

Alexander K. Hartmann, Heiko Rieger

Optimization Algorithms
in Physics

Alexander K. Hartmann, Heiko Rieger

Optimization Algorithms
in Physics

Authors:
Alexander K. Hartmann, Institute of Theoretical Physics, University of Goettingen, Germany
e-mail: hartmann@theorie.physik.uni-goettingen.de
Heiko Rieger, Institute of Theoretical Physics, Saarland University, Germany
e-mail: rieger@lusi.uni-sb.de

1st edition

Library of Congress Card No: applied for

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British
Library.

Die Deutsche Bibliothek – CIP Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die Deutsche Bibliothek

This book was carefully produced. Nevertheless, authors and publisher do not warrant the information con-
tained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations,
procedural details or other items may inadvertently be inaccurate.

© Wiley-VCH Verlag Berlin GmbH, Berlin (Federal Republic of Germany), 2002

ISBN 3-527-40307-8

Printed on non-acid paper.

Printing: Strauss Offsetdruck GmbH, Mörlenbach
Bookbinding:Wilhelm Osswald & Co., Neustadt (Weinstraße)

Printed in the Federal Republic of Germany.

WILEY-VCH Verlag Berlin GmbH
Bühringstrasse 10
D-13086 Berlin

Preface

This book is an interdisciplinary book: it tries to teach physicists the basic knowledge
of combinatorial and stochastic optimization and describes to the computer scientists
physical problems and theoretical models in which their optimization algorithms are
needed. It is a unique book since it describes theoretical models and practical situation
in physics in which optimization problems occur, and it explains from a physicists point
of view the sophisticated and highly efficient algorithmic techniques that otherwise can
only be found specialized computer science textbooks or even just in research journals.
Traditionally, there has always been a strong scientific interaction between physicists
and mathematicians in developing physics theories. However, even though numerical
computations are now commonplace in physics, no comparable interaction between
physicists and computer scientists has been developed. Over the last three decades
the design and the analysis of algorithms for decision and optimization problems have
evolved rapidly. Most of the active transfer of the results was to economics and
engineering and many algorithmic developments were motivated by applications in
these areas.
The few interactions between physicists and computer scientists were often successful
and provided new insights in both fields. For example, in one direction, the algorith-
mic community has profited from the introduction of general purpose optimization
tools like the simulated annealing technique that originated in the physics community.
In the opposite direction, algorithms in linear, nonlinear, and discrete optimization
sometimes have the potential to be useful tools in physics, in particular in the study of
strongly disordered, amorphous and glassy materials. These systems have in common
a highly non-trivial minimal energy configuration, whose characteristic features dom-
inate the physics a t low temperatures. For a theoretical understanding the knowledge
of the so called "ground states" of model Hamiltonians, or optimal solutions of appro-
priate cost functions, is mandatory. To this end an efficient algorithm, applicable to
reasonably sized instances, is a necessary condition.
The list of interesting physical problems in this context is long, it ranges from disor-
dered magnets, structural glasses and superconductors through polymers, membranes,
and proteins to neural networks. The predominant method used by physicists to study
these questions numerically are Monte Carlo simulations and/or simulated annealing.
These methods are doomed to fail in the most interesting situations. But, as pointed
out above, many useful results in optimization algorithms research never reach the
physics community, and interesting computational problems in physics do not come to
the attention of algorithm designers. We therefore think that there is a definite need

VI Preface

to intensify the interaction between the computer science and physics communities.
We hope that this book will help to extend the bridge between these two groups. Since
one end is on the physics side, we will try to guide a number of physicists to a journey
to the other side such that they can profit from the enormous wealth in algorithmic
techniques they will find there and that could help them in solving their computational
problems.
In preparing this book we benefited greatly from many collaborations and discussions
with many of our colleagues. We would like to thank Timo Aspelmeier, Wolfgang
Bartel, Ian Campbell, Martin Feix, Martin Garcia, Ilia Grigorenko, Martin Weigt,
and Annette Zippelius for critical reading of the manuscript, many helpful discus-
sions and other manifold types of support. Furthermore, we have profited very much
from fruitful collaborations and/or interesting discussions with Mikko Alava, Jurgen
Bendisch, Ulrich Blasum, Eytan Domany, Phil Duxbury, Dieter Heermann, Guy Hed,
Heinz Horner, Jermoe Houdayer, Michael Junger, Naoki Kawashima, Jens Kisker,
Reimer Kuhn, Andreas Linke, Olivier Martin, Alan Middleton, Cristian Moukarzel,
Jae-Dong Noh, Uli Nowak, Matthias Otto, Raja Paul, Frank Pfeiffer, Gerhard Reinelt,
Federico Ricci-Tersenghi, Giovanni Rinaldi, Roland Schorr, Eira Seppalaa, Klaus Us-
adel, and Peter Young. We are particularly indebted to Michael Baer, Vera Dederichs
and Cornelia Reinemuth from Wiley-VCH for the excellent cooperation and Judith
Egan-Shuttler for the copy editing.
Work on this book was carried out at the University of thc Saarland, University of
Gottingen, Forschungszentrum Julich and the University of California at Santa Cruz
and we would like to acknowledge financial support from the Deutsche Forschungs-
geimeinschaft (DFG) and the European Science Foundation (ESF).

Santa Cruz and Saarbriicken May 2001 Alexander K. Hartmann and Heiko Rieger

Contents

I Introduction to Optimization
. Bibliography

2 Complexity Theory
. 2.1 Algorithms

. 2.2 Time Complexity

. 2.3 NP Completeness
. 2.4 Programming Techniques

. Bibliography

3 Graphs
. 3.1 Graphs

. 3.2 Trees and Lists
. 3.3 Networks

. 3.4 Graph Representations
. 3.5 Basic Graph Algorithms

. 3.6 NP-complete Graph Problenls
. Bibliography

4 Simple Graph Algorithms
. 4.1 The Connectivity-percolation Problem

. 4.1.1 Hoshen-Kopelman Algorithm
. 4.1.2 Other Algorithms for Connectivity Percolation

. 4.1.3 General Search Algorithms
. 4.2 Shortest-path Algorithms

. 4.2.1 The Directed Polymer in a Random Medium
. 4.2.2 Dijkstra's Algorithm

. 4.2.3 Label-correcting Algorithm
. 4.3 Minimum Spanning Tree

. Bibliography

5 Introduction to Statistical Physics
. 5.1 Basics of Statistical Physics

. 5.2 Phase Transitions
. 5.3 Percolation and Finite-size Scaling

VIII

. 5.4 Magnetic Transition
. 5.5 Disordered Systems

. Bibliography

6 Maximum-flow Methods
. 6.1 Random-field Systems and Diluted Antiferromagnets

. 6.2 Transformation to a Graph
. 6.3 Simple Maximum Flow Algorithms

. 6.4 Dinic's Method and the Wave Algorithm
. 6.5 Calculating all Ground States

. 6.6 Results for the RFIM and the DAFF
. Bibliography

7 Minimum-cost Flows
. 7.1 Motivation

. 7.2 The Solution of the N-Line Problem
. 7.3 Convex Mincost-flow Problems in Physics

. 7.4 General Minimum-cost-flow Algorithms
. 7.5 Miscellaneous Results for Different Models

. Bibliography

8 Genetic Algorithms
. 8.1 The Basic Scheme

. 8.2 Finding the Minimum of a Function
. 8.3 Ground States of One-dimensional Quantum Systems

. 8.4 Orbital Parameters of Interacting Galaxies
. Bibliography

9 Approximation Methods for Spin Glasses
. 9.1 Spin Glasses

9.1.1 Experimental Results .
. 9.1.2 Theoretical Approaches

. 9.2 Genetic Cluster-exact Approximation
. 9.3 Energy and Ground-state Statistics

. 9.4 Ballistic Search
. 9.5 Results

. Bibliography

10 Matchings
. 10.1 Matching and Spin Glasses

. 10.2 Definition of the General Matching Problem
. 10.3 Augmenting Paths

. 10.4 Matching Algorithms
10.4.1 Maximum-cardinality Matching on Bipartite Graphs
10.4.2 Minimum-weight Perfect Bipartite Matching

10.4.3 Cardinality Matching on General Graphs 241
10.4.4 Minimum-weight Perfect Matching for General Graphs 242

10.3 Ground-state Calculations in 2d . 250
. Bibliography 252

11 Monte Carlo Methods 255
11.1 Stochastic Optimization: Simple Concepts 255

. 11.2 Simulated Annealing 257
. 11.3 Parallel Tempering 260

11.4 Prune-enriched Rosenbluth Method (PERM) 262
. 11.5 ProteinFolding 266

. Bibliography 270

12 Branch-and-bound Methods 273
. 12.1 Vertex Covers 274

. 12.2 Numerical Methods 277
. 12.3 Results 287

. Bibliography 291

13 Practical Issues 293
. 13.1 Software Engineering 293

13.2 Object-oriented Software Development 300
. 13.3 Programming Style 306
. 13.4 Programming Tools 310

. 13.4.1 Using Macros 310
. 13.4.2 Make Files 314

. 13.4.3 Scripts 317
. 13.5 Libraries 319

. 13.5.1 Numerical Recipes 319
. 13.5.2 LEDA 321

. 13.5.3 Creating your own Libraries 323
. 13.6 Random Numbers 324

. 13.6.1 Generating Random Numbers 324
. 13.6.2 Irivcrsion Method 327

. 13.6.3 Rejection Method 328
. 13.6.4 The Gaussian Distribution 330

. 13.7 Tools for Testing 331
. 13.7.1 gdb 332

13.7.2 ddd . 334
. 13.7.3 checkergcc 334
. 13.8 Evaluating Data 338

. 13.8.1 Data Plotting 338

. 13.8.2 Curve Fitting 340
13.8.3 Finite-size Scaling . 343

. 13.9 Information Retrieval and Publishing 347

. 13.9.1 Searching for Literature 347
. 13.9.2 Preparing Publications 349

Bibliography . 355

Index 359

1 Introduction to Optimization

Optimization problems [l, 2, 31 are very common in everyday life. For example, when
driving to work one usually tries to take the shortest route. Sometimes additional
constraints have to be fulfilled, e.g. a bakery should be located along the path, in case
you did not have time for breakfast, or you are trying to avoid busy roads when riding
by bicycle.
In physics many applications of optimization methods are well know, e.g.

Even in beginners courses on theoretical physics, in classical mechanics, optimiza-
tion problcms occur: e.g. the Euler-Lagrange differential equation is obtained from
an optimization process.

Many physical systems are governed by minimization principles. For example, in
thermodynamics, a system coupled to a heat bath always takes the state with
minimal free energy.

When calculating the quantum mechanical behavior of atoms or small molecules,
quite often a variational approach is applied: the energy of a test state vector is
minimized with respect to some parameters.

Frequently, optimization is used as a tool: when a function with various parame-
ters is fitted onto experimental data points, then one searches for the parameters
which lead to the best fit.

Apart from these classical applications, during the last decade many problems in
physics have turned out to be in fact optimization problems, or can be transformed
into optimization problerns, for recent reviews, see Ref. [4, 5, 61. Examples are:

Determination of the self affine properties of polymers in random media

Study of interfaces and elastic manifolds in disordered environments

Investigation of the low-temperature behavior of disordered magnets

Evaluation of the morphology of flux lines in high temperature superconductors

Solution of the protein folding problem

0 Calculation of the ground states of electronic systems

Analysis of X-ray data

1 Introduction to Optimization

Optimization of lasers/optical fibers

0 Reconstruction of geological structures from seismic measurements

On the other hand, some classical cornbinatorial optimization problems occurring in
theoretical computer science have attracted the attention of physicists. The reason
is, that these problems exhibit phase transitions and that methods from statistical
physics can be applied to solve these problems.
An optimization problem can be described mathematically in the following way: let
a = (a l , . . . ,a,) be a vector with n elements which can take values from a domain -

X n : ai E X. The domain X can be either discrete, for instance X = (0, I} or X = Z
the set of all integers (in which case it is an integer optimization problem) or X can
be continuous, for instance X = R the real numbers. Moreover, let 'fl be a real valued
function, the cost function or objective, or in physics usually the Hamiltonian or the
energy of the system. The minimizat ion problem is then:

Find a E X n , which minimizes ?i!

A maximization problem is defined in an analogous way. We will consider only min-
imization problems, since maximizing a function H is equivalent to minimizing -H.
Here, only minimization problems are considered where the set X is countable. Then
the problem is called combinatorial or discrete. Optimization methods for real valued
variables are treated mainly in mathematical literature and in books on numerical
methods, see e.g. Ref. [7].
Constraints, which must hold for the solution, may be expressed by additional equa-
tions or inequalities. An arbitrary value of a, which fulfills all constraints, is called
feasible. Usually constraints can be expressed more conveniently without giving equa-
tions or inequalities. This is shown in the first example.

Example: Traveling Salesman Problem (TSP)

The TSP has attracted the interest of physicist several times. For an intro-
duction, see Ref. [8]. The model is briefly presented here. Consider n cities
distributed randomly in a plane. Without loss of generality the plane is con-
sidered to be the unit square. The minimization task is to find the shortest
round-tour through all cities which visits each city only once. The tour stops
at the city where it started. The problem is described by

where d(a,, ap) is the distance between cities a, and a0 and a,+l = a1. The
constraint that every city is visited only once can be realized by constraining
the vector to be a permutation of the sequence [I, 2 , . . . , n].

1 Introduction to Optimization

Figure 1.1: 15 cities in a plane.

As an example 15 cities in a plane are given in Fig. 1.1. You can try to
find the shortest tour. The solution is presented in Chap. 2. For the general
TSP the cities are not placed in a plane, but an arbitrary distance matrix d
is given. 0

The optimum order of the cities for a TSP depends on their exact positions, i.e.
on the random values of the distance matrix d. It is a feature of all problems we
will encounter here that they are characterized by various random parameters. Each
random realization of the parameters is called an ins tance of the problem. In general,
if we have a collection of optimization problems of the same (general) type, we will
call each single problem an instance of the general problem.
Because the values of the random parameters are fixed for each instance of the TSP,
one speaks of frozen or quenched disorder. To obtain information about the general
structure of a problem one has to average measurable quantities, like the length of the
shortest tour for the TSP, over the disorder. Later we will see that usually one has to
consider many different instances to get reliable results.
While the TSP originates from everyday life, in the following example from physics a
simple model describing complex magnetic materials is presented.

Example: Ising Spin Glasses

An Ising spin 0, is a small magnetic moment which can take, due to an-
isotropies of its environment, only two orientations called u p and down; e.g
a, = 411. For the simplest model of a magnetic material one assumes that
spins are placed on the sites of a simple lattice and that a spin interacts
only with its nearest neighbors. In a ferromagnet it is energetically favorable
for a spin to be in the same orientation as its neighbors, i.e. parallel spins

4 1 Introduction to Optimization

give a negative contribution to the total energy. On the other hand the
thermal noise causes different spins to point randomly up or down. For low
temperatures T the thermal noise is small, thus the system is ordered, i.e.
ferromagnetic. For temperatures higher than a critical temperature T,, no
long range order exists. One says that a phase transi t ion occurs at T,, see
Chap. 5. For a longer introduction to phase transitions, we refer the reader
e.g. to Ref. [9].

A spin configuration which occurs at T = 0 is called a ground state. It is just
thc absolute minimum of the energy H (g) of the system since no thermal
excitations are possible at T = 0. They are of great interest because they
serve as the basis for understanding the low temperature behavior of physical
systems. From what was said above, it is clear that in the ground state of
a ferromagnet all spins have the same orientation (if quantum mechanical
effects are neglected).

A more complicated class of materials are sp in glasses which exhibit not only
ferromagnetic but also ant i ferromagnet ic interactions, see Chap. 9. Pairs of
neighbors of spins connected by an antiferrornagnetic interaction like to be in
different orientations. In a spin glass, ferromagnetic and antiferromagnetic
interactions are distributed randornly within the lattice. Consequently, it is
not obvious what ground state configurations look like, i.e. finding the min-
imum energy is a non-trivial minimization problem. Formally the problem
reads as follows:

where Jij denotes the interaction between the spins on site i and site j and
the sum (i, j) runs over all pairs of nearest neighbors. The values of the
interactions are chosen according to some probability distribution. Each ran-
dom realization is given by the collection of all interactions {Jij). Even the
simplest distribution, where Jij = 1 or Jij = -1 with the same probability,
induces a highly non-trivial behavior of the system. Please note that the in-
teraction parameters are frozen variables, while the spins oi are free variables
which are to be adjusted in such a way that the encrgy becomes minimized.

Fig. 1.2 shows a small two-dimensional spin glass and one of its ground
states. For this type of system usually many different ground states for
each realization of the disorder are feasible. One says, the ground state is
degenerate. Algorithms for calculating degenerate spin-glass ground states
are explained in Chap. 9.

1 Introductzon to Optimization

Figure 1.2: Two-dimensional spin glass. Solid lines represent ferromagnetic inter-
actions while jagged lines represent antiferromagnetic interactions. The small arrows
represent the spins, adjusted to a ground-state configuration. For all except two in-
teractions (marked with a cross) the spins are oriented relative to each other in an
energetically favorable way. It is not possible to find a state with lower energy (try
it!).

These two examples, which are in general of equivalent computational complexity as
we will learn when reading this book, are just intended as motivation, as to why
dealing with optimization problems is an interesting and fruitful task. The aim of
this book is to give an introduction to methods how to solve these problems, i.e. how
to find the optimum. Interestingly, there is no single way to achieve this. For some
problems it is very easy while for others it is rather hard, this refers to the time you or
a computer will need at least to solve the problem, it does not say anything about the
elaborateness of the algorithms which are applied. Additionally, within the class of
hard or within the class of easy problcrns, there is no universal method. Usually, even
for each kind of problem there are many different ways to obtain an optimum. On the
other hand, there are several universal algorithms, but they find only approximations of
the true optima. In this book algorithms for easy and algorithms for hard problems are
presented. Some of the specialized methods give exact optima, while other algorithms,
which are described here, are approximation techniques.

Once a problem becomes large, i.e. when the number of variables n is large, it is
impossible to find a minimum by hand. Then computers are used to obtain a solution.
Only the rapid development in the field of computer science during the last two decades
has pushed forward the application of optimization methods to many problems from
science and real life.

6 1 Introduction to Optimization

In this book, efficient discrete computer algorithms and recent applications to problems
from physics are presented. The book is organized as follows. In the second chapter,
the foundations of complexity theory are explained. They are needed as a basis for
understanding the rest of the book. In the next chapter an introduction to graph theory
is given. Many physical questions can be mapped onto graph theoretical optimization
problems. Then, some simple algorithms from graph theory are explained, sample
applications are from percolation theory are presented. In the following chapter, the
basic notions from statistical physics, including phase transitions and finite-size scaling
are given. You can skip this chapter if you are familiar with the subject. The main
part of the book starts with the sixth chapter. Many algorithms are presented along
with sample problems from physics, which can be solved using the algorithms. First,
techniques to calculate the maximum flow in networks are exhibited. They can be
used to calculate the ground states of certain disordered magnetic materials. Next,
minimum-cost-flow methods are introduced and applied to solid-on-solid models and
vortex glasses. In the eighth chapter genetic algorithms are presented. They are
general purpose optimization methods and have been applied to various problems.
Here it is shown how ground states of electronic systems can be calculated and how the
parameters of interacting galaxies can be determined. Another type of general purpose
algorithm, the Monte Carlo method, is introduced along with several variants in the
following chapter. In the succeeding chapter. the emphasis is on algorithms for spin
glasses, which is a model that has been at the center of interest of statistical physicists
over the last two decades. In the twelfth chapter, a phase transition in a classical
combinatorial optimization problem, the vertex-cover problem, is studied. The final
chapter is dedicated to the practical aspects of scientific computing. An introduction
t o software engineering is given, along with many hints on how to organize the program
development in an efficient way, several tools for programming, debugging and data
analysis, and finally, it is shown how to find information using modern techniques such
as data bases and the Internet, and how you can prepare your results such that they
can be published in scientific journals.

Bibliography

[I] C.H. Papadimitriou and K. Steiglitz, Combinatorial Opt.imization, (Dover Publi-
cations, Mineola (NY) 1998)

[2] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinato-
rial Optimization, (J . Wiley & Sons, New York 1998)

[3] B. Korte and J . Vygen, Combinatorial Optimization, (Spinger, Berlin and Hei-
delberg 2000)

[4] J.C. Anglks d'Auriac, M. Preissmann, and A. Seb, J. Math. and Comp. Model.
26, 1 (1997)

[5] H. Rieger,in : J . Kertesz and I. Kondor (ed.), Advances in Computer Simulation,
Lecture Xotes in Physics 501, (Springer, Heidelberg 1998)

Bzbliography 7

[6] M.J. Alava, P.M. Duxbury, C. Moukarzel, and H. Ricger, Exact Combinatorial
Algorithms: Ground States of Disordered Systems, in: C. Domb and J.L. Lebowitz
(cd.), Phase Transitions and Critical Phenomena 18, (Academic press, New York
2001)

[7] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C , (Cambridge University Press, Cambridge 1995)

[8] S. Kirkpatrick , C. D. Gelatt, Jr . , and M. P. Vecchi, Science 220, 671 (1983)

[9] J.M. Yeomans, Statistical Mechanics of Phase Transitions, (Clarendon Press, Ox-
ford 1992)

2 Complexity Theory

Programming languages are used to instruct a computer what to do. Here no specific
language is chosen, since this is only a technical detail. We are more interested in
the general way a method works, i.e. in the algorithm. In the following chapters
we introduce a notation for algorithms, give some examples and explain the most
important results about algorithms provided by theoretical computer sciences.

2.1 Algorithms

Here we do riot want to try to give a precise definition of what an algorithm is. We
assume that an algorithm is a sequence of statements which is computer readable and
has an unambiguous meaning. Each algorithm may have input and output (see Fig.
2.1) which arc well defined objects such as sequences of numbers or letters. Neither
user-computer interaction nor high-level output such as graphics or sound are covered.
Please note that the communication between the main processing units and keyboards
or graphic-/sound- devices takes place via sequences of numbers as well. Thus, our
notion of an algorithm is universal.

Figure 2.1: Graphical representation of am algorithm.

Algorithms for several specific purposes will be presented later. We will concentrate
on the main ideas of each method and not on implementational details. Thus, the
algorithms will not be presented using a specific programming language. Instead, we
will use a notation for algorithms called pidgin Algol, which resembles modern high-
level languages like Algol, Pascal or C. But unlike any conventional programming
language, variables of an arbitrary type are allowed, e.g. they can represent numbers,
strings, lists, sets or graphs. It is not necessary to declare variables and there is no
strict syntax.
For the definition of pidgin Algol, we assume that the reader is familiar with at lcast onc
high-level language and that the meaning of the terms variable, eqmssion, condibion

10 2 Complexity Theory

and label is clear. A pidgin Algol program is one of the following statements , please
note that by using the compound statement, programs can be of arbitrary length:

1. Assignment
variable := expression

,4 value is assigned to a variable. Examples: a := 5 * b + c , A := { U I , . . . , an}

Also more complex and informal structures are allowed, like
let z be the first e lement of the queue Q

2 . Condit ion
if condition then statement 1

else statement 2

The else clause is optional. If the condition is true, statement 1 is executed, else
statement 2, if it exists.

Example: if money>100 then restaurant := 1 else restaurant := 0

3. Cases
case: condition 1

statement 1-A;
statementl-B;
...

case: condition 2
statement2-A;
statement2-B ;
. . .

case: condition 3
statement3-A;
statement3-B;

. . .
end cases

This statement is useful, if many different case can occur, thus making a sequence
of if statements too complex. If condition 1 is true, then the first block of state-
ments is executed (here no begin ... end is necessary). If condition 1 is true,
then the second block of statements is executed, etc.

4. While loop
while condition do statement

The statement is performed as long as the condition is true.

Example: while counter < 200 do counter := counter+l

5. For loop
for list do statement

The statement is executed for all parameters in the list. Examples:

2.1 Algorithms

for i := 1 , 2 , . . . ,n do s u m := sum+i

for all clcments q of queue Q do waits[q] := waits[q]+l

6 . Goto s tatement
a) label: s tatement
b) goto label

When the execution of an algorithm reaches a goto statement the execution is
continued at the statement which carries the corresponding label.

7. Compound s ta tement
begin

statement 1;
s tatement 2;
. . .
statement n;

end

The compound statement is used to convert a sequence of statements into one
statement. It is useful e.g. if a for-loop should be executed for a body of several
statements.

Example:
for i : = 1,2, . . . , n d o
begin

a := a + i ;
b : = b + i * i ;
c : = c + i * i * i ;

end

For briefness, sometimes a compound statement is written as a list of statements
in one line, without the begin and end keywords.

8. Procedures
procedure procedure-name (l is t of parameters)
begin

statements
return expression

end

The return statement is optional. A procedure is used to define a new name for
one statement or, using a compound statement, for a collection of statements. A
procedure can be invoked by writing: procedure-name (arguments)

Example:

2 Complexity Theory

procedure minimum (z, y)
beg in

if x>y t h e n r e t u r n y
else r e t u r n x

e n d

9. Comments
commen t text

Comments are used to explain parts of an algorithm, i.e. to aid in its under-
standing. Sometimes a comment is given a the right end of a line without the
commen t keyword.

10. Miscellaneous statements: practically any text which is self-explanatory is al-
lowed. Examples:

Calculate determinant D of matrix M
Calculate average waiting time for queue Q

As a first example we present a sin~ple heuristic for the TSP. This method constructs
a tour which is quite short, but it does not guarantee to find the optimum. The basic
idea is to start at a randomly chosen city. Then iteratively the city which has the
shortest distance from the present city, i.e. its nearest neighbor, is chosen from the set
of cities which have not been visited yet. Thc array u will be used to indicate which
cities already belong to the tour. Please remember that d(i; j) denotes the distance
between cities i and j and n is the number of cities.

a lgor i thm TSP-nearest-neighbor(n; {d(i, j)))
begin

for i := 1 , 2 , . . . ; n d o
li[i] := 0;

01 := one arbitrarily chosen city;
u[al] := 1;
f o r i : = 2 , 3 , . . . , n d o
begin

min := m;
for all unvisited cities j d o

if d (c ~ + ~ , j) < min t h e n
min := d (~ , - ~ , j); ai := j;

?J[cJi] := 1;
e n d

e n d

Please note that the length of the tour constructed in this way depends on the city
where the tour starts and t,hat this city is randomly chosen. This algorithm and
many other heuristics for the TSP can be found on the well presented TSP web-pages

2.1 Algorithms 13

of Stephan Mertens [I]. On these pages different TSP algorithms are implemented
using Java-applets. It is possible to run the algorithms step by step and watch the
construction of the tour on the screen. In Fig. 2.2 the results for one sample of 15
cities are shown. The top part presents a Java-applet which contains results for the
heuristic while in the bottom part the shortest tour is given.
The basis tools and results for the analysis of algorithms were developed in the field of
theoretical computer science. For a beginner many of the results may seem unimpor-
tant for practical programming purposes. But in fact, for the development of effective
algorithms their knowledge is essential. Here we give the reader just a short glimpse
into the field by presenting the most fundamental definitions and results. As an exam-
ple we will prove in the second part of this section that there are functions of natural
numbers which cannot be programmed on a computer. For this purpose an important
technique called diagonalization is used. Now we will prepare the proof in several
steps.
Pidgin Algol is sufficient to present and analyze algorithms. But for a theoretical
treatment exact methods and tools are necessary. For this purpose a precise definition
of algorithms is needed. Formal models of computation such as the Turing machine
are used, where everything is stored on a tape via a readlwrite head. Also very

common is the Random access machine which is a simple model of real computers
consisting of an RAM memory and a central processing unit. It can be shown that all
reasonable formal machine models are equivalent. This means that for any program
on one model an equivalent program can be written for a different model. For more
information the reader is referred e.g. to [2].
The observation that all reasonable machine models are equivalent has led to the
Church's thesis: "For any algorithm a program can be written on all reasonable ma-
chine models." Since the term algorithm cannot be defined exactly it is impossible
to prove Church's thesis. Nobody has come up with an algorithm that cannot be
transfered to a computer. Hence, it seems reasonable that this thesis is true.
In the following we will concentrate on programs which have just one natural number
as input and one natural number as output. This is not a restriction because every
input/output sequence can be regarded as one long list of bits, i.e. one (possibly large)
natural number.
Every program of this kind realizes a partial function f : N + N from natural
numbers to natural numbers. The term partial means that they may be not defined
for every input value, the corresponding program for f will run forever for some input
rc. If f is not defined for the argument x we write f (x) = div.
As a next step towards the proof that there are functions which are not computable,
we present a method of how to enumerate all computable functions. This enumeration
works by assigning a code-number to each program. For a precise definition of the
assignment, one must utilize a precise machine model like the Turing machine or the
random access machine. Here a simple t,reatment is sufficient for our purpose. Thus,
we can assume that the programs arc writtcn in a high level languagc like C, but
restricted to the case where only one input and one output number (with arbitrary
high precision) is allowed. The code-number is assigned to a program in the following
way: when the program is stored in memory it is just a long sequence of bits. This is

2 Complexzty T h e o ~ y

Figure 2.2: A sample TSP containing 15 cities. The results for the nearest-neighbor
heuristic (top) and the exact optimum tour (bottom) are shown. The starting city
for the heuristic is marked by a white square. The nearest neighbor of that city is
located above it.

quite a long natural number, representing the program in a unique way. Now, let f n
be the function which is defined through the text with number n, if the text is a valid

2.1 Algorithms 15

program. If text n is not a valid program or if the program has more than one input
or output number, then we define f n (x) = div for all x E N . In total, this procedure
assigns a function to each number.
All functions which can be programmed on a computer are called computable. Please
note that for every computable function f there are multiple ways to write a program,
thus there are many numbers n with f , = f . Now we want to show:
There are functions f : N + N which are no t computable
Proof: We define the following function

Evidently, this is a well defined partial function on the natural numbers. The point is
that it is different from all computable functions f,, i.e. f * itself is not computable:

QED
The technique applied in the proof above is called diagonalization. The reason is that
if one tabulates the infinite matrix consisting of the values f,(i) then the function f * is
different from each f , on the diagonal f n (n) . The principle used for the construction
of f * is visualized in Fig. 2.3. The technique of diagonalization is very useful for many
proofs occurring not only in the area of theoretical computer science but also in many
fields of mathematics. The method was probably introduced by Georg Cantor a t the
beginning of thc century to show that there are more than a countable number of real
numbers.

Figure 2.3: Principle of diagonalization: define a function which differs from all
computable functions on the diagonal.

It should be pointed out that the existence of f* is not a contradiction to Church's
thesis since f * is not defined through an algorithm. If someone tries to implement
the function f* from above, he/she must have an algorithm or test available which
tells whether a given computer program will halt a t some time or whether it will run

16 2 Complexity Theory

forever (f,(x) = div). The question whether a given program stops or not is called
the halting problem. With a similar and related diagonalization argument as we have
seen above, it can be shown that there is indeed no solution to this problem. It means
that no universal algorithm exists which decides for all programs whether the program
will halt with a given input or run forever. On the other hand, if a test for the halting
problem was available it would be easy to implement the function f * on a computer,
i.e. f * would be computable. Thus, the undecidability of the halting problem follows
from the fact that f * is also not computable.
In principle, it is always possible to prove for a given program whether it will halt
on a given input or not by checking the code and deep thinking. The insolvability of
the halting problem just means that there is no systematic way, i.e. no algorithm to
construct a proof for a n y given program. Here, as for most proofs in mathematics, the
person who carries it out rnust rely on his/her creativity. But with increasing length
of the program the proof usually becomes extremely difficult. I t is not surprising that
for realistic programs like word processors or databases no such proofs are available.
The same is true for the correctness problem: There is no systematic way to prove
that a given program works according a given specification. On the other hand, this
is fortunate, since otherwise many computer scientists and programmers would be
unemployed.
The halting problem is a so called recognition problem: for the question "will Program
Pn halt on input x" only the answers "yes" or "no" are possible. In general, we will
call an instance (here a program) yes-instance if the answer is "yes" for it, otherwise
no-instance. As we have seen, the halting-problem is not decidable, because it is not
possible to prove the answer "no" systematically. But if the answer is "yes", i.e. if the
program stops, this can always be proven: just take the program Pn, supply input x,
run it and wait till it stops. This is the reason why the halting problem a t least is
provable.

2.2 Time Complexity

After we have taken a glimpse at the theory of computability, we will proceed with
defining the t i m e complexity of an algorithm which describes its speed. We will define
under what circumstances we call an algorithm effective. The speed of a program
can only be determined if it halts on every input. For all optimization problems we
will encounter, there are algorithms which stop on all inputs. Consequently, we will
restrict ourself t o this case.
Almost always the time for executing a program depends on the input. Here, we are
interested in the dependence on the size 1x1 of the input x. For example, finding a
tour visiting 10 cities usually takes less time than finding a tour which passes through
one million cities. The most straightforward way of defining the size of the input
is counting the number of bits (without leading zeros). But for most problems a
"natural" size is obvious, e.g. the number of cities for the TSP or the number of spins
for the spin-glass problem. Sometimes there is more than one characteristic size, e.g.
a general TSP is given through several distances between pairs of cities. Then the

2.2 Time Complexity 17

execution time of a program may also depend on the number of distances, i.e. the
number of nonzero entries of the matrix d (i , j) .
Usually one is not interested in the actual running time t(z) of an algorithm for a
specific implementation on a given computer. Obviously, this depends on the input,
the skills of the programmer, the quality of the compiler and the amount of money
which is available for buying the computer. Instead, one would like to have some kind
of measure that characterizes the algorithm itself.
As a first step, one takes the longest running time over all inputs of a given length.
This is called the worst case running time or worst case time complezity T(n,):

T(n) = max t (z)
x: /xI=n

Here, the time is measured in sornc arbitrary units. Which unit is used is not relevant:
on a computer B which has exactly twice the speed of computer A a program will
consume only half the time. We want to characterize the algorithm itself. Therefore,
a good measure must be independent of such constant factors like the speed of a
computer. To get rid of these constant factors one tries to determine the asymptotic
behavior of a program by giving upper bounds:
Definition: 0/0 notation Let T ,g be functions from natural numbers to real
numbers.

We write T(n) E O(g(n)) if there existjs a positive constant c with T(n) < cg(n)
for all n. We say: T (n) is of order at most g(n).

T (n) E O(g(n)) if there exist two positive constants cl,ca with clg(n) < T (n) 5
cag(n) Qn. We say: T(n) is of order g(n) .

Example: 010-notation

For T (n) = pn3 + qn2 + rn , the cubic term is the fastest growing part: Let
c 5 p + q + r. Then T(n) < en3 Vn, which means T(n) E 0 (n3) . Since e.g.
n4 ; 2n are growing faster than n3, wc have T (n) E 0 (n 4) and T (n) E O(2").
Let c' z min{p, q, r) . Then c'n3 < T(n) < en3. Hence, T(n) t 0(n3) . This
smallest upper bond characterizes T (n) most precisely.

We are interested in obtaining the time complexity of a given algorithm without actu-
ally implementing and running it. The aim is to analyze the algorithm given in pidgin
Algol. For this purpose we have to know how long basic operations like assignments,
increments and nlultiplications take. Here we assume that a machine is available where
all basic operations take one time-step. This restricts our arithmetic operations to a
fixed number of bits, i.e. numbers of arbitrary length cannot be computed. If we en-
counter a problem where numbers of arbitrary precision can occur, we must include
the time needed for the arithmetic operations explicitly in the analysis.
As an example, the time complexity of the TSP heuristic will now be investigated,
which was presented in the last section. At the beginning of the algorithm a loop

18 2 Complexity Theory

is performed which sets all variables v[i] to zero. Each assignment costs a constant
amount of time. The loop is performed n times. Thus, the loop is performed in
O (n) . The random choice of a city and the assignment of v[al] take constant time.
The rest of the algorithm is a loop over all cities which is performed n - 1 times.
The loop consists of assignments, comparisons and another loop which runs over all
unvisited cities. Therefore, the inner loop is performed n - 1 times for i = 2, n - 2
times for i = 3, etc. Consequently, the if-statement inside that loop is performed
CrZ2(n + I - i) = ~ l n ~ ') (n - i) = n(n - 1)/2 times. Asymptotically this pair of
nested loops is the most time-consuming part of the algorithm. Thus, in total the
algorithm has a time complexity of @in2).
Can the TSP heuristic be considered as being fast? Tab. 2.1 shows the growth of
several functions as a function of input size n .

Table 2.1: Growth of functions as a function of input size n.

T(n)
n
n log n
n2
TL

n'og n

2"
n,!

For algorithms which have a time complexity that grows faster than all polynomials,
even moderate increases of the system size make the problem impossible to treat.
Therefore, we will call an algorithm effecttiwe if its time complexity is bounded by
a polynomial: T (n) E O(nk) . In practice, values of the exponent up to k = 3 are
considered as suitable. For very large exponents and small system sizes algorithms
with exponentially growing time complexity may be more useful. Compare for example
an algorithm with Tl(n) = nsO and another with T2(n) = 2". The running-time of the
first algorithm is astronomical even for n = 3, while the second one is able to treat at
least small input sizes.
The application of the 010-notation neglects constants or lower order terms for the
time complexity. Again, in practice an algorithm with running time T3(n) = n3 may
be faster for small input sizes than another with T4(n) = 100n2. But these kinds of
examples are very rare and rather artificial.
In general, finding an algorithm which has a lower time complexity is always more
effective than waiting for a computer to arrive that is ten times faster. Consider two
algorithms with time complexities T5(n) = n logn and T6 (n) = n3. Let n:, respectively
n6 be the rnaximum problem sizes which can be treated within one day of computer
time. If a computer is available which is ten times faster, the first algorithm can treat
approximately inputs of size n5 x 10 (if n5 is large) within one day while for the second
the maximum input size grows only as ns x

2.3 NP Completeness 19

To summarize, algorithms which run in polynomial time are considered as being fast.
But there are many problems, especially optimization problems, where no polynomial-
time algorithm is known. Then one must apply algorithms where the running time
increases exponentially or even greater with the system size. This holds e.g. for the
TSP if the exact minimum tour is to be computed. The study of such problems led to
the concept of NP-completeness, which is introduced in the next section.

2.3 NP Completeness

For the moment, we will only consider recognition problems. Please remember that
these are problems for which only the answers "yes" or "no" are possible. We have
already have introduced the halting and the correctness-problem which are not de-
cidable. The following example of a recognition problem, called SAT is of more
practical interest. In the field of theoretical computer science it is one of the most
basic recognition problems. For SAT it was first shown that many other recognition
problems can mapped onto it. This will be explained in detail later on. Recently SAT
has attracted much attention within the physics community [3].

Example: k-satisfiability (k-SAT)

A boolean variable xi may only take the values 0 (false) and 1 (true). Here
we consider three boolean operations:

-

NOT (negation): the clause % ("NOT xi") is true (z = I) , if and
only if (iff) xi is false: xi = 0

0 AND A (conjunction): the clause zi A x j ("xi AND xjl ') is true, iff both
variables are truc: xi = 1 AND x j = 1.

0 OR V (disjunction): the clause xi V x j ('!xi OR xj") is true, iff at least
one of the variables is true: xi = 1 OR x j = 1

A variable xi or its negation % is called a literal. Using parentheses different
clauses may be combined to produce complex boolean formulas, e.g. (XI V
-
2 2) A (23 V 22).

A formula is called satisfiable, if there is at least one assignment for the
values of its variables such that the whole formula is true. For example, the
formula (F V xa) A is satisfiable, because for xl = 0, x2 = 0 it is true.
The formula (z V x2) A A xl is not satisfiable, because A xl implies
21 = 1 , ~ = 0, but then (E V z2) is false.

For the k-SAT problem, formulae of the following type are considered, called
k-CNF (conjunctive normal form) formulae: each formula F consists of m
clauses C, combined by the AND operator:

20 2 Complex i ty T h e o r y

Each clause C, has k literals l,, containing distinct variables combined by
the OR-operator:

For example (x l V z a) A (a V a) A (q V x 3) is a 2-CNF formula, while
(XI V V 5 3) A (E V ~3 V a) is a 3-CNF formula.

The class M A T consists of all problems of the form "is F satisfiable?" where
F is a k-CNF formula. The question whether an arbitrary formula is satis-
fiable is an instance of such a defined SAT problem. Please note that every
boolean formula can be rewritten as a conjunction of clauses each containing
only disjunctions and negations. This form is called CNF. 0

We have already seen that some recognition problems are undecidable. For these
problems it has been proven that no algorithm can be provided to solve it. The k-SAT
problem is decidable, i.e. there is a so called decision-algorithm which gives for each
instance of a k-SAT problem the answer "yes" or "no". The simplest algorithm uses
the fact that each formula contains a finite number n of variables. Therefore, there
are exactly 2n different assignments for the values of all variables. To check whether a
formula is satisfiable, one can scan through all possible assignments and check whether
the formula evaluates to true or to false. If for one of them the formula is true, then it
is satisfiable, otherwise not. In the Tab. 2.2 all possible assignments for the variables
of (22 V x 3) A (51 V G) and the results for both clauses and thc whole formula is
displayed. A table of this kind is called a truth table.

Table 2.2: Truth table

Since for each formula up to 2n assignrnents have to be tested, this general algorithm
has an exponential time complexity (in the number of variables). Since the number of
variables is bounded by the number km (m = number of clauses), the algorithm is of
order 0 (2 k m) . But there are special cases where a faster algorithm exists. Consider
for example the 1-SAT class. Here each formula has the form l1 A 12 A . . . A I,, where
I , are literals, i.e. I , = rck or 1 , = for some i . Since each literal has to be true so

2.3 NP Completeness 21

that the formula is true, the following simple algorithm tests whether a given 1-SAT
formula is satisfiable. Its idea is to scan the formula from left to right. Variables are
set such that each literal becomes true. If a literal cannot be satisfied because the
corresponding variable is already fixed, then the formula is not satisfiable. If on the
other hand the end of the formula is reached, it is satisfiable.

a lgor i thm 1-SAT
begin

initially all xi are uriset;
for i := 1 , 2 . . . , m d o
begin

let k be the number of variables occurring in literal li: li = xk or li = G;
if xk is unset t h e n

choose xk such that li=true;
else

if literal li=false t h e n
return(no); commen t not satisfiable

e n d
return(yes); commen t satisfiable

e n d

x1 A X3 A T, A x2 + unsatisfiable
t

Figure 2.4: Sample run of algorithm 1-SAT for formula XI A A 5 A 22

Obviously the algorithm tests whether a 1-SAT formula is satisfiable or not. Fig. 2.4
shows, as an example, how the formula xl A A % A x2 is processed. In the left
column the formula is displayed and an arrow indicates the literal which is treated.
The right column shows the assignments of the variables. The first line shows the
initial situation. The first literal (11 = xl -+ k = 1) causes z l = 1 (second line). In
the second round (12 = ?& j k = 3) x3 = 0 is set. The variable of the third literal
(13 = % 3 k = 1) is set already, but the literal is false. Conscquently, the formula is
not satisfiable.
The algorithm contains only one loop. The operations inside the loop take a constant
time. Therefore, the algorithm is O(rn) , which is clearly faster than 0(2"). For 2-

22 2 Complexity Theory

SAT also a polynomial-time algorithm is known, for more details see [4]. Both I-SAT
and 2-SAT belong to the following class of problems:
Definition: P (polynomial) The class P contains all recognition-problems for which
there exists a polynomial-time decision algorithm.
is of more practical interest. For 3-SAT problems no polynomial-time algorithm which
checks satisfiability is known. On the other hand, up to now there is no proof that
3-SATgP! But, since many clever people have failed to find an effective algorithm, it
is very likely that 3-SAT (and &SAT for k > 3) is not decidable in polynomial time.
There is another class of recognition problems A, which now will be defined. For
this purpose we use certzficate-checking (CC) algorithms. These are algorithms A
which get as input instances a EA like decision algorithms and additionally strings
s = slsz . . . s,, called certzficates (made from a suitable alphabet). Like decision
algorithms they halt on all inputs (a, s) and return only "yes" or "no". The meaning
of the certificate strings will become clear from the following. A new class, called NP,
can be described as follows:

Figure 2.5: Classes P and NP

The difference between P and NP is (see Fig. 2.5): for a yes-instance of a P problem
the decision algorithm answers "yes". For a yes-instance of an NP problem there exists
at least one certificate-string s such that the CC algorithm answers "yes", i.e. there
may be many certificate strings s with A(a, s)= "no" even if a is a yes-instance. For
a no-instance of a P problem the decision algorithm answers "no", while for a no-
instance of an NP problem the CC algorithm answers "no" for all possible certificate
strings s . As a consequence, P is a subset of NP, since every decision algorithm can
be extended t o a certificate-checking algorithm by ignoring the certificate.
The formal definition of NP is as follows:
Definition: N P (nondeterministic polynomial) A recognition-problem A is in
the class NP, if there is a polynomial-time (in lal, a €A) certificate-checking algorithm
with the following property:
An instance a EA is a yes-instance if there is at least one certificate s with A(a, s)=yes,
for which the length Is1 is polynomial in la1 (3z : Is1 5 lal").
In fact, the requirement that the length of s is polynomial in la1 is redundant, since the
algorithm is allowed to run only a polynomial number of steps. During that time the

2.3 NP Completeness 23

algorithm can read only a certain number of symbols from s which cannot be larger
than the number of steps itself. Nevertheless, the length-requirement on s is included
for clarity in the definition.
The concept of certificate-checking seems rather strange at first. It becomes clearer if
one takes a look at k-SAT. We show &SAT E NP: is of more practical interest.
Proof: Let F (x l , . . . , x,) be a boolean formula. The suitable certificate s for the
k-SAT problem represents just one assignment for all variables of the formula: s =
S ~ S Z . . . s,, si E (0, I). Clearly, the number of variables occurring in a formula is
bounded by the length of the formula: 1st 5 lFll. The certificate-checking algorithm
just assigns the values to the variables (xi := si) and evaluates the formula. This
can be done in linear time by scanning the formula from left to right, similar to the
algorithm for 1-SAT. The algorithm answers "yes" if the formula is true and "no"
otherwise. If a formula is satisfiable, then, by definition, there is an assignment of the
variables, for which the formula F is true. Consequently, then there is a certificate s
for which the algorithm answers A(F, s)=yes. QED
The name "nondeterministic polynomial" comes from the fact that one can show
that a nondeterministic algorithm can decide N P problems in polynomial time. A
normal algorithm is deterministic, i.e. from a given state of the algorithm, which
consists of the values of all variables and the program line where the execution is
at one moment, and the next state follows in a deterministic way. Nondeterministic
algorithms are able to choose the next state randomly. Thus, a machine executing
nondeterministic algorithms is just a theoretical construct, but in reality cannot be
built yet1. The definition of N P relies on certificate-checking algorithms. For each CC
algorithm an equivalent nondeterministic algorithm can be formulated in the following
way. The steps where a CC algorithm reads the certificate can be replaced by the
nondeterministic changes of state. An instance is a yes-instance if there is at least one
run of the nondeterministic algorithm which answers "yes" with the instance as input.
Thus, both models are equivalent.
As we have stated above, different recognition problems can be mapped onto each
other. Since all algorithms which we encounter in this context are polynomial, only
transformations are of interest which can be carried through in polynomial time as well
(as a function of the length of an instance). The precise definition of the transformation
is as follows:
Definition: Polynomial-time reducible Let A, B be two recognition problems.

We say A is polynomial-time reducible t o B (A<,B), if there is a polynomial-time
algorithm f such that

x is yes-instance of A u f (x) is yes-instance of B

Fig. 2.6 shows how a certificate-checking algorithm for B can be transformed into a
certificate-checking algorithm for A using the polynomial-time transformation f .
As an example we will prove SAT<,3-SAT, i.e. every boolean formula F can be written
as a 3-CNF formula F3 such that F3 is satisfiable iff F is satisfiable. The transforma-
tion runs in polynomial time in I FI.

'Quantum computers can be seen as a realization of nondeterministic algorithms.

Algorithm for A

2 Complexity Theory

Algorithm -D-{ior~)I-
Figure 2.6: Polynomial-time reducibility: a certificate-checking algorithm for prob-
lem A consisting of the transformation f and the algorithm for B.

Example: Transformation SAT + 3-SAT

Let F = CI A Cz A. . . A C, be a boolean formula in CNF, i.e. every clause C,
contains disjunctions of literals I,,. We are now constructing a new formula
F3 by replacing each clause C, by a sequence of clauses in the following way:

0 If Cp has three literals, we do nothing.

If Cp has more than three literals, say C, = Zl V l2 V . . . V 1, (z > 3),
we introduce z - 3 new variables yl, y ~ , . . . , yZ and replace C, by z - 2
clauses (11 V12 V yl)A(?JIV13 Vya) A . . . (E V 1 , - 1 Vl,).
Now assume that C, = 1, then at least one I, = 1. Now we choose yi = 1
for all i 5 p - 2 and yi = 0 for all i > p - 2. Then all new z - 2 clauses
are true. On the other hand, if the conjunction of the z - 2 clauses is
true, there must be at least one li = 1. Consequently, if Cp is satisfiable,
then the new clauses are satisfiable as well and vice versa.

Finally the case where Cp has less than three literals. If Cp = 1 we
replace it by 1 V yl V ya and if C, = 11 V l2 we replace it by Z I V la V yl. In
order to keep (un)satisfiability we have to ensure that the new variables
91, y2 are always false. We cannot just add 1 A 2; because every clause
has to contain three literals. Therefore, we have to add, with zl, z2 two
additional new variables: (1 V zl V za) A (1 V V v z2) A (?jl V ZI V E) A
(? J I v E V %) A (~ J ~ V Z ~ V Z ~) A (~ J ~ V ~ V Z ~) A (~ J ~ V Z ~ V Z ~) A (~ V ~ V Z) .

In the end we have a 3-CNF formula F3 which is (un)satisfiable iff F is
(un)satisfiable. The construction of F3 obviously works in polynomial time.
Consequently, SAT 5, 3-SAT.

There is a special subset of NP problems which reflects in some sense the general
attributes of all problems in NP: it is possible to reduce all problems of NP to them.
This leads to the following definition:

2.3 NP Completeness 25

Definition: NP-completeness The recognition problem A E NP is called NP-
complete if all problems BENP are polynomial reducible to A:

It can be shown that SAT is NP-complete. The proof is quite technical. It requires
an exact machine model for certificate-checking algorithms. The basic idea is: each
problem in NP has a certificate-checking algorithm. For that algorithm, a given in-
stance and a given certificate, an equivalent boolean formula is constructed which is
only satisfiable if the algorithm answers "yes" given the instance and the certificate.
For more details see [4, 2, 51.
Above we have outlined a simple certificate-checking algorithm for SAT. Consequently,
using the transformation from the proof that SAT is NP-complete, one can construct a
certificate-checking algorithm for every problem in NP. In practice this is never done.
since it is always easier t o invent such an algorithm for each problem in NP directly.
Since SAT is NP-complctc, A<,SAT for every problem AENP. Above we have shown
SAT5,3-SAT. Since the <,-relation is transitive, we obtain ASPS-SAT. Consequently,
3-SAT is NP-complete as well. There are many other problems in NP which are NP-
complete. For a proof it is sufficient to show A<,B for any other NP-complete problem
A, e.g. 3-SAT<,B. The list of NP-complete problems is growing permanently. Several
of them can be found in [6].
As we have said above, P is a subset of NP. If for one NP-complete problem a
polynomial-time decision algorithm will be found one day, then, using the polyno-
mial time reducibility, this algorithm can decide every problem in NP in polynomial
time. Consequently, P=NP would hold. But for no problem in NP has a polynomial-
time decision algorithm been found so far. On the other hand for no problem in NP
is there a proof that no such algorithm exists. Therefore the so called P-NP-problem,
whether P f N P or P=NP, is still unsolved, but P=NP seems to be very unlikely. We
can draw everything that we know about the different classes in a figure: NP is a
subset of the set of decidable problems. The NP-complete problems are a subset of
NP. P is a subset of NP. If we assume PfNP, then problems in P are not NP-complete
(see Fig. 2.7).
In this section we have concentrated on recognition problems. Optimization problems
are not recognition problems since one tries to find a minimum or maximum. This is
not a question that can be answered by "yes" or "no". But, every problem min H(g)
can be transformed into a recognition problem of the form

"given a value K , is there a g with H(g) 5 K?"

It is very easy to see that the recognition problems for the TSP and the spin-glass
ground state are in NP: given an instance of the problem and given a tourla spin
configuration (the certificates) the length of the tourlenergy of the configuration can
be computed in polynomial time. Thus, the question "is H (a) 5 K " can be answered
easily.
If the corresponding recognition problem for an optimization problem is NP-complete,
then the optimization problem is called NP-hard. In general, these are problems which

2 Complexity Theory

I recognition problems

Figure 2.7: Relation between different classes of recognition problems.

are harder than problems from NP or which are not recognition problems, but every
problem in N P can be reduced to them. This leads to the definition:
Definition: NP-hard Let A be a problem such that every problem in N P is poly-
nomial reducible to A. If AGNP then A is called NP-hard.
From what we have learned in this section, it is clear that for an NP-hard problem
no algorithm is known which finds the optimum in polynomial time. Otherwise the
corresponding recognition problem could be solved in polynomial time as well, by just
testing whether the thus obtained optimum is lower than m or not.
The TSP and the search for a ground state of spin glasses in three dimensions are
both NP-hard. Thus, only algorithms with exponentially increasing running time are
available, if one is interested in obtaining the exact minimum. Unfortunately this
is true for most interesting optimization problems. Therefor, clever programming
techniques are needed to implement fast algorithms. Here "fast" means slowly but
still growing exponentially. In the next section, some of the most basic programming
techniques are presented. They are not only very useful for the implementation of
optimization methods but for all kinds of algorithms as well.

2.4 Programming Techniques

In this section useful standard programming techniques are presented: recursion,
divide-and-conquer, dynamic programming and back-tracking. Since there are many
specialized textbooks in this field [7, 81 we will demonstrate these fundamental tech-
niques only by presenting simple examples. Furthermore, for efficient data structures,
which also play a key role in the development of fast programs, we have to refer to
these textbooks. On the Internet the LEDA library is available [9] which contains
lots of useful data types and algorithms written in C++.
If a program has to perform many similar tasks this can be expressed as a loop, e.g.

2.4 Programming Techniques 2 7

with the while-statement from pidgin Algol. Sometimes it is more convenient to use
the concept of recursion, especially if the quantity to be calculated has a recursive
definition. One speaks of recursion if an algorithm calls itself. As a simple example we
present an algorithm for the calculation of the factorial n! of a natural number n > 0.
Its recursive definition is given by:

i f n = l
n! =

n x (n - I) ! else

This definition can be translated directly into an algorithm:

a lgor i thm factorial(n)
beg in

if n <1 t h e n
r e t u r n 1;

else
r e t u r n r~*factorial(n - 1);

e n d

In the first line it is tested whether n 51 instead of testing for n = 1. Therefore, it is
guaranteed that the algorithm halts on all inputs.
During the execution of factorial(n) a sequence of nested calls of the algorithm is
created up to the point where the algorithm is called with argument 1. The call to
factorial(n) begins before and is finished after all other calls to factorial(i) with i < n.
The hierarchy in Fig. 2.8 shows the calls for the calculation of factorial(4).

&
return 1

return 2x(l)
4

7

W
return 3x(2)

return 6x(4)

Figure 2.8: Hierarchy of recursive calls for calculation of factorial(4).

Every recursive algorithm can be rewritten as a sequential algorithm, containing no
calls to itself. Instead loops are used. Usually, sequential versions are faster by some
constant factor but harder to understand, at least if the algorithm is more complicated
than in the present example. The sequential version for the calculation of the factorial
reads as follows:

2 Complexity Theory

algorithm factorial2(n)
begin

t := I ; comment this is a counter
f := 1; comment here the result is stored
while t 5 n do
begin

f := f * t ;
t := t + 1;

end
return f ;

end

The sequential factorial algorithm contains one loop which is executed n times. Thus,
the algorithm runs in O(n) steps. For the recursive variant the time complexity is
not so obvious. For the analysis of recursive algorithms, one has to write down a
recurrence equation for the execution time. For n = 1, the factorial algorithm takes
constant time T(1). For n > 1 the algorithm takes the time T (n - 1) for the execution
of factorial(n - 1) plus another constant time for the multiplication. Here and in the
following, let C be the maximum of all occurring constants. Then, we obtain

for n = 1
T (n) = { E + T (n - 1) f o r m > 1

One can verify easily that T(n) = C n is the solutiori of the recurrence, i.e. both recur-
sive and sequential algorithms have the same asymptotic time complexities. There are
many examples, where a recursive algorithm is asymptotically faster than a straight-
forward sequential solution, e.g. see [7].
An important area for the application of efficient algorithms are sorting problems.
Given n numbers (or strings or complex data structures) Ai (i = 1 , 2 , . . . , n) we want
to find a permutation Bi of them such that they are sorted in (say) increasing order:
Bi < Bi+l for all i < n. There is a simple recursive algorithm for sorting elements.
Please note that the sorting is performed within the array Ai they were provided in.
Here this means the ualues of the numbers are not taken as arguments, i.e. there
are no local variables which take the valucs. Instead the variables (or their memory
positions) themselves are passed to the following algorithm. Therefore, the algorithm
can change the original data. The basic idea of the algorithm is to look for the largest
element of the array, store it in the last position, and sort the first n - 1 elements by
a recursive call. The algorithmic presentation follows on the next page.

2.4 Prog~amming Techniques

algorithm sort(n,{Al, . . . ,An))
begin

if n = 1 then
return;

mas := 1; comment will contain maximum of all Ai
pos := 1 comment will contain position of maximum
t := 2;
while t 5 n comment look for maximum

if At >mas then
begin

mas := At;
pos := t ;

end
exchange maxirnum and last element;
sort(n - l,{Al, . . . , An-1))

end

In Fig. 2.9 it is shown how the algorithrn runs with input (6, {5,9,3,6,2,1}). On the
left side the recursive sequence of calls is itemized. The maximum element for each
call is marked. In the right column the actual state of the array before the next call
is displayed.

Figure 2.9: Run of the sorting algorithm with input (6, {5,9,3,6,2,1)).

The algorithrn takes linear time to find the maximum element plus the time for sorting
n - I numbers, i.e. for the time complexity T(n) one obtains the following recurrence:

(n = I)
T (n) =

Obviously, the solution of the recurrence is 0 (n 2) . Compared with algorithms for NP-
hard problems this is very fast. But there are sorting-algorithms which can do even

30 2 Complexity Theory

better. One of them is "mergesort" which relies on the principle of divide-and-conquer.
The basic idea of this principle is to divide a problem into smaller subproblems, solve

the subproblems and then combine the solutions of the subproblems to form the final
solution. Recursive calls of the algorithm are usually applied here as well.
The basic idea of mergesort is to part the set which is to be sorted into two subsets of
roughly equal size, sort them recursively and finally merge the two sorted sequences
into one sorted sequence. The merging is performed by iteratively removing the small-
est element of both sequences. Without loss of generality we assume that the number
n of items to be sorted is a power of 2. The algorithm reads as follows:

algorithm mergesort(n,{Al, . . . , A,))
begin

if n = 1 then
return

for i := 1 ,2 , . . . , n/2 do comment divide set
begin

B . .- A .
2 '- 2 ,

C . .- A . z .- z+n/2;
end
mergesort(n/2, {Bl, . . . , Bn12)); comment sort subsets
mergesort(n/2, {GI,. . . , CnI2));
x := 1; y := I ; comment largest elements of sequences
for i := 1,. . . , n do comment merge sorted subsets

if x 5 n/2 AND B, < C, then
Ai := B,; x := x + 1;

else
A . .- c .

2 .- y , y := y + I ;
end

The hierarchy of recursive calls of mergesort(4, {5,2,3,1)) is displayed in the upper
part of Fig. 2.10. In the lower part the merging of the sorted subset is shown. For
n = 2'" one obtains k + 1 layers in the hierarchy of calls.
The division of the sets and the merge-operation takes O(n) time, while each recursive
call takes T(n/2). Hence, the recurrence for this algorithms reads:

(n = 1)
T (n) =

If n is large enough this recurrence can be solved by T(n) = nlogn. Consequently,
the divide-and-conquer realization of sorting is asymptotically faster than the simple
recursive sort-algorithm.
Another problem where the application of divide-and-conquer and recursion seems
quite natural is the calculation of Fibonachi numbers fib(n). Their definition is as
follows:

(n = 1)
(n = 2) (2.10)

fib(n - 1) + fib(n - 2) (n > 2)

2.4 Programming Techniques

Figure 2.10: Call of mergesort(4, {5,2,3,1)) .

Thus, e.g. fib(4) = fib(3) + fib(2) = (fib(2) + fib(1)) + fib(2) = 3, fib(5) = fib(4) +
fib(3) = 3 + 2 = 5. The functions grows very rapidly: fib(l0) = 55, fib(20) = 6765,
fib(30) = 83204, fib(40) > 10'. Let us assume that this definition is translated directly
into a recursive algorithm. Then a call t,o fib(n) would call fib(n - 1) and fib(n - 2).
The recursive call of fib(n - 1) would call again fib(n - 2) and fib(n - 3) [which is called
from the two calls of fib(n - 2), etc.]. The total number of calls increases rapidly, even
more than fib(n) itself increases. In Fig. 2.11 the top of a hierarchy of calls is shown.
Obviously, every call to fib with a specific argument is performed frequently which is
definitely a waste of time.

K" "\
fib(n-2)

,A,' \
\\

\
fib (n -3) ',\,, fib(n-3)

d' \) '& I./ 'it
fib(n-4) i fib(n-4) fib(n-4) '1

I \ , r j \ d \
f i ,

\\
\

4 ?j \
4

Figure 2.11: Hierarchy of calls for fib(n).

Instead, one can apply the principle of dynamic programming. The basic idea is
to start with small problems, solve them and store them for later use. Then one
proceeds with larger problems by using divide-and-conquer. The basic idea of If
for the solution of a larger problem a smaller one is necessary, it is already available.

32 2 Complexity Theory

Therefore, no direct recursive calls are needed. As a consequence, the performance
increases drastically. The divide-and-conquer algorithm for the Fibonachi-numbers
reads as follows, the array f [I is used to store the results:

algorithm fib-dynamic(n)
begin

i f n < 3 then
return 1;

f[l] := 1;
f [a] := 1;
for i := 3,4 , . . . , n do

f [i] := f [i - 11 + f [i - 21
return f [n];

end

Since the algorithm contains just one loop it runs in O(n) time.
The last basic programming principle which is presented here is backtracking. This
method is applied when there is no direct way to compute a solution. This is typical for
many optimization problems. Remember the simple TSP algorithm which constructs
a feasible tour, but which does not guarantee to find the optimum. In order to improve
the method, one has to try some (sub-)solutions and throw them away if they are not
good enough. This is the basic principle of backtracking.
In the following we will present a backtracking algorithm for the solution of the N-
queens problem.

Example: N queens problem

N queens are to be placed on an N x N chess board in such a way that no
queen checks against any other queen.

This means that in each row, in each column and in each diagonal at most
one queen is placed. 0

A naive solution of the algorithms works by enumerating all possible configurations
of N queens and checking for each configuration whether any queen checks against
another queen. By restricting the algorithm to place at most one queen per column,
there are NN possible configurations.
The idea of backtracking is to place onc queen after the other. One stops placing
further queens if a non-valid configuration is already obtained at an intermediate
stage. Then one goes one step back, removes the queen which was placed at the step
before, places it elsewhere if possible and continues again.
In the algorithm, we use an array Qi which stores the position of the queen in column
I:. If Qi = 0, no queen has been placed in that column. For simplicity, it is assumed
that N and the array Qi are global variables. Initially all Qi are zero.

2.4 Programming Techniques 33

The algorithm starts in the last column and places a queen. Next a queen is placed in
the second last column by a recursive call and so forth. If all columns are filled a valid
configuration has been found. If a t any stage it is not possible to place any further
queen in a given column then the backtracking-step is performed: the recursive call
finishes, the queen which was set in the recursion-step before is removed. Then it is
placed elsewhere and the algorithm proceeds again.

algorithm queens(n)
begin

if n = O then
print array Q 1 , . . . , QN; problem solved;

for i := 1 , . . . , N do
begin

Qn := i
if Queen n does not check against any other then

queens(n - I) ;
end
Qi := 0;
return

end

In Fig. 2.12 it is shown how the algorithm solves the problem for N = 4. It starts
with a queen in column 4 and row 1. Then queens(3) is called. The positions where
no queen is allowed are marked with a cross. For thc third column no queens in row
1 and row 2 are allowed. Thus, a queen is placed in row 3 and queens(2) is called. In
the second column it is not possible to place a queen. Hence, t,he call to queens(2)
finishes. The queen in column 3 is placed on a deeper row (second line in Fig. 2.12).
Then, by calling queens(2), a queen is placed in row 2. Now, no queen can be placed
in the first column. Since there was only one possible position in column 2, the queen
is removed and the call finishes. Now, both possible positions for the queen in column
3 have been tried. Therefore, the call for queens(3) finishes as well and we are back at
queens(1). Now, the queen in the last column is placed in the second row (third line
in Fig. 2.12). From here it is straight forward to place queens in all columns and the
algorithm succeeds.
Although this algorithm avoids many "dead ends" it still has an exponential time
complexity as a function of N. This is quite common to many hard optimization
problems. More sophisticated algorithms, which we will encounter later, try to reduce
the number of configurations visited even more.

2 Complexity Theory

Figure 2.12: How the algorithm solves the Cqueens problem.

Bibliography

[I] Stephan Mertens, http://itp.nat.uni-magdeburg.de/"mertens/TSP/index.html
(1999)

[2] M.D. Davis, R. Sigal, and E.J. Wyuker, Computability, Complexity and Lan-
guages, (Academic Press, San Diego 1994)

[3] B. Hayes, Americ. Sci. 85 , 108 (1997)

[4] S.A. Cook, J. Assoc. Comput. Mach. 18, 4-18 (1971)

[5] C.H. Papadirnitriou and K. Steiglitz, Combinatorial Optimization, (Dover Publi-
cations, Mineola (NY) 1998)

[6] M.R. Garay and D.S. Johnson, Computer and Interactability A Guide to the
Theory of NP-Completeness, (W.H. Freeman & Company, San Francisco 1979)

[7] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer
algorithms, (Addison-Wesley, Reading (MA) 1974)

[8] R. Sedgewick, Algorithms in C , (Addison-Wesley, Reading (MA) 1990)

Bibliography 35

[9] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and Geometric
Computing, (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA/leda.html

3 Graphs

3.1 Graphs

Many optimization problems from physics or other areas can be mapped on optimiza-
tion problems on graphs. Some of these transformations will be useful later on. For
this reason a short introduction to graph theory is given here. Only the basic defini-
tions and algorithms are presented. For more information, the reader should consult
a specialized textbook on graph theory, e.g. Refs. [I, 2, 31. We will sometimes only
mention a real world application which can be treated with a given graph theoretical
concept. The precise definitions of the applications will be given later on.
Consider a map of a country where several towns, villages or other places are connected
by roads or railways. Mathematically this setting can be represented by a graph. A
graph consists of nodes and edges. The nodes represent the towns, villages or other
places and the edges describe the roads or railways. Formally, the definition of a graph
is given by:
Definition: Graph A graph G is an ordered pair G = (V, E) where V is a set and
E c V x V. An element of V is called a vertex or node. An element (i, j) E E is called
an edge or arc. In a physical context, where edges reprcsent interactions between
particles, edges are often called bonds.
If the pairs (i, j) E E are ordered pairs, then G is called a directed graph. Otherwise G
is called undirected then (i, j) and (j , i) denote the same edge. A graph G' = (v' , E')
is called subgraph of G if it has the properties V' c V and E' c E (E' C V' x V' by
definition). The empty graph (@,a) is a subgraph of all graphs.
First, some further notations are given which apply to both directed and undirected
graphs. Usually we restrict ourselves to finite graphs, i.e. the set of nodes and edges
are finite. In this case we denote by n = IVI the number of vertices and by m = IEI
the number of edges. Let i E V be a vertex. If (i, j) E E we call j a neighbor of i (and
vice versa). Both nodes are adjacent to each other. The set N(i) of neighbors of i is
given by N(i) = {jJ (i , j) E E V (j, i) E E). The degree d(i) of node i is the cardinality
of the set of neighbors: d(i) = IN(i)l. A vertex with degree 0 is called isolated.
A path from vl to vk is a sequence of vertices v1, v2,. . . , vk which are connected by
edges: (vi, vi+l) E E V i = 1 , 2 , . . . , k - 1. The length of the path is k - 1. If vl = vk
the path is called closed. If no node except the first and the last one appears twice in
a closed path, it is called a cycle. A set of nodes is called a connected componen t , if
it contains all nodes where from each node a path to each other node of the set exists.
A graph is called connected if it has only one connected component.

3 Graphs

0
Figure 3.1: An undirected graph.

Example: Graph

In Fig. 3.1 the graph G = ({1,2,3,4,5,61, {(1,3), (3,4) (4,111 (4,211 (6 , l)))
is shown. The nodes are represented by circles and the edges by lines con-
necting the circles. The graph has n = 6 vertices and m = 5 edges; e.g., nodes
3 and 4 are adjacent. The set of neighbors of vertex 1 is N(1) = {3,4,6).
Thus, node 1 has degree 3 while node 2 has only degree 1. Node 5 is isolated.
The graph contains the path 6 ,1 ,4 ,3 from node 6 to node 3 of length 3 and
the cycle 1 ,3 ,4 ,1 . 0

Now some definitions are given which apply only to directed graphs. For an edge
e = (i, j), i is the head and j the tail of e. The edge e is called outgoing from
i and incoming to j . Please note that for a directed path it is important that all
edges point into the direction of the path, formally the definition is the same as in the
case of an undirected graph. A set of nodes is called a strongly connected component
(SCC), if from each of its nodes a directed path to each other node of the set exists.
In a directed graph, the outgoing and incoming edges can be counted separately. The
indegree is given by id(i) = I{j 1 (j, i) E E) I and the outdegree is od(i) = I {j 1 (i , j) E E).
Obviously, for all vertices d(i) = id(i) + od(i).

- - - -- - -

Example: Directed graph

When drawing a directed graph, the edges (2 , j) are represented by arrows
pointing from i to j . If one considers the example graph from above as di-
rected, one obtains Fig. 3.2. Here, the sequence 6 ,1 ,4 ,3 is not a path since
the edges (4 , l) and (3,4) point in the wrong direction. On the other hand,
the graph contains the path 6,1,3,4. Node 1 has the outdegree od(1) = 1
and indegree id(1) = 2. The total degree is d(1) = id(1) + od(1) = 3 as in
thc case of the undirected graph. 0

3.2 Trees and Lists

Figure 3.2: A directed graph.

3.2 Trees and Lists

A very important subclass of graphs are connected graphs without cycles. They are
called trees. The name arises from the fact that it is possible to draw a tree in the
following way:

0 All nodes are arranged in several levels 1 = 0,1 , . . . , h.

0 There are edges only between vertices of adjacent levels 1 and 1 + 1. A node on
level I is called father and its neighbor on level 1 + 1 is called son.

On level zero there is only one node, called the root.

Hence, trees are very often used to represent hierarchical structures. Let v be a node.
The sons of v, their sons, and so on are called descendants of v. The father of v, its
father, and so on are called ancestors of v. Thus, the root is an ancestor of all other
nodes. The nodes which have no descendants are called leaves. The index h of the
largest level is called the height of a tree. The height is equal t o the length of the
longest path from the root to a leaf. Each node v can be regarded as a root of a
subtree, which is given by v and its descendants.

Example: Tree

In Fig. 3.3 an undirected tree is shown. The root is usually displayed at the
top. Here, node 7 is the root. Node 6 is a descendant of the root and an
ancestor of node 5. Nodes 1, 2, 5, 9, 10, 11 are leaves. The tree has height 3.
The subtree which has node 3 as a root contains the nodes 2, 3, 4, 11.

For directed graphs, usually graphs without cycles are called trees only in the case
where there are only edges from levels 1 to 1 + I and no edges in the other direction.
Sometimes a directed graph is called a tree only if the undirected version of the graph
contains no cycles.
An important application of trees in the field of computer science are search trees.

They are used to store a collection of objects in an ordered way. Thus, an order
relation ''I" must be given for the objects. Search trees have the following properties:

3 Graphs

Level 0

Level 1

Level 2

Level 3

Figure 3.3: A tree containing I1 nodes.

They are binary trees. This means that each node has at most two sons, called
left and right son. The subtree which has the left (right) son as the root is
called left (right) subtree.

0 In each node one object 01 is stored.

The following property is true for all objects 01: in the left (right) subtree only
objects are stored which are smaller (equal to or larger) than O1 according to the
order relation "5".

This special organization allows the design of very fast algorithms for finding, inserting
and deleting elements within a search tree while always keeping the correct order. An
example will be given in Sec. 3.5. In Fig. 3.4 a search tree containing natural numbers
sorted in ascending order is shown.

Figure 3.4: A binary tree containing the nodes 2, 4, 11, 17, 22, 24, 33, 46, 61, 62,
63, 99 sorted in ascending order.

3.2 Trees and Lists 4 1

Similar to search trees are heaps. They are binary trees as well, but here the smallest
element of each subtree is always stored at the root of the subtree, which means that
the smallest element of the whole tree is stored at the root of the tree. This allows for
an efficient implementation of priority queues, which always give you the next element
with the currently lowest priority (remove operation). After the root element has
been removed, it is replaced by the lower of the two elements in the roots of the left
and right subtree, i.e. the lower of both elements moves up one level. In the same
way the element which has moved up is replaced by its smaller son, etc. Adding an
element to a heap is done in the following fashion. The element is added as a son of
a leaf. If it is smaller than the element of its father, both elements are swapped. This
process is continued until the current father of the new element is smaller than the new
element. Thus, eventually the new element may rise t o the root, if it is smaller than
all other elements in the tree. As a consequence, the insert and remove operations
can be performed in logarithmic time.
A binary tree is called complete if each node is either a leaf or has two sons. It can
easily be shown by induction that a complete tree with height h has n = 2h+1 - 1
nodes and 2h leaves.

head tail

Figure 3.5: A list containing 5 elements

A very simple type of graph is a list. Lists can be regarded as special types of trees
which have exactly one root and exactly one leaf and every node has a t most one son.
The nodes of a list are called elements, the root is called the head of the list and the
leaf is called the tail. For historic reasons lists are often drawn in a slightly different
manner to other graphs. In Fig. 3.5 a list containing 5 element,^ is shown.

t Out e In

Figure 3.6: A queue.

Several special types of lists are very useful in computer science. For queues it is only
possible to add new elernents a t the tail and to remove elements a t the head, see Fig.
3.6. They are called FIFO ("first in - first out") lists as well. An application of
queues are printer queues. The job which enters the queue at first will be printed at
first. Other jobs which are added while a job is being printed have to wait.
Lists are called stacks if adding and removing elements takes place only at the head
(see Fig. 3.7). They behave in an LIFO ("last in first out") manner. Stacks are used
for exarnple to realize recursion. Whenever a call to a procedure occurs the computer

3 Graphs

In --+

t Out

Figure 3.7: A stack.

has t o remember where to proceed when the procedure is finished. These so called
return addresses are stored on a stack, because the procedure which was called last
will be finished first.

3.3 Networks

Consider again the TSP (see Chap. 1). It can be represented by an undirected graph
if one identifies the cities with nodes and the connections between cities with edges.
In order to describe the TSP completely, the distances between different cities have to
be represented as well. This can be done by introducing a function d : E t R from
edges to real numbers. For an edge e = (i, j) E E the distance between the cities i
and j is given by d(e).
Sometimes functions f : V t A (A an arbitrary set) on vertices are useful as well. An
arbitrary function on vertices or on edges is called labeling. A graph together with a
labeling is called a labeled graph. Typical examples for labelings are distances, costs
or capacities.
The case where the edges are labeled with capacities is so important that it has its
own name: a network. For example a system of pumps connected via pipes which can
transport some fluid like water is a network. Our kind of networks contain two special
pumps: the source where the fluid enters the network and the sink where the fluid
leaves the network. The capacities of the pipes tell how much fluid can be transported
through each pipe per time unit. The exact definition reads as follows:
Definition: Network A network is a tuple N = (G, c, s , t) where

G = (V, E) is a directed graph without edges of the form (i, i) .

c : E t 72; is a positive labeling of the edges. Additionally, we assume c((i, j)) =
0 if (i l j) 6 E.

s E V is a vertex called source with no incoming edges di(s) = 0.

t E V is a vertex called sink with no outgoing edges do(t) = 0.

In Fig. 3.8 an example of a network is shown. The capacities are the numbers written
next t o the edges. Please note that it is possible to define a network via an undirected
graph as well. For the models we encounter here, directed networks are sufficient.
An actual flow of fluid through the network can be described by introducing another
labeling f : V x V -+ R. A flow through an edge is always bounded by its capacity.

3.3 Networks

Figure 3.8: A network.

For technical reasons, negative values of the flow are allowed as well. A negative value
f (i, j) < 0 means a positive flow from node i to node j and vice versa. Furthermore,
the flow is conserved in all nodes, except the source and the sink. In total we obtain
[by writing f i j = f (i, j), c i j G c((i, j))]

0 Capacity constraint: f i j < c i j for all i, j E V

Negative flows: f i j = - f j i for all i, j E V

Flow conservation: Cj f i j = 0 for all i E V with i # s , t

Please note that by combining the first and second properties f j i > -c i j is obtained.
The total flow through the graph is given by fo = Cj f,,j = - Cj f t j . Determining
the maximum possible amount which can flow from s to t through a network, called the
maximum Bow, is an optimization problem. For example, the maximum flow for the
network in Fig. 3.8 is eight. Later we will see that the determination of the maximum
flow can be solved in polynomial time. In physics, we apply these methods to calculate
ground states of disordered magnetic materials such as random field systems or diluted
antiferromagnets.
The minimum cost Pow problem is related to the maximum-flow problem. Here,
additional costs d : E -+ R and a total flow f o are given. d (e) specifies the cost
of sending one unit of flow through edge e. More generally, the cost may depend
arbitrarily but in a convex way on the flow through an edge. The minimum cost flow
problem is to find a flow of minimum total cost C , c' (e) f (e) , which is compatible
with the capacity/conservation constraints and has the total value f o . Later it will be
shown how ground states of solid-on-solid systems or of vortex glasses (from the theory
of superconductivity) can be obtained by minimizing cost flows. For this problem
polynomial time algorithms are known as well. The case f o = 0 frequently occurs.
Please note that the optimum flow may not vanish inside the network in this case as
well, since the costs can take negative values thus making circular flows favorable.

3 Graphs

3.4 Graph Representations

If we want to apply graphs on a computer, somehow we have to represent them in
the memory. Different ways of storing graphs are known. Which one is most efficient
choice depends on the kind of application. We start with the storage of lists, since they
are used for the representation of the other graph types. Then trees are discussed. At
the end of the section two methods of representating arbitrary graphs are shown.
Since lists are simply linear sequences of elements, the straight forward implementation
uses arrays. A list of n elements can be stored in array L[l . . .n] e.g. by storing the
head in L[l], its son in L[2], etc., and the tail in L[n]. The advantage of this realization
is its simplicity. Furthermore, it is possible to access all elements of the list in constant
time. A minor problem is that one has to know the maximum size of the list when
allocating the memory for the array. But, if the maximum size is not known, one can
reallocate the memory if the list grows too long. If the reallocation occurs rarely, the
additional computer time needed can be neglected.

Figure 3.9: Element 8 is inserted into an array.

One major problem is the following: if elements are to be inserted or to be removed
somewhere within the list, largc chunks of memory havc to be moved around each time
the operation occurs (see Fig. 3.9). Thus, insert and delete operations take O(n) time.
For stacks and queues this problem does not occur since elements are inserted and
deleted only at the head or at the tail. Consequently, stacks and queues are usually
realized by arrays. A stack is usually stored in reverse order in an array, adding and
removing elements occurs at the end of the stack which is given by a pointer variable.
Please remember that a pointer is just a memory address. For a queue two pointers
are necessary: one which stores the head and one which holds the tail of the queue. If
a pointer reaches the end of the array it is set to the beginning again.
An implementation of general lists that is more flexible uscs pointers as well. For
each element of a list, a small chunk of memory is allocated separately. In addition to
the information associated with each element, a pointer which contains the address of
the following element is stored. At the tail of the list the pointer has the special value
NULL. This realization is reflected directly by the manner in which lists are drawn: the
arrows represent the pointers. If the position where an operation is to be performed
is given already, insert and delete operations can be performed in constant time just
by (re-)assigning some pointers. One has to be a little bit careful not to loose parts of
the chain, for details see e.g. [4]. The insert and delete operations become especially

3.4 Graph Representations 45

simple if along each element two pointers are stored: one to the next element and one
t o the preceding element. In this case the list is called double linked. A drawback of
the realization with pointers is that it is not possible to access elements of the list (say
the 20th element) directly. One has to start at the head or the tail and go through
the list until the element is reached. Furthermore, this type of realization consumes
more memory, since not only the elements but the pointers have to be stored as well.
The situation which we encounter here is typical for computer science. There are now
perfect data structures. The application has to be taken into account to find the best
realization.

Figure 3.10: Representation of the tree from Fig. 3.3 via nodes containing arrays of
pointers. Here each array contains at most three entries per node.

