machines takes place by
manipulating voltages along wires. This means we need a device driver for the
signaler, and something to receive the data at the other end – a way of converting
the signals into bytes; then we need a way of structuring the data so that they
make sense. Each of these elements is achieved by a different level of abstraction.

1. Physical layer. This is the sending a signal along a wire, amplifying it if it
gets weak, removing noise etc. If the type of cable changes (we might want to
reflect signals off a satellite or use fiber optics) we need to convert one kind of
signal into another. Each type of transmission might have its own accepted
ways of sending data (i.e. protocols).

2. Data link layer. This is a layer of checking which makes sure that what was
sent from one end of a cable to the other actually arrived. This is sometimes
called handshaking. The Ethernet protocol is layer 2, as is Token Ring. This
level is labelled by Media Access Control (MAC) addresses.

3. Network layer. This is the layer of software which recognizes structure in the
network. It establishes global identity and handles the delivery of data by
manipulating the physical layer. The network layer needs to know something
about addresses – i.e. where the data are going, since data might flow along
many cables and connections to arrive where they are going. Layer 3 is the
layer at which IP addresses enter.

4. Transport layer. We shall concentrate on this layer for much of what follows.
The transport layer builds ‘packets’ or ‘datagrams’ so that the network layer
knows what is data and how to get the data to their destination. Because
many machines could be talking on the same network all at the same time,
data are broken up into short ‘bursts’. Only one machine can talk over a
cable at a time so we must have sharing. It is easy to share if the signals are
sent in short bursts. This is analogous to the sharing of CPU time by use of
time-slices. TCP and UDP protocols are encoded at this layer.

5. Session layer. This is the part of a host’s operating system which helps a
user program to set up a connection. This is typically done with sockets or
the RPC.

6. Presentation layer. How are the data to be sent by the sender and interpreted
by the receiver, so that there is no doubt about their contents? This is the
role played by the external data representation (XDR) in the RPC system.

7. Application layer. The program which wants to send data has its own protocol
layer, typically a command language encoding (e.g. GET, PUT in FTP or HTTP).

These layers are not always so cleanly cut. Today, networking technologies
at all levels are mixing them up: routers and switches are merging layers 2
and 3, and routers that prioritize traffic need to know what application is being
transported, so that the information can be fed into layers 2 and 3 in order to
provide guarantees on performance (so-called Quality of Service). As always, the
advantage of using a layered structure is that we can change the details of the
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lower layers without having to change the higher layers. Layers 1 to 4 are those
which involve the transport of data across a network. We could change all of these
without doing serious damage to the upper layers – thus as new technology arrives,
we can improve network communication without having to rewrite software. That
is precisely what is happening with new technologies such as IPv6 and MPLS.

2.6.2 Cables and interface technologies

Different vendors have invested in different networking technologies, with different
Media Access Control (MAC) specifications. Most Unix systems use some form of
Ethernet interface. IBM systems have employed Token Ring networking technology
very successfully for their mainframes and AS/400 systems; they now support
Ethernet also on their RS/6000 systems. Now most manufacturers provide solu-
tions for both technologies, though Ethernet is undoubtedly popular for local area
networks.

• Bus/Ethernet approach: Ethernet technology was developed by Xerox, Intel
and DEC in 1976, at the Palo Alto Research Center (PARC) [103]. In the
Ethernet bus approach, every host is connected to a common cable or bus.
Only one host can be using a given network cable at a given instant. It is like
a conference telephone call: what goes out onto a network reaches all hosts
on that network (more or less) simultaneously, so everyone has to share the
line by waiting for a suitable moment to say something. Ethernet is defined
in the IEEE 802.3 standard documents. An Ethernet network is available to
any host at any time, provided the line isn’t busy. This is called CSMA/CD,
or Carrier Sense Multiple Access/Collision Detect. A collision occurs when
two hosts attempt to send signals simultaneously. CSMA/CD means that if a
card has something to send, it will listen until no other card is transmitting,
then start transmitting and listen if no other card starts transmitting at the
same time. If another card began transmitting it will stop, wait for a random
interval and try again. The original Ethernet, with a capacity of 10 megabits
per second, could carry packets of 1518 bytes.

Today, Ethernet is progressing in leaps and bounds. Switched Ethernet
running on twisted pair cables can deliver up to 100 megabits per second
(100BaseT, fast Ethernet). Gigabit Ethernets are already common. The main
limitation of Ethernet networks is the presence of collisions. When many
hosts are talking, performance degrades quickly due to time wasted by hosts
waiting to get a word in. In order to avoid collisions, packet sizes are limited.
With a large number of small packets, it is easier to share the time between
more hosts. Ethernet interfaces are assigned a unique MAC address when
they are built. The initial numbers of the address identify each manufacturer
uniquely. Full-duplex connections at 100MB are possible with fast Ethernets
on dedicated cables where collisions cannot occur.

• Token Ring/FDDI approach: In the token ring approach [253], hosts are
coupled to hubs or nodes each of which has two network interfaces and the
hosts are connected in a uni-directional ring. The token ring is described in
IEEE 802.5. The token ring is a deterministic protocol; if Ethernet embraces
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chaos, then the token ring demands order. No matter when a host wishes to
transmit, it must wait for a passing token, in a specified time-slot. If a signal
(token) arrives, a host can append something to the signal. If nothing is
appended, the token is passed on to the next host which has the opportunity
to do the same. Similarly, if the signal arriving at one of the interfaces is
for the host itself then it is read. If it is not intended for the host itself, the
signal is forwarded to the next host where the same applies. A common token
ring based interface in use today is the optical FDDI (Fiber distributed data
interface). Token rings can pass 16 megabits per second, with packet sizes
of 18 kilobytes. The larger packet sizes are possible since there is no risk of
collisions.

Like Ethernet interfaces, token ring interfaces are manufactured with a
uniquely assigned MAC address.

• Frame Relay is an alternative layer 2 packet-switching protocol for connecting
devices on a Wide Area Network (WAN) or backbone. It is used for point-to-
point connections, but is capable of basic switching, like ATM, so it can create
virtual point-to-point circuits, where several switches might be involved (see
chapter 10). Frame relay is popular because it is relatively inexpensive.
However, it is also being replaced in some areas by faster technologies, such
as ATM. Frame relay has the advantage of being widely supported, and is
better suited than ATM for data-only, medium-speed (56/64 Kbps, T1): the
ratio of header size to frame size is typically much smaller than the overhead
ratio for ATM.

• ATM, Asynchronous Transfer Mode technology [23], is a high capacity, deter-
ministic, transmission technology developed by telephone companies in order
to exploit existing copper telephone networks. ATM is a layer 2–3 hybrid tech-
nology. ATM is believed to be able to reach much higher transfer rates than
Ethernet, since it disallows collisions and is optimized for switching. Its
expense, combined with the increasing performance of fast Ethernet, has
made ATM most attractive for high speed Internet backbones and Wide Area
Networks, though some local area networks have been implemented as proof
of principle.

Even with the bus approach, any host can be connected to several independent
network segments if it has a network interface for each network it is attached to.
Each network interface then has a separate network address; thus a host which
is connected to several networks will have a different address on each network.
A device which is coupled to several networks and which forwards data from one
network to another is called a router.

Network signals are carried by a variety of means. These days copper cables are
being replaced by fiber-optic glass transmission for long-distance communication
and even radio links. In local area networks it is still usually copper cables which
carry the signals. These cables usually carry Ethernet protocols over twisted pair
(telephone-like) cables. Twisted pair lines are sometimes referred to as 10baseT,
100baseT etc. The numbers indicate the capacity of the line, ‘base’ indicates that
the cable is used in a baseband system and the ‘T’ stands for twisted-pair. Each
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host has a single cable connecting it to a multi-way repeater or hub. Fiber-optic
cables (FDDI, SONET, SDH) have varying appearances.

2.6.3 Connectivity

Network cables are joined together by hardware which makes sure that messages
are transmitted from cable to segment in the right direction to reach their desti-
nations. A host which is coupled to several network segments and which forwards
data from one network to another is called a router. Routers not only forward data
but they prevent the spread of network messages which other network segments
do not need to know about. This limits the number of hosts which are sharing
any given cable segment, and thus limits the traffic which any given host sees.
Routers can also filter unwanted traffic for security purposes [77]. A router knows
which destination addresses lie on which of the networks it is connected to and it
does not let message traffic spread onto irrelevant cables.

A bridge is a hardware device which acts like a filter on busy networks. A bridge
works like a ‘mini-router’ and separates two segments of the same cable. A bridge
knows which incoming cables do not offer a destination address and prevents
traffic from spreading to this part of a cable. A bridge is used to isolate traffic
on busy sections of a network or conversely to splice networks together. It is a
primitive kind of switch.

A repeater is an amplifier that strengthens the network signal over long
stretches of cable. A multi-port repeater also called a hub does the same thing
and also splits one cable into N sub-cables for convenience. Hubs are common in
twisted pair networks where it is necessary to fan a cable out into a star pattern
from the hub to send one cable to each host.

A switch is a hub which can direct a message from one host cable directly to the
intended host by routing the signal directly. The advantage with this is that other
machines do not have to see the traffic between two hosts. Each pair of hosts has
a virtual private cable. Switched networks are not immune to spies, net-sniffing or
network listening devices, but they make it more difficult for the casual browser
to see traffic that does not concern them. A switch performs many of the tasks of
a router and vice versa. The difference is that a switch works at layer 2 of the OSI
model (i.e. with MAC addresses), whereas a router works at layer 3 (IP addresses).
A switch cannot route data on a world-wide basis.

When learning about a new network one should obtain a plan of the physical
setup. If we have done our homework, then we will know where all of these boxes
are on the network.

Note that, while it is common to refer to routing and switching as ‘layer 3’
and ‘layer 2’ in loose parlance, sticklers for correctness will find this is somewhat
ill-defined. These labels mix up the OSI model with the IP model. However, since
they roughly coincide at layers 2 and 3, we can identify layer 2 as ‘Ethernets’
(or equivalent) and layer 3 as the IP-addressable transport layer. Modern rout-
ing/switching equipment is not so easily placed into either of these categories,
however; network junction devices typically contain modules for both types of
communication.
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2.6.4 LANs, WANs and VLANs

In the 1980s and 1990s, most networks consisted of a hierarchy of routers, joined
into a Wide Area Network (WAN). Each Local Area Network (or local community,
such as a business or university) would have its own gateway router, connecting
it to the rest of the world. The purpose of a router was two-fold:

• To forward traffic meant for remote locations along a suitable route, so that
it would arrive at the right address.

• To prevent purely local traffic from leaking out of the local network and
causing unnecessary congestion.

When an electrical signal passes along a cable it is like a light being switched on
in a room. The picture of a network transmission as a stream of bytes travelling
along a cable, like cars in a train, is often misleading.4 In local area networks, the
distances are often so short that transmission is almost instantaneous and each
bit fills an entire cable segment; though this depends on the data rate. Every bit,
every 1 or 0, is a signal (a voltage or light pulse) on a cable which fills a space, the
size of a wavelength, at about two-thirds of the speed of light in a vacuum – so, on
short segments, this is often the entire cable. It is like sending Morse code with
a lighthouse. Every part of the network sees the signal, but only the addressed
recipient normally bothers to read it.

Outside

Local network

Router

Figure 2.4: Traffic control with a router. Routers forward traffic that needs to leave a local
network, and shield the external world from local traffic.

A router isolates one part of a network from another, both logically and
physically.5 It will only forward the signal if the signal needs to travel along
another segment to reach its destination address (see figure 2.4). The router is
able to make this determination based on information about the topology of the
network. This is an important function in the network: if every signal, sent by

4In conventional encoding schemes, a single bit is represented by one wavelength of the base-
frequency clock rate. Thus, the wave equation tells us the distance required to encode a bit: it is
the wavelength λ = c/f , where f is the frequency or transmission rate and c ∼ 2 × 108ms−1. Thus, at
Ethernet rates (10Mbs), a single bit is of the order of ten metres. At Giga-bit rates, a bit is only a few
centimetres.

5Some types of switch or bridge can also isolate networks physically, to the extent that they split up
collision zones, but not all.
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every computer, travelled along every cable in the world, communication would be
impossible. Thus routers are essential to the scalability of networks as well as to
the direction of traffic.

This simple model of network communications worked adequately for several
years, but as the demands on networks increased, the load on routers became
intolerable. There was therefore the need for a different architecture. This was
provided by switches. Switches are topologically similar to routers, in that they
act as a junction (often in star-formation) for several cables. The difference is that
the switch knows nothing of the IP addresses or network segments joined to it. It
routes and shields traffic by MAC address alone. This is cheaper and faster and
can shield routers from purely local traffic, allowing them to concentrate on traffic
to and from external sites.

Like routers, switches prevent traffic from leaking along cables that it does
not need to traverse; however, traditional switches segment only unicast, or
node-to-node, traffic. Unlike routers, they do not normally limit broadcast traffic
(packets that are addressed to all the nodes within the same IP network locale)
or multicast traffic (packets that are distributed to a group of nodes). However,
switch technology is advancing rapidly (see below). As switched networks have
become more common, routers have continued to exist within the network, but
they have been pushed toward the periphery of IP junctions.

As networks grow and traffic increases, one is forced to segment networks into
more and more switched subnets to meet increasing performance demands. With
these changes, broadcast and multicast traffic, that penetrates switch boundaries,
has placed a greater burden on network bandwidth. In the worst case scenario,
broadcast traffic can propagate out of control, leading to broadcast storms that
paralyze a network.

VLANs (virtual LANs) are a step towards selective filtering at the switch level.
They allow switches to protect swamped routers by offering different groups,
or channels for related nodes. By limiting the distribution of broadcast, mul-
ticast and unicast traffic, they can help free up bandwidth, and reduce the
need for expensive and complicated routing between switched networks, without
involving routers. VLANs thus reinstate many of the advantages of routing-free
LANs, but cheaply. Users and resources that communicate most frequently
with each other can be grouped into common VLANs, regardless of physical
location.

2.6.5 Protocols and encapsulation

Information transactions take place by agreed standards or protocols. Protocols
exist to make sure that transmitted data are understood by the receiver in the
way that the sender intended. On a network, protocols are required to make
sure that data are understood, not only by the receiver, but by all the network
hardware which carry them between source and destination. The data are wrapped
up in envelope information which contains the address of the destination. Each
transmission layer in the protocol stack (protocol hierarchy) is prefixed with some
header information which contains the destination address and other data which
identify it. The Ethernet protocol also has a trailer, see figure 2.5.
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Figure 2.5: Protocol encapsulation.

Wrapping data inside envelope information is called encapsulation and it is impor-
tant to understand the basics of these mechanisms. Network attacks make clever
use of the features and flaws in these protocols and system administrators need
to understand them in order to protect systems.

The Internet Family of protocols has been the basis of Unix networking for thirty
years, since it was implemented as part of the Berkeley Software Distribution (BSD)
Unix. The hierarchy is shown in figure 2.6.

Application level

Ethernet layer

TCP UDP

ICMP

ping / traceroute

IP layer

Figure 2.6: The Internet protocol hierarchy.

The transmission control protocol (TCP) is for reliable connection-oriented
transfer. The user datagram protocol (UDP) is a rather cheaper connection-less
service and the Internet control message protocol (ICMP) is used to transmit error
messages and routing information for TCP/IP. These protocols have an address
structure which is hierarchical and routable, which means that IP addresses
can find their way from any host in the world to any other so long as they are
connected. The Ethernet protocol does not know much more about the world than
the cable it is attached to.

Windows supports at least three network protocols, running on top of Ethernet.

• NETBEUI: NETBIOS Extended User Interface, Microsoft’s own network pro-
tocol. This was designed for small networks and is not routable. It has a
maximum limit of 20 simultaneous users and is thus hardly usable.

• NWLink/IPX: Novell/Xerox’s IPX/SPX protocol suite. Routable. Maximum
limit of 400 simultaneous users.



54 CHAPTER 2. SYSTEM COMPONENTS

• TCP/IP: Standard Internet protocols. The default for Windows-like and Unix-
like systems. Novell Netware and Apple MacIntosh systems also support
TCP/IP. There is no in-built limit to the number of simultaneous users.

Novell’s Netware PC server software is based mainly on the IPX suite running
on Ethernet hardware; MacIntosh networks have used their own proprietary
Appletalk which will run on Ethernet or token ring hardware, but this is now
being exchanged for TCP/IP. All platforms are converging on the use of TCP/IP for
its open standard and its generality.

2.6.6 Data formats

There are many problems which arise in networking when hardware and software
from different manufacturers have to exist and work together. Some of the largest
computer companies have tried to use this to their advantage on many occasions in
order to make customers buy only their products. An obvious example is the choice
of network protocols used for communication. Both Apple and Microsoft have
tried to introduce their own proprietary networking protocols. TCP/IP has won the
contest because it was an inter-network protocol (i.e. capable of working on and
joining together any hardware type) and also because it is a freely open standard.
Neither the Appletalk nor the NETBIOS protocols have either of these features.

This illustrates how networking demands standards. That is not to say that
some problems do not still remain. No matter how insistently one attempts to fuse
operating systems in a network melting pot, there are basic differences in hardware
and software which cannot be avoided. One example, which is occasionally visible
to system administrators when compiling software, is the way in which different
operating systems represent numerical data. Operating systems (actually the
hardware they run on) fall into two categories known as big endian and little
endian. The names refer to the byte-order of numerical representations.

The names indicate how large integers (which require say 32 bits or more)
are stored in memory. Little endian systems store the least significant byte first,
while big endian systems store the most significant byte first. For example,
the representation of the number 34,677,374 has either of the forms shown in
figure 2.7. Obviously if one is transferring data from one host to another, both

2 17 34 126

126 34 17 2

Big endian

Little endian

Figure 2.7: Byte ordering sometimes has to be specified when compiling software. The
representation of the number 34,677,374 has either of these forms.

hosts have to agree on the data representation otherwise there would be disastrous
consequences. This means that there has to be a common standard of network
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byte ordering. For example, Solaris (SPARC hardware) uses network byte ordering
(big endian), while Windows or Unix-like operating systems on Intel hardware use
the opposite (little endian). Intel systems have to convert their data format every
time ordered data are transmitted over the network.

2.7 IPv4 networks

TCP/IP networking is so important to networked hosts that we shall return to it
several times during the course of this book. Its significance is cultural, historical
and practical, but the first item in our agenda is to understand its logistic
structure.

2.7.1 IP addresses

Every network interface on the Internet needs to have a unique number which is
called its address. IP addresses are organized hierarchically so that they can be
searched for by router networks. Without such a structure, it would be impossible
to find a host unless it were part of the same cable segment. At present the
Internet protocol is at version 4 and this address consists of four bytes, or 32 bits.
In the future this will be extended, in a new version of the Internet protocol IPv6,
to allow more IP addresses since we are rapidly using up the available addresses.
The addresses will also be structured differently. The form of an IP address in
IPv4 is

aaa.bbb.ccc.mmm

Some IP addresses represent networks, whereas others represent individual inter-
faces on hosts and routers. Normally an IP address represents a host attached to
a network.

In every IPv4 address there are 32 bits. One uses these bits in different ways:
one could imagine using all 32 bits for host addresses and keep every host on the
same enormous cable, without any routers (this would be physically impossible
in practice), or we could use all 32 bits for network addresses and have only one
host per network (i.e. a router for every host). Both these extremes are silly; we are
trying to save resources by sharing a cable between convenient groups of hosts,
but shield other hosts from irrelevant traffic. What we want instead is to group
hosts into clusters so as to restrict traffic to localized areas.

Networks were grouped historically into three classes called class A, class B
and class C networks, in order to simplify traffic routing (see chapter 10). Class
D and E networks are also now defined, but these are not used for regular
traffic. This rigid distinction between different types of network addresses has
proved to be a costly mistake for the IPv4 protocol. Amongst other things, it
means that only about two percent of the actual number of IP addresses can
actually be used with this scheme. So-called classless addresses (CIDR) were
introduced in the 1990s to patch the problem of the classed addressing, but not all
deployed devices and protocol versions were able to understand the new classless
addresses, so classed addressing will survive in books and legacy networks for
some time.
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The difference between class A, B and C networks lies in which bits of the IP
addresses refer to the network itself and which bits refer to actual hosts within
a network. Note that the details in these sections are subject to rapid change, so
readers should check the latest details on the web.

Class A legacy networks

IP addresses from 1.0.0.0 to 127.255.255.255 are class A networks. Originally
only 11.0.0.0 to 126.255.255.255 were used, but this is likely to change as
the need for IPv4 address space becomes more desperate. In a class A network,
the first byte is a network part and the last three bytes are the host address (see
figure 2.8). This allows 126 possible networks (since network 127 is reserved for
the loopback service). The number of hosts per class A network is 2563 minus
reserved host addresses on the network. Since this is a ludicrously large number,
none of the owners of class A networks are able to use all of their host addresses.
Class A networks are no longer issued (as class A networks), they are all assigned,
and all the free addresses are now having to be reclaimed using CIDR. Class
A networks were intended for very large organizations (the U.S. government,
Hewlett Packard, IBM) and are only practical with the use of a netmask which
divides up the large network into manageable subnets. The default subnet mask
is 255.0.0.0.
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Figure 2.8: Bit view of the 32 bit IPv4 addresses.

Class B legacy networks

IP addresses from 128.0.0.0 to 191.255.0.0 are class B networks. There are
16,384 such networks. The first two bytes are the network part and the last
two bytes are the host part. This gives a maximum of 2562 minus reserved host
addresses, or 65,534 hosts per network. Class B networks are typically given to
large institutions such as universities and Internet providers, or to institutions
such as Sun Microsystems, Microsoft and Novell. All the class B addresses have
now been allocated to their parent organizations, but many of these lease out
these addresses to third parties. The default subnet mask is 255.255.0.0.
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Class C legacy networks

IP addresses from 192.0.0.0 to 223.255.255.0 are class C networks. There are
2,097,152 such networks. Here the first three bytes are network addresses and
the last byte is the host part. This gives a maximum of 254 hosts per network. The
default subnet mask is 255.255.255.0. Class C networks are the most numerous
and there are still a few left to be allocated, though they are disappearing with
alarming rapidity.

Class D (multicast) addresses

Multicast networks form what is called the MBONE, or multicast backbone. These
include addresses from 224.0.0.0 to 239.255.255.0. These addresses are not
normally used for sending data to individual hosts, but rather for routing data to
multiple destinations. Multicast is like a restricted broadcast. Hosts can ‘tune in’
to multicast channels by subscribing to MBONE services.

Class E (Experimental) addresses

Addresses 240.0.0.0 to 255.255.255.255 are unused and are considered exper-
imental, though this may change as IPv4 addresses are depleted.

Other addresses

Some IP addresses are reserved for a special purpose. They do not necessarily
refer to hosts or networks.

0.0.0.0 Default route
0.*.*.* Not used
127.0.0.1 Loopback address
127.*.*.* Loopback network
*.*.*.0 Network addresses (or old broadcast)
*.*.*.255 Broadcast addresses
*.*.*.1 Router or gateway (conventionally)
224.*.*.* Multicast addresses

RFC 1918 defines private addresses that are not routed

10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

and as of July 2001

169.254.0.0 - 169.254.255.255 (192.254/16 prefix)

The network

192.0.2.0 - 192.0.2.255
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is reserved by RFC 1166 to be the domain example.org for testing and example
(as in this book).

Note that older networks used the network address itself for broadcasting.
This practice has largely been abandoned however. The default route is a default
destination for outgoing packets on a subnet and is usually made equal to the
router address.

The loopback address is an address which every host uses to refer to itself
internally. It points straight back to the host. It is a kind of internal pseudo-
address which allows programs to use network protocols to address local services
without anything being transmitted on an actual network.

The zeroth address of any network is reserved to mean the network itself,
and the 255th (or on older networks sometimes the zeroth) is used for the
broadcast address. Some Internet addresses are reserved for a special purpose.
These include network addresses (usually xxx.yyy.zzz.0), broadcast addresses
(usually xxx.yyy.zzz.255, but in older networks it was xxx.yyy.zzz.0) and multicast
addresses (usually 224.xxx.yyy.zzz).

2.7.2 Subnets and broadcasts

What we refer to as a network might consist of very many separate cable systems,
coupled together by routers and switches. One problem with very large networks
is that broadcast messages (i.e. messages which are sent to every host) create
traffic which can slow a busy network. In most cases broadcast messages only
need to be sent to a subset of hosts which have some logical or administrative
relationship, but unless something is done a broadcast message will by definition
be transmitted to all hosts on the network. What is needed then is a method
of assigning groups of IP addresses to specific cables and limiting broadcasts to
hosts belonging to the group, i.e. breaking up the larger community into more
manageable units. The purpose of subnets is to divide up networks into regions
which naturally belong together and to isolate regions which are independent.
This reduces the propagation of useless traffic, and it allows us to delegate and
distribute responsibility for local concerns.

This logical partitioning can be achieved by dividing hosts up, through routers,
into subnets. Each network can be divided into subnets by using a netmask. Each
address consists of two parts: a network address and a host address. A system
variable called the netmask decides how IP addresses are interpreted locally. The
netmask decides the boundary between how many bits of the IP address will be
kept for hosts and how many will be kept for the network location name. There
is thus a trade-off between the number of allowed domains and the number of
hosts which can be coupled to each subnet. Subnets are usually separated by
routers, so the question is, how many machines do we want on one side of a
router?

The netmask is most easily interpreted as a binary number. When looking at
the netmask, we have to ask which bits are ones and which are zeros? The bits
which are ones decide which bits can be used to specify the subnets within the
domain. The bits which are zeros decide which are hostnames on each subnet.
The local network administrator decides how the netmask is to be used.
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The host part of an IP address can be divided up into two parts by moving
the boundary between network and host part. The netmask is a variable which
contains zeros and ones. Every one represents a network bit and every zero
represents a host bit. By changing the value of the netmask, we can trade many
hosts per network for many subnets with fewer hosts. A subnet mask can be used
to separate hosts which also lie on the same physical network, thereby forcing
them to communicate through the router.

2.7.3 Netmask examples

The most common subnet mask is 255.255.255.0. This forces a separation
where three bytes represent a network address and one byte is reserved for
hosts. For example, consider the class B network 128.39.0.0. With a netmask
of 255.255.255.0 everywhere on this network, we divide it up into 255 separate
subnets, each of which has room for 254 hosts (256 minus the network address,
minus the broadcast address):

128.39.0.0
128.39.1.0
128.39.2.0
128.39.3.0
128.39.4.0
...

We might find, however, that 254 hosts per subnet is too few. For instance, if
a large number of client hosts contact a single server, then there is no reason to
route traffic from some clients simply because the subnet was too small. We can
therefore double the number of hosts by moving the bit pattern of the netmask one
place to the left (see figure 2.9). Then we have a netmask of 255.255.254.0. This
has the effect of pairing the addresses in the previous example. If this netmask
were now used throughout the class B network, we would have single subnets
formed as follows:

128.39.0.0
128.39.1.0

128.39.2.0
128.39.3.0

128.39.4.0
128.39.5.0
...

Each of these subnets now contains 510 hosts (256 × 2 − 2), with two addresses
reserved: one for the network and one for broadcasts. Similarly, if we moved the
netmask again one place to the left, we would multiply by two again, and group
the addresses in fours: i.e. netmask 255.255.252.0:

128.39.0.0
128.39.1.0
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Net Net Host Host

1 111111 1 1 1 11111 1 0111111 1 000 0 0 0 0 0

Net id Net id Subnet Host

1 1 1 1 1 1? ? 111?

Class B address

Subnet mask 255.255.254.0

Interpretation

Broadcast address (ones)

Figure 2.9: Example of how the subnet mask can be used to double up the number of
hosts per subnet by pairing host parts. The boundary between host and subnet parts of the
address is moved one bit to the left, doubling the number of hosts on the subnets which
have this mask.

128.39.2.0
128.39.3.0

128.39.4.0
128.39.5.0
128.39.6.0
128.39.7.0
...

It is not usually necessary for every host on an entire class B network to share
the same subnet mask, though certain types of hardware could place restrictions
upon the allowed freedom (e.g. multi-homed hosts). It is only necessary that
all hosts within a self-contained group share the same mask. For instance, the
first four groups could have netmask 255.255.252.0, the two following could
have mask 255.255.254.0, the next two could have separately 255.255.255.0 and
255.255.255.0 and then the next four could have 255.255.252.0 again. This would
make a pattern like this:

128.39.0.0 (255.255.252.0)
128.39.1.0
128.39.2.0
128.39.3.0

128.39.4.0 (255.255.254.0)
128.39.5.0

128.39.6.0 (255.255.255.0)

128.39.7.0 (255.255.255.0)
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128.39.8.0 (255.255.252.0)
128.39.9.0
128.39.10.0
128.39.11.0
...

2.7.4 Interface settings

The IP address of a host is set in the network interface. The Unix command
ifconfig (interface-configuration) or the Windows command ipconfig are used
to set this. Normally the address is set at boot time by a shell script executed as
part of the rc startup files. These files are often constructed automatically during
the system installation procedure. The ifconfig command is also used to set
the broadcast address and netmask for the subnet. Each system interface has
a name. Here are the network interface names commonly used by different Unix
types.

Sun le0 / hme0
DEC ultrix ln0
DEC OSF/1 ln0
HPUX lan0
AIX en0
GNU/Linux eth0
IRIX ec0
FreeBSD ep0
Solarisx86 dnet0

Look at the manual entry for the system for the ifconfig command, which sets
the Internet address, netmask and broadcast address. Here is an example on a
SUN system with a Lance-Ethernet interface.

ifconfig le0 192.0.2.10 up netmask 255.255.255.0 broadcast 192.0.2.255

Normally we do not need to use this command directly, since it should be in the
startup-files for the system, from the time the system was installed. However we
might be working in single-user mode or trying to solve some special problem. A
system might have been incorrectly configured.

2.7.5 Default route

Unless a host operates as a router in some capacity, it only requires a minimal
routing configuration. Each host must define a default route which is a destination
to which outgoing packets will be sent for processing when they do not belong
to the subnet. This is the address of the router or gateway on the same network
segment. It is set by a command like this:

route add default my-gateway-address 1
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The syntax varies slightly between systems. On GNU/Linux systems one writes:

/sbin/route add default gw my-gateway-address metric 1

The default route can be checked using the netstat -r command. The result
should just be a few lines like this:

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 932 eth0
loopback * 255.0.0.0 U 0 0 38 lo
default my-gw 0.0.0.0 UG 1 0 1534 eth0

where my-gw is the address of the local gateway (usually subnet address 1).
If this default route is not set, a host will not know where to send packets and

will therefore attempt to build a table of routes, using a different entry for every
outgoing address. This consumes memory rapidly and leads to great inefficiency.
In the worst case the host might not have contact with anywhere outside its
subnet at all.

As of Solaris 9, one obtains a nice overview of both IPv4 and IPv6 protocols:

Routing Table: IPv4
Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------
128.39.89.0 128.39.89.4 U 1 8 le0
224.0.0.0 128.39.89.4 U 1 0 le0
default 128.39.89.1 UG 1 67
127.0.0.1 127.0.0.1 UH 1 0 lo0

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If

--------------------- --------------------------- ----- --- --- -----
2001:700:700:3::/64 2001:700:700:3:a00:20ff:fe85:bb11 U 1 0 le0:1
fe80::/10 fe80::a00:20ff:fe85:bb11 U 1 0 le0
ff00::/8 fe80::a00:20ff:fe85:bb11 U 1 0 le0
default fe80::2a0:c9ff:fe28:2489 UG 1 0 le0
::1 ::1 UH 1 9 lo0

See section 2.9 for a discussion of IPv6.

2.7.6 ARP/RARP

The Address Resolution Protocol (ARP) is a name service directory for translating
from IP address to hardware, Media Access Control (MAC) address (e.g. Ethernet
address). The ARP service is mirrored by a reverse lookup ARP service (RARP).
RARP takes a hardware address and turns it into an IP address.

Ethernet MAC addresses are required when forwarding traffic from one device to
another, on the same subnet. While it is the IP addresses that contain the structure
of the Internet and permit routing, it is the hardware address to which one must
deliver packets in the final instance; because IP addresses are encapsulated in
Ethernet packets.
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Hardware addresses are cached by each host on the network so that repeated
calls to the service ARP translation service are not required. Addresses are checked
later however, so that if an address from a host claiming to have a certain
IP address originates from an incorrect hardware address (i.e. the packet does
not agree with the information in the cache) then this is detected and a warn-
ing can be issued to the effect that two devices are trying to use the same IP
address. ARP sends out packets on a local network asking the question ‘Who
has IP address xxx.yyy.zzz.mmm?’ The host concerned replies with its hardware
address.

For hosts which know their own IP address at boot-time these services only
serve as confirmations of identity. Diskless clients (which have no place to store
their IP address) do not have this information when they are first switched on
and need to ask for it. All they know originally is the unique hardware (Ethernet)
address which is burned into their network interface. In order to bring up and
configure an Internet interface they must first use RARP to find out their IP
addresses from a RARP server. Services like BOOTP or DHCP are used for this.
Also the Unix file /etc/ethers and rarpd can be used. The ARP protocol has no
authentication mechanism, and it is therefore easily poisoned with incorrect data.
This can be used by malicious parties to reroute packets to a different destination.

2.8 Address space in IPv4

As we have seen, the current implementation of the Internet protocol has a number
of problems. The model of classed Internet addresses was connected to the design
of early routing protocols. This has proved to be a poor design decision, leading to
a sparse usage of the available addresses.

It is straightforward to calculate that, because of the structure of the IP
addresses, divided into class A, B and C networks, something under two percent
of the possible addresses can actually be used in practice. A survey from Unix
Review in March 1998 showed that, of the total numbers of addresses, these are
already allocated:

Max possible Percent allocated
Class A 127 100%
Class B 16382 62%
Class C 2097150 36%

Of course, this does not mean that all of the allocated addresses are in active
use. After all, what organization has 65,535 hosts? In fact the survey showed that
under two percent of these addresses were actually in use. This is an enormous
wastage of IP addresses. Amongst the class C networks, where smaller companies
would like address space, the available addresses are being used up quickly, but
amongst the class A networks, the addresses will probably never be used. A new
addressing structure is therefore required to solve this problem. Three solutions
have been devised.
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2.8.1 Classless addresses (CIDR)

CIDR stands for Classless Inter-Domain Routing and is documented in RFCs 1517,
1518, 1519, and 1520. CIDR was introduced as an interim measure to combat the
problems of IP address allocation as well as that of routing table overflow. It is also
the strategy of choice for IPv6 addressing. The name refers to inter-domain routing
because it provides not only an addressing solution, but also an improved model
for routing packets, by defining routing domains (distinct from logical domains of
the Domain Name Service).

The IPv4 address space has two problems:

• It is running out of address space, because many addresses are bound up
in classes that make them unusable, with the class A,B,C scheme of IP
addresses.

• Global routing tables are becoming too large, making routing slow and
memory intensive.

In the early 1990s, the limit of routing table size was believed to be somewhere in
the order of 100,000 routes. Beyond this, the time it would take for lookup would
be longer than TCP/IP timeouts, and the Internet would fail to function. In fact
we have already passed this mark [30], but the problem would have been much
worse had it not been for classless addressing.

The solution to this problem was a straightforward extension of the idea used in
subnetting: to allow the possibility to aggregate or join together smaller networks
into larger ones, while at the same time being able to address individual elements
within these conglomerates (see table 2.7).

Broadcast flood Routing table flood

Local Area Net Wide Area Net

Subnet mask CIDR mask

Subnet address Aggregate network address

Host address Autonomous system number

(computer) (Routing domain)

Table 2.7: Analogy between subnetting of hosts and super-netting of routing domains.

The classless IPv4 addresses are identical in concept to addresses and subnet
masks. The main change is in notation. A ‘slash’ form is used to represent the
number of network bits, instead of another address. This is more compact. For
example, the network:

192.0.2.0 , 255.255.255.0 → 192.0.2.0/24

The number of bits that are ‘1’ in the netmask are simply written after the
slash. This notation works across any class of address. It respects only power-of-
two (bit) boundaries. Thus CIDR addresses no longer refer to any class of network,
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only a range of addresses. In order to make this work, new routing protocols were
required (such as BGP-4) that did not rely on the simplifications inherent in the
classed address scheme.

Address class IP prefix Network bits Hosts bits

Class A 1–126 8 bits 24 bits

Class B 128–191 16 bits 16 bits

Class C 192–224 24 bits 8 bits

Table 2.8: Summary of network classes, and numbers of bits used.

CIDR mask Equiv. class C Host addresses

/27 1/8th 32

/26 1/4th 64

/25 1/2 128

/24 1 256

/23 2 512

/22 4 1,024

/21 8 2,048

/20 16 4,096

/19 32 8,192

/18 64 16,384

/17 128 32,768

/16 256 = 1 class B 65,536

/15 512 131,072

/14 1,024 262,144

/13 2,048 524,288

Table 2.9: Examples of bit usage in generalized classless addresses.

Table 2.8 shows the bit usage of the original IPv4 address classes, and table 2.9
shows how the concept of network part and host part is generalized by the
classless addressing scheme. Notice how, at this stage, this is nothing more
than a change of notation. The importance of the change, however, lies in the
ability to combine or aggregate addresses with a common prefix. Routing author-
ities that support CIDR are hierarchically organized. Each bit boundary that
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distinguishes a different network must be responsible for its own administration,
so that the level above can simply refer to all its IP sub-ranges in one table
entry.

2.8.2 Routing domains or Autonomous Systems

Having made a more general split between the network part and host part of an IP
address, one can associate a general network prefix with all the hosts in a block
of addresses, provided one refers to a block by a bit-boundary. It is now easier
to make a generalized hierarchy of ‘containers within containers’, making each
organization responsible for its own internal routing.

An Autonomous System (AS) (sometimes called a routing domain) is a set of
routers under a single administrative umbrella, that is responsible for its own
internal routing, but which needs to exchange data along exterior or border routes
between itself and other autonomous systems. Within the AS, interior routing
protocols are used; between ASs, border protocols are used, e.g. the Border
Gateway Protocol (version 4 supports CIDR) (see figure 2.10).

AS6

AS4813

AS3266

AS4571

AS887

AS67
AS2

AS1

AS86

AS877

Figure 2.10: The Internet is made up of top-level autonomous systems. These are not
necessarily related to the ‘Top Level Domains’, like .com and .net.

In routing tables, CIDR address boundaries are used to represent aggregated
containers, i.e. the largest container that contains all of the hosts one is interested
in. In general, this aggregate address boundary will also contain more than one
is interested in, so there must be a way of restricting traffic to parts within the
aggregate address. As with subnetting of hosts, the routers within the aggregate
container only pay attention to data if they are addressed to them, using an
‘Autonomous System Number’ (ASN). The ASN of a routing domain is analogous to
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a ‘host’ address on a Local Area Network, and it requires that each border router
knows its ASN identity.

Currently, blocks of addresses are assigned to the large Internet Service
Providers (ISPs) who then allocate portions of their address blocks to their cus-
tomers. These customers, who are often smaller ISPs themselves, then distribute
portions of their address block to their customers. Because of the bit-structure
in the top-level global routing tables all these different networks and hosts can
be represented by the single Internet route entry for the largest container. In this
way, the growth in the number of routing table entries at each level in the network
hierarchy has been significantly reduced.

In the past, one would get a Class A, B or C address assignment directly
from the appropriate Internet Registry (i.e. the InterNIC). Under this scenario, one
‘owned’ the address and could continue to use it even in the event of changing
Internet Service Providers (ISPs). However, this would break the CIDR scheme
that allows route aggregation. Thus the new model for address assignments is to
obtain them from a ‘greater’ ISP in the hierarchy of which the system is a part.

At the time of writing, the global routing tables have approximately 120,000
entries. There are 22,000 assigned Autonomous Systems, of which about half are
active.

2.8.3 Network Address Translation

In order to provide a ‘quick fix’ for organizations that required only partial connec-
tivity, Network Address Translation (NAT) was introduced by a number of router
manufacturers [331]. In a NAT, a network is represented to the outside world by
a single official IP address; it shields the remainder of its networked machines on
a private network that (hopefully) uses non-routable addresses (usually 10.x.x.x).
When one of these hosts on the private network attempts to contact an address
on the Internet, the Network Address Translator creates the illusion that the
request comes from the single representative address. The return data are, in
turn, routed back to the particular host ‘as if by magic’ (see figure 2.11). NAT
makes associations of this form:

(private IP, private port) <-> (public IP, public port)

It is important that the outside world (i.e. the true Internet) should not be able
to see the private addresses behind a NAT. Using a private address in a public
IP address is not just bad manners, it could quickly spoil routing protocols and
preclude us from being able to send to the real owners of those addresses. NATs
are often used in conjunction with a firewall.

Network address translation is a quick and cheap solution to giving many
computers access to the Internet, but it has many problems. The most serious,
perhaps, is that it breaks certain IP security mechanisms that rely on IP addresses,
because IP addresses are essentially spoofed. Thus some network services will not
run through a NAT, because the data stream looks as though it has been forged.
Indeed, it has.
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Figure 2.11: Network address translation masquerades many private addresses as a single
IP address.

2.9 IPv6 networks
We have already mentioned the problems with IPv4 in connection with address
allocation and routing. Other problems with IPv4 are that it is too easy to take
control of a connection by guessing sequence numbers. Moreover there is no native
support for encryption, Quality of Service guarantees or for mobile computing. All
of these things are increasingly important, in a congested virtual community.

In an attempt to address these problems, the Internet Engineering Task Force
(IETF) put together a workgroup to design a new protocol. Several suggestions
were put forward, some of which attempted to bring the IP model closer to the OSI
reference model (see table 2.10), however these suggestions were abandoned in
favor of a simple approach that eliminated obsolete elements of IPv4 and extended
addresses from 32 to 128 bits. The new IPv6 proposal was adopted for its inclusion
of issues like Quality of Service (QoS) and mobility. With 128 bit addresses, even
with a certain inefficiency of allocation, it is estimated that there will be enough
IPv6 addresses to support a density of more than 10,000 IP addresses per square
meter which ought to be enough for every toaster and wristwatch on the planet
and beyond. The port space of IPv6 is shared with IPv4.

2.9.1 IPv6 addresses

Stepping up from 32 bits to 128 bits presents problems of representation for IPv6
addresses. If they were coded in the usual denary ‘dotted’ octet form, used by
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0–3 Never used in a working version

4 The Internet as we know it

5 Stream protocol –ST –(never an IPng)

6 SIP → SIPP (Simple Internet protocol plus) → IPv6

7 IPv7 → TP/IX → CATNIP (died)

8 Pip (later joined SIP)

9 TUBA (died)

10–15 Not in use

Table 2.10: A history of projects for IP protocol development.

IPv4, addresses would be impossibly long and cumbersome. Thus a hexadecimal
notation was adopted, together with some rules for abbreviation. Each pair of
hexadecimal digits codes one byte, or eight bits, so addresses are 32 hexadecimal
characters long, or eight blocks of 4 hex-numbers: e.g.

2001:0700:0700:0004:0290:27ff:fe93:6723

The addresses are prefixed in a classless fashion, like CIDR addresses, mak-
ing them hierarchically delegable. The groups of four hexadecimal numbers
are separated by a colon ‘:’ -- to look like a ‘big dot’. The empty colon set ‘::’
stands for a string of 0 bits, or ‘:0000:’. Similarly, trailing zeros can be omit-
ted.

Here is an example address:

2001:700:700:4:290:27ff:fe93:6723
************** ++

The starred part is a delegated IP-series, given by an Internet addressing
authority or service provider. The ‘++’ numbers are usually ‘ff’ or some other
padding. The remaining numbers are taken from the MAC (Media Access Control),
e.g. Ethernet address of the network interface. This can be seen with:

host$ ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:90:27:93:67:23
inet addr:128.39.74.16 Bcast:128.39.75.255 Mask:255.255.254.0
inet6 addr: fe80::290:27ff:fe93:6723/10 Scope:Link
inet6 addr: 2001:700:700:4:290:27ff:fe93:6723/64 Scope:Global

...

Thus, once a prefix has been provided by a local gateway, every host knows its
global address at once – no manual address allocation is required. A host can
have several IPv6 addresses however. Others can be assigned according to some
procedure. A version of the dynamic host control protocol (DHCPv6) has been put
forward for this purpose.
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2.9.2 Address allocation

The IETF has designated the address range 2000::/3 to be global unicast address
space that IANA may allocate to the Regional Internet Registries (RIR)s (see
figure 2.12). IANA has allocated initial ranges of global unicast IPv6 address space
from the 2001::/16 address block to the existing RIRs. The subsequent allocations
of the 2000::/3 unicast address space are made by Regional Internet Authorities
(RIRs), with their own allocation policies. End sites will generally be given /48,
/64 or /128 assignments.

Type IPv4 IPv6

Multicast addresses class D FF01: - FF0F:

Link local address N/A FE80:/10

Unicast address class A,B,C 2000:/3

Loopback address 127.0.0.1 ::1

Unspecified address 0.0.0.0 ::0

Mapped IPv4 address 192.0.2.14 ::ffff:192.0.2.14

Table 2.11: Some important IPv4 and IPv6 addresses compared.

IANA

RIR RIR

NIR

Local Internet registries (ISPs)

End users or local ISPs

ARIN, ARPNIC, RIPE
etc.

Figure 2.12: The hierarchy of Internet address delegation. IANA (Internet Assigned Num-
bers Authority) leads the administration of the Internet at the topmost level, and delegates
authority to regional Internet registries (RIR) such as INTERNIC (US), APNIC (Asia-Pacific)
and RIPE NCC (Europe). These, in turn, delegate to countries and thence to ISPs.
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2.9.3 Autoconfiguration and neighbor discovery

With huge networks and unwieldy addresses, an important aspect of IPv6 is
autoconfiguration, including neighbor discovery protocols.

When an IPv4 host joins a local area network, it uses the ARP protocol
to bind its IP address to its Ethernet MAC address. The Address Resolution
Protocol (ARP), documented in RFC 826, is used to do this. It has also been
adapted for other media, such as FDDI. ARP works by broadcasting a packet to
all hosts on the local network. The packet contains the IP address the sender
is interested in communicating with. Most hosts ignore the packet. The target
machine, recognizing that the IP address in the packet matches its own, returns
an answer.

To reduce the number of address resolution requests, a client (host, router or
switch) normally caches resolved addresses for a short interval of time. The ARP
cache is of a finite size, and would become full of incomplete and obsolete entries
for computers that are not in use if it was allowed to grow without check; thus, it is
periodically flushed of all entries. This deletes unused entries and frees space in the
cache. It also removes any unsuccessful attempts to contact computers which are
not currently running. Since it has no authentication mechanisms, the ARP cache
can be poisoned by attackers allowing data to be redirected to the wrong receiver.

In IPv6, ARP is supplanted by a message-passing protocol for neighbor discovery
that uses the IPv6 mechanisms on the link-level addresses. A new host can thus
automatically discover a local IPv6 gateway to find a route to the outside world.
A default route assignment does not normally require a manual assignment.
When a gateway is found, a ‘scope global’ address is automatically assigned to the
interface, based on the MAC address of the host, allowing routable communication.
The same IPv6 address can be configured on several interfaces. If a gateway is not
found, a host can still contact other IPv6 enabled hosts on the same VLAN using
the ‘link local’ address that is configured at start up.

2.9.4 Mobile computing

IPv6 includes support for mobile routing. If a computing device belonging to a
particular routing domain finds itself connected via a different routing environ-
ment, it first attempts to connect to its home router and establish a forwarding
address. This allows packets sent to its fixed IP address to be forwarded to the new
location, as well as establishing a direct route for all self-initiated communication.
The forwarding addresses are called ‘care of’ (i.e. c/o) addresses.

Exercises
Self-test objectives

1. Describe the main hardware components in a human–computer system.

2. What rules of thumb would you use for handling the different hardware
components.
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3. What effect does temperature have on computer systems?

4. What is the function of an operating system? (Hint: how do you define an
operating system?)

5. Why is it important to distinguish between single and multiuser operating
systems?

6. What is meant by a securable operating system?

7. What is meant by a shell?

8. What is the role of a privileged account? Do non-securable operating systems
have such accounts?

9. Summarize the similarities between Unix and Windows.

10. What do the DOS/Windows drive letters A:, B:, etc. correspond to in Unix-like
operating systems?

11. What is an Access Control List?

12. How are files shared between users in Unix/Windows?

13. How are files shared between computers in Unix/Windows?

14. What is meant by a process or task?

15. How are processes started and stopped?

16. Name and describe the layers of the OSI model.

17. Describe the main local area networking technologies and how they differ.

18. What are the following?: i) repeater, ii) hub, iii) switch, iv) bridge, v) router.

19. How is a network packet from a single host computer prevented from spread-
ing randomly all over the planet? How is such a packet still able to reach a
specified location on the other side of the planet?

20. What does it mean to say that a computer is big-endian?

21. What is an IP address and what does it look like?

22. Do class A,B,C IP addresses have any meaning today?

23. What IPv4 addresses are reserved and why?

24. What is a loopback address?

25. What is meant by a broadcast address?

26. Describe the purpose of a subnet and its netmask.

27. What is a default route?
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28. What are ARP and RARP? Are they needed in IPv6? Why/why not?

29. Explain the concept of an Autonomous System.

30. What is meant by Network Address Translation, and what is its main pur-
pose?

31. Describe how IPv6 addresses differ from IPv4 addresses.

32. Can IPv6 completely replace IPv4?

Problems

1. Compare and contrast Windows with Unix-like operating systems. If you
need a refresher about Unix, consider the online textbook at Oslo University
College [40].

2. Under what circumstances is it desirable to use a graphical user interface
(GUI), and when is it better to use a command language to address a
computer? (If you answer never to either of these, you are not thinking hard
enough.)

3. The purpose of this exercise is to make yourself familiar with a few Unix tools
which you will need to use to analyze networks later. Remember that the aim
of this course is to make you self-sufficient, not to force feed you information.
This exercise assumes that you have access to a Unix-like operating system.

(a) Use the ssh command to log onto a host in your domain.

(b) Use the command uname with all of its options to find out what type of
host it is.

(c) Familiarize yourself with the commands df, nslookup, mount, finger
.clients (GNU finger). What do these commands do and how can you
use them?

(d) Start the program nslookup. This starts a special shell. Assuming that
your local domain is called domain.country, try typing

> ls domain.country

If you get an error, you should ask your administrator why. The ability
to list a domain’s contents can be restricted for security reasons. Then
try this and explain what you find:

> set q=any
> domain.country

(e) The nslookup command is now deprecated, according to some Unices,
and is replaced with dig and host. Use the dig command to look up
host names:

dig www.gnu.org
dig -x 199.232.41.10
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Now do the same using the host command with IPv4 and IPv6

host nexus.iu.hio.no
nexus.iu.hio.no has address 128.39.89.10

host -t aaaa nexus.iu.hio.no
nexus.iu.hio.no has AAAA address
2001:700:700:3:a00:20ff:fe9b:dd4a

host -n 2001:700:700:3:a00:20ff:fe9b:dd4a
a.4.d.d.b.9.e.f.f.f.0.2.0.0.a.0.3.0.0.0.0.0.7.0.0.0.7.0.
1.0.0.2.ip6.int domain name pointer nexus.iu.hio.no.

4. Review the principal components in a computer. Are there any differences
between an electronic calculator and a PC? Which parts of a computer require
maintenance?

5. Deconstruct and recontruct a PC from basic components. Make sure that
it works. Document the process as you go, so that you could build another
computer from scratch.

6. Review the concept of virtual memory. If you do not have access to a textbook
on operating systems, see my online textbook [40]. What is swapping and
what is paging? Why is paging to a file less efficient than paging to a raw
partition?

7. Explain how a filesystem solves the problem of storing and retrieving files
from a storage medium, such as a disk. Explain how files can be identified
as entities on the magnetic surface. Finally, explain how the concept of a
filesystem can hide the details of the storage medium, and allow abstractions
like network disk sharing.

8. Locate the important log files on your most important operating systems.
How do you access them, and what information do they contain? You will
need this bird’s eye view of the system error messages when things go wrong.
(Hint: there are log files for system messages, services like WWW and FTP
and for mail traffic. Try using tail -f logfile on Unix-like hosts to follow
the changes in a log file. If you don’t know what it does, look it up in the
manual pages.)

9. Explain what an access control list is. Compare the functionality of the
Unix file permission model with that of access control lists. Given that ACLs
take up space and have many entries, what problems do you foresee in
administering file security using ACLs?

10. Explain why the following are invalid IPv4 host addresses:

(a) 10.1.0.0
(b) 10.1.0.255
(c) 0.12.16.89
(d) 255.9.56.45
(e) 192.34.255.255



Chapter 3

Networked communities

System administration is not just about machines and individuals, it is about
communities. There is the local community of users on multi-user machines; then
there is the local area network community of machines at a site. Finally, there is
the global community of all machines and networks in the world.

We cannot learn anything about a community of networked computer systems
without knowing where all the machines are, both physically and in the network,
what their purposes are, and how they interrelate to one another. Normally we do
not start out by building a network of computers from nothing, rather we inherit
an existing network, serviceable or not; thus the first step is to acquaint ourselves
with the system at hand.

The aim of this chapter is to learn how to navigate network systems using
standard tools, and place each piece of the puzzle into the context of the whole.

3.1 Communities and enterprises

The basic principle of communities is:

Principle 5 (Communities). What one member of a cooperative community
does affects every other member and vice versa. Each member of the community
therefore has a responsibility to consider the well-being of the other members of
the community.

When this principle is ignored, it leads to conflict. One attempts to preserve the
stability of a community by making rules, laws or policies. The main difference
between these is only our opinion of their severity: rules and laws do not exist
because there are fundamental rights and wrongs, they exist because there is a
need to summarize the consensus of opinion in a community group. A social rule
thus has two purposes:

• To provide a widely accepted set of conventions that simplify decisions,
avoiding the need to think through things from first principles every time.

• To document the will of the community for reference.
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Rules can never cover every eventuality. They are convenient approximations to
reality that summarize common situations. An idealist might hope that rules
would never be used as a substitute for thought, however this is just how they are
used in practice. Rules simplify the judgment process for common usage, to avoid
constant re-evaluation (and perhaps constant change).

We can apply this central axiom for the user community of a multiuser host:

Corollary to principle (Multiuser communities). A multiuser computer system
does not belong to any one user. All users must share the common resources of the
system. What one user does affects all other users and vice versa. Each user has a
responsibility to consider the effect of his/her actions on all the other users.

and also for the world-wide network community:

Corollary to principle (Network communities). A computer that is plugged into
the network is no longer just our own. It is part of a society of machines which shares
resources and communicates with the whole. What that machine does affects other
machines. What other machines do affects that machine.

The ethical issues associated with connection to the network are not trivial,
just as it is not trivial to be a user in a multiuser system, or a member of a civil
community. Administrators are, in practice, responsible for their organization’s
conduct to the entire rest of the Internet, by ensuring conformance with policy.
This great responsibility should be borne wisely.

3.2 Policy blueprints
By placing a human–computer system into an environment that it has no direct
control over, we open it up to many risks and random influences. If we hope to
maintain a predictable system, it is important to find a way to relate to and make
sense of these external factors. Moreover, if we wish to maintain a predictable
system, then we need to know how to recognize it: what should the system look
like and how should it behave? The tool for accomplishing this is policy.

Definition 2 (Policy). Policy is a statement of aims and wishes that is codified,
as far as possible, into a formal blueprint for infrastructure and a schema of
responses (contingencies) for possible events.

A policy’s aim is to maintain order in the face of the chaos that might be
unleashed upon it–either from the environment that it does not control, or from
a lack of control of its own component parts. Any system can spiral out of control
if it is not held in check. By translating hopes and wishes into concrete rules and
regimens, we build a model for what a predictable system should look like.

• A blueprint of infrastructure.

• Production targets (resource availability).

• Restriction of behavior (limiting authority, access).

• Stimulus–response checklists (maintenance).
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A policy determines only an approximate state for a human–computer sys-
tem – not a state in the sense of a static or frozen configuration, but rather a
dynamical equilibrium or point of balance. Human–computer systems are not
deterministic, but the aim of policy is to limit the unpredictable part of their
behavior to the level of background noise.

3.3 System uniformity

The opportunity to standardize parts of a system is an enticing prospect that can
potentially lead to great simplification; but that is not the full story. Given the
chance to choose the hardware and software at a site, one can choose a balance
between two extreme strategies: to standardize as far as possible, or to vary as
much as possible. Curiously, it is not necessarily true that standardization will
always increase predictability. That would be true in a static system –but in a real
life, dynamical system we have to live with the background noise caused by the
parts that we do not control.

Strategically, trying ‘every which way’, i.e. every possible variation on a theme,
can pay off in terms of productivity. Moreover, a varied system is less vulnerable
to a single type of failure. Thus, if we look at the predictability of productivity,
a certain level of variation can be an advantage. However, we must find an
appropriate balance between these two principles:

Principle 6 (Uniformity). A uniform configuration minimizes the number of
differences and exceptions one has to take into account later, and increases the
static predictability of the system. This applies to hardware and software alike.

Principle 7 (Variety). A variety of configurations avoids ‘putting all eggs in one
basket’. If some components are poor, then at least not all will be poor. A strategy
of variation is a way of minimizing possible loss.

It is wise for system administrators to spend time picking out reliable hardware
and software. The more different kinds of system we have, the more difficult the
problem of installing and maintaining them, but if we are uncertain of what is best,
we might choose to apply a random sample in order to average out a potential
loss. Ideally perhaps, one should spend a little time researching the previous
experiences of others in order to find a ‘best choice’ and then standardize to a
large degree.

PC hardware is often a melange of random parts from different manufacturers.
Much work can be saved by standardizing graphics and network interfaces, disk
sizes, mice and any other devices that need to be configured. This means not
only that hosts will be easier to configure and maintain, but also that it will be
easier to buy extra parts or cannibalize systems for parts later. On the other hand,
automated agents like cfengine can make the task of maintaining a variety of
options a manageable task.

With software, the same principle applies: a uniform software base is easier to
install and maintain than one in which special software needs to be configured
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in special ways. Fewer methods are available for handling the differences between
systems; most administration practices are based on standardization. However,
dependence on one software package could be risky for an organization. There is
clearly a complex discussion around these issues.

3.4 User behavior: socio-anthropology

Most branches of computer science deal primarily with software systems and
algorithms. System administration is made more difficult by the fact that it deals
with communities and is therefore strongly affected by what human beings do. In
short, a large part of system administration can be characterized as sociology or
anthropology.

A newly installed machine does not usually require attention until it is first
used, but as soon as a user starts running programs and storing data, the
reliability and efficiency of the system are tested. This is where the challenge of
system administration lies.

The load on computers and on networks is a social phenomenon: it peaks in
response to patterns of human behavior. For example, at universities and colleges
network traffic usually peaks during lunch breaks, when students rush to the
terminal rooms to surf on the web or to read E-mail. In industry the reverse can
be true, as workers flee the slavery of their computers for a breath of fresh air
(or polluted air). In order to understand the behavior of the network, the load
placed on servers and the availability of resources, we have to take into account
the users’ patterns of behavior (see figure 3.1).

3.5 Clients, servers and delegation

At the heart of all cooperation in a community is a system of centralization and
delegation. No program or entity can do everything alone, nor is everyone expected
to do so. It makes sense for certain groups to specialize in performing certain jobs.
That is the function of a society and good management.

Principle 8 (Delegation I). Leave experts to do their jobs. Assigning responsi-
bility for a task to a body which specializes in that task is a more efficient use of
resources.

If we need to find out telephone numbers, we invent the directory enquiry service:
we give a special body a specific job. They do the phone-number research (once
and for everyone) and have the responsibility for dealing out the information on
request. If we need a medical service, we train doctors in the specialized knowledge
and trust them with the responsibility. That is much more efficient than expecting
every individual to have to research phone numbers by themselves, or to study
medicine personally. The advantage with a service is that one avoids repeating
work unnecessarily and one creates special agents with an aptitude for their task.
In database theory, this process is called normalization of the system.

The principle of specialization also applies in system administration. Indeed, in
recent years the number of client-server systems has grown enormously, because
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Figure 3.1: E-mail traffic at Oslo College measured over the course of many weeks. The
plot shows the weekly average from Monday to Sunday. Over each 24 hour period, there is
a daily peak showing users’ working hours, and during the week, there is a peak around
midweek, and little activity during the weekends.

of possibilities offered by networking. Not only can we give a special daemon on
one host a special job, but we can say that that daemon will do the job for every
other host on the network also. As long as the load placed on the network does
not lead to a bottleneck, this is a very efficient centralization of resources. Clearly,
the client-server model is an extended way of sharing resources. In that sense it
is like a distributed generalization of the kernel.1

The client-server nomenclature has been confused by history. A server is not
a host, but a program or process which runs on a host. A client is any process
which requires the services of a server. In Unix-like systems, servers are called
daemons. In Windows they are just called services. Unfortunately, it is common
to refer to the host on which a server process runs as being a server. This causes
all sorts of confusion.

The name ‘server’ was usurped, early on, for a very specific client-server
relationship. A server is often regarded as a large machine which performs some
difficult and intensive task for the clients (an array of workstations). This prejudice
comes from the early days when many PC-workstations were chained together in
a network to a single PC which acted as file-server, and printer server, sharing a
disk and printer with all of the machines. The reason for this architecture, at the
time, was that the operating system of that epoch MS-DOS was not capable of

1In reality, there are many levels at which the client-server model applies. For example, many system
calls can be regarded as client-server interactions, where the client is any program and the server is
the kernel.
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multitasking, and thus the best solution one could make was to use a new PC for
each new task. This legacy of one-machine, one-user, one-purpose, still pervades
newer PC operating system philosophy. Meanwhile, Unix and later experimental
operating systems have continued a general policy of ‘any machine, any job’, as
part of the vision of distributed operating systems. There are many reasons for
choosing one strategy or the other, so we shall return to this issue.

In fact a server-host can be anything from a Cray to a laptop. As long as there
is a process which executes a certain service, the host is a server-host.

3.6 Host identities and name services

Whenever computers are coupled together, there is a need for each to have an
individual and unique identity. This need has been recognized many times, by
different system developers, and the result is that today’s computer systems can
have many different names which identify them in different contexts. The outcome
is confusion. For Internet-enabled machines, the IP address of the host is usually
sufficient for most purposes. A host can have all of the following:

• Host ID: Circuit board identity number. Often used in software licensing.

• Install name: Configured at installation time. This is often compiled into
the kernel, or placed in a file like /etc/hostname. Solaris adds to the
multiplicity by also maintaining the install name in /etc/hostname.le0 or
an equivalent file for the appropriate network interface, together with several
files in /etc/net/*/hosts.

• Application level name: Any name used by application software when talking
to other hosts.

• Local file mapping: Originally the Unix /etc/hosts file was used to map IP
addresses to names and vice versa. Other systems have similar local files, to
avoid looking up on network services.

• Network Information Service: A local area network database service developed
by Sun Microsystems. This was originally called Yellow Pages and many of
its components still bear the ‘yp’ prefix.

• Network level address(es): Each network interface can be configured with an
IP address. This number converts into a text name through a name service.

• Link level address(es): Each network interface (Ethernet/FDDI etc.) has a
hardware address burned into it at the factory, also called its MAC address,
or media access control address. Some services (e.g. RARP) will turn this into
a name or an IP address through a secondary naming service like DNS.

• DNS name(s): The name returned by a domain name server (DNS/BIND)
based on an IP address key.

• WINS name(s): The name returned by a WINS server (Microsoft’s name server)
based on an IP address. WINS was deprecated as of Windows 2000.
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Different hardware and software systems use these different identities in different
ways. The host ID and network level addresses simply exist. They are unique
and nothing can be done about them, short of changing the hardware. For the
most part they can be ignored by a system administrator. The network level MAC
address is used by the network transport system for end-point data delivery,
but this is not something which need concern most system administrators. The
network hardware takes care of itself.

At boot-time, each host needs to obtain a unique identity. In today’s networks
that means a unique IP address per interface and an associated name for conve-
nience or to bind the multiple IP addresses together. The purpose of this identity is
to uniquely identify the host amongst all of the others on the world-wide network.
Although every network interface has a unique Ethernet address or token ring
address, these addresses do not fall into a hardware-independent hierarchical
structure. In other words Ethernet addresses cannot be used to route messages
from one side of the planet to the other in a simple way. In order to make that
happen, a system like TCP/IP is required. At boot-time then each host needs to
obtain an Internet identity. It has two choices:

• Ask for an address to be provided from a list of free addresses. (DHCP or
BOOTP protocols)

• Always use the same IP address, stored on its system configuration files.
(Requires correct information on the disk)

The first of these possibilities is sometimes useful for terminal rooms contain-
ing large numbers of identical machines. In that case, the specific IP address
is unimportant as long as it is unique. The second of these is the preferred
choice for any host which has special functions, particularly hosts which pro-
vide network services. Network services should always be at a well-known, static
location.

From the IP address a name can be automatically attached to the host through
an Internet naming service. There are several services which can perform this
conversion. DNS, NIS and WINS are the three prevalent ones. DNS is the superior
service, based on a world-wide database; it can determine hostname to IP address
mappings for any host in the world. NIS (Unix) and WINS (Windows) are local
network services which are essentially redundant as name services. They continue
to exist because of other functions which they can perform.

As far as any host on a TCP/IP network is concerned, a host is its IP address
and any names associated with that address. Any names which are used internally
by the kernel, or externally, are quite irrelevant. The difficulty with having so many
names, quite apart from any confusion which humans experience, is that naming
conflicts can cause internal problems. This is an operating system dependent
problem but, as a general rule, if we are forced to use more than one naming
service, we must be careful to ensure complete consistency between them.

The only world-wide service in common use today is DNS (the Domain Name
Service) whose common implementation is called BIND (Berkeley Internet Name
Domain). This associates IP addresses with a list of names. Every host in the
DNS has a canonical name, or official name, and any number of aliases. For
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instance, a host which runs several important services might have the canonical
name

mother.domain.country

and aliases,

www.domain.country
ftp.domain.country

DNS binds a local network to the world-wide Internet in several important
ways. It makes it possible for data belonging to organizations to be spread
across the surface of the planet (or beyond) at any location, and yet still main-
tain a transparent naming structure. E-mail services use the DNS to route
mail.

WINS (Windows Internet Name Service) was a proprietary system built by
Microsoft for Windows. Since any local host can register data in this service, it
was insecure and is therefore inadvisable in any trusted network. WINS has now
been replaced by DNS as of Windows 2000.

Under Windows, each system has an alphanumeric name which is chosen
during the installation. A domain server will provide an SID (security ID) for the
name which helps prevent spoofing. When Windows boots it broadcasts the name
across the network to see whether it is already in use. If the name is in use, the
user of the workstation is prompted for a new name.

The security of a name service is of paramount importance, since so many other
services rely on name services to establish identity. If one can subvert a name
service, hosts can be tricked into trusting foreign hosts and security crumbles.

3.7 Common network sharing models

During the 1970s it was realized that expensive computer hardware could be
used most cost-efficiently (by the maximum number of people) if it was available
remotely, i.e. if one could communicate with the computer from a distant location
and gain access to its resources. Inter-system communication became possible,
in stages, through the use of modems and UUCP batch transfer and later through
real-time wide area networks.

The large mainframe computers which served sometimes hundreds of users
were painfully slow for interactive tasks, although they were efficient at batch
processing. As hardware became cheaper many institutions moved towards a
model of smaller computers coupled to file-servers and printers by a network.
This solution was relatively cheap but had problems of its own. At this time the
demise of the mainframe was predicted. Today, however, mainframe computers
are very much alive for computationally intensive tasks, while the small networked
workstation provides access to a world of resources via the Internet.

Dealing with networks is one of the most important aspects of system adminis-
tration today. The network is our greatest asset and our greatest threat. In order
to be a system administrator it is necessary to understand how and why net-
works are implemented, using a world-wide protocol: the Internet protocol family.
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Without getting too heavily bogged down in details which do not concern us at an
elementary level, we shall explore these themes throughout the remainder of this
book.

3.7.1 Constraints on infrastructure

Different operating systems support different ideas about how network services
should be used. We are not always free to use the hardware resources as we
would like. Operating system technologies restrict the kind of infrastructures it is
possible to build in practice (see figure 3.2).

Figure 3.2: Some network infrastructure models single out a special server-host, which
is used to consolidate network services and resources. Such a centralization has many
administrative advantages, but it concentrates load and can create a bottleneck.

• Unix: Much, if not all, of Unix’s success can be attributed to the astonishing
freedom which is granted to its users and administrators. Without a doubt,
Unix-like operating systems are the most configurable and adaptable ever
created. This has kept Unix at the forefront of new technology but has also
created a class of operating systems rather like disorganized piles of treasure
in Aladdin’s cave.

Unix-like operating systems are not tied to any specific model for utilizing
network resources, though vendors sometimes introduce specific technolo-
gies for sharing, which favor a particular kind of model. (This is almost
viewed as a treasonable offence and is usually quickly rejected in favor of
software which offers greater freedom.) Unix lets us decide how we want
the network to look. Any Unix system can perform any function, as server,
client or both. A Unix network is fully distributed; there is no requirement



84 CHAPTER 3. NETWORKED COMMUNITIES

about centralization of resources, but central models are commonly used.
Unix contains troves of tools for making many hosts work together and share
resources, but each host can also be configured as a stand-alone system.
Each host either has a fixed IP address, or can be assigned one dynamically
at boot-time by a service such as BOOTP or DHCP.

• Windows: Windows networks are built around a specific model. There are
two types of Windows system with separate software licenses: workstations
and servers. Windows can work as a stand-alone system or as a workstation,
integrated into a system of network services. Windows revolves around a
model in which programs are run on a local workstation, but where network
services and resources are kept and run on a centralized server. IP addresses
may be fixed or may be assigned automatically by a network service such as
BOOTP or DHCP. Several Windows servers can coexist. Each server serves a
logical group of hosts, users and services called a domain. Domains are now
merged into an Active Directory model that provides a logical directory struc-
ture for network services. Client machines subscribe to as many domains
as they wish, or have permission to join. Windows supports two kinds of
organizational groups: workgroups in which hosts share a simple peer-to-
peer network, perhaps with Windows 9x machines, and domains which have
a central authority through a domain server. Domains provide a common
framework including user-ids (SIDs in Windows language), passwords and
user profiles. Domains have a common user-database and a common secu-
rity policy. Any host which subscribes to a domain inherits the users and
the security policy of the domain. Windows domains can be simulated by
Unix-like hosts [198].

Windows 2000 is a reincarnation of Windows NT 4.0. It redresses many of the
shortcomings of the NT domain model by moving towards Novell-like directory
services as its new model for resource organization. It allows remote services
such as terminal login, which was only introduced as an afterthought in NT.

• Novell Netware: The Novell Netware software [127] has been through several
major versions, each of which has been significantly different. To begin with
Netware was little more than a disk and printer server for small PC networks.
It found wide acceptance due to its broad support of different network
interface technologies. Today, Netware version 5 is a fully distributed, object-
oriented remote procedure service. Novell Netware is not an operating system,
per se. It is a network service for PCs which adds file storage, printing and
other network services on top of the basic operating system: Windows, DOS,
MacIntosh or GNU/Linux. The network protocol for local traffic is IPX; this is
lighter than IP and is an inter-networking protocol, but it is not a world-wide
protocol, thus Novell-run PCs still need IP configurable interfaces to talk to
the world. Each PC can have a fixed or dynamically allocated IP address,
with a BOOTP or DHCP broadcast request. In Netware 5, several Novell file-
servers can coexist to provide a seamless Network Directory Service (NDS),
an object-based service model. All services run on these servers, which
support a form of modular thread-based multitasking. Novell services are
not distributed arbitrarily amongst the PCs it serves, as is more common
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with Unix: they require one or more special dedicated machines to work
on behalf of users’ PCs, more like Windows. The client machines must run
Netware client software in order to communicate transparently with the
servers. Although the nomenclature is different to that of Windows domains
and Directory Services, all the same functionality and more is available in
the Novell software.

• MacIntosh: Each MacIntosh is an independent system. Simple services like
ftp can be run in a limited way from a normal machine. Macintosh once
used its own network protocol called Apple-talk which is incompatible with
IP and IPX. Apple-talk servers allowed networking and disk sharing. Recently
MacIntosh have released a new operating system based on emulation of Unix
and old-style MacIntosh. This uses TCP/IP and NetInfo for directory services.
The Mac OS Server X provides a powerful server based on Mach kernel
technology and BSD Unix, to rival Novell’s Netware and Windows.

3.7.2 User preference storage

Software packages often allow users to store preferences about the way that
software should look and behave. Such data are stored in some kind of information
repository. Another issue for networked systems is where software preference data
should be stored for users. There are two possibilities here which correspond
approximately to the Unix approach and the Windows approach.

• Windows/Mac/Personal: Under earlier Windows and MacIntosh systems,
each user was assumed to have his or her own personal workstation which
would not normally be used by other users. Current Windows versions allow
logins by multiple users. Configuration data or preferences which the user
selects are stored locally on the system disk in a location provided by the
operating system. Later versions of Windows (NT, 2000, XP etc.) solve these
problems by maintaining user profiles which are stored on the domain server
in a \profiles subdirectory of the system-root. These data are copied into
the local workstation when a user logs on to a domain server.

• Unix/Shared: Under Unix, each user sets up personal preferences in his or
her personal dot files which are stored in private user space. More general
global preferences are stored in a directory of the administrator’s choice.
Traditionally this has been the directory /etc.

The difficulties associated with having a fixed location for the configuration infor-
mation which lies in the system files are several. In any single-user operating
system, one user can overwrite another user’s preferences simply by changing
them since the system is not capable of telling the difference between users. This
is a fundamental problem which indicates that single-user operating systems are
basically unsuited to a shared environment. For a multi-user, networked world,
the following points must be considered:

• When the operating system is reinstalled, configuration information can
easily be lost or overwritten if they are stored in an operating system directory.
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• In a distributed environment, where users might not sit at the same physical
workstation day after day, the user’s personal configuration data will not
follow him or her from machine to machine.

On a Unix system, it is easy to specify the locations of configuration files in
software and these can then be kept separate from operating system files, e.g.
on a different disk partition so that they are immune to accidental deletion by
system reinstallation. The main problem with Unix is the lack of any uniformity of
approach. In the future, there might be a semblance of uniformity. RFC 2244 and
RFC 2245 describe the Application Configuration Access Protocol which describes
a centralized user application configuration database.

3.8 Local network orientation and analysis

A network community is an organism, working through the orchestrated cooper-
ation of many parts. We need to understand its operation carefully in order to
make it work well. The choices we make about the system can make it easy to
understand, or difficult to understand, efficient or inefficient. This is the challenge
of community planning.

Within a local area network, a top-down approach is useful for understanding
host interrelationships. We therefore begin at the local network level, i.e. at the
level of the collective society of machines.

In most daily situations, one starts with a network already in place, i.e. we do
not have to build one from scratch. For an administrator, it is important to know
what hardware one has to work with and where everything is to be found; how it
is organized (or not) and so on.

Principle 9 (Resource map). A resource map of a site aids the predictability
of the system by allowing an administrator to learn about the parts of the sys-
tem, understand interrelationships and prepare a contingency plan for expected
problems with the specific elements.

Here is a checklist:

• How does the network physically fit together? (What is its topology?)

• How many different subnets does the network have?

• What are their network addresses?

• Find the router addresses (and the default routes) on each segment.

• What is the netmask?

• What hardware is there in the network? (Hosts, printers etc.)

• Which function does each host/machine have on the network?

• Where are the key network services located?
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Some hardware can be efficiently identified and queried using SNMP technology.
Most newer network hardware supports some kind of querying using SNMP
protocols (see section 6.4.1). This is a form of network communication which talks
directly to the device and extracts its hardware profile. Without SNMP, identifying
hardware automatically is problematical. One author has proposed using the
Unix log service syslogd to track hardware configurations [250]. An overview of
network services can sometimes be obtained using port-scanning software, such
as nmap, though this should be agreed in advance to avoid misunderstandings.
Many network intrusion attempts begin with port scans; these can make security
conscious administrators nervous.

Of course, when automated methods fail, one can always resort to a visual
inspection. In any event, an organization needs some kind of inventory list for
the purpose of insurance or theft, if not merely for good housekeeping. A rough
overview of all this information needs to be assembled in system administrators’
minds, in order to understand the challenge ahead.

Having thought about the network in its entirety, we can drop down a level and
begin to think about individual host machines. We need to know hosts both from
the viewpoint of hardware and software.

• What kind of machines are on the network? What are their names and
addresses and where are they? Do they have disks. How big? How much
memory do they have? If they are PCs, which screen cards do they have?

• How many CPUs do the hosts have?

• What operating systems are running on the network? MS-DOS, Novell, Win-
dows or Unix? (If so which Unix? GNU/Linux, Solaris, HPUX?)

• What kind of network cables are used?

• Where are hubs/repeaters/the router or other network control boxes located?
Who is responsible for maintaining them?

• What is the hierarchy of responsibility?

There is information about the local environment:

• What is the local timezone?

• What broadcast address convention is used? 255 or the older 0?

• Find the key servers on these networks.

– Where are the network disks located? Which machine are they attached
to?

– Which name service is in use (DNS, NIS or NIS plus)?

– Where is the inevitable WWW/HTTP service? Who is running pirate
servers?

Finding and recording this information is an important learning process, and
the information gathered will prove invaluable for the task ahead. Of course, the
information will change as time goes by. Networks are not static; they grow and
evolve with time, so we must remain vigilant in pursuit of the moving target.
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3.8.1 Network naming orientation

Familiarizing oneself with an organization’s network involves analyzing the net-
work’s hosts and all of their interrelationships. It is especially important to know
who is responsible for maintaining different parts of the network. It might be us
or it might be someone else. We need to know whom to contact when something
is going wrong over which we have no control ourselves. The most obvious way
to view an organization is by its logical structure. This is usually reflected in
the names of different machines and domains. Whom do we call if the Internet
connection is broken? What service contracts exist on hardware, what upgrade
possibilities are there on software? What system is in use for making backups?
How does one obtain a backup should the need arise? In short, it is essential to
know where to begin in solving any problem which might arise, and whom to call
if the responsibility for a problem lies with someone else.

The Internet is permeated by a naming scheme which, naturally, is used to
describe organizational groupings of Internet addresses. We can learn a lot by
inspecting the name data for an organization. Indeed, many organizations now
see this as a potential security hazard and conceal their naming strategies from
outsiders. The Domain Name Service (DNS) is the Internet’s primary naming
service. It not only allows us to name hosts, but also whole organizations, placing
many different IP addresses under a common umbrella. The DNS is thus a
hierarchical organization of machine names and addresses. Organizations are
represented by domains and a domain is maintained either by or on behalf of each
organization. Global domains are divided into countries, or groupings like .com
and .org, and sub-domains are set up within larger domains, so that a useful
name can be associated with the function of the organization. To analyze our own
network, we begin by asking: who runs the DNS domain above ours?

For our organizational enquiry, we need an overview of the hosts which make up
our organization. A host list can be obtained from the DNS using nslookup/dig or
Nslookup etc. (unless that privilege has been revoked by the DNS administrator,
see section 9.5.3). If there are Unix systems on the network, one can learn a
lot without physical effort by logging onto each machine and using the uname
command to find out what OS is being used:

sunshine% uname -a
SunOS nexus 5.9 Generic_112233-04 sun4u sparc

gnu% uname -a
Linux gnu 2.4.10-4GB #1 Fri Sep 28 17:20:21 GMT 2001 i686 unknown

This tells us that host nexus is a SunOS kernel version 5.9 (colloquially known
as Solaris 2.9) system with a sun4u series processor, and that host gnu is a
GNU/Linux system kernel version 2.4.10. If the uname command doesn’t exist,
then the operating system is an old dinosaur from BSD 4.3 days and we have to
find out what it is by different means. Try the commands arch and mach.

Knowing the operating system of a host is not sufficient. We also need to know
what kind of resources the host has to offer the network, so that we can later plan
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the distribution of services. Thus we need to dig deeper:

• How much memory does a host have? (Most systems print this when they
boot. Sometimes the information can be coaxed out of the system in other
ways.) What disks and other devices are in use?

• Use locate and find and which and whereis to find important directories
and software. How is the software laid out?

• What software directories exist? /usr/local/bin, /local/bin?

• Do the Unix systems have a C compiler installed? This is often needed for
installing software. Finding out information about other operating systems,
such as Windows, which we cannot log onto is a tedious process. It must be
performed by manual inspection, but the results are important nonetheless.

3.8.2 Using nslookup and dig

The nslookup program is for querying the Domain Name Service (DNS). On Unix it
has now been officially deprecated and replaced by a new program, dig or host, in
the source implementations of the BIND software. On Windows one has Nslookup.
It is still in widespread use, however, both in Unix and Windows milieux. Moreover,
IPv6 lookup does not work in all implementations of nslookup. The name service
provides a mapping or relationship between Internet numbers and Internet names,
and contains useful information about domains: both our own and others. The first
thing we need to know is the domain name. This is the suffix part of the Internet
name for the network. For instance, suppose our domain is called example.org.
Hosts in this domain have names like hostname.example.org.

If you don’t know your DNS domain name, it can probably be found by looking
at the file /etc/resolv.conf on Unix hosts. For instance:

gnu% more /etc/resolv.conf
domain example.org
nameserver 192.0.2.10
nameserver 192.0.2.17
nameserver 192.0.2.244

Also most Unix systems have a command called domainname. This prints the
name of the local Network Information Service (NIS) domain which is not the same
thing as the DNS domain name (though, in practice, many sites would use the
same name for both). Do not confuse the output of this command with the DNS
domain name.

Once you know the domain name, you can find out the hosts which are
registered in your domain by running the name service lookup program nslookup,
or dig.

gnu% nslookup
Default Server: mother.example.org
Address: 192.0.2.10
>
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nslookup always prints the name and the address of the server from which it
obtains its information. Then you get a new prompt > for typing commands. Typing
help provides a list of the commands which nslookup understands.

Hostname/IP lookup

Type the name of a host or Internet (IP) address and nslookup returns the
equivalent translation. For example:

host% nslookup
Default Server: mother.example.org
Address: 192.0.2.10

> www.gnu.org
Server: mother.example.org
Address: 192.0.2.10

Name: www.gnu.org
Address: 206.126.32.23

> 192.0.2.238
Server: mother.example.org
Address: 192.0.2.10

Name: dax.example.org
Address: 192.0.2.238

In this example we look up the Internet address of the host called www.gnu.org
and the name of the host which has Internet address 192.0.2.238. In both cases
the default server is the name server mother.example.org which has Internet
address 192.0.2.10.

Note that the default server is the first server listed in the file /etc/resolv.conf
which answers queries on starting nslookup. Using dig, we write the following to
find IPv4 A records:

host% dig -t a www.gnu.org

; <<>> DiG 9.2.1 <<>> -t a www.gnu.org
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33680
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION:
;www.gnu.org. IN A

;; ANSWER SECTION:
www.gnu.org. 86376 IN A 199.232.41.10
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;; AUTHORITY SECTION:
gnu.org. 86388 IN NS nic.cent.net.
gnu.org. 86388 IN NS ns1.gnu.org.
gnu.org. 86388 IN NS ns2.gnu.org.
gnu.org. 86388 IN NS ns2.cent.net.
gnu.org. 86388 IN NS ns3.gnu.org.

;; ADDITIONAL SECTION:
nic.cent.net. 101919 IN A 140.186.1.4
ns1.gnu.org. 118216 IN A 199.232.76.162
ns2.gnu.org. 118216 IN A 195.68.21.199
ns2.cent.net. 101919 IN A 140.186.1.14
ns3.gnu.org. 118216 IN A 209.115.72.62

;; Query time: 5 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Sep 6 13:21:28 2002
;; MSG SIZE rcvd: 223

The ‘-t’ argument specifies the type of record to be looked up when using the
hostname as an argument. Thus, to look up IPv6 ‘AAAA’ records, we write

host% dig -t aaaa daneel.iu.hio.no

; <<>> DiG 9.2.1 <<>> -t aaaa daneel.iu.hio.no
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61573

;; QUESTION SECTION:
;daneel.iu.hio.no. IN AAAA

;; ANSWER SECTION:
daneel.iu.hio.no. 14400 IN AAAA 2001:700:700:3:290:27ff:fea2:477b

;; AUTHORITY SECTION:
iu.hio.no. 14400 IN NS cube.iu.hio.no.
iu.hio.no. 14400 IN NS nexus.iu.hio.no.

;; ADDITIONAL SECTION:
dns.hio.no. 5582 IN A 158.36.161.3
dns.hio.no. 86038 IN AAAA 2001:700:700:1::3
cube.iu.hio.no. 14400 IN A 128.39.74.16
cube.iu.hio.no. 14400 IN AAAA 2001:700:700:4:290:27ff:fe93:6723
nexus.iu.hio.no. 14400 IN A 128.39.89.10
quetzalcoatal.iu.hio.no. 14400 IN A 128.39.89.26

;; Query time: 6 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Fri Sep 6 13:23:09 2002
;; MSG SIZE rcvd: 292
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Similarly, IPv4 reverse lookup is performed with:

dig -x 192.0.1.3

As to what works with IPv6 – this is a study in confusion. To date the only method
that seems to work on newer versions of BIND is

host -n 2001:700:700:4:290:27ff:fe93:6723

There has been disagreement about the name of the reverse lookup domain
for IPv6. As of January 2003, it has finally been decided that it will be called
ip6.arpa, but some resolvers still try to look up ip6.int. This can cause all
manner of confusion (see section 9.5.9). Try this:

host$ host -n 2001:700:700:3:0:0:0:1
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.int
domain name pointer ip6-gw.p52.hio.no.
host$ host -t PTR 1....3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.arpa
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.arpa
domain name pointer ip6-gw.p52.hio.no.
host$ host -t PTR 1....3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.int
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.int
domain name pointer ip6-gw.p52.hio.no.

Note that these horrendous lines are too wide for the page of the book, so in
reverse ‘nibble’ format, one must type all of the ‘.0.0’s between the 1 and the 3
above.

Special information

The domain name service identifies certain special hosts which perform services
like the name service itself and mail-handlers (called mail exchangers). These
servers are identified by special records so that people outside of a given domain
can find out about them. After all, the mail service in one domain needs to know
how to send mail to a neighboring domain. It also needs to know how to find
out the names and addresses of hosts for which it does not keep information
personally.

We can use nslookup to extract this information by setting the ‘query type’ of
a request. For instance, to find out about the mail exchangers in a domain we
write

> set q=mx
> domain name

For example

> set q=mx
> otherdomain.org
Server: mother.example.org
Address: 192.0.2.10
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Non-authoritative answer:
otherdomain.org preference = 0,
mail exchanger = mercury.otherdomain.org

Authoritative answers can be found from:
otherdomain.org nameserver = mercury.otherdomain.org
otherdomain.org nameserver = delilah.otherdomain.org
mercury.otherdomain.org internet address = 158.36.85.10

delilah.otherdomain.org internet address = 129.241.1.99

Or

dig -t mx otherdomain.org

Here we see that the only mail server for otherdomain.org is mercury.otherdo-
main.org.

Another example, is to obtain information about the nameservers in a domain.
This will allow us to find out information about hosts which is not contained in
our local database. To get this, we set the query-type to ns.

> set q=ns
> otherdomain.org
Server: mother.example.org
Address: 192.0.2.10

Non-authoritative answer:
otherdomain.org nameserver = delilah.otherdomain.org
otherdomain.org nameserver = mercury.otherdomain.org

Authoritative answers can be found from:
delilah.otherdomain.org internet address = 192.0.2.78
mercury.otherdomain.org internet address = 192.0.2.80
>

Here we see that there are two authoritative nameservers for this domain called
delilah.otherdomain.org and mercury.otherdomain.org.

Finally, other lookup criteria are provided. For instance, if we set the query
type to ‘any’, we get a summary of all this information.

Listing hosts belonging to a domain

To list every registered Internet address and hostname for a given domain one can
use the ls command inside nslookup. For instance

> ls example.org
[mother.example.org]
example.org. server = mother.example.org
example.org. server = mercury.otherdomain.org
pc61 192.0.2.61
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pc59 192.0.2.59
pc59 192.0.2.59
pc196 192.0.2.196
etc...

Newer nameservers can restrict access to prevent others from obtaining this list
all in one go, since it is now considered a potential security hazard. First the
nameservers are listed and then the host names and corresponding IP addresses
are listed.

If we try to look up hosts in a domain for which the default nameserver has
no information, we get an error message. For example, suppose we try to list the
names of the hosts in the domain over ours:

> ls otherdomain.org
[mother.example.org]
*** Can’t list domain otherdomain.org: Query refused
>

This does not mean that it is not possible to get information about other domains,
only that we cannot find out information about other domains from the local
server. See section 3.8.1.

Changing to a different server

If we know the name of a server which contains authoritative information for
a domain, we can tell nslookup to use that server instead. That way it might
be possible to list the hosts in a remote domain and find out detailed infor-
mation about it. At the very least, it is possible to find out about key records,
like nameservers and mail exchangers (MX). To change the server we simply
type

> server new-server

Once this is done we use ls to list the names.

> server ns.college.edu
Default Server: ns.college.edu
Address: 192.0.2.10

> ls college.edu

(listing ..)

Another advantage to using the server which is directly responsible for the
DNS data, is that we obtain extra information about the domain, namely a
contact address for the person responsible for administrating the domain. For
example:

> server ns.college.edu
Default Server: ns.college.edu
Address: 192.0.2.10
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> college.edu
Server: ns.college.edu
Address: 192.0.2.10

college.edu preference = 0, mail exchanger = ns.college.edu
college.edu nameserver = ns.college.edu
college.edu

origin = ns.college.edu
mail addr = postmaster.ns.college.edu
serial = 1996120503
refresh = 3600 (1 hour)
retry = 900 (15 mins)
expire = 604800 (7 days)
minimum ttl = 86400 (1 day)

college.edu nameserver = ns.college.edu
ns.college.edu internet address = 192.0.2.10

This is probably more information than we are interested in, but it does tell us
that we can address queries and problems concerning this domain to postmas-
ter@ns.college.edu. (Note that DNS does not use the @ symbol for ‘at’ in these
data.)

3.8.3 Contacting other domain administrators

Sometimes we need to contact other domains, perhaps because we believe there
is a problem with their system, or perhaps because an unpleasant user from
another domain is being a nuisance and we want to ask the administrators there
to put that person through a long and painful death. We now know how to
obtain one contact address using nslookup. Another good bet is to mail the one
address which every domain should have: postmaster@domain. Various unofficial
standards (RFC 2142) also encourage sites to have the following mail addresses
which one can try:

webmaster
www
ftp
abuse
info
security
hostmaster

Apart from these sources, there is little one can do to determine who is responsible
for a domain. A number of domains are registered with another network database
service called the whois service. In some cases it is possible to obtain information
this way. For example:

host% whois moneywurld.com
Financial Connections, Inc (MONEYWURLD-COM)
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2508 5th Ave, #104
Mars, MA 98121

Domain Name: MONEYWURLD.COM

Administrative Contact, Technical Contact, Zone Contact:
Willumz, Bob (BW747) willy@MONEYWURLD.COM
206 269 0846

Record last updated on 13-Oct-96.
Record created on 26-Oct-95.

Domain servers in listed order:

NSH.WORLDHELP.NET 206.81.217.6
NSS.MONEYWURLD.COM 205.227.174.9

The InterNIC Registration Services Host contains ONLY Internet Info
(Networks, ASN’s, Domains, and POC’s).
Please use the whois server at nic.ddn.mil for MILNET Information.

3.8.4 Ping and traceroute

The most basic tools for testing network connectivity are ping and traceroute
(tracert on Windows). These tools determine network connectivity, host avail-
ability and overall latency. The ping command sends the network equivalent of a
sonar ping to a remote interface:

host$ ping www.gnu.org
www.gnu.org is alive

The command returns with a simple message to say whether or not the interface
is up, i.e. whether the host is online or not. The -s flag causes packets to be sent
at regular intervals, with sequence numbers and latency timings visible. This is
useful for gauging transit times and network line capacity:

host$ ping -s www.gnu.org
PING www.gnu.org (199.232.41.10) from 80.111.2.134 : 56(84) bytes of data.
64 bytes from www.gnu.org (199.232.41.10): seq=1 ttl=236 t=225.569 ms
64 bytes from www.gnu.org (199.232.41.10): seq=2 ttl=236 t=153.235 ms

Pings on free Unix-like operating systems behave like ping -s on older systems,
i.e. it defaults into periodic transmission mode.

The traceroute command sends UDP packets to the destination, with step-
wise incremental ‘time to live’ fields, which then provoke a ‘time out’ error at each
router in turn, thus mapping out the route taken. Hosts that are attached to the
same subnet do not normally pass through a router, thus there is a single hop
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which is directly to the destination address by unicast:

host$ /usr/sbin/traceroute pax.example.org
traceroute to pax.example.org (128.39.89.4), 30 hops max,
40 byte packets
1 pax.example.org (128.39.89.4) 0.682 ms 0.414 ms 0.402 ms

A host on a neighboring subnet must pass through a router or ‘gateway’ (usually
denoted ‘gw’):

host$ /usr/sbin/traceroute cube
traceroute to cube.example.org (128.39.74.16), 30 hops max,
40 byte packets
1 org-gw.example.org (128.39.89.1) 1.473 ms 0.932 ms 0.829 ms
2 cube.example.org (128.39.74.16) 0.647 ms 0.508 ms 0.699 ms

More distant hosts require several hops to reach their destinations:

host$ /usr/sbin/traceroute www.neighbour.org
traceroute to www.neighbour.org (129.240.148.31), 30 hops max,
40 byte packets
1 org-gw.example.org (128.39.89.1) 1.248 ms 0.906 ms 1.576 ms
2 pil52-gw.example.org (158.36.84.21) 0.804 ms 0.744 ms 0.969 ms
3 oslo-gw1.other.org (128.39.0.73) 0.829 ms 1.596 ms 0.883 ms
4 128.39.3.94 (128.39.3.94) 1.192 ms 1.188 ms 1.230 ms
5 www.neighbour.org (129.240.148.31) 1.049 ms 1.975 ms 0.907 ms

Timings in milliseconds show the round time for this node.
Choosing a distant host shows how complex routes can be. This example from

Oslo to Boston illustrates the point:

host$ /usr/sbin/traceroute www.gnu.org
traceroute to www.gnu.org (199.232.41.10), 30 hops max,
40 byte packets
1 gw-s14h1.upc.chello.no (212.186.239.1) 25 ms 21 ms 24 ms
2 osl-rb-04-fe-2-0.upc.no (62.179.128.1) 26 ms 25 ms 24 ms
3 osl-rb-01-ge-1-1.upc.no (62.179.128.233) 21 ms 19 ms 38 ms
4 no-osl-rd-03-ge-5-0-0.chlo.com (213.46.177.88) 22 ms 19 ms 24 ms
5 no-osl-rd-05-fe-1-1-0.chlo.com (213.46.177.17) 24 ms 22 ms 22 ms
6 se-sto-rc-01-pos-1-0.chlok.com (213.46.177.5) 39 ms 32 ms 36 ms
7 213.242.69.5 (213.242.69.5) 33 ms 33 ms 29 ms
8 ae0-12.mpls2.Stockholm1.Level3.net (213.242.68.18) 29 ms 32 ms
9 so-3.London1.Level3.net (212.187.128.57) 64 ms 66 ms 66 ms
10 so-1.NewYork1.Level3.net (212.187.128.153) 133 ms 132 ms 132 ms
11 gigaeth5-0.core1.NewYork1.Level3.net (64.159.17.37) 132 ms 131 ms
12 * ewr-brdr-01.inet.qwest.net (63.211.54.102) 133 ms 135 ms
13 ewr-core-01.inet.qwest.net (205.171.17.125) 133 ms 134 ms 134 ms
14 dca-core-03.inet.qwest.net (205.171.5.17) 137 ms 139 ms 141 ms
15 dcx-edge-01.inet.qwest.net (205.171.9.162) 141 ms 140 ms 145 ms
16 res1-br1-g0-0-0.gnaps.net (65.123.21.202) 143 ms 142 ms *
17 qcy1-ar1-g1-0.gnaps.net (199.232.131.1) 151 ms 151 ms 154 ms
18 * www.gnu.org (199.232.41.10) 154 ms 154 ms
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IPv6 addresses are gradually becoming incorporated into these tools:

host$ ping -s -A inet6 2001:700:700:3:290:27ff:fea2:477b
PING 2001:700:700:3:290:27ff:fea2:477b: 56 data bytes
64 bytes from 2001:700:700:3:290:27ff:fea2:477b: seq=0. t=1. ms
64 bytes from 2001:700:700:3:290:27ff:fea2:477b: seq=1. t=1. ms

3.8.5 Netcat

Netcat is described as the ‘Swiss army knife’ of network utilities. It is a multi-
purpose client-server peer program that reads and writes data across network
connections, using TCP or UDP protocols. It is described as a ‘feature-rich net-
work debugging and exploration tool’. Netcat, or nc, can be used to send or receive
network connections. Suppose, for instance we want to find out whether a Web
server is working:

host$ echo -e "GET http://www.cfengine.org HTTP/1.0\n\n" |
nc www.cfengine.org 80 | head -20

HTTP/1.1 200 OK
Date: Wed, 02 Oct 2002 14:08:33 GMT
Server: Apache/1.3.26 (Unix) PHP/4.2.2 mod_ssl/2.8.10 OpenSSL/0.9.6d
X-Powered-By: PHP/4.2.2
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Cfengine - config for Unix and Windows</title>
<link rel="stylesheet" href="cfengine.css">

</head>

Netcat is somewhat like telnet, but it solves several problems such as the ability
to interrupt and timeout connections.

3.8.6 Locating services

Existing network services have to be analyzed, so that we know where we are start-
ing from, and new networks need to be planned or extended. If the obligatory school
frog dissections never appealed, then one can at least take comfort in the fact that
dissecting the network organism is, if nothing else, a cleaner operation. Starting
with the knowledge we have already gained about host types and operating sys-
tems, we must now identify all of the services which are running on all of the hosts.

Location can be performed by a visual inspection of the process tables, or from
configuration files. There are tools for port scanning networks in order to locate
services, e.g. the nmap program. We should be careful about using these however,
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since port scans normally signify a network intrusion attempt, so others might
misconstrue. If a network is well run, local administrators will know what services
are running on which hosts. The information we gather is then open to scrutiny.
Our aim is to arrange for the machines in the network to work together optimally,
so we begin by thinking:

• How to choose the right hardware for the right job.

• Which hosts should be servers and for which services?

• How to make disks available to the network.

• How to share tasks between machines.

• How clock/time synchronization will work.

What roles do the hosts play now? How might this be improved in the future?
Is everything already working satisfactorily or do we need to rewire our frog? In
the ideal universe, we would always have unlimited resources for every task, but
when reality bites, some kind of compromise is usually needed.

The efficiency of a network can be improved greatly by planning carefully how
key networks services are organized, particularly file-servers and name services,
which form the basic infrastructure of a network. Here is a partial checklist:

• Which hosts keep the physical disks for disk servers? It makes sense to keep
all file-services, which use those disks, on that same host. If the source data
are on host A, then we run all file services for those data on host A, otherwise
data will first have to be copied from A to B, over the network, in order to
be served back over the network to host C, i.e. there will be an unnecessary
doubling of traffic.

• Normally we shall want to use a powerful system for the servers which
provide key disk and WWW services, since these are at the heart of network
infrastructure. Other hosts depend on these. However, if resources are limited
we might need to reserve the fastest host for running some especially heavy
software. This has to be a site-dependent calculation.

• File-servers always benefit from a large amount of RAM. This is a cheap form
of optimization which allows caching. Fast network interfaces and hard-disks
are also amongst the most effective optimizations one can invest in. If you
are going to buy RAM and fast disks, don’t give it all away for users’ selfish
workstations, treat the server-host to the biggest share.

• If we can, it helps to separate users’ home directories over several disks and
keep problem disk-users on a partition for themselves, away from honest
users.

• Shall we consolidate many services on one host, or distribute them across
many? The first possibility is easier to administer, but the second might be
more efficient and less prone to host crashes.
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• Any binary or software servers we set up to share software are individual to
each operating system type we maintain. A Sun machine cannot run software
compiled on a GNU/Linux host etc.

• Dependency can be a source of many insidious problems. Try not to create
deadlocks whereby host A needs host B and host B needs host A. This is
a particularly common mistake with NFS filesystem mounts. It can cause a
hanging loop.

• If high availability is an issue, will one server per service be enough? Do we
need a backup server? Backup name service servers (DNS, NIS, WINS) could
be considered a must. Without a name service, a network is paralyzed.

There is no textbook solution to these issues. There are only recipes and recom-
mendations based on trial and error experience. If we want our frog to win the
high-jump, we need to strike the balance between concentrating muscle in key
areas, and spreading the load evenly. We are unlikely to get everything just right,
first time around, so it is important to construct a solid system, at the same time
as anticipating future change.

Principle 10 (Adaptability). Optimal structure and performance are usually
found only with experience of changing local needs. The need for system revision
will always come. Make network solutions which are adaptable.

3.8.7 Uniform resource locators (URLs)

URLs became well known, as a concept, in connection with the World Wide
Web. The principle of referring to resources by a standardized name format
can be adopted here too. Each operating system has a model for laying out its
files in a standard pattern, but user files and local additions are usually left
unspecified. Choosing a sound layout for data can make the difference between
an incomprehensible chaos and a neat orderly structure. An orderly structure is
useful not only for the users of the system, but also when making backups. Some
of the issues are:

• Disk partitions are associated with drives or directory trees when connected
to operating systems. These need names.

• Naming schemes for files and disks are operating system dependent.

• The name of a partition should reflect its function or contents.

• In a network the name of a partition ought to be a URL, i.e. contain the name
of the host.

• It is good practice to consolidate file storage into a few special locations
rather than spreading it out all over the network. Moreover, a basic principle
in cataloging resources is:
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Principle 11 (One name for one object I). Each unique resource requires a
unique name, which labels it and describes its function.

with the corollary:

Corollary to principle (Aliases). Sometimes it is advantageous to use aliases
or pointers to unique objects so that a generic name can point to a specific
resource. The number of aliases should be kept to a minimum, to avoid
confusion.

Data kept on many machines can be difficult to manage, compared with data
collected on a few dedicated file-servers. Also, insecure operating systems
offer files on a local disk no protection.

The URL model of file naming has several advantages. It means that one always
knows the host-provider and function of a network resource. Also it falls nicely
into a hierarchical directory pattern. For example, a simple but effective scheme is
to use a three-level mount-point for adding disks: each user disk is mapped onto
a directory with a name of the form

/site/host/content

(see figure 3.3). This scheme is adequate even for large organizations and can be
extended in obvious ways. Others prefer to build up names around services, e.g.

/nfs/host/content

One objection to the naming scheme above is that the use of the server name ties a
resource to a particular server host, and thus makes it difficult to move resources
around. Technologies like amd (automount), AFS, DFS (the Open Group’s), and
Dfs (Microsoft’s) help address this issue and can make the filesystem based on
a logical layout rather than an actual physical location. On the other hand,
location independence can always be secured with aliases (symbolic) or with truly
distributed filesystems. Moving actual resources is always a relatively non-trivial
operation, and a naming scheme like that above yields clarity for a minimum
of work.

In DOS-derived operating systems one does not have the freedom to ‘mount’
network filesystems into the structure of the local disk; network disks always

/site/serverhost/content

physics

feynman schwinger tomonaga

/home/local

Figure 3.3: A universal naming scheme (URL) for network resources makes distributed
data comprehensible.
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become a special ‘drive’, like H: or I: etc. It is difficult to make a consistent view
of the disk resources with this system, however future Windows systems will have
seamless integration and one can already use filesystems like the DFS on NT
which do support this model.

Within an organization a URL structure provides a global naming scheme, like
those used in true network filesystems like AFS and DFS. These use the name of
the host on which a resource is physically located to provide a point of reference.
This is also an excellent way of labelling backups of partitions since it is then
immediately clear where the data belong. A few rules of thumb allow this naming
scheme to live painlessly alongside traditional Unix naming schemes.

• When mounting a remote filesystem on a host, the client and server direc-
tories should always have exactly the same name, to avoid confusion and
problems later [221].

• The name of every filesystem mount-point should be unique and tell us
something meaningful about where it is located and what its function is.

• For tradition, one can invoke the corollary and use an alias to provide
a generic reference point for specific resources. For instance, names like
/usr/local can be used to point to more accurate designations like /site/
host/local. On different clients, the alias /usr/local might point to a
filesystem on a single server, or to filesystems on many servers. The purpose
of an alias is to hide this detail, while the purpose of the filesystem designation
is to identify it. This satisfies all needs and is consistent.

• It doesn’t matter whether software compiles the path names of special direc-
tories into software as long as we follow the points above.

For example, the following scheme was introduced at Oslo at the University and
later copied at the College. The first link in the mount-point is the department of
the organization or, in our case, the university faculty which the host belongs to;
the second link is the name of the host to which the disk is physically connected,
and the third and final link is a name which reflects the contents of the partition.
Some examples:

/site/hostname/content

/research/grumpy/local
/research/happy/home1
/research/happy/home2

/sales/slimy/home1

/physics/einstein/data
/biology/pauling/genome-db

The point of introducing this scheme was two-fold:

• To instantly be able to identify the server on which the disk resource physi-
cally resided.
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• To instantly be able to identify the correct locations of files on backup tapes,
without any special labelling of the tapes (see section 12.3.3).

System administrators are well known for strong opinions, and many practicing
system administrators will strongly disagree with this practice. However, one
should have an excellent reason to ignore a systematic approach.

3.8.8 Choosing server-hosts

Choosing the best host for a service is an issue with several themes. The main
principles have to do with efficiency and security and can be summarized by the
following questions.

• Does traffic have to cross subnet boundaries?

• Do we avoid unnecessary network traffic?

• Have we placed insecure services on unimportant hosts?

Service requests made to servers on different subnets have to be routed. This
takes time and uses up switching opportunities which might be important on a
heavily loaded network. Some services (like DNS) can be mirrored on each subnet,
while others cannot be mirrored in any simple fashion. Unnecessary network
traffic can be reduced by eliminating unnecessary dependencies of one service on
another.

Example 1. Suppose we are setting up a file-server (WWW or FTP). The data which
these servers will serve to clients lie on a disk which is physically attached to some
host. If we place the file-server on a host which does not have direct physical access
to the disks, then we must first use another network service (e.g. NFS) as a proxy
in order to get the data from the host with the disk attached. Had we placed the
file-server directly on the host with the disk, the intermediate step would have been
unnecessary and we could approximately halve the amount of network traffic.

We can codify this advice as a principle: avoid making one service reliant on
another.

Principle 12 (Inter-dependency). The more dependent a service is, the more
vulnerable it is to failure. With fewer dependencies, there are fewer possible
failure modes, and therefore predictability and reliability are increased.

Some services are already reliant on others, by virtue of their design. For example,
most services are reliant on the DNS.

3.8.9 Distributed filesystems and mirroring

The purpose of a network is to share resources amongst many hosts. Making files
available to all hosts from a common source is one of the most important issues
in setting up a network community. There are three types of data which we have
to consider separately:
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• Users’ home directories.

• Software or binary data (architecture specific).

• Other common data (architecture unspecific).

Since users normally have network accounts which permit them to log onto any
host in the network, user data clearly have to be made available to all hosts.
The same is not true of software, however. Software only needs to be shared
between hosts running comparable operating systems. A Windows program will
not run under GNU/Linux (even though they share a common processor and
machine code), nor will an SCO Unix program run under Free BSD. It does
not make sense to share binary filesystems between hosts, unless they share
a common architecture. Finally, sharable data, such as manual information or
architecture independent databases, can be shared between any hosts which
specifically require access to them.

How are network data shared? There are two strategies:

• Use of a shared filesystem (e.g. NFS, AFS or Novell Netware).

• Remote disk mirroring.

Using a network filesystem is always possible, and it is a relatively cheap solution,
since it means that we can minimize the amount of disk space required to store
data, by concentrating the data on just a few servers. The main disadvantage
with use of a network filesystem is that network access rates are usually much
slower than disk access rates, because the network is slow compared with disks,
and a server has to talk to many clients concurrently, introducing contention or
competition for resources. Even with the aggressive caching schemes used by
some network filesystems, there is usually a noticeable difference in loading files
from the network and loading files locally.

Bearing in mind the principles of the previous section, we would like to minimize
load on the network if possible. A certain amount of network traffic can be avoided
by mirroring software rather than sharing with a network filesystem. Mirroring
means copying every file from a source filesystem to a remote filesystem. This
can be done during the night when traffic is low and, since software does not
change often, it does not generate much traffic for upgrades after the initial copy.
Mirroring is cheap on network traffic, even during the night, During the daytime,
when users are accessing the files, they collect them from the mirrors. This is both
faster and requires no network bandwidth at all.

Mirroring cannot apply to users’ files since they change too often, while users
are logged onto the system, but it applies very well to software. If we have disk
space to spare, then mirroring software partitions can relieve the load of sharing.
There are various options for disk mirroring. On Unix hosts we have rdist, rsync
and cfengine; variations on these have also been discussed [264, 309, 117, 98].
The use of rdist can no longer be recommended (see section 6.5.6) for security
reasons. Cfengine can also be used on Windows. Network filesystems can be used
for mirroring, employing only standard local copy commands; filesystems are first
mounted and then regular copy commands are used to transfer the data as if they
were local files.



EXERCISES 105

The benefits of mirroring can be considerable, but it is seldom practical to
give every workstation a mirror of software. A reasonable compromise is to have a
group of file-servers, synchronized by mirroring from a central source. One would
expect to have at least one file-server per subnet, to avoid router traffic, money
permitting.

Exercises

Self-test objectives

1. What is the main principle at work in any cooperative enterprise, such as a
network or community with limited resources?

2. Explain the role of policy in a community.

3. Are rules meant for humans comparable to rules meant for machines?
Explain.

4. Describe the social community structures in a human–computer system.

5. What consequences result from placing a computer in an environment that
is controlled by external parties?

6. What are the pros and cons of making a network completely uniform in the
choice of hardware and software?

7. Explain how patterns of user behavior have a direct and measurable effect
on a computer system.

8. Explain the pros and cons of centralization versus delegation in a system.

9. List the different identifiers that label a computer.

10. How does a computer know its IP address?

11. How does a computer know its Ethernet address?

12. What is a MAC address?

13. What is the service that relates Internet Domain Names to IP addresses?

14. What is the service that relates IP addresses to MAC addresses?

15. Describe alternative models for organizing network resources.

16. What is meant by a ‘server host’ and how is it different from a ‘server’?

17. How are user preferences stored on Unix and Windows?

18. How would you go about mapping out an existing Local Area Network to find
out how it worked?

19. Name the most common network services that most Local Area Networks
implement.
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20. Why is it important to know what software and hardware is running across
a network that you are responsible for?

21. What is usually meant by a ‘resolver’?

22. What tools can you use to find out the IP address of a host?

23. What tools can you use to find out the IPv6 address of a host?

24. How would you find out the domain that a given IP address belongs to?

25. How would you find out the domain that a given IPv6 address belongs to?

26. How would you get in touch with the Network or System Administrator who
was responsible for a particular IP address?

27. Explain what the ping program does.

28. Explain what the Unix program traceroute and Windows program tracert
do.

29. How would you go about trying to locate the World Wide Web server of a
network that you were not familiar with? (Would the same method work for
other services like E-mail or FTP?)

30. Why is computer clock sychronization important? How can this be achieved?

31. What is meant by a Uniform Resource Locator (URL) and how can this be
used to create a systematic naming scheme for network resources?

32. What is meant by dependency amongst computers and services? What are
the pros and cons of dependency?

Problems

1. Use the ping and ping6 commands to ping different IP addresses on your
network (note that these differ somewhat on different platforms – the exam-
ples here are from GNU/Linux). Try pinging the addresses repeatedly with a
large packet size (9064 bytes):

ping -s 9064 192.0.2.4

2. What are the advantages and disadvantages of making access to network
disks transparent to users? Discuss this in relation to the reliability of hosts.

3. What is meant by a name service? Name two widely used name services that
contain IP addresses and one that contains Ethernet addresses.

4. What is the Domain Name Service? How do hosts depend on this service?
Suppose that the data in the DNS could be corrupted. Explain how this could
be a security risk.
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5. In what way is using a name service better than using static host tables? In
what way is it worse?

6. Draw a diagram of the physical topology of your local network, showing
routers, switches, cables and other hardware.

7. Determine all of the subnets that comprise your local network. (If there
are many, consider just the closest ones to your department.) What is the
netmask on these subnets? (You only need to determine the subnet mask on
a representative host from each subnet, since all hosts must agree on this
choice. Hint. try ifconfig -a.)

8. If the network xxx.yyy.74.mmm has subnet mask 255.255.254.0, what can
you say about the subnet mask for the addresses on xxx.yyy.75.mmm? (Hint:
how many hosts are allowed on the subnet?) Which IP addresses does the
subnet consist of?

9. If the network xxx.yyy.74.mmm has subnet mask 255.255.255.0, what can
you say about the subnet mask for the addresses on xxx.yyy.75.mmm?

10. Using dig or nslookup, determine the answers to the following questions:

(a) What is the IP address of the host www.gnu.org?

(b) What are names of the nameservers for the domain gnu.org?

(c) Are ftp.iu.hio.no and www.iu.hio.no two different hosts?

(d) What is name of the mail exchanger for the domain iu.hio.no?

11. The purpose of this problem is to make you think about the consequences of
cloning all hosts in a network, so that they are all alike. The principles apply
equally well to other societies. Try not to get embroiled in politics, concentrate
on practicalities rather than ideologies.

(a) Discuss the pros and cons of uniformity. In a society, when is it advan-
tageous for everyone in a group to have equal access to resources? In
what sense are they equal? What special characteristics will always be
different, i.e. why are two persons never completely equal? (e.g. their
names are different)

(b) When is it advantageous for some members of a community to have
more resources and more power than others? You might like to consider
what real power is. For instance, would you say that garbage disposal
workers and water engineers have power in a society? What does this
tell you about the organization of privilege within a human–computer
system?

(c) What is meant by delegation. How is delegation important to cooperation?

(d) What is meant by dependency? How does delegation lead to dependency?
Can you foresee any problems with this, for network efficiency?

(e) What is meant by a network service? What issues can you identify that
should be considered when deploying a new network service?
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(f) Discuss each of the above points in connection with computers in a
network.

12. Design a universal naming scheme for directories, for your site. Think about
what types of operating system you have and how the resources will be
shared; this will affect your choices. How will you decide drive names on
Windows hosts?

13. What are ARP and RARP? Why can’t we use Ethernet addresses instead of
IP addresses to send data from one side of the planet to the other? Could
IP addresses eliminate Ethernet addresses? Why do we need both these
addresses?

14. At some sites, it was common practice to use remote mirroring to synchronize
the system disks or filesystems of hosts, where compiled software had been
mixed in with the operating system’s own files. This solves the problem of
making manual changes to one host, and keeping other hosts the same as
the source machine. Discuss whether this practice is advisable, with respect
to upgrades of the operating system.

15. Discuss the pros and cons of the following advice. Place all file-servers which
serve the same data on a common host, e.g. WWW, FTP and network file
systems serving user files. Place them on the host which physically has the
disks attached. This will save an unnecessary doubling of network traffic and
will speed up services. A fast host with a lot of memory and perhaps several
CPUs should be used for this. Explain how the optimal answer depends on
the hardware one has available.

16. Prepare a sample of what you consider to be the main elements of a system
policy. Swap your answers with classmates and review each other’s answers.



Chapter 4

Host management

The foregoing chapters have explored the basics of how hosts need to function
within a network community; we are now sufficiently prepared to turn our atten-
tion to the role of the individual host within such a network. It should be clear
from the previous chapter that it would be a mistake to think of the host as being
the fundamental object in the human–computer system. If we focus on too small a
part of the entire system initially, time and effort can be wasted configuring hosts
in a way that does not take into account the cooperative aspects of the network.
That would be a recipe for failure and only a prelude to later reinstallation.

4.1 Global view, local action

Life can be made easy or difficult by the decisions made at the outset of host
installation. Should we:

• Follow the OS designer’s recommended setup? (Often this is insufficient for
our purpose)

• Create our own setup?

• Make all machines alike?

• Make all machines different?

Most vendors will only provide immediate support for individual hosts or, in
the best case, clusters of hosts manufactured by them. They will almost never
address the issue of total network solutions, without additional cost, so their
recommendations often fall notably short of the recommendable in a real network.
We have to be aware of the big picture when installing and configuring hosts.

4.2 Physical considerations of server room

Critical hardware needs to be protected from accidental and malicious damage.
An organization’s very livelihood could be at stake from a lack of protection of its
basic hardware. Not all organizations have the luxury of choosing ideal conditions
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for their equipment, but all organizations could dedicate a room or two to server
equipment. Any server room should have, at the very least, a lockable door,
probably cooling or ventilation equipment to prevent the temperature from rising
above about 20 degrees Celsius and some kind of anti-theft protection.

Remember that backup tapes should never be stored in the same room as the
hosts they contain data from, and duplicate servers are best placed in different
physical locations so that natural disasters or physical attacks (fire, bombs etc.)
will not wipe out all equipment at the same time.

Internet Service Providers (ISP) and Web hosting companies, who rely on 100
percent uptime for their customers, need a quite different level of security. Any
company with a significant amount of computing equipment should consider a
secure environment for their hardware, where the level of security is matched
with the expected threat. In some countries, bombs or armed robbery are not
uncommon, for instance. With high capital costs involved, physical security is
imperative.

An ISP should consider obscuring the nature of its business to avoid terrorist
attack, by placing it in an inauspicious location without outer markings. Security
registration should be required for all workers and visitors, with camera recorded
registration and security guards. Visitors should present photo-ID and be pre-
vented from bringing anything into the building; they should be accompanied at
all times. Within the server area:

• A reliable (uninterruptable) power supply is needed for essential equipment.

• Single points of failure, e.g. network cables, should be avoided.

• Hot standby equipment should be available for minimal loss of uptime in
case of failure.

• Replaceable hard disks should be considered1 with RAID protection for
continuity.

• Protection from natural disasters like fire and floods, and heating failure in
cold countries should be secured. Note that most countries have regulations
about fire control. A server room should be in its own ‘fire cell’, i.e. it should
be isolated by doorways and ventilation systems from neighboring areas to
prevent the spread of fire.

• Important computing equipment can be placed in a Faraday cage to prevent
the leakage of electromagnetic radiation, or to protect it from electromagnetic
pulses (EMP), e.g. from nuclear explosions or other weaponry.

• Access to cabling should be easy in case of error, and for extensibility.

• Humans should not be able to touch equipment. No carpeting or linoleum
that causes a build up of static electricity should be allowed near delicate
equipment. Antistatic carpet tiles can be purchased quite cheaply.

1On a recent visit to an Internet search engine’s host site, I was told that vibration in large racks
of plugin disks often causes disks to vibrate loose from their sockets, meaning that the most common
repair was pushing a disk back in and rebooting the host.
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• Humidity should also be kept at reasonable levels: too high and condensation
can form on components causing short circuits and damage; too low and
static electricity can build up causing sparks and spikes of current. Static
electricity is especially a problem around laser printers that run hot and
expel moisture. Static electricity causes paper jams, as pages stick together
in low moisture environments.

In a large server room, one can easily lose equipment, or lose one’s way!
Equipment should be marked, tagged and mapped out. It should be monitored
and kept secure. If several companies share the floor space of the server room, they
probably require lockable cabinets or partitioned areas to protect their interests
from the prying hands of competitors.

4.3 Computer startup and shutdown

The two most fundamental operations which one can perform on a host are to start
it up and to shut it down. With any kind of mechanical device with moving parts,
there has to be a procedure for shutting it down. One does not shut down any
machine in the middle of a crucial operation, whether it be a washing machine in
the middle of a program, an aircraft in mid-flight, or a computer writing to its disk.

With a multitasking operating system, the problem is that it is never possible to
predict when the system will be performing a crucial operation in the background.
For this simple reason, every multitasking operating system provides a procedure
for shutting down safely. A safe shutdown avoids damage to disks by mechanical
interruption, but it also synchronizes hardware and memory caches, making sure
that no operation is left incomplete.

4.3.1 Booting Unix

Normally it is sufficient to switch on the power to boot a Unix-like host. Sometimes
you might have to type ‘boot’ or ‘b’ to get it going. Unix systems can boot in several
different modes or run levels. The most common modes are called multi-user
mode and single-user mode. On different kinds of Unix, these might translate
into run-levels with different numbers, but there is no consensus. In single-user
mode no external logins are permitted. The purpose of single-user mode is to allow
the system administrator access to the system without fear of interference from
other users. It is used for installing disks or when repairing filesystems, where the
presence of other users on the system would cause problems.

The Unix boot procedure is controlled entirely by the init program; init
reads a configuration file called /etc/inittab. On older BSD Unices, a file called
/etc/rc meaning ‘run commands’ and subsidiary files like rc.local was then
called to start all services. These files were no more than shell scripts. In the
System V approach, a directory called (something like) /etc/rc.d is used to
keep one script per service. /etc/inittab defines a number of run-levels, and
starts scripts depending on what run-level you choose. The idea behind inittab
is to make Unix installable in packages, where each package can be started
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or configured by a separate script. Which packages get started depends on the
run-level you choose.

The default form for booting is to boot in multi-user mode. We have to find out
how to boot in single-user mode on our system, in case we need to repair a disk
at some point. Here are some examples.

Under SunOS and Solaris, one interrupts the normal booting process by typing
stop a, where stop represents the ‘stop key’ on the left-hand side of the keyboard.
If you do this, you should always give the sync command to synchronize disk
caches and minimize filesystem damage.

Stop a

ok? sync
ok? boot -s

If the system does not boot right away, you might see the line

type b) boot, c) continue or n) new command

In this case, you should type

b -s

in order to boot in single-user mode. Under the GNU/Linux operating system,
using the LILO OR GRUB boot system, we interrupt the normal boot sequence by
pressing the SHIFT key when the LILO prompt appears. This should cause the
system to stop at the prompt:

Boot:

To boot, we must normally specify the name of a kernel file, normally linux. To
boot in single-user mode, we then type

Boot: linux single

Or at the LILO prompt, it is possible to type ‘?’ in order to see a list of kernels.
There appears to be a bug in some versions of GNU/Linux so that this does not
have the desired effect. In some cases one is prompted for a run-level. The correct
run-level should be determined from the file /etc/inittab. It is normally called
S or 1 or even 1S.

Once in single-user mode, we can always return to multi-user mode just by
exiting the single-user login.

4.3.2 Shutting down Unix

Anyone can start a Unix-like system, but we have to be an administrator or
‘superuser’ to shut one down correctly. Of course, one could just pull the plug, but
this can ruin the disk filesystem. Even when no users are touching a keyboard
anywhere, a Unix system can be writing something to the disk – if we pull the plug,
we might interrupt a crucial write-operation which destroys the disk contents. The
correct way to shut down a Unix system is to run one of the following programs.
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• halt: Stops the system immediately and without warning. All processes are
killed with the TERM-inate signal 15 and disks are synchronized.

• reboot: As halt, but the system reboots in the default manner immediately.

• shutdown: This program is the recommended way of shutting down the
system. It is just a friendly user-interface to the other programs, but it warns
the users of the system about the impending shutdown and allows them to
finish what they are doing before the system goes down.

Here are some examples of the shutdown command. The first is from BSD Unix:

shutdown -h +3 "System halting in three minutes, please log out"

shutdown -r +4 "System rebooting in four minutes"

The -h option implies that the system will halt and not reboot automatically. The
-r option implies that the system will reboot automatically. The times are specified
in minutes.

System V Unix R4 (e.g. Solaris) has a different syntax which is based on its
system of run-levels. The shutdown command allows one to switch run-levels in a
very general way. One of the run-levels is the ‘not running’ or ‘halt’ run-level. To
halt the system, we have to call this.

shutdown -i 5 -g 120 "Powering down os...."

The -i 5 option tells SVR4 to go to run-level 5, which is the power-off state.
Run-level 0 would also suffice here. The -g 120 option tells shutdown to wait for a
grace-period of 120 seconds before shutting down. Note that Solaris also provides
a BSD version of shutdown in /usr/ucb.

Never assume that the run-levels on one system are the same as those on
another.

4.3.3 Booting and shutting down Windows

Booting and shutting down Windows is a trivial matter. To boot the system, it is
simply a matter of switching on the power. To shut it down, one chooses shutdown
from the Start Menu.

There is no direct equivalent of single-user mode for Windows, though ‘secure
mode’ is sometimes invoked, in which only the essential device drivers are loaded,
if some problem is suspected. To switch off network access on a Windows server so
that disk maintenance can be performed, one must normally perform a reboot and
connect new hardware while the host is down. Filesystem checks are performed
automatically if errors are detected. The plug’n’play style automation of Windows
removes the need for manual work on filesystems, but it also limits flexibility.

The Windows boot procedure on a PC begins with the BIOS, or PC hardware.
This performs a memory check and looks for a boot-able disk. A boot-able disk is
one which contains a master boot record (MBR). Normally the BIOS is configured
to check the floppy drive A: first and then the hard-disk C: for a boot block. The
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boot block is located in the first sector of the boot-able drive. It identifies which
partition is to be used to continue with the boot procedure. On each primary
partition of a boot-able disk, there is a boot program which ‘knows’ how to load
the operating system it finds there. Windows has a menu-driven boot manager
program which makes it possible for several OSs to coexist on different partitions.

Once the disk partition containing Windows has been located, the program
NTLDR is called to load the kernel. The file BOOT.INI configures the defaults for
the boot manager. After the initial boot, a program is run which attempts to
automatically detect new hardware and verify old hardware. Finally the kernel is
loaded and Windows starts properly.

4.4 Configuring and personalizing workstations

Permanent, read–write storage changed PCs from expensive ping-pong games into
tools for work as well as pleasure. Today, disk space is so cheap that it is not
uncommon for even personal workstations to have several hundreds of gigabytes
of local storage.

Flaunting wealth is the sport of the modern computer owner: more disk,
more memory, better graphics. Why? Because it’s there. This is the game of
free enterprise, encouraged by the availability of home computers and personal
workstations. Not so many years before such things existed, however, computers
only existed as large multiuser systems, where hundreds of users shared a few
kilobytes of memory and a processor no more powerful than a now arthritic PC.
Rational resource sharing was not just desirable, it was the only way to bring
computing to ordinary users. In a network, we have these two conflicting interests
in the balance.

