


~~ 

COMPUTATIONAL ISSUES IN HIGH 
PERFORMANCE SOFTWAIRIE FOR 

NONLINEAR OPTIMIZATION 

edited by 

Almerico Murli 
Gerardo Toraldo 

Universitii di Napoli “Federico II” 

A Special Issue of 
COMPUTATIONAL OPTIMIZATION 

AND APPLICATIONS 
An International Journal 

Volume 7, No. 1 (1997) 

KLUWER ACADEMIC PUBLISHERS 
Boston / Dordrecht / London 



Distributors for North America: 
Kluwer Academic Publishers 
101 Philip Drive 
Assinippi Park 
Norwell, Massachusetts 0206 1 USA 

Distributors for all other countries: 
Kluwer Academic Publishers Group 
Distribution Centre 
Post Office Box 322 
3300 AH Dordrecht, THE NETHERLANDS 

Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available 
from the Library of Congress. 

Copyright 0 1997 by Kluwer Academic Publishers 

All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system or transmitted in any form or by any means, mechanical, photo- 
copying, recording, or otherwise, without the prior written permission of the 
publisher, Kluwer Academic Publishers, 10 1 Philip Drive, Assinippi Park, Norwell, 
Massachusetts 0206 1 

Printed on acid-@ee paper. 

Printed in the United States of America 



COMPUTATIONAL 
OPTIMIZATION 

AND 
APPLICATIONS 

An International Journal 

Volume 7, No. 1, January 1997 

Special Issue on: Computational Issues in High Performance Software for 
Nonlinear Optimization 

Guest Editors: Almerico Murli and Gerardo ToraMo 

Introduction .............................. Almerico Murli and Gerardo Toraldo 

A Comparison of Large Scale Mixed Complimentarity Problem Solvers. . . . . . . . .  
...................... Stephen C. Billups, Steven P Dirkse and Michael C. Ferris 

1 

3 
~ ~~ 

Impact of Partial Separability on Large Scale Optimization. ..................... 
................................................ Ali Bouaricha and Jorge J. More 27 

On the Number of Inner Iterations Per Outer Iteration of a Globally Convergent 
Algorithm with General Nonlinear Inequality Constraints and Simple Bounds . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A.R. Conn, N.  Gould and Ph.L. Toint 41 

Numerical Experiences with New Truncated Newton Methods in Large Scale 
Unconstrained Optimization . . . . . . . . . . . . . . . . .  Stefano Lucidi and Massimo Roma 7 1 

89 Sparse Linear Least Squares Problems in Optimization.. . . . . . . .  Pontus Matstoms 

Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A 
Survey ............................ Thelma D. Mavridou and Panos M. Pardalos 1 1 1 

~~ 

Sequential Quadratic Programming Methods for Large-scale Problems . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Walter Murray 127 

A Scalable Parallel Interior Point Algorithm for Stochastic Linear Programming 
and Robust Optimization . . . . . . . . . . . . . . . . . . .  Dafeng Yang and Stavros A. Zenios 143 



Computational Optimzation and Applications, 7, 1-2 (1997) 
@ 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Introduction 

A. RlURLI AND G. TORALDO { murli,toraldo} @ matna2.dma.unina.it 
Center for  Research on Parallel Computing and Supercomputers (CPS), Italian National Research Council & 
University of Naples “Federico 11” Italy 

This special issue of Computational Optimization and Applications is devoted to a selection 
of papers from the conference “High Performance Software for Nonlinear Optimization: 
Status and Perspectives,’’ held on June 22-23, 1995, in Capri, Italy. The papers provide 
a dynamic overview of some of the recent developments related to software for nonlinear 
optimization. 

The conference was organized by the Center for Research on Parallel Computing and Su- 
percomputers (CPS), a recently established research center whose aim is to promote research 
in the field of high-performance computing through the development of efficient parallel 
algorithms and software. The conference was also co-sponsored by the CRAY Research 
Inc., the Dipartimento di Matematica e Applicazioni “R. Caccioppoli” of the University 
of Naples “Federico 11,” the GNIM (Gruppo Nazionale per 1’Informatica Matematica), the 
IBM Semea and the SIAM Activity Group on Optimization. 

High-quality software is a blend of several ingredients, whose distinctive nature requires 
contributions from various areas. Thus, the aim of the conference was to supply an overview 
from different (and complementary) standpoints of the field of software for nonlinear opti- 
mization. 

The articles in this issue reflect these different standpoints and provide stimulating insights 
in several directions. For example, there are two papers - Conn, Gould, and Toint; Lucidi 
and Roma - that provide computational results and a deeper theoretical understanding 
of well-established and efficient algorithms for nonlinear problems. Murray presents a 
comprehensive survey article about classical methods, and Mavridou and Pardalos provide 
new and exciting applications problems. 

Fast algorithms for large-scale optimization problems raise several challenging issues. 
Yang and Zenios describe the relationship between fast algorithms and parallelism, while 
Bouaricha and Mor6 discuss the importance of partial separability. The latter work also em- 
phasizes the importance of providing a “software environment” to ensure that the products 
of the optimization community are widely applied in diverse fields. 

The paper of Matsoms provides an overview of recent research on direct methods for the 
solution of sparse linear algebra problems - the main computational kernel for many non- 
linear optimization codes. Finally, the paper by Billups, Dirkse and Ferris on LCP solvers, 
gives a comprehensive overview of one of the most interesting optimization problems from 
the applications. 

We thank the authors for their contributions and the referees for their careful comments. 
Special thanks go to Prof. Jorge J. More and to Prof. Panos Pardalos for their contributions 
as scientific committee members of the conference, to Dr. Maria L. De Cesare and Dr. 
Maria R. Maddalena from the organizing committee, and to Prof. Hager for publishing 
this special issue of Computational Optimization and Applications devoted to the HPSNO 
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Conference. The spirit of a journal such as Computational Optimization and Applications, 
which so strongly encourages the development of high-quality software, fits the aim of CPS; 
we look forward to fruitful collaboration between CPS and Computational Optimization 
and Applications in the future. 

Finally, we thank Diego, Ida, Mariella, MarilG, and Teddy for their invaluable and gener- 
ously offered help, which ensured the successful organization of the HPSNO 95 Conference. 
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A Comparison of Large Scale Mixed 
Complementarity Problem Solvers* 

STEPHEN C. BILLUPS sbillups @carbon.cudenver.edu 
Mathematics Department, University of Colorado, Denvel; Colorado 8021 7 

STEVEN P. DIRKSE 
GAMS Development Corporation, Washington, DC 20007 

steve@gams.com 

hlICHAEL C. FERRIS fems@cs.wisc.edu 
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706 

Abstract. This paper provides a means for comparing various computer codes for solving large scale mixed 
complementarity problems. We discuss inadequacies in how solvers are currently compared, and present a testing 
environment that addresses these inadequacies. This testing environment consists of a library of test problems, 
along with GAMS and MATLAB interfaces that allow these problems to be easily accessed. The environment is 
intended for use as a tool by other researchers to better understand both their algorithms and their implementations, 
and to direct research toward problem classes that are currently the most challenging. As an initial benchmark, 
eight different algorithm implementations for large scale mixed complementarity problems are briefly described 
and tested with default parameter settings using the new testing environment. 

Keywords: complementarity problems, variational inequalities, computation, algorithms 

1. Introduction 

In recent years, a considerable number of new algorithms have been developed for solv- 
ing large scale mixed complementarity problems. Many of these algorithms appear very 
promising theoretically, but it is difficult to understand how well they will work in practice. 
Indeed, many of the papers describing these algorithms are primarily theoretical papers and 
include only very minimal computational results. Even with extensive testing, there are 
inadequacies in the way the results are reported, which makes it difficult to compare one 
approach against another. 

The purpose of this paper is to describe a testing environment for evaluating the strengths 
and weaknesses of various codes for solving large scale mixed complementarity problems. 
We believe that the environment is ideally suited for the computational study, development, 
and comparison of algorithm implementations. The careful description and documentation 
of the environment given here should help algorithm designers focus their developmental 
efforts toward practical and useful codes. To exhibit its intended usage, we benchmark eight 
different algorithm implementations for large scale mixed complementarity problems with 
the new testing environment. At the same time, we intend to provide a convenient mecha- 
nism for modelers to provide new and challenging problems for use in solver comparison. 
* 
Air Force Office of Scientific Research Grant F49620-94- 1-0036. 

This material is based on research supported by National Science Foundation Grant CCR-9157632 and the 



4 BILLUPS. DIRKSE AND FERRIS 

As an added benefit, we believe the environment will help modelers determine which code 
best fits their needs. 

The mixed complementarity problem (MCP) is a generalization of a system of nonlinear 
equations and is completely determined by a nonlinear function F : R" -+ R" and upper 
and lower bounds on the variables. The variables z must lie between the given bounds e and 
U .  The constraints on the nonlinear function are determined by the bounds on the variables 
in the following manner: 

e2 < 22 < U2 =+ Fi(Z) = 0 

z; = ez =+ Fz(z) 2 0 

* Fz(z) 5 0. z2 = U2 

We will use the notation B to represent the set [k',  U ] .  

Several special cases of this formulation are immediately obvious. For example, if k' s 
-CO and U 5 foo then the last two implications are vacuous and MCP is the problem of 
determining z E R" such that F ( z )  = 0. 

As another example, the Karush-Kuhn-Tucker conditions for nonlinear programs of the 
form 

min f(z) 
s.t. g(z) 5 0 

are given by 

Vf(z)  + XVg(2) = 0, 
g(z) 5 0, x 2 0, XTg(z) = 0. 

These are easily recast as an MCP by setting 

Here RT represents the nonnegative orthant of R". Many problems in economic equilib- 
rium theory can be cast as MCPs and an overview of how this is accomplished is given in 
[31]. Other application areas are detailed in [7, 121. There has been much recent interest in 
less traditional applications of the complementarity framework. Some of these are based on 
the generalized equation literature [28] that reformulates the MCP as 0 E F ( z )  + N B ( z ) .  
Here NB ( z )  is the classical normal cone to the set B at the point z defined by 

N f j ( 2 )  := { y  1 y'(z - 2 )  I o v x  E B} , 

if z E B and is empty otherwise. 
Nonlinear complementarity problems appeared in the literature in [5] .  The first algorithms 

for these problems were based on simplicial labeling techniques originally due to Scarf [32]. 
Extensions of these algorithms led to fixed point schemes [18, 331. Newton techniques [8, 
22,301 that are based on successive linearization of the nonlinear problem have proven very 
useful for solving these problems, although their convergence analysis is less satisfactory 
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than the fixed point theory. Recent extensions have looked at reformulating the nonlinear 
complementarity problem as a system of nonsmooth nonlinear equations and solving these 
using a damped Newton or Gauss-Newton approach [6, 8, 10, 11, 13, 16, 19, 20, 21, 23, 
24, 25,26, 27,29, 34, 351. 

We are concerned in this paper with computational testing and comparison of such al- 
gorithms. We see several problems with the current state of affairs in the way solvers are 
developed and compared. 

Codes are tweaked to solve particular problems, with different choices of control pa- 
rameters being used to solve different problems. This is contrary to how solvers are used 
in practice. In general, modelers are not interested in parameter adjustment; instead, 
they usually run codes only with default options. A good code will have a set of default 
parameters that performs well on most problems. 

Even when a consistent set of control parameters is used, codes are developed and 
tuned using the same limited set of test problems for which computational results are 
reported. Consequently, the results do not give a fair picture of how the codes might 
behave on other problems. Enlarging the test suite and adding real world problems 
alleviates some of these difficulties. 

There is no clear understanding of what makes problems difficult. Thus, test cases 
reported do not necessarily reflect the various difficulties that can cause algorithms to 
fail. As a result, it is extremely difficult for a modeler to determine which algorithm 
will work best for his particular class of problems. 

The majority of papers written are theoretical in nature and provide computational 
results only for naive implementations of the algorithms. While this can exhibit the 
potential of a particular approach, it is inadequate for evaluating how an algorithm will 
work in practice. Instead, computational results need to be reported for sophisticated 
implementations of the algorithms. In particular, algorithm specific scaling, prepro- 
cessing or heuristics are crucial for improved robustness and developer supplied default 
settings should be used in all solver comparisons. 

Test problems do not reflect the interests of users with real-world applications. Thus, 
algorithms are developed which are good at solving “toy” problems, but are not neces- 
sarily good at solving problems of practical importance. 

These problems in the way solvers are currently tested result in two major deficiencies 
in the usefulness of test results. First, the reported results are inadequate for modelers 
to determine which codes will be most successful for solving their problems. Second, it 
is difficult for algorithm developers to determine where additional research needs to be 
directed. 

In order to overcome these difficulties, this paper proposes that a testing environment for 
large scale mixed complementarity problems be developed. The goals of this environment 
are again twofold: first, it should provide a means of more accurately evaluating the strengths 
and weaknesses of various codes, and second, it should help direct algorithm developers 
toward addressing the issues of greatest importance. A preliminary version of such an 
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environment is described in Section 2 and was used to generate the computational results 
reported in Section 4. A brief description of each of the codes tested is provided in Section 3. 

2. Testing Environment 

This section describes a testing environment that aims to correct many of the problems 
discussed in the introduction concerning how codes are developed and tested. This en- 
vironment has four main components: a library of test problems, GAMS and MATLAB 
interfaces that allow these problems to be easily accessed, a tool for verifying the correctness 
of solutions, and some awk scripts for evaluating results. 

2.1. Test Library 

The centerpiece of the testing environment is a large publicly available library of test prob- 
lems that reflects the interests of users with real-world applications, and that also includes 
problems having known types of computational difficulties. Many of these problems are 
contained in the standard GAMS distribution [3], while others are part of the expanding 
collection of problems called MCPLIB[7]. All of the problems that are used in this work 
are publicly available and can be accessed both from within the GAMS modeling system 
[3] and from within MATLAB[ 141. 

Because most of the problems in the test library come from real-world applications, the 
library reflects, as much as possible, the needs of the user community. As this library 
has become more popular among code developers, we have observed an increased interest 
among modelers to contribute more and more challenging problems to the library. The 
motivation is simple: modelers want to encourage the development of codes capable of 
solving their most difficult problems. 

We note that many of the problems contained in the test library are difficult for varying 
reasons. We believe that it is important to identify the characteristics that make problems 
hard. This is a daunting task; toward this end, we give an incomplete classification of the 
types of problem difficulties that may prove challenging for different algorithms. 

1. Nonlinearity. We characterize the nonlinearity of a problem by how well a local lin- 
earization of the function models the original problem. One difficulty encountered 
in highly nonlinear problems is the presence of local minima of the underlying merit 
function that do not correspond to solutions. Several algorithms include features that 
allow them to escape such local minima, for example, perturbational schemes and non- 
monotone watchdog procedures. Thus, we expect that certain algorithms will be more 
sensitive to the degree of nonlinearity than others. 

2. Active Set Determination. For many problems, once the active set is determined, 
(that is, once we determine which variables are at their upper and lower bounds) the 
given algorithm is quick to converge. Thus, quick identification of the active set can 
greatly improve the performance of the algorithm. This seems to be particularly true 
for problems that are nearly linear. 
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3. Problem Size. Some algorithms may be better at exploiting problem structure than 
others, making them less sensitive to the size of the problem. One weakness of our 
current test suite is that it does not address the issue of size very well. We have attempted 
to include problems of reasonable size, but it is clear that the test library needs to be 
expanded in this area. 

4. Sensitivity to Scaling. Our experience is that modelers, of necessity, tend to become very 
good at scaling their models so that relevant matrices are reasonably well-conditioned. 
Indeed, most of the problems in our model library are well scaled. However, models 
under development are often poorly scaled. Frequently, solutions are used to scale 
models properly and to aid in the model construction. Thus, sensitivity to scaling 
is quite important. In general it is very difficult to scale highly nonlinear functions 
effectively, so that an algorithm that is less sensitive to scaling may prove to be more 
practical for highly nonlinear problems. 

5.  Others. Several other problem characteristics have been proposed, but have not been 
well studied in the context of real models. These include monotonicity, multiple solu- 
tions, and singularity at the solution. 

Tables 1 and 2 describe the problems that are included in the test library. Further docu- 
mentation on these problems can be found in [31] and [7] respectively. Since the starting 
point can greatly influence the performance of an algorithm, the library includes multiple 
starting points for most problems. We note that many of the economic problems have the 
first starting point very close to a solution. This is the “calibration” point and is used by a 
modeler to test whether the model reproduces benchmark data. The following abbreviations 
are used when referring to the type of the problem: 

MCP General mixed complementarity problem 
LMCP Linear mixed complementarity problem 
NCP Nonlinear complementarity problem 
LCP Linear complementarity problem 
MPSGE 

NE Nonlinear equations 
NLP 

General economic equilibrium problems defined with 
the MPSGE macro language 

Optimality conditions of a nonlinear program 

The tables also include a column labeled “other”. In this column we have added some 
known characteristics of the problems. Thus “M” is entered in this column if the problem 
is known to be monotone. Similarly a digit “4” for example indicates the number of known 
solutions. If an “S” occurs in this column then the submatrix of the Jacobian corresponding 
to the “active constraints’’ is known to have condition number greater than 10’ at a solution. 
The fact that one of these entries does not appear in the table only signifies that the authors 
do not know whether the problem has this particular characteristic. 
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Table 1. GAMSLIB Models 

Model 
cafemge 
cammcp 
cammge 
cirimge 
co2mge 
dmcmge 
ers82mcp 
etamge 
finmge 
gemmcp 
gemmge 
hansmcp 
hansmge 
harkmcp 
harmge 
kehomge 
kormcp 
mr5mcp 
nsmge 
oligomcp 
sammge 
scarfmcp 
scarfmge 
shovmge 
threemge 
transmcp 
two3mcp 
unstmge 
vonthmcp 
vonthmge 
wallmcp 

BILLUPS. DIRKSE AND FERRIS 

Type 
MPSGE 
NCP 
MPSGE 
MPSGE 
MPSGE 
MPSGE 
MCP 
MPSGE 
MPSGE 
MCP 
MPSGE 
NCP 
MPSGE 
NCP 
MPSGE 
MPSGE 
MCP 
NCP 
MPSGE 
NCP 
MPSGE 
NCP 
MPSGE 
MPSGE 
MPSGE 
LCP 
NCP 
MPSGE 
NCP 
MPSGE 
NE 

n 
101 
242 
128 

9 
208 
170 
232 
114 
153 
262 

43 
43 
32 
11 
9 

78 
350 
212 

6 
23 
18 
18 
51 
9 

11 
6 
5 

125 
80 
6 

178 

nnz 
900 

1621 
1227 

33 
1463 
1594 
1552 
848 

1915 
2793 
3441 

398 
503 
131 
60 
75 

423 
1687 
1408 

21 
1 I7 
150 
181 
375 
77 
34 
29 
25 

760 
594 

25 

density 
8.82% 
2.77% 
7.49% 

40.74% 
3.38% 
5.52% 
2.88% 
6.53% 
8.18% 
4.07% 

10.86% 
2 1.53% 
27.20% 
12.79% 
49.59% 
92.59% 

6.95% 
1.38% 
3.13% 

58.33% 
22.12% 
46.30% 
55.86% 
14.42% 
95.06% 
28.10% 
80.56% 

100.00% 
4.86% 
9.28% 

69.44% 

other 

3 

S 

2.2. Interfaces 

To make the test library useful, two interfaces are provided that make the problems easily 
accessible both for testing of mature codes and for evaluating prototype algorithms. 

The first interface is a means for programs to communicate directly with the GAMS 
modeling language [3]. For realistic application problems, we believe that the use of a 
modeling system such as AMPL[ 171 or GAMS is crucial. In earlier work with Rutherford 
[9], we developed the GAMSKPLIB interface that provides simple routines to obtain 
function and Jacobian evaluations and recover problem data. This makes it easy to hook 
up any solver that is written in Fortran or C as a subsystem of GAMS. The advantages 
of using a modeling system are many; some of the most important advantages include 
automatic differentiation, easy data handling, architecture-independent interfaces between 
models and solvers, and the ability to extend models easily to answer new questions arising 
from solutions of current models. In addition, modeling languages provide a ready library 
of examples on which to test solvers. GAMS was chosen for our work instead of AMPL 
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Table 2. MCPLIB Models 

Model 
bertsekas 
billups 
bert-oc 
bratu 
choi 
colvdual 
c o 1 v n 1 p 
cycle 
ehlkost 
explcp 
freebert 
gafni 
hanskoop 
hydroc06 
hydroc20 
j o sep hy 
kojshin 
mathinum 
mathisum 
methan08 
nash 
obstacle 
opt-con t 
pgvon 105 
pgvon 106 
pies 
powell 
powell-mcp 
scarfanurn 
scarfas u m 
scarfbnum 
scarfbsum 
SPPe 
tobin 

TY Pe 
NCP 
NCP 
LMCP 
NLP 
NCP 
NLP 
NLP 
LCP 
MCP 
LCP 
MCP 
MCP 
NCP 
NE 
NE 
NCP 
NCP 
NCP 
NCP 
NE 
MCP 
LMCP/NLP 
LMCP 
NCP 
NCP 
MCP 
NLP 
NCP 
NCP 
NCP 
NCP 
NCP 
NCP 
NCP 

n 
15 

1 
5000 
5625 

13 
20 
15 

1 
101 
16 
15 
5 

14 
29 
99 
4 
4 
3 
4 

31 
10 

2500 
288 
105 
106 
42 
16 
8 

13 
14 
39 
40 
27 
42 

nnz 
74 

1 
21991 
33749 

169 
168 
113 

1 
1020 1 

152 
74 
25 

129 
222 
838 

16 
16 
9 

14 
225 
100 

14999 
4928 

796 
898 
183 
203 
54 
98 

109 
36 1 
614 
110 
243 

density 
32.89% 

100.00% 
0.09% 
0.1 1% 

100.00% 
42.00% 
50.22% 

100.00% 
100.00% 
59.38% 
32.89% 

100.00% 
65.82% 
26.40% 

8.55% 
100.00% 
100.00% 
100.00% 
87.50% 
23.4 1 % 

100.00% 
0.24% 
5.94% 
1.22% 
7.99% 

10.37% 
79.30% 
84.38% 
57.99% 
55.6 1 % 
23.73% 
38.38% 
15.09% 
13.78% 

other 

1 
M 

M1 

1 

I 
2 

M1 
M1 

S 
S 

S 

because it is a mature product with many users, resulting in the availability of many real- 
world problems. 

While we believe that any mature code should be connected with a modeling language, 
we also feel that there should be an easier means for making the library of test problems 
available to prototype algorithms. The MATLAB interface described in [ 141 provides such 
a means. Using MATLAB, it is possible to quickly implement a prototype version of a 
new algorithm, which can be tested on the entire suite of test problems with the MATLAB 
interface. Thus, the test library can play an active role in influencing the development of 
new algorithms. It must be noted, however, that there are subtle differences between the 
MATLAB models and the GAMS models. In particular, many GAMS models vary not only 
the starting point for different runs, but also some of the underlying nonlinearities, whereas 
the MATLAB models vary only the starting point. Thus, a completely accurate comparison 
must be carried out exclusively in GAMS or exclusively in MATLAB. 
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2.3. Verijication of Solutions 

Since stopping criteria vary from algorithm to algorithm, a standardized measure is needed 
to ensure that different algorithms produce solutions that have some uniformity in solution 
quality. To achieve this goal, we developed an additional solver, accessible through GAMS, 
that evaluates the starting point and returns the value of the following merit function: 

where - i r ~  represents the projection operator onto the set B. To use this verification test, 
we first solve the problem with the algorithm we are testing, and pass the solution to our 
“special” solver to verify that the standardized residual is not too large. Since the special 
solver is callable from GAMS, this can be achieved by adding a few lines to the GAMS 
problem files. 

2.4. Data Extraction 

The output of MCP codes is typically quite extensive and varies from solver to solver. To 
extract pertinent information from this output, we have written several awk scripts that read 
through the files, and then generate data tables. These scripts require slight modifications for 
each solver, but are a tremendous help in extracting data to produce meaningful information. 

3. Description of Algorithms 

Ideally, the computational study of algorithms should be performed using only mature, 
sophisticated codes, so that the strengths and limitations of each algorithm would be accu- 
rately reflected in the numerical results. Unfortunately, many of the algorithms proposed 
for complementarity problems are not accompanied by such mature codes. Of the algo- 
rithms described below, the implementations of MILES, PATH, and SMOOTH are the most 
mature. For the remaining algorithms, we have developed our own implementations which 
incorporate the GAMS interface. 

All of the algorithms outlined have been coded to take explicit advantage of the MCP 
structure; however, several of them were originally devised for the special case of the 
nonlinear complementarity problem (NCP) 

and will be described below in this context. We now give a brief description of the codes 
that were tested and indicate pertinent references for further details. 

3.1. MZLES 

MILES [30] is an extension of the classical Josephy-Newton method for NCP in which the 
solution to each linearized subproblem 
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0 E F ( 2 )  + V F ( z " ( z  - 2) + N g ( z )  

is computed via Lemke's almost-complementary pivot algorithm. This Newton point is 
used to define the Newton direction, which is then used in a damped linesearch. The merit 
function used measures both the violation in feasibility and in complementarity. MILES 
also employs a restart procedure in cases where the Newton point cannot be computed due 
to termination in a secondary ray. Every linearized subproblem is rescaled to equilibrate 
the elements appearing in the data of the subproblem. 

3.2. PATH 

The PATH solver [8] applies techniques similar to those used in Newton methods for smooth 
systems to the following reformulation of the MCP 

0 = F ( r g ( z ) )  + z - 7rB(") 

Here r~ represents the projection operator onto the set B,  which is in general not differ- 
entiable. The algorithm consists of a sequence of major iterations, each consisting of an 
approximation or linearization step similar to that of MILES, the construction of apath to the 
Newton point (the solution to the approximation), and a possible search of this path. When 
the Newton point does not exists or the path cannot be entirely constructed, a step along 
the partially computed path is taken before the problem is relinearized. A nonmonotone 
watchdog strategy is employed in applying the path search; this helps avoid convergence 
to local minima of the merit function (1)' and keeps the number of function evaluations 
required as small as possible. 

Other computational enhancements employed by PATH are a projected Newton prepro- 
cessing phase (used to find an initial point that better corresponds to the optimal active set) 
and the addition of a diagonal perturbation term to the Jacobian matrix when rank deficiency 
is detected. The Jacobian elements are also automatically scaled by the algorithm at each 
major iteration. 

3.3. NE/SQP 

The NE/SQP algorithm [26] is based upon reformulating the NCP as the system of nons- 
mooth equations 

O = H ( z )  := min{z,F(z)}. 

In [2] the NE/SQP algorithm is extended to the MCP by using the reformulation 

o = H ( z )  := min{z - t!, max{z - U ,  F ( z ) } }  (2) 

Both algorithms use a Gauss-Newton approach that attempts to minimize 
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to find a zero of H .  The nonsmoothness of the equations is handled using directional deriva- 
tives of H .  Specifically, at each iteration, a search direction is calculated by minimizing a 
convex quadratic program whose objective function is formed by squaring a linear approx- 
imation of H .  At points where the derivative is not well defined, the linear approximation 
is created by choosing a particular element of the subdifferential. Once this direction is 
determined, an Armijo-type linesearch is used to calculate the step size to be taken along 
that direction. The advantage of this approach is that the direction finding subproblems are 
always solvable. This is in contrast to Newton-based approaches, which may fail due to a 
singular Jacobian matrix, and to PATH and MILES, which determine the search direction 
by attempting to solve a linear complementarity problem, which may, in fact, be unsolvable. 

One weakness of the algorithm is that it is vulnerable to converging to local minima of 
the merit function 6 that are not solutions to the problem. The code uses scaling of the 
subproblems and enforces a small cushion between the iterates and the boundary of B as 
suggested in [26]. 

3.4. SMOOTH 

The SMOOTH algorithm [4] is based upon reformulating the NCP as a system of nonsmooth 
equations 

and then approximately solving a sequence of smooth approximations, which lead to a zero 
of the nonsmooth system. More precisely, at each iteration, a smooth approximation to the 
original system is formed where the accuracy of the approximation is determined by the 

residual of the current point, that is x - - / r ~ ~  (Z - F ( x ) ) ( l .  The smooth approximation 

p ,  to - / r ~ " .  corresponds to an integration of the sigmoid function that is commonly used 
in machine learning. Applying a single step of Newton's method to this smooth function 
generates a search direction. The next iterate is then generated by performing an Armijo- 
type linesearch of the merit function 

II + 
+ 

along this direction. Assuming this new point produces an improved residual, the next 
iteration is based upon a tighter approximation of the nonsmooth equations. 

An initial scaling of the data is used in the code, and the PATH preprocessor is used. 
However, in SMOOTH, the preprocessor is used to try to solve the MCP instead of merely 
to identify the active set. If this technique fails, the code is restarted and the smoothing 
technique is then used to find a solution. 

3.5. QPCOMP 

QPCOMP [2] is an enhancement of the NE/SQP algorithm, which adds a proximal per- 
turbation strategy that allows the iterates to escape local minima of the merit function 0 
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defined in (3). In essence, the algorithm detects when the iterates appear to be converging 
to a local minimum, and then approximately solves a sequence of perturbed problems to 
escape the domain of convergence of that local minimum. The perturbed problems are 
formed by replacing F with the perturbed function 

where the centering point Z is generally chosen to be the current iterate, and the perturbation 
parameter X is chosen adaptively in a manner that guarantees global convergence to a 
solution when F is both continuously differentiable and pseudomonotone at a solution. In 
general, the perturbed function is updated after each iteration. Thus, the perturbed problems 
are not solved exactly; they are just used to determine the next step. 

An important aspect of the algorithm is that F is perturbed only when the iterates are 
not making good progress toward a zero of the merit function. In particular, during the 
perturbation strategy, whenever an iterate is encountered where the merit function (of the 
unperturbed problem) has been sufficiently reduced, the algorithm reverts to solving the un- 
perturbed problem. Thus, near a solution, the algorithm maintains the fast local convergence 
rates of the underlying NE/SQP algorithm. 

We note that NE/SQP is equivalent to QPCOMP without the proximal perturbation strat- 
egy. Thus, to test NE/SQP, we simply ran the QPCOMP algorithm with the proximal 
perturbation strategy turned off. 

3.6. PROXI 

PROXI [ 13, like NE/SQP and QPCOMP is based upon reformulating the MCP as the system 
of nonsmooth equations (2). However, instead of solving this system using a Gauss-Newton 
approach, PROXI uses a nonsmooth version of Newton’s method. Specifically, at each 
iteration, the search direction is calculated by solving a linear system that approximates 
H at the current iterate. Again, if H is not differentiable at the current iterate, the linear 
approximation is created by choosing a particular element of the subdifferential. 

Like QPCOMP, PROXI uses a proximal perturbation strategy to allow the iterates to 
escape local minima of the merit function 8 defined in (3). This strategy also allows the 
algorithm to overcome difficulties resulting from singular Jacobian matrices. In particular, 
if the Newton equation is unsolvable at a particular iteration, the algorithm simply creates 
a slightly perturbed problem using (4) with a very small A. The resulting Newton equation 
for the perturbed function will then be solvable. This strategy for dealing with unsolvable 
Newton subproblems is considerably more efficient than the Gauss-Newton approach used 
by NE/SQP and QPCOMP. 

3.7. SEMISMOOTH 

SEMISMOOTH [ 11 is an implementation of an algorithm described in [6]. This algorithm 
is based upon the function 
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which was introduced by [ 151. This function has the property that 

@(a,  b )  = 0 a 2 0, b 2 0, ab = 0. 

Using this function, the NCP is reformulated as the semismooth system of equations 

0 = @ ( z ) ,  

where @i ( z )  : = @( z i ,  Fi (2)). This reformulation has the nice feature that the natural merit 
function !P( z )  := 1 1  @( z )  1 1  is continuously differentiable. The SEMISMOOTH algorithm 
described in [ 11 extends the approach to the MCP by using the reformulation of MCP given 

by 

@z(z)  := @(zz - ez, @(U2 - zi, -Fi(Z))). 

To solve the reformulated system of equations, a generalization of Newton's method is 
used wherein at each iteration, the search direction d k  is found by solving the system 

H k d  = - @ ( z k ) ,  

where H k  is an element of the B-subdifferential of @. The next point zk+' is then chosen 
by performing a nonmonotone, Arimijo linesearch along the direction d k .  