This is true for trees as well. If the maximum number of sons for each node is known,
usually the following type of realization is used, which is similar to the representation
of lists via pointers. Along with the information which is to be stored in a node, an
array containing pointers to the sons is kept. If a node has less than the maximum
number of sons, some pointer values contain the value NULL. In Fig. 3.10 a realization
of the tree from Fig. 3.3 is shown.
For binary trees (among them heaps) there is a very simple realization using one array
T. The basic idea is to start a t the root and go through each level from left to right.
This gives us the order in which nodes are stored in the array. One obtains:

The root is stored in T[l] .

If a node is empty, a special value (say -1) is assigned.

For each node T[k] the left son is stored in T[2k] and the right son is kept in
T[2k + 11.

In Fig. 3.11 the array representation of the search tree from Fig. 3.4 is shown. This
type of tree realization is comparable to the array representation of lists: it is very

3 Graphs

Figure 3.11: The representation of a binary tree via an array.

easy to build up the structure and to access nodes but insert and delete operations
are time consuming.
We finish this section by explaining two methods to represent arbitrary graphs. Let
G = (V, E) be a graph. Without loss of generality we assume V = {1,2, . . . , n).
An adjacency matrix A = (a i j) for G is an n x n matrix with entries 0, 1, where n is
the number of nodes. In the case G is directed we have:

1 for (i , j) ~ E
aij = { 0 else

For an undirected graph, the adjacency matrix A contains nonzero elements aij =
aji = 1 for each edge (i, j) E E, i.e. in this case the matrix is symmetric.
The adjacency matrices for the example graphs of Sec. 3.1 are shown in Fig. 3.12.

undirected directed

Figure 3.12: Adjacency matrices for graph G = ({1,2,3,4,5,6), {(1,3), (3,4) (4, I) ,
(4,2), (6,l))). The left matrix shows the case when G is regarded as an undirected
graph, while the right one is for the case of a directed graph.

The advantage of the matrix representation is that one can access each edge within
a constant amount of computer time. On the other hand, an adjacency matrix needs
O (n 7 memory elements t o be stored. Consequently, this choice is inefficient for storing
sparse graphs, where the number of edges is m E O(n).
For sparse graphs, it is more efficient to use adjacency lists: for each node i a list Li
is stored which contains all its neighbors N (i) . Hence, for directed graphs, Li contains

3.4 Graph Representations 47

all vertices j with (i, j) E E while for an undirected graph it contains all vertices
j with (2 , j) E E or (j , i) E E. Please note that the elements in the list can be in
arbitrary order. The list representation uses only O (m) memory elements. With this
realization it is not possible to access an edge (i, j) directly, since one has to scan
through all elements of Li to find it. But for most applications a direct access is not
necessary, so this realization of graphs is widely used. A similar method is applied for
the LEDA-library package [5].

undirected directed

Figure 3.13: Adjacency lists for the example graphs. The left lists represent the
case when G is regarded as an undirected graph, while the right are for the case of a
directed graph.

The adjacency lists for the sample graphs from above are shown in Fig. 3.13.
For a directed graph, it is sometimes very convenient to have all incoming edgcs for
a given vertex j available. Then one can store a second set of lists K j containing all
nodes i with (i, j) E E. The lists K j for the directed version of the sample graph are
shown in Fig. 3.14.

Figure 3.14: List of incoming edges for directed example graph.

48 3 Graphs

The methods presented above can easily be extended to implement labeled graphs.
Labels of vertices can be represented by arrays. For labels of edges one can either use
matrices or store the labels along with the list elements representing the edges.

3.5 Basic Graph Algorithms

Most basic algorithms on graphs, trees and lists can be found in [6,4]. Hcre we present
just one algorithm for searching in a tree This should be sufficient to make the reader
familiar with the subject. More simple graph algorithms can be found in Chap. 4.
Consider a search tree, as introduced in Sec. 3.2. One basic operation is the find
operation. It tests whether an object O1 is contained in the tree or not. The
algorithm starts at the root of the tree. If the tree is empty, then the object is not
contained in the tree. If 01 is stored at the root it is found. In both cases the
algorithm terminates. Otherwise, if O1 is smaller than the object at the root, the
search continues in the left subtree. If 01 is larger, the search continues in the right
subtree. Thc recursive formulation of the algorithm reads as follows:

a lgor i thm find(tree, object)
beg in

if tree is empty t h e n
return(not found)

if root contains object t h e n
return(tree)

if object at root-node > object t h e n
find(1eft subtree, object)

else
find(right subtree, object)

e n d

Figure 3.15: Search for element 24 in a sorted binary tree.

3.5 Basic Graph Algorithms 49

Example: Search in tree

We trace the search for element 24 in the tree shown in Fig. 3.15. The al-
gorithm is called with the root of the tree and number 24. Since the tree is
not empty and 24 is smaller than the object at the root (33), a recursive call
with the left subtree occurs. Here, number 17 is stored at the root. Thus,
the procedure is called with the right subtree of the first subtree. In the next
step again the search continues in the right subtree where finally the object
is found.

The algorithm performs one descent into the tree. Hence, its time complexity is O(h)
if h is the height of the search tree. If the search tree is complete, the height is
h E O(logn), where n is the number of elements in the tree.
The find algorithm can be directly extended to insert elements into the tree: if the
algorithm reaches an empty subtree, then the element is not stored in the tree. Thus, a
node containing the object can be added at the position where the search has stopped.
Consider as example where number 21 is to be inserted into the tree from Fig. 3.15. At
node 22 the algorithm branches to the left subtree, but this tree is empty. Therefore,
a node with the number 21 will be added as the left son of the node 22.

Figure 3.16: A binary search tree built by inserting numbers 33, 46, 61, 62, 63, 99
in the given order using a simple insert operation.

This simple algorithm for inserting new objects has a major drawback. Assume that
numbers sorted in increasing order are inserted into a tree which is empty at the
beginning. During the execution of the algorithm the right subtree is always taken.
Consequently, the tree which is built in this way is in fact a list (see Fig. 3.16). In
this case the height of the tree is equal t o the number of elements, i.e. the search for
an object takes O(n) time instead of logarithmic time.
In order to avoid this trouble the tree can always be kept balanced. This means that
for every node the heights of the left and right subtree differ at most by one. There are
several clever algorithms which assure that a search tree remains balanced. The main
idea is to reorganize the tree in case of imbalance while keeping the sorted order. More
details can be found in [6, 41. For balanced trees, it is guaranteed that the height of
the tree grows only logarithmically with the number of nodes n. Thus, all operations
like insert, search and delete can be realized in O(1ogn).

3 Graphs

3.6 NP-complete Graph Problems

The time complexities of the algorithms presented in the last chapter are all bounded
by a polynomial. But there are many hard graph problems as well. Interestingly, there
are many pairs of similar problems where one problem is in P while the other in NP.
Some of them will be presented now.
The algorithms presented in the last chapter are very simple. Usually the algorithms
for solving graph problems, even for the problems in P, are very complicated. Thus,
in this section no algorithms will be presented, just some basic graph problems are
explained. For the proofs that certain problems are NP-complete the reader is referred
to the literature as well. But later on, for the optimization problems we encounter
here, all necessary algorithms will be discussed in detail.

Figure 3.17: An undirected graph containing a Euler cycle (left) and a Hamilton
cycle (right). The numbers next to the edges give one possible order of the edges
within an Euler cycle.

The first example is about cycles. Let G = (V, E) be an undirected graph. An Euler
cycle is a cycle which contains all edges of the graph exactly once. It was shown by
Euler in 1736 that an undirected graph contains an Euler cycle if and only if each vertex
has an even degree. Thus, the recognition problem, whether an undirected graph has
an Euler cycle or not (EC), can be decided in polynomial time. The first algorithm
for constructing an Euler cycle was presented 1873 in [7]. A Hamilton cycle is a cycle
which contains each vertex exactly once. The problem of whether an undirected graph
contains a Hamilton cycle or not (HC) is NP-complete. A proof can be found in 181,
the main idea is to show 3-SAT<,HC. In Fig. 3.17 a graph containing both an Euler
Cycle and a Hamilton cycle is shown.
The next pair of graph problems is defined via covers of undirected graphs. An edge
cover is a subset E' c E of edges such that each vertex is contained in at least one
edge e E E' . Each graph which has no isolated vertices has an edge cover, since in
that case E itself is an edge cover. A minimum edge cover is an edge cover where
1 E' 1 is minimal. In Fig. 3.18 a graph and a minimum edge cover are shown. An
algorithm which constructs a minimum edge cover in polynomial time can be found
in [9]. Consequently, the corresponding recognition problem LLdoes graph G have an

3.6 NP-complete Graph Problems

Figure 3.18: A graph and a minimum edge cover (left) and a minimum vertex cover
(right). The edgeslvertices belonging to the cover are shown in bold.

edge cover with I E ' I < K" is in P. Related to the edge cover is the vertex cover. It
is a subset V' c V of vertices such that each edge contains a t least one node from V' .
In Fig. 3.18 a graph together with its minimum vertex cover is displayed. It has been
shown in [lo] that the problem "does graph G have a vertex cover with I V ' I < K"
(VC) belongs to the class of NP-complete problems. The proof works by transforming
3-SAT<,VC. Thus, there is no algorithm known which finds a minimum vertex cover
in polynomial time.

We have already seen that the TSP is a hard optimization problem. The corresponding
decision problem is NP-complete [lo]. The proof works by demonstrating HC<,TSP.
HC has already been recognized as being NP-complete (see above). The proof is short,
which is quite unusual for this type of problem.

Proof: Let G = (V, E) be a graph, n = IVI. Then we built a second graph G' =
(V, V x V) with the following distance labeling

d(i, j) =
1 if (i , j) E E
2 else

The transformation works in polynomial time since it contains just two nested loops
over all nodes. Each tour in G' contains exactly n edges and visits all n nodes. Thus,
a tour must have the length n at least. If it has exactly length n all distances along
the tour must have value 1, i.e. all edges from the tour are in G as well, and vice versa.
Consequently, the question "does G' have a shortest round tour with length < n" has
the answer "yes" if and only if G has a Hamilton cycle. Hence, HC<,TSP. QED
On the other hand; if one is interested only in the shortest distance between two given
cities, this problem can be solved in polynomial time. Several algorithms can be found
in [l l] . Some of them will be presented in Chap. 4. A recent application in physics is
the study of so called directed polymers.

Another type of graph problems, which can be solved in polynomial time, are matching
problems. They will be introduced in Chap. 10.

3 Graphs

Bibliography

[I] B. Bolobas, Modern Graph Theory, (Springer, New York 1998)

[2] J.D. Claiborne, Mathematical Preliminaries for Computer Networking, (Wiley,
New York 1990)

[3] M.N.S. Swamy and K. Thulasiraman, Graphs, Networks and Algorithms, (Wiley,
New York 1991)

[4] R. Sedgewick, Algorithms in C , (Addison-Wesley, Reading (MA) 1990)

[5] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and Geometric
Computing, (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA/leda.html

[6] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, (Addison-Wesley, Reading (MA) 1974)

[7] C. Hierholzer, Math. Ann. 6, 30 (1873)

[8] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, (Dover Publi-
cations, Mineola (NY) 1998)

[9] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, (Holt, Rine-
hard and Winston, New York 1976)

[lo] M.R. Garey and D.S. Johnson, Computer and Intractability, A Guide to the The-
ory of NP-Completeness, (W.H. Freeman & Company, San Francisco 1979)

[11] D.P. Bertsekas, Network Optimization, Continuous and Discrete Models, (Athena
Scientific, Belmont (MA) 1998)

4 Simple Graph Algorithms

Consider an amorphous conductor which is composed of individual micro grains that
are either conducting or insulating, both randomly with a probability p and 1 - p, re-
spectively. A current can flow only between two neighboring occupied sites, which we
then denote as being connected. Obviously an electrical current can cross the macro-
scopic sample if and only if it has a connected cluster extending from one boundary
to the opposite one. This physical situation can easily be represented by a graph by
identifying the conducting grains by nodes and the connections between neighboring
conducting grains by edges. The question of whether the whole sample is conducting
is then equivalent t o the search for a connected path from one subset of the nodes
(one boundary) to another subset (the opposite boundary). In this section we will
discuss therefore simple graph algorithms that answer the question, whether there is
a connected path between two given nodes i and j of the graph. In addition to this
they allow the determination of how many (and how large) connected components or
clusters a given graph has and what are their statistical properties (fractal dimension
etc) if the graph is random.
Moreover, the physical situation could be complicated by the fact that not all con-
ducting grains have the same conductance. If the concentration of conducting grains
is large enough to have many connecting paths from one end of the sample to the
opposite end or if simply all grains are conducting, but some of them are better and
some worse in a random pattern, one also wants to know the paths of the lowest re-
sistance. This situation can again be represented by graph with non-negative weights
or costs c i j assigned to each edge representing the resistance. In this section we will
present simple graph algorithms that determine the path C with minimum total cost
E = C(2,i,EL cij between two nodes i and j , which is the so-called shortest path prob-
lem. In addition, for later applications, we will present a way to detect cycles (closed
paths) that have negative total costs for the case where some of the weights given to
the edges are negative.

4.1 The Connectivity-percolation Problem

An idealized model for such an amorphous conductor as described above would be a
regular lattice (e.g. a square lattice in 2d or a simple cubic lattice in 3d) in which sites
are removed with a probability 1 - p. To be precise, in the random graph representing
the diluted lattice with each removed node one also removes all edges adjacent to

54 4 Simple Graph Algorithms

it. At low concentrations one does not expect any percolating clusters, i.e. connected
clusters that extend from one boundary to the opposite one. On the other hand, at
high concentration most probably there will be one, in other words: at low p the
sample will be (with probability one) insulating, at large p it will be a conducting,
see Fig. 4.1. As it turns out, there is a critical value p, above which almost all (i.e.
with probability 1) samples have a percolating cluster (or "infinite cluster") in the
thermodynamic limit, and below which they do not. The precise value of p, depends
on the lattice structure (i.e. the class of random graphs) one considers, but otherwise
many features of this transition are identical for different lattices in two dimensions,
but different in 3, 4, etc. dimensions.

Figure 4.1: Example for site percolation on the square lattice (L = 50) with site oc-
cupation probability p = 0.3 (left), p = 0.5 (middle), p = 0.7 (right). The percolation
threshold is known to be at p, z 0.59275 [I]. Therefore the right picture is above the
percolation threshold and indeed one recognizes easily a percolating cluster extending
from the bottom to the top of the system.

For instance exactly at the critical point p = p, at least one infinite cluster exists and
it is a fractal, i.e. its volume V, (defined as the number of sites it contains) scales with
the linear system size as V, -- ~ ~ f . The value of this fractal dimension is one of the
aforementioned features that do not depend on the lattice but only on the dimension in
which one studies percolation. The number df , called a critical exponent is universal
(for instance df = 91/48 for 2d-percolation [2], and df x 2.524 for 3d percolation [3]), as
other exponents describing the percolation transition: The infinite-cluster probability
(which is the probability that a site is on the infinite cluster) close to the transition
behaves like P, - (p - p,)O (P = 5/36 in 2d [2], /? x 0.417 in 3d [3]); the correlation
length 6 -- (p - p,l-" (v = 413 in 2d [2], v x 0.875 in 3d [3]) and the average cluster
size S -- Ip-p,l-Y (y = 43/18 in 2d [2], y x 1.795 in 3d [3]). In Sec. 5.3 we will show
how these exponents are computed using the methods presented in the next section.

4.1.1 Hoshen-Kopelman Algorithm

There are a large number of efficient algorithms for connectivity percolation, namely:
the Leath algorithm [4]; the Hoshen-Kopelman algorithm [5]; the forest-fire and
burning algorithms [6]; and the invasion algorithm [7]. Because of its widespread use

4.1 The Connectivity-percolation Problem 55

in random lattice problems in physics we will discuss the Hoshen-Kopelman algorithm
first.

Figure 4.2: Example for the Hoshen-Kopelman algorithm. One starts in the upper
left corner and proceeds row by row. In the first row the first site is occupied and gets
label 1, the second gets the same label since it is a neighbor of the first, the third is
empty and the fourth gets label 2. In the second line the first site has an occupied
upper neighbor with label 1, thus it gets also label 1. The second is empty and the
third is labeled 3. The fourth site is now a neighbor of two sites, one labeled 2 and
one labeled 3. All three sites belong to the same cluster, which was first labeled 2.
Accordingly we also assign the label 2 to the new site, but we have to keep track that
cluster 2 and 3 are connected. This is achieved by setting the array size(3)=-2, saying
that 3 is not a proper label, since size(3) is negative, and that the proper label is 2.
After distributing labels to all sites one changes them into the proper ones.

The Hoshen-Kopelman algorithm [5] grows many clusters simultaneously by assign-
ing cluster labels t o each new cluster that is nucleated during growth. This is done
LLr~w-by-r~w" (or LLlayer-by-layern in three dimensions) and must take into account
the merging of different growing clusters. This merging is accounted for by defining
"equivalence classes" which are sets of cluster labels that are set to be equivalent due
to merging. Simulations on lattices of up to 4 x 10'' sites have been carried out using
this method [8].
We list here a meta-code for 2d (the generalization to higher dimension or other
lattices is tedious but straightforward) since the Hoshen-Kopelman algorithm allows
cluster identification in many disordered systems, where a cluster structure appears,
not only for percolation problems. The function that checks for occupied left and
upper neighbor-sites is neigh(x, y) = (s(x - 1, y), s(x, y - I)) , where s(x, y) = 1 if the
site (x, y) is occupied and s(x, y) = 0 if empty. The global variable c carries the label
of the current cluster.

4 Simple Graph Algorithms

algorithm Hoshen-Kopelman [2d square lattice]
begin

c := 1;
for y := 1 , . .. , L, do

d o x : = 1, . . . , L; do
begin

if neigh(x, y) = (0,O) then start-newjx, y);
if neigh(%, y) = (1,O) then connect(x, y, x - 1, y) ;
if neigh(x, y) = (0 , l) then connect(x, y , x , y - 1);
if neigh(x, y) = (1 , l) then

if label(x - 1, y) = label(x, y - 1) then
connect(x, y , x - 1, y);

else
merge-clusters(x, y) ;

end
for y := I , . . . ,L , do

for x := 1, . . . , L, do
while size(label(x, y))<O do

label(x, y) := -size(label(x, y)) ;
end

procedure start-new (x , y)
begin

label (x, y) := c;
size(c) := 1;
c : = c + l ;

end

procedure connect (X I , y ~ , x~ , y 2)

begin
label(xl, y l) := label(x~, yz);
size (c) := size (c) + 1;

end

procedure merge-clusters (x , y)
begin

cI := min(label(x - 1, y) , label(x, y - 1)) ;
c2 := max(label(x - 1, Y) , label(z, y - 1)) ;
label(x,y) := C I ;

size(cl) := size(c1) + size(c2) + 1;
size(c2) := -el;

end

4.1 The Connectivity-percolation Problem 57

In Fig. 4.2 we show an example of the cluster labeling at work. For the implementation
it might be advantageous to replace the cluster labels by the proper one as soon as
neighbor sites are checked. In Sec. 5.3 we show how the results generated by an
application of this algorithm are analyzed with finite-size scaling to estimate the critical
exponents for percolation mentioned in the last section.

4.1.2 Other Algorithms for Connectivity Percolation

(i) Search algorithms at $xed p
The Hoshen-Kopelman algorithm discussed in the previous section is a special search
algorithm particularly suitable for diluted grid graphs. In general one considers a con-
nected graph G(X, E) which is then diluted (i.e. edges are removed with probability
1 -p) and search algorithms are then used to study the cluster structure of the diluted
graph. A breadth-first search (see below) from a source site s finds all sites which are
connected to the source and labels them with their "chemical distance" [I]. This is
equivalent to the "forest fire" or "burning" method. These methods were developed
independently of, and quite a bit later than, the corresponding developments in the
computer-science community. A new breadth-first-search is needed for each cluster,
so iterative application of breadth-first search identifies the cluster structure.
(ii) Growth algorithms at fixed p
It is storage inefficient t o generate the entire graph and then to classify its cluster
structure. Instead growth algorithms keep track of information only at a growth or
"invasion" front (these methods are also called "epidemic" methods). As discussed in
the next section, breadth-first search, Dijkstra's algorithm and Prim's algorithm are
also best implemented in this way. The Leath algorithm [4] for site percolation grows
from a seed site. Each site adjacent the growth front is assigned a uniform random
number r j . At each step, choose a site j which has not yet been tested and which is
a nearest neighbor to a site which has already been invaded. If rj 5 p then add site
j to the growing cluster. If rj > p, mark site j as tested and do not test it again.
For p > p,, the Leath algorithm grows a cluster of infinite size, while for p < p,, the
growth of the cluster ceases a t a finite distance from the source. Very high precision
results for percolation have been found using this method, for example, lattices of size
2048~ have been studied recently [9].

4.1.3 General Search Algorithms

The Hoshen-Kopelman algorithm discussed in the last section is a special search al-
gorithm adapted to grid graphs or lattices occuring frequently in physics. In this
section we will discuss more general search algorithms that help to identify connected
components of a graph with any topology.
Consider a connected graph G(X, E) containing a vertex set X and edge set E. A
connected graph has sufficient edges such that a connected path exists between any
two nodes i and j. We input the graph connectivity, i.e. a list of edges which arc
present. There are two basic search strategies on G(X, E): breadth-first search and
depth-first search, which are closely related.

58 4 Simple Graph Algorithms

The main work of the first algorithm is done within the procedure depth-first(), which
starts at a given vertex i and visits all vertices which are connected to i. The main
idea is to perform recursive calls of depth-first() for all neighbors of i which have not
been visited a t that moment. The array comp[] is used to keep track of the process.
If comp[i] = 0 vertex i has not been visited yet. Otherwise it contains the number
t of the component. Please note that the array comp[] is passed as reference, i.e. it
behaves like a global variable.

procedure depth-first(G, i , comp, t)
begin

comp[i]:=t;
for all neighbors j of i do

if comp[j] = 0 then
depth-first(G, j , comp, t);

end

algorithm components(G)
begin

initialize comp[i] := 0 for all i E V;
t := 1;
while there is a node i with comp[i]=O do

depth-first(G, i , comp, t); t := t + 1;
end

Figure 4.3: Depth-first spanning forest for a graph with three connected components.

In Fig. 4.3 an example graph is shown. The numbers next to the nodes indicate
a possible order in which the nodes are visited. The edges which are used by the
algorithm are indicated by thick lines. Since each node is visited not more than once,
there are no cycles in the subgraph given by these thick edges. Thus, they constitute
a tree for each component. Since all nodes are visited, the tree spans the whole
component. For this reason the tree is called a spanning tree. The collection of all
spanning trees of a graph is called its spanning forest.

4.1 The Connectivity-percolation Problem 59

Please note that the algorithm tries to go as far as possible within a graph, before
visiting other neighbors of the node where the search started. It is for this reason that
the procedure has its name. The spanning trees constructed by this procedure are also
called depth-first spanning trees.
For readers more interested in the subject, we should note that a depth-first search
uses singly connected edges in its first probe to maximum depth. These are edges,
which are not contained in loops, which include the source and transverse each edge
only once.
Since depth-first search excludes crossing an edge more than once, the node at the
end of a singly connected edge (or sequence of singly connected edges) which is closest
to the source of the search, defines an articulation point in a depth-first tree. The
articulation points divide the depth-first-search tree into its biconnected components.

This procedure was well known in computer science in the early 1970s [lo], and
has recently provided efficient algorithms for the backbone in connectivity percolation
[Ill . The backbone is a subset of the infinite cluster, and is found from the infinite
cluster by trimming off "dangling ends" which are unable to transport an electric
current. The original burning algorithm for backbone identification uses forward and
reverse breadth-first searches to find the backbone [6]. This is inefficient compared
with the depth-first search procedure, though high accuracy results have been found
by applying this method at p, [12].
A similar algorithm, which instead first visits all neighbors of a node before proceeding
with nodes further away, is called breadth-first search (BFS). This means at first all
neighbors of the source are visited, they have distance one from the source. In the
previous example in Fig. 4.3, the edge (1,2) would be included in the spanning tree,
if it was constructed using a breadth-first search. In the next step of the algorithm,
all neighbors of the vertices treated in the first step are visited, and so on. Thus, a
queue (see Sec. 3.2) can be used to store the vertices which are to be processed. The
neighbors of the current vertex are always stored a t the end of the queue. Initially
the queue contains only the source. The algorithmic representation reads as follows,
level(i) denotes the distance of vertex i from the source s and pred(i) is the predecessor
of i in a shortest path, which is obtained as a byproduct (see next page):

4 Simple Graph Algorithms

algorithm breadth-first search()
begin

Initialize queue Q := 1s);
Initialize level(s) := 0; level(i) := -1 (undefined) for all other vertices;
Initialize pred(0) := -1;
while Q not empty
begin

Remove first vertex i of Q;
for all neighbors j of i do

if level(j) = -1 then
begin

set level(j) := level(i) + 1;
set pred(j) := i ;
add j at the end of Q;

end
end

end

During a run of thc algorithm, for each vertex all neighbors are visited. Thus each
edge is touched twice, which results in a tirne complexity of O(IE1).

Figure 4.4: Example graph for breadth-first search. The search starts at vertex 0.
In the first iteration, vertices 1 and 3 are visited. In the next iteration, vertices 2 and
4 are treated, finally vertex 5.

Exam~le : Breadth-first search

We consider the graph shown in Fig. 4.4. Initially the queue contains the
source and all values level(i) are undefined, except level(0) = 0.

Q = {0), level(0) = 0

While treating the source, its neighbors, vertices 1 and 3, are added to the
queue, thus pred(1) = pred(3) = I. They have distance 1 from the source

4.2 Shortest-path Algorithms

(level(1) = level(3) = 1). The order the vertices are added has no influences
on the final results, only on the details of the computation.

Next vertex 1 is processed. It has two neighbors, vertices 2 and 3, but vertex
3 has been visited already (level(3) # -I), thus only vertex 2 is added to
Q with pred(2) = 1, level(2) = level(1) + 1 = 2. After this iteration the
situation is as follows:

The treatment of vertex 3 adds vertex 4 t o the queue (level(4) = level(1) +
I = 2, pred(4) = 3). At the beginning of the next iteration vertex 2 is
taken. Among its two neighbors, only the sink has not been visited. Thus
level(5) = level(2) + 1 = 3 and pred(5) = 2. Now all values of the pred
and level arrays are set. Finally; vertices 4 and 5 are processed, without any
change in the variables.

A shortest path from vertex 5 to vertex 0 is given by the iterated sequence
of predecessors of the sink: pred(5) = 2,pred(2) = l ,p red(l) = 0. 0

4.2 Shortest-pat h Algorithms

In the last section we were concerned with algorithms answering the question whether a
path in a given graph or network from node i to node j exists. In many applications in
daily use we know that there are various paths of this sort but they have different length
and we want to know the shortest of them. The breadth-first algorithm presented in
the last section is able to calculate shortest paths for the case where each edge is
assumed to represent a distance = 1. In this section, we will discuss methods which
allow the assignment of different arbitrary (sometimes even negative) distances to the
edges.
In physics distances between nodes have, typically, the meaning of resistancc or po-
tential energy or other physical parameters: think for instance of a random resistor
network as described in the last paragraph made up not of conducting and insulating
edges (usually called bonds in this context), but of bonds of varying resistance. Inter-
preting the resistance between two nodes as distances, the shortest path from one side
to the other side of the sample is the one that carries the most current. Similarly, if you
think of a random static network where bonds between nodes have different strength,
again interpreted as distances, the shortest path from one side of the material to the
other is the one where fracture will occur under sufficiently strong strain. Finally,
the polymer in a random medium is essentially an elastic thread (a one-dimensional
object - - a line) lying in a rough landscape and searching for its lowest potential and
elastic energy minimum. Again, this problem can be mapped onto a network with
the random potential energies as distances and the shortest path is the ground state

62 4 Simple Graph Algorithms

configuration of the polymer. In what follows we will present the algorithms with
which these problems can be solved efficiently.

4.2.1 ' The Directed Polymer in a Random Medium

The directed polymer in a random medium (DPRM) [13] is a directed optimal path
on the links of a lattice (see Fig. 4.5). For a path along the (10) orientation, the path
is allowed to step forward, to the left or to the right, with an increased energy cost
for motion to the left or right, which models the elasticity of the DPRM [14, 151. An
even simpler model is a path in the (11) orientation (see Fig. 4.5). In this case, there
is no explicit elasticity t o the DPRM, but the motion is restricted t o the transverse
direction, and it is believed that this constraint is sufficient to maintain the DPRM
universality class. The random potentials are modeled by a random energy on the
bonds of the lattice, see Fig. 4.5.

Figure 4.5: Models for a DPRM. Left: In the (10) orientation. Right: In the (11)
orientation.

Thus the lattice Hamiltonian is simply

where the sum is over all bonds (i j) of the lattice and xij represents the DPRM
configuration starting at one particular point s of the lattice and ending at another
point t (see Fig. 4.5). It is xij = 1 if the DPRM passes through the bond (i j) and
xij = 0 otherwise. Typically s is on one side of a lattice of linear size L and t on the
opposite and the ground state of (4.1) is the minimum energy path from s to t .
Interpreting the energies as distances (after making them all positive by adding a
sufficiently large constant to all energies), and the lattice as a directed graph, this
becomes a shortest path problem that can be solved by using, for instance, Dijkstra's
algorithm, which will be described below. In addition, owing to the directed structure
of the lattice one can compute the minimum energies of DP configurations ending
at (or shortest paths leading to) target nodes t recursively (this is the way in which
Dijkstra's algorithm would proceed for this particular case) [16]. This is the same as
the transfer-matrix algorithm, encountered in statistical mechanics [17]. It reduces in

4.2 Shortest-path Algorithms

Figure 4.6: A collection of polymers of lowest energy directed along the diagonals of
a square lattice with random bonds. Each polymer (crossing 500 bonds) has one end
fixed to the apex of the triangle, the other to various points on its base, and finds the
optimal path in between.

the zero temperature limit to a simple recursion relation for the energies or distances
from s to nodes t in the (n + 1)th layer, once we know the shortest paths to the n-th
layer:

 EL^+') = M~~{E:Y) + e,,, Is1 E n r th layer and sr nearest neighbor of s } (4.2)

In Fig. 4.6 we show a collection of such optimal paths in the 1 + 1 dimensional case.
In the following we will discuss the two basic algorithms to find the shortest paths in
a general graph.

4.2.2 Dijkstra's Algorithm

Given a set of costs cij on each edge of a graph, we calculate the distance label d(i),
which is the cost of a minimum-cost path [18, 19, 20, 211 from a starting node s to the
node i . Dijkstra's algorithm, which works for non-negative costs, is a so called label-
setting algorithm to solve the shortest-path problem. It is a label-setting algorithm
because it finds the exact distance label correctly a t the first attempt. In contrast,
label-correcting algorithms, which be will presented as well, iteratively approach the
exact distance label, and work even if some of the costs are negative, provided there
are no negative-cost cycles in the graph. In order to reconstruct the set of bonds
which make up the minimal-cost path from site s to sitc i, the algorithms also store
a predecessor label, pred(i), which st,ores the label of the previous site from which the
minimal path reached i. The set of minimal paths from a starting site s to all of the
other sites in the graph forms a spanning tree, Tp. An example is presented in Fig.
4.7.
Both label-setting and label-correcting algorithms use the key properties which short-
est paths obey:

4 Simple Graph Algorithms

Figure 4.7: The tree of minimal paths from the source node (shaded) to all other
nodes in a directed square lattice (the edges of the graph only allow paths which
are in the positive (01) and positive (10) directions). All bonds between nearest
neighbors are labeled with their costs, but only the tree of minimal paths is shown.
Each node is labeled with the cost of a minimal path from the source to that node.
(Generated using the demonstration programs from the LEDA library available at
http://www.mpi-sb.mpg.de/LEDA/)

(i) For each edge belonging to the shortest-path tree from node s:

d(j) = d(i) + cij (i , j) in Tp.

(ii) For each edge which does not belong to a shortest path:

d(j) 5 d(i) + cij (i, j) not in Tp.

These properties are often discussed in terms of reduced costs, defined as,

cfj = cij + d(i) - d(j) . (4.3)

Properties (i) and (ii) above are then,

c;j = 0, if (i, j) E Tp,

and

cfj > 0 , otherwise. (4.5)

The proof of these properties relies on the spanning-tree structure of the set of minimal
paths, namely that each site of the tree has only one predecessor. Thus if there is a

4.2 Shortest-path Algorithms 65

bond with c$ < 0 which is not on the minimal-path tree, adding that bond to the tree
and removing the current predecessor bond for site j [which from condition (4.4) has
zero reduced cost], leads to a reduction in the cost of the minimal-path tree. Thus any
tree for which there exists a bond with c$ < 0, is not a minimal-path tree.
For later reference we also note that a directed cycle, W, has the property,

which follows from Eqs. (4.3-4.5).
We will now discuss Dijkstra's method for the minimum path, which works by growing
outward from the starting node s in a manner very similar to breadth-first search.
At each step Dijkstra's algorithm chooses to advance its growth front to the next
unlabeled site which has the smallest distance from the starting node.

algorithm Dijkstra(G, {cij})
begin

s := {s}; 3 := X\{s};
d(s) := 0, pred(s) := 0;
while IS1 < 1x1 do
begin

choose (i , j) : d(j) := mink,,{d(k) + ck, jk E S, m E 3, (k , m) E E } ;
-
S := S\{j}; S := S U {j};
pred(j) := i ;

end
end

The algorithm maintains the minimal distance growth front by adding the node j E 3
with minimal distance label d(j). The proof that d(j) generated in this way is actually
a minimal-cost label proceeds as follows:
(i) Assume that we have a growth front consisting of sites which are labeled with their
minimal path lengths to the source s.
(ii) The next candidate for growth is chosen to be a site which is not already labeled,
and which is connected to the growth front by an edge (i, j) E E.
(iii) We choose the site j for which d(j) is minimal d(j) = mink,m{d(k) + ck,, k E

S , m E 3, (k ,m) E E}.
(iv) Because of (iii) and because all of the costs are non-negative there can be no
path from the current growth front to site j which has a smaller distance than d(j) .
This is because any such path must originate at the current growth front and hence
must use a non-optimal path to generate any alternative path to j (negative costs can
compensate for locally non-optimal paths from the growth front and hence Dijkstra's
method is restricted to non-negative costs). In Fig. 4.8 an example demonstrates how
the Dijkstra's algorithm works.
The "generic" Dijkstra's algorithm scales as C3(IXI2), if the choose statement in the
above algorithm requires a search over all the sites in the lattice. It is easy to do much

4 Simple Graph Algorithms

Figure 4.8: Demonstration of Dijkstra's algorithm The number in the circles denote
the distance labels d (i) . White circle stand for temporary nodes, filled circles for
permanently labeled nodes. The numbers on the edges are the distances cij. The
edges that have been considered in the last step are marked.

better than this by maintaining a list of active sites at the growth front (as in breadth-
first search). However now we must choose the lowest-cost site from among this list.
Thus the potential growth sites must be ordered according t o their distance label.
This ordering must be reshuffled every time a new growth site (with a new distance
label) is added to the list. In the computer science community this is typically done
with heaps or priority-queues which consist of a tree-like data structure, see Sec. 3.2.
Heap reshuffling is O(ln1 E 1) which reduces the algorithmic bound to O (1 E llnl E 1).
Each element of the heap has a key, which is here the temporary distance. The
heap operations create-heap(), find-min() and delete-min() are self-explanatory. The
decrease-key() operation assigns a new lower temporary distance to an element of the
heap and moves it eventually towards the root of the heap by exchanging elements.
By A(i) , we denote the edges adjacent to vertex i . The heap implementation of the
Dijkstra algorithm reads as follows:

4.2 Shortest-path Algorithms

algorithm heap-dijkstra(G, {cij})
begin

create-heap(H) ;
d(i) := co for each node i E N;
d(s) := 0 and pred(s) := 0;
insert (s, H);
while H # 0 do
begin

find-min(i, H) ;
delete-min(i, H);
for each (i, j) E A(i) do
begin

value := d(i) + cij;
if d(j) > value then
begin

if d (j) = oo then
insert(j, H);

else
decrease-key(value, i , H);

d(j) := value, pred(j) := i
end

end
end

end

If the bond costs are integers, the site distance labels themselves can be used as
pointers. Thus we can set up a queue with the distance label as pointers and the
site labels with that distance in the queue (or, in computer science terminology, we
use buckets). The number of buckets that is required, n b , is n b > 2C where C =
max(i,j){q,} is the maximum cost. For example if the costs are chosen from the set
1 ,2 , . . . , l o , then C = 10. As long as C is finite, and the graph is sparse, buckets are
very efficient both in speed and storage, for dctails see Ref. [2 2] . Using buckets, one
can implemented a Dijkstra's algorithm for integer costs which has a running time
scaling as O(I El).

4.2.3 Label-correcting Algorithm

As we said, Dijkstra's algorithm is a label-setting algorithm. The above mentioned
criterion

d(.)shortest-path distances u d(j) 5 d(i) + cij 'd (i, j) E A (4.7)

also gives rise to a so callcd label-correcting algorithm.
Let us define reduced edgc length (or reduced costs) costs!reduced via

&. ,, .= . C . t, + 4 4 - d(j) . (4.8)

68 4 Simple Graph Algorithms

As long as one reduced edge length is negative, the distance labels d(i) are not shortest-
path distances:

d(.) shortest path distances ctJ 2 0 V(i,j) E A (4.9)

The criterion (4.9) suggests the following algorithm for the shortest-path problem:

algorithm label-correcting
begin

d(s) := 0; pred(s) := 0;
d(j) := oo for each node j E N\{s};
while some edge (i, j) satisfies d(j) > d(i) + cij (c$ < 0) do
begin

d(j) := d(i) + cij (+ c,dj = 0);
pred(j) := i ;

end
end

Initially the distance labels at each site are set to a very large number [except the
reference site s which has distance label d(s) = 01. This method requires that the
starting dist,ance labels d(j) are greater than thc exact shortest distances and the
choice of d(j) = cc ensures that. In Fig. 4.9 an example of the operation of the
algorithm is shown.
In practice it is efficient to grow outward from the starting site s. The algorithm may
sweep the lattice many times until the correct distance labels are identified. The worst
case bound on running time O(min{l X 1" EIC, I E (~ ~ ~ I }) with C = max {leij I } , which is
pseudo-polynomial. An alternative procedure is to sweep the lattice once to establish
approximate distance labels and then to iterate locally until local convergence is found.
This so called first in, first out (FIFO) implementation has complexity O(I X I I El).
Note that if there are negative cycles, the instruction d(j) = d(i) + cij would decrease
some distance labels ad (negative) infinitum. However if there are negative cycles,
one can detect them with an appropriate modification of the label-correcting code:

One can terminate if d(k) < -nC for some node i (again C = max Jcij I) and obtain
these negative cycles by tracing them through the predecessor indices starting at node
i . This will be useful in the negative-cycle-canceling method for minimum-cost flow
(Chap. 7).

4.3 Minimum Spanning Tree

In practical daily use minimum spanning tree problems generally arise in one of two
ways, dircctly or indirectly. In some direct applications one wishes to connect a set of
points using the least cost or least length collection of edges. Frequently the points
represent physical ent,ities such as the components of a computer chip, or users of a
system who need to be connected to each other or to a central service such as a central
processor in a computer system. In indirect applications one wishes to connect some

4.3 Minimum Spanning Tree

Figure 4.9: Illustration of the label-correcting algorithm. If the algorithm selects
the edges (1,3), (1,2), (2,4), (4,5), (2,5) and (3,5) in this sequence, we obtain the
distance labels shown in parts (b) to (g). At this point, no edge violates its optimality
condition and the algorithm terminates.

set of points using a measure of performance that on the surface has little resemblance
to the minimum spanning tree objective (sum of edge costs), or the problem itself
bears little resemblance to an optimal tree problem.
The minimum spanning tree [18, 191 of a connected graph with edge costs c i j is a
tree which: (i) visits each node of the graph and; (ii) for which xi,,, c i j a minimum.
Prim's algorithm and Kruskal's algorithm are two methods for finding the minimal
spanning tree [18, 231. The two algorithms are based on the following (equivalent)
optimality conditions:

Cut-optimality condition: A spanning tree T* is a minimum spanning tree if and
only if: for all tree edges (i j) E T*: c i j is smaller than every capacity c k l contained in
the cut1, which is induced by deleting edge (i j) from T*, i.e. after deleting the edge
from the tree, the tree falls apart in two parts. The cut, which is induced by this,
contains all edges in the graph G, which run between the two parts.

Path-optimality condition: A spanning tree T* is a minimum spanning tree if and
only if: For every non-tree edge (k l) of G: c i j 5 c k l for every edge (i j) contained in
the path in T* connecting nodes I% and I .

'A cut of a graph G is a separation of the node set V of G in two disjoint subsets S and S' with
S U S' = V, see also Chap. 6. Usually one also identifies all edges (i, j) with i E S and j E S' with
the cut.

70 4 Simple Graph Algorithms

Kruskal's algorithm is based on the path optimality condition whereas Prim's algo-
rithm is based on the cut optimality condition. The latter is very similar in structure
to Dijkstra's algorithm. Recently it has been observed [24] that Prim's algorithm is
essentially equivalent to the invasion algorithm for percolation.
In Prim's algorithm we start by choosing the lowest cost bond in the graph. The
algorithm then uses the two sites at the ends of this minimal cost bond as the starting
sites for growth. Growth is to the lowest cost bond which is adjacent to the growth
front. The algorithm terminates when every site has been visited. The cost of the
minimal spanning tree is stored in CT, and the bonds making up the minimal spanning
tree are stored in T.

algorithm Prim()
begin

choose (s, r) : c,, := min{csm 1 (k, m) E E) ;

S := {s, r) ; := X\{S, T } ;

T := {(s, r) } ; CT = c,,;
while IS(< 1x1 do
begin

choose (i , j) : cij := min{ckm 1 k E S, m E 3, (k, m) E E);
-

S = S\{j); S = S U {j);
CT = CT + cij; T = T u {(i, j));

end
end

In Fig. 4.10 it is demonstrated how this algorithm works in a particular example.
It is evident that Prim's algorithm is almost identical t o Dijkstra's algorithm. The
only difference is in the choose instruction, which gives the cost criterion for the
extremal move at the growth front. In the minimal-path problem, one chooses the
site at the growth front which has the minimum-cost path to the source, while in the
minimal-spanning-tree problem one simply chooses the minimum-cost bond. Both of
these problems lead to spanning trees, but Prim's has a lower total cost (it is less
constrained). In Dijkstra's algorithm one is checking the cost of the path from the
tested site all the way back to the "source" or "root" of the tree. It is thus more
non-local. In case of integer costs, using the same bucket strategy as described above
for Dijkstra's method, Prim's algorithm is C?(IEI). Heap implementations of Prim's
method are O(IE1ln1EI) as for Dijkstra's method.
The alternative method for finding the minimal spanning tree is Kruskal's algorithm,
which nucleates many trees and then allows trees to merge successively into one tree
by the end of the procedure. This is achieved by allowing growth sites to nucleate off
the growth front, that is, growth occurs at the lowest cost unused bond which does not
lead to a cycle, regardless of whether it is on or off the growth front. Efficient Kruskal's
algorithms have similar efficiency to heap implementations of Dijkstra's method (i.e.

Q(IElWEI)).

Bibliography

Figure 4.10: Illustration of Prim's algorithm. From (a), starting with the lowest
cost edge, to (d) successively new edges are added until a minimum spanning tree is
reached.

Bibliography

[I] D. Stauffer and A. Aharony, Perkolationstheorie: eine Einfuehrung, (Wiley-VCH,
Weinheim 1995)

[2] M.P.M. den Nijs, J. Phys. A 12, 1857 (1979), B. Nienhuis, J. Phys. A 15, 199
(1982)

[3] P.N. Strenski, R.M. Bradley, and J.M. Debierre, Phys. Rev. Lett. 66, 133 (1991)

[4] P.L. Leath, Phys. Rev. B 14, 5046 (1976)

[5] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976)

[6] H.J. Herrmann, D.C. Hong, and H.E. Stanley, J. Phys. A 17, L261 (1984)

[7] D. Wilkinson and J.F. Willemson, J. Phys. A 16, 3365 (1983); D. Wilkinson and
M. Barsony, J. Phys. A 17, L129 (1984)

[8] D.C. Rapaport, J. Stat. Phys. 66, 679 (1992)

[9] C. Lorenz and R. Ziff, Phys. Rev. E 57, 230 (1998)

[lo] R. Tarjan, SIAM J. Cornput. 1, 146 (1972)

[ll] P. Grassberger, J. Phys. A 25, 5475 (1992); Physica A 262, 251 (1999)

72 4 Simple Graph Algorithms

[12] M. Rintoul and H. Nakanishi, J. Phys. A 25, L945 (1992); J. Phys. A 27, 5445
(1994)

[13] T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254, 215 (1995) and references
therein

[14] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

[15] M. Kardar and Y.-C. Zhang, Phys. Rev. Lett. 58, 2087 (1987); T. Nattermann
and R. Lipowski,Phys. Rev. Lett. 61, 2508 (1988); J. Derrida and H. Spohn, J.
Stat. Phys. 51, 817 (1988); G. Parisi, J. Physique 51, 1695 (1990); M. Mkzard, J.
Physique 51, 1831 (1990); D. Fisher and D. Huse,Phys. Rev. B 43, 10728 (1991)

[16] M. Kardar, Phys. Rev. Lett. 55, 2235 (1985); D. Huse and C. L. Henley, Phys.
Rev. Lett. 54, 2708 (1985); M. Kardar, Phys. Rev. Lett. 55, 2923 (1985)

[17] L.E. Reichl, A Modern Course in Statistical Physics, (John Wiley & sops, New
York 1998)

[18] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, (MIT
Press, Cambridge (MA) 1990)

[19] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, (Prentice Hall, New Jersy 1992)

[20] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, (Addison-Wesley, Reading (MA) 1974)

[21] R. Sedgewick, Algorithms in C , (Addison-Wesley, Reading (MA) 1990)

[22] P.M. Duxbury and R. Dobrin, Physica A 270, 263 (1999)

[23] D.B. West, Introduction to Graph Theory, (Prentice-Hall, New Jersy 1996)

[24] A.L. Barabasi, Phys. Rev. Lett. 76, 3750 (1996)

5 Introduction to Statistical Physics

This section gives a short introduction to statistical physics, as far as it is relevant to
this book. For a thorough presentation, we refer the reader to various excellent books,
as for instance [l, 2, 31.
Statist~cal physics deals with systems that consist of many particles: typically gases,
liquids, solids, radiation, polymers, membranes, proteins or complicated networks of
simple (idealized) agents, like populations, metabolic networks, or the Internet. The
general observation is that in a system of many degrees of freedom a collective behavior
might emerge, that is not a feature of any of its components: the whole theory of phase
transition (liquid/gas, crystallization, paramagnetic/ferromagnetic) is based on the
thermodynamic limit in which the number of particles of the system is mathematically
infinite. Of course there are already clear indications of a phase transition if the
number of particle is huge but finite. In a typical experiment on a macroscopic sample
for instance loz3 particles are studied, while lo5 - 10'' particles can be considered in
a typical state of the art computer simulation. 10" is already such a large number
that the experimented resolution and finiteness of the observation time can no longer
account for the difference between the observed behavior and an ideal phase transition,
but in computer simulation one needs a tool, namely finite-size scaling, to infer from
the observed finite-size system behavior to the ideal underlying phase transition (of
the infinite system).
In what follows we present a brief overview over these phenomena and the necessary
tools to analyze them. Only classical systems are considered, i.e. quantum mechanical
effects are neglected. First, the basic ideas are introduced. Next, a short introduction
to phase transitions is given. In the third section, the ideas of finite-size scaling are
explained by studying percolation problems. In the following section, the ideas arc
applied to magnetic phase transitions. In the last section, systems with quenched
disorder are considered.

5.1 Basics of Statistical Physics

Let us consider a physical system of N particles or entities that can take on a discrete
set of states Si, 1 = 1 , . . . , N. 4 n archetypical example is the Ising model for mag-
netism in which Si E {+I, -1) represents an atomic magnetic moment called spin,
that can point upwards (Si = +1) or downwards (Si = -1). The configuration of the
system is described by the state of all N particles S = (S1,. . . , SN). The Hamilton

74 5 Introduction to Statzstical Physics

function (or Hamiltonian) or energy function X(S) of the system assigns to each state
an energy - from a microscopical view point this is &l one needs to know to describe
the physics of the system. In case of the aforementioned Ising model it is, for instance,

where Jij is a magnetic interaction strength (Jij > 0 favoring parallel orientation of
the spin i and j , Jij < 0 favoring anti-parallel orientation) and h an external field
strength.
A typical task in the statistical physics of systems that are described by a Hamiltonian
X(S) consists in the computation of expectation values of observables such as energy,
pressure, or magnetization. The result depends on the ensemble which is chosen. For
instance, the microcanonical ensemble describes a system which is isolated from its
environment. This means that some quantities like the number of particles, the volume
or the energy are conserved. For other ensembles e.g. the chemical potential or the
pressure can be fixed. Here we consider the canonical ensemble, which describes
systems connected to a heat bath (an infinite source/sink of energy), which always
holds the system at temperature T. Then, the so called thermal expectation values of
observables A(,!?) are given by

Here the sum is over all states of the system, kb the Boltzmann constant Z =
C exp(-X(S)/lcbT) is the partition function, which simply ensures the normaliza-

C

con of the Boltzmann distribution

that is the probability for a system coupled to a heat bath with temperature T to
be in state 3. A thermal expectation value of an observable X(S) is therefore just a
weighted sum of values A(S) that observable A takes on as in state ,!?. In the Ising
system defined above, one such observable is for instance the magnetization

that can be used to discriminate between different magnetic phases of a ferromagnet.
The magnetization per site is m = M I N . The internal energy E of the system at
temperature T is simply the thermal expectation value of X

However, it is the free energy F and not the internal energy that is crucial for the
thermodynamic propertics of a physical system at non-vanishing temperatures (T > 0).
It is defined to be proportional to the logarithm of the partition function:

5.1 Basics of Statistical Physics 75

All thermodynamic quantities can be calculated from the free energylpartition func-
tion by taking derivatives, e.g. the expectation values of the energy E, the magneti-
zation M , the specific heat c and the susceptibility x (with P = l /kbT)

By a short calculation, you will find that the second derivatives specific heat and
susceptibility are related to the fluctuations of the related first derivatives:

The importance of the free energy is due to the fact that for the thermodynamics not
only the energetics of the states of the system but also their number, the density of
states, play a role. The measure for the latter is the (Boltzmann) entropy defined by

We do not have the space here to uncover all the deep implications of this quantity,
and it is not necessary for the purpose of this book, which is mainly concerned with
zero temperature problems. If we insert P(S) from (5.3) into (5.13), use (5.6) and
compare with (5.5), we see immediately that

Thus the entropy does not play a role at T = 0 where the intcrnal energy becomes equal
t o the free energy. In that case, a closer look at Eq. (5.3) for the Boltzmann probability
reveals the crucial role that the energy X(S) has in determining the thermodynamics
of a system: for fixed temperature T the weight P(2) of state S gets smaller the
larger its energy is. In the zero-temperature limit T + 0 only the state So with the
lowest energy Eo = mins{X(,S)}, the ground state, contributes t o the thermodynamic
average (5.2) of any observable A. All the other states with energies X(S) > Eo are
exponentially suppressed and are irrelevant at T = 0. This clarifies the importance of
the ground state (S) of a physical system described by a Hamiltonian X(S).
For non-zero temperature it is a tremendous task to perform the sum given in (5.2)
explicitly and it can be achieved analytically only in a few exactly solvable cases.
Note that the number of states grows exponentially with the size N of the system; for
instance an Ising system with N spins can take on 2N different states 5. In many cases
the individual particle have even to be described by a continuous variable with one
or more components, e.g. S, = (cos ip, sin ip), a two-component vector parameterized

76 5 Introduction to Statistical Physics

by the angle cp E [O, 27r), also called a XY-spin, which makes the task even more
difficult. On the other hand, not all states S are equally important in an approximate
calculation of the thermodynamic expectation value - at low temperature, for instance,
those with a high energy are exponentially suppressed.
The key trick in evaluating the sum in (5.2) approximately on a computer, instead
of an exact enumeration, is to generate a random sequence of states that obeys by
construction the desired Boltzmann probability. This a physicist calls importance
sampling. In general, an algorithm to evaluate some quantities by means of random
processes is called Monte Carlo simulation. Thus we want to generate a sequence of
states S1 t S, -+ 5, + . . . recursively one from the other with a carefully designed
transition probability w (S t &+,) such that states S occur within the sequence with
probability P,,(S) = Z-l exp(-PX(3)). How do we find the appropriate transition
probabilities w (S + 5') that gives the probability to generate the state S' in the next
step if state S is given? The sequence under consideration can be interpreted as one
realization of a Markov process, in which states S occur with probability Pt (5) in the
t-th step and whose evaluation is given by the Master equation

In the sum on the right hand side over all states S', the first term describes processes
which move a system into state S, while the second term accounts for processes leaving
state 5. After a large number of steps (t + oo) the probabilities Pt(S) will approach
a stationary distribution P(S) = lim Pt(S), which we want to be the Boltzmann

t i m

distribution P(S) = P,,(S) = Z-l exp(-PX(27)). We can design the transition prob-
abilities w(S t 3') in such a way, that for Pt(,S) = P,,(S) each term in the sum on
the right hand side of (5.15) vanishes:

This relation is called detailed balance. Now it is ensured that the desired distribution
is the Markov process defined by (5.15). Please note that, in principle, you can use
other measures to ensure that the equilibrium distribution is obtained. To ensure
detailed balance, Metropolis et al. [4] chose

where AX = X (S') - X(S) is the energy difference between the old state S' and the
new state S and I- an arbitrary transition rate such that w has the meaning of a
transition probability per unit time. By inserting these transition probabilities into
(5.16), one sees that they fulfill the detailed balance condition.
There is a considerable amount of freedom in the choice of the move 5 -t St, but
one should note that because of w(S + S1)/w(S' t S) = exp(-AX/kbT) the energy
change A X should not be too large when going from + S' or vice versa. Hence
typically it is necessary to consider small changes of 3 only, since otherwise the ac-
ceptance rate of either S + 5' or 3' t would be very small (and a lot of computer

5.1 Bas ics of Stat is t ical Phys ics 77

time would be wasted since the procedure would be poorly convergent). There are
exceptions from this rule, like the cluster algorithms for spin models [5, 61, where
clever schemes make large changes in configuration space possible, while the energy
changes A X are kept small. But these cluster algorithms do not work in general.
So, for instance, for the Ising model one conventionally uses a single spin flip dyhamics,
where at each move 5 + S' only a single spin, say Si, is flipped: Si + --Si and the
other spins do not change S, = Si V j # f . Then

for Si = - sign(hi) '

w(Si t -Si) = r exp(-2Si hi/kbT) for Si = sign(hi)

where hi = C JijSj + bi is the local field acting upon spin Si in state S.
j(f 4

In practice one realizes the sequence of states S with chosen transition probabilities
w by executing the following Monte Carlo program to calculate an estimate of the
thermal expectation value (A)T of an observable A(S):

algorithm Monte Carlo (T, Nsteps)
begin

choose start configuration S ; set A, := 0;
for step := 1 , . . . , N,,,,, do
begin

generate trial state 5';
compute w(S t S f) =: W ;

generate uniform random number z E [0,1];
if (w < x) then

reject 2';
else

accept Sf (i.e. S := Sf);
sum up average A,, := A,, + A(S);

end
Aav := AavlNsteps;

end

After a number steps Nsteps, the number of trial states is usually called the number of
Monte Carlo steps, one stops and we get A,(Nsteps) as an estimate of (A)T. This is
true because according t o what we have said about the stationary distribution of this
process, we have

Of course it is impossible to perform the limit NstepS + oo on a computer. Thus, one
has to devise a reliable criterion to decide, which value of NStep, for the number of
Monte Carlo steps is sufficient t o get an estimate for (A)T with the desired accuracy.
This issue would fill another book, we therefore refer the reader to [7, 81. We only
mention that the interval [A,, - AA; A,, + AA] contains the true value of (A)T with

78 5 Introduction to Statistical Physics

a probability of 0.65 (assuming that A,, is Gaussian distributed). AA is the standard
error bar of the result, given by

where T is the correlation time of the quantity, which describes how long you have
to simulate to obtain two independent measurements. Tho correlation time can be
obtained from an autocorrelation function CA(t) in equilibrium

through CA(7) = e-lCA(0). The value of St measures the distance between two
consecutive measurements, using the same time unit that is chosen to measure r. For
the algorithm above, St = 1 (one Montc Carlo step). In case you take your samples
very rarely (St >> r), Eq. (5.20) becomes

What is important for our topic L'optimization" is that the Monte Carlo procedure
can also be used to find the ground state configuration ,So of the system under

consideration: for low temperature only the states with the lowest energies allow a
significant weight Pe,(,S), and therefore by reducing the temperature step by step
down to T = 0 the process just described should converge to the state with the lowest
energy 5,. This procedure is called simulated annealing [9] and is one of many methods
among what is known as the field of "stochastic optimization", see Chap. 11. Of course
for lower and lower temperatures the equilibration time of the process gets largcr and
larger, necessitating huge numbers of steps NstePs to guarantee equilibration. Since
this condition cannot be fulfilled for arbitrary low temperatures there is no guarantee
of finding the exact ground state with simulated annealing. However, sometimes this
is the only method at hand.

5.2 Phase Transitions

We all know that when heating water (at a particular pressure p) it starts to boil a t
T, = 100°C and transforms into vapor, see Fig. 5.1. This is the archetypical example
of a phase transition, it separates a temperature range (at fixed pressure), where water
is a liquid to a range where it is a gas . The transition is characterized by an order
parameter of the system, in this case the density which can be obtained also by a
suitable derivative of the free energy. Here the density jumps discontinuously at the
transition, the liquid density being much larger than the gas density. Only at one
particular point, the critical point, of the (p,T)-diagram, the so called phase diagram,
the transition is continuous. The latter transition is referred to as being of second
order, which means that discontinuities appear only in the second derivative of

5.2 Phase Transitions

Figure 5.1: Schematic picture of the liquid-gas transition of water. Below T, the
system is a fluid (left), while for higher temperatures it is a gas (right).

Figure 5.2: A two dimensional Ising ferromagnet. Near neighbors of the lattice
interact ferromagnetically, indicated by straight lines joining them.

the free energy, whereas in the former case it is of first order, meaning that a first
derivative of the free energy (the density) is already discontinuous.
In general, a phase transition in a many particle system is induced by the variation of
a parameter (such as temperature, pressure, etc.) and is (usually) mathematically
characterized by a discontinuity or a singularity in an appropriately chosen order
parameter. It separates regions in the phase diagram with different physical properties,
most elegantly expressed by their symmetries and reflected by the behavior of the
order parameter. The concept is most easily visualized by an example, the Ising
model in an external field that can simultaneously serve as a lattice gas model for
the liquidlgas transition (spin up A particle present, spin down A particlc absent,
magnetic interaction A nearest neighbor attraction, field A chemical potential). The

80 5 Introduction to Statistical Physics

spins Si = f 1 are localized on the sites of a 2-dimensional lattice (Fig. 5.2), the
Hamiltonian is

(i j) means the sum over all nearest neighbor pairs of the lattice. For all nonzero
magnetic fields h, the model is paramagnetic, i.e. the average orientation of the spins
is determined by the sign of h. Below a critical temperature T,, the order parameter,
the magnetization per spin rn as a function of the field h, has a discontinuous jump
at h = 0, which is the sign of a first order phase transition (Fig. 5.3).

Figure 5.3: The (T, h) phase diagram of the 2d Ising model. The insets show the
magnetization as a function of the field for two different temperatures indicating the
critical behavior for T = T, and the first order transition at T < T,.

For h = 0 the model possesses a 2nd order phase transition at the critical temperature
T,, where the magnetization has a singularity m - (T, - T) ~ for T < T,, but m = 0
for T > T,. The exponent P, not to be confused with ,B = l /kbT, characterizes the
behavior near the phase transition, called the critical behavior. Thus, P is called a
critical exponent1. Also for other interesting quantities critical exponents are defined,
see Secs. 4.1 and 5.4. It can be shown that for many models the actual values of the
critical exponents do not depend on details of the model. In that case one speaks of
universality.
For the purpose of this book (the computation of various quantities in a finite system)
we should emphasize that the above scenario describes the behavior of the infinite

'1t turns out that ,8 = 118.

5.3 Percolation and Finite-size Scaling 8 1

system. Mathematically, there is no phase transition in a finite system: the partition
function is a sum of a f inite (although exponentially large) number of analytical terms,
thus the free energy is analytic and no singularities occur. In what follows we describe
how this infinite system phase transition can be located and studied in finite systems.
Using a technique called finite-size scaling (FSS), it is possible e.g. to calculate the
values of the critical exponents of a given model. The mathematical background for
finite-size scaling is provided by the renormalization-group theory 110, 111, which is
beyond the scope of this book. Here we show how the ideas evolve when considering
e.g. the percolation problem.

5.3 Percolation and Finite-size Scaling

One of the simplcst and most studied phase transitions of second order is the per-
colation transition. Percolation is defined in an operative way: take an arbitrary
d-dimensional lattice (square, triangular, sc, fcc, . . .) and occupy each site randomly
with a probability p. So a fraction 1 - p of the sites are not occupied. We identify
the connected clusters of this randomly occupied lattice: two sites are connected if
one finds a path from one site to the next only using bonds between occupied nearest
neighbors. There exists a critical value p, for the occupation probability below which
only finite clusters (of size s = 1 , 2 , 3 , . . .) even in the infinite system exist, whereas
above it (p > p,) at least one percolating i.e. infinite cluster exists that spins from
one end of the system to the other (Fig. 4.1).
We define the probability that an occupied site is part of the percolating cluster:
P,(p), the concentration of clusters consisting of s occupied sites: n,(p) and the

o o , 2 percolation susceptibility ~ (p) = $C,=l s n,(p), where C' means the sum over all
clusters except the infinite one (p > p,). At the percolation transition we encounter
critical singularities 1121 in the variable 6 = (p - p,)/pc + 0, described by the critical
exponents p , r , T and IS via

6 6 > 0 (p > p,)
P - 6) - r 6 < 0 (p < p ,)

and

where n(x) is a (usually unknown) scaling function. For all different lattice types
(square, triangle, cubic, ...) the exponents depend on each other in the same way:
T = 2 +PI(? + P) and a = l / (y + P) ,
but the actual values are not the same for different lattice types. The percolation
cluster at p = p, is a fractal and its mass scales as M K rdf with its radius (or linear
size) r , where df is the fractal d imens ion . In Fig. 5.4 we show an example for the
determination of the fractal dimension for d = 2 using the methods describe in Sec.
4.1 for percolation problems.

5 Introduction to Statistical Physics

Figure 5.4: Monte Carlo data for the size of the largest cluster at the percolation
threshold p = p, = 112 of the triangular lattice, as a function of the linear system size
L of the lattice. The slope of the straight line in this log-log plot is the exactly know
fractal dimension df = 91/48. From [12].

In a finite system quantities such as ~ (p) cannot diverge but reach a maximum, also
P,(p) does not vanish [for all p the probability (apL) for a percolating cluster is
exponentially small]. As a consequence, singularities are smeared out for finite systems.
In a finite subsystem of linear size L a percolating cluster has radius r , = L. Thus,
using (5.26), the probability for the occurrence of a percolating cluster PI^^^(^^) is

Hence one finds a percolating cluster in the finite subsystem with the probability of
order 1 (i.e. P:~"(~,) M 1) if

where we used T = 2 + p/ (y + p) and the hyper scaling relation [lo, 111 dv = y + 2P,
which involves the dimension d of the system. Furthermore, v is the critical exponent
of the correlation length [, which is defined as the typical length scale over which the
connectedness probability, i.e. the probability that two sites a distance r apart belong
to the same connected cluster, decays in the infinite system. It diverges a t the critical

5.3 Percolation and Finite-size Scaling

point as

The mass (number of sites) of a percolating cluster in a finite system is simply the
mass of a cluster of radius L

which means that the probability for a site to belong to a percolation cluster is

since PL (p,) = M / L ~ .
The distribution n,,(p) in a finite system is cut off at s K L d f . Therefore also the
divergence of the susceptibility is

We will look more closely at the combination of exponents that appear in the expression
for xr,(p): since (3 - r) / a = y and lladf = v we get

in other words: xL(p) is composed of a diverging factor SPY, which describes the
behavior in the infinite system, and a scaling function that depends on the scaling
variable L/J, where J = S-". Since there cannot be a divergence in a finite system,
one expects that X(x) vanishes for x + 0 in such a way that the divergence of the
prefactor is canceled. In this case, X(z) K 271" for x + 0. This yields at p = p,
(6 = 0) the correct finite size behavior x ~ , (p = p,) cc L')'IV.
This is the essence of finite-size scaling (FSS), scaling functions always depend on the
ratio of the two lengths L and J and the prefactors describe the singularities, either
in terms of the distance from the critical point 6 = 5-7, or in terms of the system size
L, which then replaces J , i.e. for (5.33)

Analogously

84 5 Introduction to Statzstical Physics

Note that these relations only hold asymptotically, i.e. close to p, and for large values
of L. Further away from p, and for smaller system sizes corrections to scaling occur.
The general scheme is to perform simulations at different systems sizes and use these
data and equations like (5 .34) , (5.35) and (5.36) to extract all information. Equation
(5.36) is particularly useful for the numerical determination of p,: for p = p, the value
of pier" is independent of the system size, P : ~ ~ ~ (~ ,) = Ij(0) and therefore the curves
for different fixed systcm sizes should intersect at the critical point p = p,!
Practical issues of performing a FSS analysis are covered in Sec. 13.8.3. In the following
section, we will explain the FSS behavior of magnets.

5.4 Magnetic Transition

In a temperature or a disorder driven phase transition the scenario is similar. At the
transition singularities in various quantities occur, and these are smeared out for a
finite system in a systematic way that enables one to extract the critical exponents,
which determine the singularities of the infinite system.
Let us, for instance, consider the aforementioned Ising model (5.1) at temperature T .
In d > 2 space dimensions a phase transition a t a critical temperature T, occurs, from
a paramagnetic phase at high temperature (T > T,) to a ferromagnetic phase at low
temperatures (T < T,). The order parameter, indicating the appcarance of magnetic
order in this system, is the magnetization per site

N
where M = M (S) = C Si and

i=l

is the susceptibility. Here 6 := (T - T,)/T, denotes the distance from the critical
point. The singular dependencies of m(T) and x(T) on 6 are valid for the infinite
system. If N = Ld is finite one gets

The correlation length < = 161-" is defined via the decay of spatial spin correlations:

close to the critical point. Since the correlation length diverges at the critical point,
C (r) holds for T = T,. q is another critical exponent that is related to y
via [since d r C (r) = X]

5.4 Magnetic Transition 85

A useful way in which one can estimate the critical exponents from a set of Monte
Carlo data for finite sizes L and different temperatures T (or distances from the critical
point 6) is to plot for instance X L (~) / ~ ~ / " versus LSV or t = L' /~S. Then data for
different system sizes should fall on a single curve, the scaling function 2, according
to (5.40). The exponents y and u as well as the critical temperature Tc are then fit
parameters, by which one has to try to achieve the best possible data collapse for
different system sizes. In Fig. 5.5 we show such a scaling plot for the two-dimensional
Ising model.
Note that the presence of three free fit parameters makes the data determination of the
critical quantities using such a data collapse open to large systematic errors. It would
be much better if one could estimate onc or two of these quantities separately such
that the number of free parameters is reduced. Fortunately there is such a method
for determining the critical temperature, similar to the use of the percolating cluster
probability in the aforementioned percolation problem, namely the dimensionless ratio
of moments ("Binder cumulant")

This quantity is the second cumulant of the probability distribution of the fluctuating
magnetization per site m and it is 0 for a Gaussian and 1 for a double-delta function.
Since this is exactly what one expects for the paramagnetic and the ferromagnetic
phase, respectively, of a ferromagnet in the infinite system-size limit, this cumulant is
a step function in the thermodynamic limit. Since for any moment of the magnetization
one expects a scaling behavior similar to (5.39):

it follows that GL(T = T,) is independent of system size and a family of curves for
GL(T) with different but fixed system sizes intersccts at T = T, (with corrections to
scaling, i.e. the deviation from the asymptotic behavior for smaller system sizes).
The practical procedure is exemplified in Fig. 5.5 for the two-dimensional Ising model.
First the location of the critical point, T,, is determined by the intersection point of
the curves for different system sizes of the dimensionless ratio of moments GL(T) ,
c.f. Fig. 5.5a. Then the same data for GL(T) are plotted against the scaling variable
L'/"(T - Tc)/Tc, where one chooses the exponent u such that the best data collapse
is achieved, c.f. Fig. 5.5b. Next the magnetization exponent ,8 and the susceptibility
exponent y are estimated by plotting the rescaled magnetization L - o I V r n L (~) and
the rescaled susceptibility (T) against the scaling variable L'/"(T - Tc)/Tc, see
Fig. 5 . 5 ~ and Fig. 5.5d, where one chooses the exponents ,6' and y such that the best
data collapse is achieved and T, and u are, for instance, taken from a and b. Other
quantities, like e.g. the specific heat can also be studied in this way, and the critical
exponents (a = 0, i.e. a logarithmic divergence in case of the specific heat of the 2d
Ising model) extracted.
One recognizes the similarity between the critical singularities for percolation and the
one for a thermal phase transition - and also of the finite-size scaling behavior. Actu-
ally for the case that there is one single length scale determining the transition (the

5 Introduction to Statistical Physics

Figure 5.5: Finite-size scaling (FSS) behavior of the two-dimensional Ising model
on the square lattice (with J = 1). The data are obtained with a conventional single
spin-flip Monte Carlo simulation using Metropolis transition rates (5.17). (a) The
dimensionless ratio of moments g r (T) , Eq. (5.43). The data for different system sizes
intersect at the temperature T, = 2.27, which is indicated by the vertical line. This

is the estimate for the critical temperature (which is exactly Tc = 2.269.. .). (b)
Scaling plot of the dimensionless ratio of moments according to (5.43). The data of
(a) are plotted against the scaling variable L1/"(T - T,)/T, with T, = 2.27 (from a)
and v = 1 (which is the exact value). Note that the data collapse is good close to
the critical point (around 0 on the x-axis) and gets worse far away from it. (c) The
magnetization r n ~ (T) , rescaled by its FSS behavior at T,, L - ~ / " , versus the scaling
variable L1/"(T - Tc)/Tc, with T, = 2.27 (from a), v = 1 and P = 118 (which are the
exact values). Close to the critical point the data collapse according to (5.39) is good.
(d) FSS-plot of the susceptibility XL(T), Eq. (5.40), which is rescaled by its FSS at
Tc, Ly/", versus the scaling variable L1/"(T - T,)/T,, with T, = 2.27 (from a), v = 1
and y = 714 (which are the exact values).

correlation length) this is the generic scenario (there are always exceptions, but as a
working hypothesis it is good for many systems); an order parameter, its susceptibility
and the correlation function (including a characteristic lengths scale, the correlation
length) yield a set of critical exponents: a, for the specific heat, P, for the order pa-
rameter, y, for the order parameter susceptibility, u for the correlation lengths, etc.,

5.5 Disordered Systems 8 7

and usually only 2 of them are independent; in the case when the hyper-scaling rela-
tion 2d = 2 - a is violated, 3 of them. These determine the universality class of the
system.
Now we will shortly introduce the notion of universality. According to the theory of
critical phenomena including the renormalization group, the exponents determining
the critical singularities of a many particle system at a second order phase transition
depend only on features like the space dimension d, the number of components of the
order parameter (e.g. I for the Ising model, 2 for XY spins etc.), the range of the
interactions (short-range versus long-range, like e.g. Coulomb), possibly on quenched
disorder (see below, depending on whether it is relevant or not), sometimes on the
type of frustration (e.g. for spin glasses, see Chap. 9), etc. But they do not depend on
microscopic features like the detailed lattice structure of next and next-to-next nearest
neighbor interactions (as long as no frustration arises through these additional inter-
actions), i.e. they are universal The two-dimensional Ising model has the same critical
exponents (a, p, y, etc.) for nearest neighbor interactions on the square lattice, the
triangular lattice, the hexagonal lattice, the Kagomk lattice etc. Even if ferromagnetic
next-nearest (or n-nearest) neighbor interactions are considered, the exponents will
not change. The same for the three-dimensional case, which is particularly useful,
since the critical point in the aforementioned (p, V) phase diagram of for instance
water is in the universality class of the 3d Ising model (the density corresponds to
the magnetization, the chemical potential to the external field. and on a lattice the
presence of a molecule corresponds to spin up, the absence to spin down). This is one
of the most important reasons why physicists are interested in the models we discuss
in this book. These models will never describe an experimental system in all details
- but the concept of universality tells us that this is not necessary as far as critical
phenomena are concerned.

5.5 Disordered Systems

In all solid materials there is some quenched or frozen i n disorder, even extremely pure
materials contain impurities and defects. Surprisingly small amounts of impurities
can significantly influence the phase transitions by which ordered structures form and
in some classes of materials the quenched randomness is substantial and completely
dominates their physical properties. Glasses and alloys, for instance, can be designed
to have properties not achievable with pure elements or periodic structures.
A typical example for a system in which the least amount of disorder (in finite con-
centration, though) changes the universality class of a phase transition (i.e. alters the
critical exponents characterizing it) is the random bond Ising ferromagnet in three
space dimensions:

where Si = &I, the sum runs over all nearest neighbor pairs of spins of a simple cubic
lattice and the Jij(> 0) are quenched random variables (independently identically

88 5 Introduction to Statistical Physics

distributed, in other words: uncorrelated, random variables) obeying a probability
distribution, for instance a binary (or called bimodal) distribution P (J i j) = 1/26(Jij -
J1) + l /26(Jij - J 2) with J2 > J1 > 0.
The fact that these interaction strengths are quenched or frozen in, modeling the
quenched disorder in a real 3d magnet with short range interactions and an Ising
symmetry, implies that they have to be chosen according to their distribution and fixed
before calculating any physical quantity with this Hamiltonian. Therefore one cannot
expect a priori that the thermodynamic expectation values, such as magnetization or
specific heat, are independent of the specific choice of these random variables. Indeed
it turns out that for instance correlation functions at the critical point (where the
correlation length becomes infinite) show strong sample to sample fluctuations (i.e.
strong variations among their thermal expectation values for different realizations of
the disorder). Wiseman and Domany have shown [13] that ratios such as

describing the variance of the the distribution of the observable O generated by the
disorder realization, do in general not decay to zero when the ratio of system size and
correlation length, L / ((T) , approach zero, i.e. when [diverges, e.g. a t a critical point.
One speaks of lack of self-averaging in this case. Away from a critical point, however,
one expects self-averaging of all quantities 0, since then Ro - ((/L)d for L >> E .
Other quantities, like the free energy, have the property of being self-averaging even
at the critical point, which means that their fluctuations between different disorder
realizations become smaller with increasing system size. As a rule of thumb one can
say that the most interesting variables, namely those providing information about the
order emerging at a phase transition do show strong sample to sample fluctuations and
things usually get worse when considering larger system sizes. Therefore in most cases
it is mandatory to average the results over many thousands of disorder realizations
and it is recommended not only to study average values but the whole distribution of
the observables.
Hence we have to compute two averages: one over the different disorder realizations
and one thermal average for each disorder realization. For instance the average mag-
netization is then defined as

or the average susceptibility

where [. . .Iav denotes the average over the quenched disorder, and (. . .)T the thermal
average with fixed realization of the disorder. More explicitly this means for the
random Ising ferromagnet (5.45):

5.5 Disordered Systems 89

In pract,ice (i.c. in a computer simulation) the exact average over the random vari-
able has to be replaced by an unbiased sum over a large enough number of disorder
realizations.
When computing ground-state properties of a model with quenched disorder the ther-
mal average is simply replaced by the computation of the (exact) ground state(s) S
and an evaluation of the observables under consideration in this state(s) S.
The random-field Ising model, for instance (see Chap. 6),

where hi is a random variable, modeling a random external field, obeying some distri-
bution with zero mean and variance h; has in three space dimensions a phase transition
also at zero temperature (T = 0) from a paramagnetic phase (m = 0) to a ferromag-
netic phase (m > 0) at a critical strength h, of the random fields. If SO@) denotes the
ground state of the Hamiltonian H with random fields h the average magnetization is
simply

Sometimes one is interested in correlated disorder, for which only the generation of
the random variables has to be adopted such that the joint distribution is obeyed, for
instance P (h l , . . . , h N) instead of ni P(h i) .
The physical applications presented in this book are predominantly disordered systems
so that we can skip the presentation of examples here: they will come in abundance
in the later chapters.
The concept of universality, which we mentioned in the previous section concerning
critical phenomena, carries over to critical points in disordered systems as well and
implies here, besides the irrelevance of microscopic details of the model, that the crit-
ical exponents do not depend on the detailed probability distribution of the disordcr.
However, this idea is far from being as well established for disordered systems as it
is for homogeneous systems, simply because exact results for disordered systems are
rare and renormalization group calculations for field theories of disordered systems are
difficult. Here one should note that only the exactly solvable disordered models do
display this universality (e.g. the Mc-Coy-Wu model which is a 2d random ferromagnet
with disorder only in one space direction).
On the other hand a number of numerical calculations (Monte Carlo at finite temper-
ature as well as ground-state calculations at zero temperature) for spin-glass models
1141 as well as random-field models [15] appear to bc incompatible with the concept of
universality: so a binary distribution seems to yield a differcnt set of critical exponents
than a continuous distribution. The usual argument brought against these numerical
results by the community of believers in universality is that these computations are
still in a pre-asymptotic regime, where finite-size effects are still strong and the true
and unique disorder fixed point is still too far away when reuormalizing thc system
sizes that could be studied. We are inclined to use Occam's razor in any unclear situa-
tion and simply recommend that it is always good to think twice before one abandons

90 5 Introduction to Statistical Physics

an appealingly elegant concept like universality, even if there is no rigorous proof that
it holds in the particular case one is considering. Nevertheless, when the numerical
evidence against it grows in strength over the years, it might be a good time to start
to think about something new.

Bibliography

[I] D. Chandler, Introduction to Modern Statistical Mechanics, (Oxford University
Press, Oxford 1987)

[2] J.M. Yeomans, Statistical Mechanics of Phase Transitions, (Larendon Press, Ox-
ford 1992)

[3] L.E. Reichl, A Modern Course in Statistical Physics, (John Wiley & sons, New
York 1998)

[4] N. Metropolis, A.W. Rosenbluth, M.N. Roscnbluth, A.H. Teller, and E. Teller, J.
Chem. Phys. 21, 1087 (1953)

[5] R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)

[6] U. Wolff, Phys. Rev. Lett. 60, 1461 (1988)

[7] M.E.J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics,
(Clarendon Press, Oxford 1999)

[8] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, (Cambridge University Press, Cambridge 2000)

[9] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983)

[lo] D.J. Amit, Field Theory, The Renormalization Group and Critical Phenomena,
(World Scientific, Singapore 1984)

[11] J. Cardy, Scaling and Renormalization in Statistical Physics, (Cambridge Uni-
versity Press 1996)

[12] D. Stauffer and A. Aharony, Perkolationstheorie: eine Einfuehrung, (Wiley-VCH,
Weinheim 1995)

[13] S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 (1995)

[l4] L. Bernardi and I. A. Campbell, Phys. Rev. B/ 52, 12501 (1995)

[15] J.-C. Anglks d'Auriac and N. Sourlas, Europhys. Lett./ 39, 473 (1997)

6 Maximum-flow Methods

This chapter introduces a model for a certain class of random magnetic systems. They
consist of lattices where the atoms have a small magnetic moment, i.e. a spin. Within
this model, for neighboring spins it is energetically favorable to point in the same
directions, which means they interact ferromagnetically. A magnetic field acts on
each spin, its sign and strength may change randomly and independently from spin to
spin. These types of systems are described by random-field models. They have been
studied widely by means of computer simulations and analytical calculations.
There are no direct experimental realizations of random-field systems, but it can be
shown that another class of systems, the diluted antiferrornagnet in a field (DAFF),
can be mapped onto random-field systems. The DAFF consists of spins on lattices
as well, but neighboring spins interact antzferromagnetically. The system is called
diluted, because not all sites of the lattice are occupied by magnetic atoms. Similar
to the random-field model, a magnetic field acts on the spins, but it has the same
direction and the same strength for all spins, i.e. it is homogeneous.
Here we are interested in the low temperature-properties of random-field systems and
diluted antiferromagnets, especially in the ground states. From the viewpoint of a
computational physicist, the calculation of ground states of this type of system belongs
to the class of P problems, i.e. the T = 0 behavior can be studied for large system
sizes.
Initially both models and some basic results are presented. Then it is shown how
these systems can be mapped onto networks. It is demonstrated that the maximum
flow through such a network is equivalent to the minimum energy of the corresponding
system. Next, for pedagogical reasons, a simple algorithm for calculating the maximum
flow is presented. Unfortunately, this algorithm turns out to be very slow. Therefore,
in the main part of this chapter a highly efficient method is presented. Sometimes
random-field systems and diluted antiferromagnets exhibit a huge number of ground
states, i.e. the ground state is degenerate. It is explained how all different ground
states of such a system can be calculated by a second calculation after the maximum
flow has been obtained. Finally some of the most interesting results obtained with
this algorithms are shown.