4.4.1 Personal workstations or ‘networkstations’?

Today we are spoiled, often with more resources than we know what to do with.
Disk space is a valuable resource which can be used for many purposes. It would
be an ugly waste to allow huge areas of disk to go unused, simply because small
disks are no longer manufactured; but, at the same time, we should not simply
allow anyone to use disk space as they please, just because it is there.

Operating systems which have grown out of home computers (Windows and
MacIntosh) take the view that, whatever is left over of disk resources is for the
local owner to do with as he or she pleases. This is symptomatic of the idea that
one computer belongs to one user. In the world of the network, this is an inflexible
model. Users move around organizations; they ought not to be forced to take their
hardware with them as they move. Allowing users to personalize workstations is
thus a questionable idea in a network environment.

Network sharing allows us to make disk space available to all hosts on a
network, e.g. with NFS, Netware or DFS. This allows us to make disk space
available to all hosts. There are positives and negatives with sharing, however. If
sharing was a universal panacea, we would not have local disks: everything would
be shared by the network. This approach has been tried: diskless workstations,
network computers and X-terminals have all flirted with the idea of keeping all
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disk resources in one place and using the network for sharing. Such systems
have been a failure: they perform badly, are usually more expensive than an
off-the-shelf PC, and they simply waste a different resource: network bandwidth.
Some files are better placed on a local disk: namely the files which are needed
often, such as the operating system and temporary scratch files, created in the
processing of large amounts of data.

In organizing disk space, we can make the best use of resources, and separate:

• Space for the operating system.

• Space which can be shared and made available for all hosts.

• Space which can be used to optimize local work, e.g. temporary scratch
space, space which can be used to optimize local performance (avoid slow
networking).

• Space which can be used to make distributed backups, for multiple redun-
dancy.

These independent areas of use need to be separated from one another, by
partitioning disks.

4.4.2 Partitioning

Disks can be divided up into partitions. Partitions physically divide the disk
surface into separate areas which do not overlap. The main difference between
two partitions on one disk and two separate disks is that partitions can only be
accessed one at a time, whereas multiple disks can be accessed in parallel.

Disks are partitioned so that files with separate purposes cannot be allowed to
spill over into one another’s space. Partitioning a disk allows us to reserve a fixed
amount of space for a particular purpose, safe in the knowledge that nothing else
will encroach on that space. For example, it makes sense to place the operating
system on a separate partition, and user data on another partition. If these two
independent areas shared common space, the activities of users could quickly
choke the operating system by using up all of its workspace.

In partitioning a system, we have in mind the issues described in the previous
section and try to size partitions appropriately for the tasks they will fulfill. Here
are some practical points to consider when partitioning disks:

• Size partitions appropriately for the jobs they will perform. Bear in mind that
operating system upgrades are almost always bigger than previous versions,
and that there is a general tendency for everything to grow.

• Bear in mind that RISC (e.g. Sun Sparc) compiled code is much larger than
CISC compiled code (e.g. software on an Intel architecture), so software will
take up more space on a RISC system.

• Consider how backups of the partitions will be made. It might save many
complications if disk partitions are small enough to be backed up in one go
with a single tape, or other backup device.
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Choosing partitions optimally requires both experience and forethought. Thumb-
rules for sizing partitions change constantly, in response to changing RAM
requirements and operating system sizes, disk prices etc. In the early 1990s
many sites adopted diskless or partially diskless solutions [11], thus centraliz-
ing disk resources. In today’s climate of ever cheaper disk space, there are few
limitations left.

Disk partitioning is performed with a special program. On PC hardware, this
is called fdisk or cfdisk. On Solaris systems the program is called, confusingly,
format. To repartition a disk, we first edit the partition tables. Then we have
to write the changes to the disk itself. This is called labelling the disk. Both of
these tasks are performed from the partitioning programs. It is important to make
sure manually that partitions do not overlap. The partitioning programs do not
normally help us here. If partitions overlap, data will be destroyed and the system
will sooner or later get into deep trouble, as it assumes that the overlapping area
can be used legitimately for two separate purposes.

Partitions are labelled with logical device names in Unix. As one comes to
expect, these are different in every flavor of Unix. The general pattern is that of
a separate device node for each partition, in the /dev directory, e.g. /etc/sd1a,
/etc/sd1b, /dev/dsk/c0t0d0s0 etc. The meaning of these names is described in
section 4.5.

The introduction of meta-devices and logical volumes in many operating sys-
tems allows one to ignore disk partitions to a certain extent. Logical volumes
provide seamless integration of disks and partitions into a large virtual disk which
can be organized without worrying about partition boundaries. This is not always
desirable, however. Sometimes partitions exist for protection, rather than merely
for necessity.

4.4.3 Formatting and building filesystems

Disk formatting is a way of organizing and finding a way around the surface of a
disk. It is a little bit like painting parking spaces in a car park. We could make a
car park in a field of grass, but everything would get rapidly disorganized. If we
paint fixed spaces and number them, then it is much easier to organize and reuse
space, since people park in an orderly fashion and leave spaces of a standard,
reusable size. On a disk surface, it makes sense to divide up the available space
into sectors or blocks. The way in which different operating systems choose to do
this differs, and thus one kind of formatting is incompatible with another.

The nomenclature of formatting is confused by differing cultures and technolo-
gies. Modern hard disks have intelligent controllers which can map out the disk
surface independently of the operating system which is controlling them. This
means that there is a kind of factory formatting which is inherent to the type of
disk. For instance, a SCSI disk surface is divided up into sectors. An operating
system using a SCSI disk then groups these sectors into new units called blocks
which are a more convenient size to work with, for the operating system. With the
analogy above, it is a little like making a car park for trucks by grouping parking
spaces for cars. It also involves a new set of labels. This regrouping and labelling
procedure is called formatting in PC culture and is called making a filesystem



4.4. CONFIGURING AND PERSONALIZING WORKSTATIONS 117

in Unix culture.2 Making a filesystem also involves setting up an infrastructure
for creating and naming files and directories. A filesystem is not just a labelling
scheme, it also provides functionality.

If a filesystem becomes damaged, it is possible to lose data. Usually filesystem
checking programs called disk doctors, e.g. the Unix program fsck (filesystem
check), can be used to repair the operating system’s map of a disk. In Unix
filesystems, data which lose their labelling get placed for human inspection in a
special directory which is found on every partition, called lost+found.

The filesystem creation programs for different operating systems go by various
names. For instance, on a Sun host running SunOS/Solaris, we would create a
filesystem on the zeroth partition of disk 0, controller zero with a command like
this to the raw device:

newfs -m 0 /dev/rdsk/c0t0d0s0

The newfs command is a friendly front-end to the mkfs program. The option -m
0, used here, tells the filesystem creation program to reserve zero bytes of special
space on the partition. The default behavior is to reserve ten percent of the total
partition size, which ordinary users cannot write to. This is an old mechanism
for preventing filesystems from becoming too full. On today’s disks, ten percent of
a partition size can be many files indeed, and if we partition our cheap, modern
disks correctly, there is no reason not to allow users to fill them up completely.
This partition is then made available to the system by mounting it. This can either
be performed manually:

mount /dev/dsk/c0t0d0s0 /mountpoint/directory

or by placing it in the filesystem table /etc/vfstab.
GNU/Linux systems have the mkfs command, e.g.

mkfs /dev/hda1

The filesystems are registered in the file /etc/fstab. Other Unix variants register
disks in equivalent files with different names, e.g. HPUX in /etc/checklist (prior
to 10.x) and AIX in /etc/filesystems.

On Windows systems, disks are detected automatically and partitions are
assigned to different logical drive names. Drive letters C: to Z: are used for non-
floppy disk devices. Windows assigns drive letters based on what hardware it finds
at boot-time. Primary partitions are named first, then each secondary partition is
assigned a drive letter. The format program is used to generate a filesystem on a
drive. The command

format /fs:ntfs /v:spare F:

would create an NTFS filesystem on drive F: and give it a volume label ‘spare’.
The older, insecure filesystem FAT can also be chosen, however this is not
recommended. The GUI can also be used to partition and format inactive disks.

2Sometimes Unix administrators speak about reformatting a SCSI disk. This is misleading. There
is no reformatting at the SCSI level; the process referred to here amounts to an error-correcting scan,
in which the intelligent disk controller re-evaluates what parts of the disk surface are undamaged and
can be written to. All disks contain unusable areas which have to be avoided.
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4.4.4 Swap space

In Windows operating systems, virtual memory uses filesystem space for saving
data to disk. In Unix-like operating systems, a preferred method is to use a whole,
unformatted partition for virtual memory storage.

A virtual memory partition is traditionally called the swap partition, though few
modern Unix-like systems ‘swap’ out whole processes, in the traditional sense.
The swap partition is now used for paging. It is virtual memory scratch space, and
uses direct disk access to address the partition. No filesystem is needed, because
no functionality in terms of files and directories is needed for the paging system.

The amount of available RAM in modern systems has grown enormously in
relation to the programs being run. Ten years ago, a good rule of thumb was to
allocate a partition twice the size of the total amount of RAM for paging. On heavily
used login servers, this would not be enough. Today, it is difficult to give any firm
guidelines, since paging is far less of a problem due to extra RAM, and there is
less uniformity in host usage.

4.4.5 Filesystem layout

We have no choice about the layout of the software and support files which are
installed on a host as part of ‘the operating system’. This is decided by the system
designers and cannot easily be changed. Software installation, user registration
and network integration all make changes to this initial state, however. Such
additions to the system are under the control of the system administrator and it is
important to structure these changes according to logical and practical principles
which we shall consider below.

A working computer system has several facets:

• The operating system software distribution,

• Third party software,

• Users’ files,

• Information databases,

• Temporary scratch space.

These are logically separate because:

• They have different functions,

• They are maintained by different sources,

• They change at different rates,

• A different policy of backup is required for each.

Most operating systems have hierarchical file systems with directories and
subdirectories. This is a powerful tool for organizing data. Disks can also be
divided up into partitions. Another issue in sizing partitions is how you plan to
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make a backup of those partitions. To make a backup you need to copy all the
data to some other location, traditionally tape. The capacity of different kinds of
tape varies quite a bit, as does the software for performing backups.

The point of directories and partitions is to separate files so as not to mix
together things which are logically separate. There are many things which we
might wish to keep separate: for example,

• User home directories

• Development work

• Commercial software

• Free software

• Local scripts and databases.

One of the challenges of system design is in finding an appropriate directory
structure for all data which are not part of the operating system, i.e. all those files
which are locally maintained.

Principle 13 (Separation I). Data which are separate from the operating system
should be kept in a separate directory tree, preferably on a separate disk partition.
If they are mixed with the operating system file tree it makes reinstallation or
upgrade of the operating system unnecessarily difficult.

The essence of this is that it makes no sense to mix logically separate file trees.
For instance, users’ home directories should never be on a common partition
with the operating system. Indeed, filesystems which grow with a life of their own
should never be allowed to consume so much space as to throttle the normal
operation of the machine.

These days there are few reasons for dividing the files of the operating system
distribution into several partitions (e.g. /, /usr). Disks are large enough to install
the whole operating system distribution on a single independent disk or partition.
If you have done a good job of separating your own modifications from the system
distribution, then there is no sense in making a backup of the operating system
distribution itself, since it is trivial to reinstall from source (CD-ROM or ftp file
base). Some administrators like to keep /var on a separate partition, since it
contains files which vary with time, and should therefore be backed up.

Operating systems often have a special place for installed software. Regrettably
they often break the above rule and mix software with the operating system’s
file tree. Under Unix-like operating systems, the place for installed third party
software is traditionally /usr/local, or simply /opt. Fortunately under Unix,
separate disk partitions can be woven anywhere into the file tree on a directory
boundary, so this is not a practical problem as long as everything lies under a
common directory. In Windows, software is often installed in the same directory as
the operating system itself; also Windows does not support partition mixing in the
same way as Unix so the reinstallation of Windows usually means reinstallation
of all the software as well.
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Data which are installed or created locally are not subject to any constraints,
however; they may be installed anywhere. One can therefore find a naming scheme
which gives the system logical clarity. This benefits users and management issues.
Again we may use directories for this purpose. Operating systems which descended
from DOS also have the concept of drive numbers like A:, B:, C: etc. These are
assigned to different disk partitions. Some Unix operating systems have virtual
file systems which allow one to add disks transparently without ever reaching a
practical limit. Users never see partition boundaries. This has both advantages
and disadvantages since small partitions are a cheap way to contain groups of
misbehaving users, without resorting to disk quotas.

4.4.6 Object orientation: separation of independent issues

The computing community is currently riding a wave of affection for object orien-
tation as a paradigm in computer languages and programming methods. Object
orientation in programming languages is usually presented as a fusion of two
independent ideas: classification of data types and access control based on scope.
The principle from which this model has emerged is simpler than this, however: it
is simply the observation that information can be understood and organized most
efficiently if logically independent items are kept separate.3 This simple idea is a
powerful discipline, but like most disciplines it requires a strong will on the part
of a system administrator in order to avoid a decline into chaos. We can restate
the earlier principle about operating system separation now more generally:

Principle 14 (Separation II). Data which are logically separate belong in
separate directory trees, perhaps on separate filesystems.

The basic filesystem objects, in order of global to increasingly local, are disk par-
tition, directory and file. As system administrators, we are not usually responsible
for the contents of files, but we do have some power to decide their organization by
placing them in carefully labelled directories, within partitions. Partitions are use-
ful because they can be dumped (backed-up to tape, for instance) as independent
units. Directories are good because they hide and group related files into units.

Many institutions make backups of the whole operating system partition
because they do not have a system for separating the files which they have
modified, or configured specially. The number of actual files one needs to keep is
usually small. For example

• The password and group databases

• Kernel configuration

• Files in /etc like services, default configurations files

• Special startup scripts.

3It is sometimes claimed that object orientation mimics the way humans think. This, of course, has
no foundation in the cognitive sciences. A more careful formulation would be that object orientation
mimics the way in which humans organize and administrate. That has nothing to do with the
mechanisms by which thoughts emerge in the brain.
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It is easy to make a copy of these few files in a location which is independent of
the locations where the files actually need to reside, according to the rules of the
operating system.

A good solution to this issue is to make master copies of files like /etc/group,
/etc/services, /etc/sendmail.cf etc., in a special directory which is separate
from the OS distribution. For example, you might choose to collect all of these in a
directory such as /local/custom and to use a script, or cfengine to make copies
of these master files in the actual locations required by the operating system. The
advantages to this approach are

• RCS version control of changes is easy to implement

• Automatic backup and separation

• Ease of distribution to other hosts.

The exception to this rule must be the password database /etc/passwd which
is actually altered by an operating system program /bin/passwd rather than the
system administrator. In that case the script would copy from the system partition
to the custom directory.

Keeping a separate disk partition for software that you install from third parties
makes clear sense. It means that you will not have to reinstall that software later
when you upgrade your operating system. The question then arises as to how
such software should be organized within a separate partition.

Traditionally, third party software has been installed in a directory under
/usr/local or simply /local. Software packages are then dissected into libraries,
binaries and supporting files which are installed under /local/lib, /local/bin
and /local/etc, to mention just a few examples. This keeps third party software
separate from operating system software, but there is no separation of the third
party software. Another solution would be to install one software package per
directory under /local.

4.5 Installing a Unix disk

Adding a new disk or device to a Unix-like host involves some planning. The first
concern is what type of hard-disk. There are several types of disk interface used
for communicating with hard-disks.

• ATA/IDE disks: ATA devices have suffered from a number of limitations in
data capacity and number of disks per controller. However, most of these
barriers have been broken with new addressing systems and programming
techniques. Both parallel (old ribbon cables) and serial interfaces now exist.

• SCSI disks: The SCSI interface can be used for devices other than disks too.
It is better than IDE at multitasking. The original SCSI interface was limited
to 7 devices in total per interface. Wide SCSI can deal with 14 disks. See also
the notes in chapter 2.
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• IEEE 1394 disks: Implementations include Sony’s iLink and Apple Com-
puter’s FireWire brandnames. These disks use a superior technology (some
claim) but have found limited acceptance due to their expense.

In order to connect a new disk to a Unix host, we have to power down the system.
Here is a typical checklist for adding a SCSI disk to a Unix system.

• Power down the computer.

• Connect disk and terminate SCSI chain with proper terminator.

• Set the SCSI id of the disk so that it does not coincide with any other disks.
On Solaris hosts, SCSI id 6 of controller zero is typically reserved for the
primary CD-ROM drive.

• On SUN machines one can use the ROM command probe-scsi from the
monitor (or probe-scsi-all, if there are several disk interfaces) to probe
the system for disks, This shows which disks are found on the bus. It can be
useful for trouble-shooting bad connections, or accidentally overlapping disk
IDs etc.

• Partition and label the disk. Update the defect list.

• Edit the /etc/fstab filesystem table or equivalent to mount the disk. See
also next section.

4.5.1 mount and umount

To make a disk partition appear as part of the file tree it has to be mounted.
We say that a particular filesystem is mounted on a directory or mountpoint. The
command mount mounts filesystems defined in the filesystem table file. This is a
file which holds data for mount to read.

The filesystem table has different names on different implementations of Unix.

Solaris 1 (SunOS) /etc/fstab

Solaris 2 /etc/vfstab

HPUX /etc/checklist or /etc/fstab

AIX /etc/filesystems

IRIX /etc/fstab

ULTRIX /etc/fstab

OSF1 /etc/fstab

GNU/Linux /etc/fstab

These files also have different syntax on different machines, which can be found
in the manual pages. The syntax of the command is

mount filesystem directory type (options)
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There are two main types of filesystem – a disk filesystem (called ufs, hfs etc.)
(which means a physical disk) and the NFS network filesystem. If we mount a
4.2 filesystem it means that it is, by definition, a local disk on our system and is
described by some logical device name like /dev/something. If we mount an NFS
filesystem, we must specify the name of the filesystem and the name of the host
to which the physical disk is attached.

Here are some examples, using the SunOS filesystem list above:

mount -a # mount all in fstab
mount -at nfs # mount all in fstab which are type nfs
mount -at 4.2 # mount all in fstab which are type 4.2
mount /var/spool/mail # mount only this fs with options given in fstab

(The -t option does not work on all Unix implementations.) Of course, we can type
the commands manually too, if there is no entry in the filesystem table. For exam-
ple, to mount an nfs filesystem on machine ‘wigner’ called /site/wigner/local
so that it appears in our filesystem at /mounted/wigner, we would write

mount wigner:/site/wigner/local /mounted/wigner

The directory /mounted/wigner must exist for this to work. If it contains files,
then these files will no longer be visible when the filesystem is mounted on top of
it, but they are not destroyed. Indeed, if we then unmount using

umount /mounted/wigner

(the spelling umount is correct) then the files will reappear again. Some imple-
mentations of NFS allow filesystems to be merged at the same mount point,
so that the user sees a mixture of all the filesystems mounted at the same
point.

4.5.2 Disk partition device names

The convention for naming disk devices in BSD and system 5 Unix differs. Let us
take SCSI disks as an example. Under BSD, the SCSI disks have names according
to the following scheme:

/dev/sd0a First partition of disk 0 of the standard
disk controller. This is normally the root
file system /.

/dev/sd0b Second partition of disk 0 on the standard
disk controller. This is normally used for
the swap area.

/dev/sd1c Third partition of disk 1 on the standard
disk controller. This partition is usually
reserved to span the entire disk, as a
reminder of how large the disk is.
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System 5 Unix employs a more complex, but also more general naming scheme.
Here is an example from Solaris 2:

/dev/dsk/c0t3d0s0 Disk controller 0, target (disk) 3,

device 0, segment (partition) 0

/dev/dsk/c1t1d0s4 Disk controller 1, target (disk) 1,

device 0, segment (partition) 4

Not all systems distinguish between target and device. On many systems you will
find only t or d but not both.

4.6 Installation of the operating system

The installation process is one of the most destructive things we can do to a
computer. Everything on the disk will disappear during the installation process.
One should therefore have a plan for restoring the information if it should turn
out that reinstallation was in error.

Today, installing a new machine is a simple affair. The operating system comes
on some removable medium (like a CD or DVD) that is inserted into the player
and booted. One then answers a few questions and the installation is done.

Operating systems are now large so they are split up into packages. One is
expected to choose whether to install everything that is available or just certain
packages. Most operating systems provide a package installation program which
helps this process.

In order to answer the questions about installing a new host, information must
be collected and some choices made:

• We must decide a name for each machine.

• We need an unused Internet address for each.

• We must decide how much virtual memory (swap) space to allocate.

• We need to know the local netmask and domain name.

• We need to know the local timezone.

We might need to know whether a Network Information Service (NIS) or Windows
domain controller is used on the local network; if so, how to attach the new host
to this service. When we have this information, we are ready to begin.

4.6.1 Solaris

Solaris can be installed in a number of ways. The simplest is from CD-ROM. At
the boot prompt, we simply type

? boot cdrom
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This starts a graphical user interface which leads one through the steps of the
installation from disk partitioning to operating system installation. The procedure
is well described in the accompanying documentation, indeed it is quite intuitive,
so we needn’t belabor the point here. The installation procedure proceeds through
the standard list of questions, in this order:

• Preferred language and keyboard type.

• Name of host.

• Net interfaces and IP addresses.

• Subscribe to NIS or NIS plus domain, or not.

• Subnet mask.

• Timezone.

• Choose upgrade or install from scratch.

Solaris installation addresses an important issue, namely that of customization
and integration. As part of the installation procedure, Solaris provides a service
called Jumpstart, which allows hosts to execute specialized scripts which cus-
tomize the installation. In principle, the automation of hosts can be completely
automated using Jumpstart. Customization is extremely important for integrating
hosts into a local network. As we have seen, vendor standard models are almost
never adequate in real networks. By making it possible to adapt the installation
procedure to local requirements, Solaris makes a great contribution to automatic
network configuration.

Installation from CD-ROM assumes that every host has a CD-ROM from which
to install the operating system. This is not always the case, so operating systems
also enable hosts with CD-ROM players to act as network servers for their
CD-ROMs, thus allowing the operating system to be installed directly from the
network.

4.6.2 GNU/Linux

Installing GNU/Linux is simply a case of inserting a CD-ROM and booting from
it, then following the instructions. However, GNU/Linux is not one, but a family
of operating systems. There are many distributions, maintained by different orga-
nizations and they are installed in different ways. Usually one balances ease of
installation with flexibility of choice.

What makes GNU/Linux installation unique amongst operating system instal-
lations is the sheer size of the program base. Since every piece of free software is
bundled, there are literally hundreds of packages to choose from. This presents
GNU/Linux distributors with a dilemma. To make installation as simple as possi-
ble, package maintainers make software self-installing with some kind of default
configuration. This applies to user programs and to operating system services.
Here lies the problem: installing network services which we don’t intend to use
presents a security risk to a host. A service which is installed is a way into the
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system. A service which we are not even aware of could be a huge risk. If we install
everything, then, we are faced with uncertainty in knowing what the operating
system actually consists of, i.e. what we are getting ourselves into.

As with most operating systems, GNU/Linux installations assume that you are
setting up a stand-alone PC which is yours to own and do with as you please.
Although GNU/Linux is a multiuser system, it is treated as a single-user system.
Little thought is given to the effect of installing services like news servers and web
servers. The scripts which are bundled for adding user accounts also treat the
host as a little microcosm, placing users in /home and software in /usr/local.
To make a network workstation out of GNU/Linux, we need to override many of
its idiosyncrasies.

4.6.3 Windows

The installation of Windows4 is similar to both of the above. One inserts a CD-ROM
and boots. Here it is preferable to begin with an already partitioned hard-drive
(the installation program is somewhat ambiguous with regard to partitions). On
rebooting, we are asked whether we wish to install Windows anew, or repair an
existing installation. This is rather like the GNU/Linux rescue disk. Next we choose
the filesystem type for Windows to be installed on, either DOS or NTFS. There is
clearly only one choice: installing on a DOS partition would be irresponsible with
regard to security. Choose NTFS.

Windows reboots several times during the installation procedure, though this
has improved somewhat in recent versions. The first time around, it converts
its default DOS partition into NTFS and reboots again. Then the remainder
of the installation proceeds with a graphical user interface. There are several
installation models for Windows workstations, including regular, laptop, minimum
and custom. Having chosen one of these, one is asked to enter a license key for
the operating system. The installation procedure asks us whether we wish to use
DHCP to configure the host with an IP address dynamically, or whether a static IP
address will be set. After various other questions, the host reboots and we can log
in as Administrator.

Windows service packs are patch releases which contain important upgrades.
These are refreshingly trivial to install on an already-running Windows system.
One simply inserts them into the CD-ROM drive and up pops the Explorer program
with instructions and descriptions of contents. Clicking on the install link starts
the upgrade. After a service pack upgrade, Windows reboots predictably and then
we are done. Changes in configuration require one to reinstall service packs,
however.

4.6.4 Dual boot

There are many advantages to having both Windows and GNU/Linux (plus any
other operating systems you might like) on the same PC. This is now easily

4Since Windows 9x is largely history, and NT changes names (NT, 2000, XP, ...) faster than a
speeding bullet, I have chosen to refer to ‘Windows’ meaning modern NT-based Windows, and largely
ignore the older versions in this book.
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achieved with the installation procedures provided by these two operating systems.
It means, however, that we need to be able to choose the operating system from
a menu at boot time. The boot-manager GRUB that is now part of GNU/Linux
distributions performs this tasks very well, so one scarcely needs to think about
this issue anymore. Note, however, that it is highly advisable to install Windows
before installing GNU/Linux, since the latter tends to have more respect for the
former than vice versa! GNU/Linux can preserve an existing Windows partition,
and even repartition the disk appropriately.

4.6.5 Configuring name service lookup

Name service lookup must be configured in order for a system to be able to look
up hostnames and Internet addresses. On Windows systems, one configures a
list of name servers by going to the menu for TCP/IP network configuration. On
Unix hosts there are often graphical tools for doing this too. However, automation
requires a non-interactive approach, for scalability, so we consider the low-level
approach to this. The most important file in this connection is /etc/resolv.conf.
Ancient IRIX systems seem to have placed this file in /usr/etc/resolv.conf.
This old location is obsolete. Without the resolver configuration file, a host will
often stop dead whilst trying, in vain, to look up Internet addresses. Hosts which
use NIS or NIS plus might be able to look up local names; names can also be
registered manually in /etc/hosts. The most important features of this file are
the definition of the domain-name and a list of nameservers which can perform
the address translation service. These nameservers must be listed as IP numerical
addresses. The format of the file is as shown.

domain domain.country
nameserver 192.0.2.10
nameserver 158.36.85.10
nameserver 129.241.1.99

Some prefer to use the search directive in place of the domain directive, since it is
more general and allows several domains to be searched in special circumstances:

search domain.country
nameserver 192.0.2.10
nameserver 192.0.2.85
nameserver 192.0.2.99

The default is to search the local domain, so these are equivalent unless several
domains are to be searched. On the host which is itself a nameserver, the first
nameserver should be listed as the loopback address, so as to avoid sending traffic
out onto the network when none is required:

search domain.country
nameserver 127.0.0.1
nameserver 192.0.2.10
nameserver 192.0.2.99
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DNS has several competitor services. A trivial mapping of hostnames to IP
addresses is performed by the /etc/hosts database, and this file can be shared
using NIS or NIS plus. Windows had the WINS service, though this is now dep-
recated. Modern Unix-like systems allow us to choose the order in which these
competing services are given priority when looking up hostname data. Unfortu-
nately there is no standard way of configuring this. GNU/Linux and public domain
resolver packages for old SunOS (resolv+) use a file called /etc/hosts.conf.
The format of this file is

order hosts,bind,nis
multi on

This example tells the lookup routines to look in the /etc/hosts file first, then to
query DNS/BIND and then finally to look at NIS. The resolver routines quit after the
first match they find, they do not query all three databases every time. Solaris, and
now also some GNU/Linux distributions, use a file called /etc/nsswitch.conf
which is a general configuration for all database services, not just the hostname
service.

# files,nis,nisplus,dns

passwd: files
group: files
hosts: files dns
ipnodes: files dns
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files

Note that Solaris has ‘ipnodes’ which is used for name lookup in the new IPv6
compatible lookup routines. If DNS is not added here, Solaris does not find IPv6
addresses registered in DNS.

4.6.6 Diskless clients

Diskless workstations are, as per the name, workstations which have no disk at
all. They are now rare, but with the increase of network speeds, they are being
discussed again in new guises such as ‘thin clients’.

Diskless workstations know absolutely nothing other than the MAC address
of their network interface (Ethernet address). In earlier times, when disks were
expensive, diskless workstations were seen as a cheap option. Diskless clients
require disk space on a server-host in order to function, i.e. some other host
which does have a disk, needs to be a disk server for the diskless clients. Most
vendors supply a script for creating diskless workstations. This script is run on
the server-host.
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When a diskless system is switched on for the first time, it has no files
and knows nothing about itself except the Ethernet address on its network
card. It proceeds by sending a RARP (reverse address resolution protocol) or
BOOTP or DHCP request out onto the local subnet in the hope that a server
(in.rarpd) will respond by telling it its Internet address. The server hosts must
be running two services: rpc.bootparamd and tftpd, the trivial file transfer
program. This is another reason for arguing against diskless clients: these services
are rather insecure and could be a security risk for the server host. A call to the
rpc.bootparamd daemon transfers data about where the diskless station can find
a server, and what its swap-area and root directory are called in the file tree of this
server. The root directory and swap file are mounted using the NFS. The diskless
client loads its kernel from its root directory and thereafter everything proceeds as
normal. Diskless workstations swap to files rather than partitions. The command
mkfile is used to create a fixed-size file for swapping.

4.6.7 Dual-homed host

A host with two network interfaces, both of which are coupled to a network, is
called a dual-homed host. Dual-homed hosts are important in building firewalls
for network security. A host with two network interfaces can be configured to
automatically forward packets between the networks (act as a bridge) or to block
such forwarding. The latter is normal in a firewall configuration, where it is
left to proxy software to forward packets only after some form of inspection
procedure. Most vendor operating systems will configure dual-network interfaces
automatically, with forwarding switched off. Briefly here is a GNU/Linux setup for
two network interfaces.

1. Compile a new kernel with support for both types of interface, unless both
are of the same type.

2. Change the lilo configuration to detect both interfaces, if necessary, by
adding:

append="ether=0,0,eth0 ether=0,0,eth1"

to /etc/lilo.conf.

3. The new interface can be assigned an IP address in the file /etc/init.d/
network.

One must then decide how the IP addresses are to be registered in the DNS service.
Will the host have the same name on both interfaces, or will it have a different
name? Packet routing on dual-homed hosts has been discussed in ref. [272].

4.6.8 Cloning systems

We are almost never interested in installing every machine separately. A system
administrator usually has to install ten, twenty or even a hundred machines at a
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time. He or she would also like them to be as far as possible the same, so that
users will always know what to expect. This might sound like a straightforward
problem, but it is not. There are several approaches.

• A few Unix-like operating systems provide a solution to this using package
templates so that the installation procedure becomes standardized.

• The hard disks of one machine can be physically copied and then the
hostname and IP address can be edited afterwards.

• All software can be placed on one host and shared using NFS, or another
shared filesystem.

Each of these approaches has its attractions. The NFS/shared filesystem approach
is without doubt the least amount of work, since it involves installing the software
only once, but it is also the slowest in operation for users.

As an example of the first, here is how Debian GNU/Linux tackles this problem
using the Debian package system:

Install one system

dpkg --get-selections > file

On the remaining machines type

dpkg --set-selections < file

Run install packages program.

Alternatively, one can install a single package with:

dpkg -i package.deb

This method has now been superceded by an extremely elegant package system
using the apt-get command. Installation of a package is completely transparent
as to source and dependencies:

host# apt-get install bison
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:

bison
0 packages upgraded, 1 newly installed, 0 to remove and 110 not upgraded.
Need to get 387kB of archives. After unpacking 669kB will be used.
Get:1 http://sunsite.uio.no stable/main bison 1:1.35-3 [387kB]
Fetched 387kB in 0s (644kB/s)
Selecting previously deselected package bison.
(Reading database ... 10771 files and directories currently installed.)
Unpacking bison (from .../bison_1%3a1.35-3_i386.deb) ...
Setting up bison (1.35-3) ...



4.7. SOFTWARE INSTALLATION 131

In RedHat Linux, a similar mechanism looks like this:

rpm -ivh package.rpm

Disks can be mirrored directly, using some kind of cloning program. For
instance, the Unix tape archive program (tar) can be used to copy the entire direc-
tory tree of one host. In order to make this work, we first have to perform a basic
installation of the OS, with zero packages and then copy over all remaining files
which constitutes the packages we require. In the case of the Debian system above,
there is no advantage to doing this, since the package installation mechanism can
do the same job more cleanly. For example, with a GNU/Linux distribution:

tar --exclude /proc --exclude /lib/libc.so.5.4.23 \
--exclude /etc/hostname --exclude /etc/hosts -c -v \
-f host-imprint.tar /

Note that several files must be excluded from the dump. The file /lib/libc.so.
5.4.23 is the C library; if we try to write this file back from backup, the destination
computer will crash immediately. /etc/hostname and /etc/hosts contains defi-
nitions of the hostname of the destination computer, and must be left unchanged.
Once a minimal installation has been performed on the destination host, we can
access the tar file and unpack it to install the image:

(cd / ; tar xfp /mnt/dump/my-machine.tar; lilo)

Afterwards, we have to install the boot sector, with the lilo command. The cloning
of Unix systems has been discussed in refs. [297, 339].

Note that Windows systems cannot be cloned without special software (e.g.
Norton Ghost or PowerQuest Drive Image). There are fundamental technical rea-
sons for this. One is the fact that many host parameters are configured in the
impenetrable system registry. Unless all of the hardware and software details of
every host are the same, this will fail with an inconsistency. Another reason is
that users are registered in a binary database with security IDs which can have
different numerical values on each host. Finally domain registration cannot be
cloned. A host must register manually with its domain server. Novell Zenworks
contains a cloning solution that ties NDS objects to disk images.

4.7 Software installation

Most standard operating system installations will not leave us in possession of
an immediately usable system. We also need to install third party software in
order to get useful work out of the host. Software installation is a similar problem
to that of operating system installation. However, third party software originates
from a different source than the operating system; it is often bound by license
agreements and it needs to be distributed around the network. Some software has
to be compiled from source. We therefore need a thoughtful strategy for dealing
with software. Specialized schemes for software installation were discussed in refs.
[85, 199] and a POSIX draft was discussed in ref. [18], though this idea has not
been developed into a true standard. Instead, de-facto and proprietary standards
have emerged.



132 CHAPTER 4. HOST MANAGEMENT

4.7.1 Free and proprietary software

Unlike most other popular operating systems, Unix grew up around people who
wrote their own software rather than relying on off-the-shelf products. The Internet
now contains gigabytes of software for Unix systems which cost nothing. Tradi-
tionally, only large companies like the oil industry and newspapers could afford
off-the-shelf software for Unix.

There are therefore two kinds of software installation: the installation of soft-
ware from binaries and the installation of software from source. Commercial
software is usually installed from a CD by running an installation program and
following the instructions carefully; the only decision we need to make is where we
want to install the software. Free software and open source software usually come
in source form and must therefore be compiled. Unix programmers have gone to
great lengths to make this process as simple as possible for system administrators.

4.7.2 Structuring software

The first step in installing software is to decide where we want to keep it. We could,
naturally, locate software anywhere we like, but consider the following:

• Software should be separated from the operating system’s installed files,
so that the OS can be reinstalled or upgraded without ruining a software
installation.

• Unix-like operating systems have a naming convention. Compiled software
can be collected in a special area, with a bin directory and a lib directory
so that binaries and libraries conform to the usual Unix conventions. This
makes the system consistent and easy to understand. It also keeps the
program search PATH variable simple.

• Home-grown files and programs which are special to our own particular site
can be kept separate from files which could be used anywhere. That way,
we define clearly the validity of the files and we see who is responsible for
maintaining them.

The directory traditionally chosen for installed software is called /usr/local.
One then makes subdirectories /usr/local/bin and /usr/local/lib and so
on [147]. Unix has a de-facto naming standard for directories which we should
try to stick to as far as reason permits, so that others will understand how our
system is built up.

• bin Binaries or executables for normal user programs.

• sbin Binaries or executables for programs which only system administrators
require. Those files in /sbin are often statically linked to avoid problems
with libraries which lie on unmounted disks during system booting.

• lib Libraries and support files for special software.

• etc Configuration files.
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• share Files which might be shared by several programs or hosts. For
instance, databases or help-information; other common resources.

/usr/local

lib/

bin/ lib/ etc/ sbin/ share/ bin/ lib/ etc/ sbin/ share/

bin/ etc/ sbin/ share/ gnu/ site/

Figure 4.1: One way of structuring local software. There are plenty of things to criticize
here. For instance, is it necessary to place this under the traditional /usr/local tree?
Should GNU software be underneath /usr/local? Is it even necessary or desirable to
formally distinguish GNU software from other software?

One suggestion for structuring installed software on a Unix-like host is shown
in figure 4.1. Another is shown in figure 4.2. Here we divide these into three
categories: regular installed software, GNU software (i.e. free software) and site-
software. The division is fairly arbitrary. The reason for this is as follows:

• /usr/local is the traditional place for software which does not belong to
the OS. We could keep everything here, but we will end up installing a lot of
software after a while, so it is useful to create two other sub-categories.

• GNU software, written by and for the Free Software Foundation, forms a
self-contained set of tools which replace many of the older Unix equivalents,
like ls and cp. GNU software has its own system of installation and set of
standards. GNU will also eventually become an operating system in its own
right. Since these files are maintained by one source it makes sense to keep
them separate. This also allows us to place GNU utilities ahead of others in
a user’s command PATH.

• Site-specific software includes programs and data which we build locally to
replace the software or data which follows with the operating system. It also
includes special data like the database of aliases for E-mail and the DNS
tables for our site. Since it is special to our site, created and maintained by
our site, we should keep it separate so that it can be backed up often and
separately.

A similar scheme to this was described in refs. [201, 70, 328, 260], in a system
called Depot. In the Depot system, software is installed under a file node called
/depot which replaces /usr/local. In the depot scheme, separate directories
are maintained for different machine architectures under a single file tree. This
has the advantage of allowing every host to mount the same filesystem, but the
disadvantage of making the single filesystem very large. Software is installed in
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bin/

/software /local admin/

lib/

etc/

/site

bin/

lib/

etc/

bin/

lib/

etc/

sbin/

share/

sbin/

share/

sbin/

share/

Figure 4.2: Another, more rational way of structuring local software. Here we drop the
affectation of placing local modifications under the operating system’s /usr tree and
separate it completely. Symbolic links can be used to alias /usr/local to one of these
directories for historical consistency.

a package-like format under the depot tree and is linked in to local hosts with
symbolic links. A variation on this idea from the University of Edinburgh was
described in ref. [10], and another from the University of Waterloo uses a file tree
/software to similar ends in ref. [273]. In the Soft environment [109], software
installation and user environment configuration are dealt with in a combined
abstraction.

4.7.3 GNU software example

Let us now illustrate the GNU method of installing software which has become
widely accepted. This applies to any type of Unix, and to Windows if one has
a Unix compatibility kit, such as Cygwin or UWIN. To begin compiling soft-
ware, one should always start by looking for a file called README or INSTALL.
This tells us what we have to do to compile and install the software. In most
cases, it is only necessary to type a couple of commands, as in the following
example. When installing GNU software, we are expected to give the name of a
prefix for installing the package. The prefix in the above cases is /usr/local for
ordinary software, /usr/local/gnu for GNU software and /usr/local/site for
site-specific software. Most software installation scripts place files under bin and
lib automatically. The steps are as follows.

1. Make sure we are working as a regular, unprivileged user. The software
installation procedure might do something which we do not agree with. It is
best to work with as few privileges as possible until we are sure.

2. Collect the software package by ftp from a site like ftp.uu.net or
ftp.funet.fi etc. Use a program like ncftp for painless anonymous login.

3. Unpack the file using tar zxf software.tar.gz, if using GNU tar, or
gunzip software.tar.gz; tar xf software.tar if not.

4. Enter the directory which is unpacked, cd software.
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5. Type: configure --prefix=/usr/local/gnu. This checks the state of our
local operating system and other installed software and configures the soft-
ware to work correctly there.

6. Type: make.

7. If all goes well, type make -n install. This indicates what the make program
will install and where. If we have any doubts, this allows us to make changes
or abort the procedure without causing any damage.

8. Finally, switch to privileged root/Administrator mode with the su command
and type make install. This should be enough to install the software. Note,
however, that this step is a security vulnerability. If one blindly executes
commands with privilege, one can be tricked into installing back-doors and
Trojan horses, see chapter 11.

9. Some installation scripts leave files with the wrong permissions so that
ordinary users cannot access the files. We might have to check that the
files have a mode like 555 so that normal users can access them. This is
in spite of the fact that installation programs attempt to set the correct
permissions [287].

Today this procedure should be more or less the same for just about any software
pick up. Older software packages sometimes provide only Makefiles which you
must customize yourself. Some X11-based windowing software requires you to
use the xmkmf X-make-makefiles command instead of configure. You should
always look at the README file.

4.7.4 Proprietary software example

If we are installing proprietary software, we will have received a copy of the program
on a CD-ROM, together with licensing information, i.e. a code which activates the
program. The steps are somewhat different.

1. To install from CD-ROM we must start work with root/Administrator privi-
leges, so the authenticity of the CD-ROM should be certain.

2. Insert the CD-ROM into the drive. Depending on the operating system, the
CD-ROM might be mounted automatically or not. Check this using the
mount command with no arguments, on a Unix-like system. If the CD-ROM
has not been mounted, then, for standard CD-ROM formats, the following
will normally suffice:

mkdir /cdrom if necessary
mount /dev/cdrom /cdrom

For some manufacturers, or on older operating systems, we might have
to specify the type of filesystem on the CD-ROM. Check the installation
instructions.
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3. On a Windows system a clickable icon appears to start the installation
program. On a Unix-like system we need to look for an installation script

cd /cdrom/ cd-name
less README
./install-script

4. Follow the instructions.

Some proprietary software requires the use of a license server, such as lmgrd.
This is installed automatically, and we are required only to edit a configuration
file with a license key which is provided, in order to complete the installation.
Note however, that if we are running multiple licensed products on a host, it is
not uncommon that these require different and partly incompatible license servers
which interfere with one another. If possible, one should keep to only one license
server per subnet.

4.7.5 Installing shared libraries

Systems which use shared libraries or shared objects sometimes need to be
reconfigured when new libraries are added to the system. This is because the
names of the libraries are cached to provide fast access. The system will not look
for a library if it is not in the cache file.

• SunOS (prior to Solaris 2): After adding a new library, one must run the com-
mand ldconfig lib-directory. The file /etc/ld.so.cache is updated.

• GNU/Linux: New library directories are added to the file /etc/ld.so.conf.
Then one runs the command ldconfig. The file /etc/ld.so.cache is
updated.

4.7.6 Configuration security

In the preceding sections we have looked at some examples and suggestions for
dealing with software installation. Let us now take a step back from the details to
analyze the principles underlying these.

The first is a principle which we shall return to many times in this book. It is
one of the key principles in computer science, and we shall be repeating it with
slightly different words again and again.

Principle 15 (Separation III). Independent systems should not interfere with
one another, or be confused with one another. Keep them in separate storage
areas.

The reason is clear: if we mix up files which do not belong together, we lose track of
them. They become obscured by a lack of structure. They vanish into anonymity.
The reason why all modern computer systems have directories for grouping files,
is precisely so that we do not have to mix up all files in one place. This was
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discussed in section 4.4.5. The application to software installation is clear: we
should not ever consider installing software in /usr/bin or /bin or /lib or /etc
or any directory which is controlled by the system designers. To do so is like
lying down in the middle of a freeway and waiting for a new operating system
or upgrade to roll over us. If we mix local modifications with operating system
files, we lose track of the differences in the system, others will not be able to see
what we have done. All our hard work will be for nothing when a new system is
installed.

Suggestion 1 (Vigilance). Be on the lookout for software which is configured,
by default, to install itself on top of the operating system. Always check the
destination using make -n install before actually committing to an installation.
Programs which are replacements for standard operating system components
often break the principle of separation.a

aSoftware originating in BSD Unix is often an offender, since it is designed to be a part of BSD
Unix, rather than an add-on, e.g. sendmail and BIND.

The second important point above is that we should never work with root priv-
ileges unless we have to. Even when we are compiling software from source,
we should not start the compilation with superuser privileges. The reason is
clear: why should we trust the source of the program? What if someone has
placed a command in the build instructions to destroy the system, plant a
virus or open a back-door to intrusion? As long as we work with low priv-
ilege then we are protected, to a degree, from problems like this. Programs
will not be able to do direct and pervasive damage, but they might still be
able to plant Trojan horses that will come into effect when privileged access is
acquired.

Principle 16 (Limited privilege). No process or file should be given more
privileges than it needs to do its job. To do so is a security hazard.

Another use for this principle arises when we come to configure certain types of
software. When a user executes a software package, it normally gets executed with
the user privileges of that user. There are two exceptions to this:

• Services which are run by the system: Daemons which carry out essential
services for users or for the system itself, run with a user ID which is
independent of who is logged on to the system. Often, such daemons are
started as root or the Administrator when the system boots. In many cases,
the daemons do not need these privileges and will function quite happily with
ordinary user privileges after changing the permissions of a few files. This is a
much safer strategy than allowing them to run with full access. For example,
the httpd daemon for the WWW service uses this approach. In recent years,
bugs in many programs which run with root privileges have been exploited to
give intruders access to the system. If software is run with a non-privileged
user ID, this is not possible.

• Unix setuid programs: Unix has a mechanism by which special privilege can
be given to a user for a short time, while a program is being executed. Software
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which is installed with the Unix setuid bit set, and which is owned by root,
runs with root’s special privileges. Some software producers install software
with this bit set with no respect for the privilege it affords. Most programs
which are setuid root do not need to be. A good example of this is the
Common Desktop Environment (a multi-vendor desktop environment used
on Unix systems). In a recent release, almost every program was installed
setuid root. Within only a short time, a list of reports about users exploiting
bugs to gain control of these systems appeared. In the next release, none of
the programs were setuid root.

All software servers which are started by the system at boot time are started
with root/Administrator privileges, but daemons which do not require these
privileges can relinquish them by giving up their special privileges and run-
ning as a special user. This approach is used by the Apache WWW server and
by MySQL for instance. These are examples of software which encourage us
to create special user IDs for server processes. To do this, we create a spe-
cial user in the password database, with no login rights (this just reserves
a UID). In the above cases, these are usually called www and mysql. The
software allows us to specify these user IDs so that the process owner is
switched right after starting the program. If the software itself does not per-
mit this, we can always force a daemon to be started with lower privilege
using:

su -c ’command’ user

The management tool cfengine can also be used to do this. Note however that
Unix server processes which run on reserved (privileged) ports 1–1023 have to be
started with root privileges in order to bind to their sockets.

On the topic of root privilege, a related security issue has to do with programs
which write to temporary files.

Principle 17 (Temporary files). Temporary files or sockets which are opened
by any program, should not be placed in any publicly writable directory like /tmp.
This opens the possibility of race conditions and symbolic link attacks. If possible,
configure them to write to a private directory.

Users are always more devious than software writers. A common mistake in pro-
gramming is to write to a file which ordinary users can create, using a privileged
process. If a user is allowed to create a file object with the same name, then
he or she can direct a privileged program to write to a different file instead,
simply by creating a symbolic or hard link to the other file. This could be used
to overwrite the password file or the kernel, or the files of another user. Soft-
ware writers can avoid this problem by simply unlinking the file they wish to
write to first, but that still leaves a window of opportunity after unlinking the
file and before opening the new file for writing, during which a malicious user
could replace the link (remember that the system time-shares). The lesson is to
avoid making privileged programs write to directories which are not private, if
possible.
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Before closing this section, a comment is in order. Throughout this chapter,
and others, we have been advocating a policy of building the best possible, most
logical system by tailoring software to our own environment. Altering absurd
software defaults, customizing names and locations of files and changing user
identities is no problem as long as everyone who uses and maintains the system
is aware of this. If a new administrator started work and, unwittingly, reverted to
those software defaults, then the system would break.

Principle 18 (Flagging customization). Customizations and deviations from
standards should be made conspicuous to users and administrators. This makes
the system easier to understand both for ourselves and our successors.

4.7.7 When compilation fails

Today, software producers who distribute their source code are able to configure it
automatically to work with most operating systems. Compilation usually proceeds
without incident. Occasionally though, an error will occur which causes the
compilation to halt. There are a few things we can try to remedy this:

• A previous configuration might have been left lying around, try

make clean
make distclean

and start again, from the beginning.

• Make sure that the software does not depend on the presence of another
package, or library. Install any dependencies, missing libraries and try again.

• Errors at the linking stage about missing functions are usually due to missing
or un-locatable libraries. Check that the

LD LIBRARY PATH

variable includes all relevant library locations. Are any other environment
variables required to configure the software?

• Sometimes an extra library needs to be added to the Makefile. To find out
whether a library contains a function, we can use the following C-shell trick:

host% cd /lib
host% foreach lib ( lib* )
> echo Checking $lib ----------------------
> nm $lib | grep function
>end

• Carefully try to patch the source code to make the code compile.

• Check in news groups whether others have experienced the same problem.

• Contact the author of the program.
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4.7.8 Upgrading software

Some software (especially free software) gets updated very often. We could easily
spend an entire life just chasing the latest versions of favorite software packages.
Avoid this.

• It is a waste of time.

• Sometimes new versions contain more bugs than the old one, and an even-
newer-version is just around the corner.

• Users will not thank us for changing things all the time. Stability is a virtue.
Everyone likes time to get used to the system before change strikes.

A plan is needed for testing new versions of software. Package systems for
software make this process easier, since one can allow several versions of software
to coexist, or roll back to earlier versions if problems are discovered with newer
versions.

4.8 Kernel customization

The operating system kernel is that most important part of the system which
drives the hardware of the machine and shares it between multiple processes.
If the kernel does not work well, the system as a whole will not work well. The
main reason for making changes to the kernel is to fix bugs and to upgrade
system software, such as support for new hardware; performance gains can
also be achieved however, if one is patient. We shall return to the issue of
performance again in section 8.11. Kernel configuration varies widely between
operating systems. Some systems require kernel modification for every miniscule
change, while others live quite happily with the same kernel unless major changes
are made to the hardware of the host.

Many operating system kernels are monolithic, statically compiled programs
which are specially built for each host, but static programs are inflexible and the
current trend is to replace them with software configurable systems which can
be manipulated without the need to recompile the kernel. System V Unix has
blazed the trail of adaptable, configurable kernels, in its quest to build an oper-
ating system which will scale from laptops to mainframes. It introduces kernel
modules which can be loaded on demand. By loading parts of the kernel only
when required, one reduces the size of the resident kernel memory image, which
can save memory. This policy also makes upgrades of the different modules inde-
pendent of the main kernel software, which makes patching and reconfiguration
simpler. SVR4 Unix and its derivatives, like Solaris and Unixware, are testimony
to the flexibility of SVR4.

Windows has also taken a modular view to kernel design. Configuration of
the Windows kernel also does not require a recompilation, only the choice of a
number of parameters, accessed through the system editor in the Performance
Monitor, followed by a reboot. GNU/Linux switched from a static, monolithic
kernel to a modular design quite quickly. The Linux kernel strikes a balance
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between static compilation and modular loading. This balances the convenience
of modules with the increased speed of having statically compiled code forever in
memory. Typically, heavily used kernel modules are compiled in statically, while
infrequently used modules are accessed on demand.

Solaris

Neither Solaris nor Windows require or permit kernel recompilation in order to
make changes. In Solaris, for instance, one edits configuration files and reboots
for an auto-reconfiguration. First we edit the file /etc/system to change kernel
parameters, then reboot with the command

reboot -- -r

which reconfigures the system automatically. There is also a large number of
system parameters which can be configured on the fly (at run time) using the ndd
command.

GNU/Linux

The Linux kernel is subject to more frequent revision than many other systems,
owing to the pace of its development. It must be recompiled when new changes
are to be included, or when an optimized kernel is required. Many GNU/Linux
distributions are distributed with older kernels, while newer kernels offer signifi-
cant performance gains, particularly in kernel-intensive applications like NFS, so
there is a practical reason to upgrade the kernel.

The compilation of a new kernel is a straightforward but time-consuming,
process. The standard published procedure for installing and configuring a new
kernel is as follows. New kernel distributions are obtained from any mirror of the
Linux kernel site [176]. First we back up the old kernel, unpack the kernel sources
into the operating system’s files (see the note below) and alias the kernel revision
to /usr/src/linux. Note that the bash shell is required for kernel compilation.

$ cp /boot/vmlinuz /boot/vmlinux.old
$ cd /usr/src
$ tar zxf /local/site/src/linux-2.2.9.tar.gz
$ ln -s linux-2.2.9 linux

There are often patches to be collected and applied to the sources. For each patch
file:

$ zcat /local/site/src/patchX.gz | patch -p0

Then we make sure that we are building for the correct architecture (Linux now
runs on several types of processor).

$ cd /usr/include
$ rm -rf asm linux scsi
$ ln -s /usr/src/linux/include/asm-i386 asm
$ ln -s /usr/src/linux/include/linux linux
$ ln -s /usr/src/linux/include/scsi scsi
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Next we prepare the configuration:

$ cd /usr/src/linux
$ make mrproper

The command make config can now be used to set kernel parameters. More
user-friendly windows-based programs make xconfig or make menuconfig are
also available, though the former does require one to run X11 applications as root,
which is a potential security faux pas. The customization procedure has defaults
which one can fall back on. The choices are Y to include an option statically in the
kernel, N to not include and M to include as module support. The capitalized option
indicates the default. Although there are defaults, it is important to think carefully
about the kind of hardware we are using. For instance, is SCSI support required?
One of the questions prompts us to specify the type of processor, for optimization:

Processor type (386, 486, Pentium, PPro) [386]

The default, in square brackets, is for generic 386, but Pentium machines will
benefit from optimizations if we choose correctly. If we are compiling on hosts
without CD-ROMs and tape drives, there is no need to include support for these,
unless we plan to copy this compiled kernel to other hosts which do have these.

After completing the long configuration sequence, we build the kernel:

# make dep
# make clean
# make bzImage

and move it into place:

# mv arch/i386/boot/zImage /boot/vmlinuz-2.2.9
# ln -s /boot/vmlinuz-2.2.9 /boot/vmlinuz
# make modules
# make modules-install

The last step allows us to keep track of which version is running, while still having
the standard kernel name.

To alter kernel parameters on the fly, Linux uses a number of writable pseud-
ofiles under /proc/sys, e.g.

echo 1 >/proc/sys/vm/overcommit_memory
cat /proc/sys/vm/overcommit_memory

This can be used to tune values or switch features.

lilo and Grub

After copying a kernel loader into place, we have to update the boot blocks
on the system disk so that a boot program can be located before there is an
operating kernel which can interpret the filesystem. This applies to any operating
system, e.g. SunOS has the installboot program. After installing a new kernel
in GNU/Linux, we update the boot records on the system disk by running the
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lilo program. The new loader program is called by simply typing lilo. This reads
a default configuration file /etc/lilo.conf and writes loader data to the Master
Boot Record (MBR). One can also write to the primary Linux partition, in case
something should go wrong:

lilo -b /dev/hda1

so that we can still boot, even if another operating system should destroy the boot
block. A new and superior boot loader called Grub is now gaining popularity in
commercial Linux distributions.

Logistics of kernel customization

The standard procedure for installing a new kernel breaks a basic principle:
don’t mess with the operating system distribution, as this will just be overwritten
by later upgrades. It also potentially breaks the principle of reproducibility: the
choices and parameters which we choose for one host do not necessarily apply for
others. It seems as though kernel configuration is doomed to lead us down the
slippery path of making irreproducible, manual changes to every host.

We should always bear in mind that what we do for one host must usually be
repeated for many others. If it were necessary to recompile and configure a new
kernel on every host individually, it would simply never happen. It would be a
project for eternity.

The situation with a kernel is not as bad as it seems, however. Although, in
the case of GNU/Linux, we collect kernel upgrades from the net as though it were
third party software, it is rightfully a part of the operating system. The kernel is
maintained by the same source as the kernel in the distribution, i.e. we are not
in danger of losing anything more serious than a configuration file if we upgrade
later. However, reproducibility across hosts is a more serious concern. We do not
want to repeat the job of kernel compilation on every single host. Ideally, we would
like to compile once and then distribute to similar hosts. Kernels can be compiled,
cloned and distributed to different hosts provided they have a common hardware
base (this comes back to the principle of uniformity). Life is made easier if we can
standardize kernels; in order to do this we must first have standardized hardware.
The modular design of newer kernels means that we also need to upgrade the
modules in /lib/modules to the receiving hosts. This is a logistic problem which
requires some experimentation in order to find a viable solution for a local site.

These days it is not usually necessary to build custom kernels. The default
kernels supplied with most OSs are good enough for most purposes. Performance
enhancements are obtainable, however, particularly on busy servers. See section
8.11 for more hints.

Exercises

Self-test objectives

1. List the considerations needed in creating a server room.

2. How can static electricity cause problems for computers and printers?
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3. What are the procedures for shutting down computers safely at your site?

4. How do startup and shutdown procedures differ between Unix and Windows?

5. What is the point of partitioning disk drives?

6. Can a disk partition exceed the size of a hard-disk?

7. How do different Unix-like operating systems refer to disk partitions?

8. How does Windows refer to disk partitions?

9. What is meant by ‘creating a new filesystem’ on a disk partition in Unix?

10. What is meant by formatting a disk in Unix and Windows (hint: they do not
mean the same)?

11. What different filesystems are in use on Windows hosts? What are the pros
and cons of each?

12. What is the rationale behind the principle of (data) Separation I?

13. How does object orientation, as a strategy, apply to system administration?

14. How is a new disk attached to a Unix-like host?

15. List the different ways to install an operating system on a new computer from
a source.

16. What is meant by a thin client?

17. What is meant by a dual-homed host?

18. What is meant by host cloning? Explain how you would go about cloning a
Unix-like and Windows host.

19. What is meant by a software package?

20. What is meant by free, open source and proprietary software? List some pros
and cons of each of these.

21. Describe a checklist or strategy for familiarizing yourself with the layout of a
new operating system file hierarchy.

22. Describe how to install Unix software from source files.

23. Describe how you would go about installing software provided on a CD-ROM
or DVD.

24. What is meant by a shared library or DLL?

25. Explain the principle of limited privilege.

26. What is meant by kernel customization and when is it necessary?
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Problems

1. If you have a PC to spare, install a GNU/Linux distribution, e.g. Debian, or a
commercial distribution. Consider carefully how you will partition the disk.
Can you imagine repeating this procedure for one hundred hosts?

2. Install Windows (NT, 2000, XP etc). You will probably want to repeat the
procedure several times to learn the pitfalls. Consider carefully how you will
partition the disk. Can you imagine repeating this procedure for 100 hosts?

3. If space permits, install GNU/Linux and Windows together on the same host.
Think carefully, once again, about partitioning.

4. For both of the above installations, design a directory layout for local files.
Discuss how you will separate operating system files from locally installed
files. What will be the effect of upgrading or reinstalling the operating system
at a later time? How does partitioning of the disk help here?

5. Imagine the situation in which you install every independent software pack-
age in a directory of its own. Write a script which builds and updates the
PATH variable for users automatically, so that the software will be accessible
from a command shell.

6. Describe what is meant by a URL or universal naming scheme for files.
Consider the location of software within a directory tree: some software
packages compile the names of important files into software binaries. Explain
why the use of a universal naming scheme guarantees that the software will
always be able to find the files even when mounted on a different host,
and conversely why cross mounting a directory under a different name on a
different host is doomed to break the software.

7. Upgrade the kernel on your GNU/Linux installation. Collect the kernel from
ref. [176].

8. Determine your Unix/Windows current patch level. Search the web for more
recent patches. Which do you need? Is it always right to patch a system?

9. Comment on how your installation procedure could be duplicated if you had
not one, but one hundred machines to install.

10. Make a checklist for standardizing hosts: what criteria should you use to
ensure standardization? Give some thought to the matter of quality assur-
ance. How can your checklist help here? We shall be returning to this issue
in chapter 8.

11. Make a scaling checklist for your system policy.

12. Suppose your installed host is a mission-critical system. Estimate the time
it would take you to get your host up and running again in case of complete
failure. What strategy could you use to reduce the time the service was out
of action?
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13. Given the choice between compiling a critical piece of software yourself, or
installing it as a software package from your vendor or operating system
provider, which would you choose? Explain the issues surrounding this
choice and the criteria you would use to make the decision.



Chapter 5

User management

Without users, there would be few challenges in system administration. Users are
both the reason that computers exist and their greatest threat. The role of the
computer, as a tool, has changed extensively throughout history. From John von
Neumann’s vision of the computer as a device for predicting the weather, to a
calculator for atomic weapons, to a desktop typewriter, to a means of global com-
munication, computers have changed the world and have reinvented themselves
in the process. System administrators must cater to all needs, and ensure the
stability and security of the system.

5.1 Issues

User management is about interfacing humans to computers. This brings to light
a number of issues:

• Accounting: registering new users and deleting old ones.

• Comfort and convenience.

• Support services.

• Ethical issues.

• Trust management and security.

Some of these (account registration) are technological, while others (support
services) are human issues. Comfort and convenience lies somewhere in between.
User management is important because the system exists to be used by human
beings, and they are both friend and enemy.

5.2 User registration

One of the first issues on a new host is to issue accounts for users. Surprisingly
this is an area where operating system designers provide virtually no help. The
tools provided by operating systems for this task are, at best, primitive and are
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rarely suitable for the task without considerable modification. For small organi-
zations, user registration is a relatively simple matter. Users can be registered at
a centralized location by the system manager, and made available to all of the
hosts in the network by some sharing mechanism, such as a login server, dis-
tributed authentication service or by direct copying of the data. There are various
mechanisms for doing this, and we shall return to them below.

For larger organizations, with many departments, user registration is much
more complicated. The need for centralization is often in conflict with the need
for delegation of responsibility. It is convenient for autonomous departments to
be able to register their own users, but it is also important for all users to be
registered under the umbrella of the organization, to ensure unique identities for
the users and flexibility of access to different parts of the organization. What is
needed is a solution which allows local system managers to be able to register new
users in a global user database. User account administration has been discussed
many times, see refs. [1, 299, 78, 190, 163, 195, 73, 216]. The special problems
of each institution and work environment are reflected in these works.

PC server systems like NT and Netware have an apparent advantage in this
respect. By forcing a particular administration model onto the hosts in a network,
they can provide straightforward delegation of user registration to anyone with
domain credentials. Registration of single users under NT can be performed
remotely from a workstation, using the

net user username password /ADD /domain

command. While most Unix-like systems do not provide such a ready-made tool,
many solutions have been created by third parties. The price one pays for such
convenience is an implicit trust relationship between the hosts. Assigning new user
accounts is a security issue, thus to grant the right of a remote user to add new
accounts requires us to trust the user with access to that facility.

It is rather sad that no acceptable, standardized user registration methods
have been widely adopted. This must be regarded as one of the unsolved problems
of system administration. Part of the problem is that the requirements of each
organization are rather different. Many Unix-like systems provide shell scripts or
user interfaces for installing new users, but most of these scripts are useless,
because they follow a model of system layout which is inadequate for a network
environment, or for an organization’s special needs.

5.2.1 Local and network accounts

Most organizations need a system for centralizing passwords, so that each user will
have the same password on each host on the network. In fixed model computing
environments such as NT or Novell Netware, where a login or domain server is
used, this is a simple matter. In larger organizations with many departments or
sub-domains it is more difficult [82, 306, 315].

Both Unix and NT support the creation of accounts locally on a single host, or
‘globally’ within a network domain. With a local account, a user has permission
to use only the local host. With a network account, the user can use any host
which belongs to a network domain. Local accounts are configured on the local
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host itself. Unix registers local users by added them to the files /etc/passwd and
/etc/shadow. In NT the Security Accounts Manager (SAM) is used to add local
accounts to a given workstation.

For network accounts, Unix-like systems have widely adopted Sun Microsys-
tems’ Network Information Service (NIS), formerly called Yellow Pages or simply YP,
though this is likely to be superceded and replaced by the more widely accepted
standard LDAP in the next few years. The NIS-plus service was later introduced
to address a number of weaknesses in NIS, but this has not been widely adopted.
NIS is reasonably effective at sharing passwords, but it has security implications:
encrypted passwords are distributed in the old password format, clearly visible,
making a mockery of shadow password files. NIS users have to be registered locally
as users on the master NIS server; there is no provision for remote registration, or
for delegation of responsibility. Variations on the NIS theme have been discussed
in refs. [75, 252, 146]. NT uses its model of domain servers, rather like a NIS,
but including a registration mechanism. A user in the SAM of a primary domain
controller is registered within that domain and has an account on any host which
subscribes to that domain. An approach to user accounts based on SQL databases
was discussed in ref. [20].

An NT domain server involves not only shared databases but also shared
administrative policies and shared security models. A host can subscribe to
one or more domains and one domain can be associated with one another by
a trust relationship. When one NT domain ‘trusts’ another, then accounts and
groups defined in the trusted domain can be used in the trusting domain. NIS
is indiscriminating in this respect. It is purely an authentication mechanism,
implying no side-effects by the login procedure.

Other models of network computing include Kerberos and the Open Software
Foundation’s Distributed Computing Environment (DCE). The former is a service
brokering system with a common authentication service (see section 12.4.6).
The latter is a distributed user environment which can be used to provide a
seamless world-wide distributed network domain. The DCE has been ported to
both Unix and NT and requires a special login authentication after normal login
to Unix/NT.

To summarize, rationalized user registration is a virtually unsupported problem
in most operating systems. The needs of different organizations are varied and no
successful solution to the problem has been devised and subsequently adopted as
a standard. Networks are so common now that we have to think of the network
first. Whether it happens today or tomorrow, at any given site, users will be moving
around from host to host. They will need access to system resources wherever they
are. It follows that they need distributed accounts. In creating a local solution, we
have to bear in mind some basic constraints.

Principle 19 (Distributed accounts). Users move around from host to host,
share data and collaborate. They need easy access to data and workstations all
over an organization.

Standardizing usernames across all platforms simplifies both the logistics of user
management and opens the way for cross-platform compatibility. User names



150 CHAPTER 5. USER MANAGEMENT

longer than eight characters can cause problems with Unix-like systems and
FTP services. Users normally expect to be able to use the same password to log
onto any host and have access to the same data, except for hosts with special
purposes.

Suggestion 2 (Passwords). Give users a common username on all hosts, of no
more than eight characters. Give them a common password on all hosts, unless
there is a special reason not to do so. Some users never change their passwords
unless forced to, and some users never even log in, so it is important to assign
good passwords initially. Never assign a simple password and assume that it
will be changed.

Perl scripts are excellent ways of making user installation scripts which are
tailored to local needs. See ref. [211] for an excellent discussion of this on NT.
Interactive programs are almost useless since users are seldom installed one by
one. At universities hundreds of students are registered at the same time. No
system administrator would type in all the names by hand. More likely they would
be input from some administrative list generated by the admissions department.
The format of that list is not a universal standard, so no off-the-shelf software
package is going to help here.

Sites which run special environments, such as the Andrew File System (AFS),
the Distributed Computing Environment (DCE), Athena or Kerberos, often require
extra authentication servers and registration procedures [83, 315].

5.2.2 Unix accounts

To add a new user to a Unix-like host we have to:

• Find a unique username, user-id (uid) number and password for the new
user.

• Update the system database of user accounts, e.g. add a line to the file
/etc/passwd for Unix (or on the centralized password server of a network)
for the new user.

• Create a login directory (home directory) for the user.

• Choose a shell for the user (if appropriate).

• Copy some configuration files like .cshrc or .profile into the new user’s
directory, or update the system registry.

Because every site is different, user registration requires different tools and
techniques in almost every case. For example: where should users’ home direc-
tories be located? GNU/Linux has an adduser script which assumes that the
user will be installed on the local machine under /home/user, but many users
belong to a network and their disk space lies physically on a different host which
is mounted by NFS.

Unix developers have created three different password file formats which
increase the awkwardness of distributing passwords. The traditional password
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file format is the following:

mark:Ax7Wc1Kd8ujo2:123:456:Mark Burgess:/home/mark:/bin/tcsh

The first field is a unique username (up to eight characters) for the user. The
second is an encrypted form of the user’s password; then comes the user-id (a
unique number which represents the user and is equivalent to the username) and
the default group-id (a unique number which represents the default group of users
to which this user belongs). The fifth field is the so-called GECOS field, which is
usually just the full name of the user. On some systems, comma-separated entries
may be given for full name, office, extension and home phone number. The sixth
field is the home directory for the user (the root directory for the user’s private
virtual machine). Finally the seventh field is the user’s default shell. This is the
command interpreter which is started when the user logs in.

Newer Unix-like systems make use of shadow password files, which conceal
the encrypted form of the password for ordinary users. The format of the password
file is then the same as above, except that the second password field contains only
an ‘x’, e.g.:

mark:x:123:456:Mark Burgess:/home/mark:/bin/tcsh

There is then a corresponding line in /etc/shadow with the form

mark:Ax7Wc1Kd8ujo2:6445::::::

or with an MD5 password hash, on some systems. The shadow file is not readable
by ordinary users. It contains many blank fields which are reserved for the special
purpose of password aging and other expiry mechanisms. See the manual page
for ‘shadow’ for a description of the fields. The only number present by default
is the time at which the password was last changed, measured in the number of
days since 1. Jan. 1970.

The third form of password file is used by the BSD 4.4 derived operating
systems.

mark:Ax7Wc1Kd8ujo2:3232:25::0:0:Mark Burgess:/home/mark:/bin/tcsh

It has extra fields, which are not normally used. These systems also have an opti-
mization: in addition to the master password file base, they have a compiled binary
database for rapid lookup. Administrators edit the file /etc/master.password
and then run the pwd mkdb command to compile the database which is actu-
ally used for lookups. This generates text and binary versions of the password
database.

Entries might have to be added to the group membership file /etc/group,
E-mail system and quota database, depending on local requirements.

5.2.3 Windows accounts

Single Windows accounts are added with the command

net user username password /ADD /domain
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or using the GUI. Windows does not provide any assistance for mass registration
of users. The additional Resource Kit package contains tools which allow lists of
users to be registered from a standard file format, with addusers.exe, but only
at additional cost.

Windows users begin in the root directory by default. It is customary to create
a \users directory for home directories. Network users conventionally have their
home directory on the domain server mapped to the drive H:. There is only a
single choice of shell (command interpreter) for NT, so this is not specified in the
user registration procedure. Several possibilities exist for creating user profiles
and access policies, depending on the management model used.

5.2.4 Groups of users

Both Unix and NT allow users to belong to multiple groups. A group is an
association of usernames which can be referred to collectively by a single name.
File and process permissions can be granted to a group of users. Groups are
defined statically by the system administrator.

On Unix-like systems they are defined in the /etc/group file, like this:

users::100:user1,mark,user2,user3

The name of the group, in this case, is users, with group-id 100 and members
user1, mark, user2 and user3. The second, empty field provides space for a
password, but this facility is seldom used. A number of default groups are defined
by the system, for instance

root::0:root
other::1:
bin::2:root,bin,daemon

The names and numbers of system groups vary with different flavors of Unix. The
root group has superuser privileges.

Unix groups can be created for users or for software which runs under a special
user-id. In addition to the names listed in the group file, a group also accrues
users from the default group membership in field four of /etc/passwd. Thus, if
the group file had the groups:

users::100:
msql::36:
ftp::99:
www::500:www
www-data::501:www,toreo,mark,geirs,sigmunds,mysql,ulfu,magnem
privwww::502:

and every user in /etc/passwd had the default group 100, then the users group
would still contain every registered user on the system. By way of contrast, the
group ftp contains no members at all, and is to be used only by a process which
the system assigns that group identity, whereas www-data contains a specific
named list and no others as long as all users have the default group 100.
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NT also allows the creation of groups. Groups are created by command, rather
than by file editing, using:

net group groupname /ADD

Users may then be added with the syntax,

net group groupname username1 username2... /ADD

They can also be edited with the GUI on a local host. NT distinguishes global
groups (consisting only of domain registered users) from local groups, which may
also contain locally registered users. Some standard groups are defined by the
system, e.g.

Administrators
Users
Guest

The Administrators group has privileged access to the system.

5.3 Account policy

Most organizations need a strict policy for assigning accounts and opening the
system for users. Users are the foremost danger to a computing system, so the
responsibility of owning an account should not be dealt out lightly. There are
many ways in which accounts can be abused. Users can misuse accounts for
villainous purposes and they can abuse the terms on which the account was
issued, wasting resources on personal endeavors. For example, in Norway, where
education is essentially free, students have been known to undergo semester
registration simply to have an account, giving them essentially free access to the
Internet and a place to host their web sites.

Policy rules are required for guiding user behavior, and also for making system
rules clear.

Experience indicates that simple rules are always preferable, though this is
so far unsubstantiated by any specific studies. A complex and highly specific
rule, that is understood only by its author, may seem smart, but most users will
immediately write it off as being nonsense. Such a rule is ill advised because it is
opaque. The reason for the rule is not clear to all parties, and thus it is unlikely to
be respected.

Principle 20 (Simplest is best). Simple rules make system behavior easy
to understand. Users tolerate rules if they understand them and this tends to
increase their behavioral predictability.

What should an account policy contain?

1. Rules about what users are allowed/not allowed to do.

2. Specifications of what mandatory enforcement users can expect, e.g. tidying
of garbage files.
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Any account policy should contain a clause about weak passwords. If weak
passwords are discovered, it must be understood by users that their account can
be closed immediately. Users need to understand that this is a necessary security
initiative. Closing Unix accounts can be achieved simply by changing their default
shell in /etc/passwd to a script such as

#!/bin/sh

echo "/local/bin/blocked.passwd was run" | mail sysadm
/usr/bin/last -10 | mail sysadm

message=’
Your account has been closed because your password was found to
be vulnerable to attack. To reopen your account, visit the
admin office, carrying some form of personal identification.
’
echo "$message"

sleep 10
exit 0

Although this does not prevent them from doing simple things on an X-windows
console running a login manager, like xdm, it does prevent them from logging
in remotely, and it gets their attention. A more secure method is to simply
replace their encrypted password with NP or *, which prevents them from being
authenticated.

It is occasionally tempting to create guest accounts for visitors and transient
users. NT has a ready-made guest account, which is not disabled by default on
some versions of NT. Guest accounts are a bad idea, because they can be used
long after a visitor has gone, they usually have weak or non-existent passwords
and therefore are an open invitation to attack the system. Shared accounts are
also a bad idea, since they are inherently more fragile from a security perspective,
though the use of shared Unix accounts, in which users could not log in as a
shared user, are described in ref. [32]. This is similar to the ability in Unix to set
a password on a group.

5.4 Login environment

When a new user logs in for the first time, he or she expects the new account to
work straight away. Printing should work, programs should work and there should
be no strange error messages about files not being found or programs not existing.
Most users want to start up a window environment. If users will be able to log on
to many different kinds of operating system, we have to balance the desire to make
systems look alike, with the need to distinguish between different environments.
Users need to understand the nature of their work environment at all times in
order to avoid hapless errors. The creation of default login environments has been
discussed in refs. [288, 15, 326] though these are now somewhat out of date.
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5.4.1 Unix environment

Unix and its descendents have always been about the ability to customize. Every-
thing in Unix is configurable, and advanced users like to play around; many create
their own setups, but many users simply want basics. The use of multitudinous
‘dot’ files for setting defaults in Unix has led to its being criticized for a lack of
user-friendliness. Various attempts have been made to provide interfaces which
simplify the task of editing these configuration files [125, 99], though the real
problem is not so much the fact that one has to edit files, as the fact that every file
has its own syntax. A system administrator has to ensure that everything works
properly with acceptable defaults, right from the start. Here is a simple checklist
for configuring a user environment. Gradually, the appearance of newer and better
user interfaces like KDE and GNOME is removing the need for users to edit their
own window configuration files.

• .cshrc If the default shell for users is a C-shell or derivative, then we need
to supply a default ‘read commands’ file for this shell. This should set a
path which searches for commands, a terminal type and any environment
variables that a local system requires.

• .profile or .bashrc If the default shell is a Bourne-again shell like bash
or ksh, then we need to supply this file to set a PATH variable, terminal type
and environment variables that the system requires.

• .xsession This file is read by the Unix xdm login service. It specifies what
windows and what window manager will be used when the X-windows system
is started. The file is a shell script which should begin by setting up applica-
tions in the background (with a & symbol after them) and end up exec-ing
a window manager in the foreground. If the window manager is called as a
background process, the script will be able to exit immediately and users
will be logged out immediately. Some systems use the file called .xinitrc
though this file is officially obsolete. The official way to start the X11 window
system is through the xdm program, which provides a login prompt window.
GNU/Linux seems to have revived the use of the obsolete command startx
which starts the X-windows system from a tty-shell. The older startx system
used the .xinitrc file, whereas xdm uses .xsession. Most GNU/Linuxes
hack this so that one only needs a .xsession file.

• .mwmrc This file configures the default menus etc. for the mwm window
manager and the Common Desktop Environment (CDE) window manager,
IIRC

A shell setup should define a terminal type, a default prompt and appropriate
environment variables, especially a command path.

Suggestion 3 (Environment). It should always be clear to users which host they
are using and what operating system they are working with. Default environments
should be kept simple, both in appearance (prompts etc.) and in functionality
(specially programmed keys etc.). Simple environments are easy to understand.
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We need to aim a default environment at an average user and ensure that
basic operating system functions work unambiguously. The visual clarity of a
work environment is particularly important. In a windowing environment, this is
usually not a problem. Command shells require some extra thought, however. A
command shell can, in principle, be opened on any Unix-like host. A user with
many windows open, each with a shell running on a different host, could easily
become confused. Suppose we wish to copy a newer version of a file on one host
to a repository on another host. If we mix the hosts up, we could risk over-writing
the new version with an old version, instead of the other way around.

Suggestion 4 (Clear prompts). Try to give users a command prompt which
includes the name of the host they are working on. This is important, since
different hosts might have different operating systems, or different files. Including
the current directory in the prompt, like DOS, is not always a good idea. It uses
up half the width of the terminal and can seem confusing. If users want the name
of the current directory in the prompt, let them choose that. Don’t assign it as a
default.

Some systems offer global shell configuration files which are read for every user.
These files are usually located in /etc or /etc/default. The idea of a global
default file has attractive features in principle, but it is problematic in practice.
The problem has to do with the separation of local modifications from the operating
system, and also the standardization of defaults across all hosts. These files could
be distributed from a central source to every host, but a better approach is to
simply place an equivalent defaults file on the same distributed filesystems which
contain users’ home directories. This is easily achieved by simply ignoring the
global defaults, and giving every user a default shell configuration file which reads
a site-dependent file instead.

Suggestion 5 (Unix shell defaults). Avoid host-wide files for shell setup in
/etc. They are mixed up in the operating system distribution and changes here
will be lost at upgrade time. Use an overridable include strategy in the user’s own
shell setup to read in global defaults. Do not link a file on a different filesystem to
these in case this causes problems during system boot-up.

Here is an example of a configuration file for the C-shell, which would be
installed for all users in their home directories:

#
# cshrc file (for tcsh)
#

source ../.setupfiles/cshrc-global

#
# Place own definitions below
#
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alias f finger
alias ed emacs

Note that we use the source directive to read in a file of global C-shell definitions
which we have copied into place from a central repository for all important system
master files. Notice also that, by copying this onto the same filesystem as the
home directory itself (the directory over the user’s home directory), we make sure
that the file is always NFS exported to all hosts together with the home directory.
This allows us to change the global setup for everyone at the same time, or
separately for different classes of user on different partitions. For each separate
home partition, we could have a different set of defaults. This is probably not
recommended however, unless users are distinguished in some important way.

One of the functions of a local shell configuration is to set up a command
path and a library path for software. Since the command path is searched in
order, we can override operating system commands with local solutions, simply
by placing site-dependent binaries at the start of the path. GNU file utilities and
binary utilities can also be placed ahead of operating system standard utilities.
They are often more standard and more functional.

5.4.2 Example shell configuration

Here is an example shell configuration for the tcsh.

#!/bin/csh -f
##############################################################
#
# C Shell startup file
# System Wide Version.
#
##############################################################

umask 077 # default privacy on new files

setenv HOSTTYPE ‘uname‘

##############################################################

switch ($HOSTTYPE)

case SunOS:
set path = ( \

/local/site/bin \
/local/kde/bin \
/local/gnu/bin \
/usr/ccs/bin \
/local/jdk1.1.6/bin \
/local/bin \
/local/qt/bin \
/usr/ucb \
/bin \
/usr/bin \
/usr/openwin/bin \
. \
)

breaksw

case Linux:
set path = ( \

/local/site/bin \
/local/bin \
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/local/jdk1.1.6/bin \
/local/bin/X11 \
/local/qt/bin \
/local/kde/bin \
/local/gnu/bin \
/local/bin/X11 \
/usr/bin/X11 \
/usr/bin \
/bin \
. \
)

breaksw

endsw

##############################################################################

#
# set TERM for "at" batches in non-interactive shells
# tcsh wants to write something to stdout, but I
# can’t see what => term has to be set even though its
# irrelevant )
#

if (! $?TERM) setenv TERM vt100;
if (! $?term) set term = vt100;
if (! $?prompt) exit 0;

#
# End for non-interactive shells (batch etc.)
#

setenv TERM vt100 # Many shell types do not work
set term = $TERM # This is a safe default, omit it if you dare

###############################################################################
# set
###############################################################################

set history=100 savehist=100
set prompt = "‘hostname‘% "
set prompt2 = "%m %h> "
set fignore = (.o \~ .BAK .out \%)

##############################################################################
# Common Environment
##############################################################################

setenv EDITOR emacs
setenv ESHELL tcsh
setenv NNTPSERVER nntp-server.domain.country
setenv QTDIR /usr/local/qt
setenv CLASSPATH /usr/local/jdk1.1.6/lib/classes.zip:.
setenv JAVA_HOME /usr/local/jdk1.1.6
setenv MYSQL /usr/local/bin/mysql

###############################################################################
# platform specific environment (overrides common)
###############################################################################

switch ($HOSTTYPE)

##############

case SunOS*:
case solaris:

setenv LD_LIBRARY_PATH /usr/openwin/lib:/local/lib/X11:\
/local/gnu/lib:/usr/dt/lib:/local/qt/lib:/local/lib:/usr/local/kde/lib

setenv LPATH /usr/lib:/local/lib:
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if ( $?DISPLAY || $TERM == "sun" ) then
setenv MOTIFHOME /usr/dt
setenv X11HOME /usr/openwin
setenv FONTPATH /usr/openwin/lib/X11/fonts:\

/usr/openwin/lib/locale/iso_8859_5/X11/fonts:\
/usr/openwin/share/src/fonts:/usr/openwin/lib/X11/fonts:\
/local/sdt/sdt/fonts/SDT3/X11

setenv OPENWINHOME /usr/openwin
setenv XKEYSYMDB /local/site/X11/XKeysymDB
setenv XAPPLRESDIR /usr/openwin/lib/X11/app-defaults
setenv GS_FONTPATH /local/share/ghostscript/fonts
setenv GS_LIB_PATH /local/share/ghostscript/4.03
endif

setenv MANPATH /local/gnu/man:/usr/man:/local/man:\
/usr/openwin/share/man

limit coredumpsize 0
breaksw

##############

case Linux:
case i486:

setenv MANPATH /local/man:/local/site/man:/local/man:\
/usr/man:/usr/man:/usr/man/preformat:/usr/X11/man

setenv XAPPLRESDIR /local/site/X11/app-defaults:\
/var/X11R6/lib/app-defaults

stty erase ’^?’ intr ’^C’ kill ’^U’ susp ’^Z’
setenv LD_LIBRARY_PATH /usr/X11R6/lib:/local/lib:\

/local/qt/lib:/local/kde/lib
setenv XNLSPATH /usr/X11R6/lib/X11/nls

breaksw
endsw

###############################################################################
# aliases
###############################################################################

alias del ’rm -i ’
alias dir ’ls -lg \!* | less -E’
alias . ’echo $cwd’
alias f finger
alias h history
alias go a.out
alias cd.. cd ..
alias grant setfacl
alias cacls getfacl
alias rlogin ssh
alias rsh ssh

###############################################################################
#
# Check message of the day
#
###############################################################################

# Not always necessary

if ( -f /etc/motd ) then
/bin/cat /etc/motd

endif

###############################################################################
#
# Check whether user has a vacation file
#
###############################################################################
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if ( -f ~/.forward ) then

if ( "‘grep vacation ~/.forward‘" != "" ) then

echo ’*********************************************************’
echo ’ YOU ARE RUNNING THE vacation SERVICE ’
echo ’ RUN vacation AGAIN TO CANCEL IT ! ’
echo ’*********************************************************’

endif

endif

5.4.3 The privileged account’s or superuser’s environment

What kind of user environment should the superuser have? As we know, a
privileged account has potentially dangerous consequences for the system. From
this account, we have the power to destroy the system, or sabotage it. In short,
the superuser’s account should be configured to avoid as many casual mistakes
as possible.

There is no harm in giving Unix’s root account an intelligent shell like tcsh or
bash provided that shell is physically stored on the root partition. When a Unix
system boots, only the root partition is mounted. If we reference a shell which is
not available, we can render the host unbootable.

The superuser’s PATH variable should never include ‘.’, i.e. the current direc-
tory. This is because it opens the system to a type of security vulnerability that
can lead to accidental execution of the wrong command. For instance, suppose
an ordinary user left a file called ls in the /tmp directory, and suppose the root
account had the path

setenv PATH .:/bin:/usr/bin

If the superuser does the following

host# cd /tmp
host# ls

then, because the path search looks in the current directory first, it would find
and execute the program which had been left by the user. That program then
gets executed with root privileges and could be used to give the user concerned
permanent privileged access to the system, for instance by installing a special
account for the user which has root privileges. It should be clear that this is a
security hazard.

A common mistake that is frequently perpetrated by inexperienced adminis-
trators, and which is actually encouraged by some operating systems, is to run
X11 applications with root privileges. Root should never run X11 or any other
complex applications. There are just too many uncertainties involved. There are
so many applications for X11 which come from different sources. There could be
a Trojan horse in any one of them. If possible, root should only use a few trusted
application programs.

The privileged user should never log in directly (unless the system is in single
user mode or on the console). On Unix, one should log in as a user and su to root.
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This keeps a record of who is root at any time, and is more secure in the sense of
having fewer points of attack.

The privileged user should have a minimal environment, should not read or
reply to its own E-mail (this should be sent to a system administration group),
and should never log in over an unencrypted channel.

5.5 User support services

All users require help at some time or another. The fact that normal users are
not privileged users means that they must occasionally rely on a superuser to
clean up a mess, or fix a problem which is beyond their control. If we are to
distinguish between privileged and non-privileged users, we cannot deny users
this service.

5.5.1 Support policy

The amount of support that one offers users is a matter of policy. One has the
choice between supporting users directly, and investing time in making them
self-sufficient. Which of these two strategies pays most dividends depends on the
nature of the problem. In almost all cases both strategies are needed. Thus one
looks for a mixture of the following:

• Training users.

• Helping users.

• Documenting and providing the answers to frequently asked questions.

The proportion of time spent on each must be chosen as policy.
System administrators’ time is usually in short supply, though increased

automation is steadily freeing us to concentrate on higher level problems, like
support. The ability to support a system depends on its size in relation to the
available resource personnel. Supporting hardware and software means fixing
errors, upgrading and perhaps providing tuition or telephone help-desks. E-mail
help-desks such as Rust, Gnats, Nearnet, Netlog, PTS, QueueMH can assist in
the organization of support services, but they are mainly task-tracking tools.
Sometimes hosts and software packages are labelled unsupported in order to
emphasize to users that they are on their own if they insist on using those
facilities.

One of the challenges system administrators sometimes have to endure on
coming to a new site, where chaos reigns, is the transition from anarchy to a
smaller set of supported platforms and software. See for instance, refs. [226, 182].
This can be a tough problem, since users always prefer freedom to restric-
tion. Support services need to be carefully considered and tailored to each local
environment.

A recent development in user assistance is the Virtual Network Computing
model from AT&T [24]. This is a way to allow a remote user duplicate access
to a graphical user interface. Thus an administrator can log onto an existing
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user session and have dual controls, allowing users to be nurse-maided through
difficulties online.

5.5.2 Checklist

The provision of a service to users suggests the need for quality controls. This goes
back to the central principle of predictability in management: a controlled and
verified result allows one to have confidence in the effectiveness of the procedure
and thus the long-term stability of the human–computer system. We shall return
to the issue of quality control in a more formal setting in section 8.12.1.

Checklists are a useful algorithmic aid to securing predictable results. The
basic checklist for user services is this:

1. Read the user request properly.

2. Do you understand the request?

3. Is the request in line with policy?

4. Are you competent to deal with the request?

5. Schedule the request (rapid response mitigates frustration).

Limoncelli has defined a model to promote standardization of user assistance,
in what he calls the Nine Step Model [197]. This is a way of regularizing the
interaction between user and help-desk in order to promote predictability in the
process and quality control of the result (see table 5.1).

Greeting

1. Greeting ‘How may I help you?’

Problem identification

2. Identify problem

3. Refine and express the problem

4. Verify the problem

Correction

5. Propose solutions

6. Select solution

7. Execution

Verification

8. Self-check

9. User-check

Table 5.1: The nine steps in Limoncelli’s model of user assistance. The all-important
greeting should not be forgotten as one launches into a technical procedure.
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The Nine Step Model is actually a straightforward example of a development
cycle: problem identification, solution, verification. It is not unlike procedures
one might use in software engineering to create a computer program. The main
difference is an attention to the social graces: users appreciate being noticed and
taken seriously (hence the greeting), and they also appreciate an explanation of
what is going on during the assistance. Some administrators are good at talking
users through their logical analysis, while others tend to keep their thoughts to
themselves. Human users generally appreciate being included in the procedures.

5.6 Controlling user resources

Every system has a mixture of passive and active users.
Passive users utilize the system often minimally, quietly accepting the choices

which have been made for them. They seldom place great demands on the system.
They do not follow the development of the system with any zeal and they are often
not even aware of what files they have. They seldom make demands other than
when things go wrong. Passive users can be a security risk, because they are not
aware of their actions.

Active users, on the other hand, follow every detail of system development.
They frequently find every error in the system and contact system administrators
frequently, demanding upgrades of their favorite programs. Active users can be of
great help to a system administrator, because they test out problems and report
them actively. They are an important part of the system administration team, or
community, and can also go a long way to helping the passive users. An important
point about active users, however, is that they are not authorized staff.

Principle 21 (Active users). Active users need to understand that, while their
skills are appreciated, they do not decide system policy: they must obey it. Even
in a democracy, rules are determined by process and then obeyed by everyone.

Skilled administrators need to be social engineers, placating active user wishes
and keeping them in the loop, without bowing to their every whim. Individual
skill amongst users does not necessarily carry with it responsibility to the whole
system. System administrators have a responsibility to find a balance which
addresses users’ needs but which keeps the system stable and functional. If
we upgrade software too often, users will be annoyed. New versions of software
function differently and this can hinder people in their work. If we do not upgrade
often enough, we can also hinder work by restricting possibilities.

5.6.1 Resource consumption

Disks fill up at an alarming rate. Users almost never throw away files unless
they have to. If one is lucky enough to have only very experienced and extremely
friendly users on the system, then one can try asking them nicely to tidy up their
files. Most administrators do not have this luxury however. Most users never think
about the trouble they might cause others by keeping lots of junk around. After
all, multi-user systems and network servers are designed to give every user the
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impression that they have their own private machine. Of course, some users are
problematical by nature.

Suggestion 6 (Problem users). Keep a separate partition for problem users’
home directories, or enforce strict quotas on them.

No matter what we do to fight the fire, users still keep feeding the flames. To
keep hosts working it is necessary to remove files, not just add them. Quotas limit
the amount of disk space users can have access to, but this does not solve the
real problem. The real problem is that in the course of using a computer many
files are created as temporary data but are never deleted afterwards. The solution
is to delete them.

• Some files are temporary by definition. For example, the byproducts of
compilation, *.o files, files which can easily be regenerated from source like
TeX *.dvi files, cache files in .netscape/ loaded in by Netscape’s browser
program etc.

• Some files can be defined as temporary as a matter of policy. For example,
files which users collect for personal pleasure like *.mp3, video formats and
pornography.

When a Unix program crashes, the kernel dumps its image to disk in a file
called core. These files crop up all over the place and have no useful purpose
for most users.1 To most users they are just fluff on the upholstery and should
be removed. A lot of free disk space can be reclaimed by deleting these files.
Many users will not delete them themselves, however, because they do not even
understand why they are there.

Disk quotas mean that users have a hard limit to the number of bytes they
are allowed to use on the disk. They are an example of a more general concept
known as system accounting whereby you can control the resources used by
any user, whether they be the number of printed pages sent to the printer
or the number of bytes written to the disk. Disk quotas have advantages and
disadvantages.

• The advantage is that users really cannot exceed their limits. There is no way
around this.

• Disk quotas are very restrictive and when a user exceeds their limit they
often do not understand what has happened. Usually users do not even get a
message unless they are logging in. Quotas also prevent users from creating
large temporary files which can be a problem when compiling programs.
They carry with them a system overhead, which makes everything run a little
slower.

In some environments, the idea of deleting a user’s files is too much to contemplate.
In a company or research laboratory, one might want to be extremely careful in

1In some instances, core files have been used by malicious users to obtain secret information about
the system that was held in memory prior to the crash.
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such a practice. In other cases, like schools and universities, this is pure necessity.
Deciding whether to delete files automatically must be a policy decision. It might
be deemed totalitarian to delete files without asking. On the other hand, this is
often the only way to ever clear anything up. Many users will be happy if they do
not have to think about the problem themselves. A tidy policy, rather than a quota
policy, gives users a greater illusion of freedom, which is good for system morale.
We must naturally be careful never to delete files which cannot be regenerated or
re-acquired if necessary. File tidying was first suggested by Zwicky in ref. [336],
within a framework of quotas. See also refs. [134, 55].

Example 2. A useful strategy is to delete files one is not sure about only if they
have not been accessed for a certain period of time, say a week. This allows users
to use files freely as long as they need to, but prevents them from keeping the files
around for ever. Cfengine can be used to perform this task.

For example a simple cfengine program would look like:

control:

actionsequence = ( tidy )

mountpattern = ( /site/host )
homepattern = ( home? )

#
# 3 days minimum, remember weekends
#

tidy:

home pattern=core recurse=inf age=0
home pattern=a.out recurse=inf age=3
home pattern=*% recurse=inf age=3
home pattern=*~ recurse=inf age=3
home pattern=*.o recurse=inf age=1
home pattern=*.aux recurse=inf age=3
home pattern=*.mp3 recurse=inf age=14

home/Desktop/Trash pattern=* recurse=inf age=14
home/.netscape/cache pattern=* recurse=inf age=0

This script iterates automatically over all users’ home directories, and recurses into
them, deleting files if the time since they were last accessed exceeds the time limits
specified.

Care should always be taken in searching for and deleting patterns containing
‘core’. Some operating systems keep directories called core, while others have files
called core.h. As long as the files are plain files with an exact name match, one
is usually safe.
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5.6.2 Quotas and limits in general

In a shared environment, all users share the same machine resources. If one
user is selfish that affects all of the other users. Given the opportunity, users will
consume all of the disk space and all of the memory and CPU cycles somehow,
whether through greed or simply through inexperience. Thus it is in the interests
of the user community to limit the ability of users to spoil things for other users.

One way of protecting operating systems from users and from faulty soft-
ware is to place quotas on the amount of system resources which they are
allowed.

• Disk quotas: Place fixed limits on the amount of disk space which can be
used per user. The advantage of this is that the user cannot use more storage
than this limit; the disadvantage is that many software systems need to
generate/cache large temporary files (e.g. compilers, or web browsers) and a
fixed limit means that these systems will fail to work as a user approaches
his/her quota.

• CPU time limit: Some faulty software packages leave processes running which
consume valuable CPU cycles to no purpose. Users of multiuser computer
systems occasionally steal CPU time by running huge programs which make
the system unusable for others. The C-shell limit cputime function can be
globally configured to help prevent accidents.

• Policy decisions: Users collect garbage. To limit the amount of it, one can
specify a system policy which includes items of the form: ‘Users may not
have mp3, wav, mpeg etc. files on the system for more than one day’.

Quotas have an unpleasant effect on system morale, since they restrict personal
freedom. They should probably only be used as a last resort. There are other ways
of controlling the build-up of garbage.

Principle 22 (Freedom). Quotas, limits and restrictions tend to antagonize
users. Users place a high value on personal freedom. Restrictions should be
minimized or made inconspicuous to avoid a backlash. Workaround solutions
which avoid rigid limits are preferable, if possible.

5.6.3 Killing old processes

Processes sometimes do not get terminated when they should. There are several
reasons for this. Sometimes users forget to log out, sometimes poorly written
terminal software does not properly kill its processes when a user logs out.
Sometimes background programs simply crash or go into loops from which they
never return. One way to clean up processes in a work environment is to look for
user processes which have run for more than a day. (Note that the assumption
here is that everyone is supposed to log out each day and then log in again the
next day – that is not always the case.) Cfengine can also be used to clean up old
processes. Cfengine’s processes commands are used to match processes in the
process table (which can be seen by running ps ax on Unix).
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5.6.4 Moving users

When disk partitions become full, it is necessary to move users from old partitions
to new ones.2 Moving users is a straightforward operation, but it should be done
with some caution. A user who is being moved should not be logged in while the
move is taking place, or files could be copied incorrectly. We begin by looking for
an appropriate user, perhaps one who has used a particularly large amount of
disk space.

Example 3. On Unix-like systems we have all the tools we require:

cd /site/host/home-old
du -s *

Having chosen a user, with username user, we copy the directory to its new location,

tar cf - user | (cd /site/host/home-new; tar xpvf - )

edit the new location in the password file,

emacs /etc/passwd

and finally remove the old data:

rm -r user

Users need to be informed about the move: we have to remember that they might
hard-code the names of their home directories in scripts and programs, e.g. CGI-
scripts. Also, the user’s account must be closed by altering their login shell, for
instance, before the files are moved.

5.6.5 Deleting old users

Users who leave an organization eventually need to be deleted from the system.
For the sake of certainty, it is often advisable to keep old accounts for a time
in case the user actually returns, or wishes to transfer data to a new location.
Whether or not this is acceptable must be a question of policy. Clearly it would
be unacceptable for company secrets to be transferred to a new location. Before
deleting a user completely, a backup of the data can be made for safe-keeping.
Then we have to remove the following:

• Account entry from the password database.

• Personal files.

• E-mail and voice mail and mailing lists.

• Removal from groups and lists (e.g. mailing lists).

• Removal of cron and batch tasks.

• Revocation of smartcards and electronic ID codes.
2Some systems might be equipped with virtual volume managers which provide the illusion of

infinitely large partitions, but not everyone can afford this luxury.
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5.7 Online user services

There are many instances of using the World Wide Web to provide online reg-
istration of data, for instance, as colleges and universities modernize, they are
increasingly looking for ways to make use of information technology to simplify the
administration of examinations. This presents a somewhat different set of logisti-
cal problems than with traditional examinations. It requires users to be managed
in a potentially different way for part of the time – during the examination.

In this section, we shall consider the specific example of online examinations,
for the sake of concreteness. The idea can be generalized or adapted to apply to
other services (see exercises).

We are interested in achieving a number of goals with an online system:

• To cope with large numbers of users (e.g. students),

• To allow more general examination methods (continuous assessment etc.),

• To prevent unnecessary copying, or ‘cheating’, amongst the students,

• To move the bulk of the burden from grading work to pedagogical design,

• To provide an online (distributed) solution, which solves the most pressing
security problems adequately.

These are significant challenges at present, since current online technologies
are not well standardized in a way that is ideally suited to this task. Until
some dedicated software is available for this purpose, it is a task for system
administration to make interim solutions possible.

5.7.1 Security perspective

Security is the discipline of protecting interests and things of value. Student
evaluation is a security problem at several levels. Security spans a number of
issues: reliability, integrity, privacy, authenticity and – the heart of every security
problem – how far one is willing to trust the parts of a system.

Figure 5.1 shows the beginnings of a (potentially very large) ‘cause tree’ for
traditional examination failure; it illustrates a point which many teachers take
for granted about the evaluation of students – namely, that any system in which
points are awarded, or students receive some kind of reward (payoff), is subject
to attack by malicious or incidental factors. Let us mention a few of the ways in
which the tenets of security apply to the evaluation process.

• Trust: The fundamental issue in any security system is where one places
one’s trust; it is about deciding what is an acceptable risk. For example,
staff might trust students never to cheat. If that is the case, security is very
simple. On the other hand, staff might only trust students not to cheat in
a supervised room (with an exam invigilator present). Conversely, students
might not trust the course teacher to grade their papers correctly, or to
give them a fair hearing; in that case, a quality control protocol can be
implemented to offer a level of security to the students.
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Fail exam

Bad teacher Bad student

Hangover Just bad Did no work Just bad

Exam correct Exam incorrect Grading error

Careless
error

Teacher
dislikes
student

Incompetence

Figure 5.1: A partial cause tree for examination failure.

In each case, what we are willing to trust guides the security measures
which need to be implemented. At no point is any system infallible. If one
assumes that students and staff are hostile partners, the worst case would
be that both sides would engage in an arms race, each trying to outsmart the
other. In practice, only a small fraction of staff and students behaves in this
manner, but nevertheless, this is a problem which must be taken seriously,
at some level.

• Reliability: The reliability of the examination procedure must be secured
against both malicious exploitation and accidental error. In an alternative
evaluation scheme, it is natural to eliminate humans from the grading process
as far as possible. If a machine can be made to perform the grading, then
clearly the only source of error would be a systematic error, perhaps from an
error in programming of the system itself. Such an error would not prejudice
any one student, and could be corrected in time.

• Integrity: Integrity concerns the ability to transmit information, or intent,
without alteration or error. Integrity of evaluation information applies both
to the problems posed to students and in the collection of their replies.
With Web-based technologies, this can be a problem unless students are
using standardized browsers and operating systems. The disturbing lack
of standardization in browser technology means that not all data can be
rendered in any browser. Moreover, early Netscape browsers crash often, and
Internet Explorer fails to show HTTPS secured pages a significant percentage
of the time with an unspecific ‘Page cannot be shown’ error.

• Authenticity and identity: Students need to trust the authenticity of the
exam paper, or the problems they are to answer. It would be unacceptable
for a malicious party to replace the actual exam with a fake exam, or an
exam to which the students already had the written solutions. Similarly, the
examiners need to know that the student whose name is on the resulting
work, actually did that work. Copying from one another without learning is
one way in which students can attack examination and evaluation systems,
and undermine the purpose of the educational establishment.
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Correctly identifying the author of an examination paper is a subtle task.
In the security sense, one can visually inspect the student ID of a student
who shows up for an examination (though ID can be forged). Similarly,
one can forge electronic credentials relatively easily. In spite of the dangers
to themselves, students regularly swap passwords and loan accounts to
their classmates. Thus, when an assignment is submitted without physical
supervision (e.g. electronically), there is no guarantee that the person whose
name is registered by the receiver is the author of the work. In a written
examination, students regularly memorize passages and methods written by
others – it just requires a little more concentration to achieve.

The act of confirming one’s identity by use of a secret password or other
means is called authentication.

• Privacy: Finally, can the process of evaluation be conducted with sufficient
respect for individual privacy? The teacher’s privacy is needed to prevent
students from cheating by finding the solutions or by gaining knowledge
of the problems in advance, and the student’s privacy is needed to pre-
vent their identities from compromising the objectivity (reliability) of the
process.

Discussing student evaluation in terms of information security is perhaps an
unusual point of view, but it is not one to be dismissed lightly. The validity of
the university’s conclusions about a student’s performance is precisely what is at
stake, both for its reputation and for society at large.

5.7.2 Reconfiguring hosts for electronic exams

Imperial College in London has devised an administrative scheme called Lexis
for conducting examinations using specially secured computers [330]. The college
chose the GNU/Linux operating system for this purpose and used a separate
run-level to configure hosts at startup in a secure environment.

Lexis was designed specifically with programming examinations in mind. It
seeks to provide a familiar lab-like environment during exams, with all resources
necessary to complete the exam, including a secure environment and means of
collecting exam answers. Students should have no access to unauthorized data,
no access to other users on the network, and not be distracted by other users or
signals from the network.

A similar approach has been examined at Oslo University College, using
cfengine to reconfigure computers temporarily.

5.7.3 User identification

At a university, students come and go and login names can be reused over time.
This has potential consequences for the long-term storage and identification of
student results online. The use of student numbers or personal identification
numbers has been used here in Oslo, since these are unique even over long
periods of time.
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How should students and their answers be identified during the examination?
The use of usernames and passwords to authenticate users seemed to be the
best compromise. The use of digital signatures might also be considered; however,
digital signing is deemed too complicated for non-computer science users – even
computer science students who were studying security found signatures to be
confusing. Also, there is a significant administrative overhead involved in setting
up and maintaining signatures in a student environment, where login names and
accounts are frequently appearing and disappearing.

The issue of confirming student identity online is called authentication. It works
by challenging the user to provide knowledge of some password or private secret
which they would not normally divulge to anyone else. This is the most difficult
and pressing issue in online services. Students are not afraid to swap passwords
to college accounts, because they often have private accounts elsewhere (Hotmail
or home accounts etc.), and thus regard their college accounts as ‘disposable’. As
long as students are not afraid to lend their secrets to others, there will be no
unique way of identifying them, and thus of being certain that they are responsible
for their own grades.

5.8 User well-being

Because computer systems are communities, populated by real people, there are
issues in system administration which are directly connected with users’ well-
being. Contented users work well and treat the system well; disgruntled users
cause trouble for the system and for their neighbors. This is not to say that system
administrators are (or should be) responsible for the psychological well-being of
all the system’s users, but there are some simple precautions which the system
staff can observe in order to promote the smooth running of the community. In
some countries, an organization might be sued by a user who believed he or she
had not been sufficiently looked after.

5.8.1 Health

Frequent computer users are not usually aware of how they can be damag-
ing their own health. Unlike cigarettes, computers do not have a government
health warning. Whether or not this is an issue for system administrators is
open for discussion, but often the system administrator is the only person who
thinks about the users and the hardware they use. Certainly every administra-
tor needs to look after his/her own health and, along the way, it is natural to
think of the health of others. Fortunately it is not difficult to avoid the worst
problems.

• Eyes should be protected, We only have one pair and they must last our
entire lives. Ironically, users who wear glasses (not contact lenses) suffer less
from computer usage, because their eyes are partially protected from the
radiation from the screen.

A computer screen works by shooting charged electrons at a phosphorescent
surface. If one touches the screen one notices that it is charged with static
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electricity. The effect of this is to charge dust particles and throw them out
into users’ faces. This can cause irritation to the eyes over long periods.
Solution: wear glasses or obtain an anti-static screen with an earth wire
which counteracts this problem.

Another major cause of eye strain is reflection. If there is a light source
behind a user, it will reflect in the screen and the eyes will be distracted
by the reflection. The image on the screen lies on the screen surface, any
reflected images lie behind the screen (as far behind the screen as the
source is in front of the screen). This confuses the eyes into focusing back
and forth between the reflection and the image. The result is eye strain.
The solution is to (i) eliminate all light sources which can cause reflections,
(ii) obtain an anti-reflective screen cover. This can be combined with an anti-
static screen. The best solution today, however, is to purchase only good
LCD flat screens; these have sharp clear pictures, low radiation and are
usually coated in anti-glare plastic. They are a giant leap forward in screen
technology.

Prolonged eye strain can lead to problems reading and focusing. It can lead
to headaches and neck ache from squinting.

• Back: The back (spine) is one of the most complex and important parts of
the body. It supports the upper body and head, and is attached to the brain
(where applicable). The upper body is held up by muscles in the stomach
and lower back. If these muscles are relaxed by slouching for long periods,
unnecessary strain is placed on muscles and bones which were not meant to
bear the weight of the body.

To avoid back problems, users should (i) sit in a good chair, (ii) sit upright,
using those all-important flat tummy muscles and lower back muscles to
support the upper body. They should not sit in a draft. Cold air blowing
across the back and neck causes stiffness and tension.

• Mouse strain: Mouse strain is a strain in the tendons of the finger and
forearm, which spreads to the shoulder and back and can be quite painful.
It comes from using the mouse too much. The symptoms can be less-
ened by making sure that users do not sit too far away from the desk
where the mouse lies and by having a support for the mouse forearm.
The ultimate solution is simple: don’t use the mouse. Use of the keyboard
is far less hazardous. Learning keyboard shortcuts is good for prolonged
work.

• Pregnancy and cancer: Some studies recommend that pregnant women wear
protective aprons when sitting in front of computer screens. It is unclear
whether this has any real purpose, since any radiation from the screen
would be easily stopped by normal clothing.

• Generally: Users should not sit for long periods without taking a break. Look-
ing away from the screen (to a far away object) at regular intervals relaxes
the eyes. Walking around exercises the back and relaxes the shoulders. Use
of anti-static, anti-reflective screens is recommended.
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5.8.2 Dealing with users: etiquette

Although even the most stoical administrator’s convictions might occasionally be
called into question, system administration is a social service and it is important
to remain calm and reasonable. Users frequently believe that the system admin-
istrator has nothing better to do than to answer every question and execute every
whim and fancy. Dealing with users is not a small task. In ref. [172], user-friendly
administrators are likened to user-friendly software!

5.8.3 Cultural and age groups

Today, network communities, linked by an ever-increasing number of Internet
Service Providers, consist of all cultures and age groups. It is a basic fact of life
that different groups have different attitudes and concerns and that they behave
differently towards one another and amongst themselves. In the anonymous world
of electronic communication, age is not usually apparent except through behavior.
While as pre-teenagers we tend to be careful and polite, as teenagers we are often
rude and arrogant. The same applies to different cultures.

The art of communication between groups is a difficult one. The way in which
age groups use computers, reflects their interests and attitudes and we have to
consider this in relation to the rules and policies for use of a computer system.

One must separate recreational use from professional use and consider to
what extent recreational use could damage an organization professionally. It is
not uncommon to see employees sign their E-mail with a phrase of the form

The opinions expressed here are purely my own, and should not be
identified in any way with my employer.

Indeed, some companies insist on such a message. This is one way of clarifying the
point, but it might not be sufficient. If a user expresses radical or discomforting
opinions about something publicly, this could color others’ views of the organi-
zation which the individual works for. It might not be fair, but it is unavoidable.
System policy has to take into account the human differences between age groups.
Whatever seems to be acceptable behavior for one group in a community can be
unacceptable for another.

5.9 Ethical conduct of administrators and users

No system involving human beings is complete without a consideration of human
social anthropology. Humans meet in consensus, and oppose one another in
competition. Our beliefs are based on complex historical and cultural factors and
span everything from lifestyle, gender, religious beliefs, cultural norms, justice,
autonomy, democracy, privacy and the list goes on.

We believe that we know the difference between right and wrong, and those
beliefs influence our use of policy as a tool. However, complete consensus between
everyone in a society is impossible to achieve, moreover our sense of responsibility
is not always as well developed as our sense of righteousness, and thus there is a
need for reminders and the enforcement of ethical decisions.
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5.9.1 Compliance with laws and social norms

The basis of any stable community is a ‘pact’ of common beliefs and ethical
principles. These are usually codified into ‘policy’ and even formalized even further
into ‘law’. Human–computer communities are usually described as being ‘virtual’
milieux, which tends to suggest that we do not fully believe in their reality. So far,
few laws have been codified to regulate our behavior in these realms. Nevertheless,
our strong dependence on technology means that real harm can come to us as a
result of anti-social behavior. Thus, in the absence of strict laws, determined by
society at large, network communities can easily become unruly places that fail to
work in a way that is conducive to their purpose.

Given the temptation to exceed the boundaries of common sense and courtesy,
humans excel at challenging every assumption that we might make about behav-
ior. Experience shows that regulations and their enforcement are necessary parts
of any interpersonal system. Administrators have a natural position of power in
this community model, and this brings with it great responsibility.

5.9.2 Responsibility to others

A system administrator wields great power. He or she has the means to read
everyone’s mail, change anyone’s files, to start and kill anyone’s processes. This
power can easily be abused and that temptation could be great. Nevertheless,
administrators are sometimes required to involve themselves in others’ affairs, to
help out or even settle conflicts of interest.

The ethical integrity of a system administrator is clearly an important issue.
Administrators for top secret government organizations and administrators for
small businesses have the same responsibilities towards their users and their
organizations. One has only to look at the governing institutions around the
world to see that power corrupts. Few individuals, however good their intentions,
are immune to the temptations of such power at one time or other. As with
governments, it is perhaps a case of those who wish for power are least suited to
deal with it.

Administrators ‘watch over’ backups, E-mail, private communications and they
have access to everyone’s files. While it is almost never necessary to look at a user’s
private files, it is possible at any time and users do not usually consider the fact
that their files are available to other individuals in this way. Users need to be able
to trust the system and its administrator.

As an administrator, one needs to consider:

• What kind of rules can you fairly impose on users?

• What responsibilities do you have to the rest of the network community, i.e.
the rest of the world?

• Censoring of information or views.

• Restriction of personal freedom.

• Taking sides in personal disputes.
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• Extreme views (some institutions have policies about this).

• Unlawful behavior.

• Jeopardizing user security.

A system administrator should avoid taking sides in ethical, moral, religious or
political debates, in the role of system administrator; personal views should be
kept separate from professional views, or the temptation to abuse privileges could
become irresistable. However, the extent to which this is possible depends strongly
on the individual and organizations have to be aware of this. Some organizations
dictate policy for their employees. This is also an issue to be cautious with: if a
policy is too loose it can lead to laziness and unprofessional behavior; if it is too
paranoid or restrictive it can lead to bad feelings in the organization. Historically,
unhappy employees have been responsible for the largest computer crimes. For
references see [104, 105].

There is a temptation for an administrator to think that the system exists
primarily for him or her and that the users are simply a nuisance to the smooth
running of things; if network service is interrupted, or if a silly mistake is made
which leads to damage in the course of an administrator’s work, that is okay:
the users should accept these mistakes because they were made whilst trying to
improve the system. When wielding such power there is always the chance that
such arrogance will build up. Some simple rules of thumb are useful; examples of
these are provided in the codes of ethics in section 5.9.4.

5.9.3 Propaganda and misinformation

Computers lie with flawless equanimity; to the inexperienced user they always tell
the truth. A computer has a perceived authority which makes it a very powerful tool
for abuse. An ill-thought out remark in a login message, or a deliberate attempt to
steer users with propaganda can have equally insidious results. One might argue
that this is no worse than our eager reliance on television and media, and indeed
this is true. Information warfare plays on our vulnerabilities to authority symbols,
and it is on the rise.

In the Paramount film The Wrath of Khan, a questioning lieutenant Saavik
queries Spock about his use of a verbal code to mislead the enemy: ‘You lied?’ she
says. Spock replies: ‘I exaggerated.’ Although the scene is amusing, it highlights
another way in which computers can convince us of incorrect information. A
sufficient exaggeration might also be enough to convince us of a lie. Information
can always be presented misleadingly. Where do we draw the line? Software which
is incorrectly configured and delivers incorrect information is perhaps the worst
example. For example, an early version of Mathematica (a tool for mathematical
manipulation) gave an incorrect answer for the derivative of a well-known function.
It would have been easy to have simply used this answer, knowing that Math-
ematica performs many complex manipulations flawlessly. Fortunately the main
users of Mathematica, at the time, were scientists, who are a naturally sceptical
breed and so the error was discovered. In a CD-ROM encyclopedia, a Norwegian
right-wing political party was listed as a neo-Nazi organization. This was an unfair
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exaggeration of the truth, with potentially damaging consequences abroad, had
this party ever been elected to government. The fact that the information was
on a CD-ROM containing a body of essentially correct information would tend to
convince readers of its general truth.

The book you are reading, by virtue of being in print, also has an authority
and the power to mislead. If it were written, ‘the correct way to do X is Y’, it might
appear that that was the only correct solution to the problem. That might be true,
but it might also only be my flawed opinion. That is one of the reasons why the
emphasis of this book is on becoming independent and thinking for oneself. To
summarize: most users look up to computers in awe; for that reason, the computer
is an authority symbol with a great potential for abuse. System administrators
need to be on the look out for problems like this, which can damage credibility
and manipulate users.

Principle 23 (Perceived authority). Computers have a perceived authority.
Administrators need to be on the look out for abuses of that authority, whether by
accident or by design.

5.9.4 The SAGE code of ethics

The System Administrator’s Guild has developed its own professional guidelines
for system administrators. We cite them here for reference. The original draft of
this document was written by Hal Miller, and the revised draft by Lee Damon.

Original draft

Background: Computers, and particularly networked systems, have become as
necessary a part of life as the telephone. The functionality they bring to home
and office environments is now taken for granted as a part of daily life. As the
world moves toward becoming a paperless society, the information stored and
handled in the computing environment becomes more critical to that lifestyle.
Proper operation, support and integrity of computing assets is regarded as being
as important as that of the telephone system in most countries today.

System administrators, under any title and whether or not they are members
of a professional organization, are relied upon to ensure proper operation, support
and protection of those computing assets. Unlike most previous technological
advances, any problem with a computer system may negatively impact millions
of people world-wide, thus such protection is more crucial than equivalent roles
within other technologies. The ever-increasing reliance upon computers in all parts
of society has led to system administrators having access to more information,
particularly information of critical importance to the users, thus increasing the
impact that any mis-step may have.

The scope of the system administrator’s responsibilities is wide. Users rely
upon the advice, planning, maintenance and repair tasks performed, whether
pro-actively or reactively performed. System administrators are expected to have
a good understanding of what is available in the vendor world, and what the user
community may require in the foreseeable future.
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With such responsibilities upon the shoulders of these individuals, it is impor-
tant that all computer users and system administrators understand the norms
and principles to be applied to the task. A code of ethics supplies these norms
and principles as canons of general concepts. Such a code must be applied by
individuals, guided by their professional judgment, within the confines of the
environment and situation in which they may be.

The code sets forth commitments, responsibilities and requirements of mem-
bers of the system administration profession within the computing community.
As used within this document, the word ‘users’ applies not only to those
computer-utilizing members of that computing community who call upon sys-
tem administrators for support, but also to those system administrators, and even
to management personnel who may not actually be using a computer.

This Code of Ethics has as its purposes the following:

• to provide a set of codified guidelines for ethical directions that system
administrators must pursue;

• to act as a reference for construction of local site acceptable use policies;

• to enhance the professionalism and image of the Guild and of its individual
members by promoting ethical behavior;

• to act as an ‘industry standard’ reference of behavior in difficult situations,
as well as in common ones;

• to establish a baseline for addressing more complex issues.

This Code is not:

• a set of enforceable laws;

• an enumeration of procedures;

• proposed responses to situations;

• all-encompassing;

• an enumeration of sanctions and punishments.

1. Canon 1

The integrity of a system administrator must be beyond reproach.

A system administrator may come into contact with privileged information on
a regular basis and thus has a duty to the owners of such information to both
keep confidential and to protect the confidentiality of all such information.

Protecting the integrity of information includes ensuring that neither sys-
tem administrators nor unauthorized users unnecessarily access, make any
changes to, or divulge data not belonging to them. It includes all appropriate
effort, in accordance with industry-accepted practices, by the system admin-
istrator to enforce security measures to protect the computers and the data
contained on them.
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System administrators must uphold the law and policies as established for
the systems and networks they manage, and make all efforts to require the
same adherence from their users. Where the law is not clear, or appears to be
in conflict with their ethical standards, system administrators must exercise
sound judgment, and are also obliged to take steps to have the law upgraded
or corrected as is possible within their jurisdiction.

2. Canon 2

A system administrator shall not unnecessarily infringe upon the rights of
users.

System administrators shall not act with, nor tolerate from others, discrimi-
nation between authorized users based on any commonly recognized grounds
(e.g., age, gender, religion etc.), except where such discrimination (e.g. with
respect to unauthorized users as a class) is a necessary part of their job, and
then only to the extent that such treatment is required in dealing with the
issue at hand.

System administrators will not exercise their special powers to access any pri-
vate information other than when necessary to their role as system managers,
and then only to the degree necessary to perform that role, while remaining
within established site policies. Regardless of how it was obtained, system
administrators will maintain the confidentiality of all private information.

3. Canon 3

Communications of system administrators with all whom they may come in
contact shall be kept to the highest standards of professional behavior.

System administrators must keep users informed about computing matters
that might affect them, such as conditions of acceptable use, sharing and
availability of common resources, maintenance of security, occurrence of
system monitoring, and any applicable legal obligations. It is incumbent
upon the system administrator to ensure that such information is presented
in a manner calculated to ensure user awareness and understanding.

Honesty and timeliness are keys to ensuring accurate communication to
users. A system administrator shall, when advice is sought, give it impartially,
accompanied by any necessary statement of the limitations of personal
knowledge or bias. Any potential conflicts of interest must be fully and
immediately declared.

4. Canon 4

The continuance of professional education is critical to maintaining currency
as a system administrator.

Since technology in computing continues to make significant strides, a sys-
tem administrator must take an appropriate level of action to update and
enhance personal technical knowledge. Reading, study, acquiring training,
and sharing knowledge and experience are requirements to maintaining cur-
rency and ensuring the customer base of the advantages and security of
advances in the field.
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5. Canon 5

A system administrator must maintain an exemplary work ethic.

System administrators must be tireless in their effort to maintain high levels
of quality in their work. Day to day operation in the field of system adminis-
tration requires significant energy and resiliency. The system administrator
is placed in a position of such significant impact upon the business of
the organization that the required level of trust can only be maintained by
exemplary behavior.

6. Canon 6

At all times, system administrators must display professionalism in the
performance of their duties.

All manner of behavior must reflect highly upon the profession as a whole.
Dealing with recalcitrant users, upper management, vendors or other system
administrators calls for the utmost patience and care to ensure that mutual
respect is never at risk.

Actions that enhance the image of the profession are encouraged. Actions
that enlarge the understanding of the social and legal issues in computing are
part of the role. System administrators are obliged to assist the community
at large in areas that are fundamental to the advancement and integrity of
local, national and international computing resources.

New draft

As a member of the international community of systems administrators, I will be
guided by the following principles:

1. Fair treatment

I will treat everyone fairly. I will not discriminate against anyone on grounds
such as age, disability, gender, sexual orientation, religion, race, national
origin, or any other non-business related issue.

2. Privacy

I will only access private information on computer systems when it is neces-
sary in the course of my duties. I will maintain and protect the confidentiality
of any information to which I may have access, regardless of the method by
which I came into knowledge of it. I acknowledge and will follow all relevant
laws governing information privacy.

3. Communication

I will keep users informed about computing matters that may affect them –
such as conditions of acceptable use, sharing of common resources, main-
tenance of security, occurrence of system monitoring, and any relevant legal
obligations.
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4. System integrity

I will strive to ensure the integrity of the systems for which I have responsi-
bility, using all appropriate means – such as regularly maintaining software
and hardware; analyzing levels of system performance and activity; and, as
far as possible, preventing unauthorized use or access.

5. Cooperation

I will cooperate with and support my fellow computing professionals.
I acknowledge the community responsibility that is fundamental to the
integrity of local, national, and international network and computing
resources.

6. Honesty

I will be honest about my competence and will seek help when necessary.
When my professional advice is sought, I will be impartial. I will avoid
conflicts of interest; if they do arise I will declare them and recuse (sic) myself
if necessary.

7. Education

I will continue to update and enhance my technical knowledge and other
work-related skills through training, study, and the sharing of information
and experiences with my fellow professionals. I will help others improve their
skills and understanding where my skills and experience allow me to do so.

8. Social responsibility

I will continue to enlarge my understanding of the social and legal issues
relating to computing environments. When appropriate, I will communicate
that understanding to others and encourage the writing and adoption of
policies and laws about computer systems consistent with these ethical
principles.

9. Quality

I will be honest about the occurrence and impact of mistakes, and where
possible and appropriate I will attempt to correct them.

I will strive to achieve and maintain a safe, healthy, and productive workplace.

10. Ethical responsibility

I will lead by example, maintaining a consistently high ethical standard and
degree of professionalism in the performance of all my duties.

5.9.5 Responsibility for actions and conflicts of interest

How responsible are we for our actions and inactions? Everyone in a position of
responsibility for others walks a fine ethical line. The problem is that a society
binds everyone together in a tight web of responsibility. We are so used to
such a web that we often ignore the subtle responsibilities like politeness and
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consideration for others, and focus on ‘larger’ issues where quantities of greater
value are at stake.

Users tend to think locally, but the power of the Internet is to allow them to
act globally. Bad behavior on the net is rather like tourists who travel to other
countries and behave badly, without regard for local customs. Users are not used
to the idea of being ‘so close’ to other cultures and policies. Guidelines for usage
of the system need to encompass these issues, so that users are forced to face up
to their responsibilities.

Principle 24 (Conflicts of interest). The network reduces the logical distance
to regions where different rules and policies apply. If neighbors do not respect
each others’ customs and policies, conflict (even information warfare) can be the
result.

If a single user decides to harass another domain, with different customs, then
it becomes the system administrator’s problem, because he or she is the first
point of contact for the domain. System administrators have to mediate in such
conflicts and avoid escalation that could lead to information warfare (spamming,
denial of service attacks etc.) or even real-world litigation against individuals or
organizations. Normally, an organization giving a user access to the network is
responsible for that user’s behavior.

Responsibility for actions also has implications for system administrators
directly. For example, are we responsible for deploying unsafe systems even if
we do not know that they are unsafe? Are we responsible for bad software? Is
it our responsibility to know? Is it even possible to know everything? As with all
ethical issues, there is no fixed line in the sand for deciding these issues.

The responsibility for giving careless advice is rather easier to evaluate, since
it is a matter of negligence. One can always adopt quality assurance mechanisms,
e.g. seek peer review of decisions, ensure proper and achievable goals, have a
backup plan and adequate documentation.

Even knowing the answer, there is the issue of how it is implemented. Is it
ethical to wait before fixing a problem? (Under what circumstances?) Is it ethical
of users to insist on immediate action, even if it means a system administrator
working unreasonable hours?

5.9.6 Harassment

Organizations are responsible for their users, just as countries are responsible for
their citizens. This also applies in cyberspace. An information medium, like the
Internet, is a perfect opportunity for harassing people.