3.8. SEMZCOMP 

SEMICOMP [I]  is an enhancement of the SEMISMOOTH algorithm, which, like QPCOMP 
and PROXI, adds a proximal perturbation strategy to allow iterates to escape local minima 
of the merit function. The algorithm is identical to SEMISMOOTH except when the iterates 
stop making satisfactory progress toward a zero of @. In this case, the proximal perturbation 
strategy described for the QPCOMP algorithm is employed to allow the iterates to escape 
the troublesome region. Specifically, at each iteration, a perturbed function is created by 
(4), and then the SEMISMOOTH algorithm is used to calculate a new point based on this 
perturbed function. The perturbed function is then updated and the process repeats. The 
process continues until a new point is encountered where the merit function is sufficiently 
smaller than the merit function at any previous point. At this point, the algorithm reverts 
back to the unperturbed SEMISMOOTH algorithm. 

4. Computational Comparison 

With the exception of NE/SQP and QPCOMP, each of the eight algorithms described in the 
previous section was run on all of the problems in the test library from all of the starting 
points. Since NE/SQP and QPCOMP were implemented using a dense QP code, we only 
ran the problems with fewer than 1 10 variables for these solvers. Table A. 1 in appendix A 
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verycomp. 
competitive 

success 

shows the execution time needed by each algorithm on a SPARC 10/51, while Table A.2, 
also in Appendix A, shows the number of function and Jacobian evaluations required by 
each algorithm. To abbreviate the results, we excluded any problems that were solved in 
less than 2 seconds by all of the algorithms we tested. 

Each algorithm minimizes its own merit function as described in Section 3 and all were 
terminated when this measure was reduced below 10-6. Since the merit functions are 
different for each code, we tested the solutions to ensure that the standardized residual 
given by ( 1 )  was always less than 10-5. It is possible that one more or one less “Newton” 
step would be carried out if the same merit function was used for every algorithm. Since 
this is impractical, the method we now outline for reporting our results makes these small 
changes entirely irrelevant. 

How one chooses to summarize data of this nature depends on what one’s goals are. 
From a modeling standpoint, one could determine which models were the most difficult 
to solve by aggregating results for each model. From a computational standpoint, one can 
compare the solvers using many different criteria, including number of successes/failures, 
cumulative solution time required, number of cases where solution time is “acceptable”, 
number of functiodgradient evaluations required, etc. As examples of useful metrics, we 
have chosen the following: 

NE/ QP SEMI- SEMI- 
MILES SQP PATH PROXI COMP COMP SMTH 

32% 0% 43% 34% 0% 26% 25% 
45% 2% 67% 54% 1% 44% 40% 
84% 67% 94% 95% 90% 88% 65% 

success 
competitive 

Success is achieved if a solution is computed. 
We say the time TC for a code C is “competitive” with the time 
Tmin taken by the best code on that run if TC 5 2 Tmin, and 
“very competitive” if TC 5 4 Tmin. 

Tables 3 and 4 summarize our results for two sets of models, the large ones (2 110 
variables) for which only the sparsity-exploiting solvers were run, and the smaller ones on 
which all solvers were run. 

Table 3. Code Comparisons - Large Models 

competitive 
success 

Table 4. Code Comparisons - Small Models 

51 
92% 
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5. Conclusions 

The testing environment we have described addresses many of the problems we have ob- 
served about how codes are developed and tested. In particular, with a large collection 
of test problems available, it is more difficult to tune a code to the test set. Moreover, 
even if such tuning is successful, the resulting code will be good at solving the types of 
problems that are represented in the library, namely, the problems that are of interest to 
the user community. The inclusion of problems with known difficulties allows codes to 
be compared by how well they solve different classes of problems, thus allowing users to 
more accurately choose codes that meet their needs. Finally, by categorizing problems with 
different computational difficulties, the library can be used to highlight the areas where 
research energies most need to be directed. 

Our testing indicates superior performance by the PATH, SMOOTH, and PROXI algo- 
rithms. However, as the codes continue to mature, it is possible that their relative perfor- 
mance will change. It is not our intention to declare a winner, but rather to “clarify the 
rules” so that code developers will focus on the right issues when developing algorithms. 
To a large extent, we have accomplished this with our testing environment. 

It is unfortunate that the scope of our testing could not have been more broad. Some of 
the algorithms mentioned above were coded by the authors of this paper (not the originators 
of the algorithm), while there are numerous other algorithms that we were not able to test at 
all. This is due primarily to the fact that these algorithms do not have GAMS interfaces. It 
is our hope that as the CPLIB interface becomes more widely known, other code developers 
will hook up their solvers to GAMS. This will allow their algorithms to be easily compared 
with other codes using our testing environment. 

Lastly, we wish to emphasize that the test library is continually being expanded. In 
particular, we are always eager to add challenging new real world models to the library. To 
this end, we have begun to augment the MCPLIB by adding new models that have recently 
come to our attention. The 10 models listed in Table 5 have been used in various disciplines 
to answer questions that give rise to complementarity problems. Some of these models 
are solved from many different starting points, indicated by the “solves” column. The 
first 6 are economic models, the next two arise from applications in traffic equilibrium and 
multi-rigid-body contact problems, the final two correspond to complementarity problems 
for which all solutions are required. The numbers of solutions for the last two problems 
are known to be odd, the number listed below is a lower bound. These problems appear to 
be more difficult than most of the problems solved in this paper. Certainly, some are much 
larger, while others have singularities either at solutions or starting points. Most of these 
problems do not have underlying monotonicity. 

The results that we present in Tables 6 and 7 for these models are somewhat different to 
the results in Appendix A and are motivated more by the models themselves. For the games 
and tinloi models, it is important to find all solutions of the model, and so after a fixed 
number of runs from a variety of starting points, we report the number of distinct solutions 
found for these models in Table 6. 

For the remaining problems, we just report one statistic in Table 7 for each model. If 
every problem was solved, we report the total resources used to solve the complete model, 
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nnz 
207 

10123 
72320 
10130 
90206 
3868 

15000 
23626 

256 
5694 

17 

density 
19.01% 
0.20% 
0.07% 
0.63% 
1.73% 
1.63% 
0.18% 

13.46% 
60.94% 
26.71% 

Table 5. New Models 

Model 
shubik 
jmu 
asean9a 
ePPa 
Uruguay 
hanson 
trafelas 
lincont 
games 
tinloi 

MCP 
LCP 
NCP 
LCP 146 

Table 6. Distinct Solutions Found 

tinloi 

MILES 
3 
2 

solves 
48 

1 
1 
8 
2 
2 
2 
1 

25 
64 

other 
S 

S 

5 
3 

PROXI SKOMP S/SMTH 3 SMOOTH 3 
otherwise we report an error using a letter to signify some sort of failure “F”, memory error 
“M”, time limit exceeded “T” or iteration limit exceeded “I”. Only the first error is listed 
per problem, while the numbers in parentheses are the number of problems that failed to 
solve. 

Table 7. Summary for New Models 

Model 
shubik 

asean9a 

Uruguay 
hanson 
trafelas 
lincont 

PATH 
F(9) 

110.81 
62.08 

203.79 
2760.17 

39.36 
150.55 
10.76 

214.32 
91.62 

239.73 
45 19.53 

4.94 
346.23 
718.27 

It is our intention to add these models and newer models that are brought to our attention 
to MCPLIB. In this way we hope that the problem library will continue to serve as a guide 
for code developers so that they will direct their energies into areas that will best serve the 
users. 
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Appendix A 

Table A. I. Execution Times (sec.) 

Problem 
Name 
bert-oc 
bert-oc 
bert-oc 
bert-oc 
bertsekas 
bertsekas 
billups 
bratu 
cafemge 
cafemge 
cammcp 
choi 
co2mge 
co2mge 
colvdual 
colvdual 
colvnlp 
colvnlp 
dmcmge 
dmcmge 
ehlkost 
ehlkost 
ehlkost 
finmge 
finmge 
freebert 
freebert 
freebert 
freebert 
freebert 
gemmcp 
gemmge 
gemmge 
gemmge 
gemmge 
hanskoop 
hanskoop 

- 
st. 

1 
2 
3 
4 
1 
2 
1 
1 
1 
2 
1 
1 
2 
6 
1 
2 
1 
2 
1 
2 
1 
2 
3 
2 
4 
1 
3 
4 
5 
6 
1 
2 
3 
4 
5 
1 
2 

Pt. 

- 

MILES 
6.15 
7.07 
fail 

136.4 
0.07 
0.28 
fail 
fail 

0.18 
0.23 
0.50 
8.13 
0.43 
0.62 
0.05 
0.07 
0.03 
0.05 
0.20 
0.50 

23.58 
23.92 
24.15 

0.38 
0.48 
0.03 
0.10 
fail 
fail 
fail 

2.12 
0.47 
0.55 
0.52 
0.55 
0.07 
0.08 

NE/ 
SQP 

- 

- 

- 
- 

fail 
fail 
fail 

18.16 
16.57 

2.00 

- 

- 

- 

- 

fail 
fail 
fail 
fail 
- 
- 

fail 
248.79 

fai 1 
- 

- 

fail 
fail 
fail 
fail 
fail 
- 
- 
- 
- 
- 

0.37 
0.04 

PATH 
2.63 
3.13 
2.10 
2.29 
0.08 
0.04 
fail 

138.52 
0.29 
0.26 
0.21 
2.09 
0.50 
0.46 
0.1 1 
0.09 
0.05 
0.03 
3.75 
0.55 
3.86 

13.56 
9.76 
1.95 
1.72 
0.07 
0.05 
0.09 
0.04 
0.08 
0.2 1 
3.24 
1.85 
2.5 1 
8.85 
0.05 
0.06 

PROXI 
2.61 
3.24 
2.78 
2.67 
0.39 
0.27 
0.02 

149.37 
0.50 
0.35 
2.89 
2.03 
0.48 
fail 

0.25 
0.50 
0.09 
0.05 
fail 
fail 

18.50 
37.67 
64.88 
11.34 
12.34 
0.39 
0.25 
0.3 1 
0.12 
0.33 
0.16 
3.3 1 
1.89 
2.37 
5.00 
0.10 
0.01 
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QP- 
COMP 

- 

- 
- 
- 

2.83 
2.4 1 
0.1 1 

20.1 1 
14.19 

2.28 

- 

- 

- 

- 

5.76 
5.39 
2.13 
1.62 

- 
- 

61 1.41 
250.28 
866.08 

- 
- 

2.72 
2.86 
2.47 
1.38 
3.02 

- 
- 

- 

- 
- 

0.37 
0.05 

SEMI- 
COMP 

11.38 
46.44 
15.52 
5.80 
0.64 
0.59 
0.10 

7452.38 
0.50 
0.50 
fail 

2.95 
2.02 
fai 1 

0.12 
fai 1 

0.08 
0.06 
fail 

133.73 
18.99 
49.06 

233.23 
fail 
fai 1 

0.5 1 
0.55 
0.60 
0.15 
0.53 
0.19 
3.3 1 
2.88 
2.84 
5.32 
fail 
fail 

SEMI- 
SMTH 

13.50 
54.4 1 
17.99 
5.91 
fail 
fail 

0.90 
fail 

0.66 
0.39 
fail 

2.93 
2.42 
fail 

0.10 
fail 

0.09 
0.05 
fail 
fail 

15.02 
58.25 

240.12 
fail 
fail 
fail 
fail 
fail 

0.12 
fail 

0.18 
3.60 
3.92 
3.22 
6.93 
fail 
fail 

SMTH 
3.23 
2.57 
2.55 
2.62 
0.24 
0.05 
fail 

135.48 
0.41 
0.25 
0.23 
2.10 
0.52 
1.96 
0.1 1 
0.10 
0.06 
0.05 
5.42 
0.60 
4.73 

12.58 
90.38 
5.16 
9.18 
0.04 
0.04 
fail 

0.04 
fail 

0.24 
4.18 
1.85 
1.84 
2.28 
0.33 
0.02 



LARGE SCALE MIXED COMPLEMENTARITY PROBLEM SOVLERS 19 

Table A.  1. Execution Times (continued) 

Problem 
Name 
hanskoop 
hanskoop 
hanskoop 
hanskoop 
hanskoop 
hansmcp 
hansmge 
harkmcp 
harmge 
harmge 
harmge 
harmge 
harmge 
harmge 
hydroc20 
josephy 
josephy 
josephy 
josephy 
kojshin 
kojshin 
kormcp 
mr5mcp 
nsmge 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
opt-cont 127 
opt-cont255 
opt-cont3 1 
opt-cond 1 1 
pgvon 1 OS 
pgvon 1 05 

- 
st. 
Pt. 

3 
4 
5 
7 
9 
1 
1 
4 
1 
2 
3 
4 
5 
6 
1 
1 
2 
4 
6 
1 
3 
1 
1 
1 
1 
2 
3 
4 
5 
6 
7 
8 
1 
1 
1 
1 
1 
2 

- 

- 

MILES 
fail 

1.10 
0.07 
0.07 
fail 

0.10 
0.10 
0.07 
0.03 
0.80 
0.07 
0.08 
0.08 
fail 
fail 
fail 
fail 
fai 1 
fail 
fail 

0.03 
0.23 
0.60 
0.25 
2.37 
fai 1 
fail 

3.98 
fail 
fail 
fail 
fail 

8.52 
fai 1 

2.10 
fail 
fail 

0.42 

NE/ 
SQP 
0.34 
0.06 
fail 
fail 

0.50 
fail 

3.14 
6.96 
fai 1 
fail 
fail 
fai 1 
fail 
fail 

16.1 1 
fail 
fail 
fail 

0.04 
fail 
fail 

2.82 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

fail 
41.51 

PATH 
0.1 1 
0.05 
0.09 
0.05 
0.10 
0.47 
0.36 
0.12 
0.06 
0.03 
0.04 
0.05 
0.05 
0.06 
0.38 
0.03 
0.04 
0.02 
fail 

0.03 
0.06 
0.08 
0.62 
0.9 1 
2.36 
5.90 
5.03 
4.84 
8.04 
8.86 
7.39 

13.84 
8.14 

14.86 
1.36 

39.5 1 
1.54 
0.77 

PROXI 
0.09 
0.0 1 
0.10 
0.09 
0.24 
0.14 
0.70 
0.2 1 
0.44 
0.02 
0.03 
0.03 
0.04 
fail 

0.44 
0.02 
0.02 
0.0 1 
0.02 
0.01 
0.05 
0.06 
2.17 
1.64 
3.40 
7.33 
8.85 
9.29 
4.52 
9.92 
7.57 
7.54 
9.9 1 

18.71 
1.51 

43.19 
7.99 
2.18 

QP- 
COMP 

0.42 
0.05 
0.70 
0.86 
0.43 
fail 

2.86 
9.3 1 
1.86 
0.14 
0.13 
0.15 
0.16 
3.24 

13.31 
0.08 
0.07 
0.04 
0.05 
0.07 
0.12 
2.82 

- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

- 

- 
- 
- 

fai 1 
50.91 

SEMI- 
COMP 

fail 
fail 

0.07 
fail 

0.09 
0.16 
0.84 
fail 

1.52 
0.0 1 
0.02 
0.01 
0.02 
0.02 
0.54 
0.02 
0.02 
0.01 
0.01 
0.02 
0.06 
0.07 
2.09 
1.69 
6.86 

18.01 
11.77 
11.01 
15.08 
19.62 
12.84 
14.76 
46.05 

107.97 
5.55 

348.63 
fail 
fail 

SEMI- 
SMTH 

fail 
fai 1 

0.08 
fail 

0.10 
0.16 
0.88 
fail 
fai 1 
fail 
fail 
fail 
fail 
fail 

0.4 1 
0.0 1 
0.02 
0.0 1 
0.0 1 
0.03 
0.07 
0.05 
2.01 
1.65 
5.59 

15.56 
9.45 

10.66 
14.59 
21.14 
15.52 
14.32 
45.58 

110.61 
4.45 

360.42 
fail 
fail 

SMTH 
0.23 
0.02 
0.30 
0.22 
0.23 
0.13 
0.64 
0.37 
0.09 
0.03 
0.04 
0.04 
0.04 
2.08 
0.36 
0.03 
0.02 
0.02 
0.02 
0.03 
0.11 
0.05 
0.62 
2.40 
2.39 
6.39 
6.27 
6.12 
7.13 

10.07 
7.97 

10.58 
6.38 

13.80 
1.65 

37.52 
fail 
fail 



20 BILLUPS. DIRKSE AND FERRIS 

Table A. 1. Execution Times (continued) 

Problem 
Name 
pgvon 105 
pgvon 105 
pgvon 106 
pgvon 106 
pgvon 106 
pgvonl06 
pgvon 106 
pgvon 106 
pies 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
scarfasum 
scarfasum 
scarfbnum 
scarfbnum 
scarfbsum 
scarfbsum 
threemge 
threemge 
threemge 
transmcp 
transmcp 
transmcp 
transmcp 
vonthmcp 
vonthmge 

st. 
Pt. 

3 
4 
1 
2 
3 
4 
5 
6 
1 
1 
3 
5 
6 
7 
8 
9 

10 
13 
14 
15 
16 
17 
18 
2 
3 
1 
2 
1 
2 
7 
8 

11  
1 
2 
3 
4 
1 
1 

- 

- 

MILES 
fail 
fail 
fail 
fail 
fail 
fail 

5.33 
fail 

0.07 
0.07 
0.10 
0.12 
0.13 
0.18 
0.10 
0.10 
0.17 
0.05 
0.12 
0.05 
0.05 
0.10 
0.08 
0.15 
0.13 
0.08 
0.10 
0.17 
0.18 
0.08 
0.07 
0.12 
0.03 
0.03 
0.03 
0.03 
fail 

0.08 

N E /  

33.47 
fail 
fail 
fail 
fail 
fail 
fail 
fail 
fail 
fail 

0.27 
0.42 
0.45 
0.69 
0.78 
0.7 1 
fail 

0.30 
0.29 
0.27 
0.47 
0.62 
0.37 
fail 

0.29 
6.27 
6.01 
fail 
fail 

SQP 

- 
- 
- 

fail 
fail 

0.02 
0.11 

fail 
- 

PATH 
1.58 
fail 

19.77 
1.80 
1.29 
fail 
fail 
fail 

0.13 
0.0 1 
0.05 
0.07 
0.05 
0.06 
0.05 
0.07 
0.01 
0.12 
0.11 
0.06 
0.1 1 
0.09 
0.1 1 
0.04 
0.07 
0.39 
0.44 
fail 

3.43 
0.06 
0.06 
0.05 
0.04 
0.01 
0.02 
0.02 
fail 

1.06 

PROXI 
52.13 

fail 
13.21 

fail 
fail 

2.46 
fail 
fail 

0.29 
0.01 
0.16 
0.12 
0.27 
0.13 
0.63 
0.45 
0.01 
0.20 
0.17 
0.48 
0.26 
0.57 
0.46 
0.15 
0.15 
0.57 
0.43 
0.49 
5.16 
fail 
fail 
fail 

0.09 
0.00 
0.01 
0.01 
fail 
fail 

QP- 
COMP 

58.80 
fail 
fail 
fail 
fail 
fail 
fail 
fail 

7.26 
fail 

0.26 
0.48 
0.58 
0.58 
0.74 
0.69 
fail 

0.28 
0.35 
0.3 1 
0.46 
1.05 
0.45 
1.51 
0.37 
6.42 
6.09 
8.77 

31.1 1 

- 

- 
- 
- 

1.22 
fail 

0.02 
0.10 

fail 
- 

SEMI- 
COMP 

fail 
28.09 

fail 
fail 
fail 

38.30 
fail 
fail 

0.1 1 
0.00 
0.17 
0.36 
0.40 
0.23 
0.39 
0.65 
0.0 1 
0.23 
0.23 
0.38 
0.3 1 
0.20 
0.50 
0.15 
fail 

1.01 
7.36 
0.39 
1.22 
0.14 
0.12 
0.82 
0.23 
0.00 
0.03 
0.04 
fail 
fail 

SEMI- 
SMTH 

fail 
fail 
fail 
fail 
fail 
fail 
fail 
fail 

0.13 
0.00 
fail 
fail 
fail 
fail 
fail 
fail 

0.00 
fail 
fail 
fail 
fail 
fail 
fail 

0.12 
fail 
fail 
fail 

0.3 1 
fail 

0.13 
0.14 
fail 
fail 
fail 
fail 
fail 
fail 
fail 

SMTH 
fail 
fail 

125.46 
5.37 
8.48 
fail 
fail 

3.76 
0.27 
0.00 
0.18 
0.13 
0.13 
0.20 
0.19 
0.20 
0.01 
0.23 
0.18 
0.25 
0.10 
0.17 
0.16 
0.10 
0.05 
0.32 
0.32 
0.24 
0.66 
0.05 
0.05 
0.05 
0.05 
0.00 
0.02 
0.02 
fail 

17.14 
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Table A.2. Function and Jacobian Evaluations fu) 

Problem 
Name 
bert-oc 
bert-oc 
bert-oc 
bertsekas 
bertsekas 
bertsekas 
billups 
bratu 
cafemge 
cafemge 
cammcp 
choi 
co2mge 
co2mge 
colvdual 
colvdual 
colvnlp 
colvnlp 
dmcmge 
dmcmge 
ehlkost 
ehlkost 
ehllost 
finmge 
finmge 
freebert 
freebert 
freebert 
freebert 
freebert 
gemmcp 
gemmge 
gemmge 
gemmge 
gemmge 
gemmge 
hanskoop 
hanskoop 

- 
st. 
Pt. 

1 
2 
3 
1 
2 
3 
1 
1 
1 
2 
1 
1 
2 
6 
1 
2 
1 
2 
1 
2 
1 
2 
3 
2 
4 
1 
3 
4 
5 
6 
1 
1 
2 
3 
4 
5 
1 
2 

- 

- 

NE/ 
SQP 

- 
- 
- 

fail 
fail 

9(8) 
fail 

16( 10) 
15(8) 

5(4) 

- 

- 

- 
- 

fail 
fail 
fail 
fail 
- 
- 

fail 
97(30) 

fail 
- 
- 

fail 
fail 
fail 
fail 
fail 
- 
- 
- 
- 
- 
- 

15(10) 
2(1) 

PROXI 
4(3) 
4(3) 
4(3) 

138(37) 
83(31) 
21(20) 
23(22) 
48(25) 
23(9) 
17(7) 

77(23) 
5 (4) 
7(5) 
fail 

20 1 (36) 
250(55) 
77( 16) 
29( 12) 

fail 
fail 

25( 14) 
95(28) 

1 W M )  
151(25) 
135(28) 
138(37) 
I06( 35) 
138(37) 
53( 14) 

106( 35) 
2(1) 
2(1) 

22(7) 
6(5) 
7(6) 

25( 1 1) 
42( 16) 

2(1) 

QP- 
COMP 

- 
- 
- 

151(44) 
126(40) 

9(8) 
23(22) 

16( 10) 
15(8) 

5(4) 

- 

- 

- 
- 

252(78) 
184(59) 
178(54) 
137(30) 

- 
- 

108( 105) 
97(30) 

409(79) 
- 
- 

151(44) 
173(45) 
151(44) 
1 16(23) 
173(45) 

- 
- 
- 
- 
- 
- 

15(10) 
2(1) 

SEMI- 
COMP 
21(11) 

143(42) 
41(15) 

25 l(42) 
327(38) 
181(39) 
63 l(76) 

3164(538) 
18(10) 
11(8) 

fail 
6(5) 

62( 15) 
fail 

4 4  16) 
fail 

46( 16) 
26( 15) 

fail 
3099(661) 

32( 15) 
125(34) 

67l( 114) 
fail 
fail 

266(46) 
206(42) 
240(42) 
49( 14) 

200(40) 
3 1 )  
2(1) 

16(9) 
lO(8) 
8(7) 

31(13) 
fail 
fail 

SEMI- 
SMTH 
21(11) 

143(42) 
41(15) 

fail 
fail 

18 l(39) 
6903(345) 

fail 
18(10) 
11(8) 

fail 
6(5) 

63( 16) 
fail 
16) 
fail 

46( 16) 
26( 15) 

fail 
fail 

32( 15) 
125(34) 

671(114) 
fail 
fail 
fail 
fail 
fail 

49( 14) 
fail 

2(1) 
2(1) 

16(9) 
lO(8) 
8(7) 

31(13) 
fail 
fail 
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Table A.2. Function and Jacobian Evaluations (continued) 

Problem 
Name 
hanskoop 
hanskoop 
hanskoop 
hanskoop 
hanskoop 
hansmcp 
hansmge 
harkmcp 
harmge 
harmge 
harmge 
harmge 
harmge 
harmge 
hydroc20 
josephy 
josephy 
josephy 
josephy 
kojshin 
kojshin 
kormcp 
mr5mcp 
nsmge 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
obstacle 
opt-cont 127 
opt-cont25S 
opt-cont3 1 
opt-cont5 1 1 
pgvonlO5 
pgvon 105 

st. 
Pt. 

3 
4 
5 
7 
9 
1 
1 
4 
1 
2 
3 
4 
5 
6 
1 
1 
2 
4 
6 
1 
3 
1 
1 
1 
1 
2 
3 
4 
5 
6 
7 
8 
1 
1 
1 
I 
1 
2 

- MILES 
fail 

2(1) 
6(5) 
7(5) 
fail 

6(4) 
4(3) 
5(4) 

284(60) 
3 4 )  
3 4 )  
8(5) 
8(5) 
fai 1 
fail 
fai 1 
fail 
fail 
fail 
fai 1 

1 l(10) 
4(3) 
7(6) 

82( 17) 
SO( 14) 

fail 
fai 1 

fail 
fail 
fai 1 
fail 

8 0 )  
fail 

2(1) 
fail 
fail 

33( 14) 

NE/ 
SQP 

18(11) 
2(1) 
fail 
fail 

23( 13) 
fail 

11(8) 
29( 13) 

fail 
fai 1 
fail 
fail 
fai 1 
fail 

1 O(8) 
fail 
fail 
fail 

4(3) 
fail 
fai 1 

4(3) 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

fail 
199(39) 

SEMI- 
COMP 

fail 
fail 

m 8 )  
fail 

20( 15) 
24( 13) 
47( 17) 

fail 
672(75) 

3 0 )  
3(2) 
3(2) 
3(2) 
3(2) 

12(9) 
1 O(7) 
12(7) 
6(5) 

13(7) 
22( 10) 
92(23) 

4(3) 
26( 13) 
23( 12) 
15( 14) 
17( 14) 
14(13) 
17( 16) 

8(7) 
20( 13) 
17(12) 
10(7) 

27( 12) 
31(14) 

11(9) 
73(20) 

fail 
fail 

SEMI- 
SMTH 

fail 
fail 

20(8) 
fai 1 

20( 15) 
24( 13) 
47( 17) 

fail 
fai 1 
fail 
fail 
fail 
fail 
fail 

1 2(9) 
lO(7) 
12(7) 
6(5) 

13(7) 
22( 10) 

122(30) 
4(3) 

26( 13) 
23( 12) 
15( 14) 
17(14) 
14( 13) 
17(16) 

8(7) 
20( 13) 
17( 12) 

1 O(7) 
27( 12) 
31(14) 

11(9) 
73(20) 

fail 
fail 
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Table A.2. Function and Jacobian Evaluations (continued) 

Problem 
Name 
pgvon 105 
pgvon 105 
pgvon 106 
pgvon 106 
pgvon 106 
pgvon 106 
pgvonlO6 
pgvon 106 
pies 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
sammge 
scarfasum 
scarfasum 
scarfbnum 
scarfbnum 
scarfbsum 
scarfbsum 
threemge 
threemge 
threemge 
transmcp 
transmcp 
transmcp 
transmcp 
two3mcp 
two3mcp 
unstmge 
vonthmcp 
vonthmge 

- 
St. 

Pt. 
3 
4 
1 
2 
3 
4 
5 
6 
1 
1 
3 
5 
6 
7 
8 
9 

10 
13 
14 
15 
16 
17 
18 
2 
3 
1 
2 
1 
2 
7 
8 

11 
I 
2 
3 
4 
1 
2 
1 
1 
1 

- 

- 

PROXI 
3353( 33 8) 

fail 
739(88) 

fail 
fail 

86(28) 
fail 
fail 

73(23) 
1(1) 

46(7) 
17(8) 

52( 19) 
23( 10) 

146(38) 
139(26) 

47( 13) 
50( 13) 
83(23) 
40( 15) 
75(22) 

131(26) 
25(9) 

34( 13) 
164(46) 
165(35) 
60(25) 

1062( 117) 
fail 
fail 
fail 

92(26) 

3(2) 
3(2) 

16(8) 
7(4) 

11(8) 
fail 
fai I 

SEMI- 
COMP 

fail 
352(42) 

fail 
fail 
fail 

412(65) 
fail 
fail 

22( 13) 
1(1) 

41(8) 
84( 14) 

103(17) 
54( 11) 

114(16) 
168(29) 

1(1) 
61(14) 
74(11) 

122(20) 
80( 12) 
61(11) 

148(22) 
23( 12) 

fail 
24 l (5  1 ) 

1497(34 1) 
37( 18) 

276(43) 
32( 12) 
30( 12) 

21S(26) 
193(10S) 

1 ( 1 )  
1 3 8 )  

43( 10) 
13(S) 
7(5) 

11(9) 
fail 
fail 

SEMI- 
SMTH 

fail 
fail 
fail 
fail 
fail 
fail 
fail 
fail 

22( 13) 

fail 
fail 
fail 
fail 
fail 
fail 

1(1) 
fail 
fail 
fai 1 
fail 
fail 
fail 

23( 12) 
fail 
fail 
fail 

37( 18) 
fail 

32( 12) 
30( 12) 

fail 
fail 
fail 
fail 
fail 

13(8) 
7(5) 

fail 
fai I 

SMTH 
fail 
fail 

6428(482) 
109( 37) 
233(49) 

fail 
fail 

S8(27) 
41(14) 

1 ( 1 )  
66( 10) 
33(11) 

25(9) 
47( 18) 
40( 11)  
50( 18) 

l(1) 
51(1S) 
SO( 14) 
76( 15) 

14(7) 
37( 10) 
33( 12) 

2 3 6 )  
9(6) 

71(20) 
95(24) 
24( 11) 

103(24) 
6(6) 
6(6) 
6(6) 

24( 15) 
1(1) 
4(3) 
5(5> 

1 3 8 )  
3 4 )  
8(7) 
fail 

730( 278) 
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Impact of Partial Separability on Large-scale 
Optimization* 

ALI BOUARICHA AND JORGE J .  MORE 

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 
bouarich@ mcs.anl.gov, more @mcs.anl.gov 

Abstract. ELSO is an environment for the solution of large-scale optimization problems. With ELSO the user 
is required to provide only code for the evaluation of a partially separable function. ELSO exploits the partial 
separability structure of the function to compute the gradient efficiently using automatic differentiation. We 
demonstrate ELSO's efficiency by comparing the various options available in ELSO. Our conclusion is that the 
hybrid option in ELSO provides performance comparable to the hand-coded option, while having the significant 
advantage of not requiring a hand-coded gradient or the sparsity pattern of the partially separable function. In 
our test problems, which have carefully coded gradients, the computing time for the hybrid AD option is within a 
factor of two of the hand-coded option. 

Keywords: large-scale optimization, partial separability, automatic differentiation 

1. Introduction 

ELSO is an environment for the solution of large-scale minimization problems 

min {fo(z) : z E IR"}, 

where fo : R" -+ R is partially separable, that is, fo can be written as 

m 

i= 1 

where each element function fi depends only on a few components of z, and rn is the number 
of element functions. Algorithms and software that take advantage of partial separability 
have been developed for various problems (for example, [ 1 1, 19, 20, 17, 2 1, 22, 1 0]), but 
this software requires that the user provide the gradient of fo. An important design goal of 
ELSO is to avoid this requirement. 

For small-scale problems we can approximate the gradient by differences of function 
values, for example, 

* Work supported by the Mathematical, Information, and Computational Sciences Division subprogram of the 
Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-3 1-109-Eng- 
38, and by the National Science Foundation, through the Center for Research on Parallel Computation, under 
Cooperative Agreement No. CCR-9 120008. 
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where hi is the difference parameter, and ei is the i-th unit vector, but this approximation 
suffers from truncation errors, which can cause premature termination of an optimization 
algorithm far away from a solution. We also note that, even for moderately sized problems 
with n 2 100 variables, use of this approximation is prohibitive because it requires n func- 
tion evaluations for each gradient. For these reasons, the accurate and efficient evaluation 
of the gradient is essential for the solution of optimization problems. 