92 6 Maximum-flow Methods

6.1 Random-field Systems and Diluted
Ant iferromagnets

In this chapter Is ing models are studied. They are d-dimensional lattices of Ising spins
oi = &I. For the random-field Is ing m a g n e t s (R F I M) , they interact ferromagnetically
with their nearest neighbors. A local random magnetic field Bi acts on each spin. The
system has the following Hamilton function

The sum (i , j) runs over pairs of nearest neighbors. J > 0 denotes the magnitude of the
interaction. Here only simple cubic lattices are considered. Since physical properties
depend on the values of the Bi one has to implement quenched disorder. This means
that the local magnetic fields are drawn independently from a probability distribution
p(B) and remain fixed throughout a calculation or simulation. A system with a certain
choice of the values {Bi} is called a realization of the disorder. Since the result of each
calculation depends on the choice of the {B i) , one has to repeat the process scveral
times and average the results over many realizations. It turns out that for random
systems the results vary strongly from realization to realization. Therefore one needs
many of them to obtain reliable results, which is very common when studying random
systems.
For the distribution of the random fields, usually either a bimodal or a Gaussian
distribution are used to draw the random realizations. In the case of a bimodal dis-
tribution the local fields take one of two values Bi = +A with equal probability. For
the Gaussian case arbitrary fields are allowed. The probability density functions are

The parameter A, the width of the distribution, is a measure for the strength of the
disorder. For A = 0 a pure ferromagnet is obtained. Several attempts to treat the
system analytically have been performed [I , 21. For a review of results obtained by
means of computer simulation, see [3].
As already mentioned, there is no direct experimental realization of a random-field
system. Instead diluted antiferromagnets in a field are studied. Later we will see that
indeed the behavior of the RFIM agrees remarkably with that of the DAFF. Before
we present the algorithms to calculate ground states for these models, we will focus a
little bit on the DAFF.
The system FeF2 is an antiferromagnet. By replacing some of the magnetic Fe by
non-magnetic Zn one obtains FexZnl-,F2, and a diluted antiferromagnet is created.
The crystal structure is that of rutilc (TiOa) (see Fig. 6.1). The only relevant type of
interaction is the antiferromagnetic superexchange ncxt-nearest-neighbor interaction
between the Fe atoms on the body corner and the body center sites. This kind of

interaction is generated by the intermediate F atoms. Otherwise the Fe atoms would
be ferromagnetic.

6.1 Random-field Systems and Diluted Antiferromagnets 93

At low temperatures this system exhibits many peculiar properties, e.g. it develops
frozen domains, as found by neutron-scattering experiment [4]. An overview of exper-
imental results is given in [5].

Figure 6.1: Crystal structure of Fe,Znl-,Fz. Small circles denote the Fe/Zn sites
while the large circles are the F sites. The eight corner sites (Fe/Zn) are shared by 8
lattice cells, while the body-center site is not shared. The upper and lower pairs of F
sites are shared by two cells, while the left and right sites are not shared. All together
there are 2 Fe/Zn sites and 4 F sites per lattice cell.

For diluted antiferromagnets with a high anisotropy, like Fe,Znl-,Fa, at low temper-
atures, the spins, i.e. the magnetic Fe moments, are usually oriented along one axis
(the c axis of the crystal). Thus, they can take only two directions, called "up" and
"down". It is assumed this the reason for that anisotropy is a slight deviation of the
crystal structure from the pure cubic symmetry.
The Ising model, which has been presented above, is very well suited to describe such
type of system. For the case of a DAFF, the spins interact antiferromagnetically with
their neighbors. Please note that only the strong interactions are considered in the
following model. So the F atoms are not considered here, since they do not contribute
directly to the magnetic behavior. As a consequence, a simple cubic crystal structure
is sufficient. To describe the dilution, i.e. the fact that not all Fe/Zn sites are occupied
by magnetic Fe atoms, a second variable c, = 0 , l is introduced. A non-magnetic Zn
site is represented by c = 0 while c = 1 holds for a site occupied by a spin (Fe).
Additionally, an external magnetic field B can act on the system. Therefore, the
energy of a diluted antiferromagnet in a field is given by

94 6 Maximum-flow Methods

The strength of the interaction is denoted with J > 0. The sum (i, j) runs over pairs
of nearest neighbors. Here only simple cubic lattices are considered. Like the random-
field model, diluted antiferromagnets exhibit quenched disorder. Each realization is
characterized by a set {ti) of independent random numbers, here we will consider
~i = 0 , l with equal probability.
What can we expect for the behavior of this model? In zero field and with zero tem-
perature the ground state, i.e. the state with the lowest energy, is taken. Therefore, in
(6.4) configurations {ai) are favorable where neighboring spins take different orienta-
tions, because their contribution to the energy Jaiaj = - J turns out to be negative.
It means that, apart from the fact that not all lattice sites are occupied, the system can
be divided into two sublattices, which penetrate each other in checkerboard fashion.
On one of these sublattices all spins point in one direction (say up), while the spins of
the other sublattice are oriented in the opposite way. In Fig. 6.2 an example of a d = 2
dimensional diluted antiferromagnet at B = T = 0 is shown. In higher dimensions the
model behaves similarly, but it is more difficult to draw.

Figure 6.2: Two-dimensional diluted antiferromagnet without external field. The
spins are indicated by arrows. Shown is a ground state T = 0. Please note that the
configuration which is obtained by reversing all spins is a ground state as well.

By increasing the temperature, the DAFF is driven away from the ground state.
This means the spins start to fluctuate thermally. When some critical temperature is
reached the system becomes paramagnetic (PM). Also by increasing the magnitude of
the external magnetic field, the antiferromagnetic order is disturbed. For large values
of B, especially if lBI > 2dJ, all spins point in the direction of the field (at T = 0).
These expectations can be recovered in the schematic phase diagram of the three-
dimensional DAFF model (50% dilution) which is shown in Fig. 6.3. It was measured
by means of Monte Carlo simulations at finite temperature T, see Refs. [6, 71. The

6.1 Random-field Systems and Diluted Ant i fer~omagnets

0 1 2

Figure 6.3: Schematic phase diagram of the DAFF in the B-T plane, obtained by
MC simulation [6]. Three regions can be identified: antiferromagnetic (AFM), domain
state (DS) and paramagnetic (PM).

ordered phase for low temperatures and low fields was established by evaluating the
staggered magnetization

Here, x , y, z are the spatial coordinates of spin i . This order parameter accounts for
the fact that in the presence of order the two penetrating sublattices have opposite
magnetizations. Therefore a = 1 holds for antiferromagnetic order on a cubic lattice.
The transition of the so called domain state (DS) t o the disordered phase is established
in the following way: for a given field B the system is initialized in an ordered state
a t T = 0 and the MC simulation starts. Then, slowly the temperature is increased,
here up to T = 2.5. This process is called field heating (FH). The temperature is
then slowly decreased again (FC=field cooling). Now the system is not able find the
way back to the starting configuration. This can be seen by recording the staggered
magnetization. At some temperature Ti,,(B) the FH and FC curves begin to deviate
from each other. This is called an onset of irreversibility. The line which separates
the PM and the DS regions in Fig. 6.3 is just Ti,, as a function of B . Please note
that the value of Ti,, (B) defined in this fashion depends on the dynamics, i.e. on the
heating/cooling rate. A more detailed study has shown that the DS region can be
characterized by large fractal domains penetrating the system.
The behavior of true diluted antiferrornagnets agrees very well with these computer
simulations. But it is relatively hard to treat this model by means of an analyti-
cal approach. As a consequence random-field systems are usually studied. It can
be shown fairly easily that quite often a DAFF can be mapped onto an RFIM. The
mapping works for example in the case of a simple cubic (or square) lattice. One per-
forms a gauge transformation by introducing new spin variables oi = (-1)2+Y+Zci;
where x, y, z are the spatial coordinates of spin i. This transformation multiplies in a

96 6 Maximum-flow Methods

checkerboard fashion every second spin with minus one, thus all bonds become ferro-
magnetic. The resulting Hamiltonian describes a diluted ferromagnet with staggered
field B, = (-l)"+y+"B. Please note that this kind of transformation does not work
for all lattice types, it fails for example for triangular lattices. An example of such
transformation can be found in Sec. 9.2.
As already mentioned, random-field systems are easier to treat analytically. For this
reason, most of the theoretical research has focused on this model. We finish this
section by stating the expectations about the basic behavior of the model. With low
temperatures and low fields the system exhibits a ferromagnetic long range order. For
large temperatures the system becomes paramagnetic. By increasing the strength A
of the random fields, the spins tend to be oriented along the direction of the field. If
lBzl > 2dJ spin i is fixed (at T = 0). But at zero temperature for intermediate values
of the field a peculiar behavior of the RFIM appears, similar to the DS phase of the
diluted antiferromagnet. This region of the phase diagram can be studied by means
of ground-state calculations. The basic idea of the method for obtaining the ground
states is explained in the next section.

6.2 Transformation to a Graph

Now it is shown that for a given RFIM an equivalent network can be constructed such
that the maximum flow through the network is equal to the ground-state energy of the
RFIM. This transformation was introduced by Picard and Ratliff in 1975 [8]. Addi-
tionally, the orientations of the spins in a ground state can be easily constructed from
the flow values the network takes. In the case where the ground state is degenerate,
all ground states can be obtained by a subsequent calculation. This case is treated in
a Sec. 6.5.
Please note that there are other systems, where the ground-state calculation can be
mapped onto maximum-flow problems in networks. Examples are interfaces in random
elastic media [9, 101 and fracture surfaces in random fuse networks [Ill .
It is more instructive to start with a network and to show how it can be transformed
into an RFIM. Let N = (G, c, s, t) a network, where G = (V, E) is a directed graph
which has n + 2 vertices, c : V x V + 72; are the capacities of the edges (i, j) E E,
with c(i, j) = 0 if (i, j) 6 E. The vertices s , t E V are the source and the sink of the
network, respectively. For convenience, we use V = {0,1,. . . , n, n + I) where s r 0
and t n + I , and the notation cij r c(i, j). The vertices in V \ {s, t) are called inner
vertices. Edges connecting only inner vertices are also called inner edges.
As we havc seen, a network can be interpreted as a system of pipes connecting the
source with the sink. Now, assume that the network should be divided into two pieces
in a way that the source and the sink are separated. You can think of a pipeline
system and a group of terrorists who like to prevent the oil from being transported
t o the refinery. Mathematically, this separation is a (s,t)-cut (S ,S) which has the
following properties:

6.2 Transformation to a Graph

. s E S . t E S

Usually, we denote the elements of S left and the elements of 3 right of the cut. In
Fig. 6.4 an example network with 5 nodes and 6 edges is shown.

Figure 6.4: A graph with 3 inner vertices 1,2,3. A cut (S ,$ = ({s, I) , {2,3 , t }) is
represented by a dashed-dotted line. The capacity of the cut is C ({ s , I), {2,3 , t }) =

c,2 + c I 3) The edge (1,2) does not contribute to the cut, because it is oriented in the
opposite direction to the cut.

Since the amount of work (or TNT) to remove a pipeline grows with its capacity, the
terrorist are interested in the capacity of the pipes they have to remove. These are
exactly the pipes which go from S to 3, that means from left to right. We say these
pipesledges cross the cut. Edges in the opposite direction cannot contribute to a flow
from the source to the sink, thus they are disregarded. The sum of the capacities of
these edges is called the capacity C(S, 3) of the cut

ztS,.ltS

In the example presented in Fig. 6.4 the capacity of the cut is C (S , S) = c , ~ + CIS .

The edge (1,2) does not contribute, since it leads from right to left.
The basic idea to represent a Harniltonian by a network is to represent a cut by a
binary vector X = (zo , xl , . . . , z,, x ,+~) with

For an (s,t)-cut the values of xo = 1 and x,+1 = 0 arc fixcd. An edge (i , j) goes
from left to right of the cut only if x, = 1 and x, = 0. Therefore, the formula for the
capacity of a cut can be rewritten in the following way (all sums run from 0 to n + 1):

98 6 Maximum-flow Methods

Here, it can already be seen that the structure of the formula resembles the energy
functions for the random-field system: it consists of a linear and a quadratic term.
To make the correspondence complete, the values of the source and the sink xo =
1,2,+1 = 0 have to be inserted, additionally q, = 0 Vi is assumed. For didactic
reasons, the capacities involving the source 0 or the sink n + 1 are written as extra
terms. One obtains:

The last slight difference to a Hamiltonian is that the capacity is given in terms of
zero-one variables xi = 0 , l while a spin may take oi = +l . Thus, one can identify xi =
0.5(ni + 1). In the Hamiltonian the sum runs over all bonds, while for C (x l , . . . , x,)
each pair of vertices appears twice in the quadratic term. Thus, the identity Cij cij =

(cij + cji) is used. In the final formula all sums run from 1 to n:

This formula represents a system which has n + 2 vertices: one source, one sink and
n (inner) vertices, one for each spin oi. The model is slightly more general than the
system represented by the Hamiltonians in (6.1) and (6.4). Thus, formula (6.10) can
be compared with an energy function which generalizes both Hamiltonians (ci = 0 , l) :

This is a diluted random-field system with bonds of variable strengths. Another kind
of model which falls into this class is the random-bond ferromagnet [12, 131, were
the system is not diluted nor does it have a random field, but the strengths of the
ferromagnetic bonds are drawn randomly.
Now we want to choose the capacities cij in such a way that the systcm (6.11) is
represented by a network. By comparison with (6.10) we find cij + cji = 4Jijcitj for
i, j E 1 , . . . , n. Since for a network only non-negative capacities are allowed, the bond
values have to be non-negative as well. Both cij and cJi appear in the equality, so
there is some freedom of choice. We chose that non-zero capacities shall be present
only for edges (i, j) with i < j . The reason for this choice is that we have only edges

6.2 Transformation to a Graph 99

going from vertices with smaller number to vertices with higher number. This allows
some algorithms to be implemented in a way that they run faster. For the capacities
we obtain i , j E 1,. . . , n:

Now we are left with the capacities C O ~ , ci,,+l (i = 1 , . . . , n) and C O , ~ + I . Next, the
linear terms in (6.10) and (6.11) have to be compared. Defining

we obtain -coi + ~ i , ~ + l = wi. The value of w, may be positive or negative. Again, all
capacities have to be non-negative. Therefore, we get

Finally, since the sum of the constant terms in (6.10) must vanish, we obtain

The capacity co,,+l of the edge may be positive or negative. But in this case it does
not matter, since this edge crosses every (s, t)-cut of the network. Consequently, it
can be removed from the network at the beginning. Later, after the capacity of a cut
has been obtained, the value of co,,+l has to be added to obtain the energy of the
corresponding system.
To summarize, for a system defined by the energy function (6.11) an equivalent net-
work can be constructed by creating a graph which has one vertex for each spin and
additionally a source and a sink. The capacities of the edges are chosen by performing
the steps given through Eqs. (6.12, 6.14, 6.15). Then, every configuration of the sys-
tem corresponds to a cut in the network (oi = 2zi - 1) and the energy H(cl , . . . , CT,)

is equal to the capacity C(zl, . . . , z,) of the corresponding cut.
Since we are interested in ground states, a minimum of the energy is to be obtained.
Consequently, we are looking for a minimum cut , that is a cut among all cuts which
has minimum capacity. Such a cut cannot be obtained directly, but it is related t o the
flow going through the network. Each flow must pass the edges crossing an arbitrary
cut, especially the minimum cut. Therefore, the minimum cut capacity is an upper
bound for the flow. On the other hand, it can be shown that the maximum flow which
is possible is indeed given by the capacity of a minimum cut. The proof was found by
Ford and Fulkerson in 1956 [14]. Versions of the proof which arc more instructive can
be found in [15,16,17]. Along with the proof a simplc method for finding the maximum
flow was introduced. After constructing an equivalent network such a technique can
be applied to find a ground state of a random-field Ising system. The Ford-Fulkerson
algorithm and an extension of it are presented in the next section.
But before we proceed with the algorithms, as an example, we look at a small random-
field system, which is shown in Fig. 6.5. There are four spins arranged in a square,

100 6 Maximum-Bow Methods

neighbors interact via ferromagnetic interactions of strength J = 1. The local fields
have the values B1 = 0, B2 = -2A, B3 = 2A, and B4 = 0. Even for this tiny system
many different effects, depending on the magnitude of A, can be studied.

Figure 6.5: A small random-field Ising magnet. It contains 4 spins coupled via
ferromagnetic interactions (512 =J13 =J24 =534 = 1). The local fields have the
magnitudes BI = 0, B2 = 2 A , B3 = 2A, and B4 = 0.

Now, an equivalent network is constructed. It contains n = 4 inner nodes, one for
each spin, and additionally one source 0 and one sink n + 1 = 5. We start by setting
the capacities of the inner nodes. According to (6.12) we get

C12 = 4J12 = 4

C13 = 4

ca4 = 4

C34 = 4

cij = 0 for all other cases 1 5 i , j 5 4

These values do not depend on the strength of the local magnetic fields. But they
enter the expressions for the auxiliary values wi, see (6.13)

At first the case A = 0 is investigated. Thus, no magnetic field acts on the spins.
A ferromagnetically ordered ground state is to be expected, thus all spins point up
or all spins point down at T = 0. Since each bond contributes an amount of -1 to
the energy, the total ground-state energy sums up to Eo = -4. This behavior can
be extracted from the corresponding network as well. By setting A = 0 in (6.17) we

6.2 Transformation to a Graph 101

obtain wl = -4, w2 = 0, WQ = 0, and w4 = 4. According to (6.14) the capacities of
the edges connecting the inner vertices to the source and the sink are

Figure 6.6: The network obtained for the system from Fig. 6.5 for the case A = 0.
Vertex 0 is the source and vertex 5 the sink. The numbers next to the edges denote
their capacities.

The capacity of the phantom edge connecting source and sink evaluates according to
(6.15) to ~ 0 5 =-0.25(4 + 4 + 4 + 4) - 0.5(4 + 0 + 0 + 4) = -8. The final network
is presented in Fig. 6.6. Thc network allows for two minimum (0,5)-cuts, indicated
by dot-dashed lines in the drawing. Both cuts have capacity C(S ,S) = 4 + co,s = -4
which is indeed equal t o the ground-state energy obtained above. The cut denoted
with an "A" is given by (S, 3) =({O), {1,2,3,4,5)) . This means xo = 1 and xl = 22 =
23 = x4 = ~ 5 = 1. Using oi = 2zi - 1 ai = 1 for i = 1 ,2 ,3 ,4 is obtained. Thus, really
all spins are oriented in the same direction. The cut "B" (s, 3) =({0,1,2,3,4), (5))
corresponds to the configuration where all spins are pointing down.
In the case A = 1 the following values for the capacities are obtained:

Thc resulting nctwork is shown in Fig. 6.7. Now six different minimum cuts are
possible. At a first glance the figure might look somewhat complicated. But it is
easy to verify that indeed all minimum cuts A to F have capacity C = 8 + c o ~ = -4.
Please note that only the edges contribute which go from the left side of the cut to the

6 Maximum-flow Methods

Figure 6.7: The network obtained for the system from Fig. 6.5 for the case A = 1.
Vertex 0 is the source and vertex 5 the sink. The numbers next to the edges denote
their capacities.

right side. Thus, to the cut F , the edges (0 , l) and (4,5) contribute to the capacity,
but not the edges (1,3) or (2,4). The corresponding spin configurations are drawn in
Fig. 6.8. There the small plus and minus signs state the contributions of the single
spinslspin pairs to the total ground-state energy. In all 6 cases the ground-state energy
is Eo = -4, which is again equal to the capacity of all minimum cuts. The six ground
states can be described as follows: for two configurations the system is ordered, all
spins either point up or all spins point down. For the two ordered configurations one
of the spins 213 is oriented against its local field. The remaining four ground states are
characterized by the fact that spins 2,3 point in the direction of their local magnetic
fields and the remaining spins can be either up or down independently.
The example graphs we have presented here will also be used in the next section to
elucidate how the algorithms for calculating maximum flows work.

6.3 Simple Maximum Flow Algorithms

In this section two algorithms for calculating the maximum flow in a network from
the source to the sink are given. First a description of the historically first method is
given which was invented by Ford and Fulkerson in 1956 [14]. Then it is shown by a
simple example that the running time of this algorithm has no polynomial bound in the
number of nodes and edges, thus it is not suitable in practice. Finally, a variant of the
Ford-Fulkerson algorithm, developed in 1972 by Edmonds and Karp [18] is explained,
which indeed has a polynomial time complexity. As usual, the way the algorithms
work are illuminated by giving sample runs. A compact description of the methods
explained here along with proofs for correctness and time complexity can be found in

[191.
Let N = (G, c, s, t) a network, where G = (V, E) is a directed graph which has n + 2
vertices, c : E + R,f are the capacities of the edges (i , j) E E and s , t E V are the
source and the sink, respectively. Let f be a flow in N, i.e. f i j denotes the flow from
vertex i to vertex j . Please remember that f i j = - f j i and the that flow is conserved

6.3 Simple Maximum Flow Algorithms

Figure 6.8: Ground states of the RFIM shown in Fig. 6.5 for the case A = 1. The
system has 6 ground states with the same energy Eo = -4. The arrows indicate the
orientations of the spins. The plus and minus symbols represent contributions to the
ground-state energy.

in all vertices except the source and the sink. It is assumed that all capacities are
non-negative integer (or rational) values. The aim is to find the maximum flow from
the source to the sink.
The basic idea of the Ford-Fulkerson algorithm is to start with an empty network and
to try to push additional flow from the source to the sink. This is done by searching
for paths along which the flow can be increased, they are called augmenting paths. If
no such path is found, the algorithm stops and the maximum flow has been found.
But for each single edge, the flow through the edge is not always increased or remains
the same. Sometimes it is necessary to decrease the flow in some edges, to increase
the total flow through the network. This case appears when a certain amount of flow
is redirected within the graph. To treat this redirection process efficiently the notion
of a residual network is useful. The residual network R (often called residual graph)
for network N and flow f has the same vertices as the graph G. It contains edges with
nonzero capacities ri, whenever in G with a given flow f it is possible to increasc the
flow along edge (i, j). Please note that it is also possible to increase a negative flow in
(i, j) by decreasing the flow in the reverse edge (j, i). Formally R is defined as follows:
R = (G' , r, s , t) , G' = (V, E ') with

The graph G' contains directed edges (i, j) for all nonzero capacities I-,, > 0. Please
note that in the residual network two vertices (i, j) may be connected by two edges
(i, j) and (j, 2).

6 Maximum-flow Methods

The Ford-Fulkerson algorithm reads as follows

algorithm ford-fulkerson(N)
begin

Initially set fij := 0, fji := 0 for all (i, j) E E;
do

construct residual network R with capacities rig;
if there is an augmenting path from s to t in G then
begin

Let rIni, the minimum capacity of r along this path;
Increase the flow in N along the path by a value of r,i,;

end
until no such path from s to t in G' is found;

end

For each augmenting path the edge with the smallest capacity is a bottleneck. This
is the reason why the flow along the path can be increased only by the amount of the
minimum capacity r,in. The augmenting path can be constructed using a breadth-first
search. 1.e. beginning at the source iteratively neighboring vertices are visited which
have not been visited before. During this search at each vertex i the predecessor in
the actual path and the minimum residual capacity r,in(i) along the path up to i are
stored. In this way each vertex which is connected to the source is visited exactly once.
If an augmenting path is found, i.e. if the sink has been visited during the brctadth-
first search, the flow can be augmented directly by starting a t the sink. Iteratively
the predecessor is visited and the flow increased by r,i,(t) until the source is reached
again.
Please note that the algorithm may not converge to the true maximum flow if the
capacities are irrational, an example is given in [20].

Figure 6.9: Initial residual network of small randoni-field system. An augmenting
path is highlighted. The values next to the edges denote the residual capacities.
The values in parentheses state the amount of flow which can be pushed along the
augmenting path.

As an example we will investigate how the algorithm calculates the maximum flow
through the network given in Fig. 6.7. At the beginning the flow is empty, so the

6.3 Simple Maximum Flow Algorithms 105

residual network is equal to the original network. A possible augmenting path from
the source 0 to the sink 5 is given by the vertices 0, 1, 3, 4, 5. Each edge along
the path has (residual) capacity 4, thus it is possible to increase the flow along the
path by this value. The residual graph is is shown in Fig. 6.9, the augmenting path
is highlighted. The values in parentheses next to the edges state the amount of
additional flow which can be pushed through cach edge along the augmenting path.
In this case the resulting original network with the flow after the augmentation looks
the same.

Figure 6.10: Residual network of small random-field system at the second iteration.
Now, only one augmenting path exists (highlighted). Again, the values next to the
edges denote the residual capacity. The values in parentheses state the amount of
flow which can be pushed along the augmenting path.

For the second iteration, again the residual network is has to be calculated. Now, for
example in edge (0 , l) the flow fo l = 4 = col is present. This means that the residual
capacity in direction (0 , l) is rol = col - fol = 0, but for the reversed direction a
value of rlo = clo - f l o = 0 - (-4) = 4 is obtained. The complete residual network
is shown in Fig. 6.10. In this case only one augmenting path is feasible: 0 ,3 ,1 ,2 ,5 .
The capacity of this path is 4. Please note that by augmenting the flow through edge
(3 , l) in the residual network, this results in a decrease of the flow through edge (1,3)
in the original graph. The resulting total flow for the graph is displayed in Fig. 6.11.
Now both edges (0 , l) and (0,3) are satisfied. As a consequence, in the corresponding
residual network rol = 0 and ros = 0, i.e. no edge leaves the source. This means that
no augmenting path exists. Consequently, the maximum flow has been found.
How fast is the Ford-Fulkerson algorithm? Since in each step the flow is increased at
least by the amount of one (if the capacities are integers, as assumed), a time bound
of O(f,,,) is obtained, where f,,, is the maximum flow. Unfortunately, it is not
possible to find a polynomial in the number of vertices and the number of edges which
bounds the time complexity of the method. The reason is that the way an augmenting
path is chosen is not determined in any way. The effect of this can be demonstrated
by a simple example. Consider the graph in Fig. 6.12. It is similar to the preceding
example graph, but the capacities are different. Assume that the augmenting path is
0 , 1 , 3 , 4 , 5 (highlighted). Then the residual capacity of this path is 1, by this amount
the flow through the graph is increased. The resulting residual network is shown in
6.13. Now, an augmenting path is given by 0,3,1,2,5 . Again, the flow is increased by

6 Maximum-flow Methods

Figure 6.11: Final flow in network of small random-field system. The values in
parentheses state the amount of flow which flows through each edge.

Figure 6.12: A tiny network where the Ford-Fulkerson algorithm may spend much
time to calculated the maximum flow. Displayed is the residual graph of the first
iteration. The resulting flow in the network after the first iteration is represented by
the bold edges and the numbers in parentheses.

one unit and the flow in Fig. 6.14 is obtained.

Figure 6.13: The residual network of the tiny network after one iteration of the
Ford-Fulkerson algorithm.

Obviously, by always using these bad choices of the augmenting paths, the Ford-
Fulkerson algorithm can be iterated for 10000 times, each time the flow is increased
by one unit. On the other hand, it is possible to calculate the maximum flow within
two iterations if the augmenting paths 0 , 1 , 2 , 5 and 0 ,2 ,4 ,5 are chosen.

6.4 DinicJs Method and the Wave Algorithm

Figure 6.14: The tiny network after the flow has been increased two times by the
Ford-Fulkerson algorithm. The embraced number give the flow through the edges, the
other numbers state the capacities of the edges.

This unfavorable behavior is avoided by an extension of the algorithm, which was pre-
sented by Edmonds and Karp in 1972 [18]. The basic idea is to choose an augmenting
path which has the shortest distance from the source to the sink, where each edge
counts with distance one1. Algorithms for finding the shortest paths can be found in
Chap. 4. It can be shown that indeed this algorithm has a polynomial worst-case time
complexity of O(JV1 lEI2), which is in fact independent of the capacities of the edges.
Since thc networks we are considering here are lattices, each vertex has a maximum
number of neighbors, i.e. the number of edges is proportional to the number of vertices.
This results in a running time of O(IVI3). Modern algorithms are even faster. One is
presented in the next section. Another approach, the push-relabel method, is described
in Refs. [21, 22, 231.

6.4 Dinic's Method and the Wave Algorithm

The efficiency of the method of Edmonds and Karp can be further increased by consid-
ering many augmenting paths in parallel as proposed by Dinic [24]. A comprehensive
description of a simpler version can be found in [19]. This can be additionally speed
up by applying a method described in [25]. For three-dimensional RFIM systems with
bimodal couplings the corresponding networks can be treated, as found empirically
[26], in @(N4I3) time, where N is the number of spins (remember IVI = N + 2).
The basic idea is to augment the flow through a network along several shortest paths
in parallel. The actual algorithm comprises of several steps. First the level network

is constructed, which is explained below. Using the level network a blocking flow is
calculated, that is a flow which cannot be increased by adding flow along some paths.
The blocking flow is calculated with Tarjan's wave-a1,gorithm [19] in the version given
by Traff [25]. The description of this algorithm will be the central part of this section.
The whole algorithm may contain several iterations beginning at the construction of
the level network, which is now explained.

'Another version of the algorithm always chooses the augmenting path with the maximum (rcsid-
ual) capacity. This results in a time complexity of O (E logcm,,), wherc c is the maximum capacity
of all edges.

108 6 Maximum-flow Methods

The starting point for the level network2 is the residual network R, as defined pre-
viously. The basic idea is the same as for the algorithm by Edmonds and Karp: the
level network contains all shortest paths from the source to the sink. In contrast to
the previous method, here the flow can be increased along several paths in parallel.
This is the key idea to obtaining an efficient algorithm. Let level(i) be the length of
the shortest path in the residual network R from the source to vertex i. The level can
be constructed using a breadth-first search, i.e. the algorithm given in the preceding
section. This introduces the so called topological order of the vertices, which is just t,he
order the vertices are visited during the search. Consequently, for each vertex all its
predecessors have lower topological numbers while all successors have higher numbers.
After the breadth-first search, the level network L N (R) is obtained by removing all
edges (i, j) from R which do not fulfill level(j) = level(i) + 1, thus only edges between
neighboring levels are left. Please note that the levcl network is unique although the
topological order may not be unique. We denote the capacities of the levcl network
with t (i , j) .
Since the methods presented here are more involved than the techniques presented
previously, we need a slightly more complicated network to illustrate the algorithms.
It is given in Fig. 6.15. The graphical representation clearly shows the levels of the
vertices. For example level(2) = 1, level(7) = 3 and level(l2) = 5. The vertices are
already numbered according an arbitrary topological order.

Figure 6.15: An example network for demonstrating the wave algorithm

The resulting level network does not contain the edge (2,6) since level(2) = level(6).
For the same reason the edges (7,10) and (8,11) are not included. Now, there may be
"dead ends" in the graph, i.e. vertices which are not connected to the sink. Thus, they
cannot contribute t o the maximum flow. These vertices are removed in the next step
of the algorithm. For the example graph vertices 1 and 3 are removed. The outcome
is displayed in Fig. 6.16.
The reader may already have noticed the values written next to the vertices in Fig.
6.16. They are due to the idea of Traff who introduced capacities p (i) also for the

"he level network is often called level graph.

6.4 Dinic's Method and the Wave Algorithm

Figure 6.16: The resulting level network contains only edges (i , j) with l e v e l (j) =

level (i) + 1. Dead ends are removed. The values next to the vertices are the vertex
capacities introduced by Traff.

vertices i . These capacities give upper bounds for the maximum amount of flow which
can leave a vertex i due to the capacities of all succeeding edges on paths to the
sink. Since the sink itself has no successors, its capacity can be set to infinity. All its
predecessors allow for a flow which is bounded by the capacities of the edges to the
sink. For all other vertices we have to realize that each edge cannot carry more flow
than that given by its capacity and given by the capacity of the vertex at the end
of the edge. Therefore, the amount of flow leaving a vertex cannot exceed the sum
of the bounds calculated in this way for all outgoing edges. Since the capacity of a
vertex is determined by its succeeding vertices, the values of p(i) can be calculated in a
recursive way, by starting from the sink and visiting all vertices in reversed topological
order:

The resulting values for the sample graph are also presented in Fig. 6.16. Please note
that indeed p(i) is only an upper bound. Vertex 3 has p(3) = 15, while it is not actually
possible to have a flow through this vertex which is larger than 10 = c(9,12) +c(10,12).
Now the main part of the method will be explained, the wave algorithm. The target is
to obtain a blocking flow. The algorithm starts by calculating a preflow {f^(i, j) } . It
is a kind of flow but the flow may not be conserved at the inner vertices. The excess
e(i) = CJ f(i, j) states the amount of flow which is lost [e(i) < 0] or created e(i) > 0
at vertex i. A vertex with e(i) is called overflowing while it is called balanced if
e(i) = 0. Thus, a flow is a preflow where all inner vertices are balanced. The wave

110 6 Maximum-pow Methods

algorithm starts f (0, j) = c(0, j) , i.e. with a preflow where all edges leaving the source
are saturated 3 , while all other edges are empty. The maximum flow can certainly not
be larger than C, c(0, j) . During the execution of the algorithm, for all vertices it is
recorded whether they are blocked or not. A vertex i # (N + 1) is called blocked if it
is not possible to push additional flow towards the sink through i . Initially all vertices
are not blocked.
After this initialization the wave algorithm starts. I t consists of forward waves and
backward waves. Within a forward wave, the preflow is pushed into the direction of the
sink as far as possible. If some part of the preflow stops somewhere, the corresponding
vertex is blocked for further iterations. Within a backward wave, flow which has been
blocked is pushed in the opposite direction. Later, during the next forward wave,
pushing it along other paths it attempted. Both steps, forward wave and backward
wave, are iterated until all excess flow has disappeared. This means that a t the end
the preflow has been turned into a flow4. The two main steps of the wave algorithm
read in detail as follows:

forward wave:

All vertices i are visited in topological order. All outgoing edges (i , j) are treated
which are not satisfied and where the end vertex j is not blocked. The preflow
through (i, j) is increased by the value of min{t(i, j) - f (i, j), p(j) - e(j) , e(i)) .
This means the preflow cannot be incrcased by more than the current residual
capacity, by not more than vertex j can take and by not more than available as
excess. The excess e(i) is decreased and e(j) is increased by that amount.

If it is not possible to balance vertex i , i.e. if not all of the excess flow can be
pushed forward, then vertex i is blocked. So in subsequent iterations pushing
further flow through this edge is not tried.

backward wave:

All vertices j except the sink are visited in reversed topological order. If j is
blocked all incoming edges (i, j) are treated: the preflow f (i , j) is decreased by
min{f(i, j), e (j)) as long as the excess e (j) > 0. The excess e(i) of the predecessor
is increased by the same amount.

This means, for each blocked node, that all positive excess is pushed backwards.
In this way the flow is moved towards the source until a non-blocked vertex is
reached. There the flow may be directed along another path during the next
forward wave.

3Since f (i , j) = (j) f 0 = c (0 , j) . But the negative values are not used within the wave
algorithm, they are considered only for the calculation of the residual network.

4 ~ l e a s e note that by the wave algorithm a flow which has already found a path to the source will
never be redirected during the current waves. So the flow obtained in this way is indeed a blocking
flow and may not be a maximum flow. Nevertheless, the multiple execution of the whole procedure
(see later) guarantees that at the end a maximum flow is obtained.

6.4 Dinic's Method and the Wave Algorithm

Figure 6.17: The level network after the first forward wave. Vertex 7 is blocked.
The value next to the vertex capacity p(7) is the excess e(7) = 5 . All other vertices
are not blocked, so they have excess zero. The values at the edges have the format

i(2, ~ / ? (i , d .

Example: Wave algorithm

For the sample graph the preflow is initialized to f (0,2) = 25. All excess
values are zero except e(2) = 25. Now the first forward wave will be explained
in detail. The reader should write the values of the preflow and the current
excess values with a pencil (!) on the graph while simulating the algorithm.

0 First vertex i = 1 is treated. For edge (i, j) = (1,3) the flow is increased
by min{E(i, j) - f (i , j) , p (j) - e(j) , e (i)) = min{20 - 0,15 - 0,251 = 15.
Consequently e(3) = 15 and the excess for vertex 1 is decreased to e(1) =
10. Then edge (1,4) is considered. The remaining flow can be directed
along that edge, consequently f (l , 4) = 5, e(4) = 10 and e(1) = 0.

0 Next vertex i = 3 is treated. Edge (3,6) can carry flow of amount
f (3,6) = 10, so e(6) = 10 and now e(3) = 5. The remaining excess can
travel along edge (3,7), resulting in f (3 ,7) = 5 , e(7) = 5 and e(3) = 0
after completing the treatment of vertex 3.

The excess of vertex i = 4 can be passed on completely to vertex 8,
resulting in f (4 ,8) = 10, e(4) = 0 and e(8) = 10.

Next vertex i = 6 is considered. The excess flow e(6) = 10 can be
completely partitioned among the successors j = 9,10, resulting in e(6) =

0, e(9) = 5, e(10) = 5, f (6 ,9) = 5 and f(6,10) = 5.

Vertex i = 7 is the first one, which will be blocked: For edged (i, j) =

(7,10) the flow can be increased by min{i.(i, j) - f (i , j) , p (j) - e(j) , e(i))

6 Maximum-flow Methods

= rnin(l0 - 0 ,5 - 5,5) = 0. Therefore, the excess of vertex 7 remains
unchanged, i.e. e(7) = 5.

For vertex i = 8 the flow is just passed on to vertex 11, thus we get
f (8 , l l) = 10, e(8) = 0 and e(l1) = 10.

In a similar way the flow is moved forward in vertices 9,10 and 11. So
finally we obtain f(9,12) = 5, f(10,12) = 5 , f^ (l l ,12) = 10, e(9) = 0,
e(10) = 0, e(l1) = 0 and e(12) = 20.

The resulting preflow system is shown in Fig. 6.17. Only vertex 7 is blocked,
it is marked by a box containing the value of the excess.

During the backward wave only vertex 7 is treated. The flow is moved back
to vertex 3 which then has excess e(3) = 5, while now e(7) = 0 0

After completing one forward and one backward wave the vertex capacities are dynam-
ically adjusted by visiting all vertices again in reversed topological order. Therefore,
they represent only non-used capacities:

Example: Readjusting of the vertex capacities

The readjustment of the vertex capacities results in the network shown in
Fig. 6.18. Clearly, now most of the paths are not able to carry additional
flow.

During the next forward wave, only vertex 3 is treated. It is not possible to
mow the flow to either of its both successors 6 ,7 , consequently vertex 3 is
marked as blocked.

Within the next backward wave, the excess of vertex 3 is pushed back to
vertex 1, i.e. e(1) = 5 and e(3) = 0. The following recalculation of the vertex
capacities does not change anything.

The next forward wave moves the excess of vertex 1 via the vertices 4 ,8 ,11
just to the sink. Now all excess has disappeared, the preflow has been turned
into a flow. The final situation is shown in Fig. 6.19

6.4 DinicJs Method and the Wave Algorithm

Figure 6.18: The level network after the recalculation of the vertex capacities. Vertex
3 has excess e (3) = 5 .

Figure 6.19: The level network after the final iteration of the wave algorithm.

114 6 Maximum-flow Methods

Dinic's algorithrn iterates the construction of the level network and the calculation of
a blocking until the sink is not part of the level network any more. Then the maximum
flow has been obtained, since there is no path from the sink to the source in the residual
network. Finally a summary of the algorithm is given:

algorithm dinics-algorithm(N, { c (i , j)))
begin

initialize flow f (i, j) := 0 Vi, j
build residual network R
build level network LN(R)
while (N + 1 E LN(R))
begin

initialize vertex capacities p(i)
initialize preflow { f (i, j))
while (3 unbalanced vertices e(i) > 0)
begin

scan LN(R) in topological order:
push forward preflow

scan LN(R) in reversed topological order:
push backward preflow

recalculate vertex capacities p(i)
end
increase flow: f (i , j) := f (i , j) + f (i, j) Vi, j
build residual network R
build level network LN(R)

end
return {f (i , j)}

end

Example: The second execution of the wave algorithm

After finishing the inner loop containing the forward and backward waves, the
flow values obtained are transfered to the original graph [f (i , j) := f (i, j) +
f (i , j) Vi , j] . The residual network after the first iteration of the inner loop
is displayed in Fig. 6.20 [please remember f (i , j) = - f (j , i)].

The corresponding level network, after removing dead ends and calculating
the vertex capacities, is shown in Fig. 6.21. Please note that now the topolog-
ical order of the nodes is 0, 2, 5 , 4, 8, 11, 12. Obviously, the wave algorithm
treats this network by performing just one forward wave. This is due to the
vertex capacities introduced by Traff. By adding the flow obtained in such a
way to the total flow, the maximum flow has been calculated, since no fur-
ther increment is possible: the level network obtained after this step is not
connected to the sink.

6.5 Calculating all Ground States

Figure 6.20: The residual network after the first execution of the inner loop

Figure 6.21: The level network graph before executing the wave loop a second time.

Please note, the graph in Fig. 6.13, which may keep the original Ford-Fulkerson algo-
rithm busy for a while, is treated by the wave algorithm within one forward wave.

6.5 Calculating all Ground States

We have seen that in order to calculate a ground state of an RFIM one first has to
construct the corresponding network and then calculate the maximum flow through

the network. One single minimum cut, which represents one spin configuration of
minimum energy, can be found in the following way, which is a special variant of a
breadth-first search: the basic idea is to start a t the source and then to follow only
edges where the flow is less than the capacity. Consequently, one always stays on the
left side of the minimum cut, since only edges which are satisfied cross it. After all
vertices have been found which are accessible from the source in this way, the iteration

116 6 Maximum-flow Methods

stops. Then the spins which have been visited are left to the cut, so they are set to
orientation +1, see the definition of X in (6.7) and remember ai = 2xi - 1. The
remaining spins are set to orientation -1.
Please note that in this way only one ground state can be obtained, even if the system
is degenerate, i.e. if it has many ground states. A simple method to find different
ground states in different runs of an algorithm has been presented in [27]. To actually
find all different ground states one must find all existing minimum cuts. This can be
achieved with a method explained in [28]. The result is a graph which describes all
possible minimum cuts. Now the method will be explained in detail. In this section, we
will show why the method is indeed correct. For a formal proof the reader is referred
to [28].
The basic idea is to describe all ground states as a set of clusters of spins and as
dependencies between these clusters. Each cluster consists of spins which have in
all ground states the same relative orientation to each other. This means that no
minimum cut will divide any two of the corresponding vertices of one cluster in the
network. We have already mentioned that only satisfied edges may cross a cut. Thus,
the vertices of one cluster are connected somehow by paths of unsatisfied edges.

Figure 6.22: Maximum flow for the network already presented in Fig. 6.6. The
flow through edges (1,3) and (3,4) may be (partially) redirected through edges (1,2),
(2,4). Therefore, only edges (0 , l) and (4,5) are satisfied in all possible distributions
of the maximum flow among the edges.

On the other hand, if an edge is satisfied this does not guarantee that at least one of
the minimum cuts crosses this edge. The reason is that it may be possible to redirect
the minimum flow such that there is another topology of the flow values resulting in
the same amount of total flow. In this case it is just accidental that the edge was
satisfied. This is illustrated by an example given in Fig. 6.22.
The starting point for constructing the cluster graph representing all minimum cuts is
the residual network. There the edges just represent unused capacities [f (i, j) < c(i , j)]
or they represent directions which can be used to redirect the flow [f (j , i) < 0] in the
original network. Here we are only interested if there is an edge in the residual network
or not, so we can neglect the residual capacities. The main statement of [28] is: the
strongly connected components (SCC) in the residual graph are the above mentioned
clusters of vertices, which are for all minimum cuts on the same side of the cut, i.e.
for each cut all vertices of a cluster are left or all are right of a cut. Please remember

6.5 Calculating all Ground States 117

the definition of the SCC: these are subsets of vertices of maximum cardinality, where
each vertex is connected to each other one. An algorithm for the calculation of the
SCC was given in Chap. 3.
After all clusters have been obtained, a new reduced graph R" is built, which con-
tains one vertex for each SCC. Each edge in the residual network which runs between
different SCCs is also present in R" (multiple edges are kept only once). All existing
minimum cuts can be built using the reduced graph. This works in the following way:
the following implication gives the meaning of each edge (Ic, 1) in R"

if SCC k is on the left side of the cut, then SCC 1
has to be on the left side as well (I M P)

Please remember that the left side of a cut (S,S) is S and that the source is always
left of the cut. The central statement of this section is: all cuts are represented by the
reduced graph. All cuts are allowed that are compatible with all constraints imposed
by the reduced graph.
We will now explain why this interpretation of the edges in R" is meaningful and how
the notion of SCC as clusters follows from this. Please note that the implication I M P
also applies to the edges in the residual network, since the verticcs can be seen as tiny
clusters. Let us assume that (i , j) is such an edge. So I M P reads: if vertex i is left of
the cut, then vertex j must be left as well. The existence of edge (i, j) allows for three
cases regarding the original network after the maximum flow has been calculated:

f (i , j) = 0 < c(i, j) . In this case the edge (i, j) must not be removed by any cut,
because only satisfied edges may cross a cut. So the three possibilities

- both i, j on the left side (in short: "i, j left")

- both i , j right

- j left and i right

are allowed. The third case is allowed, since an edge contributes only to the cut,
if it goes from the left to the right side but not if it runs from right to left. That
these three cases are allowed is exactly what I M P tells us.

0 f (i , j) = -c(j, i), this is the other extreme. Here there is a non-vanishing flow
in the opposite direction (j , i) and the edge (j , i) is satisfied. Now again it may
be allowed to have both i, j on the same side of the cut, also edge (j , i) may be
removed (j left, i right, if there is no contradiction from other constraints). But it
is not allowed to have i on the left and j on the right side of the cut, since in that
case there is flow from the right to the left side of the cut. Since all flow originates
a t the source: which is always left, this means it must cross the cut from left to
right twice. This contradicts the fact that the cut is minimal. Summarizing, again
I M P holds.

0 0 < f (i, j) < c(i, j) . In this case, since f (i, j) = - f (j, i) in addition to edge
(i, j) , also edge (j , i) is part of the residual network. Please note that the case
-c(j, i) < f (i , j) < 0 is covered here as well. Consequently we have two I M P

118 6 Maximum-flow Methods

clauses which combine to "both i , j must be on the same side of the cut". This is
reasonable, since there is a non-vanishing flow as well as an unsatisfied capacity,
so both reasonings given above for the other two cases hold.

If there is a chain of implications (il left) implies (i2 left), (i2 left) implies (i3 left),
. . ., (in left) implies (i l left), then from the transitivity of the implication rule follows
that all vertices i l , . . . , in must always be on the same side of a minimum cut. On the
other, the chain of implications corresponds to a closed loop of edges in the residual
graph. Thus, all vertices belong to the same strongly connected component. This
explains why the method to construct all minimum cuts given above is indeed correct.

Example: All minimum cuts

We proceed by constructing in Fig. 6.23 the residual network (without ca-
pacities) for the small sample graph. Since vertices 1 , 2 , 3 , 4 are connected in
a circular way, the SCCs are given by A = {0), B = {1,2,3,4) and C = (5) .
Please note that in case another distribution of the maximum flow among
the edges is taken, the residual network may look different. But the result-
ing SCC and the final reduced graph are always the same. The resulting

Figure 6.23: Residual network of the network with maximum flow of Fig. 6.22.

reduced graph is presented in Fig. 6.5. Since SCC A contains the source, it
must always be left of the cut. C contains the sink, so it must always be right
of the cut. So the reduced graph tells us that two minimum cuts are allowed:
({A), {B; C)) and ({A, B) , {C)). They are identical with the minimum cuts
which were obtained by direct inspection in Sec. 6.2. The reduced graph

Figure 6.24: Reduced graph of the network with maximum flow of Fig.
6.22. All minimum cuts are represented by this graph.

for the network of Fig. 6.7 calculated from its maximum flow (see Fig. 6.11)
is shown in Fig. 6.5.

After one has obtained the reduced graph describing all minimum cuts, for their eval-
uation, it is possible to enumerate all of them. This can be done by applying the

6.5 Calculating all Ground States 119

following algorithm [29]. It considers only the N" components which do not contain
the source or the sink. We assume that the SCCs are numbered in a decreasing topo-
logical order, i.e. whenever (k, 1) is an edge in the reduced graph, then k < I . The basic
idea is to start with all SCCs right of the cut. Similar to Sec. 6.2, we use a variable
Xk = 0 , l t o describe whether an SCC k is left (X k = 1) or right of the cut. Thus,
the string X = { X k) describes a cut. This string can be read as a binary number
X . This means all states can be enumerated by just increasing X starting from 0 ,,
up to 2N - 1 and considering only the configurations which are compatible with the
constraints imposed by the reduced graph. This is done by the following algorithm:

algorithm enumerate-cuts(R")
begin

Let X k := 0 for all k
while not all X k = 1 do
begin

Find the smallest component lo with X1, = 0
Let Xl , = 1
for all 1 < lo do

if component 1 is not a successor of lo in R" then
Let X I = 0

end
end

This algorithm can be used for all kinds of graphs or relations R" which denote a
priority relation, i.e. they must not contain cycles. Then all configurations which obey
all priority rules can be enumerated with this method.
The system shown in Fig. 6.5 has only one strongly connected component which con-
tains neither the source nor the sink, so only the cuts X I = 0 , l are possible. The
application to the network which was shown in Fig. 6.11 is more instructive.

Example: Enumerating all cuts

The resulting reduced graph is shown in Fig. 6.5. All SCCs have size one,
i.e. contain one vertex.

Figure 6.25: Residual graph of a small network which was presented along
with a maximum flow in Fig. 6.11.

6 Maximum-flow Methods

Only four components Ic = 1,2 ,3 ,4 have to be considered. After renumbering
them according a topological order, the reduced graph looks like that shown
in Fig. 6.5.

Figure 6.26: Residual graph of a small network after renumbering the
vertices and omitting the source and the sink.

The algorithm starts with X = X4X3X2X1 = 0000 (we denote at the right
the least significant bit/component with the smallest number), i.e. all inner
components are to the right of the cut: (S, S) = ((01, {1,2,3,4,5)).

Within the first iteration jo = 1, X is increased to X = 0001. So we obtain
(S, S) = ({0,1), {2,3,4,5)).

By the second iteration jo = 2 and X = 0011 is obtained. Since component
1 is a successor of component 2, the string X is not altered by the for-loop.
Therefore, we obtain (S, S) = ({0,1,2), {3,4,5)).

Next jo = 3 and initially X = 0111. Since component 2 is not a successor of
3 (but SCC 1 is), we get X = 0101. This means (S, S) = ({0,1,3), {2,4,5)).

The next iteration results in jo = 2, thus X = 0111. Similar to the second
iteration, now X remains unchanged and we get (S, 3) = ({0,1,2,3), {4,5)).

For the final iteration jo = 4 and X = 1111. All other components are
successors of j o , so the for-loop does not alter X and we get (S, S) =

({o, ~ 2 ~ 3 ~ 4 ~ { 5 1) .
Summarizing, 6 minimum cuts are obtained. They are the same as those
already found in Sec. 6.2 by direct inspection, see Fig. 6.7 (please note that
the order of the vertices is different from the order of the corresponding com-
ponents due to the topological order). 0

Many types of graphs exhibit an exponential number of minimum cuts, so the enumer-
ation is quite time consuming. The number of different cuts itself has to be obtained
by the enumeration as well, so it is fairly time consuming for large systems. But in
the case of the systems considered here, DAFF and RFIM which have an exponential
degeneracy as well, it turns out that the reduced graph is usually very sparse. There-
fore, the reduced graph can be divided into many small groups of connected SCCs
without edges to other clusters. Then all groups can be treated independently, i.e. the
number of minimum cuts is the product of the number of cuts allowed by each group.

6.6 Results for the RFIM and the DAFF 121

This drastically reduces the running time of the algorithm. Furthermore, it is possible
to extract information from the graph directly. For example one can use the extremal
cuts, i.e. the cuts having alllno (except one) SCCs left of the cut, to calculate the
minimurn/maximum magnetization of the corresponding system.
Now all tools for examining the zero temperature properties of random field systems
and diluted antiferromagnets are available. To summarize: first an equivalent net-
work is constructed (see Sec. 6.2), then the maximum flow is obtained with the wave
algorithm (Sec. 6.4) and finally the graph describing all degenerate ground states is
calculated. Some basic results for RFIM and DAFF, which were found with these
techniques, are shown in the next section.

6.6 Results for the RFIM and the DAFF

In this section results of the ground-state calculations for random field systems and
diluted antiferrornagnets are presented. Mainly the RFIM with bimodal distribution
of the random fields is considered. First the behavior of the order parameter for onc
realization is presented, then the average results for different system sizes. Using the
technique of finite-size scaling, the thermodynamic limit is executed. At the end of
this section properties of the degenerate ground-state landscape in the domain region
of the phase diagram (see Fig. 6.3) are discussed.

I

------ maximum
minimum

Figure 6.27: Magnetization m as a function of the strength of the random fields for
one realization of an RFIM (L = 8) with bimodal distribution.

In Fig. 6.27 the behavior of the magnetization rn = 1/N zi ai of one small N = g3
realization of a random-field system with bimodal distribution of the fields is shown.

122 6 Maximum-Bow Methods

Since this type of system exhibits a ground-state degeneracy, the magnetization may
vary from one ground state to the other. In the figure the maximum and minimum
values which the magnetization can take are shown. How many intermediate values
are possible, depends on the degree of degeneracy. More results can be found in [30].
In general, the behavior turns out to be as expected in the first section: for small fields
the system is ferromagnetically ordered. With increasing strength of the random fields
the spins tend to be oriented in the direction of the local fields and the magnetization
vanishes. The order parameter changes only at a finite number of values for A, in
between it is constant. A detailed analysis [26] shows that the steps in m(A) occur
whenever the sum of local fields on some cluster is strong enough to flip the whole
cluster.

Figure 6.28: Average maximum of the absolute value of the magnetization as a
function of the strength of the random fields. An average for 1000 realizations of the
RFIM with bimodal distribution was taken. Lines are guides to the eyes only.

The behavior is similar for other realizations, but the values where the cluster turn
around vary from system to system. Only the jumps at some integer values of A appear
in all realizations. These discontinuities are due to the reversing of several single spins.
By averaging over different realizations one gets a smooth curve. The result is shown
in Fig. 6.28 for the maximum of the absolute value of the magnetization averaged
over typically 1000 different realizations. For other quantities like the minimum or
the average of the magnetization the results look similar. In the figure the data for 4
different system sizes N = lo3, 203, 40"nd 80"re presented. With increasing system
size a monotonic shift of the curves can be observed. We are interested in performing
the thermodynamic limit, i.e. in obtaining the behavior of very large systems. This

6.6 Results for the RFIM and the DAFF 123

can be done by applying the technique of finite-size scaling. The basic assumption is
that the average magnetization shows the following behavior [31]:

A, is the critical value of the infinite system where the magnetization vanishes. The
values of the critical exponents /3 and v describe the asymptotic behavior of the order
parameter and the correlation length near the transition respectively. The exact form
of the function h is in general unknown. The values for A,,u and ,L3 have to be
determined. They can be obtained by rescaling the numerical data in a way that all
data points collapse onto one curve. The resulting scaling plot is shown in Fig. 6.29.
The values obtained in this way are A, = 2.20, v = 1.67 and P = -0.01.

Figure 6.29: Finite-size scaling plot for RFIM with bimodal distribution. The pa-
rameters are A, = 2.20, v = 1.67 and ,!3 = -0.01.

As mentioned at the beginning, it is assumed that the RFIM is similar to the DAFF.
In this case the values for the exponents should be equal. Additionally, they should
not depend on details of the model such as the choice of the distribution of the random
fields. In this case one says that the exponents are universal. On the other hand, the
exact value of the critical strength of the field is not expected to be universal. By
calculating similar finite-size scaling plots for the RFIM with Gaussian distribution
and the DAFF, the following values are found:

Gaussian RFIM: A, = 2.29, u = 1.19 and /3 = 0.02

0 DAFF: A, = 0.62, u = 1.14 and /3 = 0.02

124 6 Maximum-flow Methods

Consequently, the exponents seem not to be universal, since v is different for the
different distributions of the RFIM. On the other hand, the Gaussian random-field
system seems to be a good model for diluted antiferromagnets, since in this case the
values of the exponents agree.
For an intermediate strength of the field, the order parameter vanishes. Nevertheless,
in this region the systems exhibit fractal domains, which are described by non-trivial
exponents. An example of such a domain, is displayed in Fig. 6.30. Quantitative
results can bc found e.g. in Ref. [32].

Figure 6.30: The largest ferromagnetically ordered domain in a small RFIM (N =

lo3) at A = 3.0.

Finally, we will give some examples regarding the ground-state degeneracy of the
DAFF and the RFIM with bimodal interactions [26]. It turns out that the number of
ground states grows exponentially with system size, so there is a finite entropy, see
also R.ef. [33]. On the other hand, the ground-state landscape is rather simple. Most
of the spins have the same orientation in all ground states, i.e. they are frozen. This
fraction is more than 95% for the DAFF and even 98% for the RFIM. The clusters of
spins, which may have two orientations in different ground states, interact only rarely

Bibliography 125

with each other. This means the reduced graph contains only few edges. Therefore,
the clusters can choose one of their orientations more or less independently of each
other.
To describe the ground-state landscape a quantity called overlap q can be used. Let
{at) and {a?} be two independent ground-state configurations for the same system,
i.e. the same realization of the disorder. One can compare these two configurations by
calculating

where N' is the number of spins, i.e. N' = Ciei for the DAFF and N' = N for the
RFIM. Thus, if A, B are equal q = 1, while q = -1 if {gt} and {a:) are inverted
relative to each other. In general 1 5 q < 1.
For a set of M ground states onc compares each state with each other one, resulting
in M (M - 1)/2 values. So one gets a whole distribution of overlaps. To describe the
behavior of a random ensemble, again one takes different realizations of the disorder
and calculates an average distribution P(q) . The results for the DAFF are shown
in Fig. 6.31, see also [27]. The fact that the ground-state landscape is rather simple,
is reflected by the fact that P(q) is zero for most of the overlap values and by the
shrinking of the width of P(q) . In the thermodynamic limit the distribution becomes
a delta function. The result for the RFIM looks similar.
Other recent results for the ground states of diluted antiferromagnets and random-field
systems can be found e.g. in [32, 34, 35, 36, 37, 38, 39, 401.
For another class of random systems, the spin glass model, the ground state landscape
for individual realizations looks much more interesting and P(q) is very broad for finite
sizes. This subject is covered in Chap. 9.

Bibliography

[I] S. Fishman and A. Aharony, J. Phys. C12, L729 (1979)

[2] J.L. Cardy, Phys. Rev. B 29, 505 (1984)

[3] H. Rieger, in: D. Stauffer (ed.), Annual Reuiews of Computational Physics II,
(World Scientific, Singapore 1995)

[4] R.A. Cowley, H. Yoshizawa, G. Shirane, and B.J. Birgeneau, 2. Phys. B 58, 15
(1984)

[5] D.P. Belanger, in: A.P. Young (ed.), Spin Glasses and Random Fields, (World
Scientific, Singapore 1998)

[6] U. Nowak and K.D. Usadel, Phys. Rev. B 44, 7426 (1991)

[7] K.D. Usadel and U. Nowak, JMMM 104-107, 179 (1992)

[S] J.-C. Picard and H.D. Ratliff, Networks 5; 357 (1975)

6 Maximum-flow Methods

Figure 6.31: Average distribution of overlaps for the three-dimensional DAFF in
the domain phase at B = 3.99 for finite sizes L = 10,20,40. For each realization 50
ground states were selected randomly.

[9] E.T. Seppala, M.J. Alava, and P. M. Duxbury, Phys. Rev. E 63, 036126 (2001)

[lo] E.T. Seppala and M.J. Alava, Phys. Rev. Lett. 84, 3982 (2000)

[ll] E.T. Seppala, V.I. Raisanen, and M.J. Alava, Phys. Rev. E 61, 6312 (2000)

[12] R. Fisch, J. Stat. Phys. 18, 111 (1978)

[13] W. Kinzel and E. Domany, Phys. Rev. B 23, 3421 (1981)

[14] L.R. Ford and D.R. Fulkerson, Canadian J. Math. 8 , 399 (1956)

[15] J.D. Claiborne, Mathematical Preliminaries for Computer Networking, (John Wi-
ley & Sons, New York 1990)

[16] W. Knodel, Graphentheoretische Methoden und ihre Anwendung, (Springer,
Berlin 1969)

[17] M.N.S. Swamy and K. Thulasira.man, Graphs, Networks and Algorithms, (John
Wiley & Sons, New York 1991)

[18] J. Edmonds and R.M. Karp, J. ACM 19, 248 (1972)

Bibliography 127

[19] R.E. Tarjan, Data Structures and Network Algorithms, (Society for Industrial and
Applied Mathematics, Philadelphia 1983)

[20] L.R. Ford and D.R. Fulkerson, Flows in Networks, (Princeton University Press,
Princeton 1962)

[21] A.V. Goldberg and R.E. Tarjan, J. ACM 35, 921 (1988)

[22] B. Cherkassky and A. Goldberg, Algorithmica 19, 390 (1997)

[23] A.V. Goldberg, R. Satish, J. ACM 45, 783 (1998)

[24] E.A. Dinic, Soviet Math. Dokl. 11, 1277 (1970)

[25] J.L. Traff, Eur. J. Oper. Res. 89, 564 (1996)

[26] A.K. Hartmann, Physica A 248, 1 (1998)

[27] A.K. Hartmann and K.D. Usadel, Physica A 214, 141 (1995)

[28] J.-C. Picard and M. Queyranne, Math. Prog. Study 13, 8 (1980)

[29] L. Schrage and K.R. Baker, Oper. Res. 26, 444 (1978)

[30] A.K. Hartmann and U. Nowak, Eur. Phys. J. B 7, 105 (1999)

[31] K. Binder and D.W.Heermann, Monte Carlo Sim,ulation in Statistical Physics,
(Springer, Heidelberg 1988)

[32] 3. Esser and U. Nowak, Phys. Rev. B 55, 5866 (1997)

[33] S. Bastea and P.M. Duxbury, Phys. Rev. E 58, 4261 (1998)

[34] A.T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986)

[35] J.C. Angls d'Auriac, M. Preissmann, and A. Seb, J. Math. Computer Modelling
26, 1 (1997)

[36] J.-C. Anglks d'Auriac and N. Sourlas, Europhys. Lett. 39, 473 (1997)

[37] C. Frontera and E. Vives, Phys. Rev. E 59, R1295 (1999)

[38] E.T. Seppala, V. Petaja, and M.J. Alava, Phys. Rev. E 58, R5217 (1998)

[39] U. Nowak, K.D. Usadel, and J . Esser, Physica A 250, 1 (1998)

[40] N. Sourlas, Comp. Phys. Comm. 121-122, 183 (1999)

7 Minimum-cost Flows

7.1 Motivation

The ground-state configuration of a directed polymer in a random environment, in
which all (bind)-energies are non-negative, can be obtained with Dijkstra's algorithm
to find the shortest path in a directed network with non-negative costs on the edges.
We will also refer to this problem as the 1-line-problem since the directed polymer con-
figuration or shortest path is a line-like object threading, in typical physical situations,
a two- or three-dimensional system.
At this point it appears natural to ask for the minimal energy configuration (or ground
state) of more than one, say N, lines in the same disordered environment under the
constraint (the "capacity constraint") that only one line can pass a single bond in the
lattice or edge in the graph. Having a particular physical situation in mind, namely
magnetic flux lines threading through a disordered superconductor in the mixed phasc
(Shubnikov phase), we usually want the lines to enter the system through a top surface
and to leave the system through a bottom surface as, for instance, the z = H and the
z = 0 plane, respectively, in a two-dimensional square lattice or a three-dimensional
simple cubic geometry, see Fig. 7.1.
The physical situation one is interested in by considering such cases of interacting
elastic lines in a random potential are conlnlonly described by the Hamiltonian

r i (z) E R~-' (usually d = 2 and d = 3) is a displacement vector, while z is the
longitudinal coordinate in a system of height H ; Vr[r, z] describes the point disorder,
which we can take to be delta-correlated with variance 6 ; Knt[r - r'] is a short-range
repulsive interaction between the lines (e.g. hard-core) and Vp [r] can describe columnar
defects or a periodic potential with period a in all transverse space tlircctions. For
the case of a single line one recovers the directed polymer Hamiltonian that we have
previously considered in Sec. 4.2.1 in its lattice version in connection with Dijkstra's
algorithm.
A naivc way to approach the N-line problem would he to search for the shortest path
from the top to the bottom boundary, giving a 1-line configuration, then removing the
edges occupied by this line from the graph, searching for the shortest path from the

7 Minimum-cost Flows

Figure 7.1: Ground-state configuration of N lines in a random environment for one
particular 3d sample of size L x L x H = 32 x 32 x 32 , with N = 2 , 4 (top), 16,32
(bottom).

top to the bottom in the remaining network, giving (together with the removed bonds)
a 2-line configuration. One Proceeds successively until N lines thread the sample from
top t o bottom. Apart from the obvious problems one could run into by successively
removing edges from the graph (it could happen that we cannot add further lines since
all paths from top to bottom are blocked) a little bit of thinking will convince us that
in this way one will, in general, n o t find the minimum energy configuration: it could
be that the ground state of 2 lines is not separable into the 1-line ground state plus
the "first excited state" that one constructs in the way described above (see Fig. 7.2
and Fig. 7.3). In many cases one has to deform pieces (or even all) of the 1st line
before we add the 2nd line in order to minimize the total energy. As long as there
are only a few lines in a large system the difference will vanish in the thermodynamic
lirnit. However, if the density of lines is fixed a difference will exist with probability
one even in the infinite system size lirnit. For dense systems, as we will consider in
what follows, the difference will be essential.
How does one take into account all possible deformations of N - 1 lines when one wants
to add the Nth line to the system? At first sight this appears to be a tremendous

7.1 Motivation

Figure 7.2: (top) Two-polymer ground-state in 2d, (bottom) the same system but
with the first (1-line GS) frozen first. The energy of the configuration (top) is lower.
Note that in (top) case the 1-line GS is to the left line compared to the (bottom) figure.
The fact that in (top) the 1-line GS is minimally deformed (in the lower part in order
to givc the 2nd line a bit of space which is energetically favorable) produces a 2-line
GS that is totally different (concerning the 2nd line) from the configuration (bottom).
In both cases the disorder landscape is the same.

task, but t,here is an elegant trick by which one can devise an efficient algorithm for
the N-line problem. First one does not work with the original network but with the
so called residual network that depends on the number of lines one has to put into
the system and their actual configuration. It is defined as follows: since we confine
ourselves in the beginning to capacity-one edges (i.e. only a single line can pass each
edge) we remove each edge (ij) that is occupied by a line segment (xij = 1) and
insert the reversed edge (j i) with cost cji = -cij 5 O! These reversed edges can
now be occupied by (virtual) line segments (xji = 1) through which one gains energy
(cji 5 0), which is due t o the fact that in reality one removcs a line segment from edge

7 Minimum-cost Flows

Figure 7.3: Similar to Fig. 7.2 but in 3d. In both cases the disorder landscape is the
same.

(i j) when occupying edge (j i) and thus reduces the total energy by an amount c i j . In
this way one incorporates elegantly the possibility of deforming the already cxisting
lines when adding a new line into the residual network.

One difficulty occurs. Now a number of edges have negative costs, which renders
the efficient shortest path finder, Dijkstra's algorithm, inapplicable. However, in this
particular situation, in which the N - 1-line configuration is indeed the one with the
lowest total cost, there is n o negative cycle in the residual network (i.e one cannot find
a closed path in the residual whose addition to the existing configuration would lower
the energy). Therefore it is possible to find so called node potentials ~ (i) for all nodes
i that can be used to modify the costs in the residual network in such a way that they

7.2 The Solution of the N-Line Problem 133

are all non-negative. These reduced costs are then defined as c; = cij - ~ (i) + ~ (j) , T

is chosen such that c; > 0 for all edges in the residual network and the shortest paths
with respect to these reduced cost c& are still the shortest paths with respect to the
original costs cij of the residual network. In this residual network with these reduced
costs one proceeds now in the same way as we proposed naively a t the beginning of
this section: one adds lines successively to the system by finding the shortest paths in
the residual network, updating the line (or flow) configuration and then updating the
residual network including the reduced costs again. We will now put this idea on a
formal basis.

7.2 The Solution of the N-Line Problem

First we will introduce the notation for the model of N repulsive lines in a disordered
environment that we described above. In a lattice version of the model (7.1) without
periodic potential one has to incorporate three terms: the elastic energy [dri/dzI2, the
interaction energy Vnt and the randoni potential V,. A single line will be represented
by a path along the bonds of a lattice (or the edges of a grid graph), the random
potential energies will be then random variables on theses bonds or edges. If they are
all positive one does not need to take explicitly into account the elastic energy, since all
transverse excursions will cost energy, which yields an effective elastic energy for the
lines. The interactions will be hard core repulsion, which allows only single occupancy
of the bonds. Thus we can consider the Hamiltonian or energy or cost function

where C(ij) is a sum over all bonds (i j) joining site i and j of a d-dimensional lattice,

e.g. a rectangular (L ~ - ' x H) lattice, with arbitrary boundary conditions (b.c.) in d- 1
space direction (i.e. they can be specified later) and free b.c. in one direction. The
bond energies cij > 0 are quenched random variables that indicate how much energy
it costs to put a segment of fluxline on a specific bond (i j) . The fluxline configuration
x (xij 2 0)) also called a flow, is given by specifying xij = 1 for each bond i , which
is occupied by the fluxline and otherwise xij = 0. For the configuration to form lines
on each site of the lattice all incoming flow should balance the outgoing flow, i.e. the
flow is divergence free

where V. denotes the lattice divergence. Obviously the fluxline has to enter, and to
leave, the system somewhere. We attach all sites of one free boundary to an extra site
(via energetically neutral edges, e = 0), which we call the source s , and the other side
to another extra site, the target, t as indicated in Fig. 7.4. Now one can push one line
through the system by inferring that s has a source strength of +1 and that t has a
sink strength of -1, i.e.

134 7' Mznzmum-cost Flows

with N = 1. Thus, the 1-line problem consists of minimizing the energy (7.2) by
finding a flow x in the network (the lattice plus the two extra sites s and t) fulfilling
the constraints (7.3) and (7.4).

sink sink

Figure 7.4: Sketch of the successive shortest path algorithm for the solution of
the minimum cost flow problem described in the text. (a) Network for N = 0, the
numbers are the bond energies (or costs) ci,. The bold thick line is a shortest path
from s to t . (b) The residual network GE for a flow as in (a) with the updated node
potentials. (c) G: from (b) with the updated reduced costs plus the the shortest path
from s to t in GE indicated by the thick light line. (d) Optimal flow configuration for
N = 2 in the original network. Note that the 2-line state is not separable, i.e. it does
not consist of the line of (a) plus a 2nd line.

To solve this problem along the lines described in 7.1 we first define the residual
network G,(x) corresponding to the actual fluxline configuration. As described in
7.1 it also contains the information about possibilities of sending flow backwards (now
with energy -cij since one wins energy by reducing xij), i.e. to modify the actual
flow. Suppose that we put one fluxline along a shortest path P (s , t) from s to t , which
means that we set xij = 1 for all edges on the path P (s , t) . Then the residual network
is obtained by reversing all edges and inverting all energies along this path, indicating
that here we cannot put any further flow in the forward direction (since we assume
hard-core interaction, i.e. xij 5 I) , but can send flow backwards by reducing xij on
the forward edges by one unit. This procedure is sketched in Fig. 7.4.
Next we introduce a node potential T that fulfills the relation

for all edges (i j) in the residual network, indicating how much energy ~ (j) it would
at least take to send one unit of flow from s to site j , IF it would cost an energy ~ (i)

7.2 The Solution of the N-Line Problem 135

to send it to site i . With the help of these potentials one defines the reduced costs

The last inequality, which follows from the properties of the potential T (7.5) actually
ensures that there is no loop L in the current residual network (corresponding t o a
flow x) with negative total energy, since C(ij) cij = C(ij)EC cc , implying that the
flow x is optimal (for a proof see Sec. 7.3).
It is important to note that the inequality (7.5) is reminiscent of a condition for shortest
path distances d(i) from s to all sites i with respect to the energics cij: they have to
fulfill d(j) < d(i) + cij. Thus, one uses these distances d to construct the potential T

when putting one fluxline after the other into the network.
The iterative procedure we described in 7.1 now works as follows. We start with the
empty nctwork (zero fluxlines) x0 = 0, which is certainly an optimal flow for N = 0,
and set T = 0, c" = cij. Next, let us suppose that we have an optimal N - 1-

2.7

line configuration corresponding to the flow xNpl . The current potential is 7rNp1,

the reduced costs are cg-' = c- 23 . + nNpl (i) - nN-' (j) and we consider the residual
network G:-' corresponding to the flow xNpl with the reduced costs c t - l 2 0. The
iteration leading to an optimal N-line configuration x$ is

algorithm successive shortest path for N-line problem
begin

x := 0; ~ (i) := 0; G,(x) := G;
for Line-counter := 1 , . . . , N do
begin

compute the reduced costs c" (x) Eq. (7.6);
find the shortest paths d(i) from s to all other nodes i ;

in the residual network G,(x) w.r. to the reduced costs c;;
augment flow on the shortest path from s to t by o n e unit;
compute ~ (i) := ~ (i) - d(i);

end
end

An example of how the algorithm operates is given in Fig. 7.4. The complexity of this
iteration is the same as that of Dijkstra's algorithm for finding the shortest paths in a
network, which is C3(M2) in the worst case (M is the number of nodes in the network).
We find, however, for the cases we consider (hdimensional lattices) it roughly scales
linearly in M = L ~ . Thus, for N fluxlines the complexity of this algorithm is ~ (N L ~) .

For the actual implementation of the above iteration it is important to note that it
is not necessary actually t o find the shortest paths to all other nodes: in the find
routine one uses Dijkstra's algorithm only to find a shortest path from s to t and in
the compute statement it is sufficient to update only those potentials of the nodes
that have been permanen t l y labeled during Dijkstra's algorithm. It is easy t o show
that these node potentials still fulfill the requirement cij > 0 (7.6).

136 7 Mznimum-cost Flows

7.3 Convex Mincost-flow Problems in Physics

Actually the N-line problem is not the only one in physics that can be mapped onto
a minimum-cost-flow problem. The physical models we describe in this section have
Hamiltonians or cost functions similar to the flux-line energy (7.2) and the same mass-
balance constraint (7.3). However, they are more general since now the capacity
constraint xi3 E { O , 1) is given up and the flow variables xij can take on any integer,
including negative values. Instead the local costs cij . xij are replaced by convex
functions hij (xij), an example being hij (xij) = (xij - bij)2, where the variables bij
are random and usually different for different edges (i j) . Moreover, in most cases there
are no external nodes s and t , as in the flux-line problem - the optimal flow will be
non-trivial (non-zero) without them (note that in the flux-line problem a non-zero flow
only occurred due to the external source and target nodes with mass-balance +N and
- N, respectively.

Random SOS model

Consider a solid-on-solid (SOS) model with random offsets, modeling a crystalline
surface on a disordered substrate as indicated in Fig. 7.5. It is defined by the following
Hamiltonian (or energy function):

wherc (i j) are nearest neighbor pairs on a d-dimensional lattice (d = 1 ,2) . Each
height variable h, = d, + ni is the sum of an integer particle number which can also
be negative, and a substrate offset di E [O,l). For a flat substrate, di = 0 for all sites
i , we have the well known SOS-model [I]. The disordered substrate is modeled by
random offsets di E [O , l) [2], which are distributed independently.

Figure 7.5: The SOS model on a disordered substrate. The substrate heights are
denoted by d, E [O , l] , the number of particle on site i by n, 2, which means that
they could also be negative, and the total height on site i by h, = di + ni

The model (7.7) has a phase transition at a temperature T, from a (thermally) rough
phase for T > T, t o a super-rough low temperature phase for T < T,. In two di-
mensions "rough" means that the height-height correlation function diverges loga-

7.3 Convex Mincost-flow Problems zn Physics 137

rithmically with the distance C(r) = [((h, - h,+,)2)], = a . T . log(r) [with a = 1/7r

for f (x) = x2], "super-rough" means that either the prefactor a t the front of the
logarithm is significantly larger than a . T (e.g. T" with a > I) , or that C(r) diverges
fastir than log(r), e.g. C(r) K log2(r).
A part of the motivation to study this model thus comes from its relation to flux
lines In disordered superconductors, in particular high-T, superconductors. The phase
transition occurring for (7.7) is in the same universality class as a flux line array with
point disorder defined via the two-dimensional Sine-Gordon model with random phase
shifts [3, 41

where & E [O, 27r) are phase variables, Bi E [O, 27r) are quenched random phase shifts
and X is a coupling constant. One might anticipate that both models (7.7) and (7.8)
are closely related by realizing that both have the same symmetries [the energy is
invariant under the replacement ni + ni + m (q$ + #i + 27rm) with being m an
integer]. Close to the transition one can show that all higher order harmonics apart
from the one present in the Sine-Gordon model (7.8) are irrelevant in a field theory for
(7.7), which establishes the identity of the universality classes. Note, however, that
far away from T,, as for instance at zero temperature, there might be differences in
the two models.
To calculate the ground states of the SOS model on a disordered substrate with gcncral
interaction function f (x) we map it onto a minimum cost flow model. Let us comment,
however, that the special case f (x) = 1x1 can be mapped onto the interface problem in
the random bond Ising ferromagnet in 3d with columnar disorder [5] (i.e. all bonds
in a particular direction are identical), by which it can be treated with the maximum
flow algorithm we have discussed already (see Chap. 6).
We define a network G by the set of nodes N being the sites of the dual lattice of our
original problem (which is simply made of the centers of each elernentary plaquette of
the square lattice, thus being again a square lattice) and the set of directed edges A
connecting nearest neighbor sites (in the dual lattice) (i, j) and (j, i) . If we have a set
of height variables ni we define a flow x in the following way. Suppose two neighboring
sites i and j have a positive (!) height difference ni - nj > 0. Then we assign the flow
value xij = ni - nj to the directed edge (i , j) in the dual lattice, for which the site i
with the larger height value is on the right hand side, and assign zero to the opposite
edge (j , i) , i.e. xji = 0. Also xi, = 0 whenever sites i and j are of the same height.
See Fig. 7.6 for a visualization of this scheme. The flow pattern is made up of closed
cycles that separate regions of different height and therefore we have:

On the other hand, for an arbitrary set of values for x,, the constraint (7.9) has to be
fulfilled in order to be a flow, i.e. in order to allow a reconstruction of height variables
out of thc height differences. This observation becomes immediately clear by looking
at Fig. 7.6.

7 Minimum-cost Flows

Figure 7.6: The flow representation of a surface (here a "mountain" of height ni = 3) .
The broken lines represent the original lattice, the open dots are the nodes of the dual
lattice. The arrows indicate a flow on the dual lattice, which results from the height
differences of the variables ni on the original lattice. Thin arrows indicate a height
difference of xij = 1, medium arrows xi, = 2 and thick arrows x,, = 3. According to
our convention the larger height values are always on the right of an arrow. Observe
that on each node the mass balance constraint (7.9) is fulfilled.

We can rewrite the energy function (7.7) as

H (x) = x (x i j - dij)2 , (7.10)
(i d

with dij = di - dj. Thus our task is to minimize H (x) under the constraint (7.9). In
Sec. 7.4 we will show how this can be achieved with a refined version of the successive
shortest path algorithm we know already from the N-line problem.

Vor tex glass in 3d

The starting point of a field theory for superconductors is the Ginzburg-Landau the-
ory containing the phase variables (or XY-spins) for the local superconducting order
parameter. As is well known from the classical XY-model [6] the spin-wave degrees of
freedom of such a modcl can be integrated out and one is left with an effective Hamil-
tonian for the topological defects, the vortices, which are the singularities of the phase
field 0 interacting with one another like currents in the Biot-Savat law from classical
electrodynamics, i.e. like l l r , where l / r is the distance (see also [7]). An additional
integration over the fluctuation vector potential sets a cutoff for this long-range inter-
action beyond which the interaction decays exponentially, and can thus bc neglected.
Thus a standard model for interacting magnetic flux lines in high temperature super-
conductors (81 is, in the vortex representation, the Hamiltonian [9]

7.4 General Minimum-cost-flow Algorithms 139

where the sum runs over all pairs of bonds of a simple cubic lattice (thus it is a three-
dimensional model!) and the integer variables xij , assigned to these bonds, can take
on any integer but have to satisfy the divergence free condition

on every site i , the same as in the two-dimensional SOS model (7.9). The bij are
magnetic fields which are constructed from quenched random vector potentials A by
a lattice curl, i.e. one obtains bi, as 1/(27r) times the directed sum of the vector
potentials on the plaquette surrounding the link (ij) on which bij lives. By definition,
the magnetic fields satisfy the divergence free condition (V . b) i = 0 on every site
i, since they stem from a lattice curl. The vortex interaction is given by the lattice
Green's function

where rij is the position of link (i j) in real space, J an interaction strength, k =
(kl, kZ, k3) the reciprocal lattice vectors, Xo the screening length and L the linear
lattice size of a simple cubic lattice.
In the strong screening limit Xo -+ 0, K (r) reduces to K(0) = 0 for r = 0 and
K (r) = J (~ T X O) ~ for r # 0 with exponentially small corrections [lo]. Thus if we
subtract J (~ T X O) ~ from the interaction and measure the energy in units of J(27rX0)',
one obtains the simpler Hamiltonian

Thus we have t o minimize (7.14) under the mass balance constraint (7.12); which is a
convex minimum-cost-flow problem.