Principle 25 (Harassment). Abuse of a public resource or space may be viewed
as harassment by others sharing it. Abuse of one user’s personal freedom to
others’ detriment is an attack against their personal freedoms.

Example 4. Is spam mail a harassment or a right to freedom of speech? Dealing
with spam mail costs real money in time and disk space. Is poster advertising
harassment on the streets or a freedom of speech?
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Harassment can also touch on issues like gender, beliefs, sexual persuasion
and any other attribute that can be used to target a group. Liability for libelous
materials is a potential problem for anyone that is responsible for individuals,
since a certain fraction of users will not obey policy for whatever reason.

The question of how to deal with harassment is equally tricky. Normally
one prefers law enforcement to be sanctioned by society at large, i.e. we prefer
police forces to vigilante groups and gang-warfare. However, consider what E-
mail has done to the world. It has removed virtually every cultural barrier for
communication. It belongs to no country, and cannot be controlled by anyone. In
that instance, there is no official body capable of enforcing or even legislating on
E-mail realistically.

Example 5. The Realtime Black Hole List (RBL) is a database of known E-mail
abusers that was created essentially by an Internet vigilante group that was tired
of dealing with spam. Known spammers were entered into a database that is
accessible to everyone. Mail programs are thus able to check for known spammers
before accepting mail from them. While this idea seems to work and might even be
necessary, it flies in the face of conventional civic practice in many countries, to
allow a random group to set up such a service, however well-intentioned the service
may be. See http://www.mail-abuse.org.

Clearly, the Internet distorts many of our ideas about law-making and enforce-
ment.

5.9.7 Privacy in an open network

As the information age opens its sluices and pours information over us in every
imaginable form, by every imaginable medium, carving ourselves a quiet space
for private thoughts is becoming the central challenge for this new age. The right
to privacy has long been an issue in societies around the world, but the vast
connectivity coupled to light-speed resources for manipulating data present us
with ways for invading privacy that we have never seen the like of before.

• Software manufacturers have begun to include spy-software that monitors
user behavior and reports it to interested parties: advertising companies, law
enforcement agencies etc.

• Have you ever read the license agreements that you click ‘accept’ to, when
installing software? Some of these contain acceptance clauses that allow
software manufacturers to do almost anything to your computer.

• Companies (e.g. search engines) now exist that make a living from data
mining – i.e. finding out behavioral information from computer log files. Is
this harassment? That depends very much on one’s point of view.

• In recent years, several research organizations and groups have used the
freedom of the Internet to map out the Internet using programs like ping and
traceroute. This allows them to see how the logical connections are made,
but it also allows them to see what machines are up and down. This is a form
of surveillance.
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Example 6. In the military actions on Kosovo and the former Yugoslavia, scientists
were able to follow the progress of the war simply by pinging the infrastructure
machines of the Yugoslavian networks. In that way, they were able to extract
information about them and their repair activities/capabilities simply by running a
program from their office in the US.

Clearly, there are information warfare issues associated with the lack of privacy
of the Internet, or indeed any public medium that couples large numbers of people
together. Is it ethical to ping someone? Is it ethical to use the process list
commands in operating systems to see what other users are doing?

Example 7. Mobile technologies rely on protocols that need to understand the
location of an individual in relation to transmitters and receivers. Given that the
transmitters have a fixed location, it is possible (at least in principle) to use the very
technology that makes freedom of movement possible, to trace and map out a
user’s motion. Who should have access to this information? What is a system
administrator’s role in protecting user privacy here?

Where does one draw the line on the ethical usage of these materials?

5.9.8 User surveillance

The dilemma of policing any society is that, in order to catch criminals, one has
to look for them among the innocent. Offenders do not identify themselves with
T-shirts or special hairstyles, so the eye of scrutiny is doomed to fall on the
innocent most of the time.

One of the tools in maintaining order, whether it be local policy, national or
international law, is thus surveillance. It has been argued that the emergence of a
virtual society (cyberspace) leaves regular police forces ill-equipped to detect crime
that is committed there. Similarly, local administrators often feel the need to scan
public resources (disks and networks) for transgressions of policy or law.

Some governments (particularly the EU and the US government) have tried to
push through legislation giving greater powers for conducting surveillance. They
have developed ways of cracking personal encryption. At the time of writing, there
are rumours of an FBI Trojan horse called Magic-Lantern that is used to obtain
PGP and other encryption keys from a computer, thus giving law enforcement the
power to listen in on private conversations. In the real world, such wire-tapping
requires judicial approval. In cyberspace, everyone creates their own universe and
the law is neither clear nor easily enforceable.

The tragic events of 11th September 2001, surrounding the destruction of the
World Trade Center in New York, have allowed governments to argue strongly
for surveillance in the name of anti-terrorism. This seems, on the one hand, to
be a reasonable idea. However, large quantities of data are already monitored by
governments. The question is: if the existing data could not be effectively used
to avoid terrorist attacks from happening, how will even more data do so in the
future? Many believe it will not, and that our privacy will be invaded and some
people will get a very good profile of who we are talking to and for how long, who
we have exchanged E-mails with etc. Such information could be used for corrupt
purposes.
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Richard Stallman of the Free Software Foundation expresses it more sharply:
‘When the government records where you go, and who you talk with, and what
you read, privacy has been essentially abolished.’

The EU Parliament decided, contrary to the basic statement of the directive
about data protection, and the recommendations of the committee for civil rights
in the European Parliament, to say ‘yes’ to data retention by Internet service
providers without evidence. Thus the member countries are empowered to enact
national laws about retention of digital network data, in open disregard of the EU
Directive on data protection.

• Should ISPs record surveillance data, IP addresses, E-mail message IDs etc?

• Who should have access to this?

Europol wishlist

In the European Union, police forces have published a list of information they
would like to have access to, from Internet service providers and telecommunica-
tions companies. If they have their way, this will present a great burden in real
cost of delivering computing services to these companies.

1. Network

(NAS) Access logs specific to authentication and authorization servers such
as TACACS+ (Terminal Access Controller Access Control System) or RADIUS
(Remote Authentication Dial in User Service) used to control access to IP
routers or network access servers

Member States comments:

A Minimum List

• Date and time of connection of client to server

• User-id and password

• Assigned IP address NAS Network

• Attached storage IP address

• Number of bytes transmitted and received

• Caller Line identification (CLI)

B Optional List

• User’s credit card number / bank account for the subscription payment

2. E-mail servers

SMTP (Simple Mail Transfer Protocol) Member States comments:

Minimum List

• Date and time of connection of client to server

• IP address of sending computer



5.9. ETHICAL CONDUCT OF ADMINISTRATORS AND USERS 185

• Message ID (msgid)

• Sender (login@domain)

• Receiver (login@domain)

• Status indicator

POP (Post Office Protocol) log or IMAP (Internet Message Access Protocol) log

Member States comments:

Minimum List

• Date and time of connection of client to server

• IP address of client connected to server

• User-id

• In some cases identifying information of E-mail retrieved

3. File upload and download servers

FTP (File Transfer Protocol) log

Member States comments:

A Minimum List

• Date and time of connection of client to server

• IP source address

• User-id and password

• Path and filename of data object uploaded or downloaded

B Optional List

• Web servers

• HTTP (HyperText Transfer Protocol) log

Member States comments:

A Minimum List

• Date and time of connection of client to server

• IP source address

• Operation (i.e. GET command)

• Path of the operation (to retrieve HTML page or image file)

• Those companies which are offering their servers to accommodate web
pages should retain details of the users who insert these web pages
(date, time, IP, UserID etc.)

B Optional List

• ‘Last visited page’

• Response codes
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5.9.9 Digital cameras

Face recognition is now possible with a high level of accuracy. If cameras are
attached to computers and they can be accessed by anybody, then anybody can
watch you.

5.10 Computer usage policy

Let us formulate a generic policy for computer users, the like of which one might
expect company employees to agree to. By making this generic, we consider all
kinds of issues, not all of which are appropriate for every environment.

A user’s behavior reflects on the organization that houses him or her. Computer
systems are uniforms and flags for companies (as well as for public services). It is
therefore generally considered an organization’s right to expect its users to comply
with certain guidelines of behavior.

Information Technology Policy Documents are becoming more widely used.
Their practice has to be recommended, if only to make it clear to everyone involved
what is considered acceptable behavior. Such documents could save organizations
real money in law-suits. The policy should include:

• What all parties should do in case of dismissal

• What all parties should do in case of security breach

• What are users’ responsibilities to their organization?

• What are the organization’s responsibilities to their users?

The policy has to take special care to address the risks of using insecure
operating systems (Windows 95, 98, ME and Macintosh versions prior to MacOSX),
since these machines are trivially compromised by careless use.

5.10.1 Example IT policy document for a company

1. Why do we need a policy?

As our dependence on technology increases, so do the risks and opportunities
for misuse. We are increasingly vulnerable to threats from outside and inside
the organization, both due to carelessness and malice.

From our clients’ viewpoint: we need to be perceived as competent and
professional in our ability to conduct our business electronically.

From our company’s perspective: we need to maximize the benefits and
reduce the risks of using information technology and protect company assets
(including reputation).

From your viewpoint: we need to protect your interests as an individual in a
community, and reduce the risk of your liability for legal damages.

These policy guidelines must be adhered to at all times to ensure that
all users behave in a professional, legal and ethical manner. Failure to
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do so may result in disciplinary action, including dismissal and legal
action.

2. The network

For the purpose of this policy, we define ‘the network’ to mean the company
computer and telephone network, including all of its hardware and software.

The use of the network is not private. The company retains the right to
monitor the use of the network by any user, within the boundaries of national
law. All users are obliged to use company resources in a professional, ethical
and lawful manner.

Material that is fraudulent, harassing or offensive, profane, obscene, intim-
idating, defamatory, misleading or otherwise unlawful or inappropriate may
not be displayed, stored or transmitted using the network, by any means, or
in any form (including SMS).

3. Security

Any hardware or software that is deemed a security risk may be disconnected
or de-installed at any time, by the system administrator.

User accounts are set up, managed and maintained by the system adminis-
trators.

Users accessing the network must have authorization by access-rights, pass-
word or by permission of the owner of the information.

Users must take reasonable precautions to prevent unauthorized access
to the network. This includes leaving equipment unattended for extended
periods while logged on.

Users must not attempt to gain unauthorized access to restricted information.

Passwords are provided to help prevent unauthorized access to restricted
areas of the network. Users must not log on to any system using another
user’s password or account without their express permission.

Under no circumstances should any user reveal his/her password to anyone
else, even by consent.

Users have a responsibility to safeguard passwords. They must not be written
down on paper, stored unprotected online, or be located in readable form
anywhere near a network terminal.

4. Copyright

Copyright is a statutory property right which protects an author’s interest in
his or her work. The right exists as soon as the work is created and continues
to exist for the lifetime of the author and beyond, during which time the
owner of the copyright may bring actions for infringement.

International copyright law protects a copyright owner’s interest by prevent-
ing others from unlawfully exploiting the work that is protected. There are
no registration requirements for the legal existence of copyright. Copyright
subsists in most materials that are found on the Internet, including imagery
and databases.
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Copyright is infringed when a copyright work is copied without the consent of
the copyright owner. Downloading information from any source constitutes
copying. Unauthorized copy-cut-pasting from any text, graphical or media
source may be in breach of copyright, as may copying, distributing or even
installing software.

Many information sites express legal terms by which materials may be used.
Users should refer to those terms and conditions before downloading any
materials.

5. Data protection (e.g. UK)

Any person using a computer may be a data processor. Every individual is
responsible for maintaining confidentiality of data by preventing unautho-
rized disclosure.

Personal data are legally defined as data that relate to a living individual who
can be identified from those data, or from those and other data in possession
of the data user. The use of personal data is governed by law (e.g. the UK
Data Protection Act 1998).

The act lays out the following principles of data protection:

• Personal data shall be processed fairly and lawfully and such processing
must comply with at least one of a set of specified conditions.

• Personal data shall be obtained only for one or more specified and lawful
purposes, and shall not be processed in any manner incompatible with
that purpose or those purposes.

• Personal data shall be adequate, relevant and not excessive in relation
to the purpose or purposes for which they are processed.

• Personal data shall be accurate and, where necessary, up to date.

• Personal data processed for any purpose or purposes shall not be kept
for longer than is necessary for that purpose or those purposes.

• Personal data shall be processed in accordance with the rights of data
subjects under the Act.

• Appropriate technical and organizational measures shall be taken
against unauthorized or unlawful processing of personal data and
against accidental loss or destruction of, or damage to, personal data.

• Personal data shall not be transferred to a country or territory outside
the European Economic Area unless that country or territory ensures an
adequate level of protection for the rights and freedoms of data subjects
in relation to the processing of personal data.

The rules concerning the processing of personal data are complex. If in any
doubt as to their interpretation, users should consult legal advice.

6. E-mail and SMS

All electronic messages created and stored on the network are the property
of the company and are not private. The company retains the right to access
any user’s E-mail if it has reasonable grounds to do so.
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The company E-mail system may be used for reasonable personal use,
provided it does not interfere with normal business activities or work, and
does not breach any company policy.

Users should be aware that:

• E-mail is a popular and successful vehicle for the distribution of com-
puter viruses.

• Normal E-mail carries the same level of privacy as a postcard.

• E-mail is legally recognized as publishing and is easily recirculated.

• Users should take care to ensure that they are not breaching any
copyright or compromising confidentiality of either the company or its
clients or suppliers by sending, forwarding or copying an E-mail or
attachment.

• Nothing libelous, harassing, discriminatory or unlawful should be writ-
ten as part of any message.

E-mail is often written informally. Users should apply the same care and
attention as in writing a conventional business correspondence, including
ensuring accurate addressing.

Users must not participate in chain or junk E-mail activities (spam); mass
E-mailing should be avoided whenever possible.

E-mail attachments provide a useful means of delivering files to other users.
However, careful consideration should be paid to ensure that the recipient
can read and make use of the data.

• Not all file types are readable by all computers.

• Many sites have a maximum acceptable file size for E-mail.

• The recipient must have suitable software installed in order to display a
file.

In order to prevent the spread of viruses, users should not attempt to open
any attachment from an unknown or unexpected source. Certain file types
may be blocked by mail-filtering software.

Users must not disguise themselves or falsify their identity in any message.

Where provided, users must ensure that company disclaimers are included
when sending E-mail.

7. The World Wide Web

Access to the World Wide Web is provided for business purposes. The World
Wide Web may be accessed for limited personal use provided that such use
does not interfere with normal business practice or work, and that personal
use complies with all aspects of this policy.

The company may monitor individual use, including visits to specific web
sites.
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Access may only be sought using an approved browser, which is installed on
the user’s computer by the system administrator.

The World Wide Web is uncontrolled and unregulated. Users should therefore
be aware that there is no guarantee that any information found there is
accurate, legal or factual.

Software may only be downloaded by an authorized system administrator.

8. Transactions

Any commercial transaction made electronically must adhere to standard
ordering policy.

The company will not accept liability for any commercial transaction which
has not been subject to the appropriate approval.

The company will not accept liability for any personal transaction.

9. Hardware and software

The company provides computer, telecommunications equipment and soft-
ware for business purposes. It is the responsibility of the system administra-
tor to select, provide and maintain computer equipment in accordance with
the work required.

Users must not connect unauthorized equipment to the network, use software
that has not been provided or installed by the company, or attempt to alter the
settings of any software that compromise security or reliability. No attempt
should be made to alter the software or hardware, copy or distribute software,
or download software, including screen-savers.

Installations and upgrades may only be performed by an authorized system
administrator.

10. Surveillance

Digital cameras or audio input devices must not be connected to any com-
puter that is not specifically authorized to have one. Users must not bring
any possible surveillance device into an area where the company’s private
assets, intellectual or otherwise, are developed or stored. Employees must
not disclose any such information to persons or transmit it to any machine
or information storage device not authorized to receive it.

11. Usage

The company reserves the right to view any data stored on the network.

Users may not store personal files on the network. Any personal files can be
deleted at any time.

The network is provided to enable

• Authorized users to store and retrieve work

• Authorized users to share/exchange assets

• Backup and recovery

• Security and confidentiality of work.
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All users must store files in the appropriate areas of the network. Users who
create files on mobile devices should transfer their data to the appropriate
area on the network as soon as possible.

12. Management

Managers must ensure that they are fully aware of any potential risks when
assessing requests by users for permission to:

• Download files from the Internet

• Access additional areas of the network.

Managers may not request any action by any system administrator which
could result in a breach of any of the company policies.

5.10.2 Example IT procedure following a breach of policy

IT policy ought to contain instructions as to how users will be dealt with when
they breach policy. There are many ways of dealing with users, with varying
degrees of tolerance: reprimand, dismissal, loss of privilege etc. Clear guidelines
are important for professional conduct, so that all users are treated either equally,
or at least predictably.

5.10.3 When an employee leaves the company

A fixed policy for dismissing a member of staff can be useful when the employee
was harmful to the organization. An organization can avoid harmful lawsuits by
users who feel that they have been treated unfairly, by asking them to sign an
acceptance of the procedure. The issue of dismissal was discussed in ref. [254].

Users typically have to be granted access to disparate systems with their own
authentication mechanisms, e.g. Windows, Unix, key-cards, routers, modems,
database passwords. These must all be removed to prevent a user from being able
to change data after their dismissal.

A clear procedure is important for both parties:

• To protect an organization from a disgruntled employee’s actions.

• To protect the former employee from accusations about what he or she did
after their dismissal that they might not be responsible for.

It is therefore important to have a clear checklist for the sake of security.

• Change combination locks.

• Change door keys.

• Surrender laptops and mobile devices.

• Remove all authentication privileges.

• Remove all pending jobs in at or cron that could be logic bombs.
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Principle 26 (Predictable failure of humans). All systems fail eventually, but
they should fail predictably. Where humans are involved, we must have checklists
and guidelines that protect the remainder of the system from the failure.

Human failures can be mitigated by adherence to quality assurance schemes,
such as ISO 9000 (see section 8.12.1).

Exercises

Self-test objectives

1. List the main issues in user management.

2. Where are passwords stored in Unix-like and Windows computers?

3. What does it mean that passwords are not stored in ‘clear text’?

4. What is meant by a distributed account?

5. What special considerations are required for distributed accounts?

6. What is meant by a user shell?

7. What mechanisms exist for users to share files in Unix? What are the
limitations of the Unix model for file sharing between users? What is a
potential practical advantage of the Unix model?

8. What mechanisms are available for users to share files on Windows comput-
ers?

9. What is meant by an account policy?

10. Explain the justification for the argument ‘simplest is best’.

11. What considerations should be taken into account in designing a login
environment for users? Does this list depend on whether the account is a
distributed account or not?

12. Why is it not a good idea to log onto a computer with root or Administrator
privileges unless absolutely necessary?

13. What is meant by ‘support services’?

14. List the main elements of user support.

15. What is the nine-step approach to user support?

16. What are active and passive users?

17. What is meant by a user quota, and what is it used for?

18. What are the pros and cons of the use of disk quotas?
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19. What is meant by garbage collection of user files?

20. Why is it important to be able to identify users by their username? What role
does a password play in identifying users?

21. What are the main health risks in the use of computers?

22. List the main areas in which ethics play a role in the management of
computers.

23. What is meant by a computer usage policy? Why could such a policy be
essential for the security of a company or organization?

24. What kinds of behavior can be regarded as harassment in the context of
computer usage?

25. Which routine maintenance activities might be regarded as user-surveillance
or breaches of privacy?

Problems

1. What issues are associated with the installation of a new user account?
Discuss this with a group of classmates and try to turn your considerations
into a policy checklist.

2. Imagine that it is the start of the university semester and a hundred new stu-
dents require an account. Write an adduser script which uses the filesystem
layout that you have planned for your host to install home-directories for the
users and to register them in the password database. The script should be
able to install the accounts from a list of users provided by the university
registration service.

Start either by modifying an existing script (e.g. GNU/Linux has an adduser
package) or from scratch. Remember that installing a new user implies the
installation of enough configuration to make the account work satisfactorily
at once, e.g. Unix dot files.

3. One of the central problems in account management is the distribution of
passwords. If we are unable (or unwilling) to use a password distribution
system like NIS, passwords have to be copied from host to host. Assume that
user home-directories are shared amongst all hosts. Write a script which
takes the password file on one host and converts it into all of the different file
formats used by different Unix-like OSs, ready for distribution.

4. Consider the example of online services in section 5.7. Adapt this example
to create a model for online purchasing of documents or support services.
Explain how user security is provided and how system security is assured.

5. Write a script to monitor the amount of disk space used by each user and
warn about users that exceed a fixed quota.
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6. Consider the terminal room at your organization. Review its layout critically.
Does the lighting cause reflection in the screens, leading to eye strain? How
is the seating? Is the room too warm or too cold? How could the room be
redesigned to make work conditions better for its users?

7. Describe the available support services for users at your site. Could these be
improved? What would it cost to improve support services (can you estimate
the number of man-hours, for instance) to achieve the level of support which
you would like?

8. Analyze and comment on the example shell configuration in section 5.4.2.
Rewrite the shell configuration in bash.

9. Discuss the following: Human beings are not moral creatures, we are crea-
tures of habit. Thus law and policy enforcement is about making ethical
choices habitual ones.

10. Discuss the following: Two or three generations of users have now grown up
with computers in their homes, but these computers were private machines
which were not, until recently, attached to a network. In short, users have
grown up thinking that what they do with their computers is nobody’s
business but their own. That is not a good attitude in a network community.



Chapter 6

Models of network and system
administration

Understanding human–computer systems requires an ability to see relationships
between seemingly distinct parts of a system. Many failures and security viola-
tions result from the neglect of interrelationships within such systems. To model
the management of a complete system, we need to understand the complete
causal web.

Principle 27 (System interaction). Systems involve layers of interacting (coop-
erating and competing) components that interdepend on one another. Just as
communities are intertwined with their environments, so systems are complex
ecological webs of cause and effect. Ignoring the dependencies within a system
will lead to false assumptions and systemic errors of management.

Individual parts underpin a system by fulfilling their niche in the whole, but the
function carried out by the total system does not necessarily depend on a unique
arrangement of components working together – it is often possible to find another
solution with the resources available at any given moment. The flexibility to solve
a problem in different ways gives one a kind of guarantee as to the likelihood of a
system working, even with random failures.

Principle 28 (Adaptability). An adaptable system is desirable since it can cope
with the unexpected. When one’s original assumptions about a system fail, they
can be changed. Adaptable systems thus contribute to predictability in change or
recovery from failure.

In a human–computer system, we must think of both the human and the
computer aspects of organization. Until recently, computer systems were orga-
nized either by inspired local ingenuity or through an inflexible prescription,
dictated by a vendor. Standardizing bodies like the Internet Engineering Task
Force (IETF) and International Standards Organization (ISO) have attempted to
design models for the management of systems [59, 205]; unfortunately, these
models have often proved to be rather short-sighted in anticipating the magnitude
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and complexity of the tasks facing system administrators and are largely oriented
on device monitoring. Typically, they have followed the singular paradigm of plac-
ing humans in the driving seat over the increasingly vast arrays of computing
machinery. This kind of micro-management is not a scalable or flexible strat-
egy however. Management needs to step back from involving itself in too much
detail.

Principle 29 (System management’s role). The role of management is to
secure conditions necessary for a system’s components to be able to carry out
their function. It is not to direct and monitor (control) every detail of a system.

This principle applies both to the machines in a network, and to the organi-
zation of people using them and maintaining them. If a system is fundamentally
flawed, no amount of management will make it work. First we design a system
that functions, then we discuss the management of its attributes. This has several
themes:

• Resource management: consumables and reusables.

• Scheduling (time management, queues).

• Strategy.

More recently, the emphasis has moved away from management (especially of
devices) as a paradigm for running computer systems, more towards regulation.
This is clearly consistent with the principle above: the parts within a system
require a certain freedom to fulfill their role, without the constant interference of a
manager; management’s role, instead, moves up a level – to secure the conditions
under which the parts can be autonomous and yet still work together.

In this chapter we consider the issues surrounding functioning systems and
their management. These include:

• The structuring of organizational information in directories.

• The deployment of services for managing structural information.

• The construction of basic computing and management infrastructure.

• The scalability of management models.

• Handling inter-operability between the parts of a system.

• The division of resources between the parts of the system.

6.1 Information models and directory services

One way of binding together an organization is through a structured information
model – a database of its personnel, assets and services [181]. The X.500 standard
[167] defines:
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Definition 3 (Directory service). A collection of open systems that cooperate to
hold a logical database of information about a set of objects in the real world. A
directory service is a generalized name service.

Directory services should not be confused with directories in filesystems, though
they have many structural similarities.

• Directories are organized in a structured fashion, often hierarchically (tree
structure), employing an object-oriented model.

• Directory services employ a common schema for what can and must be stored
about a particular object, so as to promote inter-operability.

• A fine grained access control is provided for information, allowing access per
record.

• Access is optimized for lookup, not for transactional update of information.
A directory is not a read–write database, in the normal sense, but rather a
database used for read-only transactions. It is maintained and updated by a
separate administrative process rather than by regular usage.

Directory services are often referred to using the terms White Pages and Yellow
Pages that describe how a directory is used. If one starts with a lookup key for a
specific resource, then this is called White Pages lookup – like finding a number in
a telephone book. If one does not know exactly what one is looking for, but needs
a list of possible categories to match, such as in browsing for users or services,
then the service is referred to as Yellow Pages.

An implementation of yellow pages called Yellow Pages or YP was famously
introduced into Unix by Sun Microsystems and later renamed the Network Infor-
mation Services (NIS) in the 1980s due to trademark issues with British Telecom
(BT); they were used for storing common data about users and user groups.

6.1.1 X.500 information model

In the 1970s, attempts were made to standardize computing and telecommunica-
tions technologies. One such standard that emerged was the OSI (Open Systems
Interconnect) model (ISO 7498), which defined a seven-layered model for data com-
munication, described in section 2.6.1. In 1988, ISO 9594 was defined, creating
a standard for directories called X.500. Data Communications Network Directory,
Recommendations X.500–X.521 emerged in 1990, though it is still referred to as
X.500. X.500 is defined in terms of another standard, the Abstract Syntax Notation
(ASN.1), which is used to define formatted protocols in several software systems,
including SNMP and Internet Explorer.

X.500 specifies a Directory Access Protocol (DAP) for addressing a hierarchical
directory, with powerful search functionality. Since DAP is an application layer
protocol, it requires the whole OSI management model stack of protocols in order
to operate. This required more resources than were available in many small
environments, thus a lightweight alternative was desirable that could run just
with the regular TCP/IP infrastructure. LDAP was thus defined and implemented
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in a number of draft standards. The current version is LDAP v3, defined in
RFC 2251–2256. LDAP is an Internet open standard and is designed to be
inter-operable between various operating systems and computers. It employs
better security than previous open standards (like NIS). It is therefore gradually
replacing, or being integrated with, vendor specific systems including the Novell
Directory Service (NDS) and the Microsoft Active Directory (AD).

Entries in a directory are name-value pairs called attributes of the directory.
There might be multiple values associated with a name, thus attributes are said
to be either single-value or multi-valued. Each attribute has a syntax, or format,
that defines a set of sub-attributes describing the type of information that can
be stored in the direction schema. An attribute definition includes matching rules
that govern how matches should be made. It is possible to require equality or
substring matches, as well as rules specifying the order of attribute matching in a
search. Some attributes are mandatory, others are optional.

Objects in the real world can usually be classified into categories that fit into an
object hierarchy. Sub-classes of a class can be defined, that inherit all mandatory
and optional attributes of their parent class. The ‘top’ class is the root of the object
class hierarchy. All other classes are derived from it, either directly or through
inheritance. Thus every data entry has at least one object class. Three types of
object class exist:

• Abstract: these form the upper levels of the object class hierarchy; their
entries can only be populated if they are inherited by at least one struc-
tural object class. They are meant to be ‘inherited from’ rather than used
directly, but they do contain some fields of data, e.g. ‘top’, ‘Country’, ‘Device’
‘Organizational-Person’, ‘Security-Object’ etc.

• Structural: these represent the ‘meat’ of an object class, used for making
actual entries. Examples of these are ‘person’ and ‘organization’. The object
class to which an entry pertains is declared in an ‘objectClass’ attribute, e.g.
‘Computer’ and ‘Configuration’.

• Auxiliary: this is for defining special-case attributes that can be added to
specific entries. Attributes may be introduced, as a requirement, to just a
subset of entries in order to provide additional hints, e.g. both a person and
an organization could have a web page or a telephone number, but need not.

One special object class is alias, which contains no data but merely points to
another class. Important object classes are defined in RFC 2256.

All of the entries in an X.500 directory are arranged hierarchically, forming
a Directory Information Tree (DIT). Thus a directory is similar to a filesystem
in structure. Each entry is identified by its Distinguished Name (DN), which is
a hierarchical designation based on inheritance. This is an entries ‘coordinates’
within the tree. It is composed by joining a Relative Distinguished Name (RDN) with
those of all its parents, back to the top class. An RDN consists of an assignment
of an attribute name to a value, e.g.

cn=’’Mark Burgess’’
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X.500 originally followed a naming scheme based in geographical regions, but
has since moved towards a naming scheme based on the virtual geography of the
Domain Name Service (DNS). To map a DNS name to a Distinguished Name, one
uses the ‘dc’ attribute, e.g. for the domain name of Oslo University College (hio.no)

dc=hio,dc=no

Hierarchical directory services are well suited to being distributed or delegated
to several hosts. A Directory Information Tree is partitioned into smaller regions,
each of which is a connected subtree, which does not overlap with other subtree
partitions (see figure 6.1). This allows a number of cooperating authorities within
an organization to maintain the data more rationally, and allows – at least in
principle – the formation of a global directory, analogous to DNS. Availability and
redundancy can be increased by running replication services, giving a backup or
fail-over functionality. A master server within each partition keeps master records
and these are replicated on slave systems. Some commercial implementations (e.g.
NDS) allow multi-master servers.

Figure 6.1: The partitioning of a distributed directory. Each dotted area is handled by a
separate server.

The software that queries directories is usually built into application software.

Definition 4 (Directory User Agent (DUA)). A program or subsystem that
queries a directory service on behalf of a user.

For example, the name resolver library in Unix supports the system call ‘gethost-
byname’, which is a system call delegating a query to the hostname directory. The
‘name server switch’ is used in Unix to select a policy for querying a variety of
competing directory services (see section 4.6.5), as are Pluggable Authentication
Modules (PAM).
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6.1.2 Unix legacy directories

Before networking became commonplace, Unix hosts stored directory informa-
tion in the /etc file directory, in files such as /etc/passwd, /etc/services
and so on. In the 1980s this was extended by a network service that could
bind hosts together with a common directory for all hosts in a Local Area Net-
work. Sun Microsystems, who introduced the service, called it ‘YP’ or Yellow
Pages, but later had to change the name to the Network Information Service
(NIS) due to a trademarking conflict with British Telecom (BT). The original NIS
directory was very popular, but was both primitive, non-hierarchical and lacked
an effective security model and was thus replaced by ‘NIS+’ which was able to
add strong authentication to queries, and allow modernized and more flexible
schema. NIS+ never really caught on, and it is now being replaced by an open
standard LDAP.

6.1.3 OpenLDAP

The OpenLDAP implementation is the reference implementation for Unix-like
systems. Directory information can be accessed through a variety of agents, and
can be added to the Unix name server list via nsswitch.conf and Pluggable
Authentication Modules (PAM). The strength of LDAP is its versatility and inter-
operability with all operating systems. Its disadvantage is its somewhat arbitrary
and ugly syntactical structure, and its vulnerability to loss of network connectivity.
See section 7.12.2 for more details.

6.1.4 Novell Directory Service – NDS

Novell Netware is sometimes referred to as a Network Operating System (NOS) by
PC administrators, because it was the ‘add on’ software that was needed to com-
plete the aging MSDOS software for the network sharing age. Novell Netware was
originally a centralized sharing service that allowed a regiment of PCs to connect
to a common disk and a common printer, thus allowing expensive hardware to be
shared amongst desktop PCs.

As PCs have become more network-able, Netware has developed into a sophis-
ticated directory-based server suite. The Novell directory keeps information about
all devices and users within its domain: users, groups, print queues, disk volumes
and network services. In 1997, LDAP was integrated into the Novell software,
making it LDAP compatible and allowing cross-integration with Unix based hosts.
In an attempt to regain market share, lost to Microsoft and Samba (a free soft-
ware alternative for sharing Unix filesystems with Windows hosts, amongst other
things), Novell has launched its eDirectory at the core of Directory Enabled Net
Infrastructure Model (DENIM), that purports to run on Netware, Windows, Solaris,
Tru64 and Linux. Perhaps more than any other system, Novell Netware adopted a
consistent distributed physical organization of its devices and software objects in
its directory model. In Novell, a directory does not merely assist the organization:
the organization is a directory that directly implements the information model of
the organization.
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6.1.5 Active Directory – AD

Early versions of Windows were limited by a flat host infrastructure model that
made it difficult to organize and administer Windows hosts rationally by an
information model. Active Directory is the directory service introduced with and
integrated into Windows 2000. It replaces the Domain model used in NT4, and
is based on concepts from X.500. It is LDAP compatible. In the original Windows
network software, naming was based around proprietary software such as WINS.
Windows has increasingly embraced open standards like DNS, and has chosen
the DNS naming model for LDAP integration.

The smallest LDAP partition area in Active Directory is called a domain to
provide a point of departure for NT4 users. The Active Directory is still being
developed. Early versions did not support replication, and required dedicated
multiple server hosts to support multiple domains. This has since been fixed.

The schema in Active Directory differ slightly from the X.500 information model.
Auxiliary classes do not exist as independent classes, rather they are incorporated
into structural classes. As a result, auxiliary classes cannot be searched for, and
cannot be added dynamically or independently. Other differences include the fact
that all RDNs must be single valued and that matching rules are not published
for inspection by agents; searching rules are hidden.

6.2 System infrastructure organization

As we have already mentioned in section 3.1, a network is a community of
cooperating and competing components. A system administrator has to choose
the components and assign them their roles on the basis of the job which is
intended for the computer system. There are two aspects of this to consider: the
machine aspect and the human aspect. The machine aspect relates to the use of
computing machinery to achieve a functional infrastructure; the human aspect is
about the way people are deployed to build and maintain that infrastructure.

Identifying the purpose of a computer system is the first step to building
a successful one. Choosing hardware and software is the next. If we are only
interested in word-processing, we do not buy a supercomputer. On the other
hand, if we are interested in high volume distributed database access, we do not
buy a laptop running Windows. There is always a balance to be achieved, a right
place to spend money and right place to save money. For instance, since the CPU
of most computers is idle some ninety percent of the time, simply waiting for input,
money spent on fast processors is often wasted; conversely, the greatest speed
gains are usually to be made in extra RAM memory, so money spent on RAM is
usually well spent. Of course, it is not always possible to choose the hardware we
have to work with. Sometimes we inherit a less than ideal situation and have to
make the best of it. This also requires ingenuity and careful planning.

6.2.1 Team work and communication

The process of communication is essential in any information system. System
administration is no different; we see essential bi-directional communications
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taking place in a variety of forms:

• Between computer programs and their data,

• Between computers and devices,

• Between collaborating humans (in teams),

• Between clients and servers,

• Between computer users and computer systems,

• Between policy decision-makers and policy enforcers,

• Between computers and the environment (spilled coffee).

These communications are constantly being intruded upon by environmental
noise. Errors in this communication process can occur in two ways:

• Information is distorted, inserted or omitted, by faulty communication, or by
external interference,

• Information is interpreted incorrectly; symbols are incorrectly identified, due
to imprecision or external interference (see figure 6.2).

For example, suppose one begins with the simplest case of a stand-alone com-
puter, with no users, executing a program in isolation. The computer is not
communicating with any external agents, but internally there is a fetch–execute
cycle, causing data to be read from and written to memory, with a CPU performing
manipulations along the way. The transmission of data, to and from the memory,
is subject to errors, which are caused by electrical spikes, cosmic rays, thermal
noise and all kinds of other effects.

Suppose now that an administrator sends a configuration message to a host,
or even to a single computer program. Such a message takes place by some agreed
form of coding: a protocol of some kind, e.g. a user interface, or a message format.
Such a configuration message might be distorted by errors in communication,
by software errors, by random typing errors. The system itself might change
during the implementation of the instructions, due to the actions of unknown
parties, working covertly. These are all issues which contribute uncertainty into
the configuration process and, unless corrected, lead to a ‘sickness’ of the system,
i.e. a deviation from its intended function.

Consider a straightforward example: the application of a patch to some pro-
gramming code. Programs which patch bugs in computer code only work reliably
if they are not confused by external (environmental) alterations performed outside
the scope of their jurisdiction. If a line break is edited in the code, in advance, this
can be enough to cause a patch to fail, because the semantic content of the file was
distorted by the coding change (noise). One reason why computer systems have
been vulnerable to this kind of environmental noise, traditionally, is that error
correcting protocols of sufficient flexibility have not been available for making
system changes. Protocols, such as SNMP or proprietary change mechanisms, do
not yet incorporate feedback checking of the higher level protocols over extended
periods of time.
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Humans working in teams can lead to an efficient delegation of tasks, but also
an inconsistent handling of tasks – i.e. a source of noise. At each level of computer
operation, one finds messages being communicated between different parties.
System administration is a meta-program, executed by a mixture of humans and
machines, which concerns the evolution and maintenance of distributed computer
systems. It involves:

• Configuring systems within policy guidelines,

• Keeping machines running within policy guidelines,

• Keeping user activity within policy guidelines.

Quality control procedures can help to prevent teams from going astray.

computer

message

rule

noise

users

Figure 6.2: A development loop, showing the development of a computer system in time,
according to a set of rules. Users can influence the computer both through altering the
rules, altering the conditions under which the rules apply, and by directly touching the
computer and altering its configuration.

6.2.2 Homogeneity

Assuming that we can choose hardware, we should weigh the convenience of
keeping to a single type of hardware and operating system (e.g. just PCs with
NT) against the possible advantages of choosing the absolutely best hardware for
the job. Product manufacturers (vendors) always want to sell a solution based on
their own products, so they cannot be trusted to evaluate an organization’s needs
objectively. For many issues, keeping to one type of computer is more important
than what the type of computer is.

Principle 30 (Homogeneity/Uniformity I). System homogeneity or uniformity
means that all hosts appear to be essentially the same. This makes hosts
predictable for users and manageable for administrators. It allows for reuse of
hardware in an emergency.

If we have a dozen machines of the same type, we can establish a standard
routine for running them and for using them. If one fails, we can replace it with
another.
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A disadvantage with uniformity is that there are sometimes large performance
gains to be made by choosing special machinery for a particular application.
For instance, a high availability server requires multiple, fast processors, lots of
memory and high bandwidth interfaces for disk and network. In short it has to
be a top quality machine; a word-processor does not. Purchasing such a machine
might complicate host management slightly. Tools exist to help integrate hosts
with special functions painlessly.

Having chosen the necessary hardware and software, we have to address the
function of each host within the community, i.e. the delegation of specialized tasks
called services to particular hosts, and also the competition between users and
hosts for resources, both local and distributed. In order for all of this to work with
some measure of equilibrium, it has to be carefully planned and orchestrated.

6.2.3 Load balancing

In the deployment of machinery, there are two opposing philosophies: one
machine, one job, and the consolidated approach. In the first case, we buy a
new host for each new task on the network. For instance, there is a mail server
and a printer server and a disk server, and so on. This approach was originally
used in PC networks running DOS, because each host was only capable of run-
ning one program at a time. That does not mean that it is redundant today:
the distributed approach still has the advantage of spreading the load of service
across several hosts. This is useful if the hosts are also workstations which are
used interactively by users, as they might be in small groups with few resources.
Making the transition from a mainframe to a distributed solution was discussed
in a case study in ref. [308].

On the whole, modern computer systems have more than enough resources
to run several services simultaneously, so the judgment about consolidation
or distribution has to be made on a case-by-case basis, using an analytical
evaluation. Indeed, a lot of unnecessary network traffic can be avoided by placing
all file services (disk, web and FTP) on the same host, see chapter 9. It does
not necessarily make sense to keep data on one host and serve them from
another, since the data first have to be sent from the disk to the server and
then from the server to the client, resulting in twice the amount of network
traffic.

The consolidated approach to services is to place them all on just a few server-
hosts. This can plausibly lead to better security in some cases, though perhaps
greater vulnerability to failure, since it means that we can exclude users from the
server itself and let the machine perform its task.

Today most PC network architectures make this simple by placing all of the
burden of services on specialized machines which they call ‘servers’ (i.e. server-
hosts). PC server-hosts are not meant to be used by users themselves: they stand
apart from workstations. With Unix-based networks, we have complete freedom
to run services wherever we like. There is no principal difference between a
workstation and a server-host. This allows for a rational distribution of load.

Of course, it is not just machine duties which need to be balanced throughout
the network, there is also the issue of human tasks, such as user registration,
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operating system upgrades, hardware repairs and so on. This is all made simpler
if there is a team of humans, based on the principle of delegation.

Principle 31 (Delegation II). For large numbers of hosts, distributed over
several locations, a policy of delegating responsibility to local administrators with
closer knowledge of the hosts’ patterns of usage minimizes the distance between
administrative center and zone of responsibility. Zones of responsibility allow
local experts to do their jobs.

This suggestion is borne out by the model scalability arguments in section 6.3.
It is important to understand the function of a host in a network. For small

groups in large organizations, there is nothing more annoying than to have central
administrators mess around with a host which they do not understand. They will
make inappropriate changes and decisions.

Zones of responsibility have as much to do with human limitations as with
network structure. Human psychologists have shown that each of us has the
ability to relate to no more than around 150 people. There is no reason to suppose
that this limitation does not also apply to other objects which we assemble into
our work environment. If we have 4000 hosts which are identical, then that need
not be a psychological burden to a single administrator, but if those 4000 consist
of 200 different groups of hosts, where each group has its own special properties,
then this would be an unmanageable burden for a single person to cope with.
Even with special software, a system administrator needs to understand how a
local milieu uses its computers, in order to avoid making decisions which work
against that milieu.

6.2.4 Mobile and ad hoc networks

Not all situations can be planned for in advance. If we suppose that system design
can be fully determined in advance of its deployment, then we are assuming that
systems remain in the same configuration for all time. This is clearly not the case.
One must therefore allow for the possibility of random events that change the
conditions under which a system operates. One example of this is the introduction
of mobile devices and humans. Mobility and partial connectivity of hosts and users
is an increasingly important issue in system administration and it needs to be
built into models of administration.

An ‘ad hoc’ network (AHN) is defined to be a networked collection of mobile
objects, each of which has the possibility to transmit information. The union of
those hosts forms an arbitrary graph that changes with time. The nodes, which
include humans and devices, are free to move randomly thus the network topology
may change rapidly and unpredictably. Clearly, ad hoc networks are important
in a mobile computing environment, where hosts are partially or intermittently
connected to other hosts, but they are also important in describing the high level
associations between parts of a system. Who is in contact with whom? Which
ways do information flow?

While there has been some discussion of decentralized network management
using mobile agents [333], the problem of mobile nodes (and so strongly time-
varying topology) has received little attention. However, we will argue below that ad
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hoc networks provide a useful framework for discussing the problems surrounding
configuration management in all network types, both fixed and mobile. This should
not be confused with the notion of ‘ad hoc management’ [204], which concerns
randomly motivated and scheduled checks of the hosts.

6.2.5 Peer-to-peer services

Another phenomenon that has received attention in recent years is the idea of
peered networks, i.e. not hierarchical structures in which there are levels of
authority, but networks in which each user has equal authority.

The emergence of network file sharing applications, such as Napster and
Gnutella, has focused attention on an architecture known as peer-to-peer, whose
aim is to provide world-wide access to information via a highly decentralized net-
work of ’peers’. An important challenge to providing a fully distributed information
sharing system is the design of scalable algorithmic solutions. Algorithms such as
those for routing and searching peer-to-peer networks are typically implemented
in the form of an application-level protocol.

Definition 5 (Peer-to-peer application). A peer-to-peer network application
is one in which each node, at its own option, participates in or abstains from
exchanging data with other nodes, over a communications channel.

Peer-to-peer has a deeper significance than communication. It is about the
demotion of a central authority, in response to the political wishes of those
participating in the network. This is clearly an issue directly analogous to the
policies used for configuration management. In large organizations, i.e. large
networks, we see a frequent dichotomy of interest:

• At the high level, one has specialized individuals who can paint policy
in broad strokes, dealing with global issues such as software versions,
common security issues, organizational resource management, and so on.
Such issues can be made by software producers, system managers and
network managers.

• At the local level, users are more specialized and have particular needs, which
large-scale managers cannot address. Centralized control is therefore only a
partial strategy for success. It must be supplemented by local know-how, in
response to local environmental issues. Managers at the level of centralized
control have no knowledge of the needs of specialized groups, such as the
physics department of a university, or the research department of a company.
In terms of configuration policy, what is needed is the ability to accept the
advice of higher authorities, but to disregard it where it fails to meet the needs
of the local environment. This kind of authority delegation is not well catered
for by SNMP-like models. Policy-based management attempts to rectify some
of these issues [86].

What we find then is that there is another kind of networking going on: a social
network, superimposed onto the technological one. The needs of small clusters of
users override the broader strokes painted by wide-area management.

This is the need for a scaled approach to system management [47].
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6.3 Network administration models

The management of clusters of systems leads to the concept of logistic networks.
Here it is not the physical connectivity that is central to the deployment, but rather
the associative relationships and channels of communication. Here, we follow the
discussion in ref. [53].

Central management ‘star’ model

The traditional (idealized) model of host configuration is based on the idea of
remote management (e.g. using SNMP). Here one has a central manager who
decides and implements policy from a single location, and all networks and hosts
are considered to be completely reliable. The manager must monitor the whole
network, using bi-directional communication. This leads to an N : 1 ratio of clients
to manager (see figure 6.3). This first model is an idealized case in which there is
no unreliability in any component of the system. It serves as a point of reference.

Controller

Figure 6.3: Model 1: the star network. A central manager maintains bi-directional commu-
nication with all clients. The links are perfectly reliable, and all enforcement responsibility
lies with the central controller.

The topology on the left-hand side of figure 6.3 is equivalent to that on the
right-hand side. The request service capacity of the controller is thus:

Icontroller = I1 + I2 + · · · + IN . (6.1)

The controller current cannot exceed its capacity, which we denote by CS. We
assume that the controller puts out the flow of repair instructions at its full
capacity; this gives the simple maximum estimate

Irepair = CS

N
. (6.2)

The total current is limited only by the bottleneck of queued messages at the
controller, thus the throughput per node is only 1/N of the total capacity. This
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highlights the clear disadvantage of centralized control, namely the bottleneck in
communication with the controller.

Models 1 and 2: Star model in intermittently connected environment

The previous model was an idealization, and was mainly of interest for its simplic-
ity. Realistic centralized management must take into account the unreliability of
the environment (see figure 6.4).

In an environment with partially reliable links, a remote communication model
bears the risk of not reaching every host. If hosts hear policy, they must accept
and comply; if not, they fall behind in the schedule of configuration. Monitoring in
distributed systems has been discussed in ref. [3].

Controller

Figure 6.4: Model 2: a star model with built-in unreliability. Enforcement is central as in
Model 1.

The capacity of the central manager CS is now shared between the average
number of hosts 〈N〉 that is available. The result is much the same as for Model
1, the completely reliable star. This is because there is an implicit assumption
that the controller was clever enough to find (with negligible overhead) those hosts
that are available at any given time, and so to only attempt to communicate with
them – no latencies or other probabilities of unavailability were included.

This model then fails (perhaps surprisingly), on average, at the same threshold
value for N as does Model 1. If the hunt for available nodes places a non-negligible
burden on the controller capacity, then it fails at a lower threshold.

Model 3: Mesh topology with centralized policy and local enforcement

The serialization of tasks in the previous models forces configuration ‘requests’ to
queue up on the central controller. Rather than enforcing policy by issuing every
instruction from the central source, it makes sense to download a summary of the
policy to each host and empower the host itself to enforce it.
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There is still a centrally determined policy for every host, but now each host
carries the responsibility of configuring itself. There are thus two issues: i) the
update of the policy and ii) the enforcement of the policy. A pull model for
updating policy is advantageous here, because every host then has the option
to obtain updates at a time convenient to itself, avoiding confluence contentions
(clients might not even be switched on or connected to a mobile network when
the controller decides to send its information); moreover, if it fails to obtain the
update, it can retry until it succeeds. We ask policy to contain a self-referential
rule for updating itself.

The distinction made here between communication and enforcement is impor-
tant because it implies distinct types of failure, and two distinct failure metrics: i)
distance of the locally understood policy from the latest version, and ii) distance
of the host configuration from the ideal policy configuration. In other words: i)
communication failure, and ii) enforcement failure.

In this model, the host no longer has to share any bandwidth with its peers,
unless it is updating its copy of the policy, and perhaps not even then, since policy
is enforced locally and updates can be scheduled to avoid contention. The load on
the controller is also much smaller in this model, because the model does not rely
on the controller for every operation, only for a copy of its cache-able policy. The
nodes can cooperate in diffusing policy updates via flooding.1 (See figure 6.5.)

The worst case – in which the hosts compete for bandwidth, and do not use
flooding – is still an improvement over the two previous models, since the rate at
which updates of policy are required is much less than the traffic generated by
the constant to and fro of the much more specific messages in the star models.
However, note that this can be further improved upon by allowing flooding of
updates: the authorized policy instruction can be available from any number of
redundant sources, even though the copies originate from a central location. In
this case, the model truly scales without limit.

There is one caveat to this encouraging result. If the (meshed) network of
hosts is truly an ad hoc network of mobile nodes, employing wireless links, then
connections are not feasible beyond a given physical range r. In other words,
there are no long-range links: no links whose range can grow with the size of the
network. As a result of this, if the AHN grows large (at fixed node density), the
path length (in hops) between any node and the controller scales as a constant
times

√
N . This growth in path length limits the effective throughput capacity

between node and controller, in a way analogous to the internode capacity. The
latter scales as 1/

√
N [137, 193]. Hence, for sufficiently large N , the controller and

AHN will fail collectively to convey updates to the net. This failure will occur at a
threshold value defined by

Ifail(ii) = Iupdate − CS

c
√

Nthresh
= 0, (6.3)

where c is a constant. The maximal network size Nthresh is in this case proportional

to
(

CS

Iupdate

)2
, still considerably larger than for Models 1 and 2.

1Note, flooding in the low-level sense of a datagram multicast is not necessarily required, but the
effective dissemination of the policy around the network is an application-layer flood.
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Controller

Figure 6.5: Model 3 mesh topology. Nodes can learn the centrally-mandated policy from
other nodes as well as from the controller. Since the mesh topology does not assure direct
connection to the controller, each node is responsible for its own policy enforcement.

Model 4: Mesh topology, partial host autonomy and local enforcement

As a variation on the previous model, we can begin to take seriously the idea
of allowing hosts to decide their own policy, instead of being dictated to. In this
model, hosts can choose not to receive policy from a central authority, if it conflicts
with local interests. Hosts can make their own policy, which could be in conflict
or in concert with neighbors. (See figure 6.6.)

Communication thus takes the role of conveying ‘suggestions’ from the cen-
tral authority, in the form of the latest version of the policy. For instance, the
central authority might suggest a new version of widely-used software, but the
local authority might delay the upgrade due to compatibility problems with local
hardware. Local enforcement is now employed by each node to hold to its chosen
policy Pi. Thus communication and enforcement use distinct channels (as with
Model 3); the difference is that each node has its own target policy Pi which it
must enforce.

Thus the communications and enforcement challenges faced by Model 4 are
the same (in terms of scaling properties) as for Model 3. Hence this model can in
principle work to arbitrarily large N .

Model 4 is the model used by cfengine [41, 49]. The largest current clusters
sharing a common policy are known to be of the order 104 hosts, but this could
soon be of the order 106, with the proliferation of mobile and embedded devices.

Model 5: Mesh, with partial autonomy and hierarchical coalition

An embellishment of Model 4 is to allow local groups of hosts to form policy
coalitions that serve to their advantage. Such groups of hosts might belong to one



6.3. NETWORK ADMINISTRATION MODELS 211

?
?

?

?

?

?

?

?

?

?

?

?

Controller

Figure 6.6: Model 4. As in Model 3, except the hosts can choose to disregard or replace
aspects of policy at their option. Question marks indicate a freedom of hosts to choose.

department of an organization, or to a project team, or even to a group of friends
in a mobile network (see figure 6.7).

Once groups form, it is natural to allow sub-groups and thence a generalized
hierarchy of policy refinement through specialized social groups.

If policies are public then the scaling argument of Model 3 still applies since any
host could cache any policy; but now a complete policy must be assembled from
several sources. One can thus imagine using this model to distribute policy so as
to avoid contention in bottlenecks, since load is automatically spread over multiple
servers. In effect, by delegating local policy (and keeping a minimal central policy)
the central source is protected from maximal loading. Specifically, if there are S

sub-controllers (and a single-layer hierarchy), then the effective update capacity
is multiplied by S. Hence the threshold Nthresh is multiplied (with respect to that
for Model 3) by the same factor.

This model could be implemented using cfengine, with some creative scripting.

Model 6: Mesh, with partial autonomy and inter-peer policy exchange

The final step in increasing autonomy is the free exchange of information between
arbitrary hosts. Hosts can now offer one another information, policy or source
materials in accordance with an appropriate trust model. In doing so, impromptu
coalitions and collaborations wax and wane, driven by both human interests and
possibly machine learning. A peer-to-peer policy mechanism of this type invites
trepidation amongst those versed in control mechanisms, but it is really no more
than a distributed genetic algorithm. With appropriate constraints it could be
made to lead to sensible convergent behavior, or to catastrophically unstable
behavior (see figure 6.8).
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Figure 6.7: Model 5. Communication over a mesh topology, with policy choice made hier-
archically. Sub-controllers (dark nodes) edit policy as received from the central controller,
and pass the result to members of the local group (as indicated by dashed boxes). Question
marks indicate the freedom of the controllers to edit policy from above.

One example of such a collaborative network that has led to positive results is
the Open Source Community. The lesson of Open Source Software is that it leads
to a rapid evolution. A similar rapid evolution of policy could also be the result
from such exchanges. Probably policies would need to be weighted according to
an appropriate fitness landscape. They could include things like shared security
fixes, best practices, code revisions, new software, and so on.

Until this exchange nears a suitable stationary point, policy updates could be
much more rapid than for the previous models. This could potentially dominate
configuration management behavior.

Note that this model has no center. Hence it is, by design, scale-free: all
significant interactions are local. Therefore, in principle, if the model can be made
to work at small system size, then it will also work at any larger size.

In practice, this model is subject to potentially large transients, even when it is
on its way to stable, convergent behavior. These transients would likely grow with
the size of the network. Here we have confined ourselves to long-time behavior for
large N – hence we assume that the system can get beyond such transients, and
so find the stable regime.

Finally, we note that we have only assessed the goodness of a given model
according to its success in communicating and enforcing policy. When policy
is centrally determined, this is an adequate measure of goodness. However, for
those cases in which nodes can choose policy, one would also like to evalu-
ate the goodness of the resulting choices. We do not address this important
issue here. We note however that Model 6, of all the models presented here,
has the greatest freedom to explore the space of possible policies. Hence an
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Figure 6.8: Model 6. Free exchange of policies in a peer-to-peer fashion; all nodes have
choice (dark). Nodes can form spontaneous, transient coalitions, as indicated by the dashed
cells. All nodes can choose; question marks are suppressed.

outstanding and extremely nontrivial question for this peer-to-peer model of con-
figuration management is: can such a system find ‘better’ policies than centralized
systems?

In short, this model has no immediate scaling problems with respect to com-
munication and enforcement. Open questions include the scaling behavior of
transients, and the ability of this completely decentralized model to find good
policy.

6.4 Network management technologies

The ability to read information about the performance of network hardware via
the network itself is an attractive idea. Suppose we could look at a router on the
second floor of a building half a mile away and immediately see the load statistics,
or the number of rejected packets it has seen; or perhaps the status of all printers
on a subnet. That would be useful diagnostic information. Similar information
could be obtained about software systems on any host.

6.4.1 SNMP network management

The Simple Network Management Protocol (SNMP) is a protocol designed to do
just this [59, 268, 269]. SNMP was spawned in 1987 as a Simple Gateway
Monitoring Protocol, but was quickly extended and became a standard for network
monitoring. SNMP was designed to be small and simple enough to be able to run
on even minor pieces of network technology like bridges and printers. The model
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of configuration management is particularly suited to non-interactive devices
like printers and static network infrastructure that require an essentially static
configuration over long periods of time. SNMP has since been extended, with
less success, to some aspects of host management such as workstations and PC
network server configuration; however, the static model of configuration is less
appropriate here since users are constantly perturbing servers in unpredictable
ways and, combined with the unimpressive security record of early versions, this
has discouraged its use for host management.

SNMP now exists in three versions (see figure 6.9). The traditional SNMP archi-
tecture is based on two entities: managers and agents. SNMP managers execute
management applications, while SNMP agents mediate access to management
variables. These variables hold simple typed values and are arranged into groups
of scalars of single-valued variables or into conceptual tables of multi-valued vari-
ables. The set of all variables on a managed system is called the Management
Information Base (MIB).2

SNMP has often been criticized for the weak security of its agents, which are
configured by default with a clear text password of ‘public’. Version 3 of the SNMP
protocol was finally agreed on and published in December 2002 in order to address
these problems, using strong encryption methods. If or when this version becomes
widespread, SNMP will be as secure as any other network service.

CMIP (ISO)
RM.4 CMIP CMIS GDMO

TMN (ITU)
M.30

M.3010 M.3100 M.3400

CORBA (OMG)
1.0 2.0 2.6

20021980 1990 20001982 1984 1992 1994 1996 19981986 1988

SNMP (IETF)

SMI (IETF)

LDAP (IETF)
LDAP LDAPv2 LDAPv3

SMIv1 SMIv2 SMIv2 SMIv2

SMPv1 SNMPv2p SNMPv2c SNMPv3 SNMP3

CFENGINE (OUC)
1.0.0 2.0.0

Figure 6.9: A historical perspective of some network management technologies.

SNMP supports three operations on devices: read, write and notify (through
‘traps’). The management console can read and modify the variables stored on a
device (see section 7.10) and issue notifications of special events. SNMP access is

2The term MIBs is sometimes used to refer to the collection of variables on a box and, in other
contexts, to the SMI module defining the semantics, data types and names of variables.
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mediated by a server process on each hardware node (the agent), which normally
communicates by UDP/IP on ports 161 and 162. Modern operating systems often
run SNMP daemons or services which advertise their status to an SNMP-capable
manager. The services are protected by a rather weak password which is called
the community string.

Because SNMP is basically a ‘peek–poke’ protocol for simple values, its success
depends crucially on the ability of the Management Information Bases or MIBs
to correctly characterize the state of devices, and how the agents translate MIB
values into real actions. For monitoring workload (e.g. load statistics on network
interfaces, or out-of-paper signals on a printer), this model is clearly quite good.
Indeed, even host-based tools (ps, top, netstat etc.) use this approach for
querying resource tables on more complex systems. Moreover, in the case of dumb
network devices, whose behavior is essentially fixed by a few parameters or lists of
them (printers, switches etc.), this model even meets the challenge of configuration
reasonably well.

The notify functionality is implemented by ‘traps’ or events that can be config-
ured in the SNMP agent. Each event type is defined by the SNMP software of the
device being managed, e.g. Cisco routers have general traps, such as:

coldStart
linkDown
linkUp
authenticationFailure
egpNeighborLoss
reload
tcpConnectionClose
ciscoConfigManEvent

that are triggered by interface changes and management events.
The variables that exist in an MIB are formally defined in so-called MIB modules

(RFC 1213) that are written in a language called the Structure of Management
Information (SMI). The SMI provides a generic and extensible name-space for
identifying MIB variables. Due to a lack of higher level data structuring facilities,
MIB modules often appear as a patchwork of individual variable definitions rather
than a class structure in Java or other object-oriented languages. An SNMP request
specifies the information it wants to read/write by giving the name of an instance
of the variable to read or write in a request. This name is assigned in the formal
MIB module. There are standard MIB modules for address translation tables,
TCP/IP statistics and so on. These have default parameters that can be altered
by SNMP: system name, location and human contact; interface state (up/down),
hardware and IP address, IP state (forwarding gateway/not) IP TTL, IP next HOP
address, IP route age and mask, TCP state, neighbor state, SNMP trap enabling,
and so on.

Although SNMP works fairly well for monitoring clusters of static devices, its
success in managing hosts, including workstations and servers, is more ques-
tionable. Even disregarding the scalability problems noted in section 6.3, the MIB
model is very difficult to tailor to hosts where users are interacting with the system
constantly. Hosts are no longer basically predictable devices with approximately
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constant state; their state changes dynamically in response to user interaction,
and in response to the services they perform. The SNMP management philosophy,
i.e. of communicating with an agent for reading and writing, is only effective when
the rate of change of state of a device is slow, i.e. when the device changes only at
about the same rate as the rate of change of policy itself. Moreover, the complexity
of operations that can be carried out by a dumb SNMP agent, based only on MIB
‘push button’ instructions and a bilateral communication with a management
interface, is limited. Thus, in practice, SNMP can only be used to detect problems,
not to repair them. This is not so much a problem in the model, but in the manner
in which it is implemented. If SNMP agents contained on-board intelligence, then
the communication model could be retained. One is then into the territory of more
intelligent agent systems like cfengine and PIKT.

Despite the shortcomings of SNMP for host operations, many operating systems
do define their own MIBs for the collection of system performance data and even
for essential configuration parameters. Some commercial network management
systems like Hewlett Packard’s OpenView work by reading and writing MIBs
using SNMP client-server technology. Most Unix variants, Novell and NT now also
support SNMP. Their MIBs can be used even to collect information such as the
names of users who are logged on. This information is not particularly relevant to
the problem of resource management and can even be considered a security risk,
thus many remain sceptical about the use of SNMP on hosts.

In 1997, SNMPv3 was put forward in order to provide stronger security,
particularly in the authentication of the manager–agent connection. This has
helped to allay some of the fears in using SNMP where it is appropriate, but it
does not make the task of tailoring the MIB model easier.

SNMP seems to be increasing in popularity for monitoring network hardware
(routers and switches etc.), but like any public information database, it can also
be abused by network attackers. SNMP is a prime target for abuse and some sites
choose to disable SNMP services altogether on hosts, using it only for monitoring
network transport hardware.

Suggestion 7 (SNMP containment). Sites should filter SNMP packets to and
from external networks to avoid illegal access of these services by intruders.

6.4.2 OSI, TMN and others

SNMP has many competitors. The International Telecommunications Union (ITU)
has defined the Telecommunications Management Network (TMN) standards for
managing telecommunications networks [205]. It is an alternative scheme designed
for telecommunications networks and has a strong relationship with the OSI Man-
agement Model known as the Common Management Information Protocol (CMIP).
Common Object Request Broker Architecture (CORBA) is now being adopted as the
middle-ware for TMN. The Distributed Management Task Force (DMTF) developed
the Desktop Management Interface (DMI) until 1998. Moreover, central to several
configuration management schemes is LDAP, the lightweight directory service (see
section 9.8). Recently, a rival IETF group began work on a competing system to
SNMP called COPS-PR [101].
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These systems all use an abstraction based on the concept of ‘managed objects’.
A different approach is used by systems like cfengine [41] and PIKT [231], which
use descriptive languages to describe the attributes of many objects at the same
time, and agents to enforce the rules.

The ISO 7498 Open System Interconnect (OSI) Model consists of a large
number of documents describing different aspects of network communication and
management.3 Amongst these is the basic conceptual model for management of
networked computers. It consists of these issues:

• Configuration management

• Fault management

• Performance management

• Security management

• Accounting management.

Configuration management is taken to include issues such as change control,
hardware inventory mapping, software inventories and customization of systems.
Fault management includes events, alarms, problem identification, troubleshoot-
ing, diagnosis and fault logging. Performance covers capacity planning, availability,
response times, accuracy and throughput. Security discusses policy, authoriza-
tion, exceptions, logging etc. Finally, accounting includes asset management, cost
controls and payment for services.

The OSI Management Model is rather general and difficult to disagree with, but
it does not specify many details either. Its interpretation has often been somewhat
literal in systems like TMN and SNMP.

6.4.3 Java Management Extension (JMX)

Java Management Extension (JMX) is Java’s answer to dealing with managed
objects. The paradigm of monitoring and changing object contents is absorbed
into Java’s model of enterprise management. Its aim is to allow the management
of new and legacy systems alike. The basic idea of JMX is not very different to
that of SNMP, but the transport mechanisms are integrated into Java’s extensive
middleware framework.

MX defines a standard instrumentation model, called MBeans, for use in Java
programs and by Java management applications. JMX also specifies a set of
complementary services that work with MBean instrumentation to monitor and
manage Java-based applications. These services range from simple monitors and
timers to a powerful relation service that can be used to create user-defined
associations between MBeans in named roles and a mechanism for dynamically
loading new instrumentation and services at run time.

3These documents must be purchased from the ISO web site.
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6.4.4 Jini and UPnP: management-free networks

Jini is a Java derivative technology that is aimed at self-configuring ad hoc
networks. It is middle-ware that provides application programming interfaces
(API) and networking protocols for discovery and configuration of devices that
have only partial or intermittent connectivity. A similar project is Microsoft’s
Universal Plug’n’Play (UPnP), a peer-to-peer initiative that uses existing standards
like TCP/IP, HTTP and XML to perform a similar function. The aim of these
technologies is to eliminate the need for system administrators, by making devices
configure themselves.

In a traditional fixed infrastructure network, many services rely on the existence
of the fixed infrastructure. If a host is removed or a new host is added to
the network, a manual reconfiguration is often necessary. Jini and UPnP aim to
remove the need for this manual reconfiguration by providing negotiation protocols
that make computing devices much more ‘plug’n’play’. They are designed to accept
all kinds of devices, including mobile computing platforms and home appliances.
These technologies are hailed as the way forward towards pervasive computing,
i.e. a future in which embedded networked computers are in appliances, walls,
even clothes.

A Jini environment is a distributed environment. It requires a certain level
of infrastructure in order to work, but it also provides redundancy and fail-over
capabilities. Each device coupled to a network advertises its interfaces and services
to the network, including information about who is allowed to communicate with
it. Devices are represented as Java objects. Each device provides a set of services
resulting in a federation. Two services of special interest are lookup and discovery
services, which are responsible for allowing new devices to join an existing ad hoc
federation.

No central authority controls this federation of devices. Jini is peer-to-peer in
the sense that each device can act as a client or a server depending on whether it
is providing or requesting a service. Services could be anything from file-transfer
to querying temperature sensors in a building. In order to handle failures of
infrastructure, Jini only leases a resource to a client for a fixed amount of time.
After the term has expired, the client must renew the lease to continue using the
service. The lease expires for all users if a service goes down. A device may then
attempt to contact a different service provider if one is available, by looking for one
in the published list of services.

The Java Naming and Directory Interface (JNDI) is the front-end to object
naming and directory services on the network. It works in concert with other
J2EE (Java 2 Enterprise Edition) components to organize and locate services.
JNDI provides Java-enabled applications with a unified interface in an enterprise
environment (see section 9.12).

In other distributed computing models, such as CORBA, DCOM, or even Unix
RPC services, the functioning of services relies on client-server ‘stubs’ or protocol
interfaces that handle the communication standards. These need to be in place
before a device can communicate with other devices. Jini makes use of Web
services and Java code portability to allow such a stub to be downloaded through
a generic download mechanism. The only requirement is that all devices need
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to run their own Java Virtual Machine. Devices that do not have a Java virtual
machine can be adapted with ‘surrogate’ devices. A surrogate device is like a
‘ghost’ of the actual device, kept on a fixed infrastructure host. This acts as a
mediator between the actual device and a Jini interface.

These auto-configuration protocols will make future computing device config-
uration less of a headache for system administrators, and will allow us to take
advantage of short-range wireless network communication protocols like Blue-
tooth. Of course, they do not really remove the need for a system administrator,
but they push the need for administration up a layer of abstraction. Administra-
tors will no longer need to fiddle with device drivers on individual hosts; rather,
they will be tasked to maintain the Java infrastructure, including setting up the
appropriate bindings within JNDI, and similar directory services. This is a simpler
and more rational approach to device management.

6.5 Creating infrastructure

Until recently, little attention was given to analyzing methodologies for the con-
struction of efficient and stable networks from the ground up, although some case
studies for large-scale installations were made [170, 112, 289, 60, 215, 179, 129,
276, 149, 212, 164, 107]. One interesting exception is a discussion of human roles
and delegation in network management in refs. [207, 135]. With the explosion in
numbers of hosts combined in networks, several authors have begun to address
the problem of defining an infrastructure model which is stable, reproducible and
robust to accidents and upgrades [41, 108, 305, 44].

The term ‘bootstrapping an infrastructure’ was coined by Traugott and Hud-
dleston in ref. [305] and nicely summarizes the basic intent. Both Evard [108] and
Traugott and Huddleston have analyzed practical case studies of system infras-
tructures both for large networks (4000 hosts) and for small networks (as few as
3 hosts). Interestingly, Evard’s conclusions, although researched independently
of Burgess [39, 41, 55, 42, 43], clearly vindicate the theoretical model used in
constructing the tool cfengine.

6.5.1 Principles of stable infrastructure

The principles on which we would like to build an infrastructure are straightfor-
ward, and build upon the idea of predictability under load.

Principle 32 (Scalability). Any model of system infrastructure must be able to
scale efficiently to large numbers of hosts (and perhaps subnets, depending on
the local netmask).

A model which does not scale efficiently with numbers of hosts is likely to fail
quickly, as networks tend to expand rapidly beyond expectations.

Principle 33 (Reliability). Any model of system infrastructure must have relia-
bility as one of its chief goals. Down-time can often be measured in real money.
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Reliability is not just about the initial quality of hardware and software, but also
about the need for preventative maintenance.

Corollary to principle (Redundancy). Reliability is safeguarded by redundancy,
or backup services running in parallel, ready to take over at a moment’s notice [285].

Although redundancy does not prevent problems, it aids swift recovery. Barber
has discussed improved server availability through redundancy [26]. High avail-
ability clusters and mainframes are often used for this problem. Gomberg et al.
have compared scalable software installation methods on Unix and NT [132]. A
refinement of the principle of homogeneity can be stated here, in its rightful place:

Principle 34 (Homogeneity/Uniformity II). A model in which all hosts are
basically similar is i) easier to understand conceptually both for users and
administrators, ii) cheaper to implement and maintain, and iii) easier to repair
and adapt in the event of failure.

and finally:

Corollary to principle (Reproducibility). Avoid improvising system modifica-
tions, on the fly, which are not reproducible. It is easy to forget what was done and
this will make the functioning of the system difficult to understand and predict, for
you and for others.

The issue of convergence towards a stable state is central here (see section 6.7).
Basically, convergence means that a system should always get closer to an
ideal configuration, rather than farther away from it. This signals the need for
continual maintenance of the system. The convergence idea will return several
times throughout the book.

6.5.2 Virtual machine model

Traugott and Huddleston [305] have eloquently argued that one should think of
a networked system not so much as a loose association of hosts, but rather
as a large virtual machine composed of associated organs. It is a small step
from viewing a multitasking operating system as a collaboration between many
specialized processes, to viewing the entire network as a distributed collaboration
between specialized processes on different hosts. There is little or no difference in
principle between an internal communication bus and an external communication
bus. This would seem to suggest that the idea of peer association, described in
section 6.3, is to be abandoned, but that need not be the case: there are several
levels at which one can interpret the models in section 6.3. One must first specify
what a node is. What Traugott and Huddleston observe is that it makes sense to
treat tightly collaborating clusters as a unit.

Many sites adopt specific policies and guidelines in order to create this seamless
virtual environment [58] by limiting the magnitude of the task. Institutions with
a history of managing large numbers of hosts have a tradition of either adapting
imperfect software to their requirements or creating their own. Tools such as make,
which have been used to jury-rig configuration schemes [305] can now be replaced
by more specific tools like cfengine [41, 55]. As with all things, getting started is
the hard part.
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6.5.3 Creating uniformity through automation

Simple, robust infrastructure is created by planning a system which is easy
to understand and maintain. If we want hosts to have the same software and
facilities, creating a general uniformity, we need to employ automation to keep
track of changes [154, 41, 55]. To begin, we must formulate the needs of and
potential threats to system availability. That means planning resources, as in the
foregoing sections, and planning the actual motions required to implement and
maintain the system. If we can formalize those needs by writing them in the form
of a policy, program or script, then half the battle is already won, and we have
automatic reproducibility.

Principle 35 (Abstraction generalizes). Expressing tasks in an operating sys-
tem independent language reduces time spent debugging, promotes homogeneity
and avoids unnecessary repetition.

A script implies reproducibility, since it can be rerun on any host. The only
obstacle to this is that not all script languages work on all systems.

Suggestion 8 (Platform independent languages). Use languages and tools
which are independent of operating system peculiarities, e.g. cfengine, Perl,
python. More importantly, use the right tool for the right job.

Perl is particularly useful, since it runs on most platforms and is about as operating
system independent as it is possible to be. The disadvantage of Perl is that it is a
low-level programming language, which requires us to code with a level of detail
which can obscure the purpose of the code. Cfengine was invented to address this
problem. The cfengine is a very high-level interface to system administration. It
is also platform independent, and runs on most systems. Its advantage is that it
hides the low-level details of programming, allowing us to focus on the structural
decisions. We shall discuss this further below.

6.5.4 Revision control

One approach to the configuration of hosts is to have a standard set of files in
a file-base which can be simply copied into place. Several administration tools
have been built on this principle, e.g. Host Factory [110]. The Revision Control
System (RCS), designed by Tichy [302], was created as a repository for files,
where changes could be traced through a number of evolving versions. RCS
was introduced as a tool for programmers, to track bug fixes and improvements
through a string of versions. The CVS system is an extended front-end to this
system. System configuration is a similar problem, since it involves modifying the
contents of many key files. Many administrators have made use of the revision
control systems to keep track of configuration file changes, though little has been
written about it. PC management with RCS has been discussed by Rudorfer [261].
Revision control is a useful way of keeping track of text-file changes, but it does
not help us with other aspects of system maintenance, such as file permissions,
process management or garbage collection.
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6.5.5 Software synchronization

In section 3.8.9 we discussed the distribution of data amongst a network com-
munity. This technique can be used to maintain a level of uniformity in the
software used around the network. Software synchronization has been discussed
in refs. [27, 147, 282]. Distribution by package mechanisms were pioneered by
Hewlett Packard [256] with the install program. For some software packages
Hewlett Packard use cfengine as a software installation tool [55]. Distribution by
placement on network filesystems like the AFS has been discussed in [183].

6.5.6 Push models and pull models

Revision control does not address the issue of uniformity unless the contents of
the file-base can be distributed to many different hosts. There are two types of
distribution mechanism, which are generally referred to as push and pull models
of distribution.

• Push: The push model is epitomized by the rdist program. Pushing files
from a central location to a number of hosts is a way of forcing a file to be
written to a group of hosts. The central repository decides when changes
are to be sent, and the hosts which receive the files have no choice about
receiving them [203]. In other words, control over all of the hosts is forced
by the central repository. The advantage of this approach is that it can be
made efficient. A push model is more easily optimized than a pull approach.
The disadvantage of a push model is that hosts have no freedom to decide
their own fate. A push model forces all hosts to open themselves to a central
will. This could be a security hazard. In particular, rdist requires a host to
grant not just file access, but full complete privilege to the distributing host.
Another problem with push models is the need to maintain a list of all the
hosts to which data will be pushed. For large numbers of hosts, this can
become unwieldy.

• Pull: The pull model is represented by cfengine and rsync. With a pull
model, each host decides to collect files from a central repository, of its own
volition. The advantage of this approach is that there is no need to open
a host to control from outside, other than the trust implied by accepting
configuration files from the distributing host. This has significant security
advantages. It was recommended as a model of centralized system adminis-
tration in refs. [265, 55, 305]. The main disadvantage to this method is that
optimization is harder. rsync addresses this problem by using an ingenious
algorithm for transmitting only file changes, and thus achieves a significant
compression of data, while cfengine uses multi-threading to increase server
availability.

6.5.7 Reliability

One of the aims of building a sturdy infrastructure is to cope with the results
of failure. Failure can encompass hardware and software. It includes downtime
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due to physical error (power, net cables and CPUs) and also downtime due to
software crashes. The net result of any failure is loss of service. Our only defence
against actual failure is parallelism, or redundancy. When one component fails,
another can be ready to take over. Often it is possible to prevent failure with
pro-active maintenance (see the next chapter for more on this issue). For instance,
it is possible to vacuum clean hosts to prevent electrical short-circuits. It is also
possible to perform garbage collection which can prevent software error. System
monitors (e.g. cfengine) can ensure that crashed processes get restarted, thus
minimizing loss. Reliability is clearly a multifaceted topic. We shall return to
discuss reliability more quantitatively in section 13.5.10.

Component failure can be avoided by parallelism, or redundancy. One way to
think about this is to think of a computer system as providing a service which
is characterized by a flow of information. If we consider figure 6.10, it is clear
that a flow of service can continue when servers work in parallel, even if one or
more of them fails. In figure 6.11 it is clear that systems which are dependent on
other systems are coupled in series and a failure prevents the flow of service. Of
course, servers do not really work in parallel. The normal situation is to employ
a fail-over capability. This means that we provide a backup service. If the main
service fails, we replace it with a backup server. The backup server is not normally
used however. Only in a few cases can one find examples of load-sharing by
switching between (de-multiplexing) services on different hosts. Network Address
Translation can be used for this purpose (see figure 2.11).

Figure 6.10: System components in parallel, implies redundancy.

Figure 6.11: System components in series, implies dependency.

6.6 System maintenance models

Models of system maintenance have evolved by distilling locally acquired experi-
ence from many sites. In latter years, attempts have been made to build software
systems which apply certain principles to the problem of management. Network
management has, to some extent, been likened to the process of software develop-
ment in the System Administration Maturity Model, by Kubicki [187]. This work
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was an important step in formalizing system administration. Later, a formaliza-
tion was introduced by describing system administration in terms of automatable
primitives.

• Unix administrators have run background scripts to perform system checks
and maintenance for many years. Such scripts (often called sanity checking
scripts) run daily or hourly and make sure that each system is properly
configured, perform garbage cleaning and report any serious problems to
an administrator. In an immunological model, the aim is to minimize the
involvement of a human being as far as possible.

• Windows can be both easier and harder to administrate than Unix. It can be
easier because the centralized model of having a domain server running all
the network services, means that all configuration information can be left in
one place (on the server), and that each workstation can be made (at least
to a limited degree) to configure itself from the server’s files. It is harder to
administer because the tools provided for system administration tasks work
mainly by the GUI (graphical user interface) and this is not a suitable tool for
addressing the issues of hundreds of hosts.

Several generalized approaches to the management of computers in a network
have emerged.

6.6.1 Reboot

With the rapid expansion of networks, the number of local networks has outgrown
the number of experienced technicians. The result is that there are many adminis-
trators who are not skilled in the systems they are forced to manage. A disturbing
but common belief, which originated in the 1980s microcomputer era, is that
problems with a computer can be fixed by simply rebooting the operating system.
Since home computer systems tend to crash with alarming regularity, this is a
habit which has been acquired from painful experience. One learns nothing from
this procedure, however, and the same strategy can cause problems for machines
that are part of a larger system. Just because a terminal hangs, it does not mean
that the host is not working at something important.

Although rebooting or powering down can appear to solve the immediate
obstacle, and in some few cases might be the only course of action, one stands
also to lose data that might be salvaged, and perhaps interrupt the interaction of
the machine with remote hosts. Rebooting a multi-user system is dangerous since
users might be logged in from remote locations and could lose data and service.

6.6.2 Manual administration

The default approach to system management is to allow qualified humans to do
everything by hand. This approach suffers from a lack of scalability. It suffers
from human flaws and a lack of intrinsic documentation. Humans are not well-
disciplined at documenting their work, or their intended configurations. There are
also issues concerned with communication and work in a team, which can interfere
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with the smooth running of systems. When two manual administrators have a
difference of opinion, there can be contention. The relevance of interpersonal skills
in system administration teamwork was considered in ref. [168] and a cooperative
shell environment for helping to discipline work habits was considered in ref. [2].

6.6.3 Central control

Another approach to system administration is the use of control systems, in the
manner of the star model. Tivoli, HP OpenView and Sun Solstice are examples of
these. In the control approach, the system administrator follows the state of the
network by defining error conditions to look for. A process on each host reports
errors as they occur to the administrator. In this way the administrator has an
overview of every problem on the network from his/her single location and can
either fix the problems by hand as they occur (if the system supports remote
login), or distribute scripts and antidotes which provide a partial automation of
the process. The disadvantage with this system is that a human administrator
usually has to start the repair procedures by hand and this creates a bottleneck:
all the alarms go to one place to be dealt with serially. With this approach, the
amount of work required to run the system increases roughly linearly with the
number of hosts on the network.

6.6.4 Immunology (self-maintenance)

A relatively new approach to system management which is growing in popularity is
the idea of equipping networked operating systems with a simple immune system.
By analogy with the human body, an immune system is an automatic system that
every host possesses which attempts to deal with emergencies. An immune system
is the Fire, Police and Paramedic services as well as the garbage collection agencies.
In an immune system, every host is responsible for automatically repairing its
own problems, without crying warnings about what is going on to a human. This
avoids a serial bottleneck created by a human administrator. The time spent on
implementing and running this model is independent of the number of hosts on
the network.

6.7 Competition, immunity and convergence

All collective systems (including all biological phenomena) are moderated and sta-
bilized by a cooperative principle of feedback regulation. This regulating principle
is sometimes called the prey–predator scenario, or a game, because it is about
competition between different parts of a system. When one part of the system
starts to grow out of control, it tends to favor the production of an antidote which
keeps that part in check. Similarly, the antidote cannot exist without the original
system, so it cannot go so far as to destroy the original system, since it destroys
itself in the process. A balance is therefore found between the original part of the
system and its antidote. The classical example of a prey–predator model is that
of populations of foxes and rabbits. If the number of rabbits increases suddenly,
then foxes feed well and grow in numbers, eating more rabbits, thus stabilizing
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the numbers. If rabbits grow scarce, then foxes die and thus an equilibrium is
maintained. Another example of this type of behavior is to be found in the body’s
own repair and maintenance systems. The name ‘immunity’ is borrowed from the
idea that systems of biological complexity are able to repair themselves in such
a way as to maintain an equilibrium called health. The relative immunity of, for
instance, the human body to damage and disease is due to a continual equilibrium
between death, cleanup and renewal. Immunity from disease is usually attributed
to an immune system, which is comprised of cells which fight invading organisms,
though it has become clear over the years that the phenomenon of immunity is
a function of many cooperating systems throughout the entire human organism,
and that disease does not distinguish between self and non-self (body and invader)
as was previously thought. In the immunity model, we apply this principle to the
problem of system maintenance.

The immunity model is about self-sufficient maintenance and is of central
importance to all scalable approaches to network management, since it is the
only model which scales trivially with the number of networked hosts. The idea
behind immunity is to automate host maintenance in such a way as to give each
host responsibility for its own configuration. A level of automation is introduced
to every host, in such as way as to bring each host into an ideal state. What we
mean by an ideal state is not fixed: it depends on local system policy, but the
central idea of the immunity model is to keep hosts as close to their ideal state as
possible.

The immunity model has its origins in the work of John von Neumann, the
architect of modern computer systems. He was the first person to recognize
the analogy between living organisms and computers [313, 314], and clearly
understood the conceptual implications of computing machines which could repair
and maintain themselves, as early as 1948.

Automatic systems maintenance has been an exercise in tool-building for
many years. The practice of automating basic maintenance procedures has been
commonplace in the Unix world, see section 7.8.1. Following von Neumann’s
insights, the first theoretical work on this topic, addressing the need for conver-
gence, appears in refs. [41, 55]. The biological analogy between computers and
human immune systems has been used to inspire models for the detection of
viruses, principally in insecure operating systems. This was first discussed in
1994 by Kephart of IBM in ref. [175] and later expanded upon by Forrest et al.
[118, 291, 121, 119, 156, 290, 317, 155, 94, 120, 238, 93]. The analogy between
system administration and immunology was discussed independently by Burgess
in [43, 44], in the wider context of general system maintenance. References [44, 42]
also discuss how computer systems can be thought of as statistical mechanical
systems, drawing on a wide body of knowledge from theoretical physics. Inter-
estingly, ref. [44] and ref. [291], which appeared slightly earlier, point out many
of the same ideas independently, both speculating freely on the lessons learned
from human immunology, though the latter authors do not seem to appreciate the
wider validity of their work to system maintenance.

The idea of immunity requires a notion of convergence. Convergence means that
maintenance work (the counter-force or antidote) tends to bring a host to a state of
equilibrium, i.e. a stable state, which is the state we would actually like the system
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to be in. The more maintenance that is performed, the closer we approach the ideal
state of the system. When the ideal state is reached, maintenance work stops, or
at least has no further effect. The reason for calling this the immunity model is
that this is precisely the way that biological maintenance works. As long as there
is damage or the system is threatened, a counter-force is mobilized, followed by a
garbage collection and a repair team. There is a direct analogy between medicine
and computer maintenance. Computer maintenance is just somewhat simpler.

Critics of the convergence approach to system administration argue that sys-
tems should be controlled absolutely and not allowed to simply meander into a
stable state. Traugott has argued that many users are not disciplined enough
to make convergence adequate for ensuring predictability, and that hosts should
be managed absolutely by wiping out hosts that deviate from specification and
rebuilding them step by step. This approach is called congruence rather than
convergence [304]. Convergence proponents retort that convergence by ensuring
sequences of commuting atomic operations is the only reliable way to achieve a
guaranteeable state.

6.8 Policy and configuration automation

The idea of being able to automate the configuration from a high-level policy
was the idea behind cfengine. Prior to cfengine, several authors had explored the
possibilities for automation and abstraction without combining all the elements
into an integrated framework [138, 114, 154, 14]; most of these were too specific
or too low level to be generally useful.

Cfengine and PIKT [231] are system administration tools consisting of two
elements: a language and a configuration engine. Together these are used to
instruct and enable all hosts on a network about how to configure and maintain
themselves. Rather than being a cloning mechanism, cfengine takes a broader
view of system configuration, enabling host configurations to be built from scratch
on classes of host.

Cfengine is about defining the way we want all the hosts on our network to
be configured, and having them do the work themselves. PIKT is similar, but
allows a mixture of declarative and imperative programming to define host policy.
These and other tools are for automation and for definition. Because they include
language for describing system configuration at a high level, they can also be
used to express system policy in formal terms. The correct way to use cfengine is
therefore to specify and automate system policy in terms of concrete actions. See
section 7.11.

What make declarative languages different from scripting languages is the
high level at which they operate. Rather than allowing complete programming
generality, they usually provide a set of intelligent primitives for configuring and
maintaining systems. An important feature of cfengine primitives is that they
satisfy, as far as possible, the principle of convergence (see section 6.7). This
means that a policy expressed by a cfengine program can easily be made to
embody a convergent behavior. As a system inevitably drifts from its ideal state,
a cfengine policy brings it back to that ideal state. When it reaches that state,
cfengine becomes quiescent and does no more.
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Policy-based administration works from a central configuration, maintained
from one location. That central configuration describes the entire network by
referring to classes and types of host. Many abstraction mechanisms are provided
for mapping out the networks. The work of configuration and maintenance is
performed by each host separately. Each host is thus given responsibility for its
own state and the work of configuration is completely distributed. This means that
a cfengine or PIKT policy, for instance, scales trivially with the number of hosts,
or put another way, the addition of extra hosts does not affect the ability of other
hosts to maintain themselves. Traffic on servers increases at most linearly with
the number of hosts and the network is relied upon as little as possible. This is
not true of network-based control models, for instance, where network resource
consumption increases at least in proportion to the total number of hosts, and is
completely reliant on network integrity (see section 6.3).

6.9 Integrating multiple OSs

Combining radically different operating systems in a network environment is a
challenge both to users and administrators. Each operating system services a
specific function well, and if we are to allow users to move from operating system
to operating system with access to their personal data, we need to balance the
convenience of availability with the caution of differentiation. It ought to be clear
to users where they are, and what system they are using, to avoid unfortunate
mistakes. Combining different Unix-like systems is challenge enough, but adding
Windows hosts or MacIntosh technology to a primarily Unix-based network, or
vice versa, requires careful planning [37]. Integrating radically different network
technologies is not worth the effort unless there is some particular need. It is
always possible to move data between two hosts using the universally supported
FTP protocol. But do we need to have open file sharing or software compatibility?

6.9.1 Compatible naming

Different operating systems use quite different naming schemes for objects. Until
the late 1990s, Unix names could not be represented in MSDOS unless they were
no longer than eight characters. Some operating systems did not allow spaces in
filenames. Some assign and reserve special meanings for characters. The Internet
URL naming scheme has created its own naming scheme for objects, which takes
into account the service or communications channel used to access the object:

Channel://Object-name

File names are often, but not always, hierarchical. Windows introduced the notion
of ‘drives’, for instance: A:, B:, C: and so on. The Internet Protocol family uses
a hierarchical naming scheme encoded into IP addresses. The general problem
of naming objects in distributed systems has great importance to being able to
locate resources and express their locations. See ref. [71] for a discussion of this,
for example.
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Names can play a fundamental role in how we choose to integrate resources
within a system. They address both cultural and practical issues.

6.9.2 Filesystem sharing

Sharing of filesystems between different operating systems can be useful in a
variety of circumstances. File-servers, which host and share users’ files, need to
be fast, stable and capable machines. Workstations for end-users, on the other
hand, are chosen for quite different reasons. They might be chosen to run some
particular software, or on economic ground, or perhaps for user-friendliness. The
MacIntosh has always been a favorite workstation for multi-media applications.
It is often the preferred platform for music and graphical applications. Windows
operating systems are cheap and have a wide and successful software base.

There are other reasons for wanting to keep an inhomogeneous (heterogeneous)
network. An organization might need a mainframe or vector processor for intensive
computation, whose disks need to be available to workstations for collecting data.
There might be legacy systems waiting to be replaced with new machinery, which
we have to accommodate in order to run old software, or development groups
supporting software across multiple platforms. There are a dozen reasons for
integration.

What about solutions? Most solutions to the file-sharing problem are software
based. Client and server software is available for implementing network-sharing
protocols across platform boundaries. For example, client software for the Unix
NFS filesystem has been implemented for both Windows (PCNFS) and MacIntosh
system 7/8/9. This enables Windows and MacIntosh workstations to use Unix-
like hosts as file and printer servers, in much the same way as Windows servers
or Novell Netware servers provide those services. These services are adequate for
insecure operating systems, since there is no need to map file permissions across
foreign filesystems. Windows is more of a problem, however. Windows ACLs cannot
be represented in a simple fashion on a Unix filesystem.

The converse, that of making Unix files available to PCs, has the reverse
problem. While NT is capable of representing Unix file permissions, Windows
9x and the MacIntosh are not. Insecure operating systems are always a risk in
network sharing. The Samba software is a free software package which implements
Unix file semantics in terms of the Windows SMB (Server Message Block) protocols.

Netware provides an NT client called NDS (Network Directory Services) for NT
which allows NT domain servers to understand the Novell object directory model.
Clearly, there is already filesystem compatibility between PC servers. Conversely,
NT provides Netware clients and other server products can be purchased to provide
access to AS/400 mainframes. Both Novell and NT provide MacIntosh clients, and
MacIntosh products can also talk to NT and Unix servers. GNU/Linux has made a
valiant attempt to link up with most existing sharing protocols on Unix, PCs and
Apple hosts.

Mechanisms clearly exist to implement cross-platform sharing. The main ques-
tion is, how easy are these systems to implement and maintain? Are they worth
the cost in time and money?
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6.9.3 User IDs and passwords

If we intend to implement sharing across such different operating systems as
Unix and Windows, we need to have common usernames on both systems. Cross-
platform user authentication is usually based on the understanding that user-
name text can be mapped across operating systems. Clearly numerical Unix user
IDs and Windows security IDs cannot map meaningfully between systems without
some glue to match them: that glue is the username. To achieve sharing, then, we
must standardize usernames. Unix-like systems often require usernames to be no
more than eight characters, so this is a good limit to keep to if Unix-like operating
systems are involved or might become involved.

Principle 36 (One name for one object II). Each user should have the same
unique name on every host. Multiple names lead to confusion and mistaken
identity. A unique username makes it clear which user is responsible for which
actions.

Common passwords across multiple platforms is much harder than disk sharing,
and it is a much more questionable practice (see below).

6.9.4 User authentication

Making passwords work across different operating systems is often a pernicious
problem in a scheme for complete integration. The password mechanisms for
Unix and Windows are completely different and basically incompatible. The new
Mac OS Server X is based on BSD4.4 emulation, so its integration with other
Unix-like operation systems should be relatively painless. Windows, however,
remains the odd-one-out. Whether or not it is correct to merge the password
files of two separate operating systems is a matter for policy. The user bases of
one operating system are often different from the user bases of another. From a
security perspective, making access easy is not always the right thing to do.

Passwords are incompatible between Windows and Unix for two reasons: NT
passwords can be longer than Unix passwords and the form of encryption used
to store them is different. The encryption mechanisms which are used to store
passwords are one-way transformations, so it is not possible to convert one into the
other. There is no escaping the fact that these systems are basically incompatible.

A fairly recent development is the invention of Pluggable Authentication Mod-
ules (PAM) in Solaris, and their subsequent adopting in other flavors of Unix. The
PAM mechanism is an indirection mechanism for exchanging or supplementing
authentication mechanisms, for users and for network services, simply by adding
modules to a configuration file /etc/pam.conf.

Instead of being prompted for a Unix password on login, users are connected to
one or more password modules. Each module prompts for a password and grants
security credentials if the password is correctly received. Thus, for instance, users
could be immediately prompted for a Unix password, a Kerberos password and a
DCE password on login, thus removing the necessity for a manual login to these
extra systems later. PAM also supports the idea of mapped passwords, so that
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a single strong password can be used to trigger the automatic login to several
stacked modules, each with its own private password stored in a PAM database.

This is a very exciting possibility, mitigated only by a conspicuous lack of
documentation about how to write modules for PAM. PAM could clearly help in the
integration of Unix with Windows if a module for Windows-style authentication
could be written for Unix.

6.10 A model checklist

A model of system administration that encompasses cooperation and delegation
must pass some basic tests.

• What technologies are supported by the model?

• What human practices are supported by the model?

• Will the model survive a reinstallation or upgrade of the major hardware at
our site?

• Will the model survive a reinstallation or upgrade of the major software at
our site?

• Will the network and its productivity survive the loss of any component?

• Do any of the solutions or choices compromise security or open any back-
doors?

• What is more important: user freedom or system well-being (convenience or
security)?

• Do users understand their responsibilities with regard to the network? (Do
they need to be educated as part of the model?)

• Have we observed all moral and technical responsibilities with respect to the
larger network?

• Is the system easy to understand for users and for system administrators?

• Does the system function predictably and fail predictably?

If it fails one of these tests, one could easily find oneself starting again in a
year or so.

Exercises

Self-test objectives

1. What are the objectives of computer management?

2. What is the difference (if any) between management and regulation?
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3. What is meant by an information model? What information needs to be
modeled in a human–computer system?

4. What is a directory service?

5. What is meant by White Pages and Yellow Pages?

6. Describe the X.500 information model.

7. What are current popular implementations of directory services and how do
they differ?

8. What is the main problem with Sun Microsystem’s Network Information
Service (NIS) today?

9. What is meant by system infrastructure?

10. Argue for and against homogeneity of hardware and software in a computer
network.

11. What is meant by load balancing?

12. What is an ad hoc network?

13. What is meant by a peer-to-peer network?

14. Explain why a peer-to-peer network is a client-server technology, in spite of
what is sometimes claimed.

15. Explain what is meant by the star model of network management.

16. Describe the ability of the star model to cope with large numbers of machines.

17. How does intermittent connectivity (e.g. mobile communications) affect the
ability of the star model to cope with large numbers of devices?

18. What is meant by a hierarchical topology?

19. What is meant by a mesh topology?

20. Describe the SNMP management model.

21. What is an MIB?

22. Describe the Jini system of device management. How does it differ from
SNMP?

23. What are the main principles of stable infrastructure?

24. Explain the virtual machine model of human–computer networks.

25. What role does revision control play in system administration?

26. What is meant by a push model of host management? What is meant by a
pull model?
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27. Describe the OSI model for network management.

28. What is TMN?

29. What does convergence mean in the context of system administration?

30. Describe the issues in integrating multiple operating systems.

Problems

1. Discuss why system homogeneity is a desirable feature of network infras-
tructure models. How does homogeneity simplify the issues of configuration
and maintenance? What limits have to be placed on homogeneity, i.e. why
can’t hosts all be exactly identical?

2. Draw an information hierarchy for your company, college or university. Use
it to draw up a schema for building a directory service.

3. Explain what is meant by Traugott and Huddleston’s virtual machine view of
the network. Compare this view of a computer system with that of a living
organism, formed from many cooperating organs.

4. Compare the file system naming conventions in Windows and Unix. How are
devices named? How are they referred to? Are there any basic incompatibili-
ties between Unix and Windows names today?

5. Explain what is meant by the term convergence in configuration management.
What are the advantages of convergence? Are there any disadvantages?

6. What is a directory service? What is the difference between a directory service
and a name service?

7. Discuss how a directory service can bind together an organization.

8. In an administrative environment, it is often important to have the ability to
undo changes which have been made. Discuss how you might implement a
version control scheme for your system in which you could roll out and then
roll back a system to a previous state. Describe how you would implement a
scheme using

(a) A convergent policy declaration (e.g. cfengine).

(b) An imperative specification of steps (e.g. make and Perl).

9. Explain the difference between a push model and a pull model of system
administration. What are the security implications of these and how well do
they allow for delegation of responsibility in the network?

10. Discuss what special problems have to be solved in a heterogeneous network,
i.e. one composed of many different operating systems.

11. Evaluate the cfengine language primitives: are these natural and sufficient
for writing a policy that maintains any operating system? If not, what extra
primitives are needed?



234 CHAPTER 6. MODELS OF NETWORK AND SYSTEM ADMINISTRATION

12. What are the advantages of a central point of control and configuration in
network management? What are the disadvantages?

13. Suppose you have at your disposal four Unix workstations, all of the same
type. One of them has twice the amount of memory. What would you use for
DNS? Which would be a web server? Which would be an NFS server? Explain
your reasoning.

14. These days, network communities consist of many PCs with large disks
that utilize their space very poorly. Discuss a strategy for putting this spare
disk capacity to use, e.g. as a possible backup medium. Consider both the
practical and security aspects of your plan.

15. Formulate a plan for delegation of tasks within a system administration team.
Create an information model that tries to prevent members of a team from
interfering with one another, but at the same time gives no one administrator
too much power or responsibility. If one of the team falls ill, will the team
continue to function? Is the same true if a new member comes into the
group? What personal considerations are important?



Chapter 7

Configuration and
maintenance

We are now faced with two overlapping issues: how to make a computer system
operate in the way we have intended, and how to keep it in that state over a
period of time. Configuration management is the administration of state in hosts
or network hardware. Host state is configured by a variety of methods:

• Configuration text file

• XML file

• Database format (registry)

• Transmitted protocol (ASN.1).

Configuration and maintenance are clearly related issues. Maintenance is
simply configuration in the face of creeping decay. All systems tend to decay into
chaos with time. There are many reasons for this decline, from deep theoretical
reasons about thermodynamics, to the more intuitive notions above wear and tear.
To put it briefly, it is clear that the number of ways in which a system can be in
order is far fewer than the number of ways in which a system can be in a state
of disorder, thus statistically any random change in the system will move it into
disorder, rather than the other way around. We can even elevate this to a principle
to emphasize its inevitability:

Principle 37 (Disorder). Systems tend to a state of disorder unless a disciplined
policy is maintained, because they are exposed to random noise through contact
with users.

Whether by creeping laziness or through undisciplined cooperation in a team [242,
270, 340, 106], poor communication or whatever, the system will degenerate as
small errors and changes drive it forward. That degeneration can be counteracted
by repair work which either removes or mitigates the errors.
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Principle 38 (Equilibrium). Deviation from a system’s ideal state can be
smoothed out by a counteractive response. If these two effects are in balance, the
system will stay in equilibrium.

Equilibrium is a ‘fixed point’ of the system behavior. System administration is
about finding such fixed points and using them to develop policy. The time scales
over which errors occur and which repairs are made are clearly important. If we
correct the system too slowly, it will run away from us; there is thus an inherent
potential for instability in computer networks.

7.1 System configuration policy

So far our analysis of networks has been about mapping out which machines
performed what function on the network (see chapter 3 and section 3.8.6). Another
side of network setup is the policies, practices and procedures which are used to
make changes to or to maintain the system as a whole, i.e. what humans decide
as part of the system administration process.

System administration is often a collaborative effort between several admin-
istrators. It is therefore important to have agreed policies for working so that
everyone knows how to respond to ‘situations’ which can arise, without working
against one another. A system policy also has the role of summarizing the atti-
tudes of an organization to its members and its surroundings and often embodies
security issues. As Howell cites from Pogo [161], ‘We have met the enemy, and he
is us!’ A system policy should contain the issues we have been discussing in the
foregoing chapters. There are issues to be addressed at each level: network level,
host level, user level.

Principle 39 (Policy). A clear expression of goals and responses prepares a site
for future trouble and documents intent and procedure. Policy should be a protocol
for achieving system predictability.

It is crucial that everyone agrees on policy matters. Although a policy can easily
be an example of blind rule-making, it is also a form of communication. A policy
documents acceptable behavior, but it should also document what response is
appropriate in a crisis. Only then are we assured of an orchestrated response
to a problem, free of conflicts and disagreements. What is important is that the
document does not simply become an exercise in bureaucracy, but is a living
guide to the practice of network community administration. A system policy can
include some or all of the following:

• Organization: What responsibility will the organization take for its users’
actions? What responsibility will the organization take for the users’ safety.
Who is responsible for what? Has the organization upheld its responsibilities
to the wider network community? Measures to prevent damage to others and
from others.

• Users: Allowing and forbidding certain types of software. Rigid control over
space (quotas) or allow freedom, but police the system with controls. Choice of
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default configuration. A response to software piracy. A response to anti-social
behavior and harassment of others (spamming, obnoxious news postings
etc.). Are users allowed to play games, if so when? Are users allowed to chat
online? Are users allowed to download files such as MP3 or pornography?
Policy on sharing of accounts (i.e. preferably not). Policy on use of IRC
robots and other automatic processes which collect large amounts of data
off-line. Policy on garbage collection when disks become full: what files can
legitimately be deleted?

• Network: Will the network be segmented, with different access policies on
different subnets? Will a firewall be used? What ports will be open on which
subnets, and which will be blocked at the router? What services will be run?

• Mail: Limit the size of incoming and outgoing mail. Spam filtering. Virus
controls.

• WWW: Allowing or forbidding user CGI scripts. Guidelines for allowed content
of web pages. Policy regarding advertising on web pages. Load restrictions:
what to do if certain pages generate too much traffic. Policy on plagiarism
and illegal use of imagery.

• Printing: How many pages can be printed? Is printing of personal documents
allowed? Should there be a limit to the number of pages which can be printed
at one time (large documents hold up the print queue)?

• Security: Physical security of hosts. Backup schedule. Who is allowed to be
master of their own hosts? Can arbitrary users mount other users’ home
directories or mailboxes with NFS on their private PCs (this means that they
have automatic access to everyone’s personal files)? What access controls
should be used on files? Password policy (aging, how often should passwords
change) and policy on closing accounts which have been compromised.

• Privacy: Is encryption allowed? What tools will be provided for private com-
munication?

See also the discussion of policy as a system administration tool in refs. [341, 140].

7.2 Methods: controlling causes and symptoms

Component-based software development is a central theme in modern design,
and it has almost exclusively followed the path of trading control over algorith-
mic detail for limited freedoms through configurable parameters to standardized
‘methods’. Sun Microsystems’ Java technology and Microsoft’s .NET are two recent
developments that exemplify this trend. The need for configuration is thus a
feature of all modern software systems, and what was previously an issue of
programming a sequence of imperative logic, is now an issue of administrat-
ing a few basic choices. Thus programming is increasingly turning into system
administration.
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As we move ever more towards standardized methods and algorithms, the pro-
cess of programming becomes increasingly one of administering the few remaining
choices, as configuration options.

Example 4. In Java-related technologies, there is a vast library of standardized
methods for performing every kind of operation, from basic algorithms for hashing
or encryption, to graphics, to database access. Low-level details are withheld from
programmers, e.g. explicit database queries in SQL are replaced by standardized
methods that hide the implementation details, and offer parameters for customizing
usage. The issue is no longer one of creativity with basic imperative logic, but one
of combining standardized blocks and materials into a usable scheme, more like an
interior designer.

Software engineers seldom think of the process of configuring components
as a system administration issue, because ‘system administration’ is commonly
assumed to apply only to the low-level infrastructure such as hardware and
software installation. Nevertheless, it is important to understand the equiva-
lence of these issues, because many flaws in software systems are provoked and
exploited because software engineers make naive assumptions about infrastruc-
ture. Similarly, software engineers seldom think carefully about how software will
be configured in practice across large installation bases. System administrators
are thus left to improvise the best from a bad lot.

Clearly, there is a trade-off between detailed control and increasing standard-
ization.

Principle 40 (Standardized methods offer predictability). Replacing direct
low-level control with configurable high-level interfaces increases standardization
and thus predictability. If the methods are implemented correctly, this improves
quality control; if they are flawed, it becomes a systematic error, but with only a
single point of failure and repair.

This trade-off is always a dilemma in the policy-making and government of both
man and machine. There are ethical issues here also. By adopting standardized
methods, one removes freedom of choice from the end user, or programmer; it
is an authoritarian strategy that some users find disturbing, because it assumes
that a high-level, standard authority knows better than a low-level technician,
which is seldom true in a knowledge-based society; but it also has clear benefits
of simplification to offer. There is economy in standardization, and – correctly
implemented – a standard can find great leverage in the experiences of experts.
Great power requires great responsibility, however, and should not be wielded in
an inflexible way.

Example 5. The control of basic infrastructure can be a huge responsibility. We have
seen examples of this in the dominance of the Windows operating systems. The ease
with which viruses propagate, for instance, is a direct result of the permissiveness
of the operating system infrastructure. The lack of control administrators have over
the basic methods prevents them from effectively solving the problem of viruses,
except by installing counter-virus software.
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In this case, standardization to an unsatisfactory state leads to strategies for
relieving symptoms rather than curing them at source. We can elevate this to a
principle.

Principle 41 (Symptoms and cause). Inadequate control over infrastructure
demands a strategy of short-term symptom relief in lieu of a more permanent
reparation at source.

Although it is preferable to fix problems at source, it is not always possible to do
so. There will always be a need to distinguish between short-term patches and
long-term patches, since the rate of software correction is much less than the rate
at which errors are discovered.

7.3 Change management

The opposite side of the coin in configuration and maintenance is the management
of significant changes, e.g. upgrades, redesign and replacement. Can such things
be done without disruption to service? Does this idea contradict the idea of
convergence referred to in section 6.7? Planning changes of infrastructure can be
dealt with using two general strategies:

• Deconstruction followed by reconstruction.

• Change of policy description followed by convergence to a new state.

We might call these ‘change’ and ‘organic growth’ respectively. Traugott and
Huddleston introduced the idea of infrastructure management in ref. [305] to
describe the construction of systems from the bottom up. Traugott has later
argued that this infrastructure needs to be maintained in much the same way as
building it in the first place. Change management then becomes a reconstruction of
infrastructure. An ideologically ‘convergent’ approach (typified by cfengine) would
be to try to gradually change aspects of policy and allow the system to converge
towards the state associated with the change.

To date, no study has been performed to compare these two approaches for
major changes. Clearly, the larger the magnitude of a change, the closer these
two approaches must become. The amount of work required to perform large
changes through differential adjustment grows significantly with the magnitude
of the change. At some point, the benefit of adjustment rather than reconstruc-
tion becomes ambiguous. Many system administrators will doubtless feel more
comfortable with starting from scratch when large changes need to be made as a
matter of convenience.

Why would people go over to the new, if the old still works? When mak-
ing changes, one must not forget the issue of service provision and reliability.
Temporary redundancy of service is a sensible precaution in a mission-critical
environment. If something should go wrong during a change, service must con-
tinue. Securing predictability during a change is a tricky business, because the
conditions under which a system is performing its function are changing. Change
management can thus be viewed as a problem in risk or fault management. We
return to this viewpoint in section 8.8.
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7.4 Declarative languages

The idea that standardization can be achieved by providing only configuration
parameters to predefined methods naturally leads us into the area of declarative
languages, such as make or Prolog.

An imperative programming language, such as C or Perl, is a traditional
specification of the steps required to build an algorithm that alters the state of
the system from some initial state to a final one. The key feature is that the
programmer must specify the route taken to get from initial to final state. With
a declarative language, one does not say how to get from initial to final state,
but rather what the final state should be. The language itself uses its battery
of standard methods then to evaluate a solution to the problem. The result is
an extremely economical form of expression, stripped of details that are usually
irrelevant to the language user.

Cfengine is one specialized language for the purpose of configuration manage-
ment [38, 41, 55] that has features in common with Prolog [79]. A declaration
takes the form:

circumstances:

declarative actions new resulting circumstances

Thus when a certain set of circumstances arises, the declared actions are eval-
uated, leading possibly to new follow-up circumstances, with other rules to be
evaluated. Rules are evaluated in an unspecified order, using an unspecified
schedule.

The Unix tool make is similar to this, but it evaluates its dependencies both
imperatively and recursively:

circumstances: prior dependent circumstances

imperative actions

With make, users have to specify the details of how to get from the initial to the
final state using a secondary language; make is only a host framework for other
language interpreters. Cfengine, on the other hand, has expert knowledge in the
form of standard methods with special properties (see section 7.11).

7.5 Policy configuration and its ethical usage

The move towards systems built from standard configurable methods has another
aspect that is somewhat darker. Although we shall not exaggerate its importance,
it has long-term implications that are worthy of consideration by all system
designers.

The removal of control from end users can mean a removal of the detailed
knowledge required to run a system. This is a ‘dumbing down’ of the task of
system administration. Such a prolonged dumbing down can result in a loss of
the expertise required to diagnose and run the system. In turn this implies a
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polarization into those who ‘can’ and those who ‘can’t’. Will pilots one day lose the
ability to fly jet-airliners? If so, what will happen when the technology fails? Will
we one day end up slaves to a technology we no longer understand?

On the other hand, this process of absorbing common knowledge into stan-
dardized methods has been going on throughout history. It is nothing more than
the abstraction of common wisdom into law or policy, i.e. by codifying it into a
set of rules. Once an algorithm for solving a problem passes a certain threshold
of maturity, it makes sense to remove it from the realm of constant doubt by
formalizing it as policy. This involves a saving in time and effort. We no longer
have to question what is well known. Naturally, this does not exempt us from
re-evaluating that policy in the future, in new and unexpected circumstances.
Indeed, the scientific method begs us to question all common wisdom in the light
of all new circumstances.

The danger of codifying rules is that users lose their influence at each stage.
If the purpose of the system is to serve users, then policy-making has the added
responsibility to be for the greater good of a network community.

7.6 Common assumptions: clock synchronization

All software systems assume the existence of a certain reliable infrastructure.
Often, it is the lack of such a reliable infrastructure that leads to security breaches
and failures in software.

One of the most fundamental tasks in a network is to keep the clocks on
all hosts synchronized. Many security and maintenance issues depend on clocks
being synchronized correctly. Clock reliability varies enormously. The clocks on
cheap PC hardware tend to drift very quickly, whereas clocks on more expensive
workstations are often rather better at keeping time. This is therefore a particular
problem for cheap PC networks.

One option for most Unix-like systems is the rdate command, which sets the
local clock according to the clock of another host. The rdate is absent from some
operating system distributions. It can be simulated by a script:

#!/bin/sh
#
# Fake rdate script for linux - requires ssh access on server
#

echo Trying time server

DATE=‘/bin/su -c ’/usr/bin/ssh time-server date’ remote-user‘

echo Setting date string...

/bin/date --set="$DATE"

A more reliable way of keeping clocks synchronized, which works both for Unix
and for Windows, is to use the NTP protocol, or network time protocol. A time-
server is used for this purpose. The network time protocol daemon xntpd is used to
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synchronize clocks from a reliable time-server. Two configuration files are needed
to set up this service on a Unix-like host: /etc/ntp.conf and /etc/ntp.drift.
/etc/ntp.conf looks something like this, where the IP address is that of the
master time-server, whose clock we trust:

driftfile /etc/ntp.drift
authdelay 0.000047
server 128.39.89.10

The /etc/ntp.drift file must exist, but its contents are undetermined. Com-
mercial, free and open source NTP clients are available for virtually all operating
systems [67].

7.7 Human–computer job scheduling

Scheduling of work, both human and automatic, can play an important role in
the smooth functioning of a human–computer system. If repairs come too late,
unnecessary problems can be caused. If repairs are scheduled too often, it can be
wasteful and detract from other tasks. The ability for an administration system
to execute jobs at predetermined times lies at the heart of keeping control over a
changing, dynamic system.

7.7.1 The Unix cron service

Unix has a time daemon called cron: its chronometer. Cron reads a configuration
file called a crontab file which contains a list of shell-commands to execute at
regular time intervals. On modern Unix-like systems, every user may create and
edit a crontab file using the command

crontab -e

This command starts a text editor allowing the file to be edited. The contents of a
user’s crontab file may be listed at any time with the command crontab -l. The
format of a crontab file is a number of lines of the form

minutes hours day month weekday Shellcommand
0-59 0-23 1-31 1-12 Mon-Sun

An asterisk or star * may be used as a wildcard, indicating ‘any’. For example:

# Run script every weekday morning Mon-Fri at 3:15 am:

15 3 * * Mon-Fri /usr/local/bin/script

A typical root crontab file looks like this:

#
# The root crontab
#
0 2 * * 0,4 /etc/cron.d/logchecker
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5 4 * * 6 /usr/lib/newsyslog
0 0 * * * /usr/local/bin/cfwrap /usr/local/bin/cfdaily
30 * * * * /usr/local/bin/cfwrap /usr/local/bin/cfhourly

The first line is executed at 2:00 a.m. on Sundays and Wednesdays, the second at
4:05 on Saturdays; the third is executed every night at 00:00 hours and the final
line is executed one per hour on each half-hour.

In old BSD 4.3 Unix, it was only possible for the system administrator to edit
the crontab file. In fact there was only a single crontab file for all users, called
/usr/lib/crontab or /etc/crontab. This contained an extra field, namely the
username under which the command was to be executed. This type of crontab
file is largely obsolete now, but may still be found on some older BSD 4.3
derivatives.

0,15,30,45 * * * * root /usr/lib/atrun
00 4 * * * root /bin/sh /usr/local/sbin/daily 2>&1 | mail root
30 3 * * 6 root /bin/sh /usr/local/sbin/weekly 2>&1 | mail root
30 5 1 * * root /bin/sh /usr/local/sbin/monthly 2>&1 | mail root

A related service under Unix, is the at command. This executes specific batch
processes once only at a specific time. The at command does not use a configu-
ration file, but a command interface. On some Unix-like systems, at is merely a
front-end which is handled by a cron-scheduled program called atrun.

Suggestion 9 (Cron management). Maintaining cron files on every host indi-
vidually is awkward. We can use cfengine as a front-end to cron, to give us a
global view of the task list (see section 7.11.5).

7.7.2 Windows schedule service

The Windows scheduling service is similar to cron. By default, only the Admin-
istrator has access to the scheduling service. All jobs started by the scheduling
service are executed with the same user rights as the user who runs the ser-
vice itself (normally the Administrator). Some commercial replacements for the
schedule service exist, but these naturally add extra cost to the system.

When the scheduling service is running, the at command provides a user
interface for managing the queue of tasks to execute. The scheduling service is
coordinated for all hosts in a domain by the domain server, so the hostname on
which a batch job is to run can be an argument to the scheduling command.

To schedule a new job to be executed either once or many times in the future,
we write:

at host time command

The host argument is optional and refers to the host’s Windows name, not its DNS
name (hopefully the two coincide, up to a domain name). The time argument is
written in the form 3:00 pm or 15:00 etc. It may be followed by a qualifier which
specifies the day, date and/or how many times the job is to be scheduled. The
qualifier is a comma-separated list of days or dates. /next means execute once
for each date or day in the following list. /every means execute every time one of
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the items in the following list matches. For example:

at 3:00pm /next Friday,13 C:\\site\host\local\myscript

would execute myscript at 15:00 hours on the first Friday following the date
on which the command was typed in, and then again on the first 13th of the
month following the date at which the command was typed in. It does not mean
execute on the first coming Friday 13th. The items in the list are not combined
logically with AND as one might be tempted to believe. The at command without
any arguments lists the active jobs, like its Unix counterpart. Here one finds that
each job has its own identity number. This can be used to cancel the job with a
command of the form:

at ID /delete

7.7.3 Scheduling strategies

Scheduling is a way of parsing a tree of tasks in as efficient a manner as possi-
ble. The techniques for scheduling are well known from parallel processing and
operating system design. We follow the discussion in ref. [56], where it is argued
that, in the absence of optimal knowledge, random scheduling is an efficient way
of covering a task schedule. This was investigated further in ref. [263].

Considerable effort has been invested in the analysis and design of protocols
for enabling distributed system administration. Amongst these are control and
monitoring protocols, such as the Simple Network Management Protocol (SNMP)
[333, 230], and the higher level, abstract languages for policy-based management
[138, 12, 41, 86]. These languages address the issues of what is to be done if a
system is found to be in a particular state, or has received a particular signal.
They offer varying levels of sophistication and each has strengths and weaknesses.

Another important aspect of configuration management, which has received
less attention, is that of how management functions are scheduled, both in
response to specific events and as a general matter of the maintenance of the
system. Policy-based administration, employing agents or software robots, is an
administrative method which scales to large numbers of hosts in distributed
systems, precisely because every host is essentially responsible for its own state
of configuration. However, the interdependencies of such networked machines
mean that configuration management must reflect global properties of the net-
work community, such as delegations and server functions. This presents special
challenges. It is thus important to have predictable scheduling properties.

Policy-based configuration languages associate the occurrence of specified
events or conditions, with responses to be carried out by an agent. Cfengine
accomplishes this by classifying the state of a host, at the time of invocation, into
a number of string identifiers. Some of these represent the time of invocation,
others the nature of the environment, and so on. For example:

files:

(linux|solaris).Hr12::

/etc/passwd mode=0644 action=fixall inform=true
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The class membership is described in the second line. In this instance, it specifies
the class of all hosts which are of type Linux or Solaris, during the time interval
from 12:00 hours to 12:59 (Hr12). Tasks to be scheduled are placed in classes
which determine the host(s) on which they should be executed, or the time at which
they should be executed. Host-classes are essentially labels which document the
attributes of different systems. They might be based on the physical attributes of
the machine, such as its operating system type, architecture, or on some human
attributes, such as geographical location or departmental affiliation. Actions are
placed in such classes and are only performed if the agent executes the code in
an environment which belongs to one of the relevant classes. Thus, by placing
actions in judiciously chosen classes, one specifies actions to be carried out on
either individual machines or on arbitrary groups of machines which have a
common feature relating them. We thus have:

• Scheduling in time.

• Scheduling by host attribute (location, type etc).

Scheduling takes many forms, such as job-shop scheduling, production schedul-
ing, multiprocessor scheduling, and so on. It can take place within any extent of
time, space or other suitable covering-label.

The two main classes of scheduling are dynamic and static scheduling. Dynamic
schedules can change their own execution pattern, while static ones are fully
predetermined. In general, solving static scheduling problems is NP hard (i.e.
there is no known algorithm that can do this in polynomial time). This involves
assigning the vertices (tasks) of an acyclic, directed graph onto a set of resources,
such that the total time to process all the tasks is minimized. The total time to
process all the tasks is usually referred to as the makespan.

An additional objective is often to achieve a short makespan while minimizing
the use of resources. Such multi-objective optimization problems involve com-
plex trade-offs and compromises, and good scheduling strategies are based on a
detailed and deep understanding of the specific problem domain. Most approaches
belong to the family of priority-list scheduling algorithms, differentiated by the way
in which task priorities are assigned to the set of resources. Traditionally, heuristic
methods have been employed in the search for high-quality solutions [174]. Over
the last decade, heuristics have been combined with modern search techniques
such as simulated annealing and genetic algorithms [5].

In version 1 of cfengine, scheduling of tasks occurred in bulk, according to a
sequence of simple list structures. This approach is extremely simple and works
well enough, but it is unsatisfactory because it requires the author of a policy
to understand the details of the scheduling of tasks and recursion properties. In
cfengine 2, this is replaced by the methods described below.

7.7.4 Scheduling objectives and configuration management

The configuration management process can be understood as scheduling in several
ways. The purpose of building a graphical representation is that it allows modeling
of task management, and analysis that can be used to prove actual results, or to
adapt results from well-known scheduling theory.
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First of all, within a single policy there is often a set of classes or triggers which
are interrelated by precedence relations. These relations constrain the order in
which policies can be applied, and these graphs have to be parsed. A second way
in which scheduling enters, is through the response of the configuration system
to arriving events. Should the agents activate once every hour, in order to check
for policy violations, or immediately; should they start at random times, or at
predictable times? Should the policies scheduled for specific times of day, occur
always at the same times of day, or at variable times, perhaps random. This
decision affects the predictability of the system, and thus possibly its security
in a hostile encounter. Finally, although scheduling is normally regarded as
referring to extent over time, a distributed system also has two other degrees of
‘spatial’ extent: h and c. Scheduling tasks over different hosts, or changing the
details of software components is also a possibility. It is possible to confound
the predictability of software component configuration to present a ‘moving target’
to would-be attackers. The challenge is to accomplish this without making the
system nonsensical to legitimate users. These are the issues we wish to discuss
below.

A set of precedence relations can be represented by a directed graph, G = (V, E),
containing a finite, nonempty set of vertices, V , and a finite set of directed edges,
E, connecting the vertices. The collection of vertices, V = {v1, v2, ..., vn}, represents
the set of n policies to be applied and the directed edges, E = {eij }, define the
precedence relations that exist between these policies (eij denotes a directed edge
from policy vi to vj ).

This graph can be cyclic or acyclic. Cyclic graphs consist of inter-cycle and
intra-cycle edges, where the inter-cycle edges are dependencies within a cycle
and intra-cycle edges represent dependencies across cycles. When confronted
with a cyclic graph then a set of transformations needs to be applied such that
intra-cycle edges can be removed and the graph can be converted into an acyclic
graph.

Configuration management is a mixture of a dynamic and static scheduling. It
is dynamic in the sense that it is an ongoing real-time process where policies are
triggered as a result of the environment. It is static in the sense that all policies
are known a priori. Policies can be added, changed and removed arbitrarily
in a dynamic fashion. However, this does not interfere with the static model
because such changes would typically be made during a time-interval in which
the configuration tools were idle or offline (in a quiescent state). The hierarchal
policy model remains static in the reference frame of each configuration, but may
change dynamically between successive frames of configuration.

7.7.5 Security and variable configurations

The predictability of a configuration is both an advantage and a disadvantage
to the security of the system. While one would like the policy objectives to be
constant, the details of implementation could legitimately vary without unac-
ceptable loss. Predictability is often exploited by hostile users, as a means of
circumventing policy. For instance, at Oslo University College, policy includes
forced deletion of MP3 files older than one day, allowing users to download files
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for transfer to another medium, but disallowing prolonged storage. Hostile users
quickly learn the time at which this tidying takes place and set up their own
counter-measures in order to consume maximum resources. One way around this
problem is to employ the methods of Game Theory [225, 48, 13, 33] to randomize
behavior.

Randomization, or at least ad hoc variation, can occur and even be encouraged
at a number of levels. The use of mobile technologies is one example. The use of
changeable IP addresses with DHCP is another. The timing of important events,
such as backups or resource-consuming activities is another aspect that can be
varied unpredictably. In each case, such a variation makes it harder for potential
weaknesses to be exploited by attackers, and similarly it prevents extensive
maintenance operations from affecting the same users all of the time. In scheduling
terms, this is a kind of load balancing. In configuration terms, it is a way of using
unpredictability to our advantage in a controlled way.

Of course, events cannot be completely random. Some tasks must be performed
before others. In all scheduling problems involving precedence relations, the graph
is traversed using topological sorting. Topological sorting is based around the
concept of a freelist. One starts by filling the freelist with the entry nodes, i.e.
nodes with no parents. At any time one can freely select, or schedule, any element
in the freelist. Once all the parents of a node have been scheduled the node can
be added to the freelist. Different scheduling strategies and problems differ in
the way elements are selected from the freelist. Most scheduling problems involve
executing a set of tasks in the shortest possible time. A popular heuristic for
achieving short schedules is the Critical Path/Most Immediate Successor First
(CP/MISF) [174]. Tasks are scheduled with respect to their levels in the graph.
Whenever there is a tie between tasks (when tasks are on the same level) the tasks
with the largest number of successors are given the highest priority. The critical
path is defined as the longest path from an entry node to an exit node.

In configuration management, the selection of nodes from the freelist is often
viewed as a trivial problem, and the freelist may, for instance, be processed from
left to right, then updated, in an iterative manner. If instead one employs a strategy
such as the CP/MISF, one can make modifications to a system more efficiently in
a shorter time than by a trivial strategy.

A system can be prone to attacks when it is configured in a deterministic
manner. By introducing randomness into the system, it becomes significantly
harder to execute repetitive attacks on the system. One can therefore use a
random policy implementation when selecting elements from the freelist. The
randomized topological sorting algorithms can be expressed as:

freelist := all_entry_nodes;
unscheduled := all_nodes;
while (not unscheduled.empty())

begin
node := freelist[random];
delay(random);
process(node); // do whatever
scheduled.add(node);
freelist.remove(node);
for all nodes in unscheduled whose parents are all scheduled
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Figure 7.1: Random scheduling of precedence constrained policies.

begin
freelist.add(nodes);
unscheduled.remove(nodes);

end
end

For example, figure 7.1 illustrates a policy dependence graph. In this example,
policy e is triggering a management response. Clearly, only policies h, i and j

depend on e and consequently need to be applied. Since policy j depends on both
h and i, policy h and i must be applied prior to j . Therefore, the freelist is first
filled with policies h and i. Policies h and i are then applied in the sequences h, i

or i, h, both with a probability of 0.5.
Scheduling in a distributed environment is a powerful idea which extends

in both time and ‘space’ (h, c, t). The main message of this discussion is that
scheduling can be used to place reasonable limits on the behavior of configuration
systems: ensuring that policy checks are carried out often enough, but not so often
that they can be exploited to overwork the system. It should neither be possible
to exploit the action of the configuration system, nor prevent its action. Either of
these would be regarded as a breach of policy and security.