ELSO is able to solve large-scale unconstrained optimization problems, while requiring 
only that the user provide the function in partially separable form. This is an important 
advantage over standard software that requires the specification of the gradient and the 
sparsity pattern of the partially separable function, that is, 

S = {( i , j )  : fi depends on xj} = {(i , j)  : ajfi(x) f 0) .  (3) 

ELSO exploits the partial separability structure of the function to compute the gradient 
efficiently by using automatic differentiation (AD). The current version of ELSO incorpo- 
rates four different approaches for computing the gradient of a partially separable function 
in the context of large-scale optimization software. These approaches are hand-coded, 
compressed AD, sparse AD, and hybrid AD. In our work we have been using the ADI- 
FOR (Automatic Differentiation of Fortran) tool [4, 61, and the SparsLinC (Sparse Linear 
Combination) library [5 ,  61, but other differentiation tools can be used. 

We demonstrate ELSO’S efficiency by comparing the compressed AD, sparse AD, and 
hybrid AD options with the hand-coded approach. Our conclusion is that the performance 
of the hybrid AD option is comparable with the compressed AD option and that the per- 
formance penalty over the hand-coded option is acceptable for carefully coded gradients. 
In our test problems, which have carefully coded gradients, the computing time for the 
hybrid AD option is within a factor of two of the hand-coded option. Thus, the hybrid AD 
option provides near-optimal performance, while providing the significant advantage of not 
requiring a hand-coded gradient or the sparsity pattern of the partially separable function. 

We describe in Section 2 the different approaches used by ELSO to compute the gradient of 
a partially separable function. In Section 3 we provide a brief description of the MINPACK- 
2 large-scale problems and show how to convert these problems into partially separable 
problems. In Section 4 we compare and analyze the performance of large-scale optimization 
software using the different options available in ELSO. We present results for both a 
superscalar architecture (IBM RS6000) and a vector architecture (Cray C90). Our results 
on the Cray C90 are of special interest because they show that if the hand-coded gradient 
does not run at vector speeds, the hybrid AD option can outperform the hand-coded option. 
Finally, we present our conclusions in Section 5 .  

2. Computing Gradients in ELSO 

In addition to hand-coded gradients, ELSO supports three approaches based on automatic 
differentiation for computing the gradient of a partially separable function. In this section 
we describe and compare these approaches. 
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ELSO relies on the representation (2) to compute the gradient of a partially separable 
function. Given this representation of fo : R” H R, we can compute the gradient of fo 
by noting that if the mapping f : R” R” is defined by 

1 (4) 

then the gradient Of0 can 

Vfo(.) = f’(+, 

be obtained by 

( 5 )  

where e E R” is the vector of all ones. The key observation is that the partial separability 
of fo implies that the Jacobian matrix f’(z) is sparse, and thus automatic differentiation 
techniques can be used to compute the gradient Of0 efficiently. The aim is to compute the 
gradient so that 

where T { - }  and M { . }  denote computing time and memory, respectively, and LR, and Oh, 
are small constants; if the function fo is defined by a discretization of a continuous problem, 
we also wish the constants to be independent of the mesh size. Any automatic differentiation 
tool can be used to compute f’(z) and thus the gradient of fo, but efficiency requires that 
we insist on (6) and (7). 

Automatic differentiation tools can be classified roughly according to their use of the 
forward or the reverse mode of automatic differentiation. See, for example, the survey of 
Juedes [16]. Automatic differentiation tools that use the forward mode generate code for 
the computation of f‘(z)V for any V E Rnxp. If L {f} and M {f} are, respectively, the 
number of floating-point operations and the amount of memory required by the computation 
of f(z), then an AD-generated code employing the forward mode requires 

floating-point operations and memory, respectively, to compute f’(z) V .  For many large- 
scale problems we can obtain the Jacobian matrix f’(z) by computing f’(z)V for a matrix 
V E Rnxp with p small. Thus, in this case, an automatic differentiation tool based on 
the forward mode satisfies (6) and (7). We elaborate on this point when we discuss the 
compressed AD approach. 

Automatic differentiation tools that use the reverse mode generate code for the compu- 
tation of W T f ’ ( x )  for any W E E l m x q .  We can also use the reverse mode to compute 
f’(z), but since the reverse mode reverses the partial order of program execution and re- 
members (or recomputes) any intermediate result that affects the final result, the complexity 
of the reverse mode is harder to predict. In general, the reverse mode requires 0 ( L  {f}) 
floating-point operations and up to 0 ( L  {f} + M {f}) memory, depending on the code. 
In particular, there is no guarantee that (7) is satisfied. Griewank [12, 131 has discussed 
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how to improve the performance of the reverse mode, but at present the potential memory 
demands of the reverse mode are a disadvantage. For additional information on automatic 
differentiation, see the proceedings edited by Griewank and Corlis [ 141; the paper of Iri 
[ 151 is of special interest because he discusses the complexity of both the forward and the 
reverse modes of automatic differentiation. 

In ELSO we have used the ADIFOR [4,6] tool and the SparsLinC library [5,6] because, 
from a computational viewpoint, they provide all the flexibility and efficiency desired on 
practical problems. Indeed, Bischof, Bouaricha, Khaderni, More [3] have shown that the 
ADIFOR tool can satisfy (6) and (7) on large-scale vatiational problems. 

We now outline the three approaches used by ELSO to compute the gradient of f o .  As 
we shall see, all these approaches have advantages and disadvantages in terms of ease of 
use, applicability, and computing time. 

2. I .  Compressed AD Approach 

In the compressed AD approach we assume that the sparsity pattern of the Jacobian matrix 
f ’ ( x )  is known for all vectors x E V, where V is a region where all the iterates are known 
to lie. For example, V could be the set 

where xg is the initial starting point. Thus, in the compressed AD approach we assume that 
the closure of the sparsity pattern is known. The sparsity pattern S ( x )  for f’(x) at a given 
x E V is just the set of indices 

the closure of the sparsity pattern of f’(x) in the region 2) is 

U{S(x)  : x E V}. 

To determine the closure of the sparsity pattern, we are required to know how the function 
fo depends on the variables. When f is given by (4), a pair (2 ,  j )  is in the closure of the 
sparsity pattern if and only if f i  depends on xj. Hence, the closure of the sparsity pattern 
is the sparsity pattern (3) of the partially separable function when x is restricted to lie in D. 

Determining the closure of the sparsity pattern is straightforward for problems with a 
fixed structure. For example, for finite element problems where the triangulation is fixed 
during the iteration. This is the case for the problems considered in Section 3. If, on the 
other hand, the structure evolves over time, then the sparsity pattern is likely to change 
as the iteration progresses. In these cases we must be able to detect these changes, and 
re-compute the sparsity pattern. This is the topic of current research. 

Given the sparsity pattern of f ’ ( x ) ,  we can determine the Jacobian matrix f ’ ( x )  if we 
partition the columns of the Jacobian matrix into groups of structurally orthogonal columns, 
that is, columns that do not have a nonzero in the same row position. In our work we employ 
the partitioning software described by Coleman, Garbow, and Mor6 [8,7]. 
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do j = 1, n 
grad(j) = 0.0 
do k = jpntr(j), jpntr(j+l)-l 

i = indrow(k) 
grad(j) = grad(j) + c-fjac(i,ngrp(j)) 

enddo 
enddo 

Figure 1. Computing Vfo(z) from the compressed Jacobian array c-f jac 

Given a partitioning of the columns of f’(z) into p groups of structurally orthogonal 
columns, we can determine the Jacobian matrix f’(z) by computing the compressed Juco- 
biun matrix f ’ (z)V,  where V E IRnxp. There is a column of V for each group, and the 
k-th column is determined by setting the i-th component of V k  to one if the i-th column is 
in the k-th group, and to zero otherwise. For many sparsity patterns, the number of groups 
p is small and independent of n. For example, if a matrix is banded with bandwidth p or if 
it can be permuted to a matrix with bandwidth 0, Coleman and More [9] show that p 5 p. 

The compressed Jacobian matrix contains all the information of the Jacobian matrix. 
Given the compressed Jacobian matrix, we can recover f’(z) in a sparse data structure. 
We can eliminate the storage and floating-point operations required to determine the sparse 
representation of the Jacobian matrix f’(x), however, by computing the gradient of fo 
directly from the compressed Jacobian array c-f j ac and storing the result in the array 
grad. This way of computing the gradient of fo is shown in the code segment in Figure 
1. In this figure, indrow is the row index of the sparse representation of f’(z), and jpntr 
specifies the locations of the row indices in indrow. The row indices for column j are 
indrow (k) , k = jpntr (j ) , . . . , jpntr (j+l) -1, and ngrp specifies the partition of 
the columns of the sparse representation of f’(z); column j belongs to group ngrp ( j ) . 

2.2. Sparse AD Approach 

For the sparse AD approach we need an automatic differentiation tool that takes advantage 
of sparsity when V and most of the vectors involved in the computation of f’(z)V are 
sparse. We also require the sparsity pattern of f’(z)V as a by-product of this computation. 
At present, the SparsLinC library [ 5 , 6 ]  is the only tool that addresses this situation, but we 
expect that others will emerge. 

The main advantage of the sparse AD approach over the compressed AD approach is that 
no knowledge of the sparsity pattern is required. A disadvantage, however, is that because 
of the need to maintain dynamic data structures for sparse vectors, the sparse AD approach 
usually runs slower than the compressed AD approach. 

Numerical results [3] with ADIFOR and SparsLinC show that the compressed AD ap- 
proach outperforms the sparse AD approach on various architectures. In fact, 
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T{Vfo(z)  : sparse ADIFOR} = K T{Vfo(z) : compressed ADIFOR} 

where K satisfies 
SPARC 10 IBM RS6000 Cray C90 
3 5 6 5 8  6 5 ~ 5 2 0  1 5 5 ~ 5 4 4 5  * 

These results show, for example, that the solution of an optimization problem with a rel- 
atively expensive function evaluation is likely to require at least three times longer if we 
use sparse ADIFOR instead of compressed ADIFOR. Of course, for the compressed AD 
option we need to supply the sparsity pattern of the partially separable function. 

Also note that the performance penalty of sparse ADIFOR is worst on superscalar (IBM 
RS6000) and vector (Cray C90) architectures. Thus, for these architectures, there is a 
stronger need to obtain the advantages of the sparse AD approach without giving up the 
speed of the compressed AD approach. 

2.3. Hybrid AD Approach 

As stated in the introduction, an important design goal of ELSO is to avoid asking the user 
to provide code for the evaluation of the gradient or the sparsity pattern of the partially 
separable function. We can achieve this goal by using the sparse AD option. However, as 
noted above, this imposes a heavy performance penalty on the user. 

In an optimization algorithm we can avoid this performance penalty by first using the 
sparse AD option, to obtain the sparsity pattern of the function, and then using the com- 
pressed AD option. This strategy must be used with care. We should not use the sparse 
AD option to obtain the sparsity pattern at the starting point because the starting point is 
invariably special, and not representative of a general point in the region V of interest. In 
particular, there are usually many symmetries in the starting point that are not necessarily 
present in intermediate iterates. 

We can also use the sparse AD option for a number of iterates until we feel that any 
symmetries present in the starting point have been removed by the optimization algorithm. 
This strategy is not satisfactory, however, because optimization algorithms tend to retain 
symmetries for many iterations, possibly for all the iterates. 

The current strategy in ELSO is to randomly perturb every component of the user’s initial 
point, and compute the sparsity pattern at the perturbed point. This destroys any symmetries 
in the original iterates, and the resulting sparsity pattern is likely to be the closure of the 
sparsity pattern in V. 

This strategy may fail if the closure of the sparsity pattern in a neighborhood of the initial 
iterate is different from the sparsity pattern in a neighborhood of the solution. For most 
optimization problems, this does not occur. If it occurs, however, failure does not occur 
unless some entries in the current sparsity pattern are not present in the previous sparsity 
pattern. The justification of this remark comes about by noting that the compressed AD 
approach works provided the sparsity pattern of the Jacobian matrix f’(z) is a subset of the 
sparsity pattern provided by the user. Of course, if the sparsity pattern provided by the user 
is too large, then the number of groups p is likely to increase, leading to increased memory 
requirements and some loss in efficiency in the computation of the gradient. 
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Name 
EPT 

G L 1  

G L ~  

MSA 
ODC 
PJB 
ssc 
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Description of the Minimization Problems 
Elastic-plastic torsion problem 
Ginzburg-Landau ( 1 -dimensional) superconductivity problem 
Ginzburg-Landau (2-dimensional) superconductivity problem 
Minimal surface area problem 
Optimal design with composite materids problem 
Pressure distribution in a journal bearing problem 
Steady-state combustion problem 

Table 1. MINPACK-2 test problems 

3. Partially Separable Test Problems 

We used the test problems in the MINPACK-2 collection to compare the performance of a 
large-scale optimization software employing the four approaches for computing the gradient 
of a partially separable function described in Section 2. This collection is representative of 
large-scale optimization problems arising from applications. Table 1 lists each test problem 
with a short description; see [ 11 for additional information on these problems. 

The optimization problems in the MINPACK-2 collection arise from the need to minimize 
a function f of the form 

where V is some domain in either R or R2, and Q is defined by the application. In all cases 
f is well defined if v : V I--+ RP belongs to H 1  (V), the Hilbert space of functions such that 
U and llVvII belong to L 2 ( V ) .  

Finite element approximations to these problems are obtained by minimizing f over the 
space of piecewise linear functions v with values vi, j at zi , j ,  0 5 i 5 nY + 1,0 5 j L. n, + 1, 
where zi,j E R2 are the vertices of a triangulation of V with grid spacings h, and h,. The 
vertices zi,j are chosen to be a regular lattice so that there are n, and n, interior grid 
points in the coordinate directions, respectively. Lower triangular elements TL are defined 
by vertices z i , j ,  zi+l,j,  zi,j+l, while upper triangular elements Tu are defined by vertices 
z ~ , ~ ,  zi- 1,j zi,j- 1. A typical triangulation is shown in Figure 2. 

Figure 2. Triangulation of domain 23 
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In a finite element formulation of the variational problem defined by (8), the unknowns 
are the values U i , j  of the piecewise linear function v at the vertices zi , j .  The values vi , j  are 
obtained by solving the minimization problem 

where f& and f& are the finite element approximation to the integrals 

respectively. Clearly, this is a partially separable problem because the element functions 
f&(v) and f$(v) depend only on the vertices vi,j,  vi+1,j1 vi,j+l and V i , j ,  vi-1,j1 V i , j - l ,  

respectively. We can formulate this problem by setting 

In this case the number of element functions m ==: 2n. On the other hand, if we define 

the number of element functions m n. Since the number of element functions differs 
for (9) and ( lO) ,  the number of groups p determined by the partitioning software [8, 71 is 
likely to be different, and thus the computing times for the compressed Jacobian matrix 
may depend on p .  In our experience the computing time of formulation (9) is slightly better 
than that of (10). Therefore, we used formulation (9) in the numerical results of Section 4. 

The problems in Table 1 are representative of a large class of optimization problems. 
These problems share some common characteristics. The main characteristics are that 
the computation of f requires order n flops and that the Jacobian matrix of f is sparse. 
Moreover, the number of groups p determined by the partitioning software leads to an 
almost dense compressed Jacobian matrix; the only exception is the GL2 problem, where 
the compressed Jacobian matrix is 50% dense. We expect that our numerical results are 
representative for any problem with these characteristics. 
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4. Numerical Results 

Our aim in these experiments is to show that the performance of the hybrid AD option of 
ELSO is comparable to the compressed AD option and that the performance penalty over 
the hand-coded option is quite reasonable. 

We chose a limited-memory variable metric method for these comparisons because codes 
of this type are commonly used to solve large-scale optimization problems. These methods 
are of the form 

where a k  > 0 is the search parameter, and the approximation Hk to the inverse Hessian 
matrix is stored in a compact representation that requires only the storage of 2nv vectors, 
where nu is chosen by the user. The compact representation of Hk permits the efficient 
computation of H ~ , V f ( x k )  in (8nv + 1)n flops; all other operations in an iteration of the 
algorithm require l l n  flops. 

We used the vmlm implementation of the limited-memory variable metric algorithm (see 
Averick and Mor6 [2]) with nu = 5. This implementation is based on the work of Liu and 
Nocedal [ 181. The web page 

http:://www.mcs.anl.gov/home/more/minpack-2/m~npack-2.html 
contains additional information on the vmlm implementation. 

time per iteration. Thus, instead of using a termination test, such as 
In our numerical experiments we are interested in measuring performance in terms of 

we terminate after 100 iterations. This strategy is needed because optimization algorithms 
that require many iterations for convergence are affected by small perturbations in the 
function or the gradient, and, as a result, there may be large differences in the number of 
iterations required for convergence when the different vmlm options of ELSO are used. 

All computations were performed on two platforms: an IBM RS6000 (model 370) using 
double-precision arithmetic, and a Cray C90 using single-precision arithmetic. The IBM 
RS6000 architecture has a superscalar chip and a cache-based memory architecture. Hence, 
this machine performs better when executing short vector operations, since these operations 
fill the short pipes and take advantage of memory locality. The Cray C90 is a vector processor 
without a cache that achieves full potential when the code has long vector operations. 
Without optimization of the source Fortran code, short vector loops and indirect addressing 
schemes perform poorly. 

Table 2 has the computing time ratios of the compressed AD and sparse AD function- 
gradient evaluation to the hand-coded function-gradient evaluation on the IBM RS6000. 
These results show that the use of the sparse AD gradient can lead to a significant degradation 
in performance. 

Tables 3 and 4 compare the computing time for the compressed AD, sparse AD, and 
hybrid AD options of vmlm to the computing time of the hand-coded option. The most 
important observation that can be made from these tables is that the computing times for 
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Prob 
E PT 

GL 1 
GL2 

MSA 
ODC 

P J B  

ssc 
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Compressed AD Sparse AD 
2.6 19.1 
2.3 17.6 
2.6 12.6 
1.6 10.0 
2.0 10.0 
3.2 15.9 
2.2 13.1 

Table 2. Computing time ratios of the com- 
pressed AD and sparse AD function-gradient 
evaluation to the hand-coded function- 
gradient evaluation on the IBM RS6000 with 
n = 10,000 

Prob I Compressed AD I Sparse AD 
EPT I 3.6 I 44.5 
GL 1 

GL2 

MSA 
ODC 

P J B  

ssc 

8.5 
5.7 
1.8 
3.2 
4.5 
2.6 

164.3 
34.9 
14.5 
22.8 
54.7 
19.8 

the hybrid AD option are approximately the same as those for the compressed AD option. 
The performance similarity between the hybrid AD option and the compressed AD option 
is expected because the difference in cost between the two options is only one sparse AD 
gradient evaluation and the partitioning of the columns of the Jacobian matrix into groups of 
structurally orthogonal columns. Tables 3 and 4 show that the hybrid AD option is clearly 
the method of choice because of its significant advantage of not requiring a hand-coded 
gradient or the sparsity pattern of the partially separable function. 

Table 3. Computing time ratios of the compressed AD, 
sparse AD, and hybrid AD options of vmlm to the hand- 
coded option on the IBM RS6000 with n = 10,000 

Hybrid AD 
2.8 
2.5 
2.8 
1.7 
2.1 
3.4 
2.3 

Table 4. Computing time ratios of the compressed AD, 
sparse AD, and hybrid AD options of vmlm to the hand- 
coded option on the IBM RS6000 with n = 40,000 

Prob I Compressed AD I SparseAD I Hybrid AD 
EPT I 2.8 I 19.2 I 3.0 
GL1 

GL2 

MSA 
ODC 

P J B  

ssc 

2.3 
2.8 
1.7 
2.1 
3.3 
2.3 

17.6 
12.2 
10.1 
10.0 
14.8 
13.3 

2.5 
2.9 
1.9 
2.2 
3.4 
2.4 
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The ratios in Tables 3 and 4 are below the corresponding ratios in Table 2. This result 
can be explained by noting that the ratios in Tables 3 and 4 can be expressed as 

Tad + Ta1 o 

Thc + Talg ’ 

where Tad, Talg, and ThC are the computing times for the function and AD-generated gra- 
dient evaluation, the vmlm algorithm, and the function and hand-coded gradient evaluation, 
respectively. Since Tad > The, we have 

which is the desired result. If Tad and Thc are the dominant costs, the ratio (1 1) should 
be close to Tad/Thc. This can be seen in the results for the MSA and SSC problem, since 
these are the two most expensive functions in the set. 

Tables 3 and 4 also show that when we increase the problem dimension from n = 10,000 
to n = 40,000, the corresponding compressed AD, sparse AD, and hybrid AD ratios remain 
about the same. This observation can be explained by noting that the ratio (1 1 )  can also be 
expressed as 

where T is the ratio in Table 2. Since ThC and Ta/g grow by approximately a factor of 4 
when n changes from 10,000 to 40,000, the ratio (12) remains constant. 

We present results only for the SSC and GL2 problems on the Cray C90. We selected 
these problems because they have different characteristics. In particular, the number of 
groups in the compressed AD approach is p = 3 for the SSC problem, while p = 9 for the 
GL2 problem. 

Table 5 presents the computing time ratios of the compressed AD and sparse AD function- 
gradient evaluation to the hand-coded function-gradient evaluation. The sparse AD ap- 
proach uses the indirect addressing and dynamic memory allocation of the SparsLinC 
library [5,  61 and thus performs poorly on vector architectures [3]. As a result, the perfor- 
mance of the sparse AD approach is far from being practical on the Cray. In the rest of this 
section we present results only for the compressed and hybrid AD options. 

Table 6 presents the computing time ratios of the compressed AD and hybrid AD options 
of vmlm to the hand-coded option. These results show that the performance of the hybrid 
AD option is comparable to that of the compressed AD option. On the other hand, the 
performance of the compressed AD option relative to the hand-coded option is poor for the 
GL2 problem. The reason for this poor performance is that the GL2 hand-coded gradient 
fully vectorizes, while the compressed AD gradient does not vectorize. Hence, the hand- 
coded gradient executes at vector speeds, while the compressed AD gradient executes at 
scalar speeds. The situation is different for the SSC function. In this case, neither the 
hand-coded gradient nor the compressed AD gradient vectorizes, so they both execute at 
scalar speeds. 
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Table 5. Computing time ratios of the compressed AD 
and sparse AD function-gradient evaluation to the hand- 
coded function-gradient evaluation on the Cray C90 

624.6 
40000 694.4 

49.2 
49.4 

Table 6. Computing time ratios of the compressed AD 
and hybrid AD options ofvmlm to the hand-coded option 
on the Cray C90 

10000 
2.4 

The poor performance of the compressed AD and hybrid AD options is due to the short 
innermost loops of length p ,  where p is the number of groups in the compressed AD 
approach. These loops are vectorizable, but when the compiler vectorizes only innermost 
loops, as is the case of the Cray C90, the performance degrades. We can vectorize the 
compressed AD gradient by strip-mining the computation of the gradient; that is, the gradient 
computation is divided into strips and each strip computes the gradient with respect to a few 
components of the independent variables. In the case of the compressed AD gradient, strip- 
mining can be done conveniently via the seed matrix mechanism. A disadvantage of the 
strip-mining approach is that the function is evaluated in every strip, resulting in a runtime 
overhead of n s t r i p s  - 1 extra function evaluations, where n s t r i p s  is the number of 
strips. Using strips of size 5 is appropriate for the Cray C90 because the compiler unrolls 
innermost loops of length five or less, and, as a result, the loops that run over the grid points 
in the second coordinate direction are vectorized. 

There is one additional complication. Since the value of p is not known at compile time, 
the Cray compiler cannot unroll a loop of length p even if the computed value of p at runtime 
is less than or equal to five. We fix this problem by setting the upper bound of the innermost 
loops to a fixed number at least equal to p but at most equal to 5. The generation of the 
compressed AD gradients with a fixed upper bound of the innermost loops can be done 
automatically by setting the appropriate ADIFOR flags [6]. 

The computing time ratios for the strip-mining approach (with loop unrolling) are shown 
in Tables 7 and 8. The improvement is dramatic for both the compressed AD and hybrid 
AD options. If we compare the results in Table 6 with those in Table 8, we find that the 
computing time ratios are reduced by a factor of 1.6 for the GL2 problem and a factor of 2 
for the SSC problem. 

Also note that the results in Tables 7 and 8 show that the compressed AD approach 
performs better on the SSC problem than the hand-coded approach. The reason for this 
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Table 7. Computing time ratios of the 
compressed AD function-gradient eval- 
uation (with loop unrolling) to the hand- 
coded function-gradient evaluation on 
the Cray C90 

Compressed AD 

40000 

Table 8. Computing time ratios of the compressed AD 
and hybrid AD options of vmlm (with loop unrolling) to 
the hand-coded option on the Cray C90 

10000 

is that the strip-mining in the compressed AD approach improves the performance of this 
approach, while the hand-coded approach is still running at scalar speeds. These results 
illustrate the important point that the compressed and hybrid AD approaches can run faster 
than the hand-coded approach if the user does not provide a carefully coded gradient. 

5. Conclusions 

We have developed an environment for the solution of large-scale optimization problems, 
ELSO, in which the user is required to provide only code for the evaluation of a partially 
separable function. ELSO exploits the partial separability structure of the function to 
compute the gradient efficiently using automatic differentiation. 

Our test results show that the hybrid option in ELSO provides performance that is often 
not more than two times slower than a well-coded hand-derived gradient on superscalar 
architectures, while having the significant advantage of not requiring a hand-coded gradient 
or the sparsity pattern of the partially separable function. 
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1. Introduction 

In this paper, we consider the nonlinear programming problem 

minimize f (z) 
X E R T L  

subject to the general constraints 

ci(x) 2 0 ,  i = l ,  ..., m, 

and the specific simple bounds 

1 L X g L .  (3) 

We assume that the region B = {x E !Rn I 1 5 x 5 U} is non-empty and may be infinite. 
We do not rule out the possibility that further simple bounds on the variables are included 
amongst the general constraints (2) if that is deemed appropriate. Indeed, it is conceivable 
that all simple bounds should be handled this way. Furthermore, we assume that 

AS1. f(x) and the ci(x) are twice continuously differentiable for all x in B. 
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Our exposition will be conveniently simplified by taking the lower bounds as identically 

equal to zero and the upper bound as infinity for a subset of n/ !Ef { 1 , 2 ,  . . . n} in (3) 
and by assuming that the remaining variables are either not subjected to simple bounds 
or their simple bounds are treated as general constraints. Thus, in most of what follows, 
B = {z E Rn I z j  2 0 for all j E Nb}, where n / b  n/ is the index set of bounded 
variables. The modification required to handle more general bounds is indicated at the end 
of the paper. 

The approach we intend to take is that of Conn et al. [9] and is based upon incorpo- 
rating the equality constraints via a Lagrangian barrier function whilst handling upper and 
lower bounds directly. The sequential, approximate minimization of the Lagrangian barrier 
function is performed in a trust region framework such as that proposed by Conn et al. [5] .  

Our aim in this paper is to consider how these two different algorithms mesh together. 
In particular, we aim to show that ultimately very little work is performed in the itera- 
tive sequential minimization algorithm for every iteration of the outer Lagrangian barrier 
algorithm. This is contrary to most analyses of sequential penalty and barrier function 
methods in which the effort required to solve the inner iteration subproblems is effectively 
disregarded, the analysis concentrating on the convergence of the outer iteration (see for 
instance the books by Fiacco and McCormick[l2] and Bertsekas [l] .  Exceptions to this 
are the sequential penalty function method analyzed by Gould [14], and the sequential 
augmented Lagrangian algorithm considered by Conn et al. [S]). 

This work was primarily motivated by observations that the authors made when testing 
a prototype of their large-scale nonlinear programming package LANCELOT, release B 
(see [7] for a description of release A), which includes an implementation of the algorithms 
discussed in this paper. It was often apparent that only a single iteration of the inner itera- 
tion subroutine SBM IN was ultimately required for every outer iteration of our sequential 
Lagrangian barrier program. While the conditions required in this paper to turn this ob- 
servation to a proven result are relatively strong (and we feel probably about as weak as is 
possible), the package frequently exhibits the same behaviour on problems which violate 
our assumptions. 

We define the concepts and notation that we shall need in section 2. Our algorithm is 
fully described in section 3 and analyzed in sections 4 and 5. 

2. Notation 

Let g(z) denotes the gradient V,J(z) of f(z). Similarly, let A(z )  denote the Jacobian of 
c( z), where 

Thus 

We define the Lagrangian and Lagrangian barrier functions as 
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and 

m 

respectively, where the components X i  of the vector X are positive and are known as Lagrange 
multiplier estimates and where the elements si of the vector s are positive and are known as 
shifts. We note that l ( z ,  A) is the Lagrangian with respect to the general constraints only. 

Let ge(x, A) and He(z ,  A) respectively denote the gradient, V,l(s, A), and Hessian, 
VJzz l ( z ,  A), of the Lagrangian. We define the vector x by 

for all 1 5 i 5 m. We note that V,e(z, x) = V,\k(z, A, s) .  
We denote the non-negativity restrictions by 

x E B = {z E R" 1 xj 2 O for all j E Nb} (9) 

where n / b  C n/. We will make much use of the projection operator defined componentwise 
by 

l j  if ~j 5 l j  

This operator projects the point x onto the region defined by the simple bounds (3). Let 

P ( z ,  U ,  1 ,  U )  = z - P [ z  - U, 1 ,  U ] .  (11) 

Furthermore, define P[z]  = P[z ,  r, 003 and P ( z ,  v) = P ( z ,  U ,  r, m), where r j  = 0 for 
j E Nb and -m otherwise. 

Let dk)  E I3 and A('") be given values of x and A. If h(z ,  A,.  . .) is any function of z, 
A, . . ., we shall write h(') as a shorthand for h(z(')), A('), . . .). 

For any x(') we have two possibilities for each component zib), j  = 1,. . . , n, namely 

(i) j E .R/b and o 5 zjk) 5 (v,Q('))~ or 

(ii) j E ~f or ( ~ , * ( k ) ) j  < zjk), 

where Nf def N \ Nb is the index set offree variables. We shall call all zjk) that satisfy 

(i) dominated variables while the remaining zy) arejoating variables. It is important to 

notice that, as z(') E B, 
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( P ( d k ) ,  V , @ ( k ) ) ) j  = x ik )  whenever x i k )  is dominated, (12) 

while 

If x* is the limit point of the (sub-)sequence { d k ) } k E ~ ,  we partition N into four index 
sets related to the two possibilities (i) and (ii) above and the corresponding x*. We define 

ir>1 def { j  E Nb 1 x i k )  is dominated V k  E K: sufficiently large}, 

3; def Nf  U { j  E NJ, 1 x ik )  is floating V k  E K: sufficiently large, x; > 0}, 

F2 kf { j  E Nb 1 x ik )  is floating V k  E K: sufficiently large, x; = 0}, 
(14) 

F~ ef N\vl U F ~  u3i. 
We also define 

Z(z) kf ( 2  I Cz(Z) > O}, 

d(z) def {i 1 ci(z) 5 0}, 

the sets of inactive (strictly satisfied) and active (violated or just satisfied) constraints at the 
point x. We develop our algorithm so that the set A* i A(z*) at any limit point of our 
generated sequence is precisely the set of constraints for which ci(z*) = 0. We also write 

We will use the notation that if 31 and 3 2  are any subsets of N and H is an n by n matrix, 
H[gl,g21 is the matrix formed by taking the rows and columns of H indexed by 31 and 3 2  

respectively. Likewise, if A is an m by n matrix, A[glj is the matrix formed by taking the 
columns of A indexed by 31. 

We denote the (appropriately dimensioned) identity matrix by I ;  its j-th column is e j  . A 
vector of ones is denoted by e. 

We will use a variety of vector and subordinate matrix norms. We shall only consider 
norms 1 1  ) I z  which are consistent with the two-norm, that is, norms which satisfy the 
inequalities 

z* EZ(Z*). 

for all vectors ‘U and some constant a0 2 1, independent of z .  It then follows that, for any 
pair of two-norm-consistent norms I( IJy and 1 )  - ] I z ,  

If T is any m-vector whose i-th component is ~ i ,  we use the shorthand T z [ri]Z1. 
Furthermore, if T is as above and 3 is a subset of {1,2, . - - , m}, [ri]iE3 is just the vector 
whose components are the ri, i E 3. Consequently, I I [ T ~ ] % ~  1 1  z Ilrll. 

Following Conn et al. [9], we now describe an algorithm for solving (l) ,  (2) and (9). 
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3. Statement of the algorithm 

In order to solve the problem (l), (2) and (9), we consider the algorithmic model given in 
Figure 1. 

We shall call the vector P(x(~) ,  V,!P(k)) the projected gradient of the Lagrangian barrier 
function or the projected gradient for short. The norms 1 1  . and 1 1  1 1  are normally chosen 
to be either two or infinity norms. 