7.4 General Minimum-cost-flow Algorithms

In this section we will discuss the algorithm to calculate the ground state of the convex
minimum cost problem as it occurs in the physical context described in 7.3. It is a
straightforward generalization of the successive shortest path algorithm for the N-line
problem described in 7.2.
Let G(X , E) be a network with a cost cij and a capacity uij associated with every
edge (i , j) E E. Moreover, we associate with each node i E X a number b(i) which
indicates its supply or d e m a n d depending on whether b(i) > 0 (a source) or b(i) < 0
(a target). The min imum-cos t - f low problem is [l l] :

Minimize z(x) = hii (zii), (7.15)
(WEA

subject to the mass-balance constraints,

7 Minimum-cost Flows

and the capacity constraints

The parameters b(i), cij are integers, while xij, uij are non-negative integers. Note
that we have allowed for a general set of sources and sinks b(i), though we will restrict
attention to one source, s , and one sink, t , in the applications. In fact, it is easy to
convert a problem with a general set b(i) to one with just one source s and one target
t in the following way:
(i) Connect all of the nodes with b(i) > 0 to s by edges with capacity u,i = b(i)
(ii) Connect all of the nodes with b(i) < 0 to t by edges with capacity uit = -b(i).
Flow conservation requires Ci b(i) = 0 so that the flow into the network is equal to
the flow out of the network.
The quantity hij(xij) is the cost function and may be a different function on each
bond. The cost functions hij(xij) can be any convex function, that is,

VX, y , and 8 E [0,1] hij(8x + (1 - 8) ~) < 8hij (x) + (1 - $)hij (Y) (7.18)

Linear cost is the special case, h(xij) = c i jx i j There are faster algorithms for linear
cost than for convex cost, but for the applications considered here, the difference is
not large. The general convex-cost case is as simple to discuss as the linear-cost case,
so we will discuss the general algorithm.
The residual network G(x) , corresponding to a flow, x, is defined as in the N-line
problem. However the residual costs need to be constructed differently due to the non-
linearity of the local cost functions hij(xij). We need to know the cost of augmenting
the flow on arc (i , j) , when there is already a flow xij in that edge. In the general
convex-cost problem, we always augment the flow by one flow unit. Because we have
defined xij > 0 and xji > 0, we must treat three cases:
(i) If xij > 1, + xJi = 0

(iii) If xij = 0, and xji = 0

c,Tj (0) = hij (1) - hij (O) ,
q o) = hji(1) - hji(0).

As seen in the second part of Eqs. (7.19) and (7.20), negative residual costs may occur
when reducing the flow in an edge. The residual network G(x) is then a graph with
residual capacities rij = uij -xij+xji, and residual costs found from Eqs. (7.19)-(7.21).
An intuitively appealing way of thinking about the convex-cost problem is to replicate
each edge, (i, j) many times, with each replicated edge having capacity one. The
kth replicated edge has cost hij(k) - htj(lc - 1). As flow is pushed along the edge
(i , j) , the first unit of flow goes into the 1st replicated edge, the 2nd unit of flow

7.4 General Minimum-cost-flow Algorithms 141

in the 2nd replicate etc. When the flow is reversed, the flow is canceled first in
the highest replicated edge provided the cost function is convex. That is, we need
hi, (k) - hij(k - 1) > hij(k - 1) - hij(k - 2) so that this replication procedure makes
sense. Unfortunately no analogous procedure is possible when the convexity,c6ndition
is violated. In the case of linear costs there is no need to replicate the edges as the
cost for incrementing the flow does not depend on the existing flow.
We will now discuss two methods for solving minimum-cost-flow problems, namely
the negative-cycle-canceling method and the successive-shortest-path method, both of
which rely on residual-graph ideas. The first method starts with an arbitrary feasible
solution that is not yet optimal and improves it iteratively until optiniality is reached.
The latter method starts with an optimal solution that violates certain constraints and
fulfills the constraints one after the other keeping optimality all the time so that when
all constraints are fulfilled simultaneously optimality is guaranteed. This method is
more efficient, but we will discuss the negative cycle algorithm since the negative-cycle
theorem presented below is needed to prove the correctness of the successive-shortest-
path method.

Negative-cycle-canceling Algorithm

The idea of this algorithm is to find a feasible flow, that is, one which satisfies the
mass-conservation rules, and then to improve its cost by canceling negative-cost cy-
cles. A negative-cost cycle in the original network is also a negative-cost cycle in the
residual graph, so we can work with the residual graph. Moreover, flow cycles do not
change the total flow into or out of the network, and they do not alter the mass-balance
conditions at each node. Thus, augmenting the flow on a negative-cost cycle maintains
feasibility and reduces the cost, which forms the basis of the negative-cycle-canceling
algorithm. This is formalized as follows.

Theorem: (Negative cycle)
A feasible solution x* is an optimal solution of the minimum-cost-flow problem, if and
only if the residual network G(x*) contains no negative-cost cycle.

Proof: Suppose the flow x is feasible and G(x) contains a negative cycle. Then a
flow augmentation along this cycle improves the function value z(x) , thus x is not
optimal. Now suppose that x* is feasible and G(x*) contains no negative cycles and
let x0 # x* be an optimal solution. Now decompose x0 - x* into augmenting cycles,
the sum of the costs along these cycles is c . x0 - c . x*. Since G(x*) contains no
negative cycles c . x0 - c . x* > 0, and therefore c . x0 = c . x* because optimality of
x* implies c . x0 5 c . x*. Thus x0 is also optimal. QED
A minimum-cost algorithm based on the negative-cost-canceling theorem, valid for
graphs with convex costs and no negative-cost cycles in G(0) , is given below, an
example is presented in Fig. 7.7.

7 Minimum-cost Flows

algorithm cycle canceling (convex costs)
begin

establish a feasible flow x;
calculate the residual costs cLj as in Eqs. (3.11-3.13);
while G(x) contains a negative cost cycle do
begin

use some algorithm to identify a negative cycle W;
augment one unit of flow in the cycle;
update c; (xij) and r i j ;

end
end

Figure 7.7: Illustrating the cycle canceling algorithm for linear costs: (a) network
example with a feasible flow x; (b) residual network G(x); (c) residual network after
augmenting 2 units along the cycle 4-2-3-4; (d) residual network after augmenting 1
unit along the cycle 4-2-1-3-4.

7.4 General Mznimum-cost-flow Algorithms 143

To begin the algorithm, it is necessary to find a feasible flow, which is a flow which
satisfies the injected flow a t each of the sources, the extracted flow at each of the sinks,
and which satisfies the mass-balance constraints a t each node. A robust procedure t o
find a feasible flow is to find a flow which satisfies the capacity constraints using the
maximum-flow algorithm (see Chap. 6). To detect negative cycles in the residual net-
work, G(x), one can use the label-correcting algorithm for the shortest-path problem
presented Sec. 4.2.3.
In the linear cost case, the maximum possible improvement of the cost function is
O(IEICU), where C = max lcijI and U = maxuij. Since each augmenting cycle con-
tains a t least one edge and at least one unit of flow, the upper bound on the number
of augmenting cycle iterations for convergence is also O(I EICU). Negative-cycle de-
tection is C3(IX2 1) generically, but for sparse graphs with integer costs it is O(IE) I).
Thus for sparse graphs with integer costs, negative cycle canceling is O(IEI2CU).

Successive-shortest-path algorithm

The successive-shortest-path algorithm iteratively sends flow along minimal-cost paths
from source nodes to sink nodes to finally fulfill the mass-balance constraints. A
pseudo flow satisfies the capacity and non-negativity constraints, but not necessarily
the mass-balance constraints. Such flows are called infeasible as they do not satisfy
all the constraints. The successive-shortest-path algorithm is an infeasible method
which maintains an optimal-cost solution at each step. In contrast, the negative-cycle-
canceling algorithm always satisfies the constraints (so it is a feasible method) and it
iteratively produces a more optimal solution.
The imbalance of node i is defined as

If e(i) > 0 then we call e(i) the excess of node i , if e(i) < 0 then we call it the
deficit. The successive-shortest-path algorithm sends flow along minimal-cost paths
from excess sites to deficit sites until no excess or deficit nodes remain in the graph.
Dijkstra's algorithm (Sec. 4.2.2) is efficient in finding minimum-cost paths, but it only
works for positive costs. The successive-shortest-path algorithm uses Dijkstra's method
to find augmenting paths, but to make this work we have to develop a different sort of
residual network with positive reduced costs [remember that the residual costs can be
negative - see Eqs. (7.19-7.21)]. Surprisingly, this is possible. To construct positive
reduced costs from which the optimal flow can be calculated, we use the concept of
node potential ~ (i) already encountered in Sec. 7.2.
The reduced costs used in the successive-shortest-path problem are inspired by the
reduced costs, c$, introduced in the shortest-path problem [Eq. (4.3)]. c$ has the
attractive feature that, with respect to the optimal distances, every arc has a non-
negative cost. To generalize the definition (4.3) so that it can be used in the minimum-
cost-flow problem, one defines the reduced cost of edge (i, j) in terms of a set of node
potentials ~ (i) ,

144 7 Minimum-cost Flows

We impose the condition that a potential i s on ly valid if c: > 0 as for reduced costs
in the minimal-path problem. Note that the residual costs defined in Eqs. (7.19-7.21)
appear here. All of the quantities in Eq. (7.23) depend on the flow xij, though we do
not explicitly state this dependence.
From the definition (7.23), we obtain for c&
(i) For any directed path P from k to I :

(ii) For any directed cycle W:

C c"= 23 C c;.

In particular, property (ii) means that negative cycles with respect to crj are also
negative cycles with respect to c;. We define the residual network GT(x) to be the
residual graph with residual capacities defined as before, but with reduced costs as
given by Eq. (7.23).
The next step is to find a way to construct the potentials sr(i). This is carried out
recursively, starting with ~ (i) = 0 when there is no flow in the network. The procedure
for generating potentials iteratively relies on the potential lemma given below.

Lemma: (Potential)
(i) Given: a valid node potential ~ (i) : a set of reduced costs c6 and a set of distance
labels, d(i) (found using c: > 0) t h e n the potential ~ ' (i) = ~ (i) - d(i) also has positive

reduced costs, c$ > 0.

(ii) c c = 0 for all edges (i, j) on shortest paths.

Proof : Properties (i) and (ii) follow from the analogous properties for the minimal
path [see Eqs. (4.3-4.5)]. To prove (i), using (4.3-4.5), we have, d(j) 5 d(i) +c$, then

we have, c$ = c,', - [n(i) - d(i)] + [sr(j) - d(j)] = c: - d(j) + d(i) > 0. For (ii) simply
repeat the discussion after replacing the inequality by an equality. QED
Now that we have a method for constructing potentials, it is necessary to demonstrate
that this construction produces an optimal flow.

Theo rem: (Reduced cost optimality)
A feasible solution, x*, is an optimal solution of the min-cost flow problem if and only
if there exists a set of node potentials, n(i) , such that c; > 0 b'(i,j) in GT(x*).

Proof: For the irriplication "+" suppose that c: > OV(i, j). Because of (7.24) it con-
tains no negative cycles. Thus by property (ii) above, an arbitrary potential difference
may be added to the costs on each edge on each cycle W. For the other direction '5"
suppose that G(x*) contains no negative cycles. Denote with d(.) the shortest path
distances from node 1 to all other nodes. Hence d(j) 5 d(i) + cij V(i, j) E G(x*). Now

7.4 General Minimum-cost -pow Algorithms 145

define ;r = -d then c; = cij + d(i) - d(j) > 0. Hence we have constructed a set of
node potentials associated with the optimal flow. QED
The reduced cost optimality theorem proves that each optimal flow has an associated
set of potentials, while the potential lemma shows how to construct these potentials.
The final step is to demonstrate how to augment the flow using the potentials. To
demonstrate this, suppose that we have an optimal flow x and its associated potential
n(i) which produces reduced costs c; that satisfy the rcduced cost optimality condi-
tion. Suppose that we want to add one unit of flow to the system, injecting at a source
at site, k, and extracting at a site 1. Find a minimal path, Pkl, (using the reduced
costs c;) from an excess site k to a deficit site 1. Now augment the flow by one unit for
all edges (i, j) E Pkr. We call this flow augmentation 6. The following augmentation
lemma ensures that this proccdnre maintains optimality.

Lemma: (Flow augmentation)
The flow x' = x + 6 is optimal and it satisfies the reduced cost optimality conditions.

Proof: Take ;r and n' as in the potential Lemma and let P be the shortest path from
node s to node k . Part (ii) of the potential lemma implies that 'd (i, j) E P : c$ = 0.

Therefore c ~ ~ ! = -c$ = 0. Thus a flow augmentation on (i; j) E P might add (j , i) to

the residual network, but ~7%: = 0, which means that still the reduced cost optimality

condition c;; > 0 is fulfilled. QED
The strategy for the successive-shortest-path algorithm is now clear. Given a set
of excess nodes E = {ile(i) > 0) and a set of deficit nodes D = {ile(i) < 01, we
iteratively find minimal paths from a node i E E to a node j E D until no excess or
deficit remains:

algorithm successive shortest paths [convex costs]
begin

Initialize x and n such that the reduced costs cn(x) > 0;
while there is a node s with e(s) > 0 do
begin

compute thc reduced costs cT(x)(Eq. 3.15);
find the shortest paths d(i) from s to

all other nodes in G(x) w.r. to the reduced costs c c ;
choose a node t with e(t) < 0;
augmcnt flow on the shortest path from s to t by one unit;
computc ~ (i) := ~ (i) - d(11);

end
end

7 Minimum-cost Flows

Figure 7.8: Illustrating the successive-shortest-path algorithm: (a) initial network
for x = 0 and .rr = 0; (b) network after updating the potentials T ; (c) network after
augmenting 2 units along the path 1-2-3; (d) network after updating the potentials
T ; (e) network after augmenting 2 units along the path 1-2-3-4.

7.5 Mzscellaneous Results for Dzfferent Models 147

The minimal path for flow augmentation is found using Dijkstra's method on the resid-
ual network with the reduced costs given by Eq. (7.23). After each flow augmentation,
the node potentials are recalculated using the potential lemma. We demonstrate the
algorithm in Fig. 7.8, where for simplicity we use a linear cost function.
Since we worked hard t o construct a system with positive reduced costs, the "find"
operation above can be carried out using Dijkstra's algorithm. If we denote the sum of
all the sources t o be v = Cilb(i)>O b (i) , then the number of flow augmentations needed
to find the optimal flow is simply v. Each flow augmentation requires a search for a
minimum-cost path from a node k E E to a node 1 E D which for sparse graphs and
integer flows can be efficiently accomplished with Dijkstra's method, which is (? (I El) .
Thus for integer flows on sparse graphs with positive costs (as is typical of the physics
applications) the successive-shortest-path algorithm is O(vl E 1).
A final note on the initialization statement: for the physical problems we presented in
the preceding sections (7.2 and 7.3) it is not hard to find a flow x and a note potential
T that fulfills the requirement that the reduced costs c"(x) = cij(xij) + ~i - . s ~ j > 0
are all non-negative. In the N-line problem it is simply x = 0 and T = 0, i.e. the
system without any flux line (FL), since all bond energies are non-negative. In the
convcx flow problem with a general local costs hij(xij) one just chooses the integer
xij that is closest to the minimum of hij(x), for the specific examples of 7.3, where
h . 2.7 . (x . 2.7 .) = (xij - dij)' it is simply the integer that is closest to the real number dij.
With this configuration cij(xij) > 0 and with .ir = 0 also the reduced costs are non-
negative.

7.5 Miscellaneous Results for Different Models

In this section we will present a number of results that highlight the flexibility of the
described methods that allows not only study of the ground state of the model itself
but also of the energetics of excitations and topological defects.

Flux-line a r ray i n a periodic potent ial

As one example for typical flux-line (FL) problems we demonstrate here how one can
study the competition between point disorder and a periodic potential. Depending on
the strength of the disorder with respect to the depth of the periodic potential one may
or may not have a roughening transition. As a starting point we use the continuum
model (7.1) with a periodic potential V, and write down an appropriate lattice model
for it. Here we study the situation in which each potential valley is occupied by one
line and its minima are well localized, i.e. they have a width that is small against the
interaction range of thc lines.
We use the N-line model defined in Sec. 7.2 and simply modify the bond energies
eij in (7.2) appropriately: to the uncorrelated bond energy variables, taken from
some probability distribution P(tij) with variance t, we add a periodic part setting
eij = ~ i j + Aij. The structure of the periodic part resembles periodically arranged
columnar defects and is depicted in Fig. 7.9, where one has valleys of effective depth

7 Mznimum-cost Flows

Figure 7.9: Top: Periodic potential in 2d. The depth of the valleys is denoted by A
and the nearest neighbor distance by a. Additional point disorder t accomplishes the
energy landscape. The FL can only enter and leave the system via the energetically
neutral edges connecting the source and the sink, respectively, with the potential
valleys. Bottom: Schematic phase diagram in 2d and 3d for bounded disorder. In
the case of unbounded disorder the flat phase vanishes.

A such that the Aij values are zero inside the potential wells and constant elsewhere.
This also reproduces the elastic energy, since all bonds cost some positive energy,
defining the ratio disorder strength and the depth of the potential valleys as q = &/A.

Figure 7.10 demonstrates with a series of snapshots the geometry involved in the
calculations; and the typical behavior with increasing g in 2d and 3d. In both cases
the lines are pinned to the energetically favorable valleys for small q, and finally for
large q a cross-over to a rough state takes place. In 3d one can observe that the
lines wander almost freely under such conditions. The examples of Fig. 7.10 represent
different regions in the u-q phase diagram, which is sketched in Fig. 7.9.

One discriminates between the different regions in the phase diagram by looking at

7 .5 Mzscellaneous Results for Dzfferent Models

Figure 7.10: Optimal ground state configurations in 2d (top) and 3d (bottom) for
different point disorder strengths q , increasing from left to right. In the flat phase
(left) the FL are trapped completely inside the potential valleys.

the behavior of the average transverse fluctuation or roughness w of the lines:

H
where Fi = HP1 So dzr i (z) and [. . .I,, denotes the disorder average. By studying
very large longitudinal system sizes H 2 lo4 we are able to extract the saturation
roughness w(L) = limH,, w(L, H) for a finite system of transverse size L. Note
that we have chosen open boundary conditions: the transverse fluctuations cannot
get larger than the system size. Other quantities of interest are the size lli of the
longitudinal excursions (the average distance between the locations a t which a line
leaves a valley and returns to i t); and the total number of potential valleys P V that
a line visits between its entry and terminal point in the limit H + co.
In Fig. 7.11 dat,a for the roughness I I J and Ill as a function of l / q in 2d are shown. The
picture that emerges is the following. In the $at region we have w (L) = 0, 11, = 0 and
P V = 1, i.e. the lines lie completely in the potential valleys. This region q < qcl exist
only for bounded disorder. For the uniform distribution no energetically favorable
transverse fluctuation can exist as long as q < A. That q,l > 1 follows from the
fact that we are a t full occupancy, N = Nv where Nv is the number of valleys, for
q < qcl 2 the ground state consists always of N straight lines regardless of dimension.

150 7 Mznzmum-cost Flows

For unbounded disorder this flat region does not exist, since the probability for a
sequence of high-energy bonds in the valleys that pushes the lines out of it is always
positive. In the weakly fluctuating region for q,l < q 5 q,z the lines roughen locally.
Here one has w > 0 and Ill > 0, independent of the systems size L, and P V = 1.
The transverse fluctuations of flux lines are bounded by the average line distance or
valley separation a. The central feature is that lines fluctuate individually, so that a
columnar defect competes with point disorder. Both in 2d and in 3d a strong columnar
pin strictly localizes the line [12] reducing the line-to-line interaction to zero. More
details of this analysis can be found in [13]

Figure 7.11: Roughness w in 2d as a function of disorder strength q for bounded
disorder. q,l and q,z are shown. In the flat phase w = 0, whereas w > 0 for q > q , ~ .
No transversal system size dependence is observed in the weakly fluctuating phase.
The inset shows Ill. Each data point is averaged over n = 20 (L = 128) up to n = 600
(L = 8) disorder configurations, a = 4.

Dislocations in the SOS model

In Sec. 7.3 we mapped the SOS Hamiltonian (7.7) onto the convex cost function (7.10)
H (x) = x(i,j) (~ i j - d i ~) ~ with the constraint (7.9) (V.x)i = 0. Without this constraint
the configuration x with the lowest value for H(x) is easy to find (and actually is the
one with which the successive shortest path algorithm starts): for each bond (ij)
choose the integer xij as the one that is closest to the real number dij. Obviously,
for a typical disordered substrate the minimal configuration {x},~, violates the mass

7.5 Miscellaneous Results for Dzfferent Models 151

balance constraint (7.9). Figure 7.12 shows an example of a disordered substrate
with substrate height di E {0.0,0.2,0.4,0.6). Consider the differences dij: across the
dashed line we have dij = 0.6 and ldijl < 0.5 elsewhere. Consequently, the absolute
minimum-energy configuration without any balance constraint is given by xij = 1 and
xij = 0, respectively.

Figure 7.12: Example of disordered substrate heights di in a random-surface model
with a single dislocation pair connected along a straight line of size L (dashed line).
The optimal surface without dislocations would be flat, i.e. n, = 0 for all sites i,
however, allowing dislocations would decrease the ground-state energy (see text).

With respect to the balance constraint (7.9) the only feasible optimal solution (ground
state) is a flat surface, i.e. xij = 0 for all links (i j) . On the other hand, dislocations
can be introduced if one treats the height field hi as a multi-valued function which
may jump by 1 along lines that connect two point defects (i.e. a dislocation pair) [14].
Therefore, for the given example (Fig. 7.12) it should be clear that the minimal con-
figuration {x),~, (see above) is exactly the optimal (i.e. ground state) configuration
with one dislocation pair. One of the two defects has a Burgers charge b = +1 and
the other one b = -1. The pair is connected by a dislocation line (dashed line in Fig.
7.12) along which one has xij = 1. This already demonstrates that due to the disor-
der the presence of dislocations decreases the ground state energy and a proliferation
of defects appears. Alternatively one can introduce a dislocation pair by fixing the
boundary to zero and one [15].
The defect pairs in the disordered SOS model are source and sink nodes of strength + b
and -b, respectively, for the network flow field xij, which otherwise fulfills (V .x) i = 0,
i.e. we have to modify the mass balance constraint (7.9) as follows

0 no dislocation at i
(V . x) ~ =

*b dislocation at i

Thus the ground-state problem is to minimize the Hamiltonian (7.10) subjected to the
mass balance constraint (7.26). In the following we concentrate on defect pairs with
b = *1.

152 7 Minimum-cost Flows

The defect energy A E is the difference of the minimal energy configuration with and
without dislocations for each disorder realization, i.e. A E = El - Eo. Morc precisely,
for the configuration with N defect pairs of Burgers charge b = 411 we introduce two
extra nodes s and t with source strength n, = + N and nt = -N , respectively, and
connect them via external edges or bonds with particular sites of the lattice depending
on the degree of optimization: (a) with two sites separated by L/2 [Fig. 7.13(a)], (b)
the source node with one site i and the sink node with the sites on a circle of radius L/2
around i [Fig. 7.13(b)] and (c) both nodes with the whole lattice. Case (a) corresponds
to a fixed defect pair, (b) to a partially optimized pair along a circle, both separated
by a distance L/2, and (c) to a completely optimized pair with an arbitrary separation.
In all cases the energy costs for flow along these external edges are set to a positive
value in order to ensure the algorithm will find the optimal defect pair on the chosen
sites. These "costs" have no contribution to the ground-state energy. In case of mult i
pairs we always use graph (c). Here the optimal number N of defects in the system
is gradually determined starting with one pair (N = 1) with a vortex core energy 2E,
and checking whether there is an energy gain or not. If yes, add a further pair (with
2Ec) and repeat the procedure until there is no energy gain from the difference of the
ground-state energy between two iterations.

Figure 7.13: Graph of an L x L lattice with periodic boundary conditions (p.b.c.)
for the implementation (a) of one fixed defect pair and (b) of a partially optimized
pair. Both are separated by L/2. Dislocations are induced by two extra nodes s and
t , which are connected with the possible positions of the defects (big dots).

One can study the defect energy A E and its probability distribution P (A E) on an
L x L lattice with L = 6, 12, 24, 48, 96, 192 and 2 . lo3 - lo5 samples for each size and
consider the three cases (a)-(c) (see earlier). With an increasing degree of optimization
a negative defect energy A E becomes more probable and its probability distribution

7.5 Miscellaneous Results for Different Models

0.35 -

0.3 -

0.25 -

iii
a 0.2 - -
a

0.15 -

0.1

0.05 -

n -

Figure 7.14: Probability distribution P (A E) of a large-scale topological excitation
with a Gaussian fit for different optimizations: (a) for a fixed defect pair, (b) for a
partially optimized pair and (c) for a completely optimized pair with different system
sizes L.

154 7 Minimum-cost Flows

P (A E) differs more and more from the Gaussian fit, Fig. 7.14. The resulting disorder
averaged defect energy [AEIdi, scales like

h (L) fixed defect pair

-0.27(7) . ln3I2(L) partially optimized
-0.73(8) . ln3I2 (L) completely optimized

From the fact that the partially and completely optimized dislocation pairs have on
average a negative energy that increases in modulus for increasing distance L it follows
that the ground state is unstable with respect to the formation of unbound dislocation
pairs. More details can be found in [16].

Low-energy excitations in the vortex glass

As a last example we consider the vortex glass model in the strong screening limit
(7.14) and study the scaling behavior of low-energy excitations AE(L) of length scale
L (to be defined below) in the presence of an external field. The magnetic filed bi can
be constructed from the quenched vector potentials Aij by a lattice curl, in our case
with the homogeneous external field we have:

We choose Byt = B e, i.e. the external field points in the z-direction. The dependence
of AE(L) on L provides the essential evidence about the stability of the ground state
with respect to thermal fluctuations. If AE(L) decreases with increasing length L it
implies that it costs less energy to turn over larger domains thus indicating the absence
of a true ordered (glass) state at any T # 0. Usually one studies such excitation of
length scale L by manipulating the boundary condition for the phase variables of
the original gauge glass Hamiltonian [17, 181. One induces a so called domain wall
of length scale L into the system by changing the boundary condition of a particular
sample from periodic to anti-periodic (or vice versa) in one space direction and measure
the energy of such an excitation by comparing the energy of these two ground-state
configurations. This is the common procedure for a domain-wall renormalization group
(DWRG) analysis, as it was first introduced in connection with spin glasses (see Chap.
9), which, however, contains some technical complications [17] and some conceptual
ambiguities [18, 191 in it.
Here we follow the basic idea of DWRG, we will, however, avoid the complications
and the ambiguities that appear by manipulating the boundary conditions (b.c.) and
try to induce the low energy excitation in a different way, as first been done by one
of us in [20] for the zero-field case. First we will clarify what a low energy excitation
of length scale L is: in the model under consideration here it is a global vortex loop
encircling the 3d torus (i.e. the L3 lattice with periodic b.c.) once (or several times)
with minimum energy cost. How can we induce the above mentioned global vortex
loop, if not by manipulating the b.c.? Schematically the solution is the following
numerical procedure:

Bibliography 155

1. Calculate the exact ground-state configuration {JO) of the vortex Hamiltonian
Eq. (7.14).

2. Determine the resulting global flux along, say, the x-axis f, = Ci J,Ox.

3. Study a minimum-cost-flow problem in which the actual costs for increasing the
flow on any bond in the x-direction Act = ci(J:x + 1) - ci(J,OX) is smoothly mod-
ified letting the cost of a topologically simple connected loop remain unchanged
and only affecting global loops.

4. Reduce the Ac: until the optimal flow configuration {J1) for this min-cost-flow
problem has the global flux (f , + I) , corresponding to the so called elementary
low energy excitation on the length scale L.

5. Finally, the defect energy is A E = H({J1)) - H({J')).

Two remarks: 1) In the pure case this procedure would not work, since at some point
spontaneously all links in the z-direction would increase their flow value by one. It is
only for the disordered case with a continuous distribution for the random variables b i
that a unique loop can be expected. 2) In the presence of a homogeneous external field
one has to discriminate between different excitation loops: those parallel and those
perpendicular to the external field need not have the same energy.
As for the zero-field case [20] one expects for the disordered averaged excitation energy
(or defect energy)

where B is fixed, [. . .I, denotes the disorder average and Q is the stiffness exponent
and its sign determines whether there is a finite temperature phase transition or not,
as explained above. If Q < 0, i.e. the transition to a true superconducting vortex state
appears only at T = 0 [lo , 201, as shown in Fig. 7.15.
For any fixed value of B the finite size scaling relation (7.29) is confirmed and gives
Q = -0.95 & 0.04, c.f. Ref. [20], independent of the field strength B. Nevertheless
Fig. 7.16 shows that in one individual sample the excitation loops themselves change
their form dramatically with B. Only small parts of the loop seem to persist over
a significant range of the field strength, see for instance in the vicinity of the plane
z = 20 in Fig. 7.16.

Bibliography

[I] See e.g. S.T. Chui and J.D. Weeks, Phys. Rev. B 14, 4978 (1976)

[2] Y.-C. Tsai and Y. Shapir, Phys. Rev. Lett. 69, 1773 (1992); Phys. Rev. E 40,
3546, 4445 (1994)

[3] J . Toner and D.P. Di Vincenzo, Phys. Rev. B 41, 632 (1990)

[4] J.L. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1992)

7 Minimum-cost Flows

Figure 7.15: The domain-wall energy [AE],, in a log-log plot. The straight line
is a fit to [AE],, N L' with 8 = -0.95 + 0.03. This implies a thermal exponent of
v = 1.05 f 0.03. The disorder average is over 500 samples for L = 48, 1500 samples
for L = 32, and for the smaller sizes several thousand samples have been used.

[5] C. Zeng, A.A. Middleton, and Y. Shapir, Phys. Rev. Lett. 77, 3204 (1996)

[6] H. Kleinert, Gauge Fields in Condensed Matter, (World Scientific, Singapore
1989)

[7] M.S. Li, T. Nattermann, H. Rieger, and M. Schwartz, Phys. Rev. B 54, 16024
(1996)

[8] G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur,
Rev. Mod. Phys. 66, 1125 (1994)

[9] M.P.A. Fisher, T.A. Tokuyasu, and A.P. Young, Phys. Rev. Lett. 66, 2931 (1991)

[lo] C. Wengel and A.P. Young, Phys. Rev. B 54, R6869 (1996)

[ll] R. Ahuja, T . Magnanti, and J . Orlin, Network Flows, (Prentice Hall, New Jersey
1993)

[12] L. Balents and M. Kardar Phys. Rev. B 49, 13030 (1994); T . Hwa arid T. Nat-
termann, Phys. Rev. B 51, 455 (1995)

[13] T. Knetter, G. Schroder, M. J . Alava, and H. Rieger, preprint cond-mat/0009108

[14] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, (Cam-
bridge University Press, Cambridge 1997)

[15] H. Rieger and U. Blasum, Phys. Rev. B 55, 7394 (1997)

Bibl iography 157

Figure 7.16: The minimum energy global excitation loop perpendicular to the ex-
ternal field in the z-direction is shown for one particular sample (L = 24) and three
different field strengths B (note the periodic b.c. in all space directions). a) (left)
B E [0.0065,0.0069] is in a range, where the defect energy AE varies linearly with
respect to the field. Note that the loop also has a winding number n, = 1 in the
direction parallel to the external field. Hence dAE/dB = 2L. b) (middle) The same
sample as in (a) with B E [0.0070,0.0075]. In this interval the defect energy is con-
stant, no loop along the direction of the applied field occurs. c) (right) The same
sample as in (a, b) with B E [0.0076,0.0081]. The system is very sensitive to the
variation of applied field AB. Even for a sniall change by AB = 0.0001 the form of
the excitation loop changes drastically.

[16] F. Pfeiffer and H. Rieger, J. Phys. A 33, 2489 (2000)

[17] H.S. Bokil and A.P. Young, Phys. Rev. Lett. 74, 3021 (1995)

[18] J.M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998)

[19] J.M. Kosterlitz and M. V. Simkin, Phys. Rev. Lett. 79, 1098 (1997)

[20] J . Kisker and H. Rieger, Phys. Rev. B 58, R8873 (1998)

8 Genetic Algorithms

In this chapter, genetic algorithms (GA) are explained. For a detailed introduction,
see c.g. [I, 2, 31. The basic idea is to mimic the evolution of a group of creatures of the
same species. Individuals which adapt better to the requirements imposed by their
environment have a higher probability of survival. Thus, they pass their genes more
frequently to subsequent generations than others. This means, the average fitness of
the population increases with time. This basic idea can be transfered to optimization
problems: instead of looking for skilled creatures, the aim is to find a minimum of a
maximum of an objective function. Rather than different individuals, different vectors
of arguments of the objective function are treated. The evolutionary process can easily
be adapted for algorithms creating better and better vectors. The scheme has already
been applied to various problems.
In this section we first give the basic framework of a GA. Then we present an example
in detail, which enables us to understand the underlying mechanisms better. Finally
two applications from physics of the smallest and the largest particles are presented:
finding ground states in one-dimensional electronical quantum systems and determin-
ing the parameters of interacting galaxies. In Chap. 9 another application is shown,
where genetic algorithms are applied among other techniques for the calculation of
spin-glass ground states.

8.1 The Basic Scheme

The basic observation, which led to the development of genetic algorithms [4], is that
for millions of years a huge optimization program has been running: nature tries
to adjust the way creatures are formed such that they have a high probability of
survival in a hostile environment (unfortunately the hostile environment evolves as
well). At the beginning, all animals and plants were very simple. Only by reproduction
and mutation did the structure of the creatures become more and more complex,
so that they adapted better and better to the requirements. This works, because
of the presence of selection: individuals which are better equipped have a higher
probability of staying alive ("survival of the fittest"). Hence, they can pass on the
information about how they are built, i.e. their genes, to subsequent generations more
often. By iterating this scheme millions of millions of times on a large population

160 8 Genetic Algorithms

of individuals, on average better and better creatures appear. Please note that this
scheme is over simplified, because it neglects the influence of learning, society (which
is itself determined somehow by the genes as well) etc.

Population

Figure 8.1: A population of individuals. Each individual is a collection of char-
acteristic values, e.g. genes, parameters or positions. Here it is a vector of values

+I-.

This simple principle can be transfered to other optimization problems. One is not
necessarily interested in obtaining an optimum creature, but maybe one would like to
have a configuration of minimum energy (ground state) of a physical system, a motor
with low energy consumption or a scheme to organize a company in an efficient way.
Physical systems, motors or companies are not represented by a sequence of genes but
are given through a configuration of particles or a vector of parameters. These will be
denoted as individuals-ii as well. The population (see Fig. 8.1) is again just a set of
different individuals.

Mutation

@-/L

Figure 8.2: The effect of the mutation operation on a population. Individuals are
randomly changed. Here, the values of the vectors are turned from + to - or vice
versa with a given small probability. In the upper part the initial population is shown,
in the lower part the result after the mutation has been carried through. The values
which have been turned are highlighted.

8.1 The Basic Scheme

Crossover

Figure 8.3: The crossover operation. Offspring are created by assembling parts from
different individuals (parents). Here just one part from a +/- vector and another
part from a second vector are taken.

Now the different operations affecting the population will be considered. Mutations
of genes correspond to random changcs of the individual, e.g. displacing a particle or
changing a parameter, see Fig. 8.2. The reproduction scheme, often called crossover,
can be transfered in many different ways to genetic algorithms. The general principle
is that one or several individuals (the parents) are taken, divided into small parts and
reassembled in different ways to create new individuals, called offspring or children,
see Fig. 8.3. For example a new particle configuration can be created by taking the po-
sitions of some particles from one configuration and the positions of the other particles
from a second configuration.
The selection step can be performed in many ways as well. First of all one has to
evaluate the fitness of the individuals, i.e. to calculate the energy of the configurations
or to calculate the efficiency of the motor with given parameters. In general, better
individuals are kept, while worse individuals are thrown away, see Fig. 8.4. The details
of the implementation depend on the problem. Sometimes the whole population is
evaluated, and only the better half is kept. Or one could keep each individual with a
probability which depends on the fitness, i.e. bad ones have a nonzero probability of
being removed. Other selection schemes just compare the offspring with their parcnt,s
and replace them if the offspring are better.
Another detail, which has to be considered first when thinking about implementing a
GA, is the way the individuals are represented in a computer. In general, arbitrary
data structures are possible, but they should facilitate the genetic operations such as
mutation and crossover. In many cases a binary representation is chosen, i.e. each
individual is stored via a string of bits. This is the standard case where one speaks of
a "genetic algoritjhmX. In other cases, where the data structures are more complicated,
sometimes the denotation "evolutionary program" is used. For simplicity, we just keep

8 Genetic Algorithms

Selection

Figure 8.4: The effect of the selectiom operation on the population. The fitness F
is evaluated, here for all four individuals. Individuals with a low fitness have a small
probability of survival. In this case, individual two is removed from the population.

the expression "genetic algorithm", regardless of which data structure is chosen.

"configuration"

local
optimization

"configuration"

Figure 8.5: Local optimization. Here the population is shown in an energy landscape.
Large energy means small fitness. This local optimization moves individuals to the
next local optimum.

Quite frequently, the performance of a genetic algorithm can be increased by applying
local optimizations. This means that individuals are taken and altered in a more or less
deterministic way, such that its fitness is increased. Usually a local optimum is found
which is close to the current individual, see Fig. 8.5. For example, when searching for

8.1 The Basic Scheme 163

a ground state, one could move particles in a way that the energy is decreased, using
the forces calculated from a given configuration. Whether and how local optimizations
can be applied depends strongly on the current problem.
We finish this section by summarizing a possible general structure of a GA. Please
note that many different ways of implementing a genetic algorithm exist, in particular
the order of the operations crossover, mutation, local optimization and selection may
vary. At the beginning the population is usually initialized randomly, M denotes its
size and n R the number of iterations.

algorithm genetic
begin

Initialize population XI, . . . , X M ;
for t := 1 to n R do
begin

select parents pl , . . . , p k ;

create offspring el , . . . , el via crossover;
perform mutations;
eventually perform local optimization;
calculate fitness values;
select individuals staying alive;

end
end

Genetic algorithms are very general optimization schemes. It is possible to apply them
to various problems appearing in science and everyday life. Furthermore, the programs
are relatively easy to implement, no special mathematical knowledge is required. As a
result an enormous number of applications have appeared during the last two decades.
There are several specialized journals and conferences dedicated to this subject. When
you search in the database INSPEC for articles in scientific journals which contain the
term "genetic algorithm" in the abstract, you will obtain more than 15000 references.
On the other hand, applications in physics are less common, about several hundred
publications can be found in INSPEC. Maybe this work will encourage more physicists
to employ these methods. Recent applications include lattice gauge theory [5], analysis
of X-ray data [6], study of the structures of clusters [7, 8, 91, optimization of lasers
[lo]/ laser pulsed [I l l and optical fibers [12], examining nuclear reactions [13], data
assimilation in meteorology [14] and reconstructing geological structures from seismic
measurements [15]. An application to a problem of statistical physics in conjunction
with other methods is presented in Chap. 9. Below, sample applications from quantum
physics and astronomy are covered.
However, one should mention that GAS have two major drawbacks. Firstly the method
is not exact. Hence, if your are interested in finding the exact optimum along with
a proof that the global optimum has really been obtained, then you should use other
techniques. But if you want to get only "very good" solutions, genetic algorithms
could be suitable. It is also possible to find the global optimum with GAS, but usually
you have to spend a huge numerical effort when the problem is NP-hard. Secondly,

164 8 Genetic Algorithms

although the method has a general applicability, the actual implementation depends on
the problem. Additionally, you have to tune parameters like the size of the population
or the mutation rate, to obtain a good performance. Very often the effort is worthwhile.
The implementation is usually not very difficult. Some people might find it helpful to
use the package Genetic and Evolutionary Algorithm Toolbox (GEATbx) [16], which
is written to use in conjunction with the program Matlab [17]. In the next section
a simple example is presented, which can be implemented very easily without any
additional libraries.

8.2 Finding the Minimum of a Function

As an example we will consider the following problem. Given a one-dimensional func-
tion f (x), we want to find its minimum in an interval [a, b]. For this kind of problem
many mathematical methods already exist, so in practice one would not apply a ge-
netic algorithm. This example has the advantage that due to its simplicity one can
concentrate on the realization of the genetic operators. Furthermore, it allows us to
understand better how GAS work. For this purpose, the development of the popula-
tion in time is studied in detail. Also the benefit gained from a local optimization will
be shown later on. Here, we are considering the function

in the interval [O, I]. The function is plotted in Fig. 8.6. The goal is to find, via a
genetic algorithm, the minimum of f (x), which is obviously located at zo = 0.5 with
f (xo) = 0.
Here the individuals are simply different real values xi E [O, I]. In order to apply genetic
operations like mutation and crossover, we have to find a suitable representation. We
chose the method used to store numbers in a computer, the binary representation: it
is a string xi . . . x r of zeros and ones, where P denotes the length of the strings, i.e.
the precision. Since all values belong to the intcrval [O, I] we use:

For example the string "011011" represents x = 2-' + 2-3 + 2-5 + 2-6 = 0.421875.
From a given string, thc corresponding number can be calculated just be performing
the sum in (8.2) . The inverse transformation is given by the following small procedure.

8.2 Finding the Minimum of a Function

8 1 I I I I

Figure 8.6: One-dimensional sample fitness function f (x).

procedure bit-sequence(x, P)
begin

f := 0.5
for q := 1 to P
begin

if x > f then
xy := 1; x : = x - f ;

else
2 4 := 0;

f := f l 2 ;
end
return(zl,. . . , xP);

end

Next, we present the realization of the genetic operations. For the mutation with
rate p,, each bit is reversed with probability p, (the random numbers drawn in this
algorithm are assumed to be equally distributed in [O , I]):

8 Genetic Algorithms

procedure mutation({xq))
begin

for q : = 1 to P do
begin

r := random number in [O, 11;
if r < p, then

2'4 := 1 - 2 4 ;

end
return (x l , . . . , xP);

end

Examde: Mutation

We will consider for the example the following bit string (P = 20)

For a mutation rate of p, = 0.2, by chance 3 bits (on average two bits) could
be reversed, e.g. bit 5, bit 10 and bit 17, resulting in

The crossover is slightly more complicated. It creates two children cl,c2 from two
parents xi, x j in the following way. A random crossover point s E {1,2, . . . , P) is
chosen. The first child is assigned the bits xi to x,S from the first parent and the bits
x$+' to x r from the second parent, while the second child takes the remaining bits

xi,. . . ,x;, xBfl,. . . , x;:

procedure crossover(xi, x j)
begin

s := random integer number in {1,2, . . . , P};
for q : = 1 to s do

c4 .- .- 2 . . 4 c4 .- x4.
I 1 2 .- 3 '

for q := s + 1 to P do

8.2 Finding the Minimum of a Function 167

Example: Crossover

We assume that the crossover point is s = 7 (denoted by a vertical bar I) .
For the two parents (P = 20)

the following children are obtained:

In this problem, the selection is done in the following way: each child replaces a parent,
if it has a better fitness, i.e. the evaluation of the function f results in a lower value.
For simplicity we just compare the first child with parent x, and the second with x,.
The complete genetic algorithm is organized as follows. Initially M strings of length
P are created randomly, zeroes and ones appear with the same probability. The main
loop is performed n~ times. In the main loop, two parents x,, x, are chosen randomly
each individual has the same probability, and two children cl, c2 are created via the
crossover. Then the mutation is applied to the children. Finally, the selection is
performed. After the main loop is completed, the individual x having the best fitness
f (x) is chosen a:; a result of the algorithm. The following representation summarizes
the algorithm:

algorithm minimize-function(M, P, n ~ , p,, f)
begin

initialize M bit strings of length P randomly;
for t := l to n~ do
begin

choose parents xi, x j with i # j randomly in [I , MI;
(el, e2) := crossover(xi, x j) ;
mutation(cl, p,) ;
mutation(cz, p,);
if f (el) < f (x,) then

xi := c1;
i f f (~ 2) < f (xj) then

z j := c2;
end
return best individual from X I , . . . , x ~ ;

end

168 8 Genetic Algorithms

Please note that before the evaluation of the fitness f (x,), the value of the bit string
x i , . . . , x r has to be converted into the number x:, .
Now we study the algorithm with the parameters M = 50 and p, = 0.1. Wc recom-
mend the reader to write khe program itself. I t is very short and the implementation
allows to learn much about genetic algorithms. The choice of p, = 0.1 for the mu-
tation rate is very typical for many optimization problems. Much smaller mutation
rates do not change the individuals very much, so new areas in configuration space
are explored only very slowly. On the othcr hand, if p, is too large, too much genetic
information is destroyed by the mutation.
The optimum size M of the population usually has to be determined by tests. It
depends on whether one is interested in really obtaining the global optimum. As a
rule of a thumb, the larger the size of the population is, the better the results are. On
the other hand, one does not want to spend much computer time on this, so one can
decrease the population size, if the optimum is rather easy to find.

average
best

Figure 8.7: Evolution of the current minimum and average fitness with time t , here
M = 50,pm = 0.1, n R = 10000.

In Fig. 8.7 the evolution of the fitness of the best individual and the average fitness are
shown as a function of the step size. Here nR = 10000 iterations have been performed.
The global minimum has been found after 1450 steps. Since in each iteration two
members of the population are considered, this means on average each member has
been treated 2 x 1450/M = 58 times. Please note, if you are only interested in a very
good value, not in the global optimum, you could stop the program after say only
100 iterations. At timestep 1450 only one individual has found the global optimum a t
xo = 0.5, the average value still decreases.

8.2 Finding the Minimum of a Function

\

t=l OxM

Figure 8.8: Evolution of population with time t ; here M = 50000,p,, = 0.1 and
t = 0 , l x AT, 10 x M.

170 8 Genetic Algorithms

To gain more insight into the driving mechanism of a GA, we will study the develop-
ment of the population with time. Since we are interested in average values, we will
study a much larger population M = 50000 to reduce the statistical fluctuations. At
the beginning, the members of the population are independently distributed in the
interval [0, 11, see the top of Fig. 8.8.
The situation after t = I x M steps is shown in the middle part of Fig 8.8. Now it
is more likely to find individuals near the local minima. The highest density of the
population is near the global minimum. After t = 10 x M steps, most members of
the population have gathered near the global optimum. Please note the change of
the scale in the lower part of Fig. 8.8. Finally, after t = 100 x M , the population is
completely centered at the minimum (not shown).
As mentioned before, the efficiency of a genetic algorithm may be increased by applying
local optimizations. Which method is suitable, depends highly on the nature of the
problem. Here, for the minimization of a function of one variable, we use a very
simple technique: an individual x is just moved to the next local minimum. This can
be achieved by the following method. If the function f has a positive slope at x, then x
is decreased by a value 6, otherwise x is increased. The sign of S indicates the direction
of the change. This process is iterated. Each time the slope of f changes compared
with the last step, the size of /SI is reduced and the sign reversed. The iteration stops
if 6 becomes of the order of 2 Y P . The procedure reads as follows:

procedure local-optimization(x, P)
begin

S := 0.01;
while 161 > 2-P do
begin

if 6 x f l (x) > 0 then
S := -0.5 x 6;

x := x + 6;
end

end

The algorithm iteratively approaches the closest local minimum. This simple local
optimization is suitable, because f has a smooth behavior. For arbitrary functions
more sophisticated methods have to be applied to search for local minima, see e.g.
[18]. Please note that due to the limited numerical accuracy, it is possible that the
exact numerical local optimum cannot be found.
The above algorithm is a special case of the steepest descend method, which is applied
for functions of several variables. The basic idea is to calculate the gradient of the
function at the current value of the arguments and alt,er the arguments in the direction
of the gradient. Similar to the simple method presented above, this technique is
not very fast. More efficient for minimizing functions of real variables are conjugate
gradient methods [18].
The GA is altered in such a way that the local optimization is applied to each offspring
after the mutation. This drastically decreases the number of steps which are necessary

8.2 Finding the Minimum of a Function

Figure 8.9: Evolution of the current minimum and average fitness with time t when
additionally a local optimization is applied, here M = 50,p, = 0.1, n~ = 1000.

1 02 I """I """I " " " "

to find the global optimum. The minimum and average fitness as a function of step
number of the extended algorithm (run with the same parameters as before) are shown
in Fig. 8.9. Please note that the decrease of the number of steps needed to obtain the
minimum does not mean that the minimum is found quicker in terms of CPU time.
In many cases the numerical demand of the local optimization is very large. Also one
has to take into account the additional effort for the implementation. Whether it is
worth including a local optimization or not depends heavily on the problem and must
be decided each time again.
The impact on the population can be observed in Fig. 8.10. The distribution of the
individuals after t = hir steps is shown. Most individuals are located near the local
minima. Only the members of the population, which have not been considered so far,
remain at their original positions.
The minimization problem presented in this section serves just as an example to il-
lustrate the basic concepts of genetic algorithms. Two interesting applications from
physics are presented in the following sections, while another special-purpose genetic
algorithm is presented in Chap. 9.

10' - including local search -

8 Genetic Algorithms

including local search

I t=l XM

Figure 8.10: Distribution of the population at time t , here M = 50000,p, = 0.1
and when applying the local optimization.

8.3 Ground States of One-dimensional Quantum
Systems

During the last decade much progress has been made in the technology for manufac-
turing micro structures. This has happcned particularly for semiconductor systems,
where it is possible to create two dimensional confined potential landscapes for elec-
trons of arbitrary geometry, so called quantum dots.
When studying the behavior of electrons in such systems one has to solvc the quantum
mechanical time-independent, Schriidinger equation (with fi2 /m = I),

1
= E l H = - - V 2 + V ,

2 (8.3)

where V is the Nabla operator and V the potential, here just one particle in the
quantum dot is considered. For some standard cases it is possible to solve the equation
analytically, e.g. one particle in a trap or in a harmonic potential. These cases are
usually prcsentcd in basic courses a t university level. For arbitrary shapes of the
potential V, exact analytical solutions cannot be obtained. In this chapter, we describe
a recent approach developed by I. Grigorenkp and M.E. Garcia [19], where the ground-
state wave function of low-dimensional systems with one particle can be found via a
GA. Here we restrict ourself to one-dimensional systems, i.e. 4 = $ (r c) , V = V(z) ,

d V = &, but the method can be easily extended to higher dimensions.
The ground state is the normalized wave function $(x) minimizing the expectation

8.3 Ground States of One-dimensional Quantum system,^

value

of the energy, where $* denotes the conjugate complex of $. To solve the ground-
state problem via a genetic algorithm, one considers a population {gj) of M different
wave functions. For the problem presented here, we assume that the electrons are
confined by potential walls of infinite height to the interval [u, b]. So the population
contains wave functions obeying the boundary conditions $(a) = $ (b) = 0. Since we
are interested in time-independent problems, we can neglect the phase of the wave
function, i.e. concentrate on real-value functions.
Numerically, the functions are represented as a list of K + 1 numbers $j(a+Ic(b-a)/K)
with k = 0,1 , . . . , K. The fitness of individual dj is given by E[gj]. For the evaluation
of the fitness, a cubic spline [18] can be used to interpolate the wave function. Then
the integral (8.4) can be calculated numerically.
To specify the details of the GA, we have to state the choice of the initial population,
the crossover mechanism and the way mutations are performed. No local optimization
is applied here.
The initial population {$j(x)) consists of Gaussian like functions of the form

For each individual the values for the center x j E [a, b] and the width oj E (0, b - a]
are chosen randomly. The constant Aj is calculated from the normalization condition

I$j(x)/2 dx = 1. Please note that the boundary conditions are fulfilled by definition.
For the mutation bperation a random mutation function $"(x) is added and the
result normalized again:

x(") = A [$3 (5) + grn (x)l . (8.6)

The simplest approach is just to draw the mutation function grn from the same en-
semble as the initial population. The only difference is, that $"' is not normalized.
This allows for slight changes of the wave function. In Fig. 8.11 a sample crossover
operation is presented.
The crossover operation combines two randomly chosen parent functions (x), $9(x)
and creates two offspring 41 (x), 4 2 (2). From the four wave functions $1 (x), $2 (x),

(x), $2 (x) the best two are taken over to the next generation. Similar to the crossover
presented in the last section, the resulting wave functions consist of two parts, where
the left part comes from one parent and the right part from another. Since wave
functions have to be smooth functions, the offspring interpolate smoothly between
both parents. For that purpose a smooth step function St(x) is used:

The constants B1, B2 are chosen in such a way that 41,42 are again normalized. Here
St(x) = ;[I + tanh((x - xo)/k2)] is taken, where xo E (a, b) is chosen randomly and

8 Genetic Algorithms

Figure 8.11: The mutation operation for the quantum ground-state calculation.
Top: The original function $ j and the random mutation $" function. Bottom: The
resulting wave function.

k is a parameter which determines the sharpness of the step function. In Fig. 8.12 an
example of the crossover operation is shown. The two parent functions belong to the
initial population. The step function has xo = 0.5, k2 = 0.1.

For this specific genetic algorithm, at each iteration step M times either a mutation

8.3 Ground States of One-dimensional Quantum Systems 175

or a crossover operation is performed on randomly chosen wave functions. For the
applications presented here, a probability of p, = 0.03 for a mutation and a probability
of 1 - p, = 0.97 for a crossover was used. K = 300 grid points were taken for storing
the wave functions.
As a first test we consider the harmonic potential Vh(z) = $w2(x - 0 . 5) ~ with w =

x lo2, a = 0, b = 1. In Fig. 8.13 the probability density 1$(2) l 2 for the ground
state is shown which was found after 100 iterations. The inset shows the development
of the lowest energy for the first 30 iterations. The probability density of the ground
state is so close to the analytical solution that it is not possible to distinguish them
in the plot. The ground-state energy is Eo = 316.29 (atomic units) while the exact
analytical result is Eo = 316.22, i.e. a difference of just 0.02%.
Next, an example is prcsented where it is not possiblc to obtain an exact analytical
solution. The potential is produced by five positive charges with charge Q = 5 placed
at positions xi = 13,19,25,31,37. Here, the interval [a , b] = 50 is considered. The
potential is softened by a cutoff distance c = 0.5 and given by

Such potentials occur for example when clusters are studied, which are created by
intense laser pulses. To speed up the convergence, the initial wave functions $I, should
represent the symmetry of the potential. Thus, superpositions of five random functions
of the form (8.5) are taken. The resulting ground-state probability distribution after
20 iterations is shown in Fig. 8.14. Please note that the symmetry of the potential is
reflected by the wave function.
With an extension of the genet,ic algorithm it is possible to calculate excited states
as well. More details can be found in [19]. Recently the method has been applied to
two-dimensional quantum systems as well [20]. Now we leave the world of quantum
physics and turn to the physics of large objects which provides another example where
GAS have been applied successfully.

8 Genetic Algorithms

Figure 8.12: The crossover operation for the quantum ground-state calculation.
Top: two parent functions. Middle: the step function (k2 = 0.1, xo = 0.5) regulating
the crossover. Bottom: resulting children functions.

8.3 Ground Sta,tes o f One-dim.en,sion.al Quan.tum Svstem.s

Figure 8.13: Calculated spatial distribution of electron density l$(z)I2 (solid line)
for the Id harmonic potential (dotted line). The inset figure shows the evolution of the
fitness during the GA-iterations. Reprinted from [I91 with permission from Elsevier
Science.

Iterations 4

x, (atomic units)

Figure 8.14: Calculated I$(z)i"solid line) for an electron on a potential produced
by a chain of positive ions (dotted line). The inset figure shows the convergence
behavior. Reprinted from [19] with permission from Elsevier Science.

178 8 Genetic Algorithms

8.4 Orbital Parameters of Interacting Galaxies

When studying large scale objects in universe like galaxies, one is unfortunately re-
stricted to watching the physical processes from far away. As a consequence, it is only
possible to obtain two-dimensional images via telescopes instead of measuring all three
coordinates in space. A rough impression of the three-dimensional structure can be
obtained from the Doppler shift of the light. Furthermore, seen from the earth, the
movement of galaxics is slow in comparison with the human lifetime. Hence, it is only
possible to obtain a snapshot of the development, in contrast to e.g. the observation
of asteroids or comets. In this section, the case is considered were two galaxies are
colliding and it is shown how some hidden parameters can be obtained using a genetic
algorithm [21], revealing the full three-dimensional description of the process.

Figure 8.15: Two colliding galaxies. The figure is generated from a simulation.

In Fig. 8.15 a snapshot of two colliding galaxies is shown. A coordinate system is
used such that thc 2-y plane is the planc of the sky (with the x-axis horizontal) and

8.4 Orbital Parameters of Interacting Galaxies 179

the z-axis points towards the observer. The movement of the centers of the masses
of the galaxies can be described by the distances Ax, Ay, Az, the relative velocities
Av,, Av,, Av,, the masses m l , ma and the spins s l , s2 (clockwise or counterclockwise).
Using astronomical observations it is possible to measure the separation Ax, Ay in the
plane of the sky and the relative velocity Av, along the line of sight [22]. The distance
Az, the velocities Av, , Av,, the masses m,l , ma and the spins s l , s2 are not known. In
the following it is shown how these parameters can be estimated by applying a genetic
algorithm. For that purpose, the individuals of the underlying population are chosen
to be vectors of values (Az, Av,, A v , , m ~ , ma, s l , sa).
First of all, since the distance Az cannot be measured, how do we know that the
galaxies are interacting a t all? Since one can observe only the projection of the scenery
to the x-y plane, the galaxies might be far away. The basic idea to answer this question
is that the evolution of a single galaxy is well studied. Its distribution of emitted light
obeys an exponential falloff. Usually it is assumed that the amount of emitted light is
proportional to the mass density, thus one can use an exponential density distribution.
Only the length and mass scales may vary from galaxy to galaxy. For the case when two
galaxies are far away from each other, both distribution of masses obey this standard
picture. On the other hand, if two galaxies interact with each other, the standard
distribution is perturbed. For example in Fig. 8.15 a bridge of stars connecting both
galaxies can be observed. The main idea of the genetic algorithm to determine the
unknown parameters is t o take advantage of this type of perturbation for the analysis.
We start the description of the GA with the encoding scheme for the individuals.
Secondly, it is shown how the fitness of the individuals is calculated, i.e. how the
collusion which results from the parameters is compared with the measurement data.
Next the mutation and crossover operations are given. Finally a result from a sample
simulation is presented.

Figure 8.16: The encoding of the parameters (ml , mz, Az, Av,, Av,, sl , sz) via 25
digits g, ~ { 0 , 1 , . . . ,9). Four digits are used for each mass ml , mz, while the values
Az, Av,, Av, take 5 digits (one for the sign), the spins sl , sz = & are stored in the
last two digits. An odd number represents the sign +, otherwise it is a negative sign.

Similar t o the quantum-system example, here no binary representation is chosen. In-
stead, each individual is a vector g = (gl, 92, . . . , g25) of 25 numbers from {0,1, . . . ,9) ,
see Fig. 8.16. Each vector represents the unknown values (ml , ma, Az, Av,, Av,, s l ,
sa). To avoid large numbers, suitable units are chosen: the gravitational constant is
G = 1, the unit of length is 1 kpc (= 3.0856 x lo1' m = 3.2615 light years), the unit

180 8 Genetic Algorithms

of time is 1.05 Myr = 3.3143 x 1013 s, the unit of the mass is 2 x 1011 times the mass
of the sun (3.9782 x lo4' kg). The unit of velocity is then 931 km/s. Owing to the
rescaling, all masses are taken in the interval 0 and 100, Az between -1000 and +I000
and Av,, Av, between -10 and 10. For encoding the masses 4 digits are used, while
the distance Az and the velocities take 5 digits. Thus, the first mass is obtained from
the vector g through ml = gl x 10' + g2 x 10' +g3 x 10-I + g4 x 10V2. The distances
and velocities arc encoded in a similar way using 4 + 1 digits. One digit is reserved to
store the sign, it is negative if the corresponding value is odd and positive otherwise.
The spins sl , ss = i l of the galaxies are stored in the last two digits gad, 925 in the
same way.
The part of the GA which consumes the most computer time is the evaluation of
the fitness function, because for each set of parameters g a complete many-particle
simulation has to be carried through. This works as follows. First the centers of mass of
the two galaxies are calculated. With the set of known (i.e. fixed) parameters and with
given values for the parameters in g, the development of the system consisting of both
of the centers of masses is completely determined. Hence, it is possible to integrate the
equations of motion backwards in time until a state is obtained where the two galaxies
are far away from each other. Next, the two centers of masses are replaced by two sets
of stars with a rescaled standard mass distribution. The number of particles in the
galaxies are denoted by N,,J and N,J, respectively. For the examples presented here,
N,,l = NP,2 = 1000 were chosen. For simplicity, it is assumed that the distribution of
the stars is rotationally symmetric. Then the system is propagated forwards in time.
To speed up calculations, the simulations can be performed non-self-gravitatingly, i.e.
inter-particle forces are neglected. In this case only the gravitational forces between
the particles and the center of masses are included. For an improved simulation the
self gravitation and even gas dynamics and dark matter can be added, but this is
beyond the scope of a first test of the method. Another enhancement is to drop the
assumption of rotational symmetry and to allow galaxies to be oriented differently in
space relative to each other, see [21]. Nevertheless, when the two galaxies approach
each other, they begin to intcract, i.e. the motion of the stars of the two systems are
affected by the other galaxy and the morphology of the galaxies change. The system
is propagated until the initial time 0 has been reached.
Now the distribution of masses obtained by the simulation can be compared with the
given distribution from the two galaxies under investigation. This comparison works
as follows. A grid of size n, x n, is superimposed on the data, see Fig. 8.17. The grid
corresponds to a grid of pixels which is the result of an observation with a telescope,
digitized and stored on a computer1. For each grid cell (i, j) the total mass mi,j in
the cell is evaluated, each particle from the first galaxy contributes with ml/Np,l and
each particle from the second one with mn/Np,z. When comparing with observations,
the amount of light corresponding to each mass mi,j has to be calculated. Here the
method is evaluated for testing purposes. Thus, only artificial observations are taken,
i.e. they are generated via a simulation of particles in the same way as explained. This

'please note that usually galaxies consist of several billion of stars, so it is not possiblc to identify
individual stars via a telescope.

8.4 Orbital Parameters of Interacting Galaxies

Figure 8.17: Computation of the data for the comparison. A grid is superimposed
on the image of interacting galaxies. For each grid cell the corresponding Inass is
calculated. For clarity, only a coarse grid is shown here. Reprinted from [21] with
permission from Springer Science.

allows the final result of the best set g obtained from the GA to be compared with
the values which have been used to set up the system. For the "observed" system, the
masses rn:)' can be calculated in the same way as the values of w,j. The deviation
6 the result of the simulation and the observational data is defined here as

The sum runs over all grid cells. The contribution m, in the denominator prevents
a divergence in case the mass observed in a grid cell is zero. In Ref. [21] m, =
~ / (N , , J + N,J) has been chosen, so particles in a region where no particle is supposed
to be have the largest impact on the value of 6. Finally, the fitness F of the individual
g is taken as

Now the structure of the genetic algorithm will be described. Similar to the first
example, the initial population of M individuals is chosen completely at random. Each
generation is treated in the following way. First, the fitness values for all individuals
are calculated, as explained above. Then the individuals are ranked according to their
fitness values, the highest fitness comes last, the lowest fitness first. The best individual

182 8 Genetic Algorithms

is always taken over twice to the next generation. The other M - 2 members of the
next generation are obtained by crossover and mutation.
For each crossover two parents are selected randomly from the population. Here the
l inear fi tness ranking is applied. This means each parent is chosen with a probability
which is proportional to its position in the ranking. Thus, individuals with a low
fitness have a lower probability of being selected. This can be achieved by drawing
a natural random number r between 0 and M(M + 1)/2. The individual which has
position i in the ranking is chosen if (i - l) i /2 5 r < i(i+1)/2. The crossover is carried
out as explained in Sec. 8.2: a random crossover point s E 1,2 , . . . ,25 is chosen. The
first child consists of the left part up to digit g, from the first parent and the right
part from the second parent. The second child takes the remaining digits.
Finally, mutations are applied for all new individuals. With probability p, a digit is
set to a new randomly chosen value from {0,1, . . . , 9) . The result is a new generation
of M individuals. The whole process is repeated for n G generations and after the last
iteration the best individual is picked.

Figure 8.18: Comparison of the simulation with the best parameters with the original
system. The two pictures are not identical, but very similar.

To test the genetic algorithm, an artificial pair of colliding galaxies was created with
a given set of parameters (ml = 1.0, m2 = 1.0, Az = 3.0, Av, = -0.672, Av, = 0.839
and sl = sz = I), the measurable parameters are Ax = 3.5, Ay = 8.0, and Av, = 0.44,
see Fig. 8.15. Then the GA was run with the aim of finding the parameters again. A
size M = 500 of the population was chosen, the program ran for n, = 100 generations
with p, = 0.003. To decrease the numerical effort, the values of ml and rns were
constrained t o be between 0.3 and 3.0, Az in [-SO, 501 and Au,, Av, between -1 and
1. When all individuals obey these restrictions, the children created by the crossover

Bibliography 183

remain in the same sample space as well. Mutations were accepted only if the resulting
parameters remained in the given intervals. These constraints reduce the number of
possible combinations of the parameters to 1.2 x l0l5, still much too large to be
searched systematically. The GA was able to find these parameters in 100 generations
within an accuracy of about 10%. The best individual exhibited m l = 0.99, mz = 1.00,
AZ = 2.899, Av, = -0.676, Av, = 0.897, sl = 1, sz = 1. The resulting distribution
of the stars is compared in Fig. 8.18 with the given observation. Only slight deviations
are visible.
The results of further tests are presented in Ref. [21]. It can be shown that the GA is
much more effective than a random search. Furthermore the algorithm is not sensitive
to noise. Even when the observational data m$' were disturbed with a 30% level of
noise, the parameters could be recovered, but with slightly lower accuracy. Finally it
should be mentioned, that for real observational data, usually features such as bars,
rings etc. in the central regions of the galaxies occur. This may cause problems to the
GA. Hence, one should leave out the inner region for the calculation of the fitness F.

Bibliography

[I] M. Mitchell, An Introduction to Genetic Algorithms, (MIT Press, Cambridge
(USA) 1996)

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
(Springer, Heidelberg 1994)

[3] P. Sutton and S. Boyden, Am. J. Phys. 62, 549 (1994)

[4] J.H. Holland, Adaption in Natural and Artzficial Systems, (University of Michigan
Press, Ann Arbor 1975)

[5] A. Yamaguchi and A. Sugamoto, Nucl. Phys. B Proc. Suppl. 83-84, 837 (2000)

[6] A. Ulyanenkov, K. Omote, and J . Harada, Physica B. 283, 237 (2000)

[7] T.X. Li, S.Y. Yin, Y.L. Ji, B.L. Wang, C.H. Wang, and J.J. Zhao, Phys. Lett. A
267, 403 (2000)

[8] M. Iwamatsu, J. Chem. Phys. 112, 10976 (2000)

[9] D. Romero, C. Barron, and S. Gomez, Comp. Phys. Comm. 123, 87 (1999)

[lo] Cheng Cheng, J. Phys. D 33, 1169 (2000)

[Ill R.S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

[12] F.G. Omenetto, B.P. Luce, and A.J. Taylor, J. Opt. Soc. Am. B 16, 2005 (1999)

[13] D.G. Ireland, J. Phys. G 26, 157 (2000)

8 Genetic Algorithms

[14] B. Ahrens, Meteor. Atmos. Phys. 70, 227 (1999)

[15] H. Sadeghi, S. Suzuki, and H. Takenaka, Phys. Earth Plan. Inter. 113,355 (1999)

[16] Genetic and Evolutionary Algorithm Toolbox, can be tested three weeks for free,
see http://www.geatbx.com/index.html

[17] Matlab 5.3.1 is a commercial program for data analysis, numerical computations,
plotting and simulation, see http://www.mathworks.com/

[18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C , (Cambridge University Press, Cambridge 1995)

[19] I. Grigorenko and M.E. Garcia, Physica A 284, 131 (2000)

[20] I. Grigorenko and M.E. Garcia, Physica A 291, 439 (2001)

[21] M. Wahde, Astron. Astroph. Supplement Series 132, 417 (1998)

[22] K . Holliday, Introductory Astronomy (Wiley, New York 1999)

9 Approximation Methods for Spin
Glasses

In this chapter we concentrate on a certain class of magnetic systems called sp in glasses
and on methods to find ground states of this systems. Similar to the RFIM, which
was covered in Chap. 6, spin glasses consist of spins interacting with each other. The
behavior of these materials is more complicated. Owing to the existence of competing
interactions they exhibit ordered phases, but without spatial order of the orientations
of the spins. From the computational point of view, spin glasses are very interesting
as well, because the ground-state calculation is NP-hard. For these and other reasons,
spin glasses have been among the central topics of research in material science and
statistical physics during the last two decades. This is can be seen from the fact, that
almost all optimization methods presented in this book, and many others, have been
tested on spin glasses in the past.

This chapter is organized as follows. We begin by presenting suitable a Ising model for
spin glasses. An experimental realization is shown and some important properties are
mentioned. It is explained why there is still an ongoing debate about its low tempera-
ture behavior. In the second section an efficient approximation method for calculating
ground states is presented. Next we show that the algorithm, although able to cal-
culate true ground states, does not give the correct thermodynamic statistics of the
states. This bias can be corrected by a post-processing method which is explained in
the fourth sect,ion. Finally, some results obtained with these algorithms are presented,
partly solving one question, that had been open for a long time.

9.1 Spin Glasses

An introductions to spin glasses can be found in [I , 2, 3, 41. Recent developments are
covered in [5].
A suitable theoretical model describing spin glasses is similar to the RFIM and DAFF
models (see Chap. 6), but it comprises bond randomness as a key element. Again,
it is sufficient to concentrate on Ising spins 0, = *I to find the main spin-glass
properties: N spins are placed on the regular sites of a lattice with linear extension
L, e.g. quadratic (N = L2) or cubic (N = L3). The spins interact ferromagnetically
or antiferromagnetically with their neighbors. A small example is shown in Fig. 9.1.

9 Approximation Methods for Spin Glasses

The Hamiltonian is given by

ferromagnetic -

Figure 9.1: A two-dimensional spin glass with bond disorder. Spins are placed on the
sites of a regular grid. They interact with their neighbors, the interaction is random,
either ferromagnetic or antiferromagnetic.

The sum (i, j) runs over all pairs of nearest neighbors and Jij denotes the strength
of the bond connecting spins i and j . It is also possible to add a term describing the
interaction with an external field B, here we will concentrate on the case B = 0. This
kind of model was introduced by Edwards and Anderson [6] in 1975, usually it is called
the EA model. It has a broad range of applications. Models involving similar energy
formulae have been developed e.g. for representing neural networks, social systems or
stock markets.
For each realization of the disorder, the values Jij of the bonds are drawn according
to a given probability distribution. Very common are the Gaussian distribution and
the bimodal f J distribution, which have the following probability densities:

Once the values of the bonds are fixed for a realization, they keep their values through-
out the whole calculation or simulation, one speaks of quenched disorder. Since the
system is random itself, to calculate physical quantities like magnetization or energy,
one must perform not only a thermal average but also an average over different real-
izations of the disorder.

9.1 Spin Glasses 187

The main ingredients constituting a spin glass are: mixed signs of interactions and
disorder. As a consequence, there are inevitably spins which cannot fulfill all con-
straints imposed by their neighbors and the connecting bonds, i.e. there will be some
ferromagnetic bonds connecting antiparallel spins and vice versa. On says, it is not
possible to satisfy all bonds. This situation is called frustration, the concept was in-
troduced in 171. In Fig. 9.2 an example of a small frustrated system is shown. In Sec.
9.2 it will be explained what impact the presence of frustration has on the choice of the
algorithms. But first we will show how bond-randomness and frustration are created -
in real materials.

Figure 9.2: A frustrated plaquette at lowest energy. No matter which orientation
spin 1 chooses, one of the bonds connecting it to its neighbors is not satisfied. Bonds
2-3 and 3-4 are satisfied.

9.1.1 Experimental Results

A spin glass can be created using well known materials: just take a lattice of a non-
magnetic conducting material like gold and randomly replace a small fraction x of the
gold by magnetic iron (Fe,Aul-,). To see the spin glass behavior in an experiment,
the system is subjected to a weak magnetic field and the resulting magnetization
is measured, i.e. one obtains the magnetic susceptibility X . When studying x as a
function of temperature T one observes a peak at a very low temperature TG. An
example is shown in Fig. 9.3, the figure is taken from Ref. [8]. Usually TG is of the
order of 10 Kelvin, the exact value depends on the concentration x of the iron and
on the way the sample is prepared. This peak is an indication of a phase transition.
But when measuring the specific heat C (T) , a smooth behavior around TG is found,
only a broad maximum usually at higher temperatures can be observed. This is in
strong contrast to usual phase transitions. Furthermore, when performing a neutron-
scattering experiment, one finds that below the transition temperature TG spin glasses
exhibit no spatial (e.g. ferro- or antiferromagnetic) order of the orientation of the spins.
Even more puzzling are aging experiments, where spin glasses are examined with
respect to the time evolution and the history of the system. A sample experiment
is shown in Fig. 9.4. A spin glass (here CdCr1.71n0.3S4) is first cooled to T = 12 K
and kept there for a while [9]. The imaginary part X" of the dynamic susceptibility,
describing the response of the magnetization to a weak applied alternating field (here
with w/27r = O.OIHz), is measured for a while. After time tl the system is quenched

9 Approximation Methods for Sp in Glasses

Figure 9.3: Magnetic susceptibility x for Au,Fel-, at low temperatures. A cusp
depending on the concentration x is observed. The inset magnifies the region 0 - 20
K. The figure is taken from [8] with permission from J.A. Mydosh.

to 10 K, a jump of the susceptibility occurs. Again the system evolves for a while.
After time t2 the system is heated back to 12K. Now the the susceptibility switches
back to the value it had a time t l . Hence, the system has remembered its state at
temperature 1 2 K. Such types of experiments are not understood so far in detail, only
heuristic explanations exist. This is one reason why spin glasses have attracted so
much attention in the past and will probably also attract it in the future.
The basic reason for this strange behavior is the type of interaction which is present in
this class of materials. The behavior of the Fe,Aul-, alloy is governed by the indirect-
exchange interaction, usually called RKKY (Ruderman, Kittel, Kasuya, Yosida) in-
teraction. Placing a magnetic spin Si (iron) in a sea of conducting electrons, results in
a damped oscillation in space of the susceptibility. Another spin Sj placed at distance
r will create the same kind of oscillations resulting in an energy H = J (r) S i . S j where

9.1 Spin Glasses

Figure 9.4: Aging experiment. A system is cooled down to T = 12 K, then the
susceptibility is measured for a while. After time tl the system is suddenly quenched
down to 10 K; again the susceptibility is measured. After a while the system is heated
back to 12K. At time tl + t z the system remembers the state it had at time t l .

Figure 9.5: The RKKY (Ruderman, Kittel, Kasuya, Yosida) interaction sketched:
strength of the interaction of two spins with distance r in a sea of conducting electrons.

(k f : Fermi momentum of the conductor) which a t larger distances r reduces to J (r) -
cos(2k T)

(2kf r)
; see Fig. 9.5. The main point is that thc sign of the interaction changes with

distance. In the iron-gold alloy, since the iron is place randomly in the gold host, each
spin interacts with some spins ferromagnetically and with others antiferromagnetically.
As a consequence, some pairs of spins prefer to be parallel aligned while other pairs
favor an antiparallel orientation. At low temperatures this mixed interactions create a
frozen non-regular pattern of the orientations of the spins, explaining why no spatial
order of the spins can be detected using neutron scattering.

Apart from the RKKY interaction, there are other ways of creating interactions with
different signs: some types of systems exhibit superexchange or other dipolar interac-
tions. This leads to a huge number of materials showing spin-glass behavior a t low
temperatures, more details can be found in [4]. There are also different mechanisms
creating disorder: in the case of Fe,Aul-, the randomness is obtained by placing the
iron atoms at random chosen sites of a lattice. But also amorphous metallic alloys
like GdAlz and YFea also show spin glass behavior. For another class of systems,

190 9 Approximation Methods for Spin Glasses

the lattice sites are occupied in a regular way, but the sign and the strength of the
bonds are random. Examples of such random-bond systems are RbzCul-,Co,F4 and
Fel-,Mn,TiO3.

9.1.2 Theoretical Approaches

Computer simulations of the EA model [l, 101 reproduce the main results found in
experiments: a peak in susceptibility, a smooth behavior of the specific heat and frozen
configurations of the spins. Recently, also the results of aging experiments have been
found by simulations as well. Therefore, one can conclude that even the simple EA
model incorporates the main properties constituting a spin glass.

SK model (T>O) Droplet picture

"configuration" "configuration"

Figure 9.6: Mean-field solution vs. Droplet picture. The solution of the SK model
exhibits a complicated energy landscape, resulting in a broad distribution P(lq1) of
the overlaps. In the Droplet picture instead the system is dominated by one pair of
states at low temperatures, giving rise to a delta-distributed P(lq1).

On the other hand, analytically it is very hard to treat the EA model [2, 31. Since
it is actually impossible to solve the simple cubic ferromagnet analytically, the reader
may imagine that due to the additional average over the disorder and the varying sign
of the bonds, only very raw approximations could be performed successfully for spin
glasses. But there is a special spin-glass model, which was introduced by Sherrington
and Kirkpatrick also in 1975 [ll], the SK model. Its Hamiltonian is similar to the
EA model, see Eq. (9.1), but it includes interactions between all pairs of spins. This
means that the spins do not have any positions in space, the system does not have a

9.1 Spin Glasses 191

dimension. Usually one says the system is infinite-dimensional, because in the ther-
modynamic limit each spin has infinitely many "neighbors". The model is denoted as
the mean-field (MF) model as well, since the MF approximation is exact here. For a
Gaussian distribution of the interactions, the SK model has been solved analytically
through the use of several enhanced techniques by Parisi in the 1980s [2]. The main
property of the solution is that a complicated energy landscape is obtained (see up-
per left part of Fig. 9.6) and that the states are organized in a special hierarchical
tree-line structure which is called ultrametric, for details see [12]. Especially at low
temperatures for typical realizations, there are always many configurations which are
arbitrarily different. What does this mean? To measure the difference between two
configurations {a$), {a!), the overlap q is introduced:

Thus if {a$) and {a?) are the same, we obtain q = 1, while q = -1 if the configurations
are inverted relative to each other. If only about half of the spins have the same
orientation, we get q E 0. Since in a spin glass may exhibit many configurations
with large thermodynamical weight even at low temperatures, one has to compare
all of them pairwise. Each comparison results in an overlap value, so we end up
with a distribution of overlaps P J (~) . After averaging over the disorder an average
distribution is obtained, denoted by P(q). Since the Hamiltonian Eq. (9.1) does not
contain an external magnetic field, it is symmetrical with respect to the inversion of
all spins. Thus, P(q) is symmetrical with respect to q = 0 and it is sufficient to study
P(lq1). The result for the SK model at low temperatures is shown in the lower left
part of Fig. 9.6. It contains a large peak called self overlap, which results from the
overlaps of states belonging to the same valley in the energy landscape. Additionally,
there is a long tail down to q = 0 resulting from pairs of states from different valleys.
Although the solution of the SK model is very elegant, it is restricted to this spe-
cial spin-glass model. The question concerning the behavior of realistic, i.e. finite-
dimensional spin glasses is currently unsolved. One part of the physics community
believes that also for e.g. three-dimensional systems a similar hierarchical organi-
zation of the states can be found, as in the SK/mean-field model. Another group
favors a description which predicts a much simpler behavior, the Droplet picture
[13, 14, 15, 16, 171. In that framework it is assumed that the low temperature be-
havior is governed by basically one class of similar states (and the inverses), i.e. the
energy landscape is dominated by one large valley, see right half of Fig. 9.6. The
main signature of this behavior is that the distribution of overlaps is a delta function.
Please note that for finite system sizes, the distribution of overlaps always has a finite
width. Thus, the delta function is found only in the thermodynamic limit N + oo.
Recently, many results have been made available addressing this question, especially
with numerical techniques. Since near the transition temperature TG the systems are
very difficult to equilibrate, one is restricted to small system sizes and even lower tem-
peratures are not accessible using the usual Monte Carlo methods. As a consequence,
a definite answer has not yet been obtained.

