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Preface 

This book is an interdisciplinary book: it tries to  teach physicists the basic knowledge 
of combinatorial and stochastic optimization and describes to  the computer scientists 
physical problems and theoretical models in which their optimization algorithms are 
needed. It is a unique book since it describes theoretical models and practical situation 
in physics in which optimization problems occur, and it explains from a physicists point 
of view the sophisticated and highly efficient algorithmic techniques that otherwise can 
only be found specialized computer science textbooks or even just in research journals. 
Traditionally, there has always been a strong scientific interaction between physicists 
and mathematicians in developing physics theories. However, even though numerical 
computations are now commonplace in physics, no comparable interaction between 
physicists and computer scientists has been developed. Over the last three decades 
the design and the analysis of algorithms for decision and optimization problems have 
evolved rapidly. Most of the active transfer of the results was to  economics and 
engineering and many algorithmic developments were motivated by applications in 
these areas. 
The few interactions between physicists and computer scientists were often successful 
and provided new insights in both fields. For example, in one direction, the algorith- 
mic community has profited from the introduction of general purpose optimization 
tools like the simulated annealing technique that originated in the physics community. 
In the opposite direction, algorithms in linear, nonlinear, and discrete optimization 
sometimes have the potential to  be useful tools in physics, in particular in the study of 
strongly disordered, amorphous and glassy materials. These systems have in common 
a highly non-trivial minimal energy configuration, whose characteristic features dom- 
inate the physics a t  low temperatures. For a theoretical understanding the knowledge 
of the so called "ground states" of model Hamiltonians, or optimal solutions of appro- 
priate cost functions, is mandatory. To this end an efficient algorithm, applicable to 
reasonably sized instances, is a necessary condition. 
The list of interesting physical problems in this context is long, it ranges from disor- 
dered magnets, structural glasses and superconductors through polymers, membranes, 
and proteins to  neural networks. The predominant method used by physicists to study 
these questions numerically are Monte Carlo simulations and/or simulated annealing. 
These methods are doomed to fail in the most interesting situations. But, as pointed 
out above, many useful results in optimization algorithms research never reach the 
physics community, and interesting computational problems in physics do not come to 
the attention of algorithm designers. We therefore think that there is a definite need 
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to intensify the interaction between the computer science and physics communities. 
We hope that this book will help to extend the bridge between these two groups. Since 
one end is on the physics side, we will try to  guide a number of physicists to a journey 
to the other side such that they can profit from the enormous wealth in algorithmic 
techniques they will find there and that could help them in solving their computational 
problems. 
In preparing this book we benefited greatly from many collaborations and discussions 
with many of our colleagues. We would like to  thank Timo Aspelmeier, Wolfgang 
Bartel, Ian Campbell, Martin Feix, Martin Garcia, Ilia Grigorenko, Martin Weigt, 
and Annette Zippelius for critical reading of the manuscript, many helpful discus- 
sions and other manifold types of support. Furthermore, we have profited very much 
from fruitful collaborations and/or interesting discussions with Mikko Alava, Jurgen 
Bendisch, Ulrich Blasum, Eytan Domany, Phil Duxbury, Dieter Heermann, Guy Hed, 
Heinz Horner, Jermoe Houdayer, Michael Junger, Naoki Kawashima, Jens Kisker, 
Reimer Kuhn, Andreas Linke, Olivier Martin, Alan Middleton, Cristian Moukarzel, 
Jae-Dong Noh, Uli Nowak, Matthias Otto, Raja Paul, Frank Pfeiffer, Gerhard Reinelt, 
Federico Ricci-Tersenghi, Giovanni Rinaldi, Roland Schorr, Eira Seppalaa, Klaus Us- 
adel, and Peter Young. We are particularly indebted to Michael Baer, Vera Dederichs 
and Cornelia Reinemuth from Wiley-VCH for the excellent cooperation and Judith 
Egan-Shuttler for the copy editing. 
Work on this book was carried out at the University of thc Saarland, University of 
Gottingen, Forschungszentrum Julich and the University of California at Santa Cruz 
and we would like to  acknowledge financial support from the Deutsche Forschungs- 
geimeinschaft (DFG) and the European Science Foundation (ESF). 

Santa Cruz and Saarbriicken May 2001 Alexander K. Hartmann and Heiko Rieger 
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1 Introduction to Optimization 

Optimization problems [l, 2, 31 are very common in everyday life. For example, when 
driving to work one usually tries to  take the shortest route. Sometimes additional 
constraints have to  be fulfilled, e.g. a bakery should be located along the path, in case 
you did not have time for breakfast, or you are trying to  avoid busy roads when riding 
by bicycle. 
In physics many applications of optimization methods are well know, e.g. 

Even in beginners courses on theoretical physics, in classical mechanics, optimiza- 
tion problcms occur: e.g. the Euler-Lagrange differential equation is obtained from 
an optimization process. 

Many physical systems are governed by minimization principles. For example, in 
thermodynamics, a system coupled to a heat bath always takes the state with 
minimal free energy. 

When calculating the quantum mechanical behavior of atoms or small molecules, 
quite often a variational approach is applied: the energy of a test state vector is 
minimized with respect to  some parameters. 

Frequently, optimization is used as a tool: when a function with various parame- 
ters is fitted onto experimental data points, then one searches for the parameters 
which lead to the best fit. 

Apart from these classical applications, during the last decade many problems in 
physics have turned out to be in fact optimization problems, or can be transformed 
into optimization problerns, for recent reviews, see Ref. [4, 5, 61. Examples are: 

Determination of the self affine properties of polymers in random media 

Study of interfaces and elastic manifolds in disordered environments 

Investigation of the low-temperature behavior of disordered magnets 

Evaluation of the morphology of flux lines in high temperature superconductors 

Solution of the protein folding problem 

0 Calculation of the ground states of electronic systems 

Analysis of X-ray data 
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Optimization of lasers/optical fibers 

0 Reconstruction of geological structures from seismic measurements 

On the other hand, some classical cornbinatorial optimization problems occurring in 
theoretical computer science have attracted the attention of physicists. The reason 
is, that these problems exhibit phase transitions and that methods from statistical 
physics can be applied to  solve these problems. 
An optimization problem can be described mathematically in the following way: let 
a = ( a l , .  . . ,a,) be a vector with n elements which can take values from a domain - 

X n :  ai E X. The domain X can be either discrete, for instance X = (0, I} or X = Z 
the set of all integers (in which case it is an integer optimization problem) or X can 
be continuous, for instance X = R the real numbers. Moreover, let 'fl be a real valued 
function, the cost function or objective, or in physics usually the Hamiltonian or the 
energy of the system. The minimizat ion problem is then: 

Find a E X n ,  which minimizes ?i! 

A maximization problem is defined in an analogous way. We will consider only min- 
imization problems, since maximizing a function H is equivalent to minimizing -H. 
Here, only minimization problems are considered where the set X is countable. Then 
the problem is called combinatorial or discrete. Optimization methods for real valued 
variables are treated mainly in mathematical literature and in books on numerical 
methods, see e.g. Ref. [7]. 
Constraints, which must hold for the solution, may be expressed by additional equa- 
tions or inequalities. An arbitrary value of a, which fulfills all constraints, is called 
feasible. Usually constraints can be expressed more conveniently without giving equa- 
tions or inequalities. This is shown in the first example. 

Example: Traveling Salesman Problem (TSP) 

The TSP has attracted the interest of physicist several times. For an intro- 
duction, see Ref. [8]. The model is briefly presented here. Consider n cities 
distributed randomly in a plane. Without loss of generality the plane is con- 
sidered to be the unit square. The minimization task is to  find the shortest 
round-tour through all cities which visits each city only once. The tour stops 
at the city where it started. The problem is described by 

where d(a,, ap) is the distance between cities a, and a0 and a,+l = a1. The 
constraint that every city is visited only once can be realized by constraining 
the vector to  be a permutation of the sequence [I, 2 , .  . . , n]. 
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Figure 1.1: 15 cities in a plane. 

As an example 15 cities in a plane are given in Fig. 1.1. You can try to  
find the shortest tour. The solution is presented in Chap. 2. For the general 
TSP the cities are not placed in a plane, but an arbitrary distance matrix d 
is given. 0 

The optimum order of the cities for a TSP depends on their exact positions, i.e. 
on the random values of the distance matrix d. It is a feature of all problems we 
will encounter here that they are characterized by various random parameters. Each 
random realization of the parameters is called an ins tance of the problem. In general, 
if we have a collection of optimization problems of the same (general) type, we will 
call each single problem an instance of the general problem. 
Because the values of the random parameters are fixed for each instance of the TSP, 
one speaks of frozen or quenched disorder. To obtain information about the general 
structure of a problem one has to  average measurable quantities, like the length of the 
shortest tour for the TSP, over the disorder. Later we will see that usually one has to  
consider many different instances to  get reliable results. 
While the TSP originates from everyday life, in the following example from physics a 
simple model describing complex magnetic materials is presented. 

Example: Ising Spin Glasses 

An Ising spin 0, is a small magnetic moment which can take, due to an- 
isotropies of its environment, only two orientations called u p  and down; e.g 
a, = 411. For the simplest model of a magnetic material one assumes that 
spins are placed on the sites of a simple lattice and that a spin interacts 
only with its nearest neighbors. In a ferromagnet  it is energetically favorable 
for a spin to be in the same orientation as its neighbors, i.e. parallel spins 
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give a negative contribution to  the total energy. On the other hand the 
thermal noise causes different spins to  point randomly up or down. For low 
temperatures T the thermal noise is small, thus the system is ordered, i.e. 
ferromagnetic. For temperatures higher than a critical temperature T,, no 
long range order exists. One says that a phase transi t ion occurs at T,, see 
Chap. 5. For a longer introduction to phase transitions, we refer the reader 
e.g. to Ref. [9]. 

A spin configuration which occurs at T = 0 is called a ground state.  It is just 
thc absolute minimum of the energy H ( g )  of the system since no thermal 
excitations are possible at T = 0. They are of great interest because they 
serve as the basis for understanding the low temperature behavior of physical 
systems. From what was said above, it is clear that in the ground state of 
a ferromagnet all spins have the same orientation (if quantum mechanical 
effects are neglected). 

A more complicated class of materials are sp in  glasses which exhibit not only 
ferromagnetic but also ant i ferromagnet ic  interactions, see Chap. 9. Pairs of 
neighbors of spins connected by an antiferrornagnetic interaction like to  be in 
different orientations. In a spin glass, ferromagnetic and antiferromagnetic 
interactions are distributed randornly within the lattice. Consequently, it is 
not obvious what ground state configurations look like, i.e. finding the min- 
imum energy is a non-trivial minimization problem. Formally the problem 
reads as follows: 

where Jij denotes the interaction between the spins on site i and site j and 
the sum (i, j) runs over all pairs of nearest neighbors. The values of the 
interactions are chosen according to some probability distribution. Each ran- 
dom realization is given by the collection of all interactions {Jij). Even the 
simplest distribution, where Jij = 1 or Jij = -1 with the same probability, 
induces a highly non-trivial behavior of the system. Please note that the in- 
teraction parameters are frozen variables, while the spins oi are free variables 
which are to  be adjusted in such a way that the encrgy becomes minimized. 

Fig. 1.2 shows a small two-dimensional spin glass and one of its ground 
states. For this type of system usually many different ground states for 
each realization of the disorder are feasible. One says, the ground state is 
degenerate. Algorithms for calculating degenerate spin-glass ground states 
are explained in Chap. 9. 
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Figure 1.2: Two-dimensional spin glass. Solid lines represent ferromagnetic inter- 
actions while jagged lines represent antiferromagnetic interactions. The small arrows 
represent the spins, adjusted to a ground-state configuration. For all except two in- 
teractions (marked with a cross) the spins are oriented relative to each other in an 
energetically favorable way. It is not possible to find a state with lower energy (try 
it!). 

These two examples, which are in general of equivalent computational complexity as 
we will learn when reading this book, are just intended as motivation, as to why 
dealing with optimization problems is an interesting and fruitful task. The aim of 
this book is to  give an introduction to  methods how to solve these problems, i.e. how 
to find the optimum. Interestingly, there is no single way to  achieve this. For some 
problems it is very easy while for others it is rather hard, this refers to the time you or 
a computer will need at  least to  solve the problem, it does not say anything about the 
elaborateness of the algorithms which are applied. Additionally, within the class of 
hard or within the class of easy problcrns, there is no universal method. Usually, even 
for each kind of problem there are many different ways to  obtain an optimum. On the 
other hand, there are several universal algorithms, but they find only approximations of 
the true optima. In this book algorithms for easy and algorithms for hard problems are 
presented. Some of the specialized methods give exact optima, while other algorithms, 
which are described here, are approximation techniques. 

Once a problem becomes large, i.e. when the number of variables n is large, it is 
impossible to  find a minimum by hand. Then computers are used to  obtain a solution. 
Only the rapid development in the field of computer science during the last two decades 
has pushed forward the application of optimization methods to many problems from 
science and real life. 
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In this book, efficient discrete computer algorithms and recent applications to problems 
from physics are presented. The book is organized as follows. In the second chapter, 
the foundations of complexity theory are explained. They are needed as a basis for 
understanding the rest of the book. In the next chapter an introduction to graph theory 
is given. Many physical questions can be mapped onto graph theoretical optimization 
problems. Then, some simple algorithms from graph theory are explained, sample 
applications are from percolation theory are presented. In the following chapter, the 
basic notions from statistical physics, including phase transitions and finite-size scaling 
are given. You can skip this chapter if you are familiar with the subject. The main 
part of the book starts with the sixth chapter. Many algorithms are presented along 
with sample problems from physics, which can be solved using the algorithms. First, 
techniques to calculate the maximum flow in networks are exhibited. They can be 
used to  calculate the ground states of certain disordered magnetic materials. Next, 
minimum-cost-flow methods are introduced and applied to  solid-on-solid models and 
vortex glasses. In the eighth chapter genetic algorithms are presented. They are 
general purpose optimization methods and have been applied to various problems. 
Here it is shown how ground states of electronic systems can be calculated and how the 
parameters of interacting galaxies can be determined. Another type of general purpose 
algorithm, the Monte Carlo method, is introduced along with several variants in the 
following chapter. In the succeeding chapter. the emphasis is on algorithms for spin 
glasses, which is a model that has been at the center of interest of statistical physicists 
over the last two decades. In the twelfth chapter, a phase transition in a classical 
combinatorial optimization problem, the vertex-cover problem, is studied. The final 
chapter is dedicated to the practical aspects of scientific computing. An introduction 
t o  software engineering is given, along with many hints on how to organize the program 
development in an efficient way, several tools for programming, debugging and data 
analysis, and finally, it is shown how to find information using modern techniques such 
as data bases and the Internet, and how you can prepare your results such that they 
can be published in scientific journals. 
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2 Complexity Theory 

Programming languages are used to instruct a computer what to do. Here no specific 
language is chosen, since this is only a technical detail. We are more interested in 
the general way a method works, i.e. in the algorithm. In the following chapters 
we introduce a notation for algorithms, give some examples and explain the most 
important results about algorithms provided by theoretical computer sciences. 

2.1 Algorithms 

Here we do riot want to try to  give a precise definition of what an algorithm is. We 
assume that an algorithm is a sequence of statements which is computer readable and 
has an unambiguous meaning. Each algorithm may have input and output (see Fig. 
2.1) which arc well defined objects such as sequences of numbers or letters. Neither 
user-computer interaction nor high-level output such as graphics or sound are covered. 
Please note that the communication between the main processing units and keyboards 
or graphic-/sound- devices takes place via sequences of numbers as well. Thus, our 
notion of an algorithm is universal. 

Figure 2.1: Graphical representation of am algorithm. 

Algorithms for several specific purposes will be presented later. We will concentrate 
on the main ideas of each method and not on implementational details. Thus, the 
algorithms will not be presented using a specific programming language. Instead, we 
will use a notation for algorithms called pidgin Algol, which resembles modern high- 
level languages like Algol, Pascal or C. But unlike any conventional programming 
language, variables of an arbitrary type are allowed, e.g. they can represent numbers, 
strings, lists, sets or graphs. It  is not necessary to declare variables and there is no 
strict syntax. 
For the definition of pidgin Algol, we assume that the reader is familiar with at lcast onc 
high-level language and that the meaning of the terms variable, eqmssion, condibion 
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and label is clear. A pidgin Algol program is one of the following statements ,  please 
note that by using the compound statement, programs can be of arbitrary length: 

1. Assignment  
variable := expression 

,4 value is assigned to a variable. Examples: a := 5 * b + c ,  A := { U I ,  . . . , an} 

Also more complex and informal structures are allowed, like 
let z be the first e lement  of the queue Q 

2 .  Condit ion 
if condition then statement  1 

else statement  2 

The else clause is optional. If the condition is true, statement 1 is executed, else 
statement 2, if it exists. 

Example: if money>100 then restaurant := 1 else restaurant := 0 

3. Cases 
case: condition 1 

statement 1-A; 
statementl-B; 
... 

case: condition 2 
statement2-A; 
statement2-B ; 
. . . 

case: condition 3 
statement3-A; 
statement3-B; 

. . . 
end cases 

This statement is useful, if many different case can occur, thus making a sequence 
of if statements too complex. If condition 1 is true, then the first block of state- 
ments is executed (here no begin ... end is necessary). If condition 1 is true, 
then the second block of statements is executed, etc. 

4. While  loop 
while condition do statement  

The statement is performed as long as the condition is true. 

Example: while counter < 200 do counter := counter+l 

5. For loop 
for list do statement  

The statement is executed for all parameters in the list. Examples: 
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for i := 1 , 2 , .  . . ,n  do s u m  := sum+i 

for all clcments q of queue Q do waits[q] := waits[q]+l 

6 .  Goto s tatement  
a)  label: s tatement  
b) goto label 

When the execution of an algorithm reaches a goto statement the execution is 
continued at  the statement which carries the corresponding label. 

7. Compound s ta tement  
begin 

statement  1; 
s tatement  2; 
. . . 
statement  n; 

end 

The compound statement is used to  convert a sequence of statements into one 
statement. It  is useful e.g. if a for-loop should be executed for a body of several 
statements. 

Example: 
for i : =  1,2,  . . . ,  n d o  
begin 

a := a + i ;  
b : =  b + i * i ;  
c : = c + i * i * i ;  

end 

For briefness, sometimes a compound statement is written as a list of statements 
in one line, without the begin and end keywords. 

8. Procedures 
procedure procedure-name ( l is t  of parameters) 
begin 

statements  
return expression 

end 

The return statement is optional. A procedure is used to  define a new name for 
one statement or, using a compound statement, for a collection of statements. A 
procedure can be invoked by writing: procedure-name (arguments)  

Example: 
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procedure  minimum (z, y)  
beg in  

if x>y t h e n  r e t u r n  y 
else r e t u r n  x 

e n d  

9. Comments 
commen t  text 

Comments are used to explain parts of an algorithm, i.e. to  aid in its under- 
standing. Sometimes a comment is given a the right end of a line without the 
commen t  keyword. 

10. Miscellaneous statements: practically any text which is self-explanatory is al- 
lowed. Examples: 

Calculate determinant D of matrix M 
Calculate average waiting time for queue Q 

As a first example we present a sin~ple heuristic for the TSP. This method constructs 
a tour which is quite short, but it does not guarantee to  find the optimum. The basic 
idea is to start at  a randomly chosen city. Then iteratively the city which has the 
shortest distance from the present city, i.e. its nearest neighbor, is chosen from the set 
of cities which have not been visited yet. Thc array u will be used to indicate which 
cities already belong to the tour. Please remember that d(i; j )  denotes the distance 
between cities i and j and n is the number of cities. 

a lgor i thm TSP-nearest-neighbor(n; {d(i, j ) ) )  
begin  

for i := 1 , 2 , .  . . ; n  d o  
li[i] := 0; 

01 := one arbitrarily chosen city; 
u[al] := 1; 
f o r i : = 2 , 3 ,  . . . ,  n d o  
begin  

min := m; 
for all unvisited cities j d o  

if d ( c ~ + ~ ,  j )  < min t h e n  
min := d ( ~ , - ~ ,  j); ai := j; 

?J[cJi] := 1; 
e n d  

e n d  

Please note that the length of the tour constructed in this way depends on the city 
where the tour starts and t,hat this city is randomly chosen. This algorithm and 
many other heuristics for the TSP can be found on the well presented TSP web-pages 
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of Stephan Mertens [I]. On these pages different TSP algorithms are implemented 
using Java-applets. It is possible to  run the algorithms step by step and watch the 
construction of the tour on the screen. In Fig. 2.2 the results for one sample of 15 
cities are shown. The top part presents a Java-applet which contains results for the 
heuristic while in the bottom part the shortest tour is given. 
The basis tools and results for the analysis of algorithms were developed in the field of 
theoretical computer science. For a beginner many of the results may seem unimpor- 
tant for practical programming purposes. But in fact, for the development of effective 
algorithms their knowledge is essential. Here we give the reader just a short glimpse 
into the field by presenting the most fundamental definitions and results. As an exam- 
ple we will prove in the second part of this section that there are functions of natural 
numbers which cannot be programmed on a computer. For this purpose an important 
technique called diagonalization is used. Now we will prepare the proof in several 
steps. 
Pidgin Algol is sufficient to  present and analyze algorithms. But for a theoretical 
treatment exact methods and tools are necessary. For this purpose a precise definition 
of algorithms is needed. Formal models of computation such as the Turing machine 
are used, where everything is stored on a tape via a readlwrite head. Also very 

common is the Random access machine which is a simple model of real computers 
consisting of an RAM memory and a central processing unit. It can be shown that all 
reasonable formal machine models are equivalent. This means that for any program 
on one model an equivalent program can be written for a different model. For more 
information the reader is referred e.g. to [2]. 
The observation that all reasonable machine models are equivalent has led to  the 
Church's thesis: "For any algorithm a program can be written on all reasonable ma- 
chine models." Since the term algorithm cannot be defined exactly it is impossible 
to  prove Church's thesis. Nobody has come up with an algorithm that cannot be 
transfered to  a computer. Hence, it seems reasonable that this thesis is true. 
In the following we will concentrate on programs which have just one natural number 
as input and one natural number as output. This is not a restriction because every 
input/output sequence can be regarded as one long list of bits, i.e. one (possibly large) 
natural number. 
Every program of this kind realizes a partial function f : N + N from natural 
numbers to natural numbers. The term partial means that they may be not defined 
for every input value, the corresponding program for f will run forever for some input 
rc. If f is not defined for the argument x we write f (x) = div. 
As a next step towards the proof that there are functions which are not computable, 
we present a method of how to enumerate all computable functions. This enumeration 
works by assigning a code-number to  each program. For a precise definition of the 
assignment, one must utilize a precise machine model like the Turing machine or the 
random access machine. Here a simple t,reatment is sufficient for our purpose. Thus, 
we can assume that the programs arc writtcn in a high level languagc like C, but 
restricted to  the case where only one input and one output number (with arbitrary 
high precision) is allowed. The code-number is assigned to a program in the following 
way: when the program is stored in memory it is just a long sequence of bits. This is 



2 Complexzty T h e o ~ y  

Figure 2.2: A sample TSP containing 15 cities. The results for the nearest-neighbor 
heuristic (top) and the exact optimum tour (bottom) are shown. The starting city 
for the heuristic is marked by a white square. The nearest neighbor of that city is 
located above it. 

quite a long natural number, representing the program in a unique way. Now, let f n  
be the function which is defined through the text with number n, if the text is a valid 
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program. If text n is not a valid program or if the program has more than one input 
or output number, then we define f n ( x )  = div for all x E N .  In total, this procedure 
assigns a function to  each number. 
All functions which can be programmed on a computer are called computable. Please 
note that for every computable function f there are multiple ways to  write a program, 
thus there are many numbers n with f ,  = f .  Now we want to show: 
There are functions f : N + N which are no t  computable 
Proof: We define the following function 

Evidently, this is a well defined partial function on the natural numbers. The point is 
that it is different from all computable functions f,, i.e. f * itself is not computable: 

QED 
The technique applied in the proof above is called diagonalization. The reason is that 
if one tabulates the infinite matrix consisting of the values f,(i) then the function f * is 
different from each f ,  on the diagonal f n ( n ) .  The principle used for the construction 
of f * is visualized in Fig. 2.3. The technique of diagonalization is very useful for many 
proofs occurring not only in the area of theoretical computer science but also in many 
fields of mathematics. The method was probably introduced by Georg Cantor a t  the 
beginning of thc century to show that there are more than a countable number of real 
numbers. 

Figure 2.3: Principle of diagonalization: define a function which differs from all 
computable functions on the diagonal. 

It should be pointed out that the existence of f*  is not a contradiction to  Church's 
thesis since f *  is not  defined through an algorithm. If someone tries to  implement 
the function f*  from above, he/she must have an algorithm or test available which 
tells whether a given computer program will halt a t  some time or whether it will run 
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forever (f,(x) = div). The question whether a given program stops or not is called 
the halting problem. With a similar and related diagonalization argument as we have 
seen above, it can be shown that there is indeed no solution to  this problem. It means 
that no universal algorithm exists which decides for all programs whether the program 
will halt with a given input or run forever. On the other hand, if a test for the halting 
problem was available it would be easy to  implement the function f * on a computer, 
i.e. f *  would be computable. Thus, the undecidability of the halting problem follows 
from the fact that f * is also not computable. 
In principle, it is always possible to  prove for a given program whether it will halt 
on a given input or not by checking the code and deep thinking. The insolvability of 
the halting problem just means that there is no systematic way, i.e. no algorithm to 
construct a proof for a n y  given program. Here, as for most proofs in mathematics, the 
person who carries it out rnust rely on his/her creativity. But with increasing length 
of the program the proof usually becomes extremely difficult. I t  is not surprising that 
for realistic programs like word processors or databases no such proofs are available. 
The same is true for the correctness problem: There is no systematic way to  prove 
that a given program works according a given specification. On the other hand, this 
is fortunate, since otherwise many computer scientists and programmers would be 
unemployed. 
The halting problem is a so called recognition problem: for the question "will Program 
Pn halt on input x" only the answers "yes" or "no" are possible. In general, we will 
call an instance (here a program) yes-instance if the answer is "yes" for it, otherwise 
no-instance.  As we have seen, the halting-problem is not decidable, because it is not 
possible to prove the answer "no" systematically. But if the answer is "yes", i.e. if the 
program stops, this can always be proven: just take the program Pn, supply input x, 
run it and wait till it stops. This is the reason why the halting problem a t  least is 
provable. 

2.2 Time Complexity 

After we have taken a glimpse at the theory of computability, we will proceed with 
defining the t i m e  complexity of an algorithm which describes its speed. We will define 
under what circumstances we call an algorithm effective. The speed of a program 
can only be determined if it halts on every input. For all optimization problems we 
will encounter, there are algorithms which stop on all inputs. Consequently, we will 
restrict ourself t o  this case. 
Almost always the time for executing a program depends on the input. Here, we are 
interested in the dependence on the size 1x1 of the input x. For example, finding a 
tour visiting 10 cities usually takes less time than finding a tour which passes through 
one million cities. The most straightforward way of defining the size of the input 
is counting the number of bits (without leading zeros). But for most problems a 
"natural" size is obvious, e.g. the number of cities for the TSP or the number of spins 
for the spin-glass problem. Sometimes there is more than one characteristic size, e.g. 
a general TSP is given through several distances between pairs of cities. Then the 
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execution time of a program may also depend on the number of distances, i.e. the 
number of nonzero entries of the matrix d ( i ,  j ) .  
Usually one is not interested in the actual running time t(z) of an algorithm for a 
specific implementation on a given computer. Obviously, this depends on the input, 
the skills of the programmer, the quality of the compiler and the amount of money 
which is available for buying the computer. Instead, one would like to have some kind 
of measure that characterizes the algorithm itself. 
As a first step, one takes the longest running time over all inputs of a given length. 
This is called the worst case running time or worst case time complezity T(n,): 

T(n)  = max t (z )  
x: /xI=n  

Here, the time is measured in sornc arbitrary units. Which unit is used is not relevant: 
on a computer B which has exactly twice the speed of computer A a program will 
consume only half the time. We want to  characterize the algorithm itself. Therefore, 
a good measure must be independent of such constant factors like the speed of a 
computer. To get rid of these constant factors one tries to determine the asymptotic 
behavior of a program by giving upper bounds: 
Definition: 0/0 notation Let T ,g  be functions from natural numbers to  real 
numbers. 

We write T(n)  E O(g(n)) if there existjs a positive constant c with T(n)  < cg(n) 
for all n.  We say: T (n )  is of order at most g(n).  

T (n )  E O(g(n)) if there exist two positive constants cl,ca with clg(n) < T ( n )  5 
cag(n) Qn. We say: T(n)  is of order g(n) .  

Example: 010-notation 

For T (n )  = pn3 + qn2 + rn ,  the cubic term is the fastest growing part: Let 
c 5 p + q + r. Then T(n)  < en3 Vn, which means T(n)  E 0 (n3 ) .  Since e.g. 
n4 ;  2n are growing faster than n3, wc have T (n)  E 0 ( n 4 )  and T (n) E O(2"). 
Let c' z min{p, q, r ) .  Then c'n3 < T(n) < en3. Hence, T(n)  t 0(n3 ) .  This 
smallest upper bond characterizes T ( n )  most precisely. 

We are interested in obtaining the time complexity of a given algorithm without actu- 
ally implementing and running it. The aim is to analyze the algorithm given in pidgin 
Algol. For this purpose we have to  know how long basic operations like assignments, 
increments and nlultiplications take. Here we assume that a machine is available where 
all basic operations take one time-step. This restricts our arithmetic operations to  a 
fixed number of bits, i.e. numbers of arbitrary length cannot be computed. If we en- 
counter a problem where numbers of arbitrary precision can occur, we must include 
the time needed for the arithmetic operations explicitly in the analysis. 
As an example, the time complexity of the TSP heuristic will now be investigated, 
which was presented in the last section. At the beginning of the algorithm a loop 
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is performed which sets all variables v[i] to zero. Each assignment costs a constant 
amount of time. The loop is performed n times. Thus, the loop is performed in 
O ( n ) .  The random choice of a city and the assignment of v[al] take constant time. 
The rest of the algorithm is a loop over all cities which is performed n - 1 times. 
The loop consists of assignments, comparisons and another loop which runs over all 
unvisited cities. Therefore, the inner loop is performed n - 1 times for i = 2, n - 2 
times for i = 3, etc. Consequently, the if-statement inside that loop is performed 
CrZ2(n  + I - i )  = ~ l n ~ ' ) ( n  - i )  = n(n  - 1)/2 times. Asymptotically this pair of 
nested loops is the most time-consuming part of the algorithm. Thus, in total the 
algorithm has a time complexity of @in2). 
Can the TSP heuristic be considered as being fast? Tab. 2.1 shows the growth of 
several functions as a function of input size n .  

Table 2.1: Growth of functions as a function of input size n. 

T(n)  
n 
n log n 
n2  
TL 

n'og n 

2" 
n,! 

For algorithms which have a time complexity that grows faster than all polynomials, 
even moderate increases of the system size make the problem impossible to treat. 
Therefore, we will call an algorithm effecttiwe if its time complexity is bounded by 
a polynomial: T (n )  E O(nk) .  In practice, values of the exponent up to k = 3 are 
considered as suitable. For very large exponents and small system sizes algorithms 
with exponentially growing time complexity may be more useful. Compare for example 
an algorithm with Tl(n) = nsO and another with T2(n) = 2". The running-time of the 
first algorithm is astronomical even for n = 3, while the second one is able to treat at  
least small input sizes. 
The application of the 010-notation neglects constants or lower order terms for the 
time complexity. Again, in practice an algorithm with running time T3(n) = n3 may 
be faster for small input sizes than another with T4(n) = 100n2. But these kinds of 
examples are very rare and rather artificial. 
In general, finding an algorithm which has a lower time complexity is always more 
effective than waiting for a computer to  arrive that is ten times faster. Consider two 
algorithms with time complexities T5(n) = n logn and T6 (n) = n3. Let n:, respectively 
n6 be the rnaximum problem sizes which can be treated within one day of computer 
time. If a computer is available which is ten times faster, the first algorithm can treat 
approximately inputs of size n5 x 10 (if n5 is large) within one day while for the second 
the maximum input size grows only as ns x 



2.3 NP Completeness 19 

To summarize, algorithms which run in polynomial time are considered as being fast. 
But there are many problems, especially optimization problems, where no polynomial- 
time algorithm is known. Then one must apply algorithms where the running time 
increases exponentially or even greater with the system size. This holds e.g. for the 
TSP if the exact minimum tour is to be computed. The study of such problems led to 
the concept of NP-completeness, which is introduced in the next section. 

2.3 NP Completeness 

For the moment, we will only consider recognition problems. Please remember that 
these are problems for which only the answers "yes" or "no" are possible. We have 
already have introduced the halting and the correctness-problem which are not de- 
cidable. The following example of a recognition problem, called SAT is of more 
practical interest. In the field of theoretical computer science it is one of the most 
basic recognition problems. For SAT it was first shown that many other recognition 
problems can mapped onto it. This will be explained in detail later on. Recently SAT 
has attracted much attention within the physics community [3]. 

Example: k-satisfiability (k-SAT) 

A boolean variable xi may only take the values 0 (false) and 1 (true). Here 
we consider three boolean operations: 

- 

NOT (negation): the clause % ("NOT xi") is true (z = I ) ,  if and 
only if (iff) xi is false: xi = 0 

0 AND A (conjunction): the clause zi A x j  ("xi AND xjl ')  is true, iff both 
variables are truc: xi = 1 AND x j  = 1. 

0 OR V (disjunction): the clause xi V x j  ('!xi OR xj") is true, iff at least 
one of the variables is true: xi = 1 OR x j  = 1 

A variable xi or its negation % is called a literal. Using parentheses different 
clauses may be combined to produce complex boolean formulas, e.g. (XI V 
- 
2 2 )  A (23 V 22). 

A formula is called satisfiable, if there is at  least one assignment for the 
values of its variables such that the whole formula is true. For example, the 
formula (F  V xa) A is satisfiable, because for xl = 0, x2 = 0 it is true. 
The formula (z V x2) A A xl is not satisfiable, because A xl implies 
21 = 1 , ~  = 0, but then (E  V z2 )  is false. 

For the k-SAT problem, formulae of the following type are considered, called 
k-CNF (conjunctive normal form) formulae: each formula F consists of m 
clauses C, combined by the AND operator: 
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Each clause C, has k literals l,, containing distinct variables combined by 
the OR-operator: 

For example ( x l  V z a )  A (a V a) A (q V x 3 )  is a 2-CNF formula, while 
(XI V V 5 3 )  A (E V ~3 V a) is a 3-CNF formula. 

The class M A T  consists of all problems of the form "is F satisfiable?" where 
F is a k-CNF formula. The question whether an arbitrary formula is satis- 
fiable is an instance of such a defined SAT problem. Please note that every 
boolean formula can be rewritten as a conjunction of clauses each containing 
only disjunctions and negations. This form is called CNF. 0 

We have already seen that some recognition problems are undecidable. For these 
problems it has been proven that no algorithm can be provided to  solve it. The k-SAT 
problem is decidable, i.e. there is a so called decision-algorithm which gives for each 
instance of a k-SAT problem the answer "yes" or "no". The simplest algorithm uses 
the fact that each formula contains a finite number n of variables. Therefore, there 
are exactly 2n different assignments for the values of all variables. To check whether a 
formula is satisfiable, one can scan through all possible assignments and check whether 
the formula evaluates to  true or to  false. If for one of them the formula is true, then it 
is satisfiable, otherwise not. In the Tab. 2.2 all possible assignments for the variables 
of (22 V x 3 )  A (51 V G) and the results for both clauses and thc whole formula is 
displayed. A table of this kind is called a truth table. 

Table 2.2: Truth table 

Since for each formula up to 2n assignrnents have to  be tested, this general algorithm 
has an exponential time complexity (in the number of variables). Since the number of 
variables is bounded by the number km (m = number of clauses), the algorithm is of 
order 0 ( 2 k m ) .  But there are special cases where a faster algorithm exists. Consider 
for example the 1-SAT class. Here each formula has the form l1 A 12 A . . . A I,, where 
I ,  are literals, i.e. I ,  = rck or 1 ,  = for some i .  Since each literal has to be true so 
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that the formula is true, the following simple algorithm tests whether a given 1-SAT 
formula is satisfiable. Its idea is to scan the formula from left to  right. Variables are 
set such that each literal becomes true. If a literal cannot be satisfied because the 
corresponding variable is already fixed, then the formula is not satisfiable. If on the 
other hand the end of the formula is reached, it is satisfiable. 

a lgor i thm 1-SAT 
begin  

initially all xi are uriset; 
for i := 1 , 2  . . . ,  m d o  
begin  

let k be the number of variables occurring in literal li: li = xk or li = G; 
if xk is unset t h e n  

choose xk such that li=true; 
else 

if literal li=false t h e n  
return(no);  commen t  not satisfiable 

e n d  
return(yes); commen t  satisfiable 

e n d  

x1 A X3 A T, A x2 + unsatisfiable 
t 

Figure 2.4: Sample run of algorithm 1-SAT for formula XI A A 5 A 22 

Obviously the algorithm tests whether a 1-SAT formula is satisfiable or not. Fig. 2.4 
shows, as an example, how the formula xl A A % A x2 is processed. In the left 
column the formula is displayed and an arrow indicates the literal which is treated. 
The right column shows the assignments of the variables. The first line shows the 
initial situation. The first literal (11 = xl -+ k = 1) causes z l  = 1 (second line). In 
the second round (12 = ?& j k = 3) x3 = 0 is set. The variable of the third literal 
(13 = % 3 k = 1) is set already, but the literal is false. Conscquently, the formula is 
not satisfiable. 
The algorithm contains only one loop. The operations inside the loop take a constant 
time. Therefore, the algorithm is O(rn) ,  which is clearly faster than 0(2"). For 2- 
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SAT also a polynomial-time algorithm is known, for more details see [4]. Both I-SAT 
and 2-SAT belong to the following class of problems: 
Definition: P (polynomial) The class P contains all recognition-problems for which 
there exists a polynomial-time decision algorithm. 
is of more practical interest. For 3-SAT problems no polynomial-time algorithm which 
checks satisfiability is known. On the other hand, up to  now there is no proof that 
3-SATgP! But, since many clever people have failed to find an effective algorithm, it 
is very likely that 3-SAT (and &SAT for k > 3) is not decidable in polynomial time. 
There is another class of recognition problems A, which now will be defined. For 
this purpose we use certzficate-checking (CC) algorithms. These are algorithms A 
which get as input instances a EA like decision algorithms and additionally strings 
s = slsz . . . s,, called certzficates (made from a suitable alphabet). Like decision 
algorithms they halt on all inputs (a, s) and return only "yes" or "no". The meaning 
of the certificate strings will become clear from the following. A new class, called NP, 
can be described as follows: 

Figure 2.5: Classes P and NP 

The difference between P and NP is (see Fig. 2.5 ): for a yes-instance of a P problem 
the decision algorithm answers "yes". For a yes-instance of an NP problem there exists 
at  least one certificate-string s such that the CC algorithm answers "yes", i.e. there 
may be many certificate strings s with A(a, s)= "no" even if a is a yes-instance. For 
a no-instance of a P problem the decision algorithm answers "no", while for a no- 
instance of an NP problem the CC algorithm answers "no" for all possible certificate 
strings s .  As a consequence, P is a subset of NP, since every decision algorithm can 
be extended t o  a certificate-checking algorithm by ignoring the certificate. 
The formal definition of NP is as follows: 
Definition: N P  (nondeterministic polynomial) A recognition-problem A is in 
the class NP, if there is a polynomial-time (in lal, a €A) certificate-checking algorithm 
with the following property: 
An instance a EA is a yes-instance if there is at  least one certificate s with A(a, s)=yes, 
for which the length Is1 is polynomial in la1 (3z  : Is1 5 lal"). 
In fact, the requirement that the length of s is polynomial in la1 is redundant, since the 
algorithm is allowed to run only a polynomial number of steps. During that time the 
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algorithm can read only a certain number of symbols from s which cannot be larger 
than the number of steps itself. Nevertheless, the length-requirement on s is included 
for clarity in the definition. 
The concept of certificate-checking seems rather strange at first. It becomes clearer if 
one takes a look at k-SAT. We show &SAT E NP: is of more practical interest. 
Proof: Let F ( x l , .  . . , x,) be a boolean formula. The suitable certificate s for the 
k-SAT problem represents just one assignment for all variables of the formula: s = 
S ~ S Z  . . . s,, si E (0, I). Clearly, the number of variables occurring in a formula is 
bounded by the length of the formula: 1st 5 lFll. The certificate-checking algorithm 
just assigns the values to  the variables (xi := si) and evaluates the formula. This 
can be done in linear time by scanning the formula from left to  right, similar to  the 
algorithm for 1-SAT. The algorithm answers "yes" if the formula is true and "no" 
otherwise. If a formula is satisfiable, then, by definition, there is an assignment of the 
variables, for which the formula F is true. Consequently, then there is a certificate s 
for which the algorithm answers A(F, s)=yes. QED 
The name "nondeterministic polynomial" comes from the fact that one can show 
that a nondeterministic algorithm can decide N P  problems in polynomial time. A 
normal algorithm is deterministic, i.e. from a given state of the algorithm, which 
consists of the values of all variables and the program line where the execution is 
at  one moment, and the next state follows in a deterministic way. Nondeterministic 
algorithms are able to choose the next state randomly. Thus, a machine executing 
nondeterministic algorithms is just a theoretical construct, but in reality cannot be 
built yet1. The definition of N P  relies on certificate-checking algorithms. For each CC 
algorithm an equivalent nondeterministic algorithm can be formulated in the following 
way. The steps where a CC algorithm reads the certificate can be replaced by the 
nondeterministic changes of state. An instance is a yes-instance if there is at  least one 
run of the nondeterministic algorithm which answers "yes" with the instance as input. 
Thus, both models are equivalent. 
As we have stated above, different recognition problems can be mapped onto each 
other. Since all algorithms which we encounter in this context are polynomial, only 
transformations are of interest which can be carried through in polynomial time as well 
(as a function of the length of an instance). The precise definition of the transformation 
is as follows: 
Definition: Polynomial-time reducible Let A, B be two recognition problems. 

We say A is polynomial-time reducible t o  B (A<,B), if there is a polynomial-time 
algorithm f such that 

x is yes-instance of A u f (x) is yes-instance of B 

Fig. 2.6 shows how a certificate-checking algorithm for B can be transformed into a 
certificate-checking algorithm for A using the polynomial-time transformation f .  
As an example we will prove SAT<,3-SAT, i.e. every boolean formula F can be written 
as a 3-CNF formula F3 such that F3 is satisfiable iff F is satisfiable. The transforma- 
tion runs in polynomial time in I FI. 

'Quantum computers can be seen as a realization of nondeterministic algorithms. 
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Algorithm -D-{ior~)I- 
Figure 2.6: Polynomial-time reducibility: a certificate-checking algorithm for prob- 
lem A consisting of the transformation f and the algorithm for B. 

Example: Transformation SAT + 3-SAT 

Let F = CI A Cz A. . . A C, be a boolean formula in CNF, i.e. every clause C, 
contains disjunctions of literals I,,. We are now constructing a new formula 
F3  by replacing each clause C, by a sequence of clauses in the following way: 

0 If Cp has three literals, we do nothing. 

If Cp has more than three literals, say C, = Zl  V l2 V . . . V 1, (z > 3),  
we introduce z - 3 new variables yl, y ~ ,  . . . , yZ and replace C, by z - 2 
clauses (11 V12 V yl)A(?JIV13 Vya) A . .  . ( E V 1 , - 1  Vl,). 
Now assume that C, = 1, then at least one I, = 1. Now we choose yi = 1 
for all i 5 p - 2 and yi = 0 for all i > p - 2. Then all new z - 2 clauses 
are true. On the other hand, if the conjunction of the z - 2 clauses is 
true, there must be at least one li = 1. Consequently, if Cp is satisfiable, 
then the new clauses are satisfiable as well and vice versa. 

Finally the case where Cp has less than three literals. If Cp = 1 we 
replace it by 1 V yl V ya and if C, = 11 V l2 we replace it by Z I  V la V yl. In 
order to keep (un)satisfiability we have to  ensure that the new variables 
91, y2 are always false. We cannot just add 1 A 2; because every clause 
has to  contain three literals. Therefore, we have to add, with zl, z2 two 
additional new variables: (1 V zl V za) A (1 V V v z2) A (?jl V ZI V E) A 
( ? J I v E V % ) A ( ~ J ~ V Z ~  V Z ~ ) A ( ~ J ~ V ~ V Z ~ ) A ( ~ J ~ V Z ~  V Z ~ ) A ( ~ V ~ V Z ) .  

In the end we have a 3-CNF formula F3 which is (un)satisfiable iff F is 
(un)satisfiable. The construction of F3 obviously works in polynomial time. 
Consequently, SAT 5, 3-SAT. 

There is a special subset of NP problems which reflects in some sense the general 
attributes of all problems in NP: it is possible to  reduce all problems of NP to them. 
This leads to  the following definition: 
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Definition: NP-completeness The recognition problem A E NP is called NP- 
complete if all problems BENP are polynomial reducible to A: 

It  can be shown that SAT is NP-complete. The proof is quite technical. It requires 
an exact machine model for certificate-checking algorithms. The basic idea is: each 
problem in NP has a certificate-checking algorithm. For that algorithm, a given in- 
stance and a given certificate, an equivalent boolean formula is constructed which is 
only satisfiable if the algorithm answers "yes" given the instance and the certificate. 
For more details see [4, 2, 51. 
Above we have outlined a simple certificate-checking algorithm for SAT. Consequently, 
using the transformation from the proof that SAT is NP-complete, one can construct a 
certificate-checking algorithm for every problem in NP. In practice this is never done. 
since it is always easier t o  invent such an algorithm for each problem in NP directly. 
Since SAT is NP-complctc, A<,SAT for every problem AENP. Above we have shown 
SAT5,3-SAT. Since the <,-relation is transitive, we obtain ASPS-SAT. Consequently, 
3-SAT is NP-complete as well. There are many other problems in NP which are NP- 
complete. For a proof it is sufficient to  show A<,B for any other NP-complete problem 
A, e.g. 3-SAT<,B. The list of NP-complete problems is growing permanently. Several 
of them can be found in [6]. 
As we have said above, P is a subset of NP. If for one NP-complete problem a 
polynomial-time decision algorithm will be found one day, then, using the polyno- 
mial time reducibility, this algorithm can decide every problem in NP in polynomial 
time. Consequently, P=NP would hold. But for no problem in NP has a polynomial- 
time decision algorithm been found so far. On the other hand for no problem in NP 
is there a proof that no such algorithm exists. Therefore the so called P-NP-problem, 
whether P f N P  or P=NP, is still unsolved, but P=NP seems to  be very unlikely. We 
can draw everything that we know about the different classes in a figure: NP is a 
subset of the set of decidable problems. The NP-complete problems are a subset of 
NP. P is a subset of NP. If we assume PfNP,  then problems in P are not NP-complete 
(see Fig. 2.7). 
In this section we have concentrated on recognition problems. Optimization problems 
are not recognition problems since one tries to  find a minimum or maximum. This is 
not a question that can be answered by "yes" or "no". But, every problem min H(g) 
can be transformed into a recognition problem of the form 

"given a value K ,  is there a g with H(g )  5 K?" 

It is very easy to  see that the recognition problems for the TSP and the spin-glass 
ground state are in NP: given an instance of the problem and given a tourla  spin 
configuration (the certificates) the length of the tourlenergy of the configuration can 
be computed in polynomial time. Thus, the question "is H ( a )  5 K "  can be answered 
easily. 
If the corresponding recognition problem for an optimization problem is NP-complete, 
then the optimization problem is called NP-hard. In general, these are problems which 
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I recognition problems 

Figure 2.7: Relation between different classes of recognition problems. 

are harder than problems from NP or which are not recognition problems, but every 
problem in N P  can be reduced to them. This leads to  the definition: 
Definition: NP-hard Let A be a problem such that every problem in N P  is poly- 
nomial reducible to A. If AGNP then A is called NP-hard. 
From what we have learned in this section, it is clear that for an NP-hard problem 
no algorithm is known which finds the optimum in polynomial time. Otherwise the 
corresponding recognition problem could be solved in polynomial time as well, by just 
testing whether the thus obtained optimum is lower than m or not. 
The TSP and the search for a ground state of spin glasses in three dimensions are 
both NP-hard. Thus, only algorithms with exponentially increasing running time are 
available, if one is interested in obtaining the exact minimum. Unfortunately this 
is true for most interesting optimization problems. Therefor, clever programming 
techniques are needed to implement fast algorithms. Here "fast" means slowly but 
still growing exponentially. In the next section, some of the most basic programming 
techniques are presented. They are not only very useful for the implementation of 
optimization methods but for all kinds of algorithms as well. 

2.4 Programming Techniques 

In this section useful standard programming techniques are presented: recursion, 
divide-and-conquer, dynamic programming and back-tracking. Since there are many 
specialized textbooks in this field [7, 81 we will demonstrate these fundamental tech- 
niques only by presenting simple examples. Furthermore, for efficient data structures, 
which also play a key role in the development of fast programs, we have to  refer to  
these textbooks. On the Internet the LEDA library is available [9] which contains 
lots of useful data types and algorithms written in C++. 
If a program has to  perform many similar tasks this can be expressed as a loop, e.g. 
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with the while-statement from pidgin Algol. Sometimes it is more convenient to  use 
the concept of recursion, especially if the quantity to be calculated has a recursive 
definition. One speaks of recursion if an algorithm calls itself. As a simple example we 
present an algorithm for the calculation of the factorial n! of a natural number n > 0. 
Its recursive definition is given by: 

i f n = l  
n! = 

n x (n - I ) !  else 

This definition can be translated directly into an algorithm: 

a lgor i thm factorial(n) 
beg in  

if n <1 t h e n  
r e t u r n  1; 

else 
r e t u r n  r~*factorial(n - 1); 

e n d  

In the first line it is tested whether n 51 instead of testing for n = 1. Therefore, it is 
guaranteed that the algorithm halts on all inputs. 
During the execution of factorial(n) a sequence of nested calls of the algorithm is 
created up to  the point where the algorithm is called with argument 1. The call to 
factorial(n) begins before and is finished after all other calls to  factorial(i) with i < n. 
The hierarchy in Fig. 2.8 shows the calls for the calculation of factorial(4). 

& 
return 1 

return 2x(l) 
4 

7 

W 
return 3x(2) 

return 6x(4) 

Figure 2.8: Hierarchy of recursive calls for calculation of factorial(4). 

Every recursive algorithm can be rewritten as a sequential algorithm, containing no 
calls to  itself. Instead loops are used. Usually, sequential versions are faster by some 
constant factor but harder to understand, at least if the algorithm is more complicated 
than in the present example. The sequential version for the calculation of the factorial 
reads as follows: 
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algorithm factorial2(n) 
begin 

t := I ;  comment this is a counter 
f := 1; comment here the result is stored 
while t 5 n do 
begin 

f := f * t ;  
t := t + 1; 

end 
return f ;  

end 

The sequential factorial algorithm contains one loop which is executed n times. Thus, 
the algorithm runs in O(n) steps. For the recursive variant the time complexity is 
not so obvious. For the analysis of recursive algorithms, one has to  write down a 
recurrence equation for the execution time. For n = 1, the factorial algorithm takes 
constant time T(1).  For n > 1 the algorithm takes the time T (n  - 1) for the execution 
of factorial(n - 1) plus another constant time for the multiplication. Here and in the 
following, let C be the maximum of all occurring constants. Then, we obtain 

for n = 1 
T (n) = { E + T ( n - 1 )  f o r m >  1 

One can verify easily that T(n)  = C n  is the solutiori of the recurrence, i.e. both recur- 
sive and sequential algorithms have the same asymptotic time complexities. There are 
many examples, where a recursive algorithm is asymptotically faster than a straight- 
forward sequential solution, e.g. see [7]. 
An important area for the application of efficient algorithms are sorting problems. 
Given n numbers (or strings or complex data structures) Ai (i = 1 , 2 , .  . . , n) we want 
to  find a permutation Bi of them such that they are sorted in (say) increasing order: 
Bi < Bi+l for all i < n. There is a simple recursive algorithm for sorting elements. 
Please note that the sorting is performed within the array Ai they were provided in. 
Here this means the ualues of the numbers are not taken as arguments, i.e. there 
are no local variables which take the valucs. Instead the variables (or their memory 
positions) themselves are passed to the following algorithm. Therefore, the algorithm 
can change the original data. The basic idea of the algorithm is to look for the largest 
element of the array, store it in the last position, and sort the first n - 1 elements by 
a recursive call. The algorithmic presentation follows on the next page. 
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algorithm sort(n,{Al, . . . ,An))  
begin 

if n = 1 then 
return; 

mas := 1; comment will contain maximum of all Ai 
pos := 1 comment will contain position of maximum 
t := 2; 
while t 5 n comment look for maximum 

if At >mas then 
begin 

mas := At; 
pos := t ;  

end 
exchange maxirnum and last element; 
sort(n - l,{Al, . . . , An-1)) 

end 

In Fig. 2.9 it is shown how the algorithrn runs with input (6, {5,9,3,6,2,1}).  On the 
left side the recursive sequence of calls is itemized. The maximum element for each 
call is marked. In the right column the actual state of the array before the next call 
is displayed. 

Figure 2.9: Run of the sorting algorithm with input (6, {5,9,3,6,2,1)). 

The algorithrn takes linear time to  find the maximum element plus the time for sorting 
n - I numbers, i.e. for the time complexity T(n)  one obtains the following recurrence: 

(n  = I) 
T (n) = 

Obviously, the solution of the recurrence is 0 ( n 2 ) .  Compared with algorithms for NP- 
hard problems this is very fast. But there are sorting-algorithms which can do even 
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better. One of them is "mergesort" which relies on the principle of divide-and-conquer. 
The basic idea of this principle is to divide a problem into smaller subproblems, solve 

the subproblems and then combine the solutions of the subproblems to form the final 
solution. Recursive calls of the algorithm are usually applied here as well. 
The basic idea of mergesort is to  part the set which is to  be sorted into two subsets of 
roughly equal size, sort them recursively and finally merge the two sorted sequences 
into one sorted sequence. The merging is performed by iteratively removing the small- 
est element of both sequences. Without loss of generality we assume that the number 
n of items to be sorted is a power of 2. The algorithm reads as follows: 

algorithm mergesort(n,{Al, . . . , A,)) 
begin 

if n = 1 then 
return 

for i := 1 ,2 , .  . . , n/2 do comment divide set 
begin 

B .  .- A . 
2 '- 2 ,  

C .  .- A .  z .- z+n/2; 
end 
mergesort(n/2, {Bl, . . . , Bn12)); comment sort subsets 
mergesort(n/2, {GI,.  . . , CnI2)); 
x := 1; y := I ;  comment largest elements of sequences 
for i := 1,. . . , n do comment merge sorted subsets 

if x 5 n/2 AND B, < C, then 
Ai := B,; x := x + 1; 

else 
A .  .- c . 

2 .- y ,  y := y + I ;  
end 

The hierarchy of recursive calls of mergesort(4, {5,2,3,1)) is displayed in the upper 
part of Fig. 2.10. In the lower part the merging of the sorted subset is shown. For 
n = 2'" one obtains k + 1 layers in the hierarchy of calls. 
The division of the sets and the merge-operation takes O(n) time, while each recursive 
call takes T(n/2).  Hence, the recurrence for this algorithms reads: 

(n = 1) 
T (n) = 

If n is large enough this recurrence can be solved by T(n)  = nlogn.  Consequently, 
the divide-and-conquer realization of sorting is asymptotically faster than the simple 
recursive sort-algorithm. 
Another problem where the application of divide-and-conquer and recursion seems 
quite natural is the calculation of Fibonachi numbers fib(n). Their definition is as 
follows: 

(n = 1) 
(n = 2) (2.10) 

fib(n - 1) + fib(n - 2) (n > 2) 
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Figure 2.10: Call of mergesort(4, {5,2,3,1)) .  

Thus, e.g. fib(4) = fib(3) + fib(2) = (fib(2) + fib(1)) + fib(2) = 3, fib(5) = fib(4) + 
fib(3) = 3 + 2 = 5. The functions grows very rapidly: fib(l0) = 55, fib(20) = 6765, 
fib(30) = 83204, fib(40) > 10'. Let us assume that this definition is translated directly 
into a recursive algorithm. Then a call t,o fib(n) would call fib(n - 1) and fib(n - 2). 
The recursive call of fib(n - 1) would call again fib(n - 2) and fib(n - 3) [which is called 
from the two calls of fib(n - 2), etc.]. The total number of calls increases rapidly, even 
more than fib(n) itself increases. In Fig. 2.11 the top of a hierarchy of calls is shown. 
Obviously, every call to  fib with a specific argument is performed frequently which is 
definitely a waste of time. 

K" "\ 
fib(n-2) 

,A,' \ 
\\ 

\ 
fib ( n -3) ',\,, fib(n-3) 

d' \) '& I./ 'it 
fib(n-4) i fib(n-4) fib(n-4) '1 

I \ ,  r j \  d \  
f i ,  

\\ 
\ 

4 ?j \ 
4 

Figure 2.11: Hierarchy of calls for fib(n). 

Instead, one can apply the principle of dynamic programming. The basic idea is 
to  start with small problems, solve them and store them for later use. Then one 
proceeds with larger problems by using divide-and-conquer. The basic idea of If 
for the solution of a larger problem a smaller one is necessary, it is already available. 
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Therefore, no direct recursive calls are needed. As a consequence, the performance 
increases drastically. The divide-and-conquer algorithm for the Fibonachi-numbers 
reads as follows, the array f [I is used to  store the results: 

algorithm fib-dynamic(n) 
begin 

i f n  < 3 then 
return 1; 

f[l] := 1; 
f [a] := 1; 
for i := 3,4 , .  . . , n  do 

f [ i ]  := f [i - 11 + f [i - 21 
return f [n]; 

end 

Since the algorithm contains just one loop it runs in O(n) time. 
The last basic programming principle which is presented here is backtracking. This 
method is applied when there is no direct way to compute a solution. This is typical for 
many optimization problems. Remember the simple TSP algorithm which constructs 
a feasible tour, but which does not guarantee to  find the optimum. In order to improve 
the method, one has to  try some (sub-)solutions and throw them away if they are not 
good enough. This is the basic principle of backtracking. 
In the following we will present a backtracking algorithm for the solution of the N- 
queens problem. 

Example: N queens problem 

N queens are to  be placed on an N x N chess board in such a way that no 
queen checks against any other queen. 

This means that in each row, in each column and in each diagonal at most 
one queen is placed. 0 

A naive solution of the algorithms works by enumerating all possible configurations 
of N queens and checking for each configuration whether any queen checks against 
another queen. By restricting the algorithm to place at most one queen per column, 
there are NN possible configurations. 
The idea of backtracking is to place onc queen after the other. One stops placing 
further queens if a non-valid configuration is already obtained at an intermediate 
stage. Then one goes one step back, removes the queen which was placed at the step 
before, places it elsewhere if possible and continues again. 
In the algorithm, we use an array Qi which stores the position of the queen in column 
I:. If Qi = 0, no queen has been placed in that column. For simplicity, it is assumed 
that N and the array Qi are global variables. Initially all Qi are zero. 
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The algorithm starts in the last column and places a queen. Next a queen is placed in 
the second last column by a recursive call and so forth. If all columns are filled a valid 
configuration has been found. If a t  any stage it is not possible to  place any further 
queen in a given column then the backtracking-step is performed: the recursive call 
finishes, the queen which was set in the recursion-step before is removed. Then it is 
placed elsewhere and the algorithm proceeds again. 

algorithm queens(n) 
begin 

if n = O  then 
print array Q 1 , .  . . , QN;  problem solved; 

for i := 1 , .  . . ,  N do 
begin 

Qn := i 
if Queen n does not check against any other then 

queens(n - I ) ;  
end 
Qi := 0; 
return 

end 

In Fig. 2.12 it is shown how the algorithm solves the problem for N = 4. It starts 
with a queen in column 4 and row 1. Then queens(3) is called. The positions where 
no queen is allowed are marked with a cross. For thc third column no queens in row 
1 and row 2 are allowed. Thus, a queen is placed in row 3 and queens(2) is called. In 
the second column it is not possible to  place a queen. Hence, t,he call to queens(2) 
finishes. The queen in column 3 is placed on a deeper row (second line in Fig. 2.12). 
Then, by calling queens(2), a queen is placed in row 2. Now, no queen can be placed 
in the first column. Since there was only one possible position in column 2, the queen 
is removed and the call finishes. Now, both possible positions for the queen in column 
3 have been tried. Therefore, the call for queens(3) finishes as well and we are back at 
queens(1). Now, the queen in the last column is placed in the second row (third line 
in Fig. 2.12). From here it is straight forward to place queens in all columns and the 
algorithm succeeds. 
Although this algorithm avoids many "dead ends" it still has an exponential time 
complexity as a function of N. This is quite common to many hard optimization 
problems. More sophisticated algorithms, which we will encounter later, try to  reduce 
the number of configurations visited even more. 
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Figure 2.12: How the algorithm solves the Cqueens problem. 
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3 Graphs 

3.1 Graphs 

Many optimization problems from physics or other areas can be mapped on optimiza- 
tion problems on graphs. Some of these transformations will be useful later on. For 
this reason a short introduction to  graph theory is given here. Only the basic defini- 
tions and algorithms are presented. For more information, the reader should consult 
a specialized textbook on graph theory, e.g. Refs. [I, 2, 31. We will sometimes only 
mention a real world application which can be treated with a given graph theoretical 
concept. The precise definitions of the applications will be given later on. 
Consider a map of a country where several towns, villages or other places are connected 
by roads or railways. Mathematically this setting can be represented by a graph. A 
graph consists of nodes and edges. The nodes represent the towns, villages or other 
places and the edges describe the roads or railways. Formally, the definition of a graph 
is given by: 
Definition: Graph A graph G is an ordered pair G = (V, E )  where V is a set and 
E c V x V. An element of V is called a vertex  or node.  An element (i, j) E E is called 
an edge or arc. In a physical context, where edges reprcsent interactions between 
particles, edges are often called bonds. 
If the pairs (i, j )  E E are ordered pairs, then G is called a directed graph. Otherwise G 
is called undirected then (i, j) and ( j ,  i)  denote the same edge. A graph G' = (v' ,  E') 
is called subgraph of G if it has the properties V' c V and E' c E (E' C V' x V' by 
definition). The empty graph (@,a )  is a subgraph of all graphs. 
First, some further notations are given which apply to  both directed and undirected 
graphs. Usually we restrict ourselves to  finite graphs, i.e. the set of nodes and edges 
are finite. In this case we denote by n = IVI the number of vertices and by m = IEI 
the number of edges. Let i E V be a vertex. If (i, j )  E E we call j a neighbor of i (and 
vice versa). Both nodes are adjacent to  each other. The set N( i )  of neighbors of i is 
given by N( i )  = {jJ ( i ,  j) E E V (j, i) E E). The degree d(i) of node i is the cardinality 
of the set of neighbors: d(i) = IN(i)l. A vertex with degree 0 is called isolated. 
A path from vl to  vk is a sequence of vertices v1, v2,. . . , vk which are connected by 
edges: (vi, vi+l) E E V i  = 1 , 2 , .  . . , k - 1. The length of the path is k - 1. If vl = vk 
the path is called closed. If no node except the first and the last one appears twice in 
a closed path, it is called a cycle. A set of nodes is called a connected componen t ,  if 
it contains all nodes where from each node a path to each other node of the set exists. 
A graph is called connected if it has only one connected component. 
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0 
Figure 3.1: An undirected graph. 

Example: Graph 

In Fig. 3.1 the graph G = ({1,2,3,4,5,61, {(1,3), (3,4) (4,111 (4,211 (6 , l ) ) )  
is shown. The nodes are represented by circles and the edges by lines con- 
necting the circles. The graph has n = 6 vertices and m = 5 edges; e.g., nodes 
3 and 4 are adjacent. The set of neighbors of vertex 1 is N(1) = {3,4,6). 
Thus, node 1 has degree 3 while node 2 has only degree 1. Node 5 is isolated. 
The graph contains the path 6 ,1 ,4 ,3  from node 6 to  node 3 of length 3 and 
the cycle 1 ,3 ,4 ,1 .  0 

Now some definitions are given which apply only to directed graphs. For an edge 
e = (i, j), i is the head and j the tail of e.  The edge e is called outgoing from 
i and incoming to  j .  Please note that for a directed path it is important that all 
edges point into the direction of the path, formally the definition is the same as in the 
case of an undirected graph. A set of nodes is called a strongly connected component 
(SCC), if from each of its nodes a directed path to  each other node of the set exists. 
In a directed graph, the outgoing and incoming edges can be counted separately. The 
indegree is given by id(i) = I{j 1 (j, i) E E) I and the outdegree is od(i) = I {j 1 (i ,  j )  E E). 
Obviously, for all vertices d(i) = id(i) + od(i). 

- - - -- - - 

Example: Directed graph 

When drawing a directed graph, the edges ( 2 ,  j )  are represented by arrows 
pointing from i to  j .  If one considers the example graph from above as di- 
rected, one obtains Fig. 3.2. Here, the sequence 6 ,1 ,4 ,3  is not a path since 
the edges ( 4 , l )  and (3,4) point in the wrong direction. On the other hand, 
the graph contains the path 6,1,3,4.  Node 1 has the outdegree od(1) = 1 
and indegree id(1) = 2. The total degree is d(1) = id(1) + od(1) = 3 as in 
thc case of the undirected graph. 0 
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Figure 3.2: A directed graph. 

3.2 Trees and Lists 

A very important subclass of graphs are connected graphs without cycles. They are 
called trees. The name arises from the fact that it is possible to  draw a tree in the 
following way: 

0 All nodes are arranged in several levels 1 = 0,1 , .  . . , h. 

0 There are edges only between vertices of adjacent levels 1 and 1 + 1. A node on 
level I is called father and its neighbor on level 1 + 1 is called son. 

On level zero there is only one node, called the root. 

Hence, trees are very often used to  represent hierarchical structures. Let v be a node. 
The sons of v, their sons, and so on are called descendants of v. The father of v, its 
father, and so on are called ancestors of v. Thus, the root is an ancestor of all other 
nodes. The nodes which have no descendants are called leaves. The index h of the 
largest level is called the height of a tree. The height is equal t o  the length of the 
longest path from the root to  a leaf. Each node v can be regarded as a root of a 
subtree, which is given by v and its descendants. 

Example: Tree 

In Fig. 3.3 an undirected tree is shown. The root is usually displayed at the 
top. Here, node 7 is the root. Node 6 is a descendant of the root and an 
ancestor of node 5. Nodes 1, 2, 5, 9, 10, 11 are leaves. The tree has height 3. 
The subtree which has node 3 as a root contains the nodes 2, 3, 4, 11. 

For directed graphs, usually graphs without cycles are called trees only in the case 
where there are only edges from levels 1 to  1 + I and no edges in the other direction. 
Sometimes a directed graph is called a tree only if the undirected version of the graph 
contains no cycles. 
An important application of trees in the field of computer science are search trees. 

They are used to store a collection of objects in an ordered way. Thus, an order 
relation ''I" must be given for the objects. Search trees have the following properties: 
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Level 0 

Level 1 

Level 2 

Level 3 

Figure 3.3: A tree containing I1 nodes. 

They are binary trees. This means that each node has at most two sons, called 
left and right son. The subtree which has the left (right) son as the root is 
called left (right) subtree. 

0 In each node one object 01 is stored. 

The following property is true for all objects 01: in the left (right) subtree only 
objects are stored which are smaller (equal to  or larger) than O1 according to the 
order relation "5". 

This special organization allows the design of very fast algorithms for finding, inserting 
and deleting elements within a search tree while always keeping the correct order. An 
example will be given in Sec. 3.5. In Fig. 3.4 a search tree containing natural numbers 
sorted in ascending order is shown. 

Figure 3.4: A binary tree containing the nodes 2, 4, 11, 17, 22, 24, 33, 46, 61, 62, 
63, 99 sorted in ascending order. 
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Similar to  search trees are heaps. They are binary trees as well, but here the smallest 
element of each subtree is always stored at  the root of the subtree, which means that 
the smallest element of the whole tree is stored at  the root of the tree. This allows for 
an efficient implementation of priority queues, which always give you the next element 
with the currently lowest priority (remove operation). After the root element has 
been removed, it is replaced by the lower of the two elements in the roots of the left 
and right subtree, i.e. the lower of both elements moves up one level. In the same 
way the element which has moved up is replaced by its smaller son, etc. Adding an 
element to  a heap is done in the following fashion. The element is added as a son of 
a leaf. If it is smaller than the element of its father, both elements are swapped. This 
process is continued until the current father of the new element is smaller than the new 
element. Thus, eventually the new element may rise t o  the root, if it is smaller than 
all other elements in the tree. As a consequence, the insert and remove operations 
can be performed in logarithmic time. 
A binary tree is called complete if each node is either a leaf or has two sons. It  can 
easily be shown by induction that a complete tree with height h has n = 2h+1 - 1 
nodes and 2h leaves. 

head tail 

Figure 3.5: A list containing 5 elements 

A very simple type of graph is a list. Lists can be regarded as special types of trees 
which have exactly one root and exactly one leaf and every node has a t  most one son. 
The nodes of a list are called elements, the root is called the head of the list and the 
leaf is called the tail. For historic reasons lists are often drawn in a slightly different 
manner to other graphs. In Fig. 3.5 a list containing 5  element,^ is shown. 

t Out e In 

Figure 3.6: A queue. 

Several special types of lists are very useful in computer science. For queues it is only 
possible to  add new elernents a t  the tail and to  remove elements a t  the head, see Fig. 
3.6. They are called FIFO ("first in - first out") lists as well. An application of 
queues are printer queues. The job which enters the queue at  first will be printed at  
first. Other jobs which are added while a job is being printed have to  wait. 
Lists are called stacks if adding and removing elements takes place only at  the head 
(see Fig. 3.7). They behave in an LIFO ("last in first out") manner. Stacks are used 
for exarnple to  realize recursion. Whenever a call to  a procedure occurs the computer 
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In --+ 

t Out 

Figure 3.7: A stack. 

has t o  remember where to  proceed when the procedure is finished. These so called 
return addresses are stored on a stack, because the procedure which was called last 
will be finished first. 

3.3 Networks 

Consider again the TSP (see Chap. 1). It can be represented by an undirected graph 
if one identifies the cities with nodes and the connections between cities with edges. 
In order to  describe the TSP completely, the distances between different cities have to  
be represented as well. This can be done by introducing a function d : E t R from 
edges to real numbers. For an edge e = (i, j) E E the distance between the cities i 
and j is given by d(e). 
Sometimes functions f : V t A (A an arbitrary set) on vertices are useful as well. An 
arbitrary function on vertices or on edges is called labeling. A graph together with a 
labeling is called a labeled graph. Typical examples for labelings are distances, costs 
or capacities. 
The case where the edges are labeled with capacities is so important that it has its 
own name: a network. For example a system of pumps connected via pipes which can 
transport some fluid like water is a network. Our kind of networks contain two special 
pumps: the source where the fluid enters the network and the sink where the fluid 
leaves the network. The capacities of the pipes tell how much fluid can be transported 
through each pipe per time unit. The exact definition reads as follows: 
Definition: Network A network is a tuple N = (G, c, s ,  t)  where 

G = (V, E) is a directed graph without edges of the form (i, i ) .  

c : E t 72; is a positive labeling of the edges. Additionally, we assume c((i, j)) = 
0 if ( i l j )  6 E. 

s E V is a vertex called source with no incoming edges di(s) = 0. 

t E V is a vertex called sink with no outgoing edges do(t) = 0. 

In Fig. 3.8 an example of a network is shown. The capacities are the numbers written 
next t o  the edges. Please note that it is possible to  define a network via an undirected 
graph as well. For the models we encounter here, directed networks are sufficient. 
An actual flow of fluid through the network can be described by introducing another 
labeling f : V x V -+ R. A flow through an edge is always bounded by its capacity. 
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Figure 3.8: A network. 

For technical reasons, negative values of the flow are allowed as well. A negative value 
f (i, j )  < 0 means a positive flow from node i to  node j and vice versa. Furthermore, 
the flow is conserved in all nodes, except the source and the sink. In total we obtain 
[by writing f i j  = f (i, j), c i j  G c((i, j))] 

0 Capacity constraint: f i j  < c i j  for all i, j E V 

Negative flows: f i j  = - f j i  for all i, j E V 

Flow conservation: Cj  f i j  = 0 for all i E V with i # s ,  t 

Please note that by combining the first and second properties f j i  > -c i j  is obtained. 
The total flow through the graph is given by fo = Cj  f,,j = - Cj f t j .  Determining 
the maximum possible amount which can flow from s to  t through a network, called the 
maximum Bow, is an optimization problem. For example, the maximum flow for the 
network in Fig. 3.8 is eight. Later we will see that the determination of the maximum 
flow can be solved in polynomial time. In physics, we apply these methods to  calculate 
ground states of disordered magnetic materials such as random field systems or diluted 
antiferromagnets. 
The minimum cost Pow problem is related to  the maximum-flow problem. Here, 
additional costs d : E -+ R and a total flow f o  are given. d (e) specifies the cost 
of sending one unit of flow through edge e. More generally, the cost may depend 
arbitrarily but in a convex way on the flow through an edge. The minimum cost flow 
problem is to  find a flow of minimum total cost C ,  c' ( e )  f ( e ) ,  which is compatible 
with the capacity/conservation constraints and has the total value f o .  Later it will be 
shown how ground states of solid-on-solid systems or of vortex glasses (from the theory 
of superconductivity) can be obtained by minimizing cost flows. For this problem 
polynomial time algorithms are known as well. The case f o  = 0 frequently occurs. 
Please note that the optimum flow may not vanish inside the network in this case as 
well, since the costs can take negative values thus making circular flows favorable. 
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3.4 Graph Representations 

If we want to  apply graphs on a computer, somehow we have to  represent them in 
the memory. Different ways of storing graphs are known. Which one is most efficient 
choice depends on the kind of application. We start with the storage of lists, since they 
are used for the representation of the other graph types. Then trees are discussed. At 
the end of the section two methods of representating arbitrary graphs are shown. 
Since lists are simply linear sequences of elements, the straight forward implementation 
uses arrays. A list of n elements can be stored in array L[ l  . .  .n ]  e.g. by storing the 
head in L[l],  its son in L[2], etc., and the tail in L[n]. The advantage of this realization 
is its simplicity. Furthermore, it is possible to access all elements of the list in constant 
time. A minor problem is that one has to  know the maximum size of the list when 
allocating the memory for the array. But, if the maximum size is not known, one can 
reallocate the memory if the list grows too long. If the reallocation occurs rarely, the 
additional computer time needed can be neglected. 

Figure 3.9: Element 8 is inserted into an array. 