Our decreasing sequence of ~ ( ~ 1 ’ s  is given by p ( k )  = po ( ~ ) ~ j ,  but any monotonic 
decreasing sequence of ~ ( ~ 1 ’ s  converging to zero if Step 4 is executed an infinite number 
of times will suffice. It is also irrelevant, in theory, as to how we find a suitable point 
x(‘) satisfying (21). However, from a practical perspective, a suitable point is found by an 
iterative procedure. In our algorithm, it is normal to try to start this inner iteration from, or 
close to, the solution to the last one. Indeed, from the point of view of the results we are 
about to establish, this is crucial. Such a starting point is desirable as function and derivative 
information from the conclusion of one inner iteration may be passed as input to the next. 
However, we need to bear in mind that the requirement of the second part of (21) may 
preclude us from picking such a starting point as it is possible that c ~ ( x ( ~ - ’ ) )  + sik) 5 0 
for some i. This issue is considered in depth in Conn et al. [9], where it is shown that 
c ~ ( x ( ~ ) )  + s!”+l) > 0 for all 1 5 i 5 m when Step 3 of the Outer-iteration Algorithm 
is executed, while techniques for finding a suitable alternative starting point when Step 4 
occurs are given. 

The main purpose of this paper is to show that asymptotically we take one inner iteration 
per outer iteration. More specifically, under certain assumptions, we first show that (23) is 
eventually satisfied at each outer iteration. We then show that, under additional assumptions, 
it is possible to satisfy the convergence test (21) after a single iteration of the algorithm 
given in Conn et al. [5]. 

The specific inner iteration algorithm we shall consider is given in Figure 2. 
There are a number of possible ways of choosing yr”) and yikl’) in Step 4. The simplest 

is merely to pick yr”) = yo and yik”)  = 7 3 ;  other alternatives are discussed in Conn et 
al. [7] .  

It remains to give a description of the starting point, initial trust region radius and approx- 
imation to the Hessian of the Lagrangian, and of the calculation that is performed in Step 
2 of the Inner-iteration Algorithm. 

Let 0 < 0 < 1. We let 

and choose 

Thus variables which are significantly dominated at the end of the (k - 1)-st iteration are 
set to their bounds while the remainder are left unaltered. This choice is made since, under 



[Outer-iteration Algorithm] 

Step 0 : [Initialization] The strictly positive constants qo ,  W O ,  a,, p,, a7), &, a x  5 1, T < 1, 

p < 1,y2 < 1, w* << 1 and q* << 1 for which 

are specified. A positive forcing parameter, p(O),  is given. Set 

An initial estimate of the solution, xest E B, and vector of positive Lagrange multiplier estimates, 

A(o) ,  for which ci (zest) + p(O) > 0 are specified. Set k = 0. 

Step 1 : [Inner iteration] Compute shifts 

Sjk) = p(" (A jk ) ) "A ,  

for i = 1, . . . , m. Find dlC) E B such that 

[ I P ( Z ( ~ ) ,  VzQ(k)) l /g  5 w ( ~ )  and c i ( z ( l C ) )  + sjk) > 0, (i = 1 , .  . . , m). (21) 

Step 2 : [Test for convergence] If 

execute Step 3. Otherwise, execute Step 4. 

Step 3 : [Update Lagrange multiplier estimates] Set 

Figure I. Outer-iteration algorithm 



[Inner-iteration Algorithm] 

Step 0 : [Initialization] The positive constants p < 77 < 1 and yo 5 72 < 1 5 7 3  are given. The 

starting point, Z ( ~ > O ) ,  a nonnegative convergence tolerance, w ( ~ ) ,  an initial trust region radius, 

asymmetric approximation, B(kio),  to the Hessian oftheLagrangian, H ~ ( Z ( ~ ) O ) ,  A(k)), 
and a two-norm-consistent norm 1 1  . [ I 9  are specified. Compute \ k ( z ( ” O ) ,  A(”), s(lC)) and its 

gradient. Set the inner iteration counter j = 0. 

Step 1 : [Test for convergence] If 

set z(IC) = z ( ~ v ~ )  and stop. 

Step 2 : [Significantly reduce a model of the Lagrangian barrier function] Construct a quadratic 

model, 

Compute a step p ( k > j )  which significantly reduces the value of m ( k 7 j ) ( x ( k 3 j )  + p ) .  

Step 3 : [Compute a measure of the effectiveness of the step] Compute 

Q ( X ( ~ ? ~ )  + p ( k y j ) ,  A(’), s(’)) and the ratio 

and 

Step 5 : [Updating] If necessary, compute the gradient of Q ( X ( ~ ? ~ + ’ ) ,  A(”, ~ ( ~ 1 )  and a further 

approximation to the Hessian of the Lagrangian B ( k i j + l ) .  Increment the inner iteration counter 

j by one and go to Step 1.  

End of Algorithm 

Figure 2. Inner-iteration algorithm 
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a suitable non-degeneracy assumption (AS7 in section 4), the set of dominated variables is 
asymptotically the same as the set of variables which lie on their bounds (see [9], Theorem 
5.4). Furthermore, under a second non-degeneracy assumption (AS5 in section 4), the 
assignment x('?') = 2('-') is guaranteed for k sufficiently large. Our choice of x('yo) then 
encourages subsequent iterates to encounter their asymptotic state as soon as possible. 

We also pick A('?') so that 

for some positive constants K. and < < 1 (typical values might be K = 1 and < = 0.9). This 
value is chosen so that the trust region does not interfere with the asymptotic convergence 
of the algorithm, while providing a reasonable starting value in the earlier stages of the 
method. 

Finally B('~') is taken to be any sufficiently good symmetric approximation to the Hessian 
of the Lagrangian function at x ( ~ ) .  We qualify what we mean by "sufficiently good" in the 
next section but suffice it to say that exact second derivatives satisfy this property and are 
often to be recommended. 

The calculation in Step 2 is performed in two stages. 

1 .  Firstly, the so-called generalized Cauchy point, xC('7j) x(',j) + pc('7j), is deter- 
mined. This is merely an approximation to the first local minimizer of the quadratic 
model, rn('7j) (x('>j) + p ) ,  along the Cauchy arp. The Cauchy arc is the path x(',j) + p ,  
where 

as the parameter t increases from 0, which finishes when the path first intersects the 
boundary of the trust region, 

for some two-norm-consistent norm 1 1  . [ I t .  Thus the Cauchy arc is simply the path 
which starts in the steepest descent direction for the model but which is subsequently 
"bent" to follow the boundary of the "box" region defined by the feasible region (9) (or, 
in general, (3)) and which stops on the boundary of the trust region (36). The two or 
infinity norm is normally chosen, the latter having some advantages as the trust region is 
then aligned with the feasible region (9). (Indeed, it is possible to extend the Cauchy arc 
along the boundary of the trust region when the infinity norm is used. Further reduction 
of the quadratic model along this extended Cauchy arc may prove beneficial.) 

The method proposed by Conn et al. [5] calculates the exact generalized Cauchy point 
by marching along the Cauchy arc until either the trust region boundary is encountered or 
the model starts to increase. An alternative method by Mor6 [ 151 finds an approximation 
p c ( ' ~ j )  = p( ' , j ) ( tc( ' i j ) )  which is required to lie within the trust-region and to satisfy 
the Goldstein-type conditions 
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and 

where t L ( ' ! j )  > 0 is any value for which 

or 

and the positive constants p1, p2, u1, u2 and u3 satisfy the restrictions p1 < p2 < 1, 
u2 < 1 and u3 < 1. Condition (37) ensures that a sufficient reduction in the model 
takes place at each iteration while condition (38) is needed to guarantee that every step 
taken is non-negligible. Mor6 shows that it is always possible to pick such a value of 
t c ( ' ? j )  using a backtracking linesearch, starting on or near to the trust region boundary. 
Similar methods have been proposed by Calamai and Mor6 [4], Burke and Mor6 [2], 
Toint [ 161 and Burke et al. [3]. 

2. Secondly, we pick p('3j) so that x ( k , j )  + p(kyj)  lies within (9), Ijp(kjj)IIt 5 ,&A(k3j) 

and 

for some positive p2 2 1 and ,03 5 1. In fact, we typically choose p2 = p 3  = 1, in 
which case we are merely requiring that the computed step gives a value of the model 
which is no larger than the value at the generalized Cauchy point. 

In order to accelerate the convergence of the method, it is normal to try to bias the 
computed step towards the Newton direction. 

The convergence analysis given by Conn et al. [5] for the Outer-iteration Algorithm 
indicates that it is desirable to construct improvements beyond the Cauchy point only in the 
subspace of variables which are free from their bounds at the Cauchy point. In particular, 
with such a restriction and with a suitable non-degeneracy assumption, it is then shown that 
the set of variables which are free from their bounds at the solution is determined after a 
finite number of iterations. This has the advantage of allowing one to analyze the asymptotic 
convergence rate of the method purely as if it were an unconstrained calculation, merely by 
focusing on the set of free variables. 
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Let F be a subset of nf and let V = n/ \ F. Furthermore, let 

denote the composite approximation to the Hessian of the Lagrangian barrier function. 
The specific Model-reduction Algorithm we shall consider is summarized in Figure 3. 
In Step 2 of this method, the value of p [ F ]  would normally be computed as the aggregate 

step after a number of Conjugate Gradient (CG) iterations, where CG is applied to minimize 
the model in the subspace defined by the free variables. The CG process will end when 
either a new bound is encountered or the convergence test (45) is satisfied. The Model- 
reduction Algorithm is itself finite as the number of free variables at each pass of Step 2 is 
strictly monotonically decreasing. See the paper by Conn et al. [6] for further details. 

4. Convergence analysis 

We wish to analyze the asymptotic behaviour of the Outer-iteration Algorithm, that is in 
the case where U ,  = q* = 0. We require the following additional assumptions. 

AS2. The matrix A(~*)[A*,F~I is of full rank at any limit point x* of the sequence {z‘’)} 
generated by the Outer-iteration Algorithm with the set Fl defined by (14). 

Under these assumptions we have the following result. 
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[Model-reduction Algorithm] 

Step 0 : [Initialization] Select positive constants U < 1, < < 1, 02 2 1 and ,& I 1. 

Step 1 : [Calculate the generalized Cauchy point] Calculate an approximation to the 
generalized Cauchy point x C ( k , J )  = z ( ~ ) ) )  + p c ( k 7 J )  using one of the previously 
mentioned techniques. Compute the set of variables, FC(lciJ) ,  which are free from 
their bounds at xc(lC3j). Set x = xC(lcJ) ,  s = p C ( k J )  and 3 = FC(lcJ) .  

Step 2 : [Further improve the model] Let C(,&) = S n 7(02), where 

and 

If p [ q  lies on the boundary of I ( p 2 ) ,  set = p and stop. (If 1 1  . / I t  is the infinity 
norm, it is possible to transfer components of 3 which lie on the trust-region boundary 
to D and to continue.) Otherwise, recompute plF] so that (41) is satisfied and either 
p[3-1 lies strictly interior to C(p2) with 

or plF-) lies on the boundary of C(,&). Reset x p ]  to x[q + p p ) .  

Step 3 : [Test for convergence] If pi71 lies strictly interior to C(p2) and (45) is satisfied or 
if i t  is decided that sufficient passes have been made, set p(”j)  = p and stop. Otherwise 
remove all of the indices in 3 for which ~(7 .1~  lies on the boundary of S and perform 
another pass by returning to Step 2. 

End of Algorithm 

Figure 3. Model-reduction Algorithm 
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THEOREM 1 ([9], Theorem 4.4) Assume that AS1 and AS2 hold, that x* is a limit point 
of the sequence { x(~) } generated by the Outer-iteration Algorithm and that 

for i = 1, - - - , m. Then x* is a Kuhn-Tucker ('rst order stationary) point for ( I ) ,  (2 )  
and (9)  and the corresponding subsequences of { i(k) } and { V, \I, ( I c )  } converge to a set of 
Lagrange multipliers, A*, and the gradient of the Lagrangian, ge(x* , A*), for the problem, 
respectively. 

Now consider the following further assumptions. 

AS3. The second derivatives of the functions f(x) and the ci(x) are Lipschitz continuous 
at all points within an open set containing E?. 

AS4. Suppose that (x*, A*)  is a Kuhn-Tucker point for the problein (l), (2) and (9), and 

A; def {i I ci(x*) = 0 and A: > 0) 

A; - {i I ci(x*) = O  and A: = 0 }  
def 

and 

Then we assume that the matrix 

(47) 

is non-singular for all sets A and 3, where A is any set made up from the union of AT 
and any subset of A; and J is any set made up from the union of J1 and any subset of 
3 2 .  

AS5. (Strict complementary slackness condition 1 )  Suppose that (x*, A*) is a Kuhn-Tucker 
point for problem ( l ) ,  (2) and (9). Then 

A; = {i I ci(x*) = 0 and A: = 0) = 8. (50) 

AS6. The Outer-iteration Algorithm has a single limit point, x* 

Under these additional assumptions, we are able to derive the following result. 
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THEOREM 2 ([9], Theorems 5.3 and 5.5) Assume that ASI-AS6 hold. Then there is a 
constant p m i n  > 0 such that the penalty parameter p ( k )  generated by the Outer-iteration 
Algorithm satis$es p ( k )  = p m i n  for all k suficiently large. Furthermore, and x[i)*l 
satisfy the bounds 

for the two-norm-consistent norm I 1. I Ig and some positive constants a, and ax, while each 

[xik' I, i E 2*, converges to zero at a Q-superlinear rate. 

We shall now investigate the behaviour of the Outer-iteration Algorithm once the penalty 
parameter has converged to its asymptotic value, pmin .  There is no loss of generality in 
assuming that we restart the algorithm from the point which is reached when the penalty 
parameter is reduced for the last time. We shall call this iteration k = 0 and will start with 
p(o )  = pmin .  By construction, (23) is satisfied for all k and the updates (24) are always 
performed. Moreover, 

We require the following extra assumptions. 

AS7. (Strict complementary slackness condition 2) Suppose that (x*, A*) is a Kuhn-Tucker 
point for problem (l) ,  (2) and (9). Then 

z2 = { j  E Nb 1 (ge(z*,A*))j = 0 and z5 = 0) = 8. (53) 

ASS. If Jl is defined by (48), the approximations B('y0) satisfy 

for some positive constants v and c and all k sufficiently large. 

AS9. Suppose that (z*, A*)  is a Kuhn-Tucker point for the problem ( l ) ,  (2) and (9), and 
that J1 is defined by (48). Then we assume that the second derivative approximations 
B(k70) have a single limit, B* and that the perturbed Kuhn-Tucker matrix 

is non-singular and has precisely m negative eigenvalues, where D* is the limiting 
diagonal matrix with entries 
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Assumptions AS5 and AS7 are often known as strict complementary slackness conditions. 
We observe that AS8 is closely related to the necessary and sufficient conditions for super- 
linear convergence of the inner iterates given by Dennis and More [IO]. We also observe 
that AS9 is entirely equivalent to requiring that the matrix 

is positive definite (see, for instance, Gould [ 131). The uniqueness of the limit point in AS9 
can also be relaxed by requiring that (57) has its smallest eigenvalue uniformly bounded from 
below by some positive quantity for all limit points B* of the sequence B('1'). Moreover it 
is easy to show that that AS4, AS5 and AS7 guarantee AS9 provided that pmjn is sufficiently 
small and sufficient second-order optimality conditions (see Fiacco and McCormick [ 121, 
Theorem 4) hold at x* (see Wright [ 171, Theorem 8, for the essence of a proof of this in 
our case). Although we shall merely assume that AS9 holds in this paper, it is of course 
possible to try to encourage this eventuality. We might, for instance, insist that Step 4 of 
the Outer-iteration Algorithm is executed rather than Step 3 so long as the matrix H(',') is 
not positive definite. This is particularly relevant if exact second derivatives are used. 

We now show that if we perform the step calculation for the Inner-iteration Algorithm 
using the Model-reduction Algorithm, a single iteration of the Inner-iteration Algorithm 
suffices to complete an iteration of the Outer-iteration Algorithm when k is sufficiently 
large. Moreover, the solution of one inner-iteration subproblem, rc('- ') and the shifted 
starting point for the next inner iteration (33) are asymptotically identical. We do this by 
showing that, after a finite number of iterations, 

(i) moving to the new starting point does not significantly alter the norms of the projected 
gradient or constraints. Furthermore, the status of each variable (floating or dominated) 
is unchanged by the move; 

(ii) the generalized Cauchy point rcC('~') occurs before the first "breakpoint" along the 
Cauchy arc - the breakpoints are the values o f t  > 0 at which the Cauchy arc changes 
direction as problem or trust region bounds are encountered. Thus the set of variables 
which are free at the start of the Cauchy arc dk,') and those which are free at the 
generalized Cauchy point are identical; 

(iii) any step which satisfies (45) also satisfies pp1] lies strictly interior to C(P2) .  Thus a 
single pass of Step 2 of the Model-reduction Algorithm is required; 

(iv) the step p(',') is accepted in Step 4 of the Inner-iteration Algorithm; 

(v) the new point ~ ( ~ 9 ' )  satisfies the convergence test (26); and 

We have the following theorem. 

THEOREM 3 Assume that assumptions ASI-AS9 hold and that the convergence tolerances 
p, and 6, satisfy the extra condition 
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Then for all k suficiently large, a single inner iteration of the Inner-iteration Algorithm, with 
the step computed from the Model-reduction Algorithm, sufices to complete an iteration 
of the Outer-iteration Algorithm. Moreover; the solution to one inner iteration subproblem 
provides the starting point for the next without further adjustment, for all k suficiently 
large. 

Proof. In order to make the proof as readable as possible, we will make frequent use of 
the following shorthand: the iterates will be abbreviated as 

the shifts as 

and the Lagrange multiplier estimates as 

and 

X+ = X(@, A+, s+).  (62) 

Other quantities which occur at inner iterations ( k  + 1 , O )  and ( I c  + 1, l )  will be given 
suffices @ and + respectively. Thus H e  H(k+130) and H +  H('+lsl). 

Recall, we have used Theorem 2 to relabel the sequence of iterates so that 

and 

for all k 2 0. Let be any closed, bounded set containing the iterates dlC) and d k + l > O ) .  

We shall follow the outline given above. 
(i) Status of the starting point. The strict complementary slackness assumption AS7 
ensures that for all k sufficiently large, each variable belongs exclusively to one of the sets 
F1 and D1 (see [9], Theorem 5.4); moreover, 

ge(x*, A*), = 0 for all j E F1 and x: > 0 for all j E 3; nn/b (65) 

and 

x* 3 = 0 and ge(z*, A* ) j  > 0 for all i E D1. 
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As one of xj ( k )  and V,9y) (E V,t!(x, A ) j )  converges to zero while its partner converges 

to a strictly positive limit for each j E & (assumption AS7), we may define nontrivial 
regions which separate the two sequences for all k sufficiently large. Let 

*f 8 
min max[x;, ge(x*, A*)j] > 0, 

1 + 8 j € N b  
Ex - 

where 8 is as in (32). Then there is an iteration ko such that for variables in Fl, 

while for those in D1, 

for all k 2 ko. Hence, for those variables in D1, (67) and (69) give that 

Thus, by definition (32), 2ik) = 0 for each j E D1 when k 2 ko. Similarly, when 

j E 3; n Nb and k 2 ko, x i k )  > 8 ( V x 9 ( k ) ) j  and hence, using (32), 2ik) = xj for all 
j E F1. Thus 2(') converges to x*. 

The other strict complementary slackness assumption, AS5, ensures that each constraint 
belongs exclusively to one of the sets Z* and A*, for all k sufficiently large. Moreover, 

ci(x*) = 0 and A I  > 0 for all i E A* (71) 

and 

ci(x*) > 0 and A: = 0 forall i E I*, (72) 

and thus one of c i ( d k ) )  and A:"') converges to zero while its partner converges to a strictly 
positive limit for each i. 

Using the shorthand introduced in (59)-(60), we have that ci(x) + s' > ci(x) > 0 for 
each i E Z* and all Ic sufficiently large. Thus, as 2 converges to x* and s+ converges to 
zero, 2ci(x*) > ci(2)  + s+ > +ci(x*) > 0 for all i E Z* and k sufficiently large. On 
the other hand, if i E A*, ci(z) + s' > 0 for all k (see [9], Lemma 3.1). In this case, as 
s+ converges to s: pmin(Af)"' > 0 and ci(x) converges to zero, the convergence of 2 
to x* and A' to A* implies that 2s; > ci(2) + s+ > is: > 0 for all k sufficiently large. 
Hence, from (33), x@ = 2 and thus there is an integer k l  2 ko for which 

xj  for all j E Fl 
0 for all j E D1, (73) 

for all Ic 2 k l .  
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We next let T be any real number and consider points on the line 

(74) 
def z (r )  = z + r (z@ - z). 

We firstly show that the diagonal matrix D ( z ( r ) )  is bounded for all 0 I T 5 1, where D is 
given by (28). As z and z@ both converge to z*, the definition (28) implies that D ( z ( r ) )  
converges to the matrix Dl,i, satisfying (56), as k increases. Thus, we have the bound 

where a1 def 211[(A:)1-ax]zll12, for all k sufficiently large. It also follows from the 
convergence of z and z@ to x* and that of si to s: that there is an integer k2 2 k l  for which 

and 

for all k sufficiently large and 1 2 k2. 

combining ( 12), ( 1  6) and (73), we have that 
We now consider the starting point z@ for the next inner iteration in detail. Firstly, 

for any two-norm-consistent norm 11. ( 1  z .  

We may bound the change in c(z) ,  due to the shifted starting point, using the integral 
mean value theorem (see, eg, [ l  I ] ,  page 74), the boundedness of A(z)  (assumption AS1 
and the definition of 0) and inequalities (1 7) and (78) to obtain 

where Z ( T )  is given by (74) and a2 is an upper bound on llA(z)llg within G. 
We next bound the differences in gradients of the Lagrangian barrier function at z and 

z@. Using the integral mean value theorem, the convergence of )I A+ to A* (Theorem l),  
the boundedness of the Hessian of the Lagrangian (with bounded multiplier estimates) and 
the constraint Jacobian within (assumption AS 1 )  and the inequalities (1 7), (75) and (78), 
we obtain 
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where a3 is an upper bound on the two-norm of the Hessian of the Lagrangian function 
(with bounded multiplier estimates) within a. We now use the identity 

to derive the relationship 

v, qx@, A+, s+) - V,Q(x@, A, s )  

But, considering i E A*, picking Ic sufficiently large so that IXT l  5 2lXal and using the 
integral mean value theorem, the relationship c(z*)[A*I = 0, the bounds (77), (78), (79) 
and the inequalities (1 8) and (5 l), we obtain the bounds 

and 

and hence 

where U A  = 4rnaou~(2aou~ + a,) maxiEd3 (At) ' -*^,  for any two-norm-consistent norm 
( 1  . ( I z .  Furthermore, the superlinear convergence of Xi to zero, i E Z*, (76) and the bound- 
edness of the remaining terms implies a bound 
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for some constant a l  (In fact, this term can be made arbitrarily smaller than (85) by picking 
k sufficiently large). Thus, combining (82), (85) and (86), we obtain the componentwise 
bound 

for all j E 

and (73) show that 

where we have abbreviated V,\k(x@, A+, s+) as V,Q@. 
Now consider the variables whose indices j lie in 3; for k 2 k2. Firstly, (65), (67), (68) 

if j E J&. Secondly, combining (80) and (87), and using (13), (17), (18) and (63), we 
derive the inequality 

def 
where a4 = U A  + a 1  + aowo(1 + U O ( U ~  + ala;)). As k increases, the right-hand-side of 
the inequality (89) converges to zero. Thus, from (68) and for k sufficiently large, x: is 
floating for each j E F1, and (1 3) and (89) imply that 

Conversely, consider the variables which lie in D1 for k 2 k2. Then, combining (80) and 
(87), and using (17) and (18) we obtain the inequality 
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def 
where a5 = ad + a~ + U&JO(U, + alai). Thus, for sufficiently large k the right-hand-side 
of (91) can be made arbitrarily small. Combining this result with (69) and the identity 
x: = 0, we see that x: is dominated for each j E D1, and (1 2) and (9 1) imply that 

Therefore, using (13), (17), (90) and (92), we have 

def 
for all k sufficiently large, where a6 = aoaeIle[Fl] 112. 

We have, from (8), that 
We also need to be able to bound the Lagrange multiplier estimates x+ z x(x@, A+, s+). 

But then, recalling (84), when i E A*, and the superlinear convergence of A t  to zero, when 
i E 2*, together with (18), we obtain a bound 

for some constant a ~ + .  Thus, combining (5 1) and (95), we see that r[+ converges to A* ,  
i E A*, and, because A: converges superlinearly to zero when i E 2*, 

for some constant a ~ e .  
(ii) The generalized Cauchy point. We consider the Cauchy arc emanating from x@. We 
have shown that the variables in D1 are on their bounds; the relationships (66), (68), (69) 
and (91) imply that Vz!P: > 0 for all sufficiently large k and hence that p @ ( t ) j  = 0 for 
all t > 0 and j E 271. Thus the variables in D1 remain fixed on the bounds throughout the 
first inner iteration and 

for all k sufficiently large. 
The remaining variables, those indexed by F'1, are free from their bounds. Because of 

Assumption 7 the set 31 in assumption AS9 is identical to F1 and thus the matrix (57) 
is positive definite with extreme eigenvalues 0 < r m i n  5 Rmax, say. Using (73) and 
inequalities (12), (13) and the first part of (21), we deduce that x@ converges to x*. Thus 
the matrix 

is also positive definite with extreme eigenvalues satisfying 
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say, for all sufficiently large k. Hence the model (27) is a strictly convex function in the 
subspace of free variables during the first inner iteration. 

We now show that the set 

lies strictly interior to the set C(1) (defined in the Model-reduction Algorithm) for all k 
sufficiently large. The diameter d of C, the maximum distance between two members of 
the set (measured in the two norm), can be no larger than twice the distance from the center 
of the ellipsoid defined by C to the point on 2 (the boundary of C) furthest from the center. 
The center of C is the Newton point, 

def 
Let plFll E E and pFl1 = 0 and define w = p - p*. Then, combining (27), (98), (100) 
and ( Ol), we have t at 

Hence, using the extremal properties of the Rayleigh quotient and (102), we have 

for sufficiently large k. 
The inequality (88) shows that xy, j E .?i n J& is separated from its bound for all 

k sufficiently large while (104) shows that all steps within C become arbitrarily small. 
Thus the problem bounds are excluded from L. Moreover (16), (34), (93), (97) and (104) 
combine to give 
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for all steps within, or on the boundary of, C. Inequality (93) then combines with (105) to 
show that any such step is shorter than the distance to the trust region boundary for all k 
sufficiently large. 

Thus C lies strictly interior to C(1) C C(p2)  for all k sufficiently large. But, as all iterates 
generated by the Model-reduction Algorithm satisfy (41) and thus lie in C, it follows that 
both the generalized Cauchy point and any subsequent improvements are not restricted by 
the boundaries of C or C(p2). 

It remains to consider the Cauchy step in more detail. The Cauchy arc starts in the steepest 
descent direction for the variables in F1. The minimizer of the model in this direction occurs 
when 

and thus, from the above discussion, gives the generalized Cauchy point proposed by Conn 
et al. [5] .  We use the definition of t*, (16), (99) and the extremal property of the Rayleigh 
quotient to obtain 

for this variant of the generalized Cauchy point. Alternatively, if More's (1988) variant is 
used, the requirement (37) and the definition of the Cauchy arc imply that 

(108) 
m@(z@) - m@(z@ + p C @ )  2 p l t ~ @ ~ l v , ~ ~ l l ~ ~ 2 .  2 

If the first alternative of (38) holds, (108) implies that 

Otherwise, we may use the same arguments as above to show that it is impossible for tL@ 
to satisfy (40) when k is sufficiently large. Therefore, tL@ must satisfy (39). Combining 
(27), (39), (98) and the definition of the Cauchy arc, we have that 

Hence, combining (99) and (1 10) with the extremal properties of the Rayleigh quotient, 
we have that tL@ 2 (1 - p2)/7rma,. Thus, when the second alternative of (38) holds, this 
result and (108) give that 

(1 11) 
m@(z@> - m@(z@ + p C @ )  2 [PP2(1  - p 2 ) / ~ m a x 1 1 1 ~ x Q ~ l ]  112. 2 

Therefore, (17), (109) and (1 1 1) give the inequality 



A SY h4 P T 0 T I C C 0 M P L EX ITY IN IN E Q U A LITY C 0 N ST R A IN E D 0 P T I h I I Z AT I 0 N 63 

We shall make use of these results in (iv) below. 
(iii) Improvements beyond the generalized Cauchy point. We have that x;".] = 0, and, as 

a consequence of (93), IIP(x@, VzQ@)ll$ 5 U for all k sufficiently large. Hence, because 
we have shown that any p in 13 lies strictly interior to C,  a single pass of Step 2 of the Model- 
reduction Algorithm is required. We must pick p to satisfy (45) and (41) by determining 
pplI  so that 

and 

for some P 3  5 1. The set of values which satisfy (1 13) and (1 14) is non-empty as the 
Newton step (101) satisfies both inequalities. 

It remains to consider such a step in slightly more detail. Suppose that pp l l  satisfies 
(113). Let 

Then combining (16), (99), (1 13) and (1 15), we have 

Thus, combining (93) and (1 16), and picking k sufficiently large so that 

we obtain the bound 

(iv) Acceptance of the new point. We have seen that 

and p p l l  satisfies (1 13). As p @  can be made arbitrarily small, it follows (as in (76) and 

(77)) from the convergence of x' to x* and that of s' to s: that there is an integer k3 for 
which 

and 
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for all k sufficiently large and 1 2 kg. Thus 

cz(z@ + p @ )  + s; > 0 

for all 1 5 i 5 m and k sufficiently large. 
We now wish to show that the quantity 

lQ(z@ +p@,A+,s+) -rn@(z@ +p@)l  
Im@(z@) - rn@(z@ + p@)J 

Ip@ - 11 = 

CONN, GOULD AND TOINT 

(122) 

converges to zero, ensuring that the new point will prove acceptable in Step 4 of the Inner- 
iteration Algorithm. 

Consider first the denominator on the right-hand-side of (123). Combining (107), (1 12) 
and (1 14), we have 

( 124) 

where a7 = 03 r n i n ( 1 / ( 4 ~ 0 7 r ~ ~ ~ ) ,  p1 min(v1, v2(1 - pZ)/7rm,,)/ao). Turning to the 
numerator on the right-hand-side of (123), we use the integral mean value theorem to 
obtain 

m@(z@) - m@(z@ + P @ )  2 a711VzQ(z@, A+, S+)[F1] [I;, 

Q(z@ + p @ ,  A+, s+) 

= Q(z@, A+, s+) + Pg:]wpl] 
1 +3 Jo Pp:]VzzQ(z@(% A+, S+)[Fl,F1]Pplp 

where ~ @ ( t )  = x@ + tp@ and we have abbreviated VzzQ(z*, A+, s+) as VzzQ@. 
Considering the last two terms in (125) in turn, we have the bounds 

using (16), (42), the definition of the Hessian of the Lagrangian barrier function and AS8, 
and 
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using (16), the convergence (and hence boundedness) of the Lagrange multiplier estimates 
and the Lipschitz continuity of the second derivatives of the problem functions (assumption 
AS3) with some composite Lipschitz constant a 8 .  Thus, combining (1 16), (123), (124), 
( 125), ( 126) and (1 27), we obtain 

As the right-hand-side of (128) converges to zero as k increases, x+ = x@ + p @  for all k 
sufficiently large. 
(v) Convergence of the inner iteration at the new point. The relationship (122) ensures 
that x+ satisfies the feasibility test of the second part of (21). We now show that z+ satisfies 
the inner-iteration convergence test (26). 

Firstly, in the same vein as (80) , for j E Vl we have that 

where x @ ( t )  = x@ + tp@ and where we use the bound 

for all 0 5 t 5 1. This latter follows from the definition (28) and the convergence of x@ 
and, because of (1 19) and (1 18), the convergence of x@ + p @  to x*. Thus, as the right- 
hand-side of (129) can be made arbitrarily small, by taking k sufficiently large, (69) and 
the identity z+ = x? = 0 for each j E D1, imply that xj' is dominated for each j E D1 
while (12) and (92) imply that 

3 

P(Z+, V,Q(Z+, A+, S + ) ) j  = zj' = 0. (131) 

We now consider the components of P(x+,  VzQ(x+, A+, s + ) ) j  for j E Fl. Using the 
integral mean value theorem, we have 

where x @ ( t )  = x@ + t p @ .  We observe that each of the three terms on the right-hand- 
side of (132) reflects a different aspect of the approximations made. The first corresponds 
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to the approximation to the Newton direction used, the second to the approximation of a 
nonlinear function by a quadratic and the third to the particular approximation to the second 
derivatives used. We now bound each of these terms in turn. 