192 9 Approximation Methods for Spin Glasses

Here, we want to investigate whether the ground-state landscape of realistic spin
glasses is better described by the mean-field like or the Droplet picture. The va-
lidity of the result will be restricted to exactly T = 0, at finite temperatures the
behavior might change. Firstly it should be stressed that even for the original SK
model, the true ground state is indeed unique, because of the Gaussian distribution of
the interactions. No two bonds have exactly the same strengths, so every flip of a spin
would increase the energy, sometimes by a small fraction. Therefore, exactly a t T = 0
the overlap distribution is a delta function even for the SK model. The complicated
hierarchy of states is found only for all T > 0.
For realistic spin glasses with Gaussian distribution of the interactions, the same ar-
guments hold. The ground state is unique, so the distribution of overlaps will be a
delta peak in the thermodynamic limit.
On the other hand, a f J spin glass may exhibit free spins, i.e. spins which can
be reversed without changing the energy. A system with N' isolated free spins has
2N' different ground states. Furthermore, there are also neighboring free spins, so by
flipping a free spin neighbors may become free as well or vice versa. Therefore, the
degree of degeneracy is not easy to calculate. For the mean-field spin glass with f J
interaction, a free spin must have exactly half of the other spins pointing in the "right"
and half of the spins pointing in thc "wrong" direction. Thus, a mean-field system
with an even number of spins has only one ground state as well. In general, it is so
not clear so far how large the degree of degeneracy is and what P(q) at T = 0 looks
like.
Nevertheless, for finite-dimensional f J spin glasses, the case we are interested in,
each spin has only 6 neighbors, which is a small even number. The number of free
spins grows linearly with the system size. Consequently, the number of ground states
grows exponentially with the number of spins, so the ground state entropy is finite.
Furthermore, the question about the structure of the ground-state landscape is much
more difficult to answer than in the case of the Gaussian distribution. For realistic
spin glasses, it may be possible that P(lq1) is non-trivial even for true ground states.
Since for numerical simulations we are always restricted to finite sizes, the main ques-
tion concerning the mean-field like and Droplet pictures is: does P(lq1) for the three-
dimensional +J model remain broad or does it converge to a delta function in the
thermodynamic limit? In the next sections algorithms are presented which allow
many different ground states of spin glasses to be calculated efficiently, enabling the
calculation of the distribution of overlaps.

9.2 Genetic Cluster-exact Approximation

One could think that the ground-state calculation for spin glasses can be performed
by the same method which was applied for the random-field model and the diluted
antiferromagnet in a field (DAFF) (see Chap. 6). The main idea was to build an
equivalent network and to calculate the maximum flow through the network. A
precondition is that all pair interactions are positive, which is definitely not true for
the spin-glass model. But, you may remember, that for the diluted antiferromagnet

9.2 Genetic Cluster-exact Approximation 193

even all bonds are negative. Here, the transformation to a network is possible, since via
a gauge transformation all bonds can be made positive. We will now give an example
of such a gauge transformation and we will show why it does not work for spin glasses.

Figure 9.7: A small diluted antiferromagnet in a field B. Via a gauge transformation
all bonds can be made ferromagnetic, while the magnetic field becomes staggered.

In the left part of Fig. 9.7 a small DAFF is shown. The basic idea of the gauge
transformation is to multiply every second spin in a checkerboard manner with -1
and leave the other half unchanged

where x, y , z are the spatial coordinates of spin i and t i is the sign of the local gauge
transformation. The resulting system is shown in the right part of Fig. 9.7. All
bonds have turned ferromagnetic. The transformation has the following effect on the
Hamiltonian, in particular the sign of the quadratic term has changed, so in the a: a
ferromagnet is obtained:

Please note that t: = 1 and t i t j = -1 if i, j are neighbors. In HI, the magnetic
field is no longer uniform; it is staggered. This does not affect the applicability of the
algorithm, because it can treat arbitrary local fields.

Figure 9.8: A small & J spin glass. Via a gauge transformation the aim is to make
all bonds ferromagnetic. It fails because the system is frustrated.

Why is this transformation not suitable for spin glasses? In Fig. 9.8 a tiny spin glass
with four spins is shown. Let us try to apply the gauge transformation. Because bonds

194 9 Approximation Methods for Spin Glasses

with different signs are present, the signs of the transformation have to be chosen for
each spin individually. We start with the spin in the upper left corner. Without loss of
generality we leave it unchanged: = 01, i.e. t l = 1. Now we turn to the spin below.
The bond between this and the first spin is antiferromagnetic, so we choose 0; = - 0 2

(tB = -1) which makes the bond ferromagnetic. In a similar way we have to choose
CT; = -03 (t3 = -1). Now we are left with the spin in the upper right corner. It is
connected by one ferromagnetic bond and one antiferromagnetic bond to its neighbors.
Consequently, whatever sign for the transformation of 0 4 we select, always one bond
remains negative. The reason that not all bonds can be made positive is equivalent to
the fact that in a ground state it is not possible to satisfy all bonds, i.e. the presence
of frustration. In general a system is frustrated if closed loops exist which have an odd
number of antiferromagnetic bonds, e.g. an antiferromagnet on a triangular lattice.
So we can see that due to the existence of frustration a spin glass cannot be transformed
into a ferromagnet. This is the reason why the fast algorithms for the ground-state
calculations cannot be applied in this case. In fact it can be shown that the ground-
state problem for spin glasses is NP-hard [18], i.e. only algorithms with exponentially
increasing running time are known. As an exception, for the special case of two-
dimensional spin glasses without external field and with periodic boundary conditions
in a t most one direction, efficient polynomial algorithms [19] for the calculation of
exact ground states are available. The most recent applications are based on matching
algorithms [20, 21, 22, 23, 24, 25, 26, 27, 281, see also Chap. 10, other exact approaches
can be found in Refs. [29, 301. Recently results for systems of size 1800 x 1800 were
obtained [31].
For the general problem several algorithms are available, for an overview see [32, 331.
The simplest method works by enumerating all 2N possible states and obviously has an
exponential running time. Even a system size of 43 is too large. The basic idea of the
so called Branch-and-Bound algorithm [34] is to exclude the parts of the state space
where no low-lying states can be found, so that the complete low-energy landscape of
systems of size 43 can be calculated [35, 36, 37, 381. Also transfer-matrix techniques
have been applied [39] for 43 spin glasses. To evaluate all ground states, similar
algorithms have been applied to two-dimensional systems as well [40,41,42, 43,44,45].
A more sophisticated method called Branch-and-Cut [46, 471 works by rewriting the
quadratic energy function as a linear function with an additional set of inequalities
which must hold for the feasible solutions. Since not all inequalities are known a pri-
ori, the method iteratively solves the linear problem, looks for in~qualit~ies which are
violated, and adds them to the set until the solution is found. Since the number of
inequalities grows exponentially with the system size, the same holds for the compu-
tation time of the algorithm. With Branch-and-Cut anyway small systems up to g3
are feasible. Further applications of these method can be found in Refs. [48, 491.
Since finding ground states in three-dimensional systems is computaionally very de-
manding, several heuristic methods have been applied. At the beginning simulated
annealing (see Chap. 11) was very popular, recent results can be found in Refs.
[50, 511. But usually it is very difficult to obtain true ground states using this tech-
nique. A more sophisticated method is the multicanonical method [52], which is based
on Monte Carlo simulations as well, but incorporates a reweighting scheme to speed

9.2 Genetic Cluster-exact Approximation 195

up the simulation. Very low lying states of some systems up to size 123 have been
obtained [53, 54, 55, 56, 571. Heuristics which are able to find low energy states but not
true ground states unless the systems are very small can be found in Refs. [58, 59, 601.
Another approach included the application of neural networks 1611.
Usually with minor success several variants of genetic algorithms (see Chap. 8) have
been applied [62,63,64,65,66,67,68]. In a similar approach the population of different
configurations was replaced by a distribution describing the population 1691. At first
sight these approaches looked very promising, but it is not possible to prove whether
a true ground state has been found. One always has to check carefully, whether it is
possible to obtain states with slightly lower energy by applying more computational
effort. A genetic approach 170, 711 which was designed especially for spin glasses has
been more successful. Realizations up to size lo3 with Gaussian distributions of the
bonds have been studied recently [72, 73, 741, supporting the Droplet picture for spin
glasses. A combination with a recursive renormalization method can be found in Ref.
1751. The basic idea is to divide the problem into subproblems of smaller size and
treat the subproblems in the same way. The technique has been applied to finite-
dimensional systems with Gaussian distribution of the bonds [76, 771, again up to size
lo3 , but also to other combinatorial optimization problems like the TSP.
The method presented in this chapter is able to calculate true ground states [78] up to
size 143. The method is based on the special genetic algorithm of Ref. [70] as well but
also incorporates the cluster-exact approximation (CEA) 1791 algorithm. CEA is an
optimization method designed specifically for spin glasses, but it should be applicable
to all problems where each element (here: spin) interacts with a small number of other
elements. Its basic idea is to transform the spin glass in a way that anyway the max-
flow methods can be applied, which work only for systems exhibiting no frustrations.
Next a description of the genetic CEA is given. We start with the CEA part and later
we turn to the genetic algorithm.
The basic idea of CEA is to treat the system as if it were possible to turn it into a ferro-
magnet: a cluster of spins is built in such a way that all interactions between the cluster
spins can be made ferromagnetic by choosing the appropriate gauge-transformation
signs ti = &I. All other spins are left out (ti = 0). In this way the frustration is
broken. The interaction with the non-cluster spins is included in the total energy, but
t,he non-cluster spins are not allowed to flip, they remain fixed. Usually one starts
with some random orientations of all spins, so the non-cluster spins just keep this
orientation. Let us consider a pair interaction Jijcricrj between a cluster spin mi and a
non-cluster spin aj. Since m j is kept fixed, say crj = $1, we can write Ji,crimj = Jijmi.
Now the interaction has turned into an interaction of spin j with a local field of size
Bi = m j = $1. After the construction of the cluster has been completed, for each
cluster spin all interactions with non-cluster spins and che original local field Bi are
summed up to calculate the new local field:

The sum runs over all neighbors j of spin i . Because of the factor (I - lt,I) only the
interactions with non-cluster spins are included into the new local field. The gauge-

196 9 Approximation Methods for Spin Glasses

transformation factor ti compensates the transformation of spin i (please remember
t: = 1). The Hamiltonian of the resulting system reads

The constant C contains the interactions among non-cluster spins. Since the these
spins will not change their orientations during the calculation, C does not change.
Thus, it can be neglected for the ground-state calculation. Since the signs t i have been
chosen such that all pair interactions Jij = Ji j t i t j are either zero or ferromagnetic and
because several spins may not be included into the cluster (t i = 0), the system we
have obtained is a diluted ferromagnet with random local fields. As we have learned
before, for this system the ground state can be calculated in polynomial time using
the fast methods of Chap. 6.
How does the construction of the non-frustrated cluster work? The method is similar
to the construction demonstrated in the example shown in Fig. 9.8: spins are chosen
iteratively. If it is possible to make all adjacent bonds positive by a gauge transfor-
mation, the sign of the transformation is chosen accordingly. It is important to note
that only those bonds have to become ferromagnetic where t j # 0 on the other end
of the bond, i.e. for bonds connecting cluster spins. The other bonds may have been
considered already or they can be treated lat,er on. The algorithm for the cluster con-
struction is presented below. The variable Si is used to remember which spins have
been treated already.

algori thm build-cluster ({ J i j))
begin

Initialize di := 0 for all i;
Initialize ti := 0 for all i ;
while there are untreated spins (S i = 0)
begin

Choose a spin i with Si = 0;
6. .- 1.

2 '- 1

Set A := { j l j is neighbor of i and t j # 0) ;
i f A = 8 t h e n

t , := 1;
else i f V j E A : Jijti has same sign a t h e n

t . .-
Z '- ,

else
t i := 0

end
re turn ({ t i)) ;

end

The following example should illustrate how the cluster is built.

9.2 Genetic Cluster-exact Approximation 197

Example: Construction of the non-frustrated cluster

A small two-dimensional spin glass consisting of nine spins is treated. The
initial situation is shown in Fig. 9.2. We assume that first the center spin 5 is
chosen. Since there is no cluster at the beginning (all ti = 0), the first spin has
no neighbors in the cluster, so t5 = 1. The effect of the gauge-transformation
is shown in the figure as well, i.e. for each bond the result of the gauge
transformation is shown. Setting t5 = 1 leaves all bonds unchanged.

Figure 9.9: CEA algorithm, example construction of a non-frustrated clus-
ter. Initially, the gauge-transformation sign for the center spin can be set to
1. Always the sign of the bond after applying the gauge transformation is
shown.

Next, we assume that spin 6 is chosen. It has one neighbor in the cluster,
spin 5. We obtain cu = J65t5 = 1. Consequently, we set t6 := 1. Again, this
transformation leaves the bonds unchanged. Then spin 8 is considered. It has
one neighbor in the cluster: spin 5, with a = Js5t5 = -1. Therefore, we set
t8 = -1 to turn the bond between spins 5 and 8 ferromagnetic. The resulting
situation is presented in Fig. 9.10. Spin 9 cannot be added to the cluster. It
has two neighbors with t, # 0, spins 8 and 6 with Jsst8 = -1 # 1 = Jg6t6.

During the following iteration spin 2 is chosen. Similar to the preceding steps
t2 = 1 is obtained. If now spin 3 is taken into account, we see that it has two
neighbors, which already belong t o the cluster: spin 2 and spin 6. We get
53222 = 1 # -1 = &t6. Therefore, spin 3 cannot become a member of the
cluster, so tg = 0.

If we assume that next spins 4,7 are treated, then both of them can be added
to the cluster without creating frustration. The gauge-transformation signs
obtained are t4 = 1, t7 = -1. Last, spin 1 cannot be added to the cluster.
The final situation is shown in Fig. 9.11.

0

9 Approximation Methods for Spin Glasses

Figure 9.10: CEA algorithm, example construction of a non-frustrated cluster. The
four spins in the lower right are treated. Spins 5 , 6 and 8 can be included in the
cluster, while spin 9 cannot be included.

Figure 9.11: CEA algorithm, example construction of a non-frustrated cluster. Final
situation.

In the algorithm above, the order in which the spins i are chosen is not specified.
Several heuristics are possible. From our tests we have found that the most efficient
method so far is as follows. The spins are selected randomly among the spins which
have not been treated so far. For each spin the probability of selection within the
current step is proportional to the number of unsatisfied bonds adjacent to it. These
numbers are calculated using the current spin configuration. Thus, a spin with a high
(bad) contribution to the total energy is selected more often than a spin with a low
(negative = good) contribution. This results in a very quick decrease in the energy,
see below.
After the cluster of non-frustrated spins has been constructed and the cluster ground
state has been obtained, the cluster spins are set accordingly, while the other spins
keep their previous orientation. For the whole system this means that the total energy
has either been decreased or it has remained the same, because the cluster spins have
been oriented in an optimum way. Please note that for the total system no ground

9.2 Genetic Cluster-exact Approximation 199

state has usually been found! But, since the cluster is built in a random way, another
run can be performed and the cluster will probably be constructed differently. So
the whole step can be repeated and maybe again the energy of the whole system is
decreased. This decrease is very efficient in the beginning, because usually the clusters
are quite big. For three-dimensional spin glasses on average about 55% of all spins
are members of a non-frustrated cluster (70% for two dimensions). In Fig. 9.12 a
sample run for a two dimensional spin glass is shown. Initially the spin configuration
was chosen randomly, which results on average in energy 0 at step 0. In the beginning
the energy decreases rapidly (please note the logarithmic scale of the x-axis). Later
on the energy levels off and cannot be decreased further, the system has run into one
(probably local) minimum.

-1.5
1 10 100 1000

step

Figure 9.12: Energy per spin for a two-dimensional sample spin glass treated with
the CEA algorithm as a function of the number of the step.

From comparisons with exact results for small systems, we know that the states found
in this way really have a very low energy, but, except for very small systems, they are
usually slightly above the true ground states. To make the met,hod even more efficient,
and t o find true ground states, even for larger system sizes, the CEA method can be
combined with a genetic algorithm (for an introduction, see Chap. 8).
The genetic algorithm starts [70] with an initial population of Mi randomly initialized
spin configurations (= individuals), which are linearly arranged using an array. The
last one is also a neighbor of the first one. Then no x Mi times two neighbors from the
population are taken (called parents) and two new configurations called offspring are
created. For that purpose the triadic crossover is used which turns out to bc very
efficient for spin glasses: a mask is used which is a third randomly chosen (usually

200 9 Approximation Methods for Spin Glasses

distant) member of the population with a randomly chosen fraction of 0.1 of its spins
reversed. In a first step the offspring are created as copies of the parents. Then those
spins are selected where the orientations of the first parent and the mask agree [SO].
The values of these spins are swapped between the two offspring.

Examde: Triadic crossover

In Fig. 9.2 a triadic crossover for one-dimensional spin glasses is presented.
In the top part the parents and the mask are shown, below the resulting
offspring. The idea behind this special type of crossover is as follows. It is
assumed that for some regions in the systems, special domains of spins exist
with a very low energy. Furthermore, it is assumed that during the optimiza-
tion process these domains emerge automatically. During a crossover one
would like to keep these domains stable, so one compares different configura-
tions and identifies the domains as subsets of spins which agree in both spin
configurations.

parentl

mask

Figure 9.13: The triadic crossover. Initially the offspring are copies of the
parents. Then the spins between the offspring are exchanged at positions
where parentl and a mask agree. The mask belongs to the population of
configurations as well.

The effect can be seen especially in this example, because the first halves of
both parents are assumed to be inverted relative to cach other. Consequently,
in that part the offspring are equal to the mask and to its mirror configu-
ration, respectively. This is the reason why the mask must be similar t o an
existing low energy configuration. Since the parents agree in some spins, the
offspring are only partly copies of the masklits inverse.

9.2 Genetic Cluster-exact Approximation 201

Then a mutation with a rate of p, is applied to each offspring, i.e. a randomly chosen
fraction p, of the spins is reversed.
Next for both offspring the energy is reduced by applying CEA. This CEA minimiza-
tion step is performed nmi, times for each offspring. Afterwards each offspring is
compared with one of its parents. The offspring/parent pairs are chosen in the way
that the sum of the phenotypic differences between them is minimal. The phenotypic
difference is defined here as the number of spins where the two configurations diffcr.
Each parent is replaced if its energy is not lower (i.e. not better) than the correspond-
ing offspring. After this whole step is conducted no x Mi times, the population is
halved: from each pair of neighbors the configuration which has the higher energy is
eliminated. If more than 4 individuals remain the process is continued otherwise it is
stopped and the best remaining individual is taken as result of the calculation.
The following representation summarizes the algorithm.

algorithm genetic CEA({Jij), Mi, no; p,, nmin)
begin

create Afi configurations randomly;
while (.Mi > 4) do
begin

for i = 1 to n,, x Mi do
begin

select two neighbors;
create two offspring using triadic crossover;
do mutations with rate p,;
for both offspring do
begin

for j = 1 to nmin do
begin

construct unfrustrated cluster of spins;
construct equivalent network;
calculate maximum flow;
construct minimum cut;
set new orientations of cluster spins;

end
if offspring is not worse than related parent
then

replace parent with offspring;
end

end
half population; Mi = Mi/2:

end
return one configuration with lowest energy

end

The whole algorithm is performed nR times and all configurations which exhibit the

9 Approximation Methods for Spin Glasses

Table 9.1: Simulation parameters (d = 2): L = system size, Mi = initial size of
population, no = average number of offspring per configuration, n,i, = number of
CEA minimization steps per offspring, T = typical computer time per ground state
on an 80MHz PPC601.

lowest energy are stored, resulting in nG < n~ statistically independent ground-state
configurations (replicas).
To obtain true ground states, one has to choose the simulation parameters in a proper
way, i.e. initial size of population Mi, number of iterations no, mutation rate p, and
number of CEA steps n,i,. We have tested many combinations of parameters for up
t o ten different realizations of the disorder for two-, three- and four-dimensional * J
spin glasses with periodic boundary conditions, see [78, 81, 821. We assume that the
lowest lying states are actually found (using a CPU time of tmi,), if it is not possible
to obtain configurations with lower energy by applying a parameter set which results
in a CPU time 4 x tmi,. The parameter sets have to be determined for each system
size separately. Usually one starts with small systems where it is relatively easy to
find true ground states. The parameter sets established for small systems are taken
as initial sets for testing larger system sizes. With genetic CEA system sizes up to
402, 143 and 74 can be treated. The resulting parameter sets are presented in Tables
9.1, 9.2 and 9.3. Please note that these parameters are not optimal in the sense
that it may be possible to find parameters which yield lower running times while still
ensuring true ground states.
For small system sizes like 63, the configurations found in this way can be compared
with results from exact Branch-and-Bound calculations. In all cases the combination
of the genetic algorithm and CEA actually found the exact ground states. Thus, one
can be very confident that the configurations are also true ground states, which were
obtained for larger systems sixes with the parameter sets established as explained. But,
please note that tjhis is not a proof. The method is just a very good approximation
method, as it is usual for genetic algorithms.
Also shown in the tables are the running times of the genetic CEA algorithm imple-
mented on 80MHz Power-PC computers. One can observe that indeed the calculation
of true ground states for spin glasses takes a time which increases strongly with system
size, almost exponentially.

9.3 Energy and Ground-state Statistics 203

Table 9.2: Simulation parameters (d = 3) : L = system size, Mi = initial size of
population, no = average number of offspring per configuration, n,;, = number of
CEA minimization steps per offspring, T = typical computer time per ground state

' on an 80MHz PPC601.

Table 9.3: Simulation parameters (d = 4): L = system size, Mi = initial size of
population, no = average number of offspring per configuration, n,i, = number of
CEA minimization steps per offspring, T = typical computer time per ground state
on an 80MHz PPC601.

9.3 Energy and Ground-state Statistics

In this section some results obtained with the genetic CEA are presented. The ground-
state energy for a very large system is estimated using a finite-size scaling fit. Secondly,
it is shown that when calculating many different and independent ground states, the
method presented so far has to be extended to obtain physically correct results.
I t is not possible to treat very large systems numerically, e.g. one cannot simulate mod-
els having loz6 particles. To overcome this restriction, one can apply the technique of
finite-size scaling to extrapolate results, that were obtained for different small systems
sizes, to very large systems. As an example we will consider the average ground-state
energy of three-dimensional f J Ising spin glasses. In Fig. 9.14 the average ground-
state energy per spin is shown as a function of the linear system size L for 3 < L < 14.
The average was taken over about 1000 realizations for each system size, except for
L = 14, where 100 realizations were considered, because of the huge numerical effort.

9 Approximation Methods for Spzn Glasses

Figure 9.14: Average ground-state energy per spins eo as a function of system size
L for three-dimensional Ising & J spin glasses.

With increasing system size the average ground-state energy decreases monotonically.
Thus, one can try to fit a function of the form eo(L) = eo(co) + a L p b to the data
points, resulting in an estimate of the ground-state energy eo(oo) of a very large, i.e.
nearly infinite, system. Please note that so far no justification for this special form of
the fitting function has been found. It just fits very well. It has been reported in the
literature that other functions such as exponentials have also been tried, but the results
for eo(co) are similar. When using the fit-procedure of the gnuplot program, which is
available for free, the value eo(co) = -1.7876(3) is obtained (the values of u, b are not
important here). This value means that in a ground state about 0.6 unsatisfied bonds
per spin exist (if all bonds were satisfied this would result in a ground-state energy of
-3, each unsatisfied bond increases the energy by a value of 2).

For two and four dimensions, values of eo(oo) = -1.4015(3) and eo(co) = -2.095(1)
have been obtained, respectively, using genetic CEA. These are currently the lowest
values found for the ground-state energies of spin glasses. This is another indication
that the genetic CEA method is indeed a very powerful optimization tool.

Apart from obtaining some values, the calculation of ground-state energies can tell
us a lot more about the underlying physics. In particular, one is able to determine
whether a system exhibits a transition from an ordered low-temperature state to a
disordered high-temperature state at a non-zero temperature T, > 0.

To show how this can be done, first the simple Ising ferromagnet is considered. It
is known from basic courses in statistical physics [83], that the one-dimensional Ising
chain exhibits a phase transition only at T, = 0, i.e. for all finite temperatures the

9.3 Energy and Ground-state Statistics 205

Ising chain is paramagnetic. The two-dimensional ferromagnet on the other hand has
a ferromagnetically ordered phase (T, = 2.2695, where J is the interaction constant).

Figure 9.15: A two-dimensional Ising ferromagnet. In the case where all boundary
conditions are periodic (left), the system is ferromagnetic at T = 0. When antiperiodic
boundary conditions are imposed in one direction (right), a domain wall is introduced,
raising the ground-state energy by an amount which is proportional to the length of
the domain wall.

Why the one-dimensional Ising ferromagnet does not exhibit an ordered phase at
T > 0, while the two-dimensional has one, can be seen from ground-state calculations
as well. Consider a two-dimensional ferromagnet of size N = L x L wit,h periodic
boundary conditions (pbc) in all directions. Since all bonds are ferromagnetic, in the
ground state all spins have the same orientation, see the left half of Fig. 9.15. The
ground-state energy is Epbc = -2NJ. Now antiperiodic boundary conditions (abc)
in one direction are considered. This can be achieved by turning all bonds negative,
which connect the spins of the first and the last column. Again the ground state is
calculated. Now, it is favorable for the spins of the first and thc last row to have
different orientations. This means we get two domains, in one domain all spins are
up, in the other all spins are down. This introduces two domain walls in the system.
The first domain wall is between the first and the last row, connected through the
boundary. This is compatible with the negative sign of the bonds there. The other
domain wall is somewhere else in the system. This means the bonds on the second
domain wall are ferromagnetic, while the spins left and right of the domain wall have
different orientations. Thus, L bonds are broken1, raising the ground-state energy
Eabc by an amount of 2LJ . As a consequence, we get Eabc = -2NJ + 2LJ. The
difference A = Eabc - Epbc = 2LJ is called the stzffness energy. Here it depends on
the linear system size L. When performing the thermodynamic limit L + oo, the

'please note that the fully ordered state is still possible. In this case both domain walls fall onto
each other. But again L bonds are broken.

206 9 Approximation Methods for Spin Glasses

stiffness energy diverges, thus the ratio of the thermodynamical weights

goes to zero. This indicates that the two-dimensional ferromagnet exhibits some kind
of stiffness against flips of finite domains. Thus, they will not occur at low tempera-
tures, which means that the ferromagnetically ordered state is stable at low tempera-
tures. For higher temperatures more complicated domains with longer domain walls
also have to be considered, thus for entropic reasons at some temperature T, > 0 the
ordered state is destroyed. Please note that only the fact that T, > 0 holds can be
shown from ground-state calculations, the value of T, itself cannot be calculated this
way.
In case one performs the same considerations for the one-dimensional spin chain, one
sees immediately that when flipping the boundary conditions from periodic to an-
tiperiodic, again a domain wall is introduced. But now it has only the length one for
all chain lengths L. This means the stiffness energy A = 25 does not depend on the
system size. In the thermodynamic limit an arbitrary small temperature is sufficient
to break the long range order.

Figure 9.16: Stiffness energy as a function of system size L. The line represents
the function I A(L)I = with Os = 0.19(2). The inset shows the same figure on
a log-log scale. The increase of IAl with system size indicates that in 3d Ising spin
glasses an ordered phase exists below a non-zero temperature T,. The figure is taken
from 1781.

9.3 Energy and Ground-state Statistics 207

The same kind of calculations can be applied to spin glasses as well. One obtains the
ground states with periodic and antiperiodic boundary conditions, respectively, and
calculates the stiffness energy = (E,,, - Epbcl. Since spin glasses are disordered
systems, here again an average over the disorder has to be taken. It is necessary to take
the absolute value, because for some systems the state with pbc has a lower energy,
while for other the abc state is favorable. From theoretical considerations [84, 851, one
obtains a behavior of the form A(L) = L@S, where Os is the stiffness exponent.
If Os > 0 one expects that the system has an ordered low-temperature phase, while
for Os < 0 only ordering exactly at T = 0 should exist. In Fig. 9.16 the stiffness
energy of three-dimensional spin glasses as a function of system size L is shown. The
value of Os = 0.19 indicates that the three-dimensional spin glass has Tc > 0, which
is compatible with Monte Carlo simulations [86, 871. On the other hand, for two-
dimensional spin glasses, a value of Os < 0 has been found [25], i.e. in two dimensions,
spin glasscs seem to have an ordered phase only at T = 0.
Now we turn from the analysis of ground-state energies to the ground-state configu-
rations itself. As it was pointed out before, we have to perform two kinds of averages
to characterize the behavior of the ground-state landscape. The first kind of average
is that we have to consider many different realizations of the random bonds. Sec-
ondly, for each realization, many independent configurations have to be calculated.
The statistical weight p(,z} of a spin configuration {ai) with energy E = H({oi}) is
p(,z} = exp(-H({ai})/T)/Z where Z is the partition sum. In the limit of zero temper-
ature only the ground states contribute to the behavior of the system. As an important
consequence, we can see from this formula that each ground state contributes with the
same weight, because all of them have exactly the same energy.
The genetic CEA method returns in each run at most one ground state. Thus, any
such an algorithm which is used to sample a ground-state landscape of spin glasses (or
any other system) must return each ground state with the same probability. In that
case, by taking an average over different ground states, it is ensured that the physical
quantities calculated indeed represent the true thermodynamic behavior.
For the algorithm which has been presented in the preceding section, it is not known a
priori, whether the ground states obey the correct statistics, i.e. whether each ground
state appears with the same probability. To test this issue [88], we take one small spin
glass of size N = 53 and let the algorithm run for n, = lo5 times. Each ground state
which appears is stored and it is counted how often each ground state is found. This
gives us a histogram of the frequencies of how often each ground state is calculated by
the algorithm. The result is shown in Fig. 9.17. Obviously the large deviations from
state to state cannot be explained by the presence of statistical fluctuations. Thus,
genetic CEA samples different ground states from the same realization with different
weights.
Consequently, when just the configurations are taken as they are given by the algo-
rithm, the physical quantities calculated by taking an average are not reliable 189, 901.
This is true especially for the overlap parameter q which is used to compare different
configurations and evaluate the ground-state landscape.
It should be pointed out that this drawback does not appear only for the genetic CEA
method. No algorithm known so far guarantees the correct statistics of the ground

9 Approximation Methods for Spin Glasses

id of ground state

Figure 9.17: Number of times each ground state is found in lo5 runs of the genetic
CEA algorithm for one sample realization of size N = 53. This realization has 56
different ground states. Obviously, different states have significantly different proba-
bilities of being calculated in one run. Example: ground state 10 occurred about 4500
times among the lo5 outcomes while state 56 was found only about 200 times.

states. This is true also for methods which are based on thermodynamics itself, like
simulated annealing (see Chap. ll), which is very often used to study ground states
of disordered systems. For that algorithm, if the rate of the temperature decrease
is chosen in a way that one in two runs results in a truc ground state, then for the
N = 53 system treated above a similar histogram is obtained. By decreasing the
cooling process the weight of the different ground states become more equal, but one
has to cool 100 times slower, i.e. spend 100 time the computational effort, to find each
ground state with almost the same probability.
So far no method is known which allows the algorithms to be changed in such a way
that each ground state appears with the proper weight. On the other hand, it is
possible by applying a post-processing step to remove the bias which is imposed by
the algorithms. A suitable method is presented in the following section.

9.4 Ballistic Search

For small systems, where it is possible to calculate all degenerate ground states, it
is very easy t o obtain thc correct thermodynamic distribution: one just has to use
each ground state once when calculating physical quantities by averaging. For larger
system sizes, it is impossible to obtain all ground states. Even systems of size N = 83

9.4 Ballistic Search 209

exhibit about 1016 ground states. In this case one can only sample a small subset of
states. But then each of all existing ground states must have the same probability
appearing in the sample to guarantee the correct result.
The basic concept of the method, which ensures correct thermodynamic statistics of
the ground states, is to apply post processing. The method which calculates the ground
states remains unchanged. The input to the post processing is a set of ground states.
The output is another set of ground states, which now have the correct thermodynamic
weights, see Fig. 9.18. This post processing can be used in conjunction with all kinds
of methods which calculate ground states, it is not restricted to the genetic CEA
algorithm.

ground states - - - _ ground states - - - -
16 0 \

\

'\0 0 :
0 \ \ \

Calculate
ground
states processing # #

Figure 9.18: The correct thermodynamical weight of the ground states is ensured by
a post-processing step which is applied after a set of ground states has been calculated.

Now the idea behind the post processing is explained. Assume we investigate a three-
dimensional spin glass of size N = 83 which has about 1016 different ground states.
Using genetic CEA we calculate 100 ground states. From the preceding section we
know that some ground states are more likely to be found than others. The first step
of the post processing consist of dividing the 100 states into groups according to some
criterion. A convenient criterion is explained later on. For the moment we take a toy
criterion, we assume that ground states have colors, e.g. blue, red and green and that
they are divided according their colors.
Next we have to get access to the other ground states, which have not been found
before. They have colors as well. We assume that it is possible to perform T = 0
Monte Carlo simulations which preserve the color and visits only ground states. This
is similar to a Monte Carlo simulation which preserves the magnetization by flipping
only pairs of up/down spins. We assume that the MC simulation is ergodic, that means
starting with a blue ground state we can access all blue ground states by just running
the simulation long enough. Furthermore, we assume that the simulation satisfies
detailed balance, that means each ground state obtains its correct thermodynamic
weight within its group. This means after performing nRuN runs of the simulation we
have a set of ~ R ~ J N ground states (the initial states are not used any more), where all
existing blue ground states have the same probability of being in this set, all red have
the same probability, etc..

210 9 Approximation Methods for Spin Glasses

Now, we still do not know whether a red and a blue ground state have the same
probability of being visited during the MC simulation. To obtain the final sample
where all ground states have the same probability, we have to estimate the size of
each group. This must be done using the small number of states we have obtained
for each group by the MC simulation. We cannot just count all (- l 0 l 5) blue states,
simply because we do not have them all available. Later on we will explain how the
group sizes are estimated for the real criterion we use. For the moment we just assume
that it is possible somehow to estimate the total number of blue states etc. for each
realization.
The final sample of states is obtained by drawing from each group a number of states
which is proportional to the size of the group, so each group is represented in the
sample with the correct weight. Since we have made all ground states within each
group equiprobable by the MC simulation, we end up with a sample (e.g. of size 100)
where each of the 1016 ground states is included with the same probability. Thus,
the sample is thermodynamically correctly distributed. A summary of the method is
given in Fig. 9.19.
A final problem may be that ground states having a specific color, e.g. yellow, have
not been detected by the initial run of the genetic CEA method, although the system
may have some (e.g. l o 4) yellow states. In this case they will never occur during
the MC simulation, because there the color is preserved. For the actual criterion we
use, it can be shown that the probability that a member of a specific group is found
increases with the size of the group [88]. Furthermore, for the system sizes which are
accessible the number of groups is small compared with the number of ground states
usually obtained. Thus, only some small groups are missed, representing just a tiny
fraction of all ground states. Consequently, when calculating physical properties, the
error made is very small.
So far we have explained how the post processing works in general. Now it is time
to be precise, the actual criterion we use is given. We start with a definition. Two
ground states are said to be neighbors if they differ by the orientation of just one spin.
Thus, the spin can be flipped without changing the energy, the spin is called free.
All ground states connected to each other by this neighbor relation in a transitive way
are said to be in one valley. Different valleys are separated by states having a higher
energy. Therefore, one can travel in phase space within a valley by iteratively flipping
free spins. The valleys are used as the groups mentioned above, i.e. for obtaining each
ground state with the same probability. In the first step the configurations are sorted
according to the valleys and then the valley sizes are estimated.
The MC simulation, which preserves the group identity, is very sirnple: iteratively a
spin is chosen randomly. If the spin is free, it is flipped, otherwise the spin remains
unchanged. This is an ordinary T = O MC simulation. Consequently, ergodicity and
detailed balance are fulfilled as usual. One just has to ensure that t,he runs are of
sufficient length. This length can be estimated by test simulations. One starts with
a given ground state and performs say 20 different runs of length nMc MC steps per
spin resulting in 20 new ground states of the same valley. Then one compares the
ground states by calculating the distribution P (q) of overlaps, this is the quantity we
are finally interested in. The behavior of P (q) is observed as a function of the number

9.4 Ballistic Search

1. genetic Cluster-exact approximation
A

2. ground-state groups - - - _ . .

3. T=O Monte-Carlo simulation
- - - . \

4. Calculatelestimate sizes of groups

5. Draw ground states, number - size of groups

Figure 9.19: The basic idea of the post-processing step: all ground states are divided
into groups. Then a T = 0 MC simulation is performed making all existing ground
states within each group equiprobable, not only the ground states which have been
found. Then the actual sizes of the group are estimated. Finally the states are drawn,
from each group a number of states which is proportional to the size of the group.

n M c of steps. If the shapes change no longer for even the largest valleys, the runs
have a sufficient length. For three-dimensional systems n ~ c = 100 turned out to be
sufficient for all system sizes.
More difficult to implement is the first step of the post processing, the division of the
ground states into different valleys. If all ground states were available, the method
for dividing the ground states would work as follows. The construction starts with
one arbitrarily chosen ground state. All other states, which differ from this state by
one free spin, are its neighbors. They are added to the valley. These neighbors are
treated recursively in the same way: all their neighbors which are yet not included in
the valley are added. After the construction of one valley is complete, the construction
of the next one starts with a ground state, which has not been visited so far.

212 9 Approximation Methods for Spin Glasses

Unfortunately the number of ground states grows very quickly with system size, so
even for small systems like N = g3 it is impossible to calculate all of them. Thus, the
valley structure of the say 100 states which were obtained has to be established in a
different way.
The basic tool is a test, which tells whether two ground states are in the same valley
or not. The test is called ballistic search (BS), the reason for the choice of the name
will become clear later on. Assume that it is known that some ground states belong
to the same valley. Now we know that another state z belongs t o the valley as well, if
the test tells us that z is in the same valley as any of the states already treated. The
main feature of the test is that it can be performed for states which are not direct
neighbors in phase space. This is the reason why only a small subset of all ground
states is needed.

Figure 9.20: Ballistic search: A path in configuration-space which consists of flipping
free spins is constructed between two ground states (dark nodes) belonging to the same
valley. Depending on the order the spins are flipped the path may be found or not.
Nodes represent ground states, edges represent flips of free spins. Please note that
this figure is only a cartoon, the configuration space has N dimensions.

The test works as follows. Given two independent replicas (0,") and {of) let A be
the set of spins, which are different in both states: A = {ilo," # of}. Now BS tries to
build a path in configuration-space of successive flips of free spins, which leads from
(0,") to {of). The path consists of states which differ only by flips of free spins from
A (see Fig. 9.20). For the simplest version iteratively a free spin is selected randomly
from A, flipped and removed from A, i.e. each spin is flippcd at most once. Thercforc,
a straight path is built in phase space. This is the rcason why the search for a path is
called ballistic. This test does not guarantee to find a path bctween two ground states
which belong to the same valley. It may depend on the order of selection of the spins
whether a path is found or not, because not all free spins are independent of each
other. Additionally, for very large valleys, when A percolates, it may be necessary to
flip some spins not contained in A twice to allow other spins to flip in between. Thus,
a path is found with a certain probability pf, which decreases with the size of A. If the

9.4 Ballistic Search 213

size of A is small, pf is very close to one. For the identification of the valley structure,
it does not matter that pf < 1. This is explained next.

BS-test: to how many valleys does the cfg belong to?

a) 0 valleys

b) 1 valley

c) >1 valleys

Figure 9.21: Algorithm for the identification of all valleys: several ground-states
(circles) "cover" parts of valleys (filled areas). During the processing of all states a
set of valleys is kept. When state c3 is treated, it is established using BS to how many
of the already existing valleys the state belongs to. Three cases can occur: a) the
ground state is found to belong to no valley, b) it is found in exactly one valley and c)
it is found in several valleys. In the first case a new valley is found, in the second one
nothing changes and in the third case several smaller valleys are identified as subsets
of the same larger valley.

The algorithm for the identification of valleys using BS works as follows: the basic
idea is to let a ground statc represent that part of a valley which can be reached
using BS with a high probability by starting at this ground state. If a valley is
large it has to be represented by a collection of states, such that the whole valley
is "covered". For example a typical valley of an L = 8 spin glass consisting of 10''
ground states is usually represented by only few ground states (e.g. two or three). A
detailed analysis of how many representing ground states are needed as a function of
valley and system size can be found in [91]. At each time the algorithm stores a set of
m valleys A = {A(r)Ir = 1,. . . , m) (r being the ID of the valley A(r)) each consisting
of a set A(r) = {cT1) of representing configurations crl = { c r , ~ ') (2 = I , . . . , IA(r)/). At
the beginning the valley set is empty. Iteratively all available ground states cj = {a:}
(j = 1,. . . , D) are treated: the BS algorithm tries to find paths from d or its inverse
to all representing configurations in A. Let F be the set of valleys IDS, where a path

214 9 Approximation Methods for Sp in Glasses

is found. Now three cases are possible (see Fig. 9.21):

0 No path is found: F = 0
This means, configuration cJ does not belong to any of the valleys which have
been found so far, as far as we can tell. Thus, a new valley is created, which is
represented by the actual configuration treated: A(m + 1) = {ci). The valley is
added to A: A A U {A(m + 1)).

One or more paths are found to the representing configuration(s) of exactly one
valley: F = { fl}. Thus, the ground state c j belongs to one valley. Valley f l
seems to be already well represented. Consequently, nothing special happens, the
set A remains unchanged.

0 c7 is found t o be in more than one valley: F = { f l , . . . , fk}. Since a path is found
from d to several states, they all belong in fact to the same valley. Thus, all these
valleys are merged into one single valley, which is now represented by the union
A of the states, which are the representatives of the valleys in F :

= u:=~ A(&) , 4 = (4 u A \ ~ : = ~ { ~ (f ,) l

This procedure is conducted for all available states. Please note that the merging
mechanism ensures automatically that larger valleys are represented by more states
than smaller valleys. It has been shown [91] that the number of states necessary to
"cover" a valley grows only slowly with the valley size. Thus, systems exhibiting a
large degeneracy can be treated.
The whole loop is performed twice. The reason is that a state which links two parts of
a large valley (case 3) may appear in the sequence of ground states before states appear
belonging to the second part of the valley. Consequently, this linking state is treated
as being part of just one single smaller valley and both subvalleys are not recognized
as one larger valley (see Fig. 9.22). During the second iteration the "linking" state
is compared with all other representing states found in the first iteration, i.e. the
large valley is identified correctly. With one iteration, the problem appears only if
few ground-states per valley are available. Nevertheless, two iterations are always
performed, so it is guaranteed that the difficulty does not occur.

- -

Example: Valley identification using BS

Here an example is presented, how the algorithm operates. We want to es-
tablish the valley structure of 6 given ground states c l , . . . , c6. Only the first
execution of the loop is presented. Initially we start with an empty set of
valleys. The way the set of valleys develops while the algorithm is running is
shown in Fig. 9.23. The state c1 belongs, like all states, surely to a valley, thus
in a first step a valley with c1 as the representative is created. Now assume
that the BS test fails for c2 and cl. Consequcntly, a second valley is created.
For c3 a path is found in phase space to c2, but not to cl. Hence, we know
that c3 belongs to the second valley. The valley structure does not change in
this step. Ground state c3 is represented by an open circle in the figure. This
means that it is not stored in the valley data structure. In the next step, a

9.4 Ballistic Search

using two interations:

c1 C2c3 c' $6

Figure 9.22: Example, that the order the states are treated may affect the result.
Consider three states cl, c2, c3, all belonging to the same valley. Assume that BS finds
a path between (cl , c2) and (c2,c", but not between (c1,c3). In the first case two
valleys are found (false), in the second case one valley (correct). In order that the
correct result is always obtained, two iterations are needed.

path is found from c4 to c1 and to c2. Thus, all states encountered so far
belong to the same valley. Both valleys are merged and now are represented
by c1 and c2. For c5 a path to c2 but not to c1 is found. Nevertheless, this
means that c5 belongs to the valley as well. Finally, for c6 no path is found
to either c1 or c". Therefore, c6 belongs to another valley, which is created
in the last step.

Since the probability pf that a path is found between two ground states belonging to
the same valley is smaller than one, how can we be sure that the valleys construction
has been performed correctly? Hence, how can we avoid that a number of states
belonging t o one large valley are divided into two or several valleys, as a result of to
some paths which have not been detected? If we only have a small number of states
available, it is indeed very likely that the large valley is not identified correctly, see
Fig. 9.24. If more states of the valley are available, it is more likely that all ground
states are identified as being members of the same valley. The reason is that BS finds
a path to neighbors which are close in phase space with a high probability. Now the
probability that some path between two ground states is found increases due to the
growing number of possible paths. It is always possible to generate additional ground

9 Approximation Methods for Spin Glasses

BS($, c1)= no
BS(G, c2)= yes

BS(c5, ci)= no
5

BS(c5, c2)= yes

Figure 9.23: Example run of the algorithm for the identification of ground-state
valleys; 6 ground states are processed. For details, see text.

states within each valley, so the probability that everything is done correctly can be
increased arbitrarily close t o one. It is very easy t o obtain a 99.9% level of certainty,
for details see [91].
So far we have explained the basic idea of the post-processing method and prescnted
the BS algorithm which allows a number of ground states to be divided into valleys.
Also the MC algorithm has been given which ensures that within each valley all ground
states have the same probability of being selected. The final part which is missing is
a technique that allows the size of a valley to be estimated. This allows each valley to
be considered with its proper weight, which is proportional to its size.
A method similar to BS is used to estimate the sizes of the valleys. Starting from
an arbitrary state {ai) in a valley C , free spins are flipped iteratively, but each spin
not more than once. During the iteration additional free spins may be generated and
other spins may become fixed. When thcre are no more free spins left which have not
been flipped already, the process stops. Thus, one has constructed a straight path in

9.4 Ballistic Search

Figure 9.24: If two states, belonging to the same valley, are far apart in state space
it is very unlikely that the BS algorithm detects that they belong to the same valley. If
more states of the valley are available, the probability for the correct answer increases.
The thickness of the lines indicates the probability that a path between two ground
states 1s found by BS

1 o5

1 o4

I o3

>
1 0'

10'

Figure 9.25: Average size V of a valley as a function of average dynamic number
of free spins (see text), here for three-dimensional +J spin glasses. For the system
sizes L = 3,4 ,5 all ground states have been obtained. A V = 2°.91mm"x relationship is
found, indicated by a straight line.

state space from the ground state to the border of the valley C. The number of spins
that has been flipped is counted. By averaging over several trials and several ground
states of a valley, one obtains an average value l,,,, which is a measure of the size of
the valley.
For small (d = 3) system sizes L = 3 ,4 ,5 it is easy to obtain all ground states by

218 9 Approximation Methods for Spin Glasses

performing many runs of the genetic CEA algorithm. Thus, the valley sizes can be
calculated exactly just by counting. Fig. 9.25 displays [91] the average size V of a
valley as a function of I,,,. An exponential dependence is found, yielding

v = 2dmaX (9.11)

with a = 0.90(5). The deviation from the pure exponential behavior for the largest
valleys of each system size should be a finite size effect. Similar measurements can be
performed also for two- and fom-dimensional systems.
Another method could be just to count the static number nf of free spins. This is
slightly simpler t o implement, but it has turned out that the quantity I,,, describes
the size of a valley better than nf. The reason is that by flipping spins additional free
spins are created and deleted. Consider for example a one-dimensional chain of N
ferromagnetically coupled spins with antiperiodic boundary conditions. Each ground
state consists of two linear domains of spins. In each domain all spins have the same
orientation. For each ground-state there are just two free spins, but all 2N ground
states belong to the same valley. The possibility of similar but more complicated
ground-state topologies is taken into account when using the quantity I,,,,.
With relation (9.11) one can obtain for each valley an estimate of its size, even in the
case when only a small number of ground states are available. Using these sizes one can
draw ground states in such a way that each valley is represented with its proper weight.
The selection is done in a manner such that many small valleys may contribute as a
collection as well; e.g. assume that 100 states should be drawn from a valley consisting
of 10'' ground states, then for a set of 500 valleys of size lo7 each, a total number
of 50 states is selected. This is achieved automatically by first sorting the valleys in
ascending order. Then the generation of states starts with the smallest valley. For
each valley the number of states generated is proportional to its size multiplied by a
factor f . If the number of states grows too large, only a certain fraction f 2 of the
states which have already been selected is kept, the factor is recalculated (f t f * f 2)

and the process continues with the next valley.
When again measuring the frequency of occurrence of each ground state for small
systems, now after the post-processing step, indeed a flat distribution is obtained.
Hence, now we have all the tools available to investigate the ground-state landscape
of Ising spin glasses thermodynamically correctly. In the next section some results
obtained with this methods are presented. We close this section by a summary of the
post-processing method. Input is the realization {&) of the bonds and a set {c" of
ground states.

algorithm post-processing({ Ji j), {ck})
begin

divide configuration {ck} into different valleys with BS;
perform nRuN runs of a T = 0 MC simulation
calculate valley sizes;
select sample of ground states according t o valley sizes;
return ground states;

end

9.5 Results

9.5 Results

We finish this chapter by presenting some results [92] which were obtained with the
combination of the genetic CEA and the method for ensuring the correct thermody-
namic distribution. Since we are interested in the ground-state landscape, the distri-
bution P(q) of overlaps is a suitable quantity to study. You may remember from the
first section the question of whether the mean-field scenario or the Droplet picture
describes the behavior of realistic (i.e. three-dimensional) spin glasses correctly. By
studying the finite-size behavior of P(q), i.e. the width as a function of the system size,
we will be able to show that the mean-field scenario does not hold for the ground states
of three-dimensional spin glasses. But the behavior turns out to be more complex than
predicted by a naive version of the Droplet theory.
For this purpose, ground states were generated using genetic CEA for sizes L E
[3,. . . ,141. The number of random realizations per lattice size ranged from 100 real-
izations for L = 14 up to 1000 realizations for L = 3.
Each run resulted in one configuration which was stored, if it exhibited the ground-
state energy. For the smallest sizes L = 3,4 all ground states were calculated for each
realization by performing up to lo4 runs. For larger sizcs it is not possible to obtain
all ground states, because of the exponentially rising degeneracy. For L = 5 ,6 ,8 in
fact almost all valleys are obtained using at most lo4 runs [91], only for about 25% of
the L = 8 realizations may some small valleys have been missed.
For L > 8 not only the number of statcs but also the number of valleys grows too
large, consequently only 40 independent runs were made for each realization. For
L = 14 this resulted in an average of 13.8 states per realization having the lowest
energy while for L = 10 on average 35.3 states were stored. This seems a rather small
number. However, the probability that genetic CEA calculates a specific ground state
increases (sublinearly) with the size of the valley the state belongs to [88]. Thus,
ground states from small valleys do appear with a small probability. Because the
behavior is dominated by the largest valleys, the results shown later on are the same
(within error bars) as if all ground states were available. This was tested explicitly for
100 realizations of L = 10 by doubling the number of runs, i.e. increasing the number
of valleys found.
Using this initial set of states for each realization (L > 4) a second set was produced
using the techniques explained before, which ensures that each ground state enters
the results with the same weight. The number of states was chosen in a way, that
nmaX = 100 states were available for the largest valleys of each realization, i.e. a single
valley smaller than one hundredth of the largest valley does not contribute to physical
quantities, but, as explained before, a collection of many small valleys contributes to
the results as well. Finally, it was verified that the results did not change by increasing
n m a x .

The order parameter selected here for the description of the complex ground-state
behavior of spin glasses is the total distribution P(lq1) of overlaps. The result is shown
in Fig. 9.26 for L = 6,lO. The distributions are dominated by a large peak for q > 0.8.
Additionally there is a long tail down to q = 0, which means that arbitrarily different
ground states are possible. Qualitatively the result is similar to the P(lq() obtained

9 Approximation Methods for Spin Glasses

Figure 9.26: Distribution P(lq1) of overlaps for L = 6,10. Each ground state enters
the result with the same probability. The fraction of small overlaps decreases by about
a factor 0.6 by going from L = 6 to L = 10 (please note the logarithmic scale).

for the SK model for a small but nonzero temperature. But with increasing system
size, the weight of the long tail decreases. To obtain a definite answer we have to
extrapolate to very largc system sizes.
To study the finite-size dependence of P(jql), the variance g2(lql) was evaluated as
a function of the system size L. The values are displayed in Fig. 9.27. Additionally
the datapoints are given which are obtained when the post-processing step is omitted
[93, 941. Obviously, by guaranteeing that every ground state has the same weight,
the result changes dramatically. To extrapolate to L t oo, a fit of the data to
a; = a 2 + aoLpal was performed. A slightly negative value of a& = -0.01(1) was
obtained, indicating that the width of P(lq1) is zero for the infinite system. For the
plot a double-logarithmic scale was used. The fact that the datapoints are found t o be
more or less on a straight line is another indication that the width of P(lq1) converges
towards zero in the thermodynamic limit L t m. Consequently, the lMF picture with
a continuous breaking of replica symmetry, which predicts a distribution of overlaps
with finite width, cannot be true for the ground-state landscape of three-dimensional
iLJ spin glasses. Please note that only a small range of system sizes could be treated.
Unfortunately, due t o the NP-hardness of the ground-state calculation for spin glasses,
larger sizes are not feasible a t the moment.
By collecting all results, see also [92], one obtains the following description of the
shape of P(1q). It consists of a large delta-peak and a tail down to q = 0, but the
weight of that tail goes to zero with lattice size going to infinity. This expression is

9.5 Results

o genetic CEA
G true TD

Figure 9.27: Variance u2(lq/) of the distribution of overlaps as a function of linear
system size L. The upper points show the case were each ground state enters with a
weight determined by the genetic CEA algorithm. For the lower points each ground
state has the same probability of being included in the calculation. The extrapolation
to the infinite system results in a slightly negative value. Consequently, the width of
distribution of overlaps appears to bc zero, i.e. P(lq1) is a delta-function. The line
represents a fit t o = aoLPa1 resulting in a1 = 1.00(4).

used to point out that by going to larger sizes small overlaps still occur: the number
of arbitrarily different ground states diverges [91]. But the size of the largest valleys,
which determine the self overlap leading to the large peak, diverges even faster. The
delta peak is centered around a finite value ~ E A . From further evaluation of the results
~ E A = 0.90(1) was obtained.
It should be stressed that this just tells us what the structure of the ground-state
landscape looks like. To finally decide whether the mean-field like description or
the Droplet picture describes the behavior of realistic spin glasses better, one has
to study small but finite temperatures as well. This can be done by cxtending the
methods described here t o finite temperatures T > 0. Using the genetic CEA method
excited states can be generated even faster than true ground states, smaller sizes of the
populations and fewer minimizations steps are sufficient. The configurations obtained
in this way can be divided into different valleys in the same way as has been done
for the ground states. The only difference is that one has to take several different
energy levels into account and one has to weight each excited state with its proper
thermodynamic weight. Work in this direction is in progress.
Another approach to generate excited states has been presented recently [95] for the

222 9 Approximation Methods for Spin Glasses

three-dimensional model with Gaussian distribution. First a ground state is calculated.
Please remember that it is unique, except for the state which is related t o it by a
global flip of all spins. Then two randomly chosen spins are forced to have different
relative orientations to each other than in the ground state. These two spins remain
unchanged for the following calculation. For the rest of the system again a ground
state is obtained, resulting in an excited state for the total system, i.e. a Droplet
of reversed spin is created. This demonstrates that ground-state methods are also
useful for investigating the behavior at finite temperatures, similar approaches has
been presented in Refs. [96, 971. For the results obtained with these techniques, the
behavior at finite temperatures turned out to be much richer than described by the
simple Droplet picture, e.g. P(q) seems not to be a delta function, see also Ref. [98].
But not all properties of the mean-field like description are found, so the debate goes
on and much work still has to be done.

Bibliography

[I] K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

[2] M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, (World
Scientific, Singapore 1987)

[3] K.H. Fisher and J.A. Hertz, Spin Glasses, (Cambridge University Press, Cam-
bridge 1991)

[4] J.A. Mydosh, Spin Glasses: an Experimental Introduction, (Taylor and Francis,
London 1993)

[5] A.P. Young (ed.), Spin Glasses and Random Fields, (World Scientific, Singapore
1998)

[6] S.F. Edwards and P.W. Anderson, J. de Phys. 5 , 965 (1975)

[7] G. Toulouse, Commun. Phys. 2, 115 (1977)

[8] Y. Cannella and J.A. Mydosh, Phys. Rev. B 6, 4220 (1972)

[9] P. Norblad and P. Svendlidh, in: A.P. Young (ed.), Spin Glasses and Random
Fields, (World Scientific, Singapore 1998)

[lo] H. Rieger, in D. Stauffer (ed.): Annual Reviews of Computational Physics 11,
295-341, World Scientific, 1995

[11] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 51, 1791 (1975)

[12] R. Rammal, G. Toulouse, and M.A. Virasoro, Rev. Mod. Phys. 58, 765 (1986)

[13] W.L. McMillan, J. Phys. C 17, 3179 (1984)

[14] A.J. Bray and M.A. Moore, J. Phys. C 18, L699 (1985)

Bibliography

[15] D.S. Fisher and D.A. Huse, Phys. Rev. Lett 56, 1601 (1986)

[16] D.S. Fisher and D.A. Huse, Phys. Rev. B 38 , 386 (1988)

[17] A. Bovier and J. Frohlich, J. Stat. Phys. 44, 347 (1986)

[18] I?. Barahona, J. Phys. A 15, 3241 (1982)

[19] I?. Barahona, R. Maynard, R. Rammal, and J.P. Uhry, J. Phys. A 15 , 673 (1982)

[20] J . Bendisch, J. Stat. Phys. 62, 435 (1991)

[21] J. Bendisch, J. Stat. Phys. 67, 1209 (1992)

[22] J . Bendisch, Physica A 202, 48 (1994)

[23] J. Bendisch, Physica A 216, 316 (1995)

[24] J. Kisker, L. Santen, M. Schreckenberg, and H. Rieger, Phys. Rev. B 53, 6418
(1996)

[25] N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 (1997)

[26] J. Bendisch, Physica A 245, 560 (1997)

[27] J. Bendisch and H. v. Trotha, Physica A 253, 428 (1998)

[28] M. Achilles, J . Bendisch, and H. v. Trotha, Physica A 275, 178 (2000)

[29] Y. Ozeki, J. Phys. Soc. J. 59, 3531 (1990)

[30] T. Kadowaki, Y. Nonomura, H. Nishimori, in: M. Suzuki and N. Kawashima
(ed.), Hayashibara Forum '95. International Symposium on Coherent Approaches
to Fluctuations, (World Scientific, Singapore 1996)

[31] R.G. Palmer and J . Adler, Int. J. Mod. Phys. C 10 , 667 (1999)

[32] J.C. Angles d'Auriac, M. Preissmann, and A.S. Leibniz-Imag, Math. Comp. Mod.
26, 1 (1997)

[33] H. Rieger, in J . Kertesz and I. Kondor (ed.): Advances in Computer Simulation,
Lecture Notes in Physics 501, Springer, Heidelberg, 1998

[34] A. Hartwig, F. Daske, and S. Kobe, Comp. Phys. Commun. 3 2 133 (1984)

[35] T . Klotz and S. Kobe, J. Phys. A 27, L95 (1994)

[36] T. Klotz and S. Kobe, Act. Phys. Slov. 44, 347 (1994)

[37] T . Klotz-T and S. Kobe, in: M. Suzuki and N. Kawashima (ed.), Hayashibara
Forum '95. International Symposium on Coherent Approaches to Fluctuations,
(World Scientific, Singapore 1996)

224 9 Approximation Methods for Spin Glasses

[38] T. Klotz and S. Kobe, J. Magn. Magn. Mat. 17, 1359 (1998)

[39] P. Stolorz, Phys. Rev. B 48, 3085 (1993)

[40] E.E. Vogel, J . Cartes, S. Contreras, W. Lebrecht, and J. Villegas, Phys. Rev. B
49, 6018 (1994)

[41] A.J. Ramirez-Pastor, F. Nieto, and E.E. Vogel, Phys. Rev. B 55, 14323

[42] E.E. Vogel and J. Cartes, J. Magn. Magn. Mat. 17, 777

[43] E.E. Vogel, S. Contreras, M.A. Osorio, J. Cartes, F. Nieto, and A.J. Ramirez-
Pastor, Phys. Rev. B 58, 8475 (1998)

[44] E.E. Vogel, S. Contreras, F. Nieto, and A.J. Ramirez-Pastor, Physica A 257, 256
(1998)

[45] J.F. Valdes, J . Cartes, E.E. Vogel, S. Kobe, and T . Klotz, Physica A 257, 557
(1998)

[46] C. De Sirnonc, M. Dichl, M. Junger, P. Mutzel, G. Reinelt, and G. Rinaldi, J.
Stat. Phys. 80, 487 (1995)

[47] C. De Simone, M. Diehl, M. Junger, P. Mutzel, G. Reinelt, and G. Rinaldi, J.
Stat. Phys. 84, 1363 (1996)

[48] H. Rieger, L. Santen, U. Blasum-U, M. Diehl, M. Junger, and G. Rinaldi, J. Phys.
A 29, 3939 (1996)

[49] M. Palassini and A.P. Young, Phys. Rev. B 60, R9919 (1999)

[50] D. Stauffer and P.M. Castro-de-Oliveira, Physica A 215, 407 (1995)

[51] P. Ocampo-Alfaro and Hong-Guo, Phys. Rev. E 53, 1982 (1996)

[52] B. A. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992)

[53] B.A. Berg and T. Celik, Int. J. Mod. Phys. C 3 , 1251 (1992)

[54] B. A. Berg, T. Celik, and U.H.E. Hansmann, Europhys. Lett. 22, 63 (1993)

[55] T. Celik, Nucl. Phys. B Proc. Suppl. 30, 908

[56] B.A. Berg, U.E. Hansmann, and T.Celik, Phys. Rev. B 50, 16444 (1994)

[57] B.A. Berg, U.E. Hansmann, and T.Celik, Nucl. Phys. B Suppl. 42, 905 (1995)

[58] H. Freund and P. Grassberger, J. Phys. A 22, 4045 (1989)

[59] N. Kawashima and M. Suzuki, J. Phys. A 25, 1055 (1992)

[60] D. Petters, Int. J. Mod. Phys. C 8 , 595 (1997)

Bibliography

[61] M. Yarnashita, J. Phys. Soc. Jap. 64, 4083 (1995)

[62] P. Sutton, D.L. Hunter, and N. Jan, J. de Phys. 4, 1281 (1994)

[63] P. Sutton and S. Boyden, Am. J. Phys. 62, 549 (1994)

[64] U. Gropengiesser, Int. J. Mod. Phys. C 6 , 307 (1995)

[65] U. Gropengiesser, J. Stat. Phys. 79, 1005 (1995)

[66] D.A. Coley, Cont. Phys. 37, 145 (1996)

[67] T. Wanschura, D.A. Coley, and S. Migowsky, Solid State Commun. 99,247 (1996)

[68] A. Pruegel-Bennett and S.L. Shapiro, Physica D 104, 75 (1997)

[69] K. Chen, Europhys. Lett. 43, 635 (1998)

[70] K.F. Pal, Physica A 223, 283 (1996)

[71] K.F. PA, Physica A 233, 60 (1996)

[72] M. Palassini and A.P. Young, Phys. Rev. Lett. 83, 5126 (1999)

[73] M. Palassini and A.P. Young, Proceedings of the Conference "Frontiers in Mag-
netism", Kyoto, October 4-7, 1999; J. Phys. Soc. Jpn. 69, 165 (2000)

[74] M. Palassini and A.P. Young, Ph,ys. Rev. Lett. 85, 3333 (2000)

[75] J . Houdayer and O.C. Martin Phys. Rev. Lett. 83, 1030 (1999)

[76] J . Houdaycr and O.C. Martin, Phys. Rev. Lett. 82, 4934 (1999)

[77] J . Houdayer and O.C. Martin, Phys. Rev. Lett. 84 , 1057 (2000)

[78] A.K. Hartmann, Phys. Rev. E 59, 84 (1999)

[79] A.K. Hartmann, Physica A 224, 480 (1996)

[80] K.F. Pal, Biol. Cybern. 73, 335 (1995)

[81] A.K. Hartmann, Eur. Phys. J. B 8, 619 (1999)

[82] A.K. Hartmann, Phys. Rev. E 60, 5135 (1999)

[83] L.E. Reichl, A Modern Course in Statistical Physics, (John Wiley & Sons, New
York 1998)

[84] A.J. Bray and M.A. Moore, J. Phys. C 17, L463 (1984)

[85] W.L. McMillan; Phys. Rev. B 30, 476 (1984)

1861 N. Kawashima and A.P. Young, Phys. Rev. B 53, R484 (1996)

226 9 Approximat ion Methods for S p i n Glasses

[87] E. Marinari, G. Parisi, and J.J. Ruiz-Lorenzo, in: A.P. Young (ed.), Spin Glasses
and Random Fields, (World Scientific, Singapore 1998)

[88] A.K. Hartmann, Physica A 275, 1 (1999)

[89] A. Sandvic, Europhys. Lett. 45, 745 (1999)

[90] A.K. Hartmann, Europhys. Lett. 45, 747 (1999)

[91] A.K. Hartmann, J. Phys. A 33, 657 (2000)

[92] A.K. Hartmann, Eur. Phys J. B 13,591 (2000)

[93] A.K. Hartmann, Europhys. Lett. 40, 429 (1997)

[94] A.K. Hartmann, Europhys. Lett. 44, 249 (1998)

[95] F. Krzakala and O.C. Martin, Phys. Rev. Lett. 85 , 3013 (2000)

[96] M. Palassini and A.P. Young, Phys Rev. Lett. 85, 3017 (2000)

[97] E. Marinari and G. Parisi, Phys. Rev. Lett. 86, 3887 (2001)

[98] J . Houdayer and O.C. Martin, Euro. Phys. Lett. 49, 794 (2000)

10 Matchings

After introducing spin glasses and discussing general approximation algorithms for
ground states in Chap. 9, we now turn to two-dimensional systems. We will first show
how ground states of certain two-dimensional spin glasses can be calculated by mapping
the problem onto a matching problem. Next, a general introduction to matching
problems is given. In the third section, the foundation of all matching algorithms, the
augmenting path theorem, in presented. In the central section, algorithms for different
types of matching problems are explained. Finally, an overview of some results for spin
glasses is given.

10.1 Matching and Spin Glasses

The problem of determining the ground state of a two-dimensional spin-glass model
on a square lattice with nearest neighbor interactions with free boundaries1 can be
mapped on to a matching problem on a general graph [I, 2,3] as follows: Associate with
each unsatisfied bond an "energy string" joining the centers of neighboring plaquettes
sharing this bond, and assign to each energy string a "length" equal to IJij I . Clearly
the energy E of the system equals the total length A of these energy lines, up to a
constant:

Let us for example put all spins pointing upwards, so that each negative bond will be
unsatisfied and thus cut by an energy string [Fig. 10.1 (a)]. Unfrustrated plaquettes
have by definition an even number of strings crossing their boundary, therefore energy
lines always enter and leave unfrustrated plaquettes. Frustrated plaquettes on the
other hand have an odd number of strings, and therefore one string must begin or end
in each frustrated plaquette. These observations hold for any spin configuration.
If boundary conditions are open or fixed, some of the energy strings can end at the
boundary. To unify the case of (partly) periodic/non-periodic boundary conditions,
it is possible to introduce "external" plaquettes for each side with open boundary
conditions. In that case plaquettes always occur in pairs. One says the plaquettes
belonging to a pair are matched.

l o r with periodic boundary conditions in one direction and free boundary conditions in the other.
The general rule is that the graph must be planar, i.e. it is possible to draw the graph in a plane,
without crossing edges.

228 10 Matchings

Figure 10.1: Thick lines represent negative couplings. Energy strings (dotted) are
drawn perpendicular to each unsatisfied coupling. Frustrated plaquettes (odd number
of negative couplings) are marked by a dot. a) All spins up configuration. b) A ground
state. c) Another ground state.

From Eq. (10.1), finding a ground state, i.e. a state of minimum energy, is equivalent
to finding a minimum length perfect matching, as we define it below, in the graph
of frustrated plaquettes [I, 2, 41. For the definition of frustration, see Chap. 9. If
I Jij I = J, i.e. all interactions have the same strength, Fig. 10.1 (b) shows one possible
ground state. An equivalent ground state is obtained by flipping all spins inside the
gray area in Fig. 10.1 (c), since the numbers of satisfied and unsatisfied bonds along its
contour are equal. Degenerate ground states are related to each other by the flipping
of irregularly shaped clusters, which have an equal number of satisfied and unsatisfied
bonds on their boundary.
If the amplitudes of the interactions are also random, this large degeneracy of the
ground state will in general be lost, but it is easy to see that there will be a large number
of low-lying excited states, i.e. spin configurations which differ from the ground state
in the flipping of a cluster such that the "length" of unsatisfied bonds on its boundary
almost cancels the length of satisfied ones.
Please note, in the case of a two-dimensional spin glass with periodic boundary condi-
tions in all directions, or in the presence of an external field, the ground-state problem
becomes NP-hard.

10.2 Definition of the General Matching Problem

Given a graph G(V, E) with vertex (or node) set V and edge set E, a matching
M C E is a subset of edges, such that no two are incident to the same vertex [5, 61.
A matching M of rnaxirnurri cardinality is called mazimvm-cardinality matching.
An edge contained in a given matching is called matched, other edges are free. A
vertex incident to an edge e E M is covered (or matched) others are M-exposed (or
exposed or free). A matching is perfect if it leaves no exposed vertices. If e = (u, v)

10.2 Definition of the General Matching Problem 229

is matched, then u and v are called mates. An alternating path is a path along which
the edges are alternately matched and unmatched. A bipartite graph is a graph which
can be subdivided into two sets of vertices, say X and Y, such that the edges in the
graph (i , j) only connect vertices in X to vertices in Y, with n o edges internal to X
or Y. Nearest-neighbor hypercubic lattices are bipartite, while the triangular and
face-centered-cubic lattices are not bipartite.

Figure 10.2: Example graph for matching, see text

Example: Matching

In Fig. 10.2 a sample graph is shown. Please note that the graph is bi-
partite with vertex sets X = {1,2,3) and Y = {4,5,6). Matched ver-
tices are indicated by thick lines. The matching shown in the left half is
M = {(1,4), (2,5)). This means, e.g. edge (1,4) is matched, while edge (3,4)
if free. Vertices 1,2,4 and 5 are covered, while vertices 3 and 6 are exposed.

In the right half of the figure, a perfect matching M = {(1,5), (2,6), (3,4))
is shown, i.e., there are no exposed vertices.

An example of an alternating path is shown in the left part of Fig. 10.3.

The more general weighted-matching problems assign a non-negative weight (=cost),
cij, to each edge e = (i , j) . M is a maximum-weight matching if the total weight of the
edges in M is maximal with respect to all possible matchings. For perfect matchings,
there is a simple mapping between maximum-weight matchings and minimum-weight
matchings, namely: let Eij = Cmax - cij, where cij is the weight of edge (i, j) and
Cmax > max(i,j) (cij). A maximum perfect matching on Eij is then a minimum perfect
matching on cij.
A nice historical introduction to matching problems, the origins of which may be
traced to the beginnings of combinatorics, may be found in LovAsz and Plummer
[6]. Matching is also related t o thermal statistical mechanics because the partition
function for the two-dimensional Ising model on the square lattice can be found by
counting dimer coverings (=perfect matchings) [6]. This is a graph enumerat ion

230 10 Matchings

Figure 10.3: a) A matching (thick) is a subset of edges with no common end. An
augmenting path (shaded) starts and ends at exposed nodes, and alternates between
unmatched (thin) and matched (thick) edges. b) Interchanging matched and un-
matched edges along an augmenting path increases the cardinality of the matching
by one. This is called augmentation and is the basic tool for maximum-matching
problems.

problem rather than the optimization problems we consider here. As a general rule,
graph enumeration problems are harder than graph-optimization problems.
Owing to the fact that all cycles on bipartite graphs have an even number of edges,
matching on bipartite graphs is considerably easier than matching on general graphs.
In addition, maximum-cardinality matching and maximum-weight matching on bi-
partite graphs can be easily related to the maximum-flow and minimum-cost-flow
(respectively) problems discussed in Chaps. 6 and 7, respectively. Matching on gen-
eral graphs and maximum/minimum perfect matching are more complicated. Thus,
after presenting a fundamental theorem in the next section, in Sec. 10.4 matching
algorithms for different types of problems are explained.

10.3 Augmenting Paths

The algorithms for maximum matchings are based on the idea of successive augmenta-
tion, which is analogous to the augmenting-path methods for flow problems (see Sec.
6.3). An augmenting path A, with respect to M is an alternating path between two
exposed nodes. An augmenting path is necessarily of odd length, and, if G is bipartite,
connects a node in one sublattice, Y, with a node in the other sublattice, X. Clearly,
if matched and free edges are interchanged along A,, the number of matched edges in-
creases by one. Therefore if M admits an augmenting path it cannot be of maximum
cardinality. In the case of weighted maximum matching, for each alternating path,
one calculates the weight of the path by adding the weights of all unmatched edges
and subtracting the weights of all matched edges. Then, a matching M cannot be of
maximum weight if it has an alternating path of positive weight, since interchanging
matched and free edges would produce a "heavier" matching.
The non-existence of augmenting paths is a necessary condition for maximality of a

10.4 Matching Algorithms 231

matching. It is also a sufficient condition. A central result in matching theory states
that repeated augmentation must result in a maximum matching [7, 81.

Theorem: (Augmenting path)
(i) A matching M has maximum cardinality if and only if it admits no augmenting
path.
(ii) A matching M has maximum weight if and only if it has no alternating path or
cycle of positive weight.

Proof: (2) + is trivial. To prove +, assume M is not maximum. Then some matching
M' must exist with I M'I > I MI. Consider now the graph G' whose edge set is E' =
MAM', (the symmetric difference of M and M', MAM' = (M \ M') U (MI \ M)).
Clearly each node of G' is incident to at most one edge of M and at most one edge
of M'. Therefore nodes in G' have at most two incident edges and the connected
components must be either simple paths or cycles of even length, and all paths are
alternating paths. In all cycles we have the same number of edges from M as from M'
so we can forget them. But since (M'I > /MI there must be at least one path in G'
with more edges from M' than from M. This path must necessarily be an augmenting
path.
(ii) + is again trivial. Assume M is not maximum. Some matching M' must therefore
exist with c(M') > c(M). Consider again G' = (X , MAM'). By the same reasoning
as before, we conclude that G' must contain at least one alternating path or cycle of
positive weight. &ED

10.4 Matching Algorithms

10.4.1 Maximum-cardinality Matching on Bipartite Graphs

Consider a bipartite graph, B(X, Y, E), where X is the set of nodes on one sublattice
and Y is the set of nodes on the other sublattice. It is conventional to draw bipartite
graphs as shown in Fig. 10.4, with the two sublattices joined by edges, which can only
go from one sublattice to the other. Now assume that an initial matching M is given
(which can be the empty set), as in Fig. 10.4a. It is natural to look for alternating
paths starting from exposed nodes. (If there are no exposed nodes, M is maximum.
Stop.) An efficient way to do this is to consider all alternating paths from a given
exposed node simultaneously in the following way.
Build a breadth-first-search (BFS) tree (see Sec. 4.1.2) starting from an exposed node,
for example node US, as described in Fig. 10.5a. In the BFS tree, which we call in the
following an alternating tree 7, node v:, corresponds to level 0. All its adjacent edges
are free. They lead to nodes u3 and u j at level 1; which are covered. Now since we
must build alternating paths, it does not make sense to continue the search along free
edges. Therefore we proceed along matched edges, respectively to nodes vl and vz.
From these we follow free edges to ul and ua, and then matched edges to nodes vs and
vq . In the last step, node uq is found exposed. Therefore (u4, v4, uz, vl , us, 715) is an

10 Matchings

Figure 10.4: a) An initial matching is given for a bipartite graph. b) The enlarged
matching obtained after inverting the augmenting path discovered from node vs (see
Fig. 10.5).

Figure 10.5: a) The BFS or alternating tree built from exposed node vs in Fig. 10.4a.
Dashed lines represent non-tree edges to already visited nodes. The search finishes
when an exposed node uq (double circle) is found. b) The auxiliary tree obtained after
removing odd-level nodes and identifying them with their mates. After inverting
the augmenting path {v5, ug, v1, U Z , v4, u4), the enlarged matching in Fig. 10.4b is
obtained.

augmenting path. After inverting it, the augmented matching shown in Fig. 10.4b is
obtained. If no exposed node were found when the BFS ends, then node v:, will never
be matched and can be forgotten because of the following result [9], which is valid for
general graphs:

20.4 Matching Algorithms 233

Theorem:
If there is no augmenting path from node uo at some stage, then there never will be

an augmenting path from u,.

Since the BFS or alternating tree is the basic structure maintained by matching algo-
rithms, we introduce a convenient notation. In what follows we denote the odd-level
set of nodes of the alternating tree 7 by A (7) and the even-level set B(7). Thesc sets,
beginning with A = 0, B = {r}, can be built up, by iteratively calling the following
procedure, we denote V (7) - A (7) U B (7) :

procedure extend-alternating-tree(7, (i, j), M)
begin

if i E B (7) , j $2 V(T) , (j , k) E M , then
add j to A(T), k t o B (7) ;

end

The set V (7) and the edges used in its construction have the structure indicated in
Fig. 10.5a, without the broken lines and without the node u4, which is found to be
exposed. Note that an alternating tree always ends in B-nodes and once an edge in
G has been found having one end in B (7) and the other end not in A (7) , we find an
augmenting path.
Using alternating trees, the augmentation of a matching by exchanging matched and
unmatched verticcs along an augmcnting path, can be writtcn in the following way,
this procedure will be used later on as well [we denote the edges of a path with E (P)] :

procedure Augment (7 , (i , j) , M)
begin

Let r the root of 7;
Let P be the path in 7 from r to i plus (i , j) ;
replace M by M A E (P) ;

end

For the algorithms, which we present later on, the sets A (7) and B (7) are very
useful. For the maximum cardinality bipartite matching, there is a difference between
the search technique actually applied and the usual BFS since the searches from odd-
numbered levels are trivial. They always lead to the mate of that node, if the node
itself is not exposed. Therefore the search can in practice be simplified by ignoring
odd-numbered nodes and going directly to their mates, as shown in Fig. 10.5b. The
search for alternating paths can in fact be seen as a usual BFS on an auxiliary graph
from which odd-level nodes have been removed by identifying them with their mates.
The basic augmenting path algorithm is then as follows 110, 111.

10 Matchings

algorithm Maximum-cardinality bipartite matching
begin

establish an initial feasible matching M on B (X , Y, E);
while B contains an exposed node u E Y do
begin

Initialize alternating Tree 7 = ({u), 0);
while there are edges (i, j) , i E B(T) , j @ V(T) do

extend alternating tree (7 , (j, k), M) ;
if 33, k : k @ V (7) , k exposed, i E B (T) then

Augment (7, (i, j) , M) ;
else

no bipartite matching exists;
end

end

Figure 10.6: The resulting network, after adding vertices s and t t o the graph from
Fig. 10.2 and connecting all vertices from X with s and all vertices from Y with t .

Please note that the initial feasible matching can be empty M = 0. The best known
implementation for this algorithm is due to Hopcroft and Karp [12]. It runs in time
O(1 El. m) and is based on doing more than one augmentation in one step. There is
also a simple way in which to map the maximurn-cardinality-matching problem to the
maximum-flow problem, see Chap. 6. Let B = (X, Y, E) , and define B' by adding a
source node s and a target node t , and connecting all nodes in X to s, and all nodes in
Y to t, by edges of capacity I, see e.g. Fig. 10.6. Now let all edges e E E have capacity
1. Because of the integer flow theorem, maximum flows in B' are integral. Every flow
of size f thus identifies f matched edges in B, and vice versa. Since maximum flows
in 0 - 1 networks are computable in O(l El . m) time, so are maximum-cardinality
matchings on B.
The mapping of matching problems to flow problems also applies to the maximum-
weight-matching problem on bipartite graphs:
Given an edge-weighted bipartite graph, find a matching for which the sum of the
weights of the edges is maximum.

10.4 Matching Algorithms 235

This is also known as the assignment problem, because it can be identified with
optimal assignment, e.g. of workers to machines, if worker i E Y produces a value cij
working at machine j E X :
Given an n x n matrix, find a subset of elements in the matrix, exactly one element
in each column and one in each row, such that the sum of the chosen elements is
maximal.
In a similar manner to that described in the previous paragraph, this problem can
easily be formulated as a flow problem. Again add a source node s , a sink node t ;
connecting s to all nodes in U by unit-capacity, zero-cost edges; all nodes in V to t
by unit-capacity, zero-cost edges. Also interpret edge eij as a directed edge with unit
capacity and cost E(eij) = C,,, - cij, where C,,, > max(i,j)(cij). The solution to
the minimum-cost-flow problem (see Chap. 7) from s to t is then equivalent to the
maximum-weight matching which we seek. Please note that in this case a mapping
on the maximum-flow problem is not possible, because otherwise it is not possible to
take the edge weights into account and guarantee that each worker works exactly a t
one machine. The minimum weight perfect bipartite matching problem can be solved
in the same way, for this case the weights cij can be used directly without inversion:
E (e . .) = c . .