7.8 Automation of host configuration

The need for automation has become progressively clearer as sites grow and
the complexity of administration increases. Some advocates have gone in for
a distributed object model [157, 298, 84]. Others have criticized a reliance on
network services [44].

7.8.1 Tools for automation

Most system administration tools developed and sold today (insofar as they exist)
are based either on the idea of control interfaces (interaction between administrator
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and machine to make manual changes) or on the cloning of existing reference sys-
tems (mirroring) [14]. One sees graphical user interfaces of increasing complexity,
but seldom any serious attention to autonomous behavior.

Many ideas for automating system administration have been reported; see
refs. [138, 114, 180, 194, 21, 191, 10, 116, 259, 113, 84, 258, 249, 76, 229,
217, 92, 145, 173]. Most of these have been ways of generating or distributing
simple shell or Perl scripts. Some provide ways of cloning machines by distributing
files and binaries from a central repository. In spite of the creative effort spent
developing the above systems, few if any of them can survive in their present form
in the future. As indicated by Evard [108], analyzing many case studies, what
is needed is a greater level of abstraction. Although developed independently,
cfengine [38, 41, 55] satisfies Evard’s requirements quite well.

Vendors have also built many system administration products. Their main
focus in commercial system administration solutions has been the development of
man–machine interfaces for system management. A selection of these projects are
described below. They are mainly control-based systems which give responsibility
to humans, but some can be used to implement partial immunity type schemes by
instructing hosts to execute automatic scripts. However, they are not comparable
to cfengine in their treatment of automation, they are essentially management
frameworks which can be used to activate scripts.

Tivoli [298] is probably the most advanced and wide-ranging product avail-
able. It is a Local Area Network (LAN) management tool based on CORBA
and X/Open standards; it is a commercial product, advertised as a complete
management system to aid in both the logistics of network management and
an array of configuration issues. As with most commercial system adminis-
tration tools, it addresses the problems of system administration from the
viewpoint of the business community, rather than the engineering or scien-
tific community. Tivoli admits bidirectional communication between the var-
ious elements of a management system. In other words, feedback methods
could be developed using this system. The apparent drawback of the system
is its focus on application-level software rather than core system integrity.
Also it lacks abstraction methods for coping with real-world variation in system
setup.

Tivoli’s strength is in its comprehensive approach to management. It relies on
encrypted communications and client-server interrelationships to provide func-
tionality including software distribution and script execution. Tivoli can activate
scripts but the scripts themselves are a weak link. No special tools are provided
here; the programs are essentially shell scripts with all of the usual problems.
Client-server reliance could also be a problem: what happens if network commu-
nications are prevented?

Tivoli provides a variety of ways for activating scripts, rather like cfengine:

• Execute by hand when required.

• Schedule tasks with a cron-like feature.

• Execute an action (run a task on a set of hosts, copy a package out) in
response to an event.
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Tivoli’s Enterprise Console includes a language Prolog for attaching actions to
events. Tivoli is clearly impressive but also complex. This might also be a weak-
ness. It requires a considerable infrastructure in order to operate, an infrastructure
which is vulnerable to attack.

HP OpenView [232] is a commercial product based on SNMP network con-
trol protocols. Openview aims to provide a common configuration management
system for printers, network devices, Windows and HPUX systems. From a cen-
tral location, configuration data may be sent over the local area network using
the SNMP protocol. The advantage of Openview is a consistent approach to the
management of network services; its principal disadvantage, in the opinion of the
author, is that the use of network communication opens the system to possible
attack from hacker activity. Moreover, the communication is only used to alert
a central administrator about perceived problems. Little automatic repair can
be performed and thus the human administrator is simply overworked by the
system.

Sun’s Solstice [214] system is a series of shell scripts with a graphical user
interface which assists the administrator of a centralized LAN, consisting of Solaris
machines, to initially configure the sharing of printers, disks and other network
resources. The system is basically old in concept, but it is moving towards the
ideas in HP Openview.

Host Factory [110] is a third party software system, using a database combined
with a revision control system [302] which keeps master versions of files for
the purpose of distribution across a LAN. Host Factory attempts to keep track
of changes in individual systems using a method of revision control. A typical
Unix system might consist of thousands of files comprising software and data.
All of the files (except for user data) are registered in a database and given a
version number. If a host deviates from its registered version, then replacement
files can be copied from the database. This behavior hints at the idea of an
immune system, but the heavy-handed replacement of files with preconditioned
images lacks the subtlety required to be flexible and effective in real networks.
The blanket copying of files from a master source can often be a dangerous
procedure. Host Factory could conceivably be combined with cfengine in order
to simplify a number of the practical tasks associated with system configuration
and introduce more subtlety into the way changes are made. Currently Host
Factory uses shell and Perl scripts to customize master files where they cannot be
used as direct images. Although this limited amount of customization is possible,
Host Factory remains essentially an elaborate cloning system. Similar ideas for
tracking network heterogeneity from a database model were discussed in refs.
[301, 296, 113].

In recent years, the GNU/Linux community has been engaged in an effort to
make GNU/Linux (indeed Unix) more user-friendly by developing any number of
graphical user interfaces for the system administrator and user alike. These tools
offer no particular innovation other than the novelty of a more attractive work
environment. Most of the tools are aimed at configuring a single stand-alone host,
perhaps attached to a network. Recently, several projects have been initiated to
tackle clusters of Linux workstations [248]. A GUI for heterogeneous management
was described in ref. [240].



7.8. AUTOMATION OF HOST CONFIGURATION 251

7.8.2 Monitoring tools

Monitoring tools have been in proliferation for several years [144, 280, 178, 142,
150, 233, 262, 141]. They usually work by having a daemon collect some basic
auditing information, setting a limit on a given parameter and raising an alarm if
the value exceeds acceptable parameters. Alarms might be sent by mail, they might
be routed to a GUI display or they may even be routed to a system administrator’s
pager [141].

Network monitoring advocates have done a substantial amount of work in per-
fecting techniques for the capture and decoding of network protocols. Programs
such as etherfind, snoop, tcpdump and bro [236], as well as commercial solu-
tions such as Network Flight Recorder [102], place computers in ‘promiscuous
mode’, allowing them to follow the passing data-stream closely. The thrust of
the effort here has been in designing systems for collecting data [9], rather than
analyzing them extensively. The monitoring school advocates storing the huge
amounts of data on removable media such as CD, to be examined by humans
at a later date if attacks should be uncovered. The analysis of data is not a task
for humans, however. The level of detail is more than any human can digest and
the rate of its production and the attention span and continuity required are
inhuman. Rather we should be looking at ways in which machine analysis and
pattern detection could be employed to perform this analysis – and not merely
after the fact. In the future, adaptive neural nets and semantic detection will likely
be used to analyze these logs in real time, avoiding the need to even store the data
in raw form.

Unfortunately there is currently no way of capturing the details of every action
performed by the local host, analogous to promiscuous network monitoring,
without drowning the host in excessive auditing. The best one can do currently
is to watch system logs for conspicuous error messages. Programs like SWATCH
[141] perform this task. Another approach which we have been experimenting
with at Oslo college is the analysis of system logs at a statistical level. Rather
than looking for individual occurrences of log messages, one looks for patterns of
logging behavior. The idea is that logging behavior reflects (albeit imperfectly) the
state of the host [100].

Visualization is now being recognized as an important tool in understanding
the behavior of network systems [80, 162, 128]. This reinforces the importance of
investing in a documentable understanding of host behavior, rather than merely
relating experiences and beliefs [54]. Network traffic analysis has been considered
in [16, 324, 228].

7.8.3 A generalized scripting language

Customization of the system requires us to write programs to perform special
tasks. Perl was the first of a group of scripting languages including python, tcl and
scheme, to gain acceptance in the Unix world. It has since been ported to Windows
operating systems also. Perl programming has, to some extent, replaced much shell
programming as the Free Software lingua franca of system administration. More
recently Python, PHP and Tcl have been advocated also.
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The Perl language (see appendix B.2) is a curious hybrid of C, Bourne shell and
C-shell, together with a number of extra features which make it ideal for dealing
with text files and databases. Since most system administration tasks deal with
these issues, this places Perl squarely in the role of system programming. Perl is
semi-compiled at runtime, rather than interpreted line-by-line like the shell, so it
gains some of the advantages of compiled languages, such as syntax check before
execution and so on. This makes it a safer and more robust language. It is also
portable (something which shell scripts are not [19]). Although introduced as a
scripting language, like all languages, Perl has been used for all manner of things
for which it was never intended. Scripting languages have arrived on the computing
scene with an alacrity which makes them a favorable choice to anyone wanting
to get code running quickly. This is naturally a mixed blessing. What makes Perl
a winner over many other special languages is that it is simply too convenient to
ignore for a wide range of frequently required tasks. By adopting the programming
idioms of well-known languages, as well as all the basic functions in the C library,
Perl ingratiates itself to system administrators and becomes an essential tool.

7.9 Preventative host maintenance

In some countries, local doctors do not get paid if their patients get sick. This
motivates them to practice preventative medicine, thus keeping the population
healthy and functional at all times. A computer system which is healthy and
functional is always equipped to perform the task it was intended for. A sick
computer system is an expensive loss, in downtime and in human resources spent
fixing the problem. It is surprising how effective a few simple measures can be
toward stabilizing a system.

The key principle which we have to remember is that system behavior is a social
phenomenon, an interaction between users’ habits and resource availability. In
any social or biological system, survival is usually tied to the ability of the system to
respond to threats. In biology we have immunity and repair systems; in society we
have emergency services like fire, police, paramedics and the garbage collection
service, combined with routines and policy (‘the law’). We scarely notice these
services until something goes wrong, but without them our society would quickly
decline into chaos.

7.9.1 Policy decisions

A policy of prevention requires system managers to make several important
decisions. Let’s return for a moment to the idea that users are the greatest danger
to the stability of the system; we need to strike a balance between restricting
their activities and allowing them freedom. Too many rules and restrictions leads
to unrest and bad feelings, while too much freedom leads to anarchy. Finding
a balance requires a policy decision to be made. The policy must be digested,
understood and, not least, obeyed by users and system staff alike.

• Determine the system policy. This is the prerequisite for all system mainte-
nance. Know what is right and wrong and know how to respond to a crisis.
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Again, as we have reiterated throughout, no policy can cover every eventual-
ity, nor should it be a substitute for thinking. A sensible policy will allow for
sufficient flexibility (fault tolerance). A rigid policy is more likely to fail.

• Sysadmin team agreement. The team of system administrators needs to work
together, not against one another. That means that everyone must agree on
the policy and enforce it.

• Expect the worst. Be prepared for system failure and for rules to be broken.
Some kind of police service is required to keep an eye on the system. We can
use a script, or an integrated approach like cfengine for this.

• Educate users in good and bad practice. Ignorance is our worst enemy. If we
educate users in good practice, we reduce the problem of policy transgres-
sions to a few ‘criminal’ users, looking to try their luck. Most users are not
evil, just uninformed.

• Special users. Do some users require special attention, extra resources or
special assistance? An initial investment catering to their requirements can
save time and effort in the long run.

7.9.2 General provisions

Damage and loss can come in many forms: by hardware failure, resource exhaus-
tion (full disks, excessive load), by security breaches and by accidental error.
General provisions for prevention mean planning ahead in order to prevent loss,
but also minimizing the effects of inevitable loss.

• Do not rely exclusively on service or support contracts with vendors. They can
be unreliable and unhelpful, particularly in an organization with little eco-
nomic weight. Vendor support helpdesks usually cannot diagnose problems
over the phone and a visit can take longer than is convenient, particularly
if a larger customer also has a problem at the same time. Invest in local
expertise.

• Educate users by posting information in a clear and friendly way.

• Make rules and structure as simple as possible, but no simpler.

• Keep valuable information about configuration securely, but readily, avail-
able.

• Document all changes and make sure that co-workers know about them, so
that the system will survive, even if the person who made the change is not
available.

• Do not make changes just before going away on holiday: there are almost
always consequences which need to be smoothed out.

• Be aware of system limitations, hardware and software capacity. Do not rely
on something to do a job it was not designed for.
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• Work defensively and follow the pulse of the system. If something looks
unusual, investigate and understand what is happening.

• Avoid gratuitous changes to things which already work adequately. ‘If it ain’t
broke, don’t fix it’, but still aim for continuous but cautious improvement.

• Duplication of service and data gives us a fallback which can be brought to
bear in a crisis.

Vendors often like to pressure sites into signing expensive service contracts.
Today’s computer hardware is quite reliable: for the cost of a service contract it
might be possible to buy several new machines each year, so one can ask the
question: should we write off seldom hardware failure as acceptable loss, or pay
the one-off repair bill? If one chooses this option, it is important to have another
host which can step in and take over the role of the old one, while a replacement
is being procured. Again, this is the principle of redundancy. The economics of
service contracts need to be considered carefully.

7.9.3 Garbage collection

Computer systems have no natural waste disposal system. If computers were
biological life, they would have perished long ago, poisoned by their own waste.
No system can continue to function without waste disposal. It is a thermodynamic
impossibility to go on using resources forever, without releasing some of them
again. That process must come to an end.

Garbage collection in a computer system refers to two things: disk files and
processes. Users seldom clear garbage of their own accord, either because they are
not really aware of it, or because they have an instinctive fear of throwing things
away. Administrators have to enforce and usually automate garbage collection as a
matter of policy. Cfengine can be used to automate this kind of garbage collection.

• Disk tidying: Many users are not even aware that they are building up junk
files. Junk files are often the by-product of running a particular program.
Ordinary users will often not even understand all of the files which they
accumulate and will therefore be afraid to remove them. Moreover, few users
are educated to think of their responsibilities as individuals to the system
community of all users, when it comes to computer systems. It does not
occur to them that they are doing anything wrong by filling the disk with
every bit of scrap they take a shine to.

• Process management: Processes, or running programs, do not always com-
plete in a timely fashion. Some buggy processes go amok and consume CPU
cycles by executing infinite loops, others simply hang and fail to disappear.
On multiuser systems, terminals sometimes fail to terminate their login pro-
cesses properly and will leave whole hierarchies of idle processes which do
not go away by themselves. This leads to a gradual filling of the process table.
In the end, the accumulation of such processes will prevent new programs
from being started. Processes are killed with the kill command on Unix-like
systems, or with the Windows Resource Kit’s kill command, or the Task
Manager.
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7.9.4 Productivity or throughput

Throughput is how much real work actually gets done by a computer system.
How efficiently is the system fulfilling its purpose or doing its job? The policy
decisions we make can have an important bearing on this. For instance, we might
think that the use of disk quotas would be beneficial to the system community
because then no user would be able to consume more than his or her fair share
of disk space. However, this policy can be misguided. There are many instances
(during compilation, for instance) where users have to create large temporary files
which can later be removed. Rigid disk quotas can prevent a user from performing
legitimate work; they can get in the way of the system throughput. Limiting users’
resources can have exactly the opposite effect of that which was intended.

Another example is in process management. Some jobs require large amounts
of CPU time and take a long time to run: intensive calculations are an example of
this. Conventional wisdom is to reduce the process priority of such jobs so that
they do not interfere with other users’ interactive activities. On Unix-like systems
this means using the nice command to lower the priority of the process. However,
this procedure can also be misguided. Lowering the priority of a process can lead
to process starvation. Lowering the priority means that the heavy job will take
even longer, and might never complete at all. An alternative strategy is to do the
reverse: increasing the priority of a heavy task will get rid of it more quickly. The
work will be finished and the system will be cleared of a demanding job, at the
cost of some inconvenience for other users over a shorter period of time. We can
summarize this in a principle:

Principle 42 (Resource chokes and drains). Moderating resource availability
to key processes can lead to poor performance and low productivity. Conversely,
with free access to resources, resource usage needs to be monitored to avoid
the problem of runaway consumption, or the exploitation of those resources by
malicious users.

7.10 SNMP tools

In spite of its limitations (see section 6.4.1), SNMP remains the protocol of choice
for the management of most network hardware, and many tools have been written
to query and manage SNMP enabled devices.

The fact that SNMP is a simple read/write protocol has motivated programmers
to design simple tools that focus more on the SNMP protocol itself than on the
semantics of the data structures described in MIBs. In other words, existing tools
try to be generic instead of doing something specific and useful. Typical examples
are so-called MIB browsers that help users to browse and manipulate raw MIB
data. Such tools usually only understand the machine-parseable parts of a MIB
module – which is just adequate to shield users from the bulk of the often arcane
numbers used in the protocol. Other examples are scripting language APIs which
provide a ‘programmer-friendly’ view on the SNMP protocol. However, in order to
realize more useful management application, it is necessary to understand the
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semantics of and the relationships between MIB variables. Generic tools require
that the users have this knowledge – which is however not always the case.

PHP

The PHP server-side web page language (an enhanced encapsulation of C) is
perhaps the simplest way of extracting MIB data from devices, but it is just
a generic, low-level interface. PHP makes use of the Net SNMP libraries. For
example, here is a simple PHP web page that prints all of the SNMP variables for
a device and allows the data to be viewed in a web browser:

<?php

$a = snmpwalk("printer.example.org", "public", "");

for ($i=0; $i < count($a); $i++)
{
echo "$a[$i]<br>";
}

?>

The community string is written here with its default values ‘public’, but it is
assumed that this has been changed to something more private. PHP is well and
freely documented online, in contrast with Perl. For monitoring small numbers of
devices, and for demonstrating the principles of SNMP, this is an excellent tool.
However, for production work, something more sophisticated will be required by
most users.

Perl, Tcl etc.

There are several SNMP extensions for Perl; a widely used Perl SNMP API is
based on the NET-SNMP implementation and supports SNMPv1, SNMPv2c and
SNMPv3. The Perl script shown below is based on the NET-SNMP Perl extension
and retrieves information from the routing table defined in the RFC1213-MIB
module and displays them in a human-readable format.

The problem with Perl is that it only puts a brave face on the same prob-
lems that PHP has: namely, it provides only a low-level interface to the basic
read/write operations of the protocol. There is no intelligence to the interface, and
it requires a considerable amount of programming to do real management with
this interface.

Another SNMP interface worthy of mention is the Tcl extension, Scotty.

SCLI

One of the most effective ways of interacting with any system is through a
command language. With language tools a user can express his or her exact
wishes, rather than filtering them through a graphical menu.



7.10. SNMP TOOLS 257

The scli package [268, 269] was written to address the need for rational
command line utilities for monitoring and configuring network devices. It utilizes
a MIB compiler called smidump to generate C stub code. It is easily extensible
with a minimum of knowledge about SNMP.

The programs contained in the scli package are specific rather than generic.
Generic SNMP tools such as MIB browsers or simple command line tools (e.g.
snmpwalk) are hard to use since they expose too many protocol details for most
users. Moreover, in most cases, they fail to present the information in a format
that is easy to read and understand. A nice feature of scli is that it works like
other familiar Unix commands, such as netstat and top, and generates a feeling
of true investigative interaction.

host$ scli printer-XXX
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
100-scli trying SNMPv2c ... timeout
100-scli trying SNMPv1 ... ok.
(printer-714) scli > show printer info
Device: 1
Description: HP LaserJet 5M
Device Status: running
Printer Status: idle
Current Operator:
Service Person
Console Display: 1 line(s) a 40 chars
Console Language: en/US
Console Access: operatorConsoleEnabled
Default Input: input #2
Default Output: output #1
Default Marker: marker #1
Default Path: media path #1
Config Changes: 4
(printer-XXX) scli >

Similarly, a ‘top’-like continuous monitoring can be obtained with

printer-XXX> monitor printer console display

Agent: printer-XXX:161 up 61 days 01:13:49 13:48:49
Descr: HP ETHERNET MULTI-ENVIRONMENT,JETDIRECT,JD24,EEPROM A.08.32
IPv4: 7 pps in 5 pps out 0 pps fwd 0 pps rasm 0 pps frag
UDP: 5 pps in 5 pps out
TCP: 0 sps in 0 sps out 2 con est 0 con aopn 0 con popn
Command: monitor printer console display

PRINTER LINE = TEXT =======================================================
1 1 Done: mark (STDIN):p

Now the fields are continuously updated. This is network traffic intensive, but
useful for debugging devices over a short interval of time.
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7.11 Cfengine

System maintenance involves a lot of jobs which are repetitive and menial. There
are half a dozen languages and tools for writing programs which will automat-
ically check the state of your system and perform a limited amount of routine
maintenance automatically. Cfengine is an environment for turning system policy
into automated action. It is a very high-level language (much higher level than
shell or Perl) and a robot for interpreting your programs and implementing them.
Cfengine is a general tool for structuring, organizing and maintaining information
systems on a network. Because it is general, it does not try to solve every little
problem you might come across, instead it provides you with a framework for
solving all problems in a consistent and organized way. Cfengine’s strength is
that it encourages organization and consistency of practice – also it may easily be
combined with other languages.

Cfengine is about (i) defining the way you want all hosts on your network to
be set up (configured), (ii) writing this in a single ‘program’ which is read by every
host on the network, (iii) running this program on every host in order to check
and possibly fix the setup of the host. Cfengine programs make it easy to specify
general rules for large groups of hosts and special rules for exceptional hosts. Here
is a summary of cfengine’s capabilities.

• Check and configure the network interface on network hosts.

• Edit textfiles for the system or for all users.

• Make and maintain symbolic links, including multiple links from a single
command.

• Check and set the permissions and ownership of files.

• Tidy (delete) junk files which clutter the system.

• Systematic, automated (static) mounting of NFS filesystems.

• Checking for the presence or absence of important files and filesystems.

• Controlled execution of user scripts and shell commands.

• Process management.

By automating these procedures, you will save a lot of time and irritation, and
make yourself available to do more interesting work.

A cfengine configuration policy is not in an imperative language like Perl,
but in a declarative language that resembles Prolog. It is more like a Makefile.
Instead of using low-level logic, it uses high-level classes to make decisions.
Actions to be carried out are not written in the order in which they are to be
carried out, but listed in bulk. The order in which commands are executed is
specified in a special list called the action-sequence. A cfengine program is a free-
format text file, usually called cfagent.conf and consisting of declarations of the
form:
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action-type:

classes::

list of actions

The action type tells cfengine what the commands which follow do. The action
type can be from the following list.

binservers, broadcast, control, copy, defaultroute,
directories, disable, editfiles, files, groups, homeservers,
ignore, import, links, mailserver, miscmounts, mountables,
processes, required, resolve, shellcommands, tidy, unmount

You may run cfengine scripts/programs as often as you like. Each time you
run a script, the engine determines whether anything needs to be done – if nothing
needs to be done, nothing is done! If you use it to monitor and configure your
entire network from a central file-base, then the natural thing is to run cfengine
daily with the help of cron.

7.11.1 The simplest way to use cfengine

The simplest cfengine configuration you can have consists of a control section
and a shellcommands section, in which you collect together scripts and programs
which should run on different hosts or host-types. Cfengine allows you to collect
them all together in one file and label them in such a way that the right programs
will be run on the right machines.

control:

domain = ( mydomain )

actionsequence = ( shellcommands )

shellcommands:

# All GNU/Linux machines

linux::
"/usr/bin/updatedb"

# Just one host

myhost::

"/bin/echo Hi there"
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While this script does not make use of cfengine’s special features, it shows you
how you can control many machines from a single file. Cfengine reads the same
file on every host and picks out only the commands which apply.

7.11.2 A simple file for one host

Although cfengine is designed to organize all hosts on a network, it can also be
used on a single stand-alone host. In this case you don’t need to know about
classifying commands. Let’s write a simple file for checking the setup of your
system. Here are some key points:

• Every cfengine must have a control: section with an actionsequence list,
which tells it what to do, and in which order.

• You need to declare basic information about the way your system is set up.
Try to keep this simple.

#!/usr/local/sbin/cfagent -f
#
# Simple cfengine configuration file
#

control:

actionsequence = ( checktimezone netconfig resolve files shellcommands )

domain = ( domain.country )
netmask = ( 255.255.255.0 )
timezone = ( MET )

######################################################################

broadcast:

ones

defaultroute:

my-gw

######################################################################

resolve:

#
# Add these name servers to the /etc/resolv.conf file
#

128.39.89.10 # nameserver 1
158.36.85.10 # nameserver 2
129.241.1.99
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######################################################################

files:

/etc/passwd mode=644 owner=root action=fixall

######################################################################

shellcommands:

Wednesday||Sunday::

"/usr/local/bin/DoBackupScript"

7.11.3 A file for multiple hosts

If you want to have just a single file which describes all the hosts on your
network, then you need to tell cfengine which commands are intended for which
hosts. Having to mention every host explicitly would be a tedious business.
Usually though, we are trying to make hosts on a network basically the same
as one another so we can make generic rules which cover many hosts at a time.
Nonetheless there will still be a few obvious differences which need to be accounted
for.

For example, the Solaris operating system is quite different from the GNU/Linux
operating system, so some rules will apply to all hosts which run Solaris, whereas
others will only apply to GNU/Linux. Cfengine uses classes like solaris:: and
linux:: to label commands which apply only to these systems.

We might also want to make other differences, based not on operating system
differences but on groups of hosts belonging to certain people, or with a special
significance. We can therefore create classes using groups of hosts.

7.11.4 Classes

The idea of classes is central to the operation of cfengine. Saying that cfengine
is ‘class oriented’ means that it doesn’t make decisions using if...then...else
constructions the way other languages do, but only carries out an action if the
host running the program is in the same class as the action itself. To understand
what this means, imagine sorting through a list of all the hosts at your site. Imagine
also that you are looking for the class of hosts which belong to the computing
department, which run the GNU/Linux operating system and which have yellow
spots! To figure out whether a particular host satisfies all of these criteria, you
first delete all of the hosts which are not GNU/Linux, then you delete all of the
remaining ones which don’t belong to the computing department, then you delete
all the remaining ones which don’t have yellow spots. If you are on the remaining
list, then you are in the class of all computer-science-Linux-yellow-spotted hosts
and you can carry out the action.
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Cfengine works in this way, narrowing things down by asking if a host is in
several classes at the same time. Although some information (like the kind of
operating system you are running) can be obtained directly, clearly, to make this
work, we need to have lists of which hosts belong to the computer department and
which ones have yellow spots.

So how does this work in a cfengine program? A program or configuration
script consists of a set of declarations for what we refer to as actions which are to
be carried out only for certain classes of host. Any host can execute a particular
program, but only certain action are extracted – namely those which refer to that
particular host. This happens automatically because cfagent builds up a list of
the classes to which it belongs as it goes along, so it avoids having to make many
decisions over and over again.

By defining classes which classify the hosts on your network in some easy to
understand way, you can make a single action apply to many hosts in one go – i.e.
just the hosts you need. You can make generic rules for specific type of operating
system, you can group together clusters of workstations according to who will be
using them and you can paint yellow spots on them – whatever works for you.

A cfengine action looks like this:

action-type:

single-or-compound-class::

declaration

A single class can be one of several things:

• The name of an operating system architecture, e.g. ultrix, sun4 etc. This is
referred to henceforth as a hard class.

• The (unqualified) name of a particular host. If your system returns a fully
qualified domain name for your host, cfagent truncates it so as to un-qualify
the name.

• The name of a user-defined group of hosts.

• A day of the week (in the form Monday, Tuesday, Wednesday, ...).

• An hour of the day (in the form Hr00, Hr01 ... Hr23).

• Minutes in the hour (in the form Min00, Min17 ... Min45).

• A five-minute interval in the hour (in the form Min00 05, Min05 10 ...
Min55 00)

• A day of the month (in the form Day1 ... Day31).

• A month (in the form January, February, ... December).

• A year (in the form Yr1997, Yr2001).

• An arbitrary user-defined string.
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A compound class is a sequence of simple classes connected by dots or ‘pipe’
symbols (vertical bars). For example:

myclass.sun4.Monday::

sun4|ultrix|osf::

A compound class evaluates to ‘true’ if all of the individual classes are separately
true, thus in the above example the actions which follow compound class:: are
only carried out if the host concerned is in myclass, is of type sun4 and the day
is Monday! In the second example, the host parsing the file must be either of type
sun4 or ultrix or osf. In other words, compound classes support two operators:
AND and OR, written . and | respectively. Cfagent doesn’t care how many of these
operators you use (since it skips over blank class names), so you could write either

solaris|irix::

or

solaris||irix::

depending on your taste. On the other hand, the order in which cfagent evaluates
AND and OR operations does matter, and the rule is that AND takes priority over
OR, so that . binds classes together tightly and all AND operations are evaluated
before ORing the final results together. This is the usual behavior in programming
languages. You can use round parentheses in cfengine classes to override these
preferences.

Cfagent allows you to define switch on and off dummy classes so that you can
use them to select certain subsets of action. In particular, note that by defining
your own classes, using them to make compound rules of this type, and then
switching them on and off, you can also switch on and off the corresponding
actions in a controlled way. The command line options -D and -N can be used for
this purpose.

A logical NOT operator has been added to allow you to exclude certain specific
hosts in a more flexible way. The logical NOT operator is (as in C and C++) !. For
instance, the following example would allow all hosts except for myhost:

action:

!myhost::

command

and similarly, to allow all hosts in a user-defined group mygroup, except for
myhost, you would write

action:

mygroup.!myhost::

command
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which reads ‘mygroup AND NOT myhost’. The NOT operator can also be combined
with OR. For instance

class1|! class2

would select hosts which were either in class 1, or were not in class 2.
Finally, there is a number of reserved classes. The following are hard classes for

various operating system architectures. They do not need to be defined because
each host knows what operating system it is running. Thus the appropriate one
of these will always be defined on each host. Similarly the day of the week is
clearly not open to definition, unless you are running cfagent from outer space.
The reserved classes are:

ultrix, sun4, sun3, hpux, hpux10, aix, solaris, osf, irix4, irix,
irix64, freebsd, netbsd, openbsd, bsd4 3, newsos, solarisx86,
aos, nextstep, bsdos, linux, debian, cray, unix sv, GnU

If these classes are not sufficient to distinguish the hosts on your network, cfengine
provides more specific classes which contain the name and release of the operating
system. To find out what these look like for your systems, you can run cfagent in
‘parse-only-verbose’ mode:

cfagent -p -v

and these will be displayed. For example, Solaris 2.4 systems generate the addi-
tional classes sunos 5 4 and sunos sun4m, sunos sun4m 5 4.

Cfagent uses both the unqualified and fully host names as classes. Some
sites and operating systems use fully qualified names for their hosts, i.e. uname
-n returns a full domain qualified hostname. This spoils the class-matching
algorithms for cfagent, so cfagent automatically truncates names which contain
a dot ‘.’ at the first ‘.’ it encounters. If your hostnames contain dots, they will be
replaced by underscores in cfengine.

In summary, the operator ordering in cfengine classes is as follows:

• () Parentheses override everything.

• ! The NOT operator binds tightest.

• . The AND operator binds more tightly than OR.

• | OR is the weakest operator.

We may now label actions by these classes to restrict their scope:

editfiles:

solaris::

/etc/motd

PrependIfNoSuchLine "Plan 9 was a better movie and a better OS!"
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Rivals::

/etc/motd

AppendIfNoSuchLine "Your rpc.spray is so last month"

Actions or commands which work under a class operator like solaris:: are only
executed on hosts which belong to the given class. This is the way one makes
decisions in cfengine: by class assignment rather than by if ... then ... else
clauses.

7.11.5 Using cfagent as a front-end to cron

One of cfengine’s strengths is its use of classes to identify systems from a single
file or set of files. Distributed resource administration would be much easier if
the cron daemon also worked in this way. One way of setting this up is to use
cfagent’s time classes to work like a user interface for cron. This allows us to have
a single, central file which contains all the cron jobs for the whole network without
losing any of the fine control which cron affords us. All of the usual advantages
apply:

• It is easier to keep track of what cron jobs are running on the system when
they are all registered in one place.

• Groups and user-defined classes can be used to identify which host should
run which programs.

The central idea behind this scheme is to set up a regular cron job on every
system which executes cfagent at frequent intervals. Each time cfagent is started,
it evaluates time classes and executes the shell commands defined in its config-
uration file. In this way we use cfagent as a wrapper for the cron scripts, so that
we can use cfengine’s classes to control jobs for multiple hosts. Cfengine’s time
classes are at least as powerful as cron’s time specification possibilities, so this
does not restrict us in any way. The only price is the overhead of parsing the
cfengine configuration file.

To be more concrete, imagine installing the following crontab file onto every
host on the network:

#
# Global Cron file
#
0,15,30,45 * * * * /usr/local/sbin/cfexecd -F

This file contains just a single cron job, namely the cfengine scheduler cfex-
ecd. Here we are assuming that it will not be necessary to execute any cron
script more often than every fifteen minutes. If this is too restrictive, the above
can be changed. We refer to the time interval between runs of the scheduler
cfexecd.



266 CHAPTER 7. CONFIGURATION AND MAINTENANCE

Cfengine assumes that it will find a configuration file in

/var/cfengine/inputs/cfagent.conf

that looks something like this:

#
# Simple cfengine configuration file
#

control:

actionsequence = ( checktimezone files )

domain = ( example.com )
timezone = ( MET )

smtpserver = ( smtphost.example.org ) # used by cfexecd
sysadm = ( me@example.com ) # where to mail output

######################################################################

files:

# Check some important files

/etc/passwd mode=644 owner=root action=fixall
/etc/shadow mode=600 owner=root action=fixall

# Do a tripwire check on binaries!

/usr # Scan /usr dir

owner=root,daemon # all files must be owned by root or daemon
checksum=md5 # use md5 or sha
recurse=inf # all subdirs
ignore=tmp # skip /usr/tmp
action=fixall

7.11.6 Time classes

Each time cfengine is run, it reads the system clock and defines the following
classes based on the time and date:

• Yrxx:: The current year, e.g. Yr1997, Yr2001. This class is probably not
useful very often, but it might help us to turn on the new-year lights, or shine
up your systems for the new millennium (1st Jan 2001)!

• Month:: The current month can be used for defining very long-term variations
in the system configuration, e.g. January, February. These classes could be
used to determine when students have their summer vacation, for instance,
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in order to perform extra tidying, or to specially maintain some administrative
policy for the duration of a conference.

• Day:: The day of the week may be used as a class, e.g. Monday, Sunday.

• Dayxx:: A day in the month (date) may be used to single out by date, e.g. the
first day of each month defines Day1, the 21st Day21 etc.

• Hrxx:: An hour of the day, in 24-hour clock notation: Hr00...Hr23.

• Minxx:: The precise minute at which cfengine was started: Min0 ... Min59.
This is probably not useful alone, but these values may be combined to define
arbitrary intervals of time.

• Minxx xx:: The five-minute interval in the hour at which cfengine was exe-
cuted, in the form Min0 5, Min5 10 ... Min55 0.

Time classes based on the precise minute at which cfengine started are unlikely
to be useful, since it is improbable that we will want to ask cron to run cfengine
every single minute of every day: there would be no time for anything to complete
before it was started again. Moreover, many things could conspire to delay the
precise time at which cfengine was started. The real purpose in being able to
detect the precise start time is to define composite classes which refer to arbitrary
intervals of time. To do this, we use the group or classes action to create an alias
for a group of time values. Here are some creative examples:

classes: # synonym groups:

LunchAndTeaBreaks = ( Hr12 Hr10 Hr15 )

NightShift = ( Hr22 Hr23 Hr00 Hr01 Hr02 Hr03 Hr04 Hr05 Hr06 )

ConferenceDays = ( Day26 Day27 Day29 Day30 )

QuarterHours = ( Min00 Min15 Min30 Min45 )

TimeSlices = ( Min01 Min02 Min03 Min33 Min34 Min35)

In these examples, the left-hand sides of the assignments are effectively the OR-ed
result of the right-hand side. Thus if any classes in the parentheses are defined, the
left-hand side class will become defined. This provides an excellent and readable
way of pinpointing intervals of time within a program, without having to use | and
. operators everywhere.

7.11.7 Choosing a scheduling interval

How often should we call a global cron script? There are several things to think
about:

• How much fine control do we need? Running cron jobs once each hour is
usually enough for most tasks, but we might need to exercise finer control
for a few special tasks.
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• Are we going to run the entire cfengine configuration file or a special light-
weight file?

• System latency. How long will it take to load, parse and run the cfengine
script?

Cfengine has an intelligent locking and timeout policy which should be suffi-
cient to handle hanging shell commands from previous crons so that no overlap
can take place.

7.12 Database configuration management

A database is a framework for structured information storage. Databases are used
for providing efficient storage and retrieval of data, using a data structure based
on search-keys. Although it is correct to call the regular file system of a computer
a hierarchical database, disk file systems are not optimized for storing special data
in a way that can be searched and sorted. The criteria for storing and retrieving
data are somewhat different in these cases.

Web services are increasingly reliant on databases and vice versa. Much of
the content available in the web is now constructed on the fly by server-side
technologies that assemble HTML pages from information stored in relational
databases, using scripting languages such as Perl, PHP (Personal Homepage
Tools), JSP (Java Server Pages) and ASP (Active Server pages). Online services,
like web mail, often consist of a farm of PCs running FreeBSD Unix (this has
retained the record for the most efficient network handling of all the operating
systems to date), backed up by large multiprocessor database engines running
on Unix hardware with a hundred processors. Search engines run fast database
applications on huge farms of PC hardware, each host dedicated to a particular
part of the database, with a small cluster of machines that dispatch incoming
requests to them.

There are several kinds of database: relational databases, object databases,
high- and low-level databases. Low-level databases are used by application pro-
grams like the Windows registry, cfengine checksum storage, LDAP data records,
the Network Information Service (NIS), and so on. Low-level databases save data
in ‘structures’, or chunks of memory that have no structure to the database itself.
High-level relational databases build on low-level ones as ‘middle-ware’ and are
used to represent more complex data structures, like personnel databases, com-
pany records, and so on. High-level databases use Structured Query Language
(SQL) for submitting and retrieving data in the form of tables. They maintain the
abstraction of tables, and use primary keys to maintain uniqueness.

Managing databases is like managing a filesystem within a filesystem. It
involves managing usernames, passwords, creation and deletion of objects,
garbage collection and planning security considerations. Since databases are
user applications that run on top of a host operating system, often as an exter-
nally available service, they usually have their own independent usernames and
passwords, separate from regular user accounts. Not all users of the host system
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need access to the database, and not all users of the database need access to the
host operating system.

7.12.1 SQL relational databases

Structured Query Language (SQL) was created for building and searching within
relational databases. It is now an essential part of virtually all production
databases. These include open source databases such as MySQL, PostgresSQL,
and commercial databases like DB2, Oracle and Microsoft SQL. We shall consider
MySQL as an example of a free software SQL database.

An SQL database starts with a number of tables; tables are related to other
tables by ‘relations’. The structure of these tables is mainly of interest to the
database designer. From the viewpoint of a system administrator, one only requires
the schema for the database, i.e. a series of definitions. Here is a trivial example,
of a database schema.

# schema.txt

USE mydatabase;

CREATE TABLE mytable
(
section char(64),
title char(64),
file char(64),
keywords char(64),
classes char(64)
);

The file in the example above is written in SQL. We notice two things about
this: there are two types of object within the system – databases and tables.

• Database: Within the multi-user database system (e.g. MySQL), there is a
number of databases belonging to a variety of users. Each database has a
unique name or identifier and may contain any number of tables.

• Table: Each table has a name or classifier that is unique to that database.
A table declaration of this type is an abstract schema or ‘blueprint’ for an
actual data record. All data records are instances of tables, i.e. they have
the structure defined in the table definition, but contain real data. There can
be any number of instances of a table (records), provided they are uniquely
identifiable by a key.

• Key: Every table must have an element (or combination of elements) within
it that is unique. This identifies the record to the database engine.

Database users must be users on the host system in order to gain access to the
command tools, but database users are independent of login users, and have their
own separate password system. This allows remote clients of a database to gain
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limited access to the data without having administrative access to other parts of
the system.

mysqladmin -u root password newpassword

mysqladmin -p create mydatabase

The -p option asks for the root (administrator) password to be prompted for. This
causes a new, blank database to be created, and is equivalent to logging in as root
and giving direct SQL commands:

host# mysql -u root

mysql> CREATE DATABASE mydatabase;

Similarly, a database can be deleted as follows:

mysqladmin -p drop mydatabase

Once a database has been created, it is possible to see the list of all databases by
logging into a MySQL root shell:

host# mysql -u root

mysql> SHOW DATABASES;

+----------+
| Database |
+----------+
| mysql |
| test |
| mydatab |
+----------+

Note that all standard SQL commands must be terminated with a semicolon.
The database called ‘mysql’ is a database containing security levels for users and
databases, i.e. permissions for different tables and databases within the system.

By our principle of minimal privilege, we do not wish to continue to access this
database with root privilege. Rather, we create a special user for a new database,
with a password. The username and password can be used by local programs and
users to ‘log on’ to the database. The contents of the permissions database can be
set using regular SQL commands, but MySQL provides commands ‘GRANT’ and
‘REVOKE’ for manipulating it.

host$ mysql --user=root mysql
mysql> GRANT ALL PRIVILEGES ON mydatabase.table TO mark@localhost

-> IDENTIFIED BY ’password’ WITH GRANT OPTION;

mysql> GRANT USAGE ON *.* TO dummy@localhost;
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Programmers who write scripts and software that access the database must code
the password explicitly in the program, and thus special precautions must be
taken to ensure that the password is not visible to other users of the system. The
script should be on a web server, where only administrators can log in, and should
not be readable by any remote service on the server host. The following example
adds a user who can connect from hosts localhost, example.org. The user wants to
access the ‘mydatabase’ database only from localhost and the ‘example’ database
only from example.org. He wants to use the password ‘mysecret’ from both hosts.
Thus to set up this user’s privileges using GRANT statements:

host$ mysql --user=root mysql

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON mydatabase.*
-> TO user@localhost
-> IDENTIFIED BY ’mysecret’;

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON example.*
-> TO user@example.org
-> IDENTIFIED BY ’mysecret’;

Note that access to localhost is given via Unix sockets and the remote machine
‘example.org’ over a TCP/IP connection. At this stage, the database has a foothold
on the system, but no structure. Once we have designed a database schema, it
can be loaded into the system as follows:

host# mysql -u dbuser -p < schema.txt

Again, the -p option asks for the password to be prompted. This loads the table
structure, so that table entries can be added. To add, examine these, or debug
manually, one uses standard SQL commands, e.g.

host$ mysql -p -u mark
password: ???????

mysql> USE mydatabase;
mysql> SHOW TABLES;

+----------------------+
| Tables in mydatabase |
+----------------------+
| mytable |
+----------------------+

mysql> describe mytable;
+----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+----------+------+-----+---------+-------+
| section | char(64) | YES | | NULL | |
| title | char(64) | YES | | NULL | |
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| file | char(64) | YES | | NULL | |
| keywords | char(64) | YES | | NULL | |
| classes | char(64) | YES | | NULL | |
+----------+----------+------+-----+---------+-------+
5 rows in set (0.01 sec)

mysql> INSERT INTO mytable
-> VALUES (’mysection’,’mytitle’,’myfile’,’mykey’,’myclass’);

mysql> SELECT * FROM mytable;

Other commands include search and delete commands, e.g.

SELECT * FROM someTable WHERE tableID=’264’;

SELECT * FROM otherTable WHERE name=’SomeName’;

SELECT weight FROM measuresTable WHERE measureID=’264’;

UPDATE testTab SET weight=’10’ WHERE measureID=’264’;

DELETE FROM otherTable WHERE name=’SomeName’;

7.12.2 LDAP directory service

The lightweight Directory Access Protocol (LDAP) uses a database to store fre-
quently required information. Directories are databases that are optimized for
lookup, rather than for update transactions. They are intended for serving more
or less fixed data in large volumes. Often, only the system administrator will
have write access to the data. See also section 9.8 about setting up an LDAP
server.

7.12.3 Data entry administration

Data for a simple directory are entered in the form of the common file format.
The LDIF (LDAP Data Interchange Format) is used to define and store source
data. This data format is extremely fragile to extra spaces and lines, and offers
little help for debugging. One day it will probably be rewritten in XML; until
then, a certain care is required. Here is a definition of a simple database of
people.

LDAP directories are defined using a schema of classes that can inherit other
classes. Each class has its own attributes. One of the challenges of using LDAP is
to find out which classes have which attributes and vice versa. Solving a directory
problem is largely about getting these relationships to work. Some of the schema
classes are defined by X.500, such as cn (common name), description, and
postalAddress.
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DN Distinguished name Primary key

CN Common name Typically an identifier

RDN Relative Distinguished Name Primary key of subobject

DIT Directory Information Tree LDAP hierarchy

DSA Directory System Agent X.500 name for LDAP server

DSE DSA-specific Entry Root node of a DIT naming context

Table 7.1: LDAP basic abbreviations and concepts.

Distinguished name Primary key

cn Common name Typically an identifier

dc Domain component Caseless ‘dot’ element in DNS name.

Table 7.2: LDAP schema object classes and attributes.

dn:dc=iu,dc=hio,dc=no
objectclass:organization
o:Oslo University College

dn: cn=Mark Burgess,dc=iu,dc=hio,dc=no
objectClass: person
cn: Mark Burgess
cn: Mark Sparc
sn: Burgess

dn: cn=Sigmund Straumsnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Sigmund Straumsnes
cn: Ziggy
sn: Straumsnes

dn: cn=Frode Sandnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Frode Sandnes
cn: Frodo
sn: Sandnes

To add entries from this file (example2.ldif):

daneel$ ldapadd -x -D "cn=Manager,dc=iu,dc=hio,dc=no" -W -f example2.ldif
Enter LDAP Password:
adding new entry "dc=iu,dc=hio,dc=no"
adding new entry "cn=Mark Burgess,dc=iu,dc=hio,dc=no"
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adding new entry "cn=Sigmund Straumsnes,dc=iu,dc=hio,dc=no"
adding new entry "cn=Frode Sandnes,dc=iu,dc=hio,dc=no"

To check that this has been entered correctly, print all records as follows:

daneel$ ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(objectclass=*)’

This yields output of the form:

# extended LDIF
#
# LDAPv3
# filter: (objectclass=*)
# requesting: ALL
#

# iu.hio.no
dn: dc=iu,dc=hio,dc=no
objectClass: organization
o: Oslo University College

# Mark Burgess, iu.hio.no
dn: cn=Mark Burgess,dc=iu,dc=hio,dc=no
objectClass: person
cn: Mark Burgess
cn: Mark Sparc
sn: Burgess

# Sigmund Straumsnes, iu.hio.no
dn: cn=Sigmund Straumsnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Sigmund Straumsnes
cn: Ziggy
sn: Straumsnes

# Frode Sandnes, iu.hio.no
dn: cn=Frode Sandnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Frode Sandnes
cn: Frodo
sn: Sandnes

# search result
search: 2
result: 0 Success

# numResponses: 5
# numEntries: 4
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Additional schema classes

The example above is a flat list, formed from the core class schema. What about
adding additional classes and subtrees? To inherit extra schema attributes, one
must include the schema in slapd.conf, after the default ‘core’ schema line:

include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/schema/nis.schema

Now we can add entries under ‘organizationalPerson’, for instance (see figure 7.2),

dn:dc=iu,dc=hio,dc=no
objectclass:organization
o:Oslo University College

dn: cn=Mark Burgess,dc=iu,dc=hio,dc=no
objectClass: person
objectClass: organizationalPerson
cn: Mark Burgess
cn: Mark Sparc
sn: Burgess
registeredAddress: Cort Adelers Gate 30
telephoneNumber: +47 22453272

dn: cn=Sigmund Straumsnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Sigmund Straumsnes
cn: Ziggy
sn: Straumsnes

dn: cn=Frode Sandnes,dc=iu,dc=hio,dc=no
objectClass: person
cn: Frode Sandnes
cn: Frodo
sn: Sandnes

The objectclass and attributeTypes configuration file directives can be used to
define schema rules on entries in the directory. It is customary to create a file to
contain definitions of custom schema items:

include /usr/local/etc/openldap/schema/local.schema

Different class schema cannot be mixed in records. For example, you cannot
register information for schema ‘person’ in the same stanza as for ‘posixAccount’.
Thus, the following would be wrong:

dn: cn=Mark Burgess,dc=iu,dc=hio,dc=no
objectClass: person
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objectClass: account
objectClass: posixAccount
cn: Mark Burgess
cn: Mark Sparc
sn: Burgess
uid: mark
userPassword: cryptX5/DBrWPOQQaI
gecos: Mark Burgess (staff)
loginShell: /bin/tcsh
uidNumber: 10
gidNumber: 10
homeDirectory: /site/host/mark

because account and person are mutually exclusive. However, by extending the
Distinguished Names so as to split the tree into two sub-types, we can end up
with the following:

dn:dc=iu,dc=hio,dc=no
objectclass: top
objectclass: organization
o:Oslo University College
description: Faculty of Engineering
streetAddress: Cort Adelers Gate 30
postalAddress: 0254 Oslo Norway

dn: cn=Mark Burgess,dc=iu,dc=hio,dc=no
objectclass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Mark Burgess
cn: Mark Sparc
sn: Burgess
uid: mark
registeredAddress: Cort Adelers Gate 30
telephoneNumber: +47 22453272

dn: cn=Sigmund Straumsnes,dc=iu,dc=hio,dc=no
objectclass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Sigmund Straumsnes
cn: Ziggy
sn: Straumsnes
uid: sigmunds
registeredAddress: Cort Adelers Gate 30
telephoneNumber: +47 22453273
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dn: cn=Frode Sandnes,dc=iu,dc=hio,dc=no
objectclass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Frode Sandnes
cn: Frodo
sn: Sandnes
uid: frodes
registeredAddress: Cort Adelers Gate 30
telephoneNumber: +47 22453274

dn: uid=mark,dc=iu,dc=hio,dc=no
cn: Mark Burgess
cn: Mark Sparc
objectClass: account
objectClass: posixAccount
uid: mark
userPassword: cryptX5/DBrWPOQQaI
gecos: Mark Burgess (staff)
loginShell: /bin/tcsh
uidNumber: 10
gidNumber: 10
homeDirectory: /site/host/mark

dn: uid=sigmunds,dc=iu,dc=hio,dc=no
cn: Sigmund Straumsnes
cn: Ziggy
objectClass: account
objectClass: posixAccount
uid: mark
userPassword: cryptX5/sdWPOQQaI
gecos: Sigmund Straumsnes (staff)
loginShell: /bin/zsh
uidNumber: 11
gidNumber: 11
homeDirectory: /site/host/sigmunds

dn: uid=frodes,dc=iu,dc=hio,dc=no
cn: Frode Sandnes
cn: Frodo
objectClass: account
objectClass: posixAccount
uid: frodes
userPassword: cryptX5/DBr111QaI
gecos: Frode Sandnes (staff)
loginShell: /bin/bash
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uidNumber: 12
gidNumber: 12
homeDirectory: /site/host/frodes

We can now search for individual object classes and attributes:

ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(objectclass=account)’
ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(objectclass=person)’
ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(cn=Mark*)’
ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(uid=fr*)’
ldapsearch -x -b ’dc=iu,dc=hio,dc=no’ ’(loginShell=/bin/zsh)’

ROOT (DSE)

dc=se dc=no

dc=hiodc=uninett dc=uio

dc=iudc=adm

cn=<person> uid=<account>

Figure 7.2: An example LDAP data model hierarchy for iu.hio.no Directory Information
Tree (DIT).

Basic pitfalls

The LDAP data format is almost impossibly sensitive to trailing spaces on lines.

ldap_add: Invalid syntax (21)
additional info: objectclass: value #0 invalid per syntax

Also, the schema definitions do not seem to be updated.

ldap_add: Object class violation (65)
additional info: attribute ’c’ not allowed

This means that a relevant part of the schema inheritance is missing. We need
to add the correct chain to slapd.conf.

Applications have to keep track of what data are already in the directory. Data
can be replaced rather than added. For example, suppose we have a file of data
example.ldif:

daneel$ ldapadd -x -D "cn=Manager,dc=iu,dc=hio,dc=no" -W -f example.ldif
Enter LDAP Password:
adding new entry "dc=iu,dc=hio,dc=no"
ldapadd: update failed: dc=iu,dc=hio,dc=no
ldap_add: Already exists (68)
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When adding data from a file example.ldif one can simply delete the database
format and enter everything from scratch.

rm /usr/local/var/openldap-data/*

This is useful when the maintenance of the data is performed at source level,
rather than using the data in the database as authoritative.

Exercises

Self-test objectives

1. What is meant by configuration management in the context of network and
system administration?

2. How is configuration information stored by devices?

3. Explain why system configurations tend to fall into a state of disorder over
time.

4. What is meant by the concept of a dynamic balance, or configuration equi-
librium?

5. What is the role of policy in determining device configuration?

6. What is meant by root-cause maintenance and symptom maintenance?

7. What is meant by change management?

8. What is the role of clock synchronization in configuration management?

9. What role does task scheduling play in system maintenance?

10. Name the scheduling services for Windows and Unix-like operating systems.

11. Explain how randomized scheduling can be used as an alternative to a
queue-based schedule.

12. Summarize the alternatives available for automating host management. What
limitations does each of the alternatives have?

13. Explain when it is appropriate to supply more resources to a task, and when
it is appropriate to limit the consumption of resources.

14. Explain how SNMP can be used to watch over and configure network devices.
What are the limitations of SNMP?

15. Explain how cfengine can be used to watch over and configure network
devices. What are the limitations of cfengine?

16. Database management is a common task for system administrators; explain
why this is a natural extension of system administrative work.

17. How does an SQL database differ from a directory service such as LDAP?
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Problems

1. Compare and contrast the shell, Perl, Python, PHP and Tcl as rival languages
for scripting system administration tasks.

2. Imagine a busy organization, such as a newspaper, where users need con-
stant access to software, and clients need constant access to news via a web
server. Describe the precautions you would take in securing the continued
functioning of a system during a major software change or upgrade. How
would you involve the users in this procedure?

3. Find out about process priorities. How are process priorities changed on
the computer systems on your network? Formulate a policy for handling
processes which load the system heavily. Should they be left alone, killed,
rescheduled etc?

4. Review the role of cfengine in system administration. What is it used for?
What are its special strengths? What are its weaknesses? Review also the
role of the Perl language. What are its special strengths? Is there any overlap
between Perl and cfengine? Do the languages compete or supplement one
another?

5. Collect and compile cfengine. Set up a simple cfengine script which you can
build on. Make it run hourly.

6. Why are Unix shell scripts not portable? Is Perl portable? How can cfengine
help in the issue of script portability?

7. Discuss the advantages of having all scripts which perform configuration and
maintenance in one place, and of spreading them around the network on the
hosts to which they apply.

8. Discuss the ethical issues associated with garbage collection of files and
processes. Is it right to delete users’ files? How would a garbage collection
policy at a research laboratory differ from a policy at a high school? What is
the risk associated with tidying files automatically?

9. Collect the SNMP software scli from the network and install it. Use it to
query the attributes of printers attached to the network.

10. Create an LDAP directory for the students in your class. Begin with a simple
directory and then expand it gradually to incorporate more data. Explain the
strategy you use for extending information in the directory gradually, without
having to start from scratch on each revision.

11. Discuss what kinds of tools a system administrator needs to maintain and
use directory information effectively.



Chapter 8

Diagnostics, fault and change
management

All complex systems behave unexpectedly some of the time. They fail to operate
within the limits addressed by policy and the reason for this can be clearly under-
stood by comparing information content. Policy is generally a set of simplistic,
high level general rules that cannot capture the same level of detail as the true
human–computer interaction in its real environment. One must therefore expect
failure and plan for it. If a failure occurs in a manner that was expected, its effects
can be controlled and mitigated.

Principle 43 (Predictable failure). Systems should fail predictably so that they
can be recovered quickly. Predictability is encouraged by adopting standardized
(or well-understood) protocols and procedures for quality assurance in design and
maintenance.

This chapter is about learning what to expect of a non-deterministic system:
how to understand its flaws, and how to insure oneself against the unexpected.

8.1 Fault tolerance and propagation

How do errors penetrate a system? Faults travel from part to part as if in a network
of interconnections. If errors can propagate freely, then a small error in one part
of a system can have consequences for another part. By studying different kinds
of network, we can learn about the likelihood of error propagation.

Networks come in a variety of forms. Figure 8.1 shows the progression from
a highly ordered, centralized structure to a decentralized form, to a generalized
mesh. This classification was originally discussed by Paul Baran of RAND corpo-
ration in 1964 as part of a project to develop a communications system that would
be robust to failure in the case of a nuclear attack [36, 25].

The same argument applies to the propagation of errors though any set of
interconnected parts.
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(a) (b) (c)

Figure 8.1: Network topologies: (a) centralized, (b) decentralized or hierarchical, and (c)
distributed mesh.

Many complex systems exhibit a surprising degree of tolerance against errors.
This is because they have in-built redundancy. Certain types of network also have
this property in the routes between the nodes. If we think of networks not so much
in the sense of communication lines between computers, but as abstract links
between different dependent parts of the whole, then the importance of networks
becomes apparent. The idea of a network is thus of more general importance than
as a means of communication between computers and humans. Networks are
webs of influence. If a system is tolerant to faults and security breaches, then we
can look at it in one of two complementary ways:

• The access network that allows problems to propagate is poorly connected;
i.e. connections (security breaches) between nodes (resources) are absent.

• The resource network is well connected and is resilient to removal of nodes
(resources) and connections (supply channels).

The first of these viewpoints is useful for modeling intrusion or penetration by
faults or intruders, while the latter is useful for securing a system against lack of
access to critical resources.

A tolerant network is robust to node removal and connection removal. Node
removal is usually more serious (see figure 8.2).

One type of network of special importance is the random network. A random
network is formed by making random connections between nodes within a set.
Randomness is a good strategy for covering a large number of possibilities without
making exhaustive use of resources. In the absence of precise knowledge about a
system, random ‘shots in the dark’ are an efficient way of hitting an unpredictable
or moving target, such as a random fault [263]. Conversely, random links lead
to a high probability of connecting together all of the elements in a set of nodes,
provided their density is sufficient [6]. While this double dose of unpredictability
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Figure 8.2: Network tolerance to node removal: nodes are more important than connectors.

sounds like an unlikely combination for success, it works and leads to highly
robust networks.

Humans do not build technology at random so, apart from a robustness to fail-
ure, why should random networks be of interest to the study of human–computer
systems? The answer lies in so-called small-world networks, that approximate
random ones.

8.2 Networks and small worlds

You have probably heard the maxim that no two individuals in the world are more
than six degrees of separation from one another. In other words, I know someone,
who knows someone, who knows someone,... who knows you. In the world of
system administration, the degree of separation is probably much less than six;
but on average, the value is around six for arbitrary people on the planet. How
could this possibly be?

This strange, almost counter-intuitive, idea is not a freak coincidence of human
social structures; it is a property of a kind of network known as a small-world
network [319].

Definition 6 (Small-world network). There is a class of highly clustered graphs
that behave like random graphs. These are called small-world networks.

Small-world networks have local clustering, i.e. they have a centralized struc-
ture at the level of small groups, but this is not the reason they are called
small-world networks. The ‘small world’ phenomenon is rather the opposite of
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this, namely that someone in a small cluster will be closely connected to someone
in a rather distant cluster. The reason for this is the existence of a few long-range
or ‘weak’ links. In a small-world network, these weak links play a vital role in
connecting distant parts of the network together. If we add a sufficient number
of random, long-distance links something magical happens: suddenly a group of
small clusters starts to achieve the connectivity of a random network (figure 8.3
and 8.4).

Figure 8.3: A network is built up by adding connections between neighbors. As more
distant neighbors become connected, small, local clusters become connected over longer
distances.

The study of networks reveals that networks with the small-world property
also exhibit so-called ‘scale-free’ behavior, over a wide range of scales. In other
words, over a wide range of scales, the networks appear to have the same properties
regardless of how one zooms in or out and looks at different regions of the network.

Scale-free networks are formed spontaneously when there is some form of
preferential attachment, i.e. when the likelihood of a new connection is determined
by an already existing connection. This is observed, for instance, in the links to
sites in the World Wide Web and is exploited by search engines like Google in order
to rank the importance of sites. When someone sees that a site is well-connected,
they tend to refer to it themselves, thus making it even more well-connected. This
‘rich get richer’ phenomenon leads to a form of connectivity that is not necessarily
ordered, but which exhibits a form of ordering.

Why should this phenomenon be of more than passing interest to network
and system administration? The small-world phenomenon is a sociological phe-
nomenon, but it is mimicked in the deployment of technology. Studies of real
networks, both of humans and of computers, reveal that the small-world property
crops up in a wide range of circumstances in computer technologies. The effect
that humans have on the systems we create is not negligible; it has some impor-
tant consequences, because of the scale-free nature of the graphs. In particular,
the lack of actual randomness leads to so-called ‘heavy tailed’ distributions in
the properties that are associated with small-world configurations. This is leading
technology designers to re-examine their strategies for handling traffic flow around
networks.
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To summarize, the reason why networks are important to human–computer
systems is this: the ease with which information flows through a network depends
on how well it is connected; this affects

• The propagation of faults

• Security breaches

• The likelihood of emergent properties (bugs).

Figure 8.4: In a small-world network, weak links to distant neighbors provide important
short-cuts that dramatically reduce the distance between random individuals.

8.3 Causality and dependency
We would like to be able to establish a causal connection between the change of a
specific parameter and the resulting change in the system. This will be essential
for fault analysis and in substantiating claims about the effectiveness of a program
or policy. The principle of causality is simply stated:

Principle 44 (Causality). Every change or effect happens in response to a cause
that precedes it.

This principle sounds intuitive and even manifestly obvious, but the way in
which cause and effect are related in a dynamical system is not always as clear as
one might imagine. In this section, the aim is to show ways in which we can be
deceived as to the true cause of observed behavior through inadequate analysis.

Suppose we want to consider the behavior of a small subsystem within the
entirety of a networked computer system. First of all we have to define what
we mean by the subsystem we are studying. This might be a straightforward
conceptual partitioning of the total system, but conceptual decompositions do not
necessarily preserve causal relationships (see figure 8.5).

In fact we might have to make special allowances for the fact that the subsys-
tem might not be completely described by a closed set of variables. By treating a
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Figure 8.5: A complex system is a causal web or network of intercommunicating parts. It
is only possible to truly isolate a subsystem if we can remove a piece of the network from
the rest without cutting a connection. If we think of the total system as S(x1 . . . xn), and the
individual subsystems as s1(x1 . . . xp), s2(xp . . . xn) etc, then we can analyze a subsystem as
an open system if the subsystems share any variables, or as a closed system if there are no
shared variables.

subsystem as though it were operating in isolation, we might be ignoring impor-
tant links in the causal web. If we ignore some of the causal influences to the
subsystem, its behavior will seem confusing and unpredictable.

There is a simple mathematical expression of this idea. A total system S(x1 . . . xn)

can be treated as two independent subsystems if and only if the system of variables
can be factorized

S(x1 . . . xn) → s1(x1 . . . xp) · s2(xp . . . xn).

In other words, there has to be a separation of variables. This is a precise
statement of something which is intuitively obvious, but which might be practically
impossible to achieve. The problem is this:

Most of the parts of the causal web in figure 8.5 are themselves closed to us.
We do not know the state of all their internal variables, or how they are affected
by other parts of the system. Indeed, the task of knowing all of this information is
prohibitively difficult.

Interactions with third party systems can introduce behavior which would
appear confusing or even impossible in a closed system. How many times have
we cursed the computer for not behaving logically? Of course it always behaves
causally and logically, the problem when it seems to make no sense is simply
that it is behaving outside of our current conceptual model. That is a failure
in our conceptual model. The principle of causality tells us that unpredictable
behavior means that we have an incomplete description of the subsystem. There is
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another issue, however, by which confusing behavior can seem to arise. That is by
coarse graining information. Whenever we simplify data by blurring distinctions,
information is lost irretrievably. If we then trust the coarse-grained data, it is
possible to obtain the illusion of non-causal behavior, since the true explanation
of the data has been blurred into obscurity.

Causality is a mapping from cause to effect. The point of a complex system
with many variables is that this mapping might not be one-to-one or even many-
to-one. In general the mapping is many-to-many. There are knock-on effects.
Experimentally, we must have a repeatable demonstration (this establishes a
stable context), but we also need a theory about cause and effect (a description
of the mapping, sometimes called the kernel of the mapping). We need to identify
which variables play a relevant role and we need to factor out any irrelevant
variables from the description.

8.4 Defining the system

Given that the many complex interactions in an open system result in effects that
have far-reaching consequences, how shall we face up to the reality of taking all of
this into account? Where do we place the boundary between the ‘system’ and its
‘environment’? In other words, how do we make an informed decision about what
is important and what is unimportant?

This step is the hard one in any analysis. One is usually guided by a desire for
simplicity, balanced against a need for completeness. Exactly how one finds this
equilibrium is not a task for logic or deduction, but for induction or inferral from
experiment.

The most conscientious approach to the problem is to perform an analysis of
risks from the system that goes beyond the limit that is actually of interest, and
then to prune the analysis at a certain level of detail.

A

B

C

Figure 8.6: Looking for the boundary between system and environment. Region A consists
of a physical computer boundary. Region B represents a region in which the failure cause
probability is greater than 10−3. Region C represents the radius for fault causes of greater
than 10−4.
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In figure 8.6, we see a schematic representation of a computer connected to
its environment (by temperature, by network, by users etc). The question is: do
we choose the boundary of the hardware box that the computer lives in (A) as the
boundary of the system? Or do we choose an abstract boundary that includes all
of the devices and users that it is connected to that are likely to cause errors with
some minimum level of probability? The second alternative is the most reasonable
one from the systemic viewpoint. The physical boundary of a computing device
is not really a relevant one – it is purely cosmetic. The real sphere of influence is
wider than this. Indeed, computers are more likely to exhibit faults that result
from usage than through any other source of errors.

8.5 Faults
The IEEE classification of software anomalies is [166],

• Operating system crash

• Program hang-up

• Program crash

• Input problem

• Output problem

• Failed required performance

• Perceived total failure

• System error message

• Service degraded

• Wrong output

• No output.

This classification touches on a variety of themes, all of which might plague
the interaction between users and an operating system. Some of these issues
encroach on the area of performance tuning, e.g. service degraded. Performance
tuning is certainly related to the issue of availability of network services and
thus this is a part of system administration. However, performance tuning is of
only peripheral importance compared with the matter of possible complete failure.
Many of the problems associated with system administration can be attributed to
input problems (incorrect or inappropriate configuration) and failed performance
through loss of resources. Unlike many software situations these are not problems
which can be eliminated by re-evaluating individual software components.

Another source of error is found at the human edge of the system:

• Management error

• Miscommunication



8.5. FAULTS 289

• Forgetfulness

• Misunderstanding/miscommunication

• Misidentification

• Confusion/stress/intoxication

• Ignorance

• Carelessness

• Slowness of response

• Random procedural errors

• Systematic procedural errors

• Inability to deal with complexity

• Inability to cooperate with others.

In system administration the problems are partly social and partly due to the coop-
erative nature of the many interacting software components. The unpredictability
of operating systems is dominated by these issues.

8.5.1 How are faults corrected?

Faults occur for a plethora of reasons, too complex to present in any summarial
fashion. Sometimes diagnosing a fault can take days or even weeks. In spite of
this, a working solution to the fault is often extremely simple. It might be as
simple as restarting a process, killing a process, editing a file, changing the access
rights (permissions) to a file object, and so on. The complexity of fault diagnosis
originates from the same place as the complexity of the system: i.e. that operating
systems are cooperative systems with intricate causal relationships. It is usually
these causal relationships which are difficult to diagnose, not the measurable
effects which they have on the system. Such causal relationships make useful
studies to publish in journals, since they document important experience.

The root cause of a fault is often not important to the running of the system
in practice. One may complain about buggy software, but system administrators
are not always in a position to fix the software, nor is it rational for them to do
so. While everyone agrees that the fault needs to be fixed at source, the system
must continue to function in lieu of that time. Once a fault has been successfully
diagnosed it is usually a straightforward matter to find a recipe for preventing the
problem, or for curing it, if it should occur again. Problem diagnosis is way beyond
the abilities of current software systems except in the simplest cases, so the best
one could do would be to capture the experience of a human administrator using
a knowledge-based expert system. In artificial intelligence studies expert systems
are not the only approach to diagnosis. Another approach, for instance, is the use
of genetic algorithms. Such algorithms can be fruitful when looking for trends in
statistical data, but statistically meaningful data are seldom available in system
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administration. The nature of most problems is direct cause and effect, perhaps
with a cascade or domino effect. That is not to say that statistical data cannot
be used in the future. However, at present no such data exist and no one knows
what such data are capable of revealing about system behavior.

Suppose we abstract an operating system by considering it as the sum of
its interfaces and resources. There is only a handful of operations which can
be performed on this collection of objects and so this set of basic primitives is
the complete toolbox of a system administrator. One can provide helpful user
interfaces to execute these primitives more easily but no greater functionality is
possible. The basic primitives are:

• Examining files

• Creating files

• Aliasing files

• Replacing files

• Renaming files

• Removing files

• Editing files

• Changing access rights on files

• Starting and stopping processes or threads

• Signaling processes or threads

• Examining and configuring hardware devices.

From these primitives one may build more complex operations such as fre-
quently required tasks for sharing resources. Note that the difference between a
thread and a process is not usually relevant for the system administrator, so we
shall speak mainly of processes and ignore the concept of a thread. The reason for
this is that kernel-level threads are usually transparent or invisible to processes
and user-level threads cannot normally be killed or restarted without restarting
an entire process.

8.5.2 Fault report and diagnosis

When problems arise, one needs to develop a systematic approach to diagnosing
the error and to getting the system on its feet again. As in the field of medicine,
there is only a limited number of symptoms which a body or computer system can
express (sore throat, headache, fever, system runs sluggishly, hangs etc). What
makes diagnosis difficult is that virtually all ailments therefore lead to the same
symptoms. Without further tests, it is thus virtually impossible to determine the
cause of symptoms.

As mentioned in section 6.6, a distressing habit acquired from the home
computer revolution is the tendency to give up before even attempting a diagnosis
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and simply reboot the computer. This might bypass an immediate problem but
we learn nothing about why the problem arose. It is like killing a patient and
replacing him with another. The act of rebooting a computer can have unforseen
effects on what other users are doing, disrupting their work and perhaps placing
the security of data in jeopardy. Rather we need to carefully examine the evidence
on a process by process and file by file basis.

8.5.3 Error reporting

Reporting a health problem is the first step to recognizing its importance and
solving it. Users tend to fall into the categories of active and passive users. Active
users do not need encouraging to report problems. They will usually report even
the smallest of problems; sometimes they will even determine the cause and report
a fix. While they can often be wearisome in a stressful situation, active users of
this type are our friends and go a long way to spreading the burden of problem
solving. Remember the community principle of delegation: if we cannot make good
use of resources, then the community is not working.

Active users are sometimes more enthusiastic than they are experienced,
however, so the system administrator’s job is not simply to accept on trust what
they say. Their claims need to be verified and perhaps improved upon. Sometimes,
users’ proposed solutions cannot be implemented because they are in conflict with
the system policy, or because the solution would break something else. Only the
system administrator has that kind of bird’s-eye view of the system to make the
judgment.

In contrast to active users, passive users normally have to be encouraged to
report errors. They will fumble around trying to make something work, without
understanding that there is necessarily a problem. Help desk systems such as
Rust, Gnats, Nearnet, Netlog, PTS, QueueMH and REQ can help in this way, but
they can also encourage reports of problems which are only misunderstandings.

Suggestion 10 (FAQs). Providing users with a road-map for solving problems,
starting with Frequently Asked Questions and ending with an error report, can
help to rationalize error reporting.

8.5.4 A diagnostic principle

Once an error has been reported, we must determine its cause. A good principle of
diagnostics comes from an old medical adage: When you hear the sound of distant
hooves, think horses not zebras, i.e.

Principle 45 (Diagnostics). Always eliminate the obvious first.

What this means is that we should always look for the most likely explanation
before toying with exotic ideas. It is embarrassing to admit how many times appar-
ently impossible problems have resulted from a cable coming out, or forgetting
to put in a plug after being distracted in the middle of a job. If the screen is
dark, is it plugged in, is the brightness turned up, is the picture centered? Power
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failures, loose connections, and accidentally touching an important switch can
all confuse us. Since these kinds of accident are common, it is logical to begin
here. Nothing is too simple or menial to check. A systematic approach, starting
with simple things and progressing through the numbers often makes light work
of many problems. The urge to panic is often strong in novices, when there is no
apparent explanation; with experience, however, we can quell the desire to run
for help. A few tests will almost always reveal a problem. Experience allows us to
expand our repertoire and recognize clues, but there is no reason why cold logic
should not bring us home in every case.

Having eliminated the obvious avenues of error, we are led into the murkier
waters of fault diagnosis. When a situation is confusing, it is of paramount
importance to keep a clear head. Writing down a log of what we try and the effect
it has on the problem prevents a forgetful mind from losing its way. Drawing a
conceptual map of the problem, as a picture, is also a powerful way of persuading
the human mind to do its magic.

Once of the most powerful features of the human mind (the thing which
makes it, by far, the most powerful pattern-recognition agent in existence) is
its ability to associate information input with conceptual models from previous
experience. Even the most tenuous of resemblances can lead us to be amused at
a likeness of a person or object, seen in an unusual context. We recognize human
faces in clouds and old cars; we recognize a song from just a few notes. The
ability to make connections leads us in circles of thought which sooner or later
lead to ‘inspiration’. As most professionals know, however, inspiration is seldom
worth waiting for. A competent person knows how to work through these mental
contortions systematically to come up with the same answer. While this might be
a less romantic notion than waiting for inspired enlightenment, it is usually more
efficient.

8.5.5 Establishing cause and effect

If a problem has arisen, then something in the system is different than it was
before the error occurred. Our task then is to determine the source of that change
and identify a chain of events which resulted in the unfortunate effect. The hope
is that this will tell us whether or not we can prevent the problem from recurring
and perhaps also whether or not we can fix it. It is not merely so that we can fill
out a report in triplicate that we need to debug errors.

Problem diagnosis is one of the hardest problems in any field, be it system
administration, medicine or anything else. Once a cause has been found, a cure
can be simple, but finding the problem itself often requires experience, a large
knowledge base and an active imagination. There is a three-stage process:

• Gather evidence from users and from other tests.

• Make an informed guess as to the probable cause.

• Try to reproduce (or perhaps just fix) the error.

It is only when we have shown that a particular change can switch the error on or
off that we can say with certainty what the cause of the error was.
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Sometimes it is not possible to directly identify the causal chain which led to
an error with certainty. Trying to reproduce a problem on an unimportant host
is one way of verifying a theory, but this will not always work. Computers are
complex systems which are affected by the behavior of users, interactions between
subsystems, network traffic, and any combination of these things. Any one of
these factors can have changed in the meantime. Sometimes it can be a chance
event which creates a unique set of conditions for an error to occur. Usually this
is not the case though; most problems are reproducible with sufficient time and
imagination.

Trying to establish probable cause in such a web of intrigue as a computer
system is enough to challenge the best detectives. Indeed, we shall return to
this point in chapter 13 and consider the nature of the problems in more detail.
To employ a tried and tested strategy, in the spirit of Sherlock Holmes, we can
gradually eliminate possibilities and therefore isolate the problem, little by little.
This requires a certain inspiration for hypothesizing causes which can be found
from any number of sources.

• One should pay attention to all the facts available about the problem. If users
have reported it, then one should take seriously what they have to say, but
always attempt to verify the facts before taking too much on trust.

• Reading documentation can sometimes reveal simple misunderstandings in
configuration which would lead to the problem.

• Talking to others who might have seen the problem before can provide a short
cut to the truth. They might have done the hard work of diagnosis before.
Again, their solutions need to be verified before taking them on trust.

• Reading old bug and problem reports can provide important clues.

• Examining system log files will sometimes provide answers.

• Performing simple tests and experiments, based on a best-guess scenario,
sharpens the perception of the problem and can even allow the cause to be
pinpointed.

• If the system is merely running slower than it should, then some part of it is
struggling to allocate resources. Is the disk nearing full, or the memory, or
even the process table? Entertain the idea that it is choking in garbage. For
instance, deleted files take up space on systems like Novell, since the files
are stored in such a way that they can be undeleted. One needs to purge
the filesystem every so often to remove these, or the system will spend much
longer than it should looking for free blocks. Unix systems thrash when
processes build up to unreasonable levels. Garbage collection is a powerful
tool in system maintenance. Imagine how human health would suffer if we
could never relieve ourselves of dead cells or the byproducts of a healthy
consumption. All machines need to do this.

Ideally, one would have a control measurement (‘baseline’) of the system, so
that one has a set of measurements when the system is working normally for
comparison. This is beyond the scope of this book however.
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8.5.6 Gathering evidence

From best guess to verification of fault can be a puzzling time in which one grapples
with the possible explanations and seeks tests which can confirm or deny their
plausibility. One could easily write a whole book exemplifying techniques for
troubleshooting, but that would take us beyond the limits set for this book. Let us
just provide two simplified examples of real cases which help to illustrate how the
process of detection can proceed.

Example 6 (Network services become unavailable). A common scenario is the
sudden disappearance of a network service, like, say, the WWW from a site. If a
network service fails to respond it can only be due to a few possibilities:

• The service has died on the server host.

• The line of communication has been broken.

• The latency of the connection is so long that the service has timed-out.

A natural first step is to try to send a ‘ping’ to the server-host:

ping www.domain.country

to see whether it is alive. A ping signal will normally return with an answer within
a couple of seconds, even for a machine halfway across the planet. If the request
responds with

www.domain.country is alive

then we know immediately that there is an active line of communication between
our host and the server hosts and we can eliminate the second possibility. If the
ping request does not return, then there are two further possibilities:

• The line of communication is broken.

• The DNS lookup service is not responding.

The DNS service can hang a request for a long period of time if a DNS server is not
responding. A simple way to check whether the DNS server is at fault or not is to
bypass it, by typing the IP address of the WWW server directly:

ping -n 128.39.74.4

If this fails to respond then we know that the fault was not primarily due to the
name service. It tends to suggest a broken line of communication. The traceroute
command on Unix-like operating systems, or tracert on Windows can be used to
follow a net connection through various routers to its destination. This often allows
us to narrow down the point of failure to a particular group of cables in the network.
If a network break has persisted for more than a few minutes, a ping or traceroute
will normally respond with the message

ICMP error: No route to host

and this tells us immediately that there is a network connectivity problem.
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But what if there is no DNS problem and the ping tells us that the host is alive?
Then the natural next step is to verify that the WWW service is actually running on
the server host. On a Unix-like OS we can simply log onto the server host (assuming
it is ours) and check the process table for the httpd daemon which mediates the
WWW service

ps waux | grep httpd
ps -elf | grep httpd

for BSD and Sys V Unices respectively. On a Windows machine, we would have to
go to the host physically and check its status. If the WWW service is not running,
then we would like to know why it stopped working. Checking log files to see what
the server was doing when it stopped working can provide clues or even an answer.
Sometimes a server will die because of a bug in the program. It is a simple matter to
start the service again. If it starts and seems to work normally afterwards, then the
problem was probably a bug in the program. If the service fails to start, then it will
log an error message of some kind which will tell us more. One possibility is that
someone has changed something in the WWW service’s configuration file and has
left an error behind. The server can no longer make sense of its configuration and it
gives up. The error can be rectified and the server can be restarted.

What if the server process has not died? What if we cannot even log onto the
server host? The latter would be a clear indication that there was something more
fundamentally wrong with the server host. Resisting the temptation to simply reboot
it, we could then try to test other services on the server host to see if they respond.
We already know that the ping echo service is responding, so the host is not
completely dead (it has power, at least). There are therefore several things which
could be wrong:

• The host is unable to respond (e.g. it is overloaded).

• The host is unwilling to respond (e.g. a security check denying access to our
host).

We can check that the host is overloaded by looking at the process table to see
what is running. If there is nothing to see there, the host might be undergoing a
denial of service attack (see chapter 11). A look at netstat will show how many
external connections are directed towards the host and their nature. This might
show something that would confirm or deny the attack theory. An effective attack
would be difficult to prevent, so this could be the end of the line for this particular
investigation and the start of a new one, to determine the attacker. If there is no
attack, we could check that the DNS name service is working on the server-host.
This could cause the server to hang for long periods of time. Finally, there are lots
of reasons why the kernel itself might prevent the server from working correctly:
the TCP connection close time in the kernel might be too long, leading to blocked
connections; the kernel itself might have gone amok; a full disk might be causing
errors which have a knock-on effect (the log files from the server might have filled
up the disk), in which case the disk problem will have to be solved first. Notice how
the DNS and disk problems are problems of dependency: a problem in one service
having a knock-on effect in another.
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Example 7 (Disks suddenly become full). A second example, with a slightly
surprising conclusion, begins with an error message from a program telling us that
the system disk of a particular host has become full. The nature of this particular
problem is not particularly ambiguous. A full disk is a disk with no space left on
it. Our aim is to try to clear enough space to get the system working again, at
least until a more permanent solution can be found. In order to do this, we need
to know why the disk became full. Was it for legitimate reasons, or because of a
lack of preventative garbage collection, or in this case a completely different reason?
There are many reasons why a disk partition might become full. Here are some
obvious ones:

• A user disk partition can become full if users download huge amounts of data
from the Internet, or if they generate large numbers of temporary files. User
disks can become full both for valid reasons and for mischievous reasons.

• The contents of the system disk only change for one of two reasons: log files
which record system activity can grow and fill up a disk; temporary files
written to public directories can grow and fill a disk.

If a user disk becomes full, it is usually possible to find some unnecessary files
which can be deleted in order to make space temporarily. The files we deem
as unnecessary have to be defined as such as a matter of policy. It would be
questionable ethically to make a habit of deleting files which users did not know
could be removed, in advance. Some administrators follow the practice of keeping a
large file on every disk partition which can be removed to make space. Of course, if
we have done our preventative maintenance, then there should not be any junk files
taking up space on the system. In the end, all user disk usage grows monotonically
and new disks have to be bought, users can be moved to new disks to spread the
load, and so on.

If a system disk becomes full, there are three main things to look for:

• core files (Unix)

• Temporary files

• Log files.

Core files are image files which are dumped when programs crash. They are
meant to be used for debugging purposes; in practice they cause more problems
than they solve. Core files are very large and one or two can easily fill a tight
partition, though disk sizes are always growing and giving us more playing room.
Preventative maintenance should delete such files regularly. Temporary files /tmp
and /var/tmp in Unix-like systems, or C:\Temp on Windows are publicly writable
directories which usually take up space on the system disk. Temporary files can
also be written elsewhere. These can be filled up either accidentally or maliciously.
Again, these should be cleared regularly. The final source of trouble is log files.
Log files need to be rotated on a regular basis so that they do not grow too large.
Rotation means starting a new log and saving a small number of old log files. This
means that old log data eventually get thrown away, rather than keeping it forever.

In all of the above cases, we can identify the recent change in a filesystem by
searching for files which have changed in the last 24 hours. On a Unix-like system,
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this is easily done by running a command to look at all subdirectories of the current
directory:

find . -mtime -1 -print -xdev

On other systems it is harder and requires special software. A GNU version of the
Unix find utility is available for Windows.

A third reason why a filesystem can become full is corruption. In one instance
a Unix disk continued to grow, despite verifying that no new files had been created
and after removing all old log files. The Unix df disk utility eventually reported
that the filesystem was 130% full (an impossibility) and it continued to grow. The
eventual cause of this problem was identified as a fault in the filesystem structure,
or inode corruption. This was brought about by the host concerned overheating
and causing memory errors (system log errors confirmed memory write errors). The
problem recurred twice before the host was moved to a cooler environment, after
which time it righted itself (though the filesystem had to be repaired with fsck on
each occasion).

There are many tips for tracing the activity of programs. For instance, to trace
what files are read by a program, use strace or truss to watch for file descriptors

truss -t open,close program

This runs the program concerned in a monitor which prints out all the listed
system calls. This can be a good way of finding out which libraries a program uses
(or tries and fails to use) or which configuration files it opens.

Complete your own list of troubleshooting tips. This is a list you will be building
for the rest of your life.

8.6 Cause trees

From the previous sections, we recognize that the causal relationships within
a system can form complex networks. Unraveling such networks is difficult. In
many cases we can simplify the causal structure by replacing part of the network
with an effective tree that more clearly describes the causal relationships. The
price for this simplification is that the events are non-deterministic; by hiding
details, we lose complete information about the system, but achieve a higher level
understanding. Cause trees were advocated before the topology of networks was
fully appreciated.

Charting cause trees is a systematic method used in fault diagnosis. The idea
is to begin by building lists of possible causes, then causes of those causes, and
so on, until one has covered an appropriate level of detail. Once a cause tree
has been constructed for a system, it becomes a road-map for fault finding for
the future also. The use of cause trees is sometimes called Root Cause Analysis
(RCA). A related method called Event Tree Analysis (ETA) maps out every single
eventuality as a true/false binary tree, where every possibility is documented but
only certain pathways actually occur. The latter is mainly a way of documenting
the extent of a system; it has little analytical value.
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Many of the techniques described in this chapter were pioneered over the last
half century by authorities working with nuclear power, where the risk of accidents
takes on a whole different level of importance. The keyword in causal analyses is
dependencies. All of the immediate causes of a phenomenon or event are called
dependencies, i.e. the event depends on them for its existence. The cause tree
for diagnostic example 6 is shown in figure 8.7. The structure is not completely
hierarchical, but it is approximately so.

Net service down

Timed-outService died

Routing
 prob.

DNS
failure

Will not
respond

Cannot
respondCrashed Deleted Misconfig

No route
to host

Busy Access
control

Bug Upgraded

No reply

Figure 8.7: Attempt at cause tree for a missing network service.

The cause tree for diagnostic example 7 is shown in figure 8.8. This is a
particularly simple example; it simply becomes a flat list. Causal analysis can be

Disk full

Bad usersFilesystem
corruption Log files Legitimate

usage
Temporary

files

Figure 8.8: Attempt at cause tree for a full disk.

used at different levels. At the level of human management, it takes on a more
heuristic role, e.g.

• Inadequate procedures

• Inadequate training

• Quality control

• Miscommunication

• Poor management

• Social/human engineering
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• Supervision error

• Preventative maintenance lacking.

Information is collected about an incident or phenomenon and this is broken
down into cause–effect relationships. Analysts must understand the systems they
model thoroughly from the highest levels, down to the component level.

The construction of an event tree is just like the top-down analysis performed
in programming. Breaking the event up into component causes is like breaking
up a task into subroutines. The benefit is the same: a complex problem is reduced
to a structured assembly of lesser problems.

8.7 Probabilistic fault trees

How can we go beyond the simple thinking aid of mapping of possible cause and
effect to actually calculating the likely outcomes of the different pathways through
a cause tree? To do that, we must acknowledge that not all of the possible pathways
occur all of the time: some occur only infrequently, some are mutually exclusive,
some are co-dependent and others are uncorrelated. To make serious headway in
estimating likely cause, we thus need to add probabilities and combinatorics to
the discussion. This is the contribution of fault tree analysis. The discussion here
follows that of Apthorpe [17], based on ref. [227].

8.7.1 Faults

For the purposes of modeling, fault tree analysis distinguishes between:

• Failures: abnormal occurrences that do not prevent the system from func-
tioning.

• Faults: systemic breakdowns within the system.

An important subset of faults is formed by component faults.
Component faults fall into three categories:

• Primary faults: occur when a component is working within its design limits,
e.g. a web server that is rated at 50 transactions per second fails when it
reaches 30 transactions per second.

• Secondary faults: occur when a fault is operating outside its design specifica-
tion, e.g. a web server that is rated at 50 transactions per second fails when
it reaches 90 transactions per second.

• Command faults: are faults that occur when a system performs its specified
function, but at the wrong time or place, e.g. a Web server that begins
querying a database persistently when no request is being made by an
external agent.

Faults occur in response to events. The events are also categorized, this time
depending on their position within the tree structure:
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• Top: This is the top of the tree – the end phenomenon that we are trying to
explain. It is analogous to the ‘main’ function in a computer program.

• Intermediary: This is a dependency within the tree, but not a root cause of
the phenomenon. It is analogous to a subroutine of the main program, it has
deeper dependencies that are subroutines of itself.

• Primary: This is an event that is either a root cause, or as deep an explanation
as we can manage to determine. In a computer program analogy, it is like a
basic library function, i.e. the lowest level of control available. Events that
we cannot say much about are called undeveloped events because although
we cannot dig any deeper, we know that there is more going on than we can
say. Events that have no further explanation are called basic events. These
are the primitive atoms of causality: the very root causes.

Events are drawn using the symbols in figure 8.9.

(a)

(b)

(c)

(d)

(e)

Figure 8.9: Basic symbols for fault trees.

8.7.2 Conditions and set logic

When several smaller causes lead to an intermediate event or phenomenon, there
arises a question about how many of the sub-events were needed to trigger the
higher level event – all of them? any of them? a certain number? Events thus com-
bine in ways that can be represented by simple combinatoric set notation – with
‘AND’ and ‘OR’ or other conditions. These are best known to computer scientists
in the form of logic gates. Figure 8.10 shows the standard symbols for the gate
types. Although there are many gate types, in practice AND and OR suffice for
most cases.

The properties of the gates in combining the probabilities are noted below.
Note that it makes a difference whether or not events are independent, in the
probabilistic sense: i.e. the occurrence of one event does not alter the probability
of occurrence of another.

• In OR gates, probabilities combine so as to get larger.

P (A OR B) = P (A) + P (B) − P (A AND B). (8.1)
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(d)

(f)

(a)

(b)

(c)

m(e)

(g)

Figure 8.10: Basic gate types: (a) AND, (b) OR, (c) XOR, (d) transfer partial result to
separate sub-tree, (e) voting gate (m of n), (f) inhibit conditional of ‘if’ gate, and (g) priority
AND (inputs ordered from left to right) (see ref. [227]). Many simple cases can be modeled
with just AND and OR.

In general,

P (A1 OR A2 OR . . . OR An) =
n∑

i=1

P (Ai) −
n−1∑
i=1

n

n∑
j=i+1

P (Ai)P (Aj ) + . . . (8.2)

+(−1)n+1P (A1)P (A2) . . . P (An).

• In AND gates, probabilities combine so as to get smaller:

P (A AND B) = P (A)P (B|A), (8.3)

or in general:

P (A1 AND A2 AND . . . AND An) =
n∏

i=1

P (Ai). (8.4)

If A and B are independent, then

P (A)P (B|A) = P (A)P (B), (8.5)

which is smaller than P (A) or P (B); but if the events are not independent,
the result can be much greater than this.

• XOR gates have no predictable effect on magnitudes.

P (A OR B) = P (A) + P (B) − 2P (A AND B). (8.6)

Thus if we see many OR pathways, we should be scared. If we see many AND
pathways, we should be pleased – the latter means that things are tied down quite
tightly with redundancy or protections.



302 CHAPTER 8. DIAGNOSTICS, FAULT AND CHANGE MANAGEMENT

8.7.3 Construction

Bug Config

Server failure

Router

Service down

P(B) P(C)

P(BC)
P(A)

Figure 8.11: A simple fault tree for an unavailable service.

As a simple example, consider how to work out the probability of failure for a
system attack, where an attacker tries the obvious pathways of failure: guessing
the root password, or exploiting some known loopholes in services which have not
been patched (see figure 8.11).

We split the tree into two main branches: first try the root password of the
system, ‘OR’ try to attack any services which might contain bugs.

• The two main branches are ‘independent’ in the probabilistic sense, because
guessing the root password does not change the sample space for attacking
a service and vice versa (it’s not like picking a card from a deck).

• On the service arm, we split (for convenience) this probability into two parts
and say that hosts are vulnerable if they have a service which could be
exploited AND the hosts have not been patched or configured to make them
invulnerable.

• Note that these two arms of the AND gate are time-dependent. After a service
vulnerability becomes known, the administrator has to try to patch/recon-
figure the system. Attackers therefore have a window of opportunity. This
adds a time dimension to the fault analysis which we might or might not
wish to address.
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Since all the events are independent, we have:

P (breakin) = P (A OR (NOT A AND (B AND C))) (8.7)

= P (A) + (1 − P (A)) × P (B)P (C) (8.8)

Suppose we have, from experience,

• Chance of router problem P (A) = 5/1000 = 0.005.

• Chance of server problem P (B) = 50/1000 = 0.05.

• Chance that server is misconfigured P (C) = 10% = 0.1.

P (breakin) = 0.005 + 0.995 × 0.05 × 0.1

= 0.005 + 0.0049

= 0.01

= 1% (8.9)

Notice how, even though the chance of guessing the root password is small, it
becomes an equally likely avenue of attack, due to the chance that the host might
have been upgraded. Thus we see that the chance of breakin is a competition
between an attacker and a defender.

A cutset is a set of basic events that are essential for a top-level fault to occur.
A minimal cutset is a cutset in which the removal of a single event no longer
guarantees the occurrence of the top-level event. The aim of fault tree analysis is
to identify these cutsets.

8.8 Change management revisited

Change management is about planning the timing and deployment of upgrades
and overhauls to the system. One of the fears that makes system administrators
reticent in changing anything is the maxim ‘if it ain’t broke, don’t fix it’. We
want to know what the knock-on effects of change will be. Perhaps upgrading an
operating system will have significant repercussions for users. What will be the
consequences of such change?

Dependencies in a graph show us the consequences of our actions. How will a
change propagate into the rest of the system, for better or for worse? A change is
no different to a fault: a change of policy makes what was once a feature become
a bug that needs to be fixed. Managing change is therefore analogous to the fixing
of bugs, except that it begins with an extra step: a policy decision.

A checklist for change management can be specified as follows:

1. Decide on the change.

2. Map out the repercussion network (dependencies) of the change, as far as
possible.1

1Some dependencies might be hidden or be beyond your control, e.g. operating system upgrade
changes.
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3. Revise policy for each affected component in the system to reflect the change.

4. Inform users of the impending change and wait for comments.

5. Incorporate any user comments into the policy change.

6. Lock the system to prevent incomplete reconfiguration from being a hazard
to the system.

7. Make the changes.

8. Unlock the system.

9. Inform users that the change has been implemented.

Notice that it is important to lock down the system during a major ‘non-atomic’
change. This secures the system against problems that can occur because a part
of the system is not yet upgraded. Locking the system prevents policy conflicts
from adversely affecting the reliable functioning of the system during the upgrade.

In change management we are interested in consistency, i.e. moving from a
state of widespread predictability to a new state of widespread predictability.

8.9 Game-theoretical strategy selection

Game theory is a method of rational decision making. More specifically, it is
a method for pitting a set of pre-emptive and defensive strategies against one
another, and finding their point of balance in order to maximize gain and minimize
loss (see figure 8.12).

Game theory is useful in cases where it is difficult to evaluate the rational gains
of following particular policies without some calculational framework. This occurs
whenever the number of choices is large and the effects are subtle. Contests
which are caused by conflicts of interest between system policy and user wishes,
unfold in this framework as environmental interactions which tend to oppose
convergence and stability [225, 96]. Game theory is about introducing ‘players’,
with goals and aims, into a scheme of rules and then analyzing how much each
player can win, according to those restrictions. Each pair of strategies in a game
affords the player a characteristic value, often referred to as the ‘payoff’. Game
theory has been applied to warfare, to economics (commercial warfare) and many
other situations.

Principle 46 (Strategic administration). System administration can be
viewed as a strategic game whose aim is to maintain a policy-conformant state
[47]. A fault of the system, and its corresponding fault tree, is thus a strategy for
driving the system off-policy, while an administrative maintenance strategy is a
countermeasure that tends to restore conformance with policy.

Games come in several forms. Some are trivial, one-person games of chance,
and are not analyzable in terms of strategies (these are more suitable to ‘flat’
fault tree analysis), since the actions of the players are irrelevant to the outcome;
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Figure 8.12: The payoff matrix for a two-person game is a table of strategies and counter-
strategies for one of the players. Each player has a payoff matrix.

in this case, one has a rather simple fault tree. More interesting is the case in
which the outcome of the game can be determined by a specific choice of strategy
on the part of the players. The most basic model for such a game is that of a
two-person zero-sum game, or a game in which there are two players, and where
the losses of one player are the gains of the other. This model is simplistic, applied
as users versus system, because it seems to say that all users must work contrary
to system policy, which is clearly not true. However, experience shows that it
is mainly those few users who do attempt to confound policy who need to be
dealt with strategically. Thus, the real ‘battle’ for the ideal error-free state of the
system, is between those factions who are for and those who are against policy.
The majority of neutral users play only a background role (as chance noise) and
do not need to be modeled explicitly.

The courses of action available to each party label the rows and columns of the
matrix. Rows are strategies and columns are counter-strategies, or vice versa. The
values within the matrix are the values gained by one of the players, in units of
the arbitrary currency of the game when a given row-strategy and column-strategy
are chosen. Once this ‘payoff’ matrix has been formulated, it contains information
about the potential outcome of a game or scenario, using the strategies. This
forms the basis for the theory of games [225, 96], whose methods and theorems
make it possible to determine the optimal course or courses of action in order to
maximize one’s winnings. Obviously, any and all information which contributes
to a judgment is useful, however one does not necessarily need a particularly
detailed or accurate description to begin making simple value judgments about
system behavior. Even a simple quantification is useful, if it can distinguish
between two possible courses of action.

How much can a user or an attacker hope to win? What is the currency of this
evaluation? In addition to work produced or resources gained by a user’s strategy,
other things might be deemed to be of value, such as privilege and status. In a
community, wealth does not guarantee privilege or status unless that coincides
with the politics of the community. Payoff can therefore be a complex issue to
model. If one includes these ranking issues in calculations, one might allow for
the possibility that a user plays the system rules in order to gain privileges for
some later purpose. A user who accrues the goodwill of the system administrator
might eventually gain trust or even special privileges, such as extra disk space,
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access to restricted data etc. Such problems are of special interest in connection
with security [171, 327].

In a community, games are not necessarily two-player zero-sum engagements.
What is lost by one player is not necessarily gained by an obvious opponent. More-
over, the information available to different sides in a conflict can affect their modes
of play. In this case the theory of non-zero sum games becomes important; in par-
ticular, the idea of a Nash equilibrium arises. The so-called prisoner’s dilemma
leads to the famous example of Nash equilibrium [222] which is a trade-off:

Principle 47 (Nash dilemma). A user of the system who pursues solely private
interests, does not necessarily promote the best interest of the community as a
whole.

Should strategies cooperate or ‘fight’ to maximize their winnings? See the example
in section 10.9. The non-zero sum game is beyond the scope of this book, but
interested readers are encouraged to find out more about this important method.

Many games can be stated in terms of a basic zero-sum model: it is, for example,
the model taken by current system administration agents such as cfengine [41]
and PIKT [231], as well as several commercial products, to good effect. Indeed, it is
also the view taken by vertebrate immune systems, in detecting potential sickness
or damage. Thus, while it might be a simplistic first step where intelligent humans
are concerned, it provides a non-trivial example for introductory purposes without
overly simplifying the issues. In a realistic situation, both parties in the two-person
game would use mixed strategies. A strategy is any specified choice of action. It
can involve:

• A schedule of operations,

• A specification of moves and counter-moves (rules).

In addition to simple short-term strategies (tactics), there can be meta-strategies,
or long-term goals. For instance, a nominal community strategy might be to
implement the stability criteria discussed earlier:

• Maintain the stability of the system

• Maximize total productivity or the generation of work,

• Gain the largest feasible share of resources,

but this might be implemented in the short term by a variety of tactics, such as
policy cooperation, non-cooperation and so on. An attack strategy might be to

• Consume or destroy key resources

• Oppose system policy

• Denial of service.

Tactics for attaining intermediate goals might include covert strategies such
as bluffing (falsely naming files or other deceptions), taking out an attacker,
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counter-attacking, or evasion (concealment), exploitation, trickery, antagoniza-
tion, incessant complaint (spam), revenge etc. Security and privilege, levels of
access, integrity and trust must be woven into algebraic measures for the payoff.
Faced with a problem to the system, one may address it either by patching symp-
toms, or by seeking to root out the fundamental cause. Most successful strategies,
including those used by biological life, employ both. A means of expressing all of
these devices must be formulated within a model. For an example, see ref. [47].

Ask users
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Counter-
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Force tidy

Disk full
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Figure 8.13: Payoff matrix and a fault tree showing how the fault tree feeds into the game
as probabilities, and vice versa. The values in the matrix are probabilistic expressions
expressing the likelihood of achieving each strategic goal, weighted by a currency scale for
its relative importance. See ref. [48] for details of this game.

The rows and columns of a payoff matrix feed into the lowest level twigs of the
fault tree (see figure 8.13). Each row and column represents a pure strategy of
the game, but it is known that an optimal mixture of strategies is often the best
solution, on average. In a situation where the failure modes are motivated by user
actions, not merely random occurrences, this blend of game theory and fault tree
analysis has a unique role to play.

Example 8 (Garbage collection). The difficult part of a type II analysis is turning
the high-level concepts and aims listed above into precise numerical values. To
illustrate the procedure, consider an example of some importance, namely the filling
of user disks. The need for forced garbage collection has been argued on several
occasions [336, 41, 55], but the effectiveness of different strategies for preventing
disks filling may now be analyzed theoretically. This analysis is inspired by the
user environment at Oslo University College, and the expressions derived here are
designed to model this situation, not an arbitrary system.

The currency of this game must first be agreed upon. What value will be trans-
ferred from one player to the other in play? There are three relevant measurements
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to take into account: (i) the amount of resources consumed by the attacker (or freed
by the defender); sociological rewards: (ii) ‘goodwill’ or (iii) ‘privilege’ which are
conferred as a result of sticking to the policy rules. These latter rewards can most
easily be combined into an effective variable ‘satisfaction’. A ‘satisfaction’ measure
is needed in order to set limits on individuals’ rewards for cheating, or balance the
situation in which the system administrator prevents users from using any resources
at all. This is clearly not a defensible use of the system, thus the system defences
should be penalized for restricting users too much. The characteristic matrix now
has two contributions,

π = πr(resources) + πs(satisfaction). (8.10)

It is convenient to define

πr ≡ π(resources) = 1
2

(
Resources won
Total resources

)
. (8.11)

Satisfaction πs is assigned arbitrarily on a scale from plus to minus one half,
such that,

−1
2

≤ πr ≤ +1
2

−1
2

≤ πs ≤ +1
2

−1 ≤ π ≤ +1. (8.12)

The different strategies can now be regarded as duels, or games of timing.

Users/System Ask to tidy Tidy by date Tidy above Quotas

threshold

Tidy when asked π(1, 1) π(1, 2) π(1, 3) π(1, 4)

Never tidy π(2, 1) π(2, 2) π(2, 3) π(2, 4)

Conceal files π(3, 1) π(3, 2) π(3, 3) π(3, 4)

Change timestamps π(4, 1) π(4, 2) π(4, 3) π(4, 4)

These elements of the characteristic matrix must now be filled, using a model
and a policy. A general expression for the rate at which users produce files is
approximated by:

ru = nbrb + ngrg

nb + ng

, (8.13)

where rb is the rate at which bad users (i.e. problem users) produce files, and rg is
the rate for good users. The total number of users is nu = nb + ng. From experience,
the ratio nb/ng is about one percent. The rate can be expressed as a scaled number
between zero and one, for convenience, so that rb = 1 − rg.
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The payoff in terms of the consumption of resources by users, to the users
themselves, can then be modeled as a gradual accumulation of files, in daily waves,
which are a maximum around midday:

πu = 1
2

∫ T

0
dt

ru (sin(2πt/24) + 1)

Rtot
, (8.14)

where the factor of 24 is the human daily rhythm, measured in hours, and Rtot is the
total amount of resources to be consumed. Note that, by considering only good users
or bad users, one has a corresponding expression for πg and πb, with ru replaced
by rg or rb respectively. An automatic garbage collection system (cfengine) results in
a negative payoff to users, i.e. a payoff to the system administrator. This may be
written

πa = −1
2

∫ T

0
dt

ra (sin(2πt/Tp) + 1)

Rtot
, (8.15)

where Tp is the period of execution for the automatic system (in our case, cfengine).
This is typically hourly or more often, so the frequency of the automatic cycle is
some twenty times greater than that of the human cycle. The rate of resource-freeing
ra is also greater than ru, since file deletion takes little time compared with file
creation, and also an automated system will be faster than a human. The quota
payoff yields a fixed allocation of resources, which are assumed to be distributed
equally amongst users and thus each quota slice is assumed to be unavailable to
other users. The users are nonchalant, so πs = 0 here, but the quota yields

πq = +1
2

(
1

nb + ng

)
. (8.16)

The matrix elements are expressed in terms of these.

π(1, 1) : Here πs = −1
2 since the system administrator is as satisfied as possible

by the users’ behavior. πr is the rate of file creation by good users πg,
i.e. only legal files are produced. Comparing the strategies, it is clear that
π(1, 1) = π(1, 2) = π(1, 3).

π(1, 4) : Here πs = 0, reflecting the users’ dissatisfaction with the quotas, but the
system administrator is penalized for restricting the freedom of the users.
With fixed quotas, users cannot generate large temporary files. πq is the
fixed quota payoff, a fair slice of the resources. Clearly π(4, 1) = π(4, 2) =
π(4, 3) = π(4, 4). The game has a fixed value if this strategy is adopted by
the system administrator. However, it does not mean that this is the best
strategy, according to the rules of the game, since the system administrator
loses points for restrictive practices, which are not in the best interest of the
organization. This is yet to be determined.

π(2, 1) : Here πs = 1
2 since the system administrator is maximally dissatisfied with

users’ refusal to tidy their files. The payoff for users is also maximal in
taking control of resources, since the system administrator does nothing
to prevent this, thus πr = πu. Examining the strategies, one finds that
π(2, 1) = π(3, 1) = π(3, 2) = π(3, 3) = π(4, 1) = π(4, 2).
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π(2, 2) : Here πs = 1
2 since the system administrator is maximally dissatisfied with

users’ refusal to tidy their files. The payoff for users is now mitigated
by the action of the automatic system which works in competition, thus
πr = πu − πa. The automatic system is invalidated by user bluffing (file
concealment).

π(2, 3) : Here πs = 1
2 since the system administrator is maximally dissatisfied with

users’ refusal to tidy their files. The payoff for users is mitigated by the
automatic system, but this does not activate until some threshold time
is reached, i.e. until t > t0. Since changing the date cannot conceal files
from the automatic system, when they are tidied above threshold, we have
π(2, 3) = π(4, 3).

Thus, in summary, the characteristic matrix is given by:

π(u, s) =




−1
2 + πg(t) −1

2 + πg(t) −1
2 + πg(t) πq

1
2 + πu(t)

1
2 + πu(t) + πa(t)

1
2 + πu(t) + πa(t) θ(t0 − t) πq

1
2 + πu(t)

1
2 + πu(t)

1
2 + πu(t) πq

1
2 + πu(t)

1
2 + πu(t)

1
2 + πu(t) + πa(t) θ(t0 − t) πq




, (8.17)

where the step function is defined by,

θ(t0 − t) =

 1 (t ≥ t0)

0 (t < t0)
, (8.18)

and represents the time-delay in starting the automatic tidying system in the case
of tidy-above-threshold. This was explained in more detail in ref. [47].

It is possible to say several things about the relative sizes of these contributions.
The automatic system works at least as fast as any human so, by design, in this
simple model we have

1
2

≥ |πa | ≥ |πu| ≥ |πg| ≥ 0, (8.19)

for all times. For short times πq > πu, but users can quickly fill their quota and
overtake this. In a zero-sum game, the automatic system can never tidy garbage
faster than users can create it, so the first inequality is always saturated. From the
nature of the cumulative payoffs, we can also say that

(
1
2

+ πu) ≥ (
1
2

+ πu + πaθ(t0 − t)) ≥ (
1
2

+ πu + πa), (8.20)

and

|1
2

+ πu| ≥ |πg − 1
2

|. (8.21)

Applying these results to a modest strategy of automatic tidying of garbage, referring
to figure 8.14, one sees that the automatic system can always match users’ moves.
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Figure 8.14: The absolute values of payoff contributions as a function of time (in hours),
For daily tidying Tp = 24. User numbers are set in the ratio (ng, nb) = (99,1), based on
rough ratios from the author’s College environment, i.e. one percent of users are considered
mischievous. The filling rates are in the same ratio: rb/Rtot = 0.99, rg/Rtot = 0.01, ra/Rtot =
0.1. The flat dot-slashed line is |πq |, the quota payoff. The lower wavy line is the cumulative
payoff resulting from good users, while the upper line represents the payoff from bad users.
The upper line doubles as the magnitude of the payoff |πa | ≥ |πu|, if we apply the restriction
that an automatic system can never win back more than users have already taken. Without
this restriction, |πa | would be steeper.

As drawn, the daily ripples of the automatic system are in phase with the users’
activity. This is not realistic, since tidying would normally be done at night when
user activity is low, however such details need not concern us in this illustrative
example.

The policy created in setting up the rules of play for the game penalizes the
system administrator for employing strict quotas which restrict users’ activities.
Even so, users do not gain much from this, because quotas are constant for all
time. A quota is a severe handicap to users in the game, except for very short
times before users reach their quota limits. Quotas could be considered cheating by
the system administrator, since they determine the final outcome even before play
commences. There is no longer an adaptive allocation of resources. Users cannot
create temporary files which exceed these hard and fast quotas. An immunity-type
model which allows fluctuations is a more resource-efficient strategy in this respect,
since it allows users to span all the available resources for short periods of time,
without consuming them for ever.

According to the minimax theorem, proved by John von Neumann, any two-
person zero-sum game has a solution, either in terms of a pair of optimal pure
strategies or as a pair of optimal mixed strategies [225, 96]. The solution is found
as the balance between one player’s attempt to maximize his payoff and the other
player’s attempt to minimize the opponent’s result. In general, one can say of the
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payoff matrix that

max
↓

min→ πrc ≤ min→ max
↓

πrc, (8.22)

where the arrows refer to the directions of increasing rows (↓) and columns (→). The
left-hand side is the least users can hope to win (or conversely the most that the
system administrator can hope to keep) and the right is the most users can hope to
win (or conversely the least the system administrator can hope to keep). If we have

max
↓

min→ πrc = min→ max
↓

πrc, (8.23)

it implies the existence of a pair of single, pure strategies (r∗, c∗) which are optimal
for both players, regardless of what the other does. If the equality is not satisfied,
then the minimax theorem tells us that there exist optimal mixtures of strategies,
where each player selects at random from a number of pure strategies with a certain
probability weight.

The situation for our time-dependent example matrix is different for small t and
for large t. The distinction depends on whether users have had time to exceed fixed
quotas or not; thus ‘small t ’ refers to times when users are not impeded by the
imposition of quotas. For small t, one has:

max
↓

min→ πrc = max
↓




πg − 1
2

1
2 + πu + πa

1
2 + πu

1
2 + πu + πa θ(t0 − t)




= 1
2

+ πu. (8.24)

The ordering of sizes in the above minimum vector is:

1
2

+ πu ≥ 1
2

+ πu + πaθ(t0 − t) ≥ πu + πaθ(t0 − t) ≥ πg − 1
2

. (8.25)

For the opponent’s endeavors one has

min→ max
↓

πrc = min→ (
1
2

+ πu,
1
2

+ πu,
1
2

+ πu, πq)

= 1
2

+ πu. (8.26)

This indicates that the equality in eqn. (8.23) is satisfied and there exists at least
one pair of pure strategies which is optimal for both players. In this case, the pair
is for users to conceal files, regardless of how the system administrator tidies files
(the system administrator’s strategies all contribute the same weight in eqn (8.26)).
Thus for small times, the users are always winning the game if one assumes that
they are allowed to bluff by concealment. If the possibility of concealment or bluffing
is removed (perhaps through an improved technology), then the next best strategy
is for users to bluff by changing the date, assuming that the tidying looks at the
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date. In that case, the best system administrator strategy is to tidy indiscriminately
at threshold.

For large times (when system resources are becoming or have become scarce),
then the situation looks different. In this case one finds that

max
↓

min→ πrc = min→ max
↓

πrc = πq. (8.27)

In other words, the quota solution determines the outcome of the game for any user
strategy. As already commented, this might be considered cheating or poor use of
resources, at the very least. If one eliminates quotas from the game, then the results
for small times hold also at large times.

8.10 Monitoring

Having set policy and implemented it to some degree, it is important to verify
the success of this programme by measuring the state of the system. Various
monitoring tools exist for this purpose, depending upon the level at which we wish
to evaluate the system:

• Machine performance level

• Abstract policy level.

While these two levels are never unrelated, they pose somewhat different questions.
A very interesting idea which might be used both in fault diagnosis and security

intrusion detection is the idea of anomaly detection. In anomaly detection we are
looking for anything abnormal. That could come from abnormal traffic, patterns of
kernel activity, or changes in the statistical profiles of usage. An anomaly can be
responded to as a punishable offence, or as a correctable transgression that leads
to regulation of behavior, depending on its nature and the policy of the system
administrator (see figure 8.15).

Automated self-regulation in host management has been discussed in refs.
[41, 42, 44, 48], as well as adaptive behavior [274] and network intrusion detection
[102, 156]. In their insightful paper [159], Hoogenboom and Lepreau anticipated
the need for monitoring time series data with feedback regulation in order to
adjust policy automatically. Today much effort is aimed at detecting anomalies
for security related intrusion detection rather than for general maintenance,
or capacity planning. This has focused attention on mainly short-term changes;
however, long-term changes can also be of interest in connection with maintenance
of host state and its adaptability to changing demand.

SNMP tools such as MRTG, RRDtool and Cricket specialize in collecting data
from SNMP devices like routers and switches. Cfengine’s environment daemon
adopts a less deterministic approach to anomaly detection over longer time scales,
that can be used to trigger automated policy countermeasures [50]. For many,
monitoring means feeding a graphical representation of the system to a human in
order to provide an executive summary of its state.
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Figure 8.15: An average summary of system activity over the course of a week, as generated
by cfengine’s environment daemon.

8.11 System performance tuning

When is a fault not a fault? When it is an inefficiency. Sooner or later, user
perception of system performance passes a threshold. Beyond that threshold we
deem the performance of a computer to be unacceptably slow and we become
irritated. Long before that happens, the system itself recognizes the symptoms of
a lack of resources and takes action to try to counter the problem, but not always
in the way we would like.

Efficiency and users’ perception of efficiency are usually two separate things.
The host operating system itself can be timesharing perfectly and performing
real work at a break-neck pace, while one user sits and waits for minutes for
something as simple as a window to refresh. For anyone who has been in this
situation, it is painfully obvious that system performance is a highly subjective
issue. If we aim to please one type of user, another will be disappointed. To extract
maximal performance from a host, we must focus on specific issues and make
particular compromises. Note that the system itself is already well adjusted to
share resources: that is what a kernel is designed to do. The point of performance
tuning is that what is good for one task is not necessarily good for another. Generic
kernel configurations try to walk the line of being adequate for everyone, and in
doing so they are not great at doing any of them in particular. The only way we
can truly achieve maximal performance is to specialize. Ideally, we would have
one host per task and optimize each host for that one task. Of course this is a
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huge waste of resources, which is why multitasking operating systems exist. The
inevitability of sharing resources between many tasks is to strike compromise.
This is the paradox of multitasking.

Whole books have been written on the subject of performance tuning, so we
shall hardly be able to explore all of the avenues of the topic in a brief account.
See for instance refs. [159, 97, 200, 307, 16, 318, 293, 266]. Our modest aim
in this book is, as usual, to extract the essence of the topic, pointing fingers at
the key performance bottlenecks. If we are to tune a system, we need to identify
what it is we wish to optimize, i.e. what is most important to us. We cannot make
everything optimal, so we must pick out a few things which are most important to
us, and work on those.

System performance tuning is a complex subject, in which no part of the system
is sacrosanct. Although it is quite easy to pin-point general performance problems,
it is harder to make general recommendations to fix these. Most details are unique
to each operating system. A few generic pointers can nonetheless offer the greatest
and most obvious gains, while the tweaking of system-dependent parameters will
put the icing on the cake.

In order to identify a problem, we must first measure the performance. Again
there are the two issues: user perception of performance (interactive response time)
and system throughput and we have to choose the criterion we wish to meet. When
the system is running slowly, it is natural to look at what resources are being
tested, i.e.

• What processes are running

• How much available memory the system has

• Whether disks are being used excessively

• Whether the network is being used heavily

• What software dependencies the system has (e.g. DNS, NFS).

The last point is easy to overlook. If we make one host dependent on another then
the dependant host will always be limited by the host on which it depends. This
is particularly true of file-servers (e.g. NFS, DFS, Netware distributed filesystems)
and of the DNS service.

Principle 48 (Symptoms and cause). Always try to fix problems at the root,
rather than patching symptoms.

8.11.1 Resources and dependencies

Since all resources are scheduled by processes, it is natural to check the process
table first and then look at resource usage. On Windows, one has the process
manager and performance monitor for this. On Unix-like systems, we check the
process listing with ps aux, if a BSD compatible ps command exists, or ps -efl if
the system is derived from System V. If the system has both, or a BSD compatible
output mode, as in Solaris and Digital Unix (OSF1), for instance, then the BSD
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style output is recommended. This provides more useful information and orders
the processes so that the heaviest process comes at the top. This saves time.
Another useful Unix tool is top. A BSD process listing looks like this:

host% ps aux | more

USER PID %CPU %MEM SZ RSS TT S START TIME COMMAND
root 3 0.2 0.0 0 0 ? S Jun 15 55:38 fsflush
root 22112 0.1 0.5 1464 1112 pts/2 O 15:39:54 0:00 ps aux
mark 22113 0.1 0.3 1144 720 pts/2 O 15:39:54 0:00 more
root 340 0.1 0.4 1792 968 ? S Jun 15 3:13 /bin/fingerd
...

This one was taken on a quiet system, with no load. The columns show the user
ID of the process, the process ID, an indication of the amount of CPU time used
in executing the program (the percentage scale can be taken with a pinch of salt,
since it means different things for different kernels), and an indication of the
amount of memory allocated. The SZ post is the size of the process in total (code
plus data plus stack), while RSS is the resident size, or how much of the program
code is actually resident in RAM, as opposed to being paged out, or never even
loaded. TIME shows the amount of CPU time accumulated by the process, while
START indicates the amount of clock time which has elapsed since the process
started. Problem processes are usually identified by:

• %CPU is large. A CPU-intensive process, or a process which has gone into
an endless loop. TIME is large. A program which has been CPU intensive, or
which has been stuck in a loop for a long period.

• %MEM is large. SZ is large. A large and steadily growing value can indicate a
memory leak.

One thing we notice is that the ps command itself uses quite a lot of resources.
If the system is low on resources, running constant process monitoring is an
expensive intrusion.

Unix-like systems also tell us about memory performance through the virtual
memory statistics, e.g. the vmstat command. This command gives a different
output on each operating system, but summarizes the amount of free memory as
well as paging performance etc. It can be used to get an idea of whether or not the
system is paging a lot (a sign that memory is low). Another way of seeing this is to
examine the amount of swap space which is in use:

OS List virtual memory usage

AIX lsps -a

HPUX swapinfo -t -a -m

Digital Unix/OSF1 swapon -s

Solaris 1 or SunOS 3/4 pstat -s

Solaris 2 or SunOS 5 swap -l

GNU/Linux free

Windows Performance manager
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Excessive network traffic is also a cause of impaired performance. We should try
to eliminate unnecessary network traffic whenever possible. Before any complex
analysis of network resources is undertaken, we can make sure that we have
covered the basics:

• Make sure that there is a DNS server on each large subnet to avoid sending
unnecessary queries through a router. (On small subnets this would be
overkill.)

• Make sure that the nameservers themselves use the loopback address
127.0.0.1 as the primary nameserver on Unix-like hosts, so that we do
not cause collisions by having the nameserver talk to itself on the public
network.

• Try to avoid distributed file accesses on a different subnet. This loads the
router. If possible, file-servers and clients should be on the same subnet.

• If we are running X-windows, make sure that each workstation has its
DISPLAY variable set to :0.0 rather than hostname:0.0, to avoid sending
data out onto the network, only to come back to the same host.

Some operating systems have nice graphical tools for viewing network statistics,
while others have only netstat, with its varying options. Collision statistics
can be seen with netstat -i for Unix-like OSs or netstat /S on Windows. DNS
efficiency is an important consideration, since all hosts are more or less completely
reliant on this service.

Measuring performance reliably, in a scientifically stringent fashion is a difficult
problem (see chapter 13), but adequate measurements can be made, for the
purpose of improving efficiency, using the process tables and virtual memory
statistics. If we see frantic activity in the virtual memory system, it means that we
are suffering from a lack of resources, or that some process has run amok.

Once a problem is identified, we need a strategy for solving it. Performance
tuning can involve everything from changing hardware to tweaking software.

• Optimizing choice of hardware

• Optimizing chosen hardware

• Optimizing kernel behavior

• Optimizing software configurations

• (Optimizing service availability).

Hardware has physical limitations. For instance, the heads of a hard-disk can only
be in one place at a time. If we want to share a hard-disk between two processes,
the heads have to be moved around between two regions of the disk, back and
forth. Moving the read heads over the disk platter is the slowest operation in disk
access and perhaps the computer as a whole, and unfortunately something we
can do nothing about. It is a fundamental limitation. Moreover, to get the data
from disk into RAM, it is necessary to interrupt processes and involve the kernel.
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Time spent executing kernel code is time not spent on executing user code, and so
it is a performance burden. Resource sharing is about balancing overheads. We
must look for the sources of overheads and try to minimize them, or mitigate their
effects by cunning.

8.11.2 Hardware

The fundamental principle of any performance analysis is:

Principle 49 (Weakest link). The performance of any system is limited by the
weakest link amongst its components. System optimization should begin with the
source. If performance is weak at the source, nothing which follows can make it
better.

Obviously, any effect which is introduced after the source will only reduce the
performance in a chain of data handling. A later component cannot ‘suck’ the data
out of the source faster than the source wants to deliver it. This tells us that the
logical place to begin is with the system hardware. A corollary to this principle
follows from a straightforward observation about hardware. As Scotty said, we
cannot change the laws of physics:

Corollary to principle (Performance). A system is limited by its slowest mov-
ing parts. Resources with slowly moving parts, like disks, CD-ROMs and tapes,
transfer data slowly and delay the system. Resources which work purely with
electronics, like RAM memory and CPU calculation, are quick. However, electronic
motion/communication over long distances takes much longer than communication
over short distances (internally within a host) because of impedances and switching.

Already, these principles tell us that RAM is one of the best investments we
can make. Why? In order to avoid mechanical devices like disks as much as
possible, we store things in RAM; in order to avoid sending unnecessary traffic
over networks, we cache data in RAM. Hence RAM is the primary workhorse of
any computer system. After we have exhausted the possibilities of RAM usage, we
can go on to look at disk and network infrastructure.

• Disks: When assigning partitions to new disks, it pays to use the fastest disks
for the data which are accessed most often, e.g. for user home directories. To
improve disk performance, we can do two things. One is to buy faster disks
and the other is to use parallelism to overcome the time it takes for physical
motions to be executed. The mechanical problem which is inherent in disk
drives is that the heads which read and write data have to move as a unit.
If we need to collect two files concurrently which lie spread all over the disk,
this has to be done serially. Disk striping is a technique whereby filesystems
are spread over several disks. By spreading files over several disks, we have
several sets of disk heads which can seek independently of one another, and
work in parallel. This does not necessarily increase the transfer rate, but it
does lower seek times, and thus performance improvement can approach as
much as N times with N disks. RAID technologies employ striping techniques
and are widely available commercially. GNU/Linux also has RAID support.
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Spreading disks and files across multiple disk controllers will also increase
parallelism.

• Network: To improve network performance, we need fast interfaces. All inter-
faces, whether they be Ethernet or some other technology, vary in quality
and speed. This is particularly true in the PC world, where the number
of competing products is huge. Network interfaces should not be trusted
to give the performance they advertise. Some interfaces which are sold as
100Mbits/sec, Fast Ethernet, manage little more than 40Mbits/sec. Some
network interfaces have intelligent behavior and try to detect the best avail-
able transmission rate. For instance, newer Sun machines use the hme
fast Ethernet interface. This has the ability to detect the best transmission
protocol for the line a host is connected to. The best transmission type is
100Mbits/sec, full duplex (simultaneous send and receive), but the interface
will switch down to 10Mbits/sec, half duplex (send or receive, one direction
at a time) if it detects a problem. This can have a huge performance effect.
One problem with auto-detection is that, if both ends of the connection have
auto-detection, it can become an unpredictable matter which speed we end
up with. Sometimes it helps to try setting the rate explicitly, assuming that
the network hardware supports that rate. There are other optimizations also,
for TCP/IP tuning, which we shall return to below. Refs. [295, 312] are
excellent references on this topic.

The sharing of resources between many users and processes is what networking
is about. The competition for resources between several tasks leads to another
performance issue.

Principle 50 (Contention/competition). When two processes compete for a
resource, performance can be dramatically reduced as the processes fight over
the right to use the resource. This is called contention. The benefits of sharing
have to be weighed against the pitfalls.

Contention could almost be called a strategy, in some situations, since there exist
technologies for avoiding contention altogether. For example, Ethernet technology
allows contention to take place, whereas Token Ring technology avoids it. We shall
not go into the arguments for and against contention. Suffice it to say that many
widely used technologies experience this problem.

• Ethernet collisions: Ethernet communication is like a television panel of politi-
cians: many parties shouting at random, without waiting for others to finish.
The Ethernet cable is a shared bus. When a host wishes to communicate
with another host, it simply tries. If another host happens to be using the
bus at that time, there is a collision and the host must try again at random
until it is heard. This method naturally leads to contention for bandwidth.
The system works quite well when traffic is low, but as the number of hosts
competing for bandwidth increases, the probability of a collision increases in
step. Contention can only be reduced by reducing the amount of traffic on
the network segment. The illusion of many collisions can also be caused by
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incorrect wiring, or incorrectly terminated cable, which leads to reflections.
If collision rates are high, a wiring check might also be in order.