The first term satisfies the bound (1 13). Hence, combining (93) and (1 13), we obtain 

The same arguments as those used to establish (126) imply that the second term on the 
right-hand-side of (1 32) satisfies the bound 

for some composite Lipschitz constants a9 and ale. We may then combine (17), (5 l), (63), 
(78), (96), (1 18) and (1 34) to obtain the bound 

for all sufficiently large k .  Lastly, the third term on the right-hand-side of (1 32) satisfies 
the bound 

by the same arguments we used to establish inequality (1 27). We may then combine (1 18) 
and (136) so that 

for all k sufficiently large. 

c < 1 and the definitions of av (< 1) and Pv (> 0) to obtain the bound 
We now combine equation ( 132) with the inequalities (1 33), (1 37) and (1 35), the condition 

where 
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and 

Firstly, observe that the right-hand-side of (138) may be made arbitrarily small. Therefore, 
(13), (131) and (138) imply that 

Secondly, define 6 = logpnli,, (a l l /wg).  Now let k l  be any integer for which 

aw+pw-cu-6  

P - Pw 
kl  2 

Then (58 ) ,  (141) and (142) imply that 

for all sufficiently large k 2 k l .  Thus, the iterate x+ satisfies the inner iteration first 
convergence test of (21) for all k sufficiently large and we have dk+') = z(lc+l?l) x+. 
(vi) Redundancy of the shifted starting point. Finally, we observe that all the variables 
xi?), j E D, lie on their bounds for sufficiently large k. Therefore, z('+'t0) = z(') and the 
perturbed starting point is redundant. 

5. The general case 

We now turn briefly to the more general problem (1)-(3). The presence of the more 
general bounds (3) does not significantly alter the conclusions that we are able to draw. The 
algorithms of section 3 are basically unchanged. We now use the region B = {z E X n  I 1 5 
x 5 U }  - and hence Nb = N - and replace P ( x )  w) by P ( z ,  U ,  1, U )  where appropriate. 
The concept of floating and dominated variables stays essentially the same. For each iterate 
in I3 we have three mutually exclusive possibilities, namely, (i) 0 5 xi') - l j  5 (VZ!P('))%, 

(ii) (V,q('))i 5 x:!) - uj  5 0 or (iii) xj!) - uj  < (VZP(k)) i  < xi!) - l j ,  for each 

component xi'). In case (i) we then have that P ( d k ) )  V,*(')) I ,  u)i = zjk) - l j  while 

in case (ii) P ( x ( " ) ,  V,*(')) 1 ,  u)i = xi!) - uj  and in case (iii) P(x(')) ,  V,*(')) 1 ,  u ) ~  = 

(V, Q ( k ) ) i .  The variables that satisfy (i) and (ii) are said to be the dominated variables, the 
ones satisfying ( i )  are dominated above while those satisfying (i i)  are dominated below. 
Consequently, the sets corresponding to (14) are straightforward to define. 271 is now made 
up as the union of two sets 2711, whose variables are dominated above for all k sufficiently 
large, and Dlu, whose variables are dominated below for all k sufficiently large. F'1 contains 
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variables which float for all k sufficiently large and which converge to values interior to 23. 
Similarly F2 is the union of two sets, F21 and .?&, whose variables are floating for all k 
sufficiently large but which converge to their lower and upper bounds respectively. We also 
replace (32) by 

With such definitions, we may reprove the results of section 4, extending AS4, AS7-AS9 
in the obvious way. The only important new ingredient is that Conn et al. [9] indicate that 
the non-degeneracy assumption AS7 ensures that the iterates are asymptotically isolated in 
the three sets Fl,V11 and Vlu. 

6. Conclusions 

We have shown that, under suitable assumptions, a single inner iteration is needed for each 
outer iteration of the Lagrangian barrier algorithm. We anticipate that such an algorithm 
may prove to be an important ingredient of release B of the LANCELOT package. 
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Abstract. Recently, in [I21 a very general class of truncated Newton methods has been proposed for solving 
large scale unconstrained optimization problems. In this work we present the results of an extensive numerical 
experience obtained by different algorithms which belong to the preceding class. This numerical study, besides 
investigating which are the best algorithmic choices of the proposed approach, clarifies some significant points 
which underlies every truncated Newton based algorithm. 

Keywords: Large scale unconstrained optimization, Truncated Newton methods, negative curvature direction, 
curvilinear linesearch. Lanczos method. 

1. Introduction 

This work deals with a new class of algorithms for solving large scale unconstrained prob- 
lems. We consider the minimization problem 

min f ( 5 )  
X E R "  

where f : IR" ---+ R is a real valued function and we assume that the gradient g(z) = 

of(.) and the Hessian matrix H ( z )  = 02f(z)  exist and are continuous. We are interested 
in solving Problem (1) when the dimension n is large. This interest derives from the fact that 
problems with larger and larger number of variables are arising very frequently from real 
world applications. Moreover, besides its own interest, the definition of efficient algorithms 
for solving Problem (1) may be also considered an essential starting point to tackle large 
scale constrained minimization problems. 

As well known, the knowledge of the Hessian matrix enables to significantly exploit more 
information about the problem than those available merely from the gradient. This is clearly 
evidenced by the efficiency of Newton-type methods. For wide classes of unconstrained 
optimization problems the Hessian matrix is available, but, unfortunately, when the dimen- 
sion is large, it can not be stored and the exact computation of the Newton direction can 
be too expensive. For these classes of problems it is appropriate to use a truncated Newton 
approach. In fact, the algorithms which follow this approach use an approximate solution 
of the Newton equation 

* This work was partially supported by Agenzia Spaziale Italiana, Roma, Italy. 
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and require only the storage of matrix vector product of H ( x k )  with a suitable vector. 
Moreover, they present good convergence properties. 

The most popular method used as iterative scheme for computing an approximate Newton- 
type direction is the conjugate gradient algorithm [4, 5, 191. In most of all these truncated 
Newton methods, the inner conjugate gradient iterates are terminated when the desired 
accuracy is obtained or whenever a negative curvature direction (i.e. a vector v such that 
wTHv < 0) is detected. 

Recently, a different strategy has been used by the truncated Newton method implemented 
in the LANCELOT software package [2]. In fact, as usual, the inner iterates are terminated 
whenever a negative curvature direction is detected, but, unlike the other truncated algo- 
rithms, this direction is exploited by performing a significant movement along it. This 
strategy enables this algorithm to take into account the local nonconvexity of the objective 
function and its beneficial effects are evidenced by the numerical behaviour of the algorithm. 

However, the choice of terminating the inner conjugate gradient iterations whenever a 
negative curvature is found can present the following drawbacks: 

0 the accuracy of the solution of (2) could be very poor when the iterates of the conjugate 
gradient method are terminated since a negative curvature has been detected; 

0 the first negative curvature direction detected by the iterative scheme could not to have 
sufficient information on the local nonconvexity contained in the Hessian matrix. 

An attractive iterative method to compute an approximate solution of the Newton equation 
(2), alternative to the conjugate gradient method, is the Lanczos algorithm (see [ 151). In 
fact this algorithm presents the following features [3, 81: 

0 it does not break down when the Hessian matrix is indefinite and hence, whenever 
system (2) is solvable, an accurate Newton-type direction can be computed; 

0 it enables to compute efficiently a good approximation of the smallest eigenvalue (and 
the corresponding eigenvector) of the Hessian matrix and hence a negative curvature 
direction with significant information on the local nonconvexity of the function can be 
obtained. 

In [12], by drawing inspiration from [lO, 13, 141, a new class of the truncated Newton 
methods has been proposed. A common feature of the methods belonging to this class, is 
the use of the Lanczos algorithm for determining both a Newton-type direction S k  and a 
negative curvature direction d k .  This pair of directions is used for defining a curvilinear 
search path 

Then, the new point is computed along this path by means of a very general nonmonotone 
stabilization strategy. 
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Many different algorithms can be derived from the class proposed in [ 121 and all these 
algorithms have, of course, the same theoretical properties. However, from the computa- 
tional point of view, they can have very different behaviours and therefore only an extensive 
numerical experience can clarify which are the best algorithms within the proposed class. 

The numerical results reported in [ 121 have already evidenced which general strategy 
should be adopted in order to define efficient algorithms. In fact, the conclusions drawn 
from those results have indicated that the best strategy is that of defining algorithms which 
are based on the joint use of negative curvature directions and nonmonotone stabiliza- 
tion techniques. Furthermore, the comparison between the results obtained in [ 121 and 
those obtained by different versions of the truncated Newton method implemented in the 
LANCELOT package, have evidenced that the approach proposed in [ 121 is very promising 
from the computational point of view. 

In this work we continue the numerical investigation on the algorithmic choices concern- 
ing the class of algorithms proposed in [ 121. First of all, we focus our attention on the most 
effective way of computing a good Newton-type direction by adopting different termination 
criteria of the inner Lanczos iterates. Then we analyse different strategies for calculating 
negative curvature direction and study different ways of evaluating the resemblance of the 
negative curvature direction to the eigenvector corresponding to the smallest eigenvalue of 
the Hessian matrix. 

We point out that these numerical investigations, besides allowing us to understand better 
which are the best algorithmic choices within the class proposed in [12], give interesting 
answers to some open questions which are behind the truncated Newton approach and hence 
they give helpful hints for defining any new truncated Newton method. 

The paper is organized as follows: in Section 2 the new method proposed in [ 121 is briefly 
reviewed. In Section 3 we report the results of our numerical experiences. 

2. Description of the method 

In this section we review some of the proposals of [ 121. First of all, after having briefly 
recalling the truncated Newton methods proposed in that paper, we describe the particular 
algorithm which showed the best numerical behaviour in the computational testing reported 
in [ 121. We refer to [ 121 for a detailed description and a rigorous analysis of this algorithm. 

2. I .  The algorithm model 

Now we briefly recall the various parts that constitute the algorithm model proposed in [ 121. 

I Curvilinear search path I 
Following the curvilinear search approach of [ 13, 141, a sequence of point { x k }  is produced 
according to the rule 

Administrator
ferret
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where S k  and d k  are search directions and 

I Computation of the search directions I 

cYk is a step length. 

The SYMMLQ algorithm by Paige and Saunders [ 171 is used for computing a truncated 
Newton direction s k  by approximately solving the system (2). This routine implements 
the Lanczos algorithm and, in particular, it produces a sequence of Lanczos basis vector 
vi together with the scalars cyi  and pi. At the i-th step it can be also defined the matrix 
Vi whose columns are the vectors ui and the tridiagonal matrix Ti such that (Ti)h,l = 0 
if Ih - 11 > 1, (Ti)l,l = C Y ~ ,  for 1 = 1,. . . , i  and (TZ)~+~,~ = (Ti)l,l+l = pl+1, for 
1 = 1) . . . )  i - 1. 

As well known (see [3, 8, lS]), the minimum eigenvalue pi of the tridiagonal matrix 
Ti and the corresponding eigenvector wi present interesting properties. In fact, as the 
number of Lanczos iterations increases, pi approximates better and better an eigenvalue 
X I ,  of the Hessian matrix H ( x k )  and, under suitable assumptions, X I ,  is just the smallest 
eigenvalue of the Hessian matrix. Correspondingly the vector d i  = Viwi bears better and 
better resemblance to the eigenvector associated to the eigenvalue &. 

The precise manner in which the directions S k  and d k  can be computed is outlined in the 
following scheme: 

- 

Lanczos based iterative Truncated Scheme (LTS) 

Step I :  Initialization 
Choose - g ( x k )  as the Lanczos starting vector and set = 1. 

Step 2: Lanczos iterations 
Iterate the SYMMLQ algorithm until the termination criterion is satisfied. 

Step 3: Computation of direction S k  

- If the system (2) is solvable and the current estimate Si of the solution of the system 
(2) produced by SYMMLQ routine satisfies the convergence conditions, then set - 
s k  = si 

- otherwise set S k  = - p k g ( Z k )  where p k  is a strictly positive definite matrix. 

Step 4: Computation of direction d k  

Compute the smallest eigenvalue pi of the tridiagonal matrix Ti. 

- If pi < 0 then compute the corresponding eigenvector wi and set 

- 
d, where d i  = Kwi  (4) 

- otherwise set d k  = 0. 
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A key point of this truncated scheme LTS is the convergence criterion at Step 2. In fact, 
this test should ensure that the Lanczos algorithm is terminated at the i-th iteration provided 
that both the estimate of the solution of the Newton system Si is sufficiently accurate and the 
smallest eigenvalue pi of the tridiagonal matrix Ti is a good approximation of an eigenvalue 
of H ( z k ) .  The accuracy of the solution of the Newton system (2) can be evaluated by the 
magnitude of the residual at each step. As regards pi, its difference from an eigenvalue 
of H ( z k )  is bounded by the scalar &+I which, hence, can be used as a measure of the 
accuracy of pi in approximating an eigenvalue of the Hessian matrix [ 181. 

I Stabilization algorithm 1 
As regards the computation of step length c y k ,  the nonmonotone globalization strategy 
proposed in [7, 101 is adopted. The motivation of this choice is to try to accept as many 
times as possible the unit stepsize whenever the iterates of the algorithm are in a region 
where Newton method present strong convergence properties. This stabilization algorithm 
is now recalled. 

Nonmonoton e Stabil ization Algorithm (NSA) 

Data: XO, A0 > 0, S E (0, l), N 2 1, M 2 0, CT E (0 , l )  and 6 E (0 ,a ) .  

Step I :  Set k = e = j = 0, A = A,. Compute f(z0) and set 20 = FO = f(zo), 
m(0) = 0. 

Compute g(zk).  If 11g(zk)ll = 0 stop. 

If k # e + N compute directions s k  and dk  by LTS algorithm; then: 

if I(sk(I + lldkll 5 A, set C Y ~  = 1, compute zk+l according to (3), set k = k + 1, 
A = 6A and go to Step 2; 

if ( ( s k  I (  + ((4 ( I  > A, compute f ( z k ) ;  

if f ( z k )  2 F’, replace X k  by x i ,  set k = l and go to Step 5;  
otherwise set t = k ,  j = j + 1, 2’ = f(zk) and update F’ according to 

F .  - max Zj-i, where m(j )  5 min[m(j - 1) + 1,M] ( 5 )  
- 05 2 <rn(j) 

and go to Step 5 .  

If k = t + N compute f ( z k ) ;  then: 

if f(xk) 2 Fj,  replace zk by ze, set Ic = l and go to Step 5 ;  

if f ( z k )  < F’, set l‘ = k ,  j = j + 1, Zj = f ( z k )  and update F’ according to (5).  
Compute directions S k  and d k  by LTS algorithm; 
if IISklI + IldkII 5 A, set C Y ~  = 1, compute xk+l according to (3), set k = k + 1, 
A = 6A and go to Step 2; 
otherwise go to Step 5 .  
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Step 5: Compute a k  = oh where h is the smallest nonnegative integer such that 

compute xk+l according to (3), set k = Ic + 1, l = k, j = j + 1, Zj = f ( x k ) ,  update 
Fj according to ( 5 )  and go to Step 2. 

The usefulness of a nonmonotone strategy in solving “difficult” problems (such as highly 
nonlinear and/or ill conditioned problems) has been evidenced in many papers. For example, 
[ lO ,  11,211 in the context of the linesearch algorithms and [6,22,23] in the context of trust 
region algorithms. 

Without going into details the key idea of a nonmonotone based algorithm consists in 
not forcing the decrease of the objective function values sequence f ( x k )  at each iteration; 
in fact a step could be automatically accepted without evaluating the objective function at 
the new point (see Step 3) provided that a test on the reduction rate of the norms of the 
directions is verified. Such test is performed by means of a decreasing parameter A, which 
represents a prescribed bound of the actual steplength, with the aim to evaluate whether the 
iterates are converging or if convergence has to be enforced by linesearch procedure. In 
fact, if the test is not satisfied, a nonmonotone modified Armjio-tpye curvilinear linesearch 
is used (Step 5).  The rationale behind this strategy is that the directions s k  and dk convey 
significant information on the objective function and that the decrease of their magnitude 
is, usually, an indication that the algorithm is converging towards a critical point. 

As regards the nonmonotone linesearch procedure, in the generalized Armjio-type con- 
dition (6), instead of using f ( x k )  as reference value, an objective function value Fj corre- 
sponding to a previous iterate is considered. This value Fj is given by (5) and represents the 
maximum function value over a prescribed number of previous iterations corresponding to 
accepted points where the objective function has been evaluated (these objective function 
values are denoted by Zj). The adjustable reference value Fj is also used to evaluate if the 
new iterate leads to regions where the function is poorly behaved; in fact, in this case, a 
backtracking scheme is incorporated to restart the algorithm from the iterate corresponding 
to the last accepted point. 

2.2. Convergence analysis 

The convergence properties of this algorithm have been studied in [ 121. In particular, 
assuming that for a given ZO, the level set QO = {x E IR”(f(x) 5 f(x0)) is compact, the 
algorithm is globally convergent towards a stationary point if the direction s k  and d k  are 
bounded and satisfy the following convergence conditions: 

S(sk)% L 0, S ( Z k ) %  5 0, d p q Z k ) d k  L 0, 
g ( x k ) T s k  -+ o implies g(zk) -+ o and Sk --+ 0, 

l)sr~]I + 1 ) d k ) )  + 0 implies g(zk) -+ 0. 

If, in addition, the direction dk satisfies also 
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(where Amin ( H ( x k ) )  is the minimum eigenvalue of the Hessian matrix) then it is possible to 
show that the preceding algorithm is globally convergent towards stationary points where the 
Hessian matrix is positive semidefinite [ 12, Theorem 2.11. We point out that the directions 
Sk and d k  used in the algorithm (NSA) are computed (as described in Section 2.1) in such 
a way as to satisfy the conditions for convergence. 

2.3. Implementation details 

In [ 121 a preliminary computational experience has been performed in order to investigate 
the numerical behaviour of some algorithms belonging to the proposed class. The aim of 
that numerical testing has been to understand the effect of the use of the negative curvature 
direction and of the nonmonotone stabilization strategy. The results obtained confirmed that 
the joint use of negative curvature directions and nonmonotone stabilization strategy can be 
considered a very promising tool for defining new efficient truncated Newton algorithms. 

In particular, the algorithm called NMonNC has showed the best computational behaviour 
in the numerical investigations performed in [ 121 and it is characterized by the following 
algorithmic choices (we refer to [ 121 for a discussion on the rationale behind these choices). 
First of all, we consider the parameters which appear in the truncated scheme LTS: the upper 
limit on the number of the SYMMLQ iterations is set to n and the user-specified tolerance 
required by the SYMMLQ routine is set to the value 

where r = 10-l. Moreover, as regards the termination criterion at Step 2 of LTS, the 
SYMMLQ routine has been slightly modified in order to continue to perform Lanczos iter- 
ations until the i-th iteration where both one of the original stopping criteria of SYMMLQ 
routine is fulfilled and one of this additional criteria is satisfied: 

pi+l < Ek or i > L 

where Ek = 103max 1 1 g ( Z k ) l l ,  k }  and L = 50 
the vectors stored in the matrix Vi. Furthermore the 
Pk in (4) is used 

{ is an upper bound on the number of 

following value of the scaling factor 

where pi is the smallest eigenvalue of the matrix T' produced by the Lanczos algorithm. 
In the nonmonotone stabilization algorithm, the following values for its parameters have 

been adopted: A, = 103, N = 20, M = 20, 6 = 0.9, IT = 0.5; moreover whenever a 
backtracking is performed (see Step 3 (b) and Step 4 (a)), then the current values of A and 
M are modified as follows: A = 10-lA and M = M / 5  + 1. 
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3. Numerical experiences 

In this section we continue the numerical investigation started in [12] with the aim to further 
study the effectiveness of different algorithmic choices concerning the class of algorithms 
proposed. As we said in the introduction, the results of this numerical study can be of 
interest also in a more wide context. In fact, some of the indications drawn from this 
investigation, can be useful for defining, in general, any truncated Newton method. 

As concerns the reported numerical experiences, we have considered as default choices 
those of algorithm NMonNC described in Section 2.3. The following numerical investiga- 
tion has been based on the use of a large set of test problems. In particular we have used 
all the large scale unconstrained test problems available from the CUTE collection [ 11; all 
the problems with a number of variables which ranges between 930 and 10000 have been 
selected providing us with a test set of 98 problems. 

All tests have been performed on an IBM RISC Systed6000 375 under AIX using Fortran 
in double precision with the default optimization compiling option. All the runs have been 
terminated when the convergence criterion 11g11 5 10-5 has been fulfilled. 

In the comparisons between different algorithms which will be reported in the sequel, 
we consider all the test problems coherently solved by all these algorithms, namely all the 
problems where these algorithms converge to the same point. Moreover, we consider equal 
the results of two runs if they differ by at most of 5%. Finally, we consider as failure all the 
runs which need more than 5000 iterations or 5000 seconds of CPU time. 

Since the results of all the runs consist in many tables, in the sequel we report only the 
summaries of this extensive numerical testing together with some statistical comparisons. 

3.1. Computation of the Newton-type direction s k  

First of all, we perform a numerical investigation on the influence of the accuracy of the 
Newton-type direction within a general truncated Newton algorithm. More in particular, 
we investigate on the following questions: 

1. is it worthwhile to continue the inner iterations of a truncated scheme whenever a 
direction of negative curvature is detected ? 

2. which is the best value for the tolerance rtol used by the SYMMLQ routine ? 

Question 1. In most of the classical truncated Newton methods the conjugate gradient 
algorithm is used for computing an approximate Newton-type direction, and the conjugate 
gradient iterations are terminated when a desired accuracy is achieved or whenever a negative 
curvature direction is detected. In this second case the estimate generated at the previous 
iteration is often accepted as approximate solution of (2) even if a sufficiently accuracy 
has been not reached. Hence, a possible drawback of this use of the conjugate gradient 
method is that the accuracy of the solution of (2) could be very poor when the iterates of 
the conjugate gradient method are terminated as a negative curvature has been found. In 
particular, in [9] was pointed out that it could be of beneficial effect to try to continue the 
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inner conjugate gradient iterations even if the Hessian matrix is not positive definite, and 
hence to try to compute, also in this case, a sufficiently good solution of (2). 

Since the Lanczos based iterative scheme LTS does not break down when the Hessian 
matrix is not positive definite, our algorithm model, represents a useful and flexible tool for 
investigating on this aspect which is, of course, one the most important for the definition 
of an effective truncated Newton algorithm. In particular, we consider some modifications 
of default implementation of NSA (algorithm NMonNC) which do not use the negative 
curvature direction (i.e. we set d k  = 0) in order to focus our attention only on the influence 
on the efficiency of the algorithm with respect to different strategies adopted for computing 
the truncated Newton direction. In particular, we consider three different versions of NSA 
where the only difference consists in the termination criterion at the Step 2 of the LTS 
scheme. In fact, the following different criteria are used: 

Algorithm A: the inner iterations are terminated whenever the original stopping criteria 
of SYMMLQ routine are satisfied or a negative curvature direction is detected. 

Algorithm B: the inner iterates continue until the termination criteria of SYMMLQ routine 
are satisfied. 

Algorithm C: the inner iterates continue until the original tests of SYMMLQ routine and 
one of the criteria (8) are satisfied. 

In the algorithm A the criterion commonly used in the truncated Newton method is adopted. 
The termination criterion of algorithm B differs from that adopted by algorithm A since 
the inner iterates are not terminated whenever a direction of negative curvature is detected 
and this should enable to compute a more accurate approximation of the Newton direction. 
The choice of algorithm C is the same used in the default implementation described in 
Section 2.3. In that implementation this test is needed to ensure the goodness of the negative 
curvature direction; here, since negative curvature directions are not used, the numerical 
behaviour of algorithm C, should indicate the influence on the computation of the truncated 
Newton direction Sk of continuing the inner iterates even if a sufficiently small residual 
in the solution of (2) has been obtained. The summary of the results obtained by these 
three algorithms on the whole test set is summarized in the following tables. In particular, 
in Table 1 we report the cumulative results of this comparison that is the total number of 
iterations, function and gradient evaluations, CPU time needed to solve all the problems 
considered. Table 2 reports how many times each of the three algorithms is the best, second 
and worst in terms of number of iterations, function and gradient evaluations and CPU time. 
By comparing the results obtained by algorithm A and those obtained by algorithms B and 

C it appears clear that the computation of an accurate Newton-type direction also when the 
Hessian is not positive definite can improve significantly the efficiency of the algorithm. 
This is confirmed also by observing the results obtained by algorithms B and C. In fact, the 
best results have been obtained by algorithm C where the estimate Si is considered a good 
Newton-type direction only when, besides being a good approximation of the solution of the 
system (2), it conveys sufficient information on the curvature of the objective function. This 
is obtained by using the additional criterion (8) which ensures that the iterates of SYMMLQ 
routine continue until a small scalar p is produced by the Lanczos algorithm or until the 
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Table 1. Cumulative results with different 
termination criteria 

LUCID1 AND ROMA 

Iter Funct Grad Time 

A 7371 12438 7475 11487.56 

B 5466 5324 5562 4545.54 

C 4918 4804 5014 4424.14 

Table 2. Comparative ranking for the algorithms 
A, B, and C 

algorithm 1st 2nd 3rd 

ITERATIONS A 76 5 15 
B 84 12 0 
C 87 7 2 

FUNCTIONS A 72 4 20 
evaluations B 81 14 1 

C 85 9 2 

GRADIENTS A 76 5 15 
evaluations B 84 12 0 

C 87 7 2 

CPU time A 74 6 16 
B 78 18 0 
C 78 12 6 

number of inner iterations is greater than the prefixed upper limit L. Therefore, this last 
consideration shows that this additional test (8) needed in the default algorithm NMonNC 
to compute a sufficiently good negative curvature direction d k ,  has a beneficial influence 
also in the computation of the Newton-type direction. 

Question 2. As well known, the value of the tolerance in approximately solving the Newton 
equation (2) is a key point for the efficiency of every truncated Newton method and, hence, 
an empirical tuning of the parameter rtol is surely needed. Of course, since there are so 
many different choices for this parameter, it is out of the scope of this work to give any 
conclusive answer. Here we have only performed some numerical experiences for testing 
different choices of the parameter rtol with respect to the value (7) used in algorithm 
NMonNC. In particular, we have investigated on the use of some values which draw their 
inspiration from some proposals widely used in literature. More specifically, in algorithm 
D, the inner iterates are interrupted when the original stopping 
satisfied (same strategy as algorithm B ) and, following [S], the 
to the value 

criteria of SYMMLQ are 
tolerance parameter is set 
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Similarly, in algorithm E, following [ 161, we use for the parameter rtol the value 

together with a bound on the maximum number of the iterates of LTS scheme set to 
min{n,500}. In both the algorithms D and E the negative curvature direction is not 
considered. A comparison between the results obtained by algorithm B which uses the 

Table 3. Cumulative results for the Algorithms D 
and B 

lter Funct Grad Time failures 

D 6257 6913 6350 13925.2 3 

B 5415 5301 5508 4490.7 0 

Table 4. Number of times each algo- 
rithm D and B performs the best 

Iter Funct Grad Time 
~~ 

D 15 9 15 15 

B 36 32 36 49 

tie 42 52  42 29 

value given by (7) and algorithm D is reported in Table 3 and in Table 4 is reported the 
number of times each algorithm performs the best. Note that algorithm D showed three 
failures which are not considered in these cumulative results. Now we reports a summary 
of the comparison between the results obtained by algorithms B and E. Table 5 reports the 

Table 5. Cumulative results for the Algorithms E and 
B 

Iter Funct Grad Time failures 

E 3862 6906 3953 14079.83 4 

B 4316 3878 4467 1825.66 0 

cumulative results and Table 6 the number of times each algorithm performs the best. Note 
that algorithm E showed four failures. By observing Table 3, Table 4, Table 5 and Table 6, 
it appears clear that the best choice is that one adopted by algorithm B both in terms of 
efficiency and in terms of robustness. More in details, Table 3 and Table 4 clearly show that 
algorithm B outperforms algorithm D while Table 5 and Table 6 indicate that algorithm E 
is efficient in terms of number of iterations and also in terms of gradient evaluations. 
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Tuble 6. Number of times each algo- 
rithm E and B performs the best 

LUCID1 AND ROMA 

Iter Funct Grad Time 

E 35 26 35 15 

B 27 30 27 54 

tie 29 35 29 22 

3.2. Computation of the negative curvature direction dk 

In this section, we perform a numerical study on the effect that different negative curva- 
ture directions have on the behaviour of a truncated Newton algorithm. Since the use of 
negative curvature directions in large scale optimization is relatively new, up to now, few 
investigations have been carried out on the sensitivity of an algorithm as the computation 
of negative curvature direction varies. The aim of the numerical experiences reported in 
this section is to shed some light on the following questions: 

1. is it convenient to compute a “good” negative curvature direction ? 

2. how can the “goodness” of a negative curvature direction be tested ? 

3.  which is the influence of the bound L on the Lanczos based vectors stored ? 

Question 1. In the field of large scale minimization methods, roughly speaking, two alter- 
native strategies for computing negative curvature directions have been proposed. The first 
one derives from the LANCELOT algorithm [2] which, as we said in the introduction, uses 
a negative curvature which is very cheap to compute but that could not to have significant 
information on the local nonconvexity of the objective function. The other one is based 
on the use of negative curvature directions which are more expensive to compute but that 
can be considered “better” than the previous ones in the sense that they have a “good” 
resemblance to the eigenvectors of the Hessian matrices corresponding to the most negative 
eigenvalues. This last strategy has been followed by algorithm NMonNc proposed [ 121 
where the iterates of SYMMLQ algorithm are continued until a sufficient information on 
the smallest eigenvalue of the Hessian matrix (which can be tested by controlling the mag- 
nitude of ,&+I) is obtained or until the upper bound on number of Lanczos basis vectors 
stored is achieved (see criterion (8)). The numerical results reported in [ 121 seem to indi- 
cate that the second strategy is more efficient. However, this conclusion is influenced by 
the fact that the LANCELOT algorithm and the algorithm NMonNc are very different: in 
fact the method implemented in the LANCELOT package is a trust region Newton method 
where the search directions are computed by means of the conjugate gradient algorithm 
while algorithm NMonNC follows a curvilinear linesearch approach and uses the Lanczos 
algorithm for computing the search directions. Therefore, in order to investigate better on 
the effect of computing “accurate” search directions, we have implemented an algorithm 
(denoted by algorithm F) which, within the class of methods proposed in [12], draws its 
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inspiration from the strategy adopted by the LANCELOT algorithm. More in particular, 
algorithm F is characterized as follows: 

Algorithm F: the inner Lanczos iterations are terminated whenever the original stopping 
criteria of SYMMLQ are satisfied or a negative curvature direction is detected and the 
direction of negative curvature is used. 

Therefore, algorithm NMonNC described in Section 2.3 differs from algorithm F only 
in the termination criterion of the inner iterates. In Table 7 we report the cumulative 
results obtained by these two algorithms and in Table 8 we report the number of times each 
algorithm F and NMonNC performs the best. Table 7 and Table 8 clearly show that algo- 

Table 7. Cumulative results for the Algorithms F 
and NMonNC 

Iter Funct Grad Time 

F 7439 11033 7536 10394.87 

NMonNC 4964 5209 5061 3840.17 

Tuble 8. Number o f  times each algorithm F 
and NMonNC performs the best 

Iter Funct Grad Time 

F 9 7  9 15 

NMonNC 19 23 19 18 

tie 69 67 69 64 

rithm NMonNC ouperforms algorithm F in terms of number of iterations, function and 
gradient evaluations and in CPU time. 

However, the different strategies adopted by algorithms F and NMonNC to terminate the 
SYMMLQ routine influence the computation of both the search directions, and hence both 
a “better” Newton type directions and a “more accurate” negative curvature directions are 
computed in algorithm NMonNC. As already outlined in Section 3.1, part of the efficiency 
of algorithm NMonNC is due to the use of more effective Newton directions. Now, in 
order to evaluate only the effect of using more accurate negative curvature directions we 
have implemented another algorithm G with the following features: 

Algorithm G: the inner iterates continue until the original criteria of SYMMLQ routine 
are satisfied and one of the criteria (8) is fulfilled but the negative curvature used is the 
first negative curvature direction detected. 