23 23 '

10.4.2 Minimum-weight Perfect Bipartite Matching

Obviously a maximum weight matching does not need to be of maximum cardinality.
For our application to two-dimensional spin glasses we need an algorithm to solve a
minimum-weight perfect matching problem, actually on a general graph. Although, we
have already solved this problem for bipartite graphs, by mapping it to a minimum-
cost flow problem, it is useful to demonstrate the basic idea for bipartite graphs first.
In the following, we introduce a method that is called the Hungarian algorithm in
recognition of the mathematician Egervary that uses the linear program formulation
of the minimum weighted matching problem.
Let us characterize a matching M by a vector x E (0, (i.e. cij E (0, 1) V(i, j) E E),
where xij = 1 if the edge (i , j) is in the matching, and xij = 0 otherwise. In order to
form a perfect matching on a bipartite graph G = (X , Y, E) the following conditions
have to be fulfilled:

Any vector x which fullfills this conditions is called feasible. The optimization task to
find an minimum perfect matching, can be written as a linear program (LP)

minimize C(i,j)EE cijxij

subject to (10.2)

Linear programming is the problem of optimizing (minimizing or maximizing) a linear
cost function while satisfying a set of linear equality and/or inequality constraints.
The full subject of linear optimization is beyond the scope of this work, but there are

236 10 Matchings

many books devoted to it (c.f. Ref. [lo]) and its applications. Most of the problems
described in this book can be cast as linear or, more generally, convex-programming
problems. The simplex method, published by Dantzig in 1949, solves a standard LP

minimize ct z

subject to B z = b and zi > 0 ,

where c, z are real vectors with n components, b is an m-component vector and B is
a n x m matrix. The simplex method runs typically in polynomial time2. Please note
that also inequality contraints, e.g. of the form B x > b, can be treated by introducing
additional variables.
For the bipartite matching problem we need to have the variables xij as integers,
which is guaranteed by the equivalence to a minimum-cost-flow-problem, as shown in
the last section, since this always has an integer optimum. This can be seen in another
way as well. I t can be shown that the optimal solution of (10.4) always lies on the
corners of a convex polytope. In IRE the polytope defined by the inequalities (10.2)
has only integer corners, which is no longer true in general (non-bipartite) graphs, see
Sec. 10.4.4.
For the discussion of weighted matchings it is not necessary to enter into the details
of a linear programming. The Hungarian method solves the problem directly. But to
understand the technique, we need the concept of duality: The LP (10.2) is called the
primal linear problem, to which a dual linear problem belongs [lo]. For each primal
constraint, a dual variable yi (i = 1,. . . , n) is introduced, the minimization translates
to a maximimzation, and the vectors c, b switch its roles:

maximize bt y

subject t o B t y 5 c.

Please note that the sign of the variables yi is not restricted and that the dual of the
dual is the primal. For the matching problem (10.3) we get

subject to yi + y, 5 cij

We will now give a little background information, for a comprehensive presentation
we refer to the literature. In LP theory, it can be shown that the optimum values
ctz and bty agree. The idca behind duality is, that when solving a primal LP, the
algorithms always keeps feasible solutions, while stepwise decreasing the value of ctz,
thus keeping an upper bound. On the other hand, when solving the dual problem,
which is a maximization problem, always a lower bound bty is kept. Thus, one can
treat a primal and a dual problem in parallel by iteratively increasing the lower bound
and decreasing the upper bound. The solution is found when upper and lower bounds
agree.

 he simplex technique does not guarantee to run in polynomial time. There is a polynomial
algorithm to solve (LP) , the ellipsoid method. But in practice, thc simplex mcthods is usaully faster,
so it is used.

10.4 Matching Algorithms 237

Another important result, which we need for the Hungarian algorithm, is that the
following orthogonality condi t ions are necessary and sufficient for optimality of the
primal and dual solutions, here directly written in the form suitable for our application
('di E Y and V j E X):

In Fig. 10.7, a bipartite graph, a minimum-weight perfect matching and the corre-
sponding dual solution are shown. Please note that conditions yi + yj = cij are only
necessary for matched edges, not sufficient.

Figure 10.7: A bipartite graph. The numbers next to the edges are the weights c,, .
The minimum-weight perfect matching is indicated by bold lines. The numbers next
to the vertices are the values y, of the dual solution. Zero values are not shown. Edgcs
not belonging to the matching, but having y, + y j = c,, , are indicated by broken lines.
The weight of the minimum perfect matching (=17) equals the value C yi of the dual
solution.

Next, we introduce a convenient notation. Given a vector y E IRE and an edge (i, j) E
E , we denote by Gj = cij(y) the difference cij - (yi + y j) Thus, y is feasible in (10.6)
if and only if cij > 0 for all (i, j) E E . In this case we denote by E= [or E= (y)] the set

E={(i, j) E EIFij = 0); (10.8)

its elements are the equality edges with respect to y.
If x is the characteristic vector of a perfect matching M of G, the optimality conditions
are equivalent to

M C E, (10.9)

We will now explain the basic idea of the Hungarian algorithm. Given a feasible
solution y to (10.6), we can now use the maximum cardinality bipartite matching
algorithm described above to search for a perfect matching having this property. If we
succeed, we have a perfect matching whose characteristic vector is optimal to (10.3),
as required. Otherwise the algorithm will deliver a matching M of G= = (V, E=) and
an M-alternating (BFS) tree 7- such that its B-nodes are joined by equality edges only
to A-nodes (in Fig. 10.5 the A-nodes are those indicated by ui and the B-nodes by
vi). See the example in Fig. 10.8, where a perfect matching exists, but with respect
to the current y (indicated at the nodes), it is not completly contained in E=.

10 Matchings

Figure 10.8: The graph of Fig. 10.7 with a preliminary matching. Vertices e and h
are exposed, h is the current root of the alternating tree, which is shown on the right.
By increasing the values at the B-nodes b, c, h and g by t = 3 and decreasing it by 6 at
the A-nodes a , f and i , the edge (b, e) joins E= and C yi attains the maximum value.
The final result of Fig. 10.7 is obtained, by inverting the alternating path h, f , c, a, b, e.

In that case there is a natural way to change y, keeping in mind that we would like
edges of M and T to remain in E=, and that we would like Eij to decrease for edges
(i, j) joining nodes in B (T) to nodes not in A(7) . Namely, we increase yi by E > 0
for all v E B(T) , and we decrease yi by E for i E A(7) . This has the desired effect; we
will choose E as large as possible so that feasibility in (10.6) is not lost and as a result
(provided that G has a perfect matching at all), some edge joining a node u E B (T)
to a node w 6 A (7) will enter E x . Since G is bipartite, we will have w 6 V(T) ,
leading to an augmentation or a tree-extension step. In the example Fig. 10.8 wc will
choose E = 3 because of the edge (b, e) , and then that edge enters E=, allowing for an
augmenting path.
To summarize, we get the following so-called Hungarian algorithm, due to Kuhn [13]
and Munkres [14]:

10.4 Matching Algorithms

algorithm Minimum-Weight Perfect Matching for Bipartite Graphs
begin

Let y be a feasible solution to (10.6), M a matching of G,(y);
Set T := ({r), Q)), where r is an M-exposed node of G;
while 1=1
begin

while there exists (i, j) E E= with i E B(T) , j 6 V (7)
if j is M-exposed then
begin

Augment(7, (i, j), M);
if there is no M-exposed node in G then

return the perfect matching M ;
else

replace T by ({r), 0), where r is M-exposed;
end
else

extend-alternating-tree(7, (i, j), M) ;
if every (i, j) E E with i E B (T) has j E A (7) then

return G has no perfect matching!;
else
begin

let E := min{Z,,/ (i, j) E E , i E B(7), j # V(7)) ;
replace y, by y, + E for i E B(T), y, - E for i E A(7) ;

end
end

end

The initial values of y, M can be yi := 0 Vi, M := 0, or an approximation of the
true solution obtained by a heuristic. When characterizing the Hungarian method,
we see that on the one hand, always a preoptimal matching is kept (primal), on the
other hand, at the same time a feasible dual solution y is computed. In that sense the
method is a primal-dual algorithm. The running time of the methods is [15] 0(n2m).

This can be improved, for example, t o 0 (n3) using the method introduced for the
implementation of Prim's algorithm, Chap. 4.
We close this section by an example, which demonstrates, how the algorithms works.

Example: Minimum-weight perfect bipartite matching

We consider the graph already shown in Fig. 10.7. Assume that initially all
y i := 0 and the matching M is empty. As a consequence, initially E= = Q)
and cij = ci, for all (i, j) E E.

We assume that for the first alternating tree 7, vertex a is selected as the
root, thus A (7) = 0 and B (T) = {a). Since Ex = 0, the inner while-
loop is not entered. Thus, next E = min{cab,~,,) = min{2,4) is obtained.
Thus, y.2 := 2 and E= = { (a , b)). Now the inner while-loop is entered with

240 10 Matchings

j = b. Since b is exposed, the augmenting path a , b is inverted, resulting in
M = { (a , b)). As a result, we get the situation shown in Fig. 10.9.

Figure 10.9: After the first edge has been matched using the rninimum-
weight perfect bipartite matching algorithm. The root of 7 has been u and
t = 2.

We assume that now vertex d is selected as the root of 7, resulting in yd =
0 + t = 5, Edg = 0 and edge (d,g) is added to M. In the next step, let vertex f
be the root of 7. Then y f = O + E = 4, E= = {(a, b) , (c, f) , (d, g)), C y i = 11
and edge (c , f) joins the matching. The resulting situation is depicted if Fig.
10.10.

Figure 10.10: The graph after a , d and f have been the root of the alter-
nating tree: M = E={(a, b) , (c , f) , (d, y)) and C y, = 11.

Now, only two exposed vertices are left. We assume that h is the root of the
next alternating tree. First, no edges of E= can be used to extend the tree.
Then, using E f h = i& = 1, we obtain r = 1, leading to y,, = 1, C yi = 12 and
the edges (f, h) and (h, d) join E=. Now, 'T can be extended twice, leading
to the situation displayed in Fig. 10.11.

Now we have edges (c , a) and (g, e) which fulfill the condition i E B (7) and
j @ V('T). Hence, t = min{~,,, E , ,) = min{6,2) = 2 is obtained, leading to
the situation we already encountered in Fig. 10.8. As we have seen already,
E = 3 and edge (b, e) joins E=. Then, using (b, e) the matching is augmented
and the final result is obtained, which has already been presented in Fig.
10.7.

10.4 Matching Algorithms

Figure 10.11: Bipartite graph and alternating tree with root h . Now

C Y ~ and E= = { (a , b) , (~ f) , (f , g) , (d , g) I .

10.4.3 Cardinality Matching on General Graphs

Maximum matching on general graphs is considerably more difficult because of the
presence of odd-length cycles, which are absent on bipartite graphs. Consider starting
a BFS-tree for alternating paths, the alternating trec 7, from an exposed node a a t
level 0 (Fig. 10.12). We will now study, what happens when searching an cven-level
nodc (or a B-node) x, i.e. x E B (T) (necessarily covered). Let (x, y) be an unexplored
edge incident to x. If y is exposed, we have found an augmenting path, and the
augmentation proceeds as usual. If y is covered there are two possibilities:

i j k x

4 b)

Figure 10.12: a) A blossom is an odd-cycle which is as heavy as possible in matched
edges, i.e. contains 2k + 1 edges among which k are matched. b) The reduced graph
G x C obtained by shrinking a blossom C = {c , d , e , f ; y , x, k , j , i) to a single node
(the pseudo node B) contains the same augmenting paths as the original graph.

0 If y is an odd-level (or an A-node), nothing special happens

242 10 Matchings

If y is marked as even (level 6 in Fig. 10.12), there is a special situation: there
are two even-length alternating paths, one from a to x and one from a to y, and
therefore (x, y) closes a cycle of odd-length. Let c be the last node common to
both alternating paths (necessarily at an even level). The odd cycle including c is
called a blossom B, and c its base. A blossom is essentially an odd-length alter-
nating path from c to itself, as depicted in Fig. 10.12a. Its presence may conceal
an existing augmenting path, like for example {a, b, c, i , j , k, x, y, f , e, d, h, n , p) in
Fig. 10.12, which would not be discovered by the BFS since edge (d, h) would
never be explored. A blossom might also make 11s "find" an augmenting path
where none actually exists, like for example {a, b, c, d , e, f , y, x, k, j , i , c, b, a) in
Fig. 10.12a.

The first polynomial-time algorithm to handle blossoms is due to Edmonds [16]. Ed-
monds' idea was t o shrink blossoms, that is, replace them by a single pseudo node B
obtaining a modified or derived graph GI as shown in Fig. 10.12b. The possibility of
shrinking is justified by the following theorem due to Edmonds.

Theorem: (Edmonds)
There is an augmenting path in G zf and only if there is an augmenting path in G1

The existence of a blossom is discovered when edge (x, y) between two even-level nodes
is first found, and its nodes and edges are identified by backtracking from x and y until
the first common node is found (c in our example), which is the blossom's base.
Once identified, the blossom is shrunk, replacing all its nodes (among which there
might be previously shrunk blossoms) by a single node, and reconnecting all edges
incident to nodes in the blossom (necessarily uncovered edges) to this one. The search
proceeds as usual, until an augmenting path is found, or none, in which case a is
abandoned and no search will ever be started from it again. If an augmenting path
is found, which does not involve any shrunk blossom, it is inverted as usual. If it
contains blossom-nodes, they must be expanded first and one has to identify which
way around the blossom the augmenting path goes. This may need to be repeated
several times if blossoms are nested. After inverting the resulting augmenting path, a
new search is started from a different node. A simple implementation of these ideas
runs in C3(/xI4) time [lo]. The fastest known algorithm for non-bipartite matching is
also C3(lEI . m) time [17].

10.4.4 Minimum-weight Perfect Matching for General Graphs

The fact that, for bipartite graphs G with edge weights c, the linear-programming
problem (10.3) has the same optimal value as the integer-linear programming problem
that arises when we require xij E {O,1) is equivalent to a classical theorem of Birkhoff,
which says that G has a perfect matching if and only if (10.3) has a feasible solution,
and, moreover, if G has a perfect matching then the minimum weight of a perfect
matching is equal to the optimal value of (10.3). This result fails in general (non-
bipartite) graphs G = (V, E), where optimal solutions do appear for which some xij

10.4 Matching Algorithms 243

are fractional (Fig. 10.13 shows an example of this) and thus do not correspond to a
matching. Here, the reason for the complication is the existence of odd cycles [16].
Thus we need to explicitly impose the condition xij = 0 , l .

Figure 10.13: Example of fractional optimal solution on graphs with odd cycles. a)
The graph and its weights. b) An optimal solution of P1 is fractional. c) The desired
solution.

A solution to this problem for the case of general graphs has been found by Edmonds,
and consists in adding new constraints, which impose xij = 0, I indirectly. In the
subsequent discussion that will lead us finally to the Blossom algorithm for minimum-
weight perfect matchings we follow Ref. [18], see also Ref. [15].
For each odd subset S c G (i.e. S contains an odd number of nodes), we impose an
additional set of constraints: let D be an odd cut generated by S, i.e.

D = S(S) = {(i, j) E Eli E S, j @ S). (10.10)

If D is an odd cut and M a perfect matching, then M must contain at least one edge
from D. It follows that, if u: is the characteristic vector of a perfcct matching, then
for every odd cut D of G,

This is called a blossom inequality. By adding these inequlaities to the problem (10.3),
we get a stronger linear-programming bound, i.e. the space of feasible vectors shrinks.
[For example add the inequality (10.11) to (10.2), for D consisting of the vertical bond
in Fig. 10.13, it is no longer possible to get a solution of value 3; in fact the new
optimal value for the resulting problem is 4, which is also the minimum weight of a
perfect matching.]

244 10 Matchings

Let C denote the set of all odd cuts of G that are not of the form S(i) = {(i, j) E E l j E
V) for some node i. Then we are led to consider the linear-programming problem

minimize C(i,j)EE Cijxij

~ E V : x(S(i)) = 1 , (10.12)
subject to V D E C : x(D) > 1 ,

(j) € E : xij > 0 ,

where x(J(i)) = Cj with (i , j) t E xij.
As we have indicated, (10.12) provides a better approximation to the minimum weight
of a perfect matching, but a much stronger statement can be made. Its optimal value
i s the minimum weight of a perfect matching. This is the fundamental theorem of
Edmonds [19] (also "Matching Polytope Theorem"):

Theorem: Let G be a graph, and lct c E RE. Thcn G has a perfect matching if
and only if (10.12) has a feasible solution. Moreover, if G has a perfect matching, the
minimum weight of a perfect matching is equal to the optimal value of (10.12).

The algorithm that we will describe will construct a perfect matching M whose char-
acteristic vector x* is an optimal solution to (10.12), and so M is a minimum-weight
perfect matching. This will provide a proof of the above theorem. The way in which
we will know the 2* is optirnal, is analogous to the bipartite case discussed above. We
will also have a feasible solution to the dual linear-programming problem of (10.12)
that satisfies orthogonality conditions for optimality of the primal and dual solutions.
The dual problem to (10.12) is:

maximize Citv yz + CDEC YD

Given a vector (y ,Y) as in (10.13) and an edge (i, j), we denote, as in the bipartite
case, by cij = Eij(y, Y) the difference

-
Ci3 = C i j - yi + yj + C y~ (10.14)

D E C with (i , j) tD

which we also call the reduced cost of the edge (i , j) . Thus (y, Y) is feasible in Eq.
(10.13) if and only if Yo > 0 for all D E C and Fij > 0 for all (i, j) E E.
Again, the important result from LP theory that we need for the algorithm is that
the following orthogonality conditions are necessary and sufficient for the optimality
of the primal and dual solutions

If x is the characteristic vector of a perfect matching M of G, these conditions are
equivalent to

V () E : (i , j) ~ M + Fij=O
V D E C : YD>O + I M n D I = l .

(10.16)

10.4 Matching Algorithms 245

It is not obvious how an algorithm will work with the dual variable Y, but the answer
is suggested by the maximum-cardinality matching algorithm we discussed in Sec.
10.4.3. We will be working with derived graphs G' of G, and such graphs have the
property

every odd cut of G' is an odd cut of G.

It follows from this, in particular, that every cut of the form SG, (v) for a pseudo node
v of GI is an odd cut of G. These are the only odd cuts D of G' for which we will
assign a positive value t o Yo. Note, however, that such a cut of G' need not have this
property in G - it is of the form S(S) where S is an odd subset of G which become
a pseudo node of G' after (repeated) odd-circuit shrinkings. It follows that we can
handle Yo by replacing it by yv, with the additional provision that y, > 0.
We take the same approach as in the bipartite case, trying to find a perfect matching
in G, using tree-extension and augmentation steps. When we get stuck, we change
y in the same way, except that the existence of edges joining two nodes in B (7) will
limit the size of E . In particular, there may be an equality edge joining two such nodes.
Then we shrink the circuit C , but there is now a small problem: how do we take into
account the variables yi for i E V(C), when those nodes are no longer in the graph?
The answer is that we update c as well. Namely, we replace cij by cij - yi for each edge
(i , j) with i E V (C) and j 6 V(C). Notice that by this transformation, and the setting
of yc = 0 for the new pseudo node, the reduced costs Eij are the same for edges of the
reduced graph G x C (in which the circuit C is replaced by a pseudo node) as they
were for those edges in G. We will use c' to denote these updated weights, so when we
speak of a derived graph G' of G, the weight vector c' is understood to come with GI,
or we may refer to the derived pair (G', c'). The observation about the invariance of
the reduced costs, however, means that we can avoid 2' in favor of E . The subroutine
for blossom shrinking is just the same as for the maximurn-cardinality matching, c.f.
Fig. 10.12. We assume that M' is a matching of a graph G', 7 an MI-alternating tree,
and (i , j) is an edge of G' such that i , j E B (7) . Here, and in the following, E(G)
denotes the edges of a graph (e.g. circuit or alternating tree) G:

procedure Shrink-update((i, j), M' , 7, c')
begin

Let C be the circuit formed by (i, j) together with the path in 7 from i to j;
Replace G' by G' x C , M' by M1\E(C) ;
Replace 7 by the tree in GI having edge-set E (T) \ E (C) ;
update c' and set yc := 0;

end

An example of shrinking and updating weights is shown in Fig. 10.14. On the left is
the graph with a feasible dual solution y (shown at the nodes) for which the edges
of the left triangle are all equality edges. On the right we see the result of shrinking
this circuit and updating the weights. Notice that an optimal perfect matching of this
smaller graph extends to an optimal perfect matching of the original.
The essential justification of the stopping condition of the algorithm is that, when we
have solved the problem on a derived graph, then we have solved the problem on the

10 Matchings

Figure 10.14: Shrinking and updating weights. The left triangle of the graph G in
(a) is a circuit or blossom C that is shrunk to a pseudo node, yielding the reduced
graph G x C in (b). Its variable yc is set to zero. The weights of the edges connected
to C are updated according to cij + czj - yi for each edge (i , j) with i E V (C) and
j @ V (C) . Notice that by this transformation, the reduced costs Ei j = c,j - (yz + yj)
stay the same for edges of G and of the reduced graph G x C .

original graph. For this to be correct, we have to be very specific about what we mean
by "solved the problem" :
Proposition: Let G', c' be obtained from G, c by shrinking the odd circuit C of
equality edges with respect to the dual-feasible solution y. Let M' be a perfect match-
ing of G' and, with respect to G', c', let (y', Y') be a feasible solution to (10.12) such
that M', (y', Y') satisfy conditions (10.16) and such that y& > 0. Let M be the perfect
matching of G obtained by extending M' with edges from E(C) . Let (y, Y) bc defined
as follows. For i E V\V(C) define yi = y i [for i E V(C), yi is already defined]. For
D E C, we put Yo = Yh if YA > 0; we put Yo = y& if D = dl(C); otherwise, we put
Yo = 0. Then with respect to G, c, (y ,Y) is a feasible solution to (10.12) and M ,
(y, Y) satisfy the condition (10.16).

Figure 10.15: An example for a dual change where G is non-bipartite. The current
matching M is indicated by the full lines, a perfect matching still needs edge (gh).
Node r is exposed, r , b, and f are B-nodes, a and d are A-nodes. The weights cij are
indicated at each edge, the current value of yi is indicated on each node.

Now let us describe the dual variable change. It is the same one used in the bipartite

10.4 Matching Algorithms 247

case, but with different rules for the choice of E. First we need to consider edges (i, j)
with i , j E B (7) when choosing E, so we will need cij/2 for such edges. Second we
need to ensure that yi remains nonnegative if i is a pseudo node, so we need E 5 yi for
such nodes. Since it is the nodes in A(T) whose y-values are decreased by the change,
these are the ones whose y-values affect the choice of E. To illustrate, see Fig. 10.15,
where E = 112 is taken and (g, h) then becomes an equality edge. In the following the
procedure for changing y is shown. It takes as input a derived pair (G', c'), a feasible
solution y of (10.12) for this pair, a matching M ' of GI consisting of equality edges,
and an MI-alternating tree 7- consisting of equality edges in GI.

procedure Change-y((G1, c'), y, M 1 , 7)
begin

Let EI := min{cijl(i, j) E E(G1), i E B(7-), j $2 V(7)) ;
~2 := min{cij/21(i, j) 6 E(Gi) , i E B(T), j E B (7)) ;
EQ := min{yili E A (T) , i pseudonode of G');
E := min{E1, ~ 2 , E ~) ;

Replace yi by
yi + E , if i E B (7) ;
yi - E, if i E A(7-);
yi otherwise;

end

The last ingredient of the algorithm that we need is a way to handle the expansion
of pseudo nodes. Note that we no longer have the luxury of expanding them all after
finding an augmentation. The reason is that expanding the pseudo node i when yi is
positive would mean giving a value to a variable Yo, where D is a cut of the current
derived graph that is not of the form SGf (j) for some pseudo node j . Therefore, we can
expand a pseudo node i only if yi = 0. Moreover, in some sense we need to do such
expansions, because a dual variable change may not result in any equality edge that
could be used to augment, extend, or shrink (because the choice of E was determined
by some odd pseudo node). However, in this case, unlike the unweighted case, we are
still in the process of constructing a tree, and we do not want t o lose the progress that
has been made. So the expanding step should, as well as updating MI and c', also
update T . The example in Fig. 10.16 suggests what to do.
Suppose that the odd node i of the M-alternating tree 7 is a pseudo node and expan-
sion of the corresponding circuit C with the updating of M leaves us with the graph
on the right. There is a natural way to update 7 after the expansion by keeping a
subset of the edges of C. In Fig. 10 .16~ we show the new alternating tree after the
pseudo node expansion illustrated in Fig. 10.16b.
The expansion of pseudo nodes and the related updating is performed using the fol-
lowing procedure. It takes as input a matching M i consisting of equality edges of a
derived graph G', an Mi-alternating tree 7 consisting of equality edges, costs c' and
an odd pseudo node i of G' with yi = 0:

10 Matchings

Figure 10.16: a) and b): Expanding an odd pseudo node; c) : Tree update after
pseudo node expansion (see text).

procedure expand-update (MI, G', 7, c', i)
begin

Let f , g be the edges of 7 incident with i ;
Let C be the circuit that was shrunk to form i ;
Let u, w be the ends of f , g in V(C);
Let P bc the even-length path in C joining u to w;
Replace G' by the graph obtained by expanding C;
Replace M' by the matching obtained by extending M' to a matching of G';
Replace 7 by the tree having edge-sets E(7) U E(P);
for each edge (st) with s E V(C) and t 6 V(C) do

Replace c',, by c',, + y,;
end

Then the following proposition holds:

Proposition: After the application of the expand routine, M' is a matching contained
in E,, and 7 is an MI-alternating tree whose edges are all contained in E=.

We can now state an algorithm for finding a minimum-weight perfect matching:

10.4 Matching Algorithms

algorithm Blossom Algorithm for Minimum-weight Perfect Matching
begin

Let y be a feasible solution to (10.13), M ' a matching of G= (y);
G' = G; Set 7 = ({r), a) , where r is an MI-exposed node of GI;
while 1=1
begin

case: There exists (i, j) E E= with i, j E G' and
i E B (7) and an MI-exposed node j 51 V (7)

Augment (7, (i , j) , M') ;
if there is no MI-exposed node in G' then
begin

Extend M ' to perfect batching M of G;
return;

end
else

Replace 7 by ({r), a) , where r is M' exposed;
case: There exists (i, j) E E= with i, j E G' and

i E B (7) and an MI-covered node j 6 V (7)
extent-alternating-tree(7, (i , j) , M');

case: There exists (i, j) E E= with i , j E G' and i , j E 7
Shrink-update((i, j) , M' , 7, c');

case: There is a pseudo node i E A (7) with y, = 0
Expand-update(M' , G', 7, c', i) ;

case: None of the above
if every (i, j) E E incident in G' with i E B (7) has

j E A(T) and A (7) contains no pseudo nodes
return G has no perfect matching;

else
Change-y((G1, c'), y, M t , T) ;

end cases
end

end

This blossom algorithm terminates after performing O(n) augmentation steps, and
C?(n2) tree-extension, shrinking, expanding, and dual change steps. Moreover, it cal-
culates a minimum-weight perfect matching, or determines correctly that G has no
perfect matching. As we have seen, the minimum weight perfect matching probably
is one of the hardest combinatorial problems which can be solved in polynomial time.
Therefore, before the reader starts to implement all the procedures, we recommend to
have a look at the LEDA library [20], where efficient matching algorithms are available.
Regarding the problem of finding the ground state of the 2d spin glass, which we
found in Sec. 10.1 to be a minimum-weight perfect matching problem, we should
emphasize that the underlying graph is a complete graph (all frustrated plaquettes
can be matched with all others) and the number of nodes is always even (there is

250 10 Matchings

always an even number of frustrated plaquettes). Therefore, the blossom algorithm
always finds a perfect matching of minimum weight. To speed up the running time, it
is possible to restrict the graph to edges of less than a certain weight, (6 J is a good
rule of a thumb). Then the resulting graphs have much less edges, i.e. they are not
complete any more.

10.5 Ground-state Calculations in 2d

In their pioneering work, Bieche et al. [I] studied the ground-state behavior of the
(f J) spin glass as a function of the fraction x of anti-ferromagnetic bonds. For low
concentrations x, we can expect a ferromagnetically ordered state, while for higher
values of x, spin glass behavior can be anticipated. From simulations of systems of
22 x 22 spins they deduced that ferromagnetism was destroyed a t x* = 0.145. This
zero-temperature transition is detected by the appearance of fracture lines which span
the system, i.e. paths along which the number of satisfied and dissatisfied bonds is
equal, and which can thus be inverted without any cost in energy. The authors also
look at the fraction of spins in connected components, defined as sets of plaquettes
which are matched together in any ground-state.
Later investigations by Barahona et al. [4] located the loss of ferromagnetism at a
somewhat lower density of antiferromagnetic bonds, x* N 0.10, suggesting that in the
regime 0.10 5 x 5 0.15 a random antiphase state exists which has zero magnetization
but long-range order. This state is, according to the authors, characterized by the
existence of magnetic walls (which are different from fracture lines) across which the
magnetization changes sign. Thus the system is composed in this regime of "chunks"
of opposite magnetization, so (M) = 0 although the spin-spin correlation does not
go to zero with distance. At x = 0.15 a second transition occurs, this time due
to the proliferation of fracture lines, and rigidity (long-range order) is lost since the
system is now broken into finite pieces which can be flipped without energy cost.
Their conclusions were supported by later work using zero-temperature transfer-matrix
methods [21]. Freund and Grassberger [22], using an approximation algorithm to find
low-energy states on systems up to sizc 210 x 210, located the ferromagnetic transition
at x* = 0.105 but found no evidence of the random antiphase state. The largest 2d
systems studied to date using exact matching algorithms appear to be L = 300 by
Bendisch et al. [3, 231. The authors examined the ground-state magnetization as a
function of the density p of negative bonds on square lattices, and concluded that
0.096 < x* < 0.108, but their finite-size scaling analysis is not the best one could
think of. They did not analyze the morphology of the states found, so no conclusion
could be reached regarding the existence of the random antiphase state.
More recently Kawashima and Rieger [24], again using exact matching methods, com-
pared previous analyses of the ground state of the 2d (h J) spin glass, in addition to
performing new simulations. They summarized the results in this area in the phase
diagram given in Fig. 10.17.
However Kawashima and Rieger found that the "spin-glass phase" is absent and that
there is only one value of p,. They thus argued for a direct transition from the

10.5 Ground-state Calculations i n 2d

Figure 10.17: Phase diagram of a two-dimensional (*J) Ising model, with fraction
p = 1 - x of ferromagnetic bonds. From [24].

ferromagnetic state to a paramagnetic state, for both site- and bond-random spin-
glass models. Their analysis is based on the stiffness energy, i.e. the difference A E =
E, - E,, where E, is the ground-state energy with periodic boundary conditions and
E, is the ground-state energy with antiperiodic boundary conditions, see also Sec. 9.3.
The scaling behavior [25],

was assumed. In a ferromagnetic state p = 1 and Os = 2, while in a paramagnetic
state p < 0 and Os < 0. However, in an ordered spin-glass state we have p < 0,
and Os > 0. Although the conclusion of this analysis was the absence of a spin-glass
phase, the exponent they found Os = -0.056(6) for p < p, is small. Although, in our
view, the numerical evidence that there is no finite-temperature spin-glass transition
in the two-dimensional Edwards-Anderson model with a binary bond distribution is
compelling one should note that a different view has bcen advocated [26]. In order
to support this view a defect-energy calculation similar to the one described above
has been presented [27]. It was shown that the probability distribution of lAEl does
not shrink to a delta-function centered at A E for L + co, instead it maintains a
finite width. However, even if limL,, lAEl = AE, > 0 a finite value of this limit
indicates that the spin-glass state will be unstable with respect to thermal fluctuations
since arbitrarily large clusters will be flipped via activated processes with probability
exp(-AE,/T) a t temperature T . The correct conclusion is then that there is no
finite-T spin-glass transition in the 2d EA model with binary couplings.
The 2d Ising spin glass with a binary (41 J) bond distribution is in a different univer-
sality class than the model with a continuous bond distribution. The degeneracies,
which are typical for a discrete bond distribution, are absent for the continuous case
for which the ground state is unique (up to a global spin flip). Even in the continuous

252 10 Matchings

case, the ground state is found using a minimal weighted matching algorithm (with the
modification that now not only the length of a path between two matched plaquettes
counts for the weight, but also the strength of the bonds laying on this path).
The latest estimate for the stiffness exponent of the 2d Ising-spin-glass model with a
uniform bond distribution between 0 and 1 obtained via exact ground-state calcula-
tions [28] is

[AE~],, cc L: with Os = -0.281 & 0.002, (10.18)

which implies that in the infinite system arbitrarily large clusters can be flipped with
vanishingly small excitation energy. Therefore the spin-glass order is unstable with
respect t o thermal fluctuations and one does not have a spin-glass transition at finite
temperature.
Nevertheless, the spin-glass correlation length (defining the length scale over which
spatial correlations like [(SiSi+,)$], decay) will diverge a t zero temperature as < -
T-'/", where v is the thermal exponent. A scaling theory (for a zero-temperature
fixed-point scenario as is given here) predicts that v = l/lOsl which, using the most
accurate Monte Carlo [29] and transfer-matrix [30] calculations gives u = 2.0 f 0.2,
is inconsistent with Eq. (10.18). This is certainly an important unsolved puzzle,
which might be rooted in some conceptional problems concerning the use of peri-
odic/antiperiodic boundary conditions to calculate large-scale low-energy excitations
in a spin glass (these problems were first discussed in the context of the XY spin glass
[31] and the gauge glass [32]). Further work in this direction will be rewarding.
Next we would like to focus our attention on the concept of chaos in spin glasses
[33]. This notion implies an extreme sensitivity of the SG-state with respect to small
parameter changes like temperature or field variations. There is a length scale X
- the so called overlap length - beyond which the spin configurations within the
same sample become completely decorrelated if compared for instance at two different
temperatures

CAT = [(a i r i + r) ~ (~ ~ Q ~ + T) T + A T] ~ v exp (-r/X(AT)) . (10.19)
This should also hold for the ground states if one slightly varies the interaction
strengths Jij in a random manner with amplitude S. Let {a} be the ground state
of a sample with couplings Jij and let {a'} be the ground state of a sample with
couplings Jij + SKij, where the Ki j are random (with zero mean and variance one)
and 6 is a small amplitude. Now define the overlap correlation function as

Cb (r) = [aiai+r a~a:+,],, - c(Ts''~), (10.20)

where the last relation indicates the scaling behavior we would expect (the overlap
length being X - S- ' /C) and C is the chaos exponent. In [28] this scaling prediction
was confirmed with 115 = 1.2 & 0.1 by exact ground-state calculations of the 2d Ising
spin glass with a uniform coupling distribution, and the corresponding scaling plot for
C6(r) is shown in Fig. 10.18.

Bibliography

[I] I. Bieche, R. Maynard, R. Rammal, and J.P. Uhry, J. Phys. A 13, 2553 (1980)

Bibliography

Figure 10.18: Scaling plot of the overlap correlation function Cs(r) versus r /L* with
L* = S- ' /C . The best data collapse (for data confined to r < L / 4) is obtained for
1/C = 1.05. The system size is L = 50 and the data are averaged over 400 samples.
These were obtained by creating about 80 reference instances and creating 5 random
perturbations of strength 6 for each. From [28].

[2] F. Barahona, J. Phys. A 15 , 3241 (1982)

[3] J . Bcndisch, U. Derigs, and A. Metz, Disc. Appl. Math. 52, 139 (1994)

[4] F. Barahona, R. Maynard, R. Rammal, and J.P. Uhry, J. Phys. A 15 , 673 (1982)

[5] R.L. Graham, M. Grotschel, and L. Lovasz, Handbook of Combinatorics, (Elsevier
Science Publishers, Amsterdam 1995)

[6] L. Lovasz and M.D. Plummer, Matching Theory, (Elsevier Science Publishers,
Amsterdam 1986)

[7] C. Berge, Proc. Am. Math. Soc. 43, 842 (1957)

[8] R.Z. Norman and M. Rabin, Proc. Am. Math. Soc. 10 , 315 (1959)

[9] J . van Leeuwen (ed.), Handboolc of Theoretical Computer Science A: Algorithms
and Complexity, (Elsevier Science Publishers, Amsterdam 1990)

[lo] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, (Prentice Hall, New Jersy 1982)

[Ill E. Minieka, Optimization Algorith,ms for Networks and Graphs, (Marcel Dekker
Inc., New York and Base1 1978)

10 Matchings

[12] J . Hopcroft and R. Karp, SIAM J. Comp. 4, 225 (1973)

[13] H. W. Kuhn, Naval Research Logistics Quarterly 2, 83 (1955)

[14] J . Munkres, SIAM J. Appl. Math. 5, 32 (1957)

[15] B. Korte and J . Vygen, Combinatorial Optimization - Theory and Algorithms,
(Springer, Heidelberg 2000)

[16] J . Edmonds, Can. J. Math. 17, 449 (1965)

[17] S. Micali and V.V. Vazirani, in: Proc. Twenty-first Annual Symposium on the
Foundations of Computer Science, Long Beach, California, IEEE 17 (1980)

[18] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinato-
rial Optimization, (John Wiley & Sons, New York 1998)

[19] J . Edmonds, J. Res. Natl. Bur. Stand. B 69, 125 (1965)

[20] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and Geomet-
ric Computing, (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA/leda.html

[21] Y. Ozeki, J. Phys. Soc. Jpn. 59, 3531 (1990)

[22] H. Freund and P. Grassberger, J. Phys. A 22, 4045 (1989)

[23] J . Bendisch, Physica A 245, 560 (1997)

[24] N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 (1997)

[25] A.J. Bray and M.A. Moore, in: L. van Hemmen and I. Morgenstern (ed.), Hei-
delberg Colloqium on Glassy Dynamics and Optimization, (Springer, Heidelberg
1985)

[26] T. Shirakura and F. Matsubara, J. Phys. Soc. Jpn. 64, 2338 91995)

[27] F. Matsubara, T. Shirakura, and M. Shiomi, Phys. Rev. B 58, 11821 (1998)

[28] H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jiinger, and G. Rinaldi, J. Phys.
A 29, 3939 (1996)

[29] S. Liang, Phys. Rev. Lett. 69, 2145 (1992)

[30] N. Kawashima, N. Hatano, and M. Suzuki, J. Phys. A 25, 4985 (1992)

[31] J.M. Kosterlitz and M.V. Simkin, (1997). Phys. Rev. Lett. 79, 1098 (1997)

[32] J.M. Kosterlitz and N. Akino, Phys. Rev. Lett. 81, 4672 (1998)

[33] A.J. Bray and M.A. Moore, Phys. Rev. Lett. 58, 57 (1987)

11 Monte Carlo Methods

For many, actually most, optimization problems in physics as well in economics or
industrial situations no polynomial-time algorithms appear to be a t hand. Stochastic
optimization is a tool that is applicable in all cases and with which one can at least
hope to generate a good approximation to the optimal solution of a given energy or
cost function. On the other hand, stochastic optimization methods can be applied to
almost all types of problems. Thus, the models we can treat and the results we can
expect are similar to genetic algorithms, which have been presented in Chap. 8.
In this chapter we give an overview of various methods that are at hand to attack
physical problems for which none of the elegant polynomial algorithms we elsewhere
describe in this book work. We start with a general outline of stochastic optimization
methods. Next, simulated annealing is introduced, which can be seen as an algorithmic
equivalent of cooling experiments. In the third section, parallel tempering is explained,
which is an extension of simulated annealing. In the following section, the prune-
enriched Rosenbluth me thod (P E R M) is introduced. It allows the study of lattice
polymers at low temperatures. Finally, PERM is applied to search for low energy
configurations of folded proteins.

11.1 Stochastic Optimization: Simple Concepts

In essence one samples the configuration space {S) of a given problem

stochastically - or randomly - and uses more or less sophisticated rules, based on
some knowledge or intuition about the underlying energy landscape [we call X(S) the
energy of state (or configuration] S or the Hamiltonian, for computer scientists these
are the costs or the objective function], to improve on the trivial completely random
search. These rules are expressed in terms of acceptance rates p (S + St) for random
moves in the configuration space from state S to a new state S'.
The r a n d o m walk procedure, the most trivial and most inefficient rule, has VS, S' :
p (S + St) = 1, which means a n y new suggested configuration S' is accepted (Fig. 11.1
left). Its energy R (S) is recorded and after a sufficiently long run the lowest energy
configuration is the approximation we found to the optimal solution. Obviously this
technique is doomed to fail in nearly all cases of practical interest and can only serve
as a preliminary exploration of the energy landscape of the problem.

11 Monte Carlo Methods

Figure 11.1: Comparison of the random walkmethod (left) with the greedy algorithm
(right). Displayed are, respectively, the energy as a function of the state S and sample
trajectories in configuration space. Ho denotes the energy of the minimum. Here
the random walk results in the second configuration as minimum, while the greedy
algorithm always results in the final state.

For a well behaved energy landscape with just one minimum the greedy algorithm is
often successful (Fig. 11.1 right). I t accepts only moves that generate states S' with
a lower energy and is defined by p (S -+ S') = Q(-AX), where A X = X(S1) - X (S) is
the energy difference between the old and the new state and Q(x) = 1 for z > 0 and 0
otherwise, the Heavyside step function.
As soon as one deals with problems that have many local energy minima one needs
to accept moves to states with higher energy too, in order to escape local minima and
overcome energy barriers separating different minima. One of the simplest of these
techniques appears to be threshold accepting [l], which is defined by the acceptance
rule

p(s + s f) = Q (E - a x) (11.2)

which means that all moves leading to an energy decrease are accepted, as well as
moves with a positive energy difference A X as long as it is smaller than the threshold
t. This means that in principle arbitrarily large energy barriers can be overcome, if
enough intermediate configurations with sniall energy differences are present (Fig. 11.2
left).
Such a procedure is already an improvement on the greedy method but it gets stuck
in an energy landscape that has local minima surrounded by energy barriers that are
larger than the threshold 6 - so called golf holes in the energy landscape (Fig. 11.2
right). One should note that in a high-dimensional configuration space the number
of escape routes or directions out of a local energy minimum is also enlarged and
with this also the chance to get out of a local minimum even a t low threshold values.
This parameter t, which is reduced during the run down to 0, plays the role of a
temperature, although the acceptance rate does not at all fulfill detailed balance and
the stationary distribution of this process does not have anything to do with the
Boltzmann distribution, see Chap. 5. Obviously it is advantageous to repeat the

11.2 Simulated Annealing 257

Figure 11.2: Threshold accepting: large energy barriers can be overcome starting

from So by several small steps (left), unless they are "golf holes" (right).

whole procedure many times starting with different initial configurations.
Another method of stochastic optimization is the great deluge a lgor i thm [2]. Here one
performs a random walk in a part of the configuration space that lies below a specified
level E for the energy X(S) . The acceptance rule is therefore given by

i.e. a new configuration S' is accepted when its energy is below E and it is rejected
otherwise. Note that the acceptance rate is independent of the old state S (a random
walk) and each state S' is accepted with equal probability as long as its energy is below
E , which plays the role of a temperature that is slowly decreased until the system settles
in a (local) minimum. This algorithm reminds one of a great deluge, since if one inverts
the energy landscape, one looks for the absolute maximum, its highest top. One lets
the water level rise continuously and one can only visit spots that are not yct flooded.
The great deluge algorithm obeys detailed balance (c.f. Chap. 5) - sincc p (S -t S') =
p(S' + S) for all states S and S' that can be reached in the stationary state [in which
X(S) < E and X(S1) < E] of this stochastic process. However, it is not ergodic, since
for low enough E the part of the configuration space that is sampled splits into several
islands between which no transition is possible any more.

11.2 Simulated Annealing

Simulated annealing is a stochastic optimization procedure that is based on a stochastic
process that leads to a stationary stlate which is described by the Boltzmann distri-
bution for the underlying problem [i.e. the system described by its Harnilton function
X(S)] . In essence this procedure resembles cooling a crystal down slowly such that
defects and other lattice impurities (forming metastable statcs) can hcal out and a
pure crystalline structure (the global minimum) is achieved at low temperature. In
this process the temperature (which allows jumps over energy barriers bctween various

258 11 Monte Carlo Methods

configurations) has to decrease very slowly since otherwise the molecular configura-
tion gets stuck and the crystal will be imperfect. This is called annealing in materials
science and various stochastic optimization methods are guided by this physical spirit
such that they have been called simulated annealing [3].
We recall what we said in Sec. 5.1. We consider a physical system that can be in
states S and is described by a Hamiltonian Z (S) . Its equilibrium properties at a
temperature T are determined by the Boltzmann distribution

where Z is its partition function Z = xs exp(-Z(S)/kBT), which is simply the nor-
malizing factor for a canonical distribution with weights proportional to e x p (- Z (S) / ~ B T) .
We learned in Eqs. (5.15) and (5.16) that a stochastic process with Metropolis transi-
tion rates [4]

where A Z = ?f(S1) - N(S) is the energy difference between the old state S' and the
new state S, leads to a stationary state that is governed by the stationary distribution
Pe,(S). Another choice leading to the same results are the heat-bath transition rates

since via the Ansatz p (S + Sf) = Pe,(S')/[Pe,(Sf) + Pe,(S)] it also fulfills detailed
balance Eq. (5.16).
Moreover, we have pointed out that for T + 0 the only state(s) that are sampled by
the equilibrium distribution Pe,(S) are those with the lowest energy. Thus, if we could
equilibrate the system in our computer run for arbitrarily low temperature and lower
the temperature step by step, we may expect to find the state with the lowest energy,
the ground state of the system, at the end. This is the spirit of simulated annealing,
first introduced into optimization problems by Kirkpatrick et al. [3].

Figure 11.3: Simulated annealing. A linear cooling schedule T (t) (left) and a sketch
of the resulting average energy E(t) as a function of time typically.

11.2 Simulated Annealing 259

Obviously it will not be possible to equilibrate arbitrarily large systems at arbitrarily
low temperatures with only a finite amount of computer time available. The crucial
ingredient for a good performance of the simulated annealing procedure will therefore
be the cooling protocol T(t) , where T is the temperature and t is a measure of the
computer time (e.g. number of Monte Carlo sweeps through the system). With the
help of the theory of Markov processes it has been shown that in principal cooling
protocols do exist with which simulated annealing finds the optimal solution of a
given (finite) problem in infinite time. These cooling protocols have the form

where a and b are positive constants that depend on the special problem. Practical
applications, of course, have to be finished in finite time and therefore prefer the
following empirical cooling protocols. The linear scheme (Fig. 11.3 left)

where a is the starting temperature and b the step size for decreasing the temperature
(usually 0.01 < b < 0.2); and the exponential scheme:

where again a is the starting temperature and b the cooling rate (usually 0.8 5 b <
0.999). For completeness we present a schematic listing of a simulated annealing
procedure:

a l go r i t hm simulated annealing
beg in

choose start configuration S ;
for t := 1 , . . . ,t,,, d o
beg in

set temperature T := T(t) ;
M o n t e Car lo(M(t) , T) at temperature T with M(t) steps;

e n d
e n d

The instruction M o n t e Ca r lo means that a Monte Carlo simulation at temperature
T with transition rates derived from the detailed balance in Eq. (5.15) with respect
to the equilibrium distribution (11.4) - as for instance the Metropolis (11.5) or heat-
bath (11.6) rules - has to be performed according to the general outline presented in
Sec. 5.1. In the right part of Fig. 11.3 a typical outcome of a cooling experiment is
shown. Since only a finite number M(t) of Monte Carlo steps is allowed it is crucial
to try to achieve a fast equilibration within this time window. In the next section we
present a Monte Carlo update procedure that is particularly helpful in this respect.

11 Monte Carlo Methods

11.3 Parallel Tempering

Within the context of the random-field Ising model, which we discussed in Chap. 6,
Marinari and Parisi [5] introduced a new stochastic optimization method, which they
called simulated tempering. This Monte Carlo scheme is based on the extension of the
canonical ensemble introduced in Chap. 5 by, for instance, a multiplicity of systems
at different temperature and is related to the so-called multi-canonical ensemble [6].
A very efficient and easy-to-use realization of a similar concept has been introduced
by Hukushima and Nemoto [7] and successfully applied t o the 3d spin glass model,
which we discussed in Chap. 9. They called it parallel tempering and it is particularly
useful for disordered systems that show glassy (i.e. very sluggish) low temperature
dynamics. The basic idea behind the parallel tempering is to perform several different
simulations simultaneously on the same system but a t different temperatures. From
time to time one swaps the states of the system in two of the simulations with a
certain probability. The latter is chosen such that the states of each system still obey
the Boltzmann distribution at the appropriate temperature. By swapping the states we
mean that one exchanges the configurations S (previously held at temperature T) and
S' (previously at TI). The benefit from this is that the higher-temperature simulation
helps the (previous) lower-temperature configuration to cross energy barriers in the
system. At higher-temperatures one crosses the barriers with relative ease, and when
it gets to the other side, we swap the states of the two systems, thereby carrying the
lower-temperature model across a barrier which it otherwise would not have been able
to cross.
For simplicity we consider only two simulations of the system at the same time, but
the concept can - and should - be generalized to many simultaneous simulations of
the system at different temperatures, which are not too far from each other in order to
get a sufficiently large overlap in the energy distribution of the state (we shall soon see
why). One simulation of the system is done at temperature TI, the other at T2 > TI.
The respective inverse temperatures are called Dl = l / k ~ T l and P 2 = l / lc~T2. The
Monte Carlo algorithm works as follows. We perform a conventional Monte Carlo
simulation with systems in parallel (which is done best on a parallel computer with
one CPU for one system, but it is of course also manageable on a serial machine) using
for instance a simple Metropolis update rule (11.5). But from time to time instead of
doing this we calculate the energy difference of the current state S1 and S2 of the two
simulations, A E = E2 - El, where El = X(S1) and E2 = X(S2), and we swap the
two spin configurations ([SI, S2] + [Sz, Sl]) with an acceptance probability

Here we use the notation [S, S'] to describe the state of the two combined systems:
first at temperature Tl in state S and second at temperature T2 in state St. These
transition rates for swapping fulfill detailed balance (5.15) with respect to the joint
equilibrium distribution function for the two systems

11.3 Parallel Tempering

which can easily be seen by observing that

The transition rates in the conventional Monte Carlo steps where we do not swap
states fulfill detailed balance anyway and they are also ergodic. Hence the combined
procedure fulfills detailed balance and is ergodic, and therefore both simulations will
after a sufficiently long time sample the Boltzmann distribution for this model at
temperature TI in the first system and temperature T2 in the second. The crucial
advantage is, again, that the T2 system helps the TI system to equilibrate faster:

a lgori thm Parallel tempering
begin

choose start configurations S1 and S 2 ;

for t := 1 , . . . ,t,,, d o
begin

Mon te Carlo(M, TI) for system 1;
Monte Carlo(M, T2) for system 2;
A E := Z(S2) - Z(S1);
if (A E < 0) t h e n

accept [Sl , S2] + [S2 , Sl] ;
else
begin

w := exp(-(PI - P2)AE);
generate uniform random number x E [0, I];
if (x < w) t h e n

accept [Sl , S21 + [S2,S1 I ;
end

e n d
end

One question is how often one should perform the swap moves (i.e. how large should
the parameter M in the above listing be). It is clear that it does not make sense to
try this too frequently, the high temperature system should have time to be carried
away from a local minimum, otherwise it is useless. To estimate the time needed for
this one could, for instance, calculate the normalized energy autocorrelation function

determine its correlation time r from CE(T) = e-lCE(0) and choose M > T. A
practical point concerning the swapping procedure is that obviously we do not need
to shuffle the configurations S1 and S2 from one array to the other, the same effect
is achieved by simply exchanging the temperatures Tl and T2 for the two systems.
Finally: We mentioned before that the method becomes particularly efficient if it is
done on a parallel computer (which is the origin of its name parallel tempering), where

262 I 1 Monte Carlo Methods

each node (or a block of nodes) simulates one copy of the system a t one temperature
out of not only two but many (typically 32 or so), see Fig. 11.4. Since the swapping
probabilities are exponentially small in the energy difference of the systems at two
different temperatures and because the average energy increases with the temperature
the different temperatures should not be too far from each other and one should swap
only between systems at neighboring temperatures. But, of course, the temperatures
also should not be chosen too close to each other if we want to find good approximations
to the lowest energy configurations, i.e. to reach as low temperatures as possible. A
good rule of thumb is, that one should achieve an acceptance ratio of 0.5 for the
swapping move for each pair of neighboring temperatures.

Figure 11.4: Parallel tempering with k different temperatures TI < T2 < . . . < Tk .
At each temperature a system is simulated using conventional Monte Carlo. From
time to time, configurations are exchanged between neighboring temperatures, such
that detailed balance is fulfilled.

11.4 Prune-enriched Rosenbluth Met hod (PERM)

In this section we will discuss an alternative Monte Carlo method that has been very
successful in finding the ground state of various lattice polymer models and other
things. Here we follow Grassberger [8] and Grassberger and Frauenkron [9]. To ex-
emplify the model we consider a lattice model for 6'-polymers, i.e. self-avoiding walks
(SAWS) with an additional nearest neighbor attractive interaction (see Fig. 11.5). In
the simplest model, each pair of nearest neighbors, which are not connected by a bond,
contributes the amount -t to the energy. On large scales it overrides the repulsion,
so that the typical configuration changes from an open "coil" to a dense "globule"
at finite temperatures. The ground state of course is a compact configuration that
is easy to find, but when we consider models of self-avoiding polymers with different
monomers that have attractive as well as repulsive interactions, as in the context of a
model-protein that we discuss in the next section, the problem of finding the ground
state becomes highly non-trivial.
The algorithm that has been proposed in [8] is based on two ideas going back to the
very first days of Monte Carlo simulations, the Rosenbluth-Rosenbluth method [lo]
and enrichment [ll]. Both are modifications of simple sampling in which a chain is
built by adding one new monomer after the other, placing it at a random neighbor

11.4 Prune-enriched Rosenbluth Method (PERM)

Figure 11.5: Lattice model of a 8-polymers with an additional nearest neighbor
attractive interaction E . The chain is grown by adding one monomer at a random
neighbor site of the last placed monomer indicated by open circles.

site of the last placed monomer. In order to obtain the correct statistics, an already
occupied neighbor should not be avoided, but any attempt to place the monomer at
such a place is punished by discarding the entire chain. This leads to an exponential
"attrition", which makes the method useless for long chains.
Rosenbluth and Rosenbluth [lo] observed that this exponential attrition can be strongly
reduced by simulating a biased sample, and correcting the bias by means of a weight
associated with each configuration. The biased sample is simply obtained by replacing
any "illegal" step, which would violate the self avoidance constraint, by a random
"legal" one, provided such a legal step exists. More generally, assume we want to
simulate a distribution in which each configuration S is weighted by a (Boltzmann-)
weight Q(S), so that for any observable A one has (A) = Cs A(S)Q(S)/ C , Q(S). If
we sample unevenly with probability p(S), then we must compensate this by giving a

weight W(S) Q(S)Ip(S),

1
M

(A) = lim Cfli A(si)Q(si) /p(s i) = 1 - c A(s i)w(s i) ,
- (11.14)

M+oo xz1 Q(Si)/p(Si) i=l

This is called the generalized Rosenbluth method. If p(S) were chosen close to Q(S),
this would lead to importance sampling and obviously would be very efficient. But in
general this is not possible, and Eq. (11.14) suffers from the problem that the sum is
dominated by very few events with high weight.
Consider now a lattice chain of length N + 1 with self avoidance and with nearest
neighbor interaction - E between unbonded neighbors. In the original Rosenbluth
method, p(S) is then a product,

where m, is the number of free neighbors in the n-th step, i.e. the number of possible
lattice sites where t o place the n-th monomer (monomers are labeled n = 0 ,1 , . . . N).

11 Monte Carlo Methods

Similarly, Q(S) is a product,

n-1 where = l / k T and En = -t C k = O Akn is the energy of the n-th monomer in the
field of all previous ones (Akn = 1 if and only if monomers k and n are neighbors and
non-bonded, otherwise Akn = 0).
Obviously, p(S) favors compact configurations where monomers have only few free
neighbors. This renders the Rosenbluth method unsuitable for long chains, except
near the collapse ("theta") point where simulations with N < 1000 are feasible on the
simple cubic lattice [12]. In general we should find ways to modify the sampling so
that "good" configurations are sampled more frequently, and "bad" ones less. The key
to this is the product structure of the weights (with w, = m,e-BE- 1

implied by Eqs. (11.15) and (11.16). Here, ZN = M-I cE, Q(Sk)/p(Sk) is an esti-
mate of the partition sum. A similar product structure holds in practically all inter-
esting cases.
We can thus watch how the weight builds up while the chain is constructed step by
step. If the partial weight (from now on we drop the dependence on S)

gets too large (i.e. is above some threshold W+), we replace the configuration by k
copies, each with weight Wn/k. Growth of one of these copies is continued, all others
are placed on a stack for later use. As a consequence, configurations with high weight
are simulated more often. To account for this and to keep the final result correct,
the weight is reduced accordingly. The whole idea is applied recursively. Following
Ref. [ll] we call this enrichment. The opposite action, when W, falls below another
threshold W (pruning), is done stochastically: with probability 112 the configuration
is killed and replaced by the top of the stack, while its weight is doubled in the other
half of cases.
In this way PERM (the pruned-enriched Rosenbluth method [8]) gives a sample with
exactly the right statistical weights, independently of the thresholds w*, the selection
probability p(S) , and the clone multiplicity k. But its efficiency depends strongly on
good choices for these parameters. Notice that one has complete freedom in choosing
them, and can even change them during a run. Fortunately, reasonably good choices
are easy to find (more sophisticated choices needed at very low temperatures are
discussed in Refs. [13, 141). The guiding principle for p(S) is that it should lead as
closely as possible to the correct final distribution, so that pruning and enrichment are
kept t o a minimum. This is also part of the guiding principles for Wi. In addition, W+
and W- have to be chosen such that roughly the same effort is spent on simulating any

11.4 Prune-enriched Rosenbluth Method (PERM) 265

part of the configuration. For polymers this means that the sample size should neither
grow nor decrease with chain length n. This is easily done by adjusting W+ and W -
"on the fly". We now show a listing for the central part of the PERM algorithm (after
[8]) , x denotes the current position of the head of the chain and n the current chain
length:

procedure PERM-Step (x, n)
begin

choose x1 near x w density p(xl-x); simplest case: p(x) = l/m,61,1,1
w, := cnp(xl - x) ~ ' exp(-E(xl)/kBT); if c,=const.+grand canonical
Wn := W n - l ~ , ;
begin do statistics

2, := 2, + W,; partition function
R2, := R2, + x12 w,; end-to-end distance
t := t + 1; total number of subroutine calls
etc.

end
if n < N,,,, and W, > 0 then
begin

W+ := c+Z,/Z1; adaption of W+ (optional)
W- .- - .- c Z,/Z1; adaption of W- (optional)
if W, > W+ then
begin

W, := WJ2;
PERM-Step(xl, n + 1);
PERM-Step(xl, n + 1);

end
else if W, < W- then
begin

Wn := W, * 2;
draw E uniform E [0, I];
if ([< l /2) then

PERM-Step(xl, n + 1);
end
else

PERM-Step(xl, n + 1);
end
return

end

enrichment!

prune w. prob. 1/2

normal Rosenbluth step

The subroutine PERM-Step is called from the main routine with arguments x = 0,
n = 1. W,, c,, Z, and R2, are global arrays indexed by the chain length. W, is
the current weight, c, a reweighting factor, which allows the simulation of different
statistical ensembles, Zn the estimate of the partition function and R2, the sum of
the mean squared end-to-end distance, i.e. R2,/Zn is the average. N,,,, t , c+ and

266 11 Monte Carlo Methods

cp, are global scalar variables, where N,,, is the maximum chain length, t counts
the total number of subroutine calls and c+/c- control the adaptation of the weights.
Without adaptation, the lines involving c+ and c- can be dropped, and then W+
and W - are global scalars. In more sophisticated implementations, p, c+ and c will
depend on n and/or on the configuration of the monomers with indices n' < n. Good
choices for these functions may be crucial for the efficiency of the algorithm, but are
not important for its correctness. To compute the energy E (x l) of the newly placed
monomer in the field of the earlier ones, one can use either bit maps (in lattice models
with small lattices), hashing or neighbor lists. If none of these are suitable, E (x l) has
to be computed as an explicit sum over all earlier monomers.
In selecting the good and killing the bad, PERM is similar to evolutionary and ge-
netic algorithms [15], see Chap. 8, to population based growth algorithms for chain
polymers [16, 17, 18, 191, to diffusion type quantum Monte Carlo algorithms [20],
and to the "go with the winners" strategy of Ref. [21]. The main difference with
the first three groups of methods is that one does not keep the entire population of
instances simultaneously in computer memory. Indeed, even on the stack one does
not keep copies of good configurations but only the steps involved in constructing the
configurations and flags telling us when to make a copy [8]. In genetic algorithms,
keeping the entire population in memory is needed for cross-overs, and it allows a one-
to-one competition between instances. But in our case this is not needed since every
instance can be compared with the average behavior of all others. The same would
be true for diffusion type quantum Monte Carlo simulations. The main advantage of
our strategy is that it reduces computer memory enormously. This, together with the
surprisingly easy determination of the thresholds w*, could make PERM also a very
useful strategy for quantum Monte Carlo simulations.

11.5 Protein Folding

Protein folding [22] is one of the outstanding problems in mathematical biology. It is
concerned with the problem of how a given sequence of amino acids assumes precisely
that geometrical shape which is biologically useful. Currently it is much easier to
find coding DNA (and, thus, amino acid) sequences than to find the corresponding
structures. Thus, solving the folding problem would be a major break-through in un-
derstanding the biochemistry of the cell, and in designing artificial proteins. In this
section we present only the most straightforward direct approach: given a sequence,
a molecular potential and no other information, find the ground state and the equi-
librium state at physiological temperatures. Note that we are not concerned with the
kinetics of folding, but only in the final outcome. Also, we will not address the prob-
lems of how to find good molecular potentials, and what is the proper level of detail
in describing proteins. Instead, we discuss simple coarse-grained models which have
been proposed in the literature and have become standards in testing the efficiency of
folding algorithms.
The models we discuss are heteropolymers which live on 3d or 2d regular lattices. They
are self-avoiding chains with attractive or repulsive interactions between neighboring

11.5 Protein Folding 267

non-bonded monomers. These interactions can have continuous distributions [23], but
the majority of authors have considered only two kinds of monomers. In the HP model
[24, 251 they are hydrophobic (H) and polar (P) , with (eHH, EHP, ePP) = - (I , 0,O).
Since this leads to highly degenerate ground states, alternative models were proposed,
e.g. Z = -(3,1,3) [26] and E'= -(1,0,1) [27].
The algorithms that were applied in [28, 291 were variants of the pruned-enriched
Rosenbluth method (PERM) described in the last section and we present here a few
of the impressive results obtained in this way, improving substantially on previous
work.

2d HP model

Two chains with N = 100 were studied in [30]. The authors claimed that their native
configurations were compact, fitting exactly into a 10 x 10 square, and had energies
-44 and -46:
Sequence 1:
P6HPH2PsH3PH5PH2P2(P2H2)2PH5PH10PH2PH7PllH7P2HPH3P6HPH2
Sequence 2:
P3H2P2H4P2H3(PH2)3H2PsH6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P~H3

In Fig. 11.6 we show the the respective proposed ground-state structures. These con-
formations were found by a specially designed MC algorithm which was claimed to be
particularly efficient for compact configurations. We do not discuss the method here.
For these two HP chains by applying the PERM algorithm at low temperatures, Grass-
berger et al. [29] found (within ca. 40 hours of CPU time) several compact states that
had energies lower than those of the compact putative ground states proposed in [30],
namely with E = -46 for sequence 1 and E = -47 for sequence 2. Moreover, they
found (again within 1-2 days of CPU time) several non-compact configurations with
energies even lower: E = -47 and E = -48 for sequences 1 and 2, respectively.
Forbidding non-bonded HP pairs, Grassberger et al. [28, 291 obtained even E = -49
for sequence 2. Figure 11.6 shows representative non-compact structures with these
energies. These results reflect the well-known property that HP sequences (and those
of other models) usually have ground states that are not maximally compact, see, e.g.
[31], although there is a persistent prejudice to the contrary [27, 30, 321.

3d modified HP model

A most interesting case is a 2-species 80-mer with interactions (-1,0, -1) studied first
in [27]. These particular interactions were chosen instead of the HP choice (-1,0,0)
because it was hoped that this would lead to compact configurations. Indeed the
sequence [27, 331

was specially designed to form a "four helix bundle" which fits perfectly into a 4 x 4 x 5
box, see Fig. 11.7. Its energy in this putative native state is -94. Although the authors

268 11 Monte Carlo Methods

Figure 11.6: Top: Putative compact native structure of sequence 1 (left) with E =

-44 and sequence 2 (right) with E = -46 according to [30]; (filled circle) H monomers,
(open circle) P monomers. Bottom: One of the (non-compact) lowest energy sequences
for sequence 1, left, with E = -47 and sequence 2, right, with E = -49.

of [27] used highly optimized codes, they were not able to recover this state by MC.
Instead, they reached only E = -91. Supposedly a different state with E = -94 was
found in [30], but figure 10 of this paper, which it is claimed shows this configuration,
has a much higher value of E. Configurations with E = -94 but slightly different from
that in [27] and with E = -95 were found in [33] by means of an algorithm similar to
that in [30]. For each of these low energy states the author needed about one week of
CPU time on a Pentiurn.

Grassberger et al. [28, 291 applied the PERM algorithm to the aforementioned system.
Evcn without much tuning the algorithm gave E = -94 after a few hours, but it did
not stop there. After a number of rather disordered configurations with successivcly
lower encrgics, the final candidate for the native state has E = -98. It again has a

11.5 Protein Folding

Figure 11.7: Putative native state of thc "four helix bundle" sequence, as proposed
by O'Toole and A. Panagiotopoulos [27]. It has E = -94, fits into a rectangular box,
and consists of three homogeneous layers. Structurally, it can be interpreted as four
helix bundles.

Figure 11.8: Conformation of the "four helix bundle" sequence with E = -98.
Grassberger et al. [28, 291 proposed that this is the actual ground state. Its shape is
highly symmetric although it does not fit into a rectangular box. It is not degenerate
except for a flipping of the central front 2 x 2 x 2 box.

highly symmetric shape, although it does not fit into a 4 x 4 x 5 box, see Fig. 11.8.
It has two-fold degeneracy (the central 2 x 2 x 2 box in the front of Fig. 11.8 can be
flipped), and both configurations were actually found in the simulations. The optimal

2 70 11 Monte Carlo Methods

temperature for the ground-state search in this model is P = l / k T = 2.0.
A surprising result is that the monomers are arranged in four homogeneous layers
in Fig. 11.8, while they had formed only three layers in the putative ground state
of Fig. 11.7. Since the interaction should favor the segregation of different type
monomers, one might have guessed that a configuration with a smaller number of layers
should be favored. We see that this is outweighed by the fact that both monomer types
can form large double layers in the new configuration. Again, our new ground state
is not "compact" in the sense of minimizing the surface, and hence it also disagrees
with the widespread prejudice that native states are compact.
To classify a ground state, one can also just consider which pairs of monomers are
adjacent to each other, i.e. abstract from the full spatial structure. The resulting
relation is called a secondary structure and can be written in form of a contact matrix.
In terms of secondary structure, the new ground state is fundamentally different from
the putative ground state of Ref. [30]. While the new structure (Fig. 11.8) is dominated
by so called /? sheets, which can most clearly be seen in the contact matrix, the
structure in Fig. 11.7 is dominated by helices.
This example demonstrates that the pruned-enriched Rosenbluth method can be very
effectively applied to protein structure prediction in simple lattice models. It is suited
for calculating statistical properties and is very successful in finding native states. In
all cases it did better than any previous MC method, and in many cases it found
lower states than those which had previously been conjectured to be native.

Bibliography

[l] G. Dueck and T . Scheuer, J. Comp. Phys. 90, 161 (1990)

[2] G. Dueck, J. Comp. Phys. 104, 86 (1993)

[3] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983)

[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J.
Chem. Phys. 21, 1087 (1953)

[5] E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992)

[6] B. Berg and T . Neuhaus, Phys. Lett B 267, 249 (1991); Phys. Rev. Lett. 68, 9
(1992)

[7] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996)

[8] P. Grassberger, Phys. Rev. E 56, 3682 (1997)

[9] P. Grassberger and H. Frauenkron, in: P. Grassberger, G.T. Barkema, and W.
Yadler. (ed.), Workshop on Monte Carlo Approach to Biopolymers and Protein
Folding, (World Scientific, Singapure 1998)

[lo] M.N. Rosenbluth and A.W. Rosenbluth, J. Chem. Phys. 23, 356 (1955)

Bibliography

[ll] F.T. Wall and J.J. Erpenbeck, J. Chem. Phys. 30, 634, 637 (1959)

[12] W. Bruns, Macromolecules 17, 2826 (1984) .

[13] H. Frauenkron, U. Bastolla, E. Gerstner, P. Grassberger, and W. Nadler, in: P.
Grassberger, G.T. Barkema, and W. Nadler. (ed.), Workshop on: Monte Carlo
Approach to Biopolymers and Protein Folding, (World Scientific, Singapure 1998)

[14] U. Bastolla and P. Grassberger, in: P. Grassberger, G.T. Barkema, and W.
Nadler. (ed.), Workshop on: Monte Carlo Approach to Biopolymers and Protein
Folding, (World Scientific, Singapure, 1998)

[15] J . Holland, Adaptation in Natural and Artificial Systems, (The University of
Michigan, Ann Arbor, MI 1992)

[16] T. Garel and H. Orland, J. Phys. A 23, L621 (1990)

[17] P.G. Higgs and H. Orland, J. Chem. 95, 4506 (1991)

[18] B. Velikson, T . Garel, J.-C. Niel, H. Orland, and J.C. Smith, J. Comput. Chem.
13, 1216 (1992)

[19] H. Orland, in: P. Grassberger, G.T. Barkema, and W. Nadler. (ed.), Workshop
on: Monte Carlo Approach to Biopolymers and Protein Folding, (World Scientific,
Singapure, 1998)

[20] C.J. Umrigar, M.P. Nightingale, and K.J. Runge, J. Chem. Phys. 99, 2865 (1993)

[21] D. Aldous and U. Vazirani, in: Proc. 35th IEEE Sympos. on Foundations of
Computer Science (1994)

[22] T.E. Creighton (ed.), Protein Folding, (Freeman, New York, 1992)

[23] D.K. Klimov and D. Thirurnalai, Prpteins: Struct., Fnct. Gen. 26, 411 (1996);
sequences are available from http://www.glue.umd.edu/ klimov.

[24] K.A. Dill, Biochemistry 24, 1501 (1985)

[25] K.F. Lau and K.A. Dill, Macromolecules 22, 3986 (1989); J. Chem. Phys. 95,
3775 (1991); D. Shortle, H.S. Chan, and K.A. Dill, Protein Sci. 1, 201 (1992)

[26] N.D. Socci and J.N.Onuchic, J. Chem. Phys. 101, 1519 (1994)

[27] E. O'Toole and A. Panagiotopoulos, J. Chem. Phys. 97, 8644 (1992)

[28] H. Frauenkron, U. Bastolla, E. Gerstner, P. Grassberger, and W. Nadler, Phys.
Rev. Lett. 80 3149 (1998)

[29] U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, and W. Nadler, Proteins:
Struct., Fnct., Gen. 32, 52 (1998)

272 11 Monte Carlo Methods

[30] R. Ramakrishnan, B. Ramachandran, and J.F. Pekney, J. Chem. Phys. 106, 2418
(1997)

[31] K. Yue K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I. Shakhnovich, and K.A. Dill,
Proc. Natl. Acad. Sci. USA 92, 325 (1995)

[32] E.I. Shakhnovich and A.M. Gutin, J. Chem. Phys. 9 3 5967 (1990); A.M. Gutin
and E.I. Shakhnovich, J. Chem. Phys. 98 8174 (1993)

[33] J.M. Deutsch, J. Chem. Phys. 106, 8849 (1997)

12 Branch-and-bound Methods

As we have already seen in Chaps. 2 and 3, it seems to be impossible to invent an
algorithm which solves an NP-hard problem in polynomial time. Methods only exist
where the worst-case running time increases exponentially with the size of the system,
where the size is measured by the minimal length of a string you need to encode the
problem for a computer.
Recently, NP-hard problems have reattracted a lot of attention in both communi-
ties of physicists and theoretical computer scientists. The reason is that instead of
studying the worst-case complexity, the problems are now considered for ensembles
of random instances usually characterized by only a few parameters. Examples for
such parameters are the relative number a of clauses in a boolean CNF formula with
respect to the number of different variables (see Chap. 2) or the number c = M / N of
edges M divided by the number Nof vertices for a graph. It turns out that, although
the worst-case time complexity is always exponential, the typzcal-case complexity in
the random ensembles may depend on the parameters. This means there are regions
in parameter space where the instances can be solved typically in polynomial time,
while in other regions typical instances indeed require exponential time. This view-
point is more suitable for studying real-world optimization problems, rather than the
academic approach of investigating worst-case behavior. For this reason, the inter-
est in the computer-science community in this subject is currently increasing. An
introduction to the field can be found in [I].
Physicists are interested in such types of problems for two further reasons. First, the
change in the typical-case complexity coincides with phase transitions on the random
ensembles. Thus, we have a phenomenon which is quite familiar t o physicists. Second,
it turns out that with analytical methods originating from statistical physics, it is very
often possible to obtain much more information or even more accurate results than by
applying traditional mathematical approaches.
In this chapter, the (for most physicists) new subject will be introduced via a presen-
tation of the vertex-cover (VC) problem. Other problems, where statistical physics
methods have been applied recently, are the K-SAT problem [2] and the number-
partitioning problem [3], for a review see R.ef. 14, 51.
The chapter is organized as follows. First some basic definitions are given. Next, three
algorithms for solving VC are presented. Some basic results are shown in the third
section.

12 Branch-and-bound Methods

12.1 Vertex Covers

The vertex-cover problem is an NP-hard problem from graph theory, its basic definition
has already been introduced briefly in Chap. 3. Here, we recall the definition and
introduce further notions.
Vertex covers are defined as follows. Take any undirected graph G = (V, E) with N
vertices i E V = (1, 2, ..., N) and M edges (i, j) E E c V x V. Please note that in
this case (i, j) and (j , i) denote both the same edge. We consider subsets V,, c V.
The set V,, is a vertex cover zfl for all edges (i, j) E V a t least one of its endpoints is
a member of the set: i E V,, or j E V,,. Also please note that V,, = V is always a
vertex cover. Furthermore, vertex covers are not unique. For example, for each vertex
i E V, the set V,, = V \ {i) is a vertex cover as well.
The term "covered' will be used in several circumstances later on. The vertices i
with i E V,, are called covered, and uncovered for i 4 V,,. One can imagine that
some covering marks are placed a t the vertices belonging to V,,. Analogously, an edge
(i, j) E E is called covered iff a t least one of its end-vertices is covered, i E V,, or
j E V,,. Thus, comparing with the definition given above, the set V,, is a vertex cover
iff all edges of the graph are covered. In this case, the graph is called covered as well.

Example: Vertex cover

Please consider the graph shown in the left half of Fig. 12.1. Vertices 1 and 2
are covered (V., = {1,2)), while the other vertices 3 , 4 , 5 and 6 are uncovered.
Thus, edges (1,3), (1,4) and (2,3) are covered while edges (3,4), (3,5), (4,6)
and (5,6) are uncovered. Hence, the graph is not covered.
In the right half of Fig. 12.1 also vertices 4 and 5 are covered. Thus, edges
(3,4), (3,5), (4,6) and (5,6) are now covered as well. This means all edges
are covered, i.e. the graph is covered by Vu, = {1,2,4,5), thus V,, is a vertex
cover. 0

Figure 12.1: Graphs and covers. Covered vertices are shown in bold and
dark, covered edges are indicated by dashed lines. Left: a partially covered
graph. Vertex 1 and 2 are covered. Thus, edges (1,3), (1,4), and (2,3) are
covered. Right: by also covering also vertices 4 and 5, the graph is covered.

12.1 Vertex Covers 275

The vertex-cover decision problem asks whether there are VCs of fixed given cardinality
X = 1V,,1, we define x = X/N. In other words we are interested if it is possible to
cover all edges of G by covering x N suitably chosen vertices, i.e. by distributing x N
covering marks among the vertices. To measure the extent a graph is not covered, we
introduce an energy e(G, x) = E(G, x) /N with

E(G, x) = rnin{number of uncovered edges when covering xNvertices) (12.1)

Thus, a graph G is coverable by X N vertices if e(G, x) = 0. This means that you can
answer the VC decision problem by first solving a minimization problem, and then
testing whether the minimum e(G, x) is zero or not.
For the preceding case, the energy was minimized with fixed X . The decision problem
can also be solved by solving another optimization problem: for a given graph G it asks
for a minimum vertex cover V,,, i.e. a vertex covcr of minimum size X,(G) = /V,,/.
Thus, here the number of vertices in the vertex cover is minimized, while the energy
is kept a t zero. The answer to the vertex cover decision problem is "yes", if X > X,.

(1) Also minimum vertex covers may not be unique. In case several vertex covers V,, ,
. . ., vJ(,K) exist, each with the same cardinality X (not necessarily minimum vertex
covers), a vertex i is called a backbone vertex, if it is either a member of all covers

(k) (Vk = 1 , . . . , K : i E V,,,) or else a member of no cover (Vk = 1,. . . , K : i 6 v::)).
These vertices can be regarded as frozen in all vertex-cover configurations. All other
vertices are called non-backbone vertices.

Example: Minimum vertex cover

For the graph from Fig. 12.1, in Fig. 12.2 all three minimum vertex covers
(X, = 3) are shown. Vertices 2 (always uncovered) and 3 (always covered)
belong to the backbone, while all other vertices are non-backbone.

It is straightforward to show that vertex 3 must be a member of all minimum
vertex covers. Assume that vertex 4 is not covered. Since all edges have to
be covered, for all edges incident to vertex 3, the second end vertices have to
be covered. Thus, vertices 1 , 2 , 4 and 5 have to be covered, i.e. more vertices
than in the minimum vertex cover, which has size X, = 3.

In order to be able to speak of typical or average cases, we have to introduce an
ensemble of graphs. We investigate random graphs G N , , ~ with N vertices and cN
edges (i, j) which are drawn randomly and independently. For a complete introduction
to the field see [6]. One major result is that for small concentrations c < 0.5, each graph
breaks up into small components, where the size N,,, of the largest components is of
the order O(ln N). This means that the fraction N,,,/N of the vertices in the largest
component converges with increasing graph size as In N / N to zero. For concentrations
c larger than the critical concentration c,,it = 0.5, a finite fraction of all vertices are
collected in the largest component, called the giant component. One says the graph
percolates, c,,it is called the percolation threshold.

12 Branch-and-bound Methods

Figure 12.2: All three minimum vertex covers of the graph from the preceding
example.

Turning back to VC, when the number x N of covering marks is increased (c is kept
constant), the model is expected to undergo an uncoverable-coverable transition. Being
able only to cover a small number x N of vertices, it is very unlikely that one will be
able to cover all edges of a random graph. With increasing size of the cover set this
will be become more and more likely, while for X = N it is certain that all edges are
covered. For a given graph G, wc will denote the minimum fraction of covered vertices
necessary to cover the whole graph by x,(G) = X,(G)/N. The value of x,(G)N is
related to the energy e(G, z), it is just the smallest number x where the energy e(G)
vanishes. The average of e(G) over all random graphs as a function of x, will be
denoted e(x). Later we will see that by taking the thermodynamic limit N + oo the
size x, = X,/N of the minimum cover set will only depend on the concentration c of
the edges, i.e. x, = x,(c).
Using probabilistic tools, rigorous lower and upper bounds for this threshold [7]
and the asymptotic behavior for large connectivities [8] have been deduced. Recently,
the problem has investigated using a statistical physics approach [9] and the results
have been improved drastically. Up to an average concentration c = e/2 E 1.359 the
transition line is given exactly by

where W(c) is the Lambert-W-function defined by W(c) exp(W(c)) = c. The transi-
tion along with the bounds is shown in the phase diagram in Fig. 12.3. For z > x,(c),
the problem is coverable with probability one, for x < x,(c) the available covering
marks arc not sufficient. For higher connectivities no exact result for x,(c) could
be obtained, but the result given by Eq. 12.2 is a good approximation, unless c
grows too large. Please note that the region, where the exact result has been ob-
tained, extends fairly well into the percolating regime, since the percolation threshold
is c,,it = 0.5 < 1.359.
In Sec. 12.3, the analytic result is compared with data from numerical simulations, we
will see that the agreement is amazing. But before we do that, in the next section,
some algorithms to solve the VC are presented.

12.2 Numerical Methods

0.6 1 Cob

UNCOV

Figure 12.3: Phase diagram. Fraction x,(c) of vertices in a minimal vertex cover as
a function of the average connectivity c. For x > z,(c), almost all graphs have covers
with X N vertices, while they have almost definitely no cover for z < z,(c). The solid
line shows the result from statistical physics. The upper bound of Harant is given by
the dashed line, the bounds of Gazmuri by the dash-dotted lines. The vertical line is
at c = e / 2 z 1.359.