• Disk thrashing: Thrashing2 is a problem which occurs because of the slowness
of disk head movements, compared with the speed of kernel time-sharing
algorithms. If two processes attempt to take control of a resource simultane-
ously, the kernel and its device drivers attempt to minimize the motion of the
heads by queuing requested blocks in a special order. The algorithms really
try to make the disks traverse the disk platter uniformly, but the requests
do not always come in a predictable or congenial order. The result is that the
disk heads can be forced back and forth across the disk, driven by different
processes and slowing the system to a virtual standstill. The time for disk
heads to move is an eternity to the kernel, some hundreds of times slower
than context switching times.

An even worse situation can arise with the virtual memory system. If a
host begins paging to disk because it is low on memory, then there can be
simultaneous contention both for memory and for disk. Imagine, for instance,
that there are many processes, each loading files into memory, when there is
no free RAM. In order to use RAM, some has to be freed by paging to disk; but
the disk is already busy seeking files. In order to load a file, memory has to
be freed, but memory can’t be freed until the disk is free to page, this drags
the heads to another partition, then back again ... and so on. This nightmare
brings the system to a virtual standstill as it fights both over free RAM and
disk head placement. The system spends more time juggling its resources
than it does performing real work, i.e. the overhead to work ratio blows up.
The only cure for thrashing is to increase memory, or reduce the number of
processes contending for resources.

A final point to mention in connection with disks is to do with standards. Disk
transfer rates are limited by the protocols and hardware of the disk interfaces.
This applies to the interfaces in the computer and to the interfaces in the disks.
Most serious performance systems will use SCSI disks, for their speed (see section
2.2). However, there are many versions of the SCSI disk design. If we mix version
numbers, the faster disks will be delayed by the slower disks while the bus is
busy, i.e. the average transfer rate is limited by the weakest link or the slowest
disk. If one needs to support legacy disks together with new disks, then it pays to
collect like disks with a special host for each type, or alternatively buy a second
disk controller rather than to mix disks on the same controller.

8.11.3 Software tuning and kernel configuration

It is true that software is constrained by the hardware on which it runs, but it is
equally true that hardware can only follow the instructions it has received from
software. If software asks hardware to be inefficient, hardware will be inefficient.
Software introduces many inefficiencies of its own. Hardware and software tuning
are inextricably intertwined.

2For non-native English speakers, note the difference between thrash and trash. Thrashing refers to
a beating, or the futile fight for survival, e.g. when drowning.
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Software performance tuning is a more complex problem than hardware per-
formance tuning, simply because the options we have for tuning software depend
on what the software is, how it is written and whether or not the designer made
it easy for us to tune its performance. Some software is designed to be stable
rather than efficient. Efficiency is not a fundamental requirement; there are other
priorities, such as simplicity and robustness.

In software the potential number of variables is much greater than in hardware
tuning. Some software systems can be tuned individually. For instance, high-
availability server software such as WWW servers and SMTP (E-mail) servers can
be tuned to handle traffic optimally for heavy loads. See, for instance, tips on
tuning sendmail [62, 185], and other general tuning tips [307, 200, 303].

More often than not, performance tuning is related to the availability or sharing
of system resources. This requires tuning the system kernel. The most configurable
piece of software on the system is the kernel. All Unix-like systems kernel param-
eters can be altered and tuned. The most elegant approach to this is taken by
Unix SVR4, and Solaris. Here, many kernel parameters can be set at run time
using the kernel module configuration command ndd. Others can be configured
in a single file /etc/system. The parameters in this file can be set with a reboot
of the kernel, using the reconfigure flag

reboot -- -r

For instance, on a heavily loaded system which allows many users to run external
logins, terminals, or X-terminal software, we need to increase many of the default
system parameters. The maxusers parameter (actually in most Unix-like systems)
is used as a guide to estimating the size of many tables and limits on resources.
Its default value is based on the amount of available RAM, so one should be
careful about changing its value in Solaris, though other OSs are less intelligent.
Solaris also has a separate parameter pt cnt for extending the number of virtual
terminals (pty’s). It is possible to run out if many users are logged in to the same
host simultaneously. Many graphics-intensive programs use shared memory in
large blocks. The default limit for shared memory segments is only a megabyte,
so it can be increased to optimize for intensive graphics use, but should not
be increased on heavily loaded file-servers, where memory for caching is more
important. The file /etc/system, then looks like this:

set maxusers=100
set shmsys:shminfo_shmmax = 0x10000000
set pt_cnt=128

After a reboot, these parameters will be set. Some caution is needed in editing
this file. If it is non-existent or unparsable, the host will not be able to boot
(a questionable design feature). The ndd command in Solaris can be chosen to
optimize its over-safe defaults set on TCP/IP connections.

For busy servers which handle many TCP connections, the time it takes
an operating system to open and close connections is important. There is a
limit on the number of available connections and open sockets (see chapter 9);
if finished socket connections are not purged quickly from the kernel tables,
new connections cannot be opened in their place. On non-tuned hosts, used
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sockets can hang around for five minutes or longer on a Solaris host. On
a heavily loaded server, this is unacceptable. The close time on sockets can
be shortened to half a minute so as to allow newer sockets to be opened
sooner (though note that this contravenes RFC 793). The parameters can be
set when the system boots, or patched at any later time. The times are mea-
sured in milliseconds. See refs. [312, 295] for excellent discussions of these
values.

/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval 900000
/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 30000

Prior to Solaris 2.7 (SunOS 5.7) the latter line would have read:

/usr/sbin/ndd -set /dev/tcp tcp_close_wait_interval 30000

which illustrates the futility of documenting these fickle parameters in a static
medium like a book. Note that setting these parameters to ultra-short values
could cause file transmissions to be terminated incorrectly. This might lead to
corruption of data. On a web server, this is a nuisance for the client, but it is
not mission-critical data. For security, longer close times are desirable, to ensure
correct closure of sockets. After setting these values, the network interface needs
to be restarted, by taking it down and up with ifconfig. Alternatively, the values
can be configured in a startup script which is executed before the interface is
brought up at boot time.

Suggestion 11. Do not change operating system defaults unless you have good
cause, and really know what you are doing. Deviations from expert defaults must
be on a case-by-case basis.

Most Unix-like operating systems do not permit run-time configuration. New
kernels have to be compiled and the values hard-coded into the kernel. This
requires not just a reboot, but a recompilation of the kernel in order to make a
change. This is not an optimal way to experiment with parameters. Modularity in
kernel design can save us memory, since it means that static code does not have
to take up valuable memory space. However, the downside of this is that modules
take time to load from disk, on demand. Thus a modular kernel can be slower than
a statically compiled kernel. For frequently used hardware, static compilation is
a must, since it eliminates the load-time for the module, at the expense of extra
memory consumption.

The GNU/Linux system kernel is a modular kernel, which can load drivers for
special hardware at run time, in order to remain small in the memory. When we
build a kernel, we have the option to compile in modules statically. See section
4.8. Tips for Linux kernel configuration can readily be found by searching the
Internet, so we shall not reproduce these tips here, where they would quickly
become stale. See, for instance ref. [97].

Windows performance tuning can be undertaken by perusing the multitudinous
screens in the graphical performance monitor and editing the values. For once,
this useful tool is a standard part of the Windows system.
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8.11.4 Data efficiency

Efficiency of storage and transmission depends on the configuration parameters
used to manage disks and networks, and also on the amount of traffic the devices
see. We have already mentioned the problem of contention.

Some filesystem formatting programs on Unix-like systems allow us to reserve
a certain percentage of disk space for privileged users. For instance, the default
for BSD is to reserve ten percent of the size of a partition for use by privileged
processes only. The idea here is to prevent the operating system from choking due
to the activities of users. This practice goes back to the early times when disks
were small and expensive and partition numbers were limited. Today, these limits
are somewhat inappropriate. Ten percent of a gigabyte disk is a huge amount
of space, which many users could live happily with for many weeks. If we have
partitioned a host so as to separate users from the operating system, then there
is no need to reserve space on user disks. Better to let users utilize the existing
space until a real problem occurs. Preventative tidying helps to avoid full disks.
Whether one regards this as maintenance or performance tuning is a moot point.
The effect is to save us time and loss of resource availability. See section 4.4.3
about making filesystems.

Another issue with disk efficiency is the configuration of block sizes. This is
a technical issue which one probably does not want to play with too liberally.
Briefly, the standard unit of space which is allocated on a filesystem is a block.
Blocks are quite large, usually around 8 kilobytes. Even if we allocate a file
which is one byte long, it will be stored as a separate unit, in a block by
itself, or in a fragment. Fragments are usually around 1 kilobyte. If we have
many small files, this can clearly lead to a large wastage of space and it might
be prudent to decrease the filesystem block size. If, conversely, we deal with
mostly large files, then the block size could be increased to improve transfer
efficiency. The filesystem parameters can, in other words, be tuned to balance
file size and transfer-rate efficiency. Normally the default settings are a good
compromise.

Tuning the network is a complex subject and few operating systems allow us
to do it at all. Solaris’ ndd command can be used to configure TCP/IP parame-
ters which can lead to noticeable performance improvements. See the excellent
discussion in refs. [312, 68]. As far as software tuning is concerned, we have few
options. The time we wait for a service to reply to a query is called the latency.
Latency clearly depends on many factors, so it is difficult to pin down, but it
is a useful concept since it reflects users’ perceptions of performance. Network
performance can degrade for a variety of reasons. Latency can increase as a result
of network collisions, making traffic congested, and it can be increased due to
server load, making the server slow to respond. Network latencies clearly increase
with distance from the server: the more routers, switches and cables a signal has
to travel through, the slower it will be. Our options are to reduce traffic congestion,
increase server performance, and increase parallelism (if possible) with fail-over
servers [139]. Some network services are multi-threaded (using either light or
heavyweight processes) and can be configured to spawn more server threads to
handle a greater number of simultaneous connections (e.g. nfsd, httpd, cfservd).
If traffic congestion is not the problem, then a larger number of servers might help
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in expediting multiple connections (many multi-threaded servers set limits on the
number of threads allowed, so as not to run a machine into the ground in the
event of spamming). These measures help to reduce the need for retransmission of
TCP segments and timeouts on connection. Assuming that the network interface
is working as fast as it can (see previous section), a server will then respond as
quickly as it can.

8.12 Principles of quality assurance

Quality assurance in service provision is a topic that is increasingly discussed in
the world of network services (see section 10.8), but quality assurance is a process
that has far wider implications than the commercially motivated issue of value
for money. A system administrator also performs a service for the system and for
users. Quality assurance take up three related issues:

• Accuracy of service (result)

• Efficiency of service (time)

• Predictability (result/time).

8.12.1 ISO 9000 series

The ISO 9000 series of standards represent an international consensus on man-
agement practices that apply to any process or organization. The aim of the
standards is to provide a schematic quality management system and a framework
for continual assessment and improvement. ISO 9000 has become quite important
in some sectors of industry, in the countries that have adopted it.

First published in 1987, the ISO 9000 standards are widely used and a
quick search of the net reveals that they are also money-making enterprises.
Courses in these methods are numerous and costly. The principles, however, are
straightforward. The idea is that a standard approach to quality assurance leads
to less uncertainty in the outcome. Quality is associated with certainty. Here, we
shall not dwell on the issue of ISO 9000 certification, but rather on the guiding
principles that the standard embodies.

8.12.2 Creating a quality control system

Quality is clearly a subjective criterion. It is a matter for policy to decide what
quality means. Quality control is an iterative process, with a number of key
elements. It is a process, rather than a one-off task, because the environment in
which we execute our work is never static. Even as we plan our quality handbooks
and verification forms, the world is changing and has made them partially obsolete.

Principle 51 (Rapid maintenance). The speed of response to a problem can be
crucial to its success or failure, because the environment is constantly changing
the conditions for work. If one procrastinates, procedures will be out of date, or
inappropriate.
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ISO 9000 reiterates one of the central messages of system administration and secu-
rity: namely that they are on-going, dynamical processes rather than achievable
goals (see figure 8.16).

• Determine quality goals: One begins by determining policy: what is it that
we wish to accomplish? Until we know this, we cannot set about devising a
strategy to accomplish the goals.

• Assess the current situation: We need to know where we stand, in order to
determine how to get where we are going. How much work will it take to carry
out the plan?

• Devise a strategy: Strategy determination is a complex issue. Sometimes
one needs to back-track in order to go forward. This is reminiscent of the
story of the stranger who comes to a city and asks a local how to get to
the post office. The local shakes his head and replies ‘If I were going to the
Post Office, I certainly wouldn’t start from here’. Clearly, this is not a helpful
observation. We must always find a way to achieve our goals, even if it means
first back-tracking to a more useful starting point.

• Project management: How we carry out a process is at least as important as
the process itself. If the process is faulty, the result will be faulty. Above all,
there must be progress. Something has to happen in order for something
good to happen. Often, several actors collaborate in the execution of a project.
Projects cost resources to execute – how will this be budgeted? Are resources
adequate for the goals specified?

• Documentation and verification: A key reason for system failure is when a
system becomes so complex that its users can no longer understand it.
Humans, moreover, are naturally lazy, and their performance with regard to
a standard needs to be policed. Documentation can help prevent errors and
misunderstandings, while verification procedures are essential for ensuring
the conformance of the work to the quality guidelines.

• Fault-handling procedure: Quality implies a line between the acceptable and
unacceptable. When we discover something that falls short of the mark, we
need a procedure for putting the problem right. That procedure should itself
be quality assured, hence we see that quality assurance has a feedback
structure. It requires self-assessment.

In principle 40, we found that standardization leads to predictability. It can
also lead to limitations, but we shall assume that this problem can also be dealt
with by a quality assurance programme.

The formulation of a quality assurance scheme is not something that can be
done generically; one needs expert insight into specific issues, in order to know and
evaluate the limitations and likely avenues for error recovery. Quality Assurance
involves:

1. A definition of quality.

2. A fault tree or cause tree analysis for the system quality.
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Figure 8.16: Elements of a quality assurance system.

3. Formulating a strategic remedial policy.

4. The formalization of remedies as a checklist.

5. Acknowledging and accepting inherent system limitations.

6. Checklists to document compliance with policy.

7. Examination of results and feedback into policy.

Measurements of tolerances, uncertainties and limitations need to be incorporated
into this procedure in a continual feedback process. Quality is achieved through
this continued process: it is not an achievable goal, but rather a never-ending
journey.

Exercises

Self-test objectives

1. What is meant by the principle of predictable failure?

2. Explain the meaning of ‘single point of failure’.

3. Explain how a meshed network can be both more robust and more susceptible
to failure.

4. What is the ‘small worlds’ phenomenon and how does it apply to system
administration?

5. Explain the principle of causality.

6. What is meant by an interaction?

7. How do interactions underline the importance of the principle of causality?
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8. What is meant by the environment of a system?

9. How does one find the boundary between system and environment?

10. What kind of faults can occur in a human–computer system?

11. Describe some typical strategies for finding faults.

12. Describe some typical strategies for correcting faults.

13. Explain how a cause tree can be used help locate problems in a system. What
are the limitations of cause-tree analysis?

14. Explain how fault trees can provide predictive power for the occurrence of
faults. What are the limitations of this predictive power?

15. Explain the relationship between change management and cause-tree anal-
ysis.

16. Explain the role of game theory in system management. Comment on its
limitations.

17. Explain how game theory reveals the principle of communities by finding
optimal equilibria.

18. What role does monitoring the system play in a rational decision-making
process?

19. Explain the weakest link principle in performance analysis.

20. Explain how competition for resources can lead to wasted resources.

21. What is ISO 9000?

22. Describe some of the issues in quality control.

23. Explain how the rate of maintenance affects the likely state of a system.

Problems

1. Find out about process priorities. How are process priorities changed on
the computer systems on your network? Formulate a policy for handling
processes which load the system heavily. Should they be left alone, killed,
rescheduled etc?

2. Describe the process you would use to troubleshoot a slowly running host.
Formalize this process as an algorithm.

3. Suppose you are performance tuning, trying to find out why one host is slower
than another. Write a program which tests the efficiency of CPU-intensive
work only. Write programs which test the speed of memory-intensive work
and disk-intensive work. Would comparing the time it takes to compile a
program on the hosts be a good way of comparing them?
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4. Determine the network transmission speed on the servers on your network.
Are they as high as possible? Do they have auto-detection of the interface
transmission rates on their network connections (e.g. 10Mb/s or 100Mb/s)?
If not, how are they configured? Find out how you can choose the assumed
transmission rate.

5. What is meant by an Ethernet collision? How might doubling the speed of all
hosts on an Ethernet segment make the total system slower?

6. Consider the fault tree in figure 8.17.

Timing holeRead error Physical damage Software error

Data loss

Magnet CrinkleHeat Sched. RAID?

OR

OR
AND

Figure 8.17: Partial fault tree for data loss due to backup failure.

(a) Given that the probability that data will be lost in a backup hole (data
changed between scheduled backups) is approximately the same as the
probability of physical media damage, what strategy would you suggest
for improving security against data loss? Explain your answer.

(b) What security principle does RAID employ to protect data? Explain how
RAID might be used at several places in this tree in order to help prevent
data loss.

(c) Describe a fault tree for loss of service in a high availability web server
placed in a server room. Describe how you would go about estimating
the probabilities. Based on your analysis, concoct a number of long-term
strategies for countering these failures; draw a provisional payoff matrix
for these strategies versus the failure modes, and use this to estimate
the most cost-effective long-term strategies.

(d) Design a change plan and schedule for upgrading 400 Windows hosts.
Your plan should include a fault tree analysis for the upgrade and
contingency plan for loss of some of the hosts.
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7. Today CPU power is cheap, previously it was common for organizations to
have to load users and services onto a single host with limited CPU.

(a) Describe as many strategies as you can that you might use to prevent
users from hogging CPU-intensive services.

(b) Now imagine all of the possible strategies that selfish users might use to
hog resources and describe these.

(c) Would you say that CPU is a zero-sum resource, i.e. that what is lost by
one user is gained by the others?

(d) Estimate or argue the relative payoff to the selfish user for each of the
pairs of strategies used by both parties, and thereby construct the payoff
matrix for the system.

(e) By inspection, find the defensive strategies that minimize the payoff to
the user.

(f) Use the minimax theorem to find the optimal strategy or strategies and
compare your answer with the one you chose by inspection.





Chapter 9

Application-level services

Network services are the crux of network cooperation (see section 3.5). They
distinguish a cooperative network from a loose association of hosts. A community
is bound together by a web of delegation and sharing. We give this job to A

and that job to B, and they carry out their specialized tasks, making the whole
function. In a computer network, we assign specific functions to specific hosts,
thereby consolidating effort while distributing functionality.

The way in which services are handled by most operating systems is to use
the socket abstraction. A socket is, loosely speaking, a file-like interface with an
IP address plus a TCP or UDP port number [165], where some kind of data are
communicated. A server has a listening socket which responds to client requests
by opening a new temporary socket at a random port number. Information is
exchanged and then any connection is terminated.

The system administrator has the task of organizing and configuring network
services. That includes installing, planning and implementing the daemons which
carry out the services. For definiteness, the examples discussed in this chapter
are based on Unix-like operating systems. In a network of Unix-like hosts, we have
the freedom to locate a server on whatever host we wish. Although some services
(e.g. remote login by ssh) normally run on every host, most are confined to one
or two hosts, whose special function it is to perform the tasks on behalf of the
network community.

Note also that although the details of the chapter will likely be out of date by
the time the book comes to press, the principles should remain fairly constant.
Readers are encouraged to verify the information using the latest information
about the software concerned.

9.1 Application-level services

Internet networks use many high-level protocols to provide the distributed services
which most users take for granted. Here are a few examples:

• FTP The File transfer protocol. Passwords are normally sent in clear text.

• HTTP The hypertext transfer protocol for the transmission of data on the
World Wide Web. All data are sent in clear text.
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• S-HTTP is a superset of HTTP, which allows messages to be encapsu-
lated for increased security. Encapsulations include encryption, signing and
MAC-based authentication. An S-HTTP message can have several security
transformations applied to it. S-HTTP also includes support for key trans-
fer, certificate transfer and similar administrative functions. It is generally
regarded as being superior to HTTPS, but is now obsolete.

• HTTPS The secure World Wide Web protocol for exchanging hypertext and
multimedia data. All data are encrypting using Netscape’s Secure Socket
Layer (SSL), now called Transmission Layer Security (TLS) by IETF standard.

• SSH The secure shell. A replacement for the remote shell (rsh) Unix protocol.
The secure shell provides full encryption and forwarding of X11 display data
through a secure pipe.

• LDAP The Lightweight Directory Access Protocol is a generalized protocol for
looking up data in simple databases. It is a lightweight version of the Director
Access Protocol originally written for X.500 and is currently at Version
3. LDAP can be used to register user information, passwords, telephone
numbers etc. and interfaces through gateways to the NDS (Novell Directory
Service), Microsoft’s Exchange server and NIS (Sun’s Network Information
Service). The advantage of LDAP will be a uniform protocol for accessing
table lookups. Currently the spread of LDAP is hindered by few up-to-date
implementations of the protocol.

• NTP is the network time protocol, used for synchronizing clocks throughout
the network.

• IMAP Internet Mail Access Protocol provides a number of network services for
reading and transferring mail over the network. Other mail protocols include
POP (Post Office Protocol).

• SMTP The Simple Mail Transfer Protocol is used to address and transfer
E-mail over the network.

There is an almost endless list of services which are registered by the /etc/
services file. These named services perform a wide range of functions.

9.2 Proxies and agents

A proxy is an agent which works on behalf of another. Proxies are used for two
main reasons: for security and for caching (sometimes also for load-balancing).
Some proxy agents collect information and cache it locally so that traffic over a
slow network can be minimized. Web proxies can perform this kind of function.
Rather than sending WWW requests out directly, they are sent to a proxy server
which registers the requests and builds a list of popular requests. These requests
are collected by the proxy and copied into local storage so that the next time the
request is made, the data can be served from local storage. This improves both
speed and traffic load, in principle. The proxy’s agents make sure that its cached
copies are up to date.
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Another type of proxy is the firewall type. One of the advantages of asking
another to do a job is that the original agent doesn’t need to get its hands dirty.
It is a little bit like the robots which bomb squads use to defuse bombs: better
to send in a robot than get blown to bits yourself. Firewall proxies exist for most
services to avoid handling potentially dangerous network connections directly.
We shall return to the issue of proxy services in the discussion of firewalls in
section 12.12.

9.3 Installing a new service

We need to configure the system to accept a new service by editing the file
/etc/services. This file contains the names of services and their protocol types
and port numbers.

The format of entries is like this:

service portnumber/protocol aliases

pop3 110/tcp postoffice
bootp 67/udp
cfinger 2003/tcp

There are two ways in which a service can run under Unix: one is that a daemon
runs all the time in the background, handling connections. This method is used
for services which are used often. Another way is to start the daemon only when
an outside connection wishes to use it; this method is used for less frequently
used services. In the second case, a master Internet daemon is used, which listens
for connections for several services at once and starts the correct daemon only
long enough to handle one connection. The aim is to save the overhead of running
many daemons.

If we want to run a daemon all the time, then we just need to make sure that
it is started in the appropriate rc startup files for the system. To add the service
to the Internet daemon, on the other hand, we need to add a line of the following
from the configuration file /etc/inetd.conf.

service type proto serial user-id server-program command

pop3 stream tcp nowait root /local/etc/pop3d pop3d

The software installation instructions for the new network service tell us what we
should add to this file.

Once we have configured a new service, it must be started by running the
appropriate daemon, or by reinitializing inetd. Note that xinetd also exists,
adding checks and controls to network service requests.

9.4 Summoning daemons

Network services are run by daemons. Having done the deed of configuring a
network service, see section 9.3, by editing textfiles and ritually sacrificing a few
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doughnuts, we reach the point where we have to actually start the daemon in
order to see the fruits of those labors. There are two ways to start network
daemons:

• When the system boots, by adding an appropriate shell-command to one of
the system’s startup scripts. When we use this method, the daemon hangs
around in the background all the time waiting for connections.

• On demand: that is, only when a network request arrives. We use the inetd
daemon to monitor requests for a new service. It starts the daemon to handle
requests on a one-off basis. Not all services should be started in this way. One
should normally follow the guidelines in the documentation for the service
concerned.

9.4.1 System 5 init

The SVR4 version of the init program is growing in popularity and is used by
several GNU/Linux distributions. The idea with this program is to start the system
in one of a number of run-levels. Run-levels decide how many services will be
started when the system boots. The minimum level of operation is single-user
mode, or run-level ‘s’. Full operation is usually run-level 2 or 3, depending on the
type of system. (NB: be sure to check this!) When entering a run-level, init looks in
a directory called /etc/rc?.d and executes scripts in this directory. For instance,
if we are entering run-level 2, init would look in the directory /etc/rc2.d and
execute scripts lying there in order to start necessary services for this run-level.
All one has to do to add a new service is to make a new file here which conforms
to init’s simple rules. The files in these directories are usually labelled according
to the following pattern:

S number- function

K number- function

Files beginning with S are for starting services and files beginning with K are for
killing them again when the system is halted. The number is used to determine
the order in which the scripts are read. It does not matter if two scripts have the
same number, as long as it does not matter what order they are executed. Finally
the function tells us what the script does.

Each script is supposed to accept a single argument, the word ‘start’ or the
word ‘stop’, or ‘restart’ etc. Let’s consider an example of how we might start the
httpd daemon using init. Here is a checklist:

1. Determine the correct run-level for the service. Let us suppose that it is
run-level 2.

2. Choose an unused filename, say S99http.

3. Create a script accepting a single argument:
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#!/bin/sh

case $1 in

start) /usr/local/bin/httpd -d /usr/local/lib/httpd ;;

stop) kill ‘cat /usr/local/lib/httpd/logs/httpd.pid‘ ;;

*) echo Syntax error starting http

esac

The advantage of this system is that software packages can be added and removed
transparently just by adding or removing a file. No special editing is required as is
the case for BSD Unix.

9.4.2 BSD init

The BSD style is rather simple. It starts executing a shell script called /etc/rc
which then generally calls other child-scripts. These scripts start important dae-
mons and configure the system. To add our own local modifications, we have to
edit the file /etc/rc.local. This is a Bourne shell script.

The BSD approach has a simpler structure than the system 5 inittab directories,
but it is harder to manipulate package-wise.

9.4.3 inetd configuration

The Internet daemon is a service demultiplexer. In English, that means that
it is a daemon which listens on the network for messages to several services
simultaneously. When it receives a message intended for a specific port, it starts
the relevant daemon to handle the request just long enough to handle one request.
inetd saves the system some resources by starting daemons only when they are
required, rather than having to clutter up the process table all the time.

The format of this file can differ slightly on older systems. The best way to glean
its format is to look at the entries which are already there. Here is a common
example of the format.

#
# Service|type|protocol|wait|user|daemon-file|command line
#
# NB wu-ftpd needs -a now
#
ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -a
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
finger stream tcp nowait finger /local/etc/in.fingerd in.fingerd
cfinger stream tcp nowait finger /local/etc/in.cfingerd in.cfingerd

The first column is the name of the service from /etc/services. The next column
is the type of connection (stream or dgram or tli), then comes the protocol type
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(tcp/udp etc). The wait column indicates whether the service is to be single or
multi-transaction, i.e. whether new requests should wait for an existing request
to complete or whether a new daemon should be started in parallel. The last two
columns contain the location of the program which should handle the request and
the actual command line (including options) which should be executed. Notice
that the finger daemon runs as a special user with no privileges.

To add a new service, we edit the file /etc/inetd.conf and then send the
inetd process the HUP signal. To do this, we find the process id:

ps aux | grep inetd

Then we type:

kill -HUP process-id

9.4.4 Binding to sockets

When a daemon is started, it creates a listening socket or port with a specific port
number, which then gets ‘bound’ to the host running the service concerned. The
act of binding a socket to a host’s IP address identifies a fixed port service with
that host. This has a specific consequence. It is only possible to bind a socket port
to an address once. If we try to start another daemon, we will often see the error
message

host: Couldn’t bind to socket
bind: Address already in use

This means that another daemon is already running. This error can occur if two
copies of inetd are started, or if we try to start a daemon twice, or indeed if we
try to place a service in inetd and start a daemon at the same time. The error
can also occur within a finite time-window after a service has crashed, but the
problem should right itself within a few minutes.1

9.4.5 TCP wrapper security

One of the problems with inetd is that it accepts connections from any host and
passes them to services registered in its configuration file without question. In
today’s network climate this is a dangerous step and it is usually desirable to
limit the availability of certain services. For instance, services which are purely
local (like RPC) should never be left open so that outside users could try to exploit
them. In short, services should only be made available to those who need them. If
they are left open to those who do not need them, we invite attacks on the system.

TCP wrappers is a solution to this problem for IPv4 connections only. In
short, it gives us the possibility of adding Access Control Lists (ACLs) to network
services. TCP wrappers exists in two forms: as the tcpd daemon, and as a library
which stand-alone programs can link to, called libwrap.a. Services which are not

1Most network services set the SO REUSEADDR socket option so that it can restart immediately and
not have to wait for TIME WAIT to time out.
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explicitly compiled with the library can use the daemon as a wrapper, if the services
can be started from inetd. TCP wrapper expects to find the daemons it proxies
for in a special directory. It requires two configuration files, one which grants
access to services and which denies access. If services are not listed explicitly
TCP wrappers does nothing to prevent connection. The file to allow access to a
service overrides the file to deny access, thus one normally denies access to all
services as a default measure and opens specific services one by one (see below).
The hosts.allow file contains the names of daemons followed by a list of hosts
or IP addresses, or domains or network series. The word LOCAL matches any host
which has an unqualified host name. If we are opening a service to our local
domain, it is often necessary to have both the domain suffix and the word LOCAL,
since different operating systems employ different name services in different ways.
(LOCAL matches hostnames without any domain ending.)

# hosts.allow
in.fingerd: .domain.tld LOCAL
in.cfingerd: .domain.tld LOCAL
sendmail: ALL
cfd: .domain.tld LOCAL
sshd: 128.39.89. 128.39.74. 128.39.75. 127.0.0.1

[2001:700:700:3::] [2001:700:700:4::] [::1]
sshdfwd-X11: .domain.tld
# Portmapper doesn’t understand DNS for security
portmap: 192.0.2.
rpc.mountd: 192.0.2.
rpc.nfsd: 192.0.2.

Note how IPv6 addresses must be bracketed. Be warned that not all programs
understand IPv6 addressing, so these entries might cause services to crash (espe-
cially RPC). (See section 2.9.)

The TCP wrapper service works mainly for plain TCP streams, but in some
operating systems (notably GNU/Linux) RPC services can also be placed under
its umbrella. The portmapper and NFS mount daemons are also subject to TCP
wrapper access controls. Note that we have to use IP addresses here. Hostnames
are not accepted.

Apart from those explicitly mentioned above, all other services are denied
access like this in /etc/hosts.deny:

ALL: ALL

9.5 Setting up the DNS nameservice

The Domain Name System (DNS) is that most important of Internet services
which converts host names, such as host.domain.tld, into IP addresses, such
as 192.0.2.10, and vice versa. If a host name includes its complete domain
name, it is said to be a Fully Qualified Host Name (FQHN). In the Unix world, the
most popular implementation of the DNS client and server is called the Berkeley
Internet Name Domain (BIND). The DNS client is called the ‘resolver’, and the DNS
server is called the ‘name server’.
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Establishing a name service is not difficult, but BIND is complex and we shall
only skim the surface in this book. More detailed accounts of DNS configuration
can be found in refs. [7, 223]. A tool for managing domain naming and electronic
mail has been described in ref. [267].

9.5.1 Master and slave servers

Each domain which is responsible for its own host registration requires at least
one master name server. A master name server is a name server whose data
lie in authoritative source files on the server-host, maintained by a local system
administrator. A domain can also have a number of slave name servers which
mirror the master data. A slave name server (or slave) does not use source
file data, but downloads its data second-hand from a master server at regular
intervals – thus its data are also considered authoritative for other domains. The
purpose of a slave name server is to function as a backup to the master server
or to spread the load of serving all the hosts in the domain. The only difference
in setting up master and slave servers is one word in a configuration file and the
location of the name data.

In practice, master and slave servers are identical, as seen from the outside.
The only difference is in the source of the data: a master or master server knows
that it should propagate changes to all slave servers, while a slave or slave server
knows that it should accept updates.

The name server daemon is started once by root, since the DNS port is a
privileged port. In order to function, the daemon needs to be told about its status
within the DNS hierarchy and it needs to be told where to find the files of domain
data. This requires us to set up a number of configuration files. The files can
seem cryptic at first, but they are easy to maintain once we have a working
configuration.

9.5.2 File structure on the master

Since the mapping of (even fully qualified) hostnames to IP addresses is not one-
to-one (a host can have several aliases and a single hostname can point to multiple
IP addresses), the DNS database needs information about conversion both from
FQHN to IP address and the other way around. That requires two sets of data. To
set up a master name server, we need to complete a checklist.

• We need to make a directory in our local or site-dependent files where the
DNS domain data can be installed, called for instance dns or named and
change to this directory.

• We then make subdirectories master and slave for master and slave data.
We might not need both on the same host, but some servers can be master
servers for a zone and slave servers for another zone. We shall only refer to
the master data in this book, but we might want to add slave servers later,
for whatever reason. Slave data are cached files which can be placed in this
directory.
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• Assuming that our domain name is domain.tld, we create a file master/domain.tld.
We shall worry about its contents shortly. This file will contain data for
converting names into addresses.

• Now we need files which will perform the reverse translation. It is convenient,
but not essential, to keep different subnet addresses separate, for clarity. This
is easy if we have a netmask which gives the subnets in our domain easily sep-
arable addresses. The domain iu.hio.no, for instance, has four networks:
128.39.89.0, 128.39.73.0, 128.39.74.0 which includes 128.38.75.*. So
we would create files master/rev.128.39.89, master/rev.128.39.73 etc.,
one for each network. These files will contain data for converting addresses
into ‘canonical’ names, or official hostnames (as opposed to aliases). We shall
call these network files generically master/subnet. Of course, we can call
any of the files anything we like, since the filenames must be declared in the
configuration boot file.

• Dealing with the Unix loopback address requires some special attention.
We handle this by creating a file for the loopback pseudo-network master/
rev.127.0.0.

• Create a cache file named.cache which will contain the names of the Inter-
net’s master (root) name servers.

• Create a configuration file named.conf. We shall later link or synchronize
this file to /etc/named.conf where the daemon expects to find it. We place
it here, however, so that it doesn’t get lost or destroyed if we should choose
to upgrade or reinstall the operating system.

At this stage one should have the following directory structure in site-dependent
files.

Names Examples

named/named.conf dns/named.conf

named/named.cache dns/named.cache

named/master/domain.tld dns/master/domain.tld

named/master/subnet dns/master/rev.192.0.2

dns/master/rev.128.39.73

dns/master/rev.128.39.89

9.5.3 Sample named.conf for BIND 9.x

Using current BIND software, the file looks something like this:

options
{
directory "/local/site/dns";
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check-names master ignore;
check-names response ignore;
check-names slave warn;
named-xfer "/local/site/bind/bin/named-xfer"; /* Location of daemon */
fake-iquery no; /* security */
notify yes;
};

zone "."
{
type hint;
file "named.cache";
};

//
// Master and slave name/address zone files follow.
//

zone "0.0.127.in-addr.arpa"
{
type master;
file "master/rev.127.0.0";
};

zone "2.0.192.in-addr.arpa"
{
type master;
file "master/rev.192.0.2";
};

acl trustedhosts
{
! 192.0.2.11; // Not this host!
192.0.2.0/24; // Net with 24 bit netmask set. i.e. 255.255.255.0
192.0.74.0/23; // 23 . 255.255.254.0
};

zone "domain.tld"
{
type master;
file "master/domain.tld";

allow-transfer // Allows ls domain.tld in nslookup
{ // and domain downloads
trustedhosts; // Access Control List defined above
}

};
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// dns.domain.tld server options

server 192.0.2.11
{
transfer-format many-answers;
};

logging
{
channel admin_stuff

{
file "/local/site/logs/admin" versions 7;
severity debug;
print-time yes;
print-category yes;
print-severity yes;
};

channel xfers
{
file "/local/site/logs/xfer" versions 7;
severity debug;
print-time yes;
print-category yes;
print-severity yes;
};

channel updates
{
file "/local/site/logs/updates" versions 10;
severity debug;
print-time yes;
print-category yes;
print-severity yes;
};

channel security
{
file "/local/site/logs/security" versions 7;
severity debug;
print-time yes;
print-category yes;
print-severity yes;
};

category config
{
admin_stuff;
};

category parser
{
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admin_stuff;
};

category update
{
updates;
};

category load
{
updates;
};

category security
{
security;
};

category xfer-in
{
xfers;
};

category xfer-out
{
xfers;
};

category db
{
updates;
};

category lame-servers
{
null;
};

category cname
{
null;
};

};

Note the allow-transfer statement which allows a user of nslookup to obtain
a dump of the local domain, using the ‘ls’ command within the nslookup shell. If
this is not present, version 8 and 9 BIND will not allow such a listing. BIND now
allows ACLs to control access to these data. In the example we have created an
ACL alias for all of the trusted hosts on our network. The ACLs use an increasingly
popular, if somewhat obscure, notation for groups of IP addresses. The ‘slash’
notation is supposed to represent all of the hosts on a subnet. In order to fully
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specify a subnet (which, in practice, might be part of a class A, B or C network), we
need to specify the network address and the subnet mask. The slash notation does
this by giving the network address followed by a slash, followed by the number of
bits in the netmask which are set to one. So, for example, the address series

192.0.2.0/24

means all of the addresses from 192.0.2.0 to 192.0.2.255, since the netmask is
255.255.255.0. The example

192.0.74.0/23

is an example of a doubled-up subnet. This means all of the hosts from 192.0.74.0 to
192.0.74.255 and 192.0.75.0 to 192.0.75.255, since the netmask is 255.255.254.0,
i.e. 23 non-zero bits. ACLs can contain any list of hosts. The pling (Am. bang) ‘!’
operator negates an address, or entry. The important thing to remember about ACLs
in general is that they work by taking each entry in turn. As soon as there is a match,
the access algorithm quits. So if we were to write

acl test
{
192.0.2.11;
!192.0.2.11;
}

the result would always be to grant access to 192.0.2.11. Conversely, if we wrote

acl test
{
!192.0.2.11;
192.0.2.11;
}

the result would be to always deny access to this host, since the second instance
of the address is never reached.

Note that for a slave, or slave server mirroring a master, we would replace the
word master with slave, and master with slave for clarity.

There are many issues that we have not taken up here. This is only the
beginning. You should read more about BIND. For instance, for IPv6 connections
there is,

options
{
listen-on-v6 any; ;
transfer-source-v6 2001:700:700:1::99;

}

and for more security there is the allow-recursion directive.
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9.5.4 Sample named.cache or named.root

The cache file (now often referred to as the root file) contains the names of
root name servers. The data for the cache file were formerly maintained by the
American military at nic.ddn.mil. Today they are retrieved by anonymous ftp
from the INTERNIC ftp.rs.internic.net. The list of Internet root servers (which
bind together all Internet domains) are listed in a file called domain/named.root
The retrieved data are simply included in a file called named.cache or named.root.
You should obtain an updated version of this file.

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
; file /domain/named.root
; on server FTP.INTERNIC.NET
;
; last update: Nov 5, 2002
; related version of root zone: 2002110501
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly NS.ISC.ORG
;
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. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL
;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; operated by VeriSign, Inc.
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30
;
; housed in LINX, operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;
; operated by IANA
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; housed in Japan, operated by WIDE
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33
; End of File

9.5.5 Sample master/domain.tld

The main domain file contains data identifying the IP addresses of hosts in
our domain; it defines possible aliases for those names and it also identifies
special servers such as mail-exchangers which mail-relay programs use to send
electronic mail to our domain. Note that the IP addresses and hostnames used
here are examples. You should replace them with your own valid IP addresses.

Each IP-configured network interface has a canonical name which is its official
name (the name that is returned by default in a reverse lookup). We may then
define any number of aliases to this canonical name (using the confusingly named
CNAME directive). For instance, it is common to create aliases for host-interfaces



346 CHAPTER 9. APPLICATION-LEVEL SERVICES

that provide well-known services, like www.domain.tld and ftp.domain.tld to
standardize access to services in our domain. Below is an abbreviated example
file. There are several kinds of record here:

• SOA Indicates the Start Of Authority for this domain (referred to as @).

• NS Lists a nameserver for this domain or a sub-domain. NS records are not
used for anything other than delegation. They exist only for convenience.

• MX Lists a mail exchanger for this domain (with priority).

• A Creates an A record, i.e. defines the canonical name of a host with a given
IP address.

• CNAME Associates an alias with a canonical name.

• HINFO Advertises host information. No longer advisable for security reasons.

DNS database files contain resource records which refer to these different
elements. The general form of such a record is

Name [ttl] [class] assoc data

The square brackets imply that the second and third fields are optional. The default
class is IN for Internet. Other values for class refer to little-used nameservices
which will not be considered here. Each resource record is an association of a
name with an item of data. The type of association is identified by the assoc field,
which is one of the set A, PTR, NS etc. For example

host1 86400 IN A 10.20.30.40
host1 86400 IN CNAME host2
host1 86400 IN MX 10 mailhost

or simply

host1 A 10.20.30.40
host1 CNAME host2
host1 MX 10 mailhost

A reverse lookup entry looks like this:

40 PTR host1

In addition to mapping hostnames to addresses and vice versa, the DNS tables
also tell E-mail services how to deliver mail. We will need to have a so-called ‘mail-
exchanger’ record in the DNS tables in order to tell E-mail which host handles
E-mail for the domain. An entry of the form

domain-name MX priority mailhost

tells E-mail services that mail sent to namedomain-name should be routed to the
host mailhost. For instance,
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domain.tld. MX 10 mailhost
MX 20 backup

tells our server that mail addresses of the form name@domain.tld should be
handled by the host called mailhost (which is an alias for a host called mercury,
as we shall see below). The priority number 10 is chosen at random. Several
records can be added with backup servers if the first server does not respond.

Mail records are also possible on a per-host basis. If we want mail sent to host
XXX handled by host YYY, we would add a record,

XXX MX 10 YYY

This would mean that mail sent to

XXX. domain-name

would be handled by YYY. For instance, mail addressed to

name@XXX.domain.tld

would be actually sent to

name@YYY.domain.tld

IPv6 registration in DNS looks like this, in the zone file:

daneel A 192.0.2.230
AAAA 2001:0700:0700:0003:0290:27ff:fea2:477b

The IETF also considered a record type called A6 records, but this has now been
given experimental status and left on the shelf for the time being. The BIND
documentation is somewhat out of date as of January 2003.

Here is an example file with all the elements in place. Note the meaning of the
following special symbols

; Comment

@ Stands for the local domain

() Continue record over several lines

$ORIGIN domain.tld. ; @ is an alias for this

@ IN SOA mercury.domain.tld.
sysadm.mercury.domain.tld.

(
1996111300 ; Serialnumber
3600 ; Refresh, 1 hr
600 ; Retry, 10 min
604800 ; Expire 1 week
86400 ; Minimum TTL, 1 day
)
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A 192.0.2.237 ; domain.tld points to
; this host by default

; Name servers:

IN NS mercury.domain.tld.
IN NS backup.domain.tld.
IN NS dns.parent.co.

; Mail exchangers for whole domain

@ MX 10 mercury

; Common aliases for well known services

www CNAME mercury ; aliases
ftp CNAME mercury
mailhost CNAME mercury

; Router

domain-gw A 192.0.2.1
A 128.39.73.129 ; 2 addresses

iu-gw CNAME domain-gw

localhost A 127.0.0.1

; example net

mercury A 192.0.2.10
thistledown A 192.0.2.233
jart A 192.0.2.234
nostromo A 192.0.2.235
daystrom A 192.0.2.236
borg A 192.0.2.237
backup A 192.0.2.238
axis A 192.0.2.239

Note that, as this file stands, mail exchanger data, described by the MX record are
only described for the domain as a whole. If an external mailer attempts to send
directly to a specific host, it is still allowed to do so. We can still override this by
adding an explicit MX record for each A record also. For example:

mercury A 192.0.2.10
MX 10 mailhost
MX 20 backup



9.5. SETTING UP THE DNS NAMESERVICE 349

thistledown A 192.0.2.233
MX 10 mailhost
MX 20 backup

jart A 192.0.2.234
MX 10 mailhost
MX 20 backup

This will tell an external mailer to send mail to each of these hosts to the mailhost
instead. Normally, this would not be a problem. One could simply configure the
non-mail-hosts as so-called null clients, meaning that they would just forward the
mail on to the mailhost. However, it can be important to avoid relying on client
forwarding if we are using a hub solution inside some kind of filtering router, since
the SMTP ports might be blocked to all the other hosts. Thus mail would not be
sendable to the other hosts unless these MX records were in place. See section 9.7
for more details of this.

9.5.6 Sample master/network

The network files are responsible for producing a fully qualified domain name
given an IP address. This is accomplished with so-called PTR records. In other
words, these records provide reverse lookup. Note that the IP addresses used here
are examples. You should replace them with your own valid IP addresses. The
reverse lookup-file looks like this:

$ORIGIN 89.39.128.in-addr.arpa.
@ IN SOA mercury.domain.tld.

sysadm.mercury.domain.tld.
(
1996111300 ; Serialnumber
3600 ; Refresh, 1 hr
600 ; Retry, 10 min
604800 ; Expire 1 week
86400 ; Minimum TTL, 1 day
)

; Name servers:

IN NS mercury.domain.tld.
IN NS dns.parent.co.
IN NS backup.domain.tld.

;
; Domain data:
;

1 PTR domain-gw.domain.tld.

; etc
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10 PTR mercury.domain.tld.

; etc

233 PTR thistledown.domain.tld.
234 PTR jart.domain.tld.

Note carefully how the names end with a dot. If we forget this, the name server
appendsthedomainnameto theend, resulting insomething likelore.domain.tld.
domain.tld.

9.5.7 Sample master/127.0.0

In order to avoid problems with the loopback address, all domains should define
a fake ‘loopback’ network simply to register the Unix loopback address correctly
within the DNS. Since 127.0.0 is not a physical network and the loopback address
doesn’t belong to anyone, it is acceptable for everyone to define this as part of the
local name server. No name collisions will occur as a result.

; Zone file for "localhost" entry.

$ORIGIN 0.0.127.IN-ADDR.ARPA.
@ IN SOA mercury.domain.tld.

sysadm.mercury.domain.tld.
(
1995070300 ; Serialnumber
3600 ; Refresh
300 ; Retry
3600000 ; Expire
14400 ; Minimum
)

IN NS mercury.domain.tld.

;
; Domain data
;

1 PTR localhost.

0.0.127.in-addr.arpa. IN NS mercury.domain.tld.
0.0.127.in-addr.arpa IN NS backup.domain.tld.

1.0.0.127.in-addr.arpa. IN PTR localhost.



9.5. SETTING UP THE DNS NAMESERVICE 351

9.5.8 Zone transfers

A zone is a portion of a complete domain which is self-contained (as a zone
file). Responsibility for a zone is delegated to the administrators of that zone. A
zone administrator keeps and maintains the files we have discussed above. When
changes are made to the data in a domain, we need to update the serial number of
the data in the source files. Slave name servers use this serial number to register
when changes have occurred in the zone data, i.e. to determine when they should
download new data.

9.5.9 Reverse IPv6 records

DNS and IPv6 make a study in confusion. The IETF has changed official policy on
this issue more than once, leaving some documentation out of date and in a state
of confusion. As of January 2003, the claim is that there is finally agreement that
the forward records shall be called AAAA records (not A6) and that the reverse
lookup domain will be called .ip6.arpa (not .ip6.int as previously held), but
resolvers continue to look for both of these, so it is worth registering both. In
named.conf one can make two entries

zone "3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.int"

type master;
file "master/2001.700.700.3";
;

zone "3.0.0.0.0.0.7.0.0.0.7.0.1.0.0.2.ip6.arpa"

type master;
file "master/2001.700.700.3";
;

Note that this uses the same file for both zones. Now, in the reverse-lookup zone
file, named as master/2001.700.700.3, we omit the ORIGIN directive and BIND
9 assumes that the names are relative to the zone in the configuration file. Thus:

$TTL 14400

@ IN SOA mercury.domain.tld.
sysadm.mercury.domain.tld.
(
1996111300 ; Serialnumber
3600 ; Refresh, 1 hr
600 ; Retry, 10 min
604800 ; Expire 1 week
86400 ; Minimum TTL, 1 day
)

; Name servers:

IN NS mercury.domain.tld.
IN NS dns.parent.co.
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IN NS backup.domain.tld.

; relative to 2001:700:700:3/64

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 PTR ip6-gw.example.org.
b.7.7.4.2.a.e.f.f.f.7.2.0.9.2.0 PTR daneel.example.org.

Note that this omission of origin works only in master servers, since slave servers
that mirror primaries add the origin directive automatically.

9.5.10 Sub-domains and structure

Suppose we are in a DNS domain college.edu and would like to name hosts
according to their departmental affiliation. We could use a naming scheme which
made each department look like a sub-domain of the true domain college.edu.
For instance, we might want the following hosts:

einstein.phys.college.edu
darwin.bio.college.edu
von-neumann.comp.college.edu

We can achieve this very simply, because having the extra ‘dot’ in the name
makes no difference to the name service. We just assign the A record for the host
accordingly. In the zone file for college.edu

$ORIGIN college.edu. ; @ is an alias for this

@ IN SOA chomsky.college.edu. sysadm.chomsky.college.edu
(
1996111300 ; Serialnumber
3600 ; Refresh, 1 hr
600 ; Retry, 10 min
604800 ; Expire 1 week
86400 ; Minimum TTL, 1 day
)

; ...

einstein.phys A 192.0.2.5
darwin.bio A 192.0.2.6
von-neumann.comp A 192.0.2.7

It does not matter that we have dots in the names on the left-hand side of an A
record assignment. DNS does not care about this. It still looks and behaves like a
sub-domain. There is no need for an SOA record for these sub-domains, as written,
since we are providing authoritative information about them here explicitly. But
we could handle this differently. According to the principle of delegation, we would
like to empower local units of a network community with the ability to organize
their own affairs. Since the computer science department is growing fat on the
funds it receives, it has many hosts and it starts to make sense to delegate
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this sub-domain to a local administrator. The emaciated physics and biology
departments don’t want this hassle, so we keep them under our wing in the
parent zone records.

Delegating the sub-domain comp.college.edu means doing the following:

• Setting up a nameserver which will contain an authoritative SOA database
for the sub-domain.

• Delegating responsibility for the sub-domain to that name server, using an
NS record in our parent domain’s zone data.

• Informing the parent organization about the changes required in the top-level
in-addr.arpa domain, required for reverse lookups.

Normally the NS records for a zone are only present to remind local administrators
which hosts are nameservers. Suppose we choose the host m5 to be the nameserver
for the sub-domain. A pair of records like this:

comp 86400 IN NS m5.comp.college.edu

m5.comp.college.edu 86400 IN A 192.0.2.200

creates a sub-domain called ‘comp’. The first line tells us the name of a nameserver
in the sub-domain which will be authoritative for the sub-domain. We give it a
specific time to live, for definiteness. Notice, however, that this is a cyclic definition:
we have defined the comp sub-domain using a member of the comp-subdomain. In
order to break the infinite loop, we have to also provide a glue record (an A record,
borrowed from the sub-domain) which tells the system the actual IP address of the
name server which will contain information about the remainder of the domain.

To delegate a sub-domain, we also have to delegate the reverse pointer records.
To do this we need to contact the parent organization which owns the network
above our own. In the ‘olden days’ in-addr.arpa delegation was performed by
the ‘nic’ military, then the ‘INTERNIC’. Today, the logistics of this mapping has
become too large a job for any one organization. For ISPs who delegate subnets,
it is passed back up the line to the network owners. Each organization knows
the organization above it, and so we contact these until someone has authority to
modify the in-addr.arpa domain. An erroneous delegation is usually referred to as
a lame delegation. . This means that a nameserver is listed as being authoritative
for a domain, but in fact does not service that domain. Lame delegations and other
problems can be diagnosed with programs such as dnswalk. See also ref. [28].

9.6 Setting up a WWW server

The World Wide Web (or W3) service is provided by the daemon httpd. This descrip-
tion is based on the freely available Apache daemon which is widely regarded as
the best and most up-to-date. It can be obtained from http://www.apache.org.

Configuring httpd is a relatively simple matter, but it does involve a few
subtleties which we need to examine, Most of these have to do with security. Some
are linked to minor changes between versions of the server. This discussion is
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based on Apache version 1.3.x, but most of it applies to the later version 2 rewrite.
An httpd server can be used for two purposes:

• Extranet: For publishing information which is intended to be open to the
world. The more people who see this information, the better.

• Intranet: For publishing private information for internal use within an orga-
nization.

Unless we are going to operate within a firewall configuration, there is probably
no need to separate these two services. They can run on the same server, with
access control restricting information on a need-to-know basis. Special attention
should be given to CGI programs however. These are particularly insecure and
can compromise any access controls which we place on data. If we need restricted
information access we should not allow arbitrary users to have accounts or CGI
privileges on a server: CGI programs can always be written to circumvent server
security.

The WWW service will also publish two different kinds of web pages:

• Site data: A site’s official welcome page and subsequent official data (access
by http://www.domain.tld).

• Personal data: The private web pages of registered, local users (access by
http://www.domain.tld/~user).

Whether to allow local users private web pages at a given organization is a matter
of policy.

The WWW is an open service: it gives access to file information, usually without
requiring a password. For that reason it has the potential to be a security hazard:
not with respect to itself, or the information which one intends to publish, but to
the well-being of the host on which it runs. A typical configuration error in a large
corporation’s web server, a few years ago, allowed an attacker to delete all users’
home directories from the comfort of his browser.

To start a WWW service we need some html-files containing information we
wish to publish and a server-daemon. We then need to edit configuration files
which tell the daemon where to find the web pages it will be publishing. Finally,
we need to tell it what we do not want it to tell the outside world. The security
of the whole system can depend on which files and directories outsiders have
access to.

9.6.1 Choosing a server host

Personal data are accessed from users’ home directories, usually under a subdi-
rectory called www. It makes considerable sense for the WWW server to be on the
host which has the physically mounted disks. Otherwise, the WWW server would
first have to access the files via NFS and then transmit them back to the requester.
This would lead to an unnecessary doubling of network traffic.
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9.6.2 Installation

A survey which was carried out in 1998 revealed that about 70 percent of all
WWW servers in the world were Apache WWW servers running on FreeBSD or
GNU/Linux PCs. The Apache server is ubiquitous and versatile, and it is Free
Software so we shall adopt it as our working model. Apache-httpd runs both on
Unix-like OSes and NT.

The server is compiled in the usual way by unpacking a .tar.gz file and
by running configure then make. This has support for many bells and whistles
which enhance its performance. For instance, one can run an embedded language
called PHP from within HTML pages to create ‘active web pages’. The httpd
daemon must then be configured with special PHP support. Debian GNU/Linux
has a ready-made package for the Apache server, but it is old. It is always worth
collecting the latest version of the server from an official mirror site (see the Apache
web site for a list of mirrors).

Apache uses a GNU autoconf configure program to prepare the compilation.
As always, we have to choose a prefix for the software installation. If none is
specified, the directory /usr/local is the default.

There is no particular reason for installing the binaries elsewhere, however
Apache does generate a convenient startup/shutdown script which compiles in
the location of the configuration files. The configuration files are kept under the
installation-prefix, in etc/apache/*.conf. On the principle of separating files
which we maintain ourselves from files installed by other sources, we almost
certainly do not want to keep the true configuration files there, but rather would
like to keep them together with other site-dependent configuration files. We shall
bear this in mind below.

To build a basic web server, then, we follow the usual sequence for compiling
Free software:

% configure
% make
% make -n install
% su
# make install

9.6.3 Configuration

Having compiled the daemon, we have to prepare some infrastructure. First we
make sure that we have the two lines

www 80/tcp http
www 80/udp http

in the /etc/services file on Unix-like systems. Next we must:

• Create a directory in our site-dependent files called, say, www, where HTML
documents will be kept. In particular, we will need a file www/index.html
which will be the root of the web site.
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• Edit the files httpd/conf/*.conf with a text editor so that we configure in
our site-specific data and requirements.

• Create a special user and a special group which will be used to restrict the
privilege of the httpd service.

The daemon’s configuration determines the behavior of the WWW service. It is
decided by the contents of a set of files:

httpd.conf Properties of the daemon itself

access.conf Access control for documents and CGI

srm.conf Server resource management

mime.types Multimedia file extensions

This breakdown is a matter of convention. There is no longer a difference
between the files as far as the configuration language is concerned. The Apache
server provides example configuration files which we can use as an initial tem-
plate. In recent versions, Apache has moved away from the idea of using several
configuration files, towards keeping everything in one file. You may wish to form
your own opinion about what is best policy here.

The httpd is started by root/Administrator, but the daemon immediately
relinquishes its special privileges in order to run with the access rights of a www
user for all operations. The User and Group directives specify which user the
daemon should run as. The default here is usually the user nobody. This is
the default because it is the only non-privileged username which most systems
already have. However, the nobody user was introduced in order to create a safe
mapping of privileges for the Unix NFS (Network File System), so to use it here
could lead to confusion and possibly even accidents later. A better approach is to
use a completely separate user ID for the service. In fact, in general:

Principle 52 (Separate user IDs for services). Each service which does not
require privileged access to the system should be given a separate, non-privileged
user ID. This restricts service privileges, preventing any potential abuse should
the service be hijacked by system attackers; it also makes clear which service is
responsible for which processes in the process table.

Corollary to principle (Privileged ports). Unix services which run on ports 1–
1023 must be started with root privileges in order for the socket to be validated, but
can switch internally to a safer level of privilege once communications have been
established.

9.6.4 The httpd.conf file

Here is a cut-down example file which points out some important parameters in
the configuration of the server. The actual example files distributed with the server
are more verbose and contain additional options. You should probably not delete
anything from those files unless you have read the documentation carefully, but
you will need to give the following points special attention.
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# httpd.conf

ServerRoot /local/site/httpd/

ServerAdmin sysadm@domain.tld
User www
Group www

ServerType standalone # not inetd
HostnameLookups off # save time

# Several request-transfers per connection is efficient

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15

# Looks like several servers, really only one ..

NameVirtualHost 192.0.2.220

<VirtualHost www.domain.tld>
ServerAdmin webmaster@domain.tld
DocumentRoot /site/host/local/www-data
ServerName www.domain.tld
</VirtualHost>

<VirtualHost project.domain.tld>
ServerAdmin webmaster@domain.tld
DocumentRoot /site/host/local/project-data
ServerName project.domain.tld
</VirtualHost>

The ServerRoot directive tells the daemon which directory is to be used to
look for additional configuration files (see below) and to write logs of transactions.
When the daemon is started, it normally has to be told the location of the server
root, with the ‘-d’ option:

httpd -d /local/site/httpd

The daemon then looks for configuration files under conf, for log files under logs
and so on. The location of the server root does not have to have anything to do with
the location of the binaries, as installed above. Indeed, since configuration files
and log files can both be considered local, site-dependent data, we have placed
them here amongst local, site-dependent files.

The User and Group directives tell the daemon which users’ privileges it should
use after connecting to the privileged port 80. A special user and group ID should
be created for this purpose. The user ID should be an account which it is not
possible to log on to, with no valid shell and a barred password (see section 5.3).
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The ServerType variable indicates whether we are planning to run httpd on
demand from inetd or whether it should run as a stand-alone daemon. Running
as a stand-alone daemon can give a considerable saving of overhead in forking
new processes. A stand-alone daemon can organize its own resources, rather than
relying on a multiplexer like inetd.

HostnameLookups determines whether the DNS names of hosts connecting to
the server will be looked up and written into the access log. DNS lookups can add
a significant amount of delay to a connection, so this should be turned off on busy
servers. In a similar efficiency vein, the KeepAlive variable tells the server not to
close a connection after every transaction, but to allow multiple transactions up
to a limit of MaxKeepAliveRequests on the same connection. Since the overhead
of starting a new connection is quite high, and of shutting one down even higher,
a considerable improvement in efficiency can be achieved by allowing persistent
connections.

The final part of the file concerns the VirtualHost environment. This is a
feature of Apache which is very useful. It enables one to maintain the appearance
of separate web servers, with just one daemon. For instance, we might want to
have a generic point of contact for our domain, called www.domain.tld, but we
might also want to run a special project machine, whose data were maintained
by a separate research group, called project.domain.tld. To do this we need to
create a VirtualHost structure for each virtual hostname we would like to attach
to the server.

We also need to register these alternative names as DNS aliases so that others
will be able to use them in normal URLs in their web browsers. Suppose the
actual canonical name of the host we are running on is workhorse.domain.tld.
In the master zone of the domain domain.tld, we would make the following
aliases:

www CNAME workhorse
project CNAME workhorse

workhorse A 192.0.2.220

The IP address of workhorse must also be declared in httpd.conf so that we have
a reliable address to bind the socket to. The declarations as shown then create two
virtual hosts www and project, each of which has a default data root-directory
pointed to by the DocumentRoot variable.

9.6.5 The access.conf file

This file determines what rights various users will have when trying to access
data on the server. It also implicitly determines whether httpd will search for
.htaccess files in directories. Such files can be used to override the settings in
the access.conf file.

The Directory structure works like an access control list, granting or denying
access to directories (and implicitly all subdirectories). A good place to start is to
make a general structure denying access to directories which are not, later, dealt
with explicitly.
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# access.conf

AccessFileName .htaccess

<Directory />
order allow,deny
deny from all
AllowOverride None
</Directory>

This initializer tells the daemon that it should neither grant rights to arbitrary
directories on the disk, nor allow any overriding of access rights by .htaccess
files. This simple precaution can yield a performance gain on a web server because
the daemon will not search for .htaccess files in every directory from the top
of the file tree to the directory mentioned in a Directory structure. This can
consume many disk operations which, on a busy server, could waste valuable
time. We then need to go through the independent sub-trees of the filesystem
which we want to publish.

# Don’t allow users to make symlinks to files
# they don’t own, thus circumventing .htaccess

<Directory /home>
order allow,deny
allow from all
AllowOverride All
Options Indexes SymLinksIfOwnerMatch
</Directory>

In a Directory structure, we express rules which determine how httpd evaluates
access rights. The ordering allow followed by deny means that files are allowed
unless explicitly denied. The line which follows has the form allow from all,
meaning that the data in /home (users’ home directories) are open to every caller.
The Options directive is quite important. Indexes means that a browser will
be able to present a directory listing of .html files which can be accessed, if a
user browses a directory which does not contain a standard index.html file.
The option SymLinksIfOwnerMatch means that httpd will follow symbolic links
only if the user who made the symbolic link is also the owner of the file it
points to. The point of the conditional is to make sure that a user can’t link to
a system directory, such as /etc, and, thus, expose sensitive information to the
world. AllowOverride means that we can override access controls for specific
directories using .htaccess files (see section 9.6.9).

<Directory /local/site/www>
order allow,deny
allow from all
AllowOverride All
Options Indexes FollowSymLinks
</Directory>
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In this stanza, things are almost the same. The files under /local/site/www are
the site’s main web pages. They are available to everyone, and symbolic links are
followed regardless of owner. We can afford to be magnanimous here since the
site’s main pages are controlled by a trusted user (probably us), whom we assume
would not deliberately circumvent any security mechanisms. The story is different
for ordinary users, whom we do not necessarily have any reason to trust.

<Directory /local/site/www/private>
order allow,deny
deny from all
allow from 192.0.2.
AllowOverride All
Options Indexes FollowSymLinks

</Directory>

In this example, we restrict access to the subdirectory private, to hosts origi-
nating from network addresses 192.0.2.x. This is useful for controlling access to
certain documents within an organization. Another way of doing this would be to
write

allow from .domain.tld

but we might have a special reason for restricting on the basis of subnets, or
network IP series. This kind of access control is a way of making an intranet
server.

Finally, as an extra check to prevent ordinary (untrusted) users from making
symbolic links to the password file, we can add a FilesMatch structure which
checks to see whether the actual file pointed to matches a regular expression. In
the event of a match, access is denied to everyone.

# Don’t allow anyone to download a copy of the passwd file
# even by symbolic link

<FilesMatch ".*passwd.*">
order allow,deny
deny from all
</FilesMatch>

This is not an absolute security. If local users really want to publish the password
file they can simply copy it into an HTML document. However, it does help to close
obvious avenues of abuse.

9.6.6 srm.conf file

The srm.conf file is the file where we define the remaining behavior of the server
in response to requests from clients. The first issue to deal with is that of users’
private web pages. These are searched for in a subdirectory of each user’s home
directory which we must specify. Normally, this is called public html, or better
www or www-data. The UserDir directive is used to set this. Using this directive,
it is also possible to say that certain users will not have web pages. The obvious
contender here is the administrator account root.
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# srm.conf

UserDir www
UserDir disabled root

DirectoryIndex index.html
FancyIndexing on

The DirectoryIndex directive determines the default filename which httpd looks
for if the URL provided by the client is the name of a directory. Using this
arrangement the start home-page for a user becomes:

~user/www/index.html

which, using the file scheme /site/host/contents becomes

/site/server/home/user/www/index.html

Next, it is useful to be able to specify the way in which the server responds
to errors. The default behavior is to simply send the client a rather dull text
string indicating the number and nature of the error. We can alter this by asking
the daemon to send a specially customized page, tailored to our own special
environment, perhaps with a personal logo etc. The ErrorDocument directive
is used for this. It traps error numbers and maps them to special pages. For
example, to map to a standard local file in the root of the server’s pages one
would add

ErrorDocument 500 /errorpage.html
ErrorDocument 401 /errorpage.html
ErrorDocument 402 /errorpage.html

Another possibility is to make a generic CGI script for handling error conditions. An
example script is provided in section 9.6.8. In that case, we declare all error-codes
to point to the generic CGI-script.

# Customizable error response (Apache style)

ErrorDocument 500 /cgi-bin/error.pl
ErrorDocument 404 /cgi-bin/error.pl
ErrorDocument 401 /cgi-bin/error.pl
ErrorDocument 403 /cgi-bin/error.pl
ErrorDocument 407 /cgi-bin/error.pl

The final issue to mention about the srm.conf file is that of script aliases. In order
for httpd to allow the execution of a CGI-script on the server, it must be referred
to with the help of a ScriptAlias. There are two purposes to this. The script alias
points to a single directory, usually a directory called cgi-bin which lies under
the user’s own www directory. The script alias means that only programs placed
in this directory will be executed. This helps to prevent the execution of arbitrary
programs which were not intended for web use; it also hides the actual directory
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structure on the server host. It is necessary to add one script alias entry for each
directory that we want to execute CGI-programs from. That usually means at least
one directory for each user, plus one for general site scripts. Here are two examples:

ScriptAlias /cgi-bin/ /local/site/www/cgi-bin
ScriptAlias /cgi-bin-mark/ /home/mark/www/cgi-bin

The script alias is used in all references to the CGI programs. For instance, in an
HTML form, we refer to

<FORM method="POST" action="/cgi-bin-mark/script.pl">

9.6.7 Perl script for generating script aliases

A convenient way of generating script aliases for all users is to write a short
Perl script which rewrites the srm.conf file by looking through the password file
and adding a ScriptAlias entry for every user. In addition, a general cgi-bin
directory is often desirable, where it is possible to place scripts which anyone can
use. In the example below we call this alias cgi-bin-public. Each user has a
script alias called cgi-bin-username.

#!/local/bin/perl
#
# Build script aliases from password file
#

# Path to the template and real srm.conf files

$srmconf = "/local/httpd/conf/srm.conf";
$srmbase = "/local/httpd/conf/srm.conf.in";

open (OUT,">$srmconf") || die;

open (BASE,"$srm") || die;

while (<BASE>) # Copy base file to output
{
print OUT $_;
}

close (BASE);

setpwent();

while (($name,$pw,$uid,$gid,$qu,$com,$full,$dir) = getpwent)
{
# SKip system accounts

next if ($uid < 100);

print OUT "ScriptAlias /cgi-bin-$name $dir/www/cgi-bin\n";
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last if ($name eq "");
}

close OUT;

9.6.8 Perl script for handling errors

This Perl script can be used to generate customized or intelligent responses to
error conditions.

#!/local/bin/perl

#
# Error handler
#

# Environment variables set
#
# REDIRECT_STATUS contains the error type
# REDIRECT_URL contains the requested URL
# REDIRECT_REQUEST_METHOD e.g. GET
# REMOTE_ADDR : 192.0.2.238
# HTTP_USER_AGENT : Mozilla/4.05 [en] (X11; I; SunOS 5.6 sun4m)

if ($ENV{"REDIRECT_STATUS"} == 500)
{
$color = "#ff0000";
$error_type = "Server error";
$error_message = "An error occurred in the configuration of the server.<br>";
}

elsif ($ENV{"REDIRECT_STATUS"} == 403)
{
$color = "#ffff67";
$error_type = "Access restricted";
$error_message = "Sorry, that file is not available to you.";
}

elsif ($ENV{"REDIRECT_STATUS"} == 404)
{
$color = "#ffff67";
$error_type = "File request error";
$error_message = "The file which you accessed was not found.";
}

else
{
$color = "#ffff67";
$error_type = "Unknown error";
$error_message = "Please try again";
}

#
# Spit out a standard format page
#

print "Content-type: text/html\n\n";
print <<END;

<html>
<head>

<title>$error_type</title>
</head>

<body bgcolor="#eeeeee">
<img src="image.gif">

<blockquote>
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<br>
<h1>$error_type</h1>

<br>
<table>
<tr>
<td>
<table border="0" cellpadding=4>
<tr><td bgcolor=$color>
<br>
$error_message

<br><br>
</td></tr>
</table>
</td></tr>
</table>
<br><br><br><br>
Make sure that the error is not a mistake on your part. If you continue to have<br>
trouble, please contact the <a href="mailto:webmaster\@domain">Webmaster\@domain</a>.
</blockquote>

<br>

END

print "<br></body></html>";

The error codes are in http protocol.c of the Apache distribution.

9.6.9 mime.types file

This file tells the server how to respond to file requests containing special data. It
consists of a list of protocol names followed by a list of file extensions. Unrecognized
files are displayed in a browser as text/ascii files. If we see graphics files (like vrml
files) displayed as text, then we need to add a line here to inform the server about
the existence of such files. Here is a brief excerpt:

video/mpeg mpeg mpg mpe
video/quicktime qt mov
video/x-msvideo avi
video/x-sgi-movie movie
x-world/x-vrml wrl

9.6.10 Private directories

In some cases we require certain information to be made available to local users
of our domain but not to general outside users. This can be accomplished by
using a .htaccess file to override the default access rights set in the server
configuration files. The assumes that we have set AllowOverride All in an
appropriate <Directory> structure.

Creating a directory that is only available from the local domain is a simple matter
of creating the directory and creating a .htaccess file owned by the ‘www’ user (i.e.
the user running the daemon) with read permission for ‘www’, containing the lines:

order deny,allow
deny from all
allow from .local.domain
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9.7 E-mail configuration

Configuration of E-mail is one of the most complex issues for the system adminis-
trator, because it involves both nagging policy decisions and technical acrobatics.
For many system administrators, the phrase Nightmares on ELM2 Street does
not conjure up a vision of Freddie Kruger, but of dark nights spent with E-mail
configuration. E-mail is used for so many crucial purposes; it is the de-facto form
of communication in a network environment [202, 8, 177, 81, 87].

Why should E-mail be so complex? Part of the trouble is that, in the past,
there were many different kinds of network protocol and many different ways
of connecting up to different hosts. This made it quite a complex issue to relay
messages all over the world. Today things are much simpler: most sites use the
Internet protocols and some of the technical aspects of mail configuration can be
simplified. Some operating systems provide a program which automatically helps
set up E-mail for simple host configurations, but these are no substitute for a
carefully considered E-mail system.

In this chapter we shall consider only the popular mail transfer agent sendmail.
Sendmail changes so often that anything specific written about it is likely to be
out of date by the time you read this, so this section will necessarily be of a
schematic nature. The source code and documentation for sendmail are available
from ref. [275]. No matter whether the majority of local users read mail on a PC or
on a Unix workstation, every site requires a mail transfer agent like sendmail in
order to handle incoming and outgoing transfers.

9.7.1 Models of mail receipt and delivery

E-mail comprises two separate challenges: the delivery of messages and user
access to a mailbox. E-mail can be delivered either locally (where the sending host
is the same as the destination host) or across a network (where the destination
host is different from the sending host). Non-local delivery uses the SMTP (actually
ESMTP) mail protocol.

User access to a mailbox uses one of three methods: direct (local) access, POP or
IMAP.Regardlessofwhether local ornetworkdelivery isused,E-mail has to endup in
a mailbox system. For Unix-like operating systems, there are several actual choices:

• mbox: (or Berkeley format) This can be used with POP or local access methods.

• maildir: (from Qmail) can be used with POP, IMAP or local access.

• Cyrus: part of the Cyrus implementation of POP and IMAP.

• mbx: (from UWash IMAP) is basically an indexed mbox format as in RFC 822.

• MH: (for use with the MH and XMH mailers).

Windows has its own mailbox formats:

• PST: MS Outlook
2ELM is a free mail reader written by an employee of Hewlett Packard which redefined the standard

for E-mail interfaces in the 1980s.
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• DBX: Outlook Express

• SNM: Netscape Messenger or Netscape Collabra

• MBX: Eudora Mail.

The mailbox formats fall into two categories: those, such as the Berkeley format,
that put all messages in a single file, one after the other with ‘From’ lines to
mark the start of a new message, and those, such as maildir or Cyrus, that keep
directories of mail with a new file for each message. In the former case, a bad
character in a file can confuse mail readers about where one message ends and the
next one starts; in the latter case, the addition or removal of a message must be
accompanied by the update of index files or else the mailbox becomes corrupted.
All mailbox formats are vulnerable to corruption by ad hoc editing, so users and
administrators should be discouraged from attempting this.

As soon as a network is involved in E-mail transmission, there are many choices
to be made. Some of the basic choices involve deciding a logistic topology for the
E-mail service: should we consolidate mail services to one host, or should we
deliver mail to every host independently. The consequences of the latter are that
users will have different E-mail on every host they have an account on. Usually,
users require and desire only one mailbox per institution.

One way to avoid having different E-mail on every host is to share an mbox
filesystem between all hosts, using NFS. The Berkeley mail spool system is kept
in one of the directories

/var/spool/mail
/usr/spool/mail
/var/mail
/usr/mail

depending on the flavor of operating system. To do this, we pick a special host
which has the physical disk and we force every other host to mount that disk so
that users see the same mailbox, independently of which host they happen to be
logged onto. This lends itself to a non-distributed solution to E-mail however: if all
mail has to end up on one disk, then the host with the disk should get the mail.
If independent hosts try to perform local mail delivery to the same NFS-mounted
filesystem there can be mailbox corruption due to locking contentions across
many hosts. Some sites report that this is not a problem, however it is generally
not advisable to use NFS in this way. A centralized solution is preferable. For a
discussion of scalable sendmail configurations see ref. [63].

9.7.2 Relaying

Another issue which has attracted focus in recent times is whether or not a site
should relay mail from other hosts, and if so which hosts. In order to build a flexible
local mail solution, we usually need to relay mail between machines within our
local domain. However, relaying of E-mail from other sites has become a security
and ethical issue in recent times, with the explosion of mail spamming. Hostile
senders often attempt to cover their tracks by relaying E-mail via an intermediate
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domain. This has led mail exchangers to revise policy on relaying. Whereas mail
relaying was allowed by default, it is now generally denied by default. In most
cases this is correct and safe behavior; however, some sites, within particularly
complex organizations, might find the need to relay E-mail from a limited number
of other additional sites.

9.7.3 Consolidated and distributed mail solutions

There are two main models for handling electronic mail at a domain. One is
that every host receives mail independently. Since users normally have the same
password and account on all of the hosts on a network, this is not usually
appropriate.

The second approach is to have a mail ‘hub’, or central mail processor. In
this model, all incoming mail is diverted to the hub and all outgoing mail is sent
via the hub. With this approach, we focus all our effort into optimizing E-mail
configuration on the hub, and all other machines have a simple configuration
which simply collects or forwards mail on to the hub.

In order for mail to be diverted to a hub, we have to arrange for the mail
exchanger data in DNS to point to the hub, for every system, i.e. for every host in
DNS we should have an MX record accompanying the A record:

hostname A xxx.yyy.zzx.mmm
MX mailhub

Without such an MX record, mail which is addressed to

user@hostname.domain

will be sent directly to hostname. With such a record the mail for hostname
is sent to mailhub instead. It can later be forwarded to hostname if desired
using a mailertable. This has several advantages: first of all it means that mail
configuration can be centralized, spam filtering can be performed even for dumb
hosts and aliases can be expanded here without the need for a distributed alias
database like NIS. The second advantage concerns security. If all mail is forced to
pass through this hub then a secure setup here will help prevent SMTP attacks
on weaker hosts, thus this simplifies the security administration of mail also. A
further precaution is then to configure the site router to accept SMTP traffic only
for the mailhub since it is supposed to go there anyway. That way, if one forgets
an MX record in DNS there will be no back-doors for would-be attackers.

9.7.4 Compiling and installing sendmail

In this section we shall look only at the mail agent called sendmail. Some alterna-
tives to sendmail also now exist, such as smail, exim and postfix.

This section provides only an outline of the installation procedure for sendmail,
which has changed considerably in recent years. Information about sendmail and
the latest version can be obtained from ref. [275]. After unpacking the distribution,
we need to compile it. Sendmail uses BIND and TCP-wrappers libraries; these



368 CHAPTER 9. APPLICATION-LEVEL SERVICES

should be in place. Consider searching for the latest versions of these libraries
on the Internet before compiling. BIND is the resolver library. The official place
to get BIND is ref. [31]. This also contains a library lib44bsd.a which might be
necessary. The latest version of TCP wrappers may be obtained from ref. [311].
Many of the database-lookup features require the Berkeley db package. This is
obtainable from ref. [89].

Using the principle of separation, we build sendmail and keep it in a separate
directory, along with its attendant files.

myhost# mkdir -p /usr/local/mail/bin

Then, the simplest installation is found by

vger$ tar zxf sendmail.8.12.9.tar.gz
vger$ cd sendmail-8.12.9/
vger$ sh Build
Making all in:
/home/mark/sendmail-8.12.9/libsm
Configuration: pfx=, os=Linux,...

The script Build selects the operating system type and compiles the program and
places it in a directory that has the form:

obj.Linux.2.4.10-4GB.i686

where the string after ‘obj’ represents your kernel version. The built executables
are placed here. We can copy these to /usr/local/mail/bin.

Our operating system most likely expects to find the sendmail executable file
in either the /usr/lib/ directory, or the /usr/sbin directory on newer systems.
We must replace the old executable in these directories by making a link to the
new executable. For example:

mv /usr/lib/sendmail /usr/lib/sendmail.old
ln -s /usr/local/mail/bin/sendmail /usr/lib/sendmail

Make sure that the old file is no longer setuid or setgid, in case it contains any
security vulnerabilities.

9.7.5 Configuring sendmail

To finish the installation, we need to create configuration files for our mail domain.
Begin by going back to the sendmail distribution and copying the cf directory to
the mail directory, like this:

cp -r sendmail-x.y.z/cf /usr/local/mail

Next make a lib directory.

mkdir /usr/local/mail/lib
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To create a sendmail.cf file, we need to create a so-called macro file containing
configuration options /usr/local/mail/lib/domain.mc. Here is an example file
for domain domain.tld. We should only need to change the domain name and
the OS name of the mailhost in the first three lines. Using this file we will be able
to build the sendmail configuration more or less automatically. This example is
for sendmail x.y.z for a mail hub:

divert(-1)
include(‘/local/site/mail/cf/m4/cf.m4’)

VERSIONID(‘$Id: mercury.mc,v 1.1 1997/04/08 08:52:28 mroot Exp mroot $’)
OSTYPE(solaris2)dnl
DOMAIN(domain.tld)dnl

MASQUERADE_AS(domain.tld)
MASQUERADE_DOMAIN(sub.domain.tld)

FEATURE(use_cw_file)
FEATURE(use_ct_file)
FEATURE(redirect)
FEATURE(relay_entire_domain)
FEATURE(always_add_domain)
FEATURE(allmasquerade)
FEATURE(masquerade_envelope)
FEATURE(domaintable, ‘hash -o /local/site/mail/lib/domaintable’)
FEATURE(mailertable, ‘hash -o /local/site/mail/lib/mailertable’)
FEATURE(access_db, ‘hash -o /local/site/mail/lib/access_db’)
FEATURE(genericstable, ‘hash -o /local/site/mail/lib/genericstable’)
FEATURE(virtusertable, ‘hash -o /local/site/mail/lib/virtusertable’)

FEATURE(local_procmail,‘/local/bin/procmail’)

GENERICS_DOMAIN_FILE(/local/site/mail/lib/sendmail.cG)

EXPOSED_USER(root)

define(‘ALIAS_FILE’, /local/site/mail/lib/aliases)dnl
define(‘HELP_FILE’, /local/site/mail/lib/sendmail.hf)dnl
define(‘STATUS_FILE’, /local/site/mail/etc/sendmail.st)dnl
define(‘QUEUE_DIR’, /var/spool/mqueue)
define(‘LOCAL_MAILER_CHARSET’, iso-8859-1)
define(‘SMTP_MAIL_CHARSET’, iso-8859-1)
define(‘SMTP_MAIL_MAX’,‘2000000’)
define(‘confMAX_MESSAGE_SIZE’, ‘20000000’)
define(‘confHOST_STATUS_DIRECTORY’, ‘.hoststat’)
define(‘confPRIVACY_FLAGS’, ‘authwarnings,noexpn,novrfy’)
define(‘confME_TOO’, ‘True’)
define(‘confMIME_FORMAT_ERRORS’, ‘False’)
define(‘confTIME_ZONE’, ‘MET-1METDST’)
define(‘confDEF_CHAR_SET’, ‘iso-8859-1’)
define(‘confEIGHT_BIT_HANDLING’, ‘m’)
define(‘confCW_FILE’, ‘/local/site/mail/lib/sendmail.cw’)
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define(‘confCT_FILE’, ‘/local/site/mail/lib/sendmail.ct’)
define(‘confUSERDB_SPEC’, ‘/local/site/mail/lib/userdb.db’)
define(‘LOCAL_SHELL_PATH’,‘/local/site/mail/bin/smrsh’)

MAILER(local)
MAILER(smtp)

Create a makefile in /usr/local/mail/Makefile

MAKEMAP= bin/makemap
SENDMAIL= bin/sendmail
PIDFILE= /var/run/sendmail.pid
MAILTABLE= lib/mailertable
MCFILE= lib/domain.mc
SUBMIT= lib/submit.mc
ALIASES= lib/aliases
ACCESSDB= lib/access_db
CF_DIR= cf/

all: sendmail.cf $(ALIASES).db $(MAILTABLE).db $(ACCESSDB).db .restart

$(ALIASES).db: $(ALIASES)
$(SENDMAIL) -bi

$(ACCESSDB).db: $(ACCESSDB)
$(MAKEMAP) hash $(ACCESSDB) < $(ACCESSDB)

$(MAILTABLE).db: $(MAILTABLE)
$(MAKEMAP) hash $(MAILTABLE) < $(MAILTABLE)

sendmail.cf: $(MCFILE)
m4 -D_CF_DIR_=$(CF_DIR) cf/m4/cf.m4 $(MCFILE) > sendmail.cf

.restart: sendmail.cf lib/sendmail.cw lib/access_db.db lib/mailertable.db
kill -1 ‘head -1 $(PIDFILE)‘
touch .restart

Typing make in the /usr/local/mail directory should now result in a configura-
tion file /usr/local/mail/sendmail.cf. Read the next section before doing this.

We will need to create a file lib/sendmail.cw which contains a list of pos-
sible machines or domains for which the sendmail program will accept mail.
It is, amongst other things, this file which allows us to send mail of the form
mark@domain.tld, i.e. to an entire domain, without specifying a particular
machine. This file should contain a list of all the valid addresses, like this:

domain.tld
mailhost.domain.tld
www.domain.tld
mercury.domain.tld
dax.domain.tld
borg.domain.tld
worf.domain.tld
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daystrom.domain.tld
regula.domain.tld
ferengi.domain.tld
lore.domain.tld

Finally, we need to make the files readable for normal users. There is no harm in
giving everyone read access to all the files and directories.

9.7.6 Spam and junk mail

Spam or junk mail is E-mail where a message is sent to a large number of
recipients. The term ‘spam’ comes from the Monty Python spam song sketch.
Spam mail is most often commercial in nature and unsolicited (and unwanted) by
the intended recipient. Spam has become a major problem since it is very easy to
send E-mail and very hard to pick out what is useful from what is useless. There
are two approaches to the filtering of spam, both of which are needed together:

• Site rules for rejecting mail (ACLs)

• Private user-rules for rejecting mail.

The reason why both of these are needed is that what one user wants to reject,
another user might be glad to receive. Users prospecting for financial opportunities
or collecting the latest ‘artwork’ might live for the messages which most of us get
annoyed with.

Sendmail has rules for filtering mail at the site level. These include the ability
to deny access to connecting mailers from certain domains. At the time of writing
they seem to be only partially successful in practice [143].

At the user level, users of procmail can use junkfilter to create their own
rules for rejecting spam. Filters for mail transfer agents are also emerging now.
Many of these use Bayesian learning and filtering methods. See ref. [246].

9.7.7 Policy decisions

In order to protect our site from E-mail attacks, even ones made in innocence,
we might want to restrict mail by other criteria too. For example, multimedia
attachments can now allow users to send huge files by E-mail. This is a very
inefficient way of sending large amounts of data and it causes problems for
mailbox storage space. A possibility is to limit the size of mail messages handled
by sendmail so that mail which is too large will be rejected with an error message.
For example, the following rules limit E-mail to approximately 20MB. Even with
such a large reject size a handful of messages per month are rejected on the basis
of this rule.

define(‘SMTP_MAIL_MAX’,‘2000000’)
define(‘confMAX_MESSAGE_SIZE’, ‘20000000’)

Again, this must be a policy decision like garbage collection of users’ files. It is
never desirable to restrict the personal freedom of users, but it becomes a matter
of survival. If one provides an opening, it will be exploited either through ignorance
or malice.
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9.7.8 Filtering outgoing mail

An organization might want to prevent certain types of E-mail from being sent. For
example, mail generated by CGI-scripts is impossible to trace to a specific user,
but is stamped with the domain name of the WWW server which sent it. CGI mail
is therefore readily abused, and many institutions would therefore disallow it. If
ordinary users are allowed to write their own CGI-scripts, however, this can be a
difficult problem to contain. One can discard such mail however, with a local rule
of the form:

HReturn-Path: $>local_ret_path
D{SpamMessage}"553 You are a spammer. Go away."

Slocal_ret_path
R<www> $#error $@ $: ${SpamMessage}

This is not terribly sociable since no-one will be informed that the mail was
discarded.

The Milter (http://www.milter.org) interface now allows filtering of messages
by content, e.g. to perform virus scanning.

9.7.9 Mail aliases

One of the first things to locate on a system is the sendmail alias file. This is a file
which contains E-mail aliases for users and system services. Common locations
for this file are /etc/aliases and /etc/mail/aliases. On some systems, the
mail aliases are in the NIS network database.

If this file actually lies in the /etc directory, or some other place amongst the
system files, then we should move it to a special area for site-dependent files and
make a symbolic link to /etc/aliases instead. Mail aliases are valuable and we
want to make sure that nothing happens to them if we reinstall the OS.

The format of the mail aliases file is as follows:

# Alias for mailer daemon; returned messages from our MAILER-DAEMON
# should be routed to our local Postmaster.

postmaster: mark,otheruser

MAILER-DAEMON: postmaster

nobody: /dev/null

#
# alias: list of addresses
#

sysadm:mark@domain.tld,toreo@domain.tld
root:sysadm

#
# Alias for distribution list, members specified elsewhere:
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# alias: :include: file of names
#

maillist: :include:/mercury/local/maillists

#
# Dump mail to a file
#

archive: /mercury/local/archive/email.archive

9.7.10 Changes and updates

Sendmail is changing and developing rapidly. The details above are rudimentary,
and you will have to adapt them to the current release of the software. Since this
chapter was written, various restructurings have been performed:

1. A new user is required, smmsp, with a corresponding group. Sendmail is now
setgid smmsp, not setuid root.

2. The default invocation of sendmail is as a Mail Submitter Program (option
‘-Ac’). This contacts port 25 on localhost in order to deliver mail. If no contact
is established, mail is written to /var/spool/clientmqueue, which is owned
by the new user. There is support for several queues.

3. When the daemon starts (option ‘-bd’), it is run as root and processes the
usual queue /var/spool/mqueue.

4. sendmail -Ac -q flushes the MSP queue.

9.8 OpenLDAP directory service

OpenLDAP is the open source implementation of the Lightweight Directory Access
Protocol server (DSA) (see section 7.12.2). Installation is straightforward: after
unpacking the distribution from www.openldap.org,

configure
make depend
make
make test
(su)
make install

The configuration file slapd.conf determines the local name space as well as the
identity and password protection of the database manager. There is much that
can be configured here, related to security and schema extensions. To begin with,
it is important to set a password for the database manager. This password has to
be encrypted manually and pasted into the configuration file.

The slappasswd command hashes passwords into ascii strings, so that they
can be added to the slapd.conf file.
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/usr/local/sbin/slappasswd
New Password:
Repeat New Password:
SSHAkDPIIA9KR5LVQthcv+zJmzpC+GVYQ4Jj

A sample configuration file thus looks like this:

# See slapd.conf(5) for details on configuration options.
# This file should NOT be world readable.
#
include /usr/local/etc/openldap/schema/core.schema
pidfile /usr/local/var/slapd.pid
argsfile /usr/local/var/slapd.args

database bdb
suffix "dc=iu,dc=hio,dc=no"
rootdn "cn=Manager,dc=iu,dc=hio,dc=no"

# Cleartext passwords, especially for the rootdn, should
# be avoid. See slappasswd(8) and slapd.conf(5) for details.
# Use of strong authentication encouraged.

#rootpw secret
rootpw SSHAkDPIIA9KR5LVQthcv+zJmzpC+GVYQ4Jj

# The database directory MUST exist prior to running slapd AND
# should only be accessible by the slapd/tools. Mode 700 recommended.

directory /usr/local/var/openldap-data

# Indices to maintain
index objectClass eq

Note that the password is checked when adding data to the database. Password
credential errors are reported if either the password is incorrect, or the dc compo-
nents in the suffix are incorrect. Everything in the specification has to be correct.
Think of these as username and password.

Starting the server is a confusing business. At the time of writing, the OpenL-
DAP server did not behave as described by its documentation.

The server can now be started as follows:

daneel# /usr/local/libexec/slapd -h "ldap://0.0.0.0"

See section 7.12.2 for details about directory configuration and specialist refer-
ences.

9.9 Mounting NFS disks

The sharing of disks over the network is the province of NFS (Network File System).
Unix disks on one host may be accessed across the network by other Unix hosts,
or by PCs running PC-NFS. A disk attached physically to a host called a server
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is said to be mounted on a client host. In order to maintain a certain level of
security, the server must give other hosts permission to mount disks. This is
called exporting or sharing disks.

9.9.1 Server-side exporting

In order to mount a disk on a server we must export the disk to the client (this
is done on the server) and we must tell the client to mount the disk. Permission
to mount disks is given on the server in a file which is called /etc/exports or
on recent SVR4 hosts /etc/dfs/dfstab. The format for information in these files
differs from system to system so one should always begin by looking at the manual
page for these files. Here are two examples. The first is from GNU/Linux.

# See exports(5) for a description.
# This file contains a list of all dirs exported to other computers.
# It is used by rpc.nfsd and rpc.mountd.

/iu/borg/local daystrom(rw) worf(rw) nanite(rw) *.domain.tld(ro)

In this example, a file system called /iu/borg/local is exported read–write
explicitly to the client hosts daystrom, worf, and nanite. It is also exported
read-only to any host in the domain domain.tld. This last feature is not available
on most types of Unix.

On some brands of Unix (such as SunOS 4.1.*) one must run a command after
editing this file in order to register the changes. The command is exportfs -a to
export all filesystems. The command exportfs alone shows which filesystems are
currently exported and to whom.

Our second example is from Solaris (SVR4). The file is called /etc/dfs/dfstab.
Under Solaris, one can use the share command to export filesystems manually
from the shell, using a command line of the form

share -F nfs -o rw= hostname filesystem

The /etc/dfs/dfstab file is in fact a shell script which simply executes such
a command for each filesystem of interest. This has several advantages over
traditional export files, since one may define variables, as in the example below.

# place share(1M) commands here for automatic execution
# on entering init state 3.
#
# share [-F fstype] [ -o options] [-d "<text>"] <pathname> [resource]
# .e.g,
# share -F nfs -o rw=engineering -d "home dirs" /export/home2

hostlist=starfleet:axis:ferengi:borg:worf:daystrom:worf.domain.tld\
:daystrom.domain.tld:nostromo:voyager:aud4:aud4.domain.tld\
:aud1:aud1.domain.tld:aud2:bajor:nostromo:galron:ds9:thistledown\
:rama

share -F nfs -o rw=$hostlist /iu/mercury/local
share -F nfs -o rw=$hostlist,root=starfleet /iu/mercury/u1
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share -F nfs -o rw=$hostlist,root=starfleet /iu/mercury/u2
share -F nfs -o rw=$hostlist,root=starfleet /iu/mercury/u3
share -F nfs -o rw=$hostlist,root=starfleet /iu/mercury/u4
share -F nfs -o rw=$hostlist /var/mail

This script exports the six named filesystems, read–write to the entire list of hosts
named in the variable hostlist. The command shareall runs this script, or
it can be run manually by typing sh /etc/dfs/dfstab. The command share
without arguments shows the currently exported filesystems. Notice that the
hostname daystrom is repeated, once unqualified and again with a fully qualified
hostname. This is sometimes necessary in order to make the entry recognized. The
mount daemon is not particularly intelligent when it verifies hostnames. Some
systems send the fully qualified name to verify and others send the unqualified
name. If in doubt, list both like this.

9.9.2 Client-side mounting

Clients may mount any subdirectory of the exported directory onto any local
directory by becoming root and either executing a shell command of the form

mount server: remote-directory local-directory

or by adding a line to the filesystem table file, usually called /etc/fstab.
On some brands of Unix, this file has been renamed as /etc/checklist or
/etc/filesystems. On Solaris systems it is called /etc/vfstab. The advantage
of writing the disks in the filesystem table is that the mount commands will not
be lost when we reboot our system. The filesystems in the filesystem table file are
mounted automatically when the system is booted. All the file systems in this file
are mounted with the simple command mount -a.

We begin by looking at the manual page on the appropriate file for the system,
or better still looking at examples which are already in the file. The form of a
typical filesystem table is as below.3

/dev/sda2 swap swap rw,bg 1 1
/dev/sda1 / ext2 rw,bg 1 1
/dev/sda3 /iu/borg/local ext2 rw,bg 1 1
mercury:/iu/mercury/u1 /iu/mercury/u1 nfs rw,bg
mercury:/iu/mercury/u2 /iu/mercury/u2 nfs rw,bg
mercury:/iu/mercury/u3 /iu/mercury/u3 nfs rw,bg
mercury:/iu/mercury/local /iu/mercury/local nfs rw,bg

This example is from GNU/Linux. Notice the left-hand column. These are disks
which are to be mounted. The first disks which begin with /dev are local disks,
physically attached to the host concerned. Those which begin with a hostname
followed by a colon (in this case host mercury) are NFS filesystems which lie
physically on the named host. The second column in this table is the name of
a directory on which the disk or remote filesystem is to be mounted – i.e. where
the files are to appear in the local host’s file-tree. The remaining columns are

3On older HPUX systems, there is a bug which causes mysterious numbers to appear in the
/etc/checklists file. These have no meaning.
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options and filesystem types: rw means mount for read and write access, bg
means ‘background’ which tells mount to continue trying to mount a filesystem in
the background if it fails on a first attempt.

Editing the /etc/fstab (or equivalent) file is a process which can be automated
very nicely with the help of the system administration tool cfengine. We shall
discuss this in the next chapter.

9.9.3 Trouble-shooting NFS

If you get a message telling you ‘Permission denied’ when you try to mount a
remote filesystem, you may like to check the following:

• Did you remember to add the name of the client to the export or dfstab file
on the server?

• Some systems require a fully qualified hostname (i.e. hostname with domain-
name appended) in the export file. Try using this.

• Did you mis-spell the name of the client or the server?

• Are the correct network daemons running which support nfs? On the server
side, you must be running mountd or rpc.mountd. This is an authentication
daemon. The actual transfer of data is performed by nfsd or rpc.nfsd. On
older systems there should be at least four of these daemons running to
handle multiple requests. Modern systems use a multi-threaded version of
the program, so that only one daemon is required.

On the client side, some systems use the block input/output daemon to make
transfers more efficient. This is not strictly necessary to get NFS working.
This daemon is called biod on older systems and nfsiod on newer systems
like FreeBSD. Solaris no longer makes use of this daemon, its activities are
now integrated into a kernel thread.

• The portmapper (portmap or rpcbind) is a strange creature. On some Unix-
like systems, particularly GNU/Linux, the portmapper requires an entry in
the TCP wrapper file /etc/hosts.allow in order for it to accept connections.
Otherwise, you might see the error

RPC service not registered.

The portmapper requires numerical IP addresses in the TCP wrapper config-
uration. Host names will not do, for security reasons (see section 9.4.5).

• The exports file on GNU/Linux hosts is also somewhat unusual. If you are
using a non-standard netmask, it is necessary to tell the mount daemon:

# /etc/exports: the access control list for filesystems
# which may be exported to NFS clients. See exports(5).

/site/cube/local *.college.edu/255.255.255.0(rw)
/site/cube/local 192.0.2./255.255.255.0(rw)
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9.10 Samba

Samba is a free software solution to the problem of making Unix filesystems
available to Windows operating systems. Windows NT uses a system of network
file sharing based on their own SMB (Server message block) protocol. Samba
is a Unix daemon-based service which makes Unix disks visible to Windows
NT. Samba maps usernames, so to use Samba we need an account with the
same name on the NT server and on the Unix server. It maps usernames tex-
tually, without much security. Samba configuration is in Unix style, by editing
the text-file /etc/smb.conf. Here is an example file. Note carefully the ‘hosts
allow’ line which restricts access to disks to specific IP addresses, like TCP
wrappers.

[global]
printing = bsd
printcap name = /etc/printcap
load printers = yes
guest account = nobody
invalid users = root
workgroup = UNIX
hosts allow = 128.39.

[homes]
comment = Home Directories
browseable = no
read only = no
create mode = 0644

[printers]
comment = All Printers
browseable = no
path = /tmp
printable = yes
public = no
writable = no
create mode = 0644

Once the Samba server is active, the disks are available for use with the net use
command, e.g.

C:\> net use F: \\host\directory

This example maps the named directory on the named host to NT drive letter F:.
The reverse problem of mounting NT filesystems on a Unix host works only for
GNU/Linux hosts at present:

gnulinux% smbmount //nthost/directory /mountpoint -U administrator
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9.11 The printer service

Printing services vary from single printers coupled to private workstations to huge
consolidated spooling services serving large organizations [329, 251].

Host print services need to be told about available printers by registering the
printers in a local database. In BSD-like print servers this database is kept in a flat
file called /etc/printcap. In System V print servers, a program called lpadmin is
used to register printers and it’s anyone’s guess what happens to that information.

The way in which we register printers thus depends on

• What kind of operating system we are using

• Whether we are running any special network printer software.

The main difference is between BSD-like systems and System V. Recently a
replacement print service was introduced for a generic heterogeneous network.
Called LPRng, this package preserves the simplicity of the BSD system while
providing superior functionality to both [243]. Another alternative is the Common
Unix Printing System (CUPS).

In order to register a printer with a BSD-like printer service, we do the following:

• Think of a name for the printer.

• Decide whether it is going to be connected directly to a host or stand alone
on the network.

• Register the printer with the printing system so that the daemons which
provide the print service know how to talk to it. This can include manu-
ally making a ‘spool’ directory for its queue files. This normally lies under
var/spool or /usr/spool.

mkdir /var/spool/ printer-name

• Most Unix systems assume the existence of a default printer which is referred
to by the name ‘lp’. If you do not specify a particular printer when printing,
your data are sent to the default printer. It is up to us to name or alias one
of our printers ‘lp’. Each printer may have several names or aliases.

With some print spoolers, we also need to decide whether to send all data to
a common central server, or whether to let each host handle its own negotiations
for printing. If we are interested in maintaining a record of how many pages
each user has printed, then a centralized solution is a much simpler option. The
downside of this is that, if there is a large user base, the traffic might present a
considerable load for one host. A central print spooler must have sufficient disk
space to temporarily store all the incoming print jobs.

9.11.1 CUPS/LPRng

The Common Unix Print System (CUPS) has emerged in the last few years as the
favored printing solution on many desktops. It reads information from traditional
Unix format files.
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LPRng is a rival attempt that is configured quite simply in a manner very
similar to (but not identical to) the old Berkeley printcap system.

Suggestion 12 (Unix printing). Install LPRng on all hosts in the network. Forget
about trying to understand and manage the native printing systems on system V
and BSD hosts. LPRng can replace them all with a system which is at least as
good. Another alternative system is the Common Unix Printing System.a

aThe author’s experience with CUPs is that it is not yet a robust alternative.

If one follows this suggestion there is only a single printer system to worry about.
Note that most GNU/Linux distributions (e.g. Debian) have packages for this
system, so it will not need to be installed from scratch.

The software uses a printcap file and two other optional files called lpd.conf
and lpd.perms. The printcap file is like a regular printcap file but without the
backslash continuation characters. LPRng provides effectively both lpr, lpd, lpq
and lprm commands from Berkeley and lp, lpstat and cancel commands from
System V. The daemon reads the three configuration files and handles spooling.
The configuration is challenging but straightforward and there is extensive docu-
mentation. Here is a simple example for a network printer (with its own IP address)
which allows logged on users to start and delete their own printjobs:

# /etc/printcap (lprng)

myprinter|lp
:if=/local/bin/lpf # LF/CR filter
:af=/var/spool/lpd/acctfil
:lf=/var/spool/lpd/printlog
:sd=/var/spool/myprinter
:lp=xxx.yyy.zzz.mmm%9100
:rw
:sh

The IP address of the printer is xxx.yyy.zzz.mmm and it must be written in
numerical form. The percent symbol marks the standard port 9100. The lpd.conf
file is slightly mysterious but has a number of useful options. Most, if not all,
of these can be set in the printcap file also, but options set here apply for all
printers. One nice feature for instance is the ability to reject printouts of binary
(non-printable) files. This can save a few rain forests if someone is kind enough to
dump /bin/ls to the printer.

#
# lpd.conf
#

# Purpose: name of accounting file (see also la, ar)
af=/var/spool/lpd/acctfil

# Purpose: accounting at start (see also af, la, ar)
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as=jobstart $H $n $P $k $b $t

# Purpose: check for nonprintable file
check_for_nonprintable

# Purpose: default printer
default_printer=local

# Purpose: error log file (servers, filters and prefilters)
lf=/var/adm/printlog

# Purpose: lpd lock file
lockfile=/var/spool/lpd/lpd.lock.%h

# Purpose: lpd log file
logfile=/var/spool/lpd/lpd.log.%h

# Purpose: /etc/printcap files
printcap_path=/etc/printcap

# Purpose: suppress headers and/or banner page
sh

The lpd.perms file sets limits on who can access the printers and from where,
unlike the traditional services which are open to everyone.

#
# lpd.perms
#
# allow root on server to control jobs
ACCEPT SERVICE=C SERVER REMOTEUSER=root
# allow anybody to get status
ACCEPT SERVICE=S
# reject all others, including lpc commands permitted by user_lpc
REJECT SERVICE=CSU
#
# allow same user on originating host to remove a job
ACCEPT SERVICE=M SAMEHOST SAMEUSER
# allow root on server to remove a job
ACCEPT SERVICE=M SERVER REMOTEUSER=root
REJECT SERVICE=M
# All other operations disallowed
DEFAULT REJECT # orACCEPT

LPRng claims to support Berkeley printcap files directly. However, in trials its
behavior has been quirky, with some things working and others not. In any event,
LPRng is a highly welcome piece of software which works supremely well, once
configured.
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9.11.2 Environment variable PRINTER

The BSD print command and some application programs read the environment
variable PRINTER to determine which printer destination to send data to. The
System V print command lp does not.

9.11.3 BSD print queue

• lpr -p printer file Send file to named print queue.

• lpq Show the printer queue for the default printer, or the printer specified in
the environment variable PRINTER if this is set. This lists the queue-ids.

• lprm queue-id Remove a job from the print queue. Get the queue-id using
lpq.

• lpd Start the print service. (Must be killed to stop again.)

• lpc An old and unreliable interface to the print service.

9.11.4 SysV print queue

• lp -d printer file Send a file to the named print queue.

• lpstat -o all Show the printer queue for the default printer. This lists the
queue-ids.

• lpstat -a Tells lies about when the print service was started.

• lpsched Start the print service.

• lpshut Stop the print service.

• cancel queue-id Remove a job from the print queue. Get the queue-id using
lpstat.

The Solaris operating system used to have an optional printing system called
Newsprint in addition to the SVR4 printing commands.

9.12 Java web and enterprise services

Java services are becoming increasingly important in the world of the network. The
most important services are those connected to the Web, but any Java program
can, in principle, make use of Java services. Java Server Pages (JSP) are Java’s
dynamical web page framework. Accompanying this are Java Servlets (the server
counterpart of Applets) that house JSP-based services, mediated by the Web on
port 80 or 8080. Java servlets are applications, based on the standard Java
libraries and a class/object approach to services, in which services are objects
called by object invocation.
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The naming service attaches objects to services and routes requests to depen-
dent services, such as databases to the correct host and port number. Enterprise
Beans are essentially wrappers that provide transaction locking and security of
data transfer for Java services that employ them. They are the ‘heavyweight’ side
of Java services and are mediated by an enterprise application server.

Java has a close relationship with XML, and the configuration files that con-
figure Java software and services are generally written in this eclectic framework.
In spite of what XML followers would have us believe, XML was designed to be
parsed by machines, not humans, and some of the XML configuration files one
finds strain the credibility of their claims.

Java services require the Java Runtime Environment in order to work. Java
virtual machines are provided by several sources, including Sun Microsystems,
IBM, Microsoft and others, so there is no single recipe for making Java work.
However, the basic Java compiler and virtual machine have to be installed and
working in order for the related services to work.

9.12.1 Java development kit

As an example, we consider the Java Development Kit from Sun Microsystems.
It is collected as an archive from the net. Once installed in some location, e.g.
/usr/local, it lives in a directory that needs to be pointed to by the environment
variable JAVA HOME. Java’s libraries are called classes and they have a library path
analogous to LD LIBRARY PATH. For example,

JAVA_HOME=/local/jdk1.3.1
CLASSPATH=/usr/local/mm.mysql.jdbc-1.2c: \
/usr/lib/jdk1.3.1/lib/classes.zip: \
/usr/local/iu/JSDK2.0/lib/jsdk.jar: \
/usr/local/jserv/lib/ApacheJServ.jar:.

Once these variables have been set, the compiler javac and runtime environ-
ment java can be tested with the following test-program:

// File has same name as class, i.e. JavaTest.java

public class JavaTest
{
// An application class must include a ‘‘main’’ method

public static void main ( String args[] )
{
System.out.println("This is a compiler test program\n");
}

}

This program is compiled and run as follows:

host% /usr/lib/jdk1.3/bin/javac JavaTest.java

host% /usr/lib/jdk1.3/bin/java JavaTest
This is a compiler test program
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9.12.2 Web containers: Jserv and Tomcat

A Java ‘web container’ is an executable environment for Java Server Pages (JSP).
Java Server Pages are Java program elements that are embedded into HTML
pages, in order to create dynamic content. These are stripped out and compiled
on the fly as mini-servers or ‘servlets’, Java programs linked to HTML pages,
allowing dynamic content in HTML pages, with ‘custom tag’-technology. Tomcat
is the reference Java example of such a container; another example container is
Jserv.

Tomcat can be used ‘stand-alone’ or as a module for an Apache web server.
The connection between Tomcat and Apache is managed by an Apache Dynamic
Share Object (DSO).

The Tomcat server goes by the name of CATALINA and it has environment
variables that correspond to the Java variables:

CATALINA_HOME=/usr/local/jakarta-tomcat
CATALINA_TMPDIR=/var/run/tomcat

Installing Tomcat is simply a matter of unpacking it under /usr/local, for
instance, and starting the server. A non-privileged tomcat user should be created:

host% cd /usr/local/jakarta-tomcat/bin/
host% ./startup.sh

or on Windows:

host% ./startup.bat

Somewhat inconveniently, executable code for servlets is placed under the distri-
bution itself:

host% ls webapps/examples/
total 4
drwxr-xr-x 4 root root 1024 Feb 21 2002 WEB-INF
drwxr-xr-x 2 root root 1024 Feb 21 2002 images
drwxr-xr-x 17 root root 1024 Feb 21 2002 jsp
drwxr-xr-x 2 root root 1024 Feb 21 2002 servlets
host% v webapps/examples/WEB-INF/
total 11
drwxr-xr-x 14 root root 1024 Feb 21 2002 classes
drwxr-xr-x 3 root root 1024 Feb 21 2002 jsp
-rw-r--r-- 1 root root 8767 Feb 12 2002 web.xml

The example structure must be reproduced for any additional startup-pages or
users. Tomcat needs writable temporary workspace in its distribution, so file
permissions need to be set like this when running in non-privileged mode:

drwxr-xr-x 2 root root 1024 Feb 21 2002 bin
drwxr-xr-x 2 root root 1024 Feb 12 2002 classes
drwxr-xr-x 4 root root 1024 Feb 12 2002 common
drwxr-xr-x 2 root root 1024 Apr 23 18:31 conf
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drwxr-xr-x 2 root root 1024 Feb 21 2002 lib
drwxr-xr-x 2 tomcat root 6144 Aug 22 18:09 logs
drwxr-xr-x 4 root root 1024 Feb 12 2002 server
drwxr-xr-x 7 root root 1024 Apr 23 19:11 webapps
drwxrwxrwt 3 tomcat root 1024 Feb 21 21:06 work

Here is an example cfengine script to manage some of these issues: The server
needs to be restarted regularly, to notice updates.

#
# A configuration for tomcat -
# to be run on port 8080 (conf/server.xml)
# servlet server runs as user "tomcat"
#
# to call up:
#
# http://host.example.org:8080/mark/servlet/HelloWorldExample
#
# (note no s in servlets!!!)
#
# Server config is in conf/server.xml (careful here!)
#

control:

# editfilesize = ( 90000 )

# actionsequence = ( files links processes )

catalina_base = ( /local/jakarta-tomcat-4.0.2 )

#####################################################################

files:

$(catalina_base) mode=644 ignore=bin r=inf action=fixall
$(catalina_base)/bin mode=755 ignore=bin r=inf action=fixall
$(catalina_base)/logs mode=644 owner=tomcat r=inf action=fixall
$(catalina_base)/work mode=1777 owner=tomcat action=fixall

#
# For now copy -r webapps/examples to ~user/servlets
# to get started, and then link that area below
# to webapps/user
#

######################################################################

links:

$(catalina_base)/webapps/mark -> /iu/nexus/ud/mark/servlets
# $(catalina_base)/webapps/frodes -> /iu/nexus/uc/frodes/servlets
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# $(catalina_base)/webapps/paulsep -> /iu/cube/u1/paulsep/servlets
# $(catalina_base)/webapps/gjertsa -> /iu/cube/u1/gjertsa/servlets
# $(catalina_base)/webapps/pettern -> /iu/cube/u1/pettern/servlets
# $(catalina_base)/webapps/leskovk -> /iu/cube/u1/leskovk/servlets

$(catalina_base)/webapps/timeplan -> /iu/cube/local/iu/IUservlets
$(catalina_base)/webapps/24 -> /var/www/hovedprosjekter/2002/data/24

# $(catalina_base)/webapps/haugerud -> /iu/nexus/ud/haugerud/servlets
# $(catalina_base)/webapps/sigmunds -> /iu/nexus/ud/sigmunds/servlets
# $(catalina_base)/webapps/kjetilg -> /iu/nexus/ub/kjetilg/servlets
# $(catalina_base)/webapps/ulfu -> /iu/nexus/ua/ulfu/servlets
# $(catalina_base)/webapps/geirs -> /iu/nexus/ub/geirs/servlets

#######################################################################

processes:

"jakarta-tomcat-4"
restart "$(catalina_base)/bin/startup.sh"
owner=tomcat

#######################################################################

editfiles:

# Edit the server.xml file and add a line for each user
#
# <Context path="/mark" docBase="mark" debug="0"/>

ignore_for_now::

$(catalina_base)/conf/server.xml

# ReplaceAll "8080" With "9090" to change port

ReplaceAll "/manager" With "XXX-dangerous-no-manager-XXX"
ReplaceAll "privileged=$(dblquote)true$(dblquote)"
With "privileged=$(dblquote)false$(dblquote)"

####################################################################

shellcommands:

Hr12.OnTheHour::

"$(catalina_base)/bin/shutdown.sh > /dev/null 2>&1"
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9.12.3 Enterprise Java Beans

JBoss, Websphere and Weblogic are examples of Enterprise Java Beans (EJB)
containers, an execution environment for EJB. JBoss has attracted a lot of
attention since it not only is free software, but also has a very simple deployment
mechanism that avoids the need for extra XML configuration to be supplied. Once
archived into a ‘jar’ file, the bean can be deployed simply, by placing it into the
deployment directory. This contrasts with commercial rivals that need extra XML
files and specialized tools for deploying software.

Some additional configuration is needed to couple the server to a database
backend. Connection to a PostgreSQL database, for instance, takes place through
Java Data Base Connectivity (JDBC). The basics of this are provided by a Java
Archive (‘jar’ file) distributed with the PostgreSQL Database Management Software.

Dynamical HTML/JSP content first contacts a servlet in order to access meth-
ods written in Java. Servlets, employing Enterprise Beans, contact the Bean
Container (e.g. JBoss) for code and service. The connection between Tomcat and
JBoss takes the form of an EJB Client connecting to an EJB Server. Tomcat and
JBoss can thus be separate and several Tomcat installations can feed into several
JBoss installations. This allows the scheme to scale, by load-distribution, to the
limitations of hardware and the database manager. In the default configuration
available from JBoss web pages, however, both Tomcat and JBoss reside on the
same machine with a single connection.

EJB Clients need to find a number of Java archive (‘jar’) files containing classes
to allow them to function. They need to find the Java Class files which define the
interface between Client and Server too. This is accomplished by placing them
somewhere in the CLASSPATH environment.

The Tomcat based EJB Clients also need Java Naming and Directory Interface
(JNDI) information to allow them to connect to their Servers. This is accomplished
by having a properties file (jndi.properties) somewhere within CLASSPATH. The
contents of this file specify a local address (e.g. localhost) for the JNDI service.

Installation of JBoss is simplicity itself. Assuming that the service will run as
a non-privileged user jboss:

cd /usr/local
tar zxf jboss-3.0.tar.gz

ln -s /usr/local/jboss-3.0 /usr/local/jboss

/bin/su -s /bin/sh jboss --command="whoami"

/bin/su -s /bin/sh jboss --command="sh /usr/local/jboss/bin/run.sh"

The server can be tested by using a web browser to access the portals:

http://host.example.org:8080
http://host.example.org:8082
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9.12.4 Multi-user deployment

The Tomcat servlet environment is set up to provide only for a single user.
The presumed model is a production environment with a single web server per
company – not a college environment, with many students, for example. Thus, on
a multi-user system where every user has their own servlets and JSP files, it is
awkward to allow them to add and delete servlets without causing problems for
one another. A single error seems to be able to cause the whole server to fail
inexplicably.

However, it is possible to coax the server to look in more than one location for
servlet and JSP files, so it is, in principle, possible to create a directory for every
user with the necessary environment; although an error by one user can easily
affect all the others; also the server must be frequently restarted to register errors.

To the configuration file $CATALINA_HOME/conf/server.xml, we must add
an additional document base, one for each user. These are analogous to the
‘examples’ area described above, and provided by the Tomcat distribution.

<Context path="/mark" docBase="mark" debug="0" reloadable="true" />
<Context path="/frode" docBase="frode" debug="0" reloadable="true" />

and then link the directory

mark -> ~mark/servlets/
frode -> ~frode/servlets/

The whole webapps directory structure of Tomcat must then be reproduced under
each user’s servlet directory.

An example applet is then referred to, for instance, as:

http://host.example.org:8080/mark/servlet/HelloWorldExample

Exercises

Self-test objectives

1. What is a network application service?

2. What is an application server?

3. What is an application proxy?

4. What issues are involved in installing a new service on Linux?

5. What issues are involved in installing a new service on Windows?

6. What role does inetd play for application services?

7. What is TCP wrappers? How is it used?

8. Create a checklist for setting up a nameserver.

9. Create a checklist for setting up a web server.
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10. Explain the principle of using a private user ID for each application service.

11. What is a privileged port?

Problems

1. Compare the Berkeley mailbox format with the IMAP mailbox format. Discuss
the advantages and disadvantages of each.

2. Set up an Apache web server.

3. Build a tree of documents, where some files are public and others are
restricted to access by your local organization, using the .htaccess file
capability.

4. Show that a CGI-script can always be written which reveals all of the files
restricted using .htaccess. This shows that untrusted CGI-scripts are a
security risk.

5. Write a Perl script for handling WWW errors at your site.

6. Estimate the number of megabytes transferred per week by the file-servers
at your domain. Could any of this traffic be avoided by reorganizing the
network?

7. Where are the default nameservers placed around your network? Is there a
nameserver on each subnet, i.e. does DNS lookup traffic have to pass through
a router?

8. Set up TCP wrappers on your system (Unix-like OSs only).

9. Install the Java Development kit from Sun Microsystems. Compile the test
program above, and then install Tomcat. Test the example servlets and JSP
pages using a web browser to access port 8080.

10. Delete the Tomcat distribution in the previous exercise and collect the
JBoss–Tomcat combined distribution from www.jboss.org. Install this, and
check that it is working by using a web-browser to access the main web
pages at ports 8080 and 8082.

11. Discuss the role of Java and .NET services in consolidating network applica-
tion services in the future. What is the difference between multiple services
over many IP ports, and having multiple services brokered over a single port?
Think of security, reliability and ease of management in your answer.

12. Java’s reliance on XML for configuration information is typical of a trend
in current practice. Discuss the advantages and disadvantages of XML for
configuration information.





Chapter 10

Network-level services

Networks are usually presented as an invention of the post Second World War
cold war climate, but the first wired communication networks were built by the
Victorians in the 1800s. Sir Francis Ronald was the first person to appreciate
the need for telegraphic communication. In the first publication on the subject in
1823, he proposed a method for locating faults on a telegraph line. W.F. Cooke
and Charles Wheatstone, professor of Physics at King’s College, London produced
their first telegraph patent in June 1837 and tested it over the mile-long line
between two London railway stations. Samuel Finley Breese Morse had the idea
for electrical communication in 1832 but did not produce a working telegraph in
the United States until 1836 [66].

The first attempt to lay an underwater cable was begun in 1850, when a steam
tug drew a single copper wire from Dover out across the ocean to Cap Gris-Nez.
Unfortunately after only a day the cable broke around the French coast. Politics
and rivalry intervened until it was left to Lord Kelvin (William Thomson) to show
how low-power signals could be transmitted effectively over huge distances. Many
failures were encountered before finally, on the 27th of July 1866, the steamboat
Great Eastern delivered a cable from England’s Valentia Bay to Heart’s Content
in North America. On the first day of operation the cable earned one thousand
pounds. This was the birth of Internet commerce.

10.1 The Internet

One of the false myths about the Internet was that it was developed by the
American military as a communications system that could survive a nuclear
attack. In 1964, a researcher at the RAND corporation, Paul Baran, wrote a paper
describing how different network topologies would be robust to failure (see chapter
8). This included many ideas that would eventually be incorporated into current
networking technologies, but the idea was not taken up. Later, the American
Department of Defence’s Advanced Research Project Agency (DARPA) began a
project to find ways of gaining access to expensive computing machinery remotely;
the cost of duplicating computing services, at the time, was insurmountable so
the logical solution was to find a way of accessing the services remotely.
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The invention of packet switching was key in allowing networks to share
bandwidth between multiple computers. The strength of the Internet Protocol was
in being able to integrate many existing technologies for point to point connections
(like X.25) that were deployed in Europe. Unix was instrumental in the spread
of the Internet Protocol suite (nowadays referred to as TCP/IP). The fact that
the Internet has developed into many of the things that Baran foresaw is a
testament to his foresight, rather than a feat of planning. Internet development
has meandered through differing technologies, driven by commercial forces such
as telecom companies and standardizing bodies such as the IETF.

10.2 A recap of networking concepts

Here is a summary of what we assume understood at the beginning of this chapter:

• Computers communicate by sending electrical or optical signals over wires
or fibers.

• Short cables can only ‘hold’ one bit at a time. A bit floods a cable or fiber
like signaling Morse code with a torch, and has a physical size normally
equal to the fundamental wavelength of the binary signal. The signal spreads
through the medium in all directions at anything up to the speed of light in
the medium.

• Each computer has a hardware interface at layer 1 of the OSI model.

• Each interface has a Media Access Control (MAC) address at layer 2, e.g. an
Ethernet address such as 00:90:27:A2:47:7B.

• All hosts connected to the same cable see all the signals passing through it,
but messages are framed using a protocol that incorporates a MAC address,
and only the host with the correct MAC address normally bothers to read a
message with its address. (A computer that listens to all traffic is said to be
in promiscuous mode.)

• MAC addresses are ‘flat’; they have no structure, so the only way to find
a host with a given MAC address is to either direct the message over a
dedicated path, or send a message to every computer and wait for the right
one to respond. This is impractical in large networks, so we need another
layer of addressing: layer 3.

• A message sent to one computer from another is called a unicast.

• A message sent from one computer to all computers on a Local Area Network
(LAN) is called a broadcast.

• When multiple cables are joined together as part of an Internetwork, they
must be joined by a router. If the cables are part of the same logical IP
network, they are joined by a switch (or a bridge, which is an old name for a
primitive switch).
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10.3 Getting traffic to its destination

How do data get ‘here’ from ‘there’ and from ‘there’ to ‘here’? This is a complex
question that flirts with a number of quite independent issues, making its answer
seem often unnecessarily opaque. We shall try to approach the answer in a
number of stages. Two particular problems lie at the heart of getting traffic to its
destination:

1. Directing packets to their proper destination.

2. Scheduling packets for transmission over a shared channel.

These two, obviously independent, issues become entwined because the hardware
and software that deal with delivery are also forced to deal with the sharing.
System administrators are barraged with technical specifications and explanations
of these issues when purchasing and installing network infrastructure. A basic
understanding of the issues is important.

10.3.1 Multiplexing

As with many problems in computing, we begin with resource sharing. Cable
technologies have in-built limitations: only one user can send data at a time, so
we use a form of packet switching. A contiguous Ethernet, for instance, can only
span a distance of, at most, 5000m with a minimum packet size of 64 bytes. This
value is normally halved to 2500m to allow a wide margin for error (see section
10.4.3). If these limits are exceeded, the expected collision rate leads to thrashing
of the scheduling algorithm and network gridlock.

Even if it were possible, it would never be practical to build such a network
covering the world: with hosts broadcasting to every other machine in order to find
one another, the number of collisions would be enormous – why should a host in
Norway be prevented from using the network by a host in the United States, or
vice versa? Clearly, one must devise a way of structuring the flow of traffic to avoid
unnecessary contention.

This can be done by packet switching. Switching uses essentially two strategies
to form multiple channels from a single resource:

• Time Division Multiplexing: interleaving packets in time-slots (scheduling).

• Wave Division Multiplexing: choosing different wavelengths or frequencies to
encode signals. This is sometimes referred to as Lambda (λ) Switching in
fiber optic networks.

10.3.2 From bridges to switches

Directing traffic in a Local Area Network (LAN) is simple. In older Ethernet net-
works, cables were simply spliced by hubs, and occasionally broken up by bridges
that would stop traffic from crossing a boundary unless it needed to. Today, bridges
and hubs have been combined into star-topology LAN switches (figure 10.1).
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LAN switch

To router

Figure 10.1: A LAN switch normally offers a separate channel to each host on the LAN,
though it is still possible for a few hosts to share a channel using a cable splitter or hub.
Traffic is switched from channel to channel and hosts that do not need to see it, do not see
it. Switching is fast and efficient. The switch prevents a router from being exposed to LAN
‘chit-chat’.

LAN switches are very successful in passing traffic from one host to another with-
out creating unnecessary contention elsewhere in the network.

LAN switching is straightforward, but to cover a large area it is not enough
to tap into a single cable, we must also have crossroads and intersections (see
figure 10.2). At each junction, a decision has to be made about which way traffic
will be forwarded. We thus have to multiplex not only single cables, but junctions.
This traffic flow control at junctions is exactly what happens in a star topology,
but what happens when two stars are connected?

Can packets now find their way to their destination? Can this model scale to any
number of hosts? It can scale to some extent, but not indefinitely: the limitations
of Ethernet prevent us from growing Ethernet indefinitely, but even with a better
link layer, a flat address space would be extremely inefficient. One must therefore
place something in between Ethernets that can span larger distances: Wide Area
Networks (WAN). This now involves the IP address of hosts in a more important
way, and we need a new kind of hardware: a router.

The terms switch and router are becoming increasingly mixed up as technologies
evolve. These two devices seem to perform similar tasks, but at different layers of
the puzzle.

• A switch is a device that forwards packets according to a forwarding table
using MAC addresses of the interfaces that it is connected to as an index.
Switching is so simple that it can be completely hardwired, if necessary, so
it is quite efficient to switch packets. This lack of intelligence has a price
however: a switch needs help in order to build a forwarding table – i.e. to
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Figure 10.2: Junctions of cables are required to create a non-trivial network topol-
ogy. The blobs represent ‘forwarding agents’ or switches that can receive data from a
cable C1 . . . C6 attached to an incoming interface I1 . . . I7 and pass it to a different cable
attached to a different interface. This is how traffic can be passed around a network with
junctions.

find out how it can reach a particular computer MAC address along one
of its interfaces. In some cases, this task is very simple: simple Ethernet
star-formation networks attach each computer to a single interface of a
switch, so it is easy to build a table of associations. Other technologies, such
as ATM, Frame Relay and MPLS (see section 10.5) are less easily defined
than this: they do not work in the same way as Ethernet, and they allow
more complicated switching over wide areas, through several switches, but
they help in order to assemble the information in their forwarding tables.
This help can be manually added by a system administrator, or it can be
automated by linking the layer 2 switching to a layer 3 routing algorithm.
In the latter case, some manufacturers are starting to talk about ‘layer 3
switches’.