Therefore, algorithm G and algorithm NMonNC uses the same Newton type direction 
and they differ only in the negative curvature direction. We have compared the numerical 
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behaviour of these algorithms, on 14 test problems which are the only ones where negative 
curvature directions are detected and the two algorithms perform differently. In Table 9 we 
report the cumulative results obtained by both the algorithms and in Table 10 we report the 
number of times each algorithm G and NMonNC performs the best on these 14 problems. 
Table 9 and Table 10 seem to indicate that the use of “better” negative curvature direction 
has a clear beneficial effect as regards number of iterations, gradient evaluations and as 
regards CPU time. More questionable is the comparison between these two algorithms in 

Table 9. Cumulative results for the Algorithms G 
and NMonNC 

Iter Funct Grad Time 

G 2955 3597 2969 2711.76 
~ ~ _ _ _ _  

NMonNC 2854 3661 2868 2508.05 

Table 10. Number of times each algorithm G 
and NMonNC performs the best. 

Iter Funct Grad Time 

G 0 3  0 0 
~ ~ 

NMonNC 9 8 9 9 

tie 5 3  5 5 

terms of function evaluations. In fact, Table 9 and Table 10 show that algorithm NMonNC 
performs better in most of the test problems but, on the other hand, in few test problems 
algorithm G allows a considerable saving in terms of function evaluations. Moreover, by 
observing more in detail the results obtained on the whole test set we note that in the only 
test problem (BROYDN7D) where the two algorithms converge towards different critical 
points, algorithm NMonNC is able to locate a point where the objective function value is 
lower as reported in Table 11. 

Table IZ. Detailed results of the problem BROYDN7D. 

Iter Funct Grad Time funcrion values 
~~ 

G 87 168 88 6.89 .378021D+03 
~~ 

NMonNC 90 160 91 6.82 .368223D+03 

Question 2. As concerns algorithms which use negative curvature directions, an important 
point is how to evaluate when a negative curvature direction is a “good” negative curvature 
direction. In the algorithm NMonNC, on the basis of the properties of the Lanczos algorithm 
(see [ 1 S]), we control the “goodness” of the direction of negative curvature by monitoring 
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the magnitude of the scalar pi+l generated by the Lanczos algorithm until enough room 
is available. In literature a different criterion for evaluating the effectiveness of a negative 
curvature direction has been proposed in [20]. In order to compare these two criteria, we 
have implemented another algorithm (denoted by algorithm H) which, instead of using 
the criterion adopted in algorithm NMonNC, uses the test proposed in [20] which in our 
notation can be written 

where & is given by (4) and wi is the eigenvector of the tridiagonal matrix Ti corresponding 
to the smallest eigenvalue. In particular, algorithm H has the following features: 

Algorithm H: the termination criterion of the inner iterates is the same of the algorithm 
NMonNC but the test on ,&+I in (8) is replaced by the test (10). 

In Table 12 we reports the cumulative results obtained by algorithm H together with those 
obtained algorithm NMonNC. Note that algorithm H shows one failure. In Table 13 we 

Table 12. 
NMonNC 

Cumulative results for the Algorithms H and 

Iter Funct Grad Time failures 

H 4990 5952 5084 9893.90 1 

NMonNC 4729 5060 4823 3357.71 0 

report the number of times each algorithm H and NMonNC performs the best 

Table 13. Number of times each algorithm H 
and NMonNC performs the best. 

Iter Funct Grad Time 

H 24 14 23 10 

NMonNC 12 21 12 48 
~ ~~ 

tie 59 60 60 37 

On the 

basis of Table 12 algorithm NMonNC appears the most effective. However, Table 13 shows 
that algorithm H is superior as regards the number of wins in terms of iterations and gradient 
evaluations. Therefore, the obtained results indicate that, probably, the best way to test the 
“goodness” of direction d k  is to use a criterion which a compromise between the criterion 
of algorithm NMonNC and the one proposed in [20]. 

Question 3. The computation of the negative curvature direction d k  (see (4)) requires the 
use of the matrix V,  whose columns are the Lanczos basis vectors. As the number of 
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the Lanczos vectors stored is larger as the direction d k  is a better approximation of an 
eigenvector of the Hessian matrix corresponding to a negative eigenvalue (see [8, 12, 181). 
Due to the requirement of limited storage room, in algorithm NMonNC only L Lanczos 
vectors are stored. Therefore, we have performed a numerical study of the sensitivity of the 
algorithm as the parameter L varies in order to find suitable values of L which ensures a 
good efficiency of the algorithm without requiring an excessive storage room. In Table 14 
we report the cumulative results of the algorithm NMonNC ( L  = 50) together with those 
obtained by the same algorithm with different value of the parameter L. 

Tubfe 14. Cumulative results with different val- 
ues of L 

L 
5 
10 
15 
20 
25 
30 
50 
60 
65 
70 
75 
85 
100 
200 
500 

- ITER 
6210 
6206 
5922 
5783 
5644 
537 1 
5054 
500 1 
4945 
4950 
4922 
4903 
4884 
4897 
4786 

FUNCT 
6343 
6378 
6181 
6027 
5879 
5579 
5369 
5310 
5222 
5345 
5222 
526 1 
5243 
5488 
5303 

GRAD 
6308 
6304 
6020 
588 1 
5742 
5469 
5152 
5099 
5043 
5848 
5020 
500 1 
4982 
4995 
4884 

TIME 
5802.66 
4934.05 
4017.40 
4072.14 
4 192.49 
3880.57 
3 846.99 
4132.38 
3663.62 
4436.17 
3625.28 
4174.32 
4067.20 
61 3 1.46 
83 19.56 

By observing this Table 14, it is clear that as L increases there is a substantial improvement 
of the behaviour of the algorithm in terms of number of iterations, function and gradient 
evaluations. On the other hand, when L is greater than 100, an excessive increase of 
CPU time is needed without producing a substantial improvement of the behaviour of the 
algorithm. In conclusion, the best choices seem to be L E [30,75]. 

As concluding remark, we believe that a suitable scaling of the negative curvature direction 
d k  could play an important role for improving the efficiency of the algorithm. Therefore, 
this topic is worthy of an extensive study and will be the subject of future work. 
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Abstract. Numerical and computational aspects of direct methods for large and sparse least squares problems 
are considered. After a brief survey of the most often used methods, we summarize the important conclusions 
made from a numerical comparison in MATLAB. Significantly improved algorithms have during the last 10- 
15 years made sparse QR factorization attractive, and competitive to previously recommended alternatives. Of 
particular importance is the multifrontal approach, characterized by low fill-in, dense subproblems and naturally 
implemented parallelism. We describe a Householder multi frontal scheme and its implementation on sequential 
and parallel computers. Available software has in practice agreat influence on the choice of numerical algorithms. 
Less appropriate algorithms are thus often used solely because of existing software packages. We briefly survey 
software packages for the solution of sparse linear least squares problems. Finally, we focus on various applications 
from optimization, leading to the solution of large and sparse linear least squares problems. In particular, we 
concentrate on the important case where the coefficient matrix is a fixed general sparse matrix with a variable 
diagonal matrix below. Inner point methods for constrained linear least squares problems give, for example, rise 
to such subproblems. Important gains can be made by taking advantage of structure. Closely related is also the 
choice of numerical method for these subproblems. We discuss why the less accurate normal equations tend to 
be sufficient in many applications. 

Keywords: Least squares problem, Sparse matrices, QR factorization, Multifrontal method 

1. Introduction 

Many scientific applications lead to the solution of large and sparse unconstrained linear 
least squares problems, 

min ( (Az  - b ( ( 2 .  

Typical areas of applications include chemistry, structural analysis and image processing. 
Sparse least squares problems are also common subproblems in large scale optimization. 

Above, the coefficient matrix A E R"'" is large and sparse with at least as many rows as 
columns (rn 2 n), b E R" is aright-hand side vector and z E R" is the solution. Moreover, 
we assume that A has full column rank and that the nonzero entries are nonstructured. The 
full rank assumption of A makes ATA positive definite and the least squares solution 
uniquely determined, Much attention has during the last years been concentrated to sparse 
rank deficient problems. By rank revealing QR factorization (RRQR), the columns of A 
are permuted in such a way that the orthogonal factorization 

2 

makes R11 E RTxT well-conditioned and ( IR22112 small. Here, ~TT is a permutation matrix 
and T is the numerical rank of A .  Details are, for example, given by Bjorck [ 5 ] .  
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In real applications sparse matrices usually have more than 105 rows and columns, but 
often less than 0.1% of nonzero entries. An extreme application, described by Kolata [34], 
is the adjustment of coordinates of North American geodetic stations. It results in mildly 
non-linear least squares problems of about 6.5 million equations and 540,000 unknowns. It 
should, however, be emphasized that the complexity of sparse matrix algorithms not only 
is determined by the dimension and degree of sparsity; also the sparsity pattern plays an 
important role. 

The method of least squares dates back almost exactly 200 years. It was proposed as an 
algebraic procedure by Legendre [36] in 1805, and was at that time used for applications in 
astronomy. Gauss [ 181 later justified the method as a statistical procedure. He even claimed 
to have used the method of least squares since 1795, and should therefore be the “legitimate 
inventor”. Later examinations of Gauss’ processing of astronomical data suggest that he 
was right in his claim. 

Let Ax = b denote a linear system with more equations than unknowns. The method of 
least squares finds a “solution” x that minimizes the distance between the range of A and the 
right-hand side b. For consistent problems, where b belongs to the range of A, the residual 
T = b - Ax becomes zero. A general residual T ,  corresponding to an optimal solution 2, 
satisfies the orthogonality relation ATr = 0. 

The standard direct methods for least squares problems can, with respect to their un- 
derlying theoretical foundations, be classified into two groups: (a) those based on the 
orthogonality relation ATr = 0 and (b) those based on the orthogonal invariance of the 
2-norm. The first group includes the method of normal equations and the augmented system 
method, while methods based on QR factorization and SVD belong to the second group. 

Sparse linear least squares problems are, as already mentioned, frequent in large scale 
optimization. Typical sources include constrained linear least squares problems, interior 
point methods for linear programming and nonlinear least squares problems. Often the 
underlying optimization problem is solved by the repeated solution of linear least squares 
problems, where the coefficient matrices are defined by a fixed sparse matrix and a variable 
diagonal matrix below. Let A be a given sparse matrix, for different values of the real 
parameter X we then consider the solution of 

m;n I 1  (:I> x - (:) 1 1 2 *  
The repeated problems can, by taking advantage of their special structure, be solved using 
previously computed information. If QR factorization is used, then we notice that the 
structure of the upper triangular factor R(X) is invariant under the choice of A. Much of 
the overall computation (the symbolic analysis phase) do therefore not need to be repeated 
for each new subproblem. 

Another interesting subproblem from optimization arises in the interior point solution of 
linear programs. Repeated large and sparse linear least squares problems of the type 

min I)D(Ax - b))12 
2 

are then solved. Here, the diagonal matrix D may contain large elements making DA 
ill-conditioned. Despite this ill-conditioning, the method of normal equations is common 
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and in the literature often recommended as a standard method for solving these problems. 
The coefficient matrix AT D 2 A  is then explicitly formed and its Cholesky factor computed. 
It is, however, interesting that the disparaged method of normal equations in practice turns 
out to work well in this application. One explanation could be that the computed solutions 
are search directions in Newton’s method, wherefore high accuracy not should be that 
important. This is, however, not a sufficient motivation. We suggest that the observed 
attractive properties also can be explained as an effect of implicit iterative refinement. 

The outline the paper is as follows. Section 2 surveys the most often used direct methods 
for sparse linear least squares problems. The numerical properties of methods for dense 
problems obviously carry over to the sparse case. Stable methods for general dense matrices 
are thus equally accurate when used for solving sparse problems. Dense methods may, 
however, be less appropriate from a sparsity point of view. Section 3 deals with sparse QR 
factorization in general. We sketch the different alternatives that have been used during the 
last 25 years. The most recent advance for efficient sparse QR factorization, multifrontal 
methods, are considered in Section 4. We describe the algorithm and briefly some details 
related to the implementation on sequential and parallel computers. In Section 5 ,  we 
discuss and summarize some often used software packages for solving sparse linear least 
squares problems. The last section is devoted to applications in optimization where sparse 
least squares problems arise as repeated subproblems. In particular we focus on the case 
mentioned above, where the coefficient matrix is a fixed general sparse matrix with a variable 
diagonal matrix below. 

2. Direct methods 

Execution times and memory usage are central issues in sparse matrix computation. Many 
large and sparse problems can thus only be solved if sparsity is well utilized. The in- 
troduction of fill-in must in particular be avoided, making it a determining criteria in the 
evaluation of sparse methods. However, the question of numerical stability must also be 
taken into account. There are often inherent incompatibilities between sparsity and stability. 
One such example is the solution of weighted least squares problem by QR factorization. 
High accuracy may require a column ordering that is less suitable with respect to fill-in. 
Another example is sparse LU factorization, where a column ordering chosen for sparsity 
reasons often must be modified to ensure numerical stability. In many implementations of 
sparse LU factorization pivots are chosen by a threshold criterion, that balances sparsity 
and numerical stability. 

The method of normal equations, based on the orthogonality relation ATr = 0, is the 
classical and because of its simplicity probably the most common method for solving linear 
least squares problems. It was derived and used already by Gauss. The solution is computed 
simply by forming and solving the normal equations, 

ATAz = ATb. 

The full rank assumptions of A makes A T A  positive definite, wherefore the symmetric 
linear system can be solved without pivoting using Cholesky factorization, A T A  = RTR. 
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Important savings in memory usage and execution times are made by appropriately ordering 
the columns of A.  Savings are achieved both in the factorizartion step and in the subsequent 
solution of triangular systems in R. Often used methods for finding low fill-in column 
orderings of A (symmetric orderings of ATA) include the Minimum degree ordering, Nested 
dissection and Reverse Cuthill-McKee. In many scientific applications it is, however, also 
possible to formulate the practical problem in such a way that the natural ordering gives 
low fill-in. With this remark in mind, it is clear that general purpose software in general 
not can compete with software designed for particular application. The explicit forming of 
ATA gives rise to two potential problems: (a) loss of accuracy due to the squared condition 
number, n(ATA) = n2(A) ,  and (b) fill-in. Dense rows in an otherwise sparse matrix A 
make ATA filled. 

Two of the most reliable and accurate direct numerical methods for solving sparse least 
squares problems are based on the QR factorization of A, 

The matrix A, with columns permuted for sparsity in R, is decomposed into an orthogonal 
matrix Q E Rmxm and an upper triangular matrix R E RnX". Using the corrected 
seminormal equations (CSNE), a solution Z E R" is first computed from 

RTRZ = ATb, 

and then corrected by one step of iterative refinement, x + Z + Sx. Here, the correction 
vector Sx is computed in fixed precision from RTRSx = ATr. By the correction step it 
can be shown (Bjorck [ 2 ] )  that computed solutions normally are of high accuracy. 

It is easily shown that the Cholesky factor of ATA and the upper triangular factor in the QR 
factorization of A mathematically are the same. They have the same sparsity patterns and, 
except from possible sign differences of the rows, the same numerical values. It follows that 
the seminormal equations can be seen as an alternative way of solving the normal equations. 
The factor R is computed by QR factorization of A instead of Cholesky factorization of 
ATA. One could believe that due to a "better" matrix R, a more accurate solution then 
can be expected. This is, however, not a sufficient explanation. It should be noticed that 
the solution Z, obtained without the refinement step, generally is not more accurate than a 
solution computed by the normal equations. Only a careful error analysis can explain why 
the CSNE works better than the normal equations. One important difference is, however, 
that the rate of convergence in iterative refinement is much better when the seminormal 
equations are used. 

Golub's method [3 11 is another approach based on QR factorization. It computes the least 
squares solution by factorizing A and then solving the triangular system 

This method and the CSNE have essentially the same attractive numerical properties. An 
advantage of the CSNE method is that it only uses the factor R. Subsequent right-hand sides 
can be handled without the extra cost for storing Q. This is important since Q normally is 
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much more costly to store than than the matrix R. For details related to the storage and use 
of a large and sparse matrix Q, we refer to Lu and Barlow [40] and Puglisi [53]. 

A potential drawback of the normal equations and the methods based on QR factorization 
of A, is that R is assumed to be sparse. This is, however, not the case when using the 
augmented system method. The least squares solution x E R" and the corresponding 
residual vector T = b - Ax E R" are computed from a symmetric but indefinite linear 
system of order m + n, 

("A';. :) (,,,) = (;) . 

The scaling factor a E R is introduced in order to reduce the effect of roundoff errors in 
the computed solution. With a sufficiently large value of a,  the m first pivots in Gaussian 
elimination are chosen from the (1 , 1)-block. The resulting system then reduces to the system 
of normal equations which, as indicated above, is unsatisfactory for less well-conditioned 
problems. Bjorck [4] shows how a! can be chosen to minimize the condition number of the 
augmented matrix or, alternatively, to minimize an upper bound for the introduced roundoff 
error. Since the expressions for these optimal values both include the smallest singular value 
of A, they are expensive to compute. Cheaper approximative values of a have therefore 
been proposed. Arioli et al. [ l ]  and Gilbert et al. [27] use a! = maxi,j I a i j l / l O O O ,  while 
Matstoms [46] approximates the smallest singular value of A by one step of inverse iteration 
on A ~ A .  

A small a improves stability but may also introduce more fill-in. The required number of 
floating point operations is then also increased. It should be noticed that Bjorck's optimal 
choices of a are derived only with respect to numerical stability. Notice, however, that 
iterative refinement often compensates for a large value of a. 

Efficient solution of the augmented system requires that structure and symmetry is utilized 
and preserved. However, ordinary symmetric Gaussian elimination, with 1 x 1 pivots chosen 
from the diagonal, may be unstable. A combination of 1 x 1 and 2 x 2 pivots should instead 
be used. The use of 2 x 2 pivots may also reduce the fill-in (Duff and Reid [13]). The 
MA27 software (Duff and Reid [14]) factorizes sparse matrices by a pivot strategy similar 
to the one proposed by Bunch and Kaufman [6] for dense matrices. The balance between 
stability and sparsity is controlled by a threshold criterion in the choice of pivots. 

To evaluate the described four methods, Matstoms [45] compares accuracy and execution 
times in the sparse extention of MATLAB. The experiments are carried out on nine of the 
matrices from the widely used Harwell-Boeing test collection (Duff et al. [ 12]), together 
with five matrices formed by the merging of two Harwell-Boeing matrices. Following 
Arioli et al. [ 11 a second set of more ill-conditioned matrices is formed by a row scaling 
of the Harwell-Boeing matrices. Rows from index n - 1 to m are multiplied by a factor 
16-5. A set of consistent sparse linear least squares problems is defined by choosing the 
exact solutions x = (1,. . . , l)T and then setting the right-hand sides to b = Ax. 

Matstoms' conclusions from the numerical experiments can be summarized as follows: 
The current MATLAB implementation of the augmented system method (build-in) works 
well for well-conditioned problems of moderate sizes. For general sparse problems a better 
choice of the scaling parameter Q or iterative refinement must be used to get accurate 
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solutions. However, unacceptable execution times and memory requirements is still a 
problem. A more appropriate factorization (general sparse LU is now used) would probably 
make the method more attractive. 

The two QR based methods solve all the problems in the two sets with high accuracy. 
Golub’s method also succeeds in solving very ill-conditioned problems in a third set. The 
two methods based on orthogonal factorization are also much faster than the augmented 
system method, in particular for large problems. 

Due to unsatisfactory numerical properties for less well-conditioned problems, the normal 
equations must be used with care. In particular, the nomal equations may cause problems 
whenever K ( A )  M fi, while the corresponding condition for the QR based methods is 
& ( A )  M U .  However, superb execution times in MATLAB make the CNE to an attractive 
candidate for well-conditioned problems, in particular if combined with iterative refinement. 

It follows that methods based on QR factorization are most appropriate. For the solution 
of general least squares problems in Matlab-like software, Matstoms recommends the use of 
Golub’s method. An efficient implementation of sparse QR factorization is then assumed. 
It is also assumed that the premultiplication of Q to the right-hand side b is made during 
the factorization process. The extra cost for storing Q can then be avoided. 

3. Sparse QR factorization 

This section briefly summarizes the methods that during the last 20-30 years have been 
used for sparse QR factorization. Algorithms based on Householder transformations have 
traditionally, until the recent introduction of multifrontal methods, suffered costly (interme- 
diate) fill-in, and have therefore been rejected. See, for example, Duff and Reid [ 131, Gill 
and Murray [28] or Heath [33]. They all conclude that “Givens rotations are a much more 
appropriate tool in this context because of their ability to introduce zeros more selectively 
and in a moreflexible order” (Heath [33]). 

Givens rotations, either based on row or column-wise elimination, have instead been 
preferred and used. The column-wise strategy uses the same elimination order as used in 
the Householder method. Thus, the kth major step eliminates the subdiagonal elements 
in the kth column, and computes the kth row of R. This variant of sparse Givens QR 
factorization has, for example, been considered by Duff [ 101 and Duff and Reid [ 131. The 
introduction of intermediate fill-in can be controlled by an appropriate row ordering. Duff 
[ 101 considers different strategies for finding a row ordering that minimizes the introduction 
of intermediate fill-in. 

An alternative strategy, variable pivot rows, was suggested by Gentleman [21],[22] (see 
also Duff [ 101). Instead of using a fixed pivot row within each major step, any two rows with 
nonzero entries in the pivot column can be rotated. A proper choice of row combinations 
may, compared with the fixed pivot strategies, lead to savings in operation count and memory 
requirements. 

Row-oriented Givens schemes have, for example, been considered by Gentleman [ 191, 
[20], Gill and Murray [29], and George and Heath [23]. The input matrix A is processed 
by rows, in such a way that the kth major step eliminates the subdiagonal elements of the 
kth row. This is made by rotations of rows into the partially computed factor. In contrast to 
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column-oriented algorithms, the factor R is not computed such that new rows or columns 
of R in each major step are definitely computed. The “partially computed factor” therefore 
just refers to an intermediate result. 

Row-oriented schemes have, compared with column-oriented schemes, two important 
advantages. First, since the algorithm at the same time only operates on a single working row 
of A and on the partially computed factor, out-of-core implementations follows naturally. 
Only the partially computed factor R need to be held in memory. Rows of A can sequentially 
be read from a secondary storage and merged into R. Second, the method is well suited 
for updates. New observations, in terms of new rows of A ,  can easily be handled when the 
original R has been computed. In this case, new rows are processed in exactly the same 
way as the original rows of A.  Finally, it should be noticed that local heuristics for finding 
an appropriate row and column ordering often are based on column wise annihilation of 
nonzeros. Such algorithms can therefore not be used together with row-oriented schemes. 
A priori heuristics must instead be used; but then the out-of-core argument vanishes. 

The algorithm proposed by George and Heath [23] was an important advance. It made QR 
factorization a useful alternative for the solution of sparse linear least squares problems. QR 
factorization was previously much slower and more memory consuming than the alternative 
direct methods. The main contribution by George and Heath was the proposed a priori 
strategy for finding an appropriate column permutation P, of A ,  and a scheme for efficiently 
handling intermediate fill-in. In the symbolic phase they utilized the previously mentioned 
relation between QR factorization of A and Cholesky factorization of ATA. A sparse 
Cholesky factor of Pc(ATA)PT = (APc)T(APc) guarantees a sparse factor R in QR 
factorization AP,. Standard symmetric strategies, for example minimum degree and nested 
dissection orderings, can therefore be used for computing a column ordering of A.  

Variable row pivoting may, as already pointed out, decrease the required number of 
rotations in sparse Givens QR factorization. It reduces the propagation of intermediate 
fill-in from previously rotated rows, and decreases the number of new nonzero elements to 
be annihilated. From this idea, Liu [38] generalizes the row-oriented algorithm by George 
and Heath [23] to handle more than one simultaneously active triangular matrix. In the 
George and Heath algorithm, the rows of A are sequentially rotated into a triangular matrix 
that finally, when all rows are processed, defines the factor R. The operation of rotating a 
sparse row into a upper triangular matrix is called a row rotation (George and Ng [25]) .  In 
Liu’s algorithm [38], rows are instead annihilated by rotations with one of many triangular 
structures. Such triangular matrices are then pairwise rotated together into new upper 
triangular structures (Generalized row merging ((Liu [ 381)). The resulting upper triangular 
matrix equals the factor R. 

We finally comment on some important implementation details mentioned by Liu [38]. 
First, the submatrix rotations can be performed as dense matrix operations. Rows and 
columns identically zero remain zero during the triangularization, and can therefore be 
removed in advance. A simple mapping between local and global column indices is used to 
match the resulting dense matrix with the overall sparse problem. Second, by visiting the 
nodes in depth-first order, the simultaneously active triangular matrices can be stored and 
retrieved in first-idlast-out manner. Efficient data representation can therefore be obtain 
by a stack data structure. The use of depth-first ordered trees was in this context first 
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proposed by Duff and Reid [14]. George and Liu [24] generalizes Liu’s algorithm by, 
instead of using Givens rotations, performing the dense triangularizations by Householder 
transformations. All these modifications of George and Heath’s algorithm are used in the 
multifrontal Householder algorithm discussed in the next section. 

4. Multifrontal QR factorization 

Columns of sparse matrices are often structurally independent. In terms of QR factorization 
this means that columns not need to be eliminated in a strict order from the left to the right, 
which is the case for dense matrices. A more flexible order can instead be used, where 
independent columns can be eliminated in any order or in parallel. 

A compact way of describing existing column dependencies is by an elimination tree (see 
Liu [39]). It is a rooted tree determined from the nonzero structure of R. The parent p of a 
child node i is defined to be 

p = min{j > i)rij # o}. 

As already mentioned, it is easily shown that the factor R, except from possible sign 
differences of the rows, equals the Cholesky factor of ATA. The nonzero structure of R 
can therefore be predicted by symbolic Cholesky factorization of AT A .  Elimination trees 
can also be computed directly from the structure of A .  For the important class of matrices 
with bipartite graphs having the Strong Hall property, symbolic Cholesky factorization 
correctly predicts the nonzero structure of R (Coleman et al. [S]). Only existing column 
dependencies are then prescribed by the elimination tree. Each tree node corresponds to 
the elimination of certain columns in the matrix to be factorized. Nodes in the same subtree 
are structurally dependent and must be visited from the bottom and upwards. Other nodes 
are independent and may thus be visited in any order, or in parallel. The elimination tree of 
a general sparse matrix may be a forest. The order rule is, however, the same; child nodes 
first. 

To factorize a given matrix A ,  the elimination tree is traversed in such a way that all nodes 
are visited in an appropriate order. For each node i, a frontal matrix Fi is formed by the 
merging of certain rows of A (those with certain leading entry columns) and the update 
matrices of the child nodes. Dense QR factorization of the frontal matrix Fi, 

then defines a contribution to the matrix factor R and the dense update matrix of the node 
itself. The recursive way of computing update matrices motivates the tree traverse rule 
given above. QR factorization has no effect on columns identically zero, wherefore such 
columns can be removed in advance. The condensation makes dense methods possible to 
use in the frontal factorization. A number of further improvements have been proposed and 
studied by Matstoms [43] and Puglisi [53]. 

Multifrontal algorithms are basicly parallelized along two different lines. First, the elimi- 
nation tree can be traversed in parallel. Columns associated with nodes in different branches 
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are independent and can be simultaneously processed. We refer to this approach as tree 
parallelism. In the alternative approach, called node level parallelism, the tree is sequen- 
tially traversed but the dense factorization problems of each node are solved in parallel. The 
efficiency of the two approaches is determined both by the structure of the sparse matrix to 
be factorized, and by the computer used. In particular factors such as the size of the frontal 
matrices and the structure of the underlying elimination tree are of great importance. On 
shared memory architecture, where there is no cost for communication between processors, 
also the machine dependent parameter nl/2 is of importance. It is defined to be the smallest 
matrix dimension (square matrices), required to achieve half the asymptotic performance 
of a certain matrix operation. We use it as a measure of how fast the performance increases 
under increasing matrix dimensions. A large value of n1l2 means that large matrices are 
required to achieve high performance on the computer used. The performance on small 
matrices may then be unsatisfactory. Mostly large frontal matrices and a small value of 
n1/2 indicates that node level parallelism should be used. Small frontal matrices and a large 
value of nl/2 make, one the other hand, tree parallelism more attractive. In the latter case, 
it is also important that the elimination tree has a suitable structure. Ideally, the tree should 
be short and bushy. 

In the shared memory implementation (see Matstoms [46],[47] and Puglisi [53]) a pool- 
of-tasks is initially set to all leaf nodes of the elimination tree. During the computation, 
processes ask the pool manager for new tasks. The contribution block from A and the update 
matrices of the child nodes are then merged into a frontal matrix. Dense factorization of 
the frontal matrix gives a contribution to R and an update matrix of the node itself. A 
parent node is ready to be processed, and consequently moved to the pool, when all its 
children are processed. Since nodes in this parallel setting not are visited in a strict depth 
first order, the stack storage of update matrices can no longer be used. A more general 
form of dynamic memory allocation (a buddy system) is instead used. Semaphores are also 
required to prevent processes from simultaneously writing to shared memory blocks. 

In a message passing implementation the main problem is to obtain good load balancing 
and, at the same time, minimize the communication overhead. This can only be achieved 
by dividing the elimination tree in a number of independent subtrees of essentially the same 
computational complexity. Each processor is then assigned a subtree. Like in the shared 
memory implementation, the rather sequential upper half of the tree must be treated in a 
special way to make full use of parallelism. 

5. Software for sparse least squares problems 

In this section, we survey some often used software packages for general sparse least squares 
problems. Many problem related issues, such as problem size, sparsity and structure, 
determine whether direct or iterative methods should be used. Very large problems with 
structured nonzero patterns and easily computed nonzero entries are, for example, often 
solved by iterative methods. Direct methods are, on the other hand, preferable in statistical 
modeling when the covariance matrix is required. Other problem related details, such as 
possible rank deficiency, occurrence of weighted rows and the number of right-hand sides, 
also influence on the choice of method and software. Special software packages, designed 
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for the particular problems of interest, may sometimes give better performance than the 
general software packages described here. 

MATLAB has been extended to include sparse matrix storage and operations. The in- 
cluded operations and algorithms are described in Gilbert et al. [27]. A minimum degree 
preordering algorithm and a sparse Cholesky decomposition have, for example, been in- 
cluded. By using these and other built-in routines, new sparse algorithms are relatively 
easily implemented. There is also a built-in sparse least squares solver in MATLAB. This 
currently uses the augmented system formulation with the scaling parameter chosen to be 
a = l O P 3  rnax (aij 1. The solution is computed using the minimum degree ordering and 
the built in sparse LU decomposition. 

Matstoms [45] has developed a multifrontal sparse QR decomposition to be used with 
MATLAB. This is implemented as four m-files, which are available from netlib. The main 
routine is called sqr and the statements [ R ,  p ,  c ]  =sqr ( A ,  b )  will compute the factor R in 
a sparse QR decomposition of A, and c = QTb.  For further details we refer to [45]. 

More recently C. Sun, Advanced Computing Research Facility, Cornell University, has 
developed another software package for computing a sparse QR decomposition This pack- 
age is implemented in C and also designed to be used within the MATLAB environment. C. 
Sun [55] has also developed a parallel multifrontal algorithm for sparse QR factorization 
on distributed-memory multiprocessors. 

Pierce and Lewis [S 11 at Boeing have implemented a multifrontal sparse rank revealing QR 
decomposition/least squares solution module. This code has some optimization for vector 
computers in general, but it also works very well on a wide variety of scientific workstations. 
It is included in the commercial software package BCSLIB-EXT from Boeing Information 
and Support Services, Seattle. This library of FORTRAN callable routines is also given 
to researchers in laboratories and academia for testing, comparing and as a professional 
courtesy. 

The Harwell Subroutine Library (HSL) has a subroutine MA45 to solve the normal 
equations. If the least squares problem is written in the augmented matrix form, then the 
multifrontal subroutine MA27 for solving symmetric indefinite linear system can be used. 
However, the MA27 code does not exploit the special structure of the augmented system. 
There is also a new routine MA47 which is designed to efficiently solve this kind of systems. 

Closely related to the Harwell MA27 code is the QR27 code, that has been developed by 
Matstoms [44]. It is a Fortran-77 implementation of the Householder multifrontal algorithm 
for sparse QR factorization that was described in a previous section. To solve sparse least 
squares problems it uses the corrected seminormal equations (CSNE). The code is available 
for academic research and can be ordered by e-mail to qr27@rnath.liu.se. A parallel version 
of QR27 has been developed for shared memory MIMD computers, see Matstoms [47]. 

SPARSPAK is a collection of routines for solving sparse systems of linear systems devel- 
oped at University of Waterloo. It is divided into two portions; SPARSPAK-A deals with 
sparse symmetric positive definite systems and SPARSPAK-B handles sparse linear least 
squares problems, including linear equality constraints. For solving least squares both A 
and B parts are needed. SPARSPAK-B has the feature that dense rows of A, which would 
cause R to fill, can be withheld from the decomposition and the final solution updated to 
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incorporate them at the end. Only the upper triangular factor is maintained, and the Givens 
rotations are not saved. 