One major problem is the following: if elements are to  be inserted or to  be removed 
somewhere within the list, largc chunks of memory havc to  be moved around each time 
the operation occurs (see Fig. 3.9). Thus, insert and delete operations take O(n) time. 
For stacks and queues this problem does not occur since elements are inserted and 
deleted only at the head or at the tail. Consequently, stacks and queues are usually 
realized by arrays. A stack is usually stored in reverse order in an array, adding and 
removing elements occurs at the end of the stack which is given by a pointer variable. 
Please remember that a pointer is just a memory address. For a queue two pointers 
are necessary: one which stores the head and one which holds the tail of the queue. If 
a pointer reaches the end of the array it is set to  the beginning again. 
An implementation of general lists that is more flexible uscs pointers as well. For 
each element of a list, a small chunk of memory is allocated separately. In addition to 
the information associated with each element, a pointer which contains the address of 
the following element is stored. At the tail of the list the pointer has the special value 
NULL. This realization is reflected directly by the manner in which lists are drawn: the 
arrows represent the pointers. If the position where an operation is to  be performed 
is given already, insert and delete operations can be performed in constant time just 
by (re-)assigning some pointers. One has to  be a little bit careful not to  loose parts of 
the chain, for details see e.g. [4]. The insert and delete operations become especially 
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simple if along each element two pointers are stored: one to  the next element and one 
t o  the preceding element. In this case the list is called double linked. A drawback of 
the realization with pointers is that it is not possible to  access elements of the list (say 
the 20th element) directly. One has to  start at  the head or the tail and go through 
the list until the element is reached. Furthermore, this type of realization consumes 
more memory, since not only the elements but the pointers have to  be stored as well. 
The situation which we encounter here is typical for computer science. There are now 
perfect data structures. The application has to be taken into account to  find the best 
realization. 

Figure 3.10: Representation of the tree from Fig. 3.3 via nodes containing arrays of 
pointers. Here each array contains at most three entries per node. 

This is true for trees as well. If the maximum number of sons for each node is known, 
usually the following type of realization is used, which is similar to  the representation 
of lists via pointers. Along with the information which is to  be stored in a node, an 
array containing pointers to the sons is kept. If a node has less than the maximum 
number of sons, some pointer values contain the value NULL. In Fig. 3.10 a realization 
of the tree from Fig. 3.3 is shown. 
For binary trees (among them heaps) there is a very simple realization using one array 
T. The basic idea is to  start a t  the root and go through each level from left to right. 
This gives us the order in which nodes are stored in the array. One obtains: 

The root is stored in T[l] .  

If a node is empty, a special value (say -1) is assigned. 

For each node T[k] the left son is stored in T[2k] and the right son is kept in 
T[2k + 11. 

In Fig. 3.11 the array representation of the search tree from Fig. 3.4 is shown. This 
type of tree realization is comparable to  the array representation of lists: it is very 
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Figure 3.11: The representation of a binary tree via an array. 

easy to  build up the structure and to access nodes but insert and delete operations 
are time consuming. 
We finish this section by explaining two methods to  represent arbitrary graphs. Let 
G = (V, E) be a graph. Without loss of generality we assume V = {1,2, .  . . , n). 
An adjacency matrix A = ( a i j )  for G is an n x n matrix with entries 0, 1, where n is 
the number of nodes. In the case G is directed we have: 

1 for ( i , j ) ~ E  
aij = { 0 else 

For an undirected graph, the adjacency matrix A contains nonzero elements aij = 
aji = 1 for each edge (i, j )  E E, i.e. in this case the matrix is symmetric. 
The adjacency matrices for the example graphs of Sec. 3.1 are shown in Fig. 3.12. 

undirected directed 

Figure 3.12: Adjacency matrices for graph G = ({1,2,3,4,5,6), {(1,3), (3,4) (4, I ) ,  
(4,2), (6,l))).  The left matrix shows the case when G is regarded as an undirected 
graph, while the right one is for the case of a directed graph. 

The advantage of the matrix representation is that one can access each edge within 
a constant amount of computer time. On the other hand, an adjacency matrix needs 
O ( n 7  memory elements t o  be stored. Consequently, this choice is inefficient for storing 
sparse graphs, where the number of edges is m E O(n). 
For sparse graphs, it is more efficient to  use adjacency lists: for each node i a list Li 
is stored which contains all its neighbors N ( i ) .  Hence, for directed graphs, Li contains 
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all vertices j  with (i, j) E E while for an undirected graph it contains all vertices 
j  with (2 ,  j) E E or ( j , i )  E E. Please note that the elements in the list can be in 
arbitrary order. The list representation uses only O ( m )  memory elements. With this 
realization it is not possible to  access an edge (i, j )  directly, since one has to  scan 
through all elements of Li to  find it. But for most applications a direct access is not 
necessary, so this realization of graphs is widely used. A similar method is applied for 
the LEDA-library package [5]. 

undirected directed 

Figure 3.13: Adjacency lists for the example graphs. The left lists represent the 
case when G is regarded as an undirected graph, while the right are for the case of a 
directed graph. 

The adjacency lists for the sample graphs from above are shown in Fig. 3.13. 
For a directed graph, it is sometimes very convenient to have all incoming edgcs for 
a given vertex j available. Then one can store a second set of lists K j  containing all 
nodes i with (i, j )  E E. The lists K j  for the directed version of the sample graph are 
shown in Fig. 3.14. 

Figure 3.14: List of incoming edges for directed example graph. 
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The methods presented above can easily be extended to implement labeled graphs. 
Labels of vertices can be represented by arrays. For labels of edges one can either use 
matrices or store the labels along with the list elements representing the edges. 

3.5 Basic Graph Algorithms 

Most basic algorithms on graphs, trees and lists can be found in [6,4]. Hcre we present 
just one algorithm for searching in a tree This should be sufficient to make the reader 
familiar with the subject. More simple graph algorithms can be found in Chap. 4. 
Consider a search tree, as introduced in Sec. 3.2. One basic operation is the find 
operation. It tests whether an object O1 is contained in the tree or not. The 
algorithm starts at  the root of the tree. If the tree is empty, then the object is not 
contained in the tree. If 01 is stored at the root it is found. In both cases the 
algorithm terminates. Otherwise, if O1 is smaller than the object at  the root, the 
search continues in the left subtree. If 01 is larger, the search continues in the right 
subtree. Thc recursive formulation of the algorithm reads as follows: 

a lgor i thm find(tree, object) 
beg in  

if tree is empty t h e n  
return(not  found) 

if root contains object t h e n  
return(tree) 

if object at  root-node > object t h e n  
find(1eft subtree, object) 

else 
find(right subtree, object) 

e n d  

Figure 3.15: Search for element 24 in a sorted binary tree. 
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Example: Search in tree 

We trace the search for element 24 in the tree shown in Fig. 3.15. The al- 
gorithm is called with the root of the tree and number 24. Since the tree is 
not empty and 24 is smaller than the object at  the root (33), a recursive call 
with the left subtree occurs. Here, number 17 is stored at the root. Thus, 
the procedure is called with the right subtree of the first subtree. In the next 
step again the search continues in the right subtree where finally the object 
is found. 

The algorithm performs one descent into the tree. Hence, its time complexity is O(h) 
if h is the height of the search tree. If the search tree is complete, the height is 
h E O(logn), where n is the number of elements in the tree. 
The find algorithm can be directly extended to insert elements into the tree: if the 
algorithm reaches an empty subtree, then the element is not stored in the tree. Thus, a 
node containing the object can be added at the position where the search has stopped. 
Consider as example where number 21 is to  be inserted into the tree from Fig. 3.15. At 
node 22 the algorithm branches to  the left subtree, but this tree is empty. Therefore, 
a node with the number 21 will be added as the left son of the node 22. 

Figure 3.16: A binary search tree built by inserting numbers 33, 46, 61, 62, 63, 99 
in the given order using a simple insert operation. 

This simple algorithm for inserting new objects has a major drawback. Assume that 
numbers sorted in increasing order are inserted into a tree which is empty at the 
beginning. During the execution of the algorithm the right subtree is always taken. 
Consequently, the tree which is built in this way is in fact a list (see Fig. 3.16). In 
this case the height of the tree is equal t o  the number of elements, i.e. the search for 
an object takes O(n) time instead of logarithmic time. 
In order to avoid this trouble the tree can always be kept balanced. This means that 
for every node the heights of the left and right subtree differ at most by one. There are 
several clever algorithms which assure that a search tree remains balanced. The main 
idea is to  reorganize the tree in case of imbalance while keeping the sorted order. More 
details can be found in [6, 41. For balanced trees, it is guaranteed that the height of 
the tree grows only logarithmically with the number of nodes n. Thus, all operations 
like insert, search and delete can be realized in O(1ogn). 
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3.6 NP-complete Graph Problems 

The time complexities of the algorithms presented in the last chapter are all bounded 
by a polynomial. But there are many hard graph problems as well. Interestingly, there 
are many pairs of similar problems where one problem is in P while the other in NP. 
Some of them will be presented now. 
The algorithms presented in the last chapter are very simple. Usually the algorithms 
for solving graph problems, even for the problems in P, are very complicated. Thus, 
in this section no algorithms will be presented, just some basic graph problems are 
explained. For the proofs that certain problems are NP-complete the reader is referred 
to  the literature as well. But later on, for the optimization problems we encounter 
here, all necessary algorithms will be discussed in detail. 

Figure 3.17: An undirected graph containing a Euler cycle (left) and a Hamilton 
cycle (right). The numbers next to the edges give one possible order of the edges 
within an Euler cycle. 

The first example is about cycles. Let G = (V, E) be an undirected graph. An Euler 
cycle is a cycle which contains all edges of the graph exactly once. It was shown by 
Euler in 1736 that an undirected graph contains an Euler cycle if and only if each vertex 
has an even degree. Thus, the recognition problem, whether an undirected graph has 
an Euler cycle or not (EC), can be decided in polynomial time. The first algorithm 
for constructing an Euler cycle was presented 1873 in [7]. A Hamilton cycle is a cycle 
which contains each vertex exactly once. The problem of whether an undirected graph 
contains a Hamilton cycle or not (HC) is NP-complete. A proof can be found in 181, 
the main idea is to show 3-SAT<,HC. In Fig. 3.17 a graph containing both an Euler 
Cycle and a Hamilton cycle is shown. 
The next pair of graph problems is defined via covers of undirected graphs. An edge 
cover is a subset E' c E of edges such that each vertex is contained in at least one 
edge e E E' .  Each graph which has no isolated vertices has an edge cover, since in 
that case E itself is an edge cover. A minimum edge cover is an edge cover where 
1 E' 1 is minimal. In Fig. 3.18 a graph and a minimum edge cover are shown. An 
algorithm which constructs a minimum edge cover in polynomial time can be found 
in [9]. Consequently, the corresponding recognition problem LLdoes graph G have an 



3.6 NP-complete Graph Problems 

Figure 3.18: A graph and a minimum edge cover (left) and a minimum vertex cover 
(right). The edgeslvertices belonging to the cover are shown in bold. 

edge cover with I E ' I  < K" is in P. Related to the edge cover is the vertex cover. It 
is a subset V' c V of vertices such that each edge contains a t  least one node from V' . 
In Fig. 3.18 a graph together with its minimum vertex cover is displayed. It  has been 
shown in [lo] that the problem "does graph G have a vertex cover with I V ' I  < K" 
(VC) belongs to  the class of NP-complete problems. The proof works by transforming 
3-SAT<,VC. Thus, there is no algorithm known which finds a minimum vertex cover 
in polynomial time. 

We have already seen that the TSP is a hard optimization problem. The corresponding 
decision problem is NP-complete [lo]. The proof works by demonstrating HC<,TSP. 
HC has already been recognized as being NP-complete (see above). The proof is short, 
which is quite unusual for this type of problem. 

Proof: Let G = (V, E) be a graph, n = IVI. Then we built a second graph G' = 
(V, V x V) with the following distance labeling 

d(i, j )  = 
1 if ( i , j ) E E  
2 else 

The transformation works in polynomial time since it contains just two nested loops 
over all nodes. Each tour in G' contains exactly n edges and visits all n nodes. Thus, 
a tour must have the length n at  least. If it has exactly length n all distances along 
the tour must have value 1, i.e. all edges from the tour are in G as well, and vice versa. 
Consequently, the question "does G' have a shortest round tour with length < n" has 
the answer "yes" if and only if G has a Hamilton cycle. Hence, HC<,TSP. QED 
On the other hand; if one is interested only in the shortest distance between two given 
cities, this problem can be solved in polynomial time. Several algorithms can be found 
in [ l l ] .  Some of them will be presented in Chap. 4. A recent application in physics is 
the study of so called directed polymers. 

Another type of graph problems, which can be solved in polynomial time, are matching 
problems. They will be introduced in Chap. 10. 
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4 Simple Graph Algorithms 

Consider an amorphous conductor which is composed of individual micro grains that 
are either conducting or insulating, both randomly with a probability p and 1 - p, re- 
spectively. A current can flow only between two neighboring occupied sites, which we 
then denote as being connected. Obviously an electrical current can cross the macro- 
scopic sample if and only if it has a connected cluster extending from one boundary 
to  the opposite one. This physical situation can easily be represented by a graph by 
identifying the conducting grains by nodes and the connections between neighboring 
conducting grains by edges. The question of whether the whole sample is conducting 
is then equivalent t o  the search for a connected path from one subset of the nodes 
(one boundary) to  another subset (the opposite boundary). In this section we will 
discuss therefore simple graph algorithms that answer the question, whether there is 
a connected path between two given nodes i and j of the graph. In addition to this 
they allow the determination of how many (and how large) connected components or 
clusters a given graph has and what are their statistical properties (fractal dimension 
etc) if the graph is random. 
Moreover, the physical situation could be complicated by the fact that not all con- 
ducting grains have the same conductance. If the concentration of conducting grains 
is large enough to have many connecting paths from one end of the sample to  the 
opposite end or if simply all grains are conducting, but some of them are better and 
some worse in a random pattern, one also wants to  know the paths of the lowest re- 
sistance. This situation can again be represented by graph with non-negative weights 
or costs c i j  assigned to each edge representing the resistance. In this section we will 
present simple graph algorithms that determine the path C with minimum total cost 
E = C(2,i,EL cij between two nodes i and j ,  which is the so-called shortest path prob- 
lem. In addition, for later applications, we will present a way to detect cycles (closed 
paths) that have negative total costs for the case where some of the weights given to 
the edges are negative. 

4.1 The Connectivity-percolation Problem 

An idealized model for such an amorphous conductor as described above would be a 
regular lattice (e.g. a square lattice in 2d or a simple cubic lattice in 3d) in which sites 
are removed with a probability 1 - p. To be precise, in the random graph representing 
the diluted lattice with each removed node one also removes all edges adjacent to  
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it. At low concentrations one does not expect any percolating clusters, i.e. connected 
clusters that extend from one boundary to  the opposite one. On the other hand, at 
high concentration most probably there will be one, in other words: at  low p the 
sample will be (with probability one) insulating, at  large p it will be a conducting, 
see Fig. 4.1. As it turns out, there is a critical value p, above which almost all (i.e. 
with probability 1) samples have a percolating cluster (or "infinite cluster") in the 
thermodynamic limit, and below which they do not. The precise value of p, depends 
on the lattice structure (i.e. the class of random graphs) one considers, but otherwise 
many features of this transition are identical for different lattices in two dimensions, 
but different in 3, 4, etc. dimensions. 

Figure 4.1: Example for site percolation on the square lattice (L = 50) with site oc- 
cupation probability p = 0.3 (left), p = 0.5 (middle), p = 0.7 (right). The percolation 
threshold is known to be at p, z 0.59275 [I]. Therefore the right picture is above the 
percolation threshold and indeed one recognizes easily a percolating cluster extending 
from the bottom to the top of the system. 

For instance exactly at the critical point p = p, at least one infinite cluster exists and 
it is a fractal, i.e. its volume V, (defined as the number of sites it contains) scales with 
the linear system size as V, -- ~ ~ f .  The value of this fractal dimension is one of the 
aforementioned features that do not depend on the lattice but only on the dimension in 
which one studies percolation. The number df ,  called a critical exponent is universal 
(for instance df = 91/48 for 2d-percolation [2], and df x 2.524 for 3d percolation [3]), as 
other exponents describing the percolation transition: The infinite-cluster probability 
(which is the probability that a site is on the infinite cluster) close to  the transition 
behaves like P, - ( p  - p,)O (P  = 5/36 in 2d [2], /? x 0.417 in 3d [3]); the correlation 
length 6 -- ( p  - p,l-" (v = 413 in 2d [2], v x 0.875 in 3d [3]) and the average cluster 
size S -- Ip-p,l-Y (y = 43/18 in 2d [2], y x 1.795 in 3d [3]). In Sec. 5.3 we will show 
how these exponents are computed using the methods presented in the next section. 

4.1.1 Hoshen-Kopelman Algorithm 

There are a large number of efficient algorithms for connectivity percolation, namely: 
the Leath algorithm [4]; the Hoshen-Kopelman algorithm [5]; the forest-fire and 
burning algorithms [6]; and the invasion algorithm [7]. Because of its widespread use 
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in random lattice problems in physics we will discuss the Hoshen-Kopelman algorithm 
first. 

Figure 4.2: Example for the Hoshen-Kopelman algorithm. One starts in the upper 
left corner and proceeds row by row. In the first row the first site is occupied and gets 
label 1, the second gets the same label since it is a neighbor of the first, the third is 
empty and the fourth gets label 2. In the second line the first site has an occupied 
upper neighbor with label 1, thus it gets also label 1. The second is empty and the 
third is labeled 3. The fourth site is now a neighbor of two sites, one labeled 2 and 
one labeled 3.  All three sites belong to the same cluster, which was first labeled 2. 
Accordingly we also assign the label 2 to the new site, but we have to keep track that 
cluster 2 and 3 are connected. This is achieved by setting the array size(3)=-2, saying 
that 3 is not a proper label, since size(3) is negative, and that the proper label is 2. 
After distributing labels to all sites one changes them into the proper ones. 

The Hoshen-Kopelman algorithm [5] grows many clusters simultaneously by assign- 
ing cluster labels t o  each new cluster that is nucleated during growth. This is done 
LLr~w-by-r~w" (or LLlayer-by-layern in three dimensions) and must take into account 
the merging of different growing clusters. This merging is accounted for by defining 
"equivalence classes" which are sets of cluster labels that are set to  be equivalent due 
to  merging. Simulations on lattices of up to  4 x 10'' sites have been carried out using 
this method [8]. 
We list here a meta-code for 2d (the generalization to  higher dimension or other 
lattices is tedious but straightforward) since the Hoshen-Kopelman algorithm allows 
cluster identification in many disordered systems, where a cluster structure appears, 
not only for percolation problems. The function that checks for occupied left and 
upper neighbor-sites is neigh(x, y) = (s(x - 1, y), s(x,  y - I ) ) ,  where s(x, y)  = 1 if the 
site (x, y) is occupied and s(x, y )  = 0 if empty. The global variable c carries the label 
of the current cluster. 
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algorithm Hoshen-Kopelman [2d square lattice] 
begin 

c := 1; 
for y := 1 , .  .. , L, do 

d o x : =  1,  . . . ,  L; do 
begin 

if neigh(x, y) = (0,O) then start-newjx, y);  
if neigh(%, y) = (1,O) then connect(x, y, x - 1, y ) ;  
if neigh(x, y)  = (0 , l )  then connect(x, y , x ,  y - 1);  
if neigh(x, y)  = (1 , l )  then 

if label(x - 1, y) = label(x, y - 1) then 
connect(x, y ,  x - 1, y);  

else 
merge-clusters(x, y) ; 

end 
for y := I , . .  . ,L ,  do 

for x := 1, .  . . , L, do 
while size(label(x, y))<O do 

label(x, y) := -size(label(x, y ) ) ;  
end 

procedure start-new ( x ,  y)  
begin 

label (x, y) := c; 
size(c) := 1; 
c : = c + l ;  

end 

procedure connect ( X I  , y ~ ,  x~ , y 2 )  

begin 
label(xl, y l )  := label(x~,  yz); 
size (c )  := size ( c )  + 1; 

end 

procedure merge-clusters ( x ,  y) 
begin 

cI := min(label(x - 1, y ) ,  label(x, y - 1) ) ;  
c2 := max(label(x - 1, Y ) ,  label(z, y - 1) ) ;  
label(x,y) := C I ;  

size(cl) := size(c1) + size(c2) + 1; 
size(c2) := -el; 

end 
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In Fig. 4.2 we show an example of the cluster labeling at work. For the implementation 
it might be advantageous to  replace the cluster labels by the proper one as soon as 
neighbor sites are checked. In Sec. 5.3 we show how the results generated by an 
application of this algorithm are analyzed with finite-size scaling to estimate the critical 
exponents for percolation mentioned in the last section. 

4.1.2 Other Algorithms for Connectivity Percolation 

(i) Search algorithms at $xed p 
The Hoshen-Kopelman algorithm discussed in the previous section is a special search 
algorithm particularly suitable for diluted grid graphs. In general one considers a con- 
nected graph G(X,  E) which is then diluted (i.e. edges are removed with probability 
1 -p) and search algorithms are then used to study the cluster structure of the diluted 
graph. A breadth-first search (see below) from a source site s finds all sites which are 
connected to the source and labels them with their "chemical distance" [I]. This is 
equivalent to  the "forest fire" or "burning" method. These methods were developed 
independently of, and quite a bit later than, the corresponding developments in the 
computer-science community. A new breadth-first-search is needed for each cluster, 
so iterative application of breadth-first search identifies the cluster structure. 
(ii) Growth algorithms at fixed p 
It is storage inefficient t o  generate the entire graph and then to classify its cluster 
structure. Instead growth algorithms keep track of information only at a growth or 
"invasion" front (these methods are also called "epidemic" methods). As discussed in 
the next section, breadth-first search, Dijkstra's algorithm and Prim's algorithm are 
also best implemented in this way. The Leath algorithm [4] for site percolation grows 
from a seed site. Each site adjacent the growth front is assigned a uniform random 
number r j .  At each step, choose a site j which has not yet been tested and which is 
a nearest neighbor to  a site which has already been invaded. If rj 5 p then add site 
j to the growing cluster. If rj > p, mark site j as tested and do not test it again. 
For p > p,, the Leath algorithm grows a cluster of infinite size, while for p < p,, the 
growth of the cluster ceases a t  a finite distance from the source. Very high precision 
results for percolation have been found using this method, for example, lattices of size 
2048~  have been studied recently [9]. 

4.1.3 General Search Algorithms 

The Hoshen-Kopelman algorithm discussed in the last section is a special search al- 
gorithm adapted to  grid graphs or lattices occuring frequently in physics. In this 
section we will discuss more general search algorithms that help to  identify connected 
components of a graph with any topology. 
Consider a connected graph G(X,  E) containing a vertex set X and edge set E. A 
connected graph has sufficient edges such that a connected path exists between any 
two nodes i and j. We input the graph connectivity, i.e. a list of edges which arc 
present. There are two basic search strategies on G(X,  E): breadth-first search and 
depth-first search, which are closely related. 
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The main work of the first algorithm is done within the procedure depth-first(), which 
starts at  a given vertex i and visits all vertices which are connected to  i. The main 
idea is to  perform recursive calls of depth-first() for all neighbors of i which have not 
been visited a t  that moment. The array comp[] is used to  keep track of the process. 
If comp[i] = 0 vertex i has not been visited yet. Otherwise it contains the number 
t of the component. Please note that the array comp[] is passed as reference, i.e. it 
behaves like a global variable. 

procedure depth-first(G, i ,  comp, t) 
begin 

comp[i]:=t; 
for all neighbors j of i do 

if comp[j] = 0 then 
depth-first(G, j ,  comp, t);  

end 

algorithm components(G) 
begin 

initialize comp[i] := 0 for all i E V; 
t := 1; 
while there is a node i with comp[i]=O do 

depth-first(G, i ,  comp, t); t := t + 1; 
end 

Figure 4.3: Depth-first spanning forest for a graph with three connected components. 

In Fig. 4.3 an example graph is shown. The numbers next to  the nodes indicate 
a possible order in which the nodes are visited. The edges which are used by the 
algorithm are indicated by thick lines. Since each node is visited not more than once, 
there are no cycles in the subgraph given by these thick edges. Thus, they constitute 
a tree for each component. Since all nodes are visited, the tree spans the whole 
component. For this reason the tree is called a spanning tree. The collection of all 
spanning trees of a graph is called its spanning forest. 
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Please note that the algorithm tries to  go as far as possible within a graph, before 
visiting other neighbors of the node where the search started. It is for this reason that 
the procedure has its name. The spanning trees constructed by this procedure are also 
called depth-first spanning trees. 
For readers more interested in the subject, we should note that a depth-first search 
uses singly connected edges in its first probe to  maximum depth. These are edges, 
which are not contained in loops, which include the source and transverse each edge 
only once. 
Since depth-first search excludes crossing an edge more than once, the node at the 
end of a singly connected edge (or sequence of singly connected edges) which is closest 
to  the source of the search, defines an articulation point in a depth-first tree. The 
articulation points divide the depth-first-search tree into its biconnected components. 

This procedure was well known in computer science in the early 1970s [lo], and 
has recently provided efficient algorithms for the backbone in connectivity percolation 
[Ill .  The backbone is a subset of the infinite cluster, and is found from the infinite 
cluster by trimming off "dangling ends" which are unable to  transport an electric 
current. The original burning algorithm for backbone identification uses forward and 
reverse breadth-first searches to  find the backbone [6]. This is inefficient compared 
with the depth-first search procedure, though high accuracy results have been found 
by applying this method at p, [12]. 
A similar algorithm, which instead first visits all neighbors of a node before proceeding 
with nodes further away, is called breadth-first search (BFS). This means at first all 
neighbors of the source are visited, they have distance one from the source. In the 
previous example in Fig. 4.3, the edge (1,2) would be included in the spanning tree, 
if it was constructed using a breadth-first search. In the next step of the algorithm, 
all neighbors of the vertices treated in the first step are visited, and so on. Thus, a 
queue (see Sec. 3.2) can be used to  store the vertices which are to  be processed. The 
neighbors of the current vertex are always stored a t  the end of the queue. Initially 
the queue contains only the source. The algorithmic representation reads as follows, 
level(i) denotes the distance of vertex i from the source s and pred(i) is the predecessor 
of i in a shortest path, which is obtained as a byproduct (see next page): 
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algorithm breadth-first search() 
begin 

Initialize queue Q := 1s); 
Initialize level(s) := 0; level(i) := -1 (undefined) for all other vertices; 
Initialize pred(0) := -1; 
while Q not empty 
begin 

Remove first vertex i of Q; 
for all neighbors j of i do 

if level(j) = -1 then 
begin 

set level(j) := level(i) + 1; 
set pred(j) := i ;  
add j at the end of Q; 

end 
end 

end 

During a run of thc algorithm, for each vertex all neighbors are visited. Thus each 
edge is touched twice, which results in a tirne complexity of O(IE1). 

Figure 4.4: Example graph for breadth-first search. The search starts at vertex 0. 
In the first iteration, vertices 1 and 3 are visited. In the next iteration, vertices 2 and 
4 are treated, finally vertex 5. 

Exam~le :  Breadth-first search 

We consider the graph shown in Fig. 4.4. Initially the queue contains the 
source and all values level(i) are undefined, except level(0) = 0. 

Q = {0), level(0) = 0 

While treating the source, its neighbors, vertices 1 and 3, are added to the 
queue, thus pred(1) = pred(3) = I. They have distance 1 from the source 
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(level(1) = level(3) = 1). The order the vertices are added has no influences 
on the final results, only on the details of the computation. 

Next vertex 1 is processed. It has two neighbors, vertices 2 and 3, but vertex 
3 has been visited already (level(3) # -I), thus only vertex 2 is added to  
Q with pred(2) = 1, level(2) = level(1) + 1 = 2. After this iteration the 
situation is as follows: 

The treatment of vertex 3 adds vertex 4 t o  the queue (level(4) = level(1) + 
I = 2, pred(4) = 3). At the beginning of the next iteration vertex 2 is 
taken. Among its two neighbors, only the sink has not been visited. Thus 
level(5) = level(2) + 1 = 3 and pred(5) = 2. Now all values of the pred 
and level arrays are set. Finally; vertices 4 and 5 are processed, without any 
change in the variables. 

A shortest path from vertex 5 to  vertex 0 is given by the iterated sequence 
of predecessors of the sink: pred(5) = 2,pred(2) = l ,p red( l )  = 0. 0 

4.2 Shortest-pat h Algorithms 

In the last section we were concerned with algorithms answering the question whether a 
path in a given graph or network from node i to  node j exists. In many applications in 
daily use we know that there are various paths of this sort but they have different length 
and we want to  know the shortest of them. The breadth-first algorithm presented in 
the last section is able to  calculate shortest paths for the case where each edge is 
assumed to  represent a distance = 1. In this section, we will discuss methods which 
allow the assignment of different arbitrary (sometimes even negative) distances to  the 
edges. 
In physics distances between nodes have, typically, the meaning of resistancc or po- 
tential energy or other physical parameters: think for instance of a random resistor 
network as described in the last paragraph made up not of conducting and insulating 
edges (usually called bonds in this context), but of bonds of varying resistance. Inter- 
preting the resistance between two nodes as distances, the shortest path from one side 
to  the other side of the sample is the one that carries the most current. Similarly, if you 
think of a random static network where bonds between nodes have different strength, 
again interpreted as distances, the shortest path from one side of the material to  the 
other is the one where fracture will occur under sufficiently strong strain. Finally, 
the polymer in a random medium is essentially an elastic thread (a one-dimensional 
object - -  a line) lying in a rough landscape and searching for its lowest potential and 
elastic energy minimum. Again, this problem can be mapped onto a network with 
the random potential energies as distances and the shortest path is the ground state 
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configuration of the polymer. In what follows we will present the algorithms with 
which these problems can be solved efficiently. 

4.2.1 ' The Directed Polymer in a Random Medium 

The directed polymer in a random medium (DPRM) [13] is a directed optimal path 
on the links of a lattice (see Fig. 4.5). For a path along the (10) orientation, the path 
is allowed to step forward, to  the left or to  the right, with an increased energy cost 
for motion to  the left or right, which models the elasticity of the DPRM [14, 151. An 
even simpler model is a path in the (11) orientation (see Fig. 4.5). In this case, there 
is no explicit elasticity t o  the DPRM, but the motion is restricted t o  the transverse 
direction, and it is believed that this constraint is sufficient to  maintain the DPRM 
universality class. The random potentials are modeled by a random energy on the 
bonds of the lattice, see Fig. 4.5. 

Figure 4.5: Models for a DPRM. Left: In the (10) orientation. Right: In the (11) 
orientation. 

Thus the lattice Hamiltonian is simply 

where the sum is over all bonds ( i j )  of the lattice and xij represents the DPRM 
configuration starting at one particular point s of the lattice and ending at another 
point t (see Fig. 4.5). It is xij = 1 if the DPRM passes through the bond ( i j )  and 
xij = 0 otherwise. Typically s is on one side of a lattice of linear size L and t on the 
opposite and the ground state of (4.1) is the minimum energy path from s to t .  
Interpreting the energies as distances (after making them all positive by adding a 
sufficiently large constant to  all energies), and the lattice as a directed graph, this 
becomes a shortest path problem that can be solved by using, for instance, Dijkstra's 
algorithm, which will be described below. In addition, owing to the directed structure 
of the lattice one can compute the minimum energies of DP configurations ending 
at (or shortest paths leading to) target nodes t recursively (this is the way in which 
Dijkstra's algorithm would proceed for this particular case) [16]. This is the same as 
the transfer-matrix algorithm, encountered in statistical mechanics [17]. It reduces in 
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Figure 4.6: A collection of polymers of lowest energy directed along the diagonals of 
a square lattice with random bonds. Each polymer (crossing 500 bonds) has one end 
fixed to the apex of the triangle, the other to various points on its base, and finds the 
optimal path in between. 

the zero temperature limit to a simple recursion relation for the energies or distances 
from s to  nodes t in the (n + 1)th layer, once we know the shortest paths to the n-th 
layer: 

 EL^+') = M~~{E:Y) + e,,, Is1 E n r th  layer and sr nearest neighbor of s }  (4.2) 

In Fig. 4.6 we show a collection of such optimal paths in the 1 + 1 dimensional case. 
In the following we will discuss the two basic algorithms to  find the shortest paths in 
a general graph. 

4.2.2 Dijkstra's Algorithm 

Given a set of costs cij on each edge of a graph, we calculate the distance label d(i), 
which is the cost of a minimum-cost path [18, 19, 20, 211 from a starting node s to  the 
node i .  Dijkstra's algorithm, which works for non-negative costs, is a so called label- 
setting algorithm to solve the shortest-path problem. It is a label-setting algorithm 
because it finds the exact distance label correctly a t  the first attempt. In contrast, 
label-correcting algorithms, which be will presented as well, iteratively approach the 
exact distance label, and work even if some of the costs are negative, provided there 
are no negative-cost cycles in the graph. In order to  reconstruct the set of bonds 
which make up the minimal-cost path from site s to  sitc i, the algorithms also store 
a predecessor label, pred(i), which st,ores the label of the previous site from which the 
minimal path reached i. The set of minimal paths from a starting site s to  all of the 
other sites in the graph forms a spanning tree, Tp. An example is presented in Fig. 
4.7. 
Both label-setting and label-correcting algorithms use the key properties which short- 
est paths obey: 
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Figure 4.7: The tree of minimal paths from the source node (shaded) to  all other 
nodes in a directed square lattice (the edges of the graph only allow paths which 
are in the positive (01) and positive (10) directions). All bonds between nearest 
neighbors are labeled with their costs, but only the tree of minimal paths is shown. 
Each node is labeled with the cost of a minimal path from the source to that node. 
(Generated using the demonstration programs from the LEDA library available at 
http://www.mpi-sb.mpg.de/LEDA/) 

(i) For each edge belonging to the shortest-path tree from node s: 

d( j )  = d(i) + cij ( i ,  j) in Tp. 

(ii) For each edge which does not belong to  a shortest path: 

d( j )  5 d(i) + cij (i, j) not in Tp. 

These properties are often discussed in terms of reduced costs, defined as, 

cfj = cij + d(i) - d(j) .  (4.3) 

Properties (i) and (ii) above are then, 

c;j = 0, if (i, j) E Tp, 

and 

cfj > 0 ,  otherwise. (4.5) 

The proof of these properties relies on the spanning-tree structure of the set of minimal 
paths, namely that each site of the tree has only one predecessor. Thus if there is a 
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bond with c$ < 0 which is not on the minimal-path tree, adding that bond to the tree 
and removing the current predecessor bond for site j [which from condition (4.4) has 
zero reduced cost], leads to  a reduction in the cost of the minimal-path tree. Thus any 
tree for which there exists a bond with c$ < 0, is not a minimal-path tree. 
For later reference we also note that a directed cycle, W, has the property, 

which follows from Eqs. (4.3-4.5). 
We will now discuss Dijkstra's method for the minimum path, which works by growing 
outward from the starting node s in a manner very similar to  breadth-first search. 
At each step Dijkstra's algorithm chooses to  advance its growth front to the next 
unlabeled site which has the smallest distance from the starting node. 

algorithm Dijkstra(G, {cij}) 
begin 

s := {s}; 3 := X\{s}; 
d(s) := 0, pred(s) := 0; 
while IS1 < 1x1 do 
begin 

choose ( i ,  j) : d(j)  := mink,,{d(k) + ck, jk E S, m E 3, ( k ,  m) E E } ;  
- 
S := S\{j}; S := S U {j}; 
pred(j) := i ;  

end 
end 

The algorithm maintains the minimal distance growth front by adding the node j E 3 
with minimal distance label d(j).  The proof that d( j )  generated in this way is actually 
a minimal-cost label proceeds as follows: 
(i) Assume that we have a growth front consisting of sites which are labeled with their 
minimal path lengths to the source s. 
(ii) The next candidate for growth is chosen to be a site which is not already labeled, 
and which is connected to  the growth front by an edge (i, j) E E. 
(iii) We choose the site j for which d( j )  is minimal d( j )  = mink,m{d(k) + ck,, k E 

S , m  E 3, (k ,m)  E E}. 
(iv) Because of (iii) and because all of the costs are non-negative there can be no 
path from the current growth front to  site j which has a smaller distance than d( j) .  
This is because any such path must originate at the current growth front and hence 
must use a non-optimal path to  generate any alternative path to  j (negative costs can 
compensate for locally non-optimal paths from the growth front and hence Dijkstra's 
method is restricted to  non-negative costs). In Fig. 4.8 an example demonstrates how 
the Dijkstra's algorithm works. 
The "generic" Dijkstra's algorithm scales as C3(IXI2), if the choose statement in the 
above algorithm requires a search over all the sites in the lattice. It is easy to  do much 
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Figure 4.8: Demonstration of Dijkstra's algorithm The number in the circles denote 
the distance labels d ( i ) .  White circle stand for temporary nodes, filled circles for 
permanently labeled nodes. The numbers on the edges are the distances cij. The 
edges that have been considered in the last step are marked. 

better than this by maintaining a list of active sites at the growth front (as in breadth- 
first search). However now we must choose the lowest-cost site from among this list. 
Thus the potential growth sites must be ordered according t o  their distance label. 
This ordering must be reshuffled every time a new growth site (with a new distance 
label) is added to the list. In the computer science community this is typically done 
with heaps or priority-queues which consist of a tree-like data structure, see Sec. 3.2. 
Heap reshuffling is O(ln1 E 1 )  which reduces the algorithmic bound to O (  1 E llnl E 1). 
Each element of the heap has a key, which is here the temporary distance. The 
heap operations create-heap(), find-min() and delete-min() are self-explanatory. The 
decrease-key() operation assigns a new lower temporary distance to an element of the 
heap and moves it eventually towards the root of the heap by exchanging elements. 
By A(i) ,  we denote the edges adjacent to  vertex i .  The heap implementation of the 
Dijkstra algorithm reads as follows: 
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algorithm heap-dijkstra(G, {cij}) 
begin 

create-heap(H) ; 
d(i) := co for each node i E N; 
d(s) := 0 and pred(s) := 0; 
insert (s, H); 
while H # 0 do 
begin 

find-min(i, H ) ;  
delete-min(i, H); 
for each (i, j) E A(i) do 
begin 

value := d(i) + cij; 
if d( j )  > value then 
begin 

if d ( j )  = oo then 
insert(j, H); 

else 
decrease-key(value, i ,  H); 

d(j)  := value, pred(j) := i 
end 

end 
end 

end 

If the bond costs are integers, the site distance labels themselves can be used as 
pointers. Thus we can set up a queue with the distance label as pointers and the 
site labels with that distance in the queue (or, in computer science terminology, we 
use buckets). The number of buckets that is required, n b ,  is n b  > 2C where C = 
max(i,j){q,} is the maximum cost. For example if the costs are chosen from the set 
1 ,2 , .  . . , l o ,  then C = 10. As long as C is finite, and the graph is sparse, buckets are 
very efficient both in speed and storage, for dctails see Ref. [ 2 2 ] .  Using buckets, one 
can implemented a Dijkstra's algorithm for integer costs which has a running time 
scaling as O(I El). 

4.2.3 Label-correcting Algorithm 

As we said, Dijkstra's algorithm is a label-setting algorithm. The above mentioned 
criterion 

d(.)shortest-path distances u d(j)  5 d(i) + cij 'd (i, j )  E A (4.7) 

also gives rise to a so callcd label-correcting algorithm. 
Let us define reduced edgc length (or reduced costs) costs!reduced via 

&. ,, .= . C .  t, + 4 4  - d(j) .  (4.8) 
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As long as one reduced edge length is negative, the distance labels d(i) are not shortest- 
path distances: 

d(.) shortest path distances ctJ 2 0 V(i,j)  E A (4.9) 

The criterion (4.9) suggests the following algorithm for the shortest-path problem: 

algorithm label-correcting 
begin 

d(s) := 0; pred(s) := 0; 
d( j )  := oo for each node j E N\{s}; 
while some edge (i, j )  satisfies d( j )  > d(i) + cij (c$ < 0) do 
begin 

d( j )  := d(i) + cij (+ c,dj = 0); 
pred(j) := i ;  

end 
end 

Initially the distance labels at each site are set to a very large number [except the 
reference site s which has distance label d(s) = 01. This method requires that the 
starting dist,ance labels d( j )  are greater than thc exact shortest distances and the 
choice of d( j )  = cc ensures that. In Fig. 4.9 an example of the operation of the 
algorithm is shown. 
In practice it is efficient to  grow outward from the starting site s. The algorithm may 
sweep the lattice many times until the correct distance labels are identified. The worst 
case bound on running time O(min{l X 1" EIC, I E ( ~ ~ ~ I } )  with C = max {leij I } ,  which is 
pseudo-polynomial. An alternative procedure is to sweep the lattice once to  establish 
approximate distance labels and then to iterate locally until local convergence is found. 
This so called first in, first out (FIFO) implementation has complexity O(I X I I El). 
Note that if there are negative cycles, the instruction d( j )  = d(i) + cij would decrease 
some distance labels ad (negative) infinitum. However if there are negative cycles, 
one can detect them with an appropriate modification of the label-correcting code: 

One can terminate if d(k) < -nC for some node i (again C = max Jcij I )  and obtain 
these negative cycles by tracing them through the predecessor indices starting at node 
i .  This will be useful in the negative-cycle-canceling method for minimum-cost flow 
(Chap. 7). 

4.3 Minimum Spanning Tree 

In practical daily use minimum spanning tree problems generally arise in one of two 
ways, dircctly or indirectly. In some direct applications one wishes to  connect a set of 
points using the least cost or least length collection of edges. Frequently the points 
represent physical ent,ities such as the components of a computer chip, or users of a 
system who need to be connected to  each other or to a central service such as a central 
processor in a computer system. In indirect applications one wishes to connect some 
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Figure 4.9: Illustration of the label-correcting algorithm. If the algorithm selects 
the edges (1,3), (1,2), (2,4), (4,5), (2,5) and (3,5) in this sequence, we obtain the 
distance labels shown in parts (b) to (g). At this point, no edge violates its optimality 
condition and the algorithm terminates. 

set of points using a measure of performance that on the surface has little resemblance 
to  the minimum spanning tree objective (sum of edge costs), or the problem itself 
bears little resemblance to  an optimal tree problem. 
The minimum spanning tree [18, 191 of a connected graph with edge costs c i j  is a 
tree which: (i) visits each node of the graph and; (ii) for which xi,,, c i j  a minimum. 
Prim's algorithm and Kruskal's algorithm are two methods for finding the minimal 
spanning tree [18, 231. The two algorithms are based on the following (equivalent) 
optimality conditions: 

Cut-optimality condition: A spanning tree T*  is a minimum spanning tree if and 
only if: for all tree edges ( i j )  E T*: c i j  is smaller than every capacity c k l  contained in 
the cut1, which is induced by deleting edge ( i j )  from T*, i.e. after deleting the edge 
from the tree, the tree falls apart in two parts. The cut, which is induced by this, 
contains all edges in the graph G, which run between the two parts. 

Path-optimality condition: A spanning tree T* is a minimum spanning tree if and 
only if: For every non-tree edge ( k l )  of G: c i j  5 c k l  for every edge ( i j )  contained in 
the path in T* connecting nodes I% and I .  

'A cut of a graph G is a separation of the node set V of G in two disjoint subsets S and S' with 
S U S' = V, see also Chap. 6. Usually one also identifies all edges (i, j )  with i E S and j E S' with 
the cut. 



70 4 Simple Graph Algorithms 

Kruskal's algorithm is based on the path optimality condition whereas Prim's algo- 
rithm is based on the cut optimality condition. The latter is very similar in structure 
to  Dijkstra's algorithm. Recently it has been observed [24] that Prim's algorithm is 
essentially equivalent to  the invasion algorithm for percolation. 
In Prim's algorithm we start by choosing the lowest cost bond in the graph. The 
algorithm then uses the two sites at the ends of this minimal cost bond as the starting 
sites for growth. Growth is to  the lowest cost bond which is adjacent to  the growth 
front. The algorithm terminates when every site has been visited. The cost of the 
minimal spanning tree is stored in CT, and the bonds making up the minimal spanning 
tree are stored in T. 

algorithm Prim() 
begin 

choose (s, r )  : c,, := min{csm 1 (k, m) E E) ;  

S := {s, r) ;  := X\{S, T } ;  

T := {(s, r ) } ;  CT = c,,; 
while IS( < 1x1 do 
begin 

choose ( i ,  j )  : cij := min{ckm 1 k E S, m E 3, (k, m)  E E);  
- 

S = S\{j); S = S U {j); 
CT = CT + cij; T = T u {(i, j)); 

end 
end 

In Fig. 4.10 it is demonstrated how this algorithm works in a particular example. 
It is evident that Prim's algorithm is almost identical t o  Dijkstra's algorithm. The 
only difference is in the choose instruction, which gives the cost criterion for the 
extremal move at the growth front. In the minimal-path problem, one chooses the 
site at the growth front which has the minimum-cost path to the source, while in the 
minimal-spanning-tree problem one simply chooses the minimum-cost bond. Both of 
these problems lead to  spanning trees, but Prim's has a lower total cost (it is less 
constrained). In Dijkstra's algorithm one is checking the cost of the path from the 
tested site all the way back to the "source" or "root" of the tree. It is thus more 
non-local. In case of integer costs, using the same bucket strategy as described above 
for Dijkstra's method, Prim's algorithm is C?(IEI). Heap implementations of Prim's 
method are O(IE1ln1EI) as for Dijkstra's method. 
The alternative method for finding the minimal spanning tree is Kruskal's algorithm, 
which nucleates many trees and then allows trees to  merge successively into one tree 
by the end of the procedure. This is achieved by allowing growth sites to nucleate off 
the growth front, that is, growth occurs at the lowest cost unused bond which does not 
lead to  a cycle, regardless of whether it is on or off the growth front. Efficient Kruskal's 
algorithms have similar efficiency to heap implementations of Dijkstra's method (i.e. 

Q(IElWEI)). 
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Figure 4.10: Illustration of Prim's algorithm. From (a), starting with the lowest 
cost edge, to (d) successively new edges are added until a minimum spanning tree is 
reached. 
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5 Introduction to Statistical Physics 

This section gives a short introduction to  statistical physics, as far as it is relevant to 
this book. For a thorough presentation, we refer the reader to various excellent books, 
as for instance [l, 2, 31. 
Statist~cal physics deals with systems that consist of many particles: typically gases, 
liquids, solids, radiation, polymers, membranes, proteins or complicated networks of 
simple (idealized) agents, like populations, metabolic networks, or the Internet. The 
general observation is that in a system of many degrees of freedom a collective behavior 
might emerge, that is not a feature of any of its components: the whole theory of phase 
transition (liquid/gas, crystallization, paramagnetic/ferromagnetic) is based on the 
thermodynamic limit in which the number of particles of the system is mathematically 
infinite. Of course there are already clear indications of a phase transition if the 
number of particle is huge but finite. In a typical experiment on a macroscopic sample 
for instance loz3  particles are studied, while lo5 - 10'' particles can be considered in 
a typical state of the art  computer simulation. 10" is already such a large number 
that the experimented resolution and finiteness of the observation time can no longer 
account for the difference between the observed behavior and an ideal phase transition, 
but in computer simulation one needs a tool, namely finite-size scaling, to  infer from 
the observed finite-size system behavior to the ideal underlying phase transition (of 
the infinite system). 
In what follows we present a brief overview over these phenomena and the necessary 
tools to  analyze them. Only classical systems are considered, i.e. quantum mechanical 
effects are neglected. First, the basic ideas are introduced. Next, a short introduction 
to  phase transitions is given. In the third section, the ideas of finite-size scaling are 
explained by studying percolation problems. In the following section, the ideas arc 
applied to  magnetic phase transitions. In the last section, systems with quenched 
disorder are considered. 

5.1 Basics of Statistical Physics 

Let us consider a physical system of N particles or entities that can take on a discrete 
set of states Si, 1 = 1 , .  . . , N. 4 n  archetypical example is the Ising model for mag- 
netism in which Si E {+I, -1) represents an atomic magnetic moment called spin, 
that can point upwards (Si = +1) or downwards (Si = -1). The configuration of the 
system is described by the state of all N particles S = (S1,. . . , SN). The Hamilton 



74 5 Introduction to Statzstical Physics 

function (or Hamiltonian) or energy function X(S)  of the system assigns to  each state 
an energy - from a microscopical view point this is &l one needs to know to describe 
the physics of the system. In case of the aforementioned Ising model it is, for instance, 

where Jij is a magnetic interaction strength (Jij > 0 favoring parallel orientation of 
the spin i and j ,  Jij < 0 favoring anti-parallel orientation) and h an external field 
strength. 
A typical task in the statistical physics of systems that are described by a Hamiltonian 
X(S)  consists in the computation of expectation values of observables such as energy, 
pressure, or magnetization. The result depends on the ensemble which is chosen. For 
instance, the microcanonical ensemble describes a system which is isolated from its 
environment. This means that some quantities like the number of particles, the volume 
or the energy are conserved. For other ensembles e.g. the chemical potential or the 
pressure can be fixed. Here we consider the canonical ensemble, which describes 
systems connected to a heat bath (an infinite source/sink of energy), which always 
holds the system at temperature T.  Then, the so called thermal expectation values of 
observables A(,!?) are given by 

Here the sum is over all states of the system, kb the Boltzmann constant Z = 
C exp(-X(S)/lcbT) is the partition function, which simply ensures the normaliza- 

C 

con  of the Boltzmann distribution 

that is the probability for a system coupled to  a heat bath with temperature T to 
be in state 3. A thermal expectation value of an observable X(S)  is therefore just a 
weighted sum of values A(S) that observable A takes on as in state ,!?. In the Ising 
system defined above, one such observable is for instance the magnetization 

that can be used to discriminate between different magnetic phases of a ferromagnet. 
The magnetization per site is m = M I N .  The internal energy E of the system at 
temperature T is simply the thermal expectation value of X 

However, it is the free energy F and not the internal energy that is crucial for the 
thermodynamic propertics of a physical system at non-vanishing temperatures ( T  > 0). 
It is defined to be proportional to the logarithm of the partition function: 
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All thermodynamic quantities can be calculated from the free energylpartition func- 
tion by taking derivatives, e.g. the expectation values of the energy E, the magneti- 
zation M ,  the specific heat c and the susceptibility x (with P = l /kbT) 

By a short calculation, you will find that the second derivatives specific heat and 
susceptibility are related to  the fluctuations of the related first derivatives: 

The importance of the free energy is due to the fact that for the thermodynamics not 
only the energetics of the states of the system but also their number, the density of 
states, play a role. The measure for the latter is the (Boltzmann) entropy defined by 

We do not have the space here to uncover all the deep implications of this quantity, 
and it is not necessary for the purpose of this book, which is mainly concerned with 
zero temperature problems. If we insert P(S) from (5.3) into (5.13), use (5.6) and 
compare with (5.5), we see immediately that 

Thus the entropy does not play a role at T = 0 where the intcrnal energy becomes equal 
t o  the free energy. In that case, a closer look at Eq. (5.3) for the Boltzmann probability 
reveals the crucial role that the energy X(S) has in determining the thermodynamics 
of a system: for fixed temperature T the weight P(2) of state S gets smaller the 
larger its energy is. In the zero-temperature limit T + 0 only the state So with the 
lowest energy Eo = mins{X(,S)}, the ground state, contributes t o  the thermodynamic 
average (5.2) of any observable A. All the other states with energies X(S) > Eo are 
exponentially suppressed and are irrelevant at T = 0. This clarifies the importance of 
the ground state (S) of a physical system described by a Hamiltonian X(S).  
For non-zero temperature it is a tremendous task to perform the sum given in (5.2) 
explicitly and it can be achieved analytically only in a few exactly solvable cases. 
Note that the number of states grows exponentially with the size N of the system; for 
instance an Ising system with N spins can take on 2N different states 5. In many cases 
the individual particle have even to be described by a continuous variable with one 
or more components, e.g. S, = (cos ip, sin ip), a two-component vector parameterized 
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by the angle cp E [O, 27r), also called a XY-spin, which makes the task even more 
difficult. On the other hand, not all states S are equally important in an approximate 
calculation of the thermodynamic expectation value - at low temperature, for instance, 
those with a high energy are exponentially suppressed. 
The key trick in evaluating the sum in (5.2) approximately on a computer, instead 
of an exact enumeration, is to generate a random sequence of states that obeys by 
construction the desired Boltzmann probability. This a physicist calls importance 
sampling. In general, an algorithm to evaluate some quantities by means of random 
processes is called Monte Carlo simulation. Thus we want to  generate a sequence of 
states S1 t S, -+ 5, + . . . recursively one from the other with a carefully designed 
transition probability w ( S  t &+,) such that states S occur within the sequence with 
probability P,,(S) = Z-l exp(-PX(3)). How do we find the appropriate transition 
probabilities w ( S  + 5') that gives the probability to  generate the state S' in the next 
step if state S is given? The sequence under consideration can be interpreted as one 
realization of a Markov process, in which states S occur with probability Pt (5) in the 
t-th step and whose evaluation is given by the Master equation 

In the sum on the right hand side over all states S', the first term describes processes 
which move a system into state S, while the second term accounts for processes leaving 
state 5. After a large number of steps ( t  + oo) the probabilities Pt(S)  will approach 
a stationary distribution P(S) = lim Pt(S), which we want to be the Boltzmann 

t i m  

distribution P(S) = P,,(S) = Z-l exp(-PX(27)). We can design the transition prob- 
abilities w(S  t 3') in such a way, that for Pt(,S) = P,,(S) each term in the sum on 
the right hand side of (5.15) vanishes: 

This relation is called detailed balance. Now it is ensured that the desired distribution 
is the Markov process defined by (5.15). Please note that,  in principle, you can use 
other measures to  ensure that the equilibrium distribution is obtained. To ensure 
detailed balance, Metropolis et al. [4] chose 

where AX = X (S') - X(S)  is the energy difference between the old state S' and the 
new state S and I- an arbitrary transition rate such that w has the meaning of a 
transition probability per unit time. By inserting these transition probabilities into 
(5.16), one sees that they fulfill the detailed balance condition. 
There is a considerable amount of freedom in the choice of the move 5 -t St, but 
one should note that because of w(S  + S1)/w(S' t S )  = exp(-AX/kbT) the energy 
change A X  should not be too large when going from + S' or vice versa. Hence 
typically it is necessary to  consider small changes of 3 only, since otherwise the ac- 
ceptance rate of either S + 5' or 3' t would be very small (and a lot of computer 
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time would be wasted since the procedure would be poorly convergent). There are 
exceptions from this rule, like the cluster algorithms for spin models [5, 61, where 
clever schemes make large changes in configuration space possible, while the energy 
changes A X  are kept small. But these cluster algorithms do not work in general. 
So, for instance, for the Ising model one conventionally uses a single spin flip dyhamics, 
where at  each move 5 + S' only a single spin, say Si, is flipped: Si + --Si and the 
other spins do not change S, = Si V j  # f .  Then 

for Si = - sign(hi) ' 

w(Si t -Si) = r exp(-2Si hi/kbT) for Si = sign(hi) 

where hi = C JijSj + bi is the local field acting upon spin Si in state S. 
j(f 4 

In practice one realizes the sequence of states S with chosen transition probabilities 
w by executing the following Monte Carlo program to calculate an estimate of the 
thermal expectation value (A)T of an observable A(S): 

algorithm Monte Carlo (T, Nsteps) 
begin 

choose start configuration S ;  set A, := 0; 
for step := 1 , .  . . , N,,,,, do 
begin 

generate trial state 5'; 
compute w(S  t S f )  =: W ;  

generate uniform random number z E [0,1]; 
if (w < x) then 

reject 2'; 
else 

accept Sf (i.e. S := Sf); 
sum up average A,, := A,, + A(S); 

end 
Aav := AavlNsteps; 

end 

After a number steps Nsteps, the number of trial states is usually called the number of 
Monte Carlo steps, one stops and we get A,(Nsteps) as an estimate of (A)T. This is 
true because according t o  what we have said about the stationary distribution of this 
process, we have 

Of course it is impossible to  perform the limit NstepS + oo on a computer. Thus, one 
has to  devise a reliable criterion to  decide, which value of NStep, for the number of 
Monte Carlo steps is sufficient t o  get an estimate for (A)T with the desired accuracy. 
This issue would fill another book, we therefore refer the reader to  [7, 81. We only 
mention that the interval [A,, - AA; A,, + AA] contains the true value of (A)T with 
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a probability of 0.65 (assuming that A,, is Gaussian distributed). AA is the standard 
error bar of the result, given by 

where T is the correlation time of the quantity, which describes how long you have 
to  simulate to obtain two independent measurements. Tho correlation time can be 
obtained from an autocorrelation function CA(t)  in equilibrium 

through CA(7) = e-lCA(0). The value of St measures the distance between two 
consecutive measurements, using the same time unit that is chosen to  measure r. For 
the algorithm above, St = 1 (one Montc Carlo step). In case you take your samples 
very rarely (St >> r), Eq. (5.20) becomes 

What is important for our topic L'optimization" is that the Monte Carlo procedure 
can also be used to  find the ground state configuration ,So of the system under 

consideration: for low temperature only the states with the lowest energies allow a 
significant weight Pe,(,S), and therefore by reducing the temperature step by step 
down to T = 0 the process just described should converge to  the state with the lowest 
energy 5,. This procedure is called simulated annealing [9] and is one of many methods 
among what is known as the field of "stochastic optimization", see Chap. 11. Of course 
for lower and lower temperatures the equilibration time of the process gets largcr and 
larger, necessitating huge numbers of steps NstePs to guarantee equilibration. Since 
this condition cannot be fulfilled for arbitrary low temperatures there is no guarantee 
of finding the exact ground state with simulated annealing. However, sometimes this 
is the only method at  hand. 

5.2 Phase Transitions 

We all know that when heating water (at a particular pressure p) it starts to  boil a t  
T, = 100°C and transforms into vapor, see Fig. 5.1. This is the archetypical example 
of a phase transition, it separates a temperature range (at fixed pressure), where water 
is a liquid to  a range where it is a gas . The transition is characterized by an order 
parameter of the system, in this case the density which can be obtained also by a 
suitable derivative of the free energy. Here the density jumps discontinuously at  the 
transition, the liquid density being much larger than the gas density. Only at  one 
particular point, the critical point, of the (p,T)-diagram, the so called phase diagram, 
the transition is continuous. The latter transition is referred to  as being of second 
order, which means that discontinuities appear only in the second derivative of 



5.2 Phase Transitions 

Figure 5.1: Schematic picture of the liquid-gas transition of water. Below T, the 
system is a fluid (left), while for higher temperatures it is a gas (right). 

Figure 5.2: A two dimensional Ising ferromagnet. Near neighbors of the lattice 
interact ferromagnetically, indicated by straight lines joining them. 

the free energy, whereas in the former case it is of first order, meaning that a first 
derivative of the free energy (the density) is already discontinuous. 
In general, a phase transition in a many particle system is induced by the variation of 
a parameter (such as temperature, pressure, etc.) and is (usually) mathematically 
characterized by a discontinuity or a singularity in an appropriately chosen order 
parameter. It separates regions in the phase diagram with different physical properties, 
most elegantly expressed by their symmetries and reflected by the behavior of the 
order parameter. The concept is most easily visualized by an example, the Ising 
model in an external field that can simultaneously serve as a lattice gas model for 
the liquidlgas transition (spin up A particle present, spin down A particlc absent, 
magnetic interaction A nearest neighbor attraction, field A chemical potential). The 
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spins Si = f 1 are localized on the sites of a 2-dimensional lattice (Fig. 5.2), the 
Hamiltonian is 

( i j )  means the sum over all nearest neighbor pairs of the lattice. For all nonzero 
magnetic fields h, the model is paramagnetic, i.e. the average orientation of the spins 
is determined by the sign of h. Below a critical temperature T,, the order parameter, 
the magnetization per spin rn as a function of the field h, has a discontinuous jump 
at h = 0, which is the sign of a first order phase transition (Fig. 5.3). 

Figure 5.3: The (T, h) phase diagram of the 2d Ising model. The insets show the 
magnetization as a function of the field for two different temperatures indicating the 
critical behavior for T = T, and the first order transition at T < T,. 

For h = 0 the model possesses a 2nd order phase transition at the critical temperature 
T,, where the magnetization has a singularity m - (T, - T ) ~  for T < T,, but m = 0 
for T > T,. The exponent P, not to  be confused with ,B = l /kbT,  characterizes the 
behavior near the phase transition, called the critical behavior. Thus, P is called a 
critical exponent1. Also for other interesting quantities critical exponents are defined, 
see Secs. 4.1 and 5.4. It can be shown that for many models the actual values of the 
critical exponents do not depend on details of the model. In that case one speaks of 
universality. 
For the purpose of this book (the computation of various quantities in a finite system) 
we should emphasize that the above scenario describes the behavior of the infinite 

'1t turns out that ,8 = 118. 
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system. Mathematically, there is no phase transition in a finite system: the partition 
function is a sum of a f inite (although exponentially large) number of analytical terms, 
thus the free energy is analytic and no singularities occur. In what follows we describe 
how this infinite system phase transition can be located and studied in finite systems. 
Using a technique called finite-size scaling (FSS), it is possible e.g. to  calculate the 
values of the critical exponents of a given model. The mathematical background for 
finite-size scaling is provided by the renormalization-group theory 110, 111, which is 
beyond the scope of this book. Here we show how the ideas evolve when considering 
e.g. the percolation problem. 

5.3 Percolation and Finite-size Scaling 

One of the simplcst and most studied phase transitions of second order is the per- 
colation transition. Percolation is defined in an operative way: take an arbitrary 
d-dimensional lattice (square, triangular, sc, fcc, . . . ) and occupy each site randomly 
with a probability p. So a fraction 1 - p of the sites are not occupied. We identify 
the connected clusters of this randomly occupied lattice: two sites are connected if 
one finds a path from one site to  the next only using bonds between occupied nearest 
neighbors. There exists a critical value p, for the occupation probability below which 
only finite clusters (of size s = 1 , 2 , 3 , .  . .) even in the infinite system exist, whereas 
above it (p > p,) at  least one percolating i.e. infinite cluster exists that spins from 
one end of the system to  the other (Fig. 4.1). 
We define the probability that an occupied site is part of the percolating cluster: 
P,(p), the concentration of clusters consisting of s occupied sites: n,(p) and the 

o o , 2  percolation susceptibility ~ ( p )  = $C,=l s n,(p), where C' means the sum over all 
clusters except the infinite one (p > p,). At the percolation transition we encounter 
critical singularities 1121 in the variable 6 = (p - p,)/pc + 0, described by the critical 
exponents p , r ,  T and IS via 

6 6 > 0 (p > p,) 
P - 6 ) - r  6 < 0  ( p < p , )  

and 

where n(x) is a (usually unknown) scaling function. For all different lattice types 
(square, triangle, cubic, ...) the exponents depend on each other in the same way: 
T = 2 +PI(? + P )  and a = l / ( y  + P ) ,  
but the actual values are not the same for different lattice types. The percolation 
cluster at p = p, is a fractal and its mass scales as M K rdf with its radius (or linear 
size) r ,  where df is the fractal d imens ion .  In Fig. 5.4 we show an example for the 
determination of the fractal dimension for d = 2 using the methods describe in Sec. 
4.1 for percolation problems. 
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Figure 5.4: Monte Carlo data for the size of the largest cluster at the percolation 
threshold p = p, = 112 of the triangular lattice, as a function of the linear system size 
L of the lattice. The slope of the straight line in this log-log plot is the exactly know 
fractal dimension df = 91/48. From [12]. 

In a finite system quantities such as ~ ( p )  cannot diverge but reach a maximum, also 
P,(p) does not vanish [for all p the probability (apL) for a percolating cluster is 
exponentially small]. As a consequence, singularities are smeared out for finite systems. 
In a finite subsystem of linear size L a percolating cluster has radius r ,  = L. Thus, 
using (5.26), the probability for the occurrence of a percolating cluster  PI^^^(^^) is 

Hence one finds a percolating cluster in the finite subsystem with the probability of 
order 1 (i.e. P:~"(~,) M 1) if 

where we used T = 2 + p/ (y  + p) and the hyper scaling relation [lo, 111 dv = y + 2P, 
which involves the dimension d of the system. Furthermore, v is the critical exponent 
of the correlation length [, which is defined as the typical length scale over which the 
connectedness probability, i.e. the probability that two sites a distance r apart belong 
to the same connected cluster, decays in the infinite system. It diverges a t  the critical 
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point as 

The mass (number of sites) of a percolating cluster in a finite system is simply the 
mass of a cluster of radius L 

which means that the probability for a site to  belong to a percolation cluster is 

since PL (p,) = M / L ~ .  
The distribution n,,(p) in a finite system is cut off at  s K L d f .  Therefore also the 
divergence of the susceptibility is 

We will look more closely at the combination of exponents that appear in the expression 
for xr,(p): since (3 - r ) / a  = y and lladf = v we get 

in other words: xL(p) is composed of a diverging factor SPY, which describes the 
behavior in the infinite system, and a scaling function that depends on the scaling 
variable L/J, where J = S-". Since there cannot be a divergence in a finite system, 
one expects that X(x) vanishes for x + 0 in such a way that the divergence of the 
prefactor is canceled. In this case, X(z) K 271" for x + 0. This yields at p = p, 
(6 = 0) the correct finite size behavior x ~ , ( p  = p,) cc L')'IV. 
This is the essence of finite-size scaling (FSS), scaling functions always depend on the 
ratio of the two lengths L and J and the prefactors describe the singularities, either 
in terms of the distance from the critical point 6 = 5-7, or in terms of the system size 
L, which then replaces J ,  i.e. for (5.33) 

Analogously 
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Note that these relations only hold asymptotically, i.e. close to p, and for large values 
of L. Further away from p, and for smaller system sizes corrections to scaling occur. 
The general scheme is to  perform simulations at different systems sizes and use these 
data and equations like (5 .34) ,  (5.35) and (5.36) to  extract all information. Equation 
(5.36) is particularly useful for the numerical determination of p,: for p = p, the value 
of pier" is independent of the system size, P : ~ ~ ~ ( ~ , )  = Ij(0) and therefore the curves 
for different fixed systcm sizes should intersect at  the critical point p = p,! 
Practical issues of performing a FSS analysis are covered in Sec. 13.8.3. In the following 
section, we will explain the FSS behavior of magnets. 

5.4 Magnetic Transition 

In a temperature or a disorder driven phase transition the scenario is similar. At the 
transition singularities in various quantities occur, and these are smeared out for a 
finite system in a systematic way that enables one to  extract the critical exponents, 
which determine the singularities of the infinite system. 
Let us, for instance, consider the aforementioned Ising model (5.1) at temperature T .  
In d > 2 space dimensions a phase transition a t  a critical temperature T, occurs, from 
a paramagnetic phase at high temperature (T > T,) to a ferromagnetic phase at low 
temperatures (T < T,). The order parameter, indicating the appcarance of magnetic 
order in this system, is the magnetization per site 

N 
where M = M ( S )  = C Si and 

i=l 

is the susceptibility. Here 6 := (T - T,)/T, denotes the distance from the critical 
point. The singular dependencies of m(T)  and x(T)  on 6 are valid for the infinite 
system. If N = Ld is finite one gets 

The correlation length < = 161-" is defined via the decay of spatial spin correlations: 

close to the critical point. Since the correlation length diverges at the critical point, 
C ( r )  holds for T = T,. q is another critical exponent that is related to y 
via [since d r C ( r )  = X ]  
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A useful way in which one can estimate the critical exponents from a set of Monte 
Carlo data for finite sizes L and different temperatures T (or distances from the critical 
point 6) is to  plot for instance X L ( ~ ) / ~ ~ / "  versus LSV or t = L' /~S.  Then data for 
different system sizes should fall on a single curve, the scaling function 2, according 
to (5.40). The exponents y and u as well as the critical temperature Tc are then fit 
parameters, by which one has to  try to  achieve the best possible data collapse for 
different system sizes. In Fig. 5.5 we show such a scaling plot for the two-dimensional 
Ising model. 
Note that the presence of three free fit parameters makes the data determination of the 
critical quantities using such a data collapse open to large systematic errors. It would 
be much better if one could estimate onc or two of these quantities separately such 
that the number of free parameters is reduced. Fortunately there is such a method 
for determining the critical temperature, similar to  the use of the percolating cluster 
probability in the aforementioned percolation problem, namely the dimensionless ratio 
of moments ("Binder cumulant") 

This quantity is the second cumulant of the probability distribution of the fluctuating 
magnetization per site m and it is 0 for a Gaussian and 1 for a double-delta function. 
Since this is exactly what one expects for the paramagnetic and the ferromagnetic 
phase, respectively, of a ferromagnet in the infinite system-size limit, this cumulant is 
a step function in the thermodynamic limit. Since for any moment of the magnetization 
one expects a scaling behavior similar to  (5.39): 

it follows that GL(T  = T,) is independent of system size and a family of curves for 
GL(T)  with different but fixed system sizes intersccts at T = T, (with corrections to 
scaling, i.e. the deviation from the asymptotic behavior for smaller system sizes). 
The practical procedure is exemplified in Fig. 5.5 for the two-dimensional Ising model. 
First the location of the critical point, T,, is determined by the intersection point of 
the curves for different system sizes of the dimensionless ratio of moments GL(T) ,  
c.f. Fig. 5.5a. Then the same data for GL(T) are plotted against the scaling variable 
L'/"(T - Tc)/Tc, where one chooses the exponent u such that the best data collapse 
is achieved, c.f. Fig. 5.5b. Next the magnetization exponent ,8 and the susceptibility 
exponent y are estimated by plotting the rescaled magnetization L - o I V r n L ( ~ )  and 
the rescaled susceptibility (T) against the scaling variable L'/"(T - Tc)/Tc, see 
Fig. 5 . 5 ~  and Fig. 5.5d, where one chooses the exponents ,6' and y such that the best 
data collapse is achieved and T, and u are, for instance, taken from a and b. Other 
quantities, like e.g. the specific heat can also be studied in this way, and the critical 
exponents (a  = 0, i.e. a logarithmic divergence in case of the specific heat of the 2d 
Ising model) extracted. 
One recognizes the similarity between the critical singularities for percolation and the 
one for a thermal phase transition - and also of the finite-size scaling behavior. Actu- 
ally for the case that there is one single length scale determining the transition (the 
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Figure 5.5: Finite-size scaling (FSS) behavior of the two-dimensional Ising model 
on the square lattice (with J = 1). The data are obtained with a conventional single 
spin-flip Monte Carlo simulation using Metropolis transition rates (5.17). (a) The 
dimensionless ratio of moments g r (T) ,  Eq. (5.43). The data for different system sizes 
intersect at the temperature T, = 2.27, which is indicated by the vertical line. This 

is the estimate for the critical temperature (which is exactly Tc = 2.269.. .). (b) 
Scaling plot of the dimensionless ratio of moments according to (5.43). The data of 
(a) are plotted against the scaling variable L1/"(T - T,)/T, with T, = 2.27 (from a) 
and v = 1 (which is the exact value). Note that the data collapse is good close to 
the critical point (around 0 on the x-axis) and gets worse far away from it. ( c )  The 
magnetization r n ~ ( T ) ,  rescaled by its FSS behavior at T,, L - ~ / " ,  versus the scaling 
variable L1/"(T - Tc)/Tc, with T, = 2.27 (from a), v = 1 and P = 118 (which are the 
exact values). Close to the critical point the data collapse according to (5.39) is good. 
(d) FSS-plot of the susceptibility XL(T),  Eq. (5.40), which is rescaled by its FSS at 
Tc, Ly/", versus the scaling variable L1/"(T - T,)/T,, with T, = 2.27 (from a),  v = 1 
and y = 714 (which are the exact values). 

correlation length) this is the generic scenario (there are always exceptions, but as a 
working hypothesis it is good for many systems); an order parameter, its susceptibility 
and the correlation function (including a characteristic lengths scale, the correlation 
length) yield a set of critical exponents: a,  for the specific heat, P,  for the order pa- 
rameter, y, for the order parameter susceptibility, u for the correlation lengths, etc., 
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and usually only 2 of them are independent; in the case when the hyper-scaling rela- 
tion 2d = 2 - a is violated, 3 of them. These determine the universality class of the 
system. 
Now we will shortly introduce the notion of universality.  According to the theory of 
critical phenomena including the renormalization group, the exponents determining 
the critical singularities of a many particle system at a second order phase transition 
depend only on features like the space dimension d, the number of components of the 
order parameter (e.g. I for the Ising model, 2 for XY spins etc.), the range of the 
interactions (short-range versus long-range, like e.g. Coulomb), possibly on quenched 
disorder (see below, depending on whether it is relevant or not), sometimes on the 
type of frustration (e.g. for spin glasses, see Chap. 9), etc. But they do not  depend on 
microscopic features like the detailed lattice structure of next and next-to-next nearest 
neighbor interactions (as long as no frustration arises through these additional inter- 
actions), i.e. they are universal The two-dimensional Ising model has the same critical 
exponents (a, p, y, etc.) for nearest neighbor interactions on the square lattice, the 
triangular lattice, the hexagonal lattice, the Kagomk lattice etc. Even if ferromagnetic 
next-nearest (or n-nearest) neighbor interactions are considered, the exponents will 
not change. The same for the three-dimensional case, which is particularly useful, 
since the critical point in the aforementioned (p, V) phase diagram of for instance 
water is in the universality class of the 3d Ising model (the density corresponds to  
the magnetization, the chemical potential to  the external field. and on a lattice the 
presence of a molecule corresponds to  spin up, the absence to  spin down). This is one 
of the most important reasons why physicists are interested in the models we discuss 
in this book. These models will never describe an experimental system in all details 
- but the concept of universality tells us that this is not necessary as far as critical 
phenomena are concerned. 