• A router is a specialized computer, running on software, that probes and
determines the global topology of the network and decides how to forward
packets. It can replace, supplement or assist a switch in forwarding packets.
In order to succeed at this, a router needs to understand OSI layer 3, or
the IP layer, and sometimes has occasion to examine levels 4–7 in making
decisions. The IP layer is based on an address structure that is hierarchical
and can therefore be navigated automatically.

Confusion arises between routing and switching when one begins to discuss the
methods and algorithms for forwarding packets. A router matches hierarchical
IP address prefixes (layer 3) in order to determine the right forwarding path. A
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switch uses layer 2 addresses in a flat table for forward packets. Today, the
market uses expressions like ‘layer 3 switch’ to talk about hybrid devices that
optimize tasks by caching the information from a layer 3 router in the forwarding
table of a layer 2 switch for improved efficiency. However, fully-blown routers
perform functions other than forwarding, such as access control and filtering of
packets.

10.3.3 Virtual circuits and wide area switching

In Wide Area Networks (WAN), and moderately sized areas, often called Metropoli-
tan Area Networks (MAN), it is possible to direct traffic by switching alone. Although
Ethernet is limited in its coverage, other transport technologies like Frame Relay
and ATM can be transported by fibers over larger areas. Frame Relay and ATM
lie somewhere in the gray area between layer 2 and layer 3 of the OSI Model,
because they can be forwarded by switching alone using virtual circuits. (They do
not ‘need’ the IP layer to get traffic from here to there, but they draw assistance
from it.)

Virtual circuits have their origin in telephony and come in two forms: Permanent
Virtual Circuits (PVC) and Switched Virtual Circuits (SVC). They are predetermined
routes through a number of switches (see figure 10.3). The distinction refers to
the way the circuits are administered. A permanent circuit is set up by an
administrator for long-term usage; it is not expected to be rerouted. A switched
circuit is established automatically by ‘signaling’; this requires the assistance of
a protocol that understands the topology of the network, such as IP routing.

SW1 SW2

SW3

SW4

IN1

OUT
IN2

OUT2

Figure 10.3: An assembly of switches, connected by semi-permanent internal wiring (not
shown), can be used to establish virtual circuits (dotted lines). In simple regions, this can be
managed manually, or with assistance from routing protocols. Each separate virtual circuit
can be switched using simple labels, without having to bother with level 3 IP addresses.
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Labels, or virtual circuit identifiers, are used by the switches to forward traffic
along dedicated multiplexed channels. This technology is widely used in backbone
networks, where routing is simple, but speed is of the essence. These interlinked
switches are often represented as a ‘network cloud’ at the IP layer, concealing the
details of transport that doesn’t entirely fit the IP model.

10.4 Alternative network transport technologies

10.4.1 Medium sharing

There are two main strategies for sharing media.

• Deterministic sharing: every host is given a predictable chance to send data
at a basic minimum rate, e.g. token rings. This concept is easy to predict and
sell, and so has often been adopted in commercial technologies.

• Non-deterministic sharing: any host has only a finite chance of being able to
send a message – there is no minimum rate, e.g. Ethernet. This method uses
the assumption that most LANs are only lightly loaded, so that the probability
of transmission is usually high.

These are reflected in the prevalent technologies and each has its usage. Being
somewhat simplistic, one might say that well below capacity non-deterministic
sharing is the most efficient way of sharing available resources, but as we approach
saturation it fails badly and a deterministic approach is required. This is simply
because it is easy to share when everyone has plenty; but when competition for
resources gets tough, some kind of enforcement of sharing is required.

10.4.2 Token rings

There are several kinds of token rings, including the now defunct Fiber Distributed
Data Interface (FDDI). Token ring LANs are widely used in IBM networks. The
basic idea is that all hosts are arranged in a ring and that packets circulate uni-
directionally around the ring. In order to avoid collisions, a control packet (called
the token) is circulated around the ring and a host can only begin transmitting if
it has received the token. The host can then transmit for a maximum amount of
time and it must then pass on the token to the next host. As data are transmitted,
all hosts look to see if the packets were intended for them, i.e. anyone can receive
all of the time.

10.4.3 Ethernet

Ethernet technology was developed by Xerox, Intel and DEC in 1976, at the Palo
Alto Research Center (PARC) [103]. In the Ethernet bus approach, every host is
connected to a common cable or bus. Ethernet naturally supports broadcasting,
since all hosts share the same channel, but it also means that packets can
collide and must contend for transmission over each cable segment. This is called
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CSMA/CD, or Carrier Sense Multiple Access/Collision Detect. A collision occurs
when two hosts attempt to send signals simultaneously.

The naming convention for Ethernet is:

• 10Base-T = 10 Mbps, over two twisted-pair cables.

• 100Base-T2 = 100 Mbps, over two twisted-pair cables.

• 100Base-T4 = 100 Mbps, over four-twisted pair cables.

• 1000Base-LX/FX/SX = 1000 Mbps, long wavelength over optical fiber cable.

The latter is nicknamed Gigabit Ethernet.
Ethernet collisions occur when two hosts try to send data at the same time. To

give all hosts an equal opportunity to use the shared line, there is a Maximum
Transmission Unit (MTU) or Ethernet frame size of 1500 bytes, which limits the
time that a host can use the line.

Before sending a frame, the interface checks to see if its receiver sees any
existing transmission, if so it waits until the coast is clear. As the speed (bit
rate) of Ethernet transmission increases and LANs grow in size, the finiteness of
the speed of light becomes noticeable and it is increasingly likely for two hosts
to start sending at the same time, at different parts of a cable, before detecting
each others’ signal. When this occurs, there is a ‘collision’ and a burst of noise is
transmitted to inform all hosts of a collision: both hosts must stop and retry after
a short wait.

• An interface can only detect a collision while it is transmitting itself, so we
must be careful to prevent the sending of packets that are too short. (If
incoming power is greater than outgoing power, there must be a collision.)

• Each bit is encoded by a single wavelenth λ of electromagnetic waves in
Ethernet’s Manchester bit-encoding. If packets are long enough then they
must fill up the physical size of the cable, because the combined wavelength
Nλ is larger than the cable size. Thus hosts will not be able to avoid seeing one
another’s transmissions at some time during the transmission. We should
therefore use a minimum packet size to be certain of detecting all collisions.

Suppose we have a cable segment of length L. The worst case scenario is when
two hosts A and B at opposite ends of the cable start transmitting, just as the
signal arrives from A to B. In order to detect a collision, a signal must then have
travelled a distance of L to the collision point, and then the noise burst must
travel back the same distance to be detected by A, before the message finished
transmitting. Thus:

Nλ ≥ 2L

or in terms of bit-rate (frequency) f ,

Nccopper ≥ 2f L,

where ccopper is the speed of light in copper or fiber, which are both of the
order 2 × 108 meters per second. The left-hand side is the distance occupied
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by N bits, or wavelengths of the bit signal, and the right-hand side is the dis-
tance of the round-trip. There are two variables to fix N or L. The Ethernet
standard chooses to fix the minimum size of frames to be 512 bits (64 bytes),
giving a maximum length of about 5000 meters for 10Mbs Ethernet; this is
usually halved to 2500 meters to allow a wide margin for error. Any small
data payloads are padded out with zeros. At gigabit speeds, even larger MTUs
are required to extend the length limits of the cables; even so, they cannot be
very long.

Other limits on the size of Ethernet segments come from the physical properties
of cables, i.e. signal attenuation. The Ethernet standard allows for a maximum of
four repeaters (amplifiers), so the average length of each segment above can be
divided by the number of repeaters needed to get the signal across this maximum
length.

10.4.4 Digital Subscriber Line (DSL)

DSL includes variations such as ADSL, RADSL, SDSL, HDSL, VDSL, and is a family
of multiplexing transmission methods that uses the existing telecommunications
infrastructure. Asymmetric DSL (ADSL) is asymmetric in that it has a higher
download capacity than upload capacity. This is an arbitrary decision, derived
from observed usage. SDSL is a symmetric version of this. RADSL is a Rate
Adaptive DSL that adds some prioritization to traffic types.

DSL technologies employ improved transceiver technology to transmit data
more efficiently over copper wires. They are sometimes referred to as last-mile
technologies because they are used only for connections from a telephone exchange
or cable television operator to the end user. They are not routable. DSL can
transmit at rates limited only by the physical properties of the cable, whereas
telephone modem channels are restricted by the bandwidth of filters designed to
give a clear voice signal.

10.4.5 Integrated Services Digital Network (ISDN)

This is an international communications standard for sending voice, video and
data over digital telephone lines or normal telephone wires. ISDN allows multiple
devices to share a single line and supports data transfer rates of 64 Kbps and has
never really taken off. ISDN was more widely deployed in Europe, but has quickly
lost ground to cable and telephone DSL solutions.

10.4.6 Fiber: SONET/SDH

After the break up of AT&T, the newly formed Bellcore began to work on the
Synchronous Optical Network (SONET). Later the International Telecommunica-
tions Union (ITU) joined the effort and renamed the standards slightly, calling the
standard not SONET but the Synchronous Digital Hierarchy (SDH). In SDH-speak
STM-n is a SONET optical carrier OC-3n or Synchronous Transport Signal STS-3n

for the electrical (copper) version.



400 CHAPTER 10. NETWORK-LEVEL SERVICES

STS-1 / OC-1 – 51.84 Mbps

STS-3 / OC-3 STM-1 155.52 Mbps

STS-12 /OC-12 STM-4 622.08 Mbps

10.4.7 T1 and E1

The old U.S. designations for high speed telephone lines include T1 - 1.544 Mbps,
T3 - 44.736 Mbps. Corresponding European standards are called E1, E3 etc. These
lines are copper wire cables that can be used with various protocols, including
ISDN and DSL. They are usually leased lines, owned by telecom companies.

10.5 Alternative network connection technologies

We have focused mainly on the Ethernet so far, because it is the most widely
deployed networking technology (apart from the telephone system). A number of
other technologies are in widespread use and warrant a brief description, if only
for cultural or historical reasons.

10.5.1 X.25

X.25 is a nickname for a layered packet switching technology that was widely
used in the 1970s and 1980s. In OSI layer 1, the physical layer, it employs several
standards such as V.35, RS232 and X.21. At layer 2 it uses an implementation
of the ISO HDLC standard called Link Access Procedure Balanced (LAPB) and
provides error correction between two connected devices. Layer 3 is referred to
as the X.25 Packet Layer Protocol (PLP) and is primarily concerned with network
routing functions and the multiplexing of simultaneous logical connections over a
single physical connection. X.25 offers virtual circuits. Today it has been replaced
by lighter weight protocols such as Frame Relay.

10.5.2 Frame Relay

Frame Relay was designed in the 1980s and deployed in the 1990s as a sec-
ond generation X.25. Like X.25 and ATM, it uses the idea of virtual circuits.
Frame relay was designed for transmission over media with much lower error
rates than before. Frame Relay implements a virtual circuit without flow control
or error recovery. If errors are detected in a Frame Relay packet, the packet
must simply be dropped. Frame Relay offers a rudimentary Quality of Service
functionality.

10.5.3 Asynchronous Transfer Mode (ATM)

ATM is a technology introduced in the 1980s and embraced by the telephone
companies as a way of creating a network infrastructure that resembled existing
telephone infrastructure. It was thought that ATM might one day replace both
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telephony and computer networking in a single integrated solution. ATM was
originally envisaged as a competitor to the TCP/IP that would work both at LAN
and WAN scales, however it has lost out to IP in LANs due mainly to IP’s ability
to work across a variety of technologies. It was assumed that ATM would run over
SONET, but this is not a necessity.

ATM offers Quality of Service (QoS), that enables it to offer guaranteed band-
width to customers.

Rather than speaking of ‘packets’, ATM speaks of ‘cells’. Cells have a fixed size,
which makes multiplexing them extremely easy. In the 1980s this was seen as
a great advantage over rival link layers such as Ethernet, since it allowed much
higher speeds to be achieved. ATM is a hybrid of layer 2 and layer 3 technology.
In order to ‘route’ ATM packets over a complex network of junctions, a ‘virtual
circuit’ must be established. This is either routed ‘by hand’, i.e. programmed
by an administrator, or established with the aid of routing protocol. In other
words, ATM needs help in order to route traffic. In this respect it is like frame
relay.

ATM is a switched technology – it does not support broadcast in the normal
sense, however it has a LAN emulation mode (LANE) which admits the use of
ATM for local networking; this has not received wide acceptance. ATM allows
bandwidth allocation and Quality of Service (QoS) guarantees. ATM transmits
only fixed-size frames, called cells, not variable-sized frames as with frame relay
and packet switching. The standard for ATM cell relay is 53 byte cells. Frame relay
will probably be used in the future as an inter-operable access protocol to higher
speed ATM networks. Thus, frame relay and ATM are likely to be complementary
rather than competitive technologies in the future.

10.6 IP routing and forwarding

Packet switches forward data from one cable to another, thus securing routes for
end to end communication. There are two processes at work here:

• Routing: is the process of discovering network topology and selecting a viable
path from one place to another.

• Forwarding: is what a packet switch does at each junction of a packet’s
journey: it is the selection of the next hop towards a final destination,
based on the best available route (see figure 10.4). Forwarding is sometimes
performed in hardware and sometimes in software.

With virtual circuits and purely layer 2 technology, forwarding tables have to
be built up by hand. Above a certain level of complexity, however, it becomes
impractical to manage the routes through a network by programming forwarding
tables by hand. Global networks have a highly non-trivial structure that cannot
be managed without computational assistance. Routing protocols are designed
to provide this assistance, by ‘signaling’ between switches. Signaling is a pro-
cess which requires a protocol that can discover network topology and program
software-programmable switches with the necessary information to construct and
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foreach interface attached to router

   {

   if (destination-network == interface-address)

      {

      Deliver packet to interface

      }

   else

      {

      foreach network in forwarding table

         {

         if (destination-network == network)

            {

            Deliver packet to neighbor router

            }

         else

            {

            Deliver packet to default route

            }

         }

      }

   }

Figure 10.4: A simplified, schematic forwarding algorithm, given a table of information
about the structure of the network and the immediate neighbors. To take into account
subnetting and CIDR masks, we must interpret the equals ‘==’ sign to include a logical AND
between the network and its mask.

maintain forwarding tables. The Internet Protocol family was designed for this
purpose. It uses a routable packet format in which:

1. Every IP datagram contains the IP address of its destination host, and can
thus be routed independently.

2. Each IP address contains a network part that identifies a unique destination
network, somewhere on the Internet.

3. Every network is connected to the Internet by a router.

This arrangement leads to a fairly simple hierarchy that is, in principle, sufficient
to send traffic to any destination. The datagram forwarding algorithm used by
routers is straightforward, and uses a lookup table, called a forwarding table. The
forwarding table lists network addresses and interfaces over which to send the
packet, either to reach the next hop router or the final host (see figure 10.4).

Protocols that set up forwarding tables include Open Shortest Path First
(OSPF) and the Routing Information Protocol (RIP) to name but two examples.
Unfortunately, these protocols do not scale very well to very large numbers of
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networks, so they are only used within limited regions called areas, or groups
of areas called Autonomous Systems.1 Between such areas, a different system of
forwarding is used. This is a deliberate strategy that has several benefits.

• The task of finding detailed routes can be delegated to small autonomous
areas, which behave as closed containers with privacy policies. This is called
interior routing.

• The task of locating the correct autonomous area can be handled separately,
using an aggregate label for all of the networks within the container. This is
called exterior routing.

• Another advantage of the container model is that, by assigning local route
autonomy, one can build private networks. Today, this allows a business
model for the Internet, in which passage through someone else’s autonomous
region can be charged for or otherwise made into a contractual agreement.

How do we progress from creating such a simple local algorithm to directing
traffic over the entire globe? The answer to this lies in the hierarchy of the network
structure. When a router does not know where to send a packet, it sends it to a
generic default route: this normally takes the search up a level of the hierarchy
to a router that knows about more subordinate networks.2 The very top level
routers (between Autonomous Systems) know implicitly about all of the networks
on the Internet. This idea assumes that the network is a strict hierarchy, but it is
only approximately a hierarchy. A suitable generalization of a tree structure is to
form a top level super-network mesh, that connects multiple parallel tree/mesh
structures (see figure 10.5).

Thus, rather than dealing with one huge mesh, there is a forcible break-up into
routing domains, or Autonomous Systems.

Definition 7 (Autonomous System). An Autonomous System is an aggregate
of networks that belongs to a single political entity on the net; often, it represents
a large organization, such as an Internet Service Provider or company. The
networks within an Autonomous System share a common external routing policy.
More importantly for the scalability of the Internet, Autonomous Systems are
black-box containers, somewhat analogous to file-directories that hide detail from
the top-level view of locating networks within containers. They allow separation
of responsibility for what happens inside from what happens in between. Each
AS has a label or AS number. Inside an AS, traffic flows freely along optimal
paths, without regard for politics. Between Autonomous Systems, the politics of
organizations decide which routes are allowed to pass through neighboring ASs.

To cope with the scaling issues, this extra hierarchical structure has been added
to the Internet. The Autonomous System structure allows aggregation of networks

1The nomenclature of network region units is confused. Strictly speaking, only OSPF speaks of
areas, and only BGP defines true autonomous systems. However, Cisco OSPF refers to autonomous
systems as groups of related areas. We use these terms in their intended spirit, but loosely.

2This is like typing cd . . . when one is navigating a file system. If we do not know the location of a
file, it makes sense to just go up a level to get a better overview.
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Figure 10.5: A simplified view of the approximately two-level hierarchy of the Internet. If
we arrange the Autonomous Systems in a circle, we see a spatial distinction between the
lower level network (radiating from the center) and the interconnections between the tops
of each ‘tree’. The dark spots represent the Border Gateways or top-level routers in these
Autonomous Systems. Traffic that crosses from one AS to another is passed along these
‘exterior routes’ (dashed lines). The BGP protocol acts as a directory service for locating
networks in the Autonomous Systems, somewhat like finding files in directories. Once
traffic arrives at the correct AS, it is up to the local AS to get the packets to their destination
through the low-level network. Note that few low-level networks are really tree-like, but
they are often approximately so, somewhat like a file system with extra symbolic links.

into families that are referred to by collective labels or prefixes, thus reducing the
number of forwarding table entries that have to be placed in top-level routers.

10.6.1 Static routing

We have already considered static routing in section 2.7.5, in connection with
setting up a host in a LAN. Since most LANs are connected by only a single router,
it suffices to delegate the task of ‘getting there from here’ to that router. One does
this by sending all traffic to the default location: the LAN router. This is just a
single entry in a routing table. On Unix-like systems this table looks something
like this:

Routing Table: IPv4
Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------
128.39.89.0 128.39.89.4 U 1 8 le0
224.0.0.0 128.39.89.4 U 1 0 le0
default 128.39.89.1 UG 1 67
127.0.0.1 127.0.0.1 UH 1 0 lo0

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If

--------------------- --------------------------- ----- --- --- -----
2001:700:700:3::/64 2001:700:700:3:a00:20ff:fe85:bb11 U 1 0 le0:1
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fe80::/10 fe80::a00:20ff:fe85:bb11 U 1 0 le0
ff00::/8 fe80::a00:20ff:fe85:bb11 U 1 0 le0
default fe80::2a0:c9ff:fe28:2489 UG 1 0 le0
::1 ::1 UH 1 9 lo0

It is a list of interfaces, and networks that can be reached from them. The table
contains a default route for ‘all other traffic’. One can easily extend this idea over
a larger network, and configure routes manually by knowing all of the interfaces
and networks available to them. This would be a huge job, however, prone to error.

10.6.2 Source routing

Source routing is like creating a Permanent Virtual Circuit. The source host must
have knowledge of all the network hardware and its topology. It then specifies the
exact route that a packet must take through the network. In other words, the path
through the network is predetermined. Normally, this is not the case: changing
topology and errors mean that one cannot guarantee the same route, so adaptive
routing is used, in which routes are not fixed at the outset; packets are sent by
the best available route at the time, hop by hop.

10.6.3 Routing protocols

Automated, adaptive routing protocols fall into two classes:

• Distance Vector (DV) algorithms: e.g. RIP or (E)IGRP. These use the Bell-
man–Ford shortest path algorithm, which is approximately as follows: each
router begins by announcing its own beliefs about network topology. As it
receives messages from other neighboring routers, it revises this belief and
re-announces. A cost or metric is assigned to reaching a particular network
from each router. The cost is usually the number of hops required to reach
the destination, so a network attached to a neighboring router would have a
hop-count of 1 from its origin. The algorithm then reasons: if router A is one
hop away from router B, who believes that it is 4 hops away from network X,
then A must be 5 hops away from network X. As all of the messages are sent
and resent, the numbers get adjusted and the path costs (metrics) stabilize.
A router then picks the cheapest available route to forward packets to a given
destination.

A metric of ‘infinity’ (an arbitrary large number) is used to indicate no available
route. If some routers go down, or metrics suddenly increase, the updating
algorithm can become confused and distant routers do not receive correct
information. It is possible then for routing loops to occur, in which a packet
is sent one way, as a result of new data about the shortest path, only to be
sent back again as a result of old data about the shortest path. Packets can
ping-pong back and forth, and routing table updates count slowly upward
to ‘infinity’ before things right themselves. Distance vector algorithms send
route announcements every 30 seconds or so, between adjacent pairs, so
counting to infinity can take a long time.
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The computational complexity of the distance vector algorithm’s convergence
is of order LN where L is the number of links or adjacencies and N ∼ L is the
number of nodes. This is quite expensive for large N .

• Link State (LS) algorithms: e.g. OSPF. These use the Dijkstra shortest path
algorithm. Link state algorithms attempt to construct a map of an entire
network area, by sending messages of the form: ‘router A is adjacent to
router B and the link is up’, which allows the construction of an adjacency
matrix representing the network. Routers then send their information to all
their neighbors, who – in turn – pass on the information to others, only if
it is new. Link state algorithms are less ‘chatty’ because they send only
differential information (updates), not a complete copy of everything each
time. Each router creates a link state packet (LSP) containing the ID of
the router node, a list of directly connected neighbors and a link cost for
each one, a sequence number and a time to live. Sequence numbers ensure
updates take precedence, and node ID ensures that a copy is not flooded
back to the original sender in a loop. Once a complete map is known, a
router can compute the shortest path from the adjacency matrix. The link
state algorithm scales like L logL for L links, which is significantly better
than the distance vector scaling of L2; thus for large networks, it has a bright
future.

RIP

RIP (versions 1 and 2) is a distance vector routing protocol that is still found in
some networks, but its largely considered to be obsolete. RIP sends UDP packets
containing routing updates based on hop-count to neighbors. RIP was made
popular by its inclusion as part of Unix (in the routed daemon). The RIP protocol
has various limitations on size: the maximum hop count is only 15, so it can only
be used in small networks.

OSPF

The Open Shortest Path First (OSPF) was originally developed to defend the idea
of distributed routing from those who believed that centralized management was
the answer to routing. OSFP is designed to work within an Autonomous System,
i.e. it is an Interior Routing Protocol. OSPF attempts to scale by introducing its own
layers or hierarchy called areas. Area 0 is normally an organizational backbone,
running an efficient point-to-point protocol, such as Frame Relay. Other areas are
connected to this backbone by Area Border Routers (ABR), and the backbone of
the Autonomous System is connected to others by an Autonomous System Border
Router (ASBR) running BGP.

IS-IS

The Intermediate System to Intermediate System (IS-IS) protocol was designed in
competition with OSPF in order to implement the OSI model for routing. It has
similar functionality to OSFP and is also a link state protocol. Although OSPF is
more widely implemented, IS-IS has its share of followers. One of the criticisms
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of IS-IS is that it was developed to politicize adherence to the OSI routing model,
while being somewhat removed from the real needs and wishes of users. IS-IS was
early in having support for IPv6.

BGP

The Border Gateway Protocol (BGP) is an Exterior Routing Protocol, designed to
route top-level traffic between Autonomous Systems (sometimes called Routing
Domains). BGP is neither a Distance Vector nor a Link State protocol in the
normal sense. Instead it may be called a Path Vector Protocol, since it stores
not only hop metrics but entire pathways through Autonomous System maps. In
a sense, it automatically performs source routing. This is to account for policy
decisions: who says that just anyone should be able to send traffic over just
any Autonomous System? BGP tries to find the best route, only after finding an
‘authorized route’.

BGP’s support for Classless InterDomain Routing (CIDR) has made it possible
to rescue IPv4 from an early demise during the 1990s. Top-level routers need to
know paths to all networks, the table of network numbers must be stored on each
inter-domain router. Storing and parsing this table places great demands on these
backbone routers.

BGP works over TCP, which makes it predictable, but this has also led to
routing problems associated with traffic congestion.

Principle 53 (Routing policy). At the level of Autonomous Systems, policy
(access controls) plays the major role in determining routes; efficiency is of
secondary importance. Lower down within each AS, routes are calculated based
on availability and distance metrics.

In a real sense, BGP is not a routing protocol at all, but a directory service, telling
top-level routers in which general direction they must send packets in order to
get closer to their final destination; i.e. it is a database of hints. A BGP route
cannot be guaranteed to be true. The assumptions on which it is built are that the
underlying transport routing will be correctly performed by something like OSPF
or IS-IS, and that no policies will change as packets are following their suggested
routes. BGP tells a packet: I cannot send you to your destination, but if you go to
this Autonomous System, they should be able to help you.

Note, however, that Autonomous Systems are literally autonomous: they can
decide not to cooperate with their neighbors, at their own option. BGP is literally
peer-to-peer cooperation. The consistency of global routing mechanisms depends
entirely on trusting neighbors to play their part and keep responsible policy
practices. A simple misconfiguration of BGP could lead to widespread routing
confusion.

10.7 Multi-Protocol Label Switching (MPLS)

The argument over IP or ATM has condensed down to an effort to combine the
best of both worlds. Multi-Protocol Label Switching (MPLS) is a hybrid layer 2–3
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technology that uses IP to guide switched technologies of all kinds. It is about the
separation of control and forwarding mechanisms.

Layer 2 switches provide high-speed connectivity, while the IP routers at the
edge – interconnected by a mesh of layer 2 virtual circuits – provide the intel-
ligence to forward IP datagrams. The difficulty with this approach lies in the
complexity of mapping between two distinct architectures that require the defini-
tion and maintenance of separate topologies, address spaces, routing protocols,
signaling protocols and resource allocation schemes. The emergence of the mul-
tilayer switching solutions and MPLS is part of the evolution of the Internet to
decrease complexity by combining layer 2 switching and layer 3 routing into a
fully integrated solution.

Another goal of MPLS is to integrate Quality of Service (QoS) functionality into
IP. ATM has QoS functionality, but IP has no true support for this. Today the best
one can do is to simulate long-term average Quality of Service (see section 10.8).

The forwarding component of virtually all multilayer switching solutions and
MPLS is based on a label-swapping forwarding algorithm. This is the same algo-
rithm used to forward data in ATM and Frame Relay switches; it is based on
signaling and label distribution. A label is a short, fixed-length value carried in
the packet’s header to identify a Forwarding Equivalence Class (FEC). A label is
analogous to a Virtual Circuit Identifier, but an FEC also distinguishes between
differentiated services, analogous to IP service port numbers.

An FEC is a set of packets that is forwarded over the same path through a net-
work even if their ultimate destinations are different. For example, in conventional
longest-match IP routing, the set of unicast packets whose destination addresses
map to a given IP address prefix is an example of an FEC.

10.8 Quality of Service

The commercialization of the network has seen the arrival of Internet Service
Providers (ISP), Application Service Providers (ASP), Web Hotels, outsourcing and
hosting companies. The desire to sell these services to other organizations and
companies has placed deliverability at center stage. Customers will not pay for a
service that they cannot be certain will be delivered; there are many ways in which
one might choose to deal with this challenge:

• A cheaper price for living with uncertainty – but this might not be acceptable.

• A planned over-capacity to guarantee a level of service – but this might be
considered wasteful.

• Precision technology that can deliver and regulate exactly what is
needed – but this requires investment in infrastructure.

Sorting out the details of a solution to these issues is the job of a Service Level
Agreement (SLA) between the service provider and the service client (see section
10.10). Clearly, technology is at the heart of this; one cannot promise what cannot
be delivered.
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There are many levels at which one can discuss ‘service’. In the most general
case, one can simply talk about quality assurance of an entire business pro-
cess, but the expression Quality of Service in networking terms generally refers
to delivery rate assurance and value for money. Traditionally one has referred
to networked services as the application-level services of the previous chapter,
because the network was not for sale – it simply existed as a non-commercial
service to academia and the military. Today, the connectivity itself is being sold
and it must be included in the list of services that companies want to buy or
charge for. Service providers are thus interested in being able to sell connectivity
with bandwidth guarantees. Different kinds of applications require different levels
of lower level service guarantees. For instance, voice and video traffic are time
critical and data intensive, whereas Web traffic and E-mail are not. All quality of
service guarantees rely on the basic transport guarantee; thus Quality of Service
must be defined bottom up in terms of the OSI-layers.

Today, some are discussing QoS (Quality of Service), QoD (Quality of Devices),
QoE (Quality of Experience), QoB (Quality of Business), and any number of
variations of the issue of service provision. Each of these is trying to capture the
essence of a usable measure that can be sold like ‘kilos of sugar’ to customers, and
be used to gauge a provider’s own performance. So how does one define Quality
of Service more rigorously? It has been suggested that it must be a function of
‘Quality of Devices’.

QoS = f (QoD) (10.1)

This is clearly sensible, from the laws of causality; the higher OSI levels can
make demands for service but if the lower levels are not willing, they will not
be successful. What kind of function should this be? Is it linear, non-linear,
stochastic, chaotic? Some principles for Quality of Service for management are
discussed in ref. [255]. This discussion is based on ref. [51].

The basic Internet protocol family (TCP/IP) has no provision for securing quality
of service guarantees at the protocol level; a limited form of quality of service can
be simulated at the router level by prioritizing packet delivery. To do this, a router
must open up packets and look at the higher OSI layers 4–7. This incurs an
additional cost that adds to the delivery time:

Total = Latency + Transport Round-Time + Query-Response Processing

Other transport agents, like Frame Relay, ATM and MPLS, on the other hand, are
designed with Quality of Service in mind. These, however, are rarely deployed end
to end for the normal user, so some compromise is required.

When one speaks of Quality of Service in networking, one really means Quality
of Service Rate, i.e. timing guarantees, but this poses an important question: over
what time scale can quality assurance be provided? Data rates are never constant;
at some level, one will begin to see the graininess of traffic and see variations in
the amount of data delivered per second. It is only the average rate, over several
seconds, minutes or hours that can be regulated and thus be predicted. Thus the
issue of quality of service is one of what the time scale is over which guarantees
are required.
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Principle 54 (Rate guarantees). The maximum rate at which any service can
be provided is limited by the weakest link in the chain of communication (see
principle 49). The variability of the rate is limited by random errors at the shortest
time scale �t of any component in the chain. In a steady state service, the average
rate, over a time T 
 �t is:

〈R〉 = 1
T

∫ T

0
R(t)dt, (10.2)

where dt = �t in practice. If one assumes that the average transmission rate is
constant, up to a variable amount of random noise, one may write

R(t) = 〈R(t)〉 + δR(t), (10.3)

where δR(t) is a random source with time granularity �t, then the variability over
time T is

�R(T ) =
√

1
T

∫ T

0
(R(t) − 〈R〉)2dt. (10.4)

If the system is in a steady state (not a state of growth or decay), then this tends
towards a small constant value (approximately zero) as T 
 �t.

Thus, the longer the time scale over which a rate guarantee is defined, the less
control is needed through technology, and the smaller the overhead to manage it;
i.e. �t/T → 0 is the goal of devices (small packet size or granularity).

Example 9. A service guarantee of 10MB per day is entirely believable for UUCP (a
modem, dial-up protocol), but a rate of 10MB per minute is not. A rate of 350 kilobits
per second is reasonable for a Digital Subscriber Line (DSL) service provider, but a
rate of 3 kilobits per hundredth of a second is not.

This agrees with intuition. Indeed, ATM uses small fixed cell sizes; MPLS allows
variable packet sizes, with a fine granularity.

It is important to note the difference between determinism (i.e. explicit control
over information) and predictability. Quality of Service demands predictability over
a given time scale, but this does not imply deterministic behavior along the way.

Principle 55 (Predictability vs determinism). Predictability always has limits
or tolerances. Predictability does not imply precise determinism, but determin-
ism provides predictability. Predictability requires only a deterministic average
behavior.

Example 10. The Ethernet is a non-deterministic protocol, but within a reasonable
margin for error, it is possible to calculate the average data rate, on a time scale
of minutes, that is fairly constant. Thus the Ethernet can be predictable, without
requiring deterministic control.

Diffserv is a way of defining routing policy for differentiated services (see RFC
2475), i.e. of setting priorities on routed packets. Since the router is performing
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packet forwarding regulation, the average packet size along the journey is the limit
of granularity for Quality Assurance. RSVP is a QoS signaling service, proposed
by the Internet Engineering Task Force (IETF), that is used by hosts to signal
resource requests. These must be negotiated between hosts and routers between
end points.

10.8.1 Uncertainty

The term service guarantee seems to imply determinism of service mechanisms,
but this need not be the case. All we require is predictability over an appropriate
time scale.

It is important to understand that service is about changes occurring in time,
and thus time is an essential element of any service-level agreement. If we focus
on shorter and shorter intervals of time, it becomes impossible to guarantee what
will happen. It is only over longer intervals that we can say, on average, what has
been the level of service and what is likely to be the level of service in the future.
We must therefore specify the time scale on which we shall measure service levels.

Example 11. A Service Level Agreement for UUCP network connectivity could agree
to transfer up to 10 MB of data per day. This is an easy goal, by modern standards,
and it hardly seems worth including any margin for error in this. On the other hand,
a Digital Subscription Line (DSL) network provider might offer a guaranteed rate
of 350 kbps (kilobits per second). This is a common level of service at the time of
writing. But what are the margins for error now? If each customer has a private
network telephone line, we might think that there is no uncertainty here, but this
would be wrong. There might be noise on the line, causing a reduction in error-free
transmission rate. When the signal reaches the Service Provider’s switching center,
customers are suddenly expected to share common resources, and this sharing must
maintain the guarantees. It now becomes realistic to assess the margin for error in
the figure 350 kbps, since resources are tighter.

Example 12. A University Professor can agree to grade 10 examination papers per
day. It is not clear that the level of interruptions and other duties will not make this
goal unreasonable. The level of uncertainty is much higher than in a mechanistic
network switch. We might estimate it to be 10 ± 3 exam papers per day. In this
case, the Professor should include this margin for error in the contract of service.

Uncertainty is an important concern in discussing Quality of Service.
Uncertainty is calculated using the ‘theory of errors’. This assumes that errors

or uncertainties occur at random, according to a Gaussian profile, about some
true value. The Gaussian assumption basically ensures that errors are small or
do not grow to an arbitrarily large size, compared with the rate of change of the
average. Whether or not a phenomenon really has a Gaussian profile or not, error
handling techniques can be used to estimate uncertainties provided there is a
suitable separation of time scales.

Example 13. Consider the rate of arrival of data R, in bytes, from the viewpoint of
a network switch or router. The measurables are typically the packet size P and the
number of packets per second r. These are independent quantities, with independent



412 CHAPTER 10. NETWORK-LEVEL SERVICES

uncertainties: packet sizes are distributed according to network protocol and traffic
types, whereas packet rates are dictated by router/switch performance and queue
lengths. The total rate is expressed as:

λ = rP . (10.5)

Using the method of combining independent uncertainties, we write:

λ = 〈λ〉 + �λ

r = 〈r〉 + �r

P = 〈P 〉 + �P,

and

�λ =
√(

∂λ

∂P

)2

�P 2 +
(

∂λ

∂r

)2

�r2. (10.6)

Now, ATM packets have a fixed size of 53 bytes, thus �PATM = 0, but Ethernet
or Frame Relay packets have varying sizes. An average uncertainty needs to be
measured over time. Let us suppose that it might be 1kB, or something of that order
of magnitude.

For a Service Provider, the uncertainty in r also requires measurement; r repre-
sents the aggregated traffic from multiple customers. A Service Provider could hope
that the aggregation of traffic load from several customers would even out, allowing
the capacity of a channel to be used evenly at all times. Alas, traffic in the same
geographical region tends to peak at the same times, not different times, so channels
must be idle most of the time and inundated for brief periods. To find r and �r, we
aggregate the separate sources into the total packet-rate:

r(t) =
∑

i

ri(t). (10.7)

The aggregated uncertainty in r is the Pythagoran sum:

�r =
√∑

i

�r2
i . (10.8)

The estimated uncertainty is

�λ =
√

r2(�P )2 + 〈P 〉2(�r)2. (10.9)

Since r and �r are likely to be of similar orders of magnitude for many cus-
tomers, whereas �P < P , this indicates that uncertainty is dominated by demand
uncertainty, i.e.

�λ � 〈P 〉�r. (10.10)

This uncertainty can now be used in queuing estimates.

Now that we are able to quantify uncertainty, we can create a sensible service-
level agreement on the following kind of assertion:

‘We, the provider, promise to provide a service of S ± �S, measured
over time intervals �T , at the price . . .’
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10.9 Competition or cooperation for service?

Consider, for simplicity, just two customers or users A and B who wish to share a
service resource. We shall assume that the service ‘market’ is a free-for-all; i.e. no
one player has any a priori advantage over the other, and that both parties behave
rationally.

The users could try to cooperate and obtain a ‘fair’ share of the resource, or
they could let selfish interest guide them into a competitive battle for the largest
share. The cooperation or collaboration might, in turn, be voluntary or it might be
enforced by a service provider.

These two strategies of competition and collaboration are manifestly reflected
in technologies for networking, for instance:

• Voluntary sharing: The Ethernet is an example of voluntary sharing, in
which any user can grab as much of a share as is available. There is a
maximum service rate that can be shared, but it is not necessarily true
that what one user loses is automatically gained by the other. It is not a
zero-sum game.

• Forced sharing: Virtual circuits (like ATM or Frame Relay) are examples of
forced sharing over parallel circuits. There are thus fixed quotas that enforce
users’ cooperation. These quotas could be allocated unevenly to prioritize
certain users, but for now we shall assume that each user receives an equal
share of the resource pot.

We analyze this situation, in a very simple way, using a classic game-theoretical
approach. The customers can ‘win’ a certain amount of the total service rate R (e.g.
bytes per second, in the case of network service), and must choose strategies for
maximizing their interests. We can therefore construct a ‘payoff’ matrix for each of
the two users (see tables 10.1, 10.2 and 10.3). We see that when both customers
collaborate (either willingly or by forced quota), they obtain equal shares. If one of
them competes greedily, it can obtain an extra δR that is then subtracted from the
other’s share. However, if both users compete, the result is generally worse (Rc)
than an equal share.

Thus, we assume that each of the users assumes an equal share R/2 when
they cooperate with one another. The relative sizes of the payoff are important. We
have:

δR ≤ R

2
(10.11)(

R

2
− δR

)
≤ R

2
≤

(
R

2
+ δR

)
. (10.12)

In other words, by competing, a selfish user might be able to gain an additional
amount of the service capacity δR to the other’s detriment. The sum of both users’
shares cannot exceed R. If both users choose to compete, the resulting competition
might lead to an amount of waste that goes to neither of the users. This is the case
in Ethernet, for instance, where collisions reduce the efficiency of transmission
for all parties equally. We model this by assuming that both users then obtain a
share of Rc < R/2.



414 CHAPTER 10. NETWORK-LEVEL SERVICES

Table 10.1: A’s payoff matrix in two-customer sharing.

A B Cooperate B Compete

A Cooperate R
2

R
2 − δR

A Compete R
2 + δR Rc

Table 10.2: B ’s payoff matrix in two-customer sharing.

B B Cooperate B Compete

A Cooperate R
2

R
2 + δR

A Compete R
2 − δR Rc

Table 10.3: A, B combined payoff matrix in two-customer sharing.

A, B B Cooperate B Compete

A Cooperate
(

R
2 , R

2

) (
R
2 − δR, R

2 + δR
)

A Compete
(

R
2 + δR, R

2 − δR
)

(Rc, Rc)

This leaves us with two separate cases to analyze:

1. Rc > R/2 − δR: If the result from competitive ‘attacks’ against one another is
greater than the result that can be obtained by passively accepting the other
customer’s aggressiveness, then we are inclined to retaliate. This becomes an
instance of the Prisoner’s Dilemma game. It has a solution in terms of Nash
equilibria by dominant strategies (see figure 10.6).

2. Rc < R/2 − δR: If the payoff for mutual competition is less than the penalty for
collaborating, then the situation becomes equivalent to another classic game:
the Maynard-Smith dove–hawk game [206]. Both players see that they can
win an important share by being greedy, but if the other player retaliates they
both stand to win less. Thus one player can afford to be aggressive (hawkish)
but then the other must be peaceful (dove-like). This is the case with the Eth-
ernet, for instance. If there is excessive contention, there is an exponential
‘backoff’ from collisions leading to significantly worsened performance (see
figure 10.7).

We can ask if there is a mixed strategy of partial cooperation that would
succeed in countering the poor result from mutual competition, but which
would yield slightly more. To show that this is not the case, let us pick B ’s
strategy and then allow A to choose cooperation with probability p:

(a) B cooperates: compare the payoffs for A and B and ask, is there a value
of p such that

p
R

2
+ (1 − p)

(
R

2
+ δR

)
> p

R

2
+ (1 − p)

(
R

2
− δR

)
? (10.13)
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Either we must have δR = 0 or p = 0, so the answer is no: there is no
way to improve on this strategy as long as there is something to gain
from competition.

(b) B competes: compare the payoffs for A and B and ask, is there a value
of p such that

p

(
R

2
− δR

)
+ (1 − p)Rc > p

(
R

2
+ δR

)
+ (1 − p)Rc? (10.14)

Again, consistency forces us to take p = 0 or δR = 0.

These simple games approximate the essence of the issues involved in sharing.
They reflect both human strategies for competition and technological ones. We
see that there is no clear answer as to whether Ethernet (hawkish) or fixed quota
virtual circuit (dove-like) behavior is preferable, it depends on the level of traffic.

B1

A1

A2

B2 B1

A1

A2

B2 B1

A1

A2

B2

=&

EquilibriumB’s payoffA’s payoff

Figure 10.6: With Rc > R/2 − δR, the game becomes a classic game-theoretical problem of
‘Prisoner’s Dilemma’ [222]. The dominant Nash equilibrium is where both players decide to
compete with one another. If the customers are altruistic and decide to collaborate (or are
forced to collaborate) with one another, they can win the maximum amount. However, if
they know nothing about each other’s intentions then they realize, rationally, that they can
increase their own share by δR by choosing a competitive strategy. However, if both choose
to be competitive, they cannot achieve exactly this much: the balance point for mutual
competition is Rc. This value is determined by the technology used by the service provider.

B1

A1

A2

B2
A or B’s payoff

Figure 10.7: With Rc < R/2 − δR the game becomes another classic game of dove–hawk.
If both players are ‘hawkish’ and attack greedily, they both lose out. The stable equilibria
are that one player is greedy and the other is submissive.

10.10 Service Level Agreements
Network connectivity and data transfer rates are now saleable commodities. To
sell them, we must be able to measure the quantity and ‘quality’ of services levels,
so that guarantees can be provided to customers. Quality is clearly a heuristic
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value with no clear definition, yet the buzzword of network service provision is
‘Quality of Service’ (QoS). There is much current research devoted to defining this
elusive metric.

Service Level Agreements (SLA) are contracts between clients and service
providers that set expectations, and specify levels of resources and costs in a
service. Increased interest in ‘outsourcing’ or sub-contracting services and work
has placed these agreements center stage. In some cases, they fuel expectations
that technology cannot match.

In service centers, system administration is shifting away from device manage-
ment, where relatively little has been accomplished, towards service management
which is more the domain of marketing and contractual law. However, to really
define a service level quality factor, we must translate this heuristic ‘quality’ into
a hard-nosed measurable such as data-rate. The basic principles involved are no
mystery, if we think scientifically:

1. Predictability (determinism)

2. Cause–effect (dependence)

3. Strategy for resource sharing amongst clients

4. Uncertainty management.

Putting these items together enables us to address service levels in quantitative
terms. The details of this are beyond the scope of the present book.3

Example 14. The simplest kind of SLA is that offered by Internet Service Providers,
using ADSL lines, who might offer a home user a bit rate of 512 kbps downstream
and 128 kbps upstream. A home user could, in principle, use ping or ftp or some
other method to test this transfer rate and verify that the bit rate is at least as good
as that advertised. Similarly, the service provider might say that any downtime will
be corrected within a period no longer than 48 hours, or else give a money back
guarantee.

An agreement for mission-critical services would need to be more comprehen-
sive than this. There are two approaches to writing SLAs:

• Top down: examine user needs and wishes and try to translate these into
low-level device performance.

• Bottom up: examine the limitations of technology and build up possible
services.

A basic checklist for top-down SLAs should include:

1. What service is being offered?

2. What are the users’ responsibilities?

3. Plan for mapping quality of experience onto physical measurables.

3For a discussion of this point, see the follow-up book by the author: Scientific Principles of Network
and System Administration, J. Wiley & Sons, 2004.
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4. How will the measurables be monitored?

5. How will errors be fixed, within a predictable time-frame?

6. How often will service levels be evaluated and revised?

7. What are maximum response times?

8. What is the security of operations (integrity, authenticity of parties etc)?

9. Intellectual property rights.

Of the more legal aspects of contractual agreement, one must have:

1. A clause defining when a service agreement has been broken.

2. What liability is agreed to (financial reparation)?

3. When does the agreement terminate?

Security is an essential aspect of SLAs (see chapter 11): a company’s livelihood
can depend on a service. While it makes sense for any company to secure its
assets by using redundant service providers, it is important to cover the possible
damage that loss of service could result in, or simply to follow up on a breach of
contract.

Today, SLAs are being suggested for outsourced Web services based on SOAP
and XML-RPC. SLAs are even being defined as XML Document Type Definitions
(DTD). Rodosek suggests the need for a language to describe SLAs in terms
of quality of service parameters at all levels [255]. This is a matter of continuing
research. Two approaches to mechanizing service regulation have been explored by
policy-based feedback using cfengine [42, 50] and, more recently, fuzzy controllers
with more specific service-based knowledge [95].

Exercises

Self-test objectives

1. What is meant by multiplexing?

2. Recall the difference between a bridge and a switch.

3. What is the difference between a switch and a router?

4. What is meant by a layer 3 switch?

5. What is a virtual circuit?

6. Explain the difference between deterministic and non-deterministic network
protocols.

7. Give examples of deterministic and non-deterministic layer 2 technologies.

8. Give examples of deterministic and non-deterministic layer 3 technologies.
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9. Is there a limit to the length of cable that can be used to connect two
computers together with:

(a) Ethernet?

(b) ATM over fiber?

(c) Token ring?

If so explain how the length limitation arises.

10. What does the wavelength of an electromagnetic signal have to do with the
rate at which data can be transmitted?

11. How does the wavelength of an electromagnetic signal affect the distance a
signal can travel (through cable or by wireless means)?

12. Why can DSL technology transmit higher data rates over telephone lines than
modems?

13. What is meant by a T1 line? What is meant by an E1 line?

14. Explain the difference between Frame Relay and Asynchronous Transfer
Mode (ATM). Can these technologies carry Internet Protocol traffic?

15. Explain the difference between routing and forwarding.

16. What is meant by a default route?

17. What is an Autonomous System in the context of routing?

18. Explain what static routing is and how it is configured.

19. Explain what dynamical routing is and how one would go about configuring it.

20. What is a Distance Vector routing protocol? Give an example and explain
why this method of routing is little used.

21. What is a Link State routing algorithm? Give an example of this and explain
its advantages over Distance Vector algorithms.

22. Which so-called routing algorithm uses a Path Vector algorithm?

23. Explain the function of BGP in global routing.

24. Explain why BGP, alone, cannot route packets from source to destination.

25. What is MPLS and how does it differ from ATM?

26. What is meant by quality of service?

27. Explain how the principle of causality limits the attainable service rate of a
network service. (Hint: what devices are involved in providing the service?)

28. What does game theory tell us about the usefulness of strategies for cooper-
ative (shared) and non-cooperative (private) media for quality of service?

29. Explain the purpose of a Service Level Agreement.
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Problems

1. Use the ping and ping6 commands to ping different IP addresses on your
network (note that these differ somewhat on different platforms – the exam-
ples here are from GNU/Linux). Pinging the addresses repeatedly with a large
packet size (9064 bytes) yields something like this:

cube$ ping -s 9064 daneel
PING daneel (128.39.89.230) from 128.39.74.16 : 9064(9092) bytes
9072 bytes from daneel (128.39.89.230): icmp seq=1 ttl=63 time=17.1 ms
9072 bytes from daneel (128.39.89.230): icmp seq=2 ttl=63 time=16.8 ms
9072 bytes from daneel (128.39.89.230): icmp seq=3 ttl=63 time=17.9 ms
9072 bytes from daneel (128.39.89.230): icmp seq=4 ttl=63 time=17.9 ms
--- daneel ping statistics ---
4 packets transmitted, 4 received, 0% loss, time 3030ms
rtt min/avg/max/mdev = 16.858/17.462/17.945/0.475 ms

host$ ping6 -s 9064 2001:700:700:3:290:27ff:fea2:477b
PING 2001:700:700:3:290:27ff:fea2:477b
from 2001:700:700:4:290:27ff:fe93:6723 : 9064 data bytes
9072 bytes from 2001:700:700:3:290:27ff:fea2:477b: icmp seq=1 ttl=63
time=25.0 ms
9072 bytes from 2001:700:700:3:290:27ff:fea2:477b: icmp seq=2 ttl=63
time=22.4 ms
9072 bytes from 2001:700:700:3:290:27ff:fea2:477b: icmp seq=3 ttl=63
time=26.0 ms
9072 bytes from 2001:700:700:3:290:27ff:fea2:477b: icmp seq=4 ttl=63
time=21.3 ms
9072 bytes from 2001:700:700:3:290:27ff:fea2:477b: icmp seq=5 ttl=63
time=21.3 ms
--- 2001:700:700:3:290:27ff:fea2:477b ping statistics ---
6 packets transmitted, 5 received, 16% loss, time 5047ms
rtt min/avg/max/mdev = 21.376/23.268/26.096/1.956 ms

Explain what the icmp seq numbers are and why the time in milliseconds is
not constant.

2. Collect the test tcp program ttcp (e.g. ttcpw for Windows or ttcp linux)
for traffic testing between hosts. Choose pairs of hosts on your local network
and test the transmission rates between them. On the receiver host, use:

ttcp_linux -s -r

to receive and discard a standard source transmission, and on the transmit-
ting host, use:

ttcp_linux -s -t receiver-IP

(a) Write a script to repeat this standard test every five minutes over the
course of a day. Plot the transmission rate as a function of time through-
out the day. Explain why the measured value varies as a function of
time.
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(b) Work out the average transmission rate and the standard deviation of the
values in the previous part. What is the meaning of (what interpretation
do you offer for) the average and standard deviation values for the whole
day?

(c) Now pick ten hosts from a variety of locations on your LAN; make
ten measurements of the transmission rate between each host and a
single reference host. Work out the average and standard deviation in
each case. Make a table of the results. Can you explain the differences
between different hosts? Hint: think about the different hardware of
hosts, what hardware connects them, and environmental factors.

3. Explain the difference between a switch and a router. Can switching alone
be used to forward packets over a Wide Area Network?

4. Make a table of equivalences between switched networks with virtual circuits
and IP services; include the following in your table: Forwarding Equiva-
lence Classes (FEC), Virtual Circuit Identifiers, Labels, IP port numbers, IP
addresses (network part and host part). Be sure to find analogues between
routed IP data and switched data in all possible cases.

5. Use the traceroute program on Unix or tracert on Windows to compare
routes. If you have a commercial Internet connection at home and a university
Internet connection, repeat this from both locations and compare the results.

(a) Determine your hosts IP address and subnet mask.

(b) Trace the route to a host on the same subnet as your own.

(c) Trace the route to your nearest gateway router.

(d) Trace the route to a host on the next subnet above yours (e.g. try
guessing a number).

(e) Trace the routes to www.gnu.org, www.iu.hio.no, www.cisco.com.

6. A router has the following CIDR entries in its routing table:

Network Next hop
192.0.16.0/22 Interface 0
192.0.20.0/22 Interface 1
2001:700:700:3/64 Interface 3
192.0.40.0/23 Router 1
default Router 2

What happens to packets with the following destination addresses?

(a) 192.0.23.10

(b) 192.0.17.5

(c) 192.0.41.7

(d) 192.0.42.99

(e) 192.0.41.255
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(f) 2001:700:700:3:290:27ff:fea2:477b

(g) fe80::220:e0ff:fe6c:5877

7. Look at the search algorithm for finding data in a binary tree. Compare this
with the way that Internet packets are routed. What are the similarities and
differences?

8. Explain the main reason why Link State routing protocols generate less
gratuitous traffic than Distance Vector Protocols.

9. Quality of Service assumes that it is possible to build up a stable average
service level from a minimum level of granularity. Suppose we are switching
packets at a rate of ω bits per second. We can model a stream of switches
as a function that changes in time between 1 and 0 at this frequency. The
simplest signal function with these properties is:

S(t) = 1
2

(1 + sin(ωt)), (10.15)

where t is time.

(a) Sketch this function and draw on it the time scale �t = ω−1.

(b) Sketch this function over a period T 
 ω−1.

(c) Prove that the average bit rate of eqn. (10.3), over long times T → ∞
does not depend on ω and is approximately constant, thus showing
that quality can be assured only on average over times T that are long
compared with �t = ω−1.

10. You are going to buy an Internet connection from a local ISP that you know
owns a 2 megabit per second wireless connection. The ISP has an aggressive
marketing policy for recruiting new customers. The standard Service Level
Agreement you receive offers you a symmetrical transfer rate of 640kb. Does
this sound like a reliable service? Explain your thoughts on this.

11. You rent space within a building that has its own network infrastructure,
based on switched Ethernet. Upon investigation, you find that the building
has an external Frame Relay service, with a gigabit connection rate, and a
single gateway router. The computing services management offers a guaran-
teed connection rate of 10mb/s to all its customers. Does this sound like a
reasonable agreement? Explain your reasoning. Can the company guarantee
you this level of service at all times?

12. The speed of light in copper wire is measured to be of the order of
2 × 108ms−1. Use the conditional formula Nλ ≥ 2L for predictable collision
behavior in Ethernet frames to work out the maximum length of a cable, for
the three Ethernet types: 1) f = 10Mbps, 2) f = 100Mbps, 3) f = 1000Mbps,
given that the minimum packet size is fixed at 512 bits.





Chapter 11

Principles of security

The need for an integrated view of security has been emphasized throughout
this book: security management cannot be separated from network and system
administration because security requires a fully systemic approach. However, it
is important to identify some principles of security management in isolation, in
order to better understand them and underline their importance. In this and the
next chapter, we dissect security into its constituent parts.

Security is about protecting things of value to an organization, in relation to
the possible risks. This includes material and intellectual assets; it includes the
very assumptions that are the foundation of an organization or human–computer
system. Anything that can cause a failure of those assumptions can result in loss,
and must therefore be considered a threat. In system administration terms this
often means a loss of data or availability in the computing system, but that is
really just the tip of the iceberg. The number of ways in which this can occur is
vast – making security a difficult problem.

In order to have security, we must sacrifice a certain level of convenience [171]
for a measure of discipline. This promotes systems with predictable behavior,
where one can arrange to safeguard the system from unpleasant occurrences. To
develop computer security by assuring predictability, we have to understand the
interrelationships between all of the hosts and services on our networks as well as
the ways in which those hosts can be accessed. A system can be compromised by:

• Physical threats: weather, natural disaster, bombs, power failures etc.

• Human threats: cracking, stealing, trickery, bribery, spying, sabotage, acci-
dents.

• Software threats: viruses, Trojan horses, logic bombs, denial of service.

Protecting against these issues requires both pro-active (preventative) measures
and damage control after breaches. Our task is roughly as follows:

• Identify what we are trying to protect.

• Evaluate the main sources of risk and where trust is placed.

• Work out possible or cost-effective counter-measures to attacks.
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Security is an increasingly important problem. In recent years the number of
attacks and break-ins to computer systems has risen to millions of cases a year.
Crackers or hackers1 have found their way inside the computers of the Pentagon,
the world’s security services, warships, fighter plane command computers, banks
and major services such as electrical power grids. With this kind of access
the potential for causing damage is great. Computer warfare is the next major
battlefield to subdue; it is going on now, as you read these words: it is here, like
it or not. It is estimated that the banks lose millions of dollars a year to computer
crime.

Security embraces other issues such as reliability. For instance, many comput-
ers are used in mission-critical systems, such as aircraft controls and machinery,
where human lives are at stake. Thus reliability and safety are also concerns.
Real-time systems are computer systems which are guaranteed to respond within
a well-defined time limit when a request is made of them. This is a kind of quality
of service (see section 10.8). That means that a real-time system must always be
fast enough to cope with any demand which is made of it. Real-time systems are
required in cases where human lives and huge sums of money are involved. For
instance, in a flight control system it would be unacceptable to give a command
‘Oh my goodness, we’re going to crash, flaps NOW!’ and have the computer reply
with ‘Processing, please wait...’.

Security is a huge subject, because modern computer systems are complex
and the connectivity of the Internet means that millions of people can try to
break into networked systems. In this chapter we consider the basic principles of
security. Having studied this, you might wish to read more about security in refs.
[131, 126, 61, 45, 279].

11.1 Four independent issues

For many, security is regrettably perceived as being synonymous with network
privacy or network intrusion. Privacy and intrusion are two particular aspects
of security, but the network is not our particular enemy. Many breaches of
security happen from within, or by accident. If we focus exclusively on net-
work connectivity we ignore the threats from internal employees (e.g. the janitor
who is a computer expert and has an axe to grind, or the mischievous son
of the director who was left waiting to play in mom’s office, or perhaps the
unthinkable: a disgruntled employee who feels as though his/her talents go
unappreciated).

Software security is a vast subject, because modern computer systems are
complex. It is only exacerbated by the connectivity of the Internet which allows
millions of people to have a go at breaking into networked systems. What
this points to is the fact that a secure environment requires the control of all
parts of a system, not merely at specific access points like login terminals or
firewalls.

1It is sometimes considered incorrect to call intruders hackers, since hacker has several meanings;
in computer communities, hackers are usually thought of as legitimate programmers.



11.1. FOUR INDEPENDENT ISSUES 425

Principle 56 (Security is a property of systems). Security is a property of
entire systems, not an appendage that can be added in any one place, or be
applied at any one time. It relies on the constant appraisal and re-appraisal (the
integrity) of our assumptions about a system. There are usually many routes
through a system that permit theft or destruction. If we try to ‘add security’ in one
place, an attacker or random chance will simply take a different route.

If we stretch our powers of abstraction even to include loss by natural disaster,
then system security can be summarized by a basic principle.

Principle 57 (Access and privilege). A fundamental prerequisite for security
is the ability to restrict access to data. This leads directly to a notion of privilege
for certain users.

The word privilege does not apply to loss by accident or natural disaster, but the
word access does. If accidental actions or natural disasters do not have access to
data, then they cannot cause them any harm. Any attempt to run a secure system
where restriction of access is not possible is fundamentally flawed.

There are four basic elements in security:

• Privacy or confidentiality: restriction of access.

• Authentication: verification of presumed identity.

• Integrity: protection against corruption or loss (redundancy).

• Trust: underlies every assumption.

Some authors include the following as independent points:

• Availability: preventing disruption of a service.

• Non-repudiation: preventing deniability of actions.

They can also be considered simply as issues of integrity of a service (availability)
and the imperviousness of accountability logs (non-repudiation).

The most important issue to understand about security is a basic tenet that is
widely unappreciated:

Principle 58 (Security is about trust). Every security problem boils down to
a question of whom or what do we trust?

Once we have understood this, the topic of security is reduced to a litany of
examples of how trust may be exploited and how it may be improved using certain
technological aids. Failure to understand this point can lead to embarrassing
mistakes being made.

We introduce the somewhat ill-defined notion of ‘security’ to describe protecting
ourselves against parties whom we do not trust. But how do we solve this
problem? Usually, we introduce some kind of technology to move trust from
a risky place to a safer place. For example, if we do not trust our neighbors
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not to steal our possessions, we might put a lock on our door. We no longer
have to trust our neighbors, but we have to trust that the lock will do its job
in the way we expect. This is easier to trust, because a simple mechanical
device is more predictable than complicated human beings, but it can still fail.
If we don’t entirely trust the lock, we could install an alarm system which
rings the police if someone breaks in. Now we are trusting the lock a little, the
alarm system and the police. After all, who says that the police will not be the
ones to steal your possessions? In some parts of the world, this idea is not so
absurd.

Trust is based on assumption. It can be bolstered with evidence but, just as
science can never prove something is true, we can never trust something with
absolute certainty. We only know when trust is broken. This is the real insight of
security – not the technologies that help us to build trust.

Example 15. One of the big problems with security mechanisms is that they hinder
people sometimes from taking part in legitimate activities. They are then frequently
turned off out of misunderstanding or annoyance, leaving a system unprotected. It is
therefore important to educate the managers of security systems about procedures
and practices surrounding a secured system. If there is a way to proceed, it should
be by an approved channel; if a pathway is blocked, then it should be for a good
reason that is understood by all parties.

11.2 Physical security

For a computer to be secure it must be physically secure. If we can get our
hands on a host then we are never more than a screwdriver away from all of
its assets. Disks can be removed. Sophisticated users can tap network lines
and listen to traffic. The radiation from monitor screens can be captured and
recorded, showing an exact image of what a user is looking at on his/her screen.
Or one can simply look over the shoulder of a colleague while he or she types a
password. The level of physical security one requires depends on the sophistication
of the potential intruder, and therefore in the value of the assets which one is
protecting.

Cleaning staff frequently dust monitors and keyboards, switch off moni-
tors and computers by accident and even pull plugs on computers to plug
in their machinery. If a computer serves a valuable purpose, or is vulnera-
ble to accidental input, it is not only attackers we have to protect against.
Cleaning staff have keys to the building, so locking an office door will not
help here.

Assuming that hosts are physically secure, we still have to deal with the issues
of software security which is a much more difficult topic. Software security is
about access control and software reliability. No single tool can make computer
systems secure. Major blunders have been made out of the belief that a single
product (e.g. a ‘firewall’) would solve the security problem. The bottom line is
that there is no such thing as a secure operating system. What is required is a
persistent mixture of vigilance and adaptability.
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11.3 Trust relationships

There are many implicit trust relationships in computer systems. It is crucial
to understand them. If we do not understand where we are placing our trust,
that trust can be exploited by attackers who have thought more carefully than
we have.

For example, any host that shares users’ home-directories (such as an NFS
server or DFS server) trusts the identities and personal integrity of the users on the
hosts which mount those directories. Some accidents are prevented by mapping
administrator privileges (root) to the user nobody on remote Unix systems, but
this is not security, only a trivial obstacle. The Unix root user can always use ‘su’
to become any user in its password file and access/change any data within those
filesystems; similarly for Windows. The .rhosts and hosts.equiv files on Unix
machines grant root (or other user) privileges to other hosts without the need for
authentication; these are very hazardous.

When collecting software from remote servers, we should also make sure
that it comes from a machine that is trustworthy, particularly if the files
could lead to privileged access to the system. For example, it would be fool-
hardy to copy a privileged program such as the Unix program /bin/ps from
a host one knows nothing about. This program runs with root privileges. If
someone were to replace that version of ps with a Trojan horse command,
the system would have effectively been opened to attack at the heart of the
system.

Most users trust anonymous FTP servers where they collect free software. In
any remote copy we are setting up an implicit trust relationship. First of all we
trust integrity of the host we are collecting files from. Secondly we trust that they
have the same username database with regard to access control (i.e there are not
two different users with identical user IDs on the two systems). The root user on
the collecting host has the same rights to read files as the root user on the server.
The same applies to any matched username.

In any remote file transfer one is also forced to trust the integrity of the data
received. No matter how hard a program may work to authenticate the identity of
the host, even once the host’s identity is verified, the accuracy or trustworthiness
of unknown data is still in doubt. This has nothing to do with encryption as users
sometimes believe: encrypted connections do not change these trust relationships;
they improve the privacy of the data being transmitted but neither their accuracy
nor their trustworthiness.

Implicit trust relationships lie at the heart of so many software systems which
grant access to services or resources that it would be impossible to list them all
here. Trust relationships are important to grasp because they can lead to security
holes.

11.4 Security policy and definition of security

Security only has meaning when we have defined a frame of reference. It is
intrinsically connected to our own appreciation of risks. It must be based on a
thorough risk analysis.
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Principle 59 (Risk). There is always a non-zero level of risk associated with
any system.

Clearly, there is a finite chance that a dinosaur-killer asteroid will strike your
computer and destroy it. This risk is not very high, but it is real. Few organizations
would care to try to protect themselves against this eventuality and would consider
themselves secure if this were the only remaining threat, but this parodic example
makes an important point. Security is intrinsically related to a threat assessment.
An acceptable definition of a secure system is:

Definition 8 (Secure system). A secure system is one in which every possible
threat has been analyzed and where all the risks have been assessed and
accepted as policy.

Clearly this is a tall order, and it is probably impossible to realize, but we should
be clear about what this means: it is a definition that tells us that security is
determined by policy – as acceptable risk.

Defining what we, a local community, mean by security is essential. Only then
will we know when security has been breached, and what to do about it. Some
sites, which contain sensitive data, require strict security and spend a lot of time
enforcing it, others do not particularly care about their data and would rather
not waste their time on pointless measures to protect them. Security must be
balanced against convenience [171]. How secure must we be

• From outside the organization?

• From inside the organization (different host)?

• From inside the organization (same host)?

• Against the interruption of services?

• From user error?

Finally, how much inconvenience are the users of the system willing to endure in
order to uphold this level of security? This point should not be underestimated: if
users consider security to be a nuisance, they try to circumvent it.

Suggestion 13 (Work defensively). Expect the worst, do your best, preferably
in advance of a problem.

Visible security can be a problem in itself. Systems which do not implement high-
level security tend to attract only low-level crackers – and those who manage to
break in tend to use the systems only as a springboard to go to other places. The
more security one implements, and the more visible it is, the more of a challenge
it is for a cracker. So spending a lot of time on security might only have the effect
of asking for trouble.

Suggestion 14 (Network security). Extremely sensitive data should not be
placed on a computer which is attached in any way to a public network.
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What resources are we trying to protect?

• Secrets: Some sites have secrets they wish to protect. They might be govern-
ment or trade secrets or the solutions to a college exam.

• Personnel data: In your country there are probably rules about what you
must do to safeguard sensitive personal information. This goes for any
information about employees, patients, customers or anyone else we deal
with. Information about people is private.

• CPU usage/System downtime: We might not have any data that we are afraid
will fall into the wrong hands. It might simply be that the system is so
important to us that we cannot afford the loss of time incurred by having
someone screw it up. If the system is down, everything stops.

• Abuse of the system: It might simply be that we do not want anyone using
our system to do something for which they are not authorized, like breaking
into other systems.

Who are we trying to protect them from?

• Competitors, who might gain an advantage by learning your secrets.

• Malicious intruders. Note that people with malicious intent might come from
inside or outside our organization. It is wrong to think that the enemy
is simply everyone outside of our domain. Too many organizations think
‘inside/outside’ instead of dealing with proper access control. If one always
ensures that systems and data are protected on a need-to-know basis,
then there is no reason to discriminate between inside or outside of an
organization.

• Old employees with a grudge against the organization.

Next: what will happen if the system is compromised?

• Loss of money

• Threat of legal action against you

• Missed deadlines

• Loss of reputation.

How much work will we need to put into protecting the system? Who are the
people trying to break in?

• Sophisticated spies

• Tourists, just poking around

• Braggers, trying to impress.
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Finally: what risk is acceptable? If we have a secret which is worth 4 lira, would
we be interested in spending 5 lira to secure it? Where does one draw the line?
How much is security worth?

The social term in the security equation should never be forgotten. One can
spend a hundred thousand dollars on the top of the range firewall to protect
data from network intrusion, but someone could walk into the building and look
over an unsuspecting shoulder to obtain it instead, or use a receiver to collect
the stray radiation from your monitors. Are employees leaving sensitive printouts
lying around? Are we willing to place our entire building in a Faraday cage to
avoid remote detection of the radiation expelled by monitors? In the final instance,
someone could just point a gun at someone’s head and ask nicely for their
secrets. An example of security policies can be found at RFC 1244 and British
Standard/ISO17799.

11.5 RFC 2196 and BS/ISO 17799

Security standards are attempts at capturing the essence of security management.
Rather than focusing on the technologies that can be used to implement security,
as most texts do, these standards attempt to capture the more important points of
how these technologies and methods can be used in concert to address the actual
risks. There are two main standards to consider; both are worth careful study.

RFC 2196 (Site Security Handbook, 1997) replaces an older RFC, 1244, and is
a guide to producing a site security policy that is addressed at system administra-
tors. It emphasizes that a policy must be closely tied to administrative practice, as
we have iterated in this book. The document correctly points out that:

• It must be implementable through system administration procedures, pub-
lishing of acceptable use guidelines, or other appropriate methods.

• It must be enforceable with security tools, where appropriate, and with
sanctions, where actual prevention is not technically feasible.

• It must clearly define the areas of responsibility for the users, administrators
and management.

The standard goes on to describe the elements of such a policy, including purchas-
ing guidelines, privacy policy, access policy, accountability policy, authentication
policy, a statement of availability requirements, a maintenance policy and a
reporting policy in case of security breach. It also iterates the importance of
documentation and supporting information for users and staff.

The RFC describes the protection of infrastructure and network services and
discusses specific technologies (DNS, NIS, FTP etc), mainly related to Unix milieux.

ISO 17799 (Information Technology – Code of Practice for Security Management)
is a recently recognized security standard that is based upon the British Standard
BS7799, published in 1999. ISO 17799 was published in 2000 and accepted as
a British Standard in 2001. It is an excellent starting place for formulating an
organization’s security policy. It is less technical than RFC 2196, but goes into
greater detail from a logistic viewpoint. It has been constructed with great care
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and expertise. Compliance with ISO 17799 is far from trivial, even for the most
security conscious of organizations.

As with all ISO standards, one can obtain a certificate of compliance in the
final instance. It is almost certainly too early to recommend such a certification,
since it is both costly and of limited value to an organization; nevertheless, the
standard is a fine summary of basic security ideas that reiterates many of the
ideas explored in this book. Copyright prevents us from detailing the standard
here, or quoting from its many interesting guidelines, but we can describe its
layout. The document describes ten points:

1. Security policy: The standard iterates the importance of a security policy
that sets clear goals, and demonstrates a commitment by an organization
to the seriousness of its security. The policy should ensure that legal and
contractual commitments are met, and that the economic ramifications of
a security breach are understood. The policy itself must be maintained and
updated by a responsible party.

2. Organizational security: A security team should be assembled that sets
policy and provides multi-disciplinary advice. The team should allocate
responsibilities within the organization for maintaining security of assets at
all levels. Levels of authorization to assets must be determined. Contact with
law-enforcement organizations and regulatory bodies should be secured and
policies and procedures should be peer-reviewed for quality assurance. Any
‘outsourcing’, i.e. third party contracts, must address the risks associated
with opening the organization’s security borders.

3. Asset classification and control: Organizations should have an inventory
of their assets, which classifies each asset according to its appropriate
level of security. Procedures for labelling and handling different levels of
information, including electronic and paper transmission (post, fax, E-mail
etc.) and speech (telephone or conversation over dinner) must be determined.

4. Personnel security: In order to reduce the risks of human error, malicious
attacks by theft, fraud or vandalism, staff should be screened and given
security responsibilities. Confidentiality (non-disclosure (NDA)) agreements,
as well as terms and conditions of employment may be used as a binding
agreement of responsibility. Most importantly, training of staff (users) in
the possible threats and their combative procedures is needed to ensure
compliance with policy. A response contingency plan should be drawn up
and familiarized to the staff, so that security breaches and weaknesses are
reported immediately.

5. Physical and environmental security: All systems must have physical
security; this usually involves a ‘security perimeter’ with physical constraints
against theft and intrusion detection systems, as well as a controlled, safe
environment. Secure areas can provide extra levels of security for special
tasks. Equipment should be protected from physical threats (including fire,
coffee, food etc.) and have uninterruptible power supplies where appropriate.
Cables must be secured from damage and wire-tapping. Desks and screens
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and refuse/trash should be cleared when not in use, to avoid accidental
disclosure of confidential information.

6. Communications and operations management: The processing and han-
dling of information must be specified with appropriate procedures for the
level of information. Change management should include appropriate autho-
rizations and significant documentation of changes to allow analysis in the
case of problems. Procedures must be documented for responding to all kinds
of threat. Analysis (causality) and audit trails should be planned for breaches.
Housekeeping, backups, safe disposal of information and materials and other
regular maintenance should be in place and be integrated into the scheme.
System administration features heavily here: security and administration go
hand in hand; they are not separate issues. This part of the standard covers
many miscellaneous issues.

7. Access control: User management, password and key management, access
rights, securing unattended equipment. Enforced pathways to assets that
prevent ‘back-doors’. Segregation of independent assets and authentication
for access. Use of securable operating systems, restriction of privilege. Clock
synchronization. Mobile computing issues.

8. Systems development and maintenance: Security should be built into
systems from the start. Input–output validation. Policy on cryptographic
controls, including signatures and certificates. Interestingly, the standard
recommends against open source software. Covert channels (secret channels
that bypass security controls) must be avoided.

9. Business continuity management: Each organization should estimate the
impact of catastrophes and security breaches on its business. Will the
organization be able to continue after such a breach? What will be the
impact? The standard suggests the testing of this continuity plan.

10. Compliance: Laws and regulations must be obeyed, with regard to each
country and contractual obligation. Regulation of personal information and
cryptographic methods must be taken into account in different parts of the
world. Compliance with the organization’s own policy must be secured by
auditing.

The ISO standard is a good introduction to human–computer security that can be
recommended for any organization.

11.6 System failure modes

Since the explosion of interest in the Internet, the possibility of hosts being
attacked from outside sources has become a significant problem. With literally
millions of users on the net, the tiny percentage of malicious users becomes a
large number. The number of ways in which a system can fail are thus many and
varied.



11.6. SYSTEM FAILURE MODES 433

11.6.1 Social engineering

Network attackers, i.e. system crackers, are people. It is easy to become so
fascinated by the network that we forget that people can just walk into a building
and steal something. If one can avoid complex technical expertise in order to break
in to a system, then why not do it? There is more than one way to crack a system.

The only secure computer is a computer which is locked into a room, not
connected to a network, shielded from all electromagnetic radiation. In social
studies of large companies, it has been demonstrated that – in spite of expensive
firewall software and sophisticated anti-cracking technology – all most crackers
had to do to break into the system was to make a phone call to an unwary employee
of the company and ask for their username and password [327]. Some crackers
posed as system administrators trying to fix a bug, others simply questioned them
as in a marketing survey until they gave away information which allowed the
crackers to guess their passwords. Some crackers will go one step further and
visit the building they are trying to break into, going through the garbage/refuse
to look for documents which would give clues about security. Most people do not
understand the lengths that people will go to to break into systems if they really
want to. For example, consider this conversation between a cracker and a student
user at a university.

"Hello - I am calling from the student finance office to tell you that your
term grant has been deposited directly in your K-Bank account, as you
requested."

"What?! I didn’t ask for that! I don’t even have an account at
K-Bank!?"

"Oh really? Are you sure? What is your student number?"

"s123456" (Attacker now has a user name)

"Okay, here it is, strange...looks legitimate. Well look, if you like
I could make an exception and push this through quickly."

"That would be great - I really need that money!"

"Okay, I could get in trouble for this, but if you give me your
password, I can fix this straight away."

Notice how the attacker builds trust by claiming to be in a difficult situation
himself (or herself).

A few things can be done to counteract social threats:

• Train all staff and make them aware of the threat of social engineering.

• Keep a clean desks policy, so that no information can be picked up by
cleaning staff or people who wander into the building after hours.

• Never leave ‘live’ equipment unattended or unlocked.
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• Always be suspicious of a caller whom you do not know. Ask for ID. Some
social engineers might build up trust over time, so be suspicious of unusual
requests too.

• Always have two persons verify requests for information or access.

• Never disclose information over the telephone, especially through a voice-mail
system. Phone calls can be spoofed.

• Warn others about suspicious callers.

• Examine system logs, check the system regularly, run checks to ensure
consistency to look for other signs of attack.

• Make hard-copies of messages sent with all the headers printed out. Many
people don’t know how to hide their true identity on the Internet.

• Log all calls and visits.

• Make proper backups of computers.

• Inform the whole system of attacks so that anyone who knows something
can help you.

• Do not assume that what someone tells you is true.

• Have a clear security policy.

• Threats of serious crimes should probably be reported to the company
responsible for sending the message, and perhaps even the police.

11.6.2 Security through obscurity

‘Security through obscurity’ have become the dirty words of the computing indus-
try – a chant of ridicule to scorn flawed systems. The idea is that making something
difficult to find or awkward to use does not prevent a determined attacker or an
insidious threat.

In the mid-1990s, when security first came to the general public’s attention, it
was felt that the general apathy towards security made it important to underline
this fact. There was a commonly held belief that, if one made it difficult for
intruders to find out information, they would not bother to try. This, of course,
is completely wrong. Sometimes the reverse is even true; it acts as a red rag to
a bull. If determined attackers can see that there is nothing worth finding they
might leave systems alone. If everything is concealed they will assume that there
must be something interesting worth breaking in for.

However, there is another side to the coin with obscurity that is generally
suppressed. The scorn has gone perhaps too far. Obscurity, i.e. hiding things,
does provide a low-level filter against casual threats. If this were not the case, why
would anyone be interested in encryption for privacy, or bother to keep passwords
in a secret location? Sometimes obscurity is the only possible security. It only
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depends on how likely the obscurity is to work. There is always a non-zero risk.
The question is only how likely the strategy is to work.

In a careful risk analysis, obscuring data or assets can reduce the risk of low-
level attacks, and thereby reduce the total risk, but it rarely reduces the risk of the
most insidious or persistent threats; these are the threats that security experts
like to emphasize, since they are usually trying to determine any and every point
of failure. Thus, the likelihood of obscurity to work as a strategy depends on the
likelihood of persistent attacks to a system. The Queen of England does not hide
the crown jewels under her bed – while this might prevent her staff from finding
them, a more reliable security is needed against thieves. The same applies to any
system.

Security through obscurity is a naive form of security which at best delays
break-ins.

Example 16. Shadow passwords are an example of this. By making the encrypted
password list inaccessible to normal users, one makes it harder for them to automate
the search for poor passwords, but one does not prevent it! It is still possible to
guess passwords in exactly the same way as before, but it takes much longer. The
NT password database is not in a readable format. Some people have claimed that
this makes it more secure than the Unix password file. Since then tools have been
written which rewrite the NT password file in Unix format with visible encrypted
passwords. In other words, making it difficult for people to break in does not make
it impossible.

Example 17. NFS export access control lists make it harder for an arbitrary
machine on the same network to get access to an exported filesystem, but not
impossible. They can sniff the network or guess root filehandles. Despite this largely
being security by obscurity, we should still bother to limit the list of systems that
can gain easy access to this information.

Clearly there is no need to give away information to potential intruders. Infor-
mation should be available to everyone on a need-to-know basis, whether they be
local users or people from outside the organization. But at the same time, obscurity
is no real protection. Even the invisible man could get shot. Time spent securing
systems is better than time spent obscuring them. Obscurity might attract more
attention than we want and make the system as obscure to us as to a potential
intruder.

11.6.3 Honey pots and sacrificial lambs

A honey pot is a host which is made to look attractive to attackers. It is usually
placed on a network with the intention of catching an intruder or distracting
them from more important systems. A sacrificial lamb host is one which is not
considered to be particularly important to the domain. If it is compromised by an
attacker then that is an acceptable loss and no real harm is done.

Some network administrators believe that the use of such machines con-
tributes to security. For example, WWW servers are often placed on sacrificial
lamb machines which are placed outside firewalls. If the machine is compromised
then it can simply be reinstalled and the data reloaded from a secure backup.
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This practice might seem rather dubious. There is certainly no evidence to support
the idea that either honey pot havens or sacrificial lamb chops actually improve
security, by any definition, but they provide management options.

11.6.4 Security holes

One way that outside users can attack a system is by exploiting security holes
in software. Classic examples usually involve setuid-root programs, which give
normal users temporary superuser access to the system. Typical examples are
programs like sendmail and finger. These programs are constantly being fixed,
but even so, new security holes are found with alarming regularity. Faults in
software leave back-doors open to intruders. The premier way of limiting such
attacks is to build a so-called firewall around your network, see section 12.12.

The computer emergency response team (CERT) was established in the wake
of the Internet Worm incident to monitor potential security threats. CERT publish
warnings to a mailing list about known security holes. This is also available on
the newsgroup comp.security.announce. Several other organizations, often run by
staff who work as security consultants, are now involved in computer security
monitoring. For instance, the SANS organization performs an admirable job of
keeping the community informed about security developments, both technical
and political. Moreover, old phreaker organizations like Phrack and the l0pht
(pronounced loft) now apply their extensive knowledge of system vulnerabilities
for the good of the network community. See refs. [4, 300, 72, 279, 239, 189].

11.6.5 System homogeneity

In a site with a lot of different kinds of platforms, perhaps several Unix variants, NT
and Windows 9x, the job of closing security holes is much harder. Inhomogeneity
often provides the determined intruder with more possibilities for bug-finding.
It also increases the system’s unpredictability. You might ask yourself whether
you need so many different kinds of platform. If you do, then perhaps a firewall
solution would provide an extra level of protection, giving you a better chance
of being able to upgrade your systems before something serious happens. The
converse of this viewpoint is that systems with a variety of operating systems can
provide a backup if one type of system becomes compromised; e.g. if an important
NT server is compromised, it might be good to have a Unix backup.

11.6.6 Modem pools

Some companies expend considerable effort to secure their network connections,
but forget that they have dial-in modems. Modem pools are a prime target for
attackers because they are often easy targets. There are many problems asso-
ciated with modem pools. Sometimes they are quite unexpected. For example,
if one has network access to Windows systems using the same modem then
those systems are automatically on a shared segment and can use one another’s
resources, regardless of whether they have any logical relationship. Modems can
also succumb to denial of service attacks by repetitive dialing.
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Modems should never allow users to gain access to a part of the network
which needs to be secure. Modems should never be allowed to be back-doors into
firewalled networks by being placed on the secure side of a firewall.

11.6.7 Laptops and mobile devices

Laptop computers and Personal Digital Assistants (PDA) are increasingly popular
and they are popular targets for thieves. There have been cases of laptop computers
containing sensitive information being stolen, often enough to give crackers access
to further systems, or simply to give competitors the information they wanted!

11.6.8 Backups

If you make backups of important data (private data) then you must take steps to
secure the backups also. If an intruder can steal your backups, then he or she
does not need to steal the originals.

11.6.9 TCP/IP security

On top of the hardware, there are many levels of protocol which make network
communication work. Many of these layers are invisible or are irrelevant to us,
but there are two layers in the protocol stack which are particularly relevant to
network security, namely the IP layer and the TCP/UDP layer.

11.6.10 The Internet protocol (IPv4)

The Internet protocol was conceived in the 1970s as a military project. The aim was
to produce a routable network protocol. The version of this protocol in use today is
version 4, with a few patches. Let’s review some of the basics of IPv4. TCP/IP is a
transmission protocol which builds on lower level protocols like Ethernet and gives
it extra features like ‘streams’ or virtual circuits, with automatic handshaking.
UDP is a cheaper version of this protocol which is used for services which do not
require connection-based communication. The TCP/IP protocol stack consists of
several layers (see figure 2.6).

At the application level we have text-based protocols like telnet and FTP etc.
Under these lies the TCP (Transmission Control Protocol) which provides reliable
connection-based handshaking, in a virtual circuit. TCP and UDP introduce the
concept of the port and the socket (=port+IP address). We base our communi-
cations on these, and thus we also base the security of our communications on
these. Under TCP/UDP is the IP transport layer, then Ethernet or token ring etc.
ICMP is a small protocol which is used by network hardware to send control and
error messages as a part of the IP protocol set, e.g. ping uses ICMP.

With all of its encapsulation packaging, a TCP/IP packet looks like figure 11.1.
TCP packets are ‘reliable’, connection-oriented data. They form streams or con-
tinuous data-flows with handshaking. This is accomplished by using a three-way
handshake based on so-called SYN (synchronize) and ACK (acknowledge) bits in
the TCP header. Suppose host A wishes to set up a connection with host B. Host A
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Figure 11.1: Encapsulation with Ethernet and TCP/IP.

sends a TCP segment to host B with its SYN bit set and a sequence number X
which will be used to keep track of the order of the segments. Host B replies to this
with its SYN and ACK bits set, with Acknowledgement=X+1 and a new sequence
number Y. Host A then replies to host B with the first data and the Acknowl-
edge field=Y+1. The reason why each side acknowledges every segment with a
sequence number which is one greater than the previous number sent is that the
Acknowledgement field actually determines the next sequence number expected.
This sequence is actually a weakness which network attackers have been able
to exploit through different connections, in ‘sequence number guessing’ attacks.
Now many implementations of TCP allow random initial sequence numbers.

The purpose of this circuit connection is to ensure that both hosts know about
every packet which is sent from source to destination. Because TCP guarantees
delivery, it retransmits any segment for which it has not received an ACK after a
certain period of time (the TCP timeout).

At the end of a transmission the sender sends a FIN (finished) bit, which is
replied to with FIN/ACK. In fact closing connections is quite complex since both
sides must close their end of the connection reliably. See the reference literature
for further details of this.

send

recv

TELNET SERVERTELNET CLIENT

random port
(active open)

well-known
port 23

(passive open)

Figure 11.2: A telnet connection.

Let us consider telnet as an example and see how the telnet connection looks at
the TCP level (see figure 11.2). Telnet opens a socket from a random port address
(e.g. 54657) to a standard well-known port (23) where the telnet service lives. The
combination of a port number at an IP address over a communication channel is
called a socket. The only security in the telnet service lies in the fact that port 23
is a reserved port which only root can use. (Ports 0–1023 are reserved.)

The TCP protocol guarantees to deliver data to their destination in the right
order, without losing anything. In order to do this it breaks up a message into
segments and numbers the parts of the message according to a sequence. It then
confirms that every part of that sequence has been received. If no confirmation
of receipt is received, the source retransmits the data after a timeout. The TCP
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header contains handshaking bits. Reliable delivery is achieved through a three-
way handshake. Host A begins by sending host B a packet with a SYN (synchronize)
bit set and a sequence number. This provides a starting reference for the sequence
of communication. Host B replies to this message with a SYN/ACK which confirms
receipt of an open-connection request and provides a new sequence number which
confirms identity. Host A acknowledges this and makes a request. Then host B
replies with actual data. We can see this in an actual example (see figure 11.3).
This handshaking method of sending sequence numbers with acknowledgement
allows the TCP protocol to guarantee and order every piece of a transmission. The
ACK return values are incremented by one because in earlier implementations
this would be the next packet required in the sequence. This predictability in
the sequence is unfortunately a weakness which can be exploited by so-called
sequence guessing attacks. Today, in modern implementations, sequence numbers
are randomized to avoid this form of attack. Older operating systems still suffer
from this problem. Future implementations of TCP/IP will be able to solve this
problem by obscuring the sequence numbers entirely through encryption.

CLIENT SERVER

Passive open
SYN, seq=1000

SYN, seq=2000, ack=1001

ack=2001,seq=3000,len=0

ack=seq+len, send data

ack=seq+len, FIN, seq=9000

ack=9001, FIN, seq=10000

ack=10001

Client close

Active open

Ready to send

Server close

Connection closed

Figure 11.3: The TCP three-way handshake.

The TCP handshake is useful for filtering traffic at the router level, since it
gives us something concrete to latch onto. TCP would rather drop a connection
than break one of its promises about data integrity, so if we want to block telnet
connections, say, we only have to break one part of this fragile loop. The usual
strategy is to filter all incoming connections which do not have their ACK bit set,
using router filtering rules. This will prevent any new connections from being
established by outside machines contacting servers inside the network. This rule,
however, does not prevent packets from entering the network that belong to
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connections that were initiated within the network itself. This provides a simple
router-level firewall protection. It is useful for stopping IP spoofing attempts. The
UDP protocol does not have SYN, ACK bits and so it is more difficult to filter.

11.6.11 Example telnet session

An example telnet packet trace is provided in Appendix C.

11.7 Preventing and minimizing failure modes

Prevention of loss is usually cheaper than recovery after the fact. Any reasonable
preventative measures we can take are worth the investment.

11.7.1 Loss of data: backup

The data collected and produced by an organization are usually the primary
reason for them owning a computer installation. The loss of those data, for
whatever reason, would be a catastrophe, second to none.

Data can be lost by accident, by fire or natural catastrophe, by disk failure, or
even vandalism. If you live in a war-zone or police state, you might also have to
protect data from bombs or brutal incursions onto your premises. Once destroyed,
data cannot be recovered. The laws of thermodynamics dictate this. So, to avoid
complete data-loss, you need to employ a policy of redundancy, i.e. you need to
make several copies of data, and make sure that they do not befall the same fate.
Of course, no matter how many copies of data you make, it is possible that they
might all be destroyed simultaneously, no matter what you do to protect them,
but we are aiming to minimize the likelihood of that occurrence.

Principle 60 (Data invulnerability). The purpose of a backup copy is to provide
an image of data which is unlikely to be destroyed by the same act that destroys
the original, i.e. the backup and the original should not have any common
dependencies that can be attacked.

There is an obvious corollary,

Corollary to principle (Data invulnerability). Backup copies should be stored
at a different physical location than the originals.

The economics of backup has changed in recent times for several reasons:
first of all, storage media are far more reliable than they once were. Component
failures tend to follow exponential distributions. If a disk does not show signs of a
problem within a few months then it might stand a good chance of effectively never
failing of its own accord, before you change the whole machine on other grounds.
Disks often tolerate continuous usage for perhaps five years, after which time you
will almost certainly want to replace them for other reasons, e.g. performance.
The other important change is the almost universal access to networks. Networks
can be used to transport data simply and cheaply from one physical location to
another.
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Traditionally backups have been made to tape, since tape is relatively cheap
and mobile. This is still the case at many sites, particularly larger ones; but
tapes usually need to be dealt with manually, by a human or by an expensive
robot. This adds a price tag to tape-backup which smaller institutions can find
difficult to manage. By way of contrast, the price of disks and networking has
fallen dramatically. For an organization with few resources, a cheap solution to
the backup problem is to mirror disks across a network [244], using well-known
tools like rdump, rdist or cfengine. This solves the problems of redundancy and
location; and, for what it costs to employ a human or tape robot, one can purchase
quite a lot of disk space.

Another change is the development of fast, reliable media like CD-ROM. In
earlier times, it was normal to backup the operating system partitions of hosts to
tape. Today that practice is largely unnecessary: the operating system is readily
available on some straightforward medium (e.g. CD-ROM or DVD) which is at
least as fast as a tape streamer and consumes a fraction of the space. It is
only necessary to make backups of whatever special configuration files have been
modified locally. Sites which use cfengine can simply allow cfengine to reconstruct
local modifications after an OS installation. In any event, if we have followed the
principle of separating the operating system from local modifications, this is no
problem at all.

Similar remarks can be made about other software. Commercial software is
now sold on CD-ROM and is trivial to reinstall (remember to keep a backup of
license keys). For freely available software, there are already many copies and
mirrors at remote locations by virtue of the Internet. For convenience, a local
source repository can also be kept, to speed up recovery in the case of an accident.
In the unlikely event of every host being destroyed simultaneously, downloading
the software again from the network is the least of your worries!

Reconstructing a system from source rather than from backup has never been
easier than now. Moreover, a policy of not backing up software which is easily
accessible from source, can make a considerable saving in the volume of backup
space required, at the price of more work in the event of accident. In the end this
is a matter of policy.

It should be clear that user-data must have maximum priority for backup.
This is where local creativity manifests itself; these are the data which form your
assets.

11.7.2 Loss of service

Loss of service might be less permanent than the loss of data, but it can be just
as debilitating. Downtime costs money for businesses and wastes valuable time in
academia.

The basic source of all computing power is electricity. Loss of electrical power
can be protected against, to a limited extent, with an un-interruptible power supply
(UPS). This is not an infallible security, but it helps to avoid problems due to short
breaks in the power. UPS solutions use a battery backup to keep the power going
for a few hours when power has failed. When the battery begins to run down, they
can signal the host so as to take it down in a controlled fashion, thus minimizing
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damage to disks and data. Investing in a UPS for an important server could be
the best thing one ever does. Electrical spike protectors are another important
accessory for anyone living in a region where lightning strikes are frequent, or
where the power supply is of variable quality. No fuse will protect a computer from
a surge of electricity: microelectronics burn out much quicker than any fuse.

Service can also be interrupted by a breach of the network infrastructure: a
failed router or broken cable, or even a blown fuse. It can be interrupted by cleaning
staff, or carelessness. A backup or stand-by replacement is the only option for
hardware failure. It helps to have the telephone number of those responsible for
network hardware when physical breaches occur.

Software can be abused in a denial of service attack. Denial of service attacks
are usually initiated by sending information to a host which confuses it into
inactivity. There are as many variations on this theme as there are vandals on the
network. Some attacks exploit bugs, while others are simply spamming episodes,
repeatedly sending a deluge of service requests to the host, so that it spends all of
its resources on handling the attack.

11.7.3 Protocols

What is the solution to uncertainty? An amount of uncertainty is inevitable in any
complex system. Where humans are concerned, uncertainty is always significant.
A strict mode of behavior is the usual way of counteracting this uncertainty.
Protocols are ways of eliminating unnecessary uncertainty by reducing the freedom
of the participants.

Principle 61 (Protocols offer predictability). A well-designed protocol, either
for human behavior or machine behavior, standardizes behavior and offers pre-
dictability.

11.7.4 Authentication

In order to provide basic security for individuals, we need to keep track of
the identity of users who make requests of the system. Authentication means
determining whether the claim of identity is authentic. Usually we mean verifying
somebody’s identity. There are two reasons for authenticating users:

• User-based access control of files and programs requires users to be distin-
guished by an identity.

• Accountability: attaching actions to users for recording in logs.

All authentication is based on the idea of comparing unique attributes of indi-
viduals with some database. Often ownership of a shared secret is used for this
purpose, such as a password or encryption key, known only to the individual and
the authenticator.

There is much confusion surrounding authentication. Much of this stems from
the many claims made by cryptographic methods to provide secure methods for
authenticating user identities. While this is not incorrect, it misses a crucial point.
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Principle 62 (Identification requires trust). Establishing identity is ‘impossi-
ble’. Identification requires an initial introduction, based on trust.

Corollary to principle (Authentication is re-identification). Authentication is
the confirmation of a previously trusted identity.

The first time we meet a person or contact a host on a network, we know
nothing about them. When a previously unknown person or host claims their
identity we must accept this information on trust. No matter how many detailed
measurements we make (DNA test, processor serial number, secure exchange of
keys etc.), there is no basis for matching those identifying marks to the identity
claimed – since we cannot mind-read, we simply have to trust it. Once an initial
identity has been accepted as true, one can then use unique properties to identify
the individual again in the future, in a variety of ways, some more secure than
others. The special markers or unique properties can only confirm that a person or
host is the same person or host as we met previously. If the original introduction
was faked, the accuracy of recognition cannot detect this.

Password login

The provision of a username claims our identity and a password verifies that
claim. If this authentication succeeds, we are granted access to the system, and
all of our activities then occur within the scope of an identifier which represents
that user. On Unix-like systems, the username is converted into a global unique
user-id number (UID). On Windows systems, the username is converted into a
security-id (SID) which is only unique on a local host.

There are obvious problems with password authentication: passwords can be
guessed and they can be leaked. Users with only weak passwords are vulnerable
to dictionary and other brute-force attacks.

This type of login is called unilateral authentication, that is, it identifies the
user to the computer. It does not verify the identity of the computer to the user.
Thus a malicious party could fake a login dialogue on a computer, using this to
collect passwords and account information.

Unix does not attempt to solve this problem, but NT and its successors provide a
‘secure attention sequence’. If the user types CTRL+ALT+DEL, they are guaranteed
to be directed to the operating system, rather than any user programs which might
be trying to look like the OS.

Authentication types

The OSI security architecture (ISO 7498-2) makes a distinction between different
kinds of authentication:

• Entity authentication: checking the identity of an individual or entity.

• Origin authentication: checking the location of an individual or entity.

• Unilateral authentication: verifying the entity to the authenticator.

• Mutual authentication: verifying both parties to one another.
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Authentication is usually performed at the start of a session between client and
system. Once one stops checking, an attacker could subsequently sneak in and
change places with an authenticated user. Thus to ensure security in an on-going
conversation, we have to verify identity and then use some kind of secret key to
ensure that the identity cannot be changed, e.g. by encrypting the conversation.
The key is only known by the authenticated parties, such as a secret that has
been exchanged.

Challenge response protocols

Consider two parties A and B, who need to open a dialogue and verify a previously
trusted identity.

| |
| M1 |
| ---------------------> |
| M2 |

A | <-------------------- | B
| M3 |
| ---------------------> |
| M4 |
| <-------------------- |
| |

A starts the protocol by sending a message to B, M1. B replies with M2, etc. We
assume that message N + 1 is not sent until message N has been received and
understood.

During or after the exchange of the messages we need to be sure of the following:

• That the messages were received (unaltered) from the hosts which were
supposed to send them.

• That the messages are fresh, i.e. not replays of old messages.

• That message N + 1 is a correct reply to message N , not a misleading reply
to a different question.

The first of these assurances can be made by using cryptographic checksums
(message digests such as MD5 or SHA-1) or Message Authentication Code (MAC)
that verifies both the identity of the sender and the integrity of the message, using
a cryptographic key.

The second could be assured by the use of a time-stamp, though this would
be vulnerable to errors of clock synchronization. A better approach is to use a
random challenge or nonce (from the medieval English for ‘once only’).

A nonce is usually a long random number that is encrypted with a key that can
only be decrypted by the receiver. The receiver then replies to the sender of the
nonce by decrypting it and sending it back. Only the keeper of the secret could do
this, and thus this confirms the identity of the receiver as well as the freshness
of the reply. To achieve a mutual authentication, both parties send challenges to
one another.
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11.7.5 Integrity

Trust is the pernicious problem of security. How are we able to trust files and data
which others send? Programs that we download could contain viruses or Trojan
horses. Assuming that we trust the person who wrote the program, how can we
be sure that no one else has tampered with it in between?

There are some things we can do to increase our confidence in data we receive
from a foreign source. One is to compare message digests.

Message digests or hashes are cryptographic checksums which quickly sum-
marize the contents of a file. The idea is to create an algorithm which digests
the contents of a file and produces a single value which uniquely summarizes its
contents. If we change one bit of a file, then the value of the message digest also
changes. Popular algorithms include:

MD4
MD5 (Stronger than md4)
SHA1

host$ md5 .cshrc
MD5 (.cshrc) = 519ab7d30dba4a2d16b86328e025ec72

MD5 signatures are often quoted at security software repositories so that it
is possible to verify the authenticity of software (assuming the MD5 signature is
authentic!).

11.8 Some well-known attacks

There are many ways to attack a networked computer in order to gain access to it,
or simply disable it. Some well-known examples are listed below. The actual attack
mechanisms used by attackers are often intricate and ingenious, but the common
theme in all of them is to exploit naive limitations in the way network services
are implemented. Time and again one sees crackers make use of software systems
which were written in good faith, by forcing them into unnatural situations where
the software fails through inadequate checking.

11.8.1 Ping attacks

The RFC 791 specifies that Internet datagrams shall not exceed 64kB. Some
implementations of the protocol can send packets which are larger than this, but
not all implementations can receive them.

ping -s 65510 targethost

Some older network interfaces can be made to crash certain operating systems
by sending them a ‘ping’ request like this with a very large packet size. Most
modern operating systems are now immune to this problem (e.g. NT 3.51 is
vulnerable, but NT 4 is not). If not, it can be combatted with a packet filtering
router. See http://www.sophist.demon.co.uk/ping/.
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11.8.2 Denial of service (DoS) attacks

Another type of attack is to overload a system with so many service requests that it
grinds to a halt. One example is mail spamming,2 in which an attacker sends large
numbers of repetitive E-mail messages, filling up the server’s disk and causing
the sendmail daemon to spawn rapidly and slow the system to a standstill.

Denial of service attacks are almost impossible to protect against. It is the
responsibility of local administrators to prevent their users from initiating such
attacks wherever possible.

11.8.3 TCP/IP spoofing

Most network resources are protected on the basis of the host IP addresses of
those resources. Access is granted by a server to a client if the IP address is
contained in an access control list (ACL). Since the operating system kernel itself
declares its own identity when packets are sent, it has not been common to verify
whether packets actually do arrive from the hosts which they claim to arrive from.
Ordinary users have not traditionally had access to privileges which allow them
to alter network protocols. Today everyone can run a PC with privileged access to
the networking hardware.

Normally an IP datagram passing from host A to host B has a destination
address ‘host B’ and source address ‘host A’ (see figure 11.4). IP spoofing is the act
of forging IP datagrams in such a way that they appear to come from a third party
host, i.e. an attacker at host A creates a packet with destination address ‘host
B’ and source address ‘host C’. The reasons for this are various. Sometimes an
attacker wants to appear to be host C in order to gain access to a special resource
which host C has privileged access to. Another reason might be to attack host C,
as part of a more elaborate attack. Usually it is not quite this simple however,
since the forgery is quickly detected. The TCP handshake is such that host A sends
a packet to host B and then replies to the source address with a sequence number
which has to match the next number of an agreed sequence. If another packet
is not received with an agreed sequence number the connection will be reset and
abandoned. Indeed, if host C received the confirmation reply for a message which
it never sent, it would send a reset signal back immediately, saying effectively ‘I
know nothing about this’. To prevent this from happening it is common to take out
host C first by attacking it with some kind of Denial of Service method, or simply
choosing an address which is not used by any host. This prevents it from sending
a reset message. The advantage of choosing a real host C is that the blame for the
attack is placed on host C.

11.8.4 SYN flooding

IP spoofing can also be used as a denial of service attack. By choosing an address
for host C which is not in use so that it cannot reply with a reset, host A can
send SYN packets (new connections) on the same and other ports repeatedly. The

2From the Monty Python song ‘Spam spam spam spam...’.



11.8. SOME WELL-KNOWN ATTACKS 447

host C

host A host B

Figure 11.4: IP spoofing. A third party host C assumes the role of host A.

RECV queue quickly fills up and cannot be emptied since the connections cannot
be completed. Because the queues are filled the services are effectively cut off.

These attacks could be prevented if routers can be configured so as to disallow
packets with forged source addresses.

11.8.5 TCP sequence guessing

This attack allows an attacker to make a TCP connection to a host by guessing
the initial TCP sequence number used by the other end of the connection. This
is a form of IP spoofing by a man in the middle. The attack was made famous
by the break in to Tsutomo Shinomura’s computers which led to the arrest of
Kevin Mitnick. This attack is used to impersonate other hosts for trusted access
[29, 220]. This approach can now be combatted by using random initial sequence
numbers (using the strategy expounded in section 7.7.5), though many operating
systems require special configuration to enable such measures.

11.8.6 IP/UDP fragmentation (Teardrop)

A Teardrop attack was responsible for the now famous twelve-hour attack which
‘blue-screened’ thousands of NT machines all over the world. This attack uses the
idea of datagram fragmentation. Fragmentation is something which happens as a
datagram passes through a router from one network to another network where the
Minimum Transfer Unit (MTU) is lower. Large packets can be split up into smaller
packets for more efficient network performance. In a Teardrop attack, the attacker
forges two UDP datagrams which appear to be fragments of a larger packet, but
with data offsets which overlap.

When fragmentation occurs it is always the end host which reassembles the
packets. In order to allocate memory for the data, the kernel calculates the
difference between the end of the datagram and the offset at which the datagram
fragment started. In a normal situation that would look like that in figure 11.5.
In a Teardrop attack the packets are forged so that they overlap, as shown in
figure 11.6. The assumption that the next fragment would follow on from the
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Figure 11.5: Normal UDP fragmentation.
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size = 120 − 0

size = 90 − 120

Figure 11.6: Spoofed UDP fragmentation, generates a negative size.

previous one leads to a negative number for the size of the fragment. As the kernel
tries to allocate memory for this it calls malloc(size) where the size is now a
negative number. The kernel panics and the system crashes on implementations
which did not properly check the bounds.

11.8.7 ICMP flooding (Smurf)

ICMP flooding is another denial of service attack. The ICMP protocol is the part of
TCP/IP which is used to transmit error messages and control information between
hosts. Well-known services like ping and echo use ICMP. Normally all hosts
respond to ping and echo requests without question, since they are useful for
debugging. In an ICMP flooding attack, the attacker sends a spoofed ICMP packet
to the broadcast address of a large network. The source address of the packet
is forged so that it appears to come from the host which the attacker wishes to
attack. Every host on the large network receives the ping/echo request and replies
to the same host simultaneously. The host is then flooded with requests. The
requests consume all the system resources.

11.8.8 DNS cache poisoning

This attack is an example of the exploitation of a trusted service in order to gain
access to a foreign host. Again it uses a common theme, that of forging a network
service request. This time, however, the idea is to ask a server to cache some
information which is incorrect so that future look-ups will result in incorrect
information being given instead of the correct information [29].

DNS is a hierarchical service which attempts to answer queries about IP names
and addresses locally. If a local server does not have the information requested it
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asks an authoritative server for that information. Having received the information
from the authoritative server it caches it locally to avoid having to contact the
other server again; after all, since the information was required once, it is likely
that the same information will be required again soon. The information is thus
placed in the cache for a period of time called the TTL (Time To Live). After that
time has expired it has to be obtained again from the authoritative server.

In a cache poisoning attack, the aim is to insert incorrect information into the
cache of a server. Once it is there it will be there for the TTL period. In order to
arrange this an attacker does the following.

1. The attacker launches his/her attack from the authoritative nameserver
for his/her network. This gives him/her the chance to send information to
another nameserver which will be trusted.

2. The attacker sends a query for the IP address of the victim host to the victim’s
default DNS server in order to obtain a DNS query ID. This provides a point
of reference for guessing, i.e. forging, the next few query IDs from that server.

3. The attacker then sends a query asking for the address of a host which
the victim machine trusts, i.e. the host which the attacker would like to
impersonate.

4. The attacker hopes that the victim host will soon need to look up the IP
address of the host it trusts; he/she sends a fake ‘reply’ to such a DNS
lookup request, forged with the query ID to look as though it comes from a
lookup of the trusted host’s address. The answer for the IP address of the
trusted host is altered so that it is the IP address of the attacker’s host.

5. Later when the victim host actually sends such a DNS request it finds that it
has already received a UDP reply to that request (this is the nature of UDP)
and it ignores the real reply because it arrives later. Now the victim’s DNS
cache has been poisoned.

6. The attacker now attempts to connect directly to the victim host, posing as
the trusted host. The victim host tries to verify the IP address of the host by
looking up the address in its DNS server. This now responds from its cache
with the forged address.

7. The attacker’s system is accepted.

This kind of attack requires the notion of external login based on trust, e.g. with
Unix .rhosts files. This doesn’t help with NT because NT doesn’t have trusted
hosts in the same way. On the other hand, NT is much easier to gain access to
through NULL sessions.

Exercises

Self-test objectives

1. Describe the nature of possible threats to the security of a human–computer
system.
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2. What is meant by ‘security is a property of systems’?

3. What are the four main themes in computer security?

4. What role does trust play in setting the ground rules for security?

5. Explain how security relates to risk assessment.

6. What are the main threats to human–computer security?

7. Who present the main threats to human–computer security?

8. What is ISO17799?

9. What is RFC 2196?

10. What is meant by social engineering?

11. List some ways of countering social engineering.

12. What is meant by a honey pot?

13. What is meant by a sacrificial lamb?

14. What are the pros and cons of system homogeneity in security?

15. Explain how laptops and mobile devices can compromise security.

16. What are the problems with the security of the Internet Protocol?

17. State the ways of minimizing the likelihood of a serious security breach.

18. How does economy play a role in security?

19. What is the point of strict protocols in human–computer systems?

20. Explain why it is not possible to ever really identify someone – only to re-
identify someone whose identity we have already trusted.

21. What is mutual authentication?

22. What is a challenge–response system?

23. What is meant by a nonce?

24. What is a cryptographic hash or checksum?

25. What is a message authentication code?

26. What is meant by a Denial of Service (DoS) attack?

27. What is meant by cache poisoning?
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Problems

1. What are the basic requirements for computer security? Look around your
network. Which hosts satisfy these basic requirements?

2. Devise a checklist for securing a PC attached to a network in your organi-
zation. How would you secure a PC in a bank? Are there any differences in
security requirement between your organization and a bank? If so, what are
they and how do you justify them?

3. Determine what password format is used on your own system. Are shadow
password files used? Does your site use NIS (i.e. can you see the password
database by typing ypcat passwd)?

4. Assume that passwords may consist of only the 26 letters of the alphabet.
How many different passwords can be constructed if the number of characters
in the password is 1, 2, 3, 4, 5, 6, 7 or 8 characters?

5. Suppose a password has four characters, and it takes approximately a
millisecond (10−3 s) to check a password. How long would a brute-force
attack take to determine the password?

6. Discuss how you can really determine the identity of another person. Is it
enough to see the person? Is a DNA test sufficient? How do you know that
a person’s body has not been taken over by aliens, or they have not been
brainwashed by a mad scientist? This problem is meant to make you think
carefully about the problem of authentication.

7. Password authentication works by knowing a shared secret. What other
methods of authentication are used?

8. The secure shell uses a Virtual Private Network (VPN) or encrypted channel
between hosts to transfer data. Does this offer complete security? What does
encryption not protect against?

9. Explain the significance of redundancy in a secure environment.

10. When the current TCP/IP technology was devised, ordinary users did not
have personal computers or access to network listening devices. Explain how
encryption of TCP/IP links can help to restore the security of the TCP/IP
protocol.

11. Explain the purpose of a sacrificial lamb.

12. Discuss the point of making a honey pot. Would this attract anyone other
than bears of little brain?

13. Answer true or false to the following (you might have to read ahead to answer
some of these):

(a) Current DNS implementations have no strong authentication.
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(b) DNSSec can use digital signatures to solve the problem of authenticity
for zone transfers between redundant servers.

(c) DNSSec can use symmetric shared secrets to solve the authenticity
problem for zone transfers.

(d) Current implementations of DNS have no way of restricting access and
are thus completely vulnerable to integrity attacks.

(e) Current DNS implementations use unreliable connections.

(f) SSL/TLS uses Kerberos to authenticate secure sockets.

(g) SSL/TLS use trust management based on a signing authority, like a
trusted third party.

(h) IPSec was designed for and only works with IPv6, so it will not be
available for some years.

(i) IPSec has solved the problem of contradictory policy rules.

(j) IPSec permits packet filtering based on Mandatory Access Control.

(k) IPSec’s use of encrypted tunnels allows it to function like a VPN, provided
that end devices themselves support IPSec.

(l) Wireless IP security does not support end to end encryption, only encryp-
tion between wireless device and receiving station.

14. Explain why encryption can be used as a form of authentication.

15. What is meant by masquerading or spoofing?

16. Describe the issues to consider in finding a backup scheme for a large and
a small organization. Your answer should address tactical, economic and
ethical issues.



Chapter 12

Security implementation

In the previous chapter we looked at the meaning of security in the context of a
computer system. Now we apply the basic principles and consider what practical
steps can be taken to provide a basic level of security.

12.1 System design and normalization

Security is a property of systems; to address security, we must speak of the system
as a whole:

• Identify what assets we are trying to protect.

• Evaluate the main sources of risk and where trust is placed.

• Work out possible counter-measures to attacks.

Counter-measures can be both preventative and reactive. They consist of:

• Rules

• Codified responses.

The foundation of security is policy. We must agree on what is valuable and
acceptable in the system. Without such an assessment, we cannot speak of the
risk to those assets, and determine what level of risk is acceptable. Policy is
decided by social groups.

A system consists of an assembly of parts that exhibit three main activities:

• Input

• Rules

• Output.

Each of these must be addressed and poses different threats. Input exposes a
part of the system to its outside environment. Output exposes the environment
to the system part. The rules determine whether the part fulfills its role in the
system. Security of a system requires the safe and predictable functioning of all
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parts within a system, and the safe and predictable functioning of the sum of
those parts.

Protecting ourselves against threat also involves a limited number of themes:

• Applying safeguards (shields)

• Access control (selective shields)

• Protocols (specification of and limitation to safe behavior)

• Feedback regulation (continuous assessment)

• Redundancy (parallelism instead of serialism) detection and correction

• Monitoring the system

• Regulation.

We need to apply these to environments which utilize computer systems.
Normalization of a system is a concept from the theory of databases.

• Avoid unnecessary dependencies and inconsistencies.

• Validate assumptions.

12.2 The recovery plan

When devising a security scheme, think of the post-disaster scenario. When
disaster strikes, how will the recovery proceed? How long is this likely to take?
How much money or time will be lost as a result?

The network is a jigsaw puzzle in which every piece has its place and plays
its part. Recall the principle of redundancy: the more dependent we are on one
particular piece of the puzzle, the more fragile the set up. Recovery will occur more
quickly if we have backups of all key hardware, software and data.

In formulating a recovery plan, then, we need a scheme for replacing key
components either temporarily or permanently, and we should also bear in mind
that we do rely on many things which are outside of our immediate control. What
happens, for instance, if a digger (back-hoe) goes through the net cable, our only
link to the outside world? Whom should we call? Less fundamental but more
insidious, what if the network managers above us decide to decouple us from the
network without informing us in advance? In a large organization, different people
have responsibility for different maintenance tasks. It has happened on more than
one occasion that the power has been shut down without warning – a potentially
lethal act for a computer.

12.3 Data integrity and protection

As part of any infrastructure plan, we need to apply the principles of redundancy
and protection to the system’s data. Although backup copies will not protect us
against loss, they do provide minimal insurance against accidents, intentional
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damage and natural disasters, and make the business of recovery less painful.
There are several general strategies:

Encryption Prevention of access on theft or tampering
Integrity checksums Detection of error or tampering
Redundancy Recovery from loss

12.3.1 Preventing error, tampering and loss

Data must be protected both when standing still (in storage) and when passing
from place to place (in transport).

Encryption is a strategy for prevention of theft and tampering, particularly in
the transmission of data over networks, though it can also be used to protect disk
data from theft and backups from tampering. Encryption is only effective if the
encryption keys are managed properly.

Disk information is a separate concern. Once a file is deleted in Unix-like
operating systems, it is not directly recoverable. Unlike DOS and its successors,
there is no way to undelete a file. Some system administrators like to protect
inexperienced users by making an alias (in C-shell)

alias rm rm -i

which causes the rm command to ask whether it really should delete files before
actually doing so. This is a simple idea and it is not foolproof, but it is an example
of the kind of small details which make systems safer. On the other hand, some
believe that relying on such tactics only prolongs the inevitable, and that learning
to be careful is a better approach. The only real security against deletion is to keep
extensive backups of user disks. In Windows environments, it is not uncommon
to hear screams of anguish as users lose two hours’ work because they didn’t save
before the system crashed, or reformatted their text according to some arbitrary
template. Sensible software defaults can go a long way to preventing loss of data.

Loss against physical disk failure can be mitigated by using RAID solutions
which offer real redundancy. RAID stands for Redundant Array of Inexpensive
Disks.1 The idea is that, since disks are relatively cheap, compared with human
time and labor, we can build a system which uses extra disks in order to secure
increased performance and redundancy. RAID disks systems are sold by most
manufacturers and come in a variety of levels. Not all of the RAID levels have
anything at all to do with redundancy. Indeed some are more concerned with
striping disks to increase performance and are more insecure than using single
disks. There are currently more than seven levels of RAID from 0 to 6 or 7
depending on where you look; these incorporate a number of themes:

• Disk striping: This is a reorganization of filesystem structure amongst a
group of disks. Data are spread across disks, using parallelism to increase
data throughput and improved search rate. This can improve performance
dramatically, but reduces security by an equal amount, since if one disk
fails, all the data are lost from the other disks.

1Nowadays, the RAID advisory board use Independent for the ‘I’.
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• Real-time mirroring: When data are written to one disk, they are simultane-
ously written to a second disk, rather than mirroring as a batch job performed
once per day (see next section). This increases security. This protects against
random disk failure, but not necessarily against natural disasters etc., since
RAID disks are usually located all in one place.

• Hamming code parity protection: Data are split across several disks to utilize
parallelism, and a special parity disk enables data to be reconstructed
provided no more than one disk fails randomly. Again, this does not help us
against loss due to wide-scale influences like natural disasters.

New RAID solutions appear frequently and the correspondence between manufac-
turers’ solutions and RAID levels is not completely standardized. RAID provides
enhancements for performance and fault tolerance, but it cannot protect us
against deliberate vandalism or widespread failure.

12.3.2 Backup schemes

We can lose information in many ways: by accident, technical failure, natural
disaster or even sabotage. We must make sure that there are several copies of the
data so that everything may be recovered from a secure backup. Backups are one
of the favorite topics of the system administration community. Everyone has their
own local tricks. Many schemes for backup have been described; most of them
resemble one another apart from cosmetic differences. Descriptions of backup
schemes are manifold. Regular incremental style backups with site customizations
can be found in refs. [310, 158, 169, 241, 148, 234, 335, 218, 257, 213]. A forward-
looking backup scheme with a broad generality in its ability to use different
services and devices for remote backups is described in ref. [284] and backup to
optical disks is discussed in refs. [65, 320]. Automated tape backup and restore is
discussed in ref. [184] and in the Amanda system [283]; the AFS backup system
is discussed in ref. [151]. A review of how well backup systems deal with special
Unix sparse files was conducted in ref. [338].

Backup applies to individual changes, to system setup and to user data alike.
In backing up data according to a regular pattern, we are assuming that no major
changes occur in the structure of data [281]. If major changes occur, we need to
start backups afresh. The network has completely changed the way we have to
think about backup. Transmitting copies of files to secondary locations is now
much simpler. The basics of backup are these:

• Physical location: A backup should be kept at a different physical location
than the original. If data were lost because of fire or natural disaster, then
copies will also be lost if they are stored nearby. On the other hand, they
should not be too far away, or restoration time will suffer.

• How often?: How often do the data change significantly, i.e. how often do we
need to make a backup? Every day? Do you need to archive several different
versions of files, or just the latest version? The cost of making a backup is a
relevant factor here.
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• Relevant and irrelevant files: There is no longer much point in making a
backup of parts of the operating system distribution itself. Today it is usually
just as quick to reinstall the operating system from source, using the original
CD-ROM. If we have followed the principle of separating local modifications
from the system files, then it should be trivial to backup only the files which
cannot be recovered from the CD-ROM, without having to backup everything.

• Backup policy: Some sites might have rules for defining what is regarded
as valid information, i.e. what it is worth making a backup of. Files like
prog.tar.gz might not need to be kept on backup media since they can be
recovered from the network just as easily. Also one might not want to make
backups of teen ‘artwork’ which certain users collect from the network, nor
temporary data, such as browser cache files.

Medium

Traditionally backups have been made from disk to tape (which is relatively cheap
and mobile), but tape backup is awkward and difficult to automate unless one
can afford a specialized robot to change and manage the tapes. For small sites it
is also possible to perform disk mirroring. Disk is cheap, while human operators
are expensive. Many modern filesystems (e.g. DFS) are capable of automatic disk
mirroring in real-time. A cheap approach to mirroring is to use cfengine:

# cfengine.conf on backup host

copy:

/home dest=/backup/home
recurse=inf
server=myhost
exclude=core

When run on the backup host, this makes a backup of all the files under the
directory /home on the host myhost, apart from core files. RAID disks also have
inbuilt redundancy which allows data to be recovered in the event of a single
disk crash. Another advantage with a simple mirroring scheme is that users can
recover their files themselves, immediately without having to bother a system
administrator.

Of course, as the size of an institution grows, the economics of backup change. If
one part of an organization has the responsibility for making backups for the entire
remainder, then disk mirroring suddenly looks expensive. If each department of
the organization invests in its own mirror disks, then the cost is spread. Economics
has a lot to do with appearance as well as reality. One criticism of disk mirroring
is that it is not always possible to keep the disk mirrors far enough away from
the original to be completely safe. An additional tape backup as a last resort is
probably a good idea anyway.

A backup schedule

How often we need to make backups depends on two competing rates of change:
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• The rate at which new data are produced.

• The expected rate of loss or failure.

For most sites, a daily backup is sufficient. In a war-zone, where risk of bombing
is a threat at any moment, it might be necessary to back up more often. Most
organizations do not produce huge amounts of data every day; there are limits
to human creativity. However, other organizations, such as research laboratories
collect data automatically from instruments which would be impractically expen-
sive to re-acquire. In that case, the importance of backup would be even greater.
Of course, there are limits to how often it is possible to make a backup. Backup is
a resource-intensive process.

Suggestion 15 (Static data). When new data are acquired and do not change,
they should be backed up to permanent write-once media at once. CD-ROM is an
excellent medium for storing permanent data.

For a single, un-networked host used only occasionally, the need for backup might
be as little as once per week or less.

The options we have for creating backup schemes depend on the tools we have
available for the job. On Windows we have NTBackup. On Unix-like systems there
is a variety of tools which can be used to copy files and filesystems.

Backup Restore

cp -ar cp -ar
tar cf tar xpf
GNU tar zcf tar zxpf
dd dd
cpio cpio
dump restore
ufsdump restore
rdump rrestore
NTBackup NTBackup

Of course, commercial backup solutions exist for all operating systems, but they
are often costly.

On both Unix and Windows, it is possible to backup filesystems either fully
or differentially, also called incrementally. A full dump is a copy of every file. An
incremental backup is a copy of only those files which have changed since the
last backup was taken. Incremental backups rely on dump timestamps and a
consistent and reliable system clock to avoid files being missed. For instance,
the Unix dump utility records the dates of its dumps in a file /etc/dumpdates.
Incremental dumps work on a scheme of levels, as we shall see in the examples
below.

There are many schemes for performing system dumps:

• Mirroring: By far the simplest backup scheme is to mirror data on a daily
basis. A tool like cfengine or rsync (Unix) can be used for this, copying
only the files which have changed since the previous backup. Cfengine is
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capable of retaining the last two versions of a file, if disk space permits. A
disadvantage with this approach is that it places the onus of keeping old
versions of files on the user. Old versions will be mercilessly overwritten by
new ones.

• Simple tape backup: Tape backups are made at different levels. A level 0
dump is a complete dump of a filesystem. A level 1 dump is a dump of only
those files which have changed since the last level 0 dump; a level 2 dump
backs up files which have changed since the last level 1 dump and so on,
incrementally. There are commonly nine levels of dumps using the Unix dump
commands. NTBackup also allows incremental dumps.

The point of making incremental backups is that they allow us to capture
changes in rapidly changing files without having to copy an entire filesystem
every time. The vast majority of files on a filesystem do not change appreciably
over the space of a few weeks, but the few files which we are working on
specifically do change often. By pin-pointing these for special treatment we
save both time and tapes.

So how do we choose a backup scheme? There are many approaches, but the
key principle to have in mind is that of redundancy. The more copies of a file
we have, the less likely we are to lose the file. A dump sequence should always
begin with a level 0 dump, i.e. the whole filesystem. This initializes the sequence
of incremental dumps. Monday evening, Tuesday morning or Saturday are good
days to make a level 0 dump, since that will capture most large changes to the
filesystem that occur during the week or weekend, in the level 0 dump rather
than in the subsequent incremental ones. Studies show that users download
large amounts of data on Mondays (after the weekend break) and it stands
to reason that after a week of work, large changes will have taken place by
Saturday. So we can take our pick. Here is a simple backup sequence for user
home-directories, then, assuming that the backups are taken at the end of
each day:

Day Dump level

Mon 0
Tue 1
Wed 2
Thu 3
Fri 4
Sat 1

Notice how this sequence works. We start with a full dump on Monday evening,
collecting all files on the filesystem. Then on subsequent days we add only those
files which have changed since the previous day. Finally on Saturday we go back
to a level 1 dump which captures all the changes from the whole week (since the
Monday dump) in one go. By doing this, we have two backups of the changes, not
just one. If we do not expect much to happen over the weekend, we might want to
drop the dump on Saturday.

A variation on this scheme, which captures several copies of every file over
multiple tapes, is the so-called Towers of Hanoi sequence. The idea here is to
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switch the order of the dump levels every other day. This has the effect of
capturing not only the files which have changed since the last dump, but also
all of the files from the previous dump as well. Here is a sample for Monday to
Saturday:

Towers of Hanoi sequence over 4 weeks

0 → 3 → 2 → 5 → 4 → 6
1 → 3 → 2 → 5 → 4 → 6
1 → 3 → 2 → 5 → 4 → 6
1 → 3 → 2 → 5 → 4 → 6

There are several things to notice here. First of all, we begin with a level 0 dump
at the beginning of the month. This captures primarily all of the static files. Next
we begin our first week with a level 3 dump which captures all changes since the
level 0 dump. Then, instead of stepping up, we step down and capture all of the
changes since the level 0 dump again (since 3 is higher than 2). This means that
we get everything from the level 3 dump and all the changes since then too. On
day 4 we go for a level 5 dump which captures everything since the last level 3,
and so on. Each backup captures not only new changes, but all of the previous
backup also. This provides double the amount of redundancy as would be gained
by a simple incremental sequence. When it comes to Monday again, we begin with
a level 1 backup which grabs the changes from the whole of the previous week.
Then once a month, a level 0 backup grabs the whole thing again.

The Towers of Hanoi sequence is clever and very secure, in the sense that it
provides a high level of redundancy, but it is also expensive since it requires time
and attention. Robotic automation can help here.