Zlatev and Nielsen [57] have developed a Fortran subroutine called LLSSOl which uses 
fast Givens rotations to perform the QR decomposition. The orthogonal matrix Q is not 
stored, and elements in R smaller than a user specified tolerance are dropped. The solution 
is computed using fixed precision iterative refinement, or alternatively preconditioned con- 
jugate gradient, with the computed matrix R as preconditioner, see [%]. The table below 
summarizes the considered software packages. 

Table 1. Sofiware packages for sparse linear least squares problems. 

Package 

MATLAB 

SQR (MATLAB) 

MA27 

MA47 

QR27 

SPARSPAK-A 

SPARSPAK-B 

YSMP 

LLSSOl 

Purpose 

LU and Cholesky 

Householder QR 

L D L ~  

L D L ~  

Householder QR 

Cholesky 

Givens QR 

Cholesky 

Incomplete QR 

Author 

Gilbert et al. [27] 

Matstoms [45] 

Duff and Reid [ 141 

Duff et al. [ 113 

Matstoms [46,47] 

Chu et al. [7] 

George and Ng [26] 

Eisenstat et a1.[15] 

Zlatev and Nielsen [571 

Distribution 

The Mathworks Inc. 

netlib 

HSL 

HSL 

qr2 7@math. liu. se 

Univ. of Waterloo 

Univ. of Waterloo 

Yale 

Tech. Univ. Denm. 

6. Applications in optimization 

Sparse linear least squares problems are frequent in large scale optimization. Typical 
sources are constrained linear least squares problems and interior point methods for linear 
programming. Also the solution of nonlinear least squares problems give rise to a sequence 
of sparse linear least squares problems. We discuss these applications and show how 
linear least squares problems arise as subproblems. Of particular interest is the solution 
of problems of regularization type. In this case the coefficient matrix is a fixed general 
sparse matrix with a variable diagonal matrix below. Another interesting topic is the 
repeated solution of certain linear least squares problems arising in interior point methods 
for linear programming. The coefficient matrices may here be rather ill-conditioned, and it 
has therefore been somewhat surprising that the normal equation method works well and 
usually turns out to give sufficiently accurate solutions. 

Our object is far from giving a complete survey of the considered optimization methods. 
We rather aim to define some important problems in optimization and then, with techni- 
cal details suppressed, show how the solution leads to repeated unconstrained linear least 
squares problems. For more exhaustive treatments we refer to Gill et al. [30] and Dennis 
and Schnabel [9] (nonlinear least squares), Lawson and Hanson [35] and Bjorck [ 5 ]  (con- 
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strained least squares), and Gonzaga [32] and Wright [56] (interior point methods for linear 
programming). 

6.1. Nonlinear least squares problems 

Let f : Rn --+ R" be a vector-valued real function. The unconstrained nonlinear least 
squares problem is to find a vector x E R" such that the sum of squares of the m 2 n 
functions fi (x) is minimized, 

Let us first consider the standard method of Gauss-Newton for the iterative solution of 
(2). If J ( z )  E RmXn is the Jacobian of f(x) and Gi(x) E RnXn the Hessian of the ith 
component fi(x) o f f ,  then the Jacobian and Hessian of the objective function F ( x )  equal 

m 
and 

H ( x )  = J (x )*J (x )  + Q ( x ) ,  Q ( z )  = fi(x) * Gi(x), 

respectively. By using Newton's method with the approximation Q ( x )  = 0, one obtains 
the Gauss-Newton method 

i= 1 

Here, xk is the lcth approximation to the solution and pk the increment defining xk+l ,  

The Jacobian J ( Z k )  is in practice often ill-conditioned and sometimes even rank deficient. 
Explicit formation of the coefficient matrix in (3) is therefore unsuitable. A better alternative 
is to consider (3) as the normal equations for the linear least squares problem, 

which instead can be solved by QR factorization. Rank detection is in the dense case easily 
implemented by Golub's column pivoting, and for sparse matrices a sparse RRQR algorithm 
can be used. Search directions are in the rank deficient case determined as minimum norm 
solutions of (4). 

An often used alternative to the Gauss-Newton approach, avoiding critical ill-conditioning 
of the Jacobian J ( x ) ,  is given by the Levenberg-Marquardt strategy (Levenberg [37] and 
Marquardt [42]). To guard against inaccurate and unpropitious search directions, a restric- 
tion I lpk 112 5 A is imposed upon (4). For a parameter X 2 0, related to the restriction A, 
new search directions pk are defined by 
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With this interpretation of the XI term, the approach can be considered as a trust region 
strategy. Otherwise, ( 5 )  can be seen as a pure regularization of (4). The key point is, 
however, that the added diagonal matrix makes JT  J + XI nonsingular and a unique solution 
can be guaranteed. Many strategies for choosing X have been proposed. Algorithm and 
implementation details are discussed by MorC [48]. The system ( 5 )  can obviously be 
interpreted as the normal equation solution of the linear least squares problem 

Alternative methods, like Golub’s method and the CSNE, can then be used. We remark that 
each iteration normally requires the solution of (6) for different values of A. The most recent 
approximation X k  and the associated Jacobian J ( x k )  are then fixed. More [48] introduces 
a scaling matrix D and thus replaces XI with AD. 

6.2. Constrained least squares problems 

As an example of constrained linear least squares problems, we consider the nonnegativity 
problem 

min IIAx - b1I2 subject to x 2 0. (7) 
5 

Here, A E Rmxn,  m 2 n, is assumed to be a large and sparse matrix of full rank. Com- 
pared with the previously considered unconstrained least squares problem, a non-negativity 
requirement is imposed on the solution vector x. Underlying physical restrictions in the 
mathematical model often motivate such restrictions. More general constraints include 
upper and lower bounds, 1 5 Cx 5 U ,  which for C = I reduces to the simple bounds, 
l < x < u .  

By writing the vector norm in (7) as an inner product, the quadratic problem 

1 
2 2 

min (ATb)Tx + -xTATAx subject to x 2 0, 

equivalent to (7), is obtained. The full rank assumption of A makes this problem strictly 
convex and its unique solution defined by the linear complementarity problem (LCP) 

y = ATAx - ATb, x 2 0,  y 2 0,  xTy = 0. (8) 

In this section, we consider an interior point method based on the above formulation. Other 
strategies, also based on the LCP, include active set methods (Bjorck [ 3 ]  and Oreborn 
[49]) and principal pivoting algorithms (Portugal et al. [52]). These two approaches are 
based on the same idea, namely that a certain subset of the constraints in optimum must be 
active and satisfied with equality. To find these active variables, and implicitly the values 
of the non-active variables, the active set method makes element-wise modifications of a 
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candidate set. Block principal methods instead exchange more than one variable at a time. 
A given set of active variables can be eliminated and the other variables computed. The 
computational effort is in both cases restricted to the solution of unconstrained linear least 
squares problems in the non-active variables. Thus, the coefficient matrices are defined by 
a subset of columns from the original matrix A in (7). 

Let us now focus on the interior point solution and how it leads to unconstrained least 
squares problems of the considered regularization form. Technical details are skipped and 
instead we refer to Portugal et al. [52].  The basic idea is to apply Newton’s method to 
the complementarity problem (8). It can directly be formulated as a system of nonlinear 
equations, 

X Y e  = 0 

A T A X e  - Ye - ATb = 0 
. (9) 

The component-wise complementarity conditions xi yi = 0,  i = 1, . . . , n, are expressed in 
terms of the diagonal matrices X = diag(z) and Y = diag(y). In (9), e is the unit vector 
with ones in all elements. The Jacobian of (9) is easily computed and the search directions 
in Newton’s methods are defined by a square 2n x 2n sparse linear system, 

A centralization parameter p k  (Lustig et al. [41]) is added to the first block of the right-hand 
side. With given search directions (U” v ‘ ) ~ ,  new iterates are computed under a damped 
update of x k  and Y k .  By block elimination of (10) we obtain 

( ATA?xilYk ”;.) (z‘) 
and the uk component is thus defined by 

As in the discussion of nonlinear least squares problems, we identify the above equation as 
the normal equations for the unconstrained least squares problem 

A 

Remember that XI, and Y k  are diagonal matrices. The coefficient matrix in the above 
problem therefore consists of afixed sparse matrix A and, in each iteration, difeerent diagonal 
blocks. The vk component of the search direction is, for a given u k ,  defined by 

V k  = -Yke + X,”pke - X i l Y k U k .  

A more stable way of computing vk is given by 

vk = A T ( A u k  - r k )  + Yke ,  rk = b - Axke. 
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6.3. Linear programming 

As a last example of applications in optimization, we consider the standard linear program 

mincTx subject to Ax = b, x 2 0,  (12) 
2 

where Ax 
For the interior point solution of (1 2), a barrier term is introduced as follows 

b is a consistent underdetermined system of m equations and n unknowns. 

n 

rnin cTx - p In xi subject to Ax = b. 
2 

(13) 

The non-negativity constraints are then implicitly handled by the objective function. The 
original problem (12) is solved by the repeated solution of (13) for decreasing values of 
p. Let x(2) = x(p2) be the solution for p = pi.  Then it can be shown that x(2) -+ x* for 
pi -+ O+,  where x* is an exact solution of (12). If the starting vector do)  is feasible, i.e. 
A d o )  = b and x(O) > 0, then also the subsequent vectors will be feasible. To derive an 
iterative method for solving the subproblem (13), we first briefly consider the solution of 
more general convex constrained minimization problems, 

rninf(x) subject to Ax = b. (14) 
5 

Feasibility and the first-order optimality conditions requires that a solution x*, for some 
vector y*, satisfies 

Ax* = b, 

V ~ ( X * )  = ATy* . 

Written as a single system of nonlinear equations, a solution x* and the Lagrange multiplier 
y* must satisfy 

(of(.) AX - - ATY) b 
= (;) 

In the Newton solution of this nonhear system of equations, search directions ( P k ,  q k ) ,  

are computed from the KKT-system 

Returning to the linear program (1 2), we now specialize (1 6) for the gradient and Hessian 
of B ( X ?  P L  

V B ( X , ~ )  = c - PX-le 
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and 

Here, X = diag(x) and e = (1, 
computed by the inner iteration 

8 .  

0 2 B ( x , p )  = P X - ~ .  

. . , l)T. Given a solution zo = ~ ( 2 1 ,  the next iterate is 

Thus, major iterates x(2) are computed as x(Z+') = limk+m X k .  The damping factor a k  

is introduced to guarantee feasibility. Pure Newton steps may violate the non-negativity 
constraints. The Lagrange multiplier is simultaneously computed by the iteration 

If the last iterate Z k  is feasible and satisfies Axk = b, then (18) becomes 

The second equation prescribes Apk = 0, wherefore also the subsequent solution xk+l 
becomes feasible with respect to the linear constraints A x  = b. By observing that a general 
augmented system, 

is equivalent to the weighted least squares problem min,  IID-1/2(Ay - b)l(2,  the square 
linear system (19) can equivalently be formulated as a weighted unconstrained linear least 
squares problem: 

For a given vector qk, the search directions pk are explicitly given by 

6.4. Discussion 

Both the solution of nonlinear and constrained linear least squares problems give rise to 
subproblems of regularization type. The Levenberg-Marquardt algorithm for nonlinear 
problems leads to the solution of (6), while the interior point solution of linear constrained 
problems leads to (1 1). In both cases we have a fixed general sparse matrix A merged 
by a varying diagonal block. In the dense case, such problems are normally solved by 
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bidiagonalization. Orthogonal transformations are then applied both from the right and 
left to transform A into bidiagonal form (Eldin [ 161). If the matrix A instead is large and 
sparse, then Lanczos bidigonalization can be used. See Paige and Saunders [50]. 

Let the QR factorization of the coefficient matrix in (1) be given by 

The upper triangular factor R( A) then satisfies 

and since the second term to the right only affects the diagonal, it is clear that the nonzero 
structure of R only depends on the structure of A. The analysis phase, which solely is based 
on the predicted nonzero structure of R, need therefore not to be repeated for new values 
of A. In particular the minimum fill-in ordering and the elimination tree, both computed in 
the analysis phase, are constant and do not need to be recomputed. 

Moreover, it is also clear that A in (21) can be replaced by the triangular factor R = R(0) 
of A.  Thus, the factor R(A) can equivalently be computed by the QR factorization 

An appropriate row ordering is required in order to minimize the introduction of intermediate 
fill-in. For the row-oriented Givens algorithm, George and Heath [23] sort the rows in 
leading entry order. If & is the leading entry column of the ith row in the reordered matrix, 
then t?,  5 . . . 5 t?,. The same row ordering strategy should be used in Householder QR 
factorization, and is therefore used in the presented multifrontal method. Reid [54] and 
Lawson and Hanson [35] show how the Householder algorithm can be modified to take 
advantage of a possible resulting band or block upper triangular structure. The multifrontal 
algorithm can, in fact, be considered as a generalization of Reid’s algorithm for band 
matrices. 

Another row ordering is used if the matrix R from the beginning is considered as the 
working matrix in the George and Heath method. The diagonal block is then annihilated by 
rotations with rows in that matrix. However, this approach may cause a serious introduction 
of intermediate fill-in and should therefore not be used. If Pi is the number of ancestor 
nodes (a node is here considered to be an ancestor of itself) to the ith node in the elimination 
tree T(ATA) ,  then it can be shown that the number of Givens rotations using this bad row 
ordering equals E;=, Pi. Figure 1 illustrates by an example the effect of an appropriate 
row ordering. The upper triangular factor R is in this case chosen to be bidiagonal. In the 
example, All  is the unpermuted matrix that corresponds to the above bad strategy. Since the 
elimination tree is a chain of 5 nodes, it follows that 15 Givens rotations are required. The 
two matrices M2 and Ms illustrate the importance of an appropriate tie-breaking strategy 
in the leading entry order. If the elements from R are ordered first as in M2, 12 rotations are 
required. For 1113, where the diagonal entries are placed first, only 9 rotations are required. 
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Figure 1. Three alternative row orderings for Givens QR factorization. 

Let us now consider the multifrontal factorization of the matrix in (22). The reduction 
in row dimension compared with (21) also reduces the row dimension of the resulting 
frontal matrices. Multifrontal factorization of (22) should therefore be faster. However, 
different effects of vectorization and the structure of the frontal matrices also influence on 
the performance. It turns out that the number of nonzero entries (nnz) in R is important. 
By numerical experiments we are lead to the conclusion that (22) should be used only if 
nnz(R) < nnz(A). Some examples are given in Table 2. Execution times are based on 
the MATLAB implementation SQR on a Sun SparcStation. 

Table 2. Factorization times in MATLAB. 

The method of normal equations, applied on the above problem, gives the square system 

(ATA + A 2 I n ) x  = ATb. 

The fixed structure of R makes it possible also for the Cholesky factorization to reuse 
information from the analysis phase. However, since the diagonal is modified under different 
values of A, it is necessary to recompute the Cholesky factorization. Previously computed 
factors R( A) give no computational advantages. However, efficient methods for sparse 
Cholesky factorization makes this approach in general faster by a factor of 2-3 than the 
above methods based on QR factorization. A drawback to the Cholesky method is, on 
the other hand, that the diagonal term in (23) may vanish due to the squared A. In the 
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regularization of ill-conditioned least squares problems, this effect may require a larger 
value of X in order to stabilize a solution. 

In the previous section, it was shown how the interior point solution of linear programs 
leads to the weighted least squares problem (20). The coefficient matrix X A T  is in practice 
often ill-conditioned and almost rank deficient, wherefore the method of normal equations 
should be less useful. However, (20) is in practice solved by the normal equations. "The 
small number of observed numerical dificulties with the normal-equation approach has 
therefore been a continuing surprise. A careful error analysis is likely to explain this 
phenomenon, but it remains slightly mysterious at this time" (Wright [56]) .  

For the solution vector z*, the second equation of (IS) can be considered as a consistent 
overdetermined system in the unknown vector y. In terms of the original linear program 
(14), one obtains 

ATy = c - pX- le .  

The consistency makes it possible to introduce any non-singular scaling matrix X I ,  E 
R" '" without affecting the solution, 

This system is considered and solved as the weighted least squares problem, 

The accuracy in a computed solution y can then be improved by iterative rejinement. 
Corrections q are then computed from 

min IIXk(ATq - 
4 

and used to refine the approximate solutions, fj + y + q. 
The interior point method for linear programming leads to inner iterations (20) that, 

except for a non-fixed ( x k  --t x for 17: --+ 00) matrix XI, in the right-hand side, equals 
the above procedure. The good behaviour of the normal equations in the solution of (20) 
should therefore be explained by the asymptotic equivalence to iterative refinement of 
the underlying linear system (24). Foster [ 171 shows by numerical experiments that full 
accuracy normally can be achieved if the normal equations are combined with iterative 
refinement. 

Only a careful error analysis can fully explain the good behaviour of the normal equation 
method for solving the inner subproblem (20). However, the above discussion indicates 
that the inner iterations should be equivalent to iterative refinement of solutions to a con- 
sistent overdetermined system. A more general analysis would also cover a larger set of 
subproblems arising in interior point methods. 
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1. Introduction 

The facility layout problem deals with the physical arrangement of a given number of 
departments or machines within a given configuration. In the context of manufacturing the 
objective is to minimize the total material handling cost of moving the required material 
between the departments. The importance of material handling is stated by Tompkins and 
White [67] who claimed that 20-50 % of the total operating expenses within manufacturing 
are attributed to it. 

The facility layout problem is one of the best-studied problems in the field of combinatorial 
optimization. A number of formulations have been developed for the problem. More 
particularly the FLP has been modeled as [36] : 

1. quadratic assignment problem (QAP), 

2. quadratic set covering problem, 

3. linear integer programming problem, 

4. mixed integer programming problem, 

5 .  graph theoretic problem. 

The quadratic assignment formulation has been traditionally used to model the facility 
layout problem. QAP was first introduced by Koopmans and Beckmann [33] in 1957 as 
a mathematical model for locating a set of indivisible economic activities. Consider the 
problem of allocating a set of facilities to a set of locations, with the objective to minimize 
the cost associated not only with the distance between locations but with the flow also. 
More specifically, given two n x n matrices F = (fij) and D = ( d k l )  where fij is the flow 
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between the facility i and the facility j ,  and d k l  is the distance between the location k and 
the location I ,  and a set of integers N = { 1 ,2 ,  . . . , n} ,  the QAP can be written as follows: 

n n  

where I ~ N  is the set of all permutations of N ,  and n is the number of facilities and locations 

Exact algorithms for solving the FLP include branch and bound ([39], [30]) and cutting 
plane algorithms ([7], [9]). These approaches require rather high computational time as the 
problem size increases, resulting in practice in the solution of only moderately sized problem 
instances. Therefore, a number of heuristic algorithms, such as construction, improvement 
and hybrid algorithms, have been developed for sub-optimally solving large-size instances 
in a reasonable amount of CPU time and computer memory. Recent survey papers on the 
facility layout problem and its solution approaches can be found in [22], [36], and in [43]. 

In this paper we focus on the work that has been done to date for solving the facility lay- 
out problem using simulated annealing (SA) and genetic algorithms (GA). Both heuristic 
approaches are stochastic search techniques modeled on processes found in nature (thermo- 
dynamic process and natural evolution). These heuristic methods have been used to solve 
a wide variety of combinatorial optimization problems ([ 121, [ 191, [ 371, [47]). 

[561. 

2. Simulated Annealing for the Facility Layout Problem 

Simulated annealing was first proposed by Kirkpatrick et al. [31] as a method for solving 
combinatorial optimization problems. The name of the algorithm derives from an analogy 
between the simulation of the annealing of solids first proposed by Metropolis et al. [44], and 
the strategy of solving combinatorial optimization problems. Annealing refers to a process 
of cooling material slowly until it reaches a stable state. Starting from an initial state, the 
system is perturbed at random to a new state in the neighborhood of the original one, for 
which a change of A E  in the objective function value (OFV) takes place. In a minimization 
process if the change A E  is negative then the transformation to the new state is accepted. 

If A E  2 0 the transformation is accepted with a certain probability of p ( A E )  = e T ,  
where T is a control parameter corresponding to the temperature in the analogy and Icb 

is Boltzmann’ s constant. The change A E  in the OFV corresponds to the change in the 
energy level (in the analogy) that occurs as the temperature T decreases. SA gives us 
a mechanism for accepting small increases in the objective function value, controlling 
though the probability of acceptance p (  AE) through the temperatures. Kirkpatrick et al. 
[31] argue that allowing “hill climbing” moves, one can avoid configurations that lead to 
locally optimal solutions and eventually higher quality solutions can be obtained. So the 
main advantage of the simulated annealing method is its ability to escape from local optima. 

- A E  

The main features of the SA method are [ 141 : 

0 the temperature T ,  which is the parameter that controls the probability p ( A E )  of ac- 
cepting a cost-increasing interchange. During the course of the algorithm T is decreased 
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in order to steadily reduce the probability of acceptance of interchanges that increase 
the value of the objective function, 

the equilibrium, i.e. the condition in which a further improvement in the solution using 
additional interchanges is highly unlikely to occur, 

the annealing schedule that determines when and by how much the temperature is to 
be reduced. 

0 

0 

A pseudo-code of the simulated annealing procedure is given in Figure 1 [54]. 

Simulated Annealing Procedure 

Input: A problem instance 

Output: A (sub-optimal) solution 

1. Generate an initial solution at random and initialize the temperature T .  

2. while (T > 0) do 
(a) while (thermal equilibrium not reached) do 

(i) Generate a neighbor state at random and evaluate the change in 
energy level AE. 

(ii) If A E  < 0 update current state with new state. 

(iii) If A E  2 0 update current state with new state 

with probability e r ,  where ICb is a constant. 
- A E  

(b) Decrease temperature T according to annealing schedule. 

3. Output the solution having the lowest energy. 

Figure 1. Simulated Annealing Procedure 

Several implementations of the simulated annealing algorithm have been proposed for the 
facility layout problem. We will present the main concepts of the most recent approaches 
and comment on the computational results. 

Heragu and Alfa in [21], present an extensive experimental analysis of two simulated 
annealing based algorithms, implementing them on two patterns of layout, the single-row 
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and multi-row facility layouts. The first algorithm uses the standard techniques of the SA 
heuristic. In the main step the algorithm examines the random exchange of the positions 
of two facilities. The new solution is accepted if the exchange results in a lower OFV. 
Otherwise, the difference A E  between the OFV of the best solution obtained so far and 
the current solution is computed. This solution is accepted with probability e y .  This 
step is repeated lOOn times or until the number of new solutions accepted is equal to 10n, 
where n is the number of facilities in the layout problem. Next, the algorithm decreases the 
value of temperature T by multiplying it by the cooling ratio T and repeats the main step. 
The stopping criterion is a fixed maximum number of temperature change steps. The initial 
temperature T is set as a number sufficiently larger than the largest A E  encountered for 
problems tested with other heuristics. Guidelines for setting the parameters can be found 
in [57]. 

The second algorithm presented in the same paper is a hybrid SA algorithm (HSA), which 
uses a “core” algorithm to generate a “good” initial solution, and then improves it using the 
SA algorithm described before. The core algorithm is a modified penalty algorithm (MP) 
presented in [22]. Eight test problems of size up to 30 (available in the literature) are used 
for the single-row case. Each test problem is solved 10 times using the same initial solution. 
For six of the problems the HSA algorithm produces optimal or best-known solutions. For 
the remaining two problems, the solutions are better than those previously reported in the 
literature. A comparison between the HSA and the SA algorithms is presented, as well as 
with three other heuristic algorithms (a 2-way exchange, a 3-way exchange and a Wilhem- 
Ward version of simulated annealing [70]) using 15 equal-area multi-row FLPs. The HSA 
in terms of solution quality, performed better than all the other algorithms though requiring 
more computational time than the SA algorithm. Also as the number of annealing runs 
increases, SA seems to produce similar quality solutions with HSA with less computational 
effort. 

Another implementation of the SA algorithm applied to the cellular layout problem can 
be found in [27]. This problem involves the determination of the relative positions of n 
equidimensional manufacturing entities which may represent either the set of machines 
belonging to a cell (intru-cell problem) or the manufacturing cells within a shop (inter-cell 
problem). The objective of both layout problems is to minimize the total material flow 
(cost) between the manufacturing entities. The method presented in the paper is called 
CLASS, which stands for Computerized LAyout Solutions using Simulated annealing. The 
proposed algorithm is a regular simulated annealing algorithm with the following most 
important elements : 

0 Solution space: The solution space consists of a n x n grid, i.e. n2 positions are 
available to be occupied by the n entities. The distance between all pairs of positions 
is determined using geometric or Manhattan distances. 

0 Interchanges: The interchange given a solution can be either a move of an entity from 
its current position to an unoccupied position or an “exchange” of the positions of two 
entities. The two positions from the solution space that are exchanged are selected 
random ly . 
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0 Annealing schedule: The annealing schedule considers the initial temperature to be 
sufficiently large so that all interchanges are eventually accepted. The temperature is 
reduced by multiplying i t  with a constant that takes values between 0 and 1. 

0 Parameters: The number of interchanges to be attempted at each temperature, the 
number of accepted interchanges at each step and the total number of temperature 
change steps are loon, 1On and 100 respectively, following the guidelines of [57], 
exactly as in [21]. 

0 Interchange Acceptance Criterion: The interchange is accepted if a randomly generated 
number between 0 and 1 is less than the value of e F ,  where A E  and T are respectively 
the difference in the OFV and the temperature at the current step. 

CLASS was compared to twelve other layout methods (discussed in [36]) in terms of both 
the quality of the solution and the speed of convergence. Eight problems available in the 
literature were used for the comparison of the algorithms, with sizes between n = 5 and 
n = 30. In each case CLASS either equals the performance of, or outperforms each of the 
other methods. The sensitivity of CLASS to the initial conditions was tested by running 
each of the test problems of sizes 5,6,7, and 8, five times, each time with a different initial 
solution. The optimal solution was obtained in each case, indicating the insensitivity of the 
solution quality to the initial conditions. 

For the inter-cell problem Tam in [64] describes a SA solution approach which takes into 
consideration the traffic between cells, the geometric constraints of the individual cells and 
any occupied regions on the floor plan. The objective is to find a layout that minimizes the 
weighted flow of parts between the manufacturing cells while satisfying the area and shape 
constraints of the individual cells. There are several critical points concerning the problem 
formulation: 

Lclyout representation: The layout takes the form of a slicing structure, which is rep- 
resented by a slicing tree. This is a binary tree representing the recursive partitioning 
process of a rectangular area, through cuts. A cut specifies the relative position of 
the departments (left, right, below or above each other) through four distinguished 
branching operators. 

Solution space: The solution space is defined as the set S which consists of all slicing 
trees that can be generated by rearranging cuts of a given structure. It is shown that 
(SI = qn-’, where n is the number of cells and the size of the neighborhood N is 
IN1 = 4n - 5 .  

Area constraints: The location where a rectangular partition is cut, i.e. the cut point, 
must be chosen so that the split partitions receive their required areas. The cut point is 
determined in a top-down fashion starting from the “root” of the tree. 

Shape constraints: The cell’ s shape is described using the aspect ratio and the 
deadspace ratio. The first ratio is the height over the width of the partition allocated 
to a cell. The second ratio is used to measure the amount of unusable space within the 
partition allocated to a manufacturing cell. Both ratios have lower and upper bounds. 
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Slicing tree construction: Using numerical clustering techniques a slicing tree is con- 
structed in such a way that cells with large inter-cell traffic volume are placed in close 
proximity with each other. 

The attractive element of the algorithm is that it exploits the hierarchical representation 
of the layout, so that the probability of selecting a neighborhood state is not uniformly 
distributed (as in a regular SA algorithm), but is dependent on T.  More particularly, when 
T is high at the first steps of the annealing procedure, a cut near the root of the slicing 
tree will be selected, causing large swings in the cost function value since a large number 
of cells will have to be relocated. As T decreases during the course of the algorithm, 
cuts that are located at a lower level in the tree are selected, to generate a neighborhood 
state. So a guided search in the set of neighboring solutions is adopted. The algorithm was 
compared to two other local search methods, denoted as HC (a straightforward hillclimbing 
method) and BC (a modified version of HC). Two test problems of size n = 20 and n = 30 
were constructed for the comparison. Each method was run 10 times with different initial 
solutions. The computation time was kept the same among the three methods. In terms of 
solution quality the proposed SA algorithm outperformed the other two methods, both in 
average and minimum cost. 

In [34] Kouvelis and Chiang address the single row layout problem (SRLP) in flexible 
manufacturing systems (FMSs). The problem deals with the optimal arrangement of n 
machines along a straight track with a material handling device moving jobs from one ma- 
chine to another. The difficulty of the problem is due to the variety of parts to be processed 
in different ranges of operation sequences. When the sequence of operations of a job is 
not the same as the sequence of the locations of the machines, the job sometimes has to 
travel in reverse (backtrack) in order to receive the required operations. The objective of the 
SRLP is to find the ordering of the machines that minimizes the total backtracking distance 
of the material handling device. If we consider n machines and n candidate locations for 
the machines to be placed, the solution to the SRLP is one of the possible permutations of 
the set S = { 1 ,2 ,  . . . , n )  defined as the set of the workstation assignment vectors, each 
one representing a configuration of the machines in a single row. The neighborhood of a 
configuration is the set N of configurations resulting by the interchange of the locations 
of two machines. The initial configuration is obtained by randomly assigning machines to 
locations. For the setting of the parameters of the SA algorithm, i.e. the initial acceptance 
probability (through which the initial temperature will be calculated), the number of inter- 
changes attempted before the reduction of the temperature, the value of the cooling ratio, 
and the number of steps to reach the equilibrium, a sensitivity analysis was performed with 
respect to each individual parameter. For each parameter a range of values is tested while 
all other parameters are held fixed. The best values of the parameters are kept as the final 
ones to be used in the algorithm. The experimental analysis showed that fine-tuning of 
the SA parameters with respect to each specific application and the selection of the initial 
solution is very important for the performance of the algorithm in terms of quality solution. 

The same authors and J. Fitzsimmons in [35] describe two distinct implementations of 
the simulated annealing algorithm for machine layout problems in the presence of zoning 
constraints. These constraints are restrictions on the arrangement of machines. Positive 
zoning constraints require that certain machines have to be placed near each other, while 



SA AND GA FOR THE FACILITY LAYOUT PROBLEM: A SURVEY 117 

negative zoning constraints do not allow certain machines to be in close proximity. The 
problem is formulated as a restricted quadratic assignment problem. Assuming that the 
number of candidate locations is equal to the number of machines, the objective is to assign 
the machines to the locations in a way that the cost function is minimized with respect to 
the zoning constraints. The first of the SA algorithms called the Compulsion Method, takes 
into consideration the zoning constraints mostly during the search for a new layout in the 
neighborhood of the original one. The second algorithm, the Penalty Method, takes into 
account the presence of the zoning constraints in the objective function through the use 
of appropriate penalty terms. For each layout that violates any of the zoning constraints, 
corresponding penalty terms are charged in the OFV. The fine-tuning of the parameters 
for both SA procedures and the interpretation of the configuration, the neighborhood of 
a configuration and the initial configuration are the same as described for [34]. The two 
versions are compared on an extensive set of computational experiments using test problems 
of size ranges from 5 to 30 machines. The results showed that the Compulsion Method 
outperforms the Penalty Method in terms of CPU time and solution quality. The basic 
advantage of the Penalty Method is that it can be easily changed to handle the addition of 
extra zoning constraints. 

Meller and Bozer in [42] describe a Simulated Annealing Based Layout Evaluation algo- 
rithm (SABLE), which introduces a new generator routine for candidate layout solutions, 
combined with the use of spacefilling curves. The algorithm is implemented on a set of 
single and multiple floor facility layout problems. For the single-floor case test problems 
of sizes 11 to 25 are used, and the performance of SABLE is compared to the performance 
of the algorithms presented in [2], [49], [70], and [8]. An average and a worst-case analysis 
shows that the proposed algorithm performs the best in terms of solution quality. Addition- 
ally, SABLE performed better than Tam’s SA algorithm [64] on a data set of 20 and 30-size 
department single-floor FLPs. Let us note that regarding the department shapes, Tam’s 
algorithm generally assumes rectangular shapes, while the proposed algorithm tends to 
generate departments with non-rectangular shapes. For the multi-floor case, test problems 
with up to 4 floors and 40 departments were used to evaluate the performance of SABLE. 
The results indicate the robustness of the algorithm to changes in the vertical to horizontal 
ratio. 

Other recent Simulated Annealing algorithms for layout problems can be found in [62] 
and [61]. 