5.5 Disordered Systems 

In all solid materials there is some quenched or frozen i n  disorder, even extremely pure 
materials contain impurities and defects. Surprisingly small amounts of impurities 
can significantly influence the phase transitions by which ordered structures form and 
in some classes of materials the quenched randomness is substantial and completely 
dominates their physical properties. Glasses and alloys, for instance, can be designed 
to have properties not achievable with pure elements or periodic structures. 
A typical example for a system in which the least amount of disorder (in finite con- 
centration, though) changes the universality class of a phase transition (i.e. alters the 
critical exponents characterizing it) is the random bond Ising ferromagnet in three 
space dimensions: 

where Si = &I, the sum runs over all nearest neighbor pairs of spins of a simple cubic 
lattice and the Jij(> 0) are quenched random variables (independently identically 
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distributed, in other words: uncorrelated, random variables) obeying a probability 
distribution, for instance a binary (or called bimodal) distribution P ( J i j )  = 1/26(Jij - 
J1) + l /26(Jij  - J 2 )  with J2 > J1 > 0. 
The fact that these interaction strengths are quenched or frozen in, modeling the 
quenched disorder in a real 3d magnet with short range interactions and an Ising 
symmetry, implies that they have to  be chosen according to  their distribution and fixed 
before calculating any physical quantity with this Hamiltonian. Therefore one cannot 
expect a priori that the thermodynamic expectation values, such as magnetization or 
specific heat, are independent of the specific choice of these random variables. Indeed 
it turns out that for instance correlation functions at  the critical point (where the 
correlation length becomes infinite) show strong sample to sample fluctuations (i.e. 
strong variations among their thermal expectation values for different realizations of 
the disorder). Wiseman and Domany have shown [13] that ratios such as 

describing the variance of the the distribution of the observable O generated by the 
disorder realization, do in general not decay to  zero when the ratio of system size and 
correlation length, L / ( ( T ) ,  approach zero, i.e. when [ diverges, e.g. a t  a critical point. 
One speaks of lack of self-averaging in this case. Away from a critical point, however, 
one expects self-averaging of all quantities 0, since then Ro - ((/L)d for L >> E .  
Other quantities, like the free energy, have the property of being self-averaging even 
at  the critical point, which means that their fluctuations between different disorder 
realizations become smaller with increasing system size. As a rule of thumb one can 
say that the most interesting variables, namely those providing information about the 
order emerging at a phase transition do show strong sample to  sample fluctuations and 
things usually get worse when considering larger system sizes. Therefore in most cases 
it is mandatory to  average the results over many thousands of disorder realizations 
and it is recommended not only to  study average values but the whole distribution of 
the observables. 
Hence we have to compute two averages: one over the different disorder realizations 
and one thermal average for each disorder realization. For instance the average mag- 
netization is then defined as 

or the average susceptibility 

where [. . .Iav denotes the average over the quenched disorder, and (. . . )T the thermal 
average with fixed realization of the disorder. More explicitly this means for the 
random Ising ferromagnet (5.45): 
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In pract,ice (i.c. in a computer simulation) the exact average over the random vari- 
able has to be replaced by an unbiased sum over a large enough number of disorder 
realizations. 
When computing ground-state properties of a model with quenched disorder the ther- 
mal average is simply replaced by the computation of the (exact) ground state(s) S 
and an evaluation of the observables under consideration in this state(s) S. 
The random-field Ising model, for instance (see Chap. 6), 

where hi is a random variable, modeling a random external field, obeying some distri- 
bution with zero mean and variance h; has in three space dimensions a phase transition 
also at zero temperature (T = 0) from a paramagnetic phase (m = 0) to a ferromag- 
netic phase (m > 0) at a critical strength h, of the random fields. If SO@) denotes the 
ground state of the Hamiltonian H with random fields h the average magnetization is 
simply 

Sometimes one is interested in correlated disorder, for which only the generation of 
the random variables has to  be adopted such that the joint distribution is obeyed, for 
instance P (h l ,  . . . , h N )  instead of ni P(h i ) .  
The physical applications presented in this book are predominantly disordered systems 
so that we can skip the presentation of examples here: they will come in abundance 
in the later chapters. 
The concept of universality, which we mentioned in the previous section concerning 
critical phenomena, carries over to critical points in disordered systems as well and 
implies here, besides the irrelevance of microscopic details of the model, that the crit- 
ical exponents do not depend on the detailed probability distribution of the disordcr. 
However, this idea is far from being as well established for disordered systems as it 
is for homogeneous systems, simply because exact results for disordered systems are 
rare and renormalization group calculations for field theories of disordered systems are 
difficult. Here one should note that only the exactly solvable disordered models do 
display this universality (e.g. the Mc-Coy-Wu model which is a 2d random ferromagnet 
with disorder only in one space direction). 
On the other hand a number of numerical calculations (Monte Carlo at finite temper- 
ature as well as ground-state calculations at zero temperature) for spin-glass models 
1141 as well as random-field models [15] appear to  bc incompatible with the concept of 
universality: so a binary distribution seems to yield a differcnt set of critical exponents 
than a continuous distribution. The usual argument brought against these numerical 
results by the community of believers in universality is that these computations are 
still in a pre-asymptotic regime, where finite-size effects are still strong and the true 
and unique disorder fixed point is still too far away when reuormalizing thc system 
sizes that could be studied. We are inclined to  use Occam's razor in any unclear situa- 
tion and simply recommend that it is always good to think twice before one abandons 
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an appealingly elegant concept like universality, even if there is no rigorous proof that 
it holds in the particular case one is considering. Nevertheless, when the numerical 
evidence against it grows in strength over the years, it might be a good time to start 
to  think about something new. 
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6 Maximum-flow Methods 

This chapter introduces a model for a certain class of random magnetic systems. They 
consist of lattices where the atoms have a small magnetic moment, i.e. a spin.  Within 
this model, for neighboring spins it is energetically favorable to  point in the same 
directions, which means they interact ferromagnetically.  A magnetic field acts on 
each spin, its sign and strength may change randomly and independently from spin to 
spin. These types of systems are described by random-field models. They have been 
studied widely by means of computer simulations and analytical calculations. 
There are no direct experimental realizations of random-field systems, but it can be 
shown that another class of systems, the diluted antiferrornagnet in a field (DAFF), 
can be mapped onto random-field systems. The DAFF consists of spins on lattices 
as well, but neighboring spins interact antzferromagnetically.  The system is called 
diluted, because not all sites of the lattice are occupied by magnetic atoms. Similar 
to  the random-field model, a magnetic field acts on the spins, but it has the same 
direction and the same strength for all spins, i.e. it is homogeneous. 
Here we are interested in the low temperature-properties of random-field systems and 
diluted antiferromagnets, especially in the ground states. From the viewpoint of a 
computational physicist, the calculation of ground states of this type of system belongs 
to  the class of P problems, i.e. the T = 0 behavior can be studied for large system 
sizes. 
Initially both models and some basic results are presented. Then it is shown how 
these systems can be mapped onto networks. It is demonstrated that the maximum 
flow through such a network is equivalent to  the minimum energy of the corresponding 
system. Next, for pedagogical reasons, a simple algorithm for calculating the maximum 
flow is presented. Unfortunately, this algorithm turns out to  be very slow. Therefore, 
in the main part of this chapter a highly efficient method is presented. Sometimes 
random-field systems and diluted antiferromagnets exhibit a huge number of ground 
states, i.e. the ground state is degenerate. It is explained how all different ground 
states of such a system can be calculated by a second calculation after the maximum 
flow has been obtained. Finally some of the most interesting results obtained with 
this algorithms are shown. 
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6.1 Random-field Systems and Diluted 
Ant iferromagnets 

In this chapter Is ing models  are studied. They are d-dimensional lattices of Ising spins 
oi = &I. For the random-field Is ing m a g n e t s  ( R F I M ) ,  they interact ferromagnetically 
with their nearest neighbors. A local random magnetic field Bi acts on each spin. The 
system has the following Hamilton function 

The sum ( i ,  j )  runs over pairs of nearest neighbors. J > 0 denotes the magnitude of the 
interaction. Here only simple cubic lattices are considered. Since physical properties 
depend on the values of the Bi one has to  implement quenched disorder.  This means 
that the local magnetic fields are drawn independently from a probability distribution 
p(B) and remain fixed throughout a calculation or simulation. A system with a certain 
choice of the values {Bi} is called a realization of the disorder. Since the result of each 
calculation depends on the choice of the {B i ) ,  one has to repeat the process scveral 
times and average the results over many realizations. It turns out that for random 
systems the results vary strongly from realization to  realization. Therefore one needs 
many of them to obtain reliable results, which is very common when studying random 
systems. 
For the distribution of the random fields, usually either a bimodal or a Gaussian 
distribution are used to  draw the random realizations. In the case of a bimodal dis- 
tribution the local fields take one of two values Bi = +A with equal probability. For 
the Gaussian case arbitrary fields are allowed. The probability density functions are 

The parameter A, the width of the distribution, is a measure for the strength of the 
disorder. For A = 0 a pure ferromagnet is obtained. Several attempts to  treat the 
system analytically have been performed [I ,  21. For a review of results obtained by 
means of computer simulation, see [3]. 
As already mentioned, there is no direct experimental realization of a random-field 
system. Instead diluted antiferromagnets in a field are studied. Later we will see that 
indeed the behavior of the RFIM agrees remarkably with that of the DAFF. Before 
we present the algorithms to calculate ground states for these models, we will focus a 
little bit on the DAFF. 
The system FeF2 is an antiferromagnet. By replacing some of the magnetic Fe by 
non-magnetic Zn one obtains FexZnl-,F2, and a diluted antiferromagnet is created. 
The crystal structure is that of rutilc (TiOa) (see Fig. 6.1). The only relevant type of 
interaction is the antiferromagnetic superexchange ncxt-nearest-neighbor interaction 
between the Fe atoms on the body corner and the body center sites. This kind of 

interaction is generated by the intermediate F atoms. Otherwise the Fe atoms would 
be ferromagnetic. 
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At low temperatures this system exhibits many peculiar properties, e.g. it develops 
frozen domains, as found by neutron-scattering experiment [4]. An overview of exper- 
imental results is given in [5]. 

Figure 6.1: Crystal structure of Fe,Znl-,Fz. Small circles denote the Fe/Zn sites 
while the large circles are the F sites. The eight corner sites (Fe/Zn) are shared by 8 
lattice cells, while the body-center site is not shared. The upper and lower pairs of F 
sites are shared by two cells, while the left and right sites are not shared. All together 
there are 2 Fe/Zn sites and 4 F sites per lattice cell. 

For diluted antiferromagnets with a high anisotropy, like Fe,Znl-,Fa, at  low temper- 
atures, the spins, i.e. the magnetic Fe moments, are usually oriented along one axis 
(the c axis of the crystal). Thus, they can take only two directions, called "up" and 
"down". It is assumed this the reason for that anisotropy is a slight deviation of the 
crystal structure from the pure cubic symmetry. 
The Ising model, which has been presented above, is very well suited to  describe such 
type of system. For the case of a DAFF, the spins interact antiferromagnetically with 
their neighbors. Please note that only the strong interactions are considered in the 
following model. So the F atoms are not considered here, since they do not contribute 
directly to  the magnetic behavior. As a consequence, a simple cubic crystal structure 
is sufficient. To describe the dilution, i.e. the fact that not all Fe/Zn sites are occupied 
by magnetic Fe atoms, a second variable c, = 0 , l  is introduced. A non-magnetic Zn 
site is represented by c = 0 while c = 1 holds for a site occupied by a spin (Fe). 
Additionally, an external magnetic field B can act on the system. Therefore, the 
energy of a diluted antiferromagnet in a field is given by 
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The strength of the interaction is denoted with J > 0. The sum (i, j )  runs over pairs 
of nearest neighbors. Here only simple cubic lattices are considered. Like the random- 
field model, diluted antiferromagnets exhibit quenched disorder. Each realization is 
characterized by a set {ti) of independent random numbers, here we will consider 
~i = 0 , l  with equal probability. 
What can we expect for the behavior of this model? In zero field and with zero tem- 
perature the ground state, i.e. the state with the lowest energy, is taken. Therefore, in 
(6.4) configurations {ai) are favorable where neighboring spins take different orienta- 
tions, because their contribution to  the energy Jaiaj = - J turns out to be negative. 
It means that, apart from the fact that not all lattice sites are occupied, the system can 
be divided into two sublattices, which penetrate each other in checkerboard fashion. 
On one of these sublattices all spins point in one direction (say up), while the spins of 
the other sublattice are oriented in the opposite way. In Fig. 6.2 an example of a d = 2 
dimensional diluted antiferromagnet at B = T = 0 is shown. In higher dimensions the 
model behaves similarly, but it is more difficult to  draw. 

Figure 6.2: Two-dimensional diluted antiferromagnet without external field. The 
spins are indicated by arrows. Shown is a ground state T = 0. Please note that the 
configuration which is obtained by reversing all spins is a ground state as well. 

By increasing the temperature, the DAFF is driven away from the ground state. 
This means the spins start to fluctuate thermally. When some critical temperature is 
reached the system becomes paramagnetic (PM). Also by increasing the magnitude of 
the external magnetic field, the antiferromagnetic order is disturbed. For large values 
of B, especially if lBI > 2dJ, all spins point in the direction of the field (at T = 0). 
These expectations can be recovered in the schematic phase diagram of the three- 
dimensional DAFF model (50% dilution) which is shown in Fig. 6.3. It was measured 
by means of Monte Carlo simulations at finite temperature T, see Refs. [6, 71. The 
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Figure 6.3: Schematic phase diagram of the DAFF in the B-T plane, obtained by 
MC simulation [6]. Three regions can be identified: antiferromagnetic (AFM), domain 
state (DS) and paramagnetic (PM). 

ordered phase for low temperatures and low fields was established by evaluating the 
staggered magnetization 

Here, x ,  y, z are the spatial coordinates of spin i .  This order parameter accounts for 
the fact that in the presence of order the two penetrating sublattices have opposite 
magnetizations. Therefore a = 1 holds for antiferromagnetic order on a cubic lattice. 
The transition of the so called domain state (DS) t o  the disordered phase is established 
in the following way: for a given field B the system is initialized in an ordered state 
a t  T = 0 and the MC simulation starts. Then, slowly the temperature is increased, 
here up to  T = 2.5. This process is called field heating (FH). The temperature is 
then slowly decreased again (FC=field cooling). Now the system is not able find the 
way back to  the starting configuration. This can be seen by recording the staggered 
magnetization. At some temperature Ti,,(B) the FH and FC curves begin to  deviate 
from each other. This is called an onset of irreversibility. The line which separates 
the PM and the DS regions in Fig. 6.3 is just Ti,, as a function of B .  Please note 
that the value of Ti,, (B) defined in this fashion depends on the dynamics, i.e. on the 
heating/cooling rate. A more detailed study has shown that the DS region can be 
characterized by large fractal domains penetrating the system. 
The behavior of true diluted antiferrornagnets agrees very well with these computer 
simulations. But it is relatively hard to  treat this model by means of an analyti- 
cal approach. As a consequence random-field systems are usually studied. It  can 
be shown fairly easily that quite often a DAFF can be mapped onto an RFIM. The 
mapping works for example in the case of a simple cubic (or square) lattice. One per- 
forms a gauge transformation by introducing new spin variables oi = (-1)2+Y+Zci; 
where x,  y, z are the spatial coordinates of spin i. This transformation multiplies in a 
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checkerboard fashion every second spin with minus one, thus all bonds become ferro- 
magnetic. The resulting Hamiltonian describes a diluted ferromagnet with staggered 
field B, = (-l)"+y+"B. Please note that this kind of transformation does not work 
for all lattice types, it fails for example for triangular lattices. An example of such 
transformation can be found in Sec. 9.2. 
As already mentioned, random-field systems are easier to  treat analytically. For this 
reason, most of the theoretical research has focused on this model. We finish this 
section by stating the expectations about the basic behavior of the model. With low 
temperatures and low fields the system exhibits a ferromagnetic long range order. For 
large temperatures the system becomes paramagnetic. By increasing the strength A 
of the random fields, the spins tend to be oriented along the direction of the field. If 
lBzl > 2dJ spin i is fixed (at T = 0). But at zero temperature for intermediate values 
of the field a peculiar behavior of the RFIM appears, similar to  the DS phase of the 
diluted antiferromagnet. This region of the phase diagram can be studied by means 
of ground-state calculations. The basic idea of the method for obtaining the ground 
states is explained in the next section. 

6.2 Transformation to a Graph 

Now it is shown that for a given RFIM an equivalent network can be constructed such 
that the maximum flow through the network is equal to  the ground-state energy of the 
RFIM. This transformation was introduced by Picard and Ratliff in 1975 [8].  Addi- 
tionally, the orientations of the spins in a ground state can be easily constructed from 
the flow values the network takes. In the case where the ground state is degenerate, 
all ground states can be obtained by a subsequent calculation. This case is treated in 
a Sec. 6.5. 
Please note that there are other systems, where the ground-state calculation can be 
mapped onto maximum-flow problems in networks. Examples are interfaces in random 
elastic media [9, 101 and fracture surfaces in random fuse networks [Ill .  
It is more instructive to  start with a network and to show how it can be transformed 
into an RFIM. Let N = (G, c, s,  t) a network, where G = (V, E) is a directed graph 
which has n + 2 vertices, c : V x V + 72; are the capacities of the edges (i, j) E E, 
with c(i, j) = 0 if (i, j )  6 E. The vertices s , t  E V are the source and the sink of the 
network, respectively. For convenience, we use V = {0,1,.  . . , n, n + I )  where s r 0 
and t n + I ,  and the notation cij r c(i, j). The vertices in V \ {s, t )  are called inner 
vertices. Edges connecting only inner vertices are also called inner edges. 
As we havc seen, a network can be interpreted as a system of pipes connecting the 
source with the sink. Now, assume that the network should be divided into two pieces 
in a way that the source and the sink are separated. You can think of a pipeline 
system and a group of terrorists who like to  prevent the oil from being transported 
t o  the refinery. Mathematically, this separation is a (s,t)-cut (S ,S )  which has the 
following properties: 
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Usually, we denote the elements of S left  and the elements of 3 right of the cut. In 
Fig. 6.4 an example network with 5 nodes and 6 edges is shown. 

Figure 6.4: A graph with 3 inner vertices 1,2,3.  A cut (S ,$  = ({s, I) ,  {2,3 ,  t } )  is 
represented by a dashed-dotted line. The capacity of the cut is C ( { s ,  I), {2,3 ,  t } )  = 

c,2 + c I 3 )  The edge (1,2) does not contribute to the cut, because it is oriented in the 
opposite direction to  the cut. 

Since the amount of work (or TNT) to  remove a pipeline grows with its capacity, the 
terrorist are interested in the capacity of the pipes they have to  remove. These are 
exactly the pipes which go from S to 3, that means from left to right. We say these 
pipesledges cross the cut. Edges in the opposite direction cannot contribute to a flow 
from the source to the sink, thus they are disregarded. The sum of the capacities of 
these edges is called the capacity C(S, 3) of the cut 

ztS,.ltS 

In the example presented in Fig. 6.4 the capacity of the cut is C ( S , S )  = c , ~  + CIS .  

The edge (1,2) does not contribute, since it leads from right to  left. 
The basic idea to  represent a Harniltonian by a network is to  represent a cut by a 
binary vector X = (zo ,  xl  , . . . , z,, x ,+~ )  with 

For an (s,t)-cut the values of xo = 1 and x,+1 = 0 arc fixcd. An edge (i ,  j )  goes 
from left to  right of the cut only if x, = 1 and x, = 0. Therefore, the formula for the 
capacity of a cut can be rewritten in the following way (all sums run from 0 to n + 1): 
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Here, it can already be seen that the structure of the formula resembles the energy 
functions for the random-field system: it consists of a linear and a quadratic term. 
To make the correspondence complete, the values of the source and the sink xo = 
1,2,+1 = 0 have to  be inserted, additionally q, = 0 Vi is assumed. For didactic 
reasons, the capacities involving the source 0 or the sink n + 1 are written as extra 
terms. One obtains: 

The last slight difference to  a Hamiltonian is that the capacity is given in terms of 
zero-one variables xi = 0 , l  while a spin may take oi = +l .  Thus, one can identify xi = 
0.5(ni + 1). In the Hamiltonian the sum runs over all bonds, while for C ( x l , .  . . , x,) 
each pair of vertices appears twice in the quadratic term. Thus, the identity Cij cij = 

(cij + cji) is used. In the final formula all sums run from 1 to n:  

This formula represents a system which has n + 2 vertices: one source, one sink and 
n (inner) vertices, one for each spin oi. The model is slightly more general than the 
system represented by the Hamiltonians in (6.1) and (6.4). Thus, formula (6.10) can 
be compared with an energy function which generalizes both Hamiltonians (ci = 0 , l ) :  

This is a diluted random-field system with bonds of variable strengths. Another kind 
of model which falls into this class is the random-bond ferromagnet [12, 131, were 
the system is not diluted nor does it have a random field, but the strengths of the 
ferromagnetic bonds are drawn randomly. 
Now we want to  choose the capacities cij in such a way that the systcm (6.11) is 
represented by a network. By comparison with (6.10) we find cij + cji = 4Jijcitj for 
i, j E 1 , .  . . , n. Since for a network only non-negative capacities are allowed, the bond 
values have to  be non-negative as well. Both cij and cJi appear in the equality, so 
there is some freedom of choice. We chose that non-zero capacities shall be present 
only for edges (i, j )  with i < j .  The reason for this choice is that we have only edges 
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going from vertices with smaller number to  vertices with higher number. This allows 
some algorithms to  be implemented in a way that they run faster. For the capacities 
we obtain i ,  j E 1,. . . , n: 

Now we are left with the capacities C O ~ ,  ci,,+l (i  = 1 , .  . . , n) and C O , ~ + I .  Next, the 
linear terms in (6.10) and (6.11) have to  be compared. Defining 

we obtain -coi + ~ i , ~ + l  = wi. The value of w, may be positive or negative. Again, all 
capacities have to  be non-negative. Therefore, we get 

Finally, since the sum of the constant terms in (6.10) must vanish, we obtain 

The capacity co,,+l of the edge may be positive or negative. But in this case it does 
not matter, since this edge crosses every (s, t)-cut of the network. Consequently, it 
can be removed from the network at  the beginning. Later, after the capacity of a cut 
has been obtained, the value of co,,+l has to  be added to obtain the energy of the 
corresponding system. 
To summarize, for a system defined by the energy function (6.11) an equivalent net- 
work can be constructed by creating a graph which has one vertex for each spin and 
additionally a source and a sink. The capacities of the edges are chosen by performing 
the steps given through Eqs. (6.12, 6.14, 6.15). Then, every configuration of the sys- 
tem corresponds to a cut in the network (oi = 2zi - 1) and the energy H(cl , .  . . , CT,) 

is equal to  the capacity C(zl, . . . , z,) of the corresponding cut. 
Since we are interested in ground states, a minimum of the energy is to be obtained. 
Consequently, we are looking for a minimum cut ,  that is a cut among all cuts which 
has minimum capacity. Such a cut cannot be obtained directly, but it is related t o  the 
flow going through the network. Each flow must pass the edges crossing an arbitrary 
cut, especially the minimum cut. Therefore, the minimum cut capacity is an upper 
bound for the flow. On the other hand, it can be shown that the maximum flow which 
is possible is indeed given by the capacity of a minimum cut. The proof was found by 
Ford and Fulkerson in 1956 [14]. Versions of the proof which arc more instructive can 
be found in [15,16,17]. Along with the proof a simplc method for finding the maximum 
flow was introduced. After constructing an equivalent network such a technique can 
be applied to  find a ground state of a random-field Ising system. The Ford-Fulkerson 
algorithm and an extension of it are presented in the next section. 
But before we proceed with the algorithms, as an example, we look at  a small random- 
field system, which is shown in Fig. 6.5. There are four spins arranged in a square, 
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neighbors interact via ferromagnetic interactions of strength J = 1. The local fields 
have the values B1 = 0, B2 = -2A, B3 = 2A, and B4 = 0. Even for this tiny system 
many different effects, depending on the magnitude of A,  can be studied. 

Figure 6.5: A small random-field Ising magnet. It contains 4 spins coupled via 
ferromagnetic interactions (512 =J13 =J24 =534 = 1). The local fields have the 
magnitudes BI = 0, B2 = 2 A ,  B3 = 2A, and B4 = 0. 

Now, an equivalent network is constructed. It contains n = 4 inner nodes, one for 
each spin, and additionally one source 0 and one sink n + 1 = 5. We start by setting 
the capacities of the inner nodes. According to (6.12) we get 

C12  = 4J12 = 4 

C13 = 4 

ca4 = 4 

C34 = 4 

cij = 0 for all other cases 1 5 i , j  5 4 

These values do not depend on the strength of the local magnetic fields. But they 
enter the expressions for the auxiliary values wi, see (6.13) 

At first the case A = 0 is investigated. Thus, no magnetic field acts on the spins. 
A ferromagnetically ordered ground state is to  be expected, thus all spins point up 
or all spins point down at T = 0. Since each bond contributes an amount of -1 to 
the energy, the total ground-state energy sums up to Eo = -4. This behavior can 
be extracted from the corresponding network as well. By setting A = 0 in (6.17) we 
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obtain wl = -4, w2 = 0, WQ = 0, and w4 = 4. According to (6.14) the capacities of 
the edges connecting the inner vertices to  the source and the sink are 

Figure 6.6: The network obtained for the system from Fig. 6.5 for the case A = 0. 
Vertex 0 is the source and vertex 5 the sink. The numbers next to the edges denote 
their capacities. 

The capacity of the phantom edge connecting source and sink evaluates according to  
(6.15) to  ~ 0 5  =-0.25(4 + 4 + 4 + 4) - 0.5(4 + 0 + 0 + 4) = -8. The final network 
is presented in Fig. 6.6. Thc network allows for two minimum (0,5)-cuts, indicated 
by dot-dashed lines in the drawing. Both cuts have capacity C(S ,S )  = 4 + co,s = -4 
which is indeed equal t o  the ground-state energy obtained above. The cut denoted 
with an "A" is given by (S, 3 )  =({O), {1,2,3,4,5)) .  This means xo = 1 and xl = 22 = 
23 = x4 = ~ 5  = 1. Using oi = 2zi - 1 ai = 1 for i = 1 ,2 ,3 ,4  is obtained. Thus, really 
all spins are oriented in the same direction. The cut "B" (s, 3) =({0,1,2,3,4),  (5)) 
corresponds to the configuration where all spins are pointing down. 
In the case A = 1 the following values for the capacities are obtained: 

Thc resulting nctwork is shown in Fig. 6.7. Now six different minimum cuts are 
possible. At a first glance the figure might look somewhat complicated. But it is 
easy to  verify that indeed all minimum cuts A to F have capacity C = 8 + c o ~  = -4. 
Please note that only the edges contribute which go from the left side of the cut to  the 
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Figure 6.7: The network obtained for the system from Fig. 6.5 for the case A = 1. 
Vertex 0 is the source and vertex 5 the sink. The numbers next to the edges denote 
their capacities. 

right side. Thus, to the cut F ,  the edges ( 0 , l )  and (4,5) contribute to  the capacity, 
but not the edges (1,3) or (2,4).  The corresponding spin configurations are drawn in 
Fig. 6.8. There the small plus and minus signs state the contributions of the single 
spinslspin pairs to the total ground-state energy. In all 6 cases the ground-state energy 
is Eo = -4, which is again equal to the capacity of all minimum cuts. The six ground 
states can be described as follows: for two configurations the system is ordered, all 
spins either point up or all spins point down. For the two ordered configurations one 
of the spins 213 is oriented against its local field. The remaining four ground states are 
characterized by the fact that spins 2,3 point in the direction of their local magnetic 
fields and the remaining spins can be either up or down independently. 
The example graphs we have presented here will also be used in the next section to  
elucidate how the algorithms for calculating maximum flows work. 

6.3 Simple Maximum Flow Algorithms 

In this section two algorithms for calculating the maximum flow in a network from 
the source to  the sink are given. First a description of the historically first method is 
given which was invented by Ford and Fulkerson in 1956 [14]. Then it is shown by a 
simple example that the running time of this algorithm has no polynomial bound in the 
number of nodes and edges, thus it is not suitable in practice. Finally, a variant of the 
Ford-Fulkerson algorithm, developed in 1972 by Edmonds and Karp [18] is explained, 
which indeed has a polynomial time complexity. As usual, the way the algorithms 
work are illuminated by giving sample runs. A compact description of the methods 
explained here along with proofs for correctness and time complexity can be found in 

[191. 
Let N = (G, c, s, t )  a network, where G = (V, E) is a directed graph which has n + 2 
vertices, c : E + R,f are the capacities of the edges ( i ,  j )  E E and s ,  t E V are the 
source and the sink, respectively. Let f  be a flow in N, i.e. f i j  denotes the flow from 
vertex i to vertex j .  Please remember that f i j  = - f j i  and the that flow is conserved 
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Figure 6.8: Ground states of the RFIM shown in Fig. 6.5 for the case A = 1. The 
system has 6 ground states with the same energy Eo = -4. The arrows indicate the 
orientations of the spins. The plus and minus symbols represent contributions to the 
ground-state energy. 

in all vertices except the source and the sink. It is assumed that all capacities are 
non-negative integer (or rational) values. The aim is to  find the maximum flow from 
the source to  the sink. 
The basic idea of the Ford-Fulkerson algorithm is to start with an empty network and 
to try to  push additional flow from the source to  the sink. This is done by searching 
for paths along which the flow can be increased, they are called augmenting paths. If 
no such path is found, the algorithm stops and the maximum flow has been found. 
But for each single edge, the flow through the edge is not always increased or remains 
the same. Sometimes it is necessary to  decrease the flow in some edges, to increase 
the total flow through the network. This case appears when a certain amount of flow 
is redirected within the graph. To treat this redirection process efficiently the notion 
of a residual network is useful. The residual network R (often called residual graph) 
for network N and flow f has the same vertices as the graph G. It contains edges with 
nonzero capacities ri, whenever in G with a given flow f it is possible to  increasc the 
flow along edge (i, j). Please note that it is also possible to  increase a negative flow in 
(i, j) by decreasing the flow in the reverse edge (j, i). Formally R is defined as follows: 
R = (G' , r, s ,  t ) ,  G' = (V, E ' )  with 

The graph G' contains directed edges (i, j) for all nonzero capacities I-,, > 0. Please 
note that in the residual network two vertices (i, j) may be connected by two edges 
(i, j) and (j, 2). 
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The Ford-Fulkerson algorithm reads as follows 

algorithm ford-fulkerson(N) 
begin 

Initially set fij := 0, fji := 0 for all (i, j )  E E; 
do 

construct residual network R with capacities rig; 
if there is an augmenting path from s to  t in G then 
begin 

Let rIni, the minimum capacity of r along this path; 
Increase the flow in N along the path by a value of r,i,; 

end 
until no such path from s to  t in G' is found; 

end 

For each augmenting path the edge with the smallest capacity is a bottleneck. This 
is the reason why the flow along the path can be increased only by the amount of the 
minimum capacity r,in. The augmenting path can be constructed using a breadth-first 
search. 1.e. beginning at  the source iteratively neighboring vertices are visited which 
have not been visited before. During this search at  each vertex i the predecessor in 
the actual path and the minimum residual capacity r,in(i) along the path up to  i are 
stored. In this way each vertex which is connected to  the source is visited exactly once. 
If an augmenting path is found, i.e. if the sink has been visited during the brctadth- 
first search, the flow can be augmented directly by starting a t  the sink. Iteratively 
the predecessor is visited and the flow increased by r,i,(t) until the source is reached 
again. 
Please note that the algorithm may not converge to  the true maximum flow if the 
capacities are irrational, an example is given in [20]. 

Figure 6.9: Initial residual network of small randoni-field system. An augmenting 
path is highlighted. The values next to the edges denote the residual capacities. 
The values in parentheses state the amount of flow which can be pushed along the 
augmenting path. 

As an example we will investigate how the algorithm calculates the maximum flow 
through the network given in Fig. 6.7. At the beginning the flow is empty, so the 
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residual network is equal to  the original network. A possible augmenting path from 
the source 0 to  the sink 5 is given by the vertices 0, 1, 3, 4, 5. Each edge along 
the path has (residual) capacity 4, thus it is possible to  increase the flow along the 
path by this value. The residual graph is is shown in Fig. 6.9, the augmenting path 
is highlighted. The values in parentheses next to  the edges state the amount of 
additional flow which can be pushed through cach edge along the augmenting path. 
In this case the resulting original network with the flow after the augmentation looks 
the same. 

Figure 6.10: Residual network of small random-field system at the second iteration. 
Now, only one augmenting path exists (highlighted). Again, the values next to the 
edges denote the residual capacity. The values in parentheses state the amount of 
flow which can be pushed along the augmenting path. 

For the second iteration, again the residual network is has to  be calculated. Now, for 
example in edge ( 0 , l )  the flow fo l  = 4 = col is present. This means that the residual 
capacity in direction (0 , l )  is rol = col - fol  = 0, but for the reversed direction a 
value of rlo = clo - f l o  = 0 - (-4) = 4 is obtained. The complete residual network 
is shown in Fig. 6.10. In this case only one augmenting path is feasible: 0 ,3 ,1 ,2 ,5 .  
The capacity of this path is 4. Please note that by augmenting the flow through edge 
( 3 , l )  in the residual network, this results in a decrease of the flow through edge (1,3) 
in the original graph. The resulting total flow for the graph is displayed in Fig. 6.11. 
Now both edges ( 0 , l )  and (0,3) are satisfied. As a consequence, in the corresponding 
residual network rol = 0 and ros = 0, i.e. no edge leaves the source. This means that 
no augmenting path exists. Consequently, the maximum flow has been found. 
How fast is the Ford-Fulkerson algorithm? Since in each step the flow is increased at  
least by the amount of one (if the capacities are integers, as assumed), a time bound 
of O(f,,,) is obtained, where f,,, is the maximum flow. Unfortunately, it is not 
possible to  find a polynomial in the number of vertices and the number of edges which 
bounds the time complexity of the method. The reason is that the way an augmenting 
path is chosen is not determined in any way. The effect of this can be demonstrated 
by a simple example. Consider the graph in Fig. 6.12. It is similar to the preceding 
example graph, but the capacities are different. Assume that the augmenting path is 
0 , 1 , 3 , 4 , 5  (highlighted). Then the residual capacity of this path is 1, by this amount 
the flow through the graph is increased. The resulting residual network is shown in 
6.13. Now, an augmenting path is given by 0,3,1,2,5 .  Again, the flow is increased by 
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Figure 6.11: Final flow in network of small random-field system. The values in 
parentheses state the amount of flow which flows through each edge. 

Figure 6.12: A tiny network where the Ford-Fulkerson algorithm may spend much 
time to calculated the maximum flow. Displayed is the residual graph of the first 
iteration. The resulting flow in the network after the first iteration is represented by 
the bold edges and the numbers in parentheses. 

one unit and the flow in Fig. 6.14 is obtained. 

Figure 6.13: The residual network of the tiny network after one iteration of the 
Ford-Fulkerson algorithm. 

Obviously, by always using these bad choices of the augmenting paths, the Ford- 
Fulkerson algorithm can be iterated for 10000 times, each time the flow is increased 
by one unit. On the other hand, it is possible to  calculate the maximum flow within 
two iterations if the augmenting paths 0 , 1 , 2 , 5  and 0 ,2 ,4 ,5  are chosen. 
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Figure 6.14: The tiny network after the flow has been increased two times by the 
Ford-Fulkerson algorithm. The embraced number give the flow through the edges, the 
other numbers state the capacities of the edges. 

This unfavorable behavior is avoided by an extension of the algorithm, which was pre- 
sented by Edmonds and Karp in 1972 [18]. The basic idea is to  choose an augmenting 
path which has the shortest distance from the source to  the sink, where each edge 
counts with distance one1. Algorithms for finding the shortest paths can be found in 
Chap. 4. It can be shown that indeed this algorithm has a polynomial worst-case time 
complexity of O(JV1 lEI2), which is in fact independent of the capacities of the edges. 
Since thc networks we are considering here are lattices, each vertex has a maximum 
number of neighbors, i.e. the number of edges is proportional to  the number of vertices. 
This results in a running time of O(IVI3). Modern algorithms are even faster. One is 
presented in the next section. Another approach, the push-relabel method, is described 
in Refs. [21, 22, 231. 

6.4 Dinic's Method and the Wave Algorithm 

The efficiency of the method of Edmonds and Karp can be further increased by consid- 
ering many augmenting paths in parallel as proposed by Dinic [24]. A comprehensive 
description of a simpler version can be found in [19]. This can be additionally speed 
up by applying a method described in [25]. For three-dimensional RFIM systems with 
bimodal couplings the corresponding networks can be treated, as found empirically 
[26], in @(N4I3) time, where N is the number of spins (remember IVI = N + 2). 
The basic idea is to  augment the flow through a network along several shortest paths 
in parallel. The actual algorithm comprises of several steps. First the level network 

is constructed, which is explained below. Using the level network a blocking flow is 
calculated, that is a flow which cannot be increased by adding flow along some paths. 
The blocking flow is calculated with Tarjan's wave-a1,gorithm [19] in the version given 
by Traff [25]. The description of this algorithm will be the central part of this section. 
The whole algorithm may contain several iterations beginning at  the construction of 
the level network, which is now explained. 

'Another version of the algorithm always chooses the augmenting path with the maximum (rcsid- 
ual) capacity. This results in a time complexity of O ( E  logcm,,), wherc c is the maximum capacity 
of all edges. 
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The starting point for the level network2 is the residual network R,  as defined pre- 
viously. The basic idea is the same as for the algorithm by Edmonds and Karp: the 
level network contains all shortest paths from the source to  the sink. In contrast to  
the previous method, here the flow can be increased along several paths in parallel. 
This is the key idea to obtaining an efficient algorithm. Let level(i) be the length of 
the shortest path in the residual network R from the source to vertex i. The level can 
be constructed using a breadth-first search, i.e. the algorithm given in the preceding 
section. This introduces the so called topological order of the vertices, which is just t,he 
order the vertices are visited during the search. Consequently, for each vertex all its 
predecessors have lower topological numbers while all successors have higher numbers. 
After the breadth-first search, the level network L N ( R )  is obtained by removing all 
edges (i, j )  from R which do not fulfill level(j) = level(i) + 1, thus only edges between 
neighboring levels are left. Please note that the levcl network is unique although the 
topological order may not be unique. We denote the capacities of the levcl network 
with t ( i ,  j ) .  
Since the methods presented here are more involved than the techniques presented 
previously, we need a slightly more complicated network to  illustrate the algorithms. 
It  is given in Fig. 6.15. The graphical representation clearly shows the levels of the 
vertices. For example level(2) = 1, level(7) = 3 and level(l2) = 5. The vertices are 
already numbered according an arbitrary topological order. 

Figure 6.15: An example network for demonstrating the wave algorithm 

The resulting level network does not contain the edge (2,6) since level(2) = level(6). 
For the same reason the edges (7,10) and (8,11) are not included. Now, there may be 
"dead ends" in the graph, i.e. vertices which are not connected to the sink. Thus, they 
cannot contribute t o  the maximum flow. These vertices are removed in the next step 
of the algorithm. For the example graph vertices 1 and 3 are removed. The outcome 
is displayed in Fig. 6.16. 
The reader may already have noticed the values written next to  the vertices in Fig. 
6.16. They are due to  the idea of Traff who introduced capacities p ( i )  also for the 

"he level network is often called level graph. 
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Figure 6.16: The resulting level network contains only edges ( i ,  j )  with l e v e l ( j )  = 

level ( i )  + 1. Dead ends are removed. The values next to the vertices are the vertex 
capacities introduced by Traff. 

vertices i .  These capacities give upper bounds for the maximum amount of flow which 
can leave a vertex i due to  the capacities of all succeeding edges on paths to  the 
sink. Since the sink itself has no successors, its capacity can be set to  infinity. All its 
predecessors allow for a flow which is bounded by the capacities of the edges to  the 
sink. For all other vertices we have to  realize that each edge cannot carry more flow 
than that given by its capacity and given by the capacity of the vertex at  the end 
of the edge. Therefore, the amount of flow leaving a vertex cannot exceed the sum 
of the bounds calculated in this way for all outgoing edges. Since the capacity of a 
vertex is determined by its succeeding vertices, the values of p(i)  can be calculated in a 
recursive way, by starting from the sink and visiting all vertices in reversed topological 
order: 

The resulting values for the sample graph are also presented in Fig. 6.16. Please note 
that indeed p(i) is only an  upper bound. Vertex 3 has p(3) = 15, while it is not actually 
possible to  have a flow through this vertex which is larger than 10 = c(9,12) +c(10,12). 
Now the main part of the method will be explained, the wave algorithm. The target is 
to  obtain a blocking flow. The algorithm starts by calculating a preflow {f^(i, j ) } .  It  
is a kind of flow but the flow may not be conserved at  the inner vertices. The excess 
e(i) = CJ f(i, j )  states the amount of flow which is lost [e(i) < 0] or created e(i) > 0 
at  vertex i. A vertex with e(i) is called overflowing while it is called balanced if 
e(i) = 0. Thus, a flow is a preflow where all inner vertices are balanced. The wave 
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algorithm starts f (0, j) = c(0, j ) ,  i.e. with a preflow where all edges leaving the source 
are saturated 3 ,  while all other edges are empty. The maximum flow can certainly not 
be larger than C, c(0, j ) .  During the execution of the algorithm, for all vertices it is 
recorded whether they are blocked or not. A vertex i # (N + 1) is called blocked if it 
is not possible to  push additional flow towards the sink through i .  Initially all vertices 
are not blocked. 
After this initialization the wave algorithm starts. I t  consists of forward waves and 
backward waves. Within a forward wave, the preflow is pushed into the direction of the 
sink as far as possible. If some part of the preflow stops somewhere, the corresponding 
vertex is blocked for further iterations. Within a backward wave, flow which has been 
blocked is pushed in the opposite direction. Later, during the next forward wave, 
pushing it along other paths it attempted. Both steps, forward wave and backward 
wave, are iterated until all excess flow has disappeared. This means that a t  the end 
the preflow has been turned into a flow4. The two main steps of the wave algorithm 
read in detail as follows: 

forward wave: 

All vertices i are visited in topological order. All outgoing edges (i ,  j) are treated 
which are not satisfied and where the end vertex j is not blocked. The preflow 
through (i, j) is increased by the value of min{t(i, j) - f (i, j), p( j )  - e( j ) ,  e(i)) .  
This means the preflow cannot be incrcased by more than the current residual 
capacity, by not more than vertex j can take and by not more than available as 
excess. The excess e(i) is decreased and e( j )  is increased by that amount. 

If it is not possible to  balance vertex i ,  i.e. if not all of the excess flow can be 
pushed forward, then vertex i is blocked. So in subsequent iterations pushing 
further flow through this edge is not tried. 

backward wave: 

All vertices j except the sink are visited in reversed topological order. If j is 
blocked all incoming edges (i, j) are treated: the preflow f ( i ,  j) is decreased by 
min{f(i, j), e ( j ) )  as long as the excess e ( j )  > 0. The excess e(i) of the predecessor 
is increased by the same amount. 

This means, for each blocked node, that all positive excess is pushed backwards. 
In this way the flow is moved towards the source until a non-blocked vertex is 
reached. There the flow may be directed along another path during the next 
forward wave. 

3Since f ( i ,  j )  = ( j )  f 0  = c ( 0 ,  j ) .  But the negative values are not used within the wave 
algorithm, they are considered only for the calculation of the residual network. 

4 ~ l e a s e  note that by the wave algorithm a flow which has already found a path to the source will 
never be redirected during the current waves. So the flow obtained in this way is indeed a blocking 
flow and may not be a maximum flow. Nevertheless, the multiple execution of the whole procedure 
(see later) guarantees that at  the end a maximum flow is obtained. 
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Figure 6.17: The level network after the first forward wave. Vertex 7  is blocked. 
The value next to the vertex capacity p(7 )  is the excess e(7)  = 5 .  All other vertices 
are not blocked, so they have excess zero. The values at  the edges have the format 

i(2, ~ / ? ( i ,  d .  

Example: Wave algorithm 

For the sample graph the preflow is initialized to f (0,2) = 25. All excess 
values are zero except e(2) = 25. Now the first forward wave will be explained 
in detail. The reader should write the values of the preflow and the current 
excess values with a pencil (!) on the graph while simulating the algorithm. 

0 First vertex i = 1 is treated. For edge (i, j )  = (1,3) the flow is increased 
by min{E(i, j )  - f ( i ,  j ) , p ( j )  - e( j ) , e ( i ) )  = min{20 - 0,15 - 0,251 = 15. 
Consequently e(3) = 15 and the excess for vertex 1 is decreased to  e(1) = 
10. Then edge (1,4) is considered. The remaining flow can be directed 
along that edge, consequently f ( l , 4 )  = 5, e(4) = 10 and e(1) = 0. 

0 Next vertex i = 3 is treated. Edge (3,6) can carry flow of amount 
f (3,6) = 10, so e(6) = 10 and now e(3) = 5. The remaining excess can 
travel along edge (3,7),  resulting in f (3 ,7)  = 5 ,  e(7) = 5 and e(3) = 0 
after completing the treatment of vertex 3. 

The excess of vertex i = 4 can be passed on completely to  vertex 8, 
resulting in f (4 ,8 )  = 10, e(4) = 0 and e(8) = 10. 

Next vertex i = 6 is considered. The excess flow e(6) = 10 can be 
completely partitioned among the successors j = 9,10, resulting in e(6) = 

0, e(9) = 5, e(10) = 5, f (6 ,9)  = 5 and f(6,10) = 5. 

Vertex i = 7 is the first one, which will be blocked: For edged (i, j )  = 

(7,10) the flow can be increased by min{i.(i, j )  - f ( i ,  j ) , p ( j )  - e( j ) ,  e(i)) 
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= rnin(l0 - 0 ,5  - 5,5) = 0. Therefore, the excess of vertex 7 remains 
unchanged, i.e. e(7) = 5. 

For vertex i = 8 the flow is just passed on to vertex 11, thus we get 
f ( 8 , l l )  = 10, e(8) = 0 and e( l1)  = 10. 

In a similar way the flow is moved forward in vertices 9,10 and 11. So 
finally we obtain f(9,12) = 5, f(10,12) = 5 , f^ ( l l ,12)  = 10, e(9) = 0, 
e(10) = 0, e(l1) = 0 and e(12) = 20. 

The resulting preflow system is shown in Fig. 6.17. Only vertex 7 is blocked, 
it is marked by a box containing the value of the excess. 

During the backward wave only vertex 7 is treated. The flow is moved back 
to  vertex 3 which then has excess e(3) = 5, while now e(7) = 0 0 

After completing one forward and one backward wave the vertex capacities are dynam- 
ically adjusted by visiting all vertices again in reversed topological order. Therefore, 
they represent only non-used capacities: 

Example: Readjusting of the vertex capacities 

The readjustment of the vertex capacities results in the network shown in 
Fig. 6.18. Clearly, now most of the paths are not able to  carry additional 
flow. 

During the next forward wave, only vertex 3 is treated. It is not possible to  
mow the flow to either of its both successors 6 ,7 ,  consequently vertex 3 is 
marked as blocked. 

Within the next backward wave, the excess of vertex 3 is pushed back to  
vertex 1, i.e. e(1) = 5 and e(3) = 0. The following recalculation of the vertex 
capacities does not change anything. 

The next forward wave moves the excess of vertex 1 via the vertices 4 ,8 ,11 
just to the sink. Now all excess has disappeared, the preflow has been turned 
into a flow. The final situation is shown in Fig. 6.19 
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Figure 6.18: The level network after the recalculation of the vertex capacities. Vertex 
3 has excess e ( 3 )  = 5 .  

Figure 6.19: The level network after the final iteration of the wave algorithm. 
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Dinic's algorithrn iterates the construction of the level network and the calculation of 
a blocking until the sink is not part of the level network any more. Then the maximum 
flow has been obtained, since there is no path from the sink to  the source in the residual 
network. Finally a summary of the algorithm is given: 

algorithm dinics-algorithm(N, { c ( i ,  j))) 
begin 

initialize flow f (i, j) := 0 Vi, j 
build residual network R 
build level network LN(R)  
while ( N + 1 E LN(R))  
begin 

initialize vertex capacities p(i) 
initialize preflow { f (i, j )  ) 
while ( 3 unbalanced vertices e(i)  > 0 ) 
begin 

scan LN(R)  in topological order: 
push forward preflow 

scan LN(R)  in reversed topological order: 
push backward preflow 

recalculate vertex capacities p(i) 
end 
increase flow: f (i ,  j )  := f (i ,  j) + f (i, j )  Vi,  j 
build residual network R 
build level network LN(R)  

end 
return {f ( i ,  j)} 

end 

Example: The second execution of the wave algorithm 

After finishing the inner loop containing the forward and backward waves, the 
flow values obtained are transfered to  the original graph [f ( i ,  j) := f (i, j) + 
f ( i ,  j )  Vi ,  j] .  The residual network after the first iteration of the inner loop 
is displayed in Fig. 6.20 [please remember f (i ,  j) = - f (j ,  i)]. 

The corresponding level network, after removing dead ends and calculating 
the vertex capacities, is shown in Fig. 6.21. Please note that now the topolog- 
ical order of the nodes is 0, 2, 5 ,  4, 8, 11, 12. Obviously, the wave algorithm 
treats this network by performing just one forward wave. This is due to  the 
vertex capacities introduced by Traff. By adding the flow obtained in such a 
way to  the total flow, the maximum flow has been calculated, since no fur- 
ther increment is possible: the level network obtained after this step is not 
connected to  the sink. 
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Figure 6.20: The residual network after the first execution of the inner loop 

Figure 6.21: The level network graph before executing the wave loop a second time. 

Please note, the graph in Fig. 6.13, which may keep the original Ford-Fulkerson algo- 
rithm busy for a while, is treated by the wave algorithm within one forward wave. 

6.5 Calculating all Ground States 

We have seen that in order to  calculate a ground state of an RFIM one first has to 
construct the corresponding network and then calculate the maximum flow through 

the network. One single minimum cut, which represents one spin configuration of 
minimum energy, can be found in the following way, which is a special variant of a 
breadth-first search: the basic idea is to  start a t  the source and then to follow only 
edges where the flow is less than the capacity. Consequently, one always stays on the 
left side of the minimum cut, since only edges which are satisfied cross it. After all 
vertices have been found which are accessible from the source in this way, the iteration 
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stops. Then the spins which have been visited are left to  the cut, so they are set to  
orientation +1, see the definition of X in (6.7) and remember ai = 2xi - 1. The 
remaining spins are set to  orientation -1. 
Please note that in this way only one ground state can be obtained, even if the system 
is degenerate, i.e. if it has many ground states. A simple method to find different 
ground states in different runs of an algorithm has been presented in [27]. To actually 
find all different ground states one must find all existing minimum cuts. This can be 
achieved with a method explained in [28]. The result is a graph which describes all 
possible minimum cuts. Now the method will be explained in detail. In this section, we 
will show why the method is indeed correct. For a formal proof the reader is referred 
to  [28]. 
The basic idea is to  describe all ground states as a set of clusters of spins and as 
dependencies between these clusters. Each cluster consists of spins which have in 
all ground states the same relative orientation to  each other. This means that no 
minimum cut will divide any two of the corresponding vertices of one cluster in the 
network. We have already mentioned that only satisfied edges may cross a cut. Thus, 
the vertices of one cluster are connected somehow by paths of unsatisfied edges. 

Figure 6.22: Maximum flow for the network already presented in Fig. 6.6. The 
flow through edges (1,3) and (3,4) may be (partially) redirected through edges (1,2), 
(2,4). Therefore, only edges ( 0 , l )  and (4,5) are satisfied in all possible distributions 
of the maximum flow among the edges. 

On the other hand, if an edge is satisfied this does not guarantee that at least one of 
the minimum cuts crosses this edge. The reason is that it may be possible to  redirect 
the minimum flow such that there is another topology of the flow values resulting in 
the same amount of total flow. In this case it is just accidental that the edge was 
satisfied. This is illustrated by an example given in Fig. 6.22. 
The starting point for constructing the cluster graph representing all minimum cuts is 
the residual network. There the edges just represent unused capacities [f (i, j) < c( i ,  j)] 
or they represent directions which can be used to  redirect the flow [f ( j ,  i)  < 0] in the 
original network. Here we are only interested if there is an edge in the residual network 
or not, so we can neglect the residual capacities. The main statement of [28] is: the 
strongly connected components (SCC) in the residual graph are the above mentioned 
clusters of vertices, which are for all minimum cuts on the same side of the cut, i.e. 
for each cut all vertices of a cluster are left or all are right of a cut. Please remember 
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the definition of the SCC: these are subsets of vertices of maximum cardinality, where 
each vertex is connected to  each other one. An algorithm for the calculation of the 
SCC was given in Chap. 3. 
After all clusters have been obtained, a new reduced graph R" is built, which con- 
tains one vertex for each SCC. Each edge in the residual network which runs between 
different SCCs is also present in R" (multiple edges are kept only once). All existing 
minimum cuts can be built using the reduced graph. This works in the following way: 
the following implication gives the meaning of each edge (Ic, 1) in R" 

if SCC k is on the left side of the cut, then SCC 1 
has to be on the left side as well ( I M P )  

Please remember that the left side of a cut (S,S) is S and that the source is always 
left of the cut. The central statement of this section is: all cuts are represented by the 
reduced graph. All cuts are allowed that are compatible with all constraints imposed 
by the reduced graph. 
We will now explain why this interpretation of the edges in R" is meaningful and how 
the notion of SCC as clusters follows from this. Please note that the implication I M P  
also applies to  the edges in the residual network, since the verticcs can be seen as tiny 
clusters. Let us assume that (i ,  j) is such an edge. So I M P  reads: if vertex i is left of 
the cut, then vertex j must be left as well. The existence of edge (i, j) allows for three 
cases regarding the original network after the maximum flow has been calculated: 

f (i ,  j )  = 0 < c(i, j ) .  In this case the edge (i, j )  must not be removed by any cut, 
because only satisfied edges may cross a cut. So the three possibilities 

- both i, j on the left side (in short: "i, j left") 

- both i ,  j right 

- j left and i right 

are allowed. The third case is allowed, since an edge contributes only to the cut, 
if it goes from the left to  the right side but not if it runs from right to  left. That 
these three cases are allowed is exactly what I M P  tells us. 

0 f (i ,  j )  = -c(j, i), this is the other extreme. Here there is a non-vanishing flow 
in the opposite direction ( j , i )  and the edge ( j , i )  is satisfied. Now again it may 
be allowed to  have both i, j on the same side of the cut, also edge ( j ,  i)  may be 
removed ( j  left, i right, if there is no contradiction from other constraints). But it 
is not allowed to  have i on the left and j on the right side of the cut, since in that 
case there is flow from the right to the left side of the cut. Since all flow originates 
a t  the source: which is always left, this means it must cross the cut from left to  
right twice. This contradicts the fact that the cut is minimal. Summarizing, again 
I M P  holds. 

0 0 < f (i, j) < c(i, j ) .  In this case, since f (i, j) = - f (j, i) in addition to edge 
(i, j ) ,  also edge ( j , i )  is part of the residual network. Please note that the case 
-c(j, i )  < f (i ,  j )  < 0 is covered here as well. Consequently we have two I M P  
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clauses which combine to "both i ,  j must be on the same side of the cut". This is 
reasonable, since there is a non-vanishing flow as well as an unsatisfied capacity, 
so both reasonings given above for the other two cases hold. 

If there is a chain of implications (il left) implies (i2 left), (i2 left) implies (i3 left), 
. . ., (in left) implies ( i l  left), then from the transitivity of the implication rule follows 
that all vertices i l ,  . . . , in must always be on the same side of a minimum cut. On the 
other, the chain of implications corresponds to  a closed loop of edges in the residual 
graph. Thus, all vertices belong to  the same strongly connected component. This 
explains why the method to  construct all minimum cuts given above is indeed correct. 

Example: All minimum cuts 

We proceed by constructing in Fig. 6.23 the residual network (without ca- 
pacities) for the small sample graph. Since vertices 1 , 2 , 3 , 4  are connected in 
a circular way, the SCCs are given by A = {0), B = {1,2,3,4)  and C = ( 5 ) .  
Please note that in case another distribution of the maximum flow among 
the edges is taken, the residual network may look different. But the result- 
ing SCC and the final reduced graph are always the same. The resulting 

Figure 6.23: Residual network of the network with maximum flow of Fig. 6.22. 

reduced graph is presented in Fig. 6.5. Since SCC A contains the source, it 
must always be left of the cut. C contains the sink, so it must always be right 
of the cut. So the reduced graph tells us that two minimum cuts are allowed: 
({A), {B; C)) and ({A, B) ,  {C)). They are identical with the minimum cuts 
which were obtained by direct inspection in Sec. 6.2. The reduced graph 

Figure 6.24: Reduced graph of the network with maximum flow of Fig. 
6.22. All minimum cuts are represented by this graph. 

for the network of Fig. 6.7 calculated from its maximum flow (see Fig. 6.11) 
is shown in Fig. 6.5. 

After one has obtained the reduced graph describing all minimum cuts, for their eval- 
uation, it is possible to  enumerate all of them. This can be done by applying the 
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following algorithm [29]. It considers only the N" components which do not contain 
the source or the sink. We assume that the SCCs are numbered in a decreasing topo- 
logical order, i.e. whenever (k, 1) is an edge in the reduced graph, then k < I .  The basic 
idea is to  start with all SCCs right of the cut. Similar to  Sec. 6.2, we use a variable 
Xk = 0 , l  t o  describe whether an SCC k is left ( X k  = 1) or right of the cut. Thus, 
the string X = { X k )  describes a cut. This string can be read as a binary number 
X .  This means all states can be enumerated by just increasing X starting from 0 ,, 
up to 2N - 1 and considering only the configurations which are compatible with the 
constraints imposed by the reduced graph. This is done by the following algorithm: 

algorithm enumerate-cuts(R") 
begin 

Let X k  := 0 for all k 
while not all X k  = 1 do 
begin 

Find the smallest component lo with X1,  = 0 
Let Xl ,  = 1 
for all 1 < lo do 

if component 1 is not a successor of lo in R" then 
Let X I  = 0 

end 
end 

This algorithm can be used for all kinds of graphs or relations R" which denote a 
priority relation, i.e. they must not contain cycles. Then all configurations which obey 
all priority rules can be enumerated with this method. 
The system shown in Fig. 6.5 has only one strongly connected component which con- 
tains neither the source nor the sink, so only the cuts X I  = 0 , l  are possible. The 
application to  the network which was shown in Fig. 6.11 is more instructive. 

Example: Enumerating all cuts 

The resulting reduced graph is shown in Fig. 6.5. All SCCs have size one, 
i.e. contain one vertex. 

Figure 6.25: Residual graph of a small network which was presented along 
with a maximum flow in Fig. 6.11. 
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Only four components Ic = 1,2 ,3 ,4  have to  be considered. After renumbering 
them according a topological order, the reduced graph looks like that shown 
in Fig. 6.5. 

Figure 6.26: Residual graph of a small network after renumbering the 
vertices and omitting the source and the sink. 

The algorithm starts with X = X4X3X2X1 = 0000 (we denote at the right 
the least significant bit/component with the smallest number), i.e. all inner 
components are to  the right of the cut: (S, S) = ((01, {1,2,3,4,5)).  

Within the first iteration jo = 1, X is increased to  X = 0001. So we obtain 
(S, S) = ({0,1), {2,3,4,5)).  

By the second iteration jo = 2 and X = 0011 is obtained. Since component 
1 is a successor of component 2, the string X is not altered by the for-loop. 
Therefore, we obtain (S, S) = ({0,1,2), {3,4,5)). 

Next jo = 3 and initially X = 0111. Since component 2 is not a successor of 
3 (but SCC 1 is), we get X = 0101. This means (S, S )  = ({0,1,3), {2,4,5)).  

The next iteration results in jo = 2, thus X = 0111. Similar to  the second 
iteration, now X remains unchanged and we get (S, 3) = ({0,1,2,3), {4,5)). 

For the final iteration jo = 4 and X = 1111. All other components are 
successors of j o ,  so the for-loop does not alter X and we get (S, S) = 

({o, ~ 2 ~ 3 ~ 4 ~  { 5 1 ) .  
Summarizing, 6 minimum cuts are obtained. They are the same as those 
already found in Sec. 6.2 by direct inspection, see Fig. 6.7 (please note that 
the order of the vertices is different from the order of the corresponding com- 
ponents due to  the topological order). 0 

Many types of graphs exhibit an exponential number of minimum cuts, so the enumer- 
ation is quite time consuming. The number of different cuts itself has to  be obtained 
by the enumeration as well, so it is fairly time consuming for large systems. But in 
the case of the systems considered here, DAFF and RFIM which have an exponential 
degeneracy as well, it turns out that the reduced graph is usually very sparse. There- 
fore, the reduced graph can be divided into many small groups of connected SCCs 
without edges to other clusters. Then all groups can be treated independently, i.e. the 
number of minimum cuts is the product of the number of cuts allowed by each group. 
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This drastically reduces the running time of the algorithm. Furthermore, it is possible 
to  extract information from the graph directly. For example one can use the extremal 
cuts, i.e. the cuts having alllno (except one) SCCs left of the cut, to  calculate the 
minimurn/maximum magnetization of the corresponding system. 
Now all tools for examining the zero temperature properties of random field systems 
and diluted antiferromagnets are available. To summarize: first an equivalent net- 
work is constructed (see Sec. 6.2), then the maximum flow is obtained with the wave 
algorithm (Sec. 6.4) and finally the graph describing all degenerate ground states is 
calculated. Some basic results for RFIM and DAFF, which were found with these 
techniques, are shown in the next section. 

6.6 Results for the RFIM and the DAFF 

In this section results of the ground-state calculations for random field systems and 
diluted antiferrornagnets are presented. Mainly the RFIM with bimodal distribution 
of the random fields is considered. First the behavior of the order parameter for onc 
realization is presented, then the average results for different system sizes. Using the 
technique of finite-size scaling, the thermodynamic limit is executed. At the end of 
this section properties of the degenerate ground-state landscape in the domain region 
of the phase diagram (see Fig. 6.3) are discussed. 

I 

------ maximum 
minimum 

Figure 6.27: Magnetization m as a function of the strength of the random fields for 
one realization of an RFIM (L = 8) with bimodal distribution. 

In Fig. 6.27 the behavior of the magnetization rn = 1/N zi ai of one small N = g3 
realization of a random-field system with bimodal distribution of the fields is shown. 
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Since this type of system exhibits a ground-state degeneracy, the magnetization may 
vary from one ground state to  the other. In the figure the maximum and minimum 
values which the magnetization can take are shown. How many intermediate values 
are possible, depends on the degree of degeneracy. More results can be found in [30]. 
In general, the behavior turns out to  be as expected in the first section: for small fields 
the system is ferromagnetically ordered. With increasing strength of the random fields 
the spins tend to be oriented in the direction of the local fields and the magnetization 
vanishes. The order parameter changes only at a finite number of values for A, in 
between it is constant. A detailed analysis [26] shows that the steps in m(A) occur 
whenever the sum of local fields on some cluster is strong enough to flip the whole 
cluster. 

Figure 6.28: Average maximum of the absolute value of the magnetization as a 
function of the strength of the random fields. An average for 1000 realizations of the 
RFIM with bimodal distribution was taken. Lines are guides to the eyes only. 

The behavior is similar for other realizations, but the values where the cluster turn 
around vary from system to system. Only the jumps at some integer values of A appear 
in all realizations. These discontinuities are due to  the reversing of several single spins. 
By averaging over different realizations one gets a smooth curve. The result is shown 
in Fig. 6.28 for the maximum of the absolute value of the magnetization averaged 
over typically 1000 different realizations. For other quantities like the minimum or 
the average of the magnetization the results look similar. In the figure the data for 4 
different system sizes N = lo3, 203, 40"nd 80"re presented. With increasing system 
size a monotonic shift of the curves can be observed. We are interested in performing 
the thermodynamic limit, i.e. in obtaining the behavior of very large systems. This 
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can be done by applying the technique of finite-size scaling. The basic assumption is 
that the average magnetization shows the following behavior [31]: 

A, is the critical value of the infinite system where the magnetization vanishes. The 
values of the critical exponents /3 and v describe the asymptotic behavior of the order 
parameter and the correlation length near the transition respectively. The exact form 
of the function h is in general unknown. The values for A,,u and ,L3 have to  be 
determined. They can be obtained by rescaling the numerical data in a way that all 
data points collapse onto one curve. The resulting scaling plot is shown in Fig. 6.29. 
The values obtained in this way are A, = 2.20, v = 1.67 and P = -0.01. 

Figure 6.29: Finite-size scaling plot for RFIM with bimodal distribution. The pa- 
rameters are A, = 2.20, v = 1.67 and ,!3 = -0.01. 

As mentioned at  the beginning, it is assumed that the RFIM is similar to  the DAFF. 
In this case the values for the exponents should be equal. Additionally, they should 
not depend on details of the model such as the choice of the distribution of the random 
fields. In this case one says that the exponents are universal. On the other hand, the 
exact value of the critical strength of the field is not expected to  be universal. By 
calculating similar finite-size scaling plots for the RFIM with Gaussian distribution 
and the DAFF, the following values are found: 

Gaussian RFIM: A, = 2.29, u = 1.19 and /3 = 0.02 

0 DAFF: A, = 0.62, u = 1.14 and /3 = 0.02 
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Consequently, the exponents seem not to be universal, since v is different for the 
different distributions of the RFIM. On the other hand, the Gaussian random-field 
system seems to be a good model for diluted antiferromagnets, since in this case the 
values of the exponents agree. 
For an intermediate strength of the field, the order parameter vanishes. Nevertheless, 
in this region the systems exhibit fractal domains, which are described by non-trivial 
exponents. An example of such a domain, is displayed in Fig. 6.30. Quantitative 
results can bc found e.g. in Ref. [32]. 

Figure 6.30: The largest ferromagnetically ordered domain in a small RFIM (N = 

lo3)  at  A = 3.0. 

Finally, we will give some examples regarding the ground-state degeneracy of the 
DAFF and the RFIM with bimodal interactions [26]. It turns out that the number of 
ground states grows exponentially with system size, so there is a finite entropy, see 
also R.ef. [33]. On the other hand, the ground-state landscape is rather simple. Most 
of the spins have the same orientation in all ground states, i.e. they are frozen. This 
fraction is more than 95% for the DAFF and even 98% for the RFIM. The clusters of 
spins, which may have two orientations in different ground states, interact only rarely 
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with each other. This means the reduced graph contains only few edges. Therefore, 
the clusters can choose one of their orientations more or less independently of each 
other. 
To describe the ground-state landscape a quantity called overlap q can be used. Let 
{at) and {a?} be two independent ground-state configurations for the same system, 
i.e. the same realization of the disorder. One can compare these two configurations by 
calculating 

where N' is the number of spins, i.e. N' = Ciei for the DAFF and N' = N for the 
RFIM. Thus, if A, B are equal q = 1, while q = -1 if {gt} and {a:) are inverted 
relative to each other. In general 1 5 q < 1. 
For a set of M ground states onc compares each state with each other one, resulting 
in M ( M  - 1)/2 values. So one gets a whole distribution of overlaps. To describe the 
behavior of a random ensemble, again one takes different realizations of the disorder 
and calculates an average distribution P(q) .  The results for the DAFF are shown 
in Fig. 6.31, see also [27]. The fact that the ground-state landscape is rather simple, 
is reflected by the fact that P(q)  is zero for most of the overlap values and by the 
shrinking of the width of P(q) .  In the thermodynamic limit the distribution becomes 
a delta function. The result for the RFIM looks similar. 
Other recent results for the ground states of diluted antiferromagnets and random-field 
systems can be found e.g. in [32, 34, 35, 36, 37, 38, 39, 401. 
For another class of random systems, the spin glass model, the ground state landscape 
for individual realizations looks much more interesting and P(q)  is very broad for finite 
sizes. This subject is covered in Chap. 9. 
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7 Minimum-cost Flows 

7.1 Motivation 

The ground-state configuration of a directed polymer in a random environment, in 
which all (bind)-energies are non-negative, can be obtained with Dijkstra's algorithm 
to find the shortest path in a directed network with non-negative costs on the edges. 
We will also refer to  this problem as the 1-line-problem since the directed polymer con- 
figuration or shortest path is a line-like object threading, in typical physical situations, 
a two- or three-dimensional system. 
At this point it appears natural to  ask for the minimal energy configuration (or ground 
state) of more than one, say N, lines in the same disordered environment under the 
constraint (the "capacity constraint") that only one line can pass a single bond in the 
lattice or edge in the graph. Having a particular physical situation in mind, namely 
magnetic flux lines threading through a disordered superconductor in the mixed phasc 
(Shubnikov phase), we usually want the lines to  enter the system through a top surface 
and to leave the system through a bottom surface as, for instance, the z = H  and the 
z = 0 plane, respectively, in a two-dimensional square lattice or a three-dimensional 
simple cubic geometry, see Fig. 7.1. 
The physical situation one is interested in by considering such cases of interacting 
elastic lines in a random potential are conlnlonly described by the Hamiltonian 

r i (z)  E R~-' (usually d = 2 and d = 3) is a displacement vector, while z is the 
longitudinal coordinate in a system of height H ;  Vr[r, z ]  describes the point disorder, 
which we can take to  be delta-correlated with variance 6 ;  Knt[r - r'] is a short-range 
repulsive interaction between the lines (e.g. hard-core) and Vp [r] can describe columnar 
defects or a periodic potential with period a in all transverse space tlircctions. For 
the case of a single line one recovers the directed polymer Hamiltonian that we have 
previously considered in Sec. 4.2.1 in its lattice version in connection with Dijkstra's 
algorithm. 
A naivc way to  approach the N-line problem would he to search for the shortest path 
from the top to  the bottom boundary, giving a 1-line configuration, then removing the 
edges occupied by this line from the graph, searching for the shortest path from the 
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Figure 7.1: Ground-state configuration of N lines in a random environment for one 
particular 3d sample of size L x L x H = 32 x 32 x 32 ,  with N = 2 , 4  (top), 16,32 
(bottom). 

top to  the bottom in the remaining network, giving (together with the removed bonds) 
a 2-line configuration. One Proceeds successively until N lines thread the sample from 
top t o  bottom. Apart from the obvious problems one could run into by successively 
removing edges from the graph (it could happen that we cannot add further lines since 
all paths from top to  bottom are blocked) a little bit of thinking will convince us that 
in this way one will, in general, n o t  find the minimum energy configuration: it could 
be that the ground state of 2 lines is not separable into the 1-line ground state plus 
the "first excited state" that one constructs in the way described above (see Fig. 7.2 
and Fig. 7.3). In many cases one has to  deform pieces (or even all) of the 1st line 
before we add the 2nd line in order to  minimize the total energy. As long as there 
are only a few lines in a large system the difference will vanish in the thermodynamic 
lirnit. However, if the density of lines is fixed a difference will exist with probability 
one even in the infinite system size lirnit. For dense systems, as we will consider in 
what follows, the difference will be essential. 
How does one take into account all possible deformations of N - 1 lines when one wants 
to  add the Nth  line to  the system? At first sight this appears to  be a tremendous 
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Figure 7.2: (top) Two-polymer ground-state in 2d, (bottom) the same system but 
with the first (1-line GS) frozen first. The energy of the configuration (top) is lower. 
Note that  in (top) case the 1-line GS is to the left line compared to  the (bottom) figure. 
The fact that in (top) the 1-line GS is minimally deformed (in the lower part in order 
to givc the 2nd line a bit of space which is energetically favorable) produces a 2-line 
GS that  is totally different (concerning the 2nd line) from the configuration (bottom). 
In both cases the disorder landscape is the same. 

task, but t,here is an elegant trick by which one can devise an efficient algorithm for 
the N-line problem. First one does not work with the original network but with the 
so called residual network that depends on the number of lines one has to put into 
the system and their actual configuration. It is defined as follows: since we confine 
ourselves in the beginning to  capacity-one edges (i.e. only a single line can pass each 
edge) we remove each edge (ij) that is occupied by a line segment (xij = 1) and 
insert the reversed edge ( j i )  with cost cji = -cij 5 O! These reversed edges can 
now be occupied by (virtual) line segments (xji = 1) through which one gains energy 
(cji 5 0), which is due t o  the fact that in reality one removcs a line segment from edge 
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Figure 7.3: Similar to Fig. 7.2 but in 3d. In both cases the disorder landscape is the 
same. 

( i j )  when occupying edge ( j i )  and thus reduces the total energy by an amount c i j .  In 
this way one incorporates elegantly the possibility of deforming the already cxisting 
lines when adding a new line into the residual network. 

One difficulty occurs. Now a number of edges have negative costs, which renders 
the efficient shortest path finder, Dijkstra's algorithm, inapplicable. However, in this 
particular situation, in which the N - 1-line configuration is indeed the one with the 
lowest total cost, there is n o  negative cycle in the residual network (i.e one cannot find 
a closed path in the residual whose addition to the existing configuration would lower 
the energy). Therefore it is possible to find so called node potentials ~ ( i )  for all nodes 
i that can be used to modify the costs in the residual network in such a way that they 
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are all non-negative. These reduced costs are then defined as c; = cij - ~ ( i )  + ~ ( j ) ,  T 

is chosen such that c; > 0 for all edges in the residual network and the shortest paths 
with respect to  these reduced cost c& are still the shortest paths with respect to  the 
original costs cij of the residual network. In this residual network with these reduced 
costs one proceeds now in the same way as we proposed naively a t  the beginning of 
this section: one adds lines successively to  the system by finding the shortest paths in 
the residual network, updating the line (or flow) configuration and then updating the 
residual network including the reduced costs again. We will now put this idea on a 
formal basis. 

7.2 The Solution of the N-Line Problem 

First we will introduce the notation for the model of N repulsive lines in a disordered 
environment that we described above. In a lattice version of the model (7.1) without 
periodic potential one has to  incorporate three terms: the elastic energy [dri/dzI2, the 
interaction energy Vnt and the randoni potential V,. A single line will be represented 
by a path along the bonds of a lattice (or the edges of a grid graph), the random 
potential energies will be then random variables on theses bonds or edges. If they are 
all positive one does not need to take explicitly into account the elastic energy, since all 
transverse excursions will cost energy, which yields an effective elastic energy for the 
lines. The interactions will be hard core repulsion, which allows only single occupancy 
of the bonds. Thus we can consider the Hamiltonian or energy or cost function 

where C(ij) is a sum over all bonds ( i j )  joining site i and j of a d-dimensional lattice, 

e.g. a rectangular ( L ~ - '  x H) lattice, with arbitrary boundary conditions (b.c.) in d- 1 
space direction (i.e. they can be specified later) and free b.c. in one direction. The 
bond energies cij > 0 are quenched random variables that indicate how much energy 
it costs to  put a segment of fluxline on a specific bond ( i j ) .  The fluxline configuration 
x (xij 2 0)) also called a flow, is given by specifying xij = 1 for each bond i ,  which 
is occupied by the fluxline and otherwise xij = 0. For the configuration to form lines 
on each site of the lattice all incoming flow should balance the outgoing flow, i.e. the 
flow is divergence free 

where V. denotes the lattice divergence. Obviously the fluxline has to  enter, and to 
leave, the system somewhere. We attach all sites of one free boundary to  an extra site 
(via energetically neutral edges, e = 0), which we call the source s ,  and the other side 
to  another extra site, the target, t as indicated in Fig. 7.4. Now one can push one line 
through the system by inferring that s has a source strength of +1 and that t has a 
sink strength of -1, i.e. 
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with N = 1. Thus, the 1-line problem consists of minimizing the energy (7.2) by 
finding a flow x in the network (the lattice plus the two extra sites s and t) fulfilling 
the constraints (7.3) and (7.4). 

sink sink 

Figure 7.4: Sketch of the successive shortest path algorithm for the solution of 
the minimum cost flow problem described in the text. (a) Network for N = 0, the 
numbers are the bond energies (or costs) ci,.  The bold thick line is a shortest path 
from s to t .  (b) The residual network GE for a flow as in (a) with the updated node 
potentials. (c) G: from (b) with the updated reduced costs plus the the shortest path 
from s to t in GE indicated by the thick light line. (d) Optimal flow configuration for 
N = 2 in the original network. Note that the 2-line state is not separable, i.e. it does 
not consist of the line of (a) plus a 2nd line. 