The level of redundancy which is appropriate for a given site has to be a
question of economics based on four factors:

1. The cost of the backup (in time and media).

2. The expected rate of loss.

3. The rate of data production.

4. Media reliability.

These factors vary for different kinds of data, so the calculation needs to be thought
out for each filesystem independently. The final point can hardly be emphasized
enough. It helps us nothing to make ten copies of a file, if none of those copies are
readable when we need them.

Suggestion 16 (Tape backup). Tapes are notoriously unreliable media, and
tape streamers are mechanical nightmares, with complex moving parts which
frequently go wrong. Verify the integrity of each substantial backup tape backup
once you have made it. Never trust a tape. If the tape streamer gets serviced or
repaired, check old tapes again afterwards. Head alignment changes can make
old tapes unreadable.
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Needless to say, backups should be made when the system is virtually quies-
cent: at night, usually. The most obvious reason for this is that, if files are being
changed while the backup is progressing, then data can be corrupted or backed
up incorrectly. The other reason is one of load: traversing a filesystem is a highly
disk-intensive operation. If the disk is being used extensively for other purposes
at the same time, both backup and system will proceed at a snail’s pace.

Enterprise backup

Special requirements for the backup of data at very large institutions are beyond
the scope of this book. Readers are referred to ref. [245] for more information.

File separation

The principle of keeping independent files separate was not merely to satisfy
any high-flying academic aesthetic, it also has a concrete practical advantage,
particularly when it comes to backing up the system. There is little sense in
backing up the static operating system distribution. It can be reinstalled just as
quickly from the original CD-ROM (a non-perishable medium). However, operating
system files that change often such as /etc/passwd or /etc/shadow which need
to be at special locations within largely quiescent filesystems, can be copied to
another filesystem which is backed up often. This follows automatically from our
principle of keeping local changes separate from the OS files.

The same thing applies to other files like /etc/fstab or /etc/group and
crontab which have been modified since the operating system was installed.
However, here one can reverse the policy for the sake of a rational approach. While
the password and shadow files have to be at a fixed place, so that they will be
correctly modified when users change their passwords, none of the other files have
to be kept in their operating system recommended locations.

Suggestion 17 (OS configuration files). Keep master versions of all config-
uration files like /etc/fstab, /etc/group or crontabs/ in a directory under
site-dependent files, and use a tool which synchronizes the contents of the master
files with the operating system files (e.g. cfengine). This also allows the files to be
distributed easily to other hosts which share a common configuration, and pro-
vides us with one place to make modifications, rather than having to hunt around
the system for long-forgotten modifications. Site-dependent files should be on a
partition which is backed up. Do not use symbolic links for synchronizing master
files with the OS: only the root filesystem is mounted when the system boots, and
cross-partition links will be invalid. You might render the system unbootable.

12.3.3 Recovery from loss

The ability to recover from loss presupposes that we have enough pieces of the
system from which to reconstruct it, should disaster strike. This is where the
principle of redundancy comes in. If we have done an adequate job of backing up
the system, including special information about its hardware configuration, then
we will not lose data, but we can still lose valuable time.
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Recovery plans can be useful provided they are not merely bureaucratic
exercises. Usually a checklist is sufficient, provided the system administration
team are all familiar with the details of the local configuration. A common
mistake in a large organization, which is guaranteed to lead to friction, is to
make unwarranted assumptions about a local department. Delegation can be a
valuable strategy in the fight against time. If there are sufficient local system
administrators who know the details of each part of the network, then it will
take such people less time to make the appropriate decisions and implement
the recovery plan. However, delegation also opens us up to the possibility of
inconsistency – we must make sure that those we delegate to are well trained.
(Remember to set the write-protect tab on tapes and have someone check this
afterwards.)

When loss occurs, we have to recover files from the backups. One of the great
advantages of a disk mirroring scheme is that users can find backups of their
own files without having to involve an administrator. For larger file recoveries,
it is more efficient for a system administrator to deal with the task. Restoring
from tape backup is a much more involved task. Unfortunately, it is not merely
a matter of donkey work. First of all we have to locate the correct tape (or
tapes) which contain the appropriate versions of backed up files. This involves
having a system for storage, reading labels and understanding any incremental
sequence which was used to perform the dump. It is a time-consuming business.
One of the awkwardnesses of incremental backups is that backing up files can
involve changing several tapes to gather all of the files. Also, imagine what would
happen if the tapes were not properly labeled, or if they are overwritten by
accident.

Suggestion 18 (URL filesystem names). Use a global URL naming scheme for
all filesystems, so that the filename contains the true location of the file, and you
will never lose a file on a tape, even if the label falls off. (See section 3.8.7.) Each
file will be sufficiently labeled by its time-stamp and its name.

We have two choices in recovery: reconstruction from backup or from source.
Recovery from source is not an attractive option for local data. It would involve
typing in every document from scratch. For software which is imported from exter-
nal sources (CD-ROMs or ftp repositories), it is possible to reconstruct software
repositories like /usr/local or Windows’ software directories. Whether or not
this is a realistic option depends on how much money one has to spend. For
a particularly impoverished department, reconstruction from source is a cheap
option.

ACLs present an awkward problem for Windows filesystems. Whereas Unix’s
root account always has permission to change the ownership and access rights
of a file, Windows’s Administrator account does not. On Windows systems, it is
important not to reinstate files with permissions intact if there is a risk of them
belonging to a foreign domain. If we did that, the files would be unreadable to
everyone, with no possibility of changing their permissions.

Data directory loss is one thing, but what if the system disk becomes corrupted?
Then it might not even be possible to start the system. In that case it is necessary
to boot from floppy disk, CD-ROM or network. For instance, a PC with GNU/Linux
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can be booted from a ‘rescue disk’ or boot disk, in single-user mode (see section
4.3.1), just by inserting a disk into the floppy drive. This will allow full access to
the system disk by mounting it on a spare directory:

mount /dev/hda1 /mnt

On Sun Sparc systems, we can boot from CD-ROM, from the monitor:

boot cdrom

or boot sd(0,6,2) with very old PROMs.2 Then, assuming we know which is the
root partition, it can be mounted and examined:

mount /dev/dsk/c0t0d0t3 /mnt

Recovery also involves some soul searching. We have to consider the reason
for the loss of the data. Could the loss of data have been prevented? Could it be
prevented at a later time? If the loss was due to a security breach or some other
form of vandalism, then it is prudent to consider other security measures at the
same time as we reconstruct the system from the pieces.

12.3.4 Checksum or hash verification

Every time we use the privileged system account, we are at risk of installing a
virus or a Trojan horse, or of editing the contents of important files which define
system security. The list of ingenious ploys for tricking root privileged processes
into working on the behalf of attackers makes an impressive ream. The seeming
inevitability of it, sooner or later, implores us to verify the integrity of programs and
data by comparing them with a trusted source. A popular way to do this is to use
a checksum comparison. To all intents and purposes, an MD5 checksum cannot
be forged by any known procedure. An MD5 checksum or hash is a numerical
value that summarizes the contents of a file. Any small change in a file changes
its cryptographic checksum, with virtually complete certainty. A checksum can
therefore be used to determine whether a file has changed. First we must compile
a database of checksums for all important files on the system, in a trusted state.
Then we check the actual files against this database over time. Assuming that
the database itself is secure, this enables us to detect changes in the files and
programs. The Tripwire program was the original program written to perform this
function. Tripwire can be configured to cross-check several types of checksum,
just on the off-chance that someone manages to find a way to forge an MD5
checksum. Cfengine can also perform this task routinely, while doing other file
operations. Cfengine currently uses only MD5 checksums (see figure 12.1).

12.4 Authentication methods

Authentication methods are techniques for re-identifying users. They are based
on matching attributes that uniquely identify individuals. Traditionally authenti-
cation has been based on shared secrets used in conjunction with cryptographic

2The SunOS CD player traditionally has to be on controller 0 with SCSI id 6.
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control:

 actionsequence = ( files )

files:

 /usr owner=root, bin mode=o-w checksum=md5 recurse=inf

Figure 12.1: A cfengine program to gather and check MD5 checksums of the /usr file
tree.

algorithms. There are two main approaches to the use of encryption: the use of
symmetric encryption algorithms and the use of public key algorithms. Recently,
related techniques such as smart cards (used in mobile phones) and biometrics
(fingerprints and iris scans) have been experimented with.

12.4.1 Symmetric and asymmetric key methods

A shared secret identifies two parties to one another. With a symmetric key
algorithm both parties must have explicit knowledge of the same secret key; one
then has the problem of agreeing secrets with all of the individuals we want to talk
to. If N parties need to communicate privately with a unique key, then one needs
N(N − 1)/2 secrets in total. Trust is established between each pair of individuals
during the mutual agreement of the key. This is a simple and effective model, but
its great overhead is the work required to establish and remember all of the keys.

With a public (or asymmetric) key algorithm, each party has two keys: a public
key and a private key; thus there are 2N keys in total. The key-pair belonging to
a given party consists of two related keys. A message that is encrypted with one
of them can only be decrypted with the other. Each user can now keep one key
completely secret and make the other key known to everyone. To send a secret
message to the owner of the private key, someone only needs to encrypt a message
with their public key. Only the owner of the matching private key can decrypt the
message again (not even the person who encrypted it). This makes the problem of
key distribution very straightforward. However, it has a price: since it obviates the
need for a trusted meeting between the parties to agree on a secret, it makes the
issue of trusting keys much harder. If you find a key, supposedly belonging to X

on a particular web-site, you have only the word of the web-site owner that the key
really is the key belonging to X. If you send a secret message to X using this key,
it will only be readable by the owner of the private key that matches this key, but
that could be anyone. Thus one has no idea, in general, whether or not to trust
the identity associated with a public key. This issue is explored further below.

Public key algorithms are now widely used in authentication for their great
convenience and flexibility.

12.4.2 Trust models and signing

Having chosen an encryption scheme for authentication, there is still the issue
of what trust model to choose. This is particularly important in cases where
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authentication is required by non-interactive programs such as client-server mech-
anisms, where human intelligence is not available to make a value judgment (see
principle 62 in section 11.7.4).

A caveat to public key methods is that they make possible the creation of digital
signatures. Since the two keys in a key-pair both work in the same way (one merely
makes an arbitrary choice about which is to be public and which is to be private),
the owner of a private key can also encrypt messages with his or her private key
that only the owner of the public key can decrypt. This does not help with privacy
now, because everyone knows the public key. However, since only the matching
public key can decrypt the message, it is possible for the receiver to verify which
key was used to encrypt the message, i.e. the identity of the sender. This is the
essence of digital signatures. It has the same trust problems as the encryption
mentioned above; however, if one has somehow learned to trust who is the true
originator of a public key, then one can also trust the signature.

The problem of trusting public keys is solved in one of three ways, all of which
are certified by signing keys:

1. Persona grata: a key can be transferred ‘in person’ from a person that we
already know. On accepting the key we sign it with our own digital signature
as a certification of its authenticity.

2. Peer review: a key that has been accepted and signed by ‘friends’ whom we
also trust is also acceptable if we see our friends’ signature(s) on the public
key. Once we have accepted and trusted the key, we sign it also and pass it
on to others. The more signatures on a key from people we trust, the more
likely it is that we can trust the key. This is also called the ‘web of trust’. It is
the model used by the encryption software PGP.

3. Trusted third party: we can authorize an entity to take responsibility for
validating the identity of parties. This trusted entity is called a Trusted Third
Party (TTP) and it has a signature that we trust implicitly. When we see a key
that has been signed by a trusted third party, we take it to be a valid identity.
Companies like Verisign sell this service for secure (HTTPS) web sites that
use the Secure Socket Layer.

Principle 63 (Trusted third parties). A trusted third party reduces the number
of trust interactions from order N2 to order N , by acting as a trusted repository
for information about the N individuals. This is only possible because the TTP is
trusted itself.

Corollary to principle (Trusted third parties). A trusted third party is a single
point of failure within an authentication system.

Schemes that are based on trusted third parties have a single point of failure
and one is therefore completely dependent upon the security and reliability of
their services. This makes them vulnerable to Denial of Service attacks.

Symmetric keys need not be signed, because they are private by definition.
Peer review is therefore not applicable as a trust method. We are left with two
possibilities: personal hand-off or verification by trusted third parties. Kerberos
uses such a third party scheme for symmetric keys (see section 12.4.6).



466 CHAPTER 12. SECURITY IMPLEMENTATION

12.4.3 SSH and cfengine

The secure shell, SSH, and cfengine share a similar trust model and authentication
mechanisms. Cfengine’s authentication dialogue is essentially a simplification of
the SSH method, adapted to non-interactive use.

Much of the sophistication in SSH concerns the negotiation of an available
encryption method, given the uncertain environment of connecting to potentially
widely different sites. Cfengine has a much simpler task in this regard, since
it is used primarily within a single organization with access to the same set of
cryptographic tools and algorithms.

The user end of SSH is normally an interactive shell, in which a user can
answer a direct question about whether or not to accept a new key. Cfengine,
on the other hand, normally works non-interactively and must therefore make a
decision internally about the acceptance of new keys.

Neither of these tools uses a trusted third party approach by default, though
SSH can use multiple authentication methods. It is a Swiss army knife of authen-
ticators. Cfengine does not allow a trusted third party model, since this kind of
centralization is contrary to the spirit of a distributed system where one would like
to make each player self-sufficient and independent of any single point of failure.

SSH uses a ‘trusted port’, i.e. port 22, which – in principle – prevents an
untrusted user from setting up a service that looks like SSH and checks IP
origin, like TCP wrappers.3 However, it must accept client keys on trust, since no
one is available on the server side to make a decision manually.

Cfengine checks IP origin and treats both server and client as untrusted: it
requires a trust window to be opened for the acceptance of a new key, by requiring
an administrator to ‘switch-on’ trust to a given IP address just before a trusted
exchange. Once the key exchange is completed, the potential for subversion is
passed. Both SSH and cfengine are, in principle, vulnerable to client identification
races; however, secure shell has a backup in that it also demands a interactive
backup authentication (such as password), so this does not necessarily matter.

It should be said that the likelihood of being able to exploit such a race is
very small. It places the onus on the system administrator to secure the trusted
environment for the key exchange. The payoff is the autonomy of the clients and
the clear isolation of risk.

12.4.4 Transport Layer Security

The secure socket layer (SSL) was originally introduced by Netscape communi-
cations in order to allow private web transactions based on X.509 certificates.
(HTTPS is SSL encoded HTTP). Version 3 of the protocol was extended with experi-
ences and suggestions from other companies in the industry and was published as
an Internet draft document standard. Transport layer security (TLS) is essentially
an outgrowth of SSLv3, and it is intended that this will become a network industry
standard.

3In reality, the trusted ports can no longer be trusted since every PC owner is a trusted user on their
own system. The threshold for trust has been lowered considerably by the proliferation of computing.
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SSL and TLS use public key methods to authenticate sites and establish a
session key for communications. The protocol authenticates both parties and
negotiates a computationally ‘cheaper’ encryption algorithm and message digest
to sign the message.

SSL is designed to be a drop-in replacement for standard socket communica-
tion, easily implemented, with minimal investment on the part of the programmer.
Roughly speaking, one simply replaces some system calls with library functions
from SSL and the encryption should be transparent. In order to achieve this level
of simplicity, a Trusted Third Party Trust model is used, since this avoids an
interaction.

Keys are referred to as certificates and are only accepted on trust if they are
signed by a signing authority (normally Verisign). Any keys that are not signed
by a known authority are presented to users so that they can make a manual
decision.

In a system administration context, SSL has both advantages and disadvan-
tages. Clearly, one does not want to pay a signing authority a hundred dollars or
more to authenticate each host at a site, but this applies mainly to the Web and
could be circumvented with custom software. A larger problem is the centraliza-
tion of the model: each new communication requires a verification with the central
authority, thus there is a single point of failure. Administratively speaking, forced
centralization is either a convenience or a curse depending on how centralized
administrative practices are.

12.4.5 Sign and encrypt attacks

The belief that signing and public key encryption give strong security, especially in
combination, is only partially true. It is still possible to construct attacks against
the naive use of these encryption methods [88]. These attacks apply to a number
of security infrastructures, including S/MIME and IPSec. They are easily curable
with administrative care. We define first some notation for representing encryption
and signing:

• Public keys: capital letters.

• Private keys: small letters.

• Encryption with public key A: {”message”}A.

• Signing with private key b: (”message”)b.

Notice that a small letter denotes both signing and the use of a private key, and
a capital letter denotes both encryption and the use of a public key. We now
consider the two attacks on the sign-encrypt trust model.

Sign then encrypt attack

Alice signs and encrypts a message for her heart’s desire, Bob:

A → B : {(”I love you!!”)a}B (12.1)
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Alas, Bob does not like Alice and wants to embarrass her. He decrypts Alice’s
message, leaving her signed message,

{(”I love you!!”)a}B → (”I love you!!”)a (12.2)

and re-encrypts the message for Charlie to read:

B → C : {(”I love you!!”)a}C (12.3)

Now, when Charlie decrypts the message, he sees Alice’s signature and believes
that Alice loves him. The very security assured by signing will now incriminate
Alice. This is more serious if the message is ”I.O.U. 1,000,000”.

Encrypt then sign attack

Inventor Alice encrypts a document describing her secret biotechnology patent,
worth millions, for Bob, the patent lawyer. She signs the message so that Bob
knows it is authentic. Unfortunately, her so-called friend Charlie (still angry about
her falsified affections) intercepts the message along the way:

A → C : ({”My patent....”}B)a (12.4)

Charlie laughs, knowing he is now rich. He strips off Alice’s signature and signs
the message himself.

({”My patent”}B)a → {”My patent”}B (12.5)

{”My patent”}B → ({”My patent”}B)c (12.6)

He then sends it to Bob, the patent lawyer:

C → B : ({”My patent....”}B)c (12.7)

It now appears that the idea comes from Charlie.
The solution to both of these attacks is to SIGN, ENCRYPT and SIGN again

messages. Note that protocols using symmetrical ciphers are not susceptible to
these attacks. We see that encryption mechanisms, while useful, are not an
assurance of security.

12.4.6 Kerberos

Another protocol for establishing identity and exchanging a session key was
devised in 1978 by R. Needham and M. Schroeder. It uses the idea of a trusted third
party or key-broker and uses symmetric encryption keys to pass messages, and
forms the backbone of the Kerberos system. In practice, the Needham–Schroeder
protocol simulates the idea of public keys by sending all requests through a
trusted third party or mediator.

Suppose A wishes to send a private message to B. Both A and B have already
registered a secret key with a trusted key server S, and they assume that everyone
else in their local domain has done the same. In order to talk privately to someone
else, the trick is to establish an encryption key Kab from A to B, given keys
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known only to themselves and S, without an attacker being able to understand
the messages. Essentially Alice asks Sam to encrypt a message to Bob for her,
without giving away Bob’s key.

A → S : A, B, Na (12.8)

S → A : {Na, B, Kab, {Kab}Kbs
}Kas (12.9)

A → B : {Kab}Kbs
(12.10)

B → A : {Nb}Kab
(12.11)

A → B : {Nb}Kab
(12.12)

Curly braces indicate a message that is encrypted, using the key in the subscript.
In words, this says the following:

1. A says to S: ”I am A, I want to talk to B and I’m giving you a random nonce
Na.”

2. S replies, quoting her nonce to show that the reply is not a replay, confirms
that the message is about a key with B, and provides a key for encrypting
messages between A and B. He also provides a message for Bob, already
encrypted with the secret key that B and S share (Kbs ). This message contains
Alice’s name and the session key (Kab) for talking to A privately. All of this is
encrypted with the common key that A and S share (Kas ).

3. Alice simply sends the message which S encrypted to B. This is already
encrypted so that B can read it.

4. B decrypts the message and replies using the session key (Kab) with a nonce
of its own to make sure that A’s request is fresh, i.e. that this is not a replay.

5. A responds that it has received the nonce.

A and B are now ready to talk, using the secret session key Kab. This protocol is
the basis of the Kerberos system, which is used in many Unix and Windows 2000
systems.

Note that A and B could be two hosts, or two users on the same host. By routing
communication through a trusted third party, they avoid having to agree more
than one private key (the trusted party’s key), in advance. Otherwise they would
have to verify the N(N − 1)/2 individual keys that are required to communicate
privately between N individuals.

12.5 Analyzing network security

In order to assess the potential risks to a site, we must gain some kind of overview
of how the site works. We have to place ourselves in the role of an outsider: how
would someone approach the network from outside? Then we have to consider the
system from the viewpoint of an insider: how do local users approach the system?
To begin the analysis, we form a list:

• What hosts exist on our site?
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• What OS types are used?

• What services are running?

• What bug patches are installed?

• Run special tools, nmap, SATAN, SAINT, TITAN to automate the examination
procedure and find obvious holes.

• Examine trust relationships between hosts.

This list is hardly a trivial undertaking. Simply building the list can be a lesson
to many administrators. It is so easy to lose control over a computer network,
so difficult to keep track of changes and the work of others in a team, that one
can easily find oneself surprised by the results of such a survey. Having made
the list, it should become clear as to where potential security weaknesses lie.
Network services are a common target for exploitation. FTP servers and Windows’s
commercial WWW servers have had a particularly hard time with bugs which have
been exploited by attackers.

Correct host configuration is one of the prerequisites for network security. Even
if we have a firewall shielding us from outside intrusion, an incorrectly configured
host is a security risk. Firewalls do not protect us from the contents of data which
are relayed to a host. If a bug can be exploited by sending a hidden message,
then it will get through a firewall. Some form of automated configuration checking
should be installed on hosts. Manual checking of hosts is impractical even with
a single host; a site which has hundreds requires an automated procedure for
integrity checking. On Unix and Windows one has cfengine and Perl for these
tasks.

Trust relationships are amongst the hardest issues to debug. A trust rela-
tionship is an implicit dependency. Any host which relies on a network service,
implicitly trusts that service to be reliable and correct. This can be the cause
of many stumbling blocks. The complexity of interactions between host services
makes many trust relationships opaque. Trust relationships occur in any instance
in which there is an external source of information: remote copying, hostname
lookup, directory services etc. The most important trust relationship of all is the
Domain Name Service (DNS). Many access control systems rely on an accurate
identification of the host name. If the DNS service is compromised, hosts can
be persuaded to do almost anything. For instance, access controls which assign
special privileges to a name, can be spoofed if the DNS lookups are corrupted
or intercepted. DNS servers are therefore a very important pit-stop in a security
analysis.

Access control is the fundamental requirement for security. Without access
controls there can be no security. Access controls apply to files on a filesystem
and to services provided by remote servers. Access should be provided on a need-
to-know basis. If we are too lax in our treatment of access rights, we can fall foul of
intrusion. For example: a common error in the configuration of Unix file-servers is
to grant arbitrary hosts the right to mount filesystems which contain the personal
files of users. If one exports filesystems which contain users’ personal data to
Unix-like hosts, it should be done on a host-by-host basis, with strict controls.
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If a user, who is root on their own host (e.g. a portable PC running GNU/Linux),
can mount a user filesystem (with files belonging to a non-root user), that person
owns the data there. The privileged account can read any file on a mounted file
system by changing its user ID to whatever it likes. That means that anyone with
a laptop could read any user’s mail or change any user’s files. This is a huge
security problem. Hosts which are allowed to mount NFS filesystems containing
users’ private data should be secured and should be active at all times to prevent
IP spoofing; otherwise it is trivial to gain access to a user’s files.

There are many tools written for Unix-like operating systems which can check
the security of a site, literally by trying every conceivable security exploit. Tools
like SPY [292], COPS, SATAN, SAINT, TITAN [111], Nessus [224] are aimed at
Unix-like hosts. Port scanners such as nmap will detect services on any host
with any operating system. These tools can be instrumental in finding problems.
Recent and frightening statistics from the Computer Emergency Response Team
indicated that only a pitiful number of sites actually upgrade or install patches
and review their security, even after successful network intrusions [160].

Having mapped out an overview of a network site, and used the opportunity
both to learn more about the specifics of the system, as well as fix any obvious
flaws, we can turn our attention to more specific issues at the level of hosts.

12.5.1 Password security

Perhaps the most important issue for network security, beyond the realm of acci-
dents, is the consistent use of strong passwords. Unix-like operating systems
which allow remote logins from the network are particularly vulnerable to pass-
word attacks. The .rhosts and hosts.equiv files which allowed login without
password challenge via rsh and rlogin were acceptable risks in bygone times,
but these days one cannot afford to be lax about security. The problem with
this mechanism is that .rhosts and hosts.equiv use hostnames as effective
passwords. This mechanism trusts DNS name service lookups which can be
spoofed in elaborate attacks. Moreover, if a cracker gets into one host, he/she
will then be able to log in on every host in these files without a password. This
greatly broadens the possibilities for effective attack. Typing a password is not
such a hardship for users and there are alternative ways of performing remote
execution for administrators, without giving up password protection (e.g. use of
cfengine).

Password security is the first line of defence against intruders. Once a malicious
user has gained access to an account, it is very much easier to exploit other
weaknesses in security. Experience, indeed empirical evidence [219], shows that
many users have little or no idea about the importance of using a good password.
Consider some examples from a survey of passwords at a university. About 40
physicists had the password ‘Einstein’, around 10 had ‘Newton’ and several had
‘Kepler’. Hundreds of users used their login-name as their password, some of them
really went to town and added ‘123’ to the end. Many girls chose ‘horse’ as their
passwords. Even after extensive campaigns encouraging good passwords, users
have a shocking tendency to trivialize this matter. User education is clearly an
important weapon against weak passwords.
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Some sites use schemes such as password aging in order to force users to
change passwords regularly. This helps to combat password familiarity gained
over time by local peer users, but it has an unfortunate side-effect. Users who
tend to set poor passwords will not appreciate having to change their pass-
words repeatedly and will tend to rebel by setting trivial passwords if they can.
Once a user has a good password, it is often advantageous to leave it alone.
The problems of password aging are insignificant compared with the problem of
weak passwords. Finding the correct balance of changing and leaving alone is a
challenge.

Passwords are not visible to ordinary users, but their encrypted form is often
visible. Even on Windows systems, where a binary file format is used, a freely
available program like PwDump can be used to decode the binary format into ASCII.
There are many publicly available programs which can guess passwords and
compare them with the encrypted forms, e.g. crack, which is available both for
Unix and for Windows. No one with an easy password is safe. Passwords should
never be any word in a dictionary or a simple variation of such a word or name. It
takes just a few seconds to guess these.

Modern operating systems have shadow password files or databases that are
not readable by normal users. For instance, the Unix password file contains an ‘x’
instead of a password, and the encrypted password is kept in an unreadable file.
This makes it much harder to scan the password file for weak passwords.

Tools for password cracking (e.g. Alec Muffet’s crack program) can help admin-
istrators find weak passwords before crackers do. Other tools can be obtained
from security sites to prevent users from typing in weak passwords. See refs.
[300, 72, 4, 153].

12.5.2 Password sniffing

Many communication protocols (telnet, ftp etc.) were introduced before security
was a concern amongst those on the Internet, so many of these protocols are
very insecure. Passwords are often sent over the network as plain text. This
means that a sophisticated cracker could find out passwords simply by listening
to everything happening on the network and waiting for passwords to go by. If a
cracker has privileged access to at least one machine with a network interface on
the same network he/she can use tcpdump to capture all network traffic. Normal
users do not have this privilege for precisely this reason. These days however,
anyone with a laptop, an Ethernet card and a GNU/Linux installation could do
this. Switched networks used to be immune to this problem since traffic is routed
directly from host to host. However, now there exist tools that can poison the ARP
cache and cause packets to be rerouted; thus switching is now only a low-level
hindrance to password sniffing. In principle, any mildly determined user could
do this.

Programs which dump all network traffic include tcpdump, etherfind, snoop
and ethereal. Here is a sample of the output from Solaris’ snoop program showing
the Ethernet traffic from a segment of cable. Snoop recognizes common high-level
protocols (SMTP/FTP/ARP etc.) and lists them explicitly. Unknown protocol types
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(in this case IPX) are simply listed as ETHER. In the right-hand column is the
information which an intruder would try to use to sniff passwords.

Using device /dev/hme (promiscuous mode)
post.eet.no -> nexus SMTP C port=4552 oJyhnJycoZyhnKCcnGCc
torget.drammensnett.no -> nexus SMTP C port=54621 AGoHRPVU9VT3

nexus -> torget.drammensnett.no SMTP R port=54621
pc111-75.iu.hioslo.no -> nexus FTP C port=1093

nexus -> pc111-75 FTP R port=1093 226 Transfer complet
nexus -> post.eet.no SMTP R port=4552

post.eet.no -> nexus SMTP C port=4546 UHAQcBB/UB9QcBBwH1AQ
nexus -> post.eet.no SMTP R port=4546

post.eet.no -> nexus SMTP C port=4546 H2AQcBBwH1AfYBAQH1Af
fw.nki.no -> nexus SMTP C port=11424 O3Jw+XF7cMFCCweEQ/

nexus -> fw.nki.no SMTP R port=11424
post.eet.no -> nexus SMTP C port=4552 niYmJgomChomChoaChoK

nexus -> post.eet.no SMTP R port=4546
nexus -> (broadcast) ARP C Who is 128.39.89.230, takpeh ?
nexus -> post.eet.no SMTP R port=4552

? -> * ETHER Type=0000 (LLC/802.3), size = 86 bytes
? -> * ETHER Type=0000 (LLC/802.3), size = 128 bytes
? -> * ETHER Type=0000 (LLC/802.3), size = 80 bytes

One way to avoid the problem of password sniffing is to use fully encrypted links
such as ssh [332] and SSL (Secure Socket Layer) enabled services which replace
the standard services. Another is to use a system of one-time passwords. One-time
passwords are designed to eliminate the need for users to send their passwords
over the network at all. Instead of typing an actual password, one types the remote
password for a host into a program on a local machine, in order to generate
a sequence of throw-away passwords which can be used in place of the actual
remote password. The passwords are used only once so, even if someone gets to
overhear them, it will already be too late: the password will have expired. Also
the system is ingeniously designed so that the actual remote password (which is
used to generate the one-time passwords) never gets sent over the network at all.
S/KEY is such a system. Here is an example of how it works:

1. We want to make a connection from host A to host B.

2. We have earlier set a password on host B.

3. We telnet to host B from host A.

4. Host B prompts us with a code string: 659 ta55095 and asks for our
username. We type the username and host B asks for the one-time password.

5. We now need to find the one-time password by running a local program on
host A with the code string as an argument:

key 659 ta55095
passwd: *******
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The key program prompts us for the secret password on host B. When we
type this it does not go across the network. The key program returns a clear
text, one-time password valid for one session: ‘EASE FREY WRY NUN ANTE
POT’.

6. We type ‘EASE FREY WRY NUN ANTE POT’on host B (sent over the network)
and the password is accepted.

7. Next time we follow the same procedure and get a different password.

12.5.3 Network services

When installing a new service which is available to more than one user it is
appropriate to ask the questions:

• Do I need this service?

• Whom or what information do I have to trust in order to use this?

• What will happen if someone abuses that trust?

For example, the rlogin feature of Unix has a file called .rhosts in which
a user can add a list of trusted hosts. That user can log in to the host with the
.rhosts file from any one of those trusted hosts without giving a password. The
user is clearly willing to trust this list of hosts. But that is not the only trust
relationship here. Unix uses DNS (the Domain Name Service) in order to verify
the identity of connecting machines, so the rlogin service implicitly trusts the DNS
service. If someone could corrupt that service, there would be a potential security
problem, see section 11.8.8.

Another example is in software distribution, both for Unix and Windows. In
order to distribute software from a central server to many clients, the clients have
to trust the information being sent to them from the server. They have to give the
server permission to install unknown files which might be security hazards.

SNMP control systems accept information from a controller, based only on a
fairly weak password (community string). The password has a default value of
‘public’ which many sites forget to change (a potentially huge security risk). This
information can be used to read or even change control functions of key network
components and is even used for performing remote system administration in
certain products. Usually a second password is required to actually change data.
Its default value is ‘private’.

Cfengine places all of its trust in the correctness of its input file, it does not
accept unsolicited input from the network at all. In software distribution it will
trust files from a software server of its own choosing, but arbitrary servers cannot
send data to it uninvited.

12.5.4 Protecting against attacks

• Look out for users with weak or non-existent passwords. This is the easiest
way for an attacker to enter the system.
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• Train all staff in basic security procedures, and pay special attention to those
who are highly privileged.

• Do not give trusted access to other hosts unless absolutely necessary.
Make sure there are no NIS wildcards + in /etc/hosts.equiv. Avoid using
.rhosts files altogether, and replace all of the old Berkeley ‘r’-commands
(rlogin, rsh etc.) with a version of secure shell (ssh).4

• Attempts at initiating ping attack have been identified by large numbers of
persistent ping processes.

• Disable unused services, e.g. in /etc/inetd.conf, which might contain
security leaks, like UUCP, TFTP.

• Make sure that each active service runs in its own sandbox, with non-
overlapping privileges.

• Make sure the router filters all unnecessary traffic. Usually there is no reason
to permit RPC or SNMP, NetBEUI, or NFS traffic outside of the local domain
for instance. Anti-spoof filtering of IP addresses is also a must: e.g. a packet
with a source address from a network on the other side of the planet cannot
originate from inside the local network, so filter it.

• Make sure that the latest security patches are installed on all systems.

• Monitor connections using netstat -a to show all listening connections.
Use tcpd logging.

• Monitor processes running on the system. How many copies of important
processes are running? How many should be running? Often it is possible to
see that one is under attack by looking at what processes are running and
who is running them. For instance an attempt at port sniffing or spamming
might be seen with a bunch of processes like this:

nobody .... /usr/sbin/inetd
nobody .... /usr/sbin/inetd
nobody .... /usr/sbin/inetd
nobody .... /usr/sbin/inetd
nobody .... /usr/sbin/inetd

inetd is a multiplexer which starts Internet services on many ports. Normally
it is only root who runs this. The above indicates that a user is trying to use
the well-known account nobody to start services, or to overload the system
with requests.

• Check filesystems for suspicious looking hidden files, i.e. files with names like
.. . These are often used to hide dangerous programs or shells which users
can use to gain root privileges. Cfengine performs this task automatically
when it examines filesystems.

4As the reviewer of this book put it: ‘They’re done. Stick a fork in them.’
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• Check file integrity of static files and program code using MD5, SHA-1 or
other checksums.

• Make sure that . is not in root’s path. It is possible to inadvertently execute
a Trojan horse program.

• Make sure that log and audit files like /var/adm/utmp are not world writable,
if possible, hence allowing crackers to cover their tracks. Modern Unices do
not have this problem.

12.5.5 Port scanning

In order to find back-doors into vulnerable systems, many network attackers scan
ports on network hosts in order to find out which services are running on them.
Programs for performing such scans (e.g. nmap or queso) can be obtained freely
from the network, as can many other intrusion tools, so crackers require little
or no intelligence in order to carry out these simple attacks these days. Most
intrusion tools can also be used to help secure systems.

In a poorly configured system a cracker might find active services which even
the system owner did not realize were running. UUCP and TFTP are typical
examples. These services can often be exploited to install files in illegal places.
Known faults in services can be exploited if one knows about the services which are
running. TCP/IP fingerprinting is the process by which port scanners determine
the type of operating system from the quirks of a host’s TCP stack. If a telnet to
a host does not immediately reveal a banner with the OS type (it usually does on
any operating system):

nomad% telnet 127.0.0.1
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ’^]’.

Red Hat Linux release 4.2 (Biltmore)
Kernel 2.0.30 on an i586
login:

then more intricate signatures can be combed for tell-tale signs.
Primitive port scanning attempts are detectable if network activity is followed

closely. Strings of attempted ‘connect’ requests to one port after the other are easily
spotted. Recently, however, the trend has expanded to include ‘stealth scanning’
in which scans are performed at random over long periods of time to avoid
attracting attention. Port scanning is only dangerous if there are poorly configured
hosts on the network. Perhaps the most important issue is the consistent use of
strong passwords. The .rhosts and hosts.equiv files which allow login without
password challenge via rsh/rlogin were okay in bygone times, but these days we
cannot afford to be lax about security. The problem with this mechanism is that
.rhosts and hosts.equiv use hostnames as effective passwords. This mechanism
trusts DNS lookups which can be spoofed in elaborate attacks in order to mislead
a host about the identity of a connecting host. Moreover, if a hacker gets into
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one host, he/she will then be able to log in on every host in these files without a
password. This greatly broadens the possibilities for effective attack.

There are similar, but somewhat different issues with ssh and .shosts. The
key-per-host scheme makes it possible to thwart these kinds of attacks, but ssh
and sshd are rarely set up this securely, since the default implementation just
leaves it up to the client to worry about spoofing.

12.5.6 X11 security

Although many users are not aware of it, it is often possible to download the
screen image of another user who is using the X-windows system. While this
might occasionally be a useful opportunity to help remote users with a specific
problem [337], in general it must be considered a grave security risk. It is equally
possible to ‘bug’ the keyboard and listen to all the key-presses. The problem is an
out-dated security mechanism which has long since been replaced, but which is
still used by very many users. The problem is the xhost program. This is used to
grant other hosts permission to draw on your X server – in other words, if you are
remotely logged on to a host other than the one you are using as a display, you
must grant the remote host access to write on your screen.

In the old X-windows system, prior to release 5, one had to grant access to
a particular host. Once this was done, anyone on that host had access to your
server, not just you. This was later replaced by the xauth magic-cookie mechanism
which works on a user basis. Some users still insist on using xhost however, with
a command like this:

xhost +

Any user writing this, opens their display to everyone in the world. The antidote, of
course is the command xhost -. Users of the secure shell ssh, see section 12.6,
can now have automatic X11 forwarding with authentication cookies. Everyone
should therefore execute xhost - once and never use the xhost mechanism again.

12.6 VPNs: secure shell and FreeS/WAN

VPN stands for a Virtual Private Network. This is simply an encrypted tunnel
(like an armored pipe) connecting two locations. It is a line of communication
which is reinforced by encryption and authentication. Privacy is obtained through
encryption and the line is virtual because it sits on top of regular TCP/IP commu-
nication. VPNs are sometimes uses to connect together branches of organizations
that are located at geographically diverse locations; traffic can be kept ‘internal’,
even though the packets travel over public media. Of course, an armored pipe is
no stronger than its weakest end-point.

Secure shell software can be used to build VPNs for many services. The secure
shell [332] is a secure replacement for the rsh commands. It protects against IP
spoofing where a remote host pretends to be a trusted host by faking IP datagrams;
DNS spoofing where an attacker forges name entries in the name-service; the
interception of passwords in network packets and several other kinds of attack.
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FreeS/WAN is another project [247] started for GNU/Linux systems which will
provide encrypted tunnels. See also the Virtual Private Network Consortium [74].

12.7 Role-based security and capabilities

In a dynamic, interactive situation we could generalize the notion of access to
allow users different permissions depending on what they are doing. This can be
done in different ways:

• Define roles for users (e.g. by membership in privileged groups with access
to special systems, like man in Unix).

• By asking a service to carry out an operation, whose abilities have the
appropriate privileges for the task (e.g. WWW, telnet, Java).

• By setting some attribute which determines the allowed permissions for a
given task (e.g Unix setuid programs).

• Use of abstract ownership (e.g. polymorphic methods in object-oriented lan-
guages).

Unix setuid programs are an example where the activities of a program can be
changed (by the superuser) so as to grant a specific program the right to operate
with a different user-identity and thus privileges (without authentication). The
setgid is a corresponding mechanism for setting the group ownership of a process.
Note that setuid programs often give more privilege than is necessary and such
programs have been a major cause of security problems on Unix platforms.

POSIX ‘Capabilities’ have recently been implemented in the Linux kernel [57].
These ‘Capabilities’ are an additional form of privilege control to enable more
specific control over what privileged processes can do by giving them a direct
line to the kernel. Rather than making a program ‘setuid root’, one could give a
program privilege to perform a specific task and nothing more. Other examples are
Rule Set Based Access Control (RSBAC), and LIDS (Secure Linux Project) which
implement Mandatory Access Control in the kernel for all kinds of operations on
files and processes. This presents some administrative difficulties for software,
since there is no longer any user with complete privilege.

12.8 WWW security

The concept of World Wide Web (WWW) security sounds like a contradiction in
terms. The WWW is designed to publish information to the masses. Security has
to do with restricting access. What has the WWW got to do with security?

Web security has to do with:

• Protecting the published data from corruption.

• Granting access only to those files we wish to publish.
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• Preventing users from tricking the WWW server into executing unauthorized
commands on the server host.

• Protecting against a protocol that opens the system to all manner of attacks
through abuses of the protocol.

Although there have been many security problems with the feature over-laden
Internet Information Server for Windows [300], there is nothing principally inse-
cure about the WWW service. Any file-server can, in principle, compromise the
security of a host by making information about that host available to others. If a
server provides access to unauthorized files, this will clearly be the case. All we
need to do is to ensure that proper access controls are maintained.

The Free Apache WWW server (see section 9.6) has all of the features one
requires to operate a secure web service. It can be run without special privilege,
and it has quite sophisticated mechanisms for restricting access to data. It is
nevertheless possible to configure the server in an insecure fashion, so one needs
to be cautious. There are three distinct categories for web use:

• External web service for organization.

• Internal web service for organization.

• Private users’ web pages.

The last of these is arguably the greatest potential security risk for the Web: we
usually trust the files and programs which we write ourselves in the name of our
organization, but we have no reason to trust the integrity of private or guest users.
There are two areas where a security breach can occur:

• File ownership and access rights.

• CGI-scripts.

CGI-scripts can be used to execute commands on the server-host with the user-
privileges of the WWW user. Although the WWW user is introduced precisely to
isolate the powers of the WWW service, we can still do quite a bit of damage – not to
the host directly, but to other users and to the web server access controls. It is an
inevitable consequence of running a public service with a private ID that any file
which gets written by a CGI-script can also be overwritten by another CGI-script,
regardless of which user is responsible for that script. Thus users could wage war
on one another with CGI-scripts such as guest-books, corrupting or even deleting
one another’s data freely. This is a fundamental weakness in the WWW service: if
we allow the existence of arbitrary CGI-scripts on the system, then we can carry
out arbitrary operations with the privileges of the WWW user. Users can:

• Send anonymous, untraceable mail which appears to come from the WWW
user at the organization hosting the CGI program.

• Circumvent .htaccess access controls to certain files on most types of
operating system, by executing the command /bin/cat filename as part of
a CGI-script.
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The first principle of server security is thus:

Principle 64 (Service corruption). If a server runs with the privileges of a
non-privileged user, then none of the data or configuration files of the system
should be owned by, or be writable by the www user, otherwise it is often trivial to
alter the contents of the data using the service.

Example 18. The WWW server usually runs under a user ID of www. If any of
the data files or configuration files are owned by this user, it is trivial to write a
CGI-script that gives complete control of the service to any outside user.

If we violate this principle, any local user can overwrite and corrupt web
pages simply by writing a CGI-script. Of course, the WWW server does not have
any special privileges. It is just an ordinary, non-privileged user who has to obey
normal file permissions, nevertheless this is not enough to prevent a few accidents.
This brings us to the fundamental flaw in WWW security.

Any files which are to be served by a WWW server have to be readable by
the WWW user. All CGI-scripts run with the rights of the WWW user. It therefore
follows that any CGI-script can read any file which is capable of being served by the
daemon. To put it bluntly: Any user can write a CGI-script to circumvent .htaccess
security barriers. The solution to this problem is to either disallow CGI-scripts, or
to move sensitive (non-public) documents to a separate host, which regular users
do not have access to.

CGI-scripts which send mail are a conundrum. If a user decides to write a CGI-
script which sends E-mail, it executes the mail program with the user identity of
the WWW user. The identity of the true sender is irrelevant, since the actual sender
is the WWW server. This could be an unfortunate situation for an organization. If
private users can send E-mail anonymously, but which can be traced back to the
WWW server of our organization, we clearly stand in the firing line for all kinds
of trouble. A user could harass anyone with impunity, and only the organization
would be responsible.

12.9 IPSec – secure IP
Many problems in network communication would be easily solved if there were
transport layer encryption of Internet traffic. Spoofing would be impossible,
because attackers would have access to cryptographic checksums of the packets
(spoofing could be easily detected). Similarly sniffing the net for passwords, leaked
by old protocols, would be impossible, since no plaintext data would be sent.

IPSec is a security system developed for use with IPv6, but it has also been
implemented for IPv4 (RFC1636). It offers encryption at the IP level (below the
TCP/UDP layer). This means that common TCP attacks, such as sequence guess-
ing or spoofing attacks, cannot occur since attackers could never see the contents
of travelling packets.

IPSec allows hosts to set security policies on routed packets. It includes access
control lists for encryption, integrity checks and point-to-point private tunnels.
This all sounds like the perfect solution to the problem, however IPSec is not
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without problems: it is not fully implemented by network hardware and software
today. This could take some time.

IPSec supports both session encryption and strong authentication, based on
either public or secret keys. It consists approximately of two protocols:

• Authentication Header (AH): this describes the initial negotiation of identity
and encryption methods.

• Encapsulation Security Payload (ESP): this describes the encryption schemes
and also relates to the strong authentication of data.

These provide the following services:

• Access control

• Connectionless integrity

• Data origin authentication

• Replay protection

• Privacy (encryption).

12.9.1 Security Associations (SA)

IPSec maintains a security context known as a Security Association (SA), which is
a policy decision that times out after a specified lifetime. A Security Association is
uniquely defined by three parameters:

• Security Parameters Index: This is a context identifier.

• IP destination address: A unicast address that is to be the endpoint for the
SA (but not necessarily the endpoint of a packet/datagram).

• Security Protocol Identifier: Indicates whether an AH or ESP security method
is to be used.

Decisions based on these parameters are collected into a Security Policy Database
(SPD), where they are examined for each packet or datagram that is forwarded by a
router, firewall or host. IPSec is designed to offer great flexibility to administrators;
however, with such power comes the possibility of great error as we shall see
in section 12.10. IPSec offers the possibility to distinguish between a variety of
security options for traffic routed along different paths, using selectors.

12.9.2 Selectors

An IPSec Security Association policy is built up from selectors, or matching parame-
ter sets that are compared with high-level packet header fields. Selectors are used to
filter outgoing traffic from a router or firewall. Each packet is processed as follows:

1. Compare header field values with the values stored in the policy database and
select zero or more Security Associations determining the packet’s outcome.
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2. Determine which SAs apply to the current packet.

3. Process according to AH or ESP protocols.

The selectors match on a number of values. The most important of these are:

• Destination IP address: This can be a single unicast address, or a list or range
of IP addresses.

• Source IP address: This can be a single IP address, or a list or range of values,
thus allowing single rules to cover traffic from a group of collaborating hosts.

• Data Sensitivity Level: A user security classifier that identifies the degree of
security required for the information.

• IPSec protocol: Either AH, ESP or AH/ESP combined.

• Source and destination ports: The port numbers of the services for the TCP
and UDP layer.

12.9.3 Modes

IPSec defines two modes for traffic. In transport mode, IPSec provides protection of
the upper layers of the protocol headers, e.g. TCP and UDP. This prevents replay
attacks such as sequence guessing and address spoofing. ESP in transport mode
encrypts and authenticates the IP packet contents, but not the IP header, which
might still be observed or rerouted by an eavesdropper or middle-man. AH in
transport mode authenticates the IP packet contents and sensitive parts of the IP
header.

In tunnel mode, the entire original IP packet becomes private. New fields are
added to encapsulate the IP packet – hence the whole data stream – in a ‘tunnel’.
No routers along the way are able to examine the contents of the packets. Thus,
in principle, this encapsulation could be used to send packets on a secret journey
that is not detectable by eavesdropping at a single location.

Tunnels can be nested; indeed, this is required as traffic might pass through
a variety of routers, under the administration of different organizations each with
their own policies. We expect therefore:

• Host-to-host encryption: by agreed secret session key.

• Point-to-point encryption: between gateways, on route.

12.9.4 Rule ordering

Like any rule-based system, IPSec is susceptible to authentication–encryption
ordering exploits. Because authentication (like signing) and encryption are two
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separate operations, different orderings lead to different results. If authentication
data are applied only after encryption, then they can be altered by a middle-man,
leading to authentication spoofing (see section 12.4.5). Similarly, if encryption is
applied after authentication, then the destination host can reroute data under
false pretences.

The policy manager searches for the first network object that matches from the
top of the list, and continues down through all the policy rules in turn, generating
rule lists from the policy rules until all instances of that network object are added
to the rule list. Therefore, rules appearing first can prevent subsequent rules from
being enforced. For example, assume you create the following two policy rules:

Policy Rule 1:

src= host1 dest=host2 serv=all IP action=Permit and IPSec

Policy Rule 2:

src=network1 dest=network2 serv=all IP action=Permit

where host1 is assumed to be on network1 and host2 is on network2. Policy Rule
1 is a more specific rule; therefore, it should appear first in the Policy Rule table
so that traffic from host1 to host2 is routed through an IPSec tunnel. If Policy
Rule 2 appeared first, it would take precedence and non-tunneled IP traffic would
be permitted from host1 to host2.

12.10 Ordered access control and policy conflicts

Access control lists are the basis of access control in most computer security
systems. They are irreplaceable, and yet they have a basic flaw: they are order
dependent.

Principle 65 (Conflicting rules). In any situation where conflicting rules can
arise, the result will be sensitive to the order in which the rules are evaluated.

Example 19 (Ordering in list-based policies). List-based policy decisions are
sensitive to ordering issues. Lists usually satisfy a ‘first match wins’ rule, or an
‘evaluate all rules in order’ rule.

If the ordering of two rules is reversed, valuable protection can be lost. An exam-
ple of this was mentioned in section 12.4.5 for signing and encryption. Encryption
is often a problem here, because it hides rules that might be evaluated, prevent-
ing any ‘corrective measures’ that might have been applied to eliminate conflicts.
Consider three examples of IPSec security polices [124], where inconsistencies can
lead to unfortunate and incorrect behavior.

Example 20 (IPSec 1). Consider a scenario between two domains (figure 12.2),
one of which has a firewall and one of which has a gateway supporting IPSec
security policies. The users of H1 are concerned about the privacy of data, so they
arrange for the traffic to be encrypted.
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H1
FW1 SG2

H2

Figure 12.2: IPSec configuration 1.

Using IPSec policy rules, an encrypted tunnel is built between H1 and the secure
gateway SG2 in order to protect the traffic. However, the IPSec policy rules on
the firewall are set by a different authority, and they can be specified so that
encrypted packets can be denied access. If the firewall FW1 has such a rule, either
intentionally or unintentionally, then all packets will be dropped and communication
will be mysteriously impossible.

Example 21 (IPSec 2). Suppose that H1 is still trying to encrypt traffic to SG2,
with the same tunnel rule. Suppose the firewall FW1 now has the rules:

Allow: source=H1, destination=H2
Deny: all others

However, since the encryption tunnel changes the destination to be SG2 in the outer
encapsulation header, the firewall will mistakenly drop all traffic from H1 to H2 that
should be allowed. Even though the traffic has the correct source and destination
addresses, the overlapping rules cause problems.

In the following example, encryption plays a role in fixing a strong ordering of
rules that can lead to unfortunate mis-communications.

Example 22. (IPSec 3). Consider two separate sites (figure 12.3), each with
their own IPSec gateways (SG1 and SG2). Suppose that the administrator from
department D1 who is in charge of SG1 decides that all traffic from D1 to site O2
should be encrypted by a tunnel from SG1 to SG3. In a different building, another
administrator who controls SG2 decides that traffic from site O1 to site O2 should
be encrypted through a tunnel from SG2 to SG4.

What happens now, when someone in department D1 attempts to send a message
to someone in department D2? The traffic between the sites is now governed by two

SG1

SG2

SG3

SG4

ENC tunnel 1

ENC tunnel 2
D1

O1 O2

D2

Figure 12.3: IPSec configuration 2.
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policies that do not agree, and either tunnel could be chosen. Part of the journey is
unencrypted, either in the first organization, or in the second.

If the administrator in D1 does not add a selector for traffic specifically to D2
(via SG4) that allows it to pass via SG2, then it could take the upper tunnel and
be unencrypted within the second organization (between SG3 and SG4). If the
communication is between an employee of organization O1 and the organization
itself, this might be a breach of security.

On the other hand, if the rules are adjusted so as to direct traffic to the lower
tunnel for all traffic destined for site O2, then there would be two overlapping
rules to SG4 (from SG1 and SG2) and the traffic could pass by either one of two
routes.

Suppose someone in department D1 now wishes to send data to a host outside
of department D2. If the traffic takes the upper tunnel 1, there is no problem.
However, if the traffic chooses the lower tunnel in the diagram, via a new
tunnel between SG1 and SG2, then some strange effects can occur. With this
configuration, traffic is encapsulated with a secure header from SG1 and then
encapsulated by a new header from SG2 to send to SG4. When SG4 decrypts
and removes the packaging, it finds that the destination is SG3, SG4 sends the
traffic back to SG3 unencrypted, which finally delivers the packet to its actual
destination.

SG1: (dest=H2)_SG4, send SG2
SG2: ((dest=H2)_SG4)_SG4, send SG4
SG4: (dest=H2), send SG3
SG3: send destination

Although the intention was to encrypt all the traffic, the traffic ends up passing from
SG4 to SG3 unencrypted.

The problem over overlapping rules can thus lead to security problems, unless
a careful site-wide management assures the‘ consistency of policy throughout. The
alternative to using multiple encapsulation rules is use point-to-point encryption,
but this has its own problems. All points along a route must be trusted to deny
access to eavesdroppers. This is not enforceable.

12.11 IP filtering for firewalls

Filtering of TCP/IP data can be accomplished in numerous ways, both at routers
and at the host level. Filters can exact access control on datagrams, where the
attributes are, amongst other things,

• Source port

• Destination port (service type)

• Source IP address

• Destination IP address

• TCP protocol attributes (SYN/ACK).
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A firewall blocks access at the network level. For instance, Cisco IOS rules:

ip access-group 100 in
access-list 100 permit tcp any host 128.39.74.16 eq http
access-list 100 permit tcp any host 128.39.74.16 eq smtp
access-list 100 deny ip any any

Modern versions of operating systems can filter IP packets in the kernel too, giving
hosts effectively a host-based firewall. For instance, Linux and FreeBSD have IP
tables, formerly known as ‘IP chains’:

iptables -N newchain # new ACL/chain
iptables -A newchain -p tcp -s 0/0 smtp -j ACCEPT # -s source address
iptables -A newchain -p tcp -s 0/0 www -j ACCEPT
iptables -A newchain -j DENY # all else

The CIDR notation 0/0 is the same as 0.0.0.0 255.255.255.255, or any. A
default policy for any packets that are not ACCEPTed is set as follows:

iptables -P INPUT DROP
iptables -P OUTPUT DROP

Windows 2000 has corresponding ‘IPSec filters’ and the local security policy has
an IP filter list.

12.12 Firewalls

A firewall is a network configuration which isolates some machines from the rest
of the network. It is a gate-keeper which limits access to and from a network. Our
human bodies are relatively immune to attack by bacteria and viruses because
we have a barrier: skin. The skin contains layers of various fatty acids in which
bacteria and viruses cannot normally survive. If we lose the skin from a part of the
body, wounds become quickly infected; indeed, prior to antibiotics, many people
died from infected wounds. A firewall is like a skin for a local area network.

The idea is this: if we could make a barrier between our local network and
the Internet which is impenetrable, then we would be safe from network attacks.
But if there is an impenetrable barrier so that no one can get into the network,
then no one can get out either. Why pay for a firewall when we could just pull
out the network cable? Think of the body again: we have to put food and air into
our bodies and we have to let stuff out, so we need a hole in the skin (preferably
several). We do not usually die of the food we eat because the body has filters
which screen out and break down dangerous organisms (stomach acid and layers
of mucus etc.). These then hand us the ‘input’ by proxy. We do the same thing
with computer networks. A firewall is not an impenetrable barrier: it has holes
in it with passport checks. We demand that only network data with appropriate
credentials should be allowed to pass.

12.12.1 A firewall concept

A firewall is a concept. It is not a thing; there is no single firewall solution. The
name ‘firewall’ is a collective description for a variety of methods which restrict
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access to a network. They all involve placing restrictions on the way in which
network packets are routed. A firewall might be a computer which is programmed
to act like a router, or it might be a dedicated router or a combination of routers
and software systems. The idea with a firewall is to keep important data behind
a barrier which has some kind of passport-control and can examine and restrict
network packets, allowing only ‘harmless’ packets to pass.

• All traffic from inside to outside or vice versa must pass through the firewall.

• Only authorized traffic is allowed to pass.

• Potentially risky network services (like mail) are rendered safer using inter-
mediary systems.

• The firewall itself should be immune to attack.

A firewall cannot help with the following:

• Badly configured hosts or mis-configured networks.

• Data-based attacks (where the attack involves sending some harmful infor-
mation, like the code word which makes you take your own life, or an E-mail
which bolts a Trojan horse).

There are two firewall philosophies: block everything unless we make an explicit
exception and pass everything unless we make a specific exception. The first of
these is clearly the most secure or at least the more paranoid of the two.

Here are a few concepts which get bandied around in firewall-speak:

• Screening router or ‘choke’: A router which can be programmed to filter or
reject packets directed at certain IP ports.

• Bastion host: A computer, specially modified to be secure but available.

• Dual-homed host: A computer with two net-cards, which can be used to link
an isolated network to a larger network.

• Application gateway: A filter, usually run on a bastion host, which has the
ability to reject or forward packets at a high level (i.e. at the application level).

• Screened subnet/DMZ: An isolated subnet, between the Internet and the
private network. Also called a DMZ (de-militarized zone). A DMZ is the bit
between a screening router and the firewall, bastion host. This is a good
place for external WWW services.

The firewall philosophy builds on the idea that it is easier to secure one host
(the bastion host) than it is to secure hundreds or thousands of hosts on a local
network. One focuses on a single machine and ensures that it is the only one
effectively coupled directly to the network. One forces all network traffic to stop at
the bastion host, so if someone tries to attack the system by sending some kind of
IP attack there can be little damage to the rest of the network because the private
network will never see the attack. This is of course a simplification. It is important
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to realize that installing a firewall does not give absolute protection and it does
not remove the importance of configuring and securing the hosts on the inside of
the firewall.

It should also be noted that a firewall is usually a single point of failure for a
network. It is vulnerable to Denial of Service attacks.

12.12.2 Firewall proxies

Of course we do not want all traffic to stop; some services like E-mail and maybe
HTTP should be able to pass through. To allow this, one uses a so-called ‘proxy’
service or a ‘gateway’.5 A common solution is to give the bastion host two network
interfaces (one is then connected to the unsafe part of the network and the other
is connected to the safe part), though the same effect can be obtained with a
single interface. A service is said to be proxied if the bastion host forwards the
packets from the unsafe network to the safe one. It only does this for packets
which meet the requirements of the security policy. For instance, you might decide
that the services you require to cross the firewall are inbound/outbound telnet,
inbound/outbound SMTP (mail), DNS, HTTP and FTP but no others.

Principle 66 (Community borders). Proxying is about protecting against
breaches to the fundamental principle of communities. A firewall proxy provides
us with a buffer against violations of our own community rights from outside, and
also provides others with a buffer against what we choose to do in our own home.

Proxying requires some special software, often at the level of the kernel where
the validity of connections can be established. For instance, packets with forged
addresses can be blocked. Data arriving at ports where there was no registered
connection can be discarded. Connections can be discarded if they do not relate
to a known user-account.

12.12.3 Example: dual-homed bastion host

A simple firewall configuration is shown in figure 12.4.
In this example we have effectively two routers, a DMZ and a protected network.

The first packet-filtering router will route packets between the Internet and one
of three hosts. FTP is routed directly to a special FTP server. The same applies
to HTTP packets. These services are dealt with by separate hosts, so that (if
something should go wrong and the machines are broken into) it is no worse than
having to restore these single hosts from backup. None of the servers in the DMZ
have normal user accounts, so there would be no help to crackers trying to crack
password files there, if they managed to break in. The bastion host gets all packets
which are not for the other services. The bastion host forwards okay-looking
packets to the internal router which is really just a further packet filter (a backup
in case of failure of the bastion host). The internal router accepts only packets
passing between the safe network and the bastion host, all others are rejected.

5This should not be confused with a WWW caching proxy, which is a kind of cache for frequently
used HTML pages.
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dnshost host host

ftphost httphostexternal
router

BASTION
HOST

smtphost

external Internet

DMZ

internal network

Figure 12.4: A simple firewall with a dual-homed bastion host.

The bastion host proxies all of the appropriate protocols including FTP and HTTP
between the safe network and the DMZ.

12.12.4 Example: two routers

A second example, in which there is no dual-homed host, is shown in figure 12.5.
In this configuration we use two routers to allow increased protection. An

exterior router connects the site to the Internet, or the untrusted ‘outside’ network.
The interior router protects the internal network from the bastion host and from
the DMZ. Although the bastion host does not physically separate the exterior
and interior networks, it still separates them through proxy software, by forcing
packets to be routed through the bastion host’s proxy services.

In order to illustrate router filtering tables more explicitly, let us assume that
we have a WWW server and FTP server in the DMZ, and an SMTP server on the

dnshost

internal
router

host host

ftphost httphostexternal
router

BASTION
HOST

smtphost

external Internet

DMZ

internal network

Figure 12.5: Firewall with no dual-homed host, but two routers.
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internal network. The DNS service is split. Data pertaining to the outside network
are kept in an authoritative server on the bastion host itself. DNS data about the
internal network are not visible to the outside world; they are kept on the internal
network, on a separate internal DNS server. Local machines are clients of the
internal DNS server, so that DNS data are maximally protected.

The router filtering tables are shown and explained in tables 12.1 and 12.2 (see
also ref. [61] for an excellent discussion of filtering and firewalls in general). They
are designed to route traffic through the proxy servers on the bastion host, and
direct special services (SMTP, HTTP etc.) only to the hosts which need to receive
them. The bastion host, as usual, has a stripped down operating system, to remove
as many potential exploits from the reach of potential intruders. The filter rules
distinguish between traffic which is incoming and traffic which is outgoing. Note
that TCP and UDP traffic differs here. Whereas TCP traffic generally involves fixed
port addresses on servers and random ports (with port numbers greater than
1023, actually usually much higher than this) on clients, we have to be careful
about filtering possible traffic based on port numbers. In practice, 1023 is probably
far too low a port number to set here, but it is difficult to make generic rules for
random port numbers, so we use this number as a mnemonic. Some spoofing
attempts are prevented by requiring the ACK bit to be set on TCP connection
requests. The ACK bit is not set on SYN packets which initiate connections, only
on replies, so requiring the ACK bit to be set is a way of saying that these rules
require traffic to be part of an already established dialogue between legitimate
ports. This prevents a remote attacker from using a well-known port externally to
attempt to bypass the filter rules to attack a server living at a port number over
1023.6 The corresponding outgoing rule can be considered a service to other sites,
which stifles local spoofing attempts.

12.12.5 A warning

The foregoing configurations are just examples. In practice we might not have all the
hardware we need to separate things as cleanly as shown here. Although there is a
public domain firewall toolkit [115], most firewall software is commercial in nature
because it needs to live in the kernel and make use of code which is proprietary.

Firewall management is a complex issue. We cannot set up a firewall and then
forget about it. Firewalls need constant maintenance and they are susceptible to
bugs just like any other software. It is best to build up a firewall system slowly,
understanding each step. A good place to start is with packet-filtering routers to
eliminate the most offensive or least secure service requests from outside your
local network. These include NFS (RPC), IRC, ping, finger etc.

Today, many consider firewalls to be an outdated idea, one that is no substitute
for host-based security. Network services are evolving so quickly that it is difficult
for any ‘patch it up’ technology to keep up. What is needed is fundamentally
secure services. For instance, many services today are implemented via the World

6Attackers are devious. We should not imagine that, simply because a filtering rule was intended
for, say, SMTP traffic, it could not be manipulated for some other purpose.
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Rule I/O Src Dest Proto Src Dest ACK Action

addr addr port port set

spoof in intern any any any any any deny

ssh1 in bastion intern TCP 22 > 1023 yes permit

ssh2 in bastion intern TCP > 1023 22 any permit

ssh3 out intern bastion TCP > 1023 22 any permit

ssh4 out intern bastion TCP 22 > 1023 yes permit

ftp1 out intern bastion TCP > 1023 21 any permit

ftp2 in bastion intern TCP 21 > 1023 yes permit

ftp3 in bastion intern TCP 20 > 1023 any permit

ftp4 out intern bastion TCP > 1023 20 yes permit

smtp1 out intern bastion TCP > 1023 25 any permit

smtp2 in bastion smtphost TCP 25 > 1023 any permit

smtp3 out smtphost bastion TCP 25 > 1023 yes permit

smtpX in bastion intern TCP 25 > 1023 yes permit

http1 out intern bastion TCP > 1023 80 any permit

http2 in bastion intern TCP 80 > 1023 yes permit

dns1 out dnshost bastion UDP 53 53 N/A permit

dns2 in bastion dnshost UDP 53 53 N/A permit

dns3 out dnshost bastion TCP > 1023 53 any permit

dns4 in bastion dnshost TCP 53 > 1023 yes permit

dns5 in bastion dnshost TCP > 1023 53 any permit

dns6 out dnshost bastion TCP 53 > 1023 yes permit

default1 out any any any any any any deny

default1 in any any any any any any deny

Table 12.1: Internal router filter table. Incoming ssh traffic is allowed from the bastion host
ssh proxy to the internal hosts, but not to the DMZ. Outgoing traffic is channeled through
the bastion host proxy, which avoids the origin IP address being seen by outsiders. FTP,
HTTP and SMTP traffic is allowed between the respective server-hosts and the bastion hosts
proxies. Note how WWW and FTP servers are special ‘sacrificial lamb’ hosts in the DMZ, with
data backed up on internal hosts. Note that FTP uses two channels, a transmission channel
and a control channel on ports 20 and 21. An SMTP mail hub is used. DNS MX records should
be set to point to the bastion host proxy. DNS filters are slightly complex, since the DNS
services uses both UDP for lookup and TCP for bulk transfer and forwarding.
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Rule I/O Src Dest Proto Src Dest ACK Action

addr addr port port set

spoof1 in intern any any any any any deny

spoof2 in outside any any any any any deny

ssh1 in any bastion TCP 22 > 1023 yes permit

ssh2 in any bastion TCP > 1023 22 any permit

ssh3 out bastion any TCP > 1023 22 any permit

ssh4 out bastion any TCP 22 > 1023 yes permit

ftp1 out bastion any TCP > 1023 21 any permit

ftp2 in any bastion TCP 21 > 1023 yes permit

ftp3 in any bastion TCP 20 > 1023 any permit

ftp4 out bastion any TCP > 1023 20 yes permit

smtp1 out bastion any TCP > 1023 25 any permit

smtp2 in any bastion TCP 25 > 1023 yes permit

smtp3 in any bastion TCP > 1023 25 any permit

smtp4 out bastion any TCP 25 > 1023 yes permit

http1 out bastion any TCP > 1023 80 any permit

http2 in any bastion TCP 80 > 1023 yes permit

http3 in any httphost TCP > 1023 80 any permit

http4 out httphost any TCP 80 > 1023 yes permit

dns1 out bastion any UDP 53 53 N/A permit

dns2 in any bastion UDP 53 any N/A permit

dns3 in any bastion UDP any 53 N/A permit

dns4 out bastion any UDP 53 any N/A permit

dns5 out bastion any TCP 53 > 1023 any permit

dns6 in any bastion TCP 53 > 1023 yes permit

dns7 in any bastion TCP > 1023 53 any permit

dns8 out bastion any TCP 53 > 1023 yes permit

default1 out any any any any any any deny

default1 in any any any any any any deny

Table 12.2: External router filter table. External connections are forced to go through the
bastion host proxies.
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Wide Web, tunneled over port 80 requests. Such requests cannot be filtered by a
firewall in the traditional sense.

12.13 Intrusion detection and forensics

In the last few years the reality of network intrusion has led to several attempts
to build systems which can detect break-ins, either while they are in progress or
afterwards.

There are several ways in which we can gather evidence about intrusions.
Evidence can be direct and indirect. Direct evidence might come from audits
and log files, smoking guns, user observations, records of actions conducted
by intruders, and so on. Checksums of important files can detect unauthorized
changes, for instance. Indirect evidence can be obtained by looking at system
activity and trying to infer unusual activity. Changes in the behavior of programs
can signal changes in the patterns of usage of a system, perhaps flagging the
exploit of a vulnerability in software.

Intrusion detection by process monitoring is a relatively new idea. The idea is to
gather a profile of what is normal and compare it with software behavior over time.
This idea is a little like the idea of an immune system which tolerates ‘self’ and
reacts against ‘non-self’. Forrest et al. have pioneered system call profiling, inspired
by vertebrate immune systems [119, 156] in order to detect hostile patterns of
activity in special software processes. They build a database of short patterns of
system call usage and then perform direct pattern search on subsequent data to
detect anomalous patterns. The rationale for this approach is that intrusions are
often caused by exploits of system calls which do not follow intended patterns. The
beauty of this approach is its natural simplicity; its disadvantage is that it incurs
a high overhead in resources to implement pattern searching in real-time; also the
system needs to be taught what is normal in advance. Unfortunately ‘normal’ is a
rather fickle concept [54], so in spite of its appealing simplicity, this is unlikely to
be a complete, workable solution to the problem.

Another approach is to go to the network level and examine the totality of
traffic arriving at a host. In order to detect an intrusion in progress, programs
like Network Flight Recorder [102] (NFR) and Big Brother [236] (Bro) attempt to
examine every packet on the network in order to look for tell-tale signatures of
network break-in activity. This is an extremely resource-consuming task and it is
beset with a number of problems. Few organizations have the resources to actually
analyze the volumes of data they collect.

Network monitors look for packets containing data which might represent an
attack, as they arrive. Network monitoring has its problems, however. One problem
is that of fragmentation. Fragmentation is something which occurs to IP datagrams
which pass between networks with different transmission rates. Larger packets
can be broken up into smaller packets in order to optimize transmission. These
fragments are reassembled at the final destination. This presents a problem for
intrusion detection systems because the fragmented packets might not contain
enough data to identify them as hostile. This would allow them to get past the
detection system. An intruder might be able to generate packets which were
fragmented in such as way as to confound the attempts at detection. Another
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problem is that switches and routers limit the spread of traffic to specific cables.
An intrusion detection system needs to see all packets in order to cover every
attack. In spite of the difficulties, network intrusion detection is a hot research
topic. A number of conferences on intrusion detection methods have sprung up to
explore this problem in depth.

Network forensics is what one does after an intrusion. The idea is to examine
logs and system audits in order to name the intruder and determine the damage.
Network forensics is perhaps most important for the purpose of possible legal
action against intruders. The cost of keeping the necessary logs and audits is very
great and the work required after a break-in is far from trivial. This topic is beyond
the scope of this book. See ref. [321] for an introduction, and the coroner’s toolkit
(search the Internet for the nearest repository).

12.14 Compromised machines

Once an intrusion has been detected, one should not necessarily give away
knowledge of the intrusion until all possible information about the intrusion has
been collected. One should judge the risk of allowing the hack to continue: if the
risk is acceptable, then important clues can be gathered by observing activity for a
time. Keep a set of basic program tools on a read-only medium like a CD-ROM so
that you are certain that you are not using Trojans. This should include a trusted
shutdown command (halt).

1. Do not shut down the system, or pull the network plug until you have
attempted to secure the volatile information in the system (process table,
open port table).

2. Check that programs such as netstat, ps and halt are trusted, i.e. have
not been replaced with modified programs. (If you are prepared, you will have
an integrity check in advance.) If not, copy trusted versions from another
system to /tmp, or use a diskette or CD-ROM containing trusted versions.
Do not try to replace them while the system is running.

3. We want to avoid the activation of planted booby-traps, or logic bombs.

(a) Look for open ports with netstat – are there any open connections that
can lead you to attackers? If you have a packet-based IDS, you might be
able to see this information elsewhere.

(b) Look at all running processes and dump this information to a file for
later examination. Do several dumps with different options.

(c) Hit the reset switch (if it exists) or pull the power plug or suspend the
operating system: on Windows or Unix, a controlled shutdown using a
trusted program is probably best, in order to ensure synchronization of
caches with disks. On Windows 95, 98, ME and MacOS prior to version
X, pulling the plug is good enough. Do not try a controlled shutdown
unless you have a trusted copy of the halt program – you might set off
a logic bomb planted by the cracker.
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4. Look for files planted in user directories and packet sniffers. Script-kiddy
software often leaves known filenames that can be searched for. Hackers will
often try to divert attention from themselves by placing files in another user’s
home directory – often several copies in case one is found.

5. The system should not be rebooted until necessary evidence has been
secured. Indeed, the compromised machine should not be returned to normal
service without a complete overhaul. Investigation should normally proceed
by connecting the disk to a different, trusted computer. Note that some
operating systems write data to disks when the OS starts, so disks should
be isolated, write protected and copied before analysis is attempted. Special
tools can be obtained for forensic work on IDE disks; SCSI disks can be
protected by hardware jumpers.

A recovery policy should be in place as to what to do with forensic data. Will it
be followed up by reporting to the police and then prosecution? The system should
not be rebooted or the disk altered in any way.

Exercises

Self-test objectives

1. What elements should you have in a security and recovery plan?

2. Suggest some simple safeguards to protect inexperienced users from them-
selves.

3. What is meant by a file integrity check?

4. What is meant by a public-private key pair?

5. What is meant by a digital signature? Can such a signature be trusted?

6. Explain the significance of a trusted third party.

7. Give an example of an alternative to the use of trusted third parties.

8. Explain the assumptions that lie behind the security of the HTTPS Web
protocol.

9. Is Kerberos a public-private key system?

10. Is Kerberos as secure as, say, SSL?

11. Describe how you would go about gauging security at a site.

12. What is meant by password sniffing?

13. How do one-time passwords work?

14. What is port scanning?

15. Explain the idea behind a virtual private network.
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16. What is meant by role-based security?

17. What is meant by Unix capabilities?

18. What is meant by a sandbox?

19. Why should a network service never be given privileges to change its own
configuration?

20. What is IPSec and why is it not in widespread use?

21. How can the ordering of access rules in a rule-based security scheme affect
the degree of protection afforded by an access monitor?

22. What is IP filtering and where is it normally implemented?

23. Explain the purpose of a firewall.

24. Explain the limitations of firewalls.

25. Explain the purpose of intrusion detection.

26. How would you deal with a host that you knew to be compromised by
crackers?

Problems

1. Research the appropriate commands for making filesystem backups at your
site. Consider backups to disk and backups to tape.

2. Determine how many copies of each file are made in the Towers of Hanoi
backup sequence.

3. Design two backup plans: one for a small organization such as a school of
fifty pupils with one file-server and three workstations, and one for a large
organization with many thousands of computers. Compare and contrast
these plans.

4. Collect and compile a version of secure shell. (Note that this software is a
commercial product. You are allowed to download for strictly educational
purposes, but commercial organizations must pay. OpenSSH is also a good
alternative.)

5. Explain why a switched network reduces the risk of password sniffing.
Explain why it does not offer absolute protection against it.

6. Consider the two schematic access control lists for file security below.

ACL 1: ACL 2:

grant: grant:

www/ anyone private/ mark
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private/ mark www/ anyone
work/ mark work/ mark
work/group1 mark,group1 work/group1/markonly mark
work/group1/markonly mark work/group1 mark,group1

You see two attempts at protecting the directories for user ‘mark’. The order
of the entries is slightly different. Do these ACLs yield the same protection?
Are Mark’s private files properly protected in both cases?

7. Which of the following are software for file change detection?

(a) Tripwire or cfengine

(b) Snort

(c) Network Flight Recorder

(d) LIDS

(e) Trustix

8. Imagine that you were recommending a security strategy to a company.
Which of the following priority lists would you recommend for the most
cost-effective security?

(a) i. Security consultant service contract (outsourcing)
ii. Network Intrusion Detection Systems
iii. A firewall (network access control)
iv. Encrypted Virtual Private Networks
v. Strong authentication and access controls
vi. Smart cards for employees

(b) i. A firewall (network access control)
ii. Network Intrusion Detection Systems
iii. Strong authentication and access controls
iv. A security policy for prevention and response
v. Penetration testing
vi. Personnel security training

(c) i. A security policy for prevention and response
ii. File integrity checks on all machines
iii. Strong authentication and access controls
iv. Personnel security training
v. A firewall (network access control)
vi. Encrypted Virtual Private Networks

9. Try port scanning a part of your network. Be sure to inform the local system
administrator of this in advance – it might be viewed as a hostile act.

10. Set up cfengine to perform a file integrity check on important system files on
any hosts that you have privileged access to.
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11. Are there any security risks associated with network printers? If so, what are
they and how can they be removed?

12. Suggest ways of protecting against denial of service attacks from outside your
company network.



Chapter 13

Analytical system
administration

System administration has always involved a high degree of experimentation.
Inadequate documentation, combined with a steep learning curve, had made that
a necessity. As the curve continues to steepen and the scope of the problem only
increases, the belief has gradually deepened that system administration is not
merely a mechanic’s job, but a scientific discipline.

A research community has grown up, led by a mixture of academics and
working administrators, encouraged by organizations such as USENIX and SAGE,
mainly in the US though increasingly in Europe and Australasia. The work has
often been dominated by the development of software tools, since tools for the
trade have been most desperately required. Now that many good tools exist,
at least for Unix-based networks, the focus is changing towards more careful
analyses of system administration [41, 42, 108, 44], with case studies and simple
experiments.

This chapter provides a brief introduction to a larger field of theoretical system
administration [52].

13.1 Science vs technology

Most of the research which is presently undertaken in system administration is of
an applied nature. In most cases, it involves the construction of a tool which solves
a specific local problem, a one-off solution to a general problem, i.e. a demon-
stration of possibility. A minority of authors has attempted to collate the lessons
learned from these pursuits and distill their essence into a general technology of
more permanent value. This is partly the nature of technological research. Sci-
ence, on the other hand, deals in abstraction. The aim of science is to regard the
full horror of reality and condense it into a few themes which capture its essence,
without undue complication. We say that scientific knowledge has increased if we
are able to perform this extraction of the foundations in some study and if that
knowledge empowers with some increased understanding of the problem.



500 CHAPTER 13. ANALYTICAL SYSTEM ADMINISTRATION

In science, knowledge advances by undertaking a series of studies, in order
to either verify or falsify a hypothesis. Sometimes these studies are theoretical,
sometimes they are empirical and frequently they are a mixture of the two. The
aim of a study is to contribute to a larger discussion, which will eventually lead to
progress in the field. A single piece of work is rarely, if ever, an end in itself. Once a
piece of work is published, it needs to be verified or shown to be false by others also.
Reproducibility is an important criterion for any result, otherwise it is worthless.

How we measure progress in a field is often a contentious issue, but it can
involve several themes. In order to test an idea it is often necessary to develop a
suitable ‘technology’ for the investigation. That technology might be mathematical,
computational or mechanical. It does not relate directly to the study itself, but it
makes it possible for the study to take place. In system administration, software
tools form this technology. For example, the author’s management system cfengine
[41] is a tool which was created in order to implement and refine a conceptual
scheme, namely the immunity model of system maintenance [44]. There is a
distinction between the tool which makes the idea possible, and the idea itself.

Having produced the tool, it is still necessary to test whether or not the original
idea was a good one, better or worse than other ideas, or simply unworkable in
practice. Scientific progress is made, with the assistance of the tool only if the
results of previous work can be improved upon, or if an increased understanding
of the problem can be achieved, perhaps leading to greater predictive power or a
more efficient solution to the original problem.

All problems are pieces of a larger puzzle. A complete scientific study begins
with a motivation, followed by an appraisal of the problems, the construction of a
theoretical model for understanding or solving the problems, and finally an evalu-
ation or verification of the approach used and the results obtained. Recently much
discussion has been directed towards finding suitable methods for evaluating
technological innovations in computer science as well as encouraging researchers
to use them. Nowadays many computing systems are of comparable complexity
to phenomena found in the natural world and our understanding of them is not
always complete, in spite of the fact that they were designed to fulfill a specific
task. In short, technology might not be completely predictable, hence there is a
need for experimental verification.

13.2 Studying complex systems

There are many issues to be studied in system administration. Some issues are
of a technical nature, while others are of a human nature. System administration
confronts the human–machine interaction as few other branches of computer
science do. Here are some examples:

• Reliability studies (e.g. failure rate of hardware/software, evaluation of poli-
cies and strategies)

• Determining and evaluating methods for ensuring system integrity (e.g. auto-
mation, cooperation between humans, formalization of policy etc.)
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• Observations which reveal aspects of system behavior that are difficult to
predict (e.g. strange phenomena, periodic cycles)

• Issues of strategy and planning.

Science proceeds as a dialogue between theory and experiment. We need theory
to interpret results of observations and we need observations to back up theory.
Any conclusions must be a consistent mixture of the two.

To date, very little theory has been applied to the problems of system admin-
istration. Most studies have been empirical, or anecdotal. Very few of the studies
made, in the references of this book, attempt to quantify their findings. In a subject
which is complex, like system administration, it is easy to fall back on qualitative
claims. This is dangerous, however, since one is more easily fooled by qualitative
descriptions than by hard numbers. At the same time, one must not believe that it
is sensible to demand hard-nosed falsification of claims (à la Karl Popper) in such
a complex environment. Any numbers which we can measure must be considered
valuable, provided they actually have a sensible interpretation.

Computers are complex systems. Complexity in a system means that
there is a large number of variables to be considered, probably too many
to deal with in detail. Many issues are hidden directly from view and
have to be discovered with some ingenuity.

A liberal attitude is usually the most constructive in making the best of a
difficult lot. Any study will be worthwhile if it has something to tell us, however
little. However, it is preferable if studies are authoritative, i.e. if they are able to tell
us something of deeper value than mere here-say. Still, we have to judge studies for
what they are worth, and no more. Authors should try to avoid marketing language
which is prevalent in the commercial world, and also pointless tool-building
without regard for any well thought-out model. The following questions are useful:

• What am I trying to study?

• Has it been done before? Can it be improved?

• What are the criteria for improvement?

• Can I formulate my study as a hypothesis which can be verified or falsified
to some degree?

• If not, how can I clearly state the aims of my work? What are the available
methods for gauging success/failure?

• How general is my study? What is the scope of its validity?

• How can my study be generalized?

• How can I ensure objectivity?

Then afterwards check:

• Is my result unambiguously true or merely a matter of interpretation?
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• Are there alternative viewpoints which lead to the same conclusion?

• Is the result worth reporting to others?

Case studies are often used in fields of research where metrics are few and
far between. Case studies, or anecdotal evidence, are a poor-man’s approach
to the truth, but in system administration we suffer from a general poverty of
available avenues for investigation. Case studies, made as objectively as possible,
are often the best one can do.

13.3 The purpose of observation
In technology the act of observation has two objective goals: i) to gather information
about a problem in order to motivate the design and construction of a technology
which solves it, and ii) to determine whether or not the resulting technology
fulfills its design goals. If the latter is not fulfilled in a technological context, the
system may be described as faulty, whereas in natural science there is no right or
wrong. In between these two empirical book marks lies a theoretical model which
hopefully connects the two.

The problem with technological disciplines is that what constitutes an eval-
uation of success or failure is often far from clear. This is because both goals
and assisting technologies can be dominated by invested interests and dogged
by the difficulty of constructing objective experiments with clear metrics. System
administration is an example where these problems are particularly acute.

System administration is a mixture of technology and sociology. The users of
computer systems are constantly changing the conditions for observations. If the
conditions under which observations are made are not constant, then the data lose
their meaning: the message we are trying to extract from the data is supplemented
by several other messages which are difficult to separate from one another. Let us
call the message we are trying to extract signal and the other messages which we
are not interested in noise. Complex systems are often characterized by very noisy
environments.

In most disciplines one would attempt to reduce or eliminate the noise in order
to isolate the signal. However, in system administration, it would be no good
to eliminate the users from an experiment, since it is they who cause most of
the problems that one is trying to solve. In principle this kind of noise in data
could be eliminated by statistical sampling over very long periods of time, but
in the case of real computer systems this might not be possible since seasonal
variations in patterns of use often lead to several qualitatively different types
of behavior which should not be mixed. The collection of reliable data might
therefore take many years, even if one can agree on what constitutes a reasonable
experiment. This is often impractical, given the pace of technological change in
the field.

13.4 Evaluation methods and problems

The simplest and potentially most objective way to test a model of system
administration is to combine heuristic experience with repeatable simulations.
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Experienced system administrators have the pulse of their system and can evalu-
ate their performance in a way that only humans can. Their knowledge can be used
to define repeatable benchmarks or criteria for different aspects of the problem.
But even this approach is not without its difficulties. Many of the administrators’
impressions would be very difficult to gauge numerically. For example: a common
theme is research which is designed to relieve administrators of tedious work,
leaving them to work on more important tasks. Can such a claim be verified? Here
are some of the difficulties.

Measure the time spent working
on the system

The administrator has so much
to do that he/she can work full
time no matter how much one automates
‘tedious tasks’.

Record the actions taken by
the automatic system, which
a human administrator would
have been required to do by
hand and compare.

There is no unique way to solve a
problem. Some administrators fix
problems by hand, while others will
write a script for each new problem.
The time/approach taken depends on
the person.

In this case the issue was too broad to be able to quantify. Choosing the appropriate
question to ask is often the most difficult aspect of an experimental study. If we
restrict the scope of the question to a very specific point, we can end up with an
artificial study; if the question is too broad in its scope, we risk not being able to
test it convincingly.

To further clarify this point it is useful to refer to an analogy. Imagine two
researchers who create vehicles for the future, one based on renewable solar
power and another based on coal. The two vehicles have identical functionality;
the solar powered vehicle seems cleaner than the coal powered one, but in fact the
level of pollution required to make the solar cells equals the harmful output of
the coal vehicle throughout its lifetime. The laws of thermodynamics tell us that
there is potential for improving this situation for the electric car but probably
not for the coal powered one. The solar vehicle is lighter and more efficient, but
it cannot do anything that the coal powered car cannot. All in all, one suspects
that the solar powered system is a better solution, since one does not have to
refuel it frequently and it is based on a technology which is universally useful,
whereas the coal system is quite restricted. So what are the numbers which
we should measure to distinguish one from the other, to verify the hypothesis
that the solar powered vehicle is better? Is one solution really better than the
other? Regardless of whether either solution is optimal, is one of them going
in a sustainable direction for future development? It might seem clear that the
electric vehicle is a sounder technology since it is both sustainable in its power
source and in its potential for future development, whereas the coal vehicle is
something of a dead end. The solution can be ideologically correct, but this
is a matter of opinion. Anyone can claim to prefer the coal powered vehicle,
whether others would deem that belief to be rational or not. One can attempt
to evaluate their basic principles on the basis of anecdotal evidence. One can
produce numbers for many small contributing factors (such as the weight of the
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vehicles, or their power efficiency), but when it comes down to it anyone can
claim that those numbers do not matter because both vehicles fulfill their purpose
identically.

This example is not entirely contrived. System administration requires tools.
Often such tools acquire a following of users who grow to like them, regardless of
what the tools allow them to achieve. Also, the marketing skills of one software
producer might be better than those of another. Thus one cannot rely on counting
the numbers of users of a specific tool as an indication of its power or usefulness.
On the other hand, one has to rely on the evaluations of the tools by their
users.

In some cases one technology might be better than another only in a certain
context. There might be room for several different solutions. For example, are
transistors better than thermionic valve devices for building computers? Most
people think so, because valve technology is large and cumbersome. But advances
in Russian military aerospace technology developed miniature valves because
they were robust against electromagnetic pulse interference. One can think of
many examples of technologies which have clear advantages, but which cannot be
proved numerically, because it boils down to what people prefer to believe about
them. This last case also indicates that there is not necessarily a single universal
solution to a problem.

Although questionnaires and verbal evaluations which examine experienced
users’ impressions can be amongst the best methods of evaluating a hypothesis
with many interacting components, the problems in making such a study objective
are great. Questionnaires, in particular, can give misleading results, since they
are often only returned by users who are already basically satisfied. Completely
dissatisfied users will usually waste no time on what they consider to be a
worthless pursuit, by filling out a questionnaire.

13.5 Evaluating a hierarchical system

Evaluating a model of system administration is a little bit like evaluating the
concept of a bridge. Clearly a bridge is a structure with many components each of
which contributes to the whole. The bridge either fulfills its purpose in carrying
traffic past obstacles or it does not. In evaluating the bridge, should one then
consider the performance of each brick and wire individually? Should one consider
the aesthetic qualities of the bridge? There might be many different designs each
with slightly different goals. Can one bridge be deemed better than another on
the basis of objective measurement? Perhaps only the bridge’s maintainer is in a
position to gain a feeling for which bridge is the most successful, but the success
criterion might be rather vague: a collection of small differences which make the
perceptible performance of the bridge optimal, but with no measurably significant
data to support the conclusion. These are the dilemmas of evaluating a complex
technology.

In references [69, 334] and many others it is clear that computer scientists
are embarrassed by this difficulty in bringing respectability to the field of study.
In fact the difficulty is general to all fields of technology. In order to evaluate an
approach to the solution of a problem it is helpful to create a model. A model is
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comprised of a principle of operation, a collection of rules and the implementation
of these rules through specific algorithms. It involves a conceptual decomposition
of the problem and a number of assertions or hypotheses. System administration
is full of intangibles; this restricts model building to those aspects of the problem
which can be addressed in schematic terms. It is also sufficiently complex that
it must be addressed at several different levels in an approximately hierarchical
fashion.

In brief, the options we have for performing experimental studies are,

• Measurements

• Simulations

• Case studies

• User surveys

with all of the incumbent difficulties which these entail.

13.5.1 Evaluation of the conceptual decomposition

It is a general principle in analysis that the details of lower level structure,
insofar as they function, do not change the structural organization of higher
levels. In physics this is called the separation of scales; in computer science it
is called procedural structure or object orientation. The structure of lower levels
does not affect the optimal structure of higher levels, for example. An important
part of a meaningful evaluation is to sort out the conceptual hierarchy. Is the
separation between high-level abstractions and low-level primitives sufficient,
flexible, restrictive etc?

13.5.2 Simplicity

Conceptual and practical simplicity are often deemed to be positive attributes of
software systems and procedures. User surveys can be used to collect evidence
of what users believe about this. The system designer’s belief about the relative
simplicity of his/her creation is a scientific irrelevancy.

13.5.3 Efficiency

The efficiency of a program or procedure might be an interesting way to evaluate
it. Efficiency can mean many things, so the first step is to establish precisely what
is meant by efficiency in context.

Most system administration tasks are not resource intensive for individual
hosts. The efficiency with which they are carried out is less important than the
care with which they are carried out. The reason is simple: the time required to
complete most system administration tasks is very short compared with the time
most users are prepared to wait.

Efficiency in terms of the consumption of human time is a much more pertinent
factor. An automatic system which aims to avoid human interaction is by definition
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more efficient in man hours than one which places humans in the driving seat.
This presupposes, of course, that the setup and maintenance of the automatic
system is not so time-consuming in itself as to outweigh the advantages provided
by such an approach.

13.5.4 Evaluation of system administration as a collective
effort

Few system administrators work alone. In most cases they are part of a team
who all need to keep abreast of the behavior of the system and the changes
made in administration policy. Automation of system administration issues does
not alter this. One issue for human administrators is how well a model for
administration allows them to achieve this cooperation in practice. Does the
automatic system make it easier for them to follow the development of the sys-
tem in i) theory and ii) practice? Here theory refers to the conceptual design
of the system as a whole, and practice refers to the extent to which the the-
oretical design has been implemented in practice. How is the task distributed
between people, systems, procedures and tools? How is responsibility delegated
and how does this affect individuals? Is time saved, are accuracy and consistency
improved? These issues can be evaluated in a heuristic way from the experiences
of administrators. Longer-term, more objective studies could also be performed by
analyzing the behavior of system administrators in action. Such studies will not
be performed here.

13.5.5 Cooperative software: dependency

The fragile tower of components in any functional system is the fundament
of its operation. If one component fails, how resilient is the remainder of the
system to this failure? This is a relevant question to pose in the evaluation of a
system administration model. How do software systems depend on one another
for their operation? If one system fails, will this have a knock-on effect for other
systems? What are the core systems which form the basis of system operation?
In the present work it is relevant to ask how the model continues to work in
the event of the failure of DNS, NFS and other network services which provide
infrastructure. Is it possible to immobilize an automatic system administration
model?

13.5.6 Evaluation of individual mechanisms

For individual pieces of software, it is sometimes possible to evaluate the efficiency
and correctness of the components. Efficiency is a relative concept and, if used,
it must be placed in a context. For example, efficiency of low-level algorithms is
conceptually irrelevant to the higher levels of a program, but it might be practically
relevant, i.e. one must say what is meant by efficiency before quoting results. The
correctness of the results yielded by a mechanism/algorithm can be measured
in relation to its design specifications. Without a clear mapping of input/output
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the correctness of any result produced by a mechanism is a heuristic quality.
Heuristics can only be evaluated by experienced users expressing their informed
opinions.

13.5.7 Evidence of bugs in the software

Occasionally bugs significantly affect the performance of software. Strictly speak-
ing an evaluation of bugs is not part of the software evaluation itself, but of the
process of software development, so while bugs should probably be mentioned
they may or may not be relevant to the issues surrounding the software itself.
In this work software bugs have not played any appreciable role in either the
development or the effectiveness of the results so they will not be discussed in any
detail.

13.5.8 Evidence of design faults

In the course of developing a program one occasionally discovers faults which are
of a fundamental nature, faults which cause one to rethink the whole operation
of the program. Sometimes these are fatal flaws, but that need not be the case.
Cataloguing design faults is important for future reference to avoid making similar
mistakes again. Design faults may be caused by faults in the model itself or merely
in its implementation. Legacy issues might also be relevant here: how do outdated
features or methods affect software by placing demands on onward compatibility,
or by restricting optimal design or performance?

13.5.9 Evaluation of system policies

System administration does not exist without human attitudes, behaviors and
policies. These three fit together inseparably. Policies are adjusted to fit behavioral
patterns; behavioral patterns are local phenomena. The evaluation of a system
policy has only limited relevance for the wider community then: normally only
relative changes are of interest, i.e. how changes in policy can move one closer to
a desirable solution.

Evaluating the effectiveness of a policy in relation to the applicable social
boundary conditions presents practical problems which sociologists have wrestled
with for decades. The problems lie in obtaining statistically significant samples
of data to support or refute the policy. Controlled experiments are not usually
feasible since they would tie up resources over long periods. No one can afford this
in practice. In order to test a policy in a real situation the best one can do is to rely
on heuristic information from an experienced observer (in this case the system
administrator). Only an experienced observer would be able to judge the value
of a policy on the basis of incomplete data. Such information is difficult to trust
however unless it comes from several independent sources. A better approach
might be to test the policy with simulated data spanning the range from best to
worst case. The advantage with simulated data is that the results are reproducible
from those data and thus one has something concrete to show for the effort.
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13.5.10 Reliability

Reliability cannot be measured until we define what we mean by it. One common
definition uses the average (mean) time before failure as a measure of system
reliability. This is quite simply the average amount of time we expect to elapse
between serious failures of the system. Another way of expressing this is to use the
average uptime, or the amount of time for which the system is responsive (waiting
no more than a fixed length of time for a response). Another complementary figure
is then, the average downtime, which is the average amount of time the system is
unavailable for work (a kind of informational entropy). We can define the reliability
as the probability that the system is available:

ρ = Mean uptime
Total elapsed time

Some like to define this in terms of the Mean Time Before Failure (MTBF) and the
Mean Time To Repair (MTTR), i.e.

ρ = MTBF
MTBF + MTTR

.

This is clearly a number between 0 and 1. Many network device vendors quote
these values with the number of 9’s it yields, e.g. 0.99999.

The effect of parallelism or redundancy on reliability can be treated as a
facsimile of the Ohm’s law problem, by noting that service provision is just like a
flow of work (see also section 6.3 for examples of this).

Rate of service (delivery) = rate of change in information / failure fraction

This is directly analogous to Ohm’s law for the flow of current through a resistance:

I = V/R

The analogy is captured in this table:

Potential difference V Change in information
Current I Rate of service (flow of information)
Resistance R Rate of failure

This relation is simplistic. For one thing it does not take into account variable
latencies (although these could be defined as failure to respond). It should be
clear that this simplistic equation is full of unwarranted assumptions, and yet its
simplicity justifies its use for simple hand-waving. If we consider figure 6.10, it is
clear that a flow of service can continue, when servers work in parallel, even if one
or more of them fails. In figure 6.11 it is clear that systems which are dependent
on other systems are coupled in series and a failure prevents the flow of service.
Because of the linear relationship, we can use the usual Ohm’s law expressions
for combining failure rates:

Rseries = R1 + R2 + R3 + . . .
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and
1

Rparallel
= 1

R1
+ 1

R2
+ 1

R3
. . .

These simple expressions can be used to hand-wave about the reliability of
combinations of hosts. For instance, let us define the rate of failure to be a
probability of failure, with a value between 0 and 1. Suppose we find that the rate
of failure of a particular kind of server is 0.1. If we couple two in parallel (a double
redundancy) then we obtain an effective failure rate of

1
R

= 1
0.1

+ 1
0.1

i.e. R = 0.05, the failure rate is halved. This estimate is clearly naive. It assumes,
for instance, that both servers work all the time in parallel. This is seldom the
case. If we run parallel servers, normally a default server will be tried first, and, if
there is no response, only then will the second backup server be contacted. Thus,
in a fail-over model, this is not really applicable. Still, we use this picture for what
it is worth, as a crude hand-waving tool.

The Mean Time Before Failure (MTBF) is used by electrical engineers, who find
that its values for the failures of many similar components (say light bulbs) has an
exponential distribution. In other words, over large numbers of similar component
failures, it is found that the probability of failure has the form

P (t) = exp(−t/τ )

or that the probability of a component lasting time t is the exponential, where τ is
the mean time before failure and t is the failure time of a given component. There
are many reasons why a computer system would not be expected to have this sim-
ple form. One is dependency. Computer systems are formed from many interacting
components. The interactions with third party components mean that the environ-
mental factors are always different. Again, the issue of fail-over and service laten-
cies arises, spoiling the simple independent component picture. Mean time before
failure doesn’t mean anything unless we define the conditions under which the
quantity was measured. In one test at Oslo College, the following values were mea-
sured for various operating systems, averaged over several hosts of the same type.

Solaris 2.5 86 days
GNU/Linux 36 days
Windows 95 0.5 days

While we might feel that these numbers agree with our general intuition of how
these operating systems perform in practice, this is not a fair comparison since
the patterns of usage are different in each case. An insider could tell us that
the users treat the PCs with a casual disregard, switching them on and off at
will: and in spite of efforts to prevent it, the same users tend to pull the plug on
GNU/Linux hosts also. The Solaris hosts, on the other hand, live in glass cages
where prying fingers cannot reach. Of course, we then need to ask: what is the
reason why users reboot and pull the plug on the PCs? The numbers above cannot
have any meaning until this has been determined; i.e. the software components
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of a computer system are not atomic; they are composed of many parts whose
behavior is difficult to catalogue.

Thus the problem with these measures of system reliability is that they are
almost impossible to quantify and assigning any real meaning to them is fraught
with subtlety. Unless the system fails regularly, the number of points over which
it is possible to average is rather small. Moreover, the number of external factors
which can lead to failure makes the comparison of any two values at different
sites meaningless. In short, this quantity cannot be used for anything other than
illustrative purposes. Changes in the reliability, for constant external conditions,
can be used as a measure to show the effect of a single parameter from the
environment. This is perhaps the only instance in which this can be made
meaningful, i.e. as a means of quantitative comparison within a single experiment.

13.5.11 Metrics generally

The quantifiers which can be usefully measured or recorded on operating systems
are the variables which can be used to provide quantitative support for or against
a hypothesis about system behavior. System auditing functionality can be used to
record just about every operation which passes through the kernel of an operating
system, but most hosts do not perform system auditing because of the huge
negative effect it has on performance. Here we consider only metrics which do not
require extensive auditing beyond what is normally available.

Operating system metrics are normally used for operating system performance
tuning. System performance tuning requires data about the efficiency of an oper-
ating system. This is not necessarily compatible with the kinds of measurement
required for evaluating the effectiveness of a system administration model. System
administration is concerned with maintaining resource availability over time in a
secure and fair manner. It is not about optimizing specific performance criteria.

Operating system metrics fall into two main classes: current values and average
values for stable and drifting variables respectively. Current (immediate) values
are not usually directly useful, unless the values are basically constant, since
they seldom accurately reflect any changing property of an operating system
adequately. They can be used for fluctuation analysis, however, over some coarse-
graining period. An averaging procedure over some time interval is the main
approach of interest. The Nyquist law for sampling of a continuous signal is that
the sampling rate needs to be twice the rate of the fastest peak cycle in the data
if one is to resolve the data accurately. This includes data which are intended
for averaging since this rule is not about accuracy of resolution but about the
possible complete loss of data. The granularity required for measurement in
current operating systems is summarized in the following table.

0 − 5 secs Fine grain work
10 − 30 secs For peak measurement
10 − 30 mins For coarse-grain work
Hourly average Software activity
Daily average User activity
Weekly average User activity
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Although kernel switching times are of the order of microseconds, this time
scale is not relevant to users’ perceptions of the system. Inter-system cooperating
requires many context switch cycles and I/O waits. These compound themselves
into intervals of the order of seconds in practice. Users themselves spend long
periods of time idle, i.e. not interacting with the system on an immediate basis.
An interval of seconds is therefore sufficient. Peaks of activity can happen quickly
by user perceptions but they often last for protracted periods, thus ten to thirty
seconds is appropriate here. Coarse-grained behavior requires lower resolution,
but as long as one is looking for peaks a faster rate of sampling will always include
the lower rate. There is also the issue of how quickly the data can be collected.
Since the measurement process itself affects the performance of the system and
uses its resources, measurement needs to be kept to a level where it does not play
a significant role in loading the system or consuming disk and memory resources.

The variables which characterize resource usage fall into various categories.
Some variables are devoid of any apparent periodicity, while others are strongly
periodic in the daily and weekly rhythms of the system. The amount of periodicity in
a variable depends on how strongly it is coupled to a periodic driving force, such as
the user community’s daily and weekly rhythms, and also how strong that driving
force is (users’ behavior also has seasonal variations, vacations and deadlines etc).
Since our aim is to find a sufficiently complete set of variables which characterize
a macrostate of the system, we must be aware of which variables are ignorable,
which variables are periodic (and can therefore be averaged over a periodic interval)
and which variables are not periodic (and therefore have no unique average).

Studies of total network traffic have shown an allegedly self-similar (fractal)
structure to network traffic when viewed in its entirety [192, 324]. This is in
contrast to telephonic voice traffic on traditional phone networks which is bursty,
the bursts following a random (Poisson) distribution in arrival time. This almost
certainly precludes total network traffic from a characterization of host state, but
it does not preclude the use of numbers of connections/conversations between
different protocols, which one would still expect to have a Poissonian profile. A
value of none means that any apparent peak is much smaller than the error bars
(standard deviation of the mean) of the measurements when averaged over the
presumed trial period. The periodic quantities are plotted on a periodic time scale,
with each covering adding to the averages and variances. Non-periodic data are
plotted on a straightforward, unbounded real line as an absolute value. A running
average can also be computed, and an entropy, if a suitable division of the vertical
axis into cells is defined [42]. We shall return to the definition of entropy later.

The average type referred to below divides into two categories: pseudo-
continuous and discrete. In point of fact, virtually all of the measurements made
have discrete results (excepting only those which are already system averages).
This categorization refers to the extent to which it is sensible to treat the aver-
age value of the variable as a continuous quantity. In some cases, it is utterly
meaningless. For the reasons already indicated, there are advantages to treating
measured values as continuous, so it is with this motivation that we claim a
pseudo-continuity to the averaged data.

In this initial instance, the data are all collected from Oslo College’s own com-
puter network which is an academic environment with moderate resources. One
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might expect our data to lie somewhere in the middle of the extreme cases which
might be found amongst the sites of the world, but one should be cognizant of the
limited validity of a single set of such data. We re-emphasize that the purpose of
the present work is to gauge possibilities rather than to extract actualities.

Net

• Total number of packets: Characterizes the totality of traffic, incoming and
outgoing on the subnet. This could have a bearing on latencies and thus
influence all hosts on a local subnet.

• Amount of IP fragmentation: This is a function of the protocols in use in the
local environment. It should be fairly constant, unless packets are being
fragmented for scurrilous reasons.

• Density of broadcast messages: This is a function of local network services.
This would not be expected to have a direct bearing on the state of a host
(other than the host transmitting the broadcast), unless it became so high as
to cause a traffic problem.

• Number of collisions: This is a function of the network community traffic.
Collision numbers can significantly affect the performance of hosts wishing
to communicate, thus adding to latencies. It can be brought on by sheer
amount of traffic, i.e. a threshold transition and by errors in the physical
network, or in software. In a well-configured site, the number of collisions
should be random. A strong periodic signal would tend to indicate a burdened
network with too low a capacity for its users.

• Number of sockets (TCP) in and out: This gives an indication of service
usage. Measurements should be separated so as to distinguish incoming
and outgoing connections. We would expect outgoing connections to follow
the periodicities of the local site, where as incoming connections would be a
superposition of weak periodicities from many sites, with no net result. See
figure 13.1.

• Number of malformed packets: This should be zero, i.e. a non-zero value here
specifies a problem in some networked host, or an attack on the system.

Storage

• Disk usage in bytes: This indicates the actual amount of data generated and
downloaded by users, or the system. Periodicities here will be affected by
whatever policy one has for garbage collection. Assuming that users do not
produce only garbage, there should be a periodicity superposed on top of a
steady rise.

• Disk operations per second: This is an indication of the physical activity of the
disk on the local host. It is a measure of load and a significant contribution
to latency both locally and for remote hosts. The level of periodicity in this
signal must depend on the relative magnitude of forces driving the host. If a
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Figure 13.1: The daily rhythm of the external logins shows a strong unambiguous peak
during work hours.

host runs no network services, then it is driven mainly by users, yielding a
strong periodicity. If system services dominate, these could be either random
or periodic. The values are thus likely to be periodic, but not necessarily
strong.

• Paging (out) rate (free memory and thrashing): These variables measure the
activity of the virtual memory subsystem. In principle they can reveal prob-
lems with load. In our tests, they have proved singularly irrelevant, though
we realize that we might be spoiled with the quality of our resources here.
See figures 13.2 and 13.3.

Processes

• Number of privileged processes: The number of processes running the system
provides an indication of the number of forked processes or active threads
which are carrying out the work of the system. This should be relatively con-
stant, with a weak periodicity indicating responses to local users’ requests.
This is separated from the processes of ordinary users, since one expects
the behavior of privileged (root/Administrator) processes to follow a different
pattern. See figure 13.4.

• Number of non-privileged processes: This measure counts not only the number
of processes but provides an indication of the range of tasks being performed
by users, and the number of users by implication. This measure has a
strong periodic quality, relatively quiescent during weekends, rising sharply
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Figure 13.2: The daily rhythm of the paging data illustrates the problems one faces in
attaching meaning directly to measurements. Here we see that the error bars (signifying
the standard deviation) are much larger than the variation of the graph itself. Nonetheless,
there is a marginal rise in the paging activity during daytime hours, and a corresponding
increase in the error bars, indicating that there is a real effect, albeit of little analytical
value.

on Monday to a peak on Tuesday, followed by a gradual decline towards the
weekend again. See figures 13.5 and 13.6.

• Maximum percentage CPU used in processes: This is an experimental measure
which characterizes the most CPU expensive process running on the host
at a given moment. The significance of this result is not clear. It seems to
have a marginally periodic behavior, but is basically inconclusive. The error
bars are much larger than the variation of the average, but the magnitude
of the errors increases also with the increasing average, thus, while for all
intents and purposes this measure’s average must be considered irrelevant, a
weak signal can be surmised. The peak value of the data might be important
however, since a high max-cpu task will significantly load the system. See
figure 13.7.

Users

• Number logged on: This follows the classic pattern of low activity during the
weekends, followed by a sharp rise on Monday, peaking on Tuesday and
declining steadily towards the weekend again.

• Total number: This value should clearly be constant except when new user
accounts are added. The average value has no meaning, but any change in
this value can be significant from a security perspective.
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Figure 13.3: The weekly rhythm of the paging data show that there is a definite daily
rhythm, but again, it is drowned in the huge variances due to random influences on the
system, and is therefore of no use in an analytical context.

• Average time spent logged on per user: Can signify patterns of behavior, but
has a questionable relevance to the behavior of the system.

• Load average: This is the system’s own back-of-the-envelope calculation
of resource usage. It provides a continuous indication of load, but on an
exaggerated scale. It remains to be seen whether any useful information can
be obtained from this value; its value can be quite disordered (high entropy).

• Disk usage rise per session per user per hour: The average amount of increase
of disk space per user per session, indicates the way in which the system is
becoming loaded. This can be used to diagnose problems caused by a single
user downloading a huge amount of data from the network. During normal
behavior, if users have an even productivity, this might be periodic.

• Latency of services: The latency is the amount of time we wait for an answer
to a specific request. This value only becomes significant when the system
passes a certain threshold (a kind of phase transition). Once latency begins
to restrict the practices of users, we can expect it to feed back and exacerbate
latencies. Thus the periodicity of latencies would only be expected in a phase
of the system in which user activity was in competition with the cause of the
latency itself.

Part of what one wishes to identify in looking at such variables is patterns
of change. These are classifiable but not usually quantifiable. They can be
relevant to policy decisions as well as in fine tuning of the parameters of an
automatic response. Patterns of behavior include
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Figure 13.4: The weekly average of privileged (root) processes shows a constant daily
pulse, steady on week days. During weekends, there is far less activity, but wider variance.
This might be explained by assuming that root process activity is dominated by service
requests from users.

– Social patterns of the users

– Systematic patterns caused by software systems.

Identifying such patterns in the variation of the metrics listed above is not an
easy task, but it is the closest one can expect to come to a measurable effect
in a system administration context.

In addition to measurable quantities, humans have the ability to form value
judgments in a way that formal statistical analyses cannot. Human judgment
is based on compounded experience and associative thinking and while it
lacks scientific rigor it can be intuitively correct in a way that is difficult to
quantify. The down side of human perception is that prejudice is also a factor
which is difficult to eliminate. Also not everyone is in a position to offer useful
evidence in every judgment:

– User satisfaction: software, system-availability, personal freedom

– Sysadmin satisfaction: time-saving, accuracy, simplifying, power, ease
of use, utility of tools, security, adaptability.

Other heuristic impressions include the amount of dependency of a software
component on other software systems, hosts or processes; also the dependency
of a software system on the presence of a human being. In ref. [186] Kubicki
discusses metrics for measuring customer satisfaction. These involve validated
questionnaires, system availability, system response time, availability of tools,
failure analysis, and time before reboot measurements.
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Figure 13.5: The daily average of non-privileged (user) processes shows an indisputable,
strong daily rhythm. The variation of the graph is now greater than the uncertainty reflected
in the error bars.
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Figure 13.6: The weekly average of non-privileged (user) processes shows a constant daily
pulse, quiet at the weekends, strong on Monday, rising to a peak on Tuesday and falling off
again towards the weekend.
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Figure 13.7: The daily average of maximal CPU percentage shows no visible rhythm, if we
remove the initial anomalous point then there is no variation, either in the average or its
standard deviation (error bars) which justifies the claim of a periodicity.

13.6 Deterministic and stochastic behavior

In this section we turn to a more abstract view of a computer system: we think of
it as a generalized dynamical system, i.e. a mathematical model which develops in
time, according to certain rules.

Abstraction is one of the most valuable assets of the human mind: it enables us
to build simple models of complex phenomena, eliminating details which are only
of peripheral or dubious importance. But abstraction is a double-edged sword:
on the one hand, abstracting a problem can show us how that problem is really
the same as a lot of other problems which we know more about; conversely,
unless done with a certain clarity, it can merely plant a veil over our senses,
obscuring rather than assisting the truth. Our aim in this section is to think
of computers as abstract dynamical systems, such as those which are routinely
analyzed in physics and statistical analysis. Although this will not be to every
working system administrator’s taste, it is an important viewpoint in the pursuit
of system administration as a scientific discipline.

13.6.1 Scales and fluctuations

Complex systems are characterized by behavior at many levels or scales. In order
to extract information from a complex system it is necessary to focus on the appro-
priate scale for that information. In physics, three scales are usually distinguished
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in many-component systems: the microscopic, mesoscopic and macroscopic scales.
We can borrow this terminology for convenience.

• Microscopic behavior details exact mechanisms at the level of atomic opera-
tions.

• Mesoscopic behavior looks at small clusters of microscopic processes and
examines them in isolation.

• Macroscopic processes concern the long-term average behavior of the whole
system.

These three scales can also be discerned in operating systems and they must
usually be considered separately. At the microscopic level we have individual
system calls and other atomic transactions (on the order of microseconds to
milliseconds). At the mesoscopic level we have clusters and patterns of system calls
and other process behavior, including algorithms and procedures, possibly arising
from single processes or groups of processes. Finally, there is the macroscopic
level at which one views all the activities of all the users over scales at which they
typically work and consume resources (minutes, hours, days, weeks). There is
clearly a measure of arbitrariness in drawing these distinctions. The point is that
there are typically three scales which can usefully be distinguished in a relatively
stable dynamical system.

13.6.2 Principle of superposition

In any dynamical system where several microscopic processes can coexist, there
are two possible scenarios:

• Every process is completely independent of every other. System resources
change linearly (additively) in response to new processes.

• The addition of each new process affects the behavior of the others in a
non-additive (non-linear) fashion.

The first of these is called the principle of superposition. It is a generic property of
linear systems (actually this is a defining tautology). In the second case, the system
is said to be non-linear because the result of adding lots of processes is not merely
the sum of those processes: the processes interact and complicate matters. Owing
to the complexity of interactions between subsystems in a network, it is likely that
there is at least some degree of non-linearity in the measurements we are looking
for. That means that a change in one part of the system will have communicable,
knock-on effects on another part of the system, with possible feedback, and so on.

This is one of the things which needs to be examined, since it has a bearing on
the shape of the distribution one can expect to find. Empirically one often finds
that the probability of a deviation �x from the expected behavior is [130]

P (�x) = 1
2σ

exp
(

−|�x|
σ

)
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for large jumps. This is much broader than a Gaussian measure for a random
sample

P (�x) = 1
(2π)1/2σ

exp

(
−�x2

2σ2

)

which one might normally expect of random behavior [34].

13.6.3 The idea of convergence

In order to converge to a stable equilibrium one needs to provide counter-measures
to change that are switched off when the system has reached its desired state.
In order for this to happen, a policy of checking-before-doing is required. This is
actually a difficult issue which becomes increasingly difficult with the complexity
of the task involved. Fortunately most system configuration issues are solved
by simple means (file permissions, missing files etc.) and thus, in practice, it
can be a simple matter to test whether the system is in its desired state before
modifying it.

In mathematics a random perturbation in time is represented by Gaussian
noise, or a function whose expectation value, averaged over a representative time
interval, is zero

〈f 〉 = 1
T

∫ T

0
dt f (t) = 0.

The simplest model of random change is the driven harmonic oscillator.

d2s

dt2
+ γ

ds

dt
+ ω2

0 = f (t),

where s is the state of the system and γ is the rate at which it converges to
a steady state. In order to make oscillations converge, they are damped by a
frictional or counter force γ (in the present case the immune system is the
frictional force which will damp down unwanted changes). In order to have any
chance of stopping the oscillations the counter force must be able to change
direction in time with the oscillations so that it is always opposing the changes at
the same rate as the changes themselves. Formally this is ensured by having the
frictional force proportional to the rate of change of the system as in the differential
representation above. The solutions to this kind of motion are damped oscillations
of the form

s(t) ∼ e−γ t sin(ωt + φ),

for some frequency ω and damping rate γ . In the theory of harmonic motion,
three cases are distinguished: under-damped motion, damped and over-damped
motion. In under-damped motion γ � ω, there is never sufficient counter force to
make the oscillations converge to any degree. In damped motion the oscillations do
converge quite quickly γ ∼ ω. Finally with over-damped motion γ 
 ω the counter
force is so strong as to never allow any change at all.
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Under-damped Inefficient: the system can never
quite keep errors in check.

Damped System converges in a time scale of
the order of the rate of fluctuation.

Over-damped Too draconian: processes killed
frequently while still in use.

Clearly an over-damped solution to system management is unacceptable. This
would mean that the system could not change at all. If one does not want any
changes then it is easy to place the machine in a museum and switch it off. Also
an under-damped solution will not be able to keep up with the changes to the
system made by users or attackers.

The slew rate is the rate at which a device can dissipate changes in order to
keep them in check. If immune response ran continuously then the rate at which
it completed its tasks would be the approximate slew rate. In the body it takes two
or three days to develop an immune response, approximately the length of time it
takes to become infected, so that minor episodes last about a week. In a computer
system there are many mechanisms which work at different time scales and need
to be treated with greater or lesser haste. What is of central importance here is the
underlying assumption that an immune response will be timely. The time scales
for perturbation and response must match. Convergence is not a useful concept
in itself, unless it is a dynamical one. Systems must be allowed to change, but
they must not be allowed to become damaged. Presently there are few objective
criteria for making this judgment so it falls to humans to define such criteria,
often arbitrarily.

In addition to random changes, there is also the possibility of systematic
error. Systematic change would lead to a constant unidirectional drift (clock drift,
disk space usage etc). These changes must be cropped sufficiently frequently
(producing a sawtooth pattern) to prevent serious problems from occurring. A
serious problem would be defined as a problem which prevented the system from
functioning effectively. In the case of disk usage, there is a clear limit beyond which
the system cannot add more files, thus corrective systems need to be invoked more
frequently when this limit is approached, but also in advance of this limit with
less frequency to slow the drift to a minimum. In the case of clock drift, the effects
are more subtle.

13.6.4 Parameterizing a dynamical system

If we wish to describe the behavior of a computer system from an analytical
viewpoint, we need to be able to write down a number of variables which capture
its behavior. Ideally, this characterization would be numerical since quantitative
descriptions are more reliable than qualitative ones, though this might not always
be feasible. In order to properly characterize a system, we need a theoretical
understanding of the system or subsystem which we intend to describe. Dynamical
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systems fall into two categories, depending on how we choose our problem to
analyze. These are called open systems and closed systems.

• Open system: This is a subsystem of some greater whole. An open system
can be thought of as a black box which takes in input and generates output,
i.e. it communicates with its environment. The names source and sink are
traditionally used for the input and output routes. What happens in the black
box depends on the state of the environment around it. The system is open
because input changes the state of the system’s internal variables and output
changes the state of the environment. Every piece of computer software is an
open system. Even an isolated total computer system is an open system as
long as any user is using it. If we wish to describe what happens inside the
black box, then the source and the sink must be modeled by two variables
which represent the essential behavior of the environment. Since one cannot
normally predict the exact behavior of what goes on outside of a black box
(it might itself depend on many complicated variables), any study of an open
system tends to be incomplete. The source and sink are essentially unknown
quantities. Normally one would choose to analyze such a system by choosing
some special input and consider a number of special cases. An open system
is internally deterministic, meaning that it follows strict rules and algorithms,
but its behavior is not necessarily determined, since the environment is an
unknown.

• Closed system: This is a system which is complete, in the sense of being
isolated from its environment. A closed system receives no input and normally
produces no output. Computer systems can only be approximately closed
for short periods of time. The essential point is that a closed system is
neither affected by, nor affects its environment. In thermodynamics, a closed
system always tends to a steady state. Over short periods, under controlled
conditions, this might be a useful concept in analyzing computer subsystems,
but only as an idealization. In order to speak of a closed system, we have
to know the behavior of all the variables which characterize the system. A
closed system is said to be completely determined.1

An important difference between an open system and a closed system is that
an open system is not always in a steady state. New input changes the system.
The internal variables in the open system are altered by external perturbations
from the source, and the sum state of all the internal variables (which can be
called the system’s macrostate) reflect the history of changes which have occurred
from outside. For example, suppose we are analyzing a word processor. This is
clearly an open system: it receives input and its output is simply a window on
its data to the user. The buffer containing the text reflects the history of all that
was inputted by the user and the output causes the user to think and change the
input again. If we were to characterize the behavior of a word processor, we would
describe it by its internal variables: the text buffer, any special control modes or
switches etc.

1This does not mean that it is exactly calculable. Non-linear, chaotic systems are deterministic but
inevitably inexact over any length of time.
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Normally we are interested in components of the operating system which have
more to do with the overall functioning of the machine, but the principle is the
same. The difficulty with such a characterization is that there is no unique way
of keeping track of a system’s history over time, quantitatively. That is not to say
that no such measures exist. Let us consider one simple cumulative quantifier
of the system’s history, which was introduced by Burgess in ref. [42], namely
its entropy or disorder. Entropy has certain qualitative, intuitive features which
are easily understood. Disorder in a system measures the extent to which it is
occupied by files and processes which prevent useful work. If there is a high level
of disorder, then – depending on the context – one might either feel satisfied that
the system is being used to the full, or one might be worried that its capacity is
nearing saturation.

There are many definitions of entropy in statistical studies. Let us choose
Shannon’s traditional informational entropy as an example [277]. In order for the
informational entropy to work usefully as a measure, we need to be selective in
the type of data which are collected.

In ref. [42], the concept of an informational entropy was used to gauge the
stability of a system over time. In any feedback system there is the possibility
of instability: either wild oscillation or exponential growth. Stability can only be
achieved if the state of the system is checked often enough to adequately detect
the resolution of the changes taking place. If the checking rate is too slow, or the
response to a given problem is not strong enough to contain it, then control is lost.

In order to define an entropy we must change from dealing with a continuous
measurement, to a classification of ranges. Instead of measuring a value exactly,
we count the amount of time a value lies within a certain range and say that
all of those values represent a single state. Entropy is closely associated with
the amount of granularity or roughness in our perception of information, since it
depends on how we group the values into classes or states. Indeed all statistical
quantifiers are related to some procedure for coarse-graining information, or elim-
inating detail. In order to define an entropy one needs, essentially, to distinguish
between signal and noise. This is done by blurring the criteria for the system
to be in a certain state. As Shannon put it, we introduce redundancy into the
states so that a range of input values (rather than a unique value) triggers a
particular state. If we consider every single jitter of the system to be an impor-
tant quantity, to be distinguished by a separate state, then nothing is defined as
noise and chaos must be embraced as the natural law. However, if one decides
that certain changes in the system are too insignificant to distinguish between,
such that they can be lumped together and categorized as a single state, then
one immediately has a distinction between useful signal and error margins for
useless noise. In physics this distinction is thought of in terms of order and
disorder.

Let us represent a single quantifier of system resources as a function of time
f (t). This function could be the amount of CPU usage, or the changing capacity of
system disks, or some other variable. We wish to analyze the behavior of system
resources by computing the amount of entropy in the signal f (t). This can be done
by coarse-graining the range of f (t) into N cells:

F i
− < f (t) < F i

+,
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where i = 1, . . . , N ,
F i

+ = F i+1
−

and the constants F i± are the boundaries of the ranges. The probability that the
signal lies in cell i, during the time interval from zero to T is the fraction of time
the function spends in each cell i:

pi(T ) = 1
T

∫ T

0
dt

[
θ

(
f (t) − F i

−
)

− θ
(
f (t) − F i

+
)]

,

where θ(t) is the step function, defined by

θ(t − t ′) =




1 t − t ′ > 0
1
2 t = t ′

0 t − t ′ < 0.

Now, let the statistical degradation of the system be given by the Shannon
entropy [277]

E(T ) = −
N∑

i=1

pi(T ) log pi(T ),

where pi is the probability of seeing event i on average. i runs over an alphabet
of all possible events from 1 to N , which is the number of independent cells in
which we have chosen to coarse-grain the range of the function f (t). The entropy,
as defined, is always a positive quantity, since pi is a number between 0 and 1.

Entropy is lowest if the signal spends most of its time in the same cell F i±.
This means that the system is in a relatively quiescent state and it is therefore
easy to predict the probability that it will remain in that state, based on past
behavior. Other conclusions can be drawn from the entropy of a given quantifier.
For example, if the quantifier is disk usage, then a state of low entropy or stable
disk usage implies little usage which in turn implies low power consumption. This
might also be useful knowledge for a network; it is easy to forget that computer
systems are reliant on physical constraints. If entropy is high it means that the
system is being used very fully: files are appearing and disappearing rapidly: this
makes it difficult to predict what will happen in the future and the high activity
means that the system is consuming a lot of power. The entropy and entropy
gradient of sample disk behavior is plotted in figure 13.8.

Another way of thinking about the entropy is that it measures the amount
of noise or random activity on the system. If all possibilities occur equally on
average, then the entropy is maximal, i.e. there is no pattern to the data. In that
case all of the pi are equal to 1/N and the maximum entropy is (logN ). If every
message is of the same type then the entropy is minimal. Then all the pi are zero
except for one, where px = 1. Then the entropy is zero. This tells us that, if f (t)

lies predominantly in one cell, then the entropy will lie in the lower end of the
range 0 < E < log N . When the distribution of messages is random, it will be in the
higher part of the range.

Entropy can be a useful quantity to plot, in order to gauge the cumulative
behavior of a system, within a fixed number of states. It is one of many possibilities
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Figure 13.8: Disk usage as a function of time over the course of a week, beginning
with Saturday. The lower solid line shows actual disk usage. The middle line shows the
calculated entropy of the activity and the top line shows the entropy gradient. Since only
relative magnitudes are of interest, the vertical scale has been suppressed. The relatively
large spike at the start of the upper line is due mainly to initial transient effects. These even
out as the number of measurements increases. From ref. [42].

for explaining the behavior of an open system over time, experimentally. Like all
cumulative, approximate quantifiers it has a limited value however, so it needs to
be backed up by a description of system behavior.

13.6.5 Stochastic (random) variables

A stochastic or random variable is a variable whose value depends on the outcome
of some underlying random process. The range of values of the variable is not at
issue, but which particular value the variable has at a given moment is random.
We say that a stochastic variable X will have a certain value x with a probability
P (x). Examples are:

• Choices made by large numbers of users.

• Measurements collected over long periods of time.

• Cause and effect are not clearly related.