For the special case of QAP several SA approaches have been proposed. Burkard and 
Rend1 [ 101 were the first to apply simulated annealing for solving the QAP. They reported 
on rather favorable computational results indicating that the obtained solutions deviate only 
1 - 2 % from the best known solutions. Wilhelm and Ward [70] also applied the SA 
algorithm to quadratic assignment problems, by further experimenting on the procedure. 
They report on the sensitivity of SA to the control parameters, and evaluate the algorithm 
using problems ranging in size from n = 5 to n = 100. In particular computational 
results were provided for the test problems in Nugent et al. E491 and for two test problems 
they introduced in the paper. In [ 111, Connolly discusses the implementation of SA on 
7 problems. The computational results indicate that examining sequentially generated 
neighboring solutions, rather than randomly generated ones, makes the SA algorithm more 
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efficient. In [59] and [60] simulated annealing is used as a tool for interactive facility layout 
decisions. More recently Laursen [38] investigated the performance of the SA algorithm 
by varying two parameters: (1) the number of simulations, and (2) the simulation length, 
while in both cases the algorithm uses the same computational time for a specific instance 
problem. Laursen concluded that the length of each simulation is optimizable and that a 
large range of its values generate a near-optimal solution quality. 

3. Genetic Algorithms for the Facility Layout Problem 

Genetic Algorithms (GA) were first introduced by John Holland et al. [23] at the University 
of Michigan in 1975. Genetic algorithms are search algorithms based on the mechanics of 
natural selection and natural genetics. CA try to imitate the development of new and better 
populations among different species during evolution. Unlike most of the heuristic search 
algorithms, GA conduct the search through the information of a population consisting of a 
subset of individuals, i.e. solutions. Each solution is associated with a fitness value, which 
is the objective function value of the solution. Solutions to optimization problems can often 
be coded to strings of finite length. The genetic algorithms work on these strings. The 
encoding is done through the structure named chromosomes, where each chromosome is 
made up of units called genes. 

There are some determining factors that strongly affect the efficiency of genetic algorithms 

1. The representation of the solutions by strings. 

2. The generation of the initial population. 

3. The selection of individuals in an old population (parents) that will be allowed to affect 
the individuals of a new population. 

4. The genetic operators that are used to recombine the genetic heritage from the parents 
to produce children. The most often-used operators are the crossover and the mutation. 

The selection of individuals that will be allowed to affect the following generation is based 
on the fitness of the individuals. This is done in such a way that individuals with better 
fitness are more likely to be chosen to become parents. The recombination of the population 
consists of the following four operations: 

0 Crossover. By combining the coded solution strings of two parents two children are 
created. If one considers the biological origin of the genetic algorithms it makes sense 
to denote the coded solution string “genome” and look at this procedure as a result 
of mating. To avoid chaotic behavior, not all individuals in the new population are 
generated by this operator. The probability of applying this operator (crossover rate) is 
denoted by p , .  

0 Mutation. In order to give the populations new impulses some random changes in the 
genomes are allowed to occur. The mutation operator changes a “gene” in a solution 
with a probability (mutation rate) p,. 
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0 Local search. It has proven very efficient to search for locally optimal solutions in the 
neighborhood of the children [40]. If one is able to find a better solution then it will 
replace the original child as a member of the new population. 

0 Control of new individuals. It is not unlikely that a child will have worse fitness than 
its parents. In that case the child might not be accepted in the new generation. 

Let us note also that a GA implementation requires the specification of certain parameters 
such as population size, and number of generations. 

Let Pt denote the population at time t .  Then the genetic algorithm procedure can be 
described as in Figure (2) [54]. 

Genetic Algorithm Procedure 

Input: A problem instance 

Output: A (sub-optimal) solution 

1. t = 0, initialize Pt, and evaluate the fitness of the individuals in Pt 

2. while (termination condition is not satisfied) do 
( a ) t  = t + l  
(b) Select Pt , recombine Pt and evaluate Pt 

3. Output the best solution in the population as 
the (sub-optimal) solution. 

Figure 2. Genetic Algorithm Procedure 

We continue with the description of various implementations of the genetic algorithm for 
the facility layout problem. 

As we have seen in the section of SA for the facility layout problem, Tam [64] uses 
a simulated annealing approach to solve the inter-cell problem. The same author using 
the same problem formulation and representation of the floorplan layout as a slicing tree, 
attempts a solution approach to the problem using Genetic Algorithms [63]. In applying a 
GA an important part of the implementation is the coding of solutions as strings of finite 
length. For the problem formulation under consideration, a slicing tree can be generated 
by a string using as its elements the nodes of the tree in a sequence which starts from the 
bottom level nodes and ends at the root of the tree. The nodes of the tree represent either 
facility identifications (operands) or “cut” symbols (operators). The proposed GA uses for 
the recombination of the population the crossover and mutation operators, as described for 
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the general genetic algorithm. For the selection of the new population the reproduction 
operator is used. Under this operator the chance of being selected to remain in the new 
population Pt+l is proportional to the fitness value of the individual. This operator assigns 
to each individual a sampling rate T ( s ,  t )  = p ( s ) / f i ( s ) ,  where function p measures the 
fitness level of individual s and f i ( s )  is the average fitness of Pt. So the individuals with 
above the average fitness will have a higher survival probability than those below the average 
fitness. The selection of the parameters population size, crossover rate p ,  and mutation rate 
p,, is based on previous studies that can be found in the literature ([ 181, [%I). Four layouts 
with 12,15,20, and 30 facilities were retrieved from Nugent et al. [49]. Initial solutions 
were obtained by randomly generating cut operators for 30 slicing trees. For each case the 
GA was run for 150 generations with 10 different sets of initial solutions. The best and 
average solution in each generation were gathered. The performance of GA was compared 
with that of a hillclimbing method (HC), which searches through a neighborhood N ,  where 
N is the set of operator sequences generated from changing one operator. GA outperformed 
HC both in terms of minimum and average costs. For the 30-facility layout GA improved 
the minimum cost by 10.5% and the average cost by 13%. 

Koakutsu and Hirata [32] propose an interesting combined approach called genetic sim- 
ulated annealing (GSA) for the solution of the floorplan design of VLSI (Very Large Scale 
Integrated) circuits. The problem involves the arrangement of a given set of rectangular 
modules (with no fixed shapes or dimensions) in the plane, with the objective to minimize: 
(1) the area of the enclosing rectangle which should contain all the modules, and (2) the 
total wire length between modules that should be connected in the circuit. The main features 
of the algorithm are the following: 

0 Stochastic Optimization: GSA uses the stochastic optimization used in simulated an- 
nealing so that a neighbor state for which there is an increase of the cost function is 
accepted with a certain probability. 

0 Multiple Search Paths: A population of solutions corresponding to the population of 
GAS is used to initialize the search in multiple directions. The stochastic optimization 
is applied to each solution of the population. 

0 Selection of search paths: The selection operator replaces solutions which have value 
higher than the average value of the population, with solutions that have lower cost 
value than the average value of the population. This way, paths which are expected to 
reach good solutions are selected. 

0 Genetic Operators: A genetic crossover operator is used to generate new solutions. 

The formulation of the problem represents the floorplan layout as a slicing tree. The 
representation of a solution as a string is similar to the one described previously in [63], 
using in this case, vertical and horizontal cuts with corresponding branching operators. 
GSA is tested on three floorplan problem instances. The first has 16 modules, each one a 
fixed square of unit area, having wires connecting to its horizontal and vertical neighbors. 
The second problem has 16 modules and 25 wires, and the third one has 20 modules and 
31 wires. For the last two problems the total module area is 100. The proposed algorithm 
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was compared to a regular SA algorithm. Both algorithms run 100 times with different 
initial solutions for each of the above problem instances. The average costs are used for 
the comparison. The results show that GA improves the average cost by 1.7% - 9.8% 
compared to the SA within the same computational time. 

More recently Banerjee and Zhou [3] developed a genetic algorithm to solve a variation of 
Montereuil’ s mixed integer programming formulation for the FLP [46], and in particular 
for the special case of single loop material Jlow path configuration. They introduce a 
“knowledge-augmented mutation operator” to determine the flow path direction, which 
appears to perform well for the cases where the layout has very low flow path dominance. 
Previous applications of GA for facilities layout design can be found in [4] from the same 
authors and Montreuil. 

Tate and Smith [65] applied GA using an adaptive penalty function to the unequal-area 
facility layout problem with shape constraints. The shape restrictions are expressed through 
a flexible bay structure proposed in the literature [68]. The rectangular area in which the 
facilities are to be located is divided into vertical bays of different width and each bay is 
divided into rectangular departments of different length. The encoding of the solutions to 
strings is done with two distinct chromosomes. The first one is the sequential chromosome 
which is represented by a permutation of the set N = {1,2, . . . , n} ,  where n is the number 
of departments. The sequence of the permutation starts by reading departments bay to bay, 
from top to bottom and from left to right at the rectangular area. The second chromosome 
is the bay chromosome where each gene shows for each bay the number of departments 
contained in the previous bays including the involved one, showing this way the breaks that 
occur in the sequence between bays. For example, consider 4 bays having 3, 4, 6 and 2 
departments respectively starting from the left bay. Then using the bay chromosome the 
solution encoding is (3,7,13).  Note that the last breakpoint at 15 is obvious. The proposed 
GA uses variants of crossover and mutation operators. 

The variant of the crossover operator works as follows: using two individuals to be 
the parents, one offspring (child) is generated by the following rules. For the case of 
GA encoding using the sequential chromosome, each location in the child’ s sequence 
is the department number in the corresponding location from one of the parents, both 
having the same probability to be selected. This will force the common locations in 
the sequences of the parents to be carried over to the child. Also each department must 
occur only once in the child. For the bay chromosomes, the location and number of 
bay breaks in the child’ s sequence is taken from one of the parents, both having equal 
probabilities to be selected. 

The mutation uses three different operators. Two of the operators alter the number of 
bays affecting only the bay chromosome and one operator reverses a subsequence of 
the departments affecting the sequence chromosome. 

The evolution parameters, i.e. the population size, and the crossover and mutation rates are 
determined after several trial runs. An adaptivepenalty function is used to find good feasible 
solutions. The penalty function is adaptive because during the course of the algorithm it uses 
observed population data to adjust the level of the penalty that is applied to the infeasible 
solutions. Test problems with size ranges from 10 to 20 departments, already published in 
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the literature ([6], [69], [2]) were used to evaluate the efficiency of the proposed genetic 
algorithm. The proposed approach proved to be the best in terms of quality solution when 
compared with previous published results for the problems under consideration. 

Genetic algorithms are inherently parallel in nature. Several implementations of GA in 
parallel environments have recently appeared, introducing in this way a new group of GA, 
the Parallel Genetic Algorithms (PGA). The population of a parallel genetic algorithm is 
divided into subpopulations. Then an independent GA is locally performed on each of 
these subpopulations, and the best solutions in each case are transferred to all the other 
subpopulations. Two types of communication are established among the subpopulations 
[48]. Either among all nodes where the best solution of each subpopulation is broadcasted to 
all the other subpopulations, or among the neighboring nodes, where only the neighboring 
subpopulations receive the best solutions. 

The most important features of PGA, which result in a considerable speedup relative to 
sequential GAS, are the following [28]: 

0 Local selection : In sequential GAS the selection operation takes place by considering 
the whole population. In a PGA this operation is performed locally by the selection of 
an individual in a neighborhood. 

0 Asynchronous behavior : It allows the evolution of different population structures 
at different speeds, resulting in an overall improvement of the algorithm in terms of 
computational time. 

0 Reliability in computation performance : The computation performance of one proces- 
sor does not affect the performance of the other processors. 

Several implementations of PGA have been proposed for the solution of the quadratic 
assignment problem. An application of an asynchronous parallel GA called ASPARA- 
GOS has been presented by Muhlenbein [47] for the QAP, introducing a polysexual voting 
recombination operator. The PGA was tested on QAPs of size 30 and 36 with known 
solutions. The algorithm found a new optimum for the Steinberg’s problem (QAP of size 
36). The numbers of processors that were used to run this problem were 16,32 and 64. The 
64 processors implementation (on a system with distributed memory) gave by far the best 
results in terms of computational time. Furthermore, Huntley and Brown [26] developed a 
parallel hybrid of SA and GA to solve the QAP approximately. A parallel genetic algorithm 
is used to produce a good initial solution for each population and the SA algorithm is used 
for improving these solutions. More recently, Battiti and Tecchiolli in [ 5 ]  developed par- 
allelization schemes of genetic algorithms for quadratic assignment problems presenting 
indicative experimental results. 

4. Concluding Remarks 

In this paper we summarized the work that has been done in recent years in implementing 
simulated annealing and genetic algorithms for solving the facility layout problem. Both 
heuristic approaches have been successfully used to approximately solve difficult combi- 
natorial optimization problems. For the FLP also, the procedures seem to find sub-optimal 
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solutions in a reasonable amount of computational time. Considering the latest interest 
and experience in efficient implementation of search algorithms on parallel multiprocess- 
ing computers ([41], [50], [51], [52] ,  [54], [53], [55] )  that significantly increase the sizes 
of the problems that can be solved, the use of these heuristics becomes more attractive. 
It is expected that efficient parallel implementations of simulated annealing and genetic 
algorithms will be very useful for practitioners dealing with facility layout problems. 
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Abstract. Sequential quadratic (SQP) programming methods are the method of choice when solving small or 
medium-sized problems. Since they are complex methods they are difficult (but not impossible) to adapt to solve 
large-scale problems. We start by discussing the difficulties that need to be addressed and then describe some 
general ideas that may be used to resolve these difficulties. A number of SQP codes have been written to solve 
specific applications and there is a general purposed SQP code called SNOPT, which is intended for general 
applications of a particular type. These are described briefly together with the ideas on which they are based. 
Finally we discuss new work on developing SQP methods using explicit second derivatives. 

Keywords: nonlinearly constrained minimization, quadratic programming, large-scale optimization 

1. Introduction 

The problem of interest is the following: 

minimize F ( x )  
X €!It* 

s.t. c (x )  >_ 0, 
NP 

where F :  f ln -+ !It and c: Znn -+ $Irn. If second derivatives are not known, computing x * ,  a 
point satisfying thefirst-order KKT conditions for NP is the best that can be assured. Oth- 
erwise, it is possible to assure finding a point satisfying the second-order KKT conditions. 
Our particular interest here is when n and possibly rn are large. 

When solving large problems the precise form of what are mathematically equivalent 
forms of NP is important. In practice the constraints may be a mixture of linear and 
nonlinear inequality constraints, simple bounds on the variables and equality constraints. 
Also there may be upper as well as lower bounds on some constraints and some variables may 
appear only linearly in the problem. Such trivial mathematical considerations may assume 
quite large proportions in some practical algorithms. Success in solving large problems 
often depends on attention to a myriad of small details in the definition of the model and 
algorithm. The interface for software for large problems is more complex since the user 

*Research supported by the National Science Foundation Grant DMI-9500668; the Office of Naval Research 
Grant N00014-96- 1-0274. 



128 MURRAY 

needs to specify more details of their problem in order for the software to be efficient. 
The level of description in this paper is such that such details will not be given much 
consideration, but such details are vital in practice. 

2. A basic sequential quadratic programming method (SQP) 

Typically SQP methods generate a sequence of points { x k }  converging to a solution, by 
solving at each point, xk, a quadratic program (QP), which for problems in the form of NP 
will be of the form 

minimize V F ( X ~ ) ~ P  + i p T H k p  
p€M" 

s.t. C(Xk) + V c ( q ) p  2 0 
QP 

for some positive definite matrix Hk. Let p k  (referred to as the search direction) denote the 
unique solution to QP. We define xk+l = xk + a k p k ,  where the steplength C Y ~  is chosen to 
achieve a reduction in a merit function. The matrix Hk is usually an approximation to the 
Hessian of the Lagrangian function 

L ( x ,  A) = F ( x )  - hTc(x),  

where h are estimates to the Lagrange multipliers. Since the Hessian of the Lagrangian 
function is not positive definite this clearly poses some difficulties although such difficulties 
arise even when n is small. In most cases the approximation is obtained using quasi-Newton 
updates to an initial approximation that is usually diagonal. 

An often unappreciated feature of SQP methods is that they automatically take advantage 
of linearity in a linear constraint. For example, if the initial estimate satisfies a linear 
equality or inequality constraint then so do all subsequent iterates. Such constraints are 
also automatically excluded from the merit functions. Once a linear constraint is satisfied it 
is never again violated. Nonetheless in both large and small problems there is an advantage 
to taking specific note of whether a constraint is linear. Although such a distinction may 
not impact the sequence of iterates it does impact the effort to compute the iterates and is 
therefore important in the large-scale case. 

Merit functions 

Merit functions are a means of obtaining the required convergence. Since the iterates may 
not be feasible some means of defining whether one point is better than another is required. 
The first merit function proposed (see [4] and [3 11) was the quadratic or 12 penalty function. 
Later the 11 penalty function was used (see [27] and [38]). The 11 penalty function has the 
advantage (as would any merit function based on a norm) of requiring only a finite penalty 
parameter. However, such merit functions used alone may inhibit the rate of convergence. 
It is also our experience that they are not as efficient as smooth merit functions regardless of 
this deficiency. Smooth merit functions have been defined based on exact penalty functions 
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(see [ 141). However, such an approach requires restrictive assumptions about the rank of 
the Jacobian matrix and uses problem derivatives in the definition of the merit function. If 
either of these two restrictions are to be avoided it requires searching in a higher dimensional 
space. In [22] and [26] the following merit function was proposed 

where the search is now in the triple space of x ,  h and s. Interestingly the idea of searching 
in the space of the slack and dual variables has become common practice in the application 
of barrier (interior-point) methods to linear programs. The above merit function is used in 
NPSOL [22] and SNOPT, a new SQP code for large problems (see [20] and [21]). 

3. Large problems 

SQP algorithms are viewed by many as the best approach (see [24]) to the solution of NP 
when n is small or moderate (say less than 1000). In this sense “best” means it requires 
the least number of evaluations of the users functions F ( x )  and c(x). For small problems 
the effort to solve the QP subproblems is rarely relevant provided the method of solution is 
done with reasonable care. To adapt SQP methods to solve large problems requires being 
able to solve efficiently the resulting large QP subproblems. One approach taken in Murray 
and Prieto [32] is to show that a suitable search direction may be obtain without the need 
to solve completely the QP subproblem. They also prove convergence of SQP methods 
that incorporate a large degree of flexibility in the definition of the algorithm in order to 
accommodate the type of adaptation that is necessary when designing algorithms for large 
problems. Nonetheless even to solve the subproblem incompletely is likely to require the 
use of sparse matrix technology. It is also necessary to store the matrices defining the QP 
problem in compact form. A basic assumption made is that vc(xk )  is a sparse matrix and 
hence there are a number of ways of storing this matrix in compact form. In general when 
Hk is obtained by a quasi-Newton approximation it will not be sparse so some modification 
to the standard quasi-Newton approach is necessary. 

One key to a successful SQP algorithm for large problems is a fast algorithm to solve 
(or partially solve) the QP subproblems. Solving a sequence of related QP problems is not 
quite the same as solving a single QP problem. Usually after a few nonlinear iterations the 
active set of the QP subproblem changes only slightly. The active set of one QP subproblem 
is then close to that of the following subproblem. It is important that full advantage is taken 
of this information. 

It should be understood that it is unlikely that a single SQP code will prove all powerful. 
Indeed it is unlikely a single QP code that is efficient under all circumstances will emerge. 
Efficiency for a QP algorithm is often dependent on the nature of the solution. For example, 
in many problems the degree of freedom in the problem is small. For such problems methods 
that assume this property will be more efficient than methods that do not. Moreover the 
difference is significant. Such methods, however, are likely to perform poorly when the 
property is not true. It can often be assessed prior to the solution whether or not the property 
holds. For example, if the number of equality constraints is almost equal to the number 
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of variables then the degree of freedom in the problem must be small. Similarly it will 
be known when the number of constraints is small since then rn is small. Again one can 
design an SQP method specifically for that class of problem. Other issues impacting the 
design are the relative cost of the linear algebra operations compared to that of evaluating 
the user’s functions and derivatives (if derivatives are available). Again such information 
may be obtained prior to solving a problem. 

4. Compact forms for Hk 

As we have already mentioned for large problems the standard quasi-Newton approach is 
no longer adequate. Much of the work done on extending quasi-Newton methods to large 
problems has been directed at the unconstrained case. Although the need to obtain some 
compact expression for an approximation to the curvature of a function is the same for both 
unconstrained and constrained problems the use of this information in constrained problems 
is more complex. Moreover the nature of curvature for constrained problems is different. 
Research in this area may be classified under the following general approaches: 

(i) Limited memory approximations. 
(ii) Sparse quasi-Newton approximations. 

(iii) Group partial separability. 
(iv) Projected quasi-Newton approximations. 

Limited memory approximations 

Limited memory approximations are easily understood and have been the subject of con- 
siderable research and experimentation (see [6, 8, 9, 16, 18, 28, 361). Instead of & being 
a result of k updates only a limited number of updates are used. There are various ways 
this may be done. We could for instance keep the last t updates, where t is small, say less 
than 25 and typically less than ten. The key point is that Hk is not stored expikitty rather 
the initial approximation is stored (usually a diagonal matrix) together with the information 
required to perform the updates. Depending on the form of the update the storage require- 
ments are at worst 2nt and at best nt. An alternative to retaining information on the last t 
updates is to restart every t iterations. This has some advantages for problems with linear 
constraints. Yet a third alternative is to try and retain what is thought to be the t most useful 
updates. 

Much of the work on limited memory methods has been directed at the unconstrained case 
and it is likely the experience there does not fully carry over to the nonlinearly constrained 
case (it may be better). Although simple in concept there are many ways to implement a 
limited memory method. How the updates are stored and in what form impacts the cost of 
operations with H k .  Since Hk is not stored explicitly this limits the methods of solution of 
the QP subproblems. This approach has the property that it does not depend on the Hessian 
of the Lagrangian being sparse. Although one could argue that this is likely it does save 
a user establishing that fact or possibly the need to cast their problem in a form where it 
is true. 
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Sparse quasi-Newton approximations 

The success of quasi-Newton methods on small dense unconstrained problems prompted 
considerable research on methods that could update an approximation to Hk that has the 
same sparsity pattern as V 2 F ( x ) .  For constrained problems we are concerned with the 
sparsity pattern of V 2 L ( x ,  A). Despite considerable work few useful results have emerged. 
Moreover, it is computationally costly to perform the updating. A key difficulty is to 
preserve the correct sparsity pattern and the property of inherited positive definiteness. 
Recently (see [ 171) a number of workers have returned to this line of research so some new 
more useful results may be forthcoming. 

This approach determines an explicit representation of H ( x )  so it does not limit the 
methods of solution of the QP subproblem. However, it is only applicable to problems for 
which V 2 L ( x ,  A) is sparse. 

Group pa rtia 1 separability 

Another approach advocated for determining a compact approximation to Hk is to use the 
property of partial separability or group partial separability (e.g., [ 10, 12, 131). Quite 
possibly this approach may result in Hk not being known explicitly ( V 2 F ( x )  may not 
be sparse). 

A function is said to be group partially separable if it can be written in the form 

I 

where each function y i ( x )  has the form y ( x )  = aTx + xi f , (x) ,  with each function 
f j ( x )  involving its own (small) subset of the variables x .  Obviously such a representation 
is not unique for a given function F ( x ) .  The basic idea is that instead of approximat- 
ing the Hessian of F ( x )  directly the Hessians of gj with respect to yi may be approxi- 
mated and that for V 2 F ( x )  constructed from these matrices. By assumption the function 
gi(yi)  is a function of only a few variables, which implies the approach gives a com- 
pact representation of Hk. In general Hk may not be sparse since V 2 F ( x )  need not be 
sparse. If that is the case it limits the use of Hk to be indirect when solving the QP 
subproblem 

We have not favored direct use of group partial separability, since it seems likely that 
many users would not know how to define gi, y i ( x ) ,  etc., and the user interface uti- 
lizing this information if available is inevitably complex [ 113. It seems to us to be an 
idea primarily suited to unconstrained or linearly constrained problems. When a nonlin- 
early constrained problem is formulated, such convoluted functions are unlikely to occur 
(they are often a consequence of eliminating nonlinear constraints) because the mod- 
eler always has the option of defining extra variables and constraints. For example, the 
problem 

minimize F ( x )  (4.2) 
X 
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could be treated as 

minimize F ( y )  = xi gi(yi) 
subject to yi = UTX + fi(X). 

X . Y  (4.3) 

Of course the problem is now constrained, but this is of no consequence if there are other 
nonlinear constraints. It is not that the transformation from (4.2) to (4.3) need be made; 
rather, the second formulation is the natural one. Indeed, forming convoluted functions 
such as (4.1) is inherently dangerous. For example, consider the impact on the derivatives 
of eliminating the variable y j  and the constraint x,f + y,f = 1 from a problem. It may well 
be better to solve a constrained problem rather than a difficult unconstrained problem. A 
good rule of thumb when solving large problems is that it is better to have a formulation of 
the problem that has more variables and more constraints. 

The case for partial separability is much stronger since it requires only identifying that 
the function can be written in the form 

i 

where it is assumed each function gi ( x )  is a function of only a few variables. It is possible 
that the user need not provide the above form for the problem since an attempt to identify 
such a form can be made using information about the sparsity of the Hessian matrix (this is 
a non-trivial task and finding the best form is even harder). 

Consider now problems of the form NP. In the constrained case we wish to approximate 
the Hessian of the Lagrangian function 

~ ( x )  = ~ ( x )  - hici(x) 
i 

which is naturally in partially separable form provided F ( x )  and c i ( x )  are functions of 
only a few variables. Let J ( x )  = V c ( x ) .  If J ( x )  is sparse (our basic assumption), then 
in general each constraint function must involve only a few variables (some of which may 
appear linearly). The user already supplies the sparsity structure of J ( x ) ,  and from it we 
may deduce the set of variables involved in each function ci(x) .  It is also reasonable for 
a user to be asked to specify the variables that appear nonlinearly in the objective. For 
many problems such as those arising from optimal control, this is a trivial requirement. 
(Indeed many problems have linear objectives.) Such a requirement is already a feature of 
the codes MINOS and SNOPT. These codes require the variables that occur nonlinearly 
in the objective and constraints to be specified. If these variables are listed first then it is 
known that Hk has the form 

For many problems the number of variables occuring nonlinearly in the problem is much 
smaller than the total number of variables. If it is small enough then H k  may be stored as 
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a dense matrix. It also implies there are lots of constraints active at the solution and this 
knowledge impacts the choice of method for solving the QP subproblems. 

Using a quasi-Newton update procedure we can approximate HO % V 2 F ( x )  and Hi x 
V2ci ( x )  and then form the appropriate linear combination HO - x j  hi Hj to obtain an 
approximation to V ~ L .  

To illustrate, consider obtaining the approximation Hj x V2ci ( x ) .  For some permutation 
Pj, we have 

where fij(x) is a dense matrix of order ni, the number of variables appearing in ci(x) .  
Assuming nj is small, we may implement quasi-Newton updates by maintaining a dense 
approximation H i  % I? j ( x ) .  Since the search directions have no special properties it is likely 
that the rank-one update will be most suitable. It may be that a reasonable approximation 
to each individual Hessian will be obtained in only a few iterations. For example, if ci 
is a quadratic function of nj variables, its Hessian approximation will be correct after ni 
iterations. Typically we expect nj to be less than 10. 

An important feature of this approach is that the individual Hessian approximations are 
independent of the Lagrange multipliers estimates. If the multiplier estimates are poor at 
some stage, then any quasi-Newton method approximating V 2 L  directly will take many 
iterations to recover even if the multiplier estimates improve immediately. By contrast, the 
approach based on partial separability has the potential to recover immediately. In general 
the resulting approximation Hk will not be positive semidefinite and this has consequences 
as to the definition and method of solution of the QP subproblem. Many of the issues that 
arise due to the lack of convexity are similar to those that arise when using exact second 
derivatives and are discussed in Section 6. 

Projected quasi-Newton approximations 

Given a nonsingular matrix Q k  and an approximation Q,'HkQk to the projected Hessian 
QLV2L ( x k )  Qk then it is not necessary to know Hk explicitly to implement an SQP method. 
At first sight it may not seem we have made a significant step by requiring an approximation 
to QlHkQk rather than Hk. It will be seen in Section 5 that provided Qk is chosen appro- 
priately this strategy fits well with the null-space method for solving the QP subproblem in 
the dense case. The same is true in the large-scale case provided care is exercised in how 
Q is defined. The basis of this approach (and the null-space method of solving QPs) is the 
following observation. Suppose we have the QP problem 

minimize g T p  + $ p T H p  

J p  = 0 

then the solution is given by 

p* = Zp,, where p ,  = - ( Z T H Z ) - ' Z T g  (4.5) 
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and Z is a basis for the null-space of the rows of J. The key point of this result is that only 
the matrix Z T H Z  is required to define the solution and not H .  If the dimension of Z is 
small then Z T H Z  may be stored as a dense matrix. If we define Q (Z Y ) ,  where Y is 
chosen to make Q nonsingular then we could define Q T H  Q as 

where D is a diagonal matrix. Of course if Q is a dense matrix or cannot be stored in 
compact form we have gained nothing. Fortunately it is possible to define Q in such a 
manner as to make operations with Q and Q-' efficient. Moreover, when a null-space 
method is used to solve the QP subproblem no additional storage is required. 

In practice when the constraints are nonlinear we do not have zero on the right-hand- 
side of the QP constraints nor in general do we have just equality constraints and these 
differences raise complications. The adaptations require are wedded to how the solution of 
the QP subproblem is found and are described in the next section. 

5. Solving large QP problems 

We shall assume that the QP is convex. Note that unlike the case of dense problems it may 
be that Hk is structurally singular (4.4). This limits (but does not eliminate) the use of the 
dual when solving the QP subproblem. 

There are a variety of methods to solve large QP problems and which is best will depend 
on the characteristics of the QP and its solution. We shall consider four basic approaches 
(there are others): 

0 A Schur-complement method. 
0 A null-space method. 
0 A range-space method. 
0 A barrier (interior-point) method. 

The first three are active-set methods and differ only in how the relevant linear equations 
are solved. Which of the three active-set methods to use depends largely on the number of 
active constraints. Null-space methods are efficient when the number of active constraints 
is almost the same as the number of variables. Range-space methods are efficient when 
there are only a few active constraints. If neither of these conditions hold or is known to hold 
then the Schur-complement approach is recommended. The use of a barrier algorithm to 
solve the subproblem as opposed to applying a barrier approach to the nonlinear problem is 
likely to be preferred when the user's functions are expensive to compute. Usually applying 
a barrier approach to the original nonlinear problem results in a substantial increase in the 
number of nonlinear iterations. In theory the number of nonlinear iterations is independent 
of how the QP subproblem is solved. In practice there are likely to be small but essentially 
negligible differences on most problems. Whether a barrier algorithm is preferable to an 
active-set method to solve the QP is more difficult to decide. Barrier methods may prove 
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very efficient when the number of constraints is small. They are likely to be inefficient 
when there are many variables on their bounds. 

It is sometimes beneficial if the QP is in standard form although this is not always strictly 
necessary. This helps in the barrier approach since the ill-conditioning in the resulting 
subproblems is then benign (see [37]) and in the null-space method it simplifies the updating 
procedures. 

In all four approaches we are required at each iteration to solve the KKT equations, which 
are of the form 

H AT 
K (  -:) = -(E), where K SE ( A  ), (5.1) 

where H is the Hessian approximation and A is some set of rows from the constraint 
Jacobian. The three active-set methods differ in how they partition these equations in order 
to solve them. 

A Schur-complement method 

If KO denotes the initial KKT matrix the Schur-complement algorithm (see [25]) first forms 
a sparse factorization of this matrix to determine the first iteration. Subsequent iterations 
are performed using this factorization and a dense factorization of the Schur-complement 
of the initial matrix. In order to do that it is necessary to construct in the tth QP iteration a 
KKT matrix, K t ,  that is an augmented form of the initial matrix. The Schur complement 
grows monotonically and since this is in general a dense matrix it is necessary to replace 
periodically the initial factors of KO with a factorization of the current KKT matrix. The 
method fits well with the incomplete solution approach since then the need to perform a 
refactorization is reduced. 

The application of the standard Schur-complement algorithm to the special case of solving 
the sequence of QP problems that arises in SQP methods is straightforward (see [23] and 
[25]). It is not strictly necessary to be able factor KO. What is required is to be able to 
solve linear systems of the form KO = U,, relatively quickly. In general two such systems 
require solving at each QP iteration. Such a requirement usually eliminates the