12.2 Numerical Met hods

In this section, two exact numerical methods to solve the vertex-cover problem are
presented. Please note that there are two ways to treat the problem. First, you can
look only for minimum vertex covers, i.e. you ask for the minimum number x,(G)N
of vertices you have to cover for a given graph G to ensure that all edges of G are
covered. The second way is to fix an arbitrary number X = XN of vertices to be
covered and ask for the maximum number of edges (or minimum number of uncovered
edges) which can be covered under that restriction. We always present the algorithms
in a way that they are suitable for the first kind of problem. Afterwards, how the
methods can be changed to treat problems of the second kind is outlined.
Before explaining the exact algorithms, we first introduce a fast heuristic, which is
utilized within both exact methods. The heuristic can be applied stand-alone as well.
In this case only an approximation of the true minimum vertex cover is calculated,
which is found to differ only by a few percent from the exact value. All methods can
easily be implemented via the help of the LEDA library [lo] which offers many useful
data types and algorithms for linear algebra and graph problems.
The basic idea of the heuristic is to cover as many edges as possible by using as few

278 12 Branch-and-bound Methods

vertices as are necessary. Thus, it seems favorable to cover vertices with a high degree.
This step can be iterated, while the degree of the vertices is adjusted dynamically by
removing edges which are covered. This leads to the following greedy algorithm, which
returns an approximation of the minimum vertex cover V,,, the size /V,,I is an upper
bound of the true minimum vertex-cover size:

a lgor i thm greedy-cover(G)
begin

initialize V,, = 0;
while there are uncovered edges d o
begin

take one vertex i with the largest current degree di;
mark i as covered: V,, = V,, U {i);
remove from E all edges (i , j) incident to i ;

end ;
return(V,,);

e n d

Example: Heuristic

To demonstrate, how the heuristic operates, we consider the graph shown in
Fig. 12.4. In the first iteration, vertex 3 is chosen, because it has degree 4,
which is the largest in the graph. The vertex is covered, and the incident edges
(1,3), (2,3), (3,4) and (3,5) are removed. Now, vertices 6 and 7 have the
highest degree 3. Wc assume that in the second iteration vertex 6 is covered
and vertex 7 in the third iteration. Then the algorithms stops, because all
edges are covered.

0

In the preceding example we have seen that the heuristic is sometimes able to find a
true minimum vertex cover. But this is not always the case. In Fig. 12.5 a simple
counter example is presented, where the heuristic fails to find the true minimal vertex
cover. First the algorithm covers the root vertex, because it has degree 3. Thus, three
additional vertices have to be subsequently covered, i.e. the heuristic covers 4 vertices.
But, the minimum vertex cover has only size 3, as indicated in Fig. 12.5.
The heuristic can be easily altered for the case where the number X of covered vertices
is fixed and it is asked for a minimum number of uncovered edges. Then the iteration
has t o stop as well, when the size of the cover set has reached X. In case a vertex
cover is found, before X vertices are covered, arbitrary vertices can be added to the
vertex-cover set V,, until IV,,I = X.
So far we have presented a simple heuristic to find approximations of minimum vertex
covers. Next, two exact algorithms are explained: divide-and-conquer and branch-
and-bound, which both incorporate the heuristic to gain a high efficiency. Without
the heuristic, the algorithms would still be exact, but slower running.

12.2 Numerical Methods

Figure 12.4: Example of the cover heuristic. Upper left: initial graph. Upper
right: graph after the first iteration, vertex has been covered (shown in bold) and the
incident edges removed (shown with dashed line style). Bottom: graph after second
and third iteration.

The basic idea of both methods is as follows, again we are interested first in a VC
of minimum size: as each vertex is either covered or uncovered, there are 2 N pos-
sible configurations which can be arranged as leafs of a binary (backtracking) tree,
see Fig. 12.6. At each node, the two subtrees represent the subproblems where the
corresponding vertex is either covered ("left subtree") or uncovered ("right subtree").
Vertices, which have not been touched at a certain level of the tree are said to be free.
Both algorithms do not descend further into the tree when a cover has been found,
i.e. when all edges are covered. Then the search continues in higher levels of the tree
(backtracking) for a cover which possibly has a smaller size. Since the number of
nodes in a tree grows exponentially with system size, algorithms which are based on
backtracking trees have a running time which may grow exponentially with the system
size. This is not surprising, since the minimal-VC problem is NP-hard, so all exact

12 Branch-and-bound Methods

Figure 12.5: A small sample graph with minimum vertex cover of size 3. The vertices
belonging to the minimum V,, are indicated by darklbold circles. For this graph the
heuristic fails to find the true minimum cover, because is starts by covering the root
vertex, which has the highest degree 3.

uncovered

Figure 12.6: Binary backtracking tree for the VC. Each node of the backtracking tree
corresponds to a vertex which is either covered ("left subtree") or uncovered ("right
subtree").

methods exhibit an exponential growing worst-case time complexity.

To decrease the running time, both algorithms make use of the fact that only full
vertex covers are to be obtained. Therefore, when a vertex i is marked uncovered, all
neighboring vertices can be covered immediately. Concerning these vertices, only the
left subtrees are present in the backtracking tree.

12.2 Numerical Methods 281

The divide-and-conquer [Ill approach is based on the fact that a minimum VC of a
graph, which consists of several independent connected components, can be obtained
by combining the minimum covers of the components. Thus, the full task can be
split into several independent tasks. This strategy can be repeated at all levels of the
backtracking tree. At each level, the edges which have been covered can be removed
from the graph, so the graph may split into further components. As a consequence,
below the percolation threshold, where the size of the largest components is of the
order O(ln N), the algorithm exhibits a polynomial running time. The divide-and-
conquer approach reads as below, the given subroutine is called for each component
of the graph separately, it returns the size of the minimum vertex cover, initially all
vertices have state free.

a l go r i t hm divide-and-conquer(G)
beg in

take one free vertex i with the largest current degree di;

mark i as covered; c o m m e n t left subtree
sizel := I ;
remove from E all edges (i, j) incident to i ;
calculate all connected components {Ci) of graph built by free vertices;
for all components Ci d o

sizel := sizel+ divide-and-conquer(Ci);
insert all edges (i , j) which have been removed;

mark i as uncovered; c o m m e n t right subtree;
sizes := 0;
for all neighbors j of i d o
beg in

mark j as covered
remove from E all edges (j, k) incident to j;

e n d
calculate all connected components {C,);
for all components Ci d o
size2 := sizea+ divide-and-conquer(Ci) ;

for all neighbors j of i d o
mark j as free

insert all edges (j, k) which have been removed;

mark i as free;
if sizel < size2 t h e n

re turn(s ize l) ;
else

return(size2);
e n d

12 Branch-and-bound Methods

left subtree right subtree

Figure 12.7: Example of how the divide-and-conquer algorithm operates. Above the
graph is shown. The vertex i with the highest degree is considered. In the case where
it is covered (left subtree), all incident edges can be removed. In the case where it
is uncovered, (right subtree) all neighbors have to be covered and all edges incident
to the neighbors can be removed. In both cases, the graph may split into several
components, which can be treated independently by recursive calls of the algorithm.

The algorithm can be easily extended to record the cover sets as well or to calculate
the degeneracy. In Fig. 12.7 an example is given of how the algorithm operates.
The algorithm is able to treat large graphs deep in the percolating regime. We have
calculated for example minimum vertex covers for graphs of size N = 560 with average
edge density c = 1.3
For average edge densities larger than 4, the divide-and-conquer algorithm is too slow,
because the graph only rarely splits into several components. Then a branch-and-
bound approach [12, 13, 141 is favorable. It differs from the previous method by
the fact that no independent components of the graph are calculated. Instead, some
subtrees of the backtracking tree are omitted by introducing a bound, this saves a
lot of running time. This is achieved by storing three quantities, assuming that the
algorithm is currently at some node in the backtracking tree:

0 The best size of the smallest vertex cover found in subtrees visited so far (initially
best = N).

0 X denotes the number of vertices which have been covered in higher levels of the
tree.

Always a table of free vertices ordered in descending current degree di is kept

12.2 Numerical Methods 283

Thus, to achieve a better solution, a t most F = best - X vertices can be covered
additionally in a subtree of the current node. This means it is not possible to cover

F more edges, than given by the sum D = E l = , dl of the F highest degrees in the
table of vertices, i.e. if some edges remain uncovered, the corresponding subtree can
be omitted for sure. Please note that in the case that some edges run between the
F vertices of the highest current degrce, then a subtree may be entered, even if it
contained no smaller cover.
The algorithm can be summarized as follows below. The size of the smallest cover is
stored in best, which is passed by reference (i.e. the variable, not its value is passed).
The current number of covered vertices is stored in variable X , please remember G =

(V, El:

a lgo r i t hm branch-and-bound(G, best, X)
beg in

if all edges are covered t h e n
beg in

if X < best t h e n best := X
r e t u r n ;

end ;
F calculate F = best - X ; D = El=, dl;

if D < number of uncovered edges t h e n
r e t u r n ; c o m m e n t bound;

take one free vertex i with the largest current degree di;
mark i as covered; c o m m e n t left subtree
X := X + 1;
remove from E all edges (i, j) incident to i ;
branch-and-bound(G, best, X) ;
insert all edges (i, j) which have been removed;
X := X - 1;
if (X > number of current neighbors) t h e n
beg in c o m m e n t right subtree;

mark i as uncovered;
for all neighbors j of i d o
beg in

mark j as cowered; X := X + 1;
remove from E all edges (j , k) incident to j ;

e n d ;
branch-and-bound(G, best, X) ;
for all neighbors j of i d o

mark j as free; X := X - 1;
insert all edges (j, k) which have been removed;

end ;
mark i as free;
r e t u r n ;

e n d

12 Branch-and- bound Methods

Example: Branch-and-bound algorithm

Here we consider again the graph from Fig. 12.4. During the first descent
into the backtracking tree, the branch-and-bound algorithm operates exactly
like the heuristic. Iteratively vertices of highest current degree are taken,
covered, and the incident edges removed. The recursion stops the first time
when the graph is covered. This situation is shown in Fig. 12.2, where the
graph and the corresponding current backtracking tree are displayed. Since
X = 3 vertices have been covered, best := 3.

Figure 12.8: Example of the branch-and-bound algorithm. Result after
the first full cover has been found. Left: graph, right: backtracking tree.
In the graph, covered vertices are shown by bold and dark circles, covered
edges indicated by dashed lines. The current node of the backtracking trcc
is highlighted as well, c=covered.

Then the algorithms returns to the preceding level of the backtracking tree.
Vertex 7 is uncovered. Thus, since only full covers of the graph are desired, all
its neighbors must be covered, namely vertices 5, 9 and 11. Again a cover of
the whole graph has been obtained. Now X = 4 vertices have been covered,
so no better optimum has been found, i.e. still best := 3.

For vertices 5 , 9 and 11 only covered states had to be considered. Thus, the
algorithm returns directly 3 levels in the backtracking tree. Then it returns
one more level, since for vertex 7 both states havc been considered. Next,
vertex 6 is uncovered and its neighbors 4, 8 and 10 are covered (X = 4),
see Fig. 12.2. Now three uncovered edges remain, i.e. the algorithm does not
return immediately. Hence, the calculations for the bound are performed.
F = best - X = 3 - 4 = -1 is obtained. This means no more vertices can
be covered, i.e. D = 0 which is smaller than the number of uncovered edges
(= 3). Therefore, the bound becomes active and the algorithm returns to the
preceding level.

12.2 Numerical Methods

Figure 12.9: Example of the branch-and-bound algorithm. Result after
the first backtracking step. Vertex 7 is uncovered (indicated by a bold, light
circle), thus all its neighbors must be covered, (uc=uncovered).

Figure 12.10: Example of the branch-and-bound algorithm. Result after
the second backtracking step. Vertex 6 is uncovered, thus its neighbors 4, 8
and 10 must be covered.

Now the algorithm again reaches the top level of the backtracking tree. Vertex
3 is uncovered and all its neighbors (1; 2 ,4 and 5) are uncovered (X = 4), see
Fig. 12.2. Again, no VC has been found, i.e. the algorithm proceeds with the

286 12 Branch-and-bound Methods

calculation of the bound. Again, F = best - X = 3 - 4 = -1 is obtained,
yielding D = 0. Since 4 uncovered edges remain, the bound becomes active
again.

Figure 12.11: Example of the branch-and-bound algorithm. Final situa-
tion. Vertex 3 is uncovered, thus its neighbors 1 , 2 , 4 and 5 must be covered.

The algorithm returns again to the top level and has been finished. The
minimum vertex cover has size best = 3. Please note that the backtracking
tree only contains 17 nodes on 7 levels, while a full configuration tree would
contain 12 levels, 2'' leaves and 212 - I = 4097 nodes. This shows clearly
that by the branch-and-bound method the running time can be decreased
considerably.

0

For the preceding example, for the calculation of the bounds F 5 0 was always ob-
tained. This is due to the small graph sizes, which can be treated within the scope
of an example. With real applications, F > 0 occurs. Then, for every calculation of
the bound, one has to access the F vertices of largest current connectivity. Thereforc,
it is favorable to implement the table of vertices as two arrays vl, vz of sets of ver-
tices. The arrays are indexed by the current degree of the vertices. The sets in the
first array vl contain the F free vertices of the largest current degree, while the other
array contains all other free vertices. Every time a vertex changes its degree, it is
moved to another set, and eventually even changes the array. Also, in case the mark
(free/covered/uncovered) of a vertex changes it may be entered in or removed from
an array, possibly the smallest degree vertex of vl is moved to v2 or vice versa. Since
we are treating graphs of finite average connectivity, this implementation ensures that

12.3 Results 287

the running time spent in each node of the graph is growing slower than linear in the
graph size1. For the sake of clarity, we have omitted the update operation for both
arrays from the algorithmic presentation.
The algorithm, as it has been presented, is suitable for solving the optimization prob-
lem, i.e. finding the smallest feasible size X , = Nx, of a vertex cover, i.e. the minimum
number of covered vertices needed to cover the graph fully. The algorithm can be eas-
ily modified to treat the problem, where the size X = V,, is given and a configuration
with minimum energy is to be found. Then, in best, it is not the current smallest size
of a vertex cover but the smallest number of uncovered edges (i.e. the energy) that
is stored. The bound becomes active, if F + D is larger than or equal to the current
number of uncovered edges. Furthermore, when a vertex is uncovered, the step where
all neighbors are covered cannot be applied, because the configuration of the lowest
energy may not be a VC. On the other hand, if a VC has been found, i.e. all edges are
covered, the algorithm can stop, because for sure no better solution can be obtained.
But thc algorithm can stop only for the case when one optimum has to be obtained.
In case all minima have to be enumerated, the algorithm has to proceed and the bound
becomes active only in the case if F + D is strictly larger (not equal) to the current
number of uncovered edges.
Although the branch-and-bound algorithm is very simple, in the regime 4 < c < 10
random graphs up to size N = 140 can be treated. It is difficult to compare the
branch-and-bound algorithm to more elaborate algorithms [14, 151, because they are
usually tested on a different graph ensemble where each edge appears with a certain
probability, independently of the graph size (high-connectivity regime). Nevertheless,
in the computer-science literature usually graphs with up to 200 vertices are treated,
which is slightly larger than the systems considered here. Nevertheless, the algorithm
presented here has the advantage that it is easy to implement and its power is sufficient
to study interesting problems. Some results are presented in the next section.

12.3 Results

First, the problem is considered where the energy is minimized for fixed values x.
As stated in the first section, we know that for small values of x, the energy (12.1)
is not zero [e(O) = c], i.e. no vertex covers with x N vertices covered exist. On the
other hand, for large values of x, the random graphs are almost surely coverable,
i.e. e(z) = 0. In Fig. 12.12 the average ground-state energy and the probability
P,,,(z) that a graph is coverable with x N vertices is shown for different system sizes
N = 25,50,100 (c = 1.0). The results were obtained using the branch-and-bound
algorithm presented in the last section. The data are averages over lo3 (N = 100)
to lo4 (N = 25,50) samples. As expected, the value of P,,,(x) increases with the
fraction of covered vertices. With growing graph sizes, the curves become steeper.
This indicates that in the limit N 4 co, which we are interested in, a sharp threshold
x, z 0.39 appears. Above x, a graph is coverable with probability one, below it is

'Efficient implementations of sets require at most O(1og S) time for the operations, where S is the
size of a set.

288 12 Branch-and-bound Methods

almost surely not coverable. Thus, in the language of a physicist, a phase transition
from an uncoverable phase to a coverable phase occurs. Please note that the value z,
of the critical threshold depends on the average density of vertices. The result for the
phase boundary x, as a function of c obtained from the simulations is shown later on.

Figure 12.12: Probability Pco,(x) that a cover exists for a random graph (c = 2) as
a function of the fraction x of covered vertices. The result is shown for three different
system sizes N = 25,50,100 (averaged for lo3 - lo4 samples). Lines are guides to the
eyes only. In the left part, where the PC,, is zero, the energy e (see text) is displayed.
The inset enlargcs the result for the energy in the rcgion 0.3 5 x < 0.5.

In Fig. 12.13 the median running time of the branch-and-bound algorithm is shown
as a function of the fraction x of covered vertices. The running time is measured
in terms of the number of nodes which are visited in the backtracking tree. Again
graphs with c = 1.0 were considered and an average over the same realizations has
been performed. A sharp peak can be observed near the transition x,. This means,
near the phase transition, the instances which are the hardest to solve can be found.
Please note, that for values x < x,, the running time still increases exponentially, as
can been seen from the inset of Fig. 12.13. For values x considerably larger than the
critical value x,, the running time is linear. The reason is that the heuristic is already
able to find a VC, i.e. the algorithm terminates after the first descent into the running
tree2.
Please note that in physics phase transitions are usually indicated by divergences in
measurable quantities such as specific heat or magnetic susceptibilities. The peak

2 ~ h e algorithm terminates after a full cover of the graph has been found.

12.3 Results

Figure 12.13: Time complexity of the vertex cover. Median number of nodes vis-
ited in the backtracking tree as a function of the fraction x of covered vertices for
graph sizes N = 20,25,30,35,40 (c = 1.0). The inset shows the region below the
threshold with logarithmic scale, including also data for N = 45,50. The fact that
in this representation the lines are equidistant shows that the time complexity grows
exponentially with N.

appearing in the time complexity serves as a similar indicator, but is not really equiv-
alent, because the time complexity diverges everywhere, only the rate of divergence is
much stronger near the phase transition.
For the uncoverable region, the running time is also fast, but still exponential. This is
due to the fact that a configuration with a minimum number of uncouered edges has
t o be obtained. If only the question whether a VC exists or not is to be answered, the
algorithm can be easily changed3, such that for small values of x again a polynomial
running time will be obtained.
To calculate the phase diagram numerically, as presented in Fig. 12.3 for the analytical
results, it is sufficient to calculate for each graph the size X , = Nx, of a minimum
vertex cover, as done by the version of the branch-and-bound algorithm or the divide-
and-conquer method presented in the last chapter. To compare with the analytical
result from Eq. (12.2) one has to perform the thermodynamic limit numerically. This
can be achieved by calculating an average value x,(N) for different graph sizes N.
The results for c = 1.0 are shown in the inset of Fig. 12.14. Then one fits a function

3Set best := 0 initially.

290 12 Branch-and-bound Methods

to the data. The form of the function is purely heuristic, no exact justification exists.
But in case you do not know anything about the finite-size behavior of a quantity, an
algebraic ansatz of the form (12.3) is always a good guess. As can be seen from the
inset, the fit matches well.

Figure 12.14: Phase diagram showing the fraction x,(c) of vertices in a minimal
vertex cover as a function of the average connectivity c. For x > x,(c), almost all
graphs have covers with X N vertices, while they have almost surely no cover for
x < x,(c). The solid line shows the analytical result. The circles represent the results
of the numerical simulations. Error bars are much smaller than symbol sizes. The
upper bound of Harant is given by the dashed line, the bounds of Gazmuri by the dash-
dotted lines. The vertical line is at c = e/2 % 1.359. Inset: all numerical values were
calculated from finite-size scaling fits of x,(N, c) using functions z , (N) = x , + ~ N P ~ .
We show the data for c = 1.0 as an example.

This procedure has been performed for several concentrations c of the edges. The
result is indicated in Fig. 12.14 by symbols. Obviously, the numerical data and the
analytical result, which has been obtained by using methods from statistical physics,
agree very well in the region c < e/2 z 1.359, as expected. But for larger connectivities
of the graph agreement is also very good.
A stronger deviation between numerical and analytical results can be observed for the
fraction b, of the backbone vertices. Please remember that the backbone of a graph
contains all vertices, which have in all degenerate minimum vertex covers (or all lowest
energy configurations) the same state, i.e. they are either always covered or always
uncovered. The numerical result can be obtained in a similar fashion as the threshold.
For each graph G all minimum vertex covers are enumerated. All vertices having the

Bibliography

Figure 12.15: The total backbone size of minimal vertex covers as a function of
c. The solid line shows the analytical result. Numerical data are represented by the
error bars. They were obtained from finite-size scaling fits similar to the calculation
for x,(c). The vertical line is at c = e/2 = 1.359 where the analytic results becomes
not exact.

same state in all configurations belong to the backbone B. Then, the resulting fraction
b,(G) = IBI/N of backbone vertices is averaged by considering different realizations
of the random graphs, for one graph size N. The process is performed for different
values of N . These data can be used to extrapolate to the thermodynamic limit via a
finite-size scaling function. The result, as a function of different edge concentrations c,
is displayed in Fig. 12.15 and compared with the analytical result. Again, a very good
agreement can be observed for low values c < e/2 = 1.359, while for graphs having a
stronger connectivity, larger deviations occur. Please note that for the case c = 0.0,
where the graph has no edges, no vertex needs to be covered, meaning that all vertices
belong to the backbone [b,(O) = I].
Marly more results can be found in [16, 171. In particular the critical concentration
c = e/2 = 1.359 is related to the behavior of the subgraphs, consisting only of the
non-backbone vertices. The analytical calculations are displayed in [17]. A calculation
of the average running time for a simple algorithm, distinguishing the polynomial and
the exponential regime, can be found in [IS].

Bibliography

[I] B. Hayes, Am. Scient. 85, 108 (1997)

292 12 Branch-and- bound Methods

[2] R. Monasson and R. Zecchina, Phys. Rev. E56, 1357 (1997)

[3] S. Mertens, Phys. Rev. Lett. 81, 4281 (1998)

[4] T. Hogg, B.A. Huberman, and C. Williams (ed.), Frontiers in Problem Solving:
Phase Transitions and Complexity, Artif. Intell. 81 (I+II) (1996)

[5] 0. Dubois, R. Monasson, B. Selman, and R. Zecchina (ed.), Theor. Comp. Sci.
265, (2001)

[6] B. Bollobas, Random Graphs, (Academic Press, New York 1985)

[7] P. G. Gazmuri, Networks 14, 367 (1984)

[8] A. M. Frieze, Discr. Math. 81, 171 (1990)

[9] M. Weigt and ,4. K. Hartmann, Phys. Rev. Lett. 84, 6118 (2000)

[lo] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and Geometric
Computing (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA/leda.html

[ll] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, (Addison- Wesley, Reading (MA) 1974)

[12] E.L. Lawler and D.E. Wood, Oper. Res. 14, 699 (1966)

[13] R.E. Tarjan and A.E. Trojanowski, SIAM J. Comp. 6, 537 (1977)

[14] M. Shindo and E. Tomita, Syst. Comp. Jpn. 21, 1 (1990)

[15] R. Liiling and B. Monien, in: Sixth International Parallel Processing Symposium,
(IEEE Comput. Soc. Press, Los Alamitos, USA 1992)

[16] A.K. Hartmann and M. Weigt, J. Theor. Comp. Sci. 265, 199 (2001)

[17] M. Weigt and A.K. Hartmann, Phys. Rev. E 63, 056127 (2001)

[18] M. Weigt and A.K. Hartmann, Phys. Rev. Lett. 86, 1658 (2001)

Practical Issues

Here practical aspects of conducting research via computer simulations are discussed.
It is assumed that you arc familiar with an operating system such as UNIX (e.g.
Linux), a high-level programming language such as C, Fortran or Pascal and have
some experience with at least small software projects.
Because of the limited space, usually only short introductions to the specific areas are
given and refercnces to more extensive literature arc cited. All examples of code are
in C/C++.
First, a short introduction to software engineering is given and several hints allowing
the construction of efficient and reliable code are stated. In the second section a short
introduction to object-oriented software development is presented. In particular, it is
shown that this kind of programming style can be achievcd with standard procedural
languages such as C as well. Next, practical hints concerning the actual process of
writing the code arc given. In the fourth section macros are introduced. Then it,
is shown how the development of larger pieces of code can be organized with the
help of so called make files. In the subsequent section the benefit of using libraries like
Numerical Recipes or LEDA are explained and it is shown how you can build your own
libraries. In the seventh section the generation of random numbers is covered while
in the eighth section three very useful debugging tools are presented. Afterwards,
programs to perform data analysis, curve fitting and finite-size scaling are explained.
In the last section an introduction to information retrieval and literature search in the
Internet and to the preparation of presentations and publications is given.

13.1 Software Engineering

When you are creating a program, you should never just start writing the code. In
this way only tiny software projects such as scripts can be completed successfully.
Otherwise your code will probably be very inflexible and contain several hidden errors
which are very hard t o find. If several people are involved in a project, it is obvious
that a considerable amount of planning is necessary.
But even when you are programming alone, which is not unusual in physics, the
first step you should undertake is just to sit down and think for a while. This will
save you a lot of time and effort later on. To emphasize the need for structuring in
the software development process, the art of writing good programs is usually called
software engineering. There are many specialized books in this fields, see e.g. Refs.

294 13 Practical Issues

[l, 21. Here just the steps that should be undertaken to create a sophisticated software
development process are stated. The following descriptions refer to the usual situation
you find in physics: one or a few people are involved in the project. How to manage
the development of big programs involving many developers is explained in literature.

0 Definition of the problem and solution strategies
You should write down which problem you would like to solve. Drawing diagrams
is always helpful! Discuss your problem with others and tell them how you would
like to solve it. In this context many questions may appear, here some examples
are given:

What is the input you have to supply? In case you have only a few parameters,
they can be passed to the program via options. In other cases, especially when
chemical systems are to be simulated, many parameters have to be controlled
and it may be advisable to use extra parameter files.

Which results do you want to obtain and which quantities do you have to
analyze? Very often it is useful to write the raw results of your simulations,
e.g. the positions of all atoms or the orientations of all spins of your system, to
a configuration file. The physical results can be obtained by post-processing.
Then, in case new questions arise, it is very easy to analyze the data again.
When using configuration files, you should estirnate the amount of data you
generate. Is there enough space on your disk? It may be helpful, to include
the compression of the data files directly in your programs1.

- Can you identify "objects" in your problem? Objects may be physical entities
like atoms or molecules, but also internal structures like nodes in a tree or
elements of tables. Seeing the system and the program as a hierarchical
collection of objects usually makes the problem easier to understand. More
on object-oriented development can be found in Sec. 13.2.

- Is the program to be extended later on? Usually a code is "never" finished.
You should foresee later extensions of the program and set up everything in
a way it can be reused easily.

Do you have existing programs available which can be included into the soft-
ware project? If you have implemented your previous projects in the above
mentioned fashion, it is very likely that you can recycle some code. But this
requires experience and is not very easy t o achieve at the beginning. But over
the years you will have a growing library of programs which enables you to
finish future software projects much quicker.
Has somebody else created a program which you can reuse? Sometimes you
can rely on external code like libraries. Examples are the Numerical Recipes
[3] and the LEDA library [4] which are covered in Sec. 13.5.

Which algorithms are known? Are you sure that you can solve the problem
at all? Many other techniques have been invented already. You should always

'1n C this can be achieved by calling system("gzip -f <filename>"); after the file has been
written and closed.

13. I Software Engineering 295

search the literature for solutions which already exist. How searches can be
simplified by using electronic data bases is covered more deeply in Sec. 13.9.

Sometimes it is necessary to invent new methods. This part of a project may
be the most time consuming.

Designing data structures
Once you have identified the basic objects in your systems, you have to think

about how to represent them in the code. Sometimes it is sufficient to define some
s t ruc t types in C (or simple classes in C++). But usually you will need to design
a large set of data structures, referencing each other in a complicated way.

A sophisticated design of the data structures will lead to a better organized pro-
gram, usually it will even run faster. For example, consider a set of vertices of
a graph. Then assume that you have several lists Li each containing elements
referencing the vertices of degree i . When the graph is altered in your program
and thus the degrees of the vertices change, it is sometimes necessary to remove
a vertex from one list and insert it into another. In this case you will gain speed,
when your vertices data structures also contain pointers to the positions where
they are stored in the lists. Hence, removing and inserting vertices in the lists
will take only a constant amount of time. Without these additional pointers, the
insert and delete operations have to scan partially through the lists to locate the
elements, leading to a linear time complexity of these operations.

Again, you should perform the design of the data structures in a way, that later
extensions are facilitated. For example when treating lattices of Ising spins, you
should use data structures which are independent of the dimension or even of the
structure of the lattice, an example is given in Sec. 13.4.1.

When you are using external libraries, usually they have some data types in-
cluded. The above mentioned LEDA library has many predefined data types like
arrays, stacks, lists or graphs. You can have e.g. arrays of arbitrary objects, for
example arrays of strings. Furthermore, it is possible to combine the data types
in complicated ways, e.g. you can define a stack of graphs having strings attached
t o the vertices.

Defining small tasks
After setting up the basic data types, you should think about which basic and

complex operations, i.e. which subroutines, you need to manipulate the objects
of your simulation. Since you have already thought a lot about your problem,
you have a good overview, which operations may occur. You should break down
the final task "perform simulation" into small subtasks, this means you use a t op
down approach in the design process. It is riot possible to write a program in a
sequential way as one code. For the actual implementation, a bo t tom u p approach
is recommended. This means you should start with the most basic operations.
Later on you can use them to create more complicated operations. As always,
you should define the subroutines in a way that they can be applied in a flexible
way and extensions are easy to perform.

296 13 Practical Issues

But it is not necessary that you must identify all basic operations at the beginning.
During the development of the code, new applications may arise, which lead to
the need for further operations. Also it may be required to change or extend the
data structures defined before. However, the more you think in advance, the less
you need to change the program later on.

As an example, the problem of finding ground states in Ising spin glasses via
simulated annealing is considered. Some of basic operations are:

- Set up the data structures for storing the realizations of the interactions and
for storing the spin glass configurations.

- Create a random realization of the interactions

Initialize a random spin configuration.

- Calculate the energy of a spin in the local field of its neighbors.

Calculate the total energy of a system.

Calculate the energy changes associated with a spin flip

Execute a Monte Carlo step

Execute a whole annealing run.

- Calculate the magnetization.

Save a realization and corresponding spin configurations in a file.

It is not necessary to define a corresponding subroutine for all operations. Some-
times they require only a few numbers of lines in the code, like the calculation of
the energy of one spin in the example above. In this case, such operations can be
written directly in the code, or a macro (see Sec. 13.4.1) can be used.

0 Distributing work
In case several people are involved in a project, the next step is to split up the
work between the coworkers. If several types of objects appear in the program
design, a natural approach is to make everyone responsible for one or several
types of objects and the related operations. The code should be broken up into
several modules (i.e. source files), such that every module is written by only one
person. This makes the implementation easer and also helps testing the code (see
below). Nevertheless, the partitioning of the work requires much care, since quite
often some modules or data types depend on others. For this reason, the actual
implementation of a data type should be hidden. This means that all interactions
should be performed through exactly defined interfaces which do not depend on
the internal representation, see also Sec. 13.2 on object-oriented programming.

When several people are editing the same files, which is usually necessary later
on, even when initially each file was created by only one person, then you should
use a source-code management system. It prevents several people from performing
changes on the same file in parallel, which would cause a lot of trouble. Addition-
ally, a source-code management system enables you to keep track of all changes

13.1 Software Engineering 297

made. An example of such a system is the Revision Control System (RCS), which
is freely available through the GNU project [5] and part of the free operating
system Linux.

Implementing the code
With good preparation, the actual implementation becomes only a small part of
the software development process. General style rules, guaranteeing clear struc-
tured code, which can even be understood several months later, are explained in
Scc. 13.3. You should use a different file, i.e. a different module, for each coherent
unit of data structures and subroutines; when using an object oriented language
you should define different classes (see Sec. 13.2). This rule should be obeyed for
the case of a one-person project as well. Large software projects containing many
modules are easily maintained via makefiles (see Sec. 13.4.2).

Each subroutine and each module should be tested separately, before integrating
many modules into one program. In the following some general hints concerning
testing are presented.

Testing
When performing tests on single subroutines, standard cases usually are used.
This is the reason why many errors become apparent much later. Then, because
the modules have already been integrated into one single program, errors are much
harder to localize. For this reason, you should always try to find special and rare
cases as well when testing a subroutine. Consider for example a procedure which
inserts an element into a list. Then not only inserting in the middle of the list, but
also at the beginning, at the end and into an empty list must be tested. Also, it is
strongly recommended to read your code carefully once again before considering
it finished. In this way many bugs can be found easily which otherwise must be
tracked down by intensive debugging.

The actual debugging of the code can be performed by placing print instructions at
selected positions in the code. But this approach is quite time consuming, because
you have to modify and recompile your program several times. Therefore, it is
advisable to use debugging tools like a source-code debugger and a program for
checking the memory management. More about these tools can be found in Sec.
13.7. But usually you also need special operations which are not covered by an
available tool. You should always write a procedure which prints out the current
instance of the system that is simulated, e.g. the nodes and edges of a graph or
the interaction constants of an Ising system. This facilitates the types of tests,
which arc described in the following.

After the raw operation of the subroutines has been verified, more complex tests
can be performed. When e.g. testing an optimization routine, you should conlpare
the outcome of the calculation for a small system with the result which can be
obtained by hand. If the outcome is different from the expected result, the small
size of the test system allows you t o follow the execution of the program step
by step. For each operation you should think about the expected outcome and
compare it with the result originating from the running program.

298 13 Practical Issues

Furthermore, it is very useful to compare the outcome of different methods applied
to the same problem. For example, you know that there must be something
wrong, in case an approximation method finds a better value than your "exact"
algorithm. Sometimes analytical solutions are available, at least for special cases.
Another approach is to use invariants. For example, when performing a Molecular
Dynamics simulation of an atomic/molecular system (or a galaxy), energy and
rnomentum must be conserved; only numerical rounding errors should appear.
These quantities can be recorded very easily. If they change in time there must
be a bug in your code. In this case, usually the formulas for the energy and the
force are not compatible or the integration subroutine has a bug.

You should test each procedure, directly after writing it. Many developers have
experienced that the larger the interval between implementation and tests is, the
lower the motivation becomes for performing tests, resulting in more undetected
bugs.

The final stage of the testing process occurs when several modules are integrated
into one large running program. In the case where you are writing the code
alone, not many surprises should appear, if you have performed many tests on
the single modules. If several people are involved in the project, at this stage many
errors occur. But in any case, you should always remember: there is probably
no program, unless very small, which is bug free. You should know the following
important result from theoretical computer science [6]: it is impossible to invent
a general method, which can prove automatically that a given program obeys a
given specification. Thus, all tests must be designed to match the current code.

In case a program is changed or extended several times, you should always keep the
old versions, because it is quite common that by editing new bugs are introduced.
In that case, you can compare your new code with the older version. Please note
that editors like emacs only keep the second latest version as backup, so you have
to take care of this problem yourself unless you use a source-code management
system, where you are lucky, because it keeps all older version automatically.

For C programmers, it is always advisable to apply the -Wall (warning level:
all) option. Then several bugs already show up during the compiling process, for
example the common mistake to use '=' in comparisons instead of '==', or the
access to uninitialized variables2.

In C++, some bugs can be detected by defining variables or parameter as const ,
when they are considered to stay unchanged in a block of code or subroutine.
Here again, already the compiler will complain, if attempts to alter the value of
such a variable arc tried.

This part finishes with a warning: never try to save time when performing tests.
Bugs which appear later on are much much harder to find and you will have to
spend much more time than you have "saved" before.

' ~ u t this is not true for some C++ compilers when combining with option -g.

13.1 Software Engineering 299

0 Writing documentation
This part of the software development process is very often disregarded, especially
in the context of scientific research, where no direct customers exist. But even if
you are using your own code, you should write good documentation. It should
consist of a t least three parts:

- Comments in the source code: You should place comments at the beginning
of each module, in front of each subroutine or each self-defined data structure,
for blocks of the code and for selected lines. Additionally, meaningful names
for the variables are crucial. Following these rules makes later changes and
extension of the program much more straightforward. You will find in more
hints on how a good programming style can be achieved Sec. 13.3.

On-line help: You should include a short description of the program, its
parameters and its options in the main program. It should be printed, when
the program is called with the wrong numberlform of the parameters, or when
the option -help is passed. Even when you are the author of the program,
after it has grown larger it is quite hard to remember all options and usages.

- External documentation: This part of the documentation process is impor-
tant, when you would like to make the program available to other users or
when it grows really complex. Writing good instructions is really a hard job.
When you remember how often you have complained about the instructions
for a video recorder or a word processor, you will understand why there is a
high demand for good authors of documentation in industry.

0 Using the code
Also the actual performance of the simulation usually requires careful preparation.
Several question have to be considered, for example:

- How long will the different runs take? You should perform simulations of
small systems and extrapolate to large system sizes.

- Usually you have to average over different runs or over several realizations of
the disorder. The system sizes should also be chosen in a way that the number
of samples is large enough to reduce thc statistical fluctuations. It is better to
have a reliable result for a small system than to treat only a few instances of a
large system. If your model exhibits self averaging, the larger the sample, the
less the number of samples can be. But, unfortunately, usually the numerical
effort grows stronger than the system size, so there will be a maximum system
size which can be treated with satisfying accuracy. To estimate the accuracy,
you should always calculate the statistical error bar a(A) for each quantity
A3.
A good rule of a thumb is that each sample should take not more than 10
minutes. When you have many computers and much time available, you can
attack larger problems as well.

"he error bar is v (A) = J v ~ ~ (A) / (N - I), where V a r (A) = & EL1 a: - ($ ELl ai)' is the
variance o f the N values a l , . . . , a N .

300 13 Practtical Issues

- Where to put the results? In many cases you have to investigate your model
for different parameters. You should organize the directories where you put
the data and the names of the files in such a way that even years later the
former results can be found quickly. You should put a README file in each
directory, explaining what it contains.

If you want t o start a sequence of several simulations, you can write a short
script, which calls your program with different parameters within a loop.

Logfiles are very helpful, where during each simulation some information
about the ongoing processes are written automatically. Your program should
put its version number and the parameters which have been used to start the
simulation in the first line of each logfile. This allows a reconstruction of how
the results have been obtained.

The steps given do not usually occur in linear order. It is quite common that aftjer you
have written a program and performed some simulations, you are not satisfied with
the performance or new questions arise. Then you start to define new problems and
the program will be extended. It may also be necessary to extend the data structures,
when e.g. new attributes of the simulated models have to be included. It is also possible
that a nasty bug is still hidden in the program, which is found later on during the
actual simulations and becomes obvious by results which cannot be explained. In this
case changes cannot be circumvented either.
In other words, the software development process is a cycle which is traversed several
times. As a consequence, when planning your code, you should always keep this in
mind and set up everything in a flexible way, so that extensions and code recycling
can be performed easily.

13.2 0 bject-oriented Software Development

In recent years object-oriented programming languages like C++, Smalltalk or Eif-
fel became very popular. But, using an object-oriented language and developing the
program in an object-oriented style are not necessarily the same, although they are
compatible. For example, you can set up your whole project by applying object-
oriented methods even when using a traditional procedural programming language like
C, Pascal or Fortran. On the other hand, it is possible to write very traditional pro-
grams with modern object-oriented languages. They help to organize your programs
in terms of objects, but you have the flexibility to do it in another way as well. In gen-
eral, taking an object-oriented viewpoint facilitates the analysis of problems and the
development of programs for solving the problems. Introductions to objcct-oriented
software development can be found e.g. in Refs. [7, 8, 91. Here just the main principles
are explained:

Objects and methods
The real world is made of objects such as traffic-lights, books or computers. You
can classify different objects according to some criteria into classes. This means

13.2 Object-oriented Software Development 30 1

different chairs belong to the class "chairs". The objects of many classes can have
internal states, e.g. a traffic-light can be red, yellow or green. The state of a
computer is much more difficult to describe. Furthermore, objects are useful for
the environment, because other objects interact via operations with the object.
You (belonging to the class "human") can read the state of a traffic light, some
central computer may set the state or even switch the traffic light off.

Similar to the real world, you can have objects in programs as well. The internal
state of an object is given by the values of the variables describing the object. Also
it is possible to interact with the objects by calling subroutines (called methods
in this context) associated with the objects.

Objects and the related methods are seen as coherent units. This means you define
within one class definition the way the objects look, i.e. the data structures,
together with the methods which accesslalter the content of the objects. The
syntax of the class definition depends on the programming language you use.
Since implementational details are not relevant here, the reader is referred to the
literature.

When you take the viewpoint of a pure object-oriented programmer, then all
programs can be organized as collections of objects calling methods of each other.
This is derived from the structure the real world has: it is a large set of interacting
objects. But for writing good programs it is as in real life, taking an orthodox
position imposes too many restrictions. You should take the best of both worlds,
the object-oriented and the procedural world, depending on the actual problem.

0 Data capsuling
When using a computer, you do not care about the implementation. When you

press a key on the keyboard, you would like to see the result on the screen. You
are not intercsted in how the key converts your pressing into an electrical signal,
how this signal is sent to the input ports of the chips, how the algorithm treats
the signal and so on.

Similarly, a main principle of object-oriented programming is to hide the actual
implementation of the objects. Access to them is only allowed via given interfaces,
i.e. via methods. The internal data structures are hidden, this is called p r i v a t e
in C++. The data capsuling has several advantages:

- You do not have to remember the implementation of your objects. When
using them later on, they just appear as a black box fulfilling some duties.

You can change the implementation later on without the need to change the
rest of the program. Changes of the implementation may be useful e.g. when
you want t o increase the performance of the code or to include new features.

Furthermore, you can have flexible data structures: several different types of
implementations may coexist. Which onc is chosen depends on the rcquire-
ments. An example are graphs which can be implemented via arrays, lists,
hash tables or in other ways. In the case of sparse graphs, the list imple-
mentation has a better performance. When the graph is almost complete, the

13 Practical Issues

array representation is favorable. Then you only have to provide the basic ac-
cess methods, such as inserting/removing/testing vertices/edges and iterating
over them, for the different internal representations. Therefore, higher-level
algorithms like computing a spanning tree can be written in a simple way to
work with all internal implementations. When using such a class, the user
just has to specify the representation he wants, the rest of the program is
independent of this choice.

- Last but not least, software debugging is made easier. Since you have only
defined ways the data can be changed, undesired side-effects become less
common. Also the memory management can be controlled easier.

For the sake of flexibility, convenience or speed it is possible to declare internal
variables as public . In this case they can be accessed directly from outside.

Inheritance

inheritance This means lower level objects can be specializations of higher level
objects. For example the class of (German) "ICE trains" is a subclass of "trains"
which itself is a subclass of "vehicles".

In computational physics, you may have a basic class of "atoms" containing mass,
position and velocity, and built upon this a class of "charged atoms" by including
the value of the charge. Then you can use the subroutines you have written for the
uncharged atoms, like moving the particles or calculating correlation functions,
for the charged atoms as well.

A similar form of hierarchical organization of objects works the other way round:
higher level objects can be defined in terms of lower level objects. For example a
book is composed of many objects belonging to the class "page". Each page can
be regarded as a collection of many "letter" objects.

For the physical example above, when modeling chemical systems, you can have
"atoms" as basic objects and use them to define "molecules". Another level up
would be the "system" object, which is a collection of molecules.

F'unction/operator overloading
This inheritance of methods to lower level classes is an example of operator over-
loading. It just means that you can have methods for different classes having the
same name, sometimes the same code applies to several classes. This applies also
to classes, which are not connected by inheritance. For example you can define
how to add integers, real numbers, complex numbers or larger objects like lists,
graphs or documents. In language like C or Pascal you can define subroutines to
add numbers and subroutines to add graphs as well, but they must have different
names. In C++ you can define the operator "+" for all different classes. Hence,
the operator-overloading mechanisms of object-oriented languages is just a tool
to make the code more readable and clearer structured.

13.2 Object-oriented Software Development 303

0 Software reuse
Once you have an idea of how to build a chair, you can do it several times.

Because you have a blueprint, the tools and the experience, building another
chair is an easy task.

This is true for building programs as well: both data capsuling and inheritance
facilitate the reuse of software. Once you have written your class for e.g. treating
lists, you can include them in other programs as well. This is easy, because later
on you do not have to care about the implementation. With a class designed in
a flexible way, much time can be saved when realizing new software projects.

As mentioned before, for object-oriented programming you do not necessarily have to
use an object-oriented language. It is true that they are helpful for the implementation
and the resulting programs will look slightly more elegant and clear, but you can
program everything with a language like C as well. In C an object-oriented style can
be achieved very easily. As an example a class h i s t o implementing histograms is
outlined, which are needed for almost all types of computer simulations as evaluation
and analysis tools.
First you have t,o think about the data you would like to store. That is the histjogram
itself, i.e. an array t a b l e of bins. Each bin just counts the number of events which
fall into a small interval. To achieve a high degree of flexibility, the range and the
number of bins must be variable. From this, the width d e l t a of each bin can be
calculated. For convenience d e l t a is stored as well. To count the number of events
which are outside the range of the table, the entries low and high are introduced.
Furthermore, statistical quantities like mean and variance should be available quickly
and with high accuracy. Thus, several summarized moments sum of the distribution
are stored separately as well. Here the number of moments HISTOJOM- is defined as
a macro, converting this macro to variable is straightforward. All together, this leads
to the following C data structure:

#def ine -HISTO-NOM- 9 /* No. of (s t a t i s t i c a l) moments */

/* holds s t a t i s t i c a l informat ions f o r a s e t of numbers: */
/* his togram, # of Numbers, sum of numbers, squares , . . . * /
typedef s t r u c t

C
double from, t o ; /* range of his togram */
double d e l t a ; /* width of b i n s */
i n t n-bask; /* number of b i n s */
double * t a b l e ; /* b i n s */
i n t low, h igh ; /* No. of d a t a ou t of range */
double sum[-HISTO-NOM-1; /* sum of Is, numbers, numbers-2 . . . * /

) h i s t o - t ;

Here, the postfix -t is used to stress the fact that the name h i s t o - t denotes a type.
The bins are double variables, which allows for more general applications. Please

304 13 Practical Issues

note that it is still possible to access the internal structures from outside, but it is
not necessary and not recommended. In C++, you could prevent this by declaring
the internal variables as private. Nevertheless, everything can be done via special
subroutines. First of all one must be able to create and delete histograms, please note
that some simple error-checking is included in the program:

/ ** creates a histo-element, where the empirical histogram **/
/** table covers the range ['from7, 'to'] and is divided **/
/** into 'n-bask' bins. **/
/** RETURNS: pointer to his-Element, exit if no memory. **/
histo-t *histo-new(doub1e from, double to, int n-bask)
f
histo-t *his;
int t;

his = (histo-t *) malloc(sizeof(histo~t));
if (his == NULL)
i
fprintf (stderr, "out of memory in histo-new") ;
exit (I)

3
if (to < from)
C
double tmp ;
tmp = to; to = from; from = tmp;
fprintf(stderr, "WARNING: exchanging from, to in histo-new\nV);

1
his->from = from;
his->to = to;
if (n-bask <= 0)
C
n-bask = 10;
fprintf(stderr, "WARNING: setting n-bask=lO in histo-new()\nH);

1
his->delta = (to-from)/(double) n-bask;
his->n-bask = n-bask;
his->low = 0;
his->high = 0;
for(t=O; t< -HISTO-NOM- ; t++) /* initialize summarized moments */
his->sum[tl = 0.0;

his->table = (double *) malloc(n~bask*sizeof(double));
if (his->table == NULL)
f
fprintf(stderr, "out of memory in histo-new");
exit (1) ;

13.2 Object-oriented Software Development

1
e l s e

f or(t=O; t<n-bask; t + +)
h i s - > t a b l e [t l = 0 ;

1
r e t u r n (h i s) ;

1

/** Dele tes a his togram ' h i s ' **/
void h i s t o - d e l e t e (h i s t 0 - t * h i s)

C
f r e e (h i s - > t a b l e) ;
f r e e (h i s) ;

}

All histogram objccts are created dynamically by calling h i s t o n e w () , this corre-
sponds to a call of the constructor or new in C++. The objects are addressed via
pointers. Whenever a method, i.e. a procedure in C, of the h i s t o class is called, the
first argument will always be a pointer to the corresponding histogram. This looks
slightly less elegant than writing h i s to .method() in C++, but it is really the same.
When avoiding direct access, the realization using C is perfectly equivalent to C++
or other object-oriented languages. Inheritance can be implemented, by including
pointers to h i s t o - t objects in other type definitions. When these higher level objects
arc created, a call to h i s t o n e w () must be included, while a call to h i s t o - d e l e t e () ,
corresponding to the destructor in C++, is necessary, to implement a correct deletion
of the more complex objects.
As a final example, the procedures for inserting an element into the table and calcu-
lating the mean are presented. It is easy to figure out how other subroutines for e.g.
calculating the variance/higher moments or printing a histograrn can be realized. The
complete library can be obtained for free [lo].

/** i n s e r t s a 'number' i n t o a his togram ' h i s ' . **/
void h i s t o - i n s e r t (h i s t 0 - t * h i s , double number)

C
i n t t ;
double va lue ;
va lue = 1 .0 ;
f o r (t = O ; t< -HISTO-NOM-; t + +)

C
his->sum[t] += v a l u e ; ;
va lue *= number;

1
i f (number < his->from)

his->low++;
e l s e if(number > h i s - > t o)

his->high++;

/* raw s t a t i s t i c s */

/* i n s e r t i n t o his togram */

13 Practical Issues

else if(number == his->to)
his->table [his->n-bask-I] ++;

else
his->table[(int) floor((number - his->from) / his->delta)]++;

1

/ ** RETURNS: Mean of Elements in 'his' (0.0 if his=empty) **/
double histo-mean(histo-t *his)

C
if (his->sum[Ol == 0)
return(O.O) ;

else
return(his->sum[l] / his->sum[OI) ;

1

13.3 Programming Style

The code should be written in a style that enables the author, and other people as well,
to understand and modify the program even years later. Here briefly some principles
you should follow are stated. Just a general style of description is given. Everybody
is free to choose his/her own style, as long as it is precise and consistent.

Split your code into several modules. This has several advantages:

- When you perform changes, you have to recompile only the modules which
have been edited. Otherwise, if everything is contained in a long file, the
whole program has to be recompiled each time again.

- Subroutines which are related to each other can be collected in single modules.
It is much easier to navigate in several short files than in one large program.

After one module has been finished and tested it can be used for other projects.
Thus, software reuse is facilitated.

- Distributing the work among several people is impossible if everything is writ-
ten into one file. Furthermore, you should use a source-code management sys-
tem (see Sec. 13.1) in case several people are involved in avoiding uncontrolled
editing.

To keep your program logically structured, you should always put data structures
and implementations of the operations in separate files. In C/C++ this means
you have to write the data structures in a header (. h) file and the code into a
source code (. c/ . cpp) file.

Try to find meaningful names for your variables and subroutines. Therefore,
during the programming process it is much easier to remember their meanings,
which helps a lot in avoiding bugs. Additionally, it is not necessary to look up

13.3 Programming Style 307

the meaning frequently. For local variables like loop counters, it is sufficient and
more convenient to have short (e.g. one letter) names.

In the beginning this might seem to take additional time (writing e.g.
'kinetic-energy7 for a variable instead of 'x107). But several months after you
have written the program, you will appreciate your effort, when you read the line

kinetic-energy += 0.5*atom[i] .mass*atom[i] .veloc*atom[i] . veloc;

instead of

You should use proper indentation of your lines. This helps a great deal in rec-
ognizing the structure of a program. Many bugs are caused by misaligned braces
forming a block of code. Furthermore, you should place at most one command
per line of code. The reader will probably agree that

for(i=O; icnumber-nodes; i++)

C
degree [i] = 0;
for (j =0 ; j <number-nodes ; j ++)

if (edge[i] [j] > 0)
degree [i] ++;

is much faster to understand than

for(i=O; i<number-nodes; i++) { degree[i] = 0; for(j=O;
j <number-nodes; j ++) if (edge [i] [j 1 > 0) degree [i] ++; 3

0 Avoid jumping to other parts of a program via the "goto" command. This is bad
style originating from programming in assembler or BASIC. In modern program-
ming languages, for every logical programming construct there are corresponding
commands. "Goto" commands make a program harder t o understand and much
harder to debug if it does not work as it should.

In case you want to break out of a loop, you can use a whileluntil loop with a
flag that indicates if the loop is to be stopped. In C, if you are lazy, you can use
the commands break or continue.

Do not use global variables. At first sight the use of global variables may seem
tempting: you do not have to care about parameters for subroutines, everywhere
the variables are accessible and everywhere they have the same name. Program-
ming is done much faster.

But later on you will have a bad time: many bugs are created by improper use of
global variables. When you want to check for a definition of a variable you have
to search the whole list of global variables, instead of just checking the parameter

308 13 Practical Issues

list. Sometimes the range of validity of a global variable is overwritten by a
local variable. Furthermore, software re-usage is almost impossible with global
variables, because you always have to check all variables used in a module for
conflicts and you are not allowed to employ the name for another object. When
you want to pass an object to a subroutine via a global variable, you do not have
the choice of how to name the object which is to be passed. Most important, when
you have a look onto a subroutine after some months, you cannot see immediately
which objects are changed in the subroutine, instead you will have to read the
whole subroutine again. If you avoid this practice, you just have to look at the
parameter list. Finally, when a renaming occurs, you have to change the name
of a global variable everywhere in the whole program. Local variables can be
changed with little effort.

Finally; an issue of utmost importance: Do not be economical with comments in
your source code! Most programs, which may appear logically structured when
writing them, will be a source of great confusion when being read some weeks
later. Every minute you spend on writing reasonable comments you will save
later on several times over. You should consider different types of comments.

Module comments: At the beginning of each module you should state its
name, what the module does, who wrote it and when it was written. It is a
useful practice to include a version history, which lists the changes that have
been performed. A module comment might look like this:

/*** Functions for spin glasses. ***/
/*** 1. loading and saving of configurations ***/
/*** 2. initialization ***/
/*** 3. evaluation functions ***/
/*** ***/
/*** A.K. Hartmann January 1996 ***/
/*** Version 1.8 09.10.2000 ***/
/*** ***/
...

/*** Vers. History: ***/
/*** 1.0 feof-check in lsg-load . . . 0 included 02.03.96 ***/
/*** 2.0 comment for cs2html added 12.05.96 ***/
/*** 3.0 lsg-load-bond-n() added 03.03.97 ***/
/*** 4.0 lsg-invert-plane() added 12.08.98 ***/
/*** 5.0 lsg-write-gene added 15.09.98 ***/
/*** 6.0 lsg-energy-B-horn() added 20.11.98 ***/
/*** 7.0 lsg-frac-frust() added 03.07.00 ***/
/*** 7.1 use new call-form of 1list.c library 04.07.00 ***/
/*** -> no memory leak (through copy data) ***/
/*** 8.0 lsg-mc-T() added 23.08.00 ***/

13.3 Programming Style 309

- Type comments: For each data type (a s t r u c t in C or class in C++) which
you define in a header file, you should attach several lines of comments de-
scribing the data type's structure and its application. For a class definition,
also the methods which are available should be described. Furthermore, for a
structure, each element should be explained. A nice arrangement of the com-
ments makes everything more readable. An example of what such a comment
may look like can be seen in Sec. 13.2 for the data type h i s t o - t .

- Subroutine comments: For each subroutine, its purpose, the meaning of the
input and output variables and the preconditions which have to be fulfilled
before calling must be stated. In case you are lazy and do not write a m a n
page, a comment atop of a subroutine is the only source of information, should
you want to use the subroutine later on in another program.

If you use some special mathematical methods or clever algorithms in the
subroutine, you should always cite the source in the comment. This facilitates
later on the understanding of how the methods works.

The next example shows what the comment for a subroutine may look like:

/** Calcu la ted maximum flow us ing Dinics a lgor i thm
/** See: R.E.Tarjan, Data S t r u c t u r e s and Network
/** Algorithms, p .104f .
/**
/** PARAMETERS: (*)= return-pararneter/altered v a r ' s
/** N : number of i n n e r nodes (without s , t)
/** dim: dimension of l a t t i c e
/** n e x t : g i v e s neighbors next[O..N][O..2*dim+l]
/** c : c a p a c i t i e s c [O . . N] [O. .2*dim+l]
/** (*) f : f low va lues f [O . . N] [O. .2*dim+l]
/** use-flow: 0-> flow s e t t o z e r o before used.
/**
/** RETURNS:
/** 0 -> OK
...
i n t m f - d i n i c l (i n t N , i n t dim, i n t *next , i n t *c ,

i n t * f , i n t use-flow)

- Block comments: You should divide each subroutine, unless it is very short,
into several logical blocks. A rule of thumb is that no block should be longer
than the number of lines you can display in your editor window. Within one
or two lines you should explain what is done in the block. Example:

/* go through a l l nodes except source s and s i n k t i n */
/* r e v e r s e d t o p o l o g i c a l o rder and s e t c a p a c i t i e s */
f o r (t2=nurn-nodes-2; t 2 > 0 ; t2--)

13 Practical Issues

- Line comments: They are the lowest level comments. Since you are using
(hopefully) sound names for data types, variables and subroutines, many lines
should be self explanatory. But in case the meaning is not obvious, you should
add a small comment at the end of a line, for example:

C(t, SOURCE) = cap-s2t [t] ; /* restore capacities */

Aligning all comments to the right makes a code easier to read. Please avoid
unnecessary comments like

counter++; /* increase counter */

or unintelligible comments like

minimize-energy(spin, N, next, 5); /* I try this one */

The line containing C (t , SOURCE) is an example of the application of a macro. This
subject is covered in the following section.

13.4 Programming Tools

Programming languages and UNIX/Linux offer many concepts and tools which help
you to perform large simulation projects. Here, three of them are presented: macros,
which are explained first, makefiles and scripts.

13.4.1 Using Macros

Macros are shortcuts for code sequences in programming languages. Their primary
purpose is to allow computer programs to be written more quickly. But the main ben-
efit comes from the fact that a more flexible software development becomes possible.
By using macros appropriately, programs become better structured, more generally
applicable and less error-prone. Here it is explained how macros are defined and used
in C, a detailed introduction can be found in C textbooks such as Ref. [Ill. Other
high-level programming languages exhibit similar features.
In C a macro is constructed via the #define directive. Macros are processed in the
preprocessing stage of the compiler. This directive has the form

#define name definition

Each definition must be on one line, without other definitions or directives. If the
definition extends over more than one line, each line except the last one has to be
ended with the backslash \ symbol. The simplest form of a macro is a constant, e.g.

You can use the same sorts of names for macros as for variables. It is convention t o use
only upper-case letters for macros. A macro can be deleted via the #undef directive.
When scanning the code, the preprocessor just replaces literally every occurrence of a
macro by its definition. If you have for example the expression 2.0*PI*omega in your

13.4 Programming Tools 311

code, the preprocessor will convert it into 2.0*3.1415926536*omega. You can use
macros also in the definition of other macros. But macros are not replaced in strings,
i.e. p r i n t f ("PI") ; will print PI and not 3.1415926536 when the program is running.
It is possible to test for the (non)existence of macros using the #ifdef and #ifndef
directives. This allows for conditional compiling or for platform-independent code,
such as e.g. in

#ifdef UNIX
. . .

#endif
#ifdef MSDOS

Please note that it is possible to supply definitions of macros to the compiler via
the -D option, e.g. gcc -0 program program. c -DUNIX=I. If a macro is used only
for conditional #ifdef/#ifndef statements, an assignment like =1 can be omitted, i.e.
-DUNIX is sufficient.
When programs are divided into several modules, or when library functions are used,
the definition of data types and functions are provided in header files (. h files). Each
header file should be read by the compiler only once. When projects become more
complex, many header files have to be managed, and it may become difficult to avoid
multiple scanning of some header files. This can be prevented automatically by this
simple construction using macros:

/** example . h f i l e : myfi1e.h **/

. . . . (r e s t of . h f i l e)
(may contain o the r #include d i r e c t i v e s)

After the body of the header file has been read the first time during a compilation
process, the macro -MYFILE-H- is defined, thus the body will never read be again.
So far, macros are just constants. You will benefit from their full power when using
macros with arguments. They are given in braces after the name of the macro, such
as e.g. in

You do not have to worry more than usual about the names you choose for the ar-
guments, there cannot be a conflict with other variables of the same name, because
they are replaced by the expression you provide when a macro is used, e.g. MIN(4*a,
b-32) will be expanded to (4*a) < (b-32) ? (4*a) : (b-32).

312 13 Practical Issues

The arguments are used in braces () in the macro, because the comparison < must have
the lowest priority, regardless which operators are included in the expressions that are
supplied as actual arguments. Furthermore, you should take care of unexpected side
effects. Macros do not behave like functions. For example when calling M I N (a++, b++)
the variable a or b may be increased twice when the program is executed. Usually it
is better to use inline functions (or sometimes templates in C++) in such cases. But
there are many applications of macros, which cannot be replaced by incline functions,
like in the following example, which closes this section.

Figure 13.1: A square lattice of size 10 x 10 with periodical boundary conditions.
The arrows indicate the neighbors of the spins.

The example illustrates how a program can be written in a clear way using macros,
making the program less error-prone, and furthermore allowing for a broad applicabil-
ity. A system of Ising spins is considered, that is a lattice where at each site i a particle
oi is placed. Each particle can have only two states ai = &I. It is assumed that all
lattice sites are numbered from 1 to N. This is different from C arrays, which start at
index 0, the benefit of starting with index 1 for the sites will become clear below. For
the simplest version of the model only neighbors of spins are interacting. With a two-
dimensional square lattice of size N = L x L a spin i , which is not a t the boundary,
 interact,^ with spins i + 1 (+z-direction), i - 1 (-z-direction), i + L (+y-direction) and
i - L (-y-direction). A spin at the boundary may interact with fewer neighbors when
free boundary conditions are assumed. With periodic boundary conditions (pbc), all
spins have exactly 4 neighbors. In this case, a spin at the boundary interacts also
with the nearest mirror images, i.e. with the sites that are neighbors if you consider
the system repeated in each direction. For a 10 x 10 system spin 5, which is in the
first row, interacts with spins 5 + 1 = 6, 5 - 1 = 4, 5 + 10 = 15 and through the pbc

13.4 Programming Tools 313

with spin 95, see Fig. 13.1. The spin in the upper left corner, spin 1, interacts with
spins 2,11,10 and 91. In a program pbc can be realized by performing all calculations
modulo L (for the +x-directions) and modulo L2 (for the -+y-directions), respectively.
This way of realizing the neighbor relations in a program has several disadvantages:

0 You have to write the code everywhere where the neighbor relation is needed.
This makes the source code larger and less clear.

0 When switching to free boundary conditions, you have to include further code to
check whether a spin is at the boundary.

0 Your code works only for one lattice type. If you want to extend the program
to lattices of higher dimension you have to rewrite the code or provide extra
tests/calculations.

0 Even more complicated would be an extension to different lattice structures such
as triangle or face-center cubic. This would make the program look even more
confusing.

An alternative is to write the program directly in a way it can cope with almost
arbitrary lattice types. This can be achieved by setting up the neighbor relation in
one special initialization subroutine (not discussed here) and storing it in an array
next [I. Then, the code outside the subroutine remains the same for all lattice types
and dimensions. Since the code should work for all possible lattice dimensions, the
array next is one dimensional. It is assumed that each site has numn neighbors.
Then the neighbors of site i can be stored in next [i*numnl , next [i*numn+il, . . .,
next [i*numn+numn-11 . Please note that the sites are numbered beginning with 1.
This means, a system with N spins needs an array NEXT of size (N+l)*numn. When
using frce boundary conditions, missing neighbors can be set to 0. The access to the
array can be made easier using a macro NEXT:

#define NEXT (i , r) next [(i) *num-n + r]

NEXT(i ,r) contains the neighbor of spin i in direction r . For e.g. a quadratic system,
r = O is the +x-direction, r=i the -x-direction, r=2 the +y-direction and r=3 the -y-
direction. However, which convention you use depends on you, but you should make
sure you are consistent. For the case of a quadratic lattice, it is numn=4. Please note
that whenever the macro NEXT is used, there must be a variable num-n defined, which
stores the number of neighbors. You could include num-n as a third parameter of the
macro, but in this case a call of the macro looks slightly more confusing. Nevertheless,
the way you define such a macro depends on your personal preferences.
Please note that the NEXT macro cannot be realized by an inline function, in case you
want to set values directly like in NEXT(i , 0) =i+l. Also, when using an inline function,
you would have to include all parameters explicitly, i.e. num-n in the example. The
last requirement could be circumvented by using global variables, but this is bad
programming style as well.
When the system is an Ising spin glass, the sign and magnitude of the interaction may
be different for each pair of spins. The interaction strengths can be stored in a similar

314 13 Practical Issues

way to the neighbor relation, e.g. in an array j [I. The access can be simplified via
the macro J :

A subroutine for calculating the energy H = C(i,j) Ji jaiaj may look as follows, please
note that the parameter N denotes the number of spins and the values of the spins are
stored in the array sigma[] :

double spinglass-energy(int N, int num-n, int *next, int *j,
short int *sigma)

C
double energy = 0.0;
int i, r; /* counters */

for(i=l; i<=N; i++) /* loop over all lattice sites */
for (r=0 ; rcnum-n; r++) /* loop over all neighbors */

energy += ~(i,r)*sigma[i]*sigma[NEXT(i,r)];

return(energy/2); /* each pair has appeared twice in the sum */
}

For this piece of code the comments explaining the parameters and the purpose of the
code are just missing for convenience. In the actual program it should be included.
The code for spinglass-energy() is very short and clear. It works for all kinds of
lattices. Only the subroutine where the array next [I is set up has t o be rewritten
when implementing a different type of lattice. This is true for all kinds of code re-
alizing e.g. a Monte Carlo scheme or the calculation of a physical quantity. For free
boundary conditions, additionally sigma[01 =O must be assigned to be consistent with
the convention that missing neighbors have the id 0. This is the reason, why the spin
site numbering starts with index 1 while C arrays start with index 0.

13.4.2 Make Files

If your software project grows larger, it will consist of several source-code files. Usually,
there are many dependencies between the different files, e.g. a data type defined in
one header file can be used in several modules. Consequently, when changing one of
your source files, it may be necessary to recompile several parts of the program. In
case you do not want to recompile your files every time by hand, you can transfer this
task to the mate tool which can be found on UNIX operating systems. A complete
description of the abilities of make can be found in Ref. [12]. You should look on
the man page (type man make) or in the texinfo file 1131 as well. For other operating
systems or software development environments, similar tools exists. Please consult the
manuals in case you are not working with a UNIX type of operating system.
The basic idea of mate is that you keep a file which contains all dependencies between
your source code files. Furthermore, it contains commands (e.g. the compiler com-
mand) which generate the resulting files called targets, i.e. the final program and/or

13.4 Programming Tools 315

object (.o) files. Each pair of dependencies and commands is called rule. The file
containing all rules of a project is called makefile, usually it is named Makef i l e and
should be placed in the directory where the source files are stored.
A rule can be coded by two lines of the form

target : sources

<tab> command(s)

The first line contains the dependencies, the second one the commands. The command
line must begin with a tabulator symbol <tab>. It is allowed to have several targets
depending on the same sources. You can extend the lines with the backslash "\" at
the end of each line. The command line is allowed to be left empty. An example of a
dependency/command pair is

This means that the file simu1ation.o has to be compiled if either s imulat ion. c or
s imulat ion. h have been changed. The make program is called by typing make on the
command line of a UNIX shell. It uses the date of the last changes, which is stored
along with each file, to determine whether a rebuild of some targets is necessary. Each
time at least one of the source files are newer than the corresponding target files, the
commands given after the <tab> are called. Specifically, the command is called, if
the target file does not exist at all. In this special case, no source files have to be given
after the colon in the first line of the rule.
It is also possible to generate meta rules, which e.g. tell how to treat all files which
have a specific suffix. Standard rules, how to treat files ending for example with . c
are already included, but can be changed for each file by stating a different rule. This
subject is covered in the m a n page of make.
The make tool always tries to build only the first object of your makefile, unless
enforced by the dependencies. Hence, if you have to build several independent object
files o b j e c t l , objec t2 , object3, the whole compiling must be toggled by the first
rule, thus your makefile should read like this

a l l : o b j e c t l ob jec t2 objec t3

o b j e c t l : <sources of o b j e c t l >
<tab> <command t o generate ob j ec t l>

object2: . . .
<tab> <command t o generate object2>

objec t3 . . .
<tab> <command t o generate object3>

It is not necessary t o separate different rules by blank lines. Here it is just for better
readability. If you want t o rebuild just e.g. obj ect3, you can call make obj ect3. This

316 13 Practical Issues

allows several independent targets to be combined into one makefile. When compiling
programs via make, it is common to include the target "clean" in the makefile such
that all objects files are removed when make c lean is called. Thus, the next call of
make (without further arguments) compiles the whole program again from scratch.
The rule for 'clean' reads like

clean :
<tab> r m -f * . o

Also iterated dependencies are allowed, for example

o b j e c t l : ob jec t2

The order of the rules is not important, except that m a k e always starts with the first
target. Please note that the m a k e tool is not just intended to manage the software
development process and toggle compile commands. Any project where some output
files depend on some input files in an arbitrary way can be controlled. For example you
could control the setting of a book, where you have text-files, figures, a bibliography
and an index as input files. The different chapters and finally the whole book are the
target files.
Furthermore, it is possible to define variables, sometimes also called macros. They
have the format

Also variables belonging t o your cnvironment like $HOME can be referenced in the
makefile. The value of a variable can be used, similar to shells variables, by placing
a $ sign in front of the name of the variable, but you have to embrace the name by
(. . .) or {. . .). There are some special variables, e.g. $@ holds the name of the target
in each corresponding command line, here no braces are necessary. The variable CC is
predefined to hold the compiling command, you can change it by including for example

in the makefile. In thc command part of a rule the compiler is called via $ (CC). Thus,
you can change your compiler for the whole project very quickly by altering just one
line of the makefile.
Finally, it will be shown what a typical makefile for a small software project might
look like. The resulting program is called s imulat ion. There are two additional
modules i n i t . c, run. c and the corresponding header . h files. In da ta types . h types
are defined which are used in all modules. Additionally, an external precompiled object
file ana ly s i s . o in the directory $HOME/lib is to be linked, the corresponding header

13.4 Programming Tools 317

file is assumed to be stored in $HOME/include. For init. o and run. o no commands
are given. In this case make applies the predefined standard command for files having
. o as suffix, which reads like

where the variable CFLAGS may contain options passed to the compiler and is initially
empty. The makefile looks like this, please note that lines beginning with "#" are
comments.

sample make file

OBJECTS=simulation.o init.0 run.0
OBJECTSEXT=$(HOME)/lib/analysis.o
CC=gcc
CFLAGS=-g -Wall -I$(HOME)/include
LIBS=-lm

simulation: $(OBJECTS) $(OBJECTSEXT)
<tab> $(CC) $(CFLAGS) -0 $@ $(OBJECTS) $(OBJECTSEXT) $(LIBS)

$ (OBJECTS) : datatypes. h

clean:
<tab> rm -f *. o
The first three lines are comments, then five variables OBJECTS, OBJECTSEXT, CC,
CFLAGS and LIBS are assigned. The final part of the makefile are the rules.
Please note that sometimes bugs are introduced, if the makefile is incomplete. For
example consider a header file which is included in several code files, but this is not
mentioned in the makefile. Then, if you change e.g. a data type in the header file, some
of the code files might not be compiled again, especially those you did not change. Thus
the same objects files can be treated with different formats in your program, yielding
bugs which seem hard t o explain. Hence, in case you encounter mysterious bugs, a
make clean might help. But most of the time, bugs which are hard to explain are due
to errors in your memory management. How to track down those bugs is explained in
Sec. 13.7.
The make tool exhibits many other features. For additional dctails, please consult the
references given above.

13.4.3 Scripts

Scripts are even more general tools than m a k e files. They are in fact small programs,
but they are usually not compiled, i.e. they are quickly written but they run slowly.
Scripts can be used to perform many administration tasks like backing up data, in-
stalling software or running simulation programs for many different parameters. Here

318 13 Practical Issues

only an example concerning the last task is presented. For a general introduction to
inux. scripts, please refer to a book on UNIX/L'

Assume that you have a simulation program called coversim21 which calculates vertex
covers of graphs. In case you do not know what a vertex cover is, it does not matter,
just regard it as one optimization problem characterized by some parameters. You
want to run the program for a fixed graph size L, for a fixed concentration c of the
edges, average over num realizations and write the results to a file, which contains a
string appendix in its name to distinguish it from other output files. Furthermore, you
want to iterate over different relative sizes x. Then you can use the following script
run. scr:

! /bidbash
L=$l
c=$2
num=$3
appendix=$4
shift
shift
shift
shift
for x
do

$~HOME)/cover/coversim21 -mag $L $c $x $num > \
mag-$(c)-$Cx)$Cappendix). out

done

The first line starting with "#" is a comment line, but it has a special meaning. It
tells the operating system the language in which the script is written. In this case it
is for the bash shell, the absolute pathname of the shell is given. Each UNIX shell
has its own script language, you can use all commands which are allowed in the shell.
There are also more elaborate script languages like per1 or phyton, but they are not
covered here.
Scripts can have command line arguments, which are referred via $1, $2, $2 etc., the
name of the script itself is stored in $0. Thus, in the lines 2 to 5, four variables are
assigned. In general, you can use the arguments everywhere in the script directly, i.e.
it is not necessary to store them in other variables. It is done here because in the
next four lines the arguments $1 to $4 are thrown away by four shift commands.
Then, the argument which was on position five at the beginning is stored in the first
argument. Argument zero, containing the script name, is not affected by the shift.
Next, the script enters a loop, given by "for x; do . . . done". This construction
means that iteratively all remaining arguments are assigned to the variable "x" and
each time the body of the loop is executed. In this case, the simulation is started with
some parameters and the output directed to a file. Please note that you can state the
loop parameters explicitly like in lLf or size in 10 20 40 80 160; do . . . done".

The above script can be called for example by

13.5 Libraries

which means that the graph size is 100, the fraction of edges is 0.5, the number of
realizations per run is 100, the string testA appears in the output file name and the
simulation is performed for the relative sizes 0.20, 0.22, 0.24, 0.26, 0.28, 0.30.

13.5 Libraries

Libraries are collections of subroutines and data types, which can be used in other
programs. There are libraries for numerical methods such as integration or solving
differential equations, for storing, sorting and accessing data, for fancy data types like
lists or trees, for generating colorful graphics and for thousands of other applications.
Some can be obtained for free, while other, usually specialized libraries have to be pur-
chased. The use of libraries speeds up the software development process enormously,
because you do not have to implement every standard method by yourself. Hence, you
should always check whether someone has done the jobs for you already, before start-
ing to write a program. Here, two standard libraries are briefly presented, providing
routines which are needed for most computer simulations.
Nevertheless, sometimes it is inevitable to implement some methods by yourself. In
this case, after the code has been proven to be reliable and useful for some time, you
can put it in a self-created library. How to create libraries is explained in the last part
of this section.

13.5.1 Numerical Recipes

The Numerical Recipes (NR) [3] contain a huge number of subroutines to solve stan-
dard numerical problems. Among them are:

0 solving linear equations

0 performing interpolations

0 evaluation and integration of functions

solving nonlinear equations

0 minimizing functions

0 diagonalization of matrices

0 Fourier transform

0 solving ordinary and partial differential equations

The algorithms included are all state of the art. There are several libraries dedicated
to similar problems, e.g. the library of the Numerical Algorithms Group [14] or the
subroutines which are included with the Maple software package [15].

320 13 Practical Issues

To give you an impression how the subroutines can be used, just a short example is
presented. Consider the case that a symmetrical matrix is given and that all eigen-
values are to be determined. For more information on the library the reader should
consult Ref. [3]. There it is not only shown how the library can be applied, but also
all algorithms are explained.
The program to calculate the eigenvalues reads as follows.

int main(int argc, char *argv[])
C
float **m, *d, *e;
long n = 10;
int i, j ;

m = matrix(1, n, I, n);
for(i=l; i<=n; i++)
for(j=i; j<=n; j++)
C

m [i] [j] = drand48 () ;

/* matrix, two vectors */
/* size of matrix */

/ * loop counter */

/* allocate matrix */
/* initialize matrix randomly */

m[jl [il = m[il [jl ; /* matrix must be symmetric
1

d = vector(1,n); /* contains diagonal elements
e = vector(1,n); /* contains off diagonal elements

here */

* /
*/

tred2(m, n, d, e); /* convert symmetric m. -> tridiagonal */
tqli(d, e, n, m); /* calculate eigenvalues */
for(j=l; j<=n; j++) /* print result stored now in array 'd7*/
printf ('lev %d = %f \nl', j , d[jl) ;

free-vector(e, I, n) ;
free-vector(d, 1, n) ;
free-matrix(m, 1, n, I, n);
return (0) ;

1

/* give memory back */

In the first part of the program, an n x n matrix is allocated via the subroutine
matrix() which is provided by Numer ica l Recipes . It is standard to let a vector start
with index 1, while in C usually a vector starts with index 0.
In the second part a matrix is initialized randomly. Since the following subroutines
work only for symmetric real matrices, the matrix is initialized symmetrically. The N u -
merical Recipes also provide methods to tliagonalize arbitrary matrices, for simplicity
this special case is chosen here .

13.5 Libraries 321

In the third part the main work is done by the Numerical Recipes subroutines t red2 0
and t q l i 0. First, the matrix is written in tridiagonal form by a Householder trans-
formation (t red2 0) and then the actual eigenvalues are calculated by calling t q l i (d,
e , n , m) . The eigenvalues are returned in the vector d[1 and the eigenvectors in the
matrix m[] [I (not used here), which is overwritten. Finally the memory allocated for
the matrix and the vectors is freed again.
This small example should be sufficient to show how simply the subroutines from the
Numerical Recipes can be incorporated into a program. When you have a problem of
this kind you should always consult the NR library first, before starting to write code
by yourself.

13.5.2 LEDA

While the Numerical Recipes are dedicated to numerical problems, the Library of
EJgicient Data types and Algorithms (LEDA) [4] can help a great deal in writing
efficient programs in general. It is written in C++, but it can be used by C style
programmers as well via mixing C++ calls to LEDA subroutines within C code. LEDA
contains many basic and advanced data types such as:

strings

numbers of arbitrary precision

one- and two-dimensional arrays

lists and similar objects like stacks or queues

sets

trees

graphs (directed and undirected, also labeled)

dictionaries, there you can storc objects with arbitrary key words as indices

data types for two and three dimensional geometries, like points, segments or
spheres

For most data types, it is possible to create arbitrary complex structures by using
templates. For example you can make lists of self defined structures or stacks of
trees. The most efficient implementations known in literature so far are taken for all
data structures. Usually, you can choose between different implementations, to match
special requirements. For every data type, all necessary operations are included; e.g.
for lists: creating, appending, splitting, printing and deleting lists as well as inserting,
searching, sorting and deleting elements in a list, also iterating over all elements of a
list. The major part of the library is dedicated to graphs and related algorithms. You
will find for example subroutines to calculate strongly connected components, shortest
paths, maximum flows, minimum cost flows and (minimum) matchings.

322 13 Practical Issues

Here again, just a short example is given to illustrate how the library can be utilized
and to show how easy LEDA can be used. A list of a self defined class Mydatatype is
considered. Each element contains the data entries info and flag. In the first part
of the program below, the class Mydatatype is partly defined. Please note that input
and output stream operators <<I>> must be provided to be able to create a list of
Mydatatype elements, otherwise the program will not compile. In the main part of
the program a list is defined via the LEDA data type list. Elements are inserted into
the list with append(). Finally an iteration over all list elements is performed using
the LEDA macro f orall. The program leda-test . cc reads as follows:

class Mydatatype / / self defined example class
C
public :

int info ; // user data 1
short int flag; // user data 2
Mydatatype () {inf o=O; f lag=O;); // constructor
"Mydatatype 0 C) ; // destructor
friend ostream& operator<<(ostream& 0, const Mydatatype& dt)
{ 0 << "info: I' << dt.info << " flag: I' << dt.flag << "\n";
return (0) ;) ; // output operator

friend istream& operator>>(istream &I, Mydatatype& dt)
Creturn(1) ; 1; // dummy

};

int main(int argc, char *argv[])

C
list<Mydatatype> 1; // list with elements of 'Mydatatype'
Mydatatype element;
int t;

for(t=O; t<10; t++) / / create list
C
element. info = t ;
element. f lag = t%2 ;
l.append(element);

1
forall(element, 1)
if(element.flag)
cout << element;

return(0) ;

1

// iterate over all elements
// print only 'even' elements

13.5 Libraries 323

The program has to be compiled with a C++ compiler. Depending on your system,
you have to specify some compiler flags t o include LEDA, please consult your systems
documentation or the system administrator. The compile command may look like this:

The -I flag specifies where the compiler searches for header files like LEDA/list. h,
the -L flag tells where the libraries (-1G -1L) are located. The environment variable
LEDAROOT must point to the directory where LEDA is stored in your system.
Please note that using Numerical Recipes and LEDA together results in conflicts,
since the objects vec tor and matr ix are defined in both libraries. You can circum-
vent this problem by taking the source code of Numerical Recipes (here: n r u t i l . c ,
n ru t il . h) and rename the subroutines matr ix () and vec tor 0, compile again and
include n r u t i l . o directly in your program.
Here, it should be stressed: Before trying t o write everything by yourself, you should
check whether someone else has done it for you already. LEDA is a highly effective
and very convenient tool. It will save you a lot of time and effort when you use it for
your program development.