To solve this problem along the lines described in 7.1 we first define the residual 
network G,(x) corresponding to the actual fluxline configuration. As described in 
7.1 it also contains the information about possibilities of sending flow backwards (now 
with energy -cij since one wins energy by reducing xij), i.e. to modify the actual 
flow. Suppose that we put one fluxline along a shortest path P ( s ,  t) from s to  t ,  which 
means that we set xij = 1 for all edges on the path P ( s ,  t ) .  Then the residual network 
is obtained by reversing all edges and inverting all energies along this path, indicating 
that here we cannot put any further flow in the forward direction (since we assume 
hard-core interaction, i.e. xij 5 I ) ,  but can send flow backwards by reducing xij on 
the forward edges by one unit. This procedure is sketched in Fig. 7.4. 
Next we introduce a node potential T that fulfills the relation 

for all edges ( i j )  in the residual network, indicating how much energy ~ ( j )  it would 
at least take to  send one unit of flow from s to site j ,  IF it would cost an energy ~ ( i )  
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to send it to  site i .  With the help of these potentials one defines the reduced costs 

The last inequality, which follows from the properties of the potential T (7.5) actually 
ensures that there is no loop L in the current residual network (corresponding t o  a 
flow x)  with negative total energy, since C(ij) cij = C(ij)EC cc ,  implying that the 
flow x is optimal (for a proof see Sec. 7.3). 
It is important to  note that the inequality (7.5) is reminiscent of a condition for shortest 
path distances d(i) from s to all sites i with respect to  the energics cij: they have to 
fulfill d( j )  < d(i) + cij. Thus, one uses these distances d to  construct the potential T 

when putting one fluxline after the other into the network. 
The iterative procedure we described in 7.1 now works as follows. We start with the 
empty nctwork (zero fluxlines) x0 = 0, which is certainly an optimal flow for N = 0, 
and set T = 0, c" = cij. Next, let us suppose that we have an optimal N - 1- 

2.7 

line configuration corresponding to the flow xNpl .  The current potential is 7rNp1, 

the reduced costs are cg-' = c-  23 . + nNpl ( i )  - nN-' (j) and we consider the residual 
network G:-' corresponding to the flow xNpl with the reduced costs c t - l  2 0. The 
iteration leading to an optimal N-line configuration x$ is 

algorithm successive shortest path for N-line problem 
begin 

x := 0; ~ ( i )  := 0; G,(x) := G; 
for Line-counter := 1 , .  . . , N do 
begin 

compute the reduced costs c" (x) Eq. (7.6); 
find the shortest paths d(i) from s to all other nodes i ;  

in the residual network G,(x) w.r. to the reduced costs c;; 
augment flow on the shortest path from s to  t by o n e  unit; 
compute ~ ( i )  := ~ ( i )  - d(i);  

end 
end 

An example of how the algorithm operates is given in Fig. 7.4. The complexity of this 
iteration is the same as that of Dijkstra's algorithm for finding the shortest paths in a 
network, which is C3(M2) in the worst case ( M  is the number of nodes in the network). 
We find, however, for the cases we consider (hdimensional lattices) it roughly scales 
linearly in M = L ~ .  Thus, for N fluxlines the complexity of this algorithm is ~ ( N L ~ ) .  

For the actual implementation of the above iteration it is important to  note that it 
is not necessary actually t o  find the shortest paths to all other nodes: in the find 
routine one uses Dijkstra's algorithm only  to  find a shortest path from s to t and in 
the compute statement it is sufficient to  update only those potentials of the nodes 
that have been permanen t l y  labeled during Dijkstra's algorithm. It is easy t o  show 
that these node potentials still fulfill the requirement cij > 0 (7.6). 
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7.3 Convex Mincost-flow Problems in Physics 

Actually the N-line problem is not the only one in physics that can be mapped onto 
a minimum-cost-flow problem. The physical models we describe in this section have 
Hamiltonians or cost functions similar to  the flux-line energy (7.2) and the same mass- 
balance constraint (7.3). However, they are more general since now the capacity 
constraint xi3 E { O , 1 )  is given up and the flow variables xij can take on any integer, 
including negative values. Instead the local costs cij . xij are replaced by convex 
functions hij (xij), an example being hij (xij) = (xij - bij)2, where the variables bij 
are random and usually different for different edges ( i j ) .  Moreover, in most cases there 
are no external nodes s and t ,  as in the flux-line problem - the optimal flow will be 
non-trivial (non-zero) without them (note that in the flux-line problem a non-zero flow 
only occurred due to the external source and target nodes with mass-balance +N and 
- N, respectively. 

Random SOS model 

Consider a solid-on-solid (SOS) model with random offsets, modeling a crystalline 
surface on a disordered substrate as indicated in Fig. 7.5. It is defined by the following 
Hamiltonian (or energy function): 

wherc ( i j )  are nearest neighbor pairs on a d-dimensional lattice (d = 1 ,2 ) .  Each 
height variable h, = d, + ni is the sum of an integer particle number which can also 
be negative, and a substrate offset di E [O,l). For a flat substrate, di = 0 for all sites 
i ,  we have the well known SOS-model [I]. The disordered substrate is modeled by 
random offsets di E [ O , l )  [2], which are distributed independently. 

Figure 7.5: The SOS model on a disordered substrate. The substrate heights are 
denoted by d, E [ O , l ] ,  the number of particle on site i by n, 2, which means that 
they could also be negative, and the total height on site i by h, = di + ni 

The model (7.7) has a phase transition at a temperature T, from a (thermally) rough 
phase for T > T, t o  a super-rough low temperature phase for T < T,. In two di- 
mensions "rough" means that the height-height correlation function diverges loga- 
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rithmically with the distance C(r )  = [((h, - h,+,)2)], = a . T . log(r) [with a = 1/7r 

for f (x) = x2], "super-rough" means that either the prefactor a t  the front of the 
logarithm is significantly larger than a .  T (e.g. T" with a > I ) ,  or that C( r )  diverges 
fastir than log(r), e.g. C(r )  K log2(r). 
A part of the motivation to  study this model thus comes from its relation to  flux 
lines In disordered superconductors, in particular high-T, superconductors. The phase 
transition occurring for (7.7) is in the same universality class as a flux line array with 
point disorder defined via the two-dimensional Sine-Gordon model with random phase 
shifts [3, 41 

where & E [O, 27r) are phase variables, Bi E [O, 27r) are quenched random phase shifts 
and X is a coupling constant. One might anticipate that both models (7.7) and (7.8) 
are closely related by realizing that both have the same symmetries [the energy is 
invariant under the replacement ni + ni + m (q$ + #i + 27rm) with being m an 
integer]. Close to  the transition one can show that all higher order harmonics apart 
from the one present in the Sine-Gordon model (7.8) are irrelevant in a field theory for 
(7.7), which establishes the identity of the universality classes. Note, however, that 
far away from T,, as for instance at zero temperature, there might be differences in 
the two models. 
To calculate the ground states of the SOS model on a disordered substrate with gcncral 
interaction function f (x) we map it onto a minimum cost flow model. Let us comment, 
however, that the special case f (x) = 1x1 can be mapped onto the interface problem in 
the random bond Ising ferromagnet in 3d with columnar disorder [5] (i.e. all bonds 
in a particular direction are identical), by which it can be treated with the maximum 
flow algorithm we have discussed already (see Chap. 6). 
We define a network G by the set of nodes N being the sites of the dual lattice of our 
original problem (which is simply made of the centers of each elernentary plaquette of 
the square lattice, thus being again a square lattice) and the set of directed edges A 
connecting nearest neighbor sites (in the dual lattice) (i, j )  and (j, i) .  If we have a set 
of height variables ni we define a flow x in the following way. Suppose two neighboring 
sites i and j have a positive (!) height difference ni - nj > 0. Then we assign the flow 
value xij  = ni - nj to the directed edge ( i ,  j) in the dual lattice, for which the site i 
with the larger height value is on the right hand side, and assign zero to  the opposite 
edge ( j ,  i ) ,  i.e. xji = 0. Also xi, = 0 whenever sites i and j are of the same height. 
See Fig. 7.6 for a visualization of this scheme. The flow pattern is made up of closed 
cycles that separate regions of different height and therefore we have: 

On the other hand, for an arbitrary set of values for x,, the constraint (7.9) has to  be 
fulfilled in order to be a flow, i.e. in order to allow a reconstruction of height variables 
out of thc height differences. This observation becomes immediately clear by looking 
at  Fig. 7.6. 
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Figure 7.6: The flow representation of a surface (here a "mountain" of height ni = 3) .  
The broken lines represent the original lattice, the open dots are the nodes of the dual 
lattice. The arrows indicate a flow on the dual lattice, which results from the height 
differences of the variables ni on the original lattice. Thin arrows indicate a height 
difference of xij = 1, medium arrows xi, = 2 and thick arrows x,, = 3. According to 
our convention the larger height values are always on the right of an arrow. Observe 
that on each node the mass balance constraint (7.9) is fulfilled. 

We can rewrite the energy function (7.7) as 

H ( x )  = x ( x i j  - dij)2 , (7.10) 
( i d  

with dij = di - dj. Thus our task is to  minimize H ( x )  under the constraint (7.9). In 
Sec. 7.4 we will show how this can be achieved with a refined version of the successive 
shortest path algorithm we know already from the N-line problem. 

Vor tex  glass in 3d 

The starting point of a field theory for superconductors is the Ginzburg-Landau the- 
ory containing the phase variables (or XY-spins) for the local superconducting order 
parameter. As is well known from the classical XY-model [6] the spin-wave degrees of 
freedom of such a modcl can be integrated out and one is left with an effective Hamil- 
tonian for the topological defects, the vortices, which are the singularities of the phase 
field 0 interacting with one another like currents in the Biot-Savat law from classical 
electrodynamics, i.e. like l l r ,  where l / r  is the distance (see also [7]). An additional 
integration over the fluctuation vector potential sets a cutoff for this long-range inter- 
action beyond which the interaction decays exponentially, and can thus bc neglected. 
Thus a standard model for interacting magnetic flux lines in high temperature super- 
conductors (81 is, in the vortex representation, the Hamiltonian [9] 
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where the sum runs over all pairs of bonds of a simple cubic lattice (thus it is a three- 
dimensional model!) and the integer variables xij ,  assigned to these bonds, can take 
on any integer but have to  satisfy the divergence free condition 

on every site i ,  the same as in the two-dimensional SOS model (7.9). The bij are 
magnetic fields which are constructed from quenched random vector potentials A by 
a lattice curl, i.e. one obtains bi, as 1/(27r) times the directed sum of the vector 
potentials on the plaquette surrounding the link (ij) on which bij lives. By definition, 
the magnetic fields satisfy the divergence free condition (V . b) i  = 0 on every site 
i, since they stem from a lattice curl. The vortex interaction is given by the lattice 
Green's function 

where rij  is the position of link ( i j )  in real space, J an interaction strength, k = 
(kl, kZ, k3) the reciprocal lattice vectors, Xo the screening length and L the linear 
lattice size of a simple cubic lattice. 
In the strong screening limit Xo -+ 0, K ( r )  reduces to  K(0)  = 0 for r = 0 and 
K ( r )  = J ( ~ T X O ) ~  for r # 0 with exponentially small corrections [lo]. Thus if we 
subtract J ( ~ T X O ) ~  from the interaction and measure the energy in units of J(27rX0)', 
one obtains the simpler Hamiltonian 

Thus we have t o  minimize (7.14) under the mass balance constraint (7.12); which is a 
convex minimum-cost-flow problem. 

7.4 General Minimum-cost-flow Algorithms 

In this section we will discuss the algorithm to calculate the ground state of the convex 
minimum cost problem as it occurs in the physical context described in 7.3. It is a 
straightforward generalization of the successive shortest path algorithm for the N-line 
problem described in 7.2. 
Let G(X ,  E) be a network with a cost cij and a capacity uij associated with every 
edge (i ,  j )  E E. Moreover, we associate with each node i E X a number b(i) which 
indicates its supply or d e m a n d  depending on whether b(i) > 0 (a source) or b( i )  < 0 
(a target). The min imum-cos t - f low  problem is [ l l ] :  

Minimize z(x)  = hii (zii), (7.15) 
(WEA 

subject to the mass-balance constraints, 
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and the capacity constraints 

The parameters b(i), cij are integers, while xij, uij are non-negative integers. Note 
that we have allowed for a general set of sources and sinks b(i), though we will restrict 
attention to  one source, s ,  and one sink, t ,  in the applications. In fact, it is easy to  
convert a problem with a general set b(i) to  one with just one source s and one target 
t in the following way: 
(i) Connect all of the nodes with b(i) > 0 to  s by edges with capacity u,i = b(i) 
(ii) Connect all of the nodes with b(i) < 0 to t by edges with capacity uit = -b(i). 
Flow conservation requires Ci b(i) = 0 so that the flow into the network is equal to 
the flow out of the network. 
The quantity hij(xij) is the cost function and may be a different function on each 
bond. The cost functions hij(xij) can be any convex function, that is, 

VX, y , and 8 E [0,1] hij(8x + (1 - 8 ) ~ )  < 8hij (x) + (1 - $)hij (Y) (7.18) 

Linear cost is the special case, h(xij) = c i jx i j  There are faster algorithms for linear 
cost than for convex cost, but for the applications considered here, the difference is 
not large. The general convex-cost case is as simple to  discuss as the linear-cost case, 
so we will discuss the general algorithm. 
The residual network G(x) ,  corresponding to a flow, x, is defined as in the N-line 
problem. However the residual costs need to be constructed differently due to  the non- 
linearity of the local cost functions hij(xij). We need to know the cost of augmenting 
the flow on arc ( i ,  j ) ,  when there is already a flow xij in that edge. In the general 
convex-cost problem, we always augment the flow by one flow unit. Because we have 
defined xij > 0 and xji > 0, we must treat three cases: 
(i) If xij > 1, + xJi = 0 

(iii) If xij = 0, and xji = 0 

c,Tj (0) = hij (1) - hij (O) ,  
q o )  = hji(1) - hji(0). 

As seen in the second part of Eqs. (7.19) and (7.20), negative residual costs may occur 
when reducing the flow in an edge. The residual network G(x) is then a graph with 
residual capacities rij  = uij -xij+xji, and residual costs found from Eqs. (7.19)-(7.21). 
An intuitively appealing way of thinking about the convex-cost problem is to replicate 
each edge, (i, j) many times, with each replicated edge having capacity one. The 
kth replicated edge has cost hij(k) - htj(lc - 1). As flow is pushed along the edge 
( i ,  j ) ,  the first unit of flow goes into the 1st replicated edge, the 2nd unit of flow 
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in the 2nd replicate etc. When the flow is reversed, the flow is canceled first in 
the highest replicated edge provided the cost function is convex. That is, we need 
hi, (k) - hij(k - 1) > hij(k - 1) - hij(k - 2) so that this replication procedure makes 
sense. Unfortunately no analogous procedure is possible when the convexity,c6ndition 
is violated. In the case of linear costs there is no need to  replicate the edges as the 
cost for incrementing the flow does not depend on the existing flow. 
We will now discuss two methods for solving minimum-cost-flow problems, namely 
the negative-cycle-canceling method and the successive-shortest-path method, both of 
which rely on residual-graph ideas. The first method starts with an arbitrary feasible 
solution that is not yet optimal and improves it iteratively until optiniality is reached. 
The latter method starts with an optimal solution that violates certain constraints and 
fulfills the constraints one after the other keeping optimality all the time so that when 
all constraints are fulfilled simultaneously optimality is guaranteed. This method is 
more efficient, but we will discuss the negative cycle algorithm since the negative-cycle 
theorem presented below is needed to  prove the correctness of the successive-shortest- 
path method. 

Negative-cycle-canceling Algorithm 

The idea of this algorithm is to  find a feasible flow, that is, one which satisfies the 
mass-conservation rules, and then to  improve its cost by canceling negative-cost cy- 
cles. A negative-cost cycle in the original network is also a negative-cost cycle in the 
residual graph, so we can work with the residual graph. Moreover, flow cycles do not 
change the total flow into or out of the network, and they do not alter the mass-balance 
conditions at  each node. Thus, augmenting the flow on a negative-cost cycle maintains 
feasibility and reduces the cost, which forms the basis of the negative-cycle-canceling 
algorithm. This is formalized as follows. 

Theorem: (Negative cycle) 
A feasible solution x* is an optimal solution of the minimum-cost-flow problem, if and 
only if the residual network G(x*)  contains no negative-cost cycle. 

Proof: Suppose the flow x is feasible and G(x) contains a negative cycle. Then a 
flow augmentation along this cycle improves the function value z(x) ,  thus x is not 
optimal. Now suppose that x* is feasible and G(x*)  contains no negative cycles and 
let x0 # x* be an optimal solution. Now decompose x0 - x* into augmenting cycles, 
the sum of the costs along these cycles is c . x0 - c . x*. Since G(x*)  contains no 
negative cycles c . x0 - c . x* > 0,  and therefore c . x0 = c . x* because optimality of 
x* implies c . x0 5 c . x*.  Thus x0 is also optimal. QED 
A minimum-cost algorithm based on the negative-cost-canceling theorem, valid for 
graphs with convex costs and no negative-cost cycles in G(0) ,  is given below, an 
example is presented in Fig. 7.7. 
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algorithm cycle canceling (convex costs) 
begin 

establish a feasible flow x; 
calculate the residual costs cLj as in Eqs. (3.11-3.13); 
while G(x) contains a negative cost cycle do 
begin 

use some algorithm to identify a negative cycle W; 
augment one unit of flow in the cycle; 
update c; (xij) and r i j  ; 

end 
end 

Figure 7.7: Illustrating the cycle canceling algorithm for linear costs: (a) network 
example with a feasible flow x; (b)  residual network G(x); (c) residual network after 
augmenting 2 units along the cycle 4-2-3-4; (d) residual network after augmenting 1 
unit along the  cycle 4-2-1-3-4. 
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To begin the algorithm, it is necessary to  find a feasible flow, which is a flow which 
satisfies the injected flow a t  each of the sources, the extracted flow at  each of the sinks, 
and which satisfies the mass-balance constraints a t  each node. A robust procedure t o  
find a feasible flow is to  find a flow which satisfies the capacity constraints using the 
maximum-flow algorithm (see Chap. 6). To detect negative cycles in the residual net- 
work, G(x),  one can use the label-correcting algorithm for the shortest-path problem 
presented Sec. 4.2.3. 
In the linear cost case, the maximum possible improvement of the cost function is 
O(IEICU), where C = max lcijI and U = maxuij. Since each augmenting cycle con- 
tains a t  least one edge and at  least one unit of flow, the upper bound on the number 
of augmenting cycle iterations for convergence is also O(I EICU). Negative-cycle de- 
tection is C3(IX2 1 )  generically, but for sparse graphs with integer costs it is O(IE) I). 
Thus for sparse graphs with integer costs, negative cycle canceling is O(IEI2CU). 

Successive-shortest-path algorithm 

The successive-shortest-path algorithm iteratively sends flow along minimal-cost paths 
from source nodes to  sink nodes to  finally fulfill the mass-balance constraints. A 
pseudo flow satisfies the capacity and non-negativity constraints, but not necessarily 
the mass-balance constraints. Such flows are called infeasible as they do not satisfy 
all the constraints. The successive-shortest-path algorithm is an infeasible method 
which maintains an optimal-cost solution at  each step. In contrast, the negative-cycle- 
canceling algorithm always satisfies the constraints (so it is a feasible method) and it 
iteratively produces a more optimal solution. 
The imbalance of node i is defined as 

If e(i) > 0 then we call e(i) the excess of node i ,  if e(i) < 0 then we call it the 
deficit. The successive-shortest-path algorithm sends flow along minimal-cost paths 
from excess sites to  deficit sites until no excess or deficit nodes remain in the graph. 
Dijkstra's algorithm (Sec. 4.2.2) is efficient in finding minimum-cost paths, but it only 
works for positive costs. The successive-shortest-path algorithm uses Dijkstra's method 
to  find augmenting paths, but to make this work we have to  develop a different sort of 
residual network with positive reduced costs [remember that the residual costs can be 
negative - see Eqs. (7.19-7.21)]. Surprisingly, this is possible. To construct positive 
reduced costs from which the optimal flow can be calculated, we use the concept of 
node potential ~ ( i )  already encountered in Sec. 7.2. 
The reduced costs used in the successive-shortest-path problem are inspired by the 
reduced costs, c$, introduced in the shortest-path problem [Eq. (4.3)]. c$ has the 
attractive feature that,  with respect to  the optimal distances, every arc has a non- 
negative cost. To generalize the definition (4.3) so that it can be used in the minimum- 
cost-flow problem, one defines the reduced cost of edge (i, j )  in terms of a set of node 
potentials ~ ( i )  , 
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We impose the condition that a potential i s  on ly  valid if c: > 0 as for reduced costs 
in the minimal-path problem. Note that the residual costs defined in Eqs. (7.19-7.21) 
appear here. All of the quantities in Eq. (7.23) depend on the flow xij, though we do 
not explicitly state this dependence. 
From the definition (7.23), we obtain for c& 
(i) For any directed path P from k to  I :  

(ii) For any directed cycle W: 

C c"= 23 C c;. 

In particular, property (ii) means that negative cycles with respect to crj are also 
negative cycles with respect to c;. We define the residual network GT(x)  to be the 
residual graph with residual capacities defined as before, but with reduced costs as 
given by Eq. (7.23). 
The next step is to  find a way to construct the potentials sr(i). This is carried out 
recursively, starting with ~ ( i )  = 0 when there is no flow in the network. The procedure 
for generating potentials iteratively relies on the potential lemma given below. 

Lemma:  (Potential) 
(i) Given: a valid node potential ~ ( i ) :  a set of reduced costs c6 and a set of distance 
labels, d(i) (found using c: > 0) t h e n  the potential ~ ' ( i )  = ~ ( i )  - d(i) also has positive 

reduced costs, c$ > 0. 

(ii) c c  = 0 for all edges (i, j) on shortest paths. 

Proof :  Properties (i) and (ii) follow from the analogous properties for the minimal 
path [see Eqs. (4.3-4.5)]. To prove (i), using (4.3-4.5), we have, d( j )  5 d(i) +c$, then 

we have, c$ = c,', - [n(i) - d(i)] + [sr(j)  - d(j)] = c: - d( j )  + d(i) > 0. For (ii) simply 
repeat the discussion after replacing the inequality by an equality. QED 
Now that we have a method for constructing potentials, it is necessary to demonstrate 
that this construction produces an optimal flow. 

Theo rem:  (Reduced cost optimality) 
A feasible solution, x*, is an optimal solution of the min-cost flow problem if and only  
if there exists a set of node potentials, n( i ) ,  such that c; > 0 b'(i,j) in GT(x*). 

Proof:  For the irriplication "+" suppose that c: > OV(i, j). Because of (7.24) it con- 
tains no negative cycles. Thus by property (ii) above, an arbitrary potential difference 
may be added to the costs on each edge on each cycle W. For the other direction '5" 
suppose that G(x*) contains no negative cycles. Denote with d(.) the shortest path 
distances from node 1 to  all other nodes. Hence d( j )  5 d(i) + cij V(i, j) E G(x*). Now 
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define ;r = -d then c; = cij + d(i) - d( j )  > 0. Hence we have constructed a set of 
node potentials associated with the optimal flow. QED 
The reduced cost optimality theorem proves that each optimal flow has an associated 
set of potentials, while the potential lemma shows how to construct these potentials. 
The final step is to  demonstrate how to augment the flow using the potentials. To 
demonstrate this, suppose that we have an optimal flow x and its associated potential 
n(i)  which produces reduced costs c; that satisfy the rcduced cost optimality condi- 
tion. Suppose that we want to  add one unit of flow to the system, injecting at  a source 
at site, k, and extracting at  a site 1. Find a minimal path, Pkl, (using the reduced 
costs c;) from an excess site k to  a deficit site 1. Now augment the flow by one unit for 
all edges (i, j )  E Pkr. We call this flow augmentation 6. The following augmentation 
lemma ensures that this proccdnre maintains optimality. 

Lemma: (Flow augmentation) 
The flow x' = x + 6 is optimal and it satisfies the reduced cost optimality conditions. 

Proof: Take ;r and n' as in the potential Lemma and let P be the shortest path from 
node s to  node k .  Part (ii) of the potential lemma implies that 'd (i, j) E P : c$ = 0. 

Therefore c ~ ~ !  = -c$ = 0. Thus a flow augmentation on (i; j )  E P might add ( j ,  i )  to  

the residual network, but ~7%: = 0, which means that still the reduced cost optimality 

condition c;; > 0 is fulfilled. QED 
The strategy for the successive-shortest-path algorithm is now clear. Given a set 
of excess nodes E = {ile(i) > 0) and a set of deficit nodes D = {ile(i) < 01, we 
iteratively find minimal paths from a node i E E to a node j E D until no excess or 
deficit remains: 

algorithm successive shortest paths [convex costs] 
begin 

Initialize x and n such that the reduced costs cn(x) > 0; 
while there is a node s with e(s) > 0 do 
begin 

compute thc reduced costs cT(x)(Eq. 3.15); 
find the shortest paths d(i) from s to  

all other nodes in G(x)  w.r. to  the reduced costs c c ;  
choose a node t with e(t)  < 0; 
augmcnt flow on the shortest path from s to t by one unit; 
computc ~ ( i )  := ~ ( i )  - d(11); 

end 
end 
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Figure 7.8: Illustrating the successive-shortest-path algorithm: (a) initial network 
for x = 0 and .rr = 0; (b) network after updating the potentials T ;  (c) network after 
augmenting 2 units along the path 1-2-3; (d) network after updating the potentials 
T ;  (e) network after augmenting 2 units along the path 1-2-3-4. 
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The minimal path for flow augmentation is found using Dijkstra's method on the resid- 
ual network with the reduced costs given by Eq. (7.23). After each flow augmentation, 
the node potentials are recalculated using the potential lemma. We demonstrate the 
algorithm in Fig. 7.8, where for simplicity we use a linear cost function. 
Since we worked hard t o  construct a system with positive reduced costs, the "find" 
operation above can be carried out using Dijkstra's algorithm. If we denote the sum of 
all the sources t o  be v = Cilb( i )>O b ( i ) ,  then the number of flow augmentations needed 
to find the optimal flow is simply v. Each flow augmentation requires a search for a 
minimum-cost path from a node k E E to a node 1 E D which for sparse graphs and 
integer flows can be efficiently accomplished with Dijkstra's method, which is ( ? ( I  El) .  
Thus for integer flows on sparse graphs with positive costs (as is typical of the physics 
applications) the successive-shortest-path algorithm is O(vl E 1). 
A final note on the initialization statement: for the physical problems we presented in 
the preceding sections (7.2 and 7.3) it is not hard to  find a flow x and a note potential 
T that fulfills the requirement that the reduced costs c"(x) = cij(xij) + ~i - . s ~ j  > 0 
are all non-negative. In the N-line problem it is simply x = 0 and T = 0, i.e. the 
system without any flux line (FL), since all bond energies are non-negative. In the 
convcx flow problem with a general local costs hij(xij) one just chooses the integer 
xij that is closest to the minimum of hij(x), for the specific examples of 7.3, where 
h .  2.7 . (x .  2.7 . )  = (xij - dij)' it is simply the integer that is closest to  the real number dij. 
With this configuration cij(xij) > 0 and with .ir = 0 also the reduced costs are non- 
negative. 

7.5 Miscellaneous Results for Different Models 

In this section we will present a number of results that highlight the flexibility of the 
described methods that allows not only study of the ground state of the model itself 
but also of the energetics of excitations and topological defects. 

Flux-line a r ray  i n  a periodic  potent ial  

As one example for typical flux-line (FL) problems we demonstrate here how one can 
study the competition between point disorder and a periodic potential. Depending on 
the strength of the disorder with respect to the depth of the periodic potential one may 
or may not have a roughening transition. As a starting point we use the continuum 
model (7.1) with a periodic potential V, and write down an appropriate lattice model 
for it. Here we study the situation in which each potential valley is occupied by one 
line and its minima are well localized, i.e. they have a width that is small against the 
interaction range of thc lines. 
We use the N-line model defined in Sec. 7.2 and simply modify the bond energies 
eij in (7.2) appropriately: to the uncorrelated bond energy variables, taken from 
some probability distribution P(tij) with variance t, we add a periodic part setting 
eij = ~ i j  + Aij. The structure of the periodic part resembles periodically arranged 
columnar defects and is depicted in Fig. 7.9, where one has valleys of effective depth 
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Figure 7.9: Top: Periodic potential in 2d. The depth of the valleys is denoted by A 
and the nearest neighbor distance by a.  Additional point disorder t accomplishes the 
energy landscape. The FL can only enter and leave the system via the energetically 
neutral edges connecting the source and the sink, respectively, with the potential 
valleys. Bottom: Schematic phase diagram in 2d and 3d for bounded disorder. In 
the case of unbounded disorder the flat phase vanishes. 

A such that the Aij values are zero inside the potential wells and constant elsewhere. 
This also reproduces the elastic energy, since all bonds cost some positive energy, 
defining the ratio disorder strength and the depth of the potential valleys as q = &/A. 

Figure 7.10 demonstrates with a series of snapshots the geometry involved in the 
calculations; and the typical behavior with increasing g in 2d and 3d. In both cases 
the lines are pinned to the energetically favorable valleys for small q, and finally for 
large q a cross-over to  a rough state takes place. In 3d one can observe that the 
lines wander almost freely under such conditions. The examples of Fig. 7.10 represent 
different regions in the u-q phase diagram, which is sketched in Fig. 7.9. 

One discriminates between the different regions in the phase diagram by looking at 
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Figure 7.10: Optimal ground state configurations in 2d (top) and 3d (bottom) for 
different point disorder strengths q ,  increasing from left to right. In the flat phase 
(left) the FL are trapped completely inside the potential valleys. 

the behavior of the average transverse fluctuation or roughness w of the lines: 

H 
where Fi = HP1 So dzr i (z )  and [. . .I,, denotes the disorder average. By studying 
very large longitudinal system sizes H 2 lo4 we are able to  extract the saturation 
roughness w(L) = limH,, w(L, H )  for a finite system of transverse size L. Note 
that we have chosen open boundary conditions: the transverse fluctuations cannot 
get larger than the system size. Other quantities of interest are the size lli of the 
longitudinal excursions (the average distance between the locations a t  which a line 
leaves a valley and returns to i t);  and the total number of potential valleys P V  that 
a line visits between its entry and terminal point in the limit H + co. 
In Fig. 7.11 dat,a for the roughness I I J  and Ill as a function of l / q  in 2d are shown. The 
picture that emerges is the following. In the $at region we have w ( L )  = 0, 11, = 0 and 
P V  = 1, i.e. the lines lie completely in the potential valleys. This region q < qcl exist 
only for bounded disorder. For the uniform distribution no energetically favorable 
transverse fluctuation can exist as long as q < A. That q,l > 1 follows from the 
fact that we are a t  full occupancy, N = Nv where Nv is the number of valleys, for 
q < qcl 2 the ground state consists always of N straight lines regardless of dimension. 
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For unbounded disorder this flat region does not exist, since the probability for a 
sequence of high-energy bonds in the valleys that pushes the lines out of it is always 
positive. In the weakly fluctuating region for q,l < q 5 q,z the lines roughen locally. 
Here one has w > 0 and Ill > 0, independent of the systems size L, and P V  = 1. 
The transverse fluctuations of flux lines are bounded by the average line distance or 
valley separation a. The central feature is that lines fluctuate individually, so that a 
columnar defect competes with point disorder. Both in 2d and in 3d a strong columnar 
pin strictly localizes the line [12] reducing the line-to-line interaction to  zero. More 
details of this analysis can be found in [13] 

Figure 7.11: Roughness w in 2d as a function of disorder strength q for bounded 
disorder. q,l and q,z  are shown. In the flat phase w = 0, whereas w > 0 for q > q , ~ .  
No transversal system size dependence is observed in the weakly fluctuating phase. 
The inset shows Ill. Each data point is averaged over n = 20 (L = 128) up to n = 600 
(L = 8) disorder configurations, a = 4. 

Dislocations in the SOS model 

In Sec. 7.3 we mapped the SOS Hamiltonian (7.7) onto the convex cost function (7.10) 
H ( x )  = x(i,j) (~ i j - d i ~ ) ~  with the constraint (7.9) (V.x)i = 0. Without this constraint 
the configuration x with the lowest value for H(x) is easy to  find (and actually is the 
one with which the successive shortest path algorithm starts): for each bond (ij) 
choose the integer xij as the one that is closest to  the real number dij. Obviously, 
for a typical disordered substrate the minimal configuration {x},~, violates the mass 



7.5 Miscellaneous Results for Dzfferent Models 151 

balance constraint (7.9). Figure 7.12 shows an example of a disordered substrate 
with substrate height di E {0.0,0.2,0.4,0.6). Consider the differences dij: across the 
dashed line we have dij = 0.6 and ldijl < 0.5 elsewhere. Consequently, the absolute 
minimum-energy configuration without any balance constraint is given by xij = 1 and 
xij = 0, respectively. 

Figure 7.12: Example of disordered substrate heights di in a random-surface model 
with a single dislocation pair connected along a straight line of size L (dashed line). 
The optimal surface without dislocations would be flat, i.e. n, = 0 for all sites i, 
however, allowing dislocations would decrease the ground-state energy (see text). 

With respect to  the balance constraint (7.9) the only feasible optimal solution (ground 
state) is a flat surface, i.e. xij = 0 for all links ( i j ) .  On the other hand, dislocations 
can be introduced if one treats the height field hi as a multi-valued function which 
may jump by 1 along lines that connect two point defects (i.e. a dislocation pair) [14]. 
Therefore, for the given example (Fig. 7.12) it should be clear that the minimal con- 
figuration {x),~, (see above) is exactly the optimal (i.e. ground state) configuration 
with one dislocation pair. One of the two defects has a Burgers charge b = +1 and 
the other one b = -1. The pair is connected by a dislocation line (dashed line in Fig. 
7.12) along which one has xij = 1. This already demonstrates that due to  the disor- 
der the presence of dislocations decreases the ground state energy and a proliferation 
of defects appears. Alternatively one can introduce a dislocation pair by fixing the 
boundary to  zero and one [15]. 
The defect pairs in the disordered SOS model are source and sink nodes of strength + b  
and -b, respectively, for the network flow field xij, which otherwise fulfills (V .x) i  = 0, 
i.e. we have to  modify the mass balance constraint (7.9) as follows 

0 no dislocation at i 
(V . x ) ~  = 

*b dislocation at i 

Thus the ground-state problem is to  minimize the Hamiltonian (7.10) subjected to  the 
mass balance constraint (7.26). In the following we concentrate on defect pairs with 
b = *1. 
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The defect energy A E  is the difference of the minimal energy configuration with and 
without dislocations for each disorder realization, i.e. A E  = El - Eo. Morc precisely, 
for the configuration with N defect pairs of Burgers charge b = 411 we introduce two 
extra nodes s and t with source strength n, = + N  and nt = -N ,  respectively, and 
connect them via external edges or bonds with particular sites of the lattice depending 
on the degree of optimization: (a) with two sites separated by L/2 [Fig. 7.13(a)], (b) 
the source node with one site i and the sink node with the sites on a circle of radius L/2 
around i [Fig. 7.13(b)] and (c) both nodes with the whole lattice. Case (a) corresponds 
to  a fixed defect pair, (b) to a partially optimized pair along a circle, both separated 
by a distance L/2, and (c) to  a completely optimized pair with an arbitrary separation. 
In all cases the energy costs for flow along these external edges are set to  a positive 
value in order to  ensure the algorithm will find the optimal defect pair on the chosen 
sites. These "costs" have no contribution to  the ground-state energy. In case of mult i  
pairs we always use graph (c). Here the optimal number N of defects in the system 
is gradually determined starting with one pair ( N  = 1) with a vortex core energy 2E, 
and checking whether there is an energy gain or not. If yes, add a further pair (with 
2Ec) and repeat the procedure until there is no energy gain from the difference of the 
ground-state energy between two iterations. 

Figure 7.13: Graph of an L x L lattice with periodic boundary conditions (p.b.c.) 
for the implementation ( a )  of one fixed defect pair and (b) of a partially optimized 
pair. Both are separated by L/2. Dislocations are induced by two extra nodes s and 
t ,  which are connected with the possible positions of the defects (big dots). 

One can study the defect energy A E  and its probability distribution P ( A E )  on an 
L x L lattice with L = 6, 12, 24, 48, 96, 192 and 2 .  lo3  - lo5 samples for each size and 
consider the three cases (a)-(c) (see earlier). With an increasing degree of optimization 
a negative defect energy A E  becomes more probable and its probability distribution 
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Figure 7.14: Probability distribution P ( A E )  of a large-scale topological excitation 
with a Gaussian fit for different optimizations: (a) for a fixed defect pair, (b)  for a 
partially optimized pair and ( c )  for a completely optimized pair with different system 
sizes L. 
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P ( A E )  differs more and more from the Gaussian fit, Fig. 7.14. The resulting disorder 
averaged defect energy [AEIdi, scales like 

h ( L )  fixed defect pair 

-0.27(7) . ln3I2(L) partially optimized 
-0.73(8) . ln3I2 (L) completely optimized 

From the fact that the partially and completely optimized dislocation pairs have on 
average a negative energy that increases in modulus for increasing distance L it follows 
that the ground state is unstable with respect to  the formation of unbound dislocation 
pairs. More details can be found in [16]. 

Low-energy excitations in the vortex glass 

As a last example we consider the vortex glass model in the strong screening limit 
(7.14) and study the scaling behavior of low-energy excitations AE(L)  of length scale 
L (to be defined below) in the presence of an external field. The magnetic filed bi can 
be constructed from the quenched vector potentials Aij by a lattice curl, in our case 
with the homogeneous external field we have: 

We choose Byt = B e, i.e. the external field points in the z-direction. The dependence 
of AE(L) on L provides the essential evidence about the stability of the ground state 
with respect to  thermal fluctuations. If AE(L) decreases with increasing length L it 
implies that it costs less energy to turn over larger domains thus indicating the absence 
of a true ordered (glass) state at any T # 0. Usually one studies such excitation of 
length scale L by manipulating the boundary condition for the phase variables of 
the original gauge glass Hamiltonian [17, 181. One induces a so called domain wall 
of length scale L into the system by changing the boundary condition of a particular 
sample from periodic to anti-periodic (or vice versa) in one space direction and measure 
the energy of such an excitation by comparing the energy of these two ground-state 
configurations. This is the common procedure for a domain-wall renormalization group 
(DWRG) analysis, as it was first introduced in connection with spin glasses (see Chap. 
9), which, however, contains some technical complications [17] and some conceptual 
ambiguities [18, 191 in it. 
Here we follow the basic idea of DWRG, we will, however, avoid the complications 
and the ambiguities that appear by manipulating the boundary conditions (b.c.) and 
try to  induce the low energy excitation in a different way, as first been done by one 
of us in [20] for the zero-field case. First we will clarify what a low energy excitation 
of length scale L is: in the model under consideration here it is a global vortex loop 
encircling the 3d torus (i.e. the L3 lattice with periodic b.c.) once (or several times) 
with minimum energy cost. How can we induce the above mentioned global vortex 
loop, if not by manipulating the b.c.? Schematically the solution is the following 
numerical procedure: 
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1. Calculate the exact ground-state configuration {JO) of the vortex Hamiltonian 
Eq. (7.14). 

2. Determine the resulting global flux along, say, the x-axis f, = Ci J,Ox. 

3. Study a minimum-cost-flow problem in which the actual costs for increasing the 
flow on any bond in the x-direction Act = ci(J:x + 1) - ci(J,OX) is smoothly mod- 
ified letting the cost of a topologically simple connected loop remain unchanged 
and only affecting global loops. 

4. Reduce the Ac: until the optimal flow configuration {J1) for this min-cost-flow 
problem has the global flux ( f ,  + I ) ,  corresponding to the so called elementary 
low energy excitation on the length scale L. 

5. Finally, the defect energy is A E  = H({J1)) - H({J')). 

Two remarks: 1) In the pure case this procedure would not work, since at some point 
spontaneously all links in the z-direction would increase their flow value by one. It is 
only for the disordered case with a continuous distribution for the random variables b i  
that a unique loop can be expected. 2) In the presence of a homogeneous external field 
one has to discriminate between different excitation loops: those parallel and those 
perpendicular to the external field need not have the same energy. 
As for the zero-field case [20] one expects for the disordered averaged excitation energy 
(or defect energy) 

where B is fixed, [. . .I, denotes the disorder average and Q is the stiffness exponent 
and its sign determines whether there is a finite temperature phase transition or not, 
as explained above. If Q < 0, i.e. the transition to  a true superconducting vortex state 
appears only at T = 0 [ lo ,  201, as shown in Fig. 7.15. 
For any fixed value of B the finite size scaling relation (7.29) is confirmed and gives 
Q = -0.95 & 0.04, c.f. Ref. [20], independent of the field strength B. Nevertheless 
Fig. 7.16 shows that in one individual sample the excitation loops themselves change 
their form dramatically with B. Only small parts of the loop seem to persist over 
a significant range of the field strength, see for instance in the vicinity of the plane 
z = 20 in Fig. 7.16. 
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8 Genetic Algorithms 

In this chapter, genetic algorithms (GA) are explained. For a detailed introduction, 
see c.g. [I, 2, 31. The basic idea is to mimic the evolution of a group of creatures of the 
same species. Individuals which adapt better to  the requirements imposed by their 
environment have a higher probability of survival. Thus, they pass their genes more 
frequently to  subsequent generations than others. This means, the average fitness of 
the population increases with time. This basic idea can be transfered to optimization 
problems: instead of looking for skilled creatures, the aim is to  find a minimum of a 
maximum of an objective function. Rather than different individuals, different vectors 
of arguments of the objective function are treated. The evolutionary process can easily 
be adapted for algorithms creating better and better vectors. The scheme has already 
been applied to  various problems. 
In this section we first give the basic framework of a GA. Then we present an example 
in detail, which enables us to  understand the underlying mechanisms better. Finally 
two applications from physics of the smallest and the largest particles are presented: 
finding ground states in one-dimensional electronical quantum systems and determin- 
ing the parameters of interacting galaxies. In Chap. 9 another application is shown, 
where genetic algorithms are applied among other techniques for the calculation of 
spin-glass ground states. 

8.1 The Basic Scheme 

The basic observation, which led to  the development of genetic algorithms [4], is that 
for millions of years a huge optimization program has been running: nature tries 
to  adjust the way creatures are formed such that they have a high probability of 
survival in a hostile environment (unfortunately the hostile environment evolves as 
well). At the beginning, all animals and plants were very simple. Only by reproduction 
and mutation did the structure of the creatures become more and more complex, 
so that they adapted better and better to the requirements. This works, because 
of the presence of selection: individuals which are better equipped have a higher 
probability of staying alive ("survival of the fittest"). Hence, they can pass on the 
information about how they are built, i.e. their genes, to  subsequent generations more 
often. By iterating this scheme millions of millions of times on a large population 
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of individuals, on average better and better creatures appear. Please note that this 
scheme is over simplified, because it neglects the influence of learning, society (which 
is itself determined somehow by the genes as well) etc. 

Population 

Figure 8.1: A population of individuals. Each individual is a collection of char- 
acteristic values, e.g. genes, parameters or positions. Here it is a vector of values 

+I-. 

This simple principle can be transfered to  other optimization problems. One is not 
necessarily interested in obtaining an optimum creature, but maybe one would like to 
have a configuration of minimum energy (ground state) of a physical system, a motor 
with low energy consumption or a scheme to organize a company in an efficient way. 
Physical systems, motors or companies are not represented by a sequence of genes but 
are given through a configuration of particles or a vector of parameters. These will be 
denoted as individuals-ii as well. The population (see Fig. 8.1) is again just a set of 
different individuals. 

Mutation 

@-/L 

Figure 8.2: The effect of the mutation operation on a population. Individuals are 
randomly changed. Here, the values of the vectors are turned from + to - or vice 
versa with a given small probability. In the upper part the initial population is shown, 
in the lower part the result after the mutation has been carried through. The values 
which have been turned are highlighted. 
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Crossover 

Figure 8.3: The crossover operation. Offspring are created by assembling parts from 
different individuals (parents). Here just one part from a +/- vector and another 
part from a second vector are taken. 

Now the different operations affecting the population will be considered. Mutations 
of genes correspond to  random changcs of the individual, e.g. displacing a particle or 
changing a parameter, see Fig. 8.2. The reproduction scheme, often called crossover, 
can be transfered in many different ways to  genetic algorithms. The general principle 
is that one or several individuals (the parents) are taken, divided into small parts and 
reassembled in different ways to create new individuals, called offspring or children, 
see Fig. 8.3. For example a new particle configuration can be created by taking the po- 
sitions of some particles from one configuration and the positions of the other particles 
from a second configuration. 
The selection step can be performed in many ways as well. First of all one has to 
evaluate the fitness of the individuals, i.e. to  calculate the energy of the configurations 
or to  calculate the efficiency of the motor with given parameters. In general, better 
individuals are kept, while worse individuals are thrown away, see Fig. 8.4. The details 
of the implementation depend on the problem. Sometimes the whole population is 
evaluated, and only the better half is kept. Or one could keep each individual with a 
probability which depends on the fitness, i.e. bad ones have a nonzero probability of 
being removed. Other selection schemes just compare the offspring with their parcnt,s 
and replace them if the offspring are better. 
Another detail, which has to  be considered first when thinking about implementing a 
GA, is the way the individuals are represented in a computer. In general, arbitrary 
data structures are possible, but they should facilitate the genetic operations such as 
mutation and crossover. In many cases a binary representation is chosen, i.e. each 
individual is stored via a string of bits. This is the standard case where one speaks of 
a "genetic algoritjhmX. In other cases, where the data structures are more complicated, 
sometimes the denotation "evolutionary program" is used. For simplicity, we just keep 
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Selection 

Figure 8.4: The effect of the selectiom operation on the population. The fitness F 
is evaluated, here for all four individuals. Individuals with a low fitness have a small 
probability of survival. In this case, individual two is removed from the population. 

the expression "genetic algorithm", regardless of which data structure is chosen. 

"configuration" 

local 
optimization 

"configuration" 

Figure 8.5: Local optimization. Here the population is shown in an energy landscape. 
Large energy means small fitness. This local optimization moves individuals to the 
next local optimum. 

Quite frequently, the performance of a genetic algorithm can be increased by applying 
local optimizations. This means that individuals are taken and altered in a more or less 
deterministic way, such that its fitness is increased. Usually a local optimum is found 
which is close to  the current individual, see Fig. 8.5. For example, when searching for 
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a ground state, one could move particles in a way that the energy is decreased, using 
the forces calculated from a given configuration. Whether and how local optimizations 
can be applied depends strongly on the current problem. 
We finish this section by summarizing a possible general structure of a GA. Please 
note that many different ways of implementing a genetic algorithm exist, in particular 
the order of the operations crossover, mutation, local optimization and selection may 
vary. At the beginning the population is usually initialized randomly, M denotes its 
size and n R  the number of iterations. 

algorithm genetic 
begin 

Initialize population XI, . . . , X M ;  
for t := 1 to n R  do 
begin 

select parents pl , . . . , p k ;  

create offspring el ,  . . . , el via crossover; 
perform mutations; 
eventually perform local optimization; 
calculate fitness values; 
select individuals staying alive; 

end 
end 

Genetic algorithms are very general optimization schemes. It is possible to apply them 
to various problems appearing in science and everyday life. Furthermore, the programs 
are relatively easy to  implement, no special mathematical knowledge is required. As a 
result an enormous number of applications have appeared during the last two decades. 
There are several specialized journals and conferences dedicated to this subject. When 
you search in the database INSPEC for articles in scientific journals which contain the 
term "genetic algorithm" in the abstract, you will obtain more than 15000 references. 
On the other hand, applications in physics are less common, about several hundred 
publications can be found in INSPEC. Maybe this work will encourage more physicists 
to  employ these methods. Recent applications include lattice gauge theory [5], analysis 
of X-ray data [6], study of the structures of clusters [7, 8, 91, optimization of lasers 
[lo]/ laser pulsed [I l l  and optical fibers [12], examining nuclear reactions [13], data 
assimilation in meteorology [14] and reconstructing geological structures from seismic 
measurements [15]. An application to  a problem of statistical physics in conjunction 
with other methods is presented in Chap. 9. Below, sample applications from quantum 
physics and astronomy are covered. 
However, one should mention that GAS have two major drawbacks. Firstly the method 
is not exact. Hence, if your are interested in finding the exact optimum along with 
a proof that the global optimum has really been obtained, then you should use other 
techniques. But if you want to  get only "very good" solutions, genetic algorithms 
could be suitable. It is also possible to  find the global optimum with GAS, but usually 
you have to  spend a huge numerical effort when the problem is NP-hard. Secondly, 



164 8 Genetic Algorithms 

although the method has a general applicability, the actual implementation depends on 
the problem. Additionally, you have to  tune parameters like the size of the population 
or the mutation rate, to  obtain a good performance. Very often the effort is worthwhile. 
The implementation is usually not very difficult. Some people might find it helpful to  
use the package Genetic and Evolutionary Algorithm Toolbox (GEATbx) [16], which 
is written to  use in conjunction with the program Matlab [17]. In the next section 
a simple example is presented, which can be implemented very easily without any 
additional libraries. 

8.2 Finding the Minimum of a Function 

As an example we will consider the following problem. Given a one-dimensional func- 
tion f (x), we want to find its minimum in an interval [a,  b]. For this kind of problem 
many mathematical methods already exist, so in practice one would not apply a ge- 
netic algorithm. This example has the advantage that due to  its simplicity one can 
concentrate on the realization of the genetic operators. Furthermore, it allows us to  
understand better how GAS work. For this purpose, the development of the popula- 
tion in time is studied in detail. Also the benefit gained from a local optimization will 
be shown later on. Here, we are considering the function 

in the interval [O, I]. The function is plotted in Fig. 8.6. The goal is to  find, via a 
genetic algorithm, the minimum of f (x),  which is obviously located at  zo = 0.5 with 
f (xo) = 0. 
Here the individuals are simply different real values xi E [O, I]. In order to  apply genetic 
operations like mutation and crossover, we have to  find a suitable representation. We 
chose the method used to store numbers in a computer, the binary representation: it 
is a string xi  . . . x r  of zeros and ones, where P denotes the length of the strings, i.e. 
the precision. Since all values belong to  the intcrval [O, I] we use: 

For example the string "011011" represents x = 2-' + 2-3 + 2-5 + 2-6 = 0.421875. 
From a given string, thc corresponding number can be calculated just be performing 
the sum in (8.2) .  The inverse transformation is given by the following small procedure. 
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Figure 8.6: One-dimensional sample fitness function f (x). 

procedure bit-sequence(x, P) 
begin 

f := 0.5 
for q := 1 to P 
begin 

if x > f then 
xy := 1; x : = x -  f ;  

else 
2 4  := 0; 

f := f l 2 ;  
end 
return(zl,. . . , xP); 

end 

Next, we present the realization of the genetic operations. For the mutation with 
rate p,, each bit is reversed with probability p, (the random numbers drawn in this 
algorithm are assumed to  be equally distributed in [ O ,  I]): 
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procedure mutation({xq)) 
begin 

for q : =  1 to P do 
begin 

r := random number in [O, 11; 
if r < p, then 

2'4 := 1 - 2 4 ;  

end 
return ( x l , .  . . , xP); 

end 

Examde: Mutation 

We will consider for the example the following bit string (P = 20) 

For a mutation rate of p, = 0.2, by chance 3 bits (on average two bits) could 
be reversed, e.g. bit 5, bit 10 and bit 17, resulting in 

The crossover is slightly more complicated. It creates two children cl,c2 from two 
parents xi,  x j  in the following way. A random crossover point s E {1,2, .  . . , P )  is 
chosen. The first child is assigned the bits xi  to  x,S from the first parent and the bits 
x$+' to  x r  from the second parent, while the second child takes the remaining bits 

xi,. . . ,x;, xBfl,. . . , x;: 

procedure crossover(xi, x j )  
begin 

s := random integer number in {1,2, .  . . , P}; 
for q : =  1 to s do 

c4 .- .- 2 . .  4 c4 .- x4. 
I 1  2 .- 3 '  

for q := s +  1 to P do 
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Example: Crossover 

We assume that the crossover point is s = 7 (denoted by a vertical bar I ) .  
For the two parents (P = 20) 

the following children are obtained: 

In this problem, the selection is done in the following way: each child replaces a parent, 
if it has a better fitness, i.e. the evaluation of the function f results in a lower value. 
For simplicity we just compare the first child with parent x, and the second with x,. 
The complete genetic algorithm is organized as follows. Initially M strings of length 
P are created randomly, zeroes and ones appear with the same probability. The main 
loop is performed n~ times. In the main loop, two parents x,, x, are chosen randomly 
each individual has the same probability, and two children cl,  c2 are created via the 
crossover. Then the mutation is applied to the children. Finally, the selection is 
performed. After the main loop is completed, the individual x having the best fitness 
f (x) is chosen a:; a result of the algorithm. The following representation summarizes 
the algorithm: 

algorithm minimize-function(M, P, n ~ ,  p,, f )  
begin 

initialize M bit strings of length P randomly; 
for t := l to n~ do 
begin 

choose parents xi, x j  with i # j randomly in [ I ,  MI; 
(el, e2) := crossover(xi, x j ) ;  
mutation(cl, p,) ; 
mutation(cz, p,); 
if f (el) < f (x,) then 

xi := c1; 
i f f  ( ~ 2 )  < f (xj)  then 

z j  := c2; 
end 
return best individual from X I ,  . . . , x ~ ;  

end 
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Please note that before the evaluation of the fitness f (x,), the value of the bit string 
x i ,  . . . , x r  has to  be converted into the number x:, . 
Now we study the algorithm with the parameters M = 50 and p, = 0.1. Wc recom- 
mend the reader to  write khe program itself. I t  is very short and the implementation 
allows to  learn much about genetic algorithms. The choice of p, = 0.1 for the mu- 
tation rate is very typical for many optimization problems. Much smaller mutation 
rates do not change the individuals very much, so new areas in configuration space 
are explored only very slowly. On the othcr hand, if p, is too large, too much genetic 
information is destroyed by the mutation. 
The optimum size M of the population usually has to  be determined by tests. It 
depends on whether one is interested in really obtaining the global optimum. As a 
rule of a thumb, the larger the size of the population is, the better the results are. On 
the other hand, one does not want to  spend much computer time on this, so one can 
decrease the population size, if the optimum is rather easy to  find. 

average 
best 

Figure 8.7: Evolution of the current minimum and average fitness with time t ,  here 
M = 50,pm = 0.1, n R  = 10000. 

In Fig. 8.7 the evolution of the fitness of the best individual and the average fitness are 
shown as a function of the step size. Here nR = 10000 iterations have been performed. 
The global minimum has been found after 1450 steps. Since in each iteration two 
members of the population are considered, this means on average each member has 
been treated 2 x 1450/M = 58 times. Please note, if you are only interested in a very 
good value, not in the global optimum, you could stop the program after say only 
100 iterations. At timestep 1450 only one individual has found the global optimum a t  
xo = 0.5, the average value still decreases. 
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\ 

t=l OxM 

Figure 8.8: Evolution of population with time t ;  here M = 50000,p,, = 0.1 and 
t = 0 , l  x AT, 10 x M. 
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To gain more insight into the driving mechanism of a GA, we will study the develop- 
ment of the population with time. Since we are interested in average values, we will 
study a much larger population M = 50000 to reduce the statistical fluctuations. At 
the beginning, the members of the population are independently distributed in the 
interval [0, 11, see the top of Fig. 8.8. 
The situation after t = I x M steps is shown in the middle part of Fig 8.8. Now it 
is more likely to find individuals near the local minima. The highest density of the 
population is near the global minimum. After t = 10 x M steps, most members of 
the population have gathered near the global optimum. Please note the change of 
the scale in the lower part of Fig. 8.8. Finally, after t = 100 x M ,  the population is 
completely centered at the minimum (not shown). 
As mentioned before, the efficiency of a genetic algorithm may be increased by applying 
local optimizations. Which method is suitable, depends highly on the nature of the 
problem. Here, for the minimization of a function of one variable, we use a very 
simple technique: an individual x is just moved to the next local minimum. This can 
be achieved by the following method. If the function f has a positive slope at x,  then x 
is decreased by a value 6, otherwise x is increased. The sign of S indicates the direction 
of the change. This process is iterated. Each time the slope of f changes compared 
with the last step, the size of /SI is reduced and the sign reversed. The iteration stops 
if 6 becomes of the order of 2 Y P .  The procedure reads as follows: 

procedure local-optimization(x, P) 
begin 

S := 0.01; 
while 161 > 2-P do 
begin 

if 6 x f l (x)  > 0 then 
S := -0.5 x 6; 

x := x + 6; 
end 

end 

The algorithm iteratively approaches the closest local minimum. This simple local 
optimization is suitable, because f has a smooth behavior. For arbitrary functions 
more sophisticated methods have to be applied to search for local minima, see e.g. 
[18]. Please note that due to  the limited numerical accuracy, it is possible that the 
exact numerical local optimum cannot be found. 
The above algorithm is a special case of the steepest descend method,  which is applied 
for functions of several variables. The basic idea is to calculate the gradient of the 
function at the current value of the arguments and alt,er the arguments in the direction 
of the gradient. Similar to  the simple method presented above, this technique is 
not very fast. More efficient for minimizing functions of real variables are conjugate 
gradient methods [18]. 
The GA is altered in such a way that the local optimization is applied to  each offspring 
after the mutation. This drastically decreases the number of steps which are necessary 
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Figure 8.9: Evolution of the current minimum and average fitness with time t when 
additionally a local optimization is applied, here M = 50,p, = 0.1, n~ = 1000. 

1 02 I """I """I " " " "  

to  find the global optimum. The minimum and average fitness as a function of step 
number of the extended algorithm (run with the same parameters as before) are shown 
in Fig. 8.9. Please note that the decrease of the number of steps needed to  obtain the 
minimum does not mean that the minimum is found quicker in terms of CPU time. 
In many cases the numerical demand of the local optimization is very large. Also one 
has to  take into account the additional effort for the implementation. Whether it is 
worth including a local optimization or not depends heavily on the problem and must 
be decided each time again. 
The impact on the population can be observed in Fig. 8.10. The distribution of the 
individuals after t = hir steps is shown. Most individuals are located near the local 
minima. Only the members of the population, which have not been considered so far, 
remain at  their original positions. 
The minimization problem presented in this section serves just as an example to il- 
lustrate the basic concepts of genetic algorithms. Two interesting applications from 
physics are presented in the following sections, while another special-purpose genetic 
algorithm is presented in Chap. 9. 

10' - including local search - 



8 Genetic Algorithms 

including local search 

I t=l XM 

Figure 8.10: Distribution of the population at time t ,  here M = 50000,p, = 0.1 
and when applying the local optimization. 

8.3 Ground States of One-dimensional Quantum 
Systems 

During the last decade much progress has been made in the technology for manufac- 
turing micro structures. This has happcned particularly for semiconductor systems, 
where it is possible to  create two dimensional confined potential landscapes for elec- 
trons of arbitrary geometry, so called quantum dots. 
When studying the behavior of electrons in such systems one has to solvc the quantum 
mechanical time-independent, Schriidinger equation (with fi2 /m  = I), 

1 
= E l  H = - - V 2 + V ,  

2 (8.3) 

where V is the Nabla operator and V the potential, here just one particle in the 
quantum dot is considered. For some standard cases it is possible to solve the equation 
analytically, e.g. one particle in a trap or in a harmonic potential. These cases are 
usually prcsentcd in basic courses a t  university level. For arbitrary shapes of the 
potential V, exact analytical solutions cannot be obtained. In this chapter, we describe 
a recent approach developed by I. Grigorenkp and M.E. Garcia [19], where the ground- 
state wave function of low-dimensional systems with one particle can be found via a 
GA. Here we restrict ourself to  one-dimensional systems, i.e. 4 = $ ( r c ) ,  V = V(z) ,  

d V = &, but the method can be easily extended to higher dimensions. 
The ground state is the normalized wave function $(x) minimizing the expectation 
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value 

of the energy, where $* denotes the conjugate complex of $. To solve the ground- 
state problem via a genetic algorithm, one considers a population {gj) of M different 
wave functions. For the problem presented here, we assume that the electrons are 
confined by potential walls of infinite height to the interval [u, b]. So the population 
contains wave functions obeying the boundary conditions $(a)  = $ ( b )  = 0. Since we 
are interested in time-independent problems, we can neglect the phase of the wave 
function, i.e. concentrate on real-value functions. 
Numerically, the functions are represented as a list of K + 1  numbers $j(a+Ic(b-a)/K) 
with k = 0,1 , .  . . , K. The fitness of individual dj is given by E[gj]. For the evaluation 
of the fitness, a cubic spline [18] can be used to  interpolate the wave function. Then 
the integral (8.4) can be calculated numerically. 
To specify the details of the GA, we have to  state the choice of the initial population, 
the crossover mechanism and the way mutations are performed. No local optimization 
is applied here. 
The initial population {$j(x)) consists of Gaussian like functions of the form 

For each individual the values for the center x j  E [a, b] and the width oj E (0, b - a] 
are chosen randomly. The constant Aj  is calculated from the normalization condition 

I$j(x)/2 dx = 1. Please note that the boundary conditions are fulfilled by definition. 
For the mutation bperation a random mutation function $"(x) is added and the 
result normalized again: 

x(") = A [$3 (5) + grn (x)l . (8.6) 

The simplest approach is just to draw the mutation function grn from the same en- 
semble as the initial population. The only difference is, that $"' is not normalized. 
This allows for slight changes of the wave function. In Fig. 8.11 a sample crossover 
operation is presented. 
The crossover operation combines two randomly chosen parent functions (x), $9(x)  
and creates two offspring 41 (x), 4 2  (2). From the four wave functions $1 (x), $2 (x), 

(x), $2 (x) the best two are taken over to  the next generation. Similar to  the crossover 
presented in the last section, the resulting wave functions consist of two parts, where 
the left part comes from one parent and the right part from another. Since wave 
functions have to  be smooth functions, the offspring interpolate smoothly between 
both parents. For that purpose a smooth step function St(x) is used: 

The constants B1, B2 are chosen in such a way that 41,42 are again normalized. Here 
St(x)  = ;[I + tanh((x - xo)/k2)] is taken, where xo E (a,  b) is chosen randomly and 
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Figure 8.11: The mutation operation for the quantum ground-state calculation. 
Top: The original function $ j  and the random mutation $" function. Bottom: The 
resulting wave function. 

k is a parameter which determines the sharpness of the step function. In Fig. 8.12 an 
example of the crossover operation is shown. The two parent functions belong to the 
initial population. The step function has xo = 0.5, k2 = 0.1. 

For this specific genetic algorithm, at  each iteration step M times either a mutation 
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or a crossover operation is performed on randomly chosen wave functions. For the 
applications presented here, a probability of p, = 0.03 for a mutation and a probability 
of 1 - p, = 0.97 for a crossover was used. K = 300 grid points were taken for storing 
the wave functions. 
As a first test we consider the harmonic potential Vh(z) = $w2(x - 0 . 5 ) ~  with w = 

x lo2, a = 0, b = 1. In Fig. 8.13 the probability density 1$(2) l 2  for the ground 
state is shown which was found after 100 iterations. The inset shows the development 
of the lowest energy for the first 30 iterations. The probability density of the ground 
state is so close to the analytical solution that it is not possible to distinguish them 
in the plot. The ground-state energy is Eo = 316.29 (atomic units) while the exact 
analytical result is Eo = 316.22, i.e. a difference of just 0.02%. 
Next, an example is prcsented where it is not possiblc to obtain an exact analytical 
solution. The potential is produced by five positive charges with charge Q = 5 placed 
at  positions xi = 13,19,25,31,37. Here, the interval [a ,  b] = 50 is considered. The 
potential is softened by a cutoff distance c = 0.5 and given by 

Such potentials occur for example when clusters are studied, which are created by 
intense laser pulses. To speed up the convergence, the initial wave functions $I, should 
represent the symmetry of the potential. Thus, superpositions of five random functions 
of the form (8.5) are taken. The resulting ground-state probability distribution after 
20 iterations is shown in Fig. 8.14. Please note that the symmetry of the potential is 
reflected by the wave function. 
With an extension of the genet,ic algorithm it is possible to  calculate excited states 
as well. More details can be found in [19]. Recently the method has been applied to  
two-dimensional quantum systems as well [20]. Now we leave the world of quantum 
physics and turn to  the physics of large objects which provides another example where 
GAS have been applied successfully. 
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Figure 8.12: The crossover operation for the quantum ground-state calculation. 
Top: two parent functions. Middle: the step function (k2 = 0.1, xo = 0.5) regulating 
the crossover. Bottom: resulting children functions. 



8.3 Ground Sta,tes o f  One-dim.en,sion.al Quan.tum Svstem.s 

Figure 8.13: Calculated spatial distribution of electron density l$(z)I2 (solid line) 
for the Id  harmonic potential (dotted line). The inset figure shows the evolution of the 
fitness during the GA-iterations. Reprinted from [I91 with permission from Elsevier 
Science. 

Iterations 4 

x, (atomic units) 

Figure 8.14: Calculated I$(z)i"solid line) for an electron on a potential produced 
by a chain of positive ions (dotted line). The inset figure shows the convergence 
behavior. Reprinted from [19] with permission from Elsevier Science. 
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8.4 Orbital Parameters of Interacting Galaxies 

When studying large scale objects in universe like galaxies, one is unfortunately re- 
stricted to watching the physical processes from far away. As a consequence, it is only 
possible to obtain two-dimensional images via telescopes instead of measuring all three 
coordinates in space. A rough impression of the three-dimensional structure can be 
obtained from the Doppler shift of the light. Furthermore, seen from the earth, the 
movement of galaxics is slow in comparison with the human lifetime. Hence, it is only 
possible to obtain a snapshot of the development, in contrast to  e.g. the observation 
of asteroids or comets. In this section, the case is considered were two galaxies are 
colliding and it is shown how some hidden parameters can be obtained using a genetic 
algorithm [21], revealing the full three-dimensional description of the process. 

Figure 8.15: Two colliding galaxies. The figure is generated from a simulation. 

In Fig. 8.15 a snapshot of two colliding galaxies is shown. A coordinate system is 
used such that thc 2-y plane is the planc of the sky (with the x-axis horizontal) and 
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the z-axis points towards the observer. The movement of the centers of the masses 
of the galaxies can be described by the distances Ax, Ay, Az,  the relative velocities 
Av,, Av,, Av,, the masses m l ,  ma and the spins s l ,  s2 (clockwise or counterclockwise). 
Using astronomical observations it is possible to  measure the separation Ax, Ay in the 
plane of the sky and the relative velocity Av, along the line of sight [22]. The distance 
Az,  the velocities Av, , Av,, the masses m,l , ma and the spins s l  , s2 are not known. In 
the following it is shown how these parameters can be estimated by applying a genetic 
algorithm. For that purpose, the individuals of the underlying population are chosen 
to  be vectors of values (Az, Av,, A v , , m ~ ,  ma, s l ,  sa). 
First of all, since the distance Az cannot be measured, how do we know that the 
galaxies are interacting a t  all? Since one can observe only the projection of the scenery 
to  the x-y plane, the galaxies might be far away. The basic idea to  answer this question 
is that the evolution of a single galaxy is well studied. Its distribution of emitted light 
obeys an exponential falloff. Usually it is assumed that the amount of emitted light is 
proportional to  the mass density, thus one can use an exponential density distribution. 
Only the length and mass scales may vary from galaxy to galaxy. For the case when two 
galaxies are far away from each other, both distribution of masses obey this standard 
picture. On the other hand, if two galaxies interact with each other, the standard 
distribution is perturbed. For example in Fig. 8.15 a bridge of stars connecting both 
galaxies can be observed. The main idea of the genetic algorithm to determine the 
unknown parameters is t o  take advantage of this type of perturbation for the analysis. 
We start the description of the GA with the encoding scheme for the individuals. 
Secondly, it is shown how the fitness of the individuals is calculated, i.e. how the 
collusion which results from the parameters is compared with the measurement data. 
Next the mutation and crossover operations are given. Finally a result from a sample 
simulation is presented. 

Figure 8.16: The encoding of the parameters (ml ,  mz, Az, Av,, Av,, sl ,  sz) via 25 
digits g, ~ { 0 , 1 , .  . . ,9). Four digits are used for each mass ml ,  mz, while the values 
Az, Av,, Av, take 5 digits (one for the sign), the spins sl ,  sz = & are stored in the 
last two digits. An odd number represents the sign +, otherwise it is a negative sign. 

Similar t o  the quantum-system example, here no binary representation is chosen. In- 
stead, each individual is a vector g = (gl, 92, . . . , g25) of 25 numbers from {0,1, .  . . ,9) ,  
see Fig. 8.16. Each vector represents the unknown values (ml ,  ma, Az, Av,, Av,, s l ,  
sa). To avoid large numbers, suitable units are chosen: the gravitational constant is 
G = 1, the unit of length is 1 kpc (= 3.0856 x lo1' m = 3.2615 light years), the unit 
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of time is 1.05 Myr = 3.3143 x 1013 s, the unit of the mass is 2 x 1011 times the mass 
of the sun (3.9782 x lo4' kg). The unit of velocity is then 931 km/s. Owing to  the 
rescaling, all masses are taken in the interval 0 and 100, Az between -1000 and +I000 
and Av,, Av, between -10 and 10. For encoding the masses 4 digits are used, while 
the distance Az and the velocities take 5 digits. Thus, the first mass is obtained from 
the vector g through ml  = gl x 10' + g2 x 10' +g3 x 10-I + g4 x 10V2. The distances 
and velocities arc encoded in a similar way using 4 + 1 digits. One digit is reserved to  
store the sign, it is negative if the corresponding value is odd and positive otherwise. 
The spins sl , ss = i l  of the galaxies are stored in the last two digits gad, 925 in the 
same way. 
The part of the GA which consumes the most computer time is the evaluation of 
the fitness function, because for each set of parameters g a complete many-particle 
simulation has to be carried through. This works as follows. First the centers of mass of 
the two galaxies are calculated. With the set of known (i.e. fixed) parameters and with 
given values for the parameters in g, the development of the system consisting of both 
of the centers of masses is completely determined. Hence, it is possible to integrate the 
equations of motion backwards in time until a state is obtained where the two galaxies 
are far away from each other. Next, the two centers of masses are replaced by two sets 
of stars with a rescaled standard mass distribution. The number of particles in the 
galaxies are denoted by N,,J and N,J, respectively. For the examples presented here, 
N,,l = NP,2 = 1000 were chosen. For simplicity, it is assumed that the distribution of 
the stars is rotationally symmetric. Then the system is propagated forwards in time. 
To speed up calculations, the simulations can be performed non-self-gravitatingly, i.e. 
inter-particle forces are neglected. In this case only the gravitational forces between 
the particles and the center of masses are included. For an improved simulation the 
self gravitation and even gas dynamics and dark matter can be added, but this is 
beyond the scope of a first test of the method. Another enhancement is to  drop the 
assumption of rotational symmetry and to allow galaxies to be oriented differently in 
space relative to each other, see [21]. Nevertheless, when the two galaxies approach 
each other, they begin to intcract, i.e. the motion of the stars of the two systems are 
affected by the other galaxy and the morphology of the galaxies change. The system 
is propagated until the initial time 0 has been reached. 
Now the distribution of masses obtained by the simulation can be compared with the 
given distribution from the two galaxies under investigation. This comparison works 
as follows. A grid of size n, x n, is superimposed on the data, see Fig. 8.17. The grid 
corresponds to  a grid of pixels which is the result of an observation with a telescope, 
digitized and stored on a computer1. For each grid cell (i, j )  the total mass mi,j in 
the cell is evaluated, each particle from the first galaxy contributes with ml/Np,l  and 
each particle from the second one with mn/Np,z. When comparing with observations, 
the amount of light corresponding to  each mass mi,j  has to  be calculated. Here the 
method is evaluated for testing purposes. Thus, only artificial observations are taken, 
i.e. they are generated via a simulation of particles in the same way as explained. This 

'please note that  usually galaxies consist of several billion of stars, so it is not possiblc to identify 
individual stars via a telescope. 
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Figure 8.17: Computation of the data for the comparison. A grid is superimposed 
on the image of interacting galaxies. For each grid cell the corresponding Inass is 
calculated. For clarity, only a coarse grid is shown here. Reprinted from [21] with 
permission from Springer Science. 

allows the final result of the best set g obtained from the GA to be compared with 
the values which have been used to  set up the system. For the "observed" system, the 
masses rn:)' can be calculated in the same way as the values of w,j. The deviation 
6 the result of the simulation and the observational data is defined here as 

The sum runs over all grid cells. The contribution m, in the denominator prevents 
a divergence in case the mass observed in a grid cell is zero. In Ref. [21] m, = 
~ / ( N , , J  + N,J) has been chosen, so particles in a region where no particle is supposed 
to  be have the largest impact on the value of 6. Finally, the fitness F of the individual 
g is taken as 

Now the structure of the genetic algorithm will be described. Similar to  the first 
example, the initial population of M individuals is chosen completely at  random. Each 
generation is treated in the following way. First, the fitness values for all individuals 
are calculated, as explained above. Then the individuals are ranked according to  their 
fitness values, the highest fitness comes last, the lowest fitness first. The best individual 
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is always taken over twice to  the next generation. The other M - 2 members of the 
next generation are obtained by crossover and mutation. 
For each crossover two parents are selected randomly from the population. Here the 
l inear fi tness ranking is applied. This means each parent is chosen with a probability 
which is proportional to  its position in the ranking. Thus, individuals with a low 
fitness have a lower probability of being selected. This can be achieved by drawing 
a natural random number r between 0 and M(M + 1)/2. The individual which has 
position i in the ranking is chosen if ( i  - l ) i /2  5 r < i(i+1)/2. The crossover is carried 
out as explained in Sec. 8.2: a random crossover point s E 1,2 ,  . . . ,25 is chosen. The 
first child consists of the left part up to  digit g,  from the first parent and the right 
part from the second parent. The second child takes the remaining digits. 
Finally, mutations are applied for all new individuals. With probability p, a digit is 
set to a new randomly chosen value from {0,1, .  . . , 9 ) .  The result is a new generation 
of M individuals. The whole process is repeated for n G  generations and after the last 
iteration the best individual is picked. 

Figure 8.18: Comparison of the simulation with the best parameters with the original 
system. The two pictures are not identical, but very similar. 

To test the genetic algorithm, an artificial pair of colliding galaxies was created with 
a given set of parameters (ml = 1.0, m2 = 1.0, Az = 3.0, Av, = -0.672, Av, = 0.839 
and sl = sz = I),  the measurable parameters are Ax = 3.5, Ay = 8.0, and Av, = 0.44, 
see Fig. 8.15. Then the GA was run with the aim of finding the parameters again. A 
size M = 500 of the population was chosen, the program ran for n, = 100 generations 
with p, = 0.003. To decrease the numerical effort, the values of ml and rns were 
constrained t o  be between 0.3 and 3.0, Az in [-SO, 501 and Au,, Av, between -1 and 
1. When all individuals obey these restrictions, the children created by the crossover 
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remain in the same sample space as well. Mutations were accepted only if the resulting 
parameters remained in the given intervals. These constraints reduce the number of 
possible combinations of the parameters to  1.2 x l0l5,  still much too large to  be 
searched systematically. The GA was able to  find these parameters in 100 generations 
within an accuracy of about 10%. The best individual exhibited m l  = 0.99, mz = 1.00, 
AZ = 2.899, Av, = -0.676, Av, = 0.897, sl = 1, sz = 1. The resulting distribution 
of the stars is compared in Fig. 8.18 with the given observation. Only slight deviations 
are visible. 
The results of further tests are presented in Ref. [21]. It  can be shown that the GA is 
much more effective than a random search. Furthermore the algorithm is not sensitive 
to  noise. Even when the observational data m$' were disturbed with a 30% level of 
noise, the parameters could be recovered, but with slightly lower accuracy. Finally it 
should be mentioned, that for real observational data, usually features such as bars, 
rings etc. in the central regions of the galaxies occur. This may cause problems to  the 
GA. Hence, one should leave out the inner region for the calculation of the fitness F. 
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9 Approximation Methods for Spin 
Glasses 

In this chapter we concentrate on a certain class of magnetic systems called sp in  glasses 
and on methods to find ground states of this systems. Similar to the RFIM, which 
was covered in Chap. 6, spin glasses consist of spins interacting with each other. The 
behavior of these materials is more complicated. Owing to the existence of competing 
interactions they exhibit ordered phases, but without spatial order of the orientations 
of the spins. From the computational point of view, spin glasses are very interesting 
as well, because the ground-state calculation is NP-hard. For these and other reasons, 
spin glasses have been among the central topics of research in material science and 
statistical physics during the last two decades. This is can be seen from the fact, that 
almost all optimization methods presented in this book, and many others, have been 
tested on spin glasses in the past. 