Certain measurements can often appear random, because we do not know all of
the underlying mechanisms. We say that there are hidden variables. If we sample
data from independent sources for long enough, they will fall into a stable type of
distribution, by virtue of the central limit theorem (see for instance ref. [136]).
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13.6.6 Probability distributions and measurement

Whenever we repeat a measurement and obtain different results, a distribution of
different answers is formed. The spread of results needs to be interpreted. There
are two possible explanations for a range of values:

• The quantity being measured does not have a fixed value.

• The measurement procedure is imperfect and a incurs a range of values due
to error or uncertainty.

Often both of these are the case. In order to give any meaning to a measurement,
we have to repeat the measurement a number of times and show that we obtain
approximately the same answer each time. In any complex system, in which there
are many things going on which are beyond our control (read: just about anywhere
in the real world), we will never obtain exactly the same answer twice. Instead we
will get a variety of different answers which we can plot as a graph: on the x-axis,
we plot the actual measured value and on the y-axis we plot the number of times
we obtained that measurement divided by a normalizing factor, such as the total
number of measurements. By drawing a curve through the points, we obtain an
idealized picture which shows the probability of measuring the different values. The
normalization factor is usually chosen so that the area under the curve is unity.

There are two extremes of distribution: complete certainty (figure 13.9) and
complete uncertainty (figure 13.10). If a measurement always gives precisely the
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Figure 13.9: The delta distribution represents complete certainty. The distribution has a
value of 1 at the measured value.

same answer, then we say that there is no error. This is never the case with real
measurements. Then the curve is just a sharp spike at the particular measured
value. If we obtain a different answer each time we measure a quantity, then there
is a spread of results. Normally that spread of results will be concentrated around
some more or less stable value (figure 13.11). This indicates that the probability of
measuring that value is biased, or tends to lead to a particular range of values. The
smaller the range of values, the closer we approach figure 13.9. But the converse
might also happen: in a completely random system, there might be no fixed value
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Figure 13.10: The flat distribution is a horizontal line indicating that all measured values,
within the shown interval, occur with equal probability.
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Figure 13.11: Most distributions peak at some value, indicating that there is an expected
value (expectation value) which is more probable than all the others.

of the quantity we are measuring. In that case, the measured value is completely
uncertain, as in figure 13.10. To summarize, a flat distribution is unbiased, or
completely random. A non-flat distribution is biased, or has an expectation value,
or probable outcome. In the limit of complete certainty, the distribution becomes
a spike, called the delta distribution.

We are interested in determining the shape of the distribution of values on
repeated measurement for the following reason. If the variation of the values is
symmetrical about some preferred value, i.e. if the distribution peaks close to
its mean value, then we can likely infer that the value of the peak or of the
mean is the true value of the measurement and that the variation we measured
was due to random external influences. If, on the other hand, we find that
the distribution is very asymmetrical, some other explanation is required and
we are most likely observing some actual physical phenomenon which requires
explanation.
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13.7 Observational errors

All measurements involve certain errors. One might be tempted to believe that,
where computers are involved, there would be no error in collecting data, but this
is false. Errors are not only a human failing, they occur because of unpredictability
in the measurement process, and we have already established throughout this
book that computer systems are nothing if not unpredictable. We are thus forced
to make estimates of the extent to which our measurements can be in error. This
is a difficult matter, but approximate statistical methods are well known in the
natural sciences, methods which become increasingly accurate with the amount
of data in an experimental sample.

The ability to estimate and treat errors should not be viewed as an excuse for
constructing a poor experiment. Errors can only be minimized by design.

13.7.1 Random, personal and systematic errors

There are three distinct types of error in the process of observation. The simplest
type of error is called random error. Random errors are usually small deviations
from the ‘true value’ of a measurement which occur by accident, by unforeseen
jitter in the system, or some other influence. By their nature, we are usually
ignorant of the cause of random errors, otherwise it might be possible to eliminate
them. The important point about random errors is that they are distributed evenly
about the mean value of the observation. Indeed, it is usually assumed that
they are distributed with an approximately normal or Gaussian profile about the
mean. This means that there are as many positive as negative deviations and thus
random errors can be averaged out by taking the mean of the observations.

It is tempting to believe that computers would not be susceptible to random
errors. After all, computers do not make mistakes. However this is an erroneous
belief. The measurer is not the only source of random errors. A better way of
expressing this is to say that random errors are a measure of the unpredictability
of the measuring process. Computer systems are also unpredictable, since they
are constantly influenced by outside agents such as users and network requests.

The second type of error is a personal error. This is an error which a particular
experimenter adds to the data unwittingly. There are many instances of this kind
of error in the history of science. In a computer-controlled measurement process,
this corresponds to any particular bias introduced through the use of specific
software, or through the interpretation of the measurements.

The final and most insidious type of error is the systematic error. This is an
error which runs throughout all of the data. It is a systematic shift in the true
value of the data, in one direction, and thus it cannot be eliminated by averaging. A
systematic error leads also to an error in the mean value of the measurement. The
sources of systematic error are often difficult to find, since they are often a result
of misunderstandings, or of the specific behavior of the measuring apparatus.

In a system with finite resources, the act of measurement itself leads to a
change in the value of the quantity one is measuring. In order to measure the
CPU usage of a computer system, for instance, we have to start a new program
which collects that information, but that program inevitably also uses the CPU and
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therefore changes the conditions of the measurement. These issues are well known
in the physical sciences and are captured in principles such as Heisenberg’s
Uncertainty Principle, Schrödinger’s cat and the use of infinite idealized heat
baths in thermodynamics. We can formulate our own verbal expression of this for
computer systems:

Principle 67 (Uncertainty). The act of measuring a given quantity in a system
with finite resources, always changes the conditions under which the measure-
ment is made, i.e. the act of measurement changes the system.

For instance, in order to measure the pressure in a tyre, you have to let some of
the air out, which reduces the pressure slightly. This is not noticeable on a car
tyre, but it can be noticeable on a bicycle. The larger the available resources of
the system, compared with the resources required to make the measurement, the
smaller the effect on the measurement will be.

13.7.2 Adding up independent causes

Suppose we want to measure the value of a quantity v whose value has been
altered by a series of independent random changes or perturbations �v1, �v2, . . .

etc. By how much does that series of perturbations alter the value of v? Our first
instinct might be to add up the perturbations to get the total:

Actual deviation = �v1 + �v2 + . . .

This estimate is not useful, however, because we do not usually know the exact
values of �vi , we can only guess them. In other words, we are working with a set
of guesses �gi , whose sign we do not know. Moreover, we do not know the signs of
the perturbations, so we do not know whether they add or cancel each other out.
In short, we are not in a position to know the actual value of the deviation from
the true value. Instead, we have to estimate the limits of the possible deviation
from the true value v. To do this, we add the perturbations together as though
they were independent vectors.

Independent influences are added together using Pythagoras’ theorem, because
they are independent vectors. This is easy to understand geometrically. If we think
of each change as being independent, then one perturbation �v1 cannot affect the
value of another perturbation �v2. But the only way that it is possible to have two
changes which do not have any effect on one another is if they are movements at
right angles to one another, i.e. they are orthogonal. Another way of saying this is
that the independent changes are like the coordinates x, y, z, . . . of a point which
is at a distance from the origin in some set of coordinate axes. The total distance
of the point from the origin is, by Pythagoras’ theorem,

d =
√

x2 + y2 + z2 + . . ..

The formula we are looking for, for any number of independent changes, is just
the root mean square N-dimensional generalization of this, usually written σ . It
is the standard deviation.
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13.7.3 The mean and standard deviation

In the theory of errors, we use the ideas above to define two quantities for a set
of data: the mean and the standard deviation. Now the situation is reversed: we
have made a number of observations of values v1, v2, v3, . . . which have a certain
scatter, and we are trying to find out the actual value v. Assuming that there are
no systematic errors, i.e. assuming that all of the deviations have independent
random causes, we define the value v to be the arithmetic mean of the data:

v = v1 + v2 + · · · + vN

N
= 1

N

N∑
i=1

vi.

Next we treat the deviations of the actual measurements as our guesses for the
error in the measurements:

�g1 = v − v1

�g2 = v − v2
...

�gN = v − vN

and define the standard deviation of the data by

σ =
√√√√ 1

N

N∑
i=0

�g2
i .

This is clearly a measure of the scatter in the data due to random influences. σ is
the root mean square (RMS) of the assumed errors. These definitions are a way of
interpreting measurements, from the assumption that one really is measuring the
true value, affected by random interference.

An example of the use of standard deviation can be seen in the error bars of
the figures in this chapter. Whenever one quotes an average value, the number of
data and the standard deviation should also be quoted in order to give meaning to
the value. In system administration, one is interested in the average values of any
system metric which fluctuates with time.

13.7.4 The normal error distribution

It has been stated that ‘Everyone believes in the exponential law of errors; the
experimenters because they think it can be proved by mathematics; and the
mathematicians because they believe it has been established by observation’
[323]. Some observational data in science satisfy closely the normal law of error,
but this is by no means universally true. The main purpose of the normal error law
is to provide an adequate idealization of error treatment which is simple to deal
with, and which becomes increasingly accurate with the size of the data sample.

The normal distribution was first derived by DeMoivre in 1733, while dealing
with problems involving the tossing of coins; the law of errors was deduced



13.7. OBSERVATIONAL ERRORS 531

theoretically in 1783 by Laplace. He started with the assumption that the total
error in an observation was the sum of a large number of independent deviations,
which could be either positive or negative with equal probability, and could
therefore be added according to the rule explained in the previous sections.
Subsequently Gauss gave a proof of the error law based on the postulate that the
most probable value of any number of equally good observations is their arithmetic
mean. The distribution is thus sometimes called the Gaussian distribution, or the
bell curve.

The Gaussian normal distribution is a smooth curve which is used to model the
distribution of discrete points distributed around a mean. The probability density
function P (x) tells us with what probability we would expect measurements to be
distributed about the mean value x (see figure 13.12).

P (xi) = 1
(2πσ2)1/2 exp

(
− (xi − x)2

2σ2

)
.

It is based on the idealized limit of an infinite number of points. No experiments
have an infinite number of points though, so we need to fit a finite number of
points to a normal distribution as best we can. It can be shown that the most
probable choice is to take the mean of the finite set to be our estimate of mean
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Figure 13.12: The Gaussian normal distribution, or bell curve, peaks at the arithmetic
mean. Its width characterizes the standard deviation. It is therefore the generic model for
all measurement distributions.

of the ideal set. Of course, if we select at random a sample of N values from the
idealized infinite set, it is not clear that they will have the same mean as the full
set of data. If the number in the sample N is large, the two will not differ by much,
but if N is small, they might. In fact, it can be shown that if we take many random
samples of the ideal set, each of size N , they will have mean values which are
themselves normally distributed, with a standard deviation equal to σ/

√
N . The
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quantity
α = σ√

N

is therefore called the standard error of the mean. This is clearly a measure of the
accuracy with which we can claim that our finite sample mean agrees with the
actual mean. In quoting a measured value which we believe has a unique or correct
value, it is therefore normal to write the mean value, plus or minus the standard
error of the mean:

Result = x ± σ/
√

N (for N observations),

where N is the number of measurements. Otherwise, if we believe that the
measured value should have a distribution of values, we use the standard deviation
as a measure of the error. Many transactional operations in a computer system
do not have a fixed value (see next section).

The law of errors is not universally applicable, but it is still almost universally
applied, for it serves as a convenient fiction which is mathematically simple.2

13.7.5 The Planck distribution

Another distribution which appears in the periodic rhythms of system behavior
is the Planck radiation distribution, so named for its origins in the physics of
blackbody radiation and quantum theory. This distribution can be derived theo-
retically as the most likely distribution to arise from an assembly of fluctuations
in equilibrium with an indefatigable reservoir or source [54]. The precise reason
for its appearance in computer systems is subtle, but has to do with the period-
icity imposed by users’ behaviors, as well as the interpretation of transactions as
fluctuations. The distribution has the form

D(λ) = λ−m

e1/λT − 1
,

where T is a scale, actually a temperature in the theory of blackbody radiation,
and m is a number greater than 2. When m = 3, a single degree of freedom is
represented. In ref. [54], Burgess et al. found that a single degree of freedom was
sufficient to fit the data measured for a single variable, as one might expect. The
shape of the graph is shown in figure 13.13. Figures 13.14 and 13.15 show fits of
real data to Planck distributions.

A number of transactions take this form: typically this includes network ser-
vices that do not stress the performance of a server significantly. Indeed, it was
shown in ref. [54] that many transactions on a computing system can be modeled
as a linear superposition of a Gaussian distribution and a Planckian distribution,
shifted from the origin:

D(λ) = A e
−

(
(λ−λ)2

4σ

)
+ B

(λ − λ0)3(e1/(λ−λ0)T − 1)
.

2The applicability of the normal distribution can, in principle, be tested with a χ2 test, but this is
seldom used in physical sciences, since the number of observations is usually so small as to make it
meaningless.
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Figure 13.13: The Planck distribution for several temperatures. This distribution is
the shape generated by random fluctuations from a source which is unchanged by the
fluctuations. Here, a fluctuation is a computing transaction, a service request or new
process.
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Figure 13.14: The distribution of system processes averaged over a few daily periods. The
dotted line shows the theoretical Planck curve, while the solid line shows actual data. The
jaggedness comes from the small amount of data (see next graph). The x-axis shows the
deviation about the scaled mean value of 50 and the y-axis shows the number of points
measured in class intervals of a half σ . The distribution of values about the mean is a
mixture of Gaussian noise and a Planckian blackbody distribution.
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Figure 13.15: The distribution of WWW socket sessions averaged over many daily periods.
The dotted line shows the theoretical Planck curve, while the solid line shows actual data.
The smooth fit for large numbers of data can be contrasted with the previous graph. The
x-axis shows the deviation about the scaled mean value of 50 and the y-axis shows the
number of points measured in class intervals of a half σ . The distribution of values about
the mean is a pure Planckian blackbody distribution.

This is a remarkable result, since it implies the possibility of using methods of
statistical physics to analyze the behavior of computer systems.

13.7.6 Other distributions

Internet network traffic analysis studies [237, 325] show that the arrival times of
data packets within a stream has a long-tailed distribution, often modeled as a
Pareto distribution (a power law)

f (ω) = β aβ ω−β−1.

This can be contrasted with the Poissonian arrival times of telephonic data
traffic. It is an important consideration to designers of routers and switching
hardware. It implies that a fundamental change in the nature of network traffic
has taken place. A partial explanation for this behavior is that packet arrival times
consist not only of Poisson random processes for session arrivals, but also of
internal correlations within a session. Thus it is important to distinguish between
measurements of packet traffic and measurements of numbers of sockets (or tcp
sessions).

13.7.7 Fourier analysis: periodic behavior

As we have already commented, many aspects of computer system behavior
have a strong periodic quality, driven by the human perturbations introduced
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by users’ daily rhythms. Other natural periods follow from the largest influ-
ences on the system from outside. This must be the case since there are no
natural periodic sources internal to the system.3 Apart from the largest sources
of perturbation, i.e. the users themselves, there might be other lesser software
systems which can generate periodic activity, for instance hourly updates or
automated backups. The source might not even be known: for instance, a poten-
tial network intruder attempting a stealthy port scan might have programmed
a script to test the ports periodically, over a length of time. Analysis of sys-
tem behavior can sometimes benefit from knowing these periods, e.g. if one is
trying to determine a causal relationship between one part of a system and
another, it is sometimes possible to observe the signature of a process which
is periodic and thus obtain direct evidence for its effect on another part of the
system.

Periods in data are in the realm of Fourier analysis. What a Fourier analysis
does is to assume that a data set is built up from the superposition of many
periodic processes. This might sound like a strange assumption but, in fact, this
is always possible. If we draw any curve, we can always represent it as a sum of
sinusoidal-waves with different frequencies and amplitudes. This is the complex
Fourier theorem:

f (t) =
∫

dω f (ω)e−iωt ,

where f (ω) is a series of coefficients. For strictly periodic functions, we can
represent this as an infinite sum:

f (t) =
∞∑

n=0

cne
−2πi nt/T ,

where T is some time scale over which the function f (t) is measured. What
we are interested in determining is the function f (ω), or equivalently the set of
coefficients cn which represent the function. These tell us how much of which
frequencies are present in the signal f (t), or its spectrum. It is a kind of data
prism, or spectral analyzer, like the graphical displays one finds on some music
players. In other words, if we feed in a measured sequence of data and Fourier
analyze it, the spectral function shows the frequency content of the data which we
have measured.

We shall not go into the whys and wherefores of Fourier analysis, since
there are standard programs and techniques for determining the series of coef-
ficients. What is more important is to appreciate its utility. If we are looking
for periodic behavior in system characteristics, we can use Fourier analysis to
find it. If we analyze a signal and find a spectrum such as the one in figure
13.16, then the peaks in the spectrum show the strong periodic content of the
signal.

To discover these smaller signals, it will be necessary to remove the louder ones
(it is difficult to hear a pin drop when a bomb explodes nearby).

3Of course there is the CPU clock cycle and the revolution of disks, but these occur on a time scale
which is smaller than the software operations and so cannot affect system behavior.
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f (t ) - signal Fourier transform

FrequencyTime

Figure 13.16: Fourier analysis is like a prism, showing us the separate frequencies of
which a signal is composed. The sharp peaks in this figure illustrate how we can identify
periodic behavior which might otherwise be difficult to identify. The two peaks show that
the input source conceals two periodic signals.

13.8 Strategic analyses
The use of formal mathematics to analyze system administration has so far
been absent from the discussion. There are two reasons why such analyses are
of interest: i) a formal description of a subject often reveals expectations and
limitations which were invisible prior to the systematic model, and ii) optimal
solutions to problems can be explored, avoiding unnecessary prejudice.

The languages of Game Theory [47] and Dynamical Systems [46] will enable us
to formulate and model assertions about the behavior of systems under certain
administrative strategies. At some level, the development of a computer system is
a problem in economics: it is a mixed game of opposition and cooperation between
users and the system. The aims of the game are several: to win resources, to
produce work, to gain control of the system, and so on. A proper understanding
of the issues should lead to better software and better strategies from human
administrators. For instance, is greed a good strategy for a user? How could one
optimally counter such a strategy? In some cases it might even be possible to solve
system administration games, determining the maximum possible ‘win’ available
in the conflict between users and administrators. These topics are somewhat
beyond the scope of this book.

13.9 Summary
Finding a rigorous experimental and theoretical basis for system administration
is not an easy task. It involves many entwined issues, both technological and
sociological. A systematic discussion of theoretical ideas may be found in ref. [52].
The sociological factors in system administration cannot be ignored, since the
goal of system administration is, amongst other things, user satisfaction. In this
respect one is forced to pay attention to heuristic evidence, as rigorous statistical
analysis of a specific effect is not always practical or adequately separable from
whatever else is going on in the system. The study of computers is a study of
complexity.
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Exercises

Self-test objectives

1. What is meant by a scientific approach to system administration?

2. What does complexity really mean?

3. Explain the role of observation in making judgments about systems.

4. How can one formulate criteria for the evaluation of system policies?

5. How is reliability defined?

6. What principles contribute to increased reliability?

7. Describe heuristically how you would expect key variables, such as numbers
of processes and network transactions, to vary over time. Comment on what
this means for the detection of anomalies in these variables.

8. What is a stochastic system? Explain why human–computer systems are
stochastic.

9. What is meant by convergence in the context of system administration?

10. What is meant by regulation?

11. Explain how errors of measurement can occur in a computer.

12. Explain how errors of measurement should be dealt with.

Problems

1. Consider the following data which represent a measurement of CPU usage
for a process over time:

2.1
2.0
2.1
2.2
2.2
1.9
2.2
2.2
2.1
2.2
2.2

Now answer the following:

(a) To the eye, what appears to be the correct value for the measurement?

(b) Is there a correct value for the measurement?
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(c) What is the mean value?

(d) What is the standard deviation?

(e) If you were to quote these data as one value, how would you quote the
result of the measurement?

2. What is meant by random errors? Explain why computers are not immune
to random errors.

3. Explain what is meant by Mean Time Before Failure. How is this quantity
measured? Can sufficient measurements be made to make its value credible?

4. If a piece of software has a MTBF of two hours and an average downtime of
15 seconds, does it matter that it is unstable?

5. Explain why one would expect measurements of local SMTP traffic to show
a strong daily rhythm, while measurements of incoming traffic would not
necessarily have such a pronounced daily rhythm.

6. Discuss whether one would expect to see a daily rhythm in WWW traffic. If
such a rhythm were found, what would it tell us about the source of the
traffic?

7. Describe a procedure for determining causality in a computer network.
Explain any assumptions and limitations which are relevant to this.

8. Explain why problems with quite different causes often lead to the same
symptoms.



Chapter 14

Summary and outlook

The aim of this book has been to present an overview of the field of system
administration for active system administrators, university courses and computer
scientists everywhere. For a long time, system administration has been passed
on by word of mouth and has resisted formalization. Only in recent times has
the need for a formalization of the field been acknowledged, through courses and
certifications: determined, if not always ideal, attempts to crystallize something
definite from the fluid and fickle body of knowledge which system administrators
operate.

Compared with many other books on system administration, which are excel-
lent how-to references, this book is quite theoretical. It might disappoint those
who hold tradition as an authority. I have gone out of my way to be logical
rather than conventional, to ignore redundant quirks where appropriate and to
make suggested improvements (with accompanying justifications). History has
seldom been the servant for logic and I believe that it is time to abandon
some old practices for the good of the field. That is not to say that I claim
to have any ultimate answers, but the main message of this book is to make
you, the reader, think and judge for yourself. There are, after all, no ques-
tions which should not be asked; there is no authority which should not be
questioned.

System administration is about putting together a network of computers (work-
stations, PCs and supercomputers), getting them running and then keeping them
running in spite of the activities of users who tend to cause the systems to fail.
The failure of an operating system can be caused by one of several things. Most
operating systems do not fail by themselves: it is users perturbing the system
which causes problems to occur. Even in the cases where a problem can be
attributed to a bug in a software component, it normally takes a user to provoke
the bug. The fact that users play an important role in the behavior of computer
systems is far from doubt. At universities students rush to the terminal rooms to
surf on the Web during lunch breaks. This can result in the sudden caching of
hundreds of megabytes of temporary files which can prevent legitimate work from
being carried out. In offices, the workers probably run from their desks giving
the opposite pattern of behavior. The time scale involved here is just a matter
of minutes, perhaps an hour. In that short space of time, user behavior (Web
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surfing) can cause a general failure of the system for all users (disk full). System
administration is therefore a mixture of technical expertise and sociology. Patterns
of user behavior need to be taken into account in any serious discussion of this
problem. As a consequence, it is necessary to monitor the state of the system and
its resources and react swiftly (on the time scale of human behavior) to correct
problems.

14.1 Information management in the future

The future is almost upon us and no branch of technology has exploded with
such a lack of planning and critical review as information technology. The state
of our world knowledge is already well beyond our ability to cope with it. We
currently have no way of searching and accessing most of the scientific and
cultural resources which have been produced in the untold years of human
endeavor of our history. In short, in our present state, most of our scientific
knowledge has gone to waste. This is clearly an unacceptable situation and it is
probably one which will be solved by new information retrieval technology in the
future, but the ability to retrieve information is critically dependent on its being
organized into an easily parsable structure. This is the basis of programming
algorithms in computer software and the same thing applies to conglomerations of
different software systems. The same principle applies to the storage of any kind
of information. If information is not organized by a clear principle, it will get lost
or muddled.

Structure and organization are the unsung heroes of science and of society.
While scientists and computer hackers are frequently portrayed in the popular
press as absent-minded muddlers, subject to fits of divine inspiration, the random
element plays only a minor role in the true development of knowledge. Contrary
to the popular affectation, it is not cool to have a relaxed attitude to organization.
Claims to the effect that system administration is a ‘dirty’ business, not for
academics, that we fly by the seats of our pants and so on, only serve to demean
the system administration profession. If there is one service we can do for the
future it is to think critically and carefully about the information structures of our
network communities.

14.2 Collaboration with software engineering

Every computer programmer should have to do service as a network administrator.
If computer programs were written together with system administrators they would
be efficient at resource usage, they would log useful information, they would be
more reliable and more secure. In the future, every piece of software running
on a computer system will need to take responsibility for system security and
intrusion detection. There is no better way to build reliable and secure software,
since every program knows its own internal state better than any external agent
can. This is not how software is written today, and we suffer the consequences
of this.
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14.3 Pervasive computing

In only a few years’ time, computers will be everywhere in our lives. Embedded
computers are already built into cars, kitchen appliances, media and telecom-
munications equipment; soon we will have smart walls with built in audiovisual
equipment, smart buildings that can respond to those within it, cities wired with
sensors that regulate traffic, and many other computing applications. Today many
of these devices are running specialized operating systems, but increasingly Win-
dows and Linux based kernels are being used. Such high-level operating systems
have the advantage of being well known and highly adaptable, but they present
the specter of complexity to tasks that are relatively simple. This presents a sig-
nificant management challenge that will have to be addressed. Today, very few
organizations face a challenge of this magnitude and very few technologies exist
to cope with this level of complexity.

One clue about how this might be tackled lies in the Internet and the network
of routers. Originally it was thought that routers might be controlled by a central
authority; it did not take long to realize that the scale of the Internet (which
rapidly outgrew expectations) was far greater than a centralized model could cope
with. Bottleneck designs, like central SNMP management, are quickly falling from
favor. Routing succeeded because routers were made able to communicate and
cooperate in building up their routing paths automatically, while satisfying broad
criteria set by policy. This type of collaborative ordering is sometimes referred to as
swarm intelligence, after the phenomenon observed in collaborating insects. This
gives us a clue as to how the future of system administration is likely to evolve.

14.4 The future of system administration

We are approaching a new generation of operating systems, with the capacity
for self-analysis and self-correction. It is no longer a question of whether they
will arrive, but of when they will arrive. When it happens, the nature of system
administration will change.

The day to day tasks of system administration change constantly and we pay
these changes little attention. However, improvements in technology always lead
to changing work practices, as humans are replaced by machinery in those jobs
which are menial and repetitive. The core principles of system administration will
remain the same, but the job description of the system manager will be rather
different. In many ways, the day to day business of system administration consists
of just a few recipes which slowly evolve over time. However, underneath the veneer
of cookery, there is a depth of understanding about computer systems which has
a more permanent value. Even when software systems take over many of the tasks
which are now performed manually, there will be new challenges to meet.

For understandable reasons, the imaginations and attentions of our college
generations have been captured, not by the intrigue of learning machines and
intelligent systems, but by the glamour of multimedia. The computer has matured
from a mere machine to a creative palette. It is difficult to articulate just why the
administration of computer communities is an exciting challenge, but if we are
to succeed in pushing through programmes of research which will bring about
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the level of automation we require, then it will be necessary to attract willing
researchers. Fortunately, today there is a high proportion of system administrators
with scientific backgrounds with the will and training to undertake such work.
However, only the surface has been scratched. The tendency has been to produce
tools rather than to investigate concepts, and while the tools are necessary, they
must not become an end in themselves. A clearer understanding of the problems
we face, looking forward, will only be achieved with more analytical work.

It is on this canvas that we attempt to congeal the discipline of system adminis-
tration. We began this book by asking whether system administration was indeed
a discipline. I hope that it is now clear that it is – for a long time a diffuse one, but
nevertheless real. In many ways system administration is like biology. Animals
are machines, just billions of times more complex than our own creations, but
the gap is closing and will continue to close as we enter into an era of quantum
and biological computing techniques. The essence of experimental observation,
and of the complex phenomena and interrelationships between hosts is directly
analogous to what one does in biology. We may have created computers, but
that does not mean that we understand them implicitly. In our field, we are still
watching the animals do their thing, trying to learn.

Exercise

1. Now that we are done, compare your impressions of system administration
with those you had at the end of chapter 1.
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Some useful Unix commands

This book is not specifically about Unix system administration, but Free, Open
Source incarnations of Unix make system administration easy for anyone to
develop into a class with a minimum of resources. The following commands will be
particularly useful. Always check the manual page (Unix man command) on your
local system before trying these commands. Versions, options and even names
differ, especially on older systems.

Who am I?

• whoami: Prints your user name.

• who am i: Prints your real and effective user id, and terminal.

• id: GNU program which prints all your user ids and groups.

Remote logins

The ssh command is the most reliable way of logging onto a remote Unix host.
The telnet, rlogin or rsh commands should not be used. The secure shell
ssh is a secure replacement for the rsh command. It is recommended in its
place. The rlogin command can be used to login without a password using the
.rhosts authority file for trusted hosts and users. Using secure shell, one may
use public/private key pairs to obtain a much stronger authentication.

Monitoring disk usage

• df: Displays the usage of all mounted disk partitions if no argument is given.
If a directory is named, the state of the disk partition on which the given
directory resides is displayed. On SVR4 systems the output of this command
seems unfamiliar unless the -k option is used.

• du: Shows disk usage on a per-file basis. The file sizes are either in kilobytes
or in 512 byte blocks. The -k option forces output to be in kilobytes. The -s
option prevents du from outputting information about every file and yields a
summary of the named directory instead.
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• swap -s: System 5 program to show swap space.

• pstat: BSD program to show swap space.

Disk backups

• dump: Raw dump of a disk partition to a file or to tape.

• rdump: Same as dump, but this can be done over the network, remotely
without the need for physical contact with the host.

• ufsdump: Solaris/SVR4 replaces dump with this command.

• restore: Restores a disk partition from a filesystem dump.

• cp -r: Copies a directory and all files recursively to a new location. This does
not preserve symbolic links but makes multiple copies of the file instead. See
tar below.

• tar: A simple way to copy an entire filesystem, preserving symbolic links, is
to do the following:

cd source-dir; tar cf - . | (cd destination-dir; tar xf - )

This pipes the output directly to the new directory using the streams interface
for standard IO.

Mounting filesystems

• mount: Mounts a local or remote disk.

• umount: Unmounts a local or remote disk. Note the peculiar spelling.

• showmount: Shows all hosts who are mounting filesystems from this server.

Packing and unpacking archives

• tar cf tarfile.tar source-dir: Packs all the files and subdirectories in
the directory source-dir into a single ‘tape-archive’ file. If the -f argument
is missing, tar expects to be able to write data to a default tape-streamer
device and will complain with an error message.

• tar zcf tarfile.tar.gz source-dir: Same as above, but piped through
gzip to compress the data. This only works with GNU tar.

• tar xf tarfile.tar: Unpacks the contents of a tar-file into the current
directory.

• tar zxf tarfile.tar.gz: Same as above, but pipes through gzip to
uncompress data. This only works with GNU tar.
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Shared libraries

• ldd: Displays the shared libraries used by a compiled executable file (some
Unices only).

• ldconfig: Some systems require this command to be run after installing or
upgrading shared libraries. It updates symbolic links to the latest version
of the library and in some cases generates a cache file of library names.
Especially GNU/Linux and SunOS prior to Solaris.

Handling binaries

• strings: This command lists all of the strings in a binary file. It is useful for
finding out information which is compiled into software.

• file: Prints the type of data a file contains.

• strip: Removes debugging information from a compiled program. This can
reduce the size of the program substantially.

Files and databases

• locate: GNU fast-find command, part of the GNU find package. Locates
the names of files matching the argument string in part, by reading from a
database. See updatedb below.

• find: Locates by searching through every directory. Slow but powerful search
facilities.

• which: Locates an executable file by searching through directories in the
PATH or path variable lists.

• whatis: Gives a one-line summary of a command from the manual page (see
catman).

• catman -M: This program builds the apropos or man -k ‘whatis’ databases.

• updatedb: This shell script updates the locate fast-find database.

Process management

• ps aux: Shows all processes on the system (BSD).

• ps -ef Shows all processes on the system (SysV).

• kill: Sends a signal to the named process (pid), not necessarily to kill it.
The process ID is the one listed by the ps command. Typical options are
-HUP to send the hangup signal. This is used by many system daemons like
inetd and cron as a signal which tells them to reread their configuration
files. Another option is -9 which is a non-ignorable kill instruction.
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• nice: Runs a program with a non-default scheduling priority. This exists both
as a shell command and as a C-shell builtin. The two versions use different
syntax. Normal users can only reduce the priority of their processes (make
them ‘nicer’). Only the superuser can increase the priority of a process. The
priority values differ between BSD and SysV systems. Under BSD, the nice
values run from −20 (highest priority) to 20 (lowest priority), with 0 being the
default. Under SysV, priorities run from 0 to 39, with 20 being the default.
The C-shell builtin priorities are always from −20 to 20 for consistency.

• renice new-priority -p pid: Resets the scheduling priority of a process
to a new value. The priority values used by the system (not C-shell) apply
here.

• crontab: Modern releases of Unix use the crontab command to schedule
commands or scripts which are to be run at a specified time, or at regular
intervals. The crontab -l command lists currently registered jobs. The
crontab -e command is used to edit the crontab file. Each user has his
or her own crontab file on every host. On older BSD systems, only root
could alter the crontab file, which was typically a single file /etc/crontab
or /usr/lib/crontab containing usernames and jobs to be performed.

Mail management

Sometimes mail gets stuck and cannot be delivered for some reason. This might
be because the receiving mailhost is down, or because there is insufficient disk
space to transfer the message, or many other reasons. In that case, incoming and
outgoing mail gets placed in a queue which usually lies under the Unix directory
/var/spool/mail, /var/mail or one of these with /var replaced by /usr.

• mailq: Displays any messages waiting in the mail queue. Same as sendmail
-bp.

• sendmail -q -v: Manually processes the mail queue in verbose mode.

Disk management

• fsck: The filesystem check program. A disk doctor that should not be run on
an active filesystem. This checks the consistency of the filesystem (superblock
consistency etc.) and repairs simple problems.

• newfs: Creates a new filesystem on a disk partition, erasing any previous
data. This is analogous to formatting a diskette.

• swapon: This command causes the system to begin using a disk partition
or swap file for system swapping/paging. swapon -a starts swapping on all
devices registered in the filesystem table /etc/fstab or equivalent.

• mkfile: Creates a special file for swapping inside a filesystem. The file has a
fixed size, it cannot grow or shrink, or be edited directly. Normally swapping
should be to a raw partition. Swapping to this kind of file is inefficient, but is
used by (for instance) diskless clients.
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Name service lookups

• nslookup: An interactive query program for reading domain data from the
Domain Name Service (DNS/BIND) that is now falling from favor.

• host: DNS lookup tool.

• dig: DNS lookup tool.

• dnsquery: A non-interactive query program for reading domain data from
the Domain Name Service (DNS/BIND).

• whois: Displays information about who is responsible for the listed domain.

System statistics

• iostat: Displays I/O summary from the disks at an interval of time-in-
seconds.

• vmstat: Displays virtual-memory summary info at an interval of time-in-
seconds.

• netstat: Shows all current network socket connections.

• netstat -i: Shows statistics from all network interfaces.

• netstat -r: Shows the static routing table.

• nfsstat: Shows NFS statistics. The -c option shows client-side data, while
the -s option shows server-side data, where appropriate.

Networks

• ping: Sends a ‘ping’ to see if a host is alive. The -s option sends multiple
pings on some types of Unix.

• traceroute: Shows the route, passing through all gateways to the named
host. This command normally has to be made setuid-root in order to open
the network kernel structures. Here is an example:

traceroute to wombat.gnu.ai.mit.edu (128.52.46.26), 30 hops max,
40 byte packets
1 ca30-gw (128.39.89.1) 3 ms 1 ms 2 ms
2 hioslo-gw.uninett.no (158.36.84.17) 5 ms 4 ms 5 ms
3 oslo-gw2.uninett.no (158.36.84.1) 15 ms 15 ms 19 ms
4 no-gw2.nordu.net (128.39.0.177) 43 ms 34 ms 32 ms
5 nord-gw.nordu.net (192.36.148.57) 40 ms 31 ms 38 ms
6 icm-gw.nordu.net (192.36.148.193) 37 ms 21 ms 29 ms
7 icm-uk-1-H1/0-E3.icp.net (198.67.131.41) 58 ms 57 ms
8 icm-pen-1-H2/0-T3.icp.net (198.67.131.25) 162 ms 136 ms
9 icm-pen-10-P4/0-OC3C.icp.net (198.67.142.69) 198 ms 134
10 bbnplanet1.sprintnap.net (192.157.69.51) 146 ms 297 ms



548 APPENDIX A. SOME USEFUL UNIX COMMANDS

11 * nyc2-br2.bbnplanet.net (4.0.1.25) 144 ms 120 ms
12 nyc1-br1.bbnplanet.net (4.0.1.153) 116 ms 116 ms 123
13 cambridge1-br1.bbnplanet.net (4.0.1.122) 131 ms 136 ms
14 cambridge1-br1.bbnplanet.net (4.0.1.122) 133 ms 124 ms
15 cambridge1-cr1.bbnplanet.net (206.34.78.23) 138 ms 129
16 cambridge2-cr2.bbnplanet.net (192.233.149.202) 128 ms
17 ihtfp.mit.edu (192.233.33.3) 129 ms 170 ms 143 ms
18 B24-RTR-FDDI.MIT.EDU (18.168.0.6) 129 ms 147 ms 148
19 radole.lcs.mit.edu (18.10.0.1) 149 ms * 130 ms
20 net-chex.ai.mit.edu (18.10.0.2) 134 ms 129 ms 134 ms
21 * * *
22 * * * <--- routing problem here or blocked

• tcpdump: Dumps Ethernet packet activity to console, showing traffic etc.

• snoop: Newer version of tcpdump in Solaris.

• ifconfig: Configures or summarizes the setup of the a network interface,
e.g. ifconfig -a shows all interfaces. Used to set the broadcast address,
netmask and Internet address of the host.

• route: Makes an entry in the static routing table. Hosts which do not act as
routers need only a default route, e.g.

route add default xxx.xxx.xxx.1 1

or in GNU/Linux

route add default gw xxx.xxx.xxx.1
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Programming and compiling

A system administrator is frequently called on to make minor fixes to compiled soft-
ware, improvise short programs to fill a need and correct errors in the compilation
process. A few facts are collected here to avoid referring to too many text-books.

B.1 Make

Make is a declarative language which was designed for building software. In fact,
its usefulness far outshines this meager goal. Make is, in reality, a generalized
hierarchical organizer for instructions which generate file objects.

Nowadays compilers are often sold with fancy user environments driven by
menus which make it easier to compile programs. Make was originally written so
that Unix programmers could write huge source trees of code, occupying many
directories and subdirectories and assemble them efficiently and effortlessly.

Building programs

Typing lines like

cc -c file1.c file2.c ...
cc -o target file1.o ....

repeatedly to compile a complicated program can be a real nuisance. One possi-
bility would therefore be to keep all the commands in a script. This could waste
a lot of time though. Suppose you are working on a big project which consists
of many lines of source code – but are editing only one file. You really only want
to recompile the file you are working on and then re-link the resulting object file
with all of the other object files. Recompiling the other files which hadn’t changed
would be a waste of time. But that would mean that you would have to change the
script each time you change what you need to compile.

A better solution is to use the make command. make was designed for precisely
this purpose. To use make, we create a file called Makefile in the same directory
as our program. make is a quite general program for building software. It is
not specifically tied to the C programming language – it can be used in any
programming language.
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A make configuration file, called a Makefile, contains rules which describe
how to compile or build all of the pieces of a program. For example, even without
telling it specifically, make knows that in order to go from prog.c to prog.o the
command cc -c prog.c must be executed. A Makefile works by making such
associations. The Makefile contains a list of all of the files which compose the
program and rules as to how to get to the finished product from the source.

The idea is that, to compile a program, we just have to type make. The program
make then reads a configuration file called a Makefile and compiles only the
parts which need compiling. It does not recompile files which have not changed
since the last compilation! How does it do this? make works by comparing the
time-stamp on the file it needs to create with the time-stamp on the file which is
to be compiled. If the compiled version exists and is newer than its source then
the source does not need to be recompiled.

To make this idea work in practice, make has to know how to go through
the steps of compiling a program. Some default rules are defined in a global
configuration file, e.g.

/usr/include/make/default.mk

Let’s consider an example of what happens for the three files a.c, b.c and c.c in
the example above – and let’s not worry about what the Makefile looks like yet.

The first time we compile, only the ‘.c’ files exist. When we type make, the
program looks at its rules and finds that it has to make a file called ‘myprog’. To
make this it needs to execute the command

gcc -o myprog a.o b.o c.o

So it looks for ‘a.o’ etc. and doesn’t find them. It now goes to a kind of subroutine
and looks to see if it has any rules for making files called ‘.o’ and it discovers that
these are made by compiling with the gcc -c option. Since the files do not exist, it
does this. Now the files ‘a.o b.o c.o’ exist and it jumps back to the original problem
of trying to make ‘myprog’. All the files it needs now exist and so it executes the
command and builds ‘myprog’.

If we now edit ‘a.c’, and type make once again – it goes through the same
procedure as before but now it finds all of the files. So it compares the dates on
the files – if the source is newer than the result, it recompiles.

By using this recursive method, make only compiles those parts of a program
which need compiling.

Makefiles

To write a Makefile, we have to tell make about dependencies. The dependencies
of a file are all of those files which are required to build it. In a strong sense,
dependencies are like subroutines which are carried out by make in the course of
building the final target. The dependencies of myprog are a.o, b.o and @fiec.o. The
dependencies of a.o are simply a.c, the dependencies of b.o are b.c and so on.

A Makefile consists of rules of the form:

target : dependencies
[ TAB] rule;
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The target is the thing we eventually want to build, the dependencies are like
subroutines to be executed first if they do not exist. Finally the rule is some code
which is to be executed if all of the dependencies exist; it takes the dependencies
and turns them into the current target. Notice how dependencies are like sub-
routines, so each sub-rule makes a sub-target. In the end, the aim is to combine
all of the sub-targets into one final target. There are two important things to
remember:

• The file names must start on the first character of a line.

• There must be a TAB character at the beginning of every rule or action. If
there are spaces instead of tabs, or no tab at all, make will signal an error.
This bizarre feature can cause a lot of confusion.

Let’s look at an example Makefile for a program which consists of two course files
main.c and other.c and which makes use of a library called libdb which lies in
the directory /usr/local/lib. Our aim is to build a program called database:

#
# Simple Makefile for ‘database’
#

# First define a macro

OBJ = main.o other.o

CC = gcc
CFLAGS = -I/usr/local/include
LDFLAGS = -L/usr/local/lib -ldb
INSTALLDIR = /usr/local/bin

#
# Rules start here. Note that the $@ variable becomes the name of the
# executable file. In this case it is taken from the $OBJ variable
#

database: $OBJ
$CC -o $@ $OBJ $LDFLAGS

#
# If a header file changes, normally we need to recompile everything.
# There is no way that make can know this unless we write a rule which
# forces it to rebuild all .o files if the header file changes...
#

$OBJ: $HEADERS

#
# As well as special rules for special files we can also define a
# "suffix rule". This is a rule which tells us how to build all files
# of a certain type. Here is a rule to get .o files from .c files.
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# The $< variable is like $? but is only used in suffix rules.
#

.c.o:
$CC -c $CFLAGS $<

#######################################################################
# Clean up
#######################################################################

#
# Make can also perform ordinary shell command jobs
# "make tidy" here performs a cleanup operation
#

clean:
rm -f $OBJ
rm -f y.tab.c lex.yy.c y.tab.h
rm -f y.tab lex.yy
rm -f *% *~ *.o
make tidy

install: $INSTALLDIR/database
cp database $INSTALLDIR/database

The Makefile above can be invoked in several ways.

make
make database
make clean
make install

If we simple type make, i.e. the first of these choices, make takes the first of the
rules it finds as the object to build. In this case the rule is ‘database’, so the first
two forms above are equivalent.

On the other hand, if we type

make clean

then execution starts at the rule for ‘clean’, which is normally used to remove all
files except the original source code. Make ‘install’ causes the compiled program
to be installed at its intended destination.

make uses some special variables (which resemble the special variables used
in Perl – but don’t confuse them). The most useful one is $ which represents the
current target – or the object which make would like to compile, i.e. as make checks
each file it would like to compile, $ is set to the current filename.

• $@ This evaluates to the current target, i.e. the name of the object you are
currently trying to build. It is normal to use this as the final name of the
program when compiling.
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• $? This is used only outside of suffix rules and means the name of all the
files which must be compiled in order to build the current target.

target: file1.o file2.o
TAB cc -o $@ $?

• $< This is only used in suffix rules. It has the same meaning as $? but only in
suffix rules. It stands for the prerequisite, or the file which must be compiled
in order to make a given object.

Note that, because make has some default rules defined in its configuration file,
a single-file C program can be compiled very easily by typing

make filename.c

This is equivalent to

cc -c filename.c
cc -o filename filename.o

B.2 Perl

To summarize Perl [316], we need to know about the structure of a Perl program,
the conditional constructs it has, its loops and its variables. In the latest versions
of Perl, you can write object-oriented programs of great complexity. We shall not
go into this depth, for the simple reason that Perl’s strength is not as a general
programming language but as a specialized language for textfile handling. The
syntax of Perl is in many ways like the C programming language, but there are
important differences.

• Variables do not have types. They are interpreted in a context-sensitive way.
The operators which act upon variables determine whether a variable is to
be considered a string or as an integer etc.

• Although there are no types, Perl defines arrays of different kinds. There are
three different kinds of array, labelled by the symbols $, @ and %.

• Perl keeps a number of standard variables with special names, e.g. $_ @ARGV
and %ENV. Special attention should be paid to these. They are very important!

• The shell reverse apostrophe notation ‘command’ can be used to execute
Unix programs and get the result into a Perl variable.

Here is a simple ‘structured hello world’ program in Perl. Notice that subrou-
tines are called using the & symbol. There is no special way of marking the main
program – it is simply that part of the program which starts at line 1.

#!/local/bin/perl
#
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# Comments
#

&Hello();
&World;

# end of main

sub Hello
{
print "Hello ";
}

sub World
{
print "World\n";
}

The parentheses on subroutines are optional if there are no parameters passed.
Notice that each line must end in a semi-colon.

Scalar variables

In Perl, variables do not have to be declared before they are used. Whenever you
use a new symbol, Perl automatically adds the symbol to its symbol table and
initializes the variable to the empty string.

It is important to understand that there is no practical difference between zero
and the empty string in Perl – except in the way that you, the user, choose to
use it. Perl makes no distinction between strings and integers or any other types
of data – except when it wants to interpret them. For instance, to compare two
variables as strings is not the same as comparing them as integers, even if the
string contains a textual representation of an integer. Take a look at the following
program.

#!/local/bin/perl
#
# Nothing!
#

print "Nothing == $nothing\n";

print "Nothing is zero!\n" if ($nothing == 0);

if ($nothing eq "")
{
print STDERR "Nothing is really nothing!\n";
}
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$nothing = 0;

print "Nothing is now $nothing\n";

The output from this program is:

Nothing ==
Nothing is zero!
Nothing is really nothing!
Nothing is now 0

There are several important things to note here. First of all, we never declare
the variable ‘nothing’. When we try to write its value, Perl creates the name and
associates a NULL value to it, i.e. the empty string. There is no error. Perl knows it
is a variable because of the $ symbol in front of it. All scalar variables are identified
by using the dollar symbol.

Next, we compare the value of $nothing with the integer ‘0’ using the integer
comparison symbol ==, and then we compare it with the empty string using the
string comparison symbol eq. Both tests are true! That means that the empty
string is interpreted as having a numerical value of zero. In fact any string which
does not form a valid integer number has a numerical value of zero.

Finally we can set $nothing explicitly to a valid integer string zero, which
would now pass the first test, but fail the second.

As extra spice, this program also demonstrates two different ways of writing
the if command in Perl.

The default scalar variable

The special variable $ is used for many purposes in Perl. It is used as a buffer to
contain the result of the last operation, the last line read in from a file etc. It is so
general that many functions which act on scalar variables work by default on $
if no other argument is specified. For example,

print;

is the same as

print $ ;

Array (vector) variables

The complement of scalar variables is arrays. In Perl, an array is identified by the
@ symbol and, like scalar variables, is allocated and initialized dynamically.

@array[0] = "This little piggy went to market";
@array[2] = "This little piggy stayed at home";

print "@array[0] @array[1] @array[2]";
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The index of an array is always understood to be a number, not a string, so if you
use a non-numerical string to refer to an array element, you will always get the
zeroth element, since a non-numerical string has an integer value of zero.

An important array which every program defines is

@ARGV

This is the argument vector array, and contains the commands line arguments by
analogy with the C-shell variable $argv[].

Given an array, we can find the last element by using the $# operator. For
example,

$last_element = $ARGV[$#ARGV];

Notice that each element in an array is a scalar variable. The $# cannot be
interpreted directly as the number of elements in the array, as it can in the C-shell.
You should experiment with the value of this quantity – it is often necessary to
add 1 or 2 to its value in order to get the behavior one is used to in the C-shell.

Perl does not support multiple-dimension arrays directly, but it is possible to
simulate them yourself. (See the Perl book [316].)

Special array commands

The shift command acts on arrays and returns and removes the first element of
the array. Afterwards, all of the elements are shifted down one place. So one way
to read the elements of an array in order is to repeatedly call shift.

$next_element=shift(@myarray);

Note that, if the array argument is omitted, then shift works on @ARGV by default.
Another useful function is split, which takes a string and turns it into an

array of strings. split works by choosing a character (usually a space) to delimit
the array elements, so a string containing a sentence separated by spaces would
be turned into an array of words. The syntax is

@array = split; # works with spaces on $_
@array = split(pattern,string); # Breaks on pattern
($v1,$v2...) = split(pattern,string); # Name array elements with scalars

In the first of these cases, it is assumed that the variable $ is to be split on
whitespace characters. In the second case, we decide on what character the split
is to take place and on what string the function is to act. For instance

@new_array = split(":","name:passwd:uid:gid:gcos:home:shell");

The result is a seven-element array called @new array, where $new array[0] is
name etc.
In the final example, the left-hand side shows that we wish to capture elements
of the array in a named set of scalar variables. If the number of variables on the
left-hand side is fewer than the number of strings which are generated on the
right-hand side, they are discarded. If the number on the left-hand side is greater,
then the remainder variables are empty.
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Associated arrays

One of the useful features of Perl is the ability to use one string as an index to
another string in an array. For example, we can make a short encyclopedia of zoo
animals by constructing an associative array in which the keys (or indices) of the
array are the names of animals, and the contents of the array are the information
about them.

$animals{"Penguin"} = "Suspicious animal, good with cheese crackers...\n";
$animals{"dog"} = "Plays stupid, but could be a cover...\n";

if ($index eq "fish")
{
$animals$index = "Often comes in square boxes. Very cold.\n";
}

An entire associated array is written %array, while the elements are $array{$key}.
Perl provides a special associative array for every program called %ENV. This

contains the environment variables defined in the parent shell which is running
the Perl program. For example

print "Username = $ENV{"USER"}\n";

$ld = "LD_LIBRARY_PATH";
print "The link editor path is $ENV{$ld}\n";

To get the current path into an ordinary array, one could write,

@path_array= split(":",$ENV"PATH");

Array example program

Here is an example which prints out a list of files in a specified directory, in order
of their Unix protection bits. The least protected file comes first.

#!/local/bin/perl
#
# Demonstration of arrays and associated arrays.
# Print out a list of files, sorted by protection,
# so that the least secure files come first.
#
# e.g. arrays <list of words>
# arrays *.C
#
############################################################

print "You typed in ",$#ARGV+1," arguments to command\n";

if ($#ARGV < 1)
{
print "That’s not enough to do anything with!\n";
}
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while ($next_arg = shift(@ARGV))
{
if ( ! ( -f $next_arg || -d $next_arg))

{
print "No such file: $next_arg\n";
next;
}

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size) = stat($next_arg);
$octalmode = sprintf("%o",$mode & 0777);

$assoc_array{$octalmode} .= $next_arg.
" : size (".$size."), mode (".$octalmode.")\n";

}

print "In order: LEAST secure first!\n\n";

foreach $i (reverse sort keys(%assoc_array))
{
print $assoc_array{$i};
}

Loops and conditionals

Here are some of the most commonly used decision-making constructions and
loops in Perl. The following is not a comprehensive list – for that, you will have
to look in the Perl bible: Programming Perl, by Larry Wall and Randal Schwartz
[316]. The basic pattern follows the C programming language quite closely. In the
case of the for loop, Perl has both the C-like version, called for and a foreach
command which is like the C-shell implementation.

if ( expression )
{
block;
}

else
{
block;
}

command if ( expression );

unless ( expression )
{
block;
}

else
{
block;
}
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while ( expression )
{
block;
}

do
{
block;
}

while ( expression);

for ( initializer; expression; statement )
{
block;
}

foreach variable( array )
{
block;
}

In all cases, the else clauses may be omitted. Strangely, Perl does not have a
switch statement, but the Perl book describes how to make one using the features
provided.

The for loop

The for loop is exactly like that in C or C++ and is used to iterate over a numerical
index, like this:

for ($i = 0; $i < 10; $i++)
{
print $i, "\n";
}

The foreach loop

The foreach loop is like its counterpart in the C-shell. It is used for reading
elements one by one from a regular array. For example,

foreach $i ( @array )
{
print $i, "\n";
}
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Iterating over elements in arrays

One of the main uses for for type loops is to iterate over successive values in an
array. This can be done in two ways which show the essential difference between
for and foreach.

If we want to fetch each value in an array in turn, without caring about
numerical indices, then it is simplest to use the foreach loop.

@array = split(" ","a b c d e f g");

foreach $var ( @array )
{
print $var, "\n";
}

This example prints each letter on a separate line. If, on the other hand, we are
interested in the index for the purposes of some calculation, then the for loop is
preferable.

@array = split(" ","a b c d e f g");

for ($i = 0; $i <= $#array; $i++)
{
print $array[$i], "\n";
}

Notice that, unlike the for-loop idiom in C/C++, the limit is $i <= $#array, i.e.
‘less than or equal to’ rather than ‘less than’. This is because the $# operator does
not return the number of elements in the array but rather the last element.

Associated arrays are slightly different, since they do not use numerical keys.
Instead they use a set of strings, like in a database, so that you can use one string
to look up another. In order to iterate over the values in the array we need to get
a list of these strings. The keys command is used for this.

$assoc{"mark"} = "cool";
$assoc{"GNU"} = "brave";
$assoc{"zebra"} = "stripy";

foreach $var ( keys %assoc )
{
print "$var , $assoc{$var} \n";
}

The order of the keys is not defined in the above example, but you can choose to
sort them alphabetically by writing

foreach $var ( sort keys %assoc )

instead.
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Iterating over lines in a file

Since Perl is about file handling we are very interested in reading files. Unlike
C and C++, Perl likes to read files line by line. Angle brackets are used for this.
Assuming that we have some file handle <file>, for instance <STDIN>, we can
always read the file line by line with a while-loop like this.

while ($line = <file>)

print $line;

Note that $line includes the end of line character on the end of each line. If you
want to remove it, you should add a chomp command:

while ($line = <file>)
{
chomp $line;
print "line = ($line)\n";
}

Files in perl

Opening files is straightforward in Perl. Files must be opened and closed using –
wait for it – the commands open and close. You should be careful to close files
after you have finished with them – especially if you are writing to a file. Files are
buffered and often large parts of a file are not actually written until the close
command is received.

Three files are, of course, always open for every program, namely STDIN, STDOUT
and STDERR.

Formally, to open a file, we must obtain a file descriptor or file handle. This is
done using open;

open (file_descrip,"Filename");

Angle brackets <..> are used to read from the file. For example,

$line = <file_descrip>;

reads one line from the file associated with file descrip.
Let’s look at some examples of filing opening. Here is how we can implement

Unix’s cut and paste commands in Perl:

#!/local/bin/perl
#
# Cut in perl
#

# Cut second column
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while (<>)
{
@cut_array = split;

print "$cut_array[1]\n";
}

This is the simplest way to open a file. The empty file descriptor <> tells Perl to
take the argument of the command as a filename and open that file for reading.
This is really short for while($ =<STDIN>) with the standard input redirected to
the named file.

The paste program can be written as follows:

#!/local/bin/perl
#
# Paste in perl
#
# Two files only, syntax : paste file 1file2
#

open (file1,"@ARGV[0]") || die "Can’t open @ARGV[0]\n";
open (file2,"@ARGV[1]") || die "Can’t open @ARGV[1]\n";

while (($line1 = <file1>) || ($line2 = <file2>))
{
chop $line1;
chop $line2;

print "$line1 $line2\n"; # tab character between
}

Here we see more formally how to read from two separate files at the same
time. Notice that, by putting the read commands into the test-expression for the
while loop, we are using the fact that <..> returns a non-zero (true) value unless
we have reached the end of the file.

To write and append to files, we use the shell redirection symbols inside the
open command.

open(fd,"> filename"); # open file for writing
open(fd,">> filename"); # open file for appending

We can also open a pipe from an arbitrary Unix command and receive the output
of that command as our input:

open (fd,"/bin/ps aux | ");
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A simple Perl program

Let us now write the simplest Perl program which illustrates the way in which Perl
can save time. We shall write it in three different ways to show what the short cuts
mean. Let us implement the cat command, which copies files to the standard
output. The simplest way to write this in Perl is the following:

#!/local/bin/perl

while (<>)
{
print;
}

Here we have made heavy use of the many default assumptions which Perl makes.
The program is simple, but difficult to understand for novices. First of all we use
the default file handle <> which means ‘take one line of input from a default file’.
This object returns true as long as it has not reached the end of the file, so this
loop continues to read lines until it reaches the end of file. The default file is
standard input, unless this script is invoked with a command line argument, in
which case the argument is treated as a filename and Perl attempts to open the
argument-filename for reading. The print statement has no argument telling it
what to print, but Perl takes this to mean ‘print the default variable $ ’.

We can therefore write this more explicitly as follows:

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

while (<HANDLE>)
{
print $_;
}

Here we have simply filled in the assumptions explicitly. The command <HANDLE>
now reads a single line from the named file-handle into the default variable $ . To
make this program more general, we can eliminate the defaults entirely.

#!/local/bin/perl

open (HANDLE,"$ARGV[1]");

while ($line=<HANDLE>)
{
print $line;
}
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== and eq

Be careful to distinguish between the comparison operator for integers == and the
corresponding operator for strings eq. These do not work in each other’s places so
if you get the wrong comparison operator your program might not work and it is
quite difficult to find the error.

chop and chomp

The command chop cuts off the last character of a string. This is useful for
removing newline characters when reading files etc. The syntax is

chop; # chop $_;

chop $scalar; # remove last character in $scalar

A slightly more refined version which only chops off whitespace and end of line
characters is the chomp function.

Perl subroutines

Subroutines are indicated, as in the example above, by the ampersand & symbol.
When parameters are passed to a Perl subroutine, they are handed over as an
array called @ , which is analogous to the $ variable. Here is a simple example:

#!/local/bin/perl

$a="silver";
$b="gold";

&PrintArgs($a,$b);

# end of main

sub PrintArgs

{
($local_a,$local_b) = @_;

print "$local_a, $local_b\n";
}

die – exit on error

When a program has to quit and give a message, the die command is normally
used. If called without an argument, Perl generates its own message including a
line number at which the error occurred. To include your own message, you write

die "My message....";
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If the string is terminated with a \n newline character, the line number of the
error is not printed, otherwise Perl appends the line number to your string.

When opening files, it is common to see the syntax:

open (filehandle,"Filename") || die "Can’t open...";

The logical OR symbol is used, because open returns true if all goes well, in which
case the right-hand side is never evaluated. If open is false, then die is executed.
You can decide for yourself whether or not you think this is good programming
style – we mention it here because it is common practice.

The stat() idiom

The Unix library function stat() is used to find out information about a given
file. This function is available both in C and in Perl. In Perl, it returns an array
of values. Usually we are interested in knowing the access permissions of a file.
stat() is called using the syntax

@array = stat ("filename");

or alternatively, using a named array

($device,$inode,$mode) = stat("filename");

The value returned in the mode variable is a bit pattern. The most useful way
of treating these bit patterns is to use octal numbers to interpret their meaning.

To find out whether a file is readable or writable to a group of users, we use a
programming idiom which is very common for dealing with bit patterns: first we
define a mask which zeros out all of the bits in the mode string except those which
we are specifically interested in. This is done by defining a mask value in which
the bits we want are set to 1 and all others are set to zero. Then we AND the mask
with the mode string. If the result is different from zero then we know that all of
the bits were also set in the mode string. As in C, the bitwise AND operator in Perl
is called &.

For example, to test whether a file is writable to other users in the same group
as the file, we would write the following.

$mask = 020; # Leading 0 means octal number

($device,$inode,$mode) = stat(" file");

if ($mode & $mask)

print "File is writable by the group";

Here the 2 in the second octal number means ‘write’, the fact that it is the second
octal number from the right means that it refers to ‘group’. Thus the result of the
if-test is only true if that particular bit is true. We shall see this idiom in action
below.
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Perl example programs

The passwd program and crypt() function

Here is a simple implementation of the Unix passwd program in Perl.

#!/local/bin/perl
#
# A perl version of the passwd program.
#
# Note - the real passwd program needs to be much more
# secure than this one. This is just to demonstrate the
# use of the crypt() function.
#
#############################################################

print "Changing passwd for $ENV{‘USER’} on $ENV{‘HOST’}\n";

system ‘stty’,‘-echo’;
print "Old passwd: ";

$oldpwd = <STDIN>;
chop $oldpwd;

($name,$coded_pwd,$uid,$gid,$x,$y,$z,$gcos,$home,$shell)
= getpwnam($ENV{"USER"});

if (crypt($oldpwd,$coded_pwd) ne $coded_pwd)
{
print "\nPasswd incorrect\n";
exit (1);
}

$oldpwd = ""; # Destroy the evidence!

print "\nNew passwd: ";

$newpwd = <STDIN>;

print "\nRepeat new passwd: ";

$rnewpwd = <STDIN>;

chop $newpwd;
chop $rnewpwd;

if ($newpwd ne $rnewpwd)
{
print "\n Incorrectly typed. Password unchanged.\n";
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exit (1);
}

\index{{\code rand()}}
$salt = rand();
$new_coded_pwd = crypt($newpwd,$salt);

print "\n\n$name:$new_coded_pwd:$uid:$gid:$gcos:$home:$shell\n";

Example with fork()

The following example uses the fork function to start a daemon which goes into
the background and watches the system to find out which process is using the
greatest amount of CPU time each minute. A pipe is opened from the BSD ps
command.

#!/local/bin/perl
#
# A fork() demo. This program will sit in the background and
# make a list of the process which uses the maximum CPU average
# at 1 minute intervals. On a quiet BSD like system this will
# normally be the swapper (long term scheduler).
#

$true = 1;
$logfile="perl.cpu.logfile";

print "Max CPU logfile, forking daemon...\n";

if (fork())
{
exit(0);
}

while ($true)
{
open (logfile,">> $logfile") || die "Can’t open $logfile\n";
open (ps,"/bin/ps aux |") || die "Couldn’t open a pipe from ps !!\n";

$skip_first_line = <ps>;
$max_process = <ps>;
close(ps);

print logfile $max_process;
close(logfile);
sleep 60;

($a,$b,$c,$d,$e,$f,$g,$size) = stat($logfile);

if ($size > 500)
{
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print STDERR "Log file getting big, better quit!\n";
exit(0);
}

}

Pattern matching and extraction

Perl has regular expression operators for identifying patterns. The operator

/ regular expression/

returns true or false depending on whether the regular expression matches the
contents of $ . For example

if (/perl/)

print "String contains perl as a substring";

if (/(Sat|Sun)day/)

print "Weekend day....";

The effect is rather like the grep command. To use this operator on other variables
you would write

$variable =~ / regexp/

Regular expression can contain parenthetic sub-expressions, e.g.

if (/(Sat|Sun)day (..)th (.*)/)

$first = $1;
$second = $2;
$third = $3;

in which case Perl places the objects matched by such sub-expressions in the
variables $1, $2 etc.

Searching and replacing text

The sed-like function for replacing all occurrences of a string is easily implemented
in Perl using

while (<input>)

s/$search/$replace/g;
print output;
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This example replaces the string inside the default variable. To replace in a general
variable we use the operator = , with syntax:

$variable =~ s/ search/ replace/

Here is an example of this operator in use. The following is a program which
searches and replaces a string in several files. This is a useful program for making
a change globally in a group of files. The program is called ‘file-replace’.

#!/local/bin/perl
##############################################################
#
# Look through files for findstring and change to newstring
# in all files.

# Define a temporary file and check it doesn’t exist

$outputfile = "/tmp/file";
unlink $outputfile;

#
# Check command line for list of files
#

if ($#ARGV < 0)
{
die "Syntax: file-replace [file list]\n";
}

print "Enter the string you want to find (Don’t use quotes):\n\n:";
$findstring=<STDIN>;
chop $findstring;

print "Enter the string you want to replace with (Don’t use quotes):\n\n:";
$replacestring=<STDIN>;
chop $replacestring;

#

print "\nFind: $findstring\n";
print "Replace: $replacestring\n";
print "\nConfirm (y/n) ";
$y = <STDIN>;
chop $y;

if ( $y ne "y")
{
die "Aborted -- nothing done.\n";
}

else
{
print "Use CTRL-C to interrupt...\n";
}
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#
# Now shift default array @ARGV to get arguments 1 by 1
#

while ($file = shift)
{
if ($file eq "file-replace")

{
print "Findmark will not operate on itself!";
next;
}

#
# Save existing mode of file for later
#

($dev,$ino,$mode)=stat($file);

open (INPUT,$file) || warn "Couldn’t open $file\n";
open (OUTPUT,"> $outputfile") || warn "Can’t open tmp";

$notify = 1;

while (<INPUT>)
{
if (/$findstring/ && $notify)

{
print "Fixing $file...\n";
$notify = 0;
}

s/$findstring/$replacestring/g;
print OUTPUT;
}

close (OUTPUT);

#
# If nothing went wrong (if outfile not empty)
# move temp file to original and reset the
# file mode saved above
#

if (! -z $outputfile)
{
rename ($outputfile,$file);
chmod ($mode,$file);
}

else
{
print "Warning: file empty!\n.";
}

}
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Similarly we can search for lines containing a string. Here is the grep program
written in Perl

#!/local/bin/perl
#
# grep as a perl program
#

# Check arguments etc

while (<>)

print if (/$ARGV[1]/);

The operator /search-string/ returns true if the search string is a substring of
the default variable $ . To search an arbitrary string, we write

.... if (teststring =~ /search-string/);

Here teststring is searched for occurrences of search-string and the result is true
if one is found.

In Perl you can use regular expressions to search for text patterns. Note
however that, like all regular expression dialects, Perl has its own conventions.
For example the dollar sign does not mean ‘match the end of line’ in Perl, instead
one uses the \n symbol. Here is an example program which illustrates the use of
regular expressions in Perl:

#!/local/bin/perl
#
# Test regular expressions in perl
#
# NB - careful with $ * symbols etc. Use ’’ quotes since
# the shell interprets these!
#

open (FILE,"regex_test");

$regex = $ARGV[$#ARGV];

# Looking for $ARGV[$#ARGV] in file...

while (<FILE>)

if (/$regex/)

print;
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This can be tested with the following patterns:

.* prints every line (matches everything)

. all lines except those containing only blanks

(. doesn’t match ws/white-space)

[a-z] matches any line containing lowercase

[^a-z] matches any line containing something which is

not lowercase a–z

[A-Za-z] matches any line containing letters of any kind

[0-9] match any line containing numbers

#.* line containing a hash symbol followed by anything

^#.* line starting with hash symbol (first char)

;\n match line ending in a semi-colon

Try running this program with the test data on the following file which is called
regex test in the example program.

# A line beginning with a hash symbol

JUST UPPERCASE LETTERS

just lowercase letters

Letters and numbers 123456

123456

A line ending with a semi-colon;

Line with a comment # COMMENT...

Generate WWW pages auto-magically

The following program scans through the password database and builds a stan-
dardized html-page for each user it finds there. It fills in the name of the user in
each case. Note the use of the << operator for extended input, already used in the
context of the shell. This allows us to format a whole passage of text, inserting
variables at strategic places, and avoid having to print over many lines.

#!/local/bin/perl
#
# Build a default home page for each user in /etc/passwd
#
#
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$true = 1;
$false = 0;

# First build an associated array of users and full names

setpwent();

while ($true)
{
($name,$passwd,$uid,$gid,$quota,$comment,$fullname) = getpwent;
$FullName{$name} = $fullname;
print "$name - $FullName{$name}\n";
last if ($name eq "");
}

print "\n";

# Now make a unique filename for each page and open a file

foreach $user (sort keys(%FullName))
{
next if ($user eq "");

print "Making page for $user\n";
$outputfile = "$user.html";

open (OUT,"> $outputfile") || die "Can’t open $outputfile\n";

&MakePage;

close (OUT);
}

####################################################################

sub MakePage

{
print OUT <<ENDMARKER;

<HTML>
<BODY>
<HEAD><TITLE>$FullName{$user}’s Home Page</TITLE></HEAD>
<H1>$FullName{$user}’s Home Page</H1>

Hi welcome to my home page. In case you hadn’t
got it yet my name is: $FullName{$user}...

I study at <a href=http://www.iu.hioslo.no>Oslo College</a>.

</BODY>
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</HTML>

ENDMARKER
}

Summary

Perl is a superior alternative to the shell which has much of the power of C and
is therefore ideal for simple and even more complex system programming tasks.
A Perl program is more efficient than a shell script since it avoids large overheads
associated with forking new processes and setting up pipes. The resident memory
image of a Perl program is often smaller than that of a shell script when all of the
sub-programs of a shell script are taken into account. We have barely scratched
the surface of Perl here. If you intend to be a system administrator for Unix or NT
systems, you could do much worse than to read the Perl book [316] and learn Perl
inside out.

B.3 WWW and CGI programming

CGI stands for the Common Gateway Interface. It is the name given to scripts
which can be executed from within pages of the World Wide Web. Although it is
possible to use any language in CGI programs (hence the word ‘common’), the
usual choice is Perl, because of the ease with which Perl can handle text.

The CGI interface is pretty unintelligent, in order to be as general as possible,
so we need to do a bit of work in order to make scripts work.

Permissions

The key thing about the WWW which often causes a lot of confusion is that the
WWW service runs with a user ID of nobody or www. The purpose of this is to
ensure that no web user has the right to read or write files unless they are opened
very explicitly to the world by the user who owns them.

In order for files to be readable on the WWW, they must have file mode 644
and they must lie in a directory which has mode 755. In order for a CGI program
to be executable, it must have permission 755 and in order for such a program to
write to a file in a user’s directory, it must be possible for the file to be created (if
necessary) and everyone must be able to write to it. That means that files which
are written to by the WWW must have mode 666 and must either exist already or
lie in a directory with permission 777.1

Protocols

CGI script programs communicate with WWW browsers using a very simple
protocol. It goes like this:

• A web page sends data to a script using the ‘forms’ interface. Those data
are concatenated into a single line. The data in separate fields of a form are

1You could also set the sticky bit 1777 in order to prevent malicious users from deleting your file.
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separated by & signs. New lines are replaced by the text %0D%0A, which is the
DOS ASCII representation of a newline, and spaces are replaced by + symbols.

• A CGI script reads this single line of text on the standard input.

• The CGI script replies to the web browser. The first line of the reply must be
a line which tells the browser what mime-type the data are sent in. Usually,
a CGI script replies in HTML code, in which case the first line in the reply
must be:

Content-type: text/html

This must be followed by a blank line.

HTML coding of forms

To start a CGI program from a web page we use a form which is a part of the HTML
code enclosed with the parentheses

<FORM method="POST" ACTION="/cgi-script-alias/program.pl">
...

</FORM>

The method ‘post’ means that the data which get typed into this form will be piped
into the CGI program via its standard input. The ‘action’ specifies which program
you want to start. Note that you cannot simply use the absolute path of the file,
for security reasons. You must use something called a ‘script alias’ to tell the web
browser where to find the program. If you do not have a script alias defined for you
personally, then you need to get one from your system administrator. By using a
script alias, no one from outside your site can see where your files are located,
only that you have a ‘cgi-bin’ area somewhere on your system.

Within these parentheses, you can arrange to collect different kinds of input.
The simplest kind of input is just a button which starts the CGI program. This
has the form

<INPUT TYPE="submit" VALUE="Start my program">

This code creates a button. When you click on it the program in your ‘action’
string gets started. More generally, you will want to create input boxes where you
can type in data. To create a single-line input field, you use the following syntax:

<INPUT NAME="variable-name" SIZE=40>

This creates a single-line text field of width 40 characters. This is not the limit
on the length of the string which can be typed into the field, only a limit on the
amount which is visible at any time. It is for visual formatting only. The NAME
field is used to identify the data in the CGI script. The string you enter here will be
sent to the CGI script in the form variable-name=value of input.... Another
type of input is a text area. This is a larger box where one can type in text on
several lines. The syntax is

<TEXTAREA NAME="variable-name" ROW=50 COLS=50>



576 APPENDIX B. PROGRAMMING AND COMPILING

which means ‘create a text area of fifty rows by fifty columns with a prompt to the
left of the box’. Again, the size has only to do with the visual formatting, not to do
with limits on the amount of text which can be entered.

As an example, let’s create a WWW page with a complete form which can be
used to make a guest book, or order form.

<HTML>
<HEAD>
<TITLE>Example form</TITLE>
<!-- Comment: Mark Burgess, 27-Jan-1997 -->
<LINK REV="made" HREF="mailto:mark@iu.hioslo.no">
</HEAD>
<BODY>
<CENTER><H1>Write in my guest book...</H1></CENTER>
<HR>

<CENTER><H2>Please leave a comment using the form below.</H2><P>
<FORM method="POST" ACTION="/cgi-bin-mark/comment.pl">

Your Name/E-mail: <INPUT NAME="variable1" SIZE=40> <BR><BR>

<P>
<TEXTAREA NAME="variable2" cols=50 rows=8></TEXTAREA>
<P>

<INPUT TYPE=submit VALUE="Add message to book">
<INPUT TYPE=reset VALUE="Clear message">
</FORM>

<P>

</BODY>
</HTML>

The reset button clears the form. When the submit button is pressed, the CGI
program is activated.

Interpreting data from forms

To interpret and respond to the data in a form, we must write a program which
satisfies the protocol above, see section 2.6.5. We use Perl as a script language.
The simplest valid CGI script is the following.

#!/local/bin/perl

#
# Reply with proper protocol
#
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print "Content-type: text/html\n\n";

#
# Get the data from the form ...
#

$input = <STDIN>;

#
# ... and echo them back
#

print $input, "\n Done! \n";

Although rather banal, this script is a useful starting point for CGI programming,
because it shows you just how the input arrives at the script from the HTML form.
The data arrive all in a single, enormously long line, full of funny characters. The
first job of any script is to decode this line.

Before looking at how to decode the data, we should make an important point
about the protocol line. If a web browser does not get this ‘content-type’ line from
the CGI script it returns with an error:

500 Server Error

The server encountered an internal error or misconfiguration and was
unable to complete your request.

Please contact the server administrator, and inform them of the time
the error occurred, and anything you might have done that may have
caused the error.

Error: HTTPd: malformed header from script www/cgi-bin/comment.pl

Before finishing your CGI script, you will probably encounter this error several
times. A common reason for getting the error is a syntax error in your script. If
your program contains an error, the first thing a browser gets in return is not the
‘content-type’ line, but an error message. The browser does not pass on this error
message, it just prints the uninformative message above.

If you can get the above script to work, then you are ready to decode the data
which are sent to the script. The first thing is to use Perl to split the long line into
an array of lines, by splitting on &. We can also convert all of the + symbols back
into spaces. The script now looks like this:

#!/local/bin/perl

#
# Reply with proper protocol
#
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print "Content-type: text/html\n\n";

#
# Get the data from the form ...
#

$input = <STDIN>;

#
# ... and echo them back
#

print "$input\n\n\n";

$input =~ s/\+/ /g;

#
# Now split the lines and convert
#

@array = split(‘&’,$input);

foreach $var ( @array )
{
print "$var\n";
}

print "Done! \n";

We now have a series of elements in our array. The output from this script is
something like this:

variable1=Mark+Burgess&variable2=%0D%0AI+just+called+to+say+ (wrap)
....%0D%0A...hey+pig%2C+nothing%27s+working+out+the+way+I+planned
variable1=Mark Burgess variable2=%0D%0AI just called to say (wrap)
....%0D%0A...hey pig%2Cnothing%27s working out the way I planned Done!

As you can see, all control characters are converted into the form %XX. We should
now try to do something with these. Since we are usually not interested in keeping
new lines, or any other control codes, we can simply null-out these with a line of
the form

$input =~ s/%..//g;

The regular expression %.. matches anything beginning with a percent symbol
followed by two characters. The resulting output is then free of these symbols. We
can then separate the variable contents from their names by splitting the input.
Here is the complete code:
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#!/local/bin/perl

#
# Reply with proper protocol
#

print "Content-type: text/html\n\n";

#
# Get the data from the form ...
#

$input = <STDIN>;

#
# ... and echo them back
#

print "$input\n\n\n";

$input =~ s/%..//g;

$input =~ s/\+/ /g;

@array = split(‘&’,$input);

foreach $var ( @array )
{
print "$var<br>";
}

print "<hr>\n";

($name,$variable1) = split("variable1=",$array[0]);
($name,$variable2) = split("variable2=",$array[1]);

print "<br>var1 = $variable1<br>";
print "<br>var2 = $variable2<br>";

print "<br>Done! \n";

and the output

variable1=Mark+Burgess&variable2=%0D%0AI+just+called+to+say (wrap)
+....%0D%0A...hey+pig%2C+nothing%27s+working+out+the+way+I+planned
variable1=Mark Burgess
variable2=I just called to say .......hey pig nothings working (wrap)
out the way I planned
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var1 = Mark Burgess

var2 = I just called to say .......hey pig nothings working out (wrap)
the way I planned

Done!



Appendix C

Example telnet session

The Transmission Control Protocol (RFC 793) is used to transport most high-level
protocols today. One of these is the telnet protocol, which has been a general
workhorse for many years, but is now replaced with more secure or robust
alternatives. As a login service, telnet is no longer deemed suitable, since it
transmits secret information in plain text over the network. RFC 845 details the
telnet protocol.

As an exercise to the reader, it is helpful to see a real example of how password
information is sent in plain text by reproducing the TCP/IP packets and their
contents in hard copy. Although slightly cumbersome, it is very informative to see
how the communication actually takes place. The retransmission of a packet also
demonstrates the reliable property of TCP. Readers are encouraged to research
the behavior of the TCP/IP protocol and study this transfer.

This dump was made with the Solaris snoop program, using snoop -v for
verbose output. The trace as provided is all the data transmitted over the network
in the time it takes to telnet the ‘to’ host from the ‘from’ host, get the login banner,
type a username and a password and end up with a command prompt.

The first thing we see is how inefficient the telnet protocol is, how passwords
are transmitted in clear text over the network and how fragmentation and retrans-
mission of IP fragments is performed in order to guarantee transmission. Notice
also how the sequence numbers are randomized.

from% telnet to.domain.country
Trying 192.0.2.238...
Connected to to.domain.country
Escape character is ’^]’.

SunOS 5.6

login: mark
Password:
SunOS Release 5.6 Version Generic [UNIX(R) System V Release 4.0]

[/etc/motd]

to% echo hei
to% exit

Send Syn to establish connection, + random Seq
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________________________________

from -> to ETHER Type=0800 (IP), size = 58 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=44, ID=53498
from -> to TCP D=23 S=54657 Syn Seq=4095044366 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________

Reply with Syn,Ack and Ack=prev Seq+1

to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=44, ID=43390
to -> from TCP D=54657 S=23 Syn Ack=4095044367 Seq=826419455 Len=0 Win=8760
to -> from TELNET R port=54657
________________________________

Reply with Ack = prev Seq+1

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53499
from -> to TCP D=23 S=54657 Ack=826419456 Seq=4095044367 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 81 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=67, ID=53500
from -> to TCP D=23 S=54657 Ack=826419456 Seq=4095044367 Len=27 Win=8760
from -> to TELNET C port=54657

________________________________

Now send data: ack = seq + Len each time until Fin

to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43391
to -> from TCP D=54657 S=23 Ack=4095044394 Seq=826419456 Len=0 Win=8760
to -> from TELNET R port=54657

to -> from ETHER Type=0800 (IP), size = 69 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=55, ID=43396
to -> from TCP D=54657 S=23 Ack=4095044394 Seq=826419456 Len=15 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53504
from -> to TCP D=23 S=54657 Ack=826419471 Seq=4095044394 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit with different Len no fragmentation, same Ack

from -> to ETHER Type=0800 (IP), size = 66 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=52, ID=53505
from -> to TCP D=23 S=54657 Ack=826419471 Seq=4095044394 Len=12 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 69 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=55, ID=43397
to -> from TCP D=54657 S=23 Ack=4095044394 Seq=826419471 Len=15 Win=8760
to -> from TELNET R port=54657
________________________________
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from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53506
from -> to TCP D=23 S=54657 Ack=826419486 Seq=4095044406 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 75 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=61, ID=43398
to -> from TCP D=54657 S=23 Ack=4095044406 Seq=826419486 Len=21 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 120 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=106, ID=53507
from -> to TCP D=23 S=54657 Ack=826419507 Seq=4095044406 Len=66 Win=8760
from -> to TELNET C port=54657 \377\372\30\0VT100\377\360\377\372#\0from

Transfers TERM variable - VT100:

____________________________
to -> from ETHER Type=0800 (IP), size = 75 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=61, ID=43399
to -> from TCP D=54657 S=23 Ack=4095044472 Seq=826419507 Len=21 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53508
from -> to TCP D=23 S=54657 Ack=826419528 Seq=4095044472 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=46, ID=43400
to -> from TCP D=54657 S=23 Ack=4095044472 Seq=826419528 Len=6 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 60 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=46, ID=53509
from -> to TCP D=23 S=54657 Ack=826419534 Seq=4095044472 Len=6 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=43, ID=43401
to -> from TCP D=54657 S=23 Ack=4095044478 Seq=826419534 Len=3 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53510
from -> to TCP D=23 S=54657 Ack=826419537 Seq=4095044478 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 61 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=47, ID=43402
to -> from TCP D=54657 S=23 Ack=4095044478 Seq=826419537 Len=7 Win=8760
to -> from TELNET R port=54657 login:
________________________________

Here comes the login name

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53511
from -> to TCP D=23 S=54657 Ack=826419544 Seq=4095044478 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit, bad Len:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53512
from -> to TCP D=23 S=54657 Ack=826419544 Seq=4095044478 Len=1 Win=8760
from -> to TELNET C port=54657 m
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________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43403
to -> from TCP D=54657 S=23 Ack=4095044479 Seq=826419544 Len=1 Win=8760
to -> from TELNET R port=54657 m
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53513
from -> to TCP D=23 S=54657 Ack=826419545 Seq=4095044479 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53514
from -> to TCP D=23 S=54657 Ack=826419545 Seq=4095044479 Len=1 Win=8760
from -> to TELNET C port=54657 a

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43404
to -> from TCP D=54657 S=23 Ack=4095044480 Seq=826419545 Len=1 Win=8760
to -> from TELNET R port=54657 a
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53515
from -> to TCP D=23 S=54657 Ack=826419546 Seq=4095044480 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53516
from -> to TCP D=23 S=54657 Ack=826419546 Seq=4095044480 Len=1 Win=8760
from -> to TELNET C port=54657 r

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43405
to -> from TCP D=54657 S=23 Ack=4095044481 Seq=826419546 Len=1 Win=8760
to -> from TELNET R port=54657 r
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53517
from -> to TCP D=23 S=54657 Ack=826419547 Seq=4095044481 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53518
from -> to TCP D=23 S=54657 Ack=826419547 Seq=4095044481 Len=1 Win=8760
from -> to TELNET C port=54657 k

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43406
to -> from TCP D=54657 S=23 Ack=4095044482 Seq=826419547 Len=1 Win=8760
to -> from TELNET R port=54657 k
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53519
from -> to TCP D=23 S=54657 Ack=826419548 Seq=4095044482 Len=0 Win=8760
from -> to TELNET C port=54657

(retrans)
from -> to ETHER Type=0800 (IP), size = 56 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=42, ID=53520
from -> to TCP D=23 S=54657 Ack=826419548 Seq=4095044482 Len=2 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=42, ID=43407
to -> from TCP D=54657 S=23 Ack=4095044484 Seq=826419548 Len=2 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53521
from -> to TCP D=23 S=54657 Ack=826419550 Seq=4095044484 Len=0 Win=8760
from -> to TELNET C port=54657
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________________________________
to -> from ETHER Type=0800 (IP), size = 64 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=50, ID=43408
to -> from TCP D=54657 S=23 Ack=4095044484 Seq=826419550 Len=10 Win=8760
to -> from TELNET R port=54657 Password:
________________________________

Here comes the password, in plain text, for all to see!

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53522
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044484 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53523
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044484 Len=1 Win=8760
from -> to TELNET C port=54657 p

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43409
to -> from TCP D=54657 S=23 Ack=4095044485 Seq=826419560 Len=0 Win=8760
to -> from TELNET R port=54657 p
________________________________

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53524
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044485 Len=1 Win=8760
from -> to TELNET C port=54657 a

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43410
to -> from TCP D=54657 S=23 Ack=4095044486 Seq=826419560 Len=0 Win=8760
to -> from TELNET R port=54657 a
________________________________

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53525
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044486 Len=1 Win=8760
from -> to TELNET C port=54657 s

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43411
to -> from TCP D=54657 S=23 Ack=4095044487 Seq=826419560 Len=0 Win=8760
to -> from TELNET R port=54657 s
________________________________

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53526
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044487 Len=1 Win=8760
from -> to TELNET C port=54657 w

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43412
to -> from TCP D=54657 S=23 Ack=4095044488 Seq=826419560 Len=0 Win=8760
to -> from TELNET R port=54657 w
________________________________

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=53530
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044491 Len=1 Win=8760
from -> to TELNET C port=54657 d

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43416
to -> from TCP D=54657 S=23 Ack=4095044492 Seq=826419560 Len=0 Win=8760
to -> from TELNET R port=54657 d
________________________________

from -> to ETHER Type=0800 (IP), size = 56 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=42, ID=53531
from -> to TCP D=23 S=54657 Ack=826419560 Seq=4095044492 Len=2 Win=8760
from -> to TELNET C port=54657 \n

________________________________
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to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=42, ID=43417
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419560 Len=2 Win=8760
to -> from TELNET R port=54657
(fragment)

to -> from ETHER Type=0800 (IP), size = 357 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=343, ID=43484
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419562 Len=303 Win=8760
to -> from TELNET R port=54657 SunOS Release 5.6 Ve
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=53599
from -> to TCP D=23 S=54657 Ack=826419865 Seq=4095044494 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 130 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=116, ID=43487
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419865 Len=76 Win=8760
to -> from TELNET R port=54657 1:33pm up 2 day(s

Fragment:

to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=42, ID=43882
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419941 Len=2 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54316
from -> to TCP D=23 S=54657 Ack=826419943 Seq=4095044494 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 101 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=87, ID=43887
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419943 Len=47 Win=8760
to -> from TELNET R port=54657 You have mail (total
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54319
from -> to TCP D=23 S=54657 Ack=826419990 Seq=4095044494 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=45, ID=43890
to -> from TCP D=54657 S=23 Ack=4095044494 Seq=826419990 Len=5 Win=8760
to -> from TELNET R port=54657 prompt\%
________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43891
to -> from TCP D=2049 S=1023 Ack=4258218482 Seq=1642166507 Len=0 Win=8760
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54320
from -> to TCP D=23 S=54657 Ack=826419995 Seq=4095044494 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54321
from -> to TCP D=23 S=54657 Ack=826419995 Seq=4095044494 Len=1 Win=8760
from -> to TELNET C port=54657 e

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43892
to -> from TCP D=54657 S=23 Ack=4095044495 Seq=826419995 Len=1 Win=8760
to -> from TELNET R port=54657 e
_________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54322
from -> to TCP D=23 S=54657 Ack=826419996 Seq=4095044495 Len=0 Win=8760
from -> to TELNET C port=54657
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Retransmit:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54323
from -> to TCP D=23 S=54657 Ack=826419996 Seq=4095044495 Len=1 Win=8760
from -> to TELNET C port=54657 c

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43893
to -> from TCP D=54657 S=23 Ack=4095044496 Seq=826419996 Len=1 Win=8760
to -> from TELNET R port=54657 c
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54324
from -> to TCP D=23 S=54657 Ack=826419997 Seq=4095044496 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54325
from -> to TCP D=23 S=54657 Ack=826419997 Seq=4095044496 Len=1 Win=8760
from -> to TELNET C port=54657 h

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43894
to -> from TCP D=54657 S=23 Ack=4095044497 Seq=826419997 Len=1 Win=8760
to -> from TELNET R port=54657 h
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54326
from -> to TCP D=23 S=54657 Ack=826419998 Seq=4095044497 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54327
from -> to TCP D=23 S=54657 Ack=826419998 Seq=4095044497 Len=1 Win=8760
from -> to TELNET C port=54657 o

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43895
to -> from TCP D=54657 S=23 Ack=4095044498 Seq=826419998 Len=1 Win=8760
to -> from TELNET R port=54657 o
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54328
from -> to TCP D=23 S=54657 Ack=826419999 Seq=4095044498 Len=0 Win=8760
from -> to TELNET C port=54657

(retrans)
from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54329
from -> to TCP D=23 S=54657 Ack=826419999 Seq=4095044498 Len=1 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43896
to -> from TCP D=54657 S=23 Ack=4095044499 Seq=826419999 Len=1 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 56 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=42, ID=54333
from -> to TCP D=23 S=54657 Ack=826420001 Seq=4095044500 Len=2 Win=8760
from -> to TELNET C port=54657 ei

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43898
to -> from TCP D=54657 S=23 Ack=4095044502 Seq=826420001 Len=1 Win=8760
to -> from TELNET R port=54657 e
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________________________________
from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54334
from -> to TCP D=23 S=54657 Ack=826420002 Seq=4095044502 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=41, ID=43899
to -> from TCP D=54657 S=23 Ack=4095044502 Seq=826420002 Len=1 Win=8760
to -> from TELNET R port=54657 i
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54335
from -> to TCP D=23 S=54657 Ack=826420003 Seq=4095044502 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 56 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=42, ID=54336
from -> to TCP D=23 S=54657 Ack=826420003 Seq=4095044502 Len=2 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=44, ID=43900
to -> from TCP D=54657 S=23 Ack=4095044504 Seq=826420003 Len=4 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54337
from -> to TCP D=23 S=54657 Ack=826420007 Seq=4095044504 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 64 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=50, ID=43901
to -> from TCP D=54657 S=23 Ack=4095044504 Seq=826420007 Len=10 Win=8760
to -> from TELNET R port=54657 hei\r\nprompt\%
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54338
from -> to TCP D=23 S=54657 Ack=826420017 Seq=4095044504 Len=0 Win=8760
from -> to TELNET C port=54657

Retransmit:

from -> to ETHER Type=0800 (IP), size = 55 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=41, ID=54339
from -> to TCP D=23 S=54657 Ack=826420017 Seq=4095044504 Len=1 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=44, ID=43902
to -> from TCP D=54657 S=23 Ack=4095044505 Seq=826420017 Len=4 Win=8760
to -> from TELNET R port=54657
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54343
from -> to TCP D=23 S=54657 Ack=826420021 Seq=4095044505 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
to -> from ETHER Type=0800 (IP), size = 62 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=48, ID=43907
to -> from TCP D=54657 S=23 Ack=4095044505 Seq=826420021 Len=8 Win=8760
to -> from TELNET R port=54657 logout\r\n
________________________________

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54348
from -> to TCP D=23 S=54657 Ack=826420029 Seq=4095044505 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________
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Send Fin, end of connection:

to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43911
to -> from TCP D=54657 S=23 Fin Ack=4095044505 Seq=826420029 Len=0 Win=8760
to -> from TELNET R port=54657
________________________________

Send Fin,Ack with Ack=previous Seq+1:

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54349
from -> to TCP D=23 S=54657 Ack=826420030 Seq=4095044505 Len=0 Win=8760
from -> to TELNET C port=54657

from -> to ETHER Type=0800 (IP), size = 54 bytes
from -> to IP D=192.0.2.238 S=192.0.2.10 LEN=40, ID=54350
from -> to TCP D=23 S=54657 Fin Ack=826420030 Seq=4095044505 Len=0 Win=8760
from -> to TELNET C port=54657

________________________________

Send Ack+1 to end:

to -> from ETHER Type=0800 (IP), size = 60 bytes
to -> from IP D=192.0.2.10 S=192.0.2.238 LEN=40, ID=43912
to -> from TCP D=54657 S=23 Ack=4095044506 Seq=826420030 Len=0 Win=8760
to -> from TELNET R port=54657





Appendix D

Glossary

• ACL: Access control list, a list of access rights to an object.

• Anycast: A type of message introduced in IPv6. An anycast message is like
a cross between a unicast and a broadcast. It is a message to the ‘nearest
available’ host, and is used to find servers for particular services. The first
host that responds to an anycast becomes the recipient.

• ASN-1: Abstract Syntax Notation number One (ASN.1) is an international
standard that aims at specifying data used in communication protocols. It
is used in protocols like SNMP and LDAP, and technologies such as mobile
phones and even Internet Explorer.

• ATM: Asynchronous Transfer Mode. A network protocol that provides Quality
of Service guarantees and competes with Frame Relay for wide area point to
point links. It can also be switched for Local Area traffic, but since it does not
support broadcast, it is difficult to use for IPv4 traffic. IPv6 offers workaround
support for ATM.

• Atomic operation: A basic, primitive operation which cannot be subdivided
into smaller pieces, e.g. reading a block from a file.

• Binaries: Files of compiled software in executable form. A compiler takes
program sources and turns them into binaries.

• Binary server: A file-server which makes available executable binaries for a
given type of platform. A binary server is operating system specific, since
software compiled on one type of system cannot be used on another. (See
also Home server.)

• BIND: Berkeley Internet Name Domain. An implementation of the Domain
Name Service protocol suite, including both a client library (called the
resolver) and the name server daemon.

• Booting: Bootstrapping a machine. This comes from the expression ‘to lift
yourself by your bootstraps’, which is supposed to reflect the way computers
are able to start running from scratch, when they are powered up.
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• Broadcast: A message sent by flooding, that is directed to all hosts within a
region of a network. Broadcasts are typically blocked by IP routers, but not
by layer 2 switches.

• C/MOS: Complementary Metal Oxide Semiconductor. p-n back-to-back tran-
sistor technology, low dissipation.

• COM: Refers to the communications port on a PC. Also stands for Microsoft’s
Common Object Model.

• Consolidated: Grouping resources in one place. A centralized type of solution
for concentrating computing power in one place. This kind of solution makes
sense for heavy calculations, performed in engineering of computer graphics.

• Context switching: Time-sharing between processes. When the kernel
switches between processes quickly in order to give the illusion of con-
currency or multitasking.

• Cracker: A system intruder. Someone who cracks the system. A trespasser.

• DAC: Discretionary access control, i.e. optional rather than forced. (See MAC.)

• DAP: Directory Access Protocol (X.500).

• Dataless client: A client which has a disk and its own root partition, so it can
boot by itself. Other data are mounted over NFS.

• DIB: Directory Information Base (X.500).

• DIMM: Memory chip.

• Diskless client: A client which has no disk at all but which shares the root
and /usr file trees using the NFS from a server.

• DISP: Directory Information Shadowing Protocol (X.500).

• Distributed: A decentralized solution, in which many workstations spread the
computing power evenly throughout the network.

• DIT: Directory Information Tree.

• DLL: Dynamic Link Library (Windows).

• DN: Distinguished Name (X.500), a primary key in a DAP database.

• DNS: The Domain Name Service, which converts Internet names into IP
addresses and vice versa.

• Domains: A domain is a logical group of hosts. This word is used with several
different meanings in connection with different software systems. The most
common meaning is connected with DNS, the Domain Name Service. Here
a domain refers to an Internet suffix, like .domain.country, or .nasa.gov.
Internet domains denote organizations. Domain is also used in NT to refer to
a group of hosts sharing the attributes of a common file-server. Try not to
confuse Domain nameserver (DNS) server with NT Domain server.
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• DSA: Directory System Agent (X.500), DAP or LDAP server.

• DSE: DSA specific entry, i.e. root name space point for a local directory
(X.500).

• Enterprise: A small business network environment. Enterprise management
is a popular concept today because NT has been aimed at this market.
Enterprise management typically involves running a web server, a database,
a disk server and a group of workstations and common resources like
printers, and so on. Many magazines think of enterprise management as the
network model, but when people talk about enterprise management they are
really thinking of small businesses with fairly uniform systems.

• FQHN: Fully qualified host name. The name of a host which is a sum of
its unqualified name and its domain name, e.g. host.domain.country, of
which host is the unqualified name and domain.country is the domain
name.

• Free software: This usually refers to software published under the GNU Pub-
lic License, Artistic License or derivative of these. Free software is not about
money, but about the freedom to use, modify and redistribute software with-
out restrictions over and above what normal courtesy to the author demands.
Free software must always include human readable source code. Recently
people choose to distinguish between this and Open Source software, i.e.
code whose source is open but which may or may not be free.

• GUI: Graphical user interface.

• Heterogeneous: Non-uniform. In a network context, a heterogeneous network
is one which is composed of hosts with many different operating systems.

• Home server: A file-server which makes available users’ home directories.
A home server need not be operating system specific, provided it uses a
commonly supported protocol, e.g. NFS, Samba. (See also Binary server.)

• Homogeneous: Uniform. In a network context, a homogeneous network is one
in which all of the hosts have the same operating system.

• IETF: Internet Engineering Task Force. A working group that defines Internet
standards.

• IMAP: Internet Message Access Protocol. A modern approach to distributed
E-mail services.

• Index node (inode): Unix’s method of indexing files on a disk partition.

• Inhomogeneous: The opposite of homogeneous. See also Heterogeneous.

• Internetworking protocol: A protocol which can send messages across quite
different physical networks, binding them together into a unified communi-
cations base.
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• IP address: Internet address. Something like 128.39.89.10 or now 2001:
700:700:3:290:27ff:fea2:477b

• ISO: International Standards Organization.

• JNDI: Java Naming and Directory Interface. Part of Java Enterprise services
for distributed computing.

• Latency: The time you wait before receiving a reply during a transaction.

• Legacy system: An old computer or software package which a site has come
to rely on, but which is otherwise outdated.

• LISA: Large Installation System Administration. This refers to environments
with many (hundreds or thousands of) computers. The environments typically
consist of many different kinds of system from multiple vendors. These
systems are usually owned by huge companies, organizations like NASA or
universities.

• MAC: Mandatory access control. (See DAC.)

• MAC address: Media access control address (e.g. Ethernet address). This is
the hardware address which is typically burned into the network interface.

• Memory image: A copy of some software in the actual RAM of the system.
Often used to refer to the resident size of a program, or the amount of memory
actually consumed by a program as it runs.

• Middleware: A layer of software super-structure above the transport layer of
network communications that adds additional services and abstractions, e.g.
CORBA, DCOM, Jini, Java RMI.

• MFT: Master file table. NTFS’s system of indexing files on a disk partition.

• Multicast: An IP message sent from a host to a number of other hosts. A
multicast is typically used to distribute multimedia (video streams etc.) to a
number of subscribers.

• NAT: Network address translator. A device which translates concealed, private
IP addresses into public IP addresses. NAT allows an organization to have
multiple distinct internal hosts appear as a smaller number of hosts to the
Internet at large, as well as to hide the structure of the organization’s internal
network.

• NDS: Novell Directory Services.

• NIS: Network Information Services (Sun Microsystems’ yellow pages service).

• Open source: A software ‘trademark’ for software whose source files are made
available to users. This is similar to the idea of Free Software, but it does not
necessarily license users the ability to use and distribute the software with
complete freedom. See http://www.OpenSource.com
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• Open standards: Inter-operability standards that are published freely and
adopted as industry standards.

• Open systems: A concept promoted originally by Sun Microsystems for Unix.
It is about software systems being compatible through the use of freely
available standards. Competitors are not prevented from knowing how to
implement and include a technology in their products or from selling it under
license.

• PC: An Intel-based personal computer, used by a single user.

• PID: Process identity number.

• Point to point: A direct physical cable from one location to another, with
no routing required. Protocols and transport mechanisms for such links are
especially important in Wide Area Networks, where a point to point link might
cross an ocean or half a country.

• Proprietary systems: The opposite of open systems. These systems are secret
and the details of their operation are not disclosed to competitors.

• RAID: Redundant array of inexpensive (sometimes cited as independent)
disks. A disk array with automatic redundancy and error correction. RAID
6 can tolerate 2 disk failures, and RAID 0,1 (though not an official RAID
classification) can tolerate one or more concurrent disk failures, depending
on which disks go.

• RDN: Relative Distinguished Name (X.500).

• SASL: Simple Authentication and Security Layer. See RFC 2222.

• SCSI: Small Computer Systems Interface. Used mainly for disks on multiuser
systems and musical instruments.

• Server: A process (a daemon) which implements a particular service. Services
can be local to one host, or net-wide.

• Server-host: The host on which a server process runs. This is often abbrevi-
ated simply to ‘server’, causing much confusion.

• SID: Security identity number (NT).

• SIMM: Memory chip arrays. See also DIMM.

• SMS: Short Message Service, a method of sending text messages that are up
to 160 characters long, usually by mobile (cell) phone.

• SNMP: Simple Network Management Protocol, an application-layer protocol
from the IETF for retrieving and setting simple configuration variables on
network hardware.

• Spoofing: Impersonation, faking, posing as a false identity.
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• SSL: Secure socket layer. A security wrapper which makes use of public-
private key encryption in order to create a virtual private network link (VPN)
between two hosts. The SSL, developed by Netscape, has become the standard
for secure communication.

• Striping: A way of spreading data over several disk controllers to increase
throughput. Striping can be dangerous on disk failure, since files are stored
over several disks, meaning that if one disk fails, all data are lost.

• Superuser: The root or Administrator or privileged user account.

• SVR4: System 5 release 4 Unix. AT&T’s code release.

• TLD: Top Level Domain. This is the topmost level of domain name resolution,
e.g. .org, .com, .net, or country domains like .uk or .no

• TLS: Transport Layer Security (version 3 of SSL). See RFC 2246.

• TTL: Time to live or Transistor–Transistor Logic.

• UID: User identity number (Unix).

• Unicast: An IP message sent from a single host to another single host.
Contrast this to a multicast, anycast and broadcast.

• Unqualified name: See FQHN.

• URL: Uniform resource locator. A network ‘filename’ including the name of
the host on which the resource resides and the network service (port number)
which provides it.

• Vendor: A company which sells hardware or software. This is common Amer-
ican parlance for a manufacturer or supplier.

• Workstation: A desktop computer which might be used by several users.
Workstations can be based on, for example, SPARC (Sun Microsystems) or
Alpha (Digital/Compaq) chip sets.

• X11: The Unix windows system.
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[268] J. Schönwälder. Specific simple network management tools. Proceedings
of the Fifteenth Systems Administration Conference (LISA XV) (USENIX
Association: Berkeley, CA), page 109, 2001.
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rpc.nfsd, 377
rsh command, 543
sendmail, 546
shareall, 376
share, 375, 376
snoop command, 548
ssh command, 543
startx, 155
su -c command, 138
swapon command, 546
tar command, 544
telnet command, 543
traceroute command, 548
ufsdump command, 544
umask variable, 30
uname, 88
updatedb script, 545
vmstat command, 547
whatis command, 545
which command, 545
whois command, 547
xdm, 155
xhost command, 477
xntpd, 242
.bashrc, 155
.cshrc, 150, 155
.mwmrc, 155
.profile, 150, 155
.rhosts, 543
.xinitrc, 155

.xsession , 155
/bin, 26
/devices, 26
/dev, 26
/etc/aliases, 372
/etc/checklist, 376
/etc/checklist, HPUX, 117
/etc/dfs/dfstab, 41, 375
/etc/ethers, 63
/etc/exports, 41, 375
/etc/filesystems, AIX, 117
/etc/filesystems, 376
/etc/fstab, 117, 376
/etc/group, 28
/etc/hosts.allow, 377
/etc/inetd.conf, 333
/etc/inittab, 112
/etc/named.conf, 339
/etc/nsswitch.conf, 128
/etc/printcap, 379
/etc/resolv.conf, 90, 127
/etc/services, 333
/etc/system, 321
/etc/vfstab, 117, 376
/etc, 26
/export, 26
/home, 26
/sbin, 26
/sys, 26
/users, 26
/usr/bin, 26
/usr/etc/resolv.conf on IRIX,

127
/usr/local/gnu, 133
/usr/local/site, 133
/usr/local, 26, 133
/usr, 26
/var/adm, 27
/var/mail, 546
/var/spool, 27
/var, 27
INSTALL, 134
README, 134
cfagent.conf, 258
crack, passwords, 472
crontab, 242
dfstab, 41
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ftp.funet.fi, 134
ftp.uu.net, 134
lost+found, 117
passwd file, 566
rc files, 112
<> filehandle in Perl, 561
==, 555
‘..‘ in Perl, 553
chomp command in Perl, 564
chop command in Perl, 564
close command in Perl, 561
die, 564
do..while in Perl, 558
eq, 555
eq and == in Perl, 555
if in Perl, 558
open command in Perl, 561
rename in Perl, 569
sed as a Perl script, 568
shift and arrays, 556
shift and arrays in Perl, 556
split and arrays, 556
split command, 556
stty and switching off term echo,

566
unless in Perl, 558
while in Perl, 558

Network address, 58
/var/spool/mail, 546

A record, 346
Abstract Syntax Notation, 197
Access bits, 28
Access bits, octal form, 29
Access bits, text form, 29
Access control lists, 32
Access rights, 28
Access to files, 28
ACEs in Windows, 37
ACLs, 32, 483
ACLS in Windows, 37
ACLs, network services, 336
actionsequence, 258
Active Directory, 198, 201
Active users, 163
AD, 198
Administrator account, 21

AFS, 39, 150
Agents, 333
Aliases in mail, 372
Aliases, DNS, 81
Alive, checking a host, 547
Analyzing security, 469
Andrew filesystem, 38
Anomaly detection, 313
Application layer, 47
Area Border Router, 406
Area, routing, 403
Argument vector in Perl, 553, 556
ARP, 63, 71
ARP/RARP, 84
Arrays (associated) in Perl, 557
Arrays (normal) in Perl, 555
Arrays and split, 556
Arrays in Perl, 553
AS, 66
ASN, 67
ASN.1, 197
Associated arrays, iteration, 560
AT&T, 18
ATA disks, 14
Athena, 150
ATM, 395
Attacks, links, 138
Authentication, 170
Autonomous system, 66
Autonomous system number, 67
Autonomous System Routing, 407

Back-doors, 437
Background process, Windows, 44
Backup, 442
Backup schedule, 458
Backup tools, 458
Backups, 455
BGP, 65
Big endian, 54
Binary server, 100
BIND, 547
BIND version 9, 339
BIND, setting up, 127
Binding, socket service, 336
BIOS, 17, 113
Block, disk, 323
Blocks, 116
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Bluetooth, 219
Boot loader, 142
Boot scripts, 112
Booting Unix, 111
Booting, NT, 113
BOOTP protocol, 84
Bootstrapping an infrastructure, 219
Border gateway protocol, 65
Bridge, 50
Broadcast address, 58
BSD 4.3, 243
BSD Unix, 18
Byte order, 54

Cache file, DNS, 339
Cache poisoning, 449
Canonical name, 81, 345
Canonical names, 339
Causality, 287
CD-ROM player, Solaris, 122
cfdisk, 116
Cfengine, 170, 470
cfengine, 258
Cfengine, authentication, 466
Cfengine, checksums, 463
Cfengine, inhomogeneous networks,

204
Cfengine, prevention, 253
Cfengine, specialized hosts, 78
CGI protocol, 575
Checking the mode of installed

software, 135
Checking whether host is alive, 547
Checksums, 463
CIDR, 55
Class A,B,C,D,E networks, 55
Classed addresses, 63
Classes, 261
Classes, compound, 263
Classes, defining and undefining,

263
Classless addresses, 64
Classless IP addresses, 55
Clock synchronization, 242
Cloning Windows, 131
Closed system, 522
CNAME, 345, 346
Collisions, 319

Command interpreter, 20
Command line arguments in Perl,

553, 556
Common Unix Print System, 380
Common Unix Printing system, 380
Community string, 256, 474
Community strings, 215
Compiling sendmail, 367
Components, handling, 14
Compound classes, 263
Computer immunology, 226
Connection times, TCP, 321
Contact with the outside world, 62
Contention, 104
Contention in networks, 393
Convergence, 220, 226
Corollary

Aliases, 101
Authentication is

re-identification, 444
Data invulnerability, 441
Minimum privilege, 21
Multiuser communities, 76
Network communities, 76
Performance, 318
Privileges ports, 356
Redundancy, 220
Reproducibility, 220
Trusted third parties, 465

Corruption in filesystem, 297
Cricket, 313
cron, 242
Cron jobs, controlling with cfagent,

265
CUPS, 379, 380
Cut as a Perl script, 561
Cutset, fault tree, 303
Cygwin Unix compatibility for NT,

134

Daemon, 336
Daemons, 79
Daemons and services, 333
Daemons, starting without privilege,

138
Data links layer, 47
Day of the week, 267
DCE, 39, 150
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Death to the users, 95
Default nameserver, 90
Default printer, 379
Default route, 58, 62, 403, 548
Definition

Directory service, 197
Directory User Agent, 199
human–computer system, 11
Peer-to-peer application, 206
Policy, 76
Secure system, 429
Small world network, 283

Defunct process, 44
Delegation, 58, 204
Delta distribution, 527
Demultiplexing, 223
Denial of service attack, 443, 447
DENIM, 200
Dependencies in Makefiles, 550
Dependency, 100
Dependency problems, 295
Depot, 133
Determinism

Quality of Service, 410
Deterministic system, 522
Devices, 122
DFS, 39
DFS, Windows, 39
Diagnostics, 291
Differences, hosts, 78
Differentiated services, 411
Diffserv, 411
Digital signatures, 465
Directory services, 197
Disk backups, 455
Disk doctor, 546
Disk mirroring, 104, 442
Disk partition names, 123
Disk performance, 318
Disk quotas, 164
Disk repair, 546
Disk statistics, 547
Disk striping, 318
Disk, installing, 121
Distinguished Name, 198
Distributed Computing

Environment, 39

Distribution, measurements, 526
DNS, 88, 89, 337, 547
DNS aliases, 81
DNS and Directory Services, 199
DNS and IPv6 registration, 347
DNS and IPv6, Solaris, 128
DNS cache file, 339
DNS lookup with host, 92
DNS, BIND setup, 127
DNS, mail records, 346
DNS, revoking ls rights, 342
Domain, 88
Domain name, 89
Domain name system, 337
Domain name, definition, 127
Domain OS, 32
Domain, listing hosts in, 94
Domain, Windows, 84
DOS, 17
DoS attack, 447
Dots in hostnames, 264
Down, checking a host, 547
Downtime, 508
Drive letter assignment, 117
Dynamical systems, 536

Encryption, 566
Entropy, 523
Entry points to OS code, 16
Environment variables, 45
Environment variables in Perl, 553,

557
Error law, 530
Error reporting, 291
Errors in Perl, 564
Ethernet, 397

Length limit, 397
Ethics responsibility for

infrastructure, 238
Executable, making programs, 30
Exiting on errors in Perl, 564
Export files, 377
Exporting filesystems, Unix, 41
Exporting on GNU/Linux, 375
Exterior routing, 403
Exterior Routing Protocol, 407
External hosts do not seem to exist,

62
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Fail-over, 223
Fault tolerance, policy, 253
Fault tree analysis, 299
fdisk, 116
FEC, 408
Feedback regulation, 226
File access permission, 28
File handles in Perl, 561
File hierarchy, Unix, 25
File protection bits, 28
File sharing, Windows/Unix, 378
File type problem in WWW, 364
Files in Perl, 561
Files, iterating over lines, 561
Finding a mail server, 92
Finding domain information, 547
Finding the name server for other

domains, 93
Fire cell, 110
Firewall, 129
Firewalls, 486
For loop, 559
For loops in Perl, 558
Foreach loop, 559
Forking new processes, 567
Formatting a filesystem, 546
Forms in HTML, 575
Forwarding Equivalence Class, 408
Fourier analysis, 535
FQHN, 337
Fractal nature of network traffic, 511
Fragment, of block, 323
Fragmentation of IP, 448
Free software foundation, 133
FSF, 133
FTP, 331
Fully qualified names, 264

Game theory, 306, 536
Gateway, 548
Gaussian distribution, 530
Glue record, DNS, 353
GNU software, 133
Grouping time values, 267
groups, 28
GRUB, 127
Guest accounts, 154

Handling components, 14
Handshaking, 47
Hangup signal, 545
Hard links, 27
Hard links, Windows, 36
Heavy-tailed distribution, 534
Help desk, 161
Hewlett Packard, 18
Hierarchy, file, 25
HINFO, 346
hme fast Ethernet interface, 319
Home directories, location, 150
Home directory, 150
Homogeneity, 204
host -n, 92
host command and DNS, 92
Host name gets truncated, 264
Host name lookup, 90
Hostname lookup, 128
HTTP, 331
HTTPS, 332
Hub, 50

IBM AS/400s, 18
IBM S/370, 18
IBM S/390, 18
IDE disks, 14
IMAP, 332
Immune system, 226
Immunity model, 226
Immunology, 226
Incremental backup, 458, 459
Index nodes, 25, 28
index SONET, 400
inetd master-daemon, 334
Inheritance of environment, 45
Inode corruption, 297
inodes, 25, 28
Installing a new disk, 121
Integrity, 455
Interface configuration, 61, 548
Interior routing, 403
Interior Routing Protocol, 406
Internet domain, 88
Internet protocol

IPSec, 480
Interpretation of values in Perl, 555
Interrupts, 17
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Intranet, 360
IP address, 94
IP address lookup, 90
IP address, setting, 61
IP addresses, 55, 337
IP chains, 485
IP slash notation, 342
IP tables, 485
IPSec, 480, 483
IPv6, 55
IPv6 DNS lookup, 128
IPv6 DNS registration, 347
IPv6 in TCP wrappers, 337
ISO, 46
Iterating over files, 561
Iteration over arrays, 560
ITU, 216

junkfilter, 371

Kerberos, 150
Kernel architecture, 141
Kernel configuration, 141
Kernel tuning, Solaris, 321
keys, 560
kill, Windows process , 44

Labelling a disk, 116
Lambda switching, 393
Lame delegation, DNS, 353
Latency, 323
Law of errors, 530
Layer 3 switch, 395, 396
LDAP, 198, 332
LDAP classes, 272
LDAP schema, 272
Lexis, 170
License servers, 136
Link attacks, 138
Linux, 18
Linux, exports, 375
Little endian, 54
lmgrd, license server, 136
Local variables in Perl, 564
Log rotation, 296
Logical NOT, 263
Login directory, 150
Logistic networks, 207

Long file listing, 28
Looking up name/domain

information, 547
Lookup hosts in a domain, 94
Loopback address, 56, 58, 127
Loopback network in DNS, 339
lp default printer, 379
LPRng, 380

MacIntosh, 17, 229
Macintosh, 85
Magic numbers, 28
Mail address of administrator, 95
Mail aliases, 372
Mail exchangers, 92
Mail queue, 546
Mail records in DNS, 346
Mail relaying, 366
Mail spool directory, 546
Mail, finding the server, 92
Mailbox system, 365
Make program for configuration, 220
Management information base, 215
Management model, 217
Masking programs executable, 30
Master boot record, 113
Mean downtime, 508
Mean time before failure, 508
Mean value, 530
Memory leak, 316
Metropolitan Area Networks, 396
MIB, 215
Mime types in W3, 575
Mirroring of filesystems, 104
Mission critical systems, 425
Mixed strategies, 306
mkfs command, 117
Modular kernel, 322
Months, 267
Mounting filesystems, 42
Mounting filesystems., 544
Mounting problems, 377
MPLS, 395
MRTG, 313
Multi user OS, 16
Multi-port repeater, 50
multi-user mode, 111
Multicast address, 58



630 INDEX

Multiplexing, 393
Multitasking system, 16
MX, 346
MX records, 346
MySQL, 355

Name service, 80
Name service lookups, 89
Nameserver for other domains, 93
Nameserver list, 127
Naming scheme for Internet, 88
NAT, 67
ndd command, Solaris, 321
NDS, 198
Netmask, 58
Netmask, examples, 59
Netmask, exporting, 377
Network Address Translation, 67
Network address translator, 67
Network byte order, 54
Network information service, 89, 149
Network interface, 46
Network interfaces, 547
Network layer, 47
Network Management Model, 217
Network numbers, 339
Network Operating System, 200
Network, transmission method, 48
Networks, 55
Newcastle filesystem, 38
newfs command, 117
Newsprint, 382
NFS, 38
NFS client/server statistics, 547
NFS, root access, 471
Nine Step Model, 162, 163
NIS, 89, 128, 149
NIS plus, 128
nmap program, 476
nmap, port scanner, 98
No contact with outside world, 62
Non-repudiation, 21
Normal distribution, 530
Normal error law, 530
Normalization, 78
Normalization of a system, 454
NOS, 200
NOT operator, 263

Novell, 32, 85, 131, 200
Novell Directory Services, 198
Novell disk purge, 293
NS, 346
NTP, 332
Null client (mail), 349

One time passwords, 473
Online examinations, 170
Open system, 522
OpenAFS, 39
Operating system, 16
Operator ordering, 264
Oracle, 355
OSI Management Model, 217
OSI model, 46, 197
Outsourcing, 416
Overheads, performance, 318

Paging, 118
PAM, 230
Parallelism, 223
Parameters in Perl functions, 564
Pareto distribution, 534
Partitions, 122
Passive users, 163
Password cracking, Windows, 472
Password sniffing, 472, 473
Paste as a Perl script, 562
Pattern matching in Perl, 568, 571
Pattern replacement in Perl, 568
PCNFS, 229
Peer-to-peer and BGP, 407
Perl, 251, 470
Perl variables and types, 553
Perl, strings and scalar, 554
Perl, truncating strings, 564
Permissions on files, 28
Permissions on installed software,

135
Persistent connections, 358
PHP, 355
Physical layer, 47
PID, 43
ping, 182
Ping attacks, 446
Pluggable authentication modules,

230
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Police service, policy, 252
Policy, 230

IPSec, 481
Quality assurance, 324
Users, 153

Policy, formalizing, 227
Policy, user support, 161
Port, 336
Port numbers, 408
Port scanning, 87, 98
Port sniffing, 475
Portmapper, 377
Posix ACLs, 32
Predictability, 7, 77, 103, 153
Presentation layer, 47
Preventing loss, 455
Prey-Predator models, 226
Principle

Abstraction generalizes, 221
Access and privilege, 426
Active users, 163
Adaptability, 100, 195
Causality, 285
Communities, 75
Community borders, 488
Conflicting rules, 483
Conflicts of interest, 181
Contention/competition, 319
Data invulnerability, 441
Delegation I, 78
Delegation II, 205
Diagnostics, 291
Disorder, 235
Distributed accounts, 149
Equilibrium, 236
Flagging customization, 139
Freedom, 166
Harassment, 181
Homogeneity/Uniformity I, 203
Homogeneity/Uniformity II, 220
Identification requires trust, 444
Inter-dependency, 103
Minimum privilege, 21
Nash dilemma, 306
One name for one object I, 101
One name for one object II, 230
Perceived authority, 176

Policy, 236
Policy is the foundation, 6
Predictability, 7
Predictability vs determinism,

410
Predictable failure, 281
Predictable failure of humans,

192
Protocols offer predictability, 443
Rapid maintenance, 324
Rate guarantees, 410
Reliability, 219
Resource chokes and drains,

255
Resource map, 86
Risk, 429
Routing policy, 407
Scalability, 7, 219
Security is a property of

systems, 426
Security is about trust, 426
Separate user IDs for services,

356
Separation I, 119
Separation II, 120
Separation III, 136
Service corruption, 480
Simplest is best, 153
Standardized methods offer

predictability, 238
Strategic administration, 304
Symptoms and cause, 239, 315
System interaction, 195
System management’s role, 196
Temporary files, 138
Trusted third parties, 465
Uncertainty, 529
Uniformity, 77
Variety, 77
Weakest link, 318

Principle of uniformity, 204
Print services, 379
Print spool area, 379
Print-queue listing, 382
Print-queue, remove job, 382
Print-queue, start, 382
Print-queue, stop, 382
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Printer registration, 379
Printer, choosing a default, 379
Privilege

Limited privilege, 137
Privileged users, 161
Probability distributions, 526
Process ID, 43
Process starvation, 255
procmail, 371
Promiscuous mode, 392
Protection bits, 28
Protocols, 46
Proxy, 333
Proxy, firewall, 488
PTR records, 349
pty’s increasing number, 321
Public keys, 464

q=any, nslookup, 93
q=mx, nslookup, 92
q=ns, nslookup, 93
Quality of Service, 47, 68
queso program, 476
Quotas, 164

Race conditions, 138
RAID, 455
RARP, 63, 84, 129
Real time systems, 425
Redundancy, 223, 441
Registering a printer, 379
Registry, Windows, 131
Regulation, feedback, 226
Relaying, mail, 366
Reliability, 103
Repairing a damaged disk, 546
Repeater, 50
Resolver, setting up, 127
Resources, competition, 204
Restarting daemons, 545
Restricting privilege, 16, 19, 21, 28,

36
root account, 21
Root partition, 123
Rotation, logs, 296
Router, 49, 50, 393, 394
Router/switch difference, 50
Routers, 50

Routing Domain, 407
Routing domain, 66, 67
Routing information, 548
Routing table, 62, 547
RPC service not registered error, 377
RRDtool, 313
RSVP, 411
Running jobs at specified times, 242

s-bit, 30, 31
S-HTTP, 332
S/KEY, 473
Samba, 229, 378
Scalar variables in Perl, 554
Scheduling priority, 546
Scheduling service, Windows, 243
scli for SNMP, 257
Script aliases in W3, 575
Scripts, 20
SCSI disks, 14
SCSI probe on SunOS, 122
SDH, 50, 400
Searching and replacing in Perl

(example), 569
Sectors, 116
Secure attention sequence, 444
Secure Socket Layer, 466
Secure socket layer, 465
Security holes, 437
Security, analysis, 469
Security, passive users, 163
Self-similar network traffic, 511
Sequence guessing, 448
Serial number, DNS, 351
Server message block, 378
Server room, 109
Service configuration, 333
Service Level Agreement, 416
Service packs, Windows, 126
Services, 79, 204
Services and daemons, 333
Services, starting without privilege,

138
Session layer, 47
setgid bit, 30
setuid bit, 30
Setuid programs, 437
Setuid software, 138
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Shadow password files, 472
Shannon entropy, 523
Sharing filesystems, Unix, 41
Shell, 20, 43
Short cuts, Windows, 36
Shutdown, NT, 113
SIMM, 14
Simple Network Management

Protocol, 215
Single point of failure, 488
Single task system, 16
Single user mode, 334
Single user OS, 16
single-user mode, 111
Site specific data, 133
SLA, 416
Slash notation, IP, 342
Slowly running systems, 293
SMB protocol, 378
Smurf attack, 449
SNMP, 215, 257, 474
SNMP security, 216
SOA, 346
SOAP, 417
Socket connections, 547
Sockets, 47
Soft links, 27
SONET, 50
Spectrum of frequencies, 535
SQL, 269
SSH, 332
SSL, 465, 466
Standard deviation, 530
Standard error of the mean, 532
Standard I/O in Perl, 561
Standardization, 78
Start up files for Unix, 112
Starvation of process, 255
Static kernel, 322
Statistics, disks, 547
Statistics, NFS, 547
Statistics, virtual memory, 547
Sticky bit, 31
Strategy, 306
Strings in Perl, 554
Structured query language, 269
Subnets, 58

Subroutines in Perl, 564
Suffix rules in Makefiles, 550
Suggestion

Clear prompts, 156
Cron management, 243
Environment, 155
FAQs, 291
Network security, 429
OS configuration files, 461
Passwords, 150
Platform independent languages,

221
Problem users, 164
SNMP containment, 216
Static data, 458
Tape backup, 460
Unix printing, 380
Unix shell defaults, 156
URL filesystem names, 462
Vigilance, 137
Work defensively, 429

Sun Microsystems, 18
Superuser, 21
Support, 161
SVR4, 596
Swap partition, 123
Swap space, 546
Swapping, 118
Swapping, switching on, 546
Switch, 393
Switch/router difference, 50
Switched networks, 50
Switches, 50, 52
Sybase, 355
Symbolic link attacks, 138
Symbolic links, 27
Symmetric keys, 464
SYN flooding, 447
System 5/System V, 18
System accounting, 164
System policy, 227, 230
System registry, 131
System type, 88

t-bit, 31
T1, 400
T3, 400
TCP tuning, 321
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TCP wrappers, 336
TCP/IP, 46
TCP/IP security, privilege, 21
TCP/IP spoofing, 447
Team work, 201, 234
Teardrop, 448
Telecommunications Management

Network, 216
Terminal echo and stty, 566
Text form of access bits, 29
Thin clients, 128
Thrashing, 320
Time classes, 266
Time service, 242
Time, executing jobs at

specified, 242
timezone, 87
TLS, 466
TMN, 216
Token rings, 397
traceroute, 182
Traffic analysis, 534
Transport layer, 47
Transport Layer Security, 466
Tripwire, 463
Troubleshooting, 291
Truncating strings in Perl, 564
Trust relationship, 148
Trusted ports, 21
Trusted third party, 465, 468
TTL, 596
Types in Perl, 553

uid, 150
umask, 33
Undeleting files, 455
Uniformity, 78, 204
Up, checking a host, 547
Usage patterns, understanding, 205
User interface, 16
User name, 19
User support, 161

user-id, 150
UWIN Unix toolkit for Windows, 134

virtual circuits, 396
Virtual machine model, 220
Virtual memory statistics, 547
Virtual Network Computing, 161
Virtual private network, 477
VLANS, 50
VNC, 161
VPN, 477

WAN, 51
Weather, 15
Web of trust, 465
White Pages, 197
Wide area network, 51
Windows, 17, 84
Windows 2000, 201
Windows, ACL/ACEs, 37
Windows, drive letter assignment,

117
Windows, install, 126
Workstation, NT, 23
WWW security, 479

X.500, 197
xhost access control, 477
XML, 417
XML-RPC, 417

Years, 266
Yellow Pages, 197
Yellow pages, 149
YP, 149

z-OS, 18
z-os, 25
z-series, 25
z/series, 18
Zenworks, 131
Zombie process, 44
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