13.5.3 Creating your own Libraries

Although many useful libraries are available, sometimes you have to write some code
by yourself. Over the years you will collect many subroutines, which - if properly
designed - can be included in other programs, in which case it is convenient to put
these subroutines in a library. Then you do not have to include the object file every
time you compile one of your programs. If your self-created library is put in a standard
search path, you can access it like a system library, you even do not have to remember
where the object file is stored.
To create a library you must have an object file, e.g. t a sks .0 , and a header file
t a s k s . h where all data types and function prototypes are defined. Furthermore, to
facilitate the use of the library, you should write a man page, which is not necessary for
technical reasons but results in a more convenient usage of your library, particularly
should other people want to benefit from it. To learn how to write a man page you
should consult man man and have a look at the source code of some man pages, they
are stored e.g. in /usr/man.
A library is created with the UNIX command a r . To include t a s k s . o in your library
libmy. a you have to enter

In a library several object files may be collected. The option "r" replaces the given
object files, if they already belong to the library, otherwise they are added. If the
library does not exist yet it is created. For more options, please refer to the man page
of ar.
After including an object file, you have to update an internal object table of the library.
This is done by

13 Practical Issues

Now you can compile a program prog. c using your library via

cc -0 prog pr0g.c 1ibmy.a

In case 1ibmy.a contains several object files, it saves some typing by just writing
libmy. a, furthermore you do not have to remember the names of all your object files.
To make the handling of the library more comfortable, you can create a directory,
e.g. -/lib and put your libraries there. Additionally, you should create the direc-
tory w/include where all personal header files can be collected. Then your compile
conlniand may look like this:

cc -0 prog pr0g.c -I$HOME/include -L$HOME/lib -1my

The option -1 states the search path for additional header files, the -L option tells
the linker where your libraries are stored and via -1my the library libmy. a is actually
included. Please note that the prefix lib and the postfix .a are omitted with the -1
option. Finally, it should be pointed out, that the compiler command given above
works in all directories, once you have set up the structure as explained. Hence, you
do not have to remember directories or names of object files.

13.6 Random Numbers

For many simulations in physics, random numbers are necessary. Quite often the model
itself exhibits random parameters which remain fixed throughout the simulation, one
speaks of quenched disorder. A famous example are spin glasses. In this case one
has to perform an average over different realizations of the disorder, to obtain physical
quantities.
But even when the system which is treated is not random, very often random numbers
are required by the algorithms, e.g. t o realize a finite-temperature ensemble or when
using randomized algorithms. In this section an introduction t o the generation of
random numbers is given. First it is explained how they can be generated at all on a
computer. Then, different methods for obtaining numbers are explained, which obey
a given distribution: the inversion method, the Box-Muller method and the rejection
method. More comprehensive information about these and similar techniques can be
found in Refs. [3, 161.
In this section it is assumed that you are familiar with the basic concepts of probability
theory and statistics.

13.6.1 Generating Random Numbers

First, it should be pointed out that standard computers are deterministic machines.
Thus, it is completely impossible to gene rat,^ true random numbers, at least not with-
out the help of the user. It is for example possible to measure the time interval
between successive keystrokes, which is randomly distributed by nature. But they
depend heavily on the current user and it is not possible to reproduce an experiment

13.6 Random Numbers 325

in exactly thc same way. This is the reason why pseudo random numbers are usually
taken. They are generated by deterministic rules, but they look like and have many
of the properties of true random numbers. One would like to have a random number
generator rand() , such that each possible number has the same probability of occur-
rence. Each time r a n d 0 is called, a new random number is returned. Additionally,
if two numbers ri, rk differ only slightly, the random numbers ri+l, r k + l returned by
the respective subsequent calls should have a low correlation.
The simplest methods t o generate pseudo random numbers are linear congruential
generators. They generate a sequence 11, 12,. . . of integer numbers between 0 and
m - 1 by a recursive recipe:

To generate random numbers r distributed in the interval [O,1) one has to divide the
current random number by m. It is desirable to obtain equally distributed values in
the interval, i.e. a uniform distribution. Below, you will see, how random numbers
obeying other distributions can be generated from uniformly distributed numbers.
The real art is to choose the parameters a , c, m in a way that "good" random numbers
are obtained, where "good" means "with less correlations". In the past several results
from simulations have been turned out to be wrong, because of the application of bad
random number generators [17].

Example: Bad and good generators

To see what "bad generator" means, consider as an example the parameters
a = 1 2 3 5 1 , ~ = 1 , m = 215 and the seed value I. = 1000. 10000 random
numbers are generatcd, by dividing each of them by m, they are distributed
in the interval [0, I) . In Fig. 13.2 the distribution of the random numbers is
shown.

The distribution looks rather flat, but by taking a closer look some regularities
can be observed. These regularities can be studied by recording k-tuples of
k successive random numbers (x,, x,+l, . . . , x,+k-1). A good random num-
ber generator, exhibiting no correlations, would fill up the k-dimensional
space uniformly. Unfortunately, for linear congruential generators, instead
the points lie on (k - 1)-dimensional planes. It can be shown that there
are at most of the order m l l h u c h planes. A bad generator has much fever
planes. This is the case for the example studied above, see top part of Fig.
13.3
The result for a = 123450 is even worsc, only 15 different "random" numbers
are generated (with seed 1000), then the iteration reaches a fixed point (not
shown in a figure).
If instead a = 12349 is chosen, the two-point correlations look like that shown
in the bottom half of Fig. 13.3. Obviously, the behavior is much more irreg-
ular, but poor correlations may become visible for higher k-tuples. 0

Practical Issues

Figure 13.2: Distribution of random numbers in the interval [0, I). They are gener-
ated using a linear congruential generator with the parameters a = 12351, c = 1, m =

215.

A generator which has passed several theoretical test is a = 75 = 16807, m = 231 - 1,
c = 0. When implementing this generator you have to be careful, because during the
calculation numbers are generated which do not fit into 32 bit. A clever implementation
is presented in Ref. [3]. Finally, it should be stressed that this generator, like all linear
congruential generators, has the low-order bits much less random than the high-order
bits. For that reason, when you want t o generate integer numbers in an interval [l,N],
you should use

r = l+ (int) (N* (I-n) /m) ;

instead of using the modulo operation as with r=i+(In % N) ;.
So far it has been shown how random numbers can be generated which are distributed
uniformly in the interval [O, 1). In general, one is interested in obtaining random
numbers which are distributed according to a given probability distribution with den-
sity p (z) . In the next sections, several techniques performing this task for continuous
probability distributions are presented.
In case of discrete distributions, one has to create a table of the possible outcomcs
with their probabilities pi. To draw a number, one has to draw a random number u
which is uniformly distributed in [O , l) and take the entry j of the table such that the
sum xi=, pi of the preceding probabilities is larger than u, but pi < u. In the
following, we concentrate on techniques for generating continuous random variables.

23.6 Random Numbers

Figure 13.3: Two point correlations xi+l(x,) between successive random numbers
x,,xi+l. The top case is generated using a linear congruential generator with the
parameters a = 12351, c = I , m = 215, the bottom case has instead a = 12349.

13.6.2 Inversion Method

Given is a random number generator drand() which is assumed to generate random
numbers U which are distributed uniformly in [0, I). The aim is to generate random

328 13 Practical Issues

numbers Z with probability density p(z). The corresponding distribution function is

The target is to find a function g(X), such that after the transformation Z = g(U), the
values of Z are distributed according t o (13.2). It is assumed that g can be inverted
and is strongly monotonically increasing, then one obtains

Since the distribution function F (u) = Prob(U 5 u) for a uniformly distributed vari-
able is just F (u) = u (u E [0, I]), one obtains P (z) = g-' (z) . Thus, one just has
to choose g(z) = P-'(z) for the transformation function, in order to obtain random
numbers, which are distributed according the probability distribution P(z) . Of course,
this only works if P can be inverted.

Example: Exponential dist,ribution

Let us consider the exponential distribution with parameter A, with proba-
bility density

and distribution function P (z) = 1 - exp(-Xz). Therefore, one can ob-
tain exponentially distributed random numbers Z , by generating uniform
distributed random numbers U and choosing Z = - ln(1 - U)/X.

In Fig. 13.4 a histogram for lo5 random numbers generated in this way and
the exponential probability function for X = 1 are shown with a logarithmi-
cally scaled y-axis. Only for larger values are deviations visible. They are
due to statistical fluctuations since p(z) is very small there.

For completeness, this example is finished by mentioning that by summing n
independent exponentially distributed random numbers, the result is gamma
distributed [16]. 0

13.6.3 Rejection Method

As mentioned above, the inversion method works only when the distribution function P
can be inverted. For distributions not fulfilling this condition, sometimes this problem
can be overcome by drawing several random numbers and combining them in a clever
way, see e.g. the next subsection.
The rejection method, which is presented in this section, works for random variables
where the probabilit,y distribution p(z) fits into a box [xo, x l) x [0, z,,,), i.e. p(z) = 0
for z 6 [xo, xl] and p(z) 5 z,,,. The basic idea of generating a random number
distributed according to p(z) is to generate random pairs (x, y) , which are distributed

13.6 Random Numbers

1 oO

Figure 13.4: Histogram of random numbers generated according to an exponen-
tial distribution (A = 1) compared with the probability density (straight line) in a
logarithmic plot.

uniformly in [zo, zl] x [0, z,,,] and accept only those values z where y 5 p(z) holds,
i.e. the pairs which are located below p(x), see Fig. 13.5. Therefore, the probability
that z is drawn is proportional t o p(x), as desired. The algorithm for the rejection
method is:

a lgor i thm rejectionmethod(z,,,,p)
beg in

found := false;
while n o t found d o
begin

ul := random number in [O , l) ;
z := zo + (21 - xo) x u1;
u2 := random number in [0, I);
y := zmax X u2;
if y 5 p(z) t h e n

found := t r u e ;
end;
re turn(x) ;

e n d

The rejection method always works if the probability density is boxed, but it has the
drawback that more random numbers have to be generated than can be used.

13 Practical Issues

Figure 13.5: The rejection method: points (x, y) are scattered uniformly over a
bounded rectangle. The probability that y 5 p(x) is proportional to p(x).

In case neither the distribution function can be inverted nor the probability fits into
a box, special methods have to be applied. As an example a method for generating
random numbers distributed according t o a Gaussian distribution is considered. Other
methods and examples of how different techniques can be combined, are collected in
Ref. [16].

13.6.4 The Gaussian Distribution

The probability density for the Gaussian distribution with mean m and width a is
(see also Fig. 13.6)

1
PC(') = exp ((' ;:I2)

It is, apart from uniform distributions, the most common distribution being applied
in simulations.
Here, the case of a normal distribution (m = 0, a = 1) is considered. If you want to
realize the general case, you have to draw a normally distributed number z and then
use c-rz + rn which is distributed as desired.
Since the normal distribution extends over an infinite interval and cannot be inverted,
the methods from above are not applicable. The simplest technique to generate random
numbers distributed according to a normal distribution makes use of the central limit
theorem. It tells us that any sum of N independently distributed random variables

13.7 Tools for Testing

Figure 13.6: Gaussian distribution with zero mean and unit width. The circles
represent a histogram obtained from l o 4 values drawn with the Box-Miiller method.

ui (with mean m and variance v) will converge to a Gaussian distribution with mean
N m and variance Nu. If again ui is taken take to be uniformly distributed in [O,1)
(which has mean r r ~ = 0.5 and variance u = 1/12), one can choose N = 12 and
Z = c::, ui - 6 will be distributed approximately normally. The drawback of this
method is that 12 random numbers are needed to generate one final random number
and that values larger than 6 never appear.
In contrast to this technique the Box-Muller method is exact. You need two uniformly
in [O,1) distributed random variables Ul, Uz to generate two independent normal vari-
ables N,, N2. This can be achieved by setting

N~ = J-2 log(1- ul) cos(2~u2)

N2 = J-2 log(l - ul) sin(2nu2)

A proof that N1 and N2 are indeed distributed according to (13.5) can be found in
Refs. [3, 161, where also other methods for generating Gaussian random numbers,
some even more efficient, are explained. A method which is based on the simulation
of particles in a box is explained in Ref. [18]. In Fig. 13.6 a histogram of lo4 random
numbers drawn with the Box-Miiller method is shown.

13.7 Tools for Testing

In Sec. 13.1 the importance of thorough testing has already been stressed. Here three
useful tools are presented which significantly assist in facilitating the debugging pro-

332 13 Practical Issues

cess. Please note again that the tools run under UNIX/Linux operating systems.
Similar programs are available for other operating systems as well. The tools covered
here are gdb, a source-code debugger, ddd, a graphic front-end to gdb, and checkergcc,
which finds bugs resulting from bad memory management.

13.7.1 gdb

The gdb gnu debugger tool is a source code debugger. Its main purpose is that
you can watch the execution of your code. You can stop the program at arbitrarily
chosen points by setting breakpoints at lines or subroutines in the source code, inspect
variablesldata structures, change them and let the program continue (e.g. line by line).
Here some examples for the most basic operations are given, detailed instructions can
be obtained within the program via the help command.
As an example of how to debug, please consider the following little program gdbtest . c:

int main (int argc, char *argv [I)
C

int t, *array, sum = 0;

array = (int *) malloc (lOO*sizeof (int));
for(t=O; t<lOO; t++)

array [t] = t;
for(t=O; t<lOO; t++)

sum += array [t] ;
printf ("sum= %d\nl' , sum) ;
free (array) ;
return(0) ;

1

When compiling the code you have to include the option -g to allow debugging:

cc -0 gdbtest -g gdbtest.~

The debugger is invoked using gdb <programname>, i.e.

gdb gdbtest

Now you can enter commands, e.g. list the source code of the program via the list
command, it is sufficient to enter just 1. By default always ten lines at the current
position are printed. Therefore, at the beginning the first ten lines are shown (the first
line shows the input, the other lines state the answer of the debugger)

13.7 Tools for Testing

4 int main(int argc, char *argv[])
5 C
6 int t, *array, sum = 0;
7
8 array = (int *) malloc (lOO*sizeof(int));
9 for(t=O; t<100; t++)
10 array [tl = t;

When entering the command again the next ten lines are listed. Furthermore, you can
refer to program lines of the code in the form list <from>, <to> or to subroutines
by typing list <name of subroutine>. More information can be obtained by typing
help list.
To let the execution stop at a specific line one can use the break command (abbrevi-
ation b). To stop the program before line 11 is executed, one enters

(gdb) b I1
Breakpoint I at Ox80484bO: file gdbtest.~, line 11.

Breakpoints can be removed via the delete command. All current breakpoints are
displayed by entering info break.
To start the execution of the program, one enters run or just r. As requested before,
the program will stop a t line 11:

(gdb) r
Starting program: gdbtest

Breakpoint 1, main (argc=l, argv=Oxbffff384) at gdbtest.c:ll
I I for(t=O; t<lOO; t++)

Now you can inspect for example the content of variables via the print command:

(gdb) p array
$1 = (int *) 0x8049680
(gdb) p array C99l
$2 = 99

To display the content of a variable permanently, the display command is available.
You can change the content of variables via the set command

(gdb) set array [99] =98

You can continue the program at each stage by typing next, then just the next source-
code line is executed:

(gdb) n
12 sum += array [tl ;

Subroutines are regarded as one source-code line as well. If you want to debug the
subroutine in a step-wise manner as well you have to enter the step command. By
entering continue, the execution is continued until the next breakpoint, a severe error,
or the end of the program is reached, please note the the output of the program appears
in the gdb window as well:

13 Practical Issues

(gdb) c
Continuing.
sum= 4949

Program exited normally.

As you can see, the final value (4949) the program prints is affected by the change of
the variable array C991.
The above given commands are sufficient for most of the standard debugging tasks.
For more specialized cases gdb offers many other commands, please have a look at the
documentation [5] .

13.7.2 ddd

Some users may find graphical user interfaces more convenient. For this reason there
exists a graphical front-end to the gdb, the da ta d isplay debugger (ddd) . On U N I X
operating systems it is just invoked by typing ddd (see also m a n page for options).
Then a nice windows pops up, see Fig. 13.7. The lower part of the window is an or-
dinary gdb interface, several other windows are available. By typing file <program>
you can load a program into the debugger. Then the source code is shown in the main
window of the debugger. All gdb commands are available, the most important ones
can be entered via menus or buttons using the mouse. For example to sct a breakpoint
it is sufficient to place the cursor in a source-code line in the main ddd window and
click on the break button. A good feature is that the content of a variable is shown
when moving the mouse onto it. For more details, please consult the online help of
ddd.

13.7.3 checkergcc

Most program bugs arc rcvealed by systematically running the program and cross-
checking with the expected results. But other errors seem to appear in a rather
irregular and unpredictable fashion. Sometimes a program runs without a problem,
in other cases it crashes with a Segmentation fault at rather puzzling locations in
the code. Very often a bad memory management is the cause of such a behavior.
Writing beyond the boundaries of an array, reading uninitialized memory locations
or addressing data which has been freed already are the most common bugs of this
class. Since the operating system organizes the memory in a different way each time
a program is run, it is rather unpredictable whether these errors become apparent
or not. Furthermore it is very hard to track them down, because the effect of such
errors most of the time becomes visible at positions diffcrmt from wherc the error has
occurred.
As an example, the case where it is written beyond the boundary of an array is
considered. If in the heap, where all dynamically allocated memory is taken from, at
the location behind the array another variable is stored, it will be overwritten in this
case. Hcnce, the error bccomes visible the next time the other variable is read. On

13.7 Tools f o r Testing 335

I n t main(in t argc, char * a r g v l l) I I
i n t t , "ar ray, sum = 0;

a r r a y = (i n t *) rnalloc (100*s i zeo f (i n t)) ;
f o r (t=0; t d 0 0 ; t++)

a r r a y l t] = t ;
fo r (t=0 ; t d 0 0 ; t++)

sum += a r r a y r t l ;
p r in t f (" sum= %d\n8 ' , sum);
f reecarray) ;
re turn(0) ;

9
l opy r igh t D 1999 Technische U n i v e r s i t a t Braunschweig, Germany
:gdb) f i l e gdbtest
!cadi ng symbol s from gdbtest done
.gdb)

, Sett~ng buttons done -
Figure 13.7: The data display debugger (ddd). In the main window the source code
is shown. Commands can be invoked via a mouse or by entering them into the lower
part of the window.

the other hand, if the memory block behind the array is not used, the program may
run that time without any problems. Unfortunately, the programmer is not able to
influence the memory management directly.
To detect such types of nasty bugs, one can take advantage of several tools. A list of free
and commercial tools can be found in Ref. [19]. Here checkergcc is considered, which
is a very convenient tool and freely available. It works under UNIX and is included
by compiling everything with checkergcc instead of cc or gcc. Unfortunately, the
current version does not have full support for C++, but you should try it on your
own project. The checkergcc compiler replaces all memory allocations/deallocations
and accesses by its own routines. Any access to non-authorized memory locations is
reported, regardlcss of the positions of other variables in the memory area (heap).
As an example, the program from Sec. 13.7.1 is considered, which is slightly modified;

336 13 Practical Issues

the memory block allocated for the array is now slightly too short (length 99 instead
of 100):

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
C

int t, *array, sum = 0;

array = (int *) malloc (99*sizeof (int));
f or(t=O; t(100; t++)

array [t] = t;
for (t=O; t<lOO; t++)

sum += array [t] ;
printf ("sum= %d\n" , sum) ;
free (array) ;
return(0) ;

1
The program is compiled via

checkergcc -0 gdbtest -g gdbtest.~

Starting the program produces the following output, the program terminates normally:

Sisko:seminar>gdbtest
Checker 0.9.9.1 (i686-pc-linux-gnu) Copyright (C) 1998 Tristan Gingold.
This program has been compiled with 'checkergcc' or 'checkerg++'.
Checker is a memory access detector.
Checker is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
For more information, set CHECKEROPTS to '--help'
From Checker (pid:30448): 'gdbtest' is running

From Checker (pid:30448): (bvh) block bounds violation in the heap.
When Writing 4 byte(s) at address OxO805fadc, inside the heap (sbrk).
0 byte(s) after a block (start: Ox805f950, length: 396, mdesc: 0x0).
The block was allocated from:

pc=Ox080554f9 in chkr-malloc at stubs-malloc.c:57
pc=Ox08048863 in main at gdbtest.c:8
pc=Ox080555a7 in this-main at stubs-main.c:13
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7
pc=Ox08048668 in *unknown* at *unknown*:O

Stack frames are:
pc=Ox080489c3 in main at gdbtest.c:lO

13.7 Tools for Testing

pc=Ox080555a7 in this-main at stubs-main.c:13
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7
pc=Ox08048668 in *unknown* at *unknown*:O

From Checker (pid:30448): (bvh) block bounds violation in the heap.
When Reading 4 byte(s) at address Ox0805fadc, inside the heap (sbrk).
0 byte(s) after a block (start: Ox805f950, length: 396, mdesc: 0x0).
The block was allocated from:

pc=0x00000063 in *unknown* at *unknown*:O
pc=Ox08048863 in main at gdbtest.c:8
pc=Ox080555a7 in this-main at stubs-main.c:13
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7
pc=Ox08048668 in *unknown* at *unknown*:O

Stack frames are:
pc=Ox08048c55 in main at gdbtest.c:12
pc=Ox080555a7 in this-main at stubs-main.c:13
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7
pc=Ox08048668 in *unknown* at *unknown*:O

Two errors are reported, each message starts with "From checker". Both errors
consist of accesses to an array beyond the border (block bound violation). For
each error both the location in the source code where the memory has been allocated
and the location where the error occurred (Stack frames) are given. In both cases
the error is concerned with what was allocated a t line 8 (pc=Ox08048863 in main at
gdbtest . c: 8). The bug appeared during the loops over the array, when the array is
initialized (line 10) and read out (line 12).
Other common types of errors are memory leaks. They appear whcn a previously
used block of memory has been forgotten to be freed again. Assume that this happens
in a subroutine which is called frequently in a program. You can imagine that you
will quickly run out of memory. Memory leaks are not detected using checkergcc by
default. This kind of test can be turned on by setting a special environment variable
CHECKEROPTS, which controls the behavior of checkergcc. To enable checking for
memory leaks at the end of the execution, one has to set

export CHECKEROPTS="-D=end8'

Let us assume that the bug from above is removed and instead the free (array) ;
command at the end of the program is omitted. After compiling with checkergcc,
running the program results in:

From Checker (pid:30900): 'gdbtest' is running

sum= 4950
Initialization of detector. . .
Searching in data
Searching in stack
Searching in registers
From Checker (pid:30900): (gar) garbage detector results.

13 Practical Issues

There is I leak and 0 potential leak(s).
Leaks consume 400 bytes (0 KB) / 132451 KB.
(0.00% of memory is leaked.)
Found I block(s) of size 400.
Block at ptr=Ox805f8fO

pc=Ox08055499 in chkr-malloc at stubs-malloc.c:57
pc=Ox08048863 in main at gdbtest.c:8
pc=Ox08055547 in this-main at stubs-main.c:13
pc=Ox40031c7e in --divdi3 at stubs/end-stubs.c:7
pc=Ox08048668 in *unknown* at *unknown*:O

Obviously, the memory leak has been found. Further information on the various
features of checkergcc can be found in Ref. [20]. A last hint: you should always test
a program with a memory checker, even if everything seems to be fine.

13.8 Evaluating Data

To analyze and plot data, several commercial and non-commercial programs are avail-
able. Here three free programs are discussed, gnuplot , x m g r and fsscale. Gnuplot is
small, fast, allows two- and three-dimensional curves to be generated and to fit arbi-
trary functions to the data. On the other hand x m g r is more flexible and produces
better output. It is recommended that gnuplot is used for viewing and fitting data
online, while x m g r is to be preferred for producing figures to be shown in talks or
publications. The program fsscale has a special purpose. It is very convenient for
performing finite-size scaling plots.
First, gnuplot and x m g r are introduced with respect to drawing figures. In the next
subsection, data fitting is covered. Finally, it is shown how finite-size scaling plots can
be created. In all three cases only very small examples can be presented. They should
serve just as a motivation to study the documentation, then you will learn about the
manifold potential the programs offer.

13.8.1 Data Plotting

The program gnuplot is invoked by entering gnuplot in a shell, for a complete manual
see Ref. [13]. As always, our examples refer to a UNIX window system like X11, but
the program is available for almost all operating systems. After startup, the prompt
(e.g. gnuplot>) appears and the user can enter commands in textual form, results
are shown in windows or are written into files. Before giving an example, it should be
pointed out that gnuplot scripts can be generated by simply writing the commands
into a file, e.g. command. gp, and calling gnuplot command. gp.
The typical case is that you have a data file of x - y data and you want to plot
the figure. Your file might look like this, it is the ground-state energy of a three-
dimensional f J spin glass as a function of the linear system size L. The filename is
sg-e0-L.dat. The first column contains the L values, the second the energy values

13.8 Evaluating Data 339

and the third the standard crror of the energy, please note that lines starting with "#"

are comment lines which are ignored on reading:

ground s t a t e energy of +-J sp in g l a s se s
L e-0 e r r o r

3 -1.6710 0.0037
4 -1.7341 0.0019
5 -1.7603 0.0008
6 -1.7726 0.0009
8 -1.7809 0.0008

10 -1.7823 0.0015
12 -1.7852 0.0004
14 -1.7866 0.0007

To plot the data enter

gnuplot> p l o t "sg-eO-L. da t" with yer rorbars

which can be abbreviated as p "sg-eO-L. da t" w e. Please do not forget the quotation
marks around the file name. Next, a window pops up, showing the result, see Fig.

Figure 13.8: Gnuplot window showing the result of a plot command.

For the p l o t command many options and styles are available, e.g. with l i n e s pro-
duces lines instead of symbols. It is possible to read files with multi columns via the

13 Practical Issues

using option, e.g.

gnuplot> plot "test.datr' using 1:4:5 w e

displays the fourth column as a function of the first, with error bars given by the 5th
column. Among other options, it is possible to redirect the output, for example to
an encapsulated postscript file (by setting set terminal postscript and redirecting
the output set output "test .epsl'). Also several files can be combined into one
figure. You can set axis labels of the figure by typing e.g. set xlabel "L", which
becomes active when the next plot command is executed. Online help on the plot
command and its manifold options is available via entering help plot. Also three-
dimensional plotting is possible using the splot command (enter help splot to obtain
more information). For a general introduction you can type just help. Since gnuplot
commands can be entered very quickly, you should use it for online viewing data and
fitting (see Sec. 13.8.2).
The xmgr (x motiv graphic) program is much more powerful than gnuplot and produces
nicer output, commands are issued by clicking on menus and buttons. On the other
hand its handling is a little bit slower and the program has the tendency to fill your
screen with windows. To create a similar plot to that above, you have to go (after
staring it by typing xmgr into a shell) to the files menu and choose the read submenu
and the sets subsubmenu. Then a file selection window will pop up and you can choose
the data file to be loaded. The situation is shown in Fig. 13.9.
The xmgr program offers almost every feature you can imagine for two-dimensional
data plots, including multiple plots, fits, many styles for lines, symbols, bar charts
etc. Also you can create manifold types of labels or legends and it is possible to
add elements like strings. lines or other geometrical objects in the plot. For more
information, please consult the online help.

13.8.2 Curve Fitting

Both programs presented above, gnuplot and xmgr, offer fitting of arbitrary functions.
It is advisable to use gnuplot, since it offers a higher flexibility for that purpose and
gives you more information useful to estimate the quality of a fit.
As an example, let us suppose that you want to fit an algebraic function of the form
f (L) = e , + aLb to the data set of the file sg-e0-L.dat shown above. First, you
have to define the function and supply some roughly (non-zero) estimations for the
unknown parameters, please note that the exponential operator is denoted by ** and
the standard argument for a function definition is x, but this depends only on your
choice:

The actual fit is performed via the fit command. The program uses the nonlinear
least-squares Marquardt-Levenberg algorithm [3], which allows a fit according to al-

13.8 Evaluating Data

File E t a Plot Qtions L?~ IP 81

Dlrectorles
-"

Files

lrrJ.,,,,,,,...-. . a 6 a z d a t - - - %
'textelseminaridatd ' / jmag3.dat-

I j / ,mag5 dat
I mag5 dat-

I !sample08 dat

, J Autoscale on read

Selection

Figure 13.9: The xmgr program, just after a data file has been loaded, and the AS
button has been pressed to adjust the figure range automatically.

most all arbitrary functions. To issue the command, you have to state the fit function,
the data set and the parameters which are to be adjusted. For our example you enter:

gnuplot> f i t f (x) "sg-eO-L. d a t " v i a e , a , b

Then gnuplot writes log information to the output describing the fitting process. After
the fit has converged it prints for the given example:

A f t e r 17 i t e r a t i o n s t h e f i t converged.
f i n a l sum of squares of r e s i d u a l s : 7.55104e-06
r e l . change dur ing l a s t i t e r a t i o n : -2.42172e-09

degrees of freedom (ndf) : 5
r m s of r e s i d u a l s (s t d f i t) = s q r t (WSSR/ndf) : 0.00122891
var iance of r e s i d u a l s (reduced ch i square) = WSSR/ndf : 1.51021e-06

342 13 Practical Issues

correlation matrix of the fit parameters:

The most interesting lines are those where the results for your parameters along with
the standard error are printed. Additionally, the quality of the fit can be estimated
by the information provide in the three lines beginning with "degree of freedom".
The first of these lines states the number of degrees of freedom, which is just the
number of data points minus the number of parameters in the fit. The deviation
of the fit function f (x) from the data points (xi, yi f ai) (i = 1 , . . . , N) is given by

2

i2 = Z = I [rfl?)] o, , which is denoted by WSSR in the gnuplot output. A measure

of the quality of the fit is the probability Q that the value of X 2 is worse than in the
current fit, given the assumption that the datapoints yi are Gaussian distributed with
mean f (xi) and variance one [3]. The larger the value of Q, the better is the quality
of the fit. To calculate Q you can use the little program Q. c

#include <stdio.h>
#include "nr.h"
int main(int argc, char **argv)

float ndf, chi2-per-df;
sscanf (argv [I] , I1%f I' , &ndf) ;
sscanf (argv [2] , l1%fl1, &chi2_per_df) ;
printf("Q=%e\nl', gammq(0.5*ndf, 0.5*ndf*chi2-per-df));
return (0) ;

3

which uses the gammaq function from Numerical Recipes [3]. The program is called in
the form Q <ndf > <WSSR/ndf >, which can be taken from the gnuplot output.
To watch the result of the fit along with the original data, just enter

gnuplot> plot "sg-eO-L. dat" w e, f (x)

The result looks like that shown in Fig. 13.10
Please note that the convergence depends on the initial choice of the parameters. The
algorithm may be trapped into a local minimum in case the parameters are too far

13.8 Evaluating Data

Figure 13.10: Gnuplot window showing the result of a fit command along with the
input data.

away from the best values. Try the initial values e=l, a=-3 and b=l! Furthermore,
not all function parameters have to be subjected to the fitting. Alternatively, you can
set some parameters to fixed values and omit them from the list a t the end of the
f i t command. You should also know that in the example given above all data points
enter into the result with the same weight. You can tell the algorithm to consider the
error bars by typing f i t f (x) "sg-eO-L. dat" using I : 2 : 3 v i a a ,b , c. Then, data
points with larger error bars have less influence on the results. More on how to use
the f i t command can be found out when entering he lp f i t .

13.8.3 Finite-size Scaling

Statistical physics describes the behavior of systems with many particles. Usually,
realistic system sizes cannot be simulated on current computers. To circumvent this
problem, the technique of finite-size scaling has been invented, for an introduction see
e.g. Ref. [21]. The basic idea is to simulate systems of different sizes and extrapolate
to the large volume limit. Here it is shown how finite-size scaling can be performed
with the help of gnuplot [13] or with the special-purpose program fsscale [22]
As an example, the average ground-state magnetization m of a three-dimensional * J
spin glass with fractions p of antiferromagnetic and I - p of ferromagnetic bonds is

13 Practical Issues

Figure 13.11: Average ground-state magnetization rn of a three-dimensional & J
spin glass with fractions p of antiferromagnetic bonds. Lincs are guides to the eyes
only.

considered. For small values of p the system is expected to have a ferromagnetically
ordered state. This can be observed in Fig. 13.11, where the results [23] for different
system sizes L = 3,5,14 are shown.
The critical concentration p,, where the magnetization m vanishes, and the critical
behavior of 7n near the transition are to be obtained. From the theory of finite-size
scaling, it is known that the average magnetization rn = (M) obeys the finite-size
scaling form [24]

m(p, L) = L - ~ I ~ % (L ' ~ " (~ - p,)) (13.6)

where m is a universal, i.e. non size-dependent, function. The exponent P characterizes
the algebraic behavior of the magnetization near p,, while the exponent v describes the
divergence of the correlation length when p, is approached. From Eq. (13.6) you can
see that when plotting ~ P / ~ r n (p , L) against ~ l / ~ (p - p,) with correct parameters /3, v
the data points for different system sizes should collapse onto a single curve. A good
collapse can be obtained by using the values p, = 0.222, v = 1.1 and /3 = 0.27. The
determination of p, and the exponents can be performed via gnuplot. For that purpose
you need a file m-scal ing . d a t with three columns, where the first column contains
the system sizes L, the second the values of p and the third contains magnetization
m(p, L) for each data point. First, assume that you know the values for p,, v and p.
In this case, the actual plot is done by entering:

13.8 Evaluating Data

gnuplot> n=l.l
gnuplot> pc=0.222
gnuplot> plot [-I: 11 l'm-scale. dat" u (($2-pc) *$I** (l/n)) : ($3*$1** (b/n))

The plot command makes use of the feature that with the sing) option you can
transform the data of the input in an arbitrary way. For each data set, the variables
$1,$2 and $3 refer to the first, second and third columns, e.g. $l**(l/n) raises the
system size to the power Ilv. The resulting plot is shown in Fig. 13.12. Near the
transition p - p, % 0 a good collapse of the data points can be observed.

Figure 13.12: Gnuplot output of a finite-size scaling plot. The ground-state magne-
tization of a three-dimensional f J spin glass as a function of the concentration p of
the antiferromagnetic bonds is shown. For the fit, the parameters p, = 0.222, P = 0.27
and v = 1.1 have been used.

In case you do not know the values of p,,p, u you can start with some estimated
values, perform the plot, resulting probably in a bad collapse. Then you may alter
the parameters iteratively and watch the resulting changes by plotting again. In this
way you can converge t o a set of parameters, where all data points show a satisfying
collapse.
The process of determining the finite-size scaling parameters can be performed more
conveniently by using the special purpose program fsscale. It can bc obtaincd free of
charge from [22]. This tool allows the scaling parameters to be changed interactively
by pressing buttons on the keyboard, making a finite-size scaling fit very convenient

346 I S Practical Issues

to perform. Several different scaling forms are available. To obtain more information,
start the program, with f s s c a l e -help. A sample screen-shot is shown in Fig. 13.13
Please note that the data have to be presented to fsscale in a file containing three
columns, where the first column contains the system size, the second the x-value and
the third the y-value. If you have only data files with more columns, you can use the
standard UNIX tool awlc to project out the relevant columns. For example, assume
that your data file r e s u l t s . da t has 10 columns, and your are interested in columns
3,8 , and 9. Then you have to enter:

awk ' (p r i n t $3, $8, $9)' r e s u l t s . da t > pro jec ted . da t

You can also use awlc to perform calulations with t,he values in the columns, similar
to gnuplot, as in

awk '{print $1+$2, 2.0*$7, $8*$1)' r e s u l t s . d a t

Figure 13.13: Screen-shot from a window running the fsscale tool.

13.9 Information Retrieval and Publishing

13.9 Informat ion Retrieval and Publishing

In this section some basic information regarding searching for literature and preparing
your own presentations and publications is given.

13.9.1 Searching for Literature

Before contributing t o the physical community and even publishing your results, you
should be aware of what exists already. This prevents you from redoing something
which has been done before by someone else. Furthermore, knowing previous results
and many simulation techniques allows you to conduct your own research projects
better. Unfortunately, much information cannot be found in textbooks. Thus, you
must start to look at the literature. With modern techniques like CD-ROMs and the
Internet this can be achieved very quickly. Within this section, it is assumed that
you are familiar with the Internet and are able to use a browser. In the following list
several sources of information are contained.

Your local (university) library
Although the amount of literature is limited from space constraints, you should

always check your local library for suitable textbooks concerning your area of
research. Also many old issues of scientific journals are yet not available through
the Internet, thus you may have to copy some articles in the library.

Literature databases
In case you want t o obtain all articles from a specific author or all articles on a

certain subject, you should consult a literature database. In physics the INSPEC
[25] database is the appropriate source of information. Unfortunately, the access
is not free of charge. But usually your library should allow access to INSPEC,
either via CD-ROMs or via the Internet. If your library/university does not offer
an access you should complain.

INSPEC frequently surveys almost all scientific journals in the areas of physics,
electronics and computers. For each paper that appears, all bibliographic informa-
tion along with the abstract are stored. You can search the database for example
for author names, keywords (in the abstract or title), publication years or jour-
nals. Via INSPEC it is possible to keep track of recent developments happening
in a certain field.

There are many other specialized databases. You should consult the web page of
your library, to find out to which of them you can access. Modern scientific work
is not possible without regularly checking literature databases.

Preprint server
In the time of the Internet, speed of publication becomes increasingly important.

Meanwhile, many researchers put their publications on the Los Alamos Preprint
server [26], where they become available world wide at most 72 (usually 24)
hours after submission. The database is free of charge and can be accessed from

348 13 Practical Issues

almost everywhere via a browser. The preprint database is divided into several
sections such as astrophysics (astro-ph), condensed matter (cond-mat) or quantum
physics (quant-ph). Similar to a conventional literature database, you can search
the database, eventually restricted to a section, for author names, publication
years or keywords in the titlelabstract. But furthermore, after you have found an
interesting article, you can download it and print it immediately. File formats are
postscript and pdf. The submission can also be in ~ / B T E X (see Sec. 13.9.2).

Please note that there is no editorial processing at all, that means you do not
have any guarantee on the quality of a paper. If you like, you can submit a poem
describing the beauty of your garden. Nevertheless, the aim of the server is to
make important scientific results available very quickly. Thus, before submitting
an article, you should be sure that it is correct and interesting, otherwise you
might get a poor reputation.

The preprint server also offers access via email. It is possible to subscribe to a
certain subject. Then evcry working day you will receive a list of all new papers
which have been submitted. This is a very convenient way of keeping track of
recent developments. But be careful, not everyone submits to the preprint server.
Hence, you still have to read scientific journals regularly.

Scientific journals
Journals are the most important resources of information in science. Most of them
allow access via the Internet, when your university or institute has subscribed to
them. Some of the most important physical journals, which are available online,
are published by (in alphabetical order)

- the American Institute of Physics [27]

- the American Physical Society [28]

- Elsevier Science (Netherlands) [29]

- the European Physical Society [30]

- the Institute of Physics (Great Britain) [31]

- Springer Science (Germany) [32]

- Wiley-VCH (USAIGermany) [33]

- World-Scientific (Singapore) [34]

Citation databases
In every scientific paper some other articles are cited. Sometimes it is interesting

to get the reverse information, i.e. to obtain all papers which are citing a given
article A. This can be useful, if one wants to learn about the most recent develop-
ments which are triggered by article A. In that case you have to access a ci tat ion
i n d e x . For physics, probably the most important is the Science Ci tat ion I n d e x
(SCI) which can be accessed via the W e b of Science [35]. You have to ask your
system administrator or your librarian whether and how you can access it from
your site.

13.9 Information Retrieval and Publishing 349

The American Physical Society (APS) [28] also includes links to citing articles
with the online versions of recent papers. If the citing article is available via the
APS as well, you can immediately access the article from the Internet. This works
not only for citing papers, but also for cited articles.

Phys Net
If you want to have access to the web pages of a certain physics department, you

should go via your web browser to the Phys Net pages [36]. They offer a list of all
physics departments in the world. Additionally, you will find lists of forthcoming
conferences, job offers and many other useful links. Also, the home page of your
department probably offers many interesting links to other web pages related to
physics.

Web browsing
Except for the sources mentioned so far, nowadays much information is available
on net. Many researchers present their work, their results and their publications
on their home pages. Quite often talks or computer codes can also be downloaded.

In case you cannot find a specific page through the Phys Net (see above), or you
are interested in obtaining all web pages concerning a specific subject, you should
ask a search engine. There are some very popular all purpose engines like Yahoo
[37] or Alta Vista [38]. A very convenient way to start a query on several search
engines in parallel is a meta search engine, e.g. Metacrawler [39]. To find out
more, please contact a search engine.

13.9.2 Preparing Publications

In this section tools for two types of presenting your results are covered: via an arti-
clelreport or in a talk. For writing papers, it is recommended that you use TEX/~W.
Data plots can be produced using the programs explained in the last section. For draw-
ing figures and making transparencies, the program xfig offers a large functionality. To
create three-dimensional perspective images, the program Povray can be used. B W ,
xfi.9 and Povray are introduced in this section.
First, w/Bw is explained. It is a typesetting system rather than a word processor.
The basic program is 7$J, Bw is an extension to facilitate the application. In the
area of theoretical computer science, the combination of and HTJ$ is a widespread
standard. When submitting an article electronically to a scientific journal usually

has to be used. Unlike the conventional office packages, with KQ$ you do not
see the text in the form it will be printed, i.e. Bw is not a WYSIWYG ("What
you see is what you get") program. The text is entered in a conventional text editor
(like Emacs) and all formatting is done via special commands. An introduction to the
BTEX language can be found e.g. in Refs. [40, 411. Although you have to learn several
commands, the use of BTEX has several advantages:

The quality of the typesetting is excellent. It is much better than self-made
formats. You do not have to care about the layout. But still, you are free to
change everything according to your requirements.

350 13 Practical Issues

Large projects do not give rise to any problems, in contrast to many commercial
office programs. When treating a I4w text, your computer will never complain
when your text is more than 300 pages or contains many huge post-script figures.

Type setting of formulae is very convenient and fast. You do not have to care
about sizes of indices of indices etc. Furthermore, in case you want for example
to replace all n in your formulae with P, this can be done with a conventional
replace, by replacing all \alpha strings by a \beta strings. For the case of an
office system, please do not ask how to do this conveniently.

There are many additional packages for enhanced styles such as letters, trans-
parencies or books. The bibtex package is very convenient, which allows a nice
literature database to be build up.

Since you can use a conventional editor, the writing process is very fast. You do
not have to wait for a huge packet to come up.

On the other hand, if you still prefer a WYSIWYG ("what you see is what you
get") system, there is a program called lyx [42] which operates like a conventional
word processor but creates I4m files as output. Nevertheless, once you get used
t o gw, you will never want to loose it.

Please note that this text was written entirely with W&-jK. Since IN$$ is a type
setting language, you have to compile your text to create the actual output. Now, an
example is given of what a I4w text looks like and how it can be compiled. This
example will just give you an impression of how the system operates. For a complete
reference, please consult the literature mentioned above.
The following file example. tex produces a text with different fonts and a formula:

\document class [12pt] (article)
\begin{document)
This is just a small sample text. You can write some words {\em
emphasized}\/, or in {\bf bold face). Also different {\small sizes)
are possible.

An empty line generates a new paragraph. \LaTeX\ is very convenient
for writing formulae, e.g.
\begin{equat ion)
M-i(t) = \frac{i){L-3) \int-V x-i \rho(\vec{x),t) dA3\vec{x)
\end{equat ion}
\end{document}

The first line introduces the type of the text (article, which is the standard) and the
font size. You should note that all tex commands begin with a backslash (\), in case
you want to write a backslash in your text, you have to enter \backslash. The
actual text is written between the lines starting with \begin{document} and ending
with \end{document). You can observe some commands such as \em, \bf or \small.
The { } braces are used to mark blocks of text. Mathematical formulae can be written

13.9 Information Retrieval and Publishing 351

e.g. with \begin{equation) and \end{equation}. For the mathematical mode a huge
number of commands exists. Here only examples for Greek letters (\alpha), subscripts
(x-i) , fractions (\ f r a c) , integrals (\ i n t) and vectors (\vec) are given.
The text can be compiled by entering l a t e x example. t ex . This is the command for
UNIX, but aTJ$ exists for all operating systems. Please consult the documentation
of your local installation.
The output of the compiling process is the file example.dvi, where "dvi" means
"device independent". The . dv i file can be inspected on screen by a viewer via
entering xdvi example. dv i or converted into a postscript file via typing dvips -0

example. p s example. d v i and then transferred to a printer. On many systems it can
be printed directly as well. The result will look like this:

This is just a small sample text. You can write some words emphasized, or
in bold face. Also different sizes are possible.

An empty line generates a new paragraph. UTJ$ is very convenient for
writing formulae, e.g.

This example should be sufficient to give you an impression of what the philosophy
of I4TJ$ is. Comprehensive instructions are beyond the scope of this section, please
consult the literature [40, 411.
Under UNIX/Linux, the spell checker ispell is available. It allows a simple spell check
to be performed. The tool is built on a dictionary, i.e. a huge list of known words.
The program scans any given text, also a special I 4 w mode is available. Every time
a word occurs, which is not contained in the list, ispell stops. Should similar words
exist in the list, they are suggested. Now the user has to decide whether the word
should be replaced, changed, accepted or even added t o the dictionary. The whole
text is treated in this way. Please note that many mistakes cannot be found in this
way, especially when the misspelled word is equal to another word in the dictionary.
However, a t least ispell finds many spelling mistakes quickly and conveniently, so you
should use the tool.
Most scientific texts do not only contain text, formulae and curves, but also schematic
figures showing the models, algorithms or devices covered in the publication. A very
convenient but also simple tool to create such figures is xfig. It is a window based
vector-oriented drawing program. Among its features are the creation of simple objects
like lines, arrows, polylines, splines, arcs as well as rectangles, circles and other closed,
possibly filled, areas. Furthermore you can create text or include arbitrary (eps, jpg)
pictures files. You may place the objects on different layers which allows complex
sceneries to be created. Different simple objects can be combined into more complex
objects. For editing you can move, copy, delete, rotate or scale objects. To give you
an impression what xfig looks like, in Fig. 13.14 a screen-shot is shown, displaying xfig
with the picture that is shown in Fig. 13.1. Again, for further help, please consult the
online help function or the man pages.

13 Practical Issues

=... , , ,

Figure 13.14: A sample screen-shot showing the xfig program.

The figures can be saved in the internal fig format, and exported in several file formats
such as (encapsulated) postscrzpt, B?&X, Jpeg, TzSf or bitmap. The xfig program can
be called in a way that it produces just an output file with a given fig input file. This
is very convenient when you have larger projects where some small picturc objects
are contained in other pictures and you want to change the appearance of the small

13.9 Information Retrieval and Publishing 353

objects in all other files. With the help of the make program pretty large projects can
be realized.
Also, xjig is very convenient when creating transparencies for talks, which is the stan-
dard method of presenting results in physics. With different colors, text sizes and all
the objects mentioned before, very clear transparencies can be created quickly. The
possibility of including picture files, like postscript files which were created by a data
plotting program such as xmgr, is very helpful. In the beginning it may seem that
more effort is necessary than when creating the transparencies by hand. However,
once you have a solid base of transparencies you can reuse many parts and preparing
a talk may become a question of minutes. In particular, when your handwriting looks
awful, the audience will be much obliged for transparencies prepared with xjig.
Last but not least, please note that xjig is vector oriented, but not pixel oriented.
Therefore, you cannot treat pictures like jpg files (e.g. photos) and apply operations
like smoothing, sharpening or filtering. For these purposes the package gimp is suitable.
It is freely available again from GNU [5].
It is also possible to draw three-dimensional figures with xfig, but there is no spe-
cial support for it. This means, xjig has only a two-dimensional coordinate system.
A very convenient and powerful tool for making three-dimensional figures is Povray
(Persistence Of Vision RAYtraycer). Here, again, only a short example is given, for a
detailed documentation please refer to the home page [43], where the program can be
downloaded for many operating systems free of charge.
Povray is, as can be realized from its name, a raytracer. This means you present a
scene consisting of several objects to the program. These objects have characteristics
like color, reflectivity or transparency. Furthermore the position of one or several
light sources and a virtual camera have to be defined. The output of a raytracer is a
photo-realistic picture of the scene, seen through the camera. The name "raytracer"
originates from the fact that the program creates a picture by starting several rays of
light at the light sources and traces their way through the scene, where they may be
absorbed, reflected or refracted, until they hit the camera, disappear into infinity or
become too weak. Hence, the creation of a picture may take a while, depending on
the complexity of the scene.
A scene is described in a human readable file, it can be entered with any text editor.
But for more complex scenes, special editors exist, which allow a scene to be created
interactively. Also several tools for making animations are available on the Internet.
Hcrc, a simple example is given. The scene consists of three spheres connected by
two cylinders, forming a molecule. Furthermore, a light source, a camera, an infinite
plane and the background color are defined. Please note that a sphere is defined by its
center and a radius and a cylinder by two end points and a radius. Additionally, for all
objects color information has to be included, the center sphere is slightly transparent.
The scene description file t e s t 1 .pov reads as follows:

inc lude " c o l o r s . i n c "

background (c o l o r White 1

13 Practical Issues

sphere { (10, 2 , 0 > , 2
pigment { Blue))

cyl inder { (10, 2 , 0> , (0, 2 , l o> , 0.7
pigment { color Red))

sphere { (0, 2 , l o > , 4
pigment { Green transmit 0 .41 1

cyl inder { (0, 2 , l o > , (-10, 2, 0 > , 0.7
pigment { Red 1 1

sphere { (-10, 2, 0> , 2
pigment { Blue 1)

plane { <0, 1 , 0> , -5
pigment { checker co lor White, co lor Black))

l ight-source { (10, 30, -3> color white)

camera { loca t ion (0, 8 , -20>
look-at (0, 2 , 10>
aper ture 0.4)

The creation of the picture is started by calling (here on a Linux system via command
line) x-povray +I t e s t 1 .pov. The resulting picture is shown in Fig. 13.15, please
note the shadows on the plane.

Figure 13.15: A sample scene created with Povray

Bibliography 355

Povray is really powerful. You can create almost arbitrarily shaped objects, combine
them into complex objects and impose many transformations. Also special effects
like blurring or fog are available. All features of Povray are described in a 400 page
manual. The use of Povray is widespread in the artists community. For scientists
it is very convenient as well, because you can easily convert e.g. configuration files
of molecules or three-dimensional domains of magnetic systems into nice looking per-
spective pictures. This can be accomplished by writing a small program which reads
e.g your configuration file containing a list of positions of atoms and a list of links,
and puts for every atom a sphere and for every link a cylinder into a Povray scene
file. Finally the program must add suitable chosen light sources and a camera. Then,
a three-dimensional pictures is created by calling Povray.
The tools described in this section, should allow all technical problems occurring in the
process of preparing a publication (a "paper") to be solved. Once you have prepared it,
you should give it to at least one other person, who should read it carefully. Probably
he/she will find some errors or indicate passages which might be difficult to understand
or that are misleading. You should always take such comments very seriously, because
the average reader knows much lcss about your problem than you do.
After all necessary changes have been performed, and you and other readers are satis-
fied with thc publication, you can submit it to a scientific journal. You should choose
a journal which suits your paper. Where to submit, you sholild discuss with experi-
enced researchers. It is not possible to give general advice on this issue. Nevertheless,
technically the submission can be performed nowadays almost everywhere electroni-
cally. For a list of publishers of some important journals in physics, please see Sec.
13.9.1. Submitting one paper to several journals in parallel is not allowed. However,
you should also consider submitting to the preprint server [25] as well to make your
results quickly available t o the physics community.
Nevertheless, although this text provides many useful hints concerning performing
computer simulations, the main part of the work is still having good ideas and carefully
conducting the actual research projects.

Bibliography

[I] I. Sommerville, Software Engineering, (Addisin-Wesley, Reading (MA) 1989)

[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering,
(Prentice Hall, London 1991)

[3] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C (Cambridge University Press, Cambridge 1995)

[4] K. Mehlhorn and St. Naher, The LEDA Platform of Combinatorial and Geometric
Computing (Cambridge University Press, Cambridge 1999);
see also http://www.mpi-sb.mpg.de/LEDA/leda.html

356 13 Practical Issues

[5] M. Loukides and A. Oram, Programming with GNU Software, (O'Reilly, London
1996);
see also http://www.gnu.org/manual

[6] H.R. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation,
(Prentice Hall, London 1981)

[7] J . Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-
Oriented Modeling and Design, (Prentice Hall, London 1991)

[8] R. Johnsonbaugh and M. Kalin, Object Oriented Programming in C++, (Macmil-
lan, London 1994)

[9] J. Skansholm, C++ from the Beginning, (Addisin-Wesley, Reading (MA) 1997)

[lo] Mail to hartmann@theorie.physik.uni-goettingen.de

[Ill B.W. Kernighan and D.M. Ritchie, The C Programming Language, (Prentice Hall,
London 1988)

[12] A. Orarn and S. Talbott, Managing Projects With Make, (O'Reill~, London 1991)

[13] The programs and manuals can be found on http://www.gnu.org. For some there
is a texinfo file. To read it, call the editor 'emacs' and type <crtl>+'h' and then
'i' t o start the texinfo mode.

[14] J. Phillips, The Nag Library: A Beginner's Guide (Oxford University Press, Ox-
ford 1987);
see also http://www.nag.com

[15] A. Heck, Introduction to Maple, (Springer-Verlag, New York 1996)

[16] B.J.T. Morgan, Elements of Simulation, (Cambridge University Press, Cambridge
1984)

[17] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Phys. Rev. Lett. 69, 3382 (1992);
I. Vattulainen, T . Ala-Nissila and K. Kankaala, Phys. Rev. Lett. 73, 2313 (1994)

[18] J.F. Fernandez and C. Criado, Phys. Rev. E 60, 3361 (1999)

[20]The tool can be obtained under the gnu public license from
http://www.gnu.org/software/checker/checker.html

[21] J. Cardy, Scaling and Renormalization in Statistical Physics, (Cambridge Uni-
versity Press, Cambridge 1996)

[22] The program fsscale is written by A. Hucht, please contact him via email:
fred@thp.Uni-Duisburg.DE

Bzbliography

[23] A.K. Hartmann, Phys. Rev. B 59 , 3617 (1999)

[24] K. Binder and D.W. Heermann, Monte Carlo Simulations in Statistical Physics,
(Springer, Heidelberg 1988)

[40] L. Lamport and D. Bibby, LaTeX : A Documentation Preparation System User's
Guide and Reference Manual, (Addison Wesley, Reading (MA) 1994)

Index

I P 23
1-SAT algorithm 21
2-CNF 20
3-CNF 20
3-SAT 22, 23

adjacency list 46
adjacency matrix 46
adjacent node 37
aging 187, 190
algorithm 9

1-SAT 21
approximation for 26 spin glasses

250
bit-sequence 165
branch-and-bound 194, 282-287
branch-and-cut 194
breadth-first search 59-61, 104, 108,

115, 231-234
build-cluster 196
burning 54, 57
certificate checking 22
cluster 77
conjugate gradient 170
cycle canceling 142
decision 20
depth-first search 57-59
Dijkstra's 63-67, 70
Dinic's 107-1 15
divide-and-conquer 281-282
ellipsoid 236
extend-alternating-tree 233
factoriaJ 27
fibonachi 32
find 48
for spin glasses 192-202, 208-219
Ford-Fulkerson 102-107

forest-fire 54, 57
generalized Rosenbluth 263
genetic 159-1 83, 195, 199-202
graph 48-49, 53-70
greedy cover 278
Hoshen-Kopelman 54-57
Hungarian 235, 237-241
invasion 54, 70
Kruskal's 69, 70
label-setting 63
Leath 54, 57
local optimization 170
matching 194, 231-250
maximum-flow 143
mergesort 30
minimize-function 167
minimum spanning tree 68-70
minimum-cost-flow 139-147
minimum-weight perfect matching

242-250
Monte Carlo 77, 255-270
negative-cycle-canceling 68, 141-

143
N-line 135
nondeterministic 23
N queens 33
optimization 5
parallel tempering 260-262
Prim's 69, 70
primal-dual 239
prune-enriched Rosenbluth 262-270
push-relabel 107
quantum Monte Carlo 266
random-walk 255
sequential 27
shortest path 61-68
simplex 236

Index

simulated annealing 194, 257-259
sorting 29
steepest descent 170
successive-shortest-path 135, 139
threshold accepting 256
wave 107-115, 121

all ground states 115-121
all minimum cuts 115-121
a 85
Alta Vista 349
alternating path 229, 230
alternating tree 231
American Physical Society 349
amino acid 266
amorphous conductor 53
ancestor 39
AND operation 19
antiferrornagnet 185, 250
antiferromagnetic interactions 4, 91
antiperiodic boundary conditions 205
applications of optimization methods 1-2
approximation algorithm for 2d spin

glasses 250
APS 349
arbitrary precision 321
arc 37
array 295, 321, 334
array iniplementation of heaps 45
assignment 10, 19, 20

problem 235
astronomy 179
asymptotic behavior 17
augmenting path 103, 105, 107,230,232-

234, 242
theorem 231

autocorrelation function 78
awk 346

backbone 275, 290
backtracking 32, 242
backward wave 110
balance constraint 151
balanced tree 49
balanced vertex 109
ballistic search 208-219
base 242
basic graph algorithms 48-49
basic operations 296
behavior

asymptotic 17
P 54, 80, 81, 84, 123
BFS 59, 104, 115, 231-234
biconnected component 59
bimodal distribution 88, 92, 186
binary distribution 88
binary representation 161, 164
binary tree 40, 279
Binder cumulant 85
Biot-Savat law 138
bipartite graph 229, 231-241
bit-sequence procedure 165
bitmap 352
blocked vertex 110
blocking flow 107
blossom 242

shrinking 242, 245
Boltzmann

constant 74
distribution 74
entropy 75

bond 37, 61, 186
boolean

assignment 19, 20
formula 19
operation 19
variable 19

bottom up approach 295
bound 282

lower 276
upper 17, 276

boundary conditions 251
antiperiodic 205
periodic 205

branch-and-bound algorithm 194, 282-
287

branch-and-cut algorithm 194
breadth-first search 59--61, 104, 108, 115,

231-234
BS 212
bucket 67, 70
Burgers charge 151
burning algorithm 54, 57

C programming language 293, 300
canonical ensemble 74
capacity 96, 102

constraint 43, 129, 140
of cut 97

Index

capsuling 301
cases statement 10
CC 22
CdCr1.7In0.3S4 187
CEA 195-197, 207, 209, 219
center of mass 179
central limit theorem 330
certificate checking algorithm 22
change-y procedure 247
chaos 252
checkerboard fashion 94, 96
checkergcc 334-338
X (P) 81
Church's thesis 13
citation database 348
class 295, 297, 300

h i s t o 303
NP 22
P 22

clause 19
clean 316
closed path 37
cluster 55, 81, 195

algorithm 77
mass 83
percolating 82
size 54

cluster-exact approximation 192-202,
207, 209, 219

CNF 19
columnar defect 147
columnar disorder 137
combinatorial optimization problem 2
comment 12 , 299, 308-310, 318
complete tree 41
component

biconnected 59
connected 37, 57
strongly connected 116
strongly-connected 38

computable function 15
condition 10
conductor 53
configuration file 294
conjugate gradient algorithm 170
conjunction 19
conjunctive normal form 19
connected component 37, 57
connect.rd graph 37

connectivity percolation 53-61
conservation

of energy 298
of flow 43, 103
of momentum 298

const 298
constraint 2

capacity 43
constructor 305
contact matrix 270
continuous transition 78
convex function 136, 140
convex minimum-cost-flow problem 136

139
cooling 257

protocol 259
correctness problem 16
correlation

function 252
length 54, 82, 84, 252
time 78

correlationlfunction 84
costs 53, 63

negative 132
reduced 64, 133, 135, 143, 244
residual 140

cover 50
edge 50
minimum edge 50
vertex 51

critical
behavior 80
exponent 54, 80, 81
point 78

crossover I61
operation 166, 173, 182
triadic 199

crystal 257
curve fitting 340-343
cut

capacity of 97
minimum 99, 101, 115
odd 243
optimality condition 69
s-t 96

cutoff 175
cycle

canceling algorithm 142
Euler 50

Index

Hamilton 50
negative 53, 68, 132

S 81, 84
DAFF 91, 92-96, 121-125, 192
data

analysis 338-346
capsuling 301
collapse 85, 123
structures 295, 301

data display debugger (ddd) 334
debugging 297, 332

tools 331-338
decidable problem 16
decision algorithm 20
deficit 143

node 145
#define 310
degeneracy 4, 91, 116, 122, 208, 228, 269
degree 37

of freedom 342
delta-peak 221
A, 123
density 78

distribution 179
dependency 315
depth-first search 57-59
depth-first spanning tree 59
derived graph 245
descendant 39
destructor 305
detailed balance 76
df 54, 81
diagonalization technique 13-16
dictionary 321
differential equation 319
Dijkstra's algorithm 63- 67, 70
diluted antiferromagnet 192
diluted antiferromagnet in a field 91, 92-

96, 121 125
diluted lattice 53
dimensionless ratio 85
dimer covering 229
Dinic's algorithm 107-1 15

time complexity 107
dipolar interactions 189
directed graph 37, 47, 96, 102
directed polymer 51, 61-63, 129
discontinuous transition 78

discrete optimization problem 2
disjunction 19
dislocation pair 151
disorder 187

columnar 137
frozen 3
quenched 3, 324
unbounded 150

disordered system 87-90
distance label 68
distributing work 296
distribution

bimodal 88, 92; 186
binary 88
density 179
exponential 328
Gaussian 92, 186; 222, 330-331
joint 89
normal 330
of overlaps 125, 191, 192, 219

divergence 133, 139
divide-and-conquer algorithm 281-282
divide-and-conquer principle 30, 31
documentation 299
domain 124
domain state 95
domain wall 154, 205

renormalization group analysis 154
Doppler shift 178
-D option 311
double linked list 45
DPRM 62
Droplet picture 191, 195, 219
DS 95
dual linear problem 236
duality 236
DWRG 154
dynamic programming 31
dynamic susceptibility 187

EA model 186
EC problem 50
edge 37, 228

cover 50
free 228
head 38
incoming 38
inner 96
matched 228

Index

outgoing 38
phantom 101
singly connected 59
tail 38

Edmonds theorem 242
Edwards-Anderson model 186
eigenvalue 320
elastic medium 96
electron 173
element of list 41
ellipsoid algorithm 236
energy 75

conservation 298
free 74
internal 74

enrichment 264
ensemble

canonical 74
microcanonical 74

entropy 206
Boltzmann 75
ground-state 192

enumeration problem 229
ergodic 209
error bar 78, 299, 342
5' 84
Euler cycle 50
even level 233
excess 109, 143
excess node 145
excitation 154-155
excited state 221
expand-update procedure 247
expectation value 74
experimental results for spin glasses 187

190
exponent

cu 85
0 54, 80, 81, 84, 123
critical 54
5' 84
y 81, 84
v 123, 252
a 81
stiffness 207
r 81
0 s 207, 251

exponential distribution 328
external field 74

factorial 27
father 39
FC 95
feasible

flow 141
solution 2
vector 235

Fe,Aul-, 187, 188
FeFz 92-93
Fe,Znl-,Fa 92-93
Fel-,Mn,TiOs 190
ferromagnet 3, 185, 204, 250
ferromagnetic interactions 4, 91
ferromagnetic phase 84
FH 95
Fibonachi numbers 30-32
field

cooling 95
external 74
heating 95

FIFO implementation 68
FIFO list 41
find operation 48
finite graph 37
finite-size scaling 81, 83-84, 203, 289,

343-346
first order transition 79
fit parameters 85
fitness 161

function 180
fitness function 173
fitting 340-343

quality of 342
flow 42, 102, 105, 133

blocking 107
conservation 43, 103
feasible 141
infeasible 143
maximum 43, 106, 192
minimum-cost 43, 68
negative 43
pseudo 143

flow-augmentation lemma 145
fiuctuations 75
flux 155
flux line 138

array 147-150
problem 147-150

I n d e x

for loop 10
Ford-Fulkerson algorithm 102-107

time complexity 105
forest-fire algorithm 54, 57
formula

boolean 19
satisfiable 19

Fortran 293, 300
forward wave 110
four-dimensional spin glass 202
Fourier transform 319
fractal 54, 95

dimension 81
free energy 74, 78
free spin 192, 210, 218
free vertex 228, 286
frozen disorder 3
frustration 187, 194, 227
fsscale 345-346
function

computable 15
convex 136
partial 13

GA 159
galaxy 178
y 54, 81, 84
gas 78
gauge transformation 95, 193
Gaussian distribution 92, 186, 330-331
GdAlz 189
gdb 332-334
GEATbx 164
generalized Rosenbluth method 263
genes 159
genetic algorithm 159-183, 195, 199-202

applications 163
data structures 161
example 164-171
general scheme 163
representation 160, 161; 164, 173,

179
Genetic and Evolutionary Algorithm

Toolbox 164
geological structures 163
glass 87
global variable 307
GNU project 297
gnuplo t 204, 338-340

finite-size scaling 344
script 338

"go with the winners" strategy 266
gold 187
goto statement 11, 307
graph 37-38, 96, 228, 295, 321

algorithms 53-70
algorithms in LEDA 321
bipartite 229, 231 241
connected 37
cover 50
derived 245
directed 37, 47, 102
finite 37
imple~nentation 46-48
labeled 42, 48
network 42
planar 227
random 275
reduced 117, 118
representation 44-48
residual 103
sparse 46, 301

gravitational force 180
greedy cover algorithm 278
Green's function 139
ground state 4, 62, 89, 91, 94, 102, 116,

129, 139, 151, 152, 154, 160,
172, 192, 199, 202, 219. 220,
228, 250-252, 266

degenerate 4
energy 203, 219, 338
landscape 192, 207, 219
number of 124

ground states
all 115-121

growth front 65, 70

halting problem 16
Hamilton cycle 50
Hamiltonian 62, 74, 80, 87, 92, 94, 98,

129, 133, 136; 138, 139, 186,
193, 196, 255

harmonic potential 175
h, 89
HC problem 50
head of edge 38
head of list 41
header file 306, 311

Index

heap 41, 66
implementation 45

heap Dijkstra algorithm 67
heat bath 74
height of tree 39
-help option 299
heuristic 198

traveling salesman problem 12-13,
17-18

vertex cover 277
hierarchy of calls 27, 29-31
histogram 303
Hoshen-Kopelman algorithm 54-57
Householder transformation 321
Hungarian algorithm 235, 237-241

time complexity 239
hyper scaling relation 82

#i fdef 311
#ifndef 311
implementation 297

graphs 46-48
heaps 45
lists 44-45
trees 45-46

importance sampling 76
incoming edge 38
individual 199
infeasible flow 143
inner edge 96
inner vertex 96
input 294

size of 16
insert operation 41, 49
INSPEC 163, 347
integration 319
interaction

antiferromagnetic 4, 91
ferromagnetic 4, 91
superexchange 92

interface 301
internal energy 74
interpolation 319
invasion algorithm 54, 70
inversion method 327-328
irreversibility 95
Ising model 73, 79, 84, 87, 92, 93, 185,

204
isolated node 37

ispell 351

joint distribution 89
Jpeg 352

Kruskal's algorithm 69, 70
k-SAT 19-22, 23, 273

label-correcting algorithm 67-68
label-setting algorithm 63
labeled graph 42, 48
labeling 42
Lambert-W-function 276
laser 163

pulses 175
349-351

lattice 81, 87
diluted 53
gauge theory 163
square 312-314

leaf 39
Leath algorith 57
Leath algorithm 54
LEDA library 26, 47, 64, 294, 295, 321-

323
left son 40
left subtree 40
length of path 37
level

even 233
network 107
odd 233

library 294, 295; 319-324, 347
create 323-324
LEDA 26, 47, 64

LIFO list 41
linear congruential generators 325
linear equation 319
linear fitness ranking 182
linear program 235
Linux 293, 297, 310
liquid 78
list 41-42, 295, 321

adjacency 46
double linked 45
element 41
FIFO 41
head 41
implementation 44-45

Index

LIFO 41
operations 321
pointer implementation 44
tail 41

literal 19
literature databases 347
local field 195
local minimum 256
local optimization 162, 170
logfile 300
longitudinal excursion 149
loop

for 10
while 10

lower bound 276
LP 235

M-exposed vertex 228
machine

random access 13
Turing 13

macro 296, 310-314
magnetization 74, 75, 84, 121, 250, 343
make 314-317
makefile 297, 314-317
m a n page 314, 323
Maple 319
Markov process 76
mass 179
mass of cluster 83
mass-balance constraint 139
master equation 76
matching 228-230, 231

maximum-cardinality 228, 234
maximum-weight 229
non-bipartite

time complexity 242
perfect 228
weighted 229

matching algorithm 194, 231-250
matching polytope theorem 244
mates 229
mathematical description

of an optimization problem 2
Matlab 164
matrix

adjacency 46
diagonalization 319

maximization problem 2

maximum flow 43, 103, 106, 192
maximum-cardinality matching 228, 234

time complexity 234
maximum-flow algorithm 143
maximum-flow problem 234
maximum-weight matching 229
mean-field model 191, 219
memory allocation 335
memory leak 337
mergesort 30
meta rule 315
meteorology 163
method see algorithm
methods for objects 300
MF 191
microcanonical ensemble 74
minimization problem 2
minimum cut 99, 101, 115
minimum cuts

all 115-121
minimum edge cover 50
minimum spanning tree 69

algorithm 68-70
minimum vertex cover 275
minimum-cost flow 43, 68
minimum-cost path 63
minimum-cost-flow algorithm 139-147
minimum-cost-flow problem 139, 235
minimum-weight perfect matching 235-

250
algorithm 242-250
time complexity 249

miscellaneous statement 12
model

Edwards-Anderson 186
Ising 73, 79, 84, 87, 92, 93, 204
mean-field 191
random-field 92-96, 192
Sherrington-Kirkpatrick 190, 220

module 297, 306
comment 308

Molecular Dynamics simulation 298
momentum conservation 298
monomer 263, 267
Monte Carlo

algorithm 77, 255-270
optimization 78
simulation 76, 94, 191, 207, 209-

211, 252, 270

Index

multi-canonical ensemble 260
mutation 159, 161, 201

operation 166, 173, 182

negation 19
negative costs 132
negative cycle 68, 132
negative flow 43
negative-cycle theorem 141
negative-cycle-canceling algorithm 68,

141-143
time complexity 143

neighbor node 37
neighbour configurations 210
network 42, 96-102, 129, 192

level 107
random fuse 96
random resistor 61
residual 103, 105, 108, 134

neural network 186, 195
neutron scattering 187
N-line problem 129-135, 138
N-line algorithm 135
node 37

adjacent 37
father 39
isolated 37
neighbor 37
sink 42
son 39
source 42

node potential 132, 134, 143
nondeterministic algorithm 23
nondeterministic polynomial 22
nonlinear equation 319
normal distribution 330
NOT operation 19
NP 22
NP-complete 19-26, 50

graph problem 50-51
NP-hard 25, 163, 185, 194, 220, 228, 273,

2 74
N-queens problem 32-33
v 54, 82, 123, 252
nuclear reactions 163
number of ground states 124
number-partitioning problem 273
Numerical Recipes 294, 31 9-321

010 notation 17
object 294, 300-306
object-oriented programming 300-306
odd cut 243
odd level 233
offset 136
offspring 161, 199
one-dimensional quantum system 172-

175
operation 295

AND 19
basic 296
boolean 19
crossover 166, 173, 182
find 48
insert 41, 49
mutation 166, 173, 182
NOT 19
OR 19
remove 41

operator overloading 302
optimization

Monte Carlo 78
optimization algorithms 5

applications of 1-2
optimization problem

combinatorial 2
discrete 2
mathematical description 2

OR operation 19
orbital parameters of galaxies 178-183
order parameter 78, 84, 138
orthogonality conditions 237
outgoing edge 38
overflowing vertex 109
overlap 125, 191

P 22, 25, 50, 91
parallel tempering 260-262
paramagnet 80, 94
paramagnetic phase 84
parameters 294
parent 161, 199
partial function 13
partition function 74, 229
Pascal 293, 300
path 37

alternating 229, 230

Index

augmenting 103, 105, 107, 230, 232-
234, 242

closed 37
length of 37
minimum cost 63
shortest 63, 107, 132

path-optimality condition 69
p, 54, 81-84
pdf 348
percolating cluster 82
percolation 53-61, 81-84, 275
perfect matching 228
periodic boundary conditions 205
per1 318
PERM 255
PERM procedure 265
phantom edge 101
phase

ferromagnetic 84
paramagnetic 84

phase diagram 78, 94, 276
phase transition 2, 4, 78-81, 84, 136, 187,

2 73
continuous 78
discontinuous 78
first order 79
second order 78

Phys Net 349
phyton 318
pidgin Algol 9-12, 13, 17

assignment 10
cases 10
comment 12
conditions 10
for loop 10
got0 11
miscellaneous statement 12
procedures I 1
return 11
while loop 10

P, 54
planar graph 227
plaquette 227
PM 94
point defect 151
pointer implementation

lists 44
trees 45

polymer 262

directed 51
polynomial 22
polynomial-time reducible 23
polytope 236
population 160, 199

time evolution 170
post precessing 209
postscript 340, 348, 351-353
potential lemma 144
Povray 353-355

P(9) 125
preflow 109
preprint server 347
pressure 79
Prim's algorithm 69, 70
primal linear problem 236
primal-dual algorithm 239
principle

backtracking 32
divide-and-conquer 30, 31

priority queue 41, 66
p r i v a t e 301
probability density 330
problem

assignment 235
convex minimum-cost-flow 136-139
correctness 16
decidable 16
EC 50
flux-line 147-150
graph 50-51
halting 16
HC 50
maximum-flow 234
minimum-cost-flow 139, 235
N-line 129-135, 138
NP-complete 50G51
N queens 32-33
number-partitioning 273
provable 16
recognition 16, 23
satisfiability 19-22, 23, 25, 273
sorting 28
traveling salcsmar~ 2-3, 12-13, 25,

26, 42, 51, 195
vertex-cover 273, 274 291

problem enumeration 229
procedural programming 300
procedure

Index

bit-sequence 165
change-y 247
crossover 166
expand-update 247
extend-alternating-tree 233
local optimization 170
mutation 166
PERM 265

procedures 11
programming

dynamic 31
style 306-310
techniques 26-34

properties of shortest paths 64
protein folding 266-270
provable problem 16
prune-enriched Rosenbluth method 262-

2 70
pseudo flow 143
pseudo node 242
publ ic 302
push-relabel algorithm 107

q 125
quality of fit 342
quantum dots 172
quantum Monte Carlo algorithm 266
quantum system

one-dimensional 172-1 75
quenched disorder 3, 87, 92, 186, 324
queue 41, 321

implementation 44
priority 41

random access machine 13
random bond ferromagnet 87
random elastic medium 96
random fuse network 96
random graph 275
random number generator 324-331
random resistor network 61
ra~ldom-bond ferronlagnet 98
random-bond system 190
random-field Ising magnet 91, 92-96, 99,

115, 121-125, 192, 260
random-walk algorithm 255
raytracer 353
R ~ ~ C U I - ~ C O ~ F ~ 190
RCS 297

README 300
realization 92
reciprocal lattice 139
recognition problem 16, 23
recurrence equation 28-30
recursion 27, 30
reduced costs 64, 67, 133, 135, 143, 244

optimality theorem 144
reduced edge length 67
reduced graph 117, 118
re,jection method 328 330
relative velocity 179
remove operation 41
renormalization-group theory 81
replica 212
reproduction 159
residual costs 140
residual graph 103
residual network 103, 105, 108, 134
return statement 11
reversed topological order 109
Revision Control System 297
RFIM 92-96, 99, 115, 121-125, 192, 260
right son 40
right subtree 40
RKKY interaction 188
root 39
rough surface 136
roughness 149
running time 17

worst case 17
rutile 92

s-t cut 96
SAT 19-22, 23, 25, 273
satisfiability problem 19-22, 23, 25, 273
satisfiable formula 19
SAW 262
scaling function 85
scaling plot 85, 123
scaling relation 81, 85
SCC 38; 116
Schrodinger equation 172
SCI 348
Science Citation Index 348
scientific journals 348
screening length 139
script 293, 317-319
search

Index

engine 349
in a tree 48-49
tree 39

second order transition 78
secondary structure 270
segmentation fault 334
self-averaging 88
self-avoiding walk 262
se~riiconductor 172
sequential algorithm 27
set 321
Sherrington-Kirkpatrick model 190, 220
shortest path 63, 107, 132

algorithm 61-68
properties of 64

Shubnikov phase 129
a 81
simplex algorithm 236
simulated annealing 78, 194, 257-259,

296
simulation

Molecular Dynamics 298
Monte Carlo 76, 94, 191, 207, 209-

211, 252, 270
Sine-Gordon model 137
singly connected edges 59
sink 42, 96, 102
size

of cluster 54
of input 16

SK model 190
small tasks 295
social system 186
software

cycle 300
development 294
engineering 293-300
reuse 294, 303

solid-on-solid model 136 -138, 150- 154
son 39

left 40
right 40

sorting 28
SOS 136-138, 150-154
source 42, 96, 102
source-code debugger 297, 332
source-code management system 296
spanning forest 58
spanning tree 58

sparse graph 46, 301
specific heat 75, 85, 187, 288
spin 73, 80, 87, 91, 179

free 192, 210, 218
XY 76

spin glass 3--4, 25, 26, 185-192, 296, 324,
338, 343

algorithms 192-202, 208-219
computational results 203-208, 219-

222
experimental results 187-190
four-dimensional 202
theoretical approaches 190-192
three-dimensional 199, 202, 219
two-dimensional 194, 199, 202, 227,

250-252
square lattice 312-314
stack 41, 295, 321

frame 337
implementation 44

staggered magnetization 95
standard error bar 78
statement

assignment 10
cases 10
comment 12
for 10
got0 11
miscellaneous 12
return 11

statistical physics 73-90
steepest descent algorithm 170
step function 173
stiffness energy 205, 251
stiffness exponent 207
stock market 186
string 321
strongly-connected component 38, 116
struct 295
style 306-310
subgraph 37
subtree 39

left 40
right 40

successive-shortest-path algorithm 135,
139

time complexity 147
super-rough surface 137
superconductor 129, 137, 138

Index

superexchange interaction 92, 189
surface

rough 136
super-rough 137

susceptibility 75, 84, 187, 188, 288
dynamic 187

swap configurations 260
symmetric difference 231

tail of edge 38
tail of list 41
target 314
tasks 295
r 81
T c 78, 80, 84, 136
technique

diagonalization 13-16
temperature 74, 79

zero 75
testing 297

tools 331-338
TJ$ 349
theorem

augmenting path 231
central limit 330
Edmonds 242
matching polytope 244
negative-cycle 141

theoretical approaches for spin glasses
190-192

thermal expectation value 74
B 155
theta point 264
&polymer 262
0 s 207, 251
three-dimensional spin glass 202
three-dimensional spin glasses 199, 219
threshold accepting 256
TiSf 352
time complexity 16-19

Dinic's algorithm 107
Ford-Fulkerson algorithm 105
Hungarian algorithm 239
maximum-cardinality matching 234
minimum-weight perfect matching

249
negative-cycle-canceling algorithm

143
N-line algorithm 135

non-bipartite matching 242
successive-shortest-path algorithm

147
vertex cover 288
wave algorithm 107

time evolution of population 170
Ti02 92
TW, 95
top down approach 295
topological order 108

reversed 109
t q l i 0 321
transfer matrix 194
transformation

gauge 95
network tt RFIM 96--102

transition
continuous 78
discontinuous 78
first order 79
second order 78

transition probability 76
traveling salesman problem 2-3, 12-13,

25, 26, 42, 51, 195
heuristic 12-13, 17-18

t r e d 2 0 321
tree 39-41, 48, 321

alternating 231
balanced 49
binary 40, 279
complete 41
depth-first spanning 59
height 39
implementation 45-46
minimum spanning 69
search 39
spanning 58
subtree 39

triadic crossover 199
truth table 20
TSP 2-3, 12-13, 25, 26, 42, 51, 195

heuristic 12-13, 17-18
Turing machine 13
two-dimensional spin glass 194, 199, 202,

227, 250-252
typical-case complexity 273

ultrametricity 191
unbounded disorder 150

Index

units 179
universality 80, 87, 123, 124

class 87
in disordered systems 89

UNIX 293, 310, 335
upper bound 17, 276

valley 210, 221
size 216-218, 221

vapor 78
variable 306

boolean 19
global 307

VC 273
vector potential 139, 154
vertex 37 228, 295

adjacent 37
balanced 109
blocked 110
covered 228
degree 295
exposed 228
father 39
free 228, 286
isolated 37
Ill-exposed 228
matched 228
neighbor 37
overflowing 109
sink 42
son 39

source 42
vertex cover 51, 273, 274-291

analytical result 276
heuristic 277
minimum 275
results 287-291
time complexity 288
x, 276, 289

vortex glass 138-139, 154-155

-Wall option 298
water 78
wave algorithm 107-1 15, 121

time complexity 107
wave function 172
weakly fluctuating region 150
weighted matching 229
while loop 10
worst case running time 17

X-ray data 163
xfig 351-353
[54, 82, 84
xmgr 340
XY model 138
XY spin 76

Yahoo 349
yes-instance 22, 23
YFez 189

zero temperati~re 75

	Cover
	Preface
	Contents
	Ch1 Introduction to Optimization
	Ch2 Complexity Theory
	Ch3 Graphs
	Ch4 Simple Graph Algorithms
	Ch5 Introduction to Statistical Physics
	Ch6 Maximum-Flow Methods
	Ch7 Minimum-Cost Flows
	Ch8 Generic Algorithms
	Ch9 Approximation Methods for Spin Glasses
	Ch10 Matchings
	Ch11 Monte Carlo Methods
	Ch12 Branch-&-Bound Methods
	Ch13 Practical Issues
	Index