This chapter is organized as follows. We begin by presenting suitable a Ising model for 
spin glasses. An experimental realization is shown and some important properties are 
mentioned. It is explained why there is still an ongoing debate about its low tempera- 
ture behavior. In the second section an efficient approximation method for calculating 
ground states is presented. Next we show that the algorithm, although able to cal- 
culate true ground states, does not give the correct thermodynamic statistics of the 
states. This bias can be corrected by a post-processing method which is explained in 
the fourth sect,ion. Finally, some results obtained with these algorithms are presented, 
partly solving one question, that had been open for a long time. 

9.1 Spin Glasses 

An introductions to  spin glasses can be found in [I ,  2, 3, 41. Recent developments are 
covered in [5]. 
A suitable theoretical model describing spin glasses is similar to  the RFIM and DAFF 
models (see Chap. 6),  but it comprises bond randomness as a key element. Again, 
it is sufficient to  concentrate on Ising spins 0, = *I to  find the main spin-glass 
properties: N spins are placed on the regular sites of a lattice with linear extension 
L, e.g. quadratic ( N  = L2) or cubic ( N  = L3). The spins interact ferromagnetically 
or antiferromagnetically with their neighbors. A small example is shown in Fig. 9.1. 
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The Hamiltonian is given by 

ferromagnetic - 

Figure 9.1: A two-dimensional spin glass with bond disorder. Spins are placed on the 
sites of a regular grid. They interact with their neighbors, the interaction is random, 
either ferromagnetic or antiferromagnetic. 

The sum (i,  j )  runs over all pairs of nearest neighbors and Jij denotes the strength 
of the bond connecting spins i and j .  It is also possible to  add a term describing the 
interaction with an external field B, here we will concentrate on the case B = 0. This 
kind of model was introduced by Edwards and Anderson [6] in 1975, usually it is called 
the EA model. It has a broad range of applications. Models involving similar energy 
formulae have been developed e.g. for representing neural networks, social systems or 
stock markets. 
For each realization of the disorder, the values Jij of the bonds are drawn according 
to a given probability distribution. Very common are the Gaussian distribution and 
the bimodal f J distribution, which have the following probability densities: 

Once the values of the bonds are fixed for a realization, they keep their values through- 
out the whole calculation or simulation, one speaks of quenched disorder.  Since the 
system is random itself, to calculate physical quantities like magnetization or energy, 
one must perform not only a thermal average but also an average over different real- 
izations of the disorder. 
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The main ingredients constituting a spin glass are: mixed signs of interactions and 
disorder. As a consequence, there are inevitably spins which cannot fulfill all con- 
straints imposed by their neighbors and the connecting bonds, i.e. there will be some 
ferromagnetic bonds connecting antiparallel spins and vice versa. On says, it is not 
possible to  satisfy all bonds. This situation is called frustration, the concept was in- 
troduced in 171. In Fig. 9.2 an example of a small frustrated system is shown. In Sec. 
9.2 it will be explained what impact the presence of frustration has on the choice of the 
algorithms. But first we will show how bond-randomness and frustration are created - 
in real materials. 

Figure 9.2: A frustrated plaquette at lowest energy. No matter which orientation 
spin 1 chooses, one of the bonds connecting it to its neighbors is not satisfied. Bonds 
2-3 and 3-4 are satisfied. 

9.1.1 Experimental Results 

A spin glass can be created using well known materials: just take a lattice of a non- 
magnetic conducting material like gold and randomly replace a small fraction x of the 
gold by magnetic iron (Fe,Aul-,). To see the spin glass behavior in an experiment, 
the system is subjected to  a weak magnetic field and the resulting magnetization 
is measured, i.e. one obtains the magnetic susceptibility X .  When studying x as a 
function of temperature T one observes a peak at a very low temperature TG. An 
example is shown in Fig. 9.3, the figure is taken from Ref. [8]. Usually TG is of the 
order of 10 Kelvin, the exact value depends on the concentration x of the iron and 
on the way the sample is prepared. This peak is an indication of a phase transition. 
But when measuring the specific heat C ( T ) ,  a smooth behavior around TG is found, 
only a broad maximum usually at higher temperatures can be observed. This is in 
strong contrast to  usual phase transitions. Furthermore, when performing a neutron- 
scattering experiment, one finds that below the transition temperature TG spin glasses 
exhibit no spatial (e.g. ferro- or antiferromagnetic) order of the orientation of the spins. 
Even more puzzling are aging experiments, where spin glasses are examined with 
respect to the time evolution and the history of the system. A sample experiment 
is shown in Fig. 9.4. A spin glass (here CdCr1.71n0.3S4) is first cooled to  T = 12 K 
and kept there for a while [9]. The imaginary part X" of the dynamic susceptibility, 
describing the response of the magnetization to a weak applied alternating field (here 
with w/27r = O.OIHz), is measured for a while. After time tl the system is quenched 
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Figure 9.3: Magnetic susceptibility x for Au,Fel-, at  low temperatures. A cusp 
depending on the concentration x is observed. The inset magnifies the region 0 - 20 
K. The figure is taken from [8] with permission from J.A. Mydosh. 

to  10 K, a jump of the susceptibility occurs. Again the system evolves for a while. 
After time t2 the system is heated back to 12K. Now the the susceptibility switches 
back to the value it had a time t l .  Hence, the system has remembered its state at 
temperature 1 2  K. Such types of experiments are not understood so far in detail, only 
heuristic explanations exist. This is one reason why spin glasses have attracted so 
much attention in the past and will probably also attract it in the future. 
The basic reason for this strange behavior is the type of interaction which is present in 
this class of materials. The behavior of the Fe,Aul-, alloy is governed by the indirect- 
exchange interaction, usually called RKKY (Ruderman, Kittel, Kasuya, Yosida) in- 
teraction. Placing a magnetic spin Si (iron) in a sea of conducting electrons, results in 
a damped oscillation in space of the susceptibility. Another spin Sj placed at distance 
r will create the same kind of oscillations resulting in an energy H = J ( r ) S i .  S j  where 
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Figure 9.4: Aging experiment. A system is cooled down to T = 12 K, then the 
susceptibility is measured for a while. After time tl the system is suddenly quenched 
down to 10 K; again the susceptibility is measured. After a while the system is heated 
back to 12K. At time tl + t z  the system remembers the state it had at time t l .  

Figure 9.5: The RKKY (Ruderman, Kittel, Kasuya, Yosida) interaction sketched: 
strength of the interaction of two spins with distance r in a sea of conducting electrons. 

( k f :  Fermi momentum of the conductor) which a t  larger distances r reduces to  J ( r )  - 
cos(2k T )  

(2kf  r) 
; see Fig. 9.5. The main point is that thc sign of the interaction changes with 

distance. In the iron-gold alloy, since the iron is place randomly in the gold host, each 
spin interacts with some spins ferromagnetically and with others antiferromagnetically. 
As a consequence, some pairs of spins prefer to  be parallel aligned while other pairs 
favor an antiparallel orientation. At low temperatures this mixed interactions create a 
frozen non-regular pattern of the orientations of the spins, explaining why no spatial 
order of the spins can be detected using neutron scattering. 

Apart from the RKKY interaction, there are other ways of creating interactions with 
different signs: some types of systems exhibit superexchange or other dipolar interac- 
tions. This leads to  a huge number of materials showing spin-glass behavior a t  low 
temperatures, more details can be found in [4]. There are also different mechanisms 
creating disorder: in the case of Fe,Aul-, the randomness is obtained by placing the 
iron atoms at random chosen sites of a lattice. But also amorphous metallic alloys 
like GdAlz and YFea also show spin glass behavior. For another class of systems, 
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the lattice sites are occupied in a regular way, but the sign and the strength of the 
bonds are random. Examples of such random-bond systems are RbzCul-,Co,F4 and 
Fel-,Mn,TiO3. 

9.1.2 Theoretical Approaches 

Computer simulations of the EA model [l, 101 reproduce the main results found in 
experiments: a peak in susceptibility, a smooth behavior of the specific heat and frozen 
configurations of the spins. Recently, also the results of aging experiments have been 
found by simulations as well. Therefore, one can conclude that even the simple EA 
model incorporates the main properties constituting a spin glass. 

SK model (T>O) Droplet picture 

"configuration" "configuration" 

Figure 9.6: Mean-field solution vs. Droplet picture. The solution of the SK model 
exhibits a complicated energy landscape, resulting in a broad distribution P(lq1) of 
the overlaps. In the Droplet picture instead the system is dominated by one pair of 
states at low temperatures, giving rise to  a delta-distributed P(lq1). 

On the other hand, analytically it is very hard to  treat the EA model [2, 31. Since 
it is actually impossible to  solve the simple cubic ferromagnet analytically, the reader 
may imagine that due to  the additional average over the disorder and the varying sign 
of the bonds, only very raw approximations could be performed successfully for spin 
glasses. But there is a special spin-glass model, which was introduced by Sherrington 
and Kirkpatrick also in 1975 [ll], the SK model. Its Hamiltonian is similar to  the 
EA model, see Eq. (9.1), but it includes interactions between all pairs of spins. This 
means that the spins do not have any positions in space, the system does not have a 
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dimension. Usually one says the system is infinite-dimensional, because in the ther- 
modynamic limit each spin has infinitely many "neighbors". The model is denoted as 
the mean-field (MF) model as well, since the MF approximation is exact here. For a 
Gaussian distribution of the interactions, the SK model has been solved analytically 
through the use of several enhanced techniques by Parisi in the 1980s [2]. The main 
property of the solution is that a complicated energy landscape is obtained (see up- 
per left part of Fig. 9.6) and that the states are organized in a special hierarchical 
tree-line structure which is called ultrametric, for details see [12]. Especially at low 
temperatures for typical realizations, there are always many configurations which are 
arbitrarily different. What does this mean? To measure the difference between two 
configurations {a$), {a!),  the overlap q is introduced: 

Thus if {a$) and {a?) are the same, we obtain q = 1, while q = -1 if the configurations 
are inverted relative to  each other. If only about half of the spins have the same 
orientation, we get q E 0. Since in a spin glass may exhibit many configurations 
with large thermodynamical weight even at low temperatures, one has to  compare 
all of them pairwise. Each comparison results in an overlap value, so we end up 
with a distribution of overlaps P J ( ~ ) .  After averaging over the disorder an average 
distribution is obtained, denoted by P(q).  Since the Hamiltonian Eq. (9.1) does not 
contain an external magnetic field, it is symmetrical with respect to  the inversion of 
all spins. Thus, P(q) is symmetrical with respect to q = 0 and it is sufficient to  study 
P(lq1). The result for the SK model at low temperatures is shown in the lower left 
part of Fig. 9.6. It contains a large peak called self overlap, which results from the 
overlaps of states belonging to the same valley in the energy landscape. Additionally, 
there is a long tail down to q = 0 resulting from pairs of states from different valleys. 
Although the solution of the SK model is very elegant, it is restricted to  this spe- 
cial spin-glass model. The question concerning the behavior of realistic, i.e. finite- 
dimensional spin glasses is currently unsolved. One part of the physics community 
believes that also for e.g. three-dimensional systems a similar hierarchical organi- 
zation of the states can be found, as in the SK/mean-field model. Another group 
favors a description which predicts a much simpler behavior, the Droplet picture 
[13, 14, 15, 16, 171. In that framework it is assumed that the low temperature be- 
havior is governed by basically one class of similar states (and the inverses), i.e. the 
energy landscape is dominated by one large valley, see right half of Fig. 9.6. The 
main signature of this behavior is that the distribution of overlaps is a delta function. 
Please note that for finite system sizes, the distribution of overlaps always has a finite 
width. Thus, the delta function is found only in the thermodynamic limit N + oo. 
Recently, many results have been made available addressing this question, especially 
with numerical techniques. Since near the transition temperature TG the systems are 
very difficult to equilibrate, one is restricted to small system sizes and even lower tem- 
peratures are not accessible using the usual Monte Carlo methods. As a consequence, 
a definite answer has not yet been obtained. 
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Here, we want to  investigate whether the ground-state landscape of realistic spin 
glasses is better described by the mean-field like or the Droplet picture. The va- 
lidity of the result will be restricted to  exactly T = 0, at finite temperatures the 
behavior might change. Firstly it should be stressed that even for the original SK 
model, the true ground state is indeed unique, because of the Gaussian distribution of 
the interactions. No two bonds have exactly the same strengths, so every flip of a spin 
would increase the energy, sometimes by a small fraction. Therefore, exactly a t  T = 0 
the overlap distribution is a delta function even for the SK model. The complicated 
hierarchy of states is found only for all T > 0. 
For realistic spin glasses with Gaussian distribution of the interactions, the same ar- 
guments hold. The ground state is unique, so the distribution of overlaps will be a 
delta peak in the thermodynamic limit. 
On the other hand, a f J spin glass may exhibit free spins, i.e. spins which can 
be reversed without changing the energy. A system with N' isolated free spins has 
2N' different ground states. Furthermore, there are also neighboring free spins, so by 
flipping a free spin neighbors may become free as well or vice versa. Therefore, the 
degree of degeneracy is not easy to calculate. For the mean-field spin glass with f J 
interaction, a free spin must have exactly half of the other spins pointing in the "right" 
and half of the spins pointing in thc "wrong" direction. Thus, a mean-field system 
with an even number of spins has only one ground state as well. In general, it is so 
not clear so far how large the degree of degeneracy is and what P(q)  at T = 0 looks 
like. 
Nevertheless, for finite-dimensional f J spin glasses, the case we are interested in, 
each spin has only 6 neighbors, which is a small even number. The number of free 
spins grows linearly with the system size. Consequently, the number of ground states 
grows exponentially with the number of spins, so the ground state entropy is finite. 
Furthermore, the question about the structure of the ground-state landscape is much 
more difficult to  answer than in the case of the Gaussian distribution. For realistic 
spin glasses, it may be possible that P(lq1) is non-trivial even for true ground states. 
Since for numerical simulations we are always restricted to  finite sizes, the main ques- 
tion concerning the mean-field like and Droplet pictures is: does P(lq1) for the three- 
dimensional +J model remain broad or does it converge to a delta function in the 
thermodynamic limit? In the next sections algorithms are presented which allow 
many different ground states of spin glasses to  be calculated efficiently, enabling the 
calculation of the distribution of overlaps. 

9.2 Genetic Cluster-exact Approximation 

One could think that the ground-state calculation for spin glasses can be performed 
by the same method which was applied for the random-field model and the diluted 
antiferromagnet in a field (DAFF) (see Chap. 6). The main idea was to  build an 
equivalent network and to calculate the maximum flow through the network. A 
precondition is that all pair interactions are positive, which is definitely not true for 
the spin-glass model. But, you may remember, that for the diluted antiferromagnet 
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even all bonds are negative. Here, the transformation to  a network is possible, since via 
a gauge transformation all bonds can be made positive. We will now give an example 
of such a gauge transformation and we will show why it does not work for spin glasses. 

Figure 9.7: A small diluted antiferromagnet in a field B. Via a gauge transformation 
all bonds can be made ferromagnetic, while the magnetic field becomes staggered. 

In the left part of Fig. 9.7 a small DAFF is shown. The basic idea of the gauge 
transformation is to  multiply every second spin in a checkerboard manner with -1 
and leave the other half unchanged 

where x, y ,  z are the spatial coordinates of spin i and t i  is the sign of the local gauge 
transformation. The resulting system is shown in the right part of Fig. 9.7. All 
bonds have turned ferromagnetic. The transformation has the following effect on the 
Hamiltonian, in particular the sign of the quadratic term has changed, so in the a: a 
ferromagnet is obtained: 

Please note that t: = 1 and t i t j  = -1 if i, j are neighbors. In HI, the magnetic 
field is no longer uniform; it is staggered. This does not affect the applicability of the 
algorithm, because it can treat arbitrary local fields. 

Figure 9.8: A small & J  spin glass. Via a gauge transformation the aim is to make 
all bonds ferromagnetic. It fails because the system is frustrated. 

Why is this transformation not suitable for spin glasses? In Fig. 9.8 a tiny spin glass 
with four spins is shown. Let us try to  apply the gauge transformation. Because bonds 
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with different signs are present, the signs of the transformation have to  be chosen for 
each spin individually. We start with the spin in the upper left corner. Without loss of 
generality we leave it unchanged: = 01, i.e. t l  = 1. Now we turn to  the spin below. 
The bond between this and the first spin is antiferromagnetic, so we choose 0; = - 0 2  

(tB = -1) which makes the bond ferromagnetic. In a similar way we have to choose 
CT; = -03 (t3 = -1). Now we are left with the spin in the upper right corner. It is 
connected by one ferromagnetic bond and one antiferromagnetic bond to its neighbors. 
Consequently, whatever sign for the transformation of 0 4  we select, always one bond 
remains negative. The reason that not all bonds can be made positive is equivalent to  
the fact that in a ground state it is not possible to  satisfy all bonds, i.e. the presence 
of frustration. In general a system is frustrated if closed loops exist which have an odd 
number of antiferromagnetic bonds, e.g. an antiferromagnet on a triangular lattice. 
So we can see that due to  the existence of frustration a spin glass cannot be transformed 
into a ferromagnet. This is the reason why the fast algorithms for the ground-state 
calculations cannot be applied in this case. In fact it can be shown that the ground- 
state problem for spin glasses is NP-hard [18], i.e. only algorithms with exponentially 
increasing running time are known. As an exception, for the special case of two- 
dimensional spin glasses without external field and with periodic boundary conditions 
in a t  most one direction, efficient polynomial algorithms [19] for the calculation of 
exact ground states are available. The most recent applications are based on matching 
algorithms [20, 21, 22, 23, 24, 25, 26, 27, 281, see also Chap. 10, other exact approaches 
can be found in Refs. [29, 301. Recently results for systems of size 1800 x 1800 were 
obtained [31]. 
For the general problem several algorithms are available, for an overview see [32, 331. 
The simplest method works by enumerating all 2N possible states and obviously has an 
exponential running time. Even a system size of 43 is too large. The basic idea of the 
so called Branch-and-Bound algorithm [34] is to exclude the parts of the state space 
where no low-lying states can be found, so that the complete low-energy landscape of 
systems of size 43 can be calculated [35, 36, 37, 381. Also transfer-matrix techniques 
have been applied [39] for 43 spin glasses. To evaluate all ground states, similar 
algorithms have been applied to  two-dimensional systems as well [40,41,42, 43,44,45]. 
A more sophisticated method called Branch-and-Cut [46, 471 works by rewriting the 
quadratic energy function as a linear function with an additional set of inequalities 
which must hold for the feasible solutions. Since not all inequalities are known a pri- 
ori, the method iteratively solves the linear problem, looks for in~qualit~ies which are 
violated, and adds them to the set until the solution is found. Since the number of 
inequalities grows exponentially with the system size, the same holds for the compu- 
tation time of the algorithm. With Branch-and-Cut anyway small systems up to g3 
are feasible. Further applications of these method can be found in Refs. [48, 491. 
Since finding ground states in three-dimensional systems is computaionally very de- 
manding, several heuristic methods have been applied. At the beginning simulated 
annealing (see Chap. 11) was very popular, recent results can be found in Refs. 
[50, 511. But usually it is very difficult to  obtain true ground states using this tech- 
nique. A more sophisticated method is the multicanonical method [52], which is based 
on Monte Carlo simulations as well, but incorporates a reweighting scheme to speed 
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up the simulation. Very low lying states of some systems up to size 123 have been 
obtained [53, 54, 55, 56, 571. Heuristics which are able to find low energy states but not 
true ground states unless the systems are very small can be found in Refs. [58, 59, 601. 
Another approach included the application of neural networks 1611. 
Usually with minor success several variants of genetic algorithms (see Chap. 8) have 
been applied [62,63,64,65,66,67,68]. In a similar approach the population of different 
configurations was replaced by a distribution describing the population 1691. At first 
sight these approaches looked very promising, but it is not possible to prove whether 
a true ground state has been found. One always has to check carefully, whether it is 
possible to obtain states with slightly lower energy by applying more computational 
effort. A genetic approach 170, 711 which was designed especially for spin glasses has 
been more successful. Realizations up to size lo3 with Gaussian distributions of the 
bonds have been studied recently [72, 73, 741, supporting the Droplet picture for spin 
glasses. A combination with a recursive renormalization method can be found in Ref. 
1751. The basic idea is to divide the problem into subproblems of smaller size and 
treat the subproblems in the same way. The technique has been applied to finite- 
dimensional systems with Gaussian distribution of the bonds [76, 771, again up to size 
lo3 ,  but also to other combinatorial optimization problems like the TSP. 
The method presented in this chapter is able to calculate true ground states [78] up to 
size 143. The method is based on the special genetic algorithm of Ref. [70] as well but 
also incorporates the cluster-exact approximation (CEA) 1791 algorithm. CEA is an 
optimization method designed specifically for spin glasses, but it should be applicable 
to all problems where each element (here: spin) interacts with a small number of other 
elements. Its basic idea is to transform the spin glass in a way that anyway the max- 
flow methods can be applied, which work only for systems exhibiting no frustrations. 
Next a description of the genetic CEA is given. We start with the CEA part and later 
we turn to  the genetic algorithm. 
The basic idea of CEA is to treat the system as if it were possible to turn it into a ferro- 
magnet: a cluster of spins is built in such a way that all interactions between the cluster 
spins can be made ferromagnetic by choosing the appropriate gauge-transformation 
signs ti = &I. All other spins are left out (ti = 0). In this way the frustration is 
broken. The interaction with the non-cluster spins is included in the total energy, but 
t,he non-cluster spins are not allowed to flip, they remain fixed. Usually one starts 
with some random orientations of all spins, so the non-cluster spins just keep this 
orientation. Let us consider a pair interaction Jijcricrj between a cluster spin mi  and a 
non-cluster spin aj. Since m j  is kept fixed, say crj = $1, we can write Ji,crimj = Jijmi. 
Now the interaction has turned into an interaction of spin j with a local field of size 
Bi = m j  = $1. After the construction of the cluster has been completed, for each 
cluster spin all interactions with non-cluster spins and che original local field Bi are 
summed up to calculate the new local field: 

The sum runs over all neighbors j of spin i .  Because of the factor ( I  - lt,I) only the 
interactions with non-cluster spins are included into the new local field. The gauge- 
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transformation factor ti compensates the transformation of spin i (please remember 
t: = 1). The Hamiltonian of the resulting system reads 

The constant C contains the interactions among non-cluster spins. Since the these 
spins will not change their orientations during the calculation, C does not change. 
Thus, it can be neglected for the ground-state calculation. Since the signs t i  have been 
chosen such that all pair interactions Jij = Ji j t i t j  are either zero or ferromagnetic and 
because several spins may not be included into the cluster ( t i  = 0), the system we 
have obtained is a diluted ferromagnet with random local fields. As we have learned 
before, for this system the ground state can be calculated in polynomial time using 
the fast methods of Chap. 6. 
How does the construction of the non-frustrated cluster work? The method is similar 
to the construction demonstrated in the example shown in Fig. 9.8: spins are chosen 
iteratively. If it is possible to  make all adjacent bonds positive by a gauge transfor- 
mation, the sign of the transformation is chosen accordingly. It is important to  note 
that only those bonds have to become ferromagnetic where t j  # 0 on the other end 
of the bond, i.e. for bonds connecting cluster spins. The other bonds may have been 
considered already or they can be treated lat,er on. The algorithm for the cluster con- 
struction is presented below. The variable Si is used to  remember which spins have 
been treated already. 

algori thm build-cluster ({ J i j ) )  
begin  

Initialize di := 0 for all i; 
Initialize ti := 0 for all i ;  
while there are untreated spins ( S i  = 0) 
begin  

Choose a spin i  with Si = 0; 
6. .- 1. 

2 '- 1 

Set A  := { j l j  is neighbor of i and t j  # 0 ) ;  
i f  A =  8 t h e n  

t ,  := 1; 
else i f  V j  E A : Jijti has same sign a t h e n  

t .  .- 
Z '- , 

else 
t i  := 0 

end 
re turn ( { t i ) ) ;  

end 

The following example should illustrate how the cluster is built. 
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Example: Construction of the non-frustrated cluster 

A small two-dimensional spin glass consisting of nine spins is treated. The 
initial situation is shown in Fig. 9.2. We assume that first the center spin 5 is 
chosen. Since there is no cluster at the beginning (all ti = 0), the first spin has 
no neighbors in the cluster, so t5 = 1. The effect of the gauge-transformation 
is shown in the figure as well, i.e. for each bond the result of the gauge 
transformation is shown. Setting t5 = 1 leaves all bonds unchanged. 

Figure 9.9: CEA algorithm, example construction of a non-frustrated clus- 
ter. Initially, the gauge-transformation sign for the center spin can be set to 
1. Always the sign of the bond after applying the gauge transformation is 
shown. 

Next, we assume that spin 6 is chosen. It has one neighbor in the cluster, 
spin 5. We obtain cu = J65t5 = 1. Consequently, we set t6 := 1. Again, this 
transformation leaves the bonds unchanged. Then spin 8 is considered. It has 
one neighbor in the cluster: spin 5, with a = Js5t5 = -1. Therefore, we set 
t8 = -1 to turn the bond between spins 5 and 8 ferromagnetic. The resulting 
situation is presented in Fig. 9.10. Spin 9 cannot be added to the cluster. It 
has two neighbors with t, # 0, spins 8 and 6 with Jsst8 = -1 # 1 = Jg6t6. 

During the following iteration spin 2 is chosen. Similar to  the preceding steps 
t2  = 1 is obtained. If now spin 3 is taken into account, we see that it has two 
neighbors, which already belong t o  the cluster: spin 2 and spin 6. We get 
53222 = 1 # -1 = &t6. Therefore, spin 3 cannot become a member of the 
cluster, so tg = 0. 

If we assume that next spins 4,7 are treated, then both of them can be added 
to the cluster without creating frustration. The gauge-transformation signs 
obtained are t4 = 1, t7 = -1. Last, spin 1 cannot be added to the cluster. 
The final situation is shown in Fig. 9.11. 

0 



9 Approximation Methods for Spin Glasses 

Figure 9.10: CEA algorithm, example construction of a non-frustrated cluster. The 
four spins in the lower right are treated. Spins 5 ,  6 and 8 can be included in the 
cluster, while spin 9 cannot be included. 

Figure 9.11: CEA algorithm, example construction of a non-frustrated cluster. Final 
situation. 

In the algorithm above, the order in which the spins i are chosen is not specified. 
Several heuristics are possible. From our tests we have found that the most efficient 
method so far is as follows. The spins are selected randomly among the spins which 
have not been treated so far. For each spin the probability of selection within the 
current step is proportional to  the number of unsatisfied bonds adjacent to  it. These 
numbers are calculated using the current spin configuration. Thus, a spin with a high 
(bad) contribution to the total energy is selected more often than a spin with a low 
(negative = good) contribution. This results in a very quick decrease in the energy, 
see below. 
After the cluster of non-frustrated spins has been constructed and the cluster ground 
state has been obtained, the cluster spins are set accordingly, while the other spins 
keep their previous orientation. For the whole system this means that the total energy 
has either been decreased or it has remained the same, because the cluster spins have 
been oriented in an optimum way. Please note that for the total system no ground 
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state has usually been found! But, since the cluster is built in a random way, another 
run can be performed and the cluster will probably be constructed differently. So 
the whole step can be repeated and maybe again the energy of the whole system is 
decreased. This decrease is very efficient in the beginning, because usually the clusters 
are quite big. For three-dimensional spin glasses on average about 55% of all spins 
are members of a non-frustrated cluster (70% for two dimensions). In Fig. 9.12 a 
sample run for a two dimensional spin glass is shown. Initially the spin configuration 
was chosen randomly, which results on average in energy 0 at step 0. In the beginning 
the energy decreases rapidly (please note the logarithmic scale of the x-axis). Later 
on the energy levels off and cannot be decreased further, the system has run into one 
(probably local) minimum. 

-1.5 
1 10 100 1000 

step 

Figure 9.12: Energy per spin for a two-dimensional sample spin glass treated with 
the CEA algorithm as a function of the number of the step. 

From comparisons with exact results for small systems, we know that the states found 
in this way really have a very low energy, but, except for very small systems, they are 
usually slightly above the true ground states. To make the met,hod even more efficient, 
and t o  find true ground states, even for larger system sizes, the CEA method can be 
combined with a genetic algorithm (for an introduction, see Chap. 8). 
The genetic algorithm starts [70] with an initial population of Mi randomly initialized 
spin configurations (= individuals), which are linearly arranged using an array. The 
last one is also a neighbor of the first one. Then no x Mi times two neighbors from the 
population are taken (called parents) and two new configurations called offspring are 
created. For that purpose the triadic crossover is used which turns out to  bc very 
efficient for spin glasses: a mask is used which is a third randomly chosen (usually 
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distant) member of the population with a randomly chosen fraction of 0.1 of its spins 
reversed. In a first step the offspring are created as copies of the parents. Then those 
spins are selected where the orientations of the first parent and the mask agree [SO]. 
The values of these spins are swapped between the two offspring. 

Examde: Triadic crossover 

In Fig. 9.2 a triadic crossover for one-dimensional spin glasses is presented. 
In the top part the parents and the mask are shown, below the resulting 
offspring. The idea behind this special type of crossover is as follows. It is 
assumed that for some regions in the systems, special domains of spins exist 
with a very low energy. Furthermore, it is assumed that during the optimiza- 
tion process these domains emerge automatically. During a crossover one 
would like to  keep these domains stable, so one compares different configura- 
tions and identifies the domains as subsets of spins which agree in both spin 
configurations. 

parentl 

mask 

Figure 9.13: The triadic crossover. Initially the offspring are copies of the 
parents. Then the spins between the offspring are exchanged at  positions 
where parentl and a mask agree. The mask belongs to the population of 
configurations as well. 

The effect can be seen especially in this example, because the first halves of 
both parents are assumed to be inverted relative to  cach other. Consequently, 
in that part the offspring are equal to  the mask and to its mirror configu- 
ration, respectively. This is the reason why the mask must be similar t o  an 
existing low energy configuration. Since the parents agree in some spins, the 
offspring are only partly copies of the masklits inverse. 
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Then a mutation with a rate of p, is applied to each offspring, i.e. a randomly chosen 
fraction p, of the spins is reversed. 
Next for both offspring the energy is reduced by applying CEA. This CEA minimiza- 
tion step is performed nmi, times for each offspring. Afterwards each offspring is 
compared with one of its parents. The offspring/parent pairs are chosen in the way 
that the sum of the phenotypic differences between them is minimal. The phenotypic 
difference is defined here as the number of spins where the two configurations diffcr. 
Each parent is replaced if its energy is not lower (i.e. not better) than the correspond- 
ing offspring. After this whole step is conducted no x Mi times, the population is 
halved: from each pair of neighbors the configuration which has the higher energy is 
eliminated. If more than 4 individuals remain the process is continued otherwise it is 
stopped and the best remaining individual is taken as result of the calculation. 
The following representation summarizes the algorithm. 

algorithm genetic CEA({Jij), Mi, no; p,, nmin) 
begin 

create Afi configurations randomly; 
while (.Mi > 4) do 
begin 

for i = 1 to n,, x Mi do 
begin 

select two neighbors; 
create two offspring using triadic crossover; 
do mutations with rate p,; 
for both offspring do 
begin 

for j = 1 to nmin do 
begin 

construct unfrustrated cluster of spins; 
construct equivalent network; 
calculate maximum flow; 
construct minimum cut; 
set new orientations of cluster spins; 

end 
if offspring is not worse than related parent 
then 

replace parent with offspring; 
end 

end 
half population; Mi = Mi/2: 

end 
return one configuration with lowest energy 

end 

The whole algorithm is performed nR times and all configurations which exhibit the 
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Table 9.1: Simulation parameters (d = 2): L = system size, Mi = initial size of 
population, no = average number of offspring per configuration, n,i, = number of 
CEA minimization steps per offspring, T = typical computer time per ground state 
on an 80MHz PPC601. 

lowest energy are stored, resulting in nG < n~ statistically independent ground-state 
configurations (replicas). 
To obtain true ground states, one has to choose the simulation parameters in a proper 
way, i.e. initial size of population Mi, number of iterations no, mutation rate p, and 
number of CEA steps n,i,. We have tested many combinations of parameters for up 
t o  ten different realizations of the disorder for two-, three- and four-dimensional * J  
spin glasses with periodic boundary conditions, see [78, 81, 821. We assume that the 
lowest lying states are actually found (using a CPU time of tmi,), if it is not possible 
to  obtain configurations with lower energy by applying a parameter set which results 
in a CPU time 4 x tmi,. The parameter sets have to  be determined for each system 
size separately. Usually one starts with small systems where it is relatively easy to  
find true ground states. The parameter sets established for small systems are taken 
as initial sets for testing larger system sizes. With genetic CEA system sizes up to  
402, 143 and 74 can be treated. The resulting parameter sets are presented in Tables 
9.1, 9.2 and 9.3. Please note that these parameters are not optimal in the sense 
that it may be possible to  find parameters which yield lower running times while still 
ensuring true ground states. 
For small system sizes like 63, the configurations found in this way can be compared 
with results from exact Branch-and-Bound calculations. In all cases the combination 
of the genetic algorithm and CEA actually found the exact ground states. Thus, one 
can be very confident that the configurations are also true ground states, which were 
obtained for larger systems sixes with the parameter sets established as explained. But, 
please note that tjhis is not a proof. The method is just a very good approximation 
method, as it is usual for genetic algorithms. 
Also shown in the tables are the running times of the genetic CEA algorithm imple- 
mented on 80MHz Power-PC computers. One can observe that indeed the calculation 
of true ground states for spin glasses takes a time which increases strongly with system 
size, almost exponentially. 
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Table 9.2: Simulation parameters ( d  = 3 ) :  L = system size, Mi = initial size of 
population, no = average number of offspring per configuration, n,;, = number of 
CEA minimization steps per offspring, T = typical computer time per ground state 

' on an 80MHz PPC601. 

Table 9.3: Simulation parameters ( d  = 4): L = system size, Mi = initial size of 
population, no = average number of offspring per configuration, n,i, = number of 
CEA minimization steps per offspring, T = typical computer time per ground state 
on an 80MHz PPC601. 

9.3 Energy and Ground-state Statistics 

In this section some results obtained with the genetic CEA are presented. The ground- 
state energy for a very large system is estimated using a finite-size scaling fit. Secondly, 
it is shown that when calculating many different and independent ground states, the 
method presented so far has to  be extended to  obtain physically correct results. 
I t  is not possible to  treat very large systems numerically, e.g. one cannot simulate mod- 
els having loz6 particles. To overcome this restriction, one can apply the technique of 
finite-size scaling to extrapolate results, that were obtained for different small systems 
sizes, to  very large systems. As an example we will consider the average ground-state 
energy of three-dimensional f J Ising spin glasses. In Fig. 9.14 the average ground- 
state energy per spin is shown as a function of the linear system size L for 3 < L < 14. 
The average was taken over about 1000 realizations for each system size, except for 
L = 14, where 100 realizations were considered, because of the huge numerical effort. 
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Figure 9.14: Average ground-state energy per spins eo as a function of system size 
L for three-dimensional Ising & J  spin glasses. 

With increasing system size the average ground-state energy decreases monotonically. 
Thus, one can try to fit a function of the form eo(L) = eo(co) + a L p b  to  the data 
points, resulting in an estimate of the ground-state energy eo(oo) of a very large, i.e. 
nearly infinite, system. Please note that so far no justification for this special form of 
the fitting function has been found. It just fits very well. It has been reported in the 
literature that other functions such as exponentials have also been tried, but the results 
for eo(co) are similar. When using the fit-procedure of the gnuplot program, which is 
available for free, the value eo(co) = -1.7876(3) is obtained (the values of u, b are not 
important here). This value means that in a ground state about 0.6 unsatisfied bonds 
per spin exist (if all bonds were satisfied this would result in a ground-state energy of 
-3, each unsatisfied bond increases the energy by a value of 2). 

For two and four dimensions, values of eo(oo) = -1.4015(3) and eo(co) = -2.095(1) 
have been obtained, respectively, using genetic CEA. These are currently the lowest 
values found for the ground-state energies of spin glasses. This is another indication 
that the genetic CEA method is indeed a very powerful optimization tool. 

Apart from obtaining some values, the calculation of ground-state energies can tell 
us a lot more about the underlying physics. In particular, one is able to  determine 
whether a system exhibits a transition from an ordered low-temperature state to  a 
disordered high-temperature state at a non-zero temperature T, > 0. 

To show how this can be done, first the simple Ising ferromagnet is considered. It 
is known from basic courses in statistical physics [83], that the one-dimensional Ising 
chain exhibits a phase transition only at T, = 0, i.e. for all finite temperatures the 
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Ising chain is paramagnetic. The two-dimensional ferromagnet on the other hand has 
a ferromagnetically ordered phase (T, = 2.2695, where J is the interaction constant). 

Figure 9.15: A two-dimensional Ising ferromagnet. In the case where all boundary 
conditions are periodic (left), the system is ferromagnetic at T = 0. When antiperiodic 
boundary conditions are imposed in one direction (right), a domain wall is introduced, 
raising the ground-state energy by an amount which is proportional to the length of 
the domain wall. 

Why the one-dimensional Ising ferromagnet does not exhibit an ordered phase at 
T > 0, while the two-dimensional has one, can be seen from ground-state calculations 
as well. Consider a two-dimensional ferromagnet of size N = L x L wit,h periodic 
boundary conditions (pbc) in all directions. Since all bonds are ferromagnetic, in the 
ground state all spins have the same orientation, see the left half of Fig. 9.15. The 
ground-state energy is Epbc = -2NJ.  Now antiperiodic boundary conditions (abc) 
in one direction are considered. This can be achieved by turning all bonds negative, 
which connect the spins of the first and the last column. Again the ground state is 
calculated. Now, it is favorable for the spins of the first and thc last row to have 
different orientations. This means we get two domains, in one domain all spins are 
up, in the other all spins are down. This introduces two domain walls in the system. 
The first domain wall is between the first and the last row, connected through the 
boundary. This is compatible with the negative sign of the bonds there. The other 
domain wall is somewhere else in the system. This means the bonds on the second 
domain wall are ferromagnetic, while the spins left and right of the domain wall have 
different orientations. Thus, L bonds are broken1, raising the ground-state energy 
Eabc by an amount of 2LJ .  As a consequence, we get Eabc = -2NJ  + 2LJ. The 
difference A = Eabc - Epbc = 2LJ  is called the stzffness energy. Here it depends on 
the linear system size L. When performing the thermodynamic limit L + oo, the 

'please note that  the fully ordered state is still possible. In this case both domain walls fall onto 
each other. But again L bonds are broken. 
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stiffness energy diverges, thus the ratio of the thermodynamical weights 

goes to  zero. This indicates that the two-dimensional ferromagnet exhibits some kind 
of stiffness against flips of finite domains. Thus, they will not occur at low tempera- 
tures, which means that the ferromagnetically ordered state is stable at low tempera- 
tures. For higher temperatures more complicated domains with longer domain walls 
also have to  be considered, thus for entropic reasons at some temperature T, > 0 the 
ordered state is destroyed. Please note that only the fact that T, > 0 holds can be 
shown from ground-state calculations, the value of T, itself cannot be calculated this 
way. 
In case one performs the same considerations for the one-dimensional spin chain, one 
sees immediately that when flipping the boundary conditions from periodic to  an- 
tiperiodic, again a domain wall is introduced. But now it has only the length one for 
all chain lengths L. This means the stiffness energy A = 25 does not depend on the 
system size. In the thermodynamic limit an arbitrary small temperature is sufficient 
to  break the long range order. 

Figure 9.16: Stiffness energy as a function of system size L. The line represents 
the function I A(L)I = with Os = 0.19(2). The inset shows the same figure on 
a log-log scale. The increase of IAl with system size indicates that in 3d Ising spin 
glasses an ordered phase exists below a non-zero temperature T,. The figure is taken 
from 1781. 
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The same kind of calculations can be applied to  spin glasses as well. One obtains the 
ground states with periodic and antiperiodic boundary conditions, respectively, and 
calculates the stiffness energy = (E,,, - Epbcl. Since spin glasses are disordered 
systems, here again an average over the disorder has to  be taken. It is necessary to take 
the absolute value, because for some systems the state with pbc has a lower energy, 
while for other the abc state is favorable. From theoretical considerations [84, 851, one 
obtains a behavior of the form A(L) = L@S, where Os is the stiffness exponent. 
If Os > 0 one expects that the system has an ordered low-temperature phase, while 
for Os < 0 only ordering exactly at T = 0 should exist. In Fig. 9.16 the stiffness 
energy of three-dimensional spin glasses as a function of system size L is shown. The 
value of Os = 0.19 indicates that the three-dimensional spin glass has Tc > 0, which 
is compatible with Monte Carlo simulations [86, 871. On the other hand, for two- 
dimensional spin glasses, a value of Os < 0 has been found [25], i.e. in two dimensions, 
spin glasscs seem to have an ordered phase only at T = 0. 
Now we turn from the analysis of ground-state energies to  the ground-state configu- 
rations itself. As it was pointed out before, we have to  perform two kinds of averages 
to  characterize the behavior of the ground-state landscape. The first kind of average 
is that we have to  consider many different realizations of the random bonds. Sec- 
ondly, for each realization, many independent configurations have to  be calculated. 
The statistical weight p(,z} of a spin configuration {ai) with energy E = H({oi}) is 
p(,z} = exp(-H({ai})/T)/Z where Z is the partition sum. In the limit of zero temper- 
ature only the ground states contribute to  the behavior of the system. As an important 
consequence, we can see from this formula that each ground state contributes with the 
same weight, because all of them have exactly the same energy. 
The genetic CEA method returns in each run at most one ground state. Thus, any 
such an algorithm which is used to  sample a ground-state landscape of spin glasses (or 
any other system) must return each ground state with the same probability. In that 
case, by taking an average over different ground states, it is ensured that the physical 
quantities calculated indeed represent the true thermodynamic behavior. 
For the algorithm which has been presented in the preceding section, it is not known a 
priori, whether the ground states obey the correct statistics, i.e. whether each ground 
state appears with the same probability. To test this issue [88], we take one small spin 
glass of size N = 53 and let the algorithm run for n, = lo5 times. Each ground state 
which appears is stored and it is counted how often each ground state is found. This 
gives us a histogram of the frequencies of how often each ground state is calculated by 
the algorithm. The result is shown in Fig. 9.17. Obviously the large deviations from 
state to state cannot be explained by the presence of statistical fluctuations. Thus, 
genetic CEA samples different ground states from the same realization with different 
weights. 
Consequently, when just the configurations are taken as they are given by the algo- 
rithm, the physical quantities calculated by taking an average are not reliable 189, 901. 
This is true especially for the overlap parameter q which is used to compare different 
configurations and evaluate the ground-state landscape. 
It should be pointed out that this drawback does not appear only for the genetic CEA 
method. No algorithm known so far guarantees the correct statistics of the ground 
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id of ground state 

Figure 9.17: Number of times each ground state is found in lo5  runs of the genetic 
CEA algorithm for one sample realization of size N = 53. This realization has 56 
different ground states. Obviously, different states have significantly different proba- 
bilities of being calculated in one run. Example: ground state 10 occurred about 4500 
times among the lo5 outcomes while state 56 was found only about 200 times. 

states. This is true also for methods which are based on thermodynamics itself, like 
simulated annealing (see Chap. ll), which is very often used to study ground states 
of disordered systems. For that algorithm, if the rate of the temperature decrease 
is chosen in a way that one in two runs results in a truc ground state, then for the 
N = 53 system treated above a similar histogram is obtained. By decreasing the 
cooling process the weight of the different ground states become more equal, but one 
has to  cool 100 times slower, i.e. spend 100 time the computational effort, to find each 
ground state with almost the same probability. 
So far no method is known which allows the algorithms to be changed in such a way 
that each ground state appears with the proper weight. On the other hand, it is 
possible by applying a post-processing step to  remove the bias which is imposed by 
the algorithms. A suitable method is presented in the following section. 

9.4 Ballistic Search 

For small systems, where it is possible to  calculate all degenerate ground states, it 
is very easy t o  obtain thc correct thermodynamic distribution: one just has to  use 
each ground state once when calculating physical quantities by averaging. For larger 
system sizes, it is impossible to  obtain all ground states. Even systems of size N = 83 
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exhibit about 1016 ground states. In this case one can only sample a small subset of 
states. But then each of all existing ground states must have the same probability 
appearing in the sample to guarantee the correct result. 
The basic concept of the method, which ensures correct thermodynamic statistics of 
the ground states, is to  apply post processing. The method which calculates the ground 
states remains unchanged. The input to  the post processing is a set of ground states. 
The output is another set of ground states, which now have the correct thermodynamic 
weights, see Fig. 9.18. This post processing can be used in conjunction with all kinds 
of methods which calculate ground states, it is not restricted to  the genetic CEA 
algorithm. 

ground states - - -  _ ground states - - -  - 
16 0 \ 

\ 

'\0 0 :  
0 \ \ \  

Calculate 
ground 
states processing # # 

Figure 9.18: The correct thermodynamical weight of the ground states is ensured by 
a post-processing step which is applied after a set of ground states has been calculated. 

Now the idea behind the post processing is explained. Assume we investigate a three- 
dimensional spin glass of size N = 83 which has about 1016 different ground states. 
Using genetic CEA we calculate 100 ground states. From the preceding section we 
know that some ground states are more likely to  be found than others. The first step 
of the post processing consist of dividing the 100 states into groups according to  some 
criterion. A convenient criterion is explained later on. For the moment we take a toy 
criterion, we assume that ground states have colors, e.g. blue, red and green and that 
they are divided according their colors. 
Next we have to get access to the other ground states, which have not been found 
before. They have colors as well. We assume that it is possible to  perform T = 0 
Monte Carlo simulations which preserve the color and visits only ground states. This 
is similar to a Monte Carlo simulation which preserves the magnetization by flipping 
only pairs of up/down spins. We assume that the MC simulation is ergodic, that means 
starting with a blue ground state we can access all blue ground states by just running 
the simulation long enough. Furthermore, we assume that the simulation satisfies 
detailed balance, that means each ground state obtains its correct thermodynamic 
weight within its group. This means after performing nRuN runs of the simulation we 
have a set of ~ R ~ J N  ground states (the initial states are not used any more), where all 
existing blue ground states have the same probability of being in this set, all red have 
the same probability, etc.. 
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Now, we still do not know whether a red and a blue ground state have the same 
probability of being visited during the MC simulation. To obtain the final sample 
where all ground states have the same probability, we have to  estimate the size of 
each group. This must be done using the small number of states we have obtained 
for each group by the MC simulation. We cannot just count all (- l 0 l 5 )  blue states, 
simply because we do not have them all available. Later on we will explain how the 
group sizes are estimated for the real criterion we use. For the moment we just assume 
that it is possible somehow to estimate the total number of blue states etc. for each 
realization. 
The final sample of states is obtained by drawing from each group a number of states 
which is proportional to the size of the group, so each group is represented in the 
sample with the correct weight. Since we have made all ground states within each 
group equiprobable by the MC simulation, we end up with a sample (e.g. of size 100) 
where each of the 1016 ground states is included with the same probability. Thus, 
the sample is thermodynamically correctly distributed. A summary of the method is 
given in Fig. 9.19. 
A final problem may be that ground states having a specific color, e.g. yellow, have 
not been detected by the initial run of the genetic CEA method, although the system 
may have some (e.g. l o 4 )  yellow states. In this case they will never occur during 
the MC simulation, because there the color is preserved. For the actual criterion we 
use, it can be shown that the probability that a member of a specific group is found 
increases with the size of the group [88]. Furthermore, for the system sizes which are 
accessible the number of groups is small compared with the number of ground states 
usually obtained. Thus, only some small groups are missed, representing just a tiny 
fraction of all ground states. Consequently, when calculating physical properties, the 
error made is very small. 
So far we have explained how the post processing works in general. Now it is time 
to be precise, the actual criterion we use is given. We start with a definition. Two 
ground states are said to  be neighbors if they differ by the orientation of just one spin. 
Thus, the spin can be flipped without changing the energy, the spin is called free. 
All ground states connected to  each other by this neighbor relation in a transitive way 
are said to  be in one valley. Different valleys are separated by states having a higher 
energy. Therefore, one can travel in phase space within a valley by iteratively flipping 
free spins. The valleys are used as the groups mentioned above, i.e. for obtaining each 
ground state with the same probability. In the first step the configurations are sorted 
according to the valleys and then the valley sizes are estimated. 
The MC simulation, which preserves the group identity, is very sirnple: iteratively a 
spin is chosen randomly. If the spin is free, it is flipped, otherwise the spin remains 
unchanged. This is an ordinary T = O MC simulation. Consequently, ergodicity and 
detailed balance are fulfilled as usual. One just has to  ensure that t,he runs are of 
sufficient length. This length can be estimated by test simulations. One starts with 
a given ground state and performs say 20 different runs of length nMc MC steps per 
spin resulting in 20 new ground states of the same valley. Then one compares the 
ground states by calculating the distribution P ( q )  of overlaps, this is the quantity we 
are finally interested in. The behavior of P ( q )  is observed as a function of the number 
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Figure 9.19: The basic idea of the post-processing step: all ground states are divided 
into groups. Then a T = 0 MC simulation is performed making all existing ground 
states within each group equiprobable, not only the ground states which have been 
found. Then the actual sizes of the group are estimated. Finally the states are drawn, 
from each group a number of states which is proportional to the size of the group. 

n M c  of steps. If the shapes change no longer for even the largest valleys, the runs 
have a sufficient length. For three-dimensional systems n ~ c  = 100 turned out to  be 
sufficient for all system sizes. 
More difficult to  implement is the first step of the post processing, the division of the 
ground states into different valleys. If all ground states were available, the method 
for dividing the ground states would work as follows. The construction starts with 
one arbitrarily chosen ground state. All other states, which differ from this state by 
one free spin, are its neighbors. They are added to  the valley. These neighbors are 
treated recursively in the same way: all their neighbors which are yet not included in 
the valley are added. After the construction of one valley is complete, the construction 
of the next one starts with a ground state, which has not been visited so far. 
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Unfortunately the number of ground states grows very quickly with system size, so 
even for small systems like N = g3 it is impossible to  calculate all of them. Thus, the 
valley structure of the say 100 states which were obtained has to be established in a 
different way. 
The basic tool is a test, which tells whether two ground states are in the same valley 
or not. The test is called ballistic search (BS), the reason for the choice of the name 
will become clear later on. Assume that it is known that some ground states belong 
to  the same valley. Now we know that another state z belongs t o  the valley as well, if 
the test tells us that z is in the same valley as any of the states already treated. The 
main feature of the test is that it can be performed for states which are not direct 
neighbors in phase space. This is the reason why only a small subset of all ground 
states is needed. 

Figure 9.20: Ballistic search: A path in configuration-space which consists of flipping 
free spins is constructed between two ground states (dark nodes) belonging to the same 
valley. Depending on the order the spins are flipped the path may be found or not. 
Nodes represent ground states, edges represent flips of free spins. Please note that 
this figure is only a cartoon, the configuration space has N dimensions. 

The test works as follows. Given two independent replicas (0,") and {of) let A be 
the set of spins, which are different in both states: A = {ilo," # of}. Now BS tries to  
build a path in configuration-space of successive flips of free spins, which leads from 
(0,") to  {of). The path consists of states which differ only by flips of free spins from 
A (see Fig. 9.20). For the simplest version iteratively a free spin is selected randomly 
from A, flipped and removed from A, i.e. each spin is flippcd at  most once. Thercforc, 
a straight path is built in phase space. This is the rcason why the search for a path is 
called ballistic. This test does not guarantee to find a path bctween two ground states 
which belong to the same valley. It  may depend on the order of selection of the spins 
whether a path is found or not, because not all free spins are independent of each 
other. Additionally, for very large valleys, when A percolates, it may be necessary to  
flip some spins not contained in A twice to  allow other spins to flip in between. Thus, 
a path is found with a certain probability pf, which decreases with the size of A. If the 
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size of A is small, pf is very close to  one. For the identification of the valley structure, 
it does not matter that pf < 1. This is explained next. 

BS-test: to how many valleys does the cfg belong to? 

a) 0 valleys 

b) 1 valley 

c) >1 valleys 

Figure 9.21: Algorithm for the identification of all valleys: several ground-states 
(circles) "cover" parts of valleys (filled areas). During the processing of all states a 
set of valleys is kept. When state c3 is treated, it is established using BS to how many 
of the already existing valleys the state belongs to. Three cases can occur: a) the 
ground state is found to belong to no valley, b) it is found in exactly one valley and c) 
it is found in several valleys. In the first case a new valley is found, in the second one 
nothing changes and in the third case several smaller valleys are identified as subsets 
of the same larger valley. 

The algorithm for the identification of valleys using BS works as follows: the basic 
idea is to  let a ground statc represent that part of a valley which can be reached 
using BS with a high probability by starting at  this ground state. If a valley is 
large it has to  be represented by a collection of states, such that the whole valley 
is "covered". For example a typical valley of an L = 8 spin glass consisting of 10'' 
ground states is usually represented by only few ground states (e.g. two or three). A 
detailed analysis of how many representing ground states are needed as a function of 
valley and system size can be found in [91]. At each time the algorithm stores a set of 
m valleys A = {A(r)Ir = 1,. . . , m )  (r  being the ID of the valley A(r)) each consisting 
of a set A(r) = {cT1)  of representing configurations crl = { c r , ~ ' )  (2 = I , .  . . , IA(r)/). At 
the beginning the valley set is empty. Iteratively all available ground states cj = {a:} 
( j  = 1,. . . , D) are treated: the BS algorithm tries to find paths from d or its inverse 
to  all representing configurations in A. Let F be the set of valleys IDS, where a path 
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is found. Now three cases are possible (see Fig. 9.21): 

0 No path is found: F = 0 
This means, configuration cJ does not belong to  any of the valleys which have 
been found so far, as far as we can tell. Thus, a new valley is created, which is 
represented by the actual configuration treated: A(m + 1) = {ci). The valley is 
added to  A: A A U {A(m + 1)).  

One or more paths are found to the representing configuration(s) of exactly one 
valley: F = { fl}. Thus, the ground state c j  belongs to  one valley. Valley f l  
seems to  be already well represented. Consequently, nothing special happens, the 
set A remains unchanged. 

0 c7 is found t o  be in more than one valley: F = { f l , .  . . , fk}. Since a path is found 
from d to  several states, they all belong in fact to  the same valley. Thus, all these 
valleys are merged into one single valley, which is now represented by the union 
A of the states, which are the representatives of the valleys in F :  

= u:=~ A(&) ,  4 = (4 u A \ ~ : = ~ { ~ ( f , ) l  

This procedure is conducted for all available states. Please note that the merging 
mechanism ensures automatically that larger valleys are represented by more states 
than smaller valleys. It has been shown [91] that the number of states necessary to  
"cover" a valley grows only slowly with the valley size. Thus, systems exhibiting a 
large degeneracy can be treated. 
The whole loop is performed twice. The reason is that a state which links two parts of 
a large valley (case 3) may appear in the sequence of ground states before states appear 
belonging to the second part of the valley. Consequently, this linking state is treated 
as being part of just one single smaller valley and both subvalleys are not recognized 
as one larger valley (see Fig. 9.22). During the second iteration the "linking" state 
is compared with all other representing states found in the first iteration, i.e. the 
large valley is identified correctly. With one iteration, the problem appears only if 
few ground-states per valley are available. Nevertheless, two iterations are always 
performed, so it is guaranteed that the difficulty does not occur. 

- - 

Example: Valley identification using BS 

Here an example is presented, how the algorithm operates. We want to  es- 
tablish the valley structure of 6 given ground states c l , .  . . , c6. Only the first 
execution of the loop is presented. Initially we start with an empty set of 
valleys. The way the set of valleys develops while the algorithm is running is 
shown in Fig. 9.23. The state c1 belongs, like all states, surely to  a valley, thus 
in a first step a valley with c1 as the representative is created. Now assume 
that the BS test fails for c2 and cl. Consequcntly, a second valley is created. 
For c3 a path is found in phase space to  c2, but not to  cl. Hence, we know 
that c3 belongs to the second valley. The valley structure does not change in 
this step. Ground state c3 is represented by an open circle in the figure. This 
means that it is not stored in the valley data structure. In the next step, a 
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using two interations: 

c1 C2c3 c' $6 

Figure 9.22: Example, that the order the states are treated may affect the result. 
Consider three states cl, c2, c3, all belonging to the same valley. Assume that BS finds 
a path between (cl ,  c2) and (c2,c", but not between (c1,c3). In the first case two 
valleys are found (false), in the second case one valley (correct). In order that the 
correct result is always obtained, two iterations are needed. 

path is found from c4 to c1 and to c2. Thus, all states encountered so far 
belong to the same valley. Both valleys are merged and now are represented 
by c1 and c2. For c5 a path to  c2 but not to  c1 is found. Nevertheless, this 
means that c5 belongs to  the valley as well. Finally, for c6 no path is found 
to either c1 or c". Therefore, c6 belongs to  another valley, which is created 
in the last step. 

Since the probability pf that a path is found between two ground states belonging to 
the same valley is smaller than one, how can we be sure that the valleys construction 
has been performed correctly? Hence, how can we avoid that a number of states 
belonging t o  one large valley are divided into two or several valleys, as a result of to  
some paths which have not been detected? If we only have a small number of states 
available, it is indeed very likely that the large valley is not identified correctly, see 
Fig. 9.24. If more states of the valley are available, it is more likely that all ground 
states are identified as being members of the same valley. The reason is that BS finds 
a path to neighbors which are close in phase space with a high probability. Now the 
probability that some path between two ground states is found increases due to  the 
growing number of possible paths. It is always possible to  generate additional ground 



9 Approximation Methods for Spin Glasses 

BS($, c1 )= no 
BS(G, c2)= yes 

BS(c5, ci )= no 
5 

BS(c5, c2)= yes 

Figure 9.23: Example run of the algorithm for the identification of ground-state 
valleys; 6 ground states are processed. For details, see text. 

states within each valley, so the probability that everything is done correctly can be 
increased arbitrarily close t o  one. It is very easy t o  obtain a 99.9% level of certainty, 
for details see [91]. 
So far we have explained the basic idea of the post-processing method and prescnted 
the BS algorithm which allows a number of ground states to be divided into valleys. 
Also the MC algorithm has been given which ensures that within each valley all ground 
states have the same probability of being selected. The final part which is missing is 
a technique that allows the size of a valley to  be estimated. This allows each valley to  
be considered with its proper weight, which is proportional to  its size. 
A method similar to  BS is used to  estimate the sizes of the valleys. Starting from 
an arbitrary state {ai) in a valley C ,  free spins are flipped iteratively, but each spin 
not more than once. During the iteration additional free spins may be generated and 
other spins may become fixed. When thcre are no more free spins left which have not 
been flipped already, the process stops. Thus, one has constructed a straight path in 
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Figure 9.24: If two states, belonging to the same valley, are far apart in state space 
it is very unlikely that  the BS algorithm detects that they belong to the same valley. If 
more states of the valley are available, the probability for the correct answer increases. 
The thickness of the lines indicates the probability that a path between two ground 
states 1s found by BS 

1 o5 

1 o4 

I o3 

> 
1 0' 

10' 

Figure 9.25: Average size V of a valley as a function of average dynamic number 
of free spins (see text), here for three-dimensional +J spin glasses. For the system 
sizes L = 3,4 ,5  all ground states have been obtained. A V = 2°.91mm"x relationship is 
found, indicated by a straight line. 

state space from the ground state to  the border of the valley C. The number of spins 
that has been flipped is counted. By averaging over several trials and several ground 
states of a valley, one obtains an average value l,,,, which is a measure of the size of 
the valley. 
For small (d = 3) system sizes L = 3 ,4 ,5  it is easy to obtain all ground states by 
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performing many runs of the genetic CEA algorithm. Thus, the valley sizes can be 
calculated exactly just by counting. Fig. 9.25 displays [91] the average size V of a 
valley as a function of I,,,. An exponential dependence is found, yielding 

v = 2dmaX (9.11) 

with a = 0.90(5). The deviation from the pure exponential behavior for the largest 
valleys of each system size should be a finite size effect. Similar measurements can be 
performed also for two- and fom-dimensional systems. 
Another method could be just to  count the static number nf of free spins. This is 
slightly simpler t o  implement, but it has turned out that the quantity I,,, describes 
the size of a valley better than nf. The reason is that by flipping spins additional free 
spins are created and deleted. Consider for example a one-dimensional chain of N 
ferromagnetically coupled spins with antiperiodic boundary conditions. Each ground 
state consists of two linear domains of spins. In each domain all spins have the same 
orientation. For each ground-state there are just two free spins, but all 2N ground 
states belong to the same valley. The possibility of similar but more complicated 
ground-state topologies is taken into account when using the quantity I,,,,. 
With relation (9.11) one can obtain for each valley an estimate of its size, even in the 
case when only a small number of ground states are available. Using these sizes one can 
draw ground states in such a way that each valley is represented with its proper weight. 
The selection is done in a manner such that many small valleys may contribute as a 
collection as well; e.g. assume that 100 states should be drawn from a valley consisting 
of 10'' ground states, then for a set of 500 valleys of size lo7 each, a total number 
of 50 states is selected. This is achieved automatically by first sorting the valleys in 
ascending order. Then the generation of states starts with the smallest valley. For 
each valley the number of states generated is proportional to  its size multiplied by a 
factor f .  If the number of states grows too large, only a certain fraction f 2  of the 
states which have already been selected is kept, the factor is recalculated (f t f * f 2 )  

and the process continues with the next valley. 
When again measuring the frequency of occurrence of each ground state for small 
systems, now after the post-processing step, indeed a flat distribution is obtained. 
Hence, now we have all the tools available to investigate the ground-state landscape 
of Ising spin glasses thermodynamically correctly. In the next section some results 
obtained with this methods are presented. We close this section by a summary of the 
post-processing method. Input is the realization {&) of the bonds and a set {c" of 
ground states. 

algorithm post-processing({ Ji j), {ck}) 
begin 

divide configuration {ck} into different valleys with BS; 
perform nRuN runs of a T = 0 MC simulation 
calculate valley sizes; 
select sample of ground states according t o  valley sizes; 
return ground states; 

end 
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9.5 Results 

We finish this chapter by presenting some results [92] which were obtained with the 
combination of the genetic CEA and the method for ensuring the correct thermody- 
namic distribution. Since we are interested in the ground-state landscape, the distri- 
bution P(q)  of overlaps is a suitable quantity to  study. You may remember from the 
first section the question of whether the mean-field scenario or the Droplet picture 
describes the behavior of realistic (i.e. three-dimensional) spin glasses correctly. By 
studying the finite-size behavior of P(q),  i.e. the width as a function of the system size, 
we will be able to  show that the mean-field scenario does not hold for the ground states 
of three-dimensional spin glasses. But the behavior turns out to be more complex than 
predicted by a naive version of the Droplet theory. 
For this purpose, ground states were generated using genetic CEA for sizes L E 
[3,. . . ,141. The number of random realizations per lattice size ranged from 100 real- 
izations for L = 14 up to  1000 realizations for L = 3. 
Each run resulted in one configuration which was stored, if it exhibited the ground- 
state energy. For the smallest sizes L = 3,4  all ground states were calculated for each 
realization by performing up to lo4 runs. For larger sizcs it is not possible to  obtain 
all ground states, because of the exponentially rising degeneracy. For L = 5 ,6 ,8  in 
fact almost all valleys are obtained using at most lo4 runs [91], only for about 25% of 
the L = 8 realizations may some small valleys have been missed. 
For L > 8 not only the number of statcs but also the number of valleys grows too 
large, consequently only 40 independent runs were made for each realization. For 
L = 14 this resulted in an average of 13.8 states per realization having the lowest 
energy while for L = 10 on average 35.3 states were stored. This seems a rather small 
number. However, the probability that genetic CEA calculates a specific ground state 
increases (sublinearly) with the size of the valley the state belongs to [88]. Thus, 
ground states from small valleys do appear with a small probability. Because the 
behavior is dominated by the largest valleys, the results shown later on are the same 
(within error bars) as if all ground states were available. This was tested explicitly for 
100 realizations of L = 10 by doubling the number of runs, i.e. increasing the number 
of valleys found. 
Using this initial set of states for each realization (L > 4) a second set was produced 
using the techniques explained before, which ensures that each ground state enters 
the results with the same weight. The number of states was chosen in a way, that 
nmaX = 100 states were available for the largest valleys of each realization, i.e. a single 
valley smaller than one hundredth of the largest valley does not contribute to  physical 
quantities, but, as explained before, a collection of many small valleys contributes to  
the results as well. Finally, it was verified that the results did not change by increasing 
n m a x .  

The order parameter selected here for the description of the complex ground-state 
behavior of spin glasses is the total distribution P(lq1) of overlaps. The result is shown 
in Fig. 9.26 for L = 6,lO. The distributions are dominated by a large peak for q > 0.8. 
Additionally there is a long tail down to q = 0, which means that arbitrarily different 
ground states are possible. Qualitatively the result is similar to the P(lq()  obtained 
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Figure 9.26: Distribution P(lq1) of overlaps for L = 6,10. Each ground state enters 
the result with the same probability. The fraction of small overlaps decreases by about 
a factor 0.6 by going from L = 6 to L = 10 (please note the logarithmic scale). 

for the SK model for a small but nonzero temperature. But with increasing system 
size, the weight of the long tail decreases. To obtain a definite answer we have to 
extrapolate to  very largc system sizes. 
To study the finite-size dependence of P(jql), the variance g2(lql) was evaluated as 
a function of the system size L. The values are displayed in Fig. 9.27. Additionally 
the datapoints are given which are obtained when the post-processing step is omitted 
[93, 941. Obviously, by guaranteeing that every ground state has the same weight, 
the result changes dramatically. To extrapolate to  L t oo, a fit of the data to 
a; = a 2  + aoLpal  was performed. A slightly negative value of a& = -0.01(1) was 
obtained, indicating that the width of P(lq1) is zero for the infinite system. For the 
plot a double-logarithmic scale was used. The fact that the datapoints are found t o  be 
more or less on a straight line is another indication that the width of P(lq1) converges 
towards zero in the thermodynamic limit L t m. Consequently, the lMF picture with 
a continuous breaking of replica symmetry, which predicts a distribution of overlaps 
with finite width, cannot be true for the ground-state landscape of three-dimensional 
iLJ spin glasses. Please note that only a small range of system sizes could be treated. 
Unfortunately, due t o  the NP-hardness of the ground-state calculation for spin glasses, 
larger sizes are not feasible a t  the moment. 
By collecting all results, see also [92], one obtains the following description of the 
shape of P(1q). It  consists of a large delta-peak and a tail down to q = 0, but the 
weight of that tail goes to zero with lattice size going to  infinity. This expression is 
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o genetic CEA 
G true TD 

Figure 9.27: Variance u2(lq/)  of the distribution of overlaps as a function of linear 
system size L. The upper points show the case were each ground state enters with a 
weight determined by the genetic CEA algorithm. For the lower points each ground 
state has the same probability of being included in the calculation. The extrapolation 
to the infinite system results in a slightly negative value. Consequently, the width of 
distribution of overlaps appears to bc zero, i.e. P(lq1) is a delta-function. The line 
represents a fit t o  = aoLPa1 resulting in a1 = 1.00(4). 

used to  point out that by going to larger sizes small overlaps still occur: the number 
of arbitrarily different ground states diverges [91]. But the size of the largest valleys, 
which determine the self overlap leading to the large peak, diverges even faster. The 
delta peak is centered around a finite value ~ E A .  From further evaluation of the results 
~ E A  = 0.90(1) was obtained. 
It should be stressed that this just tells us what the structure of the ground-state 
landscape looks like. To finally decide whether the mean-field like description or 
the Droplet picture describes the behavior of realistic spin glasses better, one has 
to study small but finite temperatures as well. This can be done by cxtending the 
methods described here t o  finite temperatures T > 0. Using the genetic CEA method 
excited states can be generated even faster than true ground states, smaller sizes of the 
populations and fewer minimizations steps are sufficient. The configurations obtained 
in this way can be divided into different valleys in the same way as has been done 
for the ground states. The only difference is that one has to  take several different 
energy levels into account and one has to  weight each excited state with its proper 
thermodynamic weight. Work in this direction is in progress. 
Another approach to generate excited states has been presented recently [95] for the 
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three-dimensional model with Gaussian distribution. First a ground state is calculated. 
Please remember that it is unique, except for the state which is related t o  it by a 
global flip of all spins. Then two randomly chosen spins are forced to have different 
relative orientations to  each other than in the ground state. These two spins remain 
unchanged for the following calculation. For the rest of the system again a ground 
state is obtained, resulting in an excited state for the total system, i.e. a Droplet 
of reversed spin is created. This demonstrates that ground-state methods are also 
useful for investigating the behavior at finite temperatures, similar approaches has 
been presented in Refs. [96, 971. For the results obtained with these techniques, the 
behavior at finite temperatures turned out to  be much richer than described by the 
simple Droplet picture, e.g. P(q) seems not to  be a delta function, see also Ref. [98]. 
But not all properties of the mean-field like description are found, so the debate goes 
on and much work still has to  be done. 
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10 Matchings 

After introducing spin glasses and discussing general approximation algorithms for 
ground states in Chap. 9, we now turn to two-dimensional systems. We will first show 
how ground states of certain two-dimensional spin glasses can be calculated by mapping 
the problem onto a matching problem. Next, a general introduction to  matching 
problems is given. In the third section, the foundation of all matching algorithms, the 
augmenting path theorem, in presented. In the central section, algorithms for different 
types of matching problems are explained. Finally, an overview of some results for spin 
glasses is given. 

10.1 Matching and Spin Glasses 

The problem of determining the ground state of a two-dimensional spin-glass model 
on a square lattice with nearest neighbor interactions with free boundaries1 can be 
mapped on to a matching problem on a general graph [I,  2,3]  as follows: Associate with 
each unsatisfied bond an "energy string" joining the centers of neighboring plaquettes 
sharing this bond, and assign to  each energy string a "length" equal to  IJij I .  Clearly 
the energy E of the system equals the total length A of these energy lines, up to a 
constant: 

Let us for example put all spins pointing upwards, so that each negative bond will be 
unsatisfied and thus cut by an energy string [Fig. 10.1 (a)]. Unfrustrated plaquettes 
have by definition an even number of strings crossing their boundary, therefore energy 
lines always enter and leave unfrustrated plaquettes. Frustrated plaquettes on the 
other hand have an odd number of strings, and therefore one string must begin or end 
in each frustrated plaquette. These observations hold for any spin configuration. 
If boundary conditions are open or fixed, some of the energy strings can end at the 
boundary. To unify the case of (partly) periodic/non-periodic boundary conditions, 
it is possible to introduce "external" plaquettes for each side with open boundary 
conditions. In that case plaquettes always occur in pairs. One says the plaquettes 
belonging to a pair are matched. 

l o r  with periodic boundary conditions in one direction and free boundary conditions in the other. 
The general rule is that the graph must be planar, i.e. it is possible to draw the graph in a plane, 
without crossing edges. 
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Figure 10.1: Thick lines represent negative couplings. Energy strings (dotted) are 
drawn perpendicular to each unsatisfied coupling. Frustrated plaquettes (odd number 
of negative couplings) are marked by a dot. a) All spins up configuration. b) A ground 
state. c) Another ground state. 

From Eq. (10.1), finding a ground state, i.e. a state of minimum energy, is equivalent 
to finding a minimum length perfect matching, as we define it below, in the graph 
of frustrated plaquettes [I, 2, 41. For the definition of frustration, see Chap. 9. If 
I Jij I = J, i.e. all interactions have the same strength, Fig. 10.1 (b) shows one possible 
ground state. An equivalent ground state is obtained by flipping all spins inside the 
gray area in Fig. 10.1 (c), since the numbers of satisfied and unsatisfied bonds along its 
contour are equal. Degenerate ground states are related to  each other by the flipping 
of irregularly shaped clusters, which have an equal number of satisfied and unsatisfied 
bonds on their boundary. 
If the amplitudes of the interactions are also random, this large degeneracy of the 
ground state will in general be lost, but it is easy to  see that there will be a large number 
of low-lying excited states, i.e. spin configurations which differ from the ground state 
in the flipping of a cluster such that the "length" of unsatisfied bonds on its boundary 
almost cancels the length of satisfied ones. 
Please note, in the case of a two-dimensional spin glass with periodic boundary condi- 
tions in all directions, or in the presence of an external field, the ground-state problem 
becomes NP-hard. 

10.2 Definition of the General Matching Problem 

Given a graph G(V, E) with vertex (or node) set V and edge set E, a matching 
M C E is a subset of edges, such that no two are incident to the same vertex [5, 61. 
A matching M of rnaxirnurri cardinality is called mazimvm-cardinality matching. 
An edge contained in a given matching is called matched, other edges are free. A 
vertex incident to  an edge e E M is covered (or matched) others are M-exposed (or 
exposed or free). A matching is perfect if it leaves no exposed vertices. If e = (u,  v)  
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is matched, then u and v are called mates.  An alternating path is a path along which 
the edges are alternately matched and unmatched. A bipartite graph is a graph which 
can be subdivided into two sets of vertices, say X and Y, such that the edges in the 
graph (i ,  j) only connect vertices in X to vertices in Y, with n o  edges internal to  X 
or Y. Nearest-neighbor hypercubic lattices are bipartite, while the triangular and 
face-centered-cubic lattices are not  bipartite. 

Figure 10.2: Example graph for matching, see text 

Example: Matching 

In Fig. 10.2 a sample graph is shown. Please note that the graph is bi- 
partite with vertex sets X = {1,2,3) and Y = {4,5,6).  Matched ver- 
tices are indicated by thick lines. The matching shown in the left half is 
M = {(1,4), (2,5)).  This means, e.g. edge (1,4) is matched, while edge (3,4) 
if free. Vertices 1,2,4 and 5 are covered, while vertices 3 and 6 are exposed. 

In the right half of the figure, a perfect matching M = {(1,5),  (2,6),  (3,4)) 
is shown, i.e., there are no exposed vertices. 

An example of an alternating path is shown in the left part of Fig. 10.3. 

The more general weighted-matching problems assign a non-negative weight (=cost), 
cij, to  each edge e = ( i ,  j ) .  M is a maximum-weight  matching if the total weight of the 
edges in M is maximal with respect to  all possible matchings. For perfect matchings, 
there is a simple mapping between maximum-weight matchings and minimum-weight 
matchings, namely: let Eij = Cmax - cij, where cij is the weight of edge (i, j) and 
Cmax > max(i,j) (cij). A maximum perfect matching on Eij is then a minimum perfect 
matching on cij. 
A nice historical introduction to  matching problems, the origins of which may be 
traced to  the beginnings of combinatorics, may be found in LovAsz and Plummer 
[6]. Matching is also related t o  thermal statistical mechanics because the partition 
function for the two-dimensional Ising model on the square lattice can be found by 
counting dimer coverings (=perfect matchings) [6]. This is a graph enumerat ion 
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Figure 10.3: a) A matching (thick) is a subset of edges with no common end. An 
augmenting path (shaded) starts and ends at exposed nodes, and alternates between 
unmatched (thin) and matched (thick) edges. b) Interchanging matched and un- 
matched edges along an augmenting path increases the cardinality of the matching 
by one. This is called augmentation and is the basic tool for maximum-matching 
problems. 

problem rather than the optimization problems we consider here. As a general rule, 
graph enumeration problems are harder than graph-optimization problems. 
Owing to the fact that all cycles on bipartite graphs have an even number of edges, 
matching on bipartite graphs is considerably easier than matching on general graphs. 
In addition, maximum-cardinality matching and maximum-weight matching on bi- 
partite graphs can be easily related to  the maximum-flow and minimum-cost-flow 
(respectively) problems discussed in Chaps. 6 and 7, respectively. Matching on gen- 
eral graphs and maximum/minimum perfect matching are more complicated. Thus, 
after presenting a fundamental theorem in the next section, in Sec. 10.4 matching 
algorithms for different types of problems are explained. 

10.3 Augmenting Paths 

The algorithms for maximum matchings are based on the idea of successive augmenta- 
tion, which is analogous to  the augmenting-path methods for flow problems (see Sec. 
6.3). An augmenting path A, with respect to M is an alternating path between two 
exposed nodes. An augmenting path is necessarily of odd length, and, if G is bipartite, 
connects a node in one sublattice, Y, with a node in the other sublattice, X.  Clearly, 
if matched and free edges are interchanged along A,, the number of matched edges in- 
creases by one. Therefore if M admits an augmenting path it cannot be of maximum 
cardinality. In the case of weighted maximum matching, for each alternating path, 
one calculates the weight of the path by adding the weights of all unmatched edges 
and subtracting the weights of all matched edges. Then, a matching M cannot be of 
maximum weight if it has an alternating path of positive weight, since interchanging 
matched and free edges would produce a "heavier" matching. 
The non-existence of augmenting paths is a necessary condition for maximality of a 
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matching. It is also a sufficient condition. A central result in matching theory states 
that repeated augmentation must result in a maximum matching [7, 81. 

Theorem: (Augmenting path) 
(i) A matching M has maximum cardinality if and only if it admits no augmenting 
path. 
(ii) A matching M has maximum weight if and only if it has no alternating path or 
cycle of positive weight. 

Proof: (2) + is trivial. To prove +, assume M is not maximum. Then some matching 
M' must exist with I M'I > I MI. Consider now the graph G' whose edge set is E' = 
MAM', (the symmetric difference of M and M', MAM' = ( M  \ M') U (MI \ M) ). 
Clearly each node of G' is incident to at most one edge of M and at most one edge 
of M'. Therefore nodes in G' have at most two incident edges and the connected 
components must be either simple paths or cycles of even length, and all paths are 
alternating paths. In all cycles we have the same number of edges from M as from M' 
so we can forget them. But since (M'I > /MI there must be at least one path in G' 
with more edges from M' than from M.  This path must necessarily be an augmenting 
path. 
(ii) + is again trivial. Assume M is not maximum. Some matching M' must therefore 
exist with c(M') > c(M). Consider again G' = (X ,  MAM'). By the same reasoning 
as before, we conclude that G' must contain at least one alternating path or cycle of 
positive weight. &ED 

10.4 Matching Algorithms 

10.4.1 Maximum-cardinality Matching on Bipartite Graphs 

Consider a bipartite graph, B(X,  Y, E), where X is the set of nodes on one sublattice 
and Y is the set of nodes on the other sublattice. It is conventional to draw bipartite 
graphs as shown in Fig. 10.4, with the two sublattices joined by edges, which can only 
go from one sublattice to the other. Now assume that an initial matching M is given 
(which can be the empty set), as in Fig. 10.4a. It is natural to look for alternating 
paths starting from exposed nodes. (If there are no exposed nodes, M is maximum. 
Stop.) An efficient way to do this is to consider all alternating paths from a given 
exposed node simultaneously in the following way. 
Build a breadth-first-search (BFS) tree (see Sec. 4.1.2) starting from an exposed node, 
for example node US, as described in Fig. 10.5a. In the BFS tree, which we call in the 
following an alternating tree 7,  node v:, corresponds to level 0. All its adjacent edges 
are free. They lead to nodes u3 and u j  at level 1; which are covered. Now since we 
must build alternating paths, it does not make sense to continue the search along free 
edges. Therefore we proceed along matched edges, respectively to nodes vl and vz. 
From these we follow free edges to ul and ua, and then matched edges to nodes vs and 
vq . In the last step, node uq is found exposed. Therefore (u4, v4, uz, vl , us, 715) is an 
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Figure 10.4: a) An initial matching is given for a bipartite graph. b) The enlarged 
matching obtained after inverting the augmenting path discovered from node vs (see 
Fig. 10.5). 

Figure 10.5: a) The BFS or alternating tree built from exposed node vs in Fig. 10.4a. 
Dashed lines represent non-tree edges to already visited nodes. The search finishes 
when an exposed node uq (double circle) is found. b) The auxiliary tree obtained after 
removing odd-level nodes and identifying them with their mates. After inverting 
the augmenting path {v5, ug, v1, U Z ,  v4, u4), the enlarged matching in Fig. 10.4b is 
obtained. 

augmenting path. After inverting it, the augmented matching shown in Fig. 10.4b is 
obtained. If no exposed node were found when the BFS ends, then node v:, will never 
be matched and can be forgotten because of the following result [9], which is valid for 
general graphs: 
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Theorem: 
If there is no augmenting path from node uo at  some stage, then there never will be 

an augmenting path from u,. 

Since the BFS or alternating tree is the basic structure maintained by matching algo- 
rithms, we introduce a convenient notation. In what follows we denote the odd-level 
set of nodes of the alternating tree 7 by A ( 7 )  and the even-level set B(7). Thesc sets, 
beginning with A = 0, B = {r}, can be built up, by iteratively calling the following 
procedure, we denote V ( 7 )  - A ( 7 )  U B ( 7 ) :  

procedure extend-alternating-tree(7, (i, j), M) 
begin 

if i E B ( 7 ) ,  j $2 V(T) ,  ( j , k )  E M ,  then 
add j to  A(T),  k t o  B ( 7 ) ;  

end 

The set V ( 7 )  and the edges used in its construction have the structure indicated in 
Fig. 10.5a, without the broken lines and without the node u4, which is found to  be 
exposed. Note that an alternating tree always ends in B-nodes and once an edge in 
G has been found having one end in B ( 7 )  and the other end not in A ( 7 ) ,  we find an 
augmenting path. 
Using alternating trees, the augmentation of a matching by exchanging matched and 
unmatched verticcs along an augmcnting path, can be writtcn in the following way, 
this procedure will be used later on as well [we denote the edges of a path with E ( P ) ] :  

procedure Augment ( 7 ,  (i ,  j ) ,  M )  
begin 

Let r the root of 7; 
Let P be the path in 7 from r to  i plus (i ,  j ) ;  
replace M by M A E ( P ) ;  

end 

For the algorithms, which we present later on, the sets A ( 7 )  and B ( 7 )  are very 
useful. For the maximum cardinality bipartite matching, there is a difference between 
the search technique actually applied and the usual BFS since the searches from odd- 
numbered levels are trivial. They always lead to  the mate of that node, if the node 
itself is not exposed. Therefore the search can in practice be simplified by ignoring 
odd-numbered nodes and going directly to  their mates, as shown in Fig. 10.5b. The 
search for alternating paths can in fact be seen as a usual BFS on an auxiliary graph 
from which odd-level nodes have been removed by identifying them with their mates. 
The basic augmenting path algorithm is then as follows 110, 111. 
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algorithm Maximum-cardinality bipartite matching 
begin 

establish an initial feasible matching M on B ( X ,  Y, E); 
while B contains an exposed node u E Y do 
begin 

Initialize alternating Tree 7 = ({u), 0); 
while there are edges (i, j ) ,  i E B(T) ,  j @ V(T) do 

extend alternating tree ( 7 ,  (j, k), M ) ;  
if 33, k : k @ V ( 7 ) ,  k exposed, i E B ( T )  then 

Augment (7, (i, j )  , M) ; 
else 

no bipartite matching exists; 
end 

end 

Figure 10.6: The resulting network, after adding vertices s and t t o  the graph from 
Fig. 10.2 and connecting all vertices from X with s and all vertices from Y with t .  

Please note that the initial feasible matching can be empty M = 0. The best known 
implementation for this algorithm is due to  Hopcroft and Karp [12]. It runs in time 
O(1 El. m) and is based on doing more than one augmentation in one step. There is 
also a simple way in which to  map the maximurn-cardinality-matching problem to the 
maximum-flow problem, see Chap. 6. Let B = (X,  Y, E ) ,  and define B' by adding a 
source node s and a target node t ,  and connecting all nodes in X to s, and all nodes in 
Y to t, by edges of capacity I, see e.g. Fig. 10.6. Now let all edges e E E have capacity 
1. Because of the integer flow theorem, maximum flows in B' are integral. Every flow 
of size f thus identifies f matched edges in B, and vice versa. Since maximum flows 
in 0 - 1 networks are computable in O(l El . m )  time, so are maximum-cardinality 
matchings on B.  
The mapping of matching problems to flow problems also applies to  the maximum- 
weight-matching problem on bipartite graphs: 
Given an edge-weighted bipartite graph, find a matching for which the sum of the 
weights of the edges is maximum. 
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This is also known as the assignment problem, because it can be identified with 
optimal assignment, e.g. of workers to machines, if worker i E Y produces a value cij 
working at  machine j E X :  
Given an n x n matrix, find a subset of elements in the matrix, exactly one element 
in each column and one in each row, such that the sum of the chosen elements is 
maximal. 
In a similar manner to  that described in the previous paragraph, this problem can 
easily be formulated as a flow problem. Again add a source node s ,  a sink node t ;  
connecting s to  all nodes in U by unit-capacity, zero-cost edges; all nodes in V to  t 
by unit-capacity, zero-cost edges. Also interpret edge eij as a directed edge with unit 
capacity and cost E(eij) = C,,, - cij, where C,,, > max(i,j)(cij). The solution to  
the minimum-cost-flow problem (see Chap. 7) from s to  t is then equivalent to  the 
maximum-weight matching which we seek. Please note that in this case a mapping 
on the maximum-flow problem is not possible, because otherwise it is not possible to  
take the edge weights into account and guarantee that each worker works exactly a t  
one machine. The minimum weight perfect bipartite matching problem can be solved 
in the same way, for this case the weights cij can be used directly without inversion: 
E ( e . . )  = c . .  

23 23 ' 

10.4.2 Minimum-weight Perfect Bipartite Matching 

Obviously a maximum weight matching does not need to  be of maximum cardinality. 
For our application to  two-dimensional spin glasses we need an algorithm to solve a 
minimum-weight perfect matching problem, actually on a general graph. Although, we 
have already solved this problem for bipartite graphs, by mapping it to  a minimum- 
cost flow problem, it is useful to demonstrate the basic idea for bipartite graphs first. 
In the following, we introduce a method that is called the Hungarian algorithm in 
recognition of the mathematician Egervary that uses the linear program formulation 
of the minimum weighted matching problem. 
Let us characterize a matching M by a vector x E (0, (i.e. cij E (0, 1) V(i, j )  E E), 
where xij  = 1 if the edge ( i , j )  is in the matching, and xij = 0 otherwise. In order to  
form a perfect matching on a bipartite graph G = ( X ,  Y, E )  the following conditions 
have to  be fulfilled: 

Any vector x which fullfills this conditions is called feasible. The optimization task to  
find an minimum perfect matching, can be written as a linear program (LP) 

minimize C(i,j)EE cijxij 

subject to  (10.2) 

Linear programming is the problem of optimizing (minimizing or maximizing) a linear 
cost function while satisfying a set of linear equality and/or inequality constraints. 
The full subject of linear optimization is beyond the scope of this work, but there are 
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many books devoted to  it (c.f. Ref. [lo]) and its applications. Most of the problems 
described in this book can be cast as linear or, more generally, convex-programming 
problems. The simplex method, published by Dantzig in 1949, solves a standard LP 

minimize ct z 

subject to B z  = b and zi > 0 ,  

where c, z are real vectors with n components, b is an m-component vector and B is 
a n x m matrix. The simplex method runs typically in polynomial time2. Please note 
that also inequality contraints, e.g. of the form B x  > b, can be treated by introducing 
additional variables. 
For the bipartite matching problem we need to  have the variables xij as integers, 
which is guaranteed by the equivalence to  a minimum-cost-flow-problem, as shown in 
the last section, since this always has an integer optimum. This can be seen in another 
way as well. I t  can be shown that the optimal solution of (10.4) always lies on the 
corners of a convex polytope. In IRE the polytope defined by the inequalities (10.2) 
has only integer corners, which is no longer true in general (non-bipartite) graphs, see 
Sec. 10.4.4. 
For the discussion of weighted matchings it is not necessary to enter into the details 
of a linear programming. The Hungarian method solves the problem directly. But to 
understand the technique, we need the concept of duality: The LP (10.2) is called the 
primal linear problem, to which a dual linear problem belongs [lo]. For each primal 
constraint, a dual variable yi (i = 1,. . . , n)  is introduced, the minimization translates 
to a maximimzation, and the vectors c, b switch its roles: 

maximize bt y 

subject t o  B t y  5 c. 

Please note that the sign of the variables yi is not restricted and that the dual of the 
dual is the primal. For the matching problem (10.3) we get 

subject to  yi + y, 5 cij 

We will now give a little background information, for a comprehensive presentation 
we refer to the literature. In LP theory, it can be shown that the optimum values 
ctz and bty agree. The idca behind duality is, that when solving a primal LP, the 
algorithms always keeps feasible solutions, while stepwise decreasing the value of ctz, 
thus keeping an upper bound. On the other hand, when solving the dual problem, 
which is a maximization problem, always a lower bound bty is kept. Thus, one can 
treat a primal and a dual problem in parallel by iteratively increasing the lower bound 
and decreasing the upper bound. The solution is found when upper and lower bounds 
agree. 

 he simplex technique does not guarantee to  run in polynomial time. There is a polynomial 
algorithm to solve (LP) ,  the ellipsoid method. But in practice, thc simplex mcthods is usaully faster, 
so it is used. 
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Another important result, which we need for the Hungarian algorithm, is that the 
following orthogonality condi t ions  are necessary and sufficient for optimality of the 
primal and dual solutions, here directly written in the form suitable for our application 
('di E Y and V j  E X): 

In Fig. 10.7, a bipartite graph, a minimum-weight perfect matching and the corre- 
sponding dual solution are shown. Please note that conditions yi + yj = cij are only 
necessary for matched edges, not sufficient. 

Figure 10.7: A bipartite graph. The numbers next to the edges are the weights c,, . 
The minimum-weight perfect matching is indicated by bold lines. The numbers next 
to the vertices are the values y, of the dual solution. Zero values are not shown. Edgcs 
not belonging to the matching, but having y, + y j  = c,, , are indicated by broken lines. 
The weight of the minimum perfect matching (=17) equals the value C yi of the dual 
solution. 

Next, we introduce a convenient notation. Given a vector y E IRE and an edge (i, j )  E 
E ,  we denote by Gj  = cij(y) the difference cij - (yi + y j )  Thus, y is feasible in (10.6) 
if and only if cij > 0 for all (i, j) E E .  In this case we denote by E= [or E= (y)] the set 

E={(i, j) E EIFij = 0); (10.8) 

its elements are the equality edges with respect to  y. 
If x is the characteristic vector of a perfect matching M of G, the optimality conditions 
are equivalent to  

M C E, (10.9) 

We will now explain the basic idea of the Hungarian algorithm. Given a feasible 
solution y to (10.6), we can now use the maximum cardinality bipartite matching 
algorithm described above to  search for a perfect matching having this property. If we 
succeed, we have a perfect matching whose characteristic vector is optimal to  (10.3), 
as required. Otherwise the algorithm will deliver a matching M of G= = (V, E=) and 
an M-alternating (BFS) tree 7- such that its B-nodes are joined by equality edges only 
to  A-nodes (in Fig. 10.5 the A-nodes are those indicated by ui and the B-nodes by 
vi). See the example in Fig. 10.8, where a perfect matching exists, but with respect 
to  the current y (indicated at  the nodes), it is not completly contained in E=. 
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Figure 10.8: The graph of Fig. 10.7 with a preliminary matching. Vertices e and h 
are exposed, h is the current root of the alternating tree, which is shown on the right. 
By increasing the values at  the B-nodes b, c, h and g by t = 3 and decreasing it by 6 at 
the A-nodes a ,  f and i ,  the edge (b, e) joins E= and C yi attains the maximum value. 
The final result of Fig. 10.7 is obtained, by inverting the alternating path h, f ,  c, a, b, e. 

In that case there is a natural way to  change y, keeping in mind that we would like 
edges of M and T to remain in E=, and that we would like Eij to  decrease for edges 
(i, j )  joining nodes in B ( T )  to  nodes not in A(7) .  Namely, we increase yi by E > 0 
for all v E B(T) ,  and we decrease yi by E for i E A(7) .  This has the desired effect; we 
will choose E as large as possible so that feasibility in (10.6) is not lost and as a result 
(provided that G has a perfect matching at  all), some edge joining a node u E B ( T )  
to a node w 6 A ( 7 )  will enter E x .  Since G is bipartite, we will have w 6 V(T) ,  
leading to an augmentation or a tree-extension step. In the example Fig. 10.8 wc will 
choose E = 3 because of the edge (b, e) ,  and then that edge enters E=, allowing for an 
augmenting path. 
To summarize, we get the following so-called Hungarian algorithm, due to  Kuhn [13] 
and Munkres [14]: 
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algorithm Minimum-Weight Perfect Matching for Bipartite Graphs 
begin 

Let y be a feasible solution to (10.6), M a matching of G,(y); 
Set T := ({r), Q)), where r is an M-exposed node of G;  
while 1=1 
begin 

while there exists (i, j )  E E= with i E B(T) ,  j 6 V ( 7 )  
if j is M-exposed then 
begin 

Augment(7, (i, j), M); 
if there is no M-exposed node in G then 

return the perfect matching M ;  
else 

replace T by ({r), 0), where r is M-exposed; 
end 
else 

extend-alternating-tree(7, (i, j), M) ;  
if every (i, j) E E with i E B ( T )  has j E A ( 7 )  then 

return G has no perfect matching!; 
else 
begin 

let E := min{Z,,/ (i, j )  E E ,  i E B(7), j # V(7) ) ;  
replace y, by y, + E for i E B(T), y, - E for i E A(7) ;  

end 
end 

end 

The initial values of y, M can be yi := 0 Vi, M := 0, or an approximation of the 
true solution obtained by a heuristic. When characterizing the Hungarian method, 
we see that on the one hand, always a preoptimal matching is kept (primal), on the 
other hand, at the same time a feasible dual solution y is computed. In that sense the 
method is a primal-dual algorithm. The running time of the methods is [15] 0(n2m).  

This can be improved, for example, t o  0 (n3)  using the method introduced for the 
implementation of Prim's algorithm, Chap. 4. 
We close this section by an example, which demonstrates, how the algorithms works. 

Example: Minimum-weight perfect bipartite matching 

We consider the graph already shown in Fig. 10.7. Assume that initially all 
y i  := 0 and the matching M is empty. As a consequence, initially E= = Q) 
and cij = ci, for all (i, j )  E E.  

We assume that for the first alternating tree 7, vertex a is selected as the 
root, thus A ( 7 )  = 0 and B ( T )  = {a). Since Ex = 0, the inner while- 
loop is not entered. Thus, next E = min{cab,~,,) = min{2,4) is obtained. 
Thus, y.2 := 2 and E= = { ( a ,  b) ). Now the inner while-loop is entered with 
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j = b. Since b is exposed, the augmenting path a ,  b is inverted, resulting in 
M = { ( a ,  b)). As a result, we get the situation shown in Fig. 10.9. 

Figure 10.9: After the first edge has been matched using the rninimum- 
weight perfect bipartite matching algorithm. The root of 7 has been u and 
t = 2. 

We assume that now vertex d is selected as the root of 7,  resulting in yd = 
0 + t  = 5, Edg = 0 and edge (d,g) is added to M. In the next step, let vertex f 
be the root of 7.  Then y f  = O + E  = 4, E= = {(a, b) ,  (c, f ) ,  (d, g)),  C y i  = 11 
and edge (c ,  f )  joins the matching. The resulting situation is depicted if Fig. 
10.10. 

Figure 10.10: The graph after a , d  and f  have been the root of the alter- 
nating tree: M = E={(a,  b ) ,  ( c ,  f ) ,  (d, y)) and C y, = 11. 

Now, only two exposed vertices are left. We assume that h is the root of the 
next alternating tree. First, no edges of E= can be used to extend the tree. 
Then, using E f h  = i& = 1, we obtain r = 1, leading to y,, = 1, C yi = 12 and 
the edges (f,  h) and (h, d) join E=. Now, 'T can be extended twice, leading 
to the situation displayed in Fig. 10.11. 

Now we have edges (c ,  a )  and (g, e) which fulfill the condition i E B ( 7 )  and 
j @ V('T). Hence, t = min{~,,, E , , )  = min{6,2) = 2 is obtained, leading to 
the situation we already encountered in Fig. 10.8. As we have seen already, 
E = 3 and edge (b, e )  joins E=. Then, using (b, e) the matching is augmented 
and the final result is obtained, which has already been presented in Fig. 
10.7. 
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Figure 10.11: Bipartite graph and alternating tree with root h .  Now 

C Y ~  and E= = { ( a , b ) ,  ( ~ f ) ,  ( f , g ) ,  ( d , g ) I .  

10.4.3 Cardinality Matching on General Graphs 

Maximum matching on general graphs is considerably more difficult because of the 
presence of odd-length cycles, which are absent on bipartite graphs. Consider starting 
a BFS-tree for alternating paths, the alternating trec 7,  from an exposed node a a t  
level 0 (Fig. 10.12). We will now study, what happens when searching an cven-level 
nodc (or a B-node) x,  i.e. x E B ( T )  (necessarily covered). Let (x, y)  be an unexplored 
edge incident to  x. If y is exposed, we have found an augmenting path, and the 
augmentation proceeds as usual. If y is covered there are two possibilities: 

i j k x  

4 b) 

Figure 10.12: a) A blossom is an odd-cycle which is as heavy as possible in matched 
edges, i.e. contains 2k + 1 edges among which k are matched. b) The reduced graph 
G x C obtained by shrinking a blossom C = {c ,  d ,  e ,  f ;  y ,  x, k ,  j ,  i )  to a single node 
(the pseudo node B) contains the same augmenting paths as the original graph. 

0 If y is an odd-level (or an A-node), nothing special happens 
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If y is marked as even (level 6 in Fig. 10.12), there is a special situation: there 
are two even-length alternating paths, one from a to  x and one from a to  y, and 
therefore (x, y) closes a cycle of odd-length. Let c be the last node common to 
both alternating paths (necessarily at an even level). The odd cycle including c is 
called a blossom B, and c its base. A blossom is essentially an odd-length alter- 
nating path from c to itself, as depicted in Fig. 10.12a. Its presence may conceal 
an existing augmenting path, like for example {a, b, c, i ,  j ,  k, x, y, f ,  e, d, h, n , p )  in 
Fig. 10.12, which would not be discovered by the BFS since edge (d, h) would 
never be explored. A blossom might also make 11s "find" an augmenting path 
where none actually exists, like for example {a, b, c, d ,  e, f ,  y, x,  k, j ,  i ,  c, b, a )  in 
Fig. 10.12a. 

The first polynomial-time algorithm to handle blossoms is due to  Edmonds [16]. Ed- 
monds' idea was t o  shrink blossoms, that is, replace them by a single pseudo node B 
obtaining a modified or derived graph GI as shown in Fig. 10.12b. The possibility of 
shrinking is justified by the following theorem due to  Edmonds. 

Theorem: (Edmonds) 
There is an augmenting path in G zf and only if there is an augmenting path in G1 

The existence of a blossom is discovered when edge (x, y) between two even-level nodes 
is first found, and its nodes and edges are identified by backtracking from x and y until 
the first common node is found (c in our example), which is the blossom's base. 
Once identified, the blossom is shrunk, replacing all its nodes (among which there 
might be previously shrunk blossoms) by a single node, and reconnecting all edges 
incident to  nodes in the blossom (necessarily uncovered edges) to  this one. The search 
proceeds as usual, until an augmenting path is found, or none, in which case a is 
abandoned and no search will ever be started from it again. If an augmenting path 
is found, which does not involve any shrunk blossom, it is inverted as usual. If it 
contains blossom-nodes, they must be expanded first and one has to  identify which 
way around the blossom the augmenting path goes. This may need to be repeated 
several times if blossoms are nested. After inverting the resulting augmenting path, a 
new search is started from a different node. A simple implementation of these ideas 
runs in C3(/xI4) time [lo]. The fastest known algorithm for non-bipartite matching is 
also C3(lEI . m) time [17]. 

10.4.4 Minimum-weight Perfect Matching for General Graphs 

The fact that,  for bipartite graphs G with edge weights c, the linear-programming 
problem (10.3) has the same optimal value as the integer-linear programming problem 
that arises when we require xij E {O,1) is equivalent to  a classical theorem of Birkhoff, 
which says that G has a perfect matching if and only if (10.3) has a feasible solution, 
and, moreover, if G has a perfect matching then the minimum weight of a perfect 
matching is equal to  the optimal value of (10.3). This result fails in general (non- 
bipartite) graphs G = (V, E), where optimal solutions do appear for which some xij 
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are fractional (Fig. 10.13 shows an example of this) and thus do not correspond to a 
matching. Here, the reason for the complication is the existence of odd cycles [16]. 
Thus we need to explicitly impose the condition xij = 0 , l .  

Figure 10.13: Example of fractional optimal solution on graphs with odd cycles. a) 
The graph and its weights. b) An optimal solution of P1 is fractional. c )  The desired 
solution. 

A solution to this problem for the case of general graphs has been found by Edmonds, 
and consists in adding new constraints, which impose xij = 0, I indirectly. In the 
subsequent discussion that will lead us finally to  the Blossom algorithm for minimum- 
weight perfect matchings we follow Ref. [18], see also Ref. [15]. 
For each odd subset S c G (i.e. S contains an odd number of nodes), we impose an 
additional set of constraints: let D be an odd cut generated by S, i.e. 

D = S(S) = {(i, j) E Eli E S, j @ S).  (10.10) 

If D is an odd cut and M a perfect matching, then M must contain at least one edge 
from D. It follows that, if u: is the characteristic vector of a perfcct matching, then 
for every odd cut D of G, 

This is called a blossom inequality. By adding these inequlaities to  the problem (10.3), 
we get a stronger linear-programming bound, i.e. the space of feasible vectors shrinks. 
[For example add the inequality (10.11) to (10.2), for D consisting of the vertical bond 
in Fig. 10.13, it is no longer possible to get a solution of value 3; in fact the new 
optimal value for the resulting problem is 4, which is also the minimum weight of a 
perfect matching.] 



244 10 Matchings 

Let C denote the set of all odd cuts of G that are not of the form S(i) = {(i, j) E E l j  E 
V) for some node i. Then we are led to  consider the linear-programming problem 

minimize C(i,j)EE Cijxij 

~ E V :  x(S(i)) = 1 , (10.12) 
subject to V D E C :  x(D)  > 1 ,  

( j )  € E :  xij > 0 ,  

where x(J(i)) = Cj with ( i , j ) t E  xij. 
As we have indicated, (10.12) provides a better approximation to the minimum weight 
of a perfect matching, but a much stronger statement can be made. Its optimal value 
i s  the minimum weight of a perfect matching. This is the fundamental theorem of 
Edmonds [19] (also "Matching Polytope Theorem"): 

Theorem: Let G be a graph, and lct c E RE. Thcn G has a perfect matching if 
and only if (10.12) has a feasible solution. Moreover, if G has a perfect matching, the 
minimum weight of a perfect matching is equal to  the optimal value of (10.12). 

The algorithm that we will describe will construct a perfect matching M whose char- 
acteristic vector x* is an optimal solution to (10.12), and so M is a minimum-weight 
perfect matching. This will provide a proof of the above theorem. The way in which 
we will know the 2* is optirnal, is analogous to  the bipartite case discussed above. We 
will also have a feasible solution to the dual linear-programming problem of (10.12) 
that satisfies orthogonality conditions for optimality of the primal and dual solutions. 
The dual problem to (10.12) is: 

maximize Citv yz + CDEC YD 

Given a vector (y ,Y)  as in (10.13) and an edge (i, j), we denote, as in the bipartite 
case, by cij = Eij(y, Y) the difference 

- 
Ci3 = C i j  - yi + yj + C y~ (10.14) 

D E C  with ( i , j ) tD  

which we also call the reduced cost of the  edge (i ,  j ) .  Thus (y, Y) is feasible in Eq. 
(10.13) if and only if Yo > 0 for all D E C and Fij > 0 for all (i, j) E E. 
Again, the important result from LP theory that we need for the algorithm is that 
the following orthogonality conditions are necessary and sufficient for the optimality 
of the primal and dual solutions 

If x is the characteristic vector of a perfect matching M of G, these conditions are 
equivalent to  

V ( ) E :  ( i , j ) ~ M  + Fij=O 
V D E C :  YD>O + I M n D I = l .  

(10.16) 
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It is not obvious how an algorithm will work with the dual variable Y,  but the answer 
is suggested by the maximum-cardinality matching algorithm we discussed in Sec. 
10.4.3. We will be working with derived graphs G' of G, and such graphs have the 
property 

every odd cut of G' is an odd cut of G. 

It follows from this, in particular, that every cut of the form SG, (v) for a pseudo node 
v of GI is an odd cut of G. These are the only odd cuts D of G' for which we will 
assign a positive value t o  Yo. Note, however, that such a cut of G' need not have this 
property in G - it is of the form S(S) where S is an odd subset of G which become 
a pseudo node of G' after (repeated) odd-circuit shrinkings. It follows that we can 
handle Yo by replacing it by yv, with the additional provision that y, > 0. 
We take the same approach as in the bipartite case, trying to  find a perfect matching 
in G, using tree-extension and augmentation steps. When we get stuck, we change 
y in the same way, except that the existence of edges joining two nodes in B ( 7 )  will 
limit the size of E .  In particular, there may be an equality edge joining two such nodes. 
Then we shrink the circuit C ,  but there is now a small problem: how do we take into 
account the variables yi for i E V(C),  when those nodes are no longer in the graph? 
The answer is that we update c as well. Namely, we replace cij by cij - yi for each edge 
(i ,  j )  with i E V ( C )  and j 6 V(C). Notice that by this transformation, and the setting 
of yc  = 0 for the new pseudo node, the reduced costs Eij are the same for edges of the 
reduced graph G x C (in which the circuit C is replaced by a pseudo node) as they 
were for those edges in G. We will use c' to  denote these updated weights, so when we 
speak of a derived graph G' of G,  the weight vector c' is understood to come with GI, 
or we may refer to  the derived pair (G', c'). The observation about the invariance of 
the reduced costs, however, means that we can avoid 2' in favor of E .  The subroutine 
for blossom shrinking is just the same as for the maximurn-cardinality matching, c.f. 
Fig. 10.12. We assume that M'  is a matching of a graph G', 7 an MI-alternating tree, 
and (i ,  j )  is an edge of G' such that i ,  j E B ( 7 ) .  Here, and in the following, E(G)  
denotes the edges of a graph (e.g. circuit or alternating tree) G: 

procedure Shrink-update((i, j), M' ,  7, c') 
begin 

Let C be the circuit formed by (i, j )  together with the path in 7 from i to j; 
Replace G' by G' x C ,  M' by M1\E(C) ;  
Replace 7 by the tree in GI having edge-set E ( T ) \ E ( C ) ;  
update c' and set yc := 0; 

end 

An example of shrinking and updating weights is shown in Fig. 10.14. On the left is 
the graph with a feasible dual solution y (shown at  the nodes) for which the edges 
of the left triangle are all equality edges. On the right we see the result of shrinking 
this circuit and updating the weights. Notice that an optimal perfect matching of this 
smaller graph extends to  an optimal perfect matching of the original. 
The essential justification of the stopping condition of the algorithm is that,  when we 
have solved the problem on a derived graph, then we have solved the problem on the 
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Figure 10.14: Shrinking and updating weights. The left triangle of the graph G in 
(a) is a circuit or blossom C  that is shrunk to a pseudo node, yielding the reduced 
graph G x C in (b). Its variable yc is set to zero. The weights of the edges connected 
to C  are updated according to cij + czj - yi for each edge ( i ,  j )  with i  E V ( C )  and 
j @ V ( C ) .  Notice that by this transformation, the reduced costs Ei j  = c,j - (yz + yj) 
stay the same for edges of G and of the reduced graph G x C .  

original graph. For this to  be correct, we have to  be very specific about what we mean 
by "solved the problem" : 
Proposition: Let G', c' be obtained from G, c by shrinking the odd circuit C of 
equality edges with respect to  the dual-feasible solution y. Let M'  be a perfect match- 
ing of G' and, with respect to  G', c', let (y', Y') be a feasible solution to  (10.12) such 
that M', (y', Y') satisfy conditions (10.16) and such that y& > 0. Let M be the perfect 
matching of G obtained by extending M'  with edges from E(C) .  Let (y, Y) bc defined 
as follows. For i E V\V(C) define yi = y i  [for i E V(C),  yi is already defined]. For 
D E C, we put Yo = Yh if YA > 0; we put Yo = y& if D = dl(C); otherwise, we put 
Yo = 0. Then with respect to G, c,  (y ,Y) is a feasible solution to  (10.12) and M ,  
(y, Y) satisfy the condition (10.16). 

Figure 10.15: An example for a dual change where G is non-bipartite. The current 
matching M is indicated by the full lines, a perfect matching still needs edge (gh).  
Node r is exposed, r ,  b, and f are B-nodes, a and d are A-nodes. The weights cij are 
indicated at each edge, the current value of yi is indicated on each node. 

Now let us describe the dual variable change. It  is the same one used in the bipartite 
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case, but with different rules for the choice of E. First we need to consider edges (i, j) 
with i ,  j E B ( 7 )  when choosing E, so we will need cij/2 for such edges. Second we 
need to ensure that yi remains nonnegative if i is a pseudo node, so we need E 5 yi for 
such nodes. Since it is the nodes in A(T) whose y-values are decreased by the change, 
these are the ones whose y-values affect the choice of E. To illustrate, see Fig. 10.15, 
where E = 112 is taken and (g, h) then becomes an equality edge. In the following the 
procedure for changing y is shown. It takes as input a derived pair (G', c'), a feasible 
solution y of (10.12) for this pair, a matching M '  of GI consisting of equality edges, 
and an MI-alternating tree 7- consisting of equality edges in GI. 

procedure Change-y((G1, c'), y, M 1 , 7 )  
begin 

Let EI := min{cijl(i, j )  E E(G1), i  E B(7-), j $2 V(7) ) ;  
~2 := min{cij/21(i, j) 6 E(Gi) ,  i E B(T), j E B ( 7 ) ) ;  
EQ := min{yili E A ( T ) ,  i pseudonode of G'); 
E := min{E1, ~ 2 ,  E ~ ) ;  

Replace yi by 
yi + E ,  if i E B ( 7 ) ;  
yi - E, if i E A(7-); 
yi otherwise; 

end 

The last ingredient of the algorithm that we need is a way to handle the expansion 
of pseudo nodes. Note that we no longer have the luxury of expanding them all after 
finding an augmentation. The reason is that expanding the pseudo node i when yi is 
positive would mean giving a value to  a variable Yo, where D is a cut of the current 
derived graph that is not of the form SGf (j) for some pseudo node j .  Therefore, we can 
expand a pseudo node i only if yi = 0. Moreover, in some sense we need to do such 
expansions, because a dual variable change may not result in any equality edge that 
could be used to  augment, extend, or shrink (because the choice of E was determined 
by some odd pseudo node). However, in this case, unlike the unweighted case, we are 
still in the process of constructing a tree, and we do not want t o  lose the progress that 
has been made. So the expanding step should, as well as updating MI and c', also 
update T .  The example in Fig. 10.16 suggests what to  do. 
Suppose that the odd node i of the M-alternating tree 7 is a pseudo node and expan- 
sion of the corresponding circuit C with the updating of M leaves us with the graph 
on the right. There is a natural way to update 7 after the expansion by keeping a 
subset of the edges of C.  In Fig. 10 .16~  we show the new alternating tree after the 
pseudo node expansion illustrated in Fig. 10.16b. 
The expansion of pseudo nodes and the related updating is performed using the fol- 
lowing procedure. It takes as input a matching M i  consisting of equality edges of a 
derived graph G', an Mi-alternating tree 7 consisting of equality edges, costs c' and 
an odd pseudo node i of G' with yi = 0: 
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Figure 10.16: a) and b): Expanding an odd pseudo node; c ) :  Tree update after 
pseudo node expansion (see text). 

procedure expand-update (MI, G', 7, c', i )  
begin 

Let f ,  g be the edges of 7 incident with i ;  
Let C be the circuit that was shrunk to form i ;  
Let u, w be the ends of f ,  g in V(C); 
Let P bc the even-length path in C joining u to w; 
Replace G' by the graph obtained by expanding C; 
Replace M' by the matching obtained by extending M'  to a matching of G'; 
Replace 7 by the tree having edge-sets E(7) U E(P); 
for each edge (st) with s E V(C) and t 6 V(C) do 

Replace c',, by c',, + y,; 
end 

Then the following proposition holds: 

Proposition: After the application of the expand routine, M' is a matching contained 
in E,, and 7 is an MI-alternating tree whose edges are all contained in E=. 

We can now state an algorithm for finding a minimum-weight perfect matching: 
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algorithm Blossom Algorithm for Minimum-weight Perfect Matching 
begin 

Let y be a feasible solution to  (10.13), M '  a matching of G= (y); 
G' = G; Set 7 = ({r), a) ,  where r is an MI-exposed node of GI; 
while 1=1 
begin 

case: There exists (i, j) E E= with i, j E G' and 
i E B ( 7 )  and an MI-exposed node j 51 V ( 7 )  

Augment (7, ( i ,  j) , M') ; 
if there is no MI-exposed node in G' then 
begin 

Extend M '  to perfect batching M of G; 
return; 

end 
else 

Replace 7 by ({r), a) ,  where r is M'  exposed; 
case: There exists (i, j) E E= with i, j E G' and 

i E B ( 7 )  and an MI-covered node j 6 V ( 7 )  
extent-alternating-tree(7, ( i , j ) ,  M'); 

case: There exists (i, j )  E E= with i ,  j E G' and i ,  j E 7 
Shrink-update((i, j ) ,  M' ,  7, c'); 

case: There is a pseudo node i E A ( 7 )  with y, = 0 
Expand-update( M' ,  G', 7, c', i ) ;  

case: None of the above 
if every (i, j) E E incident in G' with i E B ( 7 )  has 

j E A(T) and A ( 7 )  contains no pseudo nodes 
return G has no perfect matching; 

else 
Change-y((G1, c'), y, M t , T ) ;  

end cases 
end 

end 

This blossom algorithm terminates after performing O(n)  augmentation steps, and 
C?(n2) tree-extension, shrinking, expanding, and dual change steps. Moreover, it cal- 
culates a minimum-weight perfect matching, or determines correctly that G has no 
perfect matching. As we have seen, the minimum weight perfect matching probably 
is one of the hardest combinatorial problems which can be solved in polynomial time. 
Therefore, before the reader starts to  implement all the procedures, we recommend to 
have a look at  the LEDA library [20], where efficient matching algorithms are available. 
Regarding the problem of finding the ground state of the 2d spin glass, which we 
found in Sec. 10.1 to  be a minimum-weight perfect matching problem, we should 
emphasize that the underlying graph is a complete graph (all frustrated plaquettes 
can be matched with all others) and the number of nodes is always even (there is 
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always an even number of frustrated plaquettes). Therefore, the blossom algorithm 
always finds a perfect matching of minimum weight. To speed up the running time, it 
is possible to  restrict the graph to edges of less than a certain weight, ( 6 J  is a good 
rule of a thumb). Then the resulting graphs have much less edges, i.e. they are not 
complete any more. 

10.5 Ground-state Calculations in 2d 

In their pioneering work, Bieche et al. [I] studied the ground-state behavior of the 
(f J )  spin glass as a function of the fraction x of anti-ferromagnetic bonds. For low 
concentrations x, we can expect a ferromagnetically ordered state, while for higher 
values of x, spin glass behavior can be anticipated. From simulations of systems of 
22 x 22 spins they deduced that ferromagnetism was destroyed a t  x* = 0.145. This 
zero-temperature transition is detected by the appearance of fracture lines which span 
the system, i.e. paths along which the number of satisfied and dissatisfied bonds is 
equal, and which can thus be inverted without any cost in energy. The authors also 
look at the fraction of spins in connected components, defined as sets of plaquettes 
which are matched together in any ground-state. 
Later investigations by Barahona et al. [4] located the loss of ferromagnetism at a 
somewhat lower density of antiferromagnetic bonds, x* N 0.10, suggesting that in the 
regime 0.10 5 x 5 0.15 a random antiphase state exists which has zero magnetization 
but long-range order. This state is, according to the authors, characterized by the 
existence of magnetic walls (which are different from fracture lines) across which the 
magnetization changes sign. Thus the system is composed in this regime of "chunks" 
of opposite magnetization, so (M) = 0 although the spin-spin correlation does not 
go to  zero with distance. At x = 0.15 a second transition occurs, this time due 
to  the proliferation of fracture lines, and rigidity (long-range order) is lost since the 
system is now broken into finite pieces which can be flipped without energy cost. 
Their conclusions were supported by later work using zero-temperature transfer-matrix 
methods [21]. Freund and Grassberger [22], using an approximation algorithm to find 
low-energy states on systems up to sizc 210 x 210, located the ferromagnetic transition 
at x* = 0.105 but found no evidence of the random antiphase state. The largest 2d 
systems studied to  date using exact matching algorithms appear to  be L = 300 by 
Bendisch et al. [3, 231. The authors examined the ground-state magnetization as a 
function of the density p of negative bonds on square lattices, and concluded that 
0.096 < x* < 0.108, but their finite-size scaling analysis is not the best one could 
think of. They did not analyze the morphology of the states found, so no conclusion 
could be reached regarding the existence of the random antiphase state. 
More recently Kawashima and Rieger [24], again using exact matching methods, com- 
pared previous analyses of the ground state of the 2d ( h J )  spin glass, in addition to  
performing new simulations. They summarized the results in this area in the phase 
diagram given in Fig. 10.17. 
However Kawashima and Rieger found that the "spin-glass phase" is absent and that 
there is only one value of p,. They thus argued for a direct transition from the 
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Figure 10.17: Phase diagram of a two-dimensional (*J)  Ising model, with fraction 
p = 1 - x of ferromagnetic bonds. From [24]. 

ferromagnetic state to a paramagnetic state, for both site- and bond-random spin- 
glass models. Their analysis is based on the stiffness energy, i.e. the difference A E  = 
E, - E,, where E, is the ground-state energy with periodic boundary conditions and 
E, is the ground-state energy with antiperiodic boundary conditions, see also Sec. 9.3. 
The scaling behavior [25], 

was assumed. In a ferromagnetic state p = 1 and Os = 2, while in a paramagnetic 
state p < 0 and Os < 0. However, in an ordered spin-glass state we have p < 0, 
and Os > 0. Although the conclusion of this analysis was the absence of a spin-glass 
phase, the exponent they found Os = -0.056(6) for p < p, is small. Although, in our 
view, the numerical evidence that there is no finite-temperature spin-glass transition 
in the two-dimensional Edwards-Anderson model with a binary bond distribution is 
compelling one should note that a different view has bcen advocated [26]. In order 
to support this view a defect-energy calculation similar to  the one described above 
has been presented [27]. It was shown that the probability distribution of lAEl does 
not shrink to  a delta-function centered at A E  for L + co, instead it maintains a 
finite width. However, even if limL,, lAEl = AE, > 0 a finite value of this limit 
indicates that the spin-glass state will be unstable with respect to  thermal fluctuations 
since arbitrarily large clusters will be flipped via activated processes with probability 
exp(-AE,/T) a t  temperature T .  The correct conclusion is then that there is no 
finite-T spin-glass transition in the 2d EA model with binary couplings. 
The 2d Ising spin glass with a binary (41 J) bond distribution is in a different univer- 
sality class than the model with a continuous bond distribution. The degeneracies, 
which are typical for a discrete bond distribution, are absent for the continuous case 
for which the ground state is unique (up to  a global spin flip). Even in the continuous 
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case, the ground state is found using a minimal weighted matching algorithm (with the 
modification that now not only the length of a path between two matched plaquettes 
counts for the weight, but also the strength of the bonds laying on this path). 
The latest estimate for the stiffness exponent of the 2d Ising-spin-glass model with a 
uniform bond distribution between 0 and 1 obtained via exact ground-state calcula- 
tions [28] is 

[AE~],, cc L: with Os = -0.281 & 0.002, (10.18) 

which implies that in the infinite system arbitrarily large clusters can be flipped with 
vanishingly small excitation energy. Therefore the spin-glass order is unstable with 
respect t o  thermal fluctuations and one does not have a spin-glass transition at finite 
temperature. 
Nevertheless, the spin-glass correlation length (defining the length scale over which 
spatial correlations like [(SiSi+,)$], decay) will diverge a t  zero temperature as < - 
T-'/",  where v is the thermal exponent. A scaling theory (for a zero-temperature 
fixed-point scenario as is given here) predicts that v = l/lOsl which, using the most 
accurate Monte Carlo [29] and transfer-matrix [30] calculations gives u = 2.0 f 0.2, 
is inconsistent with Eq. (10.18). This is certainly an important unsolved puzzle, 
which might be rooted in some conceptional problems concerning the use of peri- 
odic/antiperiodic boundary conditions to  calculate large-scale low-energy excitations 
in a spin glass (these problems were first discussed in the context of the XY spin glass 
[31] and the gauge glass [32]). Further work in this direction will be rewarding. 
Next we would like to  focus our attention on the concept of chaos in spin glasses 
[33]. This notion implies an extreme sensitivity of the SG-state with respect to  small 
parameter changes like temperature or field variations. There is a length scale X 
- the so called overlap length - beyond which the spin configurations within the 
same sample become completely decorrelated if compared for instance at two different 
temperatures 

CAT = [ ( a i r i + r ) ~  ( ~ ~ Q ~ + T ) T + A T ] ~ v  exp (-r/X(AT)) . (10.19) 
This should also hold for the ground states if one slightly varies the interaction 
strengths Jij in a random manner with amplitude S. Let {a} be the ground state 
of a sample with couplings Jij and let {a'} be the ground state of a sample with 
couplings Jij + SKij, where the Ki j  are random (with zero mean and variance one) 
and 6 is a small amplitude. Now define the overlap correlation function as 

Cb (r) = [aiai+r a~a:+,],, - c(Ts''~), (10.20) 

where the last relation indicates the scaling behavior we would expect (the overlap 
length being X - S- ' /C )  and C is the chaos exponent. In [28] this scaling prediction 
was confirmed with 115 = 1.2 & 0.1 by exact ground-state calculations of the 2d Ising 
spin glass with a uniform coupling distribution, and the corresponding scaling plot for 
C6(r) is shown in Fig. 10.18. 
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11 Monte Carlo Methods 

For many, actually most, optimization problems in physics as well in economics or 
industrial situations no polynomial-time algorithms appear to  be a t  hand. Stochastic 
optimization is a tool that is applicable in all cases and with which one can at least 
hope to  generate a good approximation to  the optimal solution of a given energy or 
cost function. On the other hand, stochastic optimization methods can be applied to 
almost all types of problems. Thus, the models we can treat and the results we can 
expect are similar to  genetic algorithms, which have been presented in Chap. 8. 
In this chapter we give an overview of various methods that are at hand to attack 
physical problems for which none of the elegant polynomial algorithms we elsewhere 
describe in this book work. We start with a general outline of stochastic optimization 
methods. Next, simulated annealing is introduced, which can be seen as an algorithmic 
equivalent of cooling experiments. In the third section, parallel tempering is explained, 
which is an extension of simulated annealing. In the following section, the prune-  
enriched Rosenbluth me thod  ( P E R M )  is introduced. It allows the study of lattice 
polymers at low temperatures. Finally, PERM is applied to  search for low energy 
configurations of folded proteins. 

11.1 Stochastic Optimization: Simple Concepts 

In essence one samples the configuration space {S) of a given problem 

stochastically - or randomly - and uses more or less sophisticated rules, based on 
some knowledge or intuition about the underlying energy landscape [we call X(S)  the 
energy of state (or configuration] S or the Hamiltonian, for computer scientists these 
are the costs or the objective function], to  improve on the trivial completely random 
search. These rules are expressed in terms of acceptance rates p ( S  + St )  for random 
moves in the configuration space from state S to a new state S'. 
The r a n d o m  walk procedure, the most trivial and most inefficient rule, has VS,  S' : 
p ( S  + St) = 1, which means a n y  new suggested configuration S' is accepted (Fig. 11.1 
left). Its energy R ( S )  is recorded and after a sufficiently long run the lowest energy 
configuration is the approximation we found to the optimal solution. Obviously this 
technique is doomed to fail in nearly all cases of practical interest and can only serve 
as a preliminary exploration of the energy landscape of the problem. 



11 Monte Carlo Methods 

Figure 11.1: Comparison of the random walkmethod (left) with the greedy algorithm 
(right). Displayed are, respectively, the energy as a function of the state S and sample 
trajectories in configuration space. Ho denotes the energy of the minimum. Here 
the random walk results in the second configuration as minimum, while the greedy 
algorithm always results in the final state. 

For a well behaved energy landscape with just one minimum the greedy algorithm is 
often successful (Fig. 11.1 right). I t  accepts only moves that generate states S' with 
a lower energy and is defined by p ( S  -+ S') = Q(-AX), where A X  = X(S1) - X ( S )  is 
the energy difference between the old and the new state and Q(x) = 1 for z > 0 and 0 
otherwise, the Heavyside step function. 
As soon as one deals with problems that have many local energy minima one needs 
to accept moves to  states with higher energy too, in order to  escape local minima and 
overcome energy barriers separating different minima. One of the simplest of these 
techniques appears to  be threshold accepting [l], which is defined by the acceptance 
rule 

p(s + s f )  = Q ( E  - a x )  (11.2) 

which means that all moves leading to  an energy decrease are accepted, as well as 
moves with a positive energy difference A X  as long as it is smaller than the threshold 
t. This means that in principle arbitrarily large energy barriers can be overcome, if 
enough intermediate configurations with sniall energy differences are present (Fig. 11.2 
left). 
Such a procedure is already an improvement on the greedy method but it gets stuck 
in an energy landscape that has local minima surrounded by energy barriers that are 
larger than the threshold 6 - so called golf holes in the energy landscape (Fig. 11.2 
right). One should note that in a high-dimensional configuration space the number 
of escape routes or directions out of a local energy minimum is also enlarged and 
with this also the chance to get out of a local minimum even a t  low threshold values. 
This parameter t, which is reduced during the run down to  0, plays the role of a 
temperature, although the acceptance rate does not at  all fulfill detailed balance and 
the stationary distribution of this process does not have anything to  do with the 
Boltzmann distribution, see Chap. 5. Obviously it is advantageous to  repeat the 
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Figure 11.2: Threshold accepting: large energy barriers can be overcome starting 

from So by several small steps (left), unless they are "golf holes" (right). 

whole procedure many times starting with different initial configurations. 
Another method of stochastic optimization is the great deluge a lgor i thm [2]. Here one 
performs a random walk in a part of the configuration space that lies below a specified 
level E for the energy X(S ) .  The acceptance rule is therefore given by 

i.e. a new configuration S' is accepted when its energy is below E and it is rejected 
otherwise. Note that the acceptance rate is independent of the old state S (a random 
walk) and each state S' is accepted with equal probability as long as its energy is below 
E ,  which plays the role of a temperature that is slowly decreased until the system settles 
in a (local) minimum. This algorithm reminds one of a great deluge, since if one inverts 
the energy landscape, one looks for the absolute maximum, its highest top. One lets 
the water level rise continuously and one can only visit spots that are not yct flooded. 
The great deluge algorithm obeys detailed balance (c.f. Chap. 5) - sincc p (S  -t S') = 
p(S' + S) for all states S and S' that can be reached in the stationary state [in which 
X(S)  < E and X(S1) < E] of this stochastic process. However, it is not ergodic, since 
for low enough E the part of the configuration space that is sampled splits into several 
islands between which no transition is possible any more. 

11.2 Simulated Annealing 

Simulated annealing is a stochastic optimization procedure that is based on a stochastic 
process that leads to  a stationary stlate which is described by the Boltzmann distri- 
bution for the underlying problem [i.e. the system described by its Harnilton function 
X(S)] .  In essence this procedure resembles cooling a crystal down slowly such that 
defects and other lattice impurities (forming metastable statcs) can hcal out and a 
pure crystalline structure (the global minimum) is achieved at  low temperature. In 
this process the temperature (which allows jumps over energy barriers bctween various 
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configurations) has to  decrease very slowly since otherwise the molecular configura- 
tion gets stuck and the crystal will be imperfect. This is called annealing in materials 
science and various stochastic optimization methods are guided by this physical spirit 
such that they have been called simulated annealing [3]. 
We recall what we said in Sec. 5.1. We consider a physical system that can be in 
states S and is described by a Hamiltonian Z ( S ) .  Its equilibrium properties at a 
temperature T are determined by the Boltzmann distribution 

where Z is its partition function Z = xs exp(-Z(S)/kBT), which is simply the nor- 
malizing factor for a canonical distribution with weights proportional to  e x p ( - Z ( S ) / ~ B T ) .  
We learned in Eqs. (5.15) and (5.16) that a stochastic process with Metropolis transi- 
tion rates [4] 

where A Z  = ?f(S1) - N(S) is the energy difference between the old state S' and the 
new state S, leads to  a stationary state that is governed by the stationary distribution 
Pe,(S). Another choice leading to the same results are the heat-bath transition rates 

since via the Ansatz p (S  + Sf) = Pe,(S')/[Pe,(Sf) + Pe,(S)] it also fulfills detailed 
balance Eq. (5.16). 
Moreover, we have pointed out that for T + 0 the only state(s) that are sampled by 
the equilibrium distribution Pe,(S) are those with the lowest energy. Thus, if we could 
equilibrate the system in our computer run for arbitrarily low temperature and lower 
the temperature step by step, we may expect to find the state with the lowest energy, 
the ground state of the system, at the end. This is the spirit of simulated annealing, 
first introduced into optimization problems by Kirkpatrick et al. [3]. 

Figure 11.3: Simulated annealing. A linear cooling schedule T ( t )  (left) and a sketch 
of the resulting average energy E( t )  as a function of time typically. 
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Obviously it will not be possible to  equilibrate arbitrarily large systems at  arbitrarily 
low temperatures with only a finite amount of computer time available. The crucial 
ingredient for a good performance of the simulated annealing procedure will therefore 
be the cooling protocol T( t ) ,  where T is the temperature and t is a measure of the 
computer time (e.g. number of Monte Carlo sweeps through the system). With the 
help of the theory of Markov processes it has been shown that in principal cooling 
protocols do exist with which simulated annealing finds the optimal solution of a 
given (finite) problem in infinite time. These cooling protocols have the form 

where a and b are positive constants that depend on the special problem. Practical 
applications, of course, have to  be finished in finite time and therefore prefer the 
following empirical cooling protocols. The linear scheme (Fig. 11.3 left) 

where a is the starting temperature and b the step size for decreasing the temperature 
(usually 0.01 < b < 0.2); and the exponential scheme: 

where again a is the starting temperature and b the cooling rate (usually 0.8 5 b < 
0.999). For completeness we present a schematic listing of a simulated annealing 
procedure: 

a l go r i t hm simulated annealing 
beg in  

choose start configuration S ;  
for  t := 1 , .  . . ,t,,, d o  
beg in  

set temperature T := T(t ) ;  
M o n t e  Car lo(M(t ) ,  T) at  temperature T with M( t )  steps; 

e n d  
e n d  

The instruction M o n t e  Ca r lo  means that a Monte Carlo simulation at  temperature 
T with transition rates derived from the detailed balance in Eq. (5.15) with respect 
to  the equilibrium distribution (11.4) - as for instance the Metropolis (11.5) or heat- 
bath (11.6) rules - has to  be performed according to  the general outline presented in 
Sec. 5.1. In the right part of Fig. 11.3 a typical outcome of a cooling experiment is 
shown. Since only a finite number M( t )  of Monte Carlo steps is allowed it is crucial 
to  try to  achieve a fast equilibration within this time window. In the next section we 
present a Monte Carlo update procedure that is particularly helpful in this respect. 
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11.3 Parallel Tempering 

Within the context of the random-field Ising model, which we discussed in Chap. 6, 
Marinari and Parisi [5] introduced a new stochastic optimization method, which they 
called simulated tempering. This Monte Carlo scheme is based on the extension of the 
canonical ensemble introduced in Chap. 5 by, for instance, a multiplicity of systems 
at different temperature and is related to  the so-called multi-canonical ensemble [6]. 
A very efficient and easy-to-use realization of a similar concept has been introduced 
by Hukushima and Nemoto [7] and successfully applied t o  the 3d spin glass model, 
which we discussed in Chap. 9. They called it parallel tempering and it is particularly 
useful for disordered systems that show glassy (i.e. very sluggish) low temperature 
dynamics. The basic idea behind the parallel tempering is to  perform several different 
simulations simultaneously on the same system but a t  different temperatures. From 
time to time one swaps the states of the system in two of the simulations with a 
certain probability. The latter is chosen such that the states of each system still obey 
the Boltzmann distribution at the appropriate temperature. By swapping the states we 
mean that one exchanges the configurations S (previously held at temperature T )  and 
S' (previously at TI). The benefit from this is that the higher-temperature simulation 
helps the (previous) lower-temperature configuration to  cross energy barriers in the 
system. At higher-temperatures one crosses the barriers with relative ease, and when 
it gets to  the other side, we swap the states of the two systems, thereby carrying the 
lower-temperature model across a barrier which it otherwise would not have been able 
to cross. 
For simplicity we consider only two simulations of the system at the same time, but 
the concept can - and should - be generalized to  many simultaneous simulations of 
the system at different temperatures, which are not too far from each other in order to  
get a sufficiently large overlap in the energy distribution of the state (we shall soon see 
why). One simulation of the system is done at temperature TI, the other at T2 > TI. 
The respective inverse temperatures are called Dl = l / k ~ T l  and P 2  = l / lc~T2.  The 
Monte Carlo algorithm works as follows. We perform a conventional Monte Carlo 
simulation with systems in parallel (which is done best on a parallel computer with 
one CPU for one system, but it is of course also manageable on a serial machine) using 
for instance a simple Metropolis update rule (11.5). But from time to time instead of 
doing this we calculate the energy difference of the current state S1 and S2 of the two 
simulations, A E  = E2 - El, where El = X(S1) and E2 = X(S2), and we swap the 
two spin configurations ([SI, S2] + [Sz, Sl]) with an acceptance probability 

Here we use the notation [S, S'] to describe the state of the two combined systems: 
first at  temperature Tl in state S and second at temperature T2 in state St. These 
transition rates for swapping fulfill detailed balance (5.15) with respect to  the joint 
equilibrium distribution function for the two systems 
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which can easily be seen by observing that 

The transition rates in the conventional Monte Carlo steps where we do not swap 
states fulfill detailed balance anyway and they are also ergodic. Hence the combined 
procedure fulfills detailed balance and is ergodic, and therefore both simulations will 
after a sufficiently long time sample the Boltzmann distribution for this model at 
temperature TI in the first system and temperature T2 in the second. The crucial 
advantage is, again, that the T2 system helps the TI system to equilibrate faster: 

a lgori thm Parallel tempering 
begin 

choose start configurations S1 and S 2 ;  

for t := 1 , .  . . ,t,,, d o  
begin 

Mon te  Carlo(M, TI) for system 1; 
Monte  Carlo(M, T2) for system 2; 
A E  := Z(S2) - Z(S1); 
if ( A E  < 0) t h e n  

accept [Sl , S2] + [S2 , Sl] ; 
else 
begin 

w := exp(-(PI - P2)AE); 
generate uniform random number x E [0, I]; 
if (x < w) t h e n  

accept [Sl , S21 + [S2,S1 I ; 
end  

e n d  
end  

One question is how often one should perform the swap moves (i.e. how large should 
the parameter M in the above listing be). It is clear that it does not make sense to 
try this too frequently, the high temperature system should have time to be carried 
away from a local minimum, otherwise it is useless. To estimate the time needed for 
this one could, for instance, calculate the normalized energy autocorrelation function 

determine its correlation time r from CE(T) = e-lCE(0) and choose M > T. A 
practical point concerning the swapping procedure is that obviously we do not need 
to shuffle the configurations S1 and S2 from one array to the other, the same effect 
is achieved by simply exchanging the temperatures Tl and T2 for the two systems. 
Finally: We mentioned before that the method becomes particularly efficient if it is 
done on a parallel computer (which is the origin of its name parallel tempering), where 
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each node (or a block of nodes) simulates one copy of the system a t  one temperature 
out of not only two but many (typically 32 or so), see Fig. 11.4. Since the swapping 
probabilities are exponentially small in the energy difference of the systems at two 
different temperatures and because the average energy increases with the temperature 
the different temperatures should not be too far from each other and one should swap 
only between systems at neighboring temperatures. But, of course, the temperatures 
also should not be chosen too close to each other if we want to find good approximations 
to  the lowest energy configurations, i.e. to  reach as low temperatures as possible. A 
good rule of thumb is, that one should achieve an acceptance ratio of 0.5 for the 
swapping move for each pair of neighboring temperatures. 

Figure 11.4: Parallel tempering with k different temperatures TI < T2 < . . . < Tk .  
At each temperature a system is simulated using conventional Monte Carlo. From 
time to time, configurations are exchanged between neighboring temperatures, such 
that detailed balance is fulfilled. 

11.4 Prune-enriched Rosenbluth Met hod (PERM) 

In this section we will discuss an alternative Monte Carlo method that has been very 
successful in finding the ground state of various lattice polymer models and other 
things. Here we follow Grassberger [8] and Grassberger and Frauenkron [9]. To ex- 
emplify the model we consider a lattice model for 6'-polymers, i.e. self-avoiding walks 
(SAWS) with an additional nearest neighbor attractive interaction (see Fig. 11.5). In 
the simplest model, each pair of nearest neighbors, which are not connected by a bond, 
contributes the amount -t to the energy. On large scales it overrides the repulsion, 
so that the typical configuration changes from an open "coil" to a dense "globule" 
at finite temperatures. The ground state of course is a compact configuration that 
is easy to find, but when we consider models of self-avoiding polymers with different 
monomers that have attractive as well as repulsive interactions, as in the context of a 
model-protein that we discuss in the next section, the problem of finding the ground 
state becomes highly non-trivial. 
The algorithm that has been proposed in [8] is based on two ideas going back to the 
very first days of Monte Carlo simulations, the Rosenbluth-Rosenbluth method [lo] 
and enrichment [ll]. Both are modifications of simple sampling in which a chain is 
built by adding one new monomer after the other, placing it at  a random neighbor 
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Figure 11.5: Lattice model of a 8-polymers with an additional nearest neighbor 
attractive interaction E .  The chain is grown by adding one monomer at a random 
neighbor site of the last placed monomer indicated by open circles. 

site of the last placed monomer. In order to  obtain the correct statistics, an already 
occupied neighbor should not be avoided, but any attempt to  place the monomer at 
such a place is punished by discarding the entire chain. This leads to  an exponential 
"attrition", which makes the method useless for long chains. 
Rosenbluth and Rosenbluth [lo] observed that this exponential attrition can be strongly 
reduced by simulating a biased sample, and correcting the bias by means of a weight 
associated with each configuration. The biased sample is simply obtained by replacing 
any "illegal" step, which would violate the self avoidance constraint, by a random 
"legal" one, provided such a legal step exists. More generally, assume we want to  
simulate a distribution in which each configuration S is weighted by a (Boltzmann-) 
weight Q(S), so that for any observable A one has (A) = Cs A(S)Q(S)/ C ,  Q(S). If 
we sample unevenly with probability p(S),  then we must compensate this by giving a 

weight W(S) Q(S)Ip(S),  

1 
M 

(A) = lim Cfli A(si)Q(si) /p(s i)  = 1 - c A(s i )w(s i ) ,  
- (11.14) 

M+oo xz1 Q(Si)/p(Si) i=l 

This is called the generalized Rosenbluth method. If p(S) were chosen close to  Q(S),  
this would lead to importance sampling and obviously would be very efficient. But in 
general this is not possible, and Eq. (11.14) suffers from the problem that the sum is 
dominated by very few events with high weight. 
Consider now a lattice chain of length N + 1 with self avoidance and with nearest 
neighbor interaction - E  between unbonded neighbors. In the original Rosenbluth 
method, p(S) is then a product, 

where m, is the number of free neighbors in the n-th step, i.e. the number of possible 
lattice sites where t o  place the n-th monomer (monomers are labeled n = 0 ,1 , .  . . N). 
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Similarly, Q(S) is a product, 

n-1 where = l / k T  and En = -t C k = O  Akn is the energy of the n-th monomer in the 
field of all previous ones (Akn = 1 if and only if monomers k and n are neighbors and 
non-bonded, otherwise Akn = 0). 
Obviously, p(S) favors compact configurations where monomers have only few free 
neighbors. This renders the Rosenbluth method unsuitable for long chains, except 
near the collapse ("theta") point where simulations with N < 1000 are feasible on the 
simple cubic lattice [12]. In general we should find ways to  modify the sampling so 
that "good" configurations are sampled more frequently, and "bad" ones less. The key 
to this is the product structure of the weights (with w, = m,e-BE- 1 

implied by Eqs. (11.15) and (11.16). Here, ZN = M-I cE, Q(Sk)/p(Sk) is an esti- 
mate of the partition sum. A similar product structure holds in practically all inter- 
esting cases. 
We can thus watch how the weight builds up while the chain is constructed step by 
step. If the partial weight (from now on we drop the dependence on S) 

gets too large (i.e. is above some threshold W+),  we replace the configuration by k 
copies, each with weight Wn/k. Growth of one of these copies is continued, all others 
are placed on a stack for later use. As a consequence, configurations with high weight 
are simulated more often. To account for this and to keep the final result correct, 
the weight is reduced accordingly. The whole idea is applied recursively. Following 
Ref. [ll] we call this enrichment. The opposite action, when W, falls below another 
threshold W (pruning), is done stochastically: with probability 112 the configuration 
is killed and replaced by the top of the stack, while its weight is doubled in the other 
half of cases. 
In this way PERM (the pruned-enriched Rosenbluth method [8] )  gives a sample with 
exactly the right statistical weights, independently of the thresholds w*, the selection 
probability p(S) ,  and the clone multiplicity k. But its efficiency depends strongly on 
good choices for these parameters. Notice that one has complete freedom in choosing 
them, and can even change them during a run. Fortunately, reasonably good choices 
are easy to  find (more sophisticated choices needed at very low temperatures are 
discussed in Refs. [13, 141). The guiding principle for p(S) is that it should lead as 
closely as possible to  the correct final distribution, so that pruning and enrichment are 
kept t o  a minimum. This is also part of the guiding principles for Wi. In addition, W+ 
and W- have to  be chosen such that roughly the same effort is spent on simulating any 



11.4 Prune-enriched Rosenbluth Method (PERM) 265 

part of the configuration. For polymers this means that the sample size should neither 
grow nor decrease with chain length n. This is easily done by adjusting W+ and W -  
"on the fly". We now show a listing for the central part of the PERM algorithm (after 
[ 8 ] ) ,  x denotes the current position of the head of the chain and n the current chain 
length: 

procedure PERM-Step (x,  n)  
begin 

choose x1 near x w density p(xl-x); simplest case: p(x) = l/m,61,1,1 
w, := cnp(xl - x ) ~ '  exp(-E(xl)/kBT); if c,=const.+grand canonical 
Wn := W n - l ~ , ;  
begin do statistics 

2, := 2, + W,; partition function 
R2, := R2, + x12 w,; end-to-end distance 
t := t + 1; total number of subroutine calls 
etc. 

end 
if n < N,,,, and W, > 0 then 
begin 

W+ := c+Z,/Z1; adaption of W+ (optional) 
W- .- - .- c Z,/Z1; adaption of W- (optional) 
if W, > W+ then 
begin 

W, := WJ2; 
PERM-Step(xl, n + 1); 
PERM-Step(xl, n + 1); 

end 
else if W, < W- then 
begin 

Wn := W, * 2; 
draw E uniform E [0, I]; 
if ([ < l /2 )  then 

PERM-Step(xl, n + 1); 
end 
else 

PERM-Step(xl, n + 1); 
end 
return 

end 

enrichment! 

prune w. prob. 1/2 

normal Rosenbluth step 

The subroutine PERM-Step is called from the main routine with arguments x = 0, 
n = 1. W,, c,, Z, and R2, are global arrays indexed by the chain length. W, is 
the current weight, c, a reweighting factor, which allows the simulation of different 
statistical ensembles, Zn the estimate of the partition function and R2, the sum of 
the mean squared end-to-end distance, i.e. R2,/Zn is the average. N,,,, t ,  c+ and 
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cp,  are global scalar variables, where N,,, is the maximum chain length, t counts 
the total number of subroutine calls and c+/c- control the adaptation of the weights. 
Without adaptation, the lines involving c+ and c- can be dropped, and then W+ 
and W -  are global scalars. In more sophisticated implementations, p, c+ and c will 
depend on n and/or on the configuration of the monomers with indices n' < n. Good 
choices for these functions may be crucial for the efficiency of the algorithm, but are 
not important for its correctness. To compute the energy E ( x l )  of the newly placed 
monomer in the field of the earlier ones, one can use either bit maps (in lattice models 
with small lattices), hashing or neighbor lists. If none of these are suitable, E ( x l )  has 
to be computed as an explicit sum over all earlier monomers. 
In selecting the good and killing the bad, PERM is similar to  evolutionary and ge- 
netic algorithms [15], see Chap. 8, to  population based growth algorithms for chain 
polymers [16, 17, 18, 191, to  diffusion type quantum Monte Carlo algorithms [20], 
and to the "go with the winners" strategy of Ref. [21]. The main difference with 
the first three groups of methods is that one does not keep the entire population of 
instances simultaneously in computer memory. Indeed, even on the stack one does 
not keep copies of good configurations but only the steps involved in constructing the 
configurations and flags telling us when to make a copy [8]. In genetic algorithms, 
keeping the entire population in memory is needed for cross-overs, and it allows a one- 
to-one competition between instances. But in our case this is not needed since every 
instance can be compared with the average behavior of all others. The same would 
be true for diffusion type quantum Monte Carlo simulations. The main advantage of 
our strategy is that it reduces computer memory enormously. This, together with the 
surprisingly easy determination of the thresholds w*, could make PERM also a very 
useful strategy for quantum Monte Carlo simulations. 

11.5 Protein Folding 

Protein folding [22] is one of the outstanding problems in mathematical biology. It is 
concerned with the problem of how a given sequence of amino acids assumes precisely 
that geometrical shape which is biologically useful. Currently it is much easier to  
find coding DNA (and, thus, amino acid) sequences than to find the corresponding 
structures. Thus, solving the folding problem would be a major break-through in un- 
derstanding the biochemistry of the cell, and in designing artificial proteins. In this 
section we present only the most straightforward direct approach: given a sequence, 
a molecular potential and no other information, find the ground state and the equi- 
librium state at physiological temperatures. Note that we are not concerned with the 
kinetics of folding, but only in the final outcome. Also, we will not address the prob- 
lems of how to find good molecular potentials, and what is the proper level of detail 
in describing proteins. Instead, we discuss simple coarse-grained models which have 
been proposed in the literature and have become standards in testing the efficiency of 
folding algorithms. 
The models we discuss are heteropolymers which live on 3d or 2d regular lattices. They 
are self-avoiding chains with attractive or repulsive interactions between neighboring 
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non-bonded monomers. These interactions can have continuous distributions [23], but 
the majority of authors have considered only two kinds of monomers. In the HP model 
[24, 251 they are hydrophobic (H) and polar (P) ,  with (eHH, EHP,  ePP) = - ( I ,  0,O). 
Since this leads to  highly degenerate ground states, alternative models were proposed, 
e.g. Z =  -(3,1,3) [26] and E'= -(1,0,1) [27]. 
The algorithms that were applied in [28, 291 were variants of the pruned-enriched 
Rosenbluth method (PERM) described in the last section and we present here a few 
of the impressive results obtained in this way, improving substantially on previous 
work. 

2d HP model 

Two chains with N = 100 were studied in [30]. The authors claimed that their native 
configurations were compact, fitting exactly into a 10 x 10 square, and had energies 
-44 and -46: 
Sequence 1: 
P6HPH2PsH3PH5PH2P2(P2H2)2PH5PH10PH2PH7PllH7P2HPH3P6HPH2 
Sequence 2: 
P3H2P2H4P2H3(PH2)3H2PsH6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P~H3 

In Fig. 11.6 we show the the respective proposed ground-state structures. These con- 
formations were found by a specially designed MC algorithm which was claimed to  be 
particularly efficient for compact configurations. We do not discuss the method here. 
For these two HP chains by applying the PERM algorithm at  low temperatures, Grass- 
berger et al. [29] found (within ca. 40 hours of CPU time) several compact states that 
had energies lower than those of the compact putative ground states proposed in [30], 
namely with E = -46 for sequence 1 and E = -47 for sequence 2. Moreover, they 
found (again within 1-2 days of CPU time) several non-compact configurations with 
energies even lower: E = -47 and E = -48 for sequences 1 and 2, respectively. 
Forbidding non-bonded HP pairs, Grassberger et al. [28, 291 obtained even E = -49 
for sequence 2. Figure 11.6 shows representative non-compact structures with these 
energies. These results reflect the well-known property that HP sequences (and those 
of other models) usually have ground states that are not maximally compact, see, e.g. 
[31], although there is a persistent prejudice to  the contrary [27, 30, 321. 

3d modified HP model 

A most interesting case is a 2-species 80-mer with interactions (-1,0, -1) studied first 
in [27]. These particular interactions were chosen instead of the HP choice (-1,0,0) 
because it was hoped that this would lead to  compact configurations. Indeed the 
sequence [27, 331 

was specially designed to  form a "four helix bundle" which fits perfectly into a 4 x 4 x 5 
box, see Fig. 11.7. Its energy in this putative native state is -94. Although the authors 
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Figure 11.6: Top: Putative compact native structure of sequence 1 (left) with E = 

-44 and sequence 2 (right) with E = -46 according to [30]; (filled circle) H monomers, 
(open circle) P monomers. Bottom: One of the (non-compact) lowest energy sequences 
for sequence 1, left, with E = -47 and sequence 2,  right, with E = -49. 

of [27] used highly optimized codes, they were not able to  recover this state by MC. 
Instead, they reached only E = -91. Supposedly a different state with E = -94 was 
found in [30], but figure 10 of this paper, which it is claimed shows this configuration, 
has a much higher value of E. Configurations with E = -94 but slightly different from 
that in [27] and with E = -95 were found in [33] by means of an algorithm similar to  
that in [30]. For each of these low energy states the author needed about one week of 
CPU time on a Pentiurn. 

Grassberger et al. [28, 291 applied the PERM algorithm to the aforementioned system. 
Evcn without much tuning the algorithm gave E = -94 after a few hours, but it did 
not stop there. After a number of rather disordered configurations with successivcly 
lower encrgics, the final candidate for the native state has E = -98. It again has a 
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Figure 11.7: Putative native state of thc "four helix bundle" sequence, as proposed 
by O'Toole and A. Panagiotopoulos [27]. It has E = -94, fits into a rectangular box, 
and consists of three homogeneous layers. Structurally, it can be interpreted as four 
helix bundles. 

Figure 11.8: Conformation of the "four helix bundle" sequence with E = -98. 
Grassberger et al. [28, 291 proposed that this is the actual ground state. Its shape is 
highly symmetric although it does not fit into a rectangular box. It is not degenerate 
except for a flipping of the central front 2 x 2 x 2 box. 

highly symmetric shape, although it does not fit into a 4 x 4 x 5 box, see Fig. 11.8. 
It has two-fold degeneracy (the central 2 x 2 x 2 box in the front of Fig. 11.8 can be 
flipped), and both configurations were actually found in the simulations. The optimal 
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temperature for the ground-state search in this model is P = l / k T  = 2.0. 
A surprising result is that the monomers are arranged in four homogeneous layers 
in Fig. 11.8, while they had formed only three layers in the putative ground state 
of Fig. 11.7. Since the interaction should favor the segregation of different type 
monomers, one might have guessed that a configuration with a smaller number of layers 
should be favored. We see that this is outweighed by the fact that both monomer types 
can form large double layers in the new configuration. Again, our new ground state 
is not "compact" in the sense of minimizing the surface, and hence it also disagrees 
with the widespread prejudice that native states are compact. 
To classify a ground state, one can also just consider which pairs of monomers are 
adjacent to  each other, i.e. abstract from the full spatial structure. The resulting 
relation is called a secondary structure and can be written in form of a contact matrix. 
In terms of secondary structure, the new ground state is fundamentally different from 
the putative ground state of Ref. [30]. While the new structure (Fig. 11.8) is dominated 
by so called /? sheets, which can most clearly be seen in the contact matrix, the 
structure in Fig. 11.7 is dominated by helices. 
This example demonstrates that the pruned-enriched Rosenbluth method can be very 
effectively applied to  protein structure prediction in simple lattice models. It is suited 
for calculating statistical properties and is very successful in finding native states. In 
all cases it did better than any previous MC method, and in many cases it found 
lower states than those which had previously been conjectured to  be native. 
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12  Branch-and-bound Methods 

As we have already seen in Chaps. 2 and 3, it seems to be impossible to  invent an 
algorithm which solves an NP-hard problem in polynomial time. Methods only exist 
where the worst-case running time increases exponentially with the size of the system, 
where the size is measured by the minimal length of a string you need to  encode the 
problem for a computer. 
Recently, NP-hard problems have reattracted a lot of attention in both communi- 
ties of physicists and theoretical computer scientists. The reason is that instead of 
studying the worst-case complexity, the problems are now considered for ensembles 
of random instances usually characterized by only a few parameters. Examples for 
such parameters are the relative number a of clauses in a boolean CNF formula with 
respect to  the number of different variables (see Chap. 2) or the number c = M / N  of 
edges M divided by the number Nof vertices for a graph. It turns out that,  although 
the worst-case time complexity is always exponential, the typzcal-case complexity in 
the random ensembles may depend on the parameters. This means there are regions 
in parameter space where the instances can be solved typically in polynomial time, 
while in other regions typical instances indeed require exponential time. This view- 
point is more suitable for studying real-world optimization problems, rather than the 
academic approach of investigating worst-case behavior. For this reason, the inter- 
est in the computer-science community in this subject is currently increasing. An 
introduction to  the field can be found in [I]. 
Physicists are interested in such types of problems for two further reasons. First, the 
change in the typical-case complexity coincides with phase transitions on the random 
ensembles. Thus, we have a phenomenon which is quite familiar t o  physicists. Second, 
it turns out that with analytical methods originating from statistical physics, it is very 
often possible to obtain much more information or even more accurate results than by 
applying traditional mathematical approaches. 
In this chapter, the (for most physicists) new subject will be introduced via a presen- 
tation of the vertex-cover (VC) problem. Other problems, where statistical physics 
methods have been applied recently, are the K-SAT problem [2] and the number- 
partitioning problem [3], for a review see R.ef. 14, 51. 
The chapter is organized as follows. First some basic definitions are given. Next, three 
algorithms for solving VC are presented. Some basic results are shown in the third 
section. 
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12.1 Vertex Covers 

The vertex-cover problem is an NP-hard problem from graph theory, its basic definition 
has already been introduced briefly in Chap. 3. Here, we recall the definition and 
introduce further notions. 
Vertex covers are defined as follows. Take any undirected graph G = (V, E) with N 
vertices i E V = (1, 2, ..., N )  and M edges (i, j )  E E c V x V. Please note that in 
this case (i, j )  and ( j ,  i)  denote both the same edge. We consider subsets V,, c V. 
The set V,, is a vertex cover zfl for all edges (i, j) E V a t  least one of its endpoints is 
a member of the set: i E V,, or j E V,,. Also please note that V,, = V is always a 
vertex cover. Furthermore, vertex covers are not unique. For example, for each vertex 
i E V, the set V,, = V \ {i) is a vertex cover as well. 
The term "covered' will be used in several circumstances later on. The vertices i 
with i E V,, are called covered, and uncovered for i 4 V,,. One can imagine that 
some covering marks are placed a t  the vertices belonging to V,,. Analogously, an edge 
(i, j )  E E is called covered iff a t  least one of its end-vertices is covered, i E V,, or 
j E V,,. Thus, comparing with the definition given above, the set V,, is a vertex cover 
iff all edges of the graph are covered. In this case, the graph is called covered as well. 

Example: Vertex cover 

Please consider the graph shown in the left half of Fig. 12.1. Vertices 1 and 2 
are covered (V., = {1,2)),  while the other vertices 3 , 4 , 5  and 6 are uncovered. 
Thus, edges (1,3),  (1,4) and (2,3) are covered while edges (3,4),  (3,5),  (4,6) 
and (5,6) are uncovered. Hence, the graph is not covered. 
In the right half of Fig. 12.1 also vertices 4 and 5 are covered. Thus, edges 
(3,4),  (3,5),  (4,6) and (5,6) are now covered as well. This means all edges 
are covered, i.e. the graph is covered by Vu, = {1,2,4,5),  thus V,, is a vertex 
cover. 0 

Figure 12.1: Graphs and covers. Covered vertices are shown in bold and 
dark, covered edges are indicated by dashed lines. Left: a partially covered 
graph. Vertex 1 and 2 are covered. Thus, edges (1,3), (1,4), and (2,3) are 
covered. Right: by also covering also vertices 4 and 5, the graph is covered. 
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The vertex-cover decision problem asks whether there are VCs of fixed given cardinality 
X = 1V,,1, we define x = X/N.  In other words we are interested if it is possible to  
cover all edges of G by covering x N  suitably chosen vertices, i.e. by distributing x N  
covering marks among the vertices. To measure the extent a graph is not covered, we 
introduce an energy e(G, x) = E(G,  x ) /N  with 

E(G,  x) = rnin{number of uncovered edges when covering xNvertices) (12.1) 

Thus, a graph G is coverable by X N  vertices if e(G, x) = 0. This means that you can 
answer the VC decision problem by first solving a minimization problem, and then 
testing whether the minimum e(G, x) is zero or not. 
For the preceding case, the energy was minimized with fixed X .  The decision problem 
can also be solved by solving another optimization problem: for a given graph G it asks 
for a minimum vertex cover V,,, i.e. a vertex covcr of minimum size X,(G) = /V,,/. 
Thus, here the number of vertices in the vertex cover is minimized, while the energy 
is kept a t  zero. The answer to the vertex cover decision problem is "yes", if X > X,. 

(1) Also minimum vertex covers may not be unique. In case several vertex covers V,, , 
. . ., vJ(,K) exist, each with the same cardinality X (not necessarily minimum vertex 
covers), a vertex i is called a backbone vertex, if it is either a member of all covers 

( k )  (Vk = 1 , .  . . , K : i E V,,, ) or else a member of no cover (Vk = 1,. . . , K : i 6 v::)). 
These vertices can be regarded as frozen in all vertex-cover configurations. All other 
vertices are called non-backbone vertices. 

Example: Minimum vertex cover 

For the graph from Fig. 12.1, in Fig. 12.2 all three minimum vertex covers 
(X, = 3) are shown. Vertices 2 (always uncovered) and 3 (always covered) 
belong to  the backbone, while all other vertices are non-backbone. 

It is straightforward to  show that vertex 3 must be a member of all minimum 
vertex covers. Assume that vertex 4 is not covered. Since all edges have to  
be covered, for all edges incident to  vertex 3, the second end vertices have to  
be covered. Thus, vertices 1 , 2 , 4  and 5 have to be covered, i.e. more vertices 
than in the minimum vertex cover, which has size X, = 3. 

In order to  be able to speak of typical or average cases, we have to introduce an 
ensemble of graphs. We investigate random graphs G N , , ~  with N vertices and cN  
edges (i, j )  which are drawn randomly and independently. For a complete introduction 
to  the field see [6]. One major result is that for small concentrations c < 0.5, each graph 
breaks up into small components, where the size N,,, of the largest components is of 
the order O(ln N). This means that the fraction N,,,/N of the vertices in the largest 
component converges with increasing graph size as In N / N  to zero. For concentrations 
c larger than the critical concentration c,,it = 0.5, a finite fraction of all vertices are 
collected in the largest component, called the giant component. One says the graph 
percolates, c,,it is called the percolation threshold. 
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Figure 12.2: All three minimum vertex covers of the graph from the preceding 
example. 

Turning back to VC, when the number x N  of covering marks is increased (c is kept 
constant), the model is expected to undergo an uncoverable-coverable transition. Being 
able only to  cover a small number x N  of vertices, it is very unlikely that one will be 
able to  cover all edges of a random graph. With increasing size of the cover set this 
will be become more and more likely, while for X = N it is certain that all edges are 
covered. For a given graph G,  wc will denote the minimum fraction of covered vertices 
necessary to  cover the whole graph by x,(G) = X,(G)/N. The value of x,(G)N is 
related to  the energy e(G, z), it is just the smallest number x where the energy e(G) 
vanishes. The average of e(G) over all random graphs as a function of x, will be 
denoted e(x).  Later we will see that by taking the thermodynamic limit N + oo the 
size x, = X,/N of the minimum cover set will only depend on the concentration c of 
the edges, i.e. x, = x,(c). 
Using probabilistic tools, rigorous lower and upper bounds for this threshold [7] 
and the asymptotic behavior for large connectivities [8] have been deduced. Recently, 
the problem has investigated using a statistical physics approach [9] and the results 
have been improved drastically. Up to  an average concentration c = e/2 E 1.359 the 
transition line is given exactly by 

where W(c) is the Lambert-W-function defined by W(c) exp(W(c)) = c. The transi- 
tion along with the bounds is shown in the phase diagram in Fig. 12.3. For z > x,(c), 
the problem is coverable with probability one, for x < x,(c) the available covering 
marks arc not sufficient. For higher connectivities no exact result for x,(c) could 
be obtained, but the result given by Eq. 12.2 is a good approximation, unless c 
grows too large. Please note that the region, where the exact result has been ob- 
tained, extends fairly well into the percolating regime, since the percolation threshold 
is c,,it = 0.5 < 1.359. 
In Sec. 12.3, the analytic result is compared with data from numerical simulations, we 
will see that the agreement is amazing. But before we do that, in the next section, 
some algorithms to solve the VC are presented. 
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Figure 12.3: Phase diagram. Fraction x,(c) of vertices in a minimal vertex cover as 
a function of the average connectivity c. For x > z,(c), almost all graphs have covers 
with X N  vertices, while they have almost definitely no cover for z < z,(c). The solid 
line shows the result from statistical physics. The upper bound of Harant is given by 
the dashed line, the bounds of Gazmuri by the dash-dotted lines. The vertical line is 
at c = e / 2  z 1.359. 

12.2 Numerical Met hods 

In this section, two exact numerical methods to solve the vertex-cover problem are 
presented. Please note that there are two ways to  treat the problem. First, you can 
look only for minimum vertex covers, i.e. you ask for the minimum number x,(G)N 
of vertices you have to cover for a given graph G to ensure that all edges of G are 
covered. The second way is to  fix an arbitrary number X = XN of vertices to be 
covered and ask for the maximum number of edges (or minimum number of uncovered 
edges) which can be covered under that restriction. We always present the algorithms 
in a way that they are suitable for the first kind of problem. Afterwards, how the 
methods can be changed to treat problems of the second kind is outlined. 
Before explaining the exact algorithms, we first introduce a fast heuristic, which is 
utilized within both exact methods. The heuristic can be applied stand-alone as well. 
In this case only an approximation of the true minimum vertex cover is calculated, 
which is found to differ only by a few percent from the exact value. All methods can 
easily be implemented via the help of the LEDA library [lo] which offers many useful 
data types and algorithms for linear algebra and graph problems. 
The basic idea of the heuristic is to  cover as many edges as possible by using as few 
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vertices as are necessary. Thus, it seems favorable to  cover vertices with a high degree. 
This step can be iterated, while the degree of the vertices is adjusted dynamically by 
removing edges which are covered. This leads to the following greedy algorithm, which 
returns an approximation of the minimum vertex cover V,,, the size /V,,I is an upper 
bound of the true minimum vertex-cover size: 

a lgor i thm greedy-cover(G) 
begin  

initialize V,, = 0; 
while there are uncovered edges d o  
begin  

take one vertex i with the largest current degree di; 
mark i as covered: V,, = V,, U {i); 
remove from E all edges (i ,  j )  incident to  i ;  

end ;  
return(V,,); 

e n d  

Example: Heuristic 

To demonstrate, how the heuristic operates, we consider the graph shown in 
Fig. 12.4. In the first iteration, vertex 3 is chosen, because it has degree 4, 
which is the largest in the graph. The vertex is covered, and the incident edges 
(1,3),  (2,3),  (3,4) and (3,5) are removed. Now, vertices 6 and 7 have the 
highest degree 3. Wc assume that in the second iteration vertex 6 is covered 
and vertex 7 in the third iteration. Then the algorithms stops, because all 
edges are covered. 

0 

In the preceding example we have seen that the heuristic is sometimes able to  find a 
true minimum vertex cover. But this is not always the case. In Fig. 12.5 a simple 
counter example is presented, where the heuristic fails to find the true minimal vertex 
cover. First the algorithm covers the root vertex, because it has degree 3. Thus, three 
additional vertices have to  be subsequently covered, i.e. the heuristic covers 4 vertices. 
But, the minimum vertex cover has only size 3, as indicated in Fig. 12.5. 
The heuristic can be easily altered for the case where the number X of covered vertices 
is fixed and it is asked for a minimum number of uncovered edges. Then the iteration 
has t o  stop as well, when the size of the cover set has reached X. In case a vertex 
cover is found, before X vertices are covered, arbitrary vertices can be added to the 
vertex-cover set V,, until IV,,I = X. 
So far we have presented a simple heuristic to  find approximations of minimum vertex 
covers. Next, two exact algorithms are explained: divide-and-conquer and branch- 
and-bound, which both incorporate the heuristic to  gain a high efficiency. Without 
the heuristic, the algorithms would still be exact, but slower running. 
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Figure 12.4: Example of the cover heuristic. Upper left: initial graph. Upper 
right: graph after the first iteration, vertex has been covered (shown in bold) and the 
incident edges removed (shown with dashed line style). Bottom: graph after second 
and third iteration. 

The basic idea of both methods is as follows, again we are interested first in a VC 
of minimum size: as each vertex is either covered or uncovered, there are 2 N  pos- 
sible configurations which can be arranged as leafs of a binary (backtracking) tree, 
see Fig. 12.6. At each node, the two subtrees represent the subproblems where the 
corresponding vertex is either covered ("left subtree") or uncovered ("right subtree"). 
Vertices, which have not been touched at  a certain level of the tree are said to  be free. 
Both algorithms do not descend further into the tree when a cover has been found, 
i.e. when all edges are covered. Then the search continues in higher levels of the tree 
(backtracking) for a cover which possibly has a smaller size. Since the number of 
nodes in a tree grows exponentially with system size, algorithms which are based on 
backtracking trees have a running time which may grow exponentially with the system 
size. This is not surprising, since the minimal-VC problem is NP-hard, so all exact 
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Figure 12.5: A small sample graph with minimum vertex cover of size 3. The vertices 
belonging to the minimum V,, are indicated by darklbold circles. For this graph the 
heuristic fails to find the true minimum cover, because is starts by covering the root 
vertex, which has the highest degree 3. 

uncovered 

Figure 12.6: Binary backtracking tree for the VC. Each node of the backtracking tree 
corresponds to a vertex which is either covered ("left subtree") or uncovered ("right 
subtree"). 

methods exhibit an exponential growing worst-case time complexity. 

To decrease the running time, both algorithms make use of the fact that only full 
vertex covers are to be obtained. Therefore, when a vertex i is marked uncovered, all 
neighboring vertices can be covered immediately. Concerning these vertices, only the 
left subtrees are present in the backtracking tree. 
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The divide-and-conquer [Ill approach is based on the fact that a minimum VC of a 
graph, which consists of several independent connected components, can be obtained 
by combining the minimum covers of the components. Thus, the full task can be 
split into several independent tasks. This strategy can be repeated at  all levels of the 
backtracking tree. At each level, the edges which have been covered can be removed 
from the graph, so the graph may split into further components. As a consequence, 
below the percolation threshold, where the size of the largest components is of the 
order O(ln N),  the algorithm exhibits a polynomial running time. The divide-and- 
conquer approach reads as below, the given subroutine is called for each component 
of the graph separately, it returns the size of the minimum vertex cover, initially all 
vertices have state free. 

a l go r i t hm divide-and-conquer(G) 
beg in  

take one free vertex i with the largest current degree di; 

mark i as covered; c o m m e n t  left subtree 
sizel := I ;  
remove from E all edges (i, j )  incident to i ;  
calculate all connected components {Ci) of graph built by free vertices; 
for all components Ci d o  

sizel := sizel+ divide-and-conquer(Ci);  
insert all edges (i ,  j )  which have been removed; 

mark i as uncovered; c o m m e n t  right subtree; 
sizes := 0; 
for  all neighbors j of i d o  
beg in  

mark j as covered 
remove from E all edges (j, k) incident to  j; 

e n d  
calculate all connected components {C,); 
for all components Ci d o  
size2 := sizea+ divide-and-conquer(Ci) ; 

for all neighbors j of i d o  
mark j as free 

insert all edges (j, k) which have been removed; 

mark i as free; 
if sizel < size2 t h e n  

re turn(s ize l ) ;  
else 

return(size2); 
e n d  
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left subtree right subtree 

Figure 12.7: Example of how the divide-and-conquer algorithm operates. Above the 
graph is shown. The vertex i with the highest degree is considered. In the case where 
it is covered (left subtree), all incident edges can be removed. In the case where it 
is uncovered, (right subtree) all neighbors have to be covered and all edges incident 
to the neighbors can be removed. In both cases, the graph may split into several 
components, which can be treated independently by recursive calls of the algorithm. 

The algorithm can be easily extended to record the cover sets as well or to  calculate 
the degeneracy. In Fig. 12.7 an example is given of how the algorithm operates. 
The algorithm is able to  treat large graphs deep in the percolating regime. We have 
calculated for example minimum vertex covers for graphs of size N = 560 with average 
edge density c = 1.3 
For average edge densities larger than 4, the divide-and-conquer algorithm is too slow, 
because the graph only rarely splits into several components. Then a branch-and- 
bound approach [12, 13, 141 is favorable. It differs from the previous method by 
the fact that no independent components of the graph are calculated. Instead, some 
subtrees of the backtracking tree are omitted by introducing a bound, this saves a 
lot of running time. This is achieved by storing three quantities, assuming that the 
algorithm is currently at some node in the backtracking tree: 

0 The best size of the smallest vertex cover found in subtrees visited so far (initially 
best = N). 

0 X denotes the number of vertices which have been covered in higher levels of the 
tree. 

Always a table of free vertices ordered in descending current degree di is kept 
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Thus, to  achieve a better solution, a t  most F = best - X vertices can be covered 
additionally in a subtree of the current node. This means it is not possible to cover 

F more edges, than given by the sum D = E l = ,  dl of the F highest degrees in the 
table of vertices, i.e. if some edges remain uncovered, the corresponding subtree can 
be omitted for sure. Please note that in the case that some edges run between the 
F vertices of the highest current degrce, then a subtree may be entered, even if it 
contained no smaller cover. 
The algorithm can be summarized as follows below. The size of the smallest cover is 
stored in best, which is passed by reference (i.e. the variable, not its value is passed). 
The current number of covered vertices is stored in variable X ,  please remember G = 

(V, El:  

a lgo r i t hm branch-and-bound(G, best, X )  
beg in  

if all edges are covered t h e n  
beg in  

if X < best t h e n  best := X 
r e t u r n ;  

end ;  
F calculate F = best - X ;  D = El=, dl; 

if D < number of uncovered edges t h e n  
r e t u r n ;  c o m m e n t  bound; 

take one free vertex i with the largest current degree di; 
mark i as covered; c o m m e n t  left subtree 
X := X + 1; 
remove from E all edges (i, j) incident to  i ;  
branch-and-bound(G,  best, X ) ;  
insert all edges (i, j) which have been removed; 
X := X - 1; 
if (X > number of current neighbors) t h e n  
beg in  c o m m e n t  right subtree; 

mark i as uncovered; 
for all neighbors j of i d o  
beg in  

mark j as cowered; X := X + 1; 
remove from E all edges ( j ,  k) incident to  j ;  

e n d ;  
branch-and-bound(G,  best, X ) ;  
for  all neighbors j of i d o  

mark j as free; X := X - 1; 
insert all edges (j, k) which have been removed; 

end ;  
mark i as free; 
r e t u r n ;  

e n d  
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Example: Branch-and-bound algorithm 

Here we consider again the graph from Fig. 12.4. During the first descent 
into the backtracking tree, the branch-and-bound algorithm operates exactly 
like the heuristic. Iteratively vertices of highest current degree are taken, 
covered, and the incident edges removed. The recursion stops the first time 
when the graph is covered. This situation is shown in Fig. 12.2, where the 
graph and the corresponding current backtracking tree are displayed. Since 
X = 3 vertices have been covered, best := 3. 

Figure 12.8: Example of the branch-and-bound algorithm. Result after 
the first full cover has been found. Left: graph, right: backtracking tree. 
In the graph, covered vertices are shown by bold and dark circles, covered 
edges indicated by dashed lines. The current node of the backtracking trcc 
is highlighted as well, c=covered. 

Then the algorithms returns to  the preceding level of the backtracking tree. 
Vertex 7 is uncovered. Thus, since only full covers of the graph are desired, all 
its neighbors must be covered, namely vertices 5, 9 and 11. Again a cover of 
the whole graph has been obtained. Now X = 4 vertices have been covered, 
so no better optimum has been found, i.e. still best := 3. 

For vertices 5 ,  9 and 11 only covered states had to be considered. Thus, the 
algorithm returns directly 3 levels in the backtracking tree. Then it returns 
one more level, since for vertex 7 both states havc been considered. Next, 
vertex 6 is uncovered and its neighbors 4, 8 and 10 are covered (X = 4),  
see Fig. 12.2. Now three uncovered edges remain, i.e. the algorithm does not 
return immediately. Hence, the calculations for the bound are performed. 
F = best - X = 3 - 4 = -1 is obtained. This means no more vertices can 
be covered, i.e. D = 0 which is smaller than the number of uncovered edges 
(= 3). Therefore, the bound becomes active and the algorithm returns to  the 
preceding level. 
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Figure 12.9: Example of the branch-and-bound algorithm. Result after 
the first backtracking step. Vertex 7 is uncovered (indicated by a bold, light 
circle), thus all its neighbors must be covered, (uc=uncovered). 

Figure 12.10: Example of the branch-and-bound algorithm. Result after 
the second backtracking step. Vertex 6 is uncovered, thus its neighbors 4, 8 
and 10 must be covered. 

Now the algorithm again reaches the top level of the backtracking tree. Vertex 
3 is uncovered and all its neighbors (1; 2 ,4  and 5) are uncovered (X = 4), see 
Fig. 12.2. Again, no VC has been found, i.e. the algorithm proceeds with the 
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calculation of the bound. Again, F = best - X = 3 - 4 = -1 is obtained, 
yielding D = 0. Since 4 uncovered edges remain, the bound becomes active 
again. 

Figure 12.11: Example of the branch-and-bound algorithm. Final situa- 
tion. Vertex 3 is uncovered, thus its neighbors 1 , 2 , 4  and 5 must be covered. 

The algorithm returns again to  the top level and has been finished. The 
minimum vertex cover has size best = 3. Please note that the backtracking 
tree only contains 17 nodes on 7 levels, while a full configuration tree would 
contain 12 levels, 2'' leaves and 212 - I = 4097 nodes. This shows clearly 
that by the branch-and-bound method the running time can be decreased 
considerably. 

0 

For the preceding example, for the calculation of the bounds F 5 0 was always ob- 
tained. This is due to  the small graph sizes, which can be treated within the scope 
of an example. With real applications, F > 0 occurs. Then, for every calculation of 
the bound, one has to access the F vertices of largest current connectivity. Thereforc, 
it is favorable to  implement the table of vertices as two arrays vl, vz of sets of ver- 
tices. The arrays are indexed by the current degree of the vertices. The sets in the 
first array vl contain the F free vertices of the largest current degree, while the other 
array contains all other free vertices. Every time a vertex changes its degree, it is 
moved to another set, and eventually even changes the array. Also, in case the mark 
(free/covered/uncovered) of a vertex changes it may be entered in or removed from 
an array, possibly the smallest degree vertex of vl is moved to  v2 or vice versa. Since 
we are treating graphs of finite average connectivity, this implementation ensures that 
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the running time spent in each node of the graph is growing slower than linear in the 
graph size1. For the sake of clarity, we have omitted the update operation for both 
arrays from the algorithmic presentation. 
The algorithm, as it has been presented, is suitable for solving the optimization prob- 
lem, i.e. finding the smallest feasible size X ,  = Nx, of a vertex cover, i.e. the minimum 
number of covered vertices needed to cover the graph fully. The algorithm can be eas- 
ily modified to  treat the problem, where the size X = V,, is given and a configuration 
with minimum energy is to  be found. Then, in best, it is not the current smallest size 
of a vertex cover but the smallest number of uncovered edges (i.e. the energy) that 
is stored. The bound becomes active, if F + D is larger than or equal to  the current 
number of uncovered edges. Furthermore, when a vertex is uncovered, the step where 
all neighbors are covered cannot be applied, because the configuration of the lowest 
energy may not be a VC. On the other hand, if a VC has been found, i.e. all edges are 
covered, the algorithm can stop, because for sure no better solution can be obtained. 
But thc algorithm can stop only for the case when one optimum has to  be obtained. 
In case all minima have to  be enumerated, the algorithm has to proceed and the bound 
becomes active only in the case if F + D is strictly larger (not equal) to  the current 
number of uncovered edges. 
Although the branch-and-bound algorithm is very simple, in the regime 4 < c < 10 
random graphs up to  size N = 140 can be treated. It is difficult to  compare the 
branch-and-bound algorithm to more elaborate algorithms [14, 151, because they are 
usually tested on a different graph ensemble where each edge appears with a certain 
probability, independently of the graph size (high-connectivity regime). Nevertheless, 
in the computer-science literature usually graphs with up to 200 vertices are treated, 
which is slightly larger than the systems considered here. Nevertheless, the algorithm 
presented here has the advantage that it is easy to  implement and its power is sufficient 
to study interesting problems. Some results are presented in the next section. 

12.3 Results 

First, the problem is considered where the energy is minimized for fixed values x. 
As stated in the first section, we know that for small values of x, the energy (12.1) 
is not zero [e(O) = c], i.e. no vertex covers with x N  vertices covered exist. On the 
other hand, for large values of x, the random graphs are almost surely coverable, 
i.e. e(z) = 0. In Fig. 12.12 the average ground-state energy and the probability 
P,,,(z) that a graph is coverable with x N  vertices is shown for different system sizes 
N = 25,50,100 (c = 1.0). The results were obtained using the branch-and-bound 
algorithm presented in the last section. The data are averages over lo3 ( N  = 100) 
to lo4 ( N  = 25,50) samples. As expected, the value of P,,,(x) increases with the 
fraction of covered vertices. With growing graph sizes, the curves become steeper. 
This indicates that in the limit N 4 co, which we are interested in, a sharp threshold 
x, z 0.39 appears. Above x, a graph is coverable with probability one, below it is 

'Efficient implementations of sets require at most O(1og S) time for the operations, where S is the 
size of a set. 
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almost surely not coverable. Thus, in the language of a physicist, a phase transition 
from an uncoverable phase to  a coverable phase occurs. Please note that the value z, 
of the critical threshold depends on the average density of vertices. The result for the 
phase boundary x, as a function of c obtained from the simulations is shown later on. 

Figure 12.12: Probability Pco,(x) that a cover exists for a random graph (c = 2) as 
a function of the fraction x of covered vertices. The result is shown for three different 
system sizes N = 25,50,100 (averaged for lo3 - lo4 samples). Lines are guides to the 
eyes only. In the left part, where the PC,, is zero, the energy e (see text) is displayed. 
The inset enlargcs the result for the energy in the rcgion 0.3 5 x < 0.5. 

In Fig. 12.13 the median running time of the branch-and-bound algorithm is shown 
as a function of the fraction x of covered vertices. The running time is measured 
in terms of the number of nodes which are visited in the backtracking tree. Again 
graphs with c = 1.0 were considered and an average over the same realizations has 
been performed. A sharp peak can be observed near the transition x,. This means, 
near the phase transition, the instances which are the hardest to  solve can be found. 
Please note, that for values x < x,, the running time still increases exponentially, as 
can been seen from the inset of Fig. 12.13. For values x considerably larger than the 
critical value x,, the running time is linear. The reason is that the heuristic is already 
able to  find a VC, i.e. the algorithm terminates after the first descent into the running 
tree2. 
Please note that in physics phase transitions are usually indicated by divergences in 
measurable quantities such as specific heat or magnetic susceptibilities. The peak 

2 ~ h e  algorithm terminates after a full cover of the graph has been found. 
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Figure 12.13: Time complexity of the vertex cover. Median number of nodes vis- 
ited in the backtracking tree as a function of the fraction x of covered vertices for 
graph sizes N = 20,25,30,35,40 ( c  = 1.0). The inset shows the region below the 
threshold with logarithmic scale, including also data for N = 45,50. The fact that 
in this representation the lines are equidistant shows that the time complexity grows 
exponentially with N. 

appearing in the time complexity serves as a similar indicator, but is not really equiv- 
alent, because the time complexity diverges everywhere, only the rate of divergence is 
much stronger near the phase transition. 
For the uncoverable region, the running time is also fast, but still exponential. This is 
due to  the fact that a configuration with a minimum number of uncouered edges has 
t o  be obtained. If only the question whether a VC exists or not is to  be answered, the 
algorithm can be easily changed3, such that for small values of x again a polynomial 
running time will be obtained. 
To calculate the phase diagram numerically, as presented in Fig. 12.3 for the analytical 
results, it is sufficient to  calculate for each graph the size X ,  = Nx, of a minimum 
vertex cover, as done by the version of the branch-and-bound algorithm or the divide- 
and-conquer method presented in the last chapter. To compare with the analytical 
result from Eq. (12.2) one has to perform the thermodynamic limit numerically. This 
can be achieved by calculating an average value x,(N) for different graph sizes N. 
The results for c = 1.0 are shown in the inset of Fig. 12.14. Then one fits a function 

3Set best := 0 initially. 
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to  the data. The form of the function is purely heuristic, no exact justification exists. 
But in case you do not know anything about the finite-size behavior of a quantity, an 
algebraic ansatz of the form (12.3) is always a good guess. As can be seen from the 
inset, the fit matches well. 

Figure 12.14: Phase diagram showing the fraction x,(c) of vertices in a minimal 
vertex cover as a function of the average connectivity c. For x > x,(c), almost all 
graphs have covers with X N  vertices, while they have almost surely no cover for 
x < x,(c). The solid line shows the analytical result. The circles represent the results 
of the numerical simulations. Error bars are much smaller than symbol sizes. The 
upper bound of Harant is given by the dashed line, the bounds of Gazmuri by the dash- 
dotted lines. The vertical line is at c = e/2 % 1.359. Inset: all numerical values were 
calculated from finite-size scaling fits of x,(N, c) using functions z , (N)  = x ,  + ~ N P ~ .  
We show the data for c = 1.0 as an example. 

This procedure has been performed for several concentrations c of the edges. The 
result is indicated in Fig. 12.14 by symbols. Obviously, the numerical data and the 
analytical result, which has been obtained by using methods from statistical physics, 
agree very well in the region c < e/2 z 1.359, as expected. But for larger connectivities 
of the graph agreement is also very good. 
A stronger deviation between numerical and analytical results can be observed for the 
fraction b, of the backbone vertices. Please remember that the backbone of a graph 
contains all vertices, which have in all degenerate minimum vertex covers (or all lowest 
energy configurations) the same state, i.e. they are either always covered or always 
uncovered. The numerical result can be obtained in a similar fashion as the threshold. 
For each graph G all minimum vertex covers are enumerated. All vertices having the 
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Figure 12.15: The total backbone size of minimal vertex covers as a function of 
c. The solid line shows the analytical result. Numerical data are represented by the 
error bars. They were obtained from finite-size scaling fits similar to the calculation 
for x,(c). The vertical line is at c = e/2 = 1.359 where the analytic results becomes 
not exact. 

same state in all configurations belong to the backbone B. Then, the resulting fraction 
b,(G) = IBI/N of backbone vertices is averaged by considering different realizations 
of the random graphs, for one graph size N. The process is performed for different 
values of N .  These data can be used to  extrapolate to the thermodynamic limit via a 
finite-size scaling function. The result, as a function of different edge concentrations c, 
is displayed in Fig. 12.15 and compared with the analytical result. Again, a very good 
agreement can be observed for low values c < e/2 = 1.359, while for graphs having a 
stronger connectivity, larger deviations occur. Please note that for the case c = 0.0, 
where the graph has no edges, no vertex needs to  be covered, meaning that all vertices 
belong to the backbone [b,(O) = I]. 
Marly more results can be found in [16, 171. In particular the critical concentration 
c = e/2 = 1.359 is related to  the behavior of the subgraphs, consisting only of the 
non-backbone vertices. The analytical calculations are displayed in [17]. A calculation 
of the average running time for a simple algorithm, distinguishing the polynomial and 
the exponential regime, can be found in [IS]. 
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Practical Issues 

Here practical aspects of conducting research via computer simulations are discussed. 
It is assumed that you arc familiar with an operating system such as UNIX (e.g. 
Linux), a high-level programming language such as C, Fortran or Pascal and have 
some experience with at  least small software projects. 
Because of the limited space, usually only short introductions to  the specific areas are 
given and refercnces to more extensive literature arc cited. All examples of code are 
in C/C++. 
First, a short introduction to  software engineering is given and several hints allowing 
the construction of efficient and reliable code are stated. In the second section a short 
introduction to object-oriented software development is presented. In particular, it is 
shown that this kind of programming style can be achievcd with standard procedural 
languages such as C as well. Next, practical hints concerning the actual process of 
writing the code arc given. In the fourth section macros are introduced. Then it, 
is shown how the development of larger pieces of code can be organized with the 
help of so called make files. In the subsequent section the benefit of using libraries like 
Numerical Recipes or LEDA are explained and it is shown how you can build your own 
libraries. In the seventh section the generation of random numbers is covered while 
in the eighth section three very useful debugging tools are presented. Afterwards, 
programs to perform data analysis, curve fitting and finite-size scaling are explained. 
In the last section an introduction to  information retrieval and literature search in the 
Internet and to  the preparation of presentations and publications is given. 

13.1 Software Engineering 

When you are creating a program, you should never just start writing the code. In 
this way only tiny software projects such as scripts can be completed successfully. 
Otherwise your code will probably be very inflexible and contain several hidden errors 
which are very hard t o  find. If several people are involved in a project, it is obvious 
that a considerable amount of planning is necessary. 
But even when you are programming alone, which is not unusual in physics, the 
first step you should undertake is just to  sit down and think for a while. This will 
save you a lot of time and effort later on. To emphasize the need for structuring in 
the software development process, the art of writing good programs is usually called 
software engineering. There are many specialized books in this fields, see e.g. Refs. 
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[l, 21. Here just the steps that should be undertaken to create a sophisticated software 
development process are stated. The following descriptions refer to  the usual situation 
you find in physics: one or a few people are involved in the project. How to manage 
the development of big programs involving many developers is explained in literature. 

0 Definition of the problem and solution strategies 
You should write down which problem you would like to solve. Drawing diagrams 
is always helpful! Discuss your problem with others and tell them how you would 
like to  solve it. In this context many questions may appear, here some examples 
are given: 

What is the input you have to  supply? In case you have only a few parameters, 
they can be passed to  the program via options. In other cases, especially when 
chemical systems are to be simulated, many parameters have to  be controlled 
and it may be advisable to use extra parameter files. 

Which results do you want to  obtain and which quantities do you have to  
analyze? Very often it is useful to  write the raw results of your simulations, 
e.g. the positions of all atoms or the orientations of all spins of your system, to  
a configuration file. The physical results can be obtained by post-processing. 
Then, in case new questions arise, it is very easy to analyze the data again. 
When using configuration files, you should estirnate the amount of data you 
generate. Is there enough space on your disk? It may be helpful, to include 
the compression of the data files directly in your programs1. 

- Can you identify "objects" in your problem? Objects may be physical entities 
like atoms or molecules, but also internal structures like nodes in a tree or 
elements of tables. Seeing the system and the program as a hierarchical 
collection of objects usually makes the problem easier to  understand. More 
on object-oriented development can be found in Sec. 13.2. 

- Is the program to  be extended later on? Usually a code is "never" finished. 
You should foresee later extensions of the program and set up everything in 
a way it can be reused easily. 

Do you have existing programs available which can be included into the soft- 
ware project? If you have implemented your previous projects in the above 
mentioned fashion, it is very likely that you can recycle some code. But this 
requires experience and is not very easy t o  achieve at the beginning. But over 
the years you will have a growing library of programs which enables you to 
finish future software projects much quicker. 
Has somebody else created a program which you can reuse? Sometimes you 
can rely on external code like libraries. Examples are the Numerical Recipes 
[3] and the LEDA library [4] which are covered in Sec. 13.5. 

Which algorithms are known? Are you sure that you can solve the problem 
at all? Many other techniques have been invented already. You should always 

'1n C this can be achieved by calling system("gzip -f <filename>"); after the file has been 
written and closed. 
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search the literature for solutions which already exist. How searches can be 
simplified by using electronic data bases is covered more deeply in Sec. 13.9. 

Sometimes it is necessary to  invent new methods. This part of a project may 
be the most time consuming. 

Designing data structures 
Once you have identified the basic objects in your systems, you have to  think 

about how to represent them in the code. Sometimes it is sufficient to  define some 
s t ruc t  types in C (or simple classes in C++). But usually you will need to design 
a large set of data structures, referencing each other in a complicated way. 

A sophisticated design of the data structures will lead to  a better organized pro- 
gram, usually it will even run faster. For example, consider a set of vertices of 
a graph. Then assume that you have several lists Li each containing elements 
referencing the vertices of degree i .  When the graph is altered in your program 
and thus the degrees of the vertices change, it is sometimes necessary to  remove 
a vertex from one list and insert it into another. In this case you will gain speed, 
when your vertices data structures also contain pointers to  the positions where 
they are stored in the lists. Hence, removing and inserting vertices in the lists 
will take only a constant amount of time. Without these additional pointers, the 
insert and delete operations have to scan partially through the lists to  locate the 
elements, leading to a linear time complexity of these operations. 

Again, you should perform the design of the data structures in a way, that later 
extensions are facilitated. For example when treating lattices of Ising spins, you 
should use data structures which are independent of the dimension or even of the 
structure of the lattice, an example is given in Sec. 13.4.1. 

When you are using external libraries, usually they have some data types in- 
cluded. The above mentioned LEDA library has many predefined data types like 
arrays, stacks, lists or graphs. You can have e.g. arrays of arbitrary objects, for 
example arrays of strings. Furthermore, it is possible to combine the data types 
in complicated ways, e.g. you can define a stack of graphs having strings attached 
t o  the vertices. 

Defining small tasks 
After setting up the basic data types, you should think about which basic and 

complex operations, i.e. which subroutines, you need to manipulate the objects 
of your simulation. Since you have already thought a lot about your problem, 
you have a good overview, which operations may occur. You should break down 
the final task "perform simulation" into small subtasks, this means you use a t op  
down approach in the design process. It is riot possible to  write a program in a 
sequential way as one code. For the actual implementation, a bo t tom u p  approach 
is recommended. This means you should start with the most basic operations. 
Later on you can use them to create more complicated operations. As always, 
you should define the subroutines in a way that they can be applied in a flexible 
way and extensions are easy to  perform. 
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But it is not necessary that you must identify all basic operations at the beginning. 
During the development of the code, new applications may arise, which lead to  
the need for further operations. Also it may be required to  change or extend the 
data structures defined before. However, the more you think in advance, the less 
you need to change the program later on. 

As an example, the problem of finding ground states in Ising spin glasses via 
simulated annealing is considered. Some of basic operations are: 

- Set up the data structures for storing the realizations of the interactions and 
for storing the spin glass configurations. 

- Create a random realization of the interactions 

Initialize a random spin configuration. 

- Calculate the energy of a spin in the local field of its neighbors. 

Calculate the total energy of a system. 

Calculate the energy changes associated with a spin flip 

Execute a Monte Carlo step 

Execute a whole annealing run. 

- Calculate the magnetization. 

Save a realization and corresponding spin configurations in a file. 

It is not necessary to define a corresponding subroutine for all operations. Some- 
times they require only a few numbers of lines in the code, like the calculation of 
the energy of one spin in the example above. In this case, such operations can be 
written directly in the code, or a macro (see Sec. 13.4.1) can be used. 

0 Distributing work 
In case several people are involved in a project, the next step is to split up the 
work between the coworkers. If several types of objects appear in the program 
design, a natural approach is to  make everyone responsible for one or several 
types of objects and the related operations. The code should be broken up into 
several modules (i.e. source files), such that every module is written by only one 
person. This makes the implementation easer and also helps testing the code (see 
below). Nevertheless, the partitioning of the work requires much care, since quite 
often some modules or data types depend on others. For this reason, the actual 
implementation of a data type should be hidden. This means that all interactions 
should be performed through exactly defined interfaces which do not depend on 
the internal representation, see also Sec. 13.2 on object-oriented programming. 

When several people are editing the same files, which is usually necessary later 
on, even when initially each file was created by only one person, then you should 
use a source-code management system. It prevents several people from performing 
changes on the same file in parallel, which would cause a lot of trouble. Addition- 
ally, a source-code management system enables you to keep track of all changes 
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made. An example of such a system is the Revision Control System (RCS), which 
is freely available through the GNU project [5]  and part of the free operating 
system Linux. 

Implementing the code 
With good preparation, the actual implementation becomes only a small part of 
the software development process. General style rules, guaranteeing clear struc- 
tured code, which can even be understood several months later, are explained in 
Scc. 13.3. You should use a different file, i.e. a different module, for each coherent 
unit of data structures and subroutines; when using an object oriented language 
you should define different classes (see Sec. 13.2). This rule should be obeyed for 
the case of a one-person project as well. Large software projects containing many 
modules are easily maintained via makefiles (see Sec. 13.4.2). 

Each subroutine and each module should be tested separately, before integrating 
many modules into one program. In the following some general hints concerning 
testing are presented. 

Testing 
When performing tests on single subroutines, standard cases usually are used. 
This is the reason why many errors become apparent much later. Then, because 
the modules have already been integrated into one single program, errors are much 
harder to  localize. For this reason, you should always try to  find special and rare 
cases as well when testing a subroutine. Consider for example a procedure which 
inserts an element into a list. Then not only inserting in the middle of the list, but 
also at the beginning, at the end and into an empty list must be tested. Also, it is 
strongly recommended to read your code carefully once again before considering 
it finished. In this way many bugs can be found easily which otherwise must be 
tracked down by intensive debugging. 

The actual debugging of the code can be performed by placing print instructions at 
selected positions in the code. But this approach is quite time consuming, because 
you have to  modify and recompile your program several times. Therefore, it is 
advisable to  use debugging tools like a source-code debugger and a program for 
checking the memory management. More about these tools can be found in Sec. 
13.7. But usually you also need special operations which are not covered by an 
available tool. You should always write a procedure which prints out the current 
instance of the system that is simulated, e.g. the nodes and edges of a graph or 
the interaction constants of an Ising system. This facilitates the types of tests, 
which arc described in the following. 

After the raw operation of the subroutines has been verified, more complex tests 
can be performed. When e.g. testing an optimization routine, you should conlpare 
the outcome of the calculation for a small system with the result which can be 
obtained by hand. If the outcome is different from the expected result, the small 
size of the test system allows you t o  follow the execution of the program step 
by step. For each operation you should think about the expected outcome and 
compare it with the result originating from the running program. 
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Furthermore, it is very useful to  compare the outcome of different methods applied 
to  the same problem. For example, you know that there must be something 
wrong, in case an approximation method finds a better value than your "exact" 
algorithm. Sometimes analytical solutions are available, at  least for special cases. 
Another approach is to  use invariants. For example, when performing a Molecular 
Dynamics simulation of an atomic/molecular system (or a galaxy), energy and 
rnomentum must be conserved; only numerical rounding errors should appear. 
These quantities can be recorded very easily. If they change in time there must 
be a bug in your code. In this case, usually the formulas for the energy and the 
force are not compatible or the integration subroutine has a bug. 

You should test each procedure, directly after writing it. Many developers have 
experienced that the larger the interval between implementation and tests is, the 
lower the motivation becomes for performing tests, resulting in more undetected 
bugs. 

The final stage of the testing process occurs when several modules are integrated 
into one large running program. In the case where you are writing the code 
alone, not many surprises should appear, if you have performed many tests on 
the single modules. If several people are involved in the project, at  this stage many 
errors occur. But in any case, you should always remember: there is probably 
no program, unless very small, which is bug free. You should know the following 
important result from theoretical computer science [6]: it is impossible to  invent 
a general method, which can prove automatically that a given program obeys a 
given specification. Thus, all tests must be designed to match the current code. 

In case a program is changed or extended several times, you should always keep the 
old versions, because it is quite common that by editing new bugs are introduced. 
In that case, you can compare your new code with the older version. Please note 
that editors like emacs only keep the second latest version as backup, so you have 
to  take care of this problem yourself unless you use a source-code management 
system, where you are lucky, because it keeps all older version automatically. 

For C programmers, it is always advisable to apply the -Wall (warning level: 
all) option. Then several bugs already show up during the compiling process, for 
example the common mistake to  use '=' in comparisons instead of '==', or the 
access to  uninitialized variables2. 

In C++, some bugs can be detected by defining variables or parameter as const ,  
when they are considered to stay unchanged in a block of code or subroutine. 
Here again, already the compiler will complain, if attempts to  alter the value of 
such a variable arc tried. 

This part finishes with a warning: never try to save time when performing tests. 
Bugs which appear later on are much much harder to  find and you will have to  
spend much more time than you have "saved" before. 

' ~ u t  this is not true for some C++ compilers when combining with option -g. 
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0 Writing documentation 
This part of the software development process is very often disregarded, especially 
in the context of scientific research, where no direct customers exist. But even if 
you are using your own code, you should write good documentation. It should 
consist of a t  least three parts: 

- Comments in the source code: You should place comments at the beginning 
of each module, in front of each subroutine or each self-defined data structure, 
for blocks of the code and for selected lines. Additionally, meaningful names 
for the variables are crucial. Following these rules makes later changes and 
extension of the program much more straightforward. You will find in more 
hints on how a good programming style can be achieved Sec. 13.3. 

On-line help: You should include a short description of the program, its 
parameters and its options in the main program. It should be printed, when 
the program is called with the wrong numberlform of the parameters, or when 
the option -help is passed. Even when you are the author of the program, 
after it has grown larger it is quite hard to  remember all options and usages. 

- External documentation: This part of the documentation process is impor- 
tant, when you would like to make the program available to  other users or 
when it grows really complex. Writing good instructions is really a hard job. 
When you remember how often you have complained about the instructions 
for a video recorder or a word processor, you will understand why there is a 
high demand for good authors of documentation in industry. 

0 Using the code 
Also the actual performance of the simulation usually requires careful preparation. 
Several question have to  be considered, for example: 

- How long will the different runs take? You should perform simulations of 
small systems and extrapolate to  large system sizes. 

- Usually you have to  average over different runs or over several realizations of 
the disorder. The system sizes should also be chosen in a way that the number 
of samples is large enough to reduce thc statistical fluctuations. It is better to  
have a reliable result for a small system than to treat only a few instances of a 
large system. If your model exhibits self averaging, the larger the sample, the 
less the number of samples can be. But, unfortunately, usually the numerical 
effort grows stronger than the system size, so there will be a maximum system 
size which can be treated with satisfying accuracy. To estimate the accuracy, 
you should always calculate the statistical error bar a(A) for each quantity 
A3. 
A good rule of a thumb is that each sample should take not more than 10 
minutes. When you have many computers and much time available, you can 
attack larger problems as well. 

"he  error bar is v ( A )  = J v ~ ~ ( A ) / ( N  - I), where V a r ( A )  = & EL1 a: - ($ ELl ai)' is the 
variance o f  the  N values a l ,  . . . , a N .  
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- Where to  put the results? In many cases you have to  investigate your model 
for different parameters. You should organize the directories where you put 
the data and the names of the files in such a way that even years later the 
former results can be found quickly. You should put a README file in each 
directory, explaining what it contains. 

If you want t o  start a sequence of several simulations, you can write a short 
script, which calls your program with different parameters within a loop. 

Logfiles are very helpful, where during each simulation some information 
about the ongoing processes are written automatically. Your program should 
put its version number and the parameters which have been used to start the 
simulation in the first line of each logfile. This allows a reconstruction of how 
the results have been obtained. 

The steps given do not usually occur in linear order. It is quite common that aftjer you 
have written a program and performed some simulations, you are not satisfied with 
the performance or new questions arise. Then you start to define new problems and 
the program will be extended. It may also be necessary to extend the data structures, 
when e.g. new attributes of the simulated models have to  be included. It is also possible 
that a nasty bug is still hidden in the program, which is found later on during the 
actual simulations and becomes obvious by results which cannot be explained. In this 
case changes cannot be circumvented either. 
In other words, the software development process is a cycle which is traversed several 
times. As a consequence, when planning your code, you should always keep this in 
mind and set up everything in a flexible way, so that extensions and code recycling 
can be performed easily. 

13.2 0 bject-oriented Software Development 

In recent years object-oriented programming languages like C++, Smalltalk or Eif- 
fel became very popular. But, using an object-oriented language and developing the 
program in an object-oriented style are not necessarily the same, although they are 
compatible. For example, you can set up your whole project by applying object- 
oriented methods even when using a traditional procedural programming language like 
C, Pascal or Fortran. On the other hand, it is possible to write very traditional pro- 
grams with modern object-oriented languages. They help to organize your programs 
in terms of objects, but you have the flexibility to  do it in another way as well. In gen- 
eral, taking an object-oriented viewpoint facilitates the analysis of problems and the 
development of programs for solving the problems. Introductions to objcct-oriented 
software development can be found e.g. in Refs. [7, 8, 91. Here just the main principles 
are explained: 

Objects and methods 
The real world is made of objects such as traffic-lights, books or computers. You 
can classify different objects according to some criteria into classes. This means 
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different chairs belong to the class "chairs". The objects of many classes can have 
internal states, e.g. a traffic-light can be red, yellow or green. The state of a 
computer is much more difficult to  describe. Furthermore, objects are useful for 
the environment, because other objects interact via operations with the object. 
You (belonging to  the class "human") can read the state of a traffic light, some 
central computer may set the state or even switch the traffic light off. 

Similar to  the real world, you can have objects in programs as well. The internal 
state of an object is given by the values of the variables describing the object. Also 
it is possible to  interact with the objects by calling subroutines (called methods 
in this context) associated with the objects. 

Objects and the related methods are seen as coherent units. This means you define 
within one class definition the way the objects look, i.e. the data structures, 
together with the methods which accesslalter the content of the objects. The 
syntax of the class definition depends on the programming language you use. 
Since implementational details are not relevant here, the reader is referred to  the 
literature. 

When you take the viewpoint of a pure object-oriented programmer, then all 
programs can be organized as collections of objects calling methods of each other. 
This is derived from the structure the real world has: it is a large set of interacting 
objects. But for writing good programs it is as in real life, taking an orthodox 
position imposes too many restrictions. You should take the best of both worlds, 
the object-oriented and the procedural world, depending on the actual problem. 

0 Data capsuling 
When using a computer, you do not care about the implementation. When you 

press a key on the keyboard, you would like to  see the result on the screen. You 
are not intercsted in how the key converts your pressing into an electrical signal, 
how this signal is sent to  the input ports of the chips, how the algorithm treats 
the signal and so on. 

Similarly, a main principle of object-oriented programming is to  hide the actual 
implementation of the objects. Access to them is only allowed via given interfaces, 
i.e. via methods. The internal data structures are hidden, this is called p r i v a t e  
in C++. The data capsuling has several advantages: 

- You do not have to remember the implementation of your objects. When 
using them later on, they just appear as a black box fulfilling some duties. 

You can change the implementation later on without the need to change the 
rest of the program. Changes of the implementation may be useful e.g. when 
you want t o  increase the performance of the code or to  include new features. 

Furthermore, you can have flexible data structures: several different types of 
implementations may coexist. Which onc is chosen depends on the rcquire- 
ments. An example are graphs which can be implemented via arrays, lists, 
hash tables or in other ways. In the case of sparse graphs, the list imple- 
mentation has a better performance. When the graph is almost complete, the 
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array representation is favorable. Then you only have to provide the basic ac- 
cess methods, such as inserting/removing/testing vertices/edges and iterating 
over them, for the different internal representations. Therefore, higher-level 
algorithms like computing a spanning tree can be written in a simple way to 
work with all internal implementations. When using such a class, the user 
just has to  specify the representation he wants, the rest of the program is 
independent of this choice. 

- Last but not least, software debugging is made easier. Since you have only 
defined ways the data can be changed, undesired side-effects become less 
common. Also the memory management can be controlled easier. 

For the sake of flexibility, convenience or speed it is possible to  declare internal 
variables as public .  In this case they can be accessed directly from outside. 

Inheritance 

inheritance This means lower level objects can be specializations of higher level 
objects. For example the class of (German) "ICE trains" is a subclass of "trains" 
which itself is a subclass of "vehicles". 

In computational physics, you may have a basic class of "atoms" containing mass, 
position and velocity, and built upon this a class of "charged atoms" by including 
the value of the charge. Then you can use the subroutines you have written for the 
uncharged atoms, like moving the particles or calculating correlation functions, 
for the charged atoms as well. 

A similar form of hierarchical organization of objects works the other way round: 
higher level objects can be defined in terms of lower level objects. For example a 
book is composed of many objects belonging to the class "page". Each page can 
be regarded as a collection of many "letter" objects. 

For the physical example above, when modeling chemical systems, you can have 
"atoms" as basic objects and use them to define "molecules". Another level up 
would be the "system" object, which is a collection of molecules. 

F'unction/operator overloading 
This inheritance of methods to lower level classes is an example of operator over- 
loading. It just means that you can have methods for different classes having the 
same name, sometimes the same code applies to several classes. This applies also 
to classes, which are not connected by inheritance. For example you can define 
how to add integers, real numbers, complex numbers or larger objects like lists, 
graphs or documents. In language like C or Pascal you can define subroutines to 
add numbers and subroutines to add graphs as well, but they must have different 
names. In C++ you can define the operator "+" for all different classes. Hence, 
the operator-overloading mechanisms of object-oriented languages is just a tool 
to  make the code more readable and clearer structured. 
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0 Software reuse 
Once you have an idea of how to build a chair, you can do it several times. 

Because you have a blueprint, the tools and the experience, building another 
chair is an easy task. 

This is true for building programs as well: both data capsuling and inheritance 
facilitate the reuse of software. Once you have written your class for e.g. treating 
lists, you can include them in other programs as well. This is easy, because later 
on you do not have to  care about the implementation. With a class designed in 
a flexible way, much time can be saved when realizing new software projects. 

As mentioned before, for object-oriented programming you do not necessarily have to  
use an object-oriented language. It is true that they are helpful for the implementation 
and the resulting programs will look slightly more elegant and clear, but you can 
program everything with a language like C as well. In C an object-oriented style can 
be achieved very easily. As an example a class h i s t o  implementing histograms is 
outlined, which are needed for almost all types of computer simulations as evaluation 
and analysis tools. 
First you have t,o think about the data you would like to store. That is the histjogram 
itself, i.e. an array t a b l e  of bins. Each bin just counts the number of events which 
fall into a small interval. To achieve a high degree of flexibility, the range and the 
number of bins must be variable. From this, the width d e l t a  of each bin can be 
calculated. For convenience d e l t a  is stored as well. To count the number of events 
which are outside the range of the table, the entries low and high are introduced. 
Furthermore, statistical quantities like mean and variance should be available quickly 
and with high accuracy. Thus, several summarized moments sum of the distribution 
are stored separately as well. Here the number of moments HISTOJOM- is defined as 
a macro, converting this macro to  variable is straightforward. All together, this leads 
to  the following C data structure: 

#def ine  -HISTO-NOM- 9 /*  No. of ( s t a t i s t i c a l )  moments */  

/*  holds  s t a t i s t i c a l  informat ions  f o r  a  s e t  of numbers: */  
/*  his togram,  # of Numbers, sum of numbers, squares ,  . . .  * /  
typedef s t r u c t  

C 
double from, t o ;  /*  range of his togram */ 
double d e l t a ;  /* width of b i n s  */ 
i n t  n-bask; /* number of b i n s  */ 
double * t a b l e ;  /* b i n s  */ 
i n t  low, h igh ;  /*  No. of d a t a  ou t  of range */ 
double sum[-HISTO-NOM-1; /*  sum of Is, numbers, numbers-2 . . . *  / 

) h i s t o - t  ; 

Here, the postfix -t is used to stress the fact that the name h i s t o - t  denotes a type. 
The bins are double variables, which allows for more general applications. Please 
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note that it is still possible to  access the internal structures from outside, but it is 
not necessary and not recommended. In C++, you could prevent this by declaring 
the internal variables as private. Nevertheless, everything can be done via special 
subroutines. First of all one must be able to  create and delete histograms, please note 
that some simple error-checking is included in the program: 

/ **  creates a histo-element, where the empirical histogram **/ 
/**  table covers the range ['from7, 'to'] and is divided **/ 
/** into 'n-bask' bins. **/ 
/** RETURNS: pointer to his-Element, exit if no memory. **/ 
histo-t *histo-new(doub1e from, double to, int n-bask) 
f 
histo-t *his; 
int t; 

his = (histo-t *) malloc(sizeof(histo~t)); 
if (his == NULL) 
i 
fprintf (stderr, "out of memory in histo-new") ; 
exit ( I )  

3 
if (to < from) 
C 
double tmp ; 
tmp = to; to = from; from = tmp; 
fprintf(stderr, "WARNING: exchanging from, to in histo-new\nV); 

1 
his->from = from; 
his->to = to; 
if ( n-bask <= 0) 
C 
n-bask = 10; 
fprintf(stderr, "WARNING: setting n-bask=lO in histo-new()\nH); 

1 
his->delta = (to-from)/(double) n-bask; 
his->n-bask = n-bask; 
his->low = 0; 
his->high = 0; 
for(t=O; t< -HISTO-NOM- ; t++) /*  initialize summarized moments */  
his->sum[tl = 0.0; 

his->table = (double *) malloc(n~bask*sizeof(double)); 
if (his->table == NULL) 
f 
fprintf(stderr, "out of memory in histo-new"); 
exit (1) ; 
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1 
e l s e  

f  or( t=O; t<n-bask;  t + + )  
h i s - > t a b l e [ t l  = 0 ;  

1 
r e t u r n ( h i s )  ; 

1 

/** Dele tes  a  his togram ' h i s '  **/ 
void h i s t o - d e l e t e ( h i s t 0 - t  * h i s )  

C 
f r e e  ( h i s - > t a b l e )  ; 
f r e e ( h i s )  ; 

} 

All histogram objccts are created dynamically by calling h i s t o n e w ( ) ,  this corre- 
sponds to a call of the constructor or new in C++. The objects are addressed via 
pointers. Whenever a method, i.e. a procedure in C, of the h i s t o  class is called, the 
first argument will always be a pointer to  the corresponding histogram. This looks 
slightly less elegant than writing h i s to .method( )  in C++, but it is really the same. 
When avoiding direct access, the realization using C is perfectly equivalent to  C++ 
or other object-oriented languages. Inheritance can be implemented, by including 
pointers to  h i s t o - t  objects in other type definitions. When these higher level objects 
arc created, a call to  h i s t o n e w ( )  must be included, while a call to  h i s t o - d e l e t e ( ) ,  
corresponding to the destructor in C++, is necessary, to implement a correct deletion 
of the more complex objects. 
As a final example, the procedures for inserting an element into the table and calcu- 
lating the mean are presented. It is easy to  figure out how other subroutines for e.g. 
calculating the variance/higher moments or printing a histograrn can be realized. The 
complete library can be obtained for free [lo]. 

/** i n s e r t s  a  'number' i n t o  a  his togram ' h i s ' .  **/ 
void h i s t o - i n s e r t ( h i s t 0 - t  * h i s ,  double number) 

C 
i n t  t ;  
double va lue ;  
va lue  = 1 .0 ;  
f o r ( t = O ;  t< -HISTO-NOM-; t + + )  

C 
his->sum[t] += v a l u e ;  ; 
va lue  *= number; 

1 
i f  (number < his->from) 

his->low++; 
e l s e  if(number > h i s - > t o )  

his->high++;  

/*  raw s t a t i s t i c s  */  

/*  i n s e r t  i n t o  his togram */  
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else if(number == his->to) 
his->table [his->n-bask-I] ++; 

else 
his->table[(int) floor( (number - his->from) / his->delta)]++; 

1 

/ **  RETURNS: Mean of Elements in 'his' (0.0 if his=empty) **/ 
double histo-mean(histo-t *his) 

C 
if (his->sum[Ol == 0) 
return(O.O) ; 

else 
return(his->sum[l] / his->sum[OI ) ; 

1 

13.3 Programming Style 

The code should be written in a style that enables the author, and other people as well, 
to  understand and modify the program even years later. Here briefly some principles 
you should follow are stated. Just a general style of description is given. Everybody 
is free to  choose his/her own style, as long as it is precise and consistent. 

Split your code into several modules. This has several advantages: 

- When you perform changes, you have to recompile only the modules which 
have been edited. Otherwise, if everything is contained in a long file, the 
whole program has to  be recompiled each time again. 

- Subroutines which are related to  each other can be collected in single modules. 
It is much easier to  navigate in several short files than in one large program. 

After one module has been finished and tested it can be used for other projects. 
Thus, software reuse is facilitated. 

- Distributing the work among several people is impossible if everything is writ- 
ten into one file. Furthermore, you should use a source-code management sys- 
tem (see Sec. 13.1) in case several people are involved in avoiding uncontrolled 
editing. 

To keep your program logically structured, you should always put data structures 
and implementations of the operations in separate files. In C/C++ this means 
you have to  write the data structures in a header (. h) file and the code into a 
source code (. c/ . cpp) file. 

Try to  find meaningful names for your variables and subroutines. Therefore, 
during the programming process it is much easier to remember their meanings, 
which helps a lot in avoiding bugs. Additionally, it is not necessary to look up 
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the meaning frequently. For local variables like loop counters, it is sufficient and 
more convenient to  have short (e.g. one letter) names. 

In the beginning this might seem to take additional time (writing e.g. 
'kinetic-energy7 for a variable instead of 'x107). But several months after you 
have written the program, you will appreciate your effort, when you read the line 

kinetic-energy += 0.5*atom[i] .mass*atom[i] .veloc*atom[i] . veloc; 

instead of 

You should use proper indentation of your lines. This helps a great deal in rec- 
ognizing the structure of a program. Many bugs are caused by misaligned braces 
forming a block of code. Furthermore, you should place at  most one command 
per line of code. The reader will probably agree that 

for(i=O; icnumber-nodes; i++) 

C 
degree [i] = 0; 
for (j =0 ; j <number-nodes ; j ++) 

if (edge[i] [j] > 0) 
degree [i] ++; 

is much faster to  understand than 

for(i=O; i<number-nodes; i++) { degree[i] = 0; for(j=O; 
j <number-nodes; j ++) if (edge [i] [j 1 > 0) degree [i] ++; 3 

0 Avoid jumping to  other parts of a program via the "goto" command. This is bad 
style originating from programming in assembler or BASIC. In modern program- 
ming languages, for every logical programming construct there are corresponding 
commands. "Goto" commands make a program harder t o  understand and much 
harder to  debug if it does not work as it should. 

In case you want to  break out of a loop, you can use a whileluntil loop with a 
flag that indicates if the loop is to be stopped. In C, if you are lazy, you can use 
the commands break or continue. 

Do not use global variables. At first sight the use of global variables may seem 
tempting: you do not have to care about parameters for subroutines, everywhere 
the variables are accessible and everywhere they have the same name. Program- 
ming is done much faster. 

But later on you will have a bad time: many bugs are created by improper use of 
global variables. When you want to  check for a definition of a variable you have 
to  search the whole list of global variables, instead of just checking the parameter 
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list. Sometimes the range of validity of a global variable is overwritten by a 
local variable. Furthermore, software re-usage is almost impossible with global 
variables, because you always have to check all variables used in a module for 
conflicts and you are not allowed to  employ the name for another object. When 
you want to  pass an object to  a subroutine via a global variable, you do not have 
the choice of how to name the object which is to  be passed. Most important, when 
you have a look onto a subroutine after some months, you cannot see immediately 
which objects are changed in the subroutine, instead you will have to  read the 
whole subroutine again. If you avoid this practice, you just have to look at  the 
parameter list. Finally, when a renaming occurs, you have to  change the name 
of a global variable everywhere in the whole program. Local variables can be 
changed with little effort. 

Finally; an issue of utmost importance: Do not be economical with comments in 
your source code! Most programs, which may appear logically structured when 
writing them, will be a source of great confusion when being read some weeks 
later. Every minute you spend on writing reasonable comments you will save 
later on several times over. You should consider different types of comments. 

Module comments: At the beginning of each module you should state its 
name, what the module does, who wrote it and when it was written. It is a 
useful practice to  include a version history, which lists the changes that have 
been performed. A module comment might look like this: 

/*** Functions for spin glasses. ***/ 
/*** 1. loading and saving of configurations ***/ 
/*** 2. initialization ***/ 
/*** 3. evaluation functions ***/ 
/*** ***/ 
/*** A.K. Hartmann January 1996 ***/ 
/*** Version 1.8 09.10.2000 ***/ 
/*** ***/ 
........................................................... 

/*** Vers. History: ***/ 
/*** 1.0 feof-check in lsg-load . . .  0 included 02.03.96 ***/ 
/*** 2.0 comment for cs2html added 12.05.96 ***/ 
/*** 3.0 lsg-load-bond-n() added 03.03.97 ***/ 
/*** 4.0 lsg-invert-plane() added 12.08.98 ***/ 
/*** 5.0 lsg-write-gene added 15.09.98 ***/ 
/*** 6.0 lsg-energy-B-horn() added 20.11.98 ***/ 
/*** 7.0 lsg-frac-frust() added 03.07.00 ***/ 
/*** 7.1 use new call-form of 1list.c library 04.07.00 ***/ 
/*** -> no memory leak (through copy data) ***/ 
/*** 8.0 lsg-mc-T() added 23.08.00 ***/ 
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- Type comments: For each data type (a s t r u c t  in C or class in C++) which 
you define in a header file, you should attach several lines of comments de- 
scribing the data  type's structure and its application. For a class definition, 
also the methods which are available should be described. Furthermore, for a 
structure, each element should be explained. A nice arrangement of the com- 
ments makes everything more readable. An example of what such a comment 
may look like can be seen in Sec. 13.2 for the data type h i s t o - t .  

- Subroutine comments: For each subroutine, its purpose, the meaning of the 
input and output variables and the preconditions which have to  be fulfilled 
before calling must be stated. In case you are lazy and do not write a m a n  
page, a comment atop of a subroutine is the only source of information, should 
you want to  use the subroutine later on in another program. 

If you use some special mathematical methods or clever algorithms in the 
subroutine, you should always cite the source in the comment. This facilitates 
later on the understanding of how the methods works. 

The next example shows what the comment for a subroutine may look like: 

/** Calcu la ted  maximum flow us ing  Dinics  a lgor i thm 
/** See: R.E.Tarjan, Data S t r u c t u r e s  and Network 
/** Algorithms, p .104f .  
/** 
/** PARAMETERS: (*)= return-pararneter/altered v a r ' s  
/** N :  number of i n n e r  nodes (without s , t )  
/** dim: dimension of l a t t i c e  
/** n e x t :  g i v e s  neighbors  next[O..N][O..2*dim+l] 
/** c : c a p a c i t i e s  c  [O . . N] [O. .2*dim+l] 
/** (*) f  : f low va lues  f [ O .  . N] [O. .2*dim+l] 
/** use-flow: 0-> flow s e t  t o  z e r o  before  used. 
/** 
/** RETURNS: 
/** 0 -> OK 
......................................................... 
i n t  m f - d i n i c l ( i n t  N ,  i n t  dim, i n t  *next ,  i n t  *c ,  

i n t  * f ,  i n t  use-flow) 

- Block comments: You should divide each subroutine, unless it is very short, 
into several logical blocks. A rule of thumb is that no block should be longer 
than the number of lines you can display in your editor window. Within one 
or two lines you should explain what is done in the block. Example: 

/*  go through a l l  nodes except  source s and s i n k  t i n  */ 
/*  r e v e r s e d  t o p o l o g i c a l  o rder  and s e t  c a p a c i t i e s  */ 
f o r  (t2=nurn-nodes-2; t 2 > 0 ;  t2--)  
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- Line comments: They are the lowest level comments. Since you are using 
(hopefully) sound names for data types, variables and subroutines, many lines 
should be self explanatory. But in case the meaning is not obvious, you should 
add a small comment at the end of a line, for example: 

C(t, SOURCE) = cap-s2t [t] ; /*  restore capacities */  

Aligning all comments to  the right makes a code easier to read. Please avoid 
unnecessary comments like 

counter++; /*  increase counter */ 

or unintelligible comments like 

minimize-energy(spin, N, next, 5); /*  I try this one */ 

The line containing C (t , SOURCE) is an example of the application of a macro. This 
subject is covered in the following section. 

13.4 Programming Tools 

Programming languages and UNIX/Linux offer many concepts and tools which help 
you to perform large simulation projects. Here, three of them are presented: macros, 
which are explained first, makefiles and scripts. 

13.4.1 Using Macros 

Macros are shortcuts for code sequences in programming languages. Their primary 
purpose is to allow computer programs to be written more quickly. But the main ben- 
efit comes from the fact that a more flexible software development becomes possible. 
By using macros appropriately, programs become better structured, more generally 
applicable and less error-prone. Here it is explained how macros are defined and used 
in C, a detailed introduction can be found in C textbooks such as Ref. [Ill. Other 
high-level programming languages exhibit similar features. 
In C a macro is constructed via the #define directive. Macros are processed in the 
preprocessing stage of the compiler. This directive has the form 

#define name definition 

Each definition must be on one line, without other definitions or directives. If the 
definition extends over more than one line, each line except the last one has to be 
ended with the backslash \ symbol. The simplest form of a macro is a constant, e.g. 

You can use the same sorts of names for macros as for variables. It is convention t o  use 
only upper-case letters for macros. A macro can be deleted via the #undef directive. 
When scanning the code, the preprocessor just replaces literally every occurrence of a 
macro by its definition. If you have for example the expression 2.0*PI*omega in your 
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code, the preprocessor will convert it into 2.0*3.1415926536*omega. You can use 
macros also in the definition of other macros. But macros are not replaced in strings, 
i.e. p r i n t f  ("PI") ; will print PI and not 3.1415926536 when the program is running. 
It is possible to test for the (non)existence of macros using the #ifdef  and #ifndef 
directives. This allows for conditional compiling or for platform-independent code, 
such as e.g. in 

#ifdef  UNIX 
. . . 

#endif 
#ifdef  MSDOS 

Please note that it is possible to supply definitions of macros to the compiler via 
the -D option, e.g. gcc -0 program program. c -DUNIX=I. If a macro is used only 
for conditional #ifdef/#ifndef statements, an assignment like =1 can be omitted, i.e. 
-DUNIX is sufficient. 
When programs are divided into several modules, or when library functions are used, 
the definition of data types and functions are provided in header files (. h files). Each 
header file should be read by the compiler only once. When projects become more 
complex, many header files have to be managed, and it may become difficult to avoid 
multiple scanning of some header files. This can be prevented automatically by this 
simple construction using macros: 

/**  example . h  f i l e :  myfi1e.h **/ 

. . . . ( r e s t  of . h f i l e )  
(may contain o the r  #include d i r e c t i v e s )  

After the body of the header file has been read the first time during a compilation 
process, the macro -MYFILE-H- is defined, thus the body will never read be again. 
So far, macros are just constants. You will benefit from their full power when using 
macros with arguments. They are given in braces after the name of the macro, such 
as e.g. in 

You do not have to worry more than usual about the names you choose for the ar- 
guments, there cannot be a conflict with other variables of the same name, because 
they are replaced by the expression you provide when a macro is used, e.g. MIN(4*a, 
b-32) will be expanded to (4*a) < (b-32) ? (4*a) : (b-32). 
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The arguments are used in braces () in the macro, because the comparison < must have 
the lowest priority, regardless which operators are included in the expressions that are 
supplied as actual arguments. Furthermore, you should take care of unexpected side 
effects. Macros do not behave like functions. For example when calling M I N  (a++, b++) 
the variable a or b may be increased twice when the program is executed. Usually it 
is better to  use inline functions (or sometimes templates in C++) in such cases. But 
there are many applications of macros, which cannot be replaced by incline functions, 
like in the following example, which closes this section. 

Figure 13.1: A square lattice of size 10 x 10 with periodical boundary conditions. 
The arrows indicate the neighbors of the spins. 

The example illustrates how a program can be written in a clear way using macros, 
making the program less error-prone, and furthermore allowing for a broad applicabil- 
ity. A system of Ising spins is considered, that is a lattice where at each site i a particle 
oi is placed. Each particle can have only two states ai = &I. It is assumed that all 
lattice sites are numbered from 1 to N. This is different from C arrays, which start at  
index 0, the benefit of starting with index 1 for the sites will become clear below. For 
the simplest version of the model only neighbors of spins are interacting. With a two- 
dimensional square lattice of size N = L x L a spin i ,  which is not a t  the boundary, 
 interact,^ with spins i + 1 (+z-direction), i - 1 (-z-direction), i + L (+y-direction) and 
i - L (-y-direction). A spin at the boundary may interact with fewer neighbors when 
free boundary conditions are assumed. With periodic boundary conditions (pbc), all 
spins have exactly 4 neighbors. In this case, a spin at the boundary interacts also 
with the nearest mirror images, i.e. with the sites that are neighbors if you consider 
the system repeated in each direction. For a 10 x 10 system spin 5, which is in the 
first row, interacts with spins 5 + 1 = 6, 5 - 1 = 4, 5 + 10 = 15 and through the pbc 
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with spin 95, see Fig. 13.1. The spin in the upper left corner, spin 1, interacts with 
spins 2,11,10 and 91. In a program pbc can be realized by performing all calculations 
modulo L (for the +x-directions) and modulo L2 (for the -+y-directions), respectively. 
This way of realizing the neighbor relations in a program has several disadvantages: 

0 You have to  write the code everywhere where the neighbor relation is needed. 
This makes the source code larger and less clear. 

0 When switching to free boundary conditions, you have to  include further code to 
check whether a spin is at  the boundary. 

0 Your code works only for one lattice type. If you want to  extend the program 
to lattices of higher dimension you have to  rewrite the code or provide extra 
tests/calculations. 

0 Even more complicated would be an extension to different lattice structures such 
as triangle or face-center cubic. This would make the program look even more 
confusing. 

An alternative is to  write the program directly in a way it can cope with almost 
arbitrary lattice types. This can be achieved by setting up the neighbor relation in 
one special initialization subroutine (not discussed here) and storing it in an array 
next [I.  Then, the code outside the subroutine remains the same for all lattice types 
and dimensions. Since the code should work for all possible lattice dimensions, the 
array next is one dimensional. It is assumed that each site has numn neighbors. 
Then the neighbors of site i can be stored in next [i*numnl , next [i*numn+il,  . . ., 
next [i*numn+numn-11 . Please note that the sites are numbered beginning with 1. 
This means, a system with N spins needs an array NEXT of size (N+l)*numn. When 
using frce boundary conditions, missing neighbors can be set to 0. The access to the 
array can be made easier using a macro NEXT: 

#define NEXT ( i  , r )  next [ ( i )  *num-n + r] 

NEXT(i ,r) contains the neighbor of spin i in direction r .  For e.g. a quadratic system, 
r = O  is the +x-direction, r=i the -x-direction, r=2  the +y-direction and r=3  the -y- 
direction. However, which convention you use depends on you, but you should make 
sure you are consistent. For the case of a quadratic lattice, it is numn=4. Please note 
that whenever the macro NEXT is used, there must be a variable num-n defined, which 
stores the number of neighbors. You could include num-n as a third parameter of the 
macro, but in this case a call of the macro looks slightly more confusing. Nevertheless, 
the way you define such a macro depends on your personal preferences. 
Please note that the NEXT macro cannot be realized by an inline function, in case you 
want to  set values directly like in NEXT(i , 0) =i+l. Also, when using an inline function, 
you would have to  include all parameters explicitly, i.e. num-n in the example. The 
last requirement could be circumvented by using global variables, but this is bad 
programming style as well. 
When the system is an Ising spin glass, the sign and magnitude of the interaction may 
be different for each pair of spins. The interaction strengths can be stored in a similar 
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way to the neighbor relation, e.g. in an array j [I. The access can be simplified via 
the macro J :  

A subroutine for calculating the energy H = C(i,j) Ji jaiaj  may look as follows, please 
note that the parameter N denotes the number of spins and the values of the spins are 
stored in the array sigma[] : 

double spinglass-energy(int N, int num-n, int *next, int *j, 
short int *sigma) 

C 
double energy = 0.0; 
int i, r; /*  counters */ 

for(i=l; i<=N; i++) /*  loop over all lattice sites */  
for (r=0 ; rcnum-n; r++) /*  loop over all neighbors */  

energy += ~(i,r)*sigma[i]*sigma[NEXT(i,r)]; 

return(energy/2); /*  each pair has appeared twice in the sum */ 
} 

For this piece of code the comments explaining the parameters and the purpose of the 
code are just missing for convenience. In the actual program it should be included. 
The code for spinglass-energy() is very short and clear. It works for all kinds of 
lattices. Only the subroutine where the array next [I is set up has t o  be rewritten 
when implementing a different type of lattice. This is true for all kinds of code re- 
alizing e.g. a Monte Carlo scheme or the calculation of a physical quantity. For free 
boundary conditions, additionally sigma[01 =O must be assigned to be consistent with 
the convention that missing neighbors have the id 0. This is the reason, why the spin 
site numbering starts with index 1 while C arrays start with index 0. 

13.4.2 Make Files 

If your software project grows larger, it will consist of several source-code files. Usually, 
there are many dependencies between the different files, e.g. a data type defined in 
one header file can be used in several modules. Consequently, when changing one of 
your source files, it may be necessary to  recompile several parts of the program. In 
case you do not want to  recompile your files every time by hand, you can transfer this 
task to  the mate tool which can be found on UNIX operating systems. A complete 
description of the abilities of make can be found in Ref. [12]. You should look on 
the man page (type man make) or in the texinfo file 1131 as well. For other operating 
systems or software development environments, similar tools exists. Please consult the 
manuals in case you are not working with a UNIX type of operating system. 
The basic idea of mate is that you keep a file which contains all dependencies between 
your source code files. Furthermore, it contains commands (e.g. the compiler com- 
mand) which generate the resulting files called targets, i.e. the final program and/or 
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object ( .o) files. Each pair of dependencies and commands is called rule. The file 
containing all rules of a project is called makefile, usually it is named Makef i l e  and 
should be placed in the directory where the source files are stored. 
A rule can be coded by two lines of the form 

target : sources 

<tab> command(s)  

The first line contains the dependencies, the second one the commands. The command 
line must begin with a tabulator symbol <tab>.  It is allowed to have several targets 
depending on the same sources. You can extend the lines with the backslash "\" at 
the end of each line. The command line is allowed to be left empty. An example of a 
dependency/command pair is 

This means that the file simu1ation.o has to be compiled if either s imulat ion.  c  or 
s imulat ion.  h have been changed. The make  program is called by typing make on the 
command line of a UNIX shell. It uses the date of the last changes, which is stored 
along with each file, to  determine whether a rebuild of some targets is necessary. Each 
time at least one of the source files are newer than the corresponding target files, the 
commands given after the <tab> are called. Specifically, the command is called, if 
the target file does not exist at  all. In this special case, no source files have to  be given 
after the colon in the first line of the rule. 
It is also possible to  generate meta rules, which e.g. tell how to treat all files which 
have a specific suffix. Standard rules, how to treat files ending for example with . c 
are already included, but can be changed for each file by stating a different rule. This 
subject is covered in the m a n  page of make.  
The make tool always tries to  build only the first object of your makefile, unless 
enforced by the dependencies. Hence, if you have to  build several independent object 
files o b j e c t l  , objec t2 ,  object3,  the whole compiling must be toggled by the first 
rule, thus your makefile should read like this 

a l l :  o b j e c t l  ob jec t2  objec t3  

o b j e c t l :  <sources of o b j e c t l >  
<tab> <command t o  generate  ob j ec t l>  

object2:  . . . 
<tab> <command t o  generate  object2> 

objec t3  . . . 
<tab> <command t o  generate  object3> 

It is not necessary t o  separate different rules by blank lines. Here it is just for better 
readability. If you want t o  rebuild just e.g. obj ect3,  you can call make obj ect3.  This 
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allows several independent targets to  be combined into one makefile.  When compiling 
programs via make, it is common to include the target "clean" in the makefile such 
that all objects files are removed when make c lean  is called. Thus, the next call of 
make (without further arguments) compiles the whole program again from scratch. 
The rule for 'clean' reads like 

clean : 
<tab> r m  -f * . o  

Also iterated dependencies are allowed, for example 

o b j e c t l :  ob jec t2  

The order of the rules is not important, except that m a k e  always starts with the first 
target. Please note that the m a k e  tool is not just intended to manage the software 
development process and toggle compile commands. Any project where some output 
files depend on some input files in an arbitrary way can be controlled. For example you 
could control the setting of a book, where you have text-files, figures, a bibliography 
and an index as input files. The different chapters and finally the whole book are the 
target files. 
Furthermore, it is possible to  define variables, sometimes also called macros. They 
have the format 

Also variables belonging t o  your cnvironment like $HOME can be referenced in the 
makefile.  The value of a variable can be used, similar to shells variables, by placing 
a $ sign in front of the name of the variable, but you have to  embrace the name by 
(. . .) or {. . .). There are some special variables, e.g. $@ holds the name of the target 
in each corresponding command line, here no braces are necessary. The variable CC is 
predefined to hold the compiling command, you can change it by including for example 

in the makefile.  In thc command part of a rule the compiler is called via $ (CC). Thus, 
you can change your compiler for the whole project very quickly by altering just one 
line of the makefile.  
Finally, it will be shown what a typical makefile for a small software project might 
look like. The resulting program is called s imulat ion.  There are two additional 
modules i n i t .  c, run.  c and the corresponding header . h files. In da ta types .  h types 
are defined which are used in all modules. Additionally, an external precompiled object 
file ana ly s i s .  o in the directory $HOME/lib is to  be linked, the corresponding header 
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file is assumed to be stored in $HOME/include. For init. o and run. o no commands 
are given. In this case make applies the predefined standard command for files having 
. o as suffix, which reads like 

where the variable CFLAGS may contain options passed to  the compiler and is initially 
empty. The makefile looks like this, please note that lines beginning with "#" are 
comments. 

# 
# sample make file 
# 

OBJECTS=simulation.o init.0 run.0 
OBJECTSEXT=$(HOME)/lib/analysis.o 
CC=gcc 
CFLAGS=-g -Wall -I$(HOME)/include 
LIBS=-lm 

simulation: $(OBJECTS) $(OBJECTSEXT) 
<tab> $(CC) $(CFLAGS) -0 $@ $(OBJECTS) $(OBJECTSEXT) $(LIBS) 

$ (OBJECTS) : datatypes. h 

clean: 
<tab> rm -f *.  o 
The first three lines are comments, then five variables OBJECTS, OBJECTSEXT, CC, 
CFLAGS and LIBS are assigned. The final part of the makefile are the rules. 
Please note that sometimes bugs are introduced, if the makefile is incomplete. For 
example consider a header file which is included in several code files, but this is not 
mentioned in the makefile.  Then, if you change e.g. a data type in the header file, some 
of the code files might not be compiled again, especially those you did not change. Thus 
the same objects files can be treated with different formats in your program, yielding 
bugs which seem hard t o  explain. Hence, in case you encounter mysterious bugs, a 
make clean might help. But most of the time, bugs which are hard to  explain are due 
to  errors in your memory management. How to track down those bugs is explained in 
Sec. 13.7. 
The make tool exhibits many other features. For additional dctails, please consult the 
references given above. 

13.4.3 Scripts 

Scripts are even more general tools than m a k e  files. They are in fact small programs, 
but they are usually not compiled, i.e. they are quickly written but they run slowly. 
Scripts can be used to perform many administration tasks like backing up data, in- 
stalling software or running simulation programs for many different parameters. Here 
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only an example concerning the last task is presented. For a general introduction to 
inux. scripts, please refer to a book on UNIX/L' 

Assume that you have a simulation program called coversim21 which calculates vertex 
covers of graphs. In case you do not know what a vertex cover is, it does not matter, 
just regard it as one optimization problem characterized by some parameters. You 
want to run the program for a fixed graph size L, for a fixed concentration c of the 
edges, average over num realizations and write the results to a file, which contains a 
string appendix in its name to distinguish it from other output files. Furthermore, you 
want to  iterate over different relative sizes x. Then you can use the following script 
run. scr: 

# ! /bidbash 
L=$l 
c=$2 
num=$3 
appendix=$4 
shift 
shift 
shift 
shift 
for x 
do 

$~HOME)/cover/coversim21 -mag $L $c $x $num > \ 
mag-$(c)-$Cx)$Cappendix). out 

done 

The first line starting with "#" is a comment line, but it has a special meaning. It 
tells the operating system the language in which the script is written. In this case it 
is for the bash shell, the absolute pathname of the shell is given. Each UNIX shell 
has its own script language, you can use all commands which are allowed in the shell. 
There are also more elaborate script languages like per1 or phyton, but they are not 
covered here. 
Scripts can have command line arguments, which are referred via $1, $2, $2 etc., the 
name of the script itself is stored in $0. Thus, in the lines 2 to 5, four variables are 
assigned. In general, you can use the arguments everywhere in the script directly, i.e. 
it is not necessary to store them in other variables. It is done here because in the 
next four lines the arguments $1 to $4 are thrown away by four shift commands. 
Then, the argument which was on position five at the beginning is stored in the first 
argument. Argument zero, containing the script name, is not affected by the shift. 
Next, the script enters a loop, given by "for x; do . . . done". This construction 
means that iteratively all remaining arguments are assigned to the variable "x" and 
each time the body of the loop is executed. In this case, the simulation is started with 
some parameters and the output directed to a file. Please note that you can state the 
loop parameters explicitly like in lLf or size in 10 20 40 80 160; do . . . done". 

The above script can be called for example by 
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which means that the graph size is 100, the fraction of edges is 0.5, the number of 
realizations per run is 100, the string testA appears in the output file name and the 
simulation is performed for the relative sizes 0.20, 0.22, 0.24, 0.26, 0.28, 0.30. 

13.5 Libraries 

Libraries are collections of subroutines and data types, which can be used in other 
programs. There are libraries for numerical methods such as integration or solving 
differential equations, for storing, sorting and accessing data, for fancy data types like 
lists or trees, for generating colorful graphics and for thousands of other applications. 
Some can be obtained for free, while other, usually specialized libraries have to  be pur- 
chased. The use of libraries speeds up the software development process enormously, 
because you do not have to  implement every standard method by yourself. Hence, you 
should always check whether someone has done the jobs for you already, before start- 
ing to write a program. Here, two standard libraries are briefly presented, providing 
routines which are needed for most computer simulations. 
Nevertheless, sometimes it is inevitable to implement some methods by yourself. In 
this case, after the code has been proven to be reliable and useful for some time, you 
can put it in a self-created library. How to create libraries is explained in the last part 
of this section. 

13.5.1 Numerical Recipes 

The Numerical Recipes (NR) [3] contain a huge number of subroutines to solve stan- 
dard numerical problems. Among them are: 

0 solving linear equations 

0 performing interpolations 

0 evaluation and integration of functions 

solving nonlinear equations 

0 minimizing functions 

0 diagonalization of matrices 

0 Fourier transform 

0 solving ordinary and partial differential equations 

The algorithms included are all state of the art. There are several libraries dedicated 
to  similar problems, e.g. the library of the Numerical Algorithms Group [14] or the 
subroutines which are included with the Maple software package [15]. 
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To give you an impression how the subroutines can be used, just a short example is 
presented. Consider the case that a symmetrical matrix is given and that all eigen- 
values are to be determined. For more information on the library the reader should 
consult Ref. [3]. There it is not only shown how the library can be applied, but also 
all algorithms are explained. 
The program to calculate the eigenvalues reads as follows. 

int main(int argc, char *argv[]) 
C 
float **m, *d, *e; 
long n = 10; 
int i, j ;  

m = matrix(1, n, I, n); 
for(i=l; i<=n; i++) 
for(j=i; j<=n; j++) 
C 

m [i] [j] = drand48 () ; 

/*  matrix, two vectors */  
/*  size of matrix */ 

/ *  loop counter */  

/*  allocate matrix */  
/*  initialize matrix randomly */ 

m[jl [il = m[il [jl ; /*  matrix must be symmetric 
1 

d = vector(1,n); /*  contains diagonal elements 
e = vector(1,n); /* contains off diagonal elements 

here */  

* /  
*/ 

tred2(m, n, d, e); /*  convert symmetric m. -> tridiagonal */ 
tqli(d, e, n, m); /*  calculate eigenvalues */ 
for(j=l; j<=n; j++) /*  print result stored now in array 'd7*/ 
printf ('lev %d = %f \nl', j , d[jl) ; 

free-vector(e, I, n) ; 
free-vector(d, 1, n) ; 
free-matrix(m, 1, n, I, n); 
return (0) ; 

1 

/*  give memory back */ 

In the first part of the program, an n x n matrix is allocated via the subroutine 
matrix() which is provided by Numer ica l  Recipes .  It is standard to let a vector start 
with index 1, while in C usually a vector starts with index 0. 
In the second part a matrix is initialized randomly. Since the following subroutines 
work only for symmetric real matrices, the matrix is initialized symmetrically. The N u -  
merical Recipes also provide methods to tliagonalize arbitrary matrices, for simplicity 
this special case is chosen here . 
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In the third part the main work is done by the Numerical Recipes subroutines t red2  0 
and t q l i  0. First, the matrix is written in tridiagonal form by a Householder trans- 
formation ( t red2 0) and then the actual eigenvalues are calculated by calling t q l i  (d, 
e ,  n ,  m ) .  The eigenvalues are returned in the vector d[1 and the eigenvectors in the 
matrix m[] [I (not used here), which is overwritten. Finally the memory allocated for 
the matrix and the vectors is freed again. 
This small example should be sufficient to show how simply the subroutines from the 
Numerical Recipes can be incorporated into a program. When you have a problem of 
this kind you should always consult the NR library first, before starting to  write code 
by yourself. 

13.5.2 LEDA 

While the Numerical Recipes are dedicated to numerical problems, the Library of 
EJgicient Data types and Algorithms (LEDA) [4] can help a great deal in writing 
efficient programs in general. It is written in C++, but it can be used by C style 
programmers as well via mixing C++ calls to  LEDA subroutines within C code. LEDA 
contains many basic and advanced data types such as: 

strings 

numbers of arbitrary precision 

one- and two-dimensional arrays 

lists and similar objects like stacks or queues 

sets 

trees 

graphs (directed and undirected, also labeled) 

dictionaries, there you can storc objects with arbitrary key words as indices 

data types for two and three dimensional geometries, like points, segments or 
spheres 

For most data types, it is possible to  create arbitrary complex structures by using 
templates. For example you can make lists of self defined structures or stacks of 
trees. The most efficient implementations known in literature so far are taken for all 
data structures. Usually, you can choose between different implementations, to  match 
special requirements. For every data type, all necessary operations are included; e.g. 
for lists: creating, appending, splitting, printing and deleting lists as well as inserting, 
searching, sorting and deleting elements in a list, also iterating over all elements of a 
list. The major part of the library is dedicated to  graphs and related algorithms. You 
will find for example subroutines to  calculate strongly connected components, shortest 
paths, maximum flows, minimum cost flows and (minimum) matchings. 
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Here again, just a short example is given to illustrate how the library can be utilized 
and to show how easy LEDA can be used. A list of a self defined class Mydatatype is 
considered. Each element contains the data entries info and flag. In the first part 
of the program below, the class Mydatatype is partly defined. Please note that input 
and output stream operators <<I>> must be provided to be able to create a list of 
Mydatatype elements, otherwise the program will not compile. In the main part of 
the program a list is defined via the LEDA data type list. Elements are inserted into 
the list with append(). Finally an iteration over all list elements is performed using 
the LEDA macro f orall. The program leda-test . cc reads as follows: 

class Mydatatype / /  self defined example class 
C 
public : 

int info ; // user data 1 
short int flag; // user data 2 
Mydatatype () {inf o=O; f lag=O;); // constructor 
"Mydatatype 0 C) ; // destructor 
friend ostream& operator<<(ostream& 0, const Mydatatype& dt) 
{ 0 << "info: I' << dt.info << " flag: I' << dt.flag << "\n"; 
return (0) ; ) ; // output operator 

friend istream& operator>>(istream &I, Mydatatype& dt) 
Creturn(1) ; 1;  // dummy 

}; 

int main(int argc, char *argv[] ) 

C 
list<Mydatatype> 1; // list with elements of 'Mydatatype' 
Mydatatype element; 
int t; 

for(t=O; t<10; t++) / /  create list 
C 
element. info = t ; 
element. f lag = t%2 ; 
l.append(element); 

1 
forall(element, 1) 
if(element.flag) 
cout << element; 

return(0) ; 

1 

// iterate over all elements 
// print only 'even' elements 
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The program has to  be compiled with a C++ compiler. Depending on your system, 
you have to specify some compiler flags t o  include LEDA, please consult your systems 
documentation or the system administrator. The compile command may look like this: 

The -I flag specifies where the compiler searches for header files like LEDA/list. h, 
the -L flag tells where the libraries ( -1G -1L) are located. The environment variable 
LEDAROOT must point to  the directory where LEDA is stored in your system. 
Please note that using Numerical Recipes and LEDA together results in conflicts, 
since the objects vec tor  and matr ix are defined in both libraries. You can circum- 
vent this problem by taking the source code of Numerical Recipes (here: n r u t i l .  c ,  
n ru t  il . h) and rename the subroutines matr ix () and vec tor  0, compile again and 
include n r u t i l .  o directly in your program. 
Here, it should be stressed: Before trying t o  write everything by yourself, you should 
check whether someone else has done it for you already. LEDA is a highly effective 
and very convenient tool. It will save you a lot of time and effort when you use it for 
your program development. 

13.5.3 Creating your own Libraries 

Although many useful libraries are available, sometimes you have to  write some code 
by yourself. Over the years you will collect many subroutines, which - if properly 
designed - can be included in other programs, in which case it is convenient to put 
these subroutines in a library. Then you do not have to  include the object file every 
time you compile one of your programs. If your self-created library is put in a standard 
search path, you can access it like a system library, you even do not have to  remember 
where the object file is stored. 
To create a library you must have an object file, e.g. t a sks .0 ,  and a header file 
t a s k s . h  where all data types and function prototypes are defined. Furthermore, to 
facilitate the use of the library, you should write a man page, which is not necessary for 
technical reasons but results in a more convenient usage of your library, particularly 
should other people want to  benefit from it. To learn how to write a man page you 
should consult man man and have a look at the source code of some man pages, they 
are stored e.g. in /usr/man. 
A library is created with the UNIX command a r .  To include t a s k s .  o in your library 
libmy. a you have to  enter 

In a library several object files may be collected. The option "r" replaces the given 
object files, if they already belong to the library, otherwise they are added. If the 
library does not exist yet it is created. For more options, please refer to  the man page 
of ar. 
After including an object file, you have to  update an internal object table of the library. 
This is done by 
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Now you can compile a program prog. c using your library via 

cc -0 prog pr0g.c 1ibmy.a 

In case 1ibmy.a contains several object files, it saves some typing by just writing 
libmy. a, furthermore you do not have to  remember the names of all your object files. 
To make the handling of the library more comfortable, you can create a directory, 
e.g. -/lib and put your libraries there. Additionally, you should create the direc- 
tory w/include where all personal header files can be collected. Then your compile 
conlniand may look like this: 

cc -0 prog pr0g.c -I$HOME/include -L$HOME/lib -1my 

The option -1 states the search path for additional header files, the -L option tells 
the linker where your libraries are stored and via -1my the library libmy. a is actually 
included. Please note that the prefix lib and the postfix .a are omitted with the -1 
option. Finally, it should be pointed out, that the compiler command given above 
works in all directories, once you have set up the structure as explained. Hence, you 
do not have to  remember directories or names of object files. 

13.6 Random Numbers 

For many simulations in physics, random numbers are necessary. Quite often the model 
itself exhibits random parameters which remain fixed throughout the simulation, one 
speaks of quenched disorder. A famous example are spin glasses. In this case one 
has to  perform an average over different realizations of the disorder, to  obtain physical 
quantities. 
But even when the system which is treated is not random, very often random numbers 
are required by the algorithms, e.g. t o  realize a finite-temperature ensemble or when 
using randomized algorithms. In this section an introduction t o  the generation of 
random numbers is given. First it is explained how they can be generated at all on a 
computer. Then, different methods for obtaining numbers are explained, which obey 
a given distribution: the inversion method, the Box-Muller method and the rejection 
method. More comprehensive information about these and similar techniques can be 
found in Refs. [3, 161. 
In this section it is assumed that you are familiar with the basic concepts of probability 
theory and statistics. 

13.6.1 Generating Random Numbers 

First, it should be pointed out that standard computers are deterministic machines. 
Thus, it is completely impossible to  gene rat,^ true random numbers, at  least not with- 
out the help of the user. It is for example possible to  measure the time interval 
between successive keystrokes, which is randomly distributed by nature. But they 
depend heavily on the current user and it is not possible to  reproduce an experiment 
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in exactly thc same way. This is the reason why pseudo random numbers are usually 
taken. They are generated by deterministic rules, but they look like and have many 
of the properties of true random numbers. One would like to have a random number 
generator rand( ) ,  such that each possible number has the same probability of occur- 
rence. Each time r a n d 0  is called, a new random number is returned. Additionally, 
if two numbers ri, rk differ only slightly, the random numbers ri+l, r k + l  returned by 
the respective subsequent calls should have a low correlation. 
The simplest methods t o  generate pseudo random numbers are linear congruential 
generators. They generate a sequence 11, 12,. . . of integer numbers between 0 and 
m - 1 by a recursive recipe: 

To generate random numbers r distributed in the interval [O,1) one has to divide the 
current random number by m. It is desirable to  obtain equally distributed values in 
the interval, i.e. a uniform distribution. Below, you will see, how random numbers 
obeying other distributions can be generated from uniformly distributed numbers. 
The real art is to  choose the parameters a ,  c, m in a way that "good" random numbers 
are obtained, where "good" means "with less correlations". In the past several results 
from simulations have been turned out to  be wrong, because of the application of bad 
random number generators [17]. 

Example: Bad and good generators 

To see what "bad generator" means, consider as an example the parameters 
a = 1 2 3 5 1 , ~  = 1 , m  = 215 and the seed value I. = 1000. 10000 random 
numbers are generatcd, by dividing each of them by m, they are distributed 
in the interval [0, I ) .  In Fig. 13.2 the distribution of the random numbers is 
shown. 

The distribution looks rather flat, but by taking a closer look some regularities 
can be observed. These regularities can be studied by recording k-tuples of 
k successive random numbers (x,, x,+l, .  . . , x,+k-1). A good random num- 
ber generator, exhibiting no correlations, would fill up the k-dimensional 
space uniformly. Unfortunately, for linear congruential generators, instead 
the points lie on ( k  - 1)-dimensional planes. It can be shown that there 
are at most of the order m l l h u c h  planes. A bad generator has much fever 
planes. This is the case for the example studied above, see top part of Fig. 
13.3 
The result for a = 123450 is even worsc, only 15 different "random" numbers 
are generated (with seed 1000), then the iteration reaches a fixed point (not 
shown in a figure). 
If instead a = 12349 is chosen, the two-point correlations look like that shown 
in the bottom half of Fig. 13.3. Obviously, the behavior is much more irreg- 
ular, but poor correlations may become visible for higher k-tuples. 0 
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Figure 13.2: Distribution of random numbers in the interval [0, I). They are gener- 
ated using a linear congruential generator with the parameters a = 12351, c = 1, m = 

215. 

A generator which has passed several theoretical test is a = 75 = 16807, m = 231 - 1, 
c = 0. When implementing this generator you have to  be careful, because during the 
calculation numbers are generated which do not fit into 32 bit. A clever implementation 
is presented in Ref. [3]. Finally, it should be stressed that this generator, like all linear 
congruential generators, has the low-order bits much less random than the high-order 
bits. For that reason, when you want t o  generate integer numbers in an interval [l,N], 
you should use 

r = l+ (int) (N* (I-n) /m) ; 

instead of using the modulo operation as with r=i+(In % N )  ;. 
So far it has been shown how random numbers can be generated which are distributed 
uniformly in the interval [O, 1). In general, one is interested in obtaining random 
numbers which are distributed according to a given probability distribution with den- 
sity p ( z ) .  In the next sections, several techniques performing this task for continuous 
probability distributions are presented. 
In case of discrete distributions, one has to  create a table of the possible outcomcs 
with their probabilities pi. To draw a number, one has to  draw a random number u 
which is uniformly distributed in [ O , l )  and take the entry j of the table such that the 
sum xi=, pi of the preceding probabilities is larger than u,  but pi < u. In the 
following, we concentrate on techniques for generating continuous random variables. 
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Figure 13.3: Two point correlations xi+l(x,) between successive random numbers 
x,,xi+l. The top case is generated using a linear congruential generator with the 
parameters a = 12351, c = I ,  m = 215, the bottom case has instead a = 12349. 

13.6.2 Inversion Method 

Given is a random number generator drand()  which is assumed to generate random 
numbers U which are distributed uniformly in [0, I). The aim is to generate random 
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numbers Z with probability density p(z).  The corresponding distribution function is 

The target is to find a function g(X),  such that after the transformation Z = g(U), the 
values of Z are distributed according t o  (13.2). It is assumed that g can be inverted 
and is strongly monotonically increasing, then one obtains 

Since the distribution function F ( u )  = Prob(U 5 u) for a uniformly distributed vari- 
able is just F (u )  = u (u E [0, I]), one obtains P ( z )  = g-' ( z ) .  Thus, one just has 
to  choose g(z) = P-'(z) for the transformation function, in order to obtain random 
numbers, which are distributed according the probability distribution P(z) .  Of course, 
this only works if P can be inverted. 

Example: Exponential dist,ribution 

Let us consider the exponential distribution with parameter A, with proba- 
bility density 

and distribution function P ( z )  = 1 - exp(-Xz). Therefore, one can ob- 
tain exponentially distributed random numbers Z ,  by generating uniform 
distributed random numbers U and choosing Z = - ln(1 - U)/X. 

In Fig. 13.4 a histogram for lo5 random numbers generated in this way and 
the exponential probability function for X = 1 are shown with a logarithmi- 
cally scaled y-axis. Only for larger values are deviations visible. They are 
due to  statistical fluctuations since p(z) is very small there. 

For completeness, this example is finished by mentioning that by summing n 
independent exponentially distributed random numbers, the result is gamma 
distributed [16]. 0 

13.6.3 Rejection Method 

As mentioned above, the inversion method works only when the distribution function P 
can be inverted. For distributions not fulfilling this condition, sometimes this problem 
can be overcome by drawing several random numbers and combining them in a clever 
way, see e.g. the next subsection. 
The rejection method, which is presented in this section, works for random variables 
where the probabilit,y distribution p(z) fits into a box [xo, x l )  x [0, z,,,), i.e. p(z) = 0 
for z 6 [xo, xl] and p(z) 5 z,,,. The basic idea of generating a random number 
distributed according to p(z) is to  generate random pairs (x, y ) ,  which are distributed 
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Figure 13.4: Histogram of random numbers generated according to an exponen- 
tial distribution (A = 1) compared with the probability density (straight line) in a 
logarithmic plot. 

uniformly in [zo, zl] x [0, z,,,] and accept only those values z where y 5 p(z) holds, 
i.e. the pairs which are located below p(x), see Fig. 13.5. Therefore, the probability 
that  z is drawn is proportional t o  p(x), as desired. The algorithm for the rejection 
method is: 

a lgor i thm rejectionmethod(z,,,,p) 
beg in  

found := false; 
while n o t  found d o  
begin  

ul := random number in [ O , l ) ;  
z := zo + (21 - xo) x u1; 
u2 := random number in [0, I);  
y := zmax X u2; 
if y 5 p(z)  t h e n  

found := t r u e ;  
end;  
re turn(x) ;  

e n d  

The rejection method always works if the probability density is boxed, but it has the 
drawback that more random numbers have to  be generated than can be used. 
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Figure 13.5: The rejection method: points (x, y) are scattered uniformly over a 
bounded rectangle. The probability that y 5 p(x) is proportional to p(x). 

In case neither the distribution function can be inverted nor the probability fits into 
a box, special methods have to  be applied. As an example a method for generating 
random numbers distributed according t o  a Gaussian distribution is considered. Other 
methods and examples of how different techniques can be combined, are collected in 
Ref. [16]. 

13.6.4 The Gaussian Distribution 

The probability density for the Gaussian distribution with mean m and width a is 
(see also Fig. 13.6) 

1 
PC(') = exp ((' ;:I2) 

It is, apart from uniform distributions, the most common distribution being applied 
in simulations. 
Here, the case of a normal distribution (m = 0, a = 1) is considered. If you want to  
realize the general case, you have to  draw a normally distributed number z and then 
use c-rz + rn which is distributed as desired. 
Since the normal distribution extends over an infinite interval and cannot be inverted, 
the methods from above are not applicable. The simplest technique to  generate random 
numbers distributed according to a normal distribution makes use of the central limit 
theorem. It tells us that any sum of N independently distributed random variables 
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Figure 13.6: Gaussian distribution with zero mean and unit width. The circles 
represent a histogram obtained from l o 4  values drawn with the Box-Miiller method. 

ui (with mean m and variance v) will converge to a Gaussian distribution with mean 
N m  and variance Nu. If again ui is taken take to be uniformly distributed in [O,1) 
(which has mean r r ~  = 0.5 and variance u = 1/12), one can choose N = 12 and 
Z = c::, ui - 6 will be distributed approximately normally. The drawback of this 
method is that 12 random numbers are needed to generate one final random number 
and that values larger than 6 never appear. 
In contrast to this technique the Box-Muller method is exact. You need two uniformly 
in [O,1) distributed random variables Ul, Uz to generate two independent normal vari- 
ables N,, N2. This can be achieved by setting 

N~ = J-2 log(1- ul)  cos(2~u2) 

N2 = J-2 log(l - ul)  sin(2nu2) 

A proof that N1 and N2 are indeed distributed according to (13.5) can be found in 
Refs. [3, 161, where also other methods for generating Gaussian random numbers, 
some even more efficient, are explained. A method which is based on the simulation 
of particles in a box is explained in Ref. [18]. In Fig. 13.6 a histogram of lo4 random 
numbers drawn with the Box-Miiller method is shown. 

13.7 Tools for Testing 

In Sec. 13.1 the importance of thorough testing has already been stressed. Here three 
useful tools are presented which significantly assist in facilitating the debugging pro- 
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cess. Please note again that the tools run under UNIX/Linux operating systems. 
Similar programs are available for other operating systems as well. The tools covered 
here are gdb, a source-code debugger, ddd, a graphic front-end to gdb, and checkergcc, 
which finds bugs resulting from bad memory management. 

13.7.1 gdb 

The gdb gnu debugger tool is a source code debugger. Its main purpose is that 
you can watch the execution of your code. You can stop the program at arbitrarily 
chosen points by setting breakpoints at lines or subroutines in the source code, inspect 
variablesldata structures, change them and let the program continue (e.g. line by line). 
Here some examples for the most basic operations are given, detailed instructions can 
be obtained within the program via the help command. 
As an example of how to debug, please consider the following little program gdbtest . c: 

int main (int argc, char *argv [I ) 
C 

int t, *array, sum = 0; 

array = (int *) malloc (lOO*sizeof (int)); 
for(t=O; t<lOO; t++) 

array [t] = t; 
for(t=O; t<lOO; t++) 

sum += array [t] ; 
printf ("sum= %d\nl' , sum) ; 
free (array) ; 
return(0) ; 

1 

When compiling the code you have to  include the option -g to  allow debugging: 

cc -0 gdbtest -g gdbtest.~ 

The debugger is invoked using gdb <programname>, i.e. 

gdb gdbtest 

Now you can enter commands, e.g. list the source code of the program via the list 
command, it is sufficient to  enter just 1. By default always ten lines at the current 
position are printed. Therefore, at  the beginning the first ten lines are shown (the first 
line shows the input, the other lines state the answer of the debugger) 
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4 int main(int argc, char *argv[]) 
5 C 
6 int t, *array, sum = 0; 
7 
8 array = (int *) malloc (lOO*sizeof(int)); 
9 for(t=O; t<100; t++) 
10 array [tl = t; 

When entering the command again the next ten lines are listed. Furthermore, you can 
refer to  program lines of the code in the form list <from>, <to> or to  subroutines 
by typing list <name of subroutine>. More information can be obtained by typing 
help list. 
To let the execution stop at  a specific line one can use the break command (abbrevi- 
ation b). To stop the program before line 11 is executed, one enters 

(gdb) b I1 
Breakpoint I at Ox80484bO: file gdbtest.~, line 11. 

Breakpoints can be removed via the delete command. All current breakpoints are 
displayed by entering info break. 
To start the execution of the program, one enters run or just r. As requested before, 
the program will stop a t  line 11: 

(gdb) r 
Starting program: gdbtest 

Breakpoint 1, main (argc=l, argv=Oxbffff384) at gdbtest.c:ll 
I I for(t=O; t<lOO; t++) 

Now you can inspect for example the content of variables via the print command: 

(gdb) p array 
$1 = (int *) 0x8049680 
(gdb) p array C99l 
$2 = 99 

To display the content of a variable permanently, the display command is available. 
You can change the content of variables via the set command 

(gdb) set array [99] =98 

You can continue the program at  each stage by typing next, then just the next source- 
code line is executed: 

(gdb) n 
12 sum += array [tl ; 

Subroutines are regarded as one source-code line as well. If you want to  debug the 
subroutine in a step-wise manner as well you have to  enter the step command. By 
entering continue, the execution is continued until the next breakpoint, a severe error, 
or the end of the program is reached, please note the the output of the program appears 
in the gdb window as well: 
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(gdb) c 
Continuing. 
sum= 4949 

Program exited normally. 

As you can see, the final value (4949) the program prints is affected by the change of 
the variable array C991. 
The above given commands are sufficient for most of the standard debugging tasks. 
For more specialized cases gdb offers many other commands, please have a look at the 
documentation [ 5 ] .  

13.7.2 ddd 

Some users may find graphical user interfaces more convenient. For this reason there 
exists a graphical front-end to the gdb, the da ta  d isplay  debugger (ddd) .  On U N I X  
operating systems it is just invoked by typing ddd (see also m a n  page for options). 
Then a nice windows pops up, see Fig. 13.7. The lower part of the window is an or- 
dinary gdb interface, several other windows are available. By typing file <program> 
you can load a program into the debugger. Then the source code is shown in the main 
window of the debugger. All gdb commands are available, the most important ones 
can be entered via menus or buttons using the mouse. For example to  sct a breakpoint 
it is sufficient to place the cursor in a source-code line in the main ddd window and 
click on the break button. A good feature is that the content of a variable is shown 
when moving the mouse onto it. For more details, please consult the online help of 
ddd. 

13.7.3 checkergcc 

Most program bugs arc rcvealed by systematically running the program and cross- 
checking with the expected results. But other errors seem to appear in a rather 
irregular and unpredictable fashion. Sometimes a program runs without a problem, 
in other cases it crashes with a Segmentation fault at rather puzzling locations in 
the code. Very often a bad memory management is the cause of such a behavior. 
Writing beyond the boundaries of an array, reading uninitialized memory locations 
or addressing data which has been freed already are the most common bugs of this 
class. Since the operating system organizes the memory in a different way each time 
a program is run, it is rather unpredictable whether these errors become apparent 
or not. Furthermore it is very hard to  track them down, because the effect of such 
errors most of the time becomes visible at positions diffcrmt from wherc the error has 
occurred. 
As an example, the case where it is written beyond the boundary of an array is 
considered. If in the heap, where all dynamically allocated memory is taken from, at 
the location behind the array another variable is stored, it will be overwritten in this 
case. Hcnce, the error bccomes visible the next time the other variable is read. On 
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I n t  main( in t  argc,  char * a r g v l l )  I I 
i n t  t ,  "ar ray,  sum = 0; 

a r r a y  = ( i n t  *) rnalloc (100*s i zeo f ( i n t ) ) ;  
f o r (  t=0; t d 0 0 ;  t++) 

a r r a y l t ]  = t ;  
fo r ( t=0 ;  t d 0 0 ;  t++) 

sum += a r r a y r t l  ; 
p r in t f ( " sum= %d\n8 ' ,  sum); 
f reecarray) ;  
re turn(0)  ; 

9 
l opy r igh t  D 1999 Technische U n i v e r s i t a t  Braunschweig, Germany 
:gdb) f i l e  gdbtest  
!cadi ng symbol s  from gdbtest  done 
.gdb) 

, Sett~ng buttons done - 
Figure 13.7: The data display debugger (ddd). In the main window the source code 
is shown. Commands can be invoked via a mouse or by entering them into the lower 
part of the window. 

the other hand, if the memory block behind the array is not used, the program may 
run that time without any problems. Unfortunately, the programmer is not able to  
influence the memory management directly. 
To detect such types of nasty bugs, one can take advantage of several tools. A list of free 
and commercial tools can be found in Ref. [19]. Here checkergcc is considered, which 
is a very convenient tool and freely available. It works under UNIX and is included 
by compiling everything with checkergcc instead of cc or gcc. Unfortunately, the 
current version does not have full support for C++, but you should try it on your 
own project. The checkergcc compiler replaces all memory allocations/deallocations 
and accesses by its own routines. Any access to  non-authorized memory locations is 
reported, regardlcss of the positions of other variables in the memory area (heap). 
As an example, the program from Sec. 13.7.1 is considered, which is slightly modified; 
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the memory block allocated for the array is now slightly too short (length 99 instead 
of 100): 

#include <stdio.h> 
#include <stdlib.h> 

int main(int argc, char *argv[]) 
C 

int t, *array, sum = 0; 

array = (int *) malloc (99*sizeof (int)); 
f or(t=O; t(100; t++) 

array [t] = t; 
for (t=O; t<lOO; t++) 

sum += array [t] ; 
printf ("sum= %d\n" , sum) ; 
free (array) ; 
return(0) ; 

1 
The program is compiled via 

checkergcc -0 gdbtest -g gdbtest.~ 

Starting the program produces the following output, the program terminates normally: 

Sisko:seminar>gdbtest 
Checker 0.9.9.1 (i686-pc-linux-gnu) Copyright (C) 1998 Tristan Gingold. 
This program has been compiled with 'checkergcc' or 'checkerg++'. 
Checker is a memory access detector. 
Checker is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 
General Public License for more details. 
For more information, set CHECKEROPTS to '--help' 
From Checker (pid:30448): 'gdbtest' is running 

From Checker (pid:30448): (bvh) block bounds violation in the heap. 
When Writing 4 byte(s) at address OxO805fadc, inside the heap (sbrk). 
0 byte(s) after a block (start: Ox805f950, length: 396, mdesc: 0x0). 
The block was allocated from: 

pc=Ox080554f9 in chkr-malloc at stubs-malloc.c:57 
pc=Ox08048863 in main at gdbtest.c:8 
pc=Ox080555a7 in this-main at stubs-main.c:13 
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7 
pc=Ox08048668 in *unknown* at *unknown*:O 

Stack frames are: 
pc=Ox080489c3 in main at gdbtest.c:lO 
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pc=Ox080555a7 in this-main at stubs-main.c:13 
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7 
pc=Ox08048668 in *unknown* at *unknown*:O 

From Checker (pid:30448): (bvh) block bounds violation in the heap. 
When Reading 4 byte(s) at address Ox0805fadc, inside the heap (sbrk). 
0 byte(s) after a block (start: Ox805f950, length: 396, mdesc: 0x0). 
The block was allocated from: 

pc=0x00000063 in *unknown* at *unknown*:O 
pc=Ox08048863 in main at gdbtest.c:8 
pc=Ox080555a7 in this-main at stubs-main.c:13 
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7 
pc=Ox08048668 in *unknown* at *unknown*:O 

Stack frames are: 
pc=Ox08048c55 in main at gdbtest.c:12 
pc=Ox080555a7 in this-main at stubs-main.c:13 
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7 
pc=Ox08048668 in *unknown* at *unknown*:O 

Two errors are reported, each message starts with "From checker". Both errors 
consist of accesses to  an array beyond the border (block bound violation). For 
each error both the location in the source code where the memory has been allocated 
and the location where the error occurred (Stack frames) are given. In both cases 
the error is concerned with what was allocated a t  line 8 (pc=Ox08048863 in main at 
gdbtest . c: 8). The bug appeared during the loops over the array, when the array is 
initialized (line 10) and read out (line 12). 
Other common types of errors are memory leaks. They appear whcn a previously 
used block of memory has been forgotten to  be freed again. Assume that this happens 
in a subroutine which is called frequently in a program. You can imagine that you 
will quickly run out of memory. Memory leaks are not detected using checkergcc by 
default. This kind of test can be turned on by setting a special environment variable 
CHECKEROPTS, which controls the behavior of checkergcc. To enable checking for 
memory leaks at the end of the execution, one has to  set 

export CHECKEROPTS="-D=end8' 

Let us assume that the bug from above is removed and instead the free (array) ; 
command at the end of the program is omitted. After compiling with checkergcc, 
running the program results in: 

From Checker (pid:30900): 'gdbtest' is running 

sum= 4950 
Initialization of detector. . . 
Searching in data 
Searching in stack 
Searching in registers 
From Checker (pid:30900): (gar) garbage detector results. 
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There is I leak and 0 potential leak(s). 
Leaks consume 400 bytes (0 KB) / 132451 KB. 
( 0.00% of memory is leaked.) 
Found I block(s) of size 400. 
Block at ptr=Ox805f8fO 

pc=Ox08055499 in chkr-malloc at stubs-malloc.c:57 
pc=Ox08048863 in main at gdbtest.c:8 
pc=Ox08055547 in this-main at stubs-main.c:13 
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7 
pc=Ox08048668 in *unknown* at *unknown*:O 

Obviously, the memory leak has been found. Further information on the various 
features of checkergcc can be found in Ref. [20]. A last hint: you should always test 
a program with a memory checker, even if everything seems to be fine. 

13.8 Evaluating Data 

To analyze and plot data, several commercial and non-commercial programs are avail- 
able. Here three free programs are discussed, gnuplot ,  x m g r  and fsscale. Gnuplot  is 
small, fast, allows two- and three-dimensional curves to be generated and to fit arbi- 
trary functions to the data. On the other hand x m g r  is more flexible and produces 
better output. It is recommended that gnuplot is used for viewing and fitting data 
online, while x m g r  is to be preferred for producing figures to be shown in talks or 
publications. The program fsscale has a special purpose. It is very convenient for 
performing finite-size scaling plots. 
First, gnuplot and x m g r  are introduced with respect to drawing figures. In the next 
subsection, data fitting is covered. Finally, it is shown how finite-size scaling plots can 
be created. In all three cases only very small examples can be presented. They should 
serve just as a motivation to study the documentation, then you will learn about the 
manifold potential the programs offer. 

13.8.1 Data Plotting 

The program gnuplot is invoked by entering gnuplot in a shell, for a complete manual 
see Ref. [13]. As always, our examples refer to a UNIX window system like X11, but 
the program is available for almost all operating systems. After startup, the prompt 
(e.g. gnuplot>) appears and the user can enter commands in textual form, results 
are shown in windows or are written into files. Before giving an example, it should be 
pointed out that gnuplot scripts can be generated by simply writing the commands 
into a file, e.g. command. gp, and calling gnuplot command. gp. 
The typical case is that you have a data file of x - y data and you want to plot 
the figure. Your file might look like this, it is the ground-state energy of a three- 
dimensional f J spin glass as a function of the linear system size L. The filename is 
sg-e0-L.dat. The first column contains the L values, the second the energy values 
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and the third the standard crror of the energy, please note that lines starting with "#" 

are comment lines which are ignored on reading: 

# ground s t a t e  energy of +-J sp in  g l a s se s  
# L e-0 e r r o r  

3 -1.6710 0.0037 
4 -1.7341 0.0019 
5 -1.7603 0.0008 
6 -1.7726 0.0009 
8 -1.7809 0.0008 

10 -1.7823 0.0015 
12 -1.7852 0.0004 
14 -1.7866 0.0007 

To plot the data enter 

gnuplot> p l o t  "sg-eO-L. da t"  with yer rorbars  

which can be abbreviated as p "sg-eO-L. da t"  w e. Please do not forget the quotation 
marks around the file name. Next, a window pops up, showing the result, see Fig. 

Figure 13.8: Gnuplot window showing the result of a plot command. 

For the p l o t  command many options and styles are available, e.g. with l i n e s  pro- 
duces lines instead of symbols. It is possible to  read files with multi columns via the 
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using option, e.g. 

gnuplot> plot "test.datr' using 1:4:5 w e 

displays the fourth column as a function of the first, with error bars given by the 5th 
column. Among other options, it is possible to  redirect the output, for example to  
an encapsulated postscript file (by setting set terminal postscript and redirecting 
the output set output "test .epsl'). Also several files can be combined into one 
figure. You can set axis labels of the figure by typing e.g. set xlabel "L", which 
becomes active when the next plot command is executed. Online help on the plot 
command and its manifold options is available via entering help plot. Also three- 
dimensional plotting is possible using the splot command (enter help splot to  obtain 
more information). For a general introduction you can type just help. Since gnuplot 
commands can be entered very quickly, you should use it for online viewing data and 
fitting (see Sec. 13.8.2). 
The xmgr (x motiv graphic) program is much more powerful than gnuplot and produces 
nicer output, commands are issued by clicking on menus and buttons. On the other 
hand its handling is a little bit slower and the program has the tendency to  fill your 
screen with windows. To create a similar plot to that above, you have to go (after 
staring it by typing xmgr into a shell) to  the files menu and choose the read submenu 
and the sets subsubmenu. Then a file selection window will pop up and you can choose 
the data file to  be loaded. The situation is shown in Fig. 13.9. 
The xmgr program offers almost every feature you can imagine for two-dimensional 
data plots, including multiple plots, fits, many styles for lines, symbols, bar charts 
etc. Also you can create manifold types of labels or legends and it is possible to 
add elements like strings. lines or other geometrical objects in the plot. For more 
information, please consult the online help. 

13.8.2 Curve Fitting 

Both programs presented above, gnuplot and xmgr, offer fitting of arbitrary functions. 
It  is advisable to use gnuplot, since it offers a higher flexibility for that purpose and 
gives you more information useful to  estimate the quality of a fit. 
As an example, let us suppose that you want to  fit an algebraic function of the form 
f (L) = e ,  + aLb to the data set of the file sg-e0-L.dat shown above. First, you 
have to  define the function and supply some roughly (non-zero) estimations for the 
unknown parameters, please note that the exponential operator is denoted by **  and 
the standard argument for a function definition is x, but this depends only on your 
choice: 

The actual fit is performed via the fit command. The program uses the nonlinear 
least-squares Marquardt-Levenberg algorithm [3], which allows a fit according to  al- 
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Figure 13.9: The xmgr program, just after a data file has been loaded, and the AS 
button has been pressed to adjust the figure range automatically. 

most all arbitrary functions. To issue the command, you have to  state the fit function, 
the data set and the parameters which are to  be adjusted. For our example you enter: 

gnuplot> f i t  f (x) "sg-eO-L. d a t "  v i a  e , a ,  b 

Then gnuplot writes log information to  the output describing the fitting process. After 
the fit has converged it prints for the given example: 

A f t e r  17 i t e r a t i o n s  t h e  f i t  converged. 
f i n a l  sum of squares  of r e s i d u a l s  : 7.55104e-06 
r e l .  change dur ing  l a s t  i t e r a t i o n  : -2.42172e-09 

degrees  of freedom (ndf )  : 5 
r m s  of r e s i d u a l s  ( s t d f  i t )  = s q r t  (WSSR/ndf) : 0.00122891 
var iance  of r e s i d u a l s  (reduced ch i square )  = WSSR/ndf : 1.51021e-06 
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correlation matrix of the fit parameters: 

The most interesting lines are those where the results for your parameters along with 
the standard error are printed. Additionally, the quality of the fit can be estimated 
by the information provide in the three lines beginning with "degree of freedom". 
The first of these lines states the number of degrees of freedom, which is just the 
number of data points minus the number of parameters in the fit. The deviation 
of the fit function f (x) from the data points (xi, yi f ai) ( i  = 1 , .  . . , N) is given by 

2 

i2 = Z = I  [rfl?)] o, , which is denoted by WSSR in the gnuplot output. A measure 

of the quality of the fit is the probability Q that the value of X 2  is worse than in the 
current fit, given the assumption that the datapoints yi are Gaussian distributed with 
mean f (xi) and variance one [3]. The larger the value of Q,  the better is the quality 
of the fit. To calculate Q you can use the little program Q. c 

#include <stdio.h> 
#include "nr.h" 
int main(int argc, char **argv) 

float ndf, chi2-per-df; 
sscanf (argv [I] , I1%f I' , &ndf ) ; 
sscanf (argv [2] , l1%fl1, &chi2_per_df) ; 
printf("Q=%e\nl', gammq(0.5*ndf, 0.5*ndf*chi2-per-df)); 
return (0) ; 

3 

which uses the gammaq function from Numerical Recipes [3]. The program is called in 
the form Q <ndf > <WSSR/ndf >, which can be taken from the gnuplot output. 
To watch the result of the fit along with the original data, just enter 

gnuplot> plot "sg-eO-L. dat" w e, f (x) 

The result looks like that shown in Fig. 13.10 
Please note that the convergence depends on the initial choice of the parameters. The 
algorithm may be trapped into a local minimum in case the parameters are too far 
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Figure 13.10: Gnuplot window showing the result of a fit command along with the 
input data. 

away from the best values. Try the initial values e=l, a=-3 and b=l! Furthermore, 
not all function parameters have to be subjected to the fitting. Alternatively, you can 
set some parameters to fixed values and omit them from the list a t  the end of the 
f i t  command. You should also know that in the example given above all data points 
enter into the result with the same weight. You can tell the algorithm to consider the 
error bars by typing f i t  f (x) "sg-eO-L. dat" using I :  2 :  3  v i a  a ,b ,  c. Then, data 
points with larger error bars have less influence on the results. More on how to use 
the f i t  command can be found out when entering he lp  f i t .  

13.8.3 Finite-size Scaling 

Statistical physics describes the behavior of systems with many particles. Usually, 
realistic system sizes cannot be simulated on current computers. To circumvent this 
problem, the technique of finite-size scaling has been invented, for an introduction see 
e.g. Ref. [21]. The basic idea is to simulate systems of different sizes and extrapolate 
to the large volume limit. Here it is shown how finite-size scaling can be performed 
with the help of gnuplot [13] or with the special-purpose program fsscale [22] 
As an example, the average ground-state magnetization m of a three-dimensional * J  
spin glass with fractions p of antiferromagnetic and I - p of ferromagnetic bonds is 
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Figure 13.11: Average ground-state magnetization rn of a three-dimensional & J  
spin glass with fractions p of antiferromagnetic bonds. Lincs are guides to the eyes 
only. 

considered. For small values of p the system is expected to  have a ferromagnetically 
ordered state. This can be observed in Fig. 13.11, where the results [23] for different 
system sizes L = 3,5,14 are shown. 
The critical concentration p,, where the magnetization m vanishes, and the critical 
behavior of 7n near the transition are to  be obtained. From the theory of finite-size 
scaling, it is known that the average magnetization rn = (M) obeys the finite-size 
scaling form [24] 

m(p, L)  = L - ~ I ~ % ( L ' ~ " ( ~  - p,)) (13.6) 

where m is a universal, i.e. non size-dependent, function. The exponent P characterizes 
the algebraic behavior of the magnetization near p,, while the exponent v describes the 
divergence of the correlation length when p, is approached. From Eq. (13.6) you can 
see that when plotting ~ P / ~ r n ( p ,  L) against ~ l / ~ ( p  - p,) with correct parameters /3, v 
the data points for different system sizes should collapse onto a single curve. A good 
collapse can be obtained by using the values p, = 0.222, v = 1.1 and /3 = 0.27. The 
determination of p, and the exponents can be performed via gnuplot. For that purpose 
you need a file m-scal ing .  d a t  with three columns, where the first column contains 
the system sizes L, the second the values of p and the third contains magnetization 
m(p, L) for each data point. First, assume that you know the values for p,, v and p. 
In this case, the actual plot is done by entering: 
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gnuplot> n=l.l 
gnuplot> pc=0.222 
gnuplot> plot [-I: 11 l'm-scale. dat" u (($2-pc) *$I** (l/n)) : ($3*$1** (b/n)) 

The plot command makes use of the feature that with the  sing) option you can 
transform the data of the input in an arbitrary way. For each data set, the variables 
$1,$2 and $3 refer to  the first, second and third columns, e.g. $l**(l/n) raises the 
system size to  the power Ilv. The resulting plot is shown in Fig. 13.12. Near the 
transition p - p, % 0 a good collapse of the data points can be observed. 

Figure 13.12: Gnuplot output of a finite-size scaling plot. The ground-state magne- 
tization of a three-dimensional f J spin glass as a function of the concentration p of 
the antiferromagnetic bonds is shown. For the fit, the parameters p, = 0.222, P = 0.27 
and v = 1.1 have been used. 

In case you do not know the values of p,,p,  u you can start with some estimated 
values, perform the plot, resulting probably in a bad collapse. Then you may alter 
the parameters iteratively and watch the resulting changes by plotting again. In this 
way you can converge t o  a set of parameters, where all data points show a satisfying 
collapse. 
The process of determining the finite-size scaling parameters can be performed more 
conveniently by using the special purpose program fsscale. It can bc obtaincd free of 
charge from [22]. This tool allows the scaling parameters to  be changed interactively 
by pressing buttons on the keyboard, making a finite-size scaling fit very convenient 
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to  perform. Several different scaling forms are available. To obtain more information, 
start the program, with f s s c a l e  -help. A sample screen-shot is shown in Fig. 13.13 
Please note that the data have to  be presented to  fsscale in a file containing three 
columns, where the first column contains the system size, the second the x-value and 
the third the y-value. If you have only data files with more columns, you can use the 
standard UNIX tool awlc to  project out the relevant columns. For example, assume 
that your data file r e s u l t s  . da t  has 10 columns, and your are interested in columns 
3,8 ,  and 9. Then you have to  enter: 

awk ' ( p r i n t  $3, $8, $9)' r e s u l t s .  da t  > pro jec ted .  da t  

You can also use awlc to  perform calulations with t,he values in the columns, similar 
to  gnuplot, as in 

awk '{print  $1+$2, 2.0*$7, $8*$1)' r e s u l t s . d a t  

Figure 13.13: Screen-shot from a window running the fsscale tool. 
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13.9 Informat ion Retrieval and Publishing 

In this section some basic information regarding searching for literature and preparing 
your own presentations and publications is given. 

13.9.1 Searching for Literature 

Before contributing t o  the physical community and even publishing your results, you 
should be aware of what exists already. This prevents you from redoing something 
which has been done before by someone else. Furthermore, knowing previous results 
and many simulation techniques allows you to conduct your own research projects 
better. Unfortunately, much information cannot be found in textbooks. Thus, you 
must start to look at the literature. With modern techniques like CD-ROMs and the 
Internet this can be achieved very quickly. Within this section, it is assumed that 
you are familiar with the Internet and are able to  use a browser. In the following list 
several sources of information are contained. 

Your local (university) library 
Although the amount of literature is limited from space constraints, you should 

always check your local library for suitable textbooks concerning your area of 
research. Also many old issues of scientific journals are yet not available through 
the Internet, thus you may have to  copy some articles in the library. 

Literature databases 
In case you want t o  obtain all articles from a specific author or all articles on a 

certain subject, you should consult a literature database. In physics the INSPEC 
[25] database is the appropriate source of information. Unfortunately, the access 
is not free of charge. But usually your library should allow access to INSPEC, 
either via CD-ROMs or via the Internet. If your library/university does not offer 
an access you should complain. 

INSPEC frequently surveys almost all scientific journals in the areas of physics, 
electronics and computers. For each paper that appears, all bibliographic informa- 
tion along with the abstract are stored. You can search the database for example 
for author names, keywords (in the abstract or title), publication years or jour- 
nals. Via INSPEC it is possible to  keep track of recent developments happening 
in a certain field. 

There are many other specialized databases. You should consult the web page of 
your library, to find out to  which of them you can access. Modern scientific work 
is not possible without regularly checking literature databases. 

Preprint server 
In the time of the Internet, speed of publication becomes increasingly important. 

Meanwhile, many researchers put their publications on the Los Alamos Preprint 
server [26], where they become available world wide at most 72 (usually 24) 
hours after submission. The database is free of charge and can be accessed from 
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almost everywhere via a browser. The preprint database is divided into several 
sections such as astrophysics (astro-ph), condensed matter (cond-mat) or quantum 
physics (quant-ph). Similar to  a conventional literature database, you can search 
the database, eventually restricted to a section, for author names, publication 
years or keywords in the titlelabstract. But furthermore, after you have found an 
interesting article, you can download it and print it immediately. File formats are 
postscript and pdf. The submission can also be in ~ / B T E X  (see Sec. 13.9.2). 

Please note that there is no editorial processing at all, that means you do not 
have any guarantee on the quality of a paper. If you like, you can submit a poem 
describing the beauty of your garden. Nevertheless, the aim of the server is to  
make important scientific results available very quickly. Thus, before submitting 
an article, you should be sure that it is correct and interesting, otherwise you 
might get a poor reputation. 

The preprint server also offers access via email. It is possible to  subscribe to  a 
certain subject. Then evcry working day you will receive a list of all new papers 
which have been submitted. This is a very convenient way of keeping track of 
recent developments. But be careful, not everyone submits to  the preprint server. 
Hence, you still have to read scientific journals regularly. 

Scientific journals 
Journals are the most important resources of information in science. Most of them 
allow access via the Internet, when your university or institute has subscribed to 
them. Some of the most important physical journals, which are available online, 
are published by (in alphabetical order) 

- the American Institute of Physics [27] 

- the American Physical Society [28] 

- Elsevier Science (Netherlands) [29] 

- the European Physical Society [30] 

- the Institute of Physics (Great Britain) [31] 

- Springer Science (Germany) [32] 

- Wiley-VCH (USAIGermany) [33] 

- World-Scientific (Singapore) [34] 

Citation databases 
In every scientific paper some other articles are cited. Sometimes it is interesting 

to  get the reverse information, i.e. to  obtain all papers which are citing a given 
article A. This can be useful, if one wants to  learn about the most recent develop- 
ments which are triggered by article A. In that case you have to  access a ci tat ion 
i n d e x .  For physics, probably the most important is the Science Ci tat ion I n d e x  
(SCI) which can be accessed via the W e b  of Science [35]. You have to  ask your 
system administrator or your librarian whether and how you can access it from 
your site. 
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The American Physical Society (APS) [28] also includes links to  citing articles 
with the online versions of recent papers. If the citing article is available via the 
APS as well, you can immediately access the article from the Internet. This works 
not only for citing papers, but also for cited articles. 

Phys Net 
If you want to  have access to  the web pages of a certain physics department, you 

should go via your web browser to  the Phys Net pages [36]. They offer a list of all 
physics departments in the world. Additionally, you will find lists of forthcoming 
conferences, job offers and many other useful links. Also, the home page of your 
department probably offers many interesting links to  other web pages related to  
physics. 

Web browsing 
Except for the sources mentioned so far, nowadays much information is available 
on net. Many researchers present their work, their results and their publications 
on their home pages. Quite often talks or computer codes can also be downloaded. 

In case you cannot find a specific page through the Phys Net (see above), or you 
are interested in obtaining all web pages concerning a specific subject, you should 
ask a search engine. There are some very popular all purpose engines like Yahoo 
[37] or Alta Vista [38]. A very convenient way to start a query on several search 
engines in parallel is a meta search engine, e.g. Metacrawler [39]. To find out 
more, please contact a search engine. 

13.9.2 Preparing Publications 

In this section tools for two types of presenting your results are covered: via an arti- 
clelreport or in a talk. For writing papers, it is recommended that you use TEX/~W. 
Data plots can be produced using the programs explained in the last section. For draw- 
ing figures and making transparencies, the program xfig offers a large functionality. To 
create three-dimensional perspective images, the program Povray can be used. B W ,  
xfi.9 and Povray are introduced in this section. 
First, w/Bw is explained. It is a typesetting system rather than a word processor. 
The basic program is 7$J, Bw is an extension to  facilitate the application. In the 
area of theoretical computer science, the combination of and HTJ$ is a widespread 
standard. When submitting an article electronically to a scientific journal usually 

has to be used. Unlike the conventional office packages, with KQ$ you do not 
see the text in the form it will be printed, i.e. Bw is not a WYSIWYG ("What 
you see is what you get") program. The text is entered in a conventional text editor 
(like Emacs) and all formatting is done via special commands. An introduction to  the 
BTEX language can be found e.g. in Refs. [40, 411. Although you have to  learn several 
commands, the use of BTEX has several advantages: 

The quality of the typesetting is excellent. It is much better than self-made 
formats. You do not have to  care about the layout. But still, you are free to 
change everything according to your requirements. 
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Large projects do not give rise to  any problems, in contrast to  many commercial 
office programs. When treating a I4w text, your computer will never complain 
when your text is more than 300 pages or contains many huge post-script figures. 

Type setting of formulae is very convenient and fast. You do not have to  care 
about sizes of indices of indices etc. Furthermore, in case you want for example 
to  replace all n in your formulae with P,  this can be done with a conventional 
replace, by replacing all \alpha strings by a \beta strings. For the case of an 
office system, please do not ask how to do this conveniently. 

There are many additional packages for enhanced styles such as letters, trans- 
parencies or books. The bibtex package is very convenient, which allows a nice 
literature database to  be build up. 

Since you can use a conventional editor, the writing process is very fast. You do 
not have to wait for a huge packet to  come up. 

On the other hand, if you still prefer a WYSIWYG ("what you see is what you 
get") system, there is a program called lyx [42] which operates like a conventional 
word processor but creates I4m files as output. Nevertheless, once you get used 
t o  gw, you will never want to loose it. 

Please note that this text was written entirely with W&-jK. Since IN$$ is a type 
setting language, you have to  compile your text to  create the actual output. Now, an 
example is given of what a I4w text looks like and how it can be compiled. This 
example will just give you an impression of how the system operates. For a complete 
reference, please consult the literature mentioned above. 
The following file example. tex produces a text with different fonts and a formula: 

\document class [12pt] (article) 
\begin{document) 
This is just a small sample text. You can write some words {\em 
emphasized}\/, or in {\bf bold face). Also different {\small sizes) 
are possible. 

An empty line generates a new paragraph. \LaTeX\ is very convenient 
for writing formulae, e.g. 
\begin{equat ion) 
M-i(t) = \frac{i){L-3) \int-V x-i \rho(\vec{x),t) dA3\vec{x) 
\end{equat ion} 
\end{document} 

The first line introduces the type of the text (article, which is the standard) and the 
font size. You should note that all tex commands begin with a backslash (\), in case 
you want to write a backslash in your text, you have to  enter $\backslash$. The 
actual text is written between the lines starting with \begin{document} and ending 
with \end{document). You can observe some commands such as \em, \bf or \small. 
The { } braces are used to  mark blocks of text. Mathematical formulae can be written 
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e.g. with \begin{equation) and \end{equation}. For the mathematical mode a huge 
number of commands exists. Here only examples for Greek letters (\alpha),  subscripts 
(x-i) ,  fractions ( \ f r a c ) ,  integrals ( \ i n t )  and vectors (\vec) are given. 
The text can be compiled by entering l a t e x  example. t ex .  This is the command for 
UNIX, but aTJ$ exists for all operating systems. Please consult the documentation 
of your local installation. 
The output of the compiling process is the file example.dvi, where "dvi" means 
"device independent". The . dv i  file can be inspected on screen by a viewer via 
entering xdvi example. dv i  or converted into a postscript file via typing dvips  -0 

example. p s  example. d v i  and then transferred to  a printer. On many systems it can 
be printed directly as well. The result will look like this: 

This is just a small sample text. You can write some words emphasized, or 
in bold face. Also different sizes are possible. 

An empty line generates a new paragraph. UTJ$ is very convenient for 
writing formulae, e.g. 

This example should be sufficient to  give you an impression of what the philosophy 
of I4TJ$ is. Comprehensive instructions are beyond the scope of this section, please 
consult the literature [40, 411. 
Under UNIX/Linux, the spell checker ispell is available. It  allows a simple spell check 
to  be performed. The tool is built on a dictionary, i.e. a huge list of known words. 
The program scans any given text, also a special I 4 w  mode is available. Every time 
a word occurs, which is not contained in the list, ispell stops. Should similar words 
exist in the list, they are suggested. Now the user has to decide whether the word 
should be replaced, changed, accepted or even added t o  the dictionary. The whole 
text is treated in this way. Please note that many mistakes cannot be found in this 
way, especially when the misspelled word is equal to  another word in the dictionary. 
However, a t  least ispell finds many spelling mistakes quickly and conveniently, so you 
should use the tool. 
Most scientific texts do not only contain text, formulae and curves, but also schematic 
figures showing the models, algorithms or devices covered in the publication. A very 
convenient but also simple tool to  create such figures is xfig. It  is a window based 
vector-oriented drawing program. Among its features are the creation of simple objects 
like lines, arrows, polylines, splines, arcs as well as rectangles, circles and other closed, 
possibly filled, areas. Furthermore you can create text or include arbitrary (eps, jpg) 
pictures files. You may place the objects on different layers which allows complex 
sceneries to  be created. Different simple objects can be combined into more complex 
objects. For editing you can move, copy, delete, rotate or scale objects. To give you 
an impression what xfig looks like, in Fig. 13.14 a screen-shot is shown, displaying xfig 
with the picture that is shown in Fig. 13.1. Again, for further help, please consult the 
online help function or the man pages. 
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=... , , ,  

Figure 13.14: A sample screen-shot showing the xfig program. 

The figures can be saved in the internal fig format, and exported in several file formats 
such as (encapsulated) postscrzpt, B?&X, Jpeg, TzSf or bitmap. The xfig program can 
be called in a way that it produces just an output file with a given fig input file. This 
is very convenient when you have larger projects where some small picturc objects 
are contained in other pictures and you want to  change the appearance of the small 
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objects in all other files. With the help of the make program pretty large projects can 
be realized. 
Also, xjig is very convenient when creating transparencies for talks, which is the stan- 
dard method of presenting results in physics. With different colors, text sizes and all 
the objects mentioned before, very clear transparencies can be created quickly. The 
possibility of including picture files, like postscript files which were created by a data 
plotting program such as xmgr, is very helpful. In the beginning it may seem that 
more effort is necessary than when creating the transparencies by hand. However, 
once you have a solid base of transparencies you can reuse many parts and preparing 
a talk may become a question of minutes. In particular, when your handwriting looks 
awful, the audience will be much obliged for transparencies prepared with xjig. 
Last but not least, please note that xjig is vector oriented, but not pixel oriented. 
Therefore, you cannot treat pictures like jpg files (e.g. photos) and apply operations 
like smoothing, sharpening or filtering. For these purposes the package gimp is suitable. 
It is freely available again from GNU [5]. 
It is also possible to draw three-dimensional figures with xfig, but there is no spe- 
cial support for it. This means, xjig has only a two-dimensional coordinate system. 
A very convenient and powerful tool for making three-dimensional figures is Povray 
(Persistence Of Vision RAYtraycer). Here, again, only a short example is given, for a 
detailed documentation please refer to  the home page [43], where the program can be 
downloaded for many operating systems free of charge. 
Povray is, as can be realized from its name, a raytracer. This means you present a 
scene consisting of several objects to the program. These objects have characteristics 
like color, reflectivity or transparency. Furthermore the position of one or several 
light sources and a virtual camera have to  be defined. The output of a raytracer is a 
photo-realistic picture of the scene, seen through the camera. The name "raytracer" 
originates from the fact that the program creates a picture by starting several rays of 
light at the light sources and traces their way through the scene, where they may be 
absorbed, reflected or refracted, until they hit the camera, disappear into infinity or 
become too weak. Hence, the creation of a picture may take a while, depending on 
the complexity of the scene. 
A scene is described in a human readable file, it can be entered with any text editor. 
But for more complex scenes, special editors exist, which allow a scene to  be created 
interactively. Also several tools for making animations are available on the Internet. 
Hcrc, a simple example is given. The scene consists of three spheres connected by 
two cylinders, forming a molecule. Furthermore, a light source, a camera, an infinite 
plane and the background color are defined. Please note that a sphere is defined by its 
center and a radius and a cylinder by two end points and a radius. Additionally, for all 
objects color information has to  be included, the center sphere is slightly transparent. 
The scene description file t e s t 1  .pov reads as follows: 

# inc lude  " c o l o r s .  i n c "  

background ( c o l o r  White 1 
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sphere { (10, 2 ,  0 > ,  2 
pigment { Blue ) ) 

cyl inder  { (10, 2 ,  0> ,  (0, 2 ,  l o> ,  0.7 
pigment { color  Red ) ) 

sphere { (0,  2 ,  l o > ,  4 
pigment { Green transmit  0 .41  1 

cyl inder  { (0, 2 ,  l o > ,  (-10, 2,  0 > ,  0.7 
pigment { Red 1 1 

sphere { (-10, 2,  0> ,  2 
pigment { Blue 1 ) 

plane { <0, 1 ,  0> ,  -5 
pigment { checker co lor  White, co lor  Black)) 

l ight-source { (10, 30, -3> color  white) 

camera { loca t ion  (0, 8 ,  -20> 
look-at (0, 2 ,  10> 
aper ture  0.4) 

The creation of the picture is started by calling (here on a Linux system via command 
line) x-povray +I t e s t 1  .pov. The resulting picture is shown in Fig. 13.15, please 
note the shadows on the plane. 

Figure 13.15: A sample scene created with Povray 
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Povray is really powerful. You can create almost arbitrarily shaped objects, combine 
them into complex objects and impose many transformations. Also special effects 
like blurring or fog are available. All features of Povray are described in a 400 page 
manual. The use of Povray is widespread in the artists community. For scientists 
it is very convenient as well, because you can easily convert e.g. configuration files 
of molecules or three-dimensional domains of magnetic systems into nice looking per- 
spective pictures. This can be accomplished by writing a small program which reads 
e.g your configuration file containing a list of positions of atoms and a list of links, 
and puts for every atom a sphere and for every link a cylinder into a Povray scene 
file. Finally the program must add suitable chosen light sources and a camera. Then, 
a three-dimensional pictures is created by calling Povray. 
The tools described in this section, should allow all technical problems occurring in the 
process of preparing a publication (a "paper") to be solved. Once you have prepared it, 
you should give it to  at least one other person, who should read it carefully. Probably 
he/she will find some errors or indicate passages which might be difficult to  understand 
or that are misleading. You should always take such comments very seriously, because 
the average reader knows much lcss about your problem than you do. 
After all necessary changes have been performed, and you and other readers are satis- 
fied with thc publication, you can submit it to  a scientific journal. You should choose 
a journal which suits your paper. Where to  submit, you sholild discuss with experi- 
enced researchers. It is not possible to  give general advice on this issue. Nevertheless, 
technically the submission can be performed nowadays almost everywhere electroni- 
cally. For a list of publishers of some important journals in physics, please see Sec. 
13.9.1. Submitting one paper to  several journals in parallel is not allowed. However, 
you should also consider submitting to  the preprint server [25] as well to make your 
results quickly available t o  the physics community. 
Nevertheless, although this text provides many useful hints concerning performing 
computer simulations, the main part of the work is still having good ideas and carefully 
conducting the actual research projects. 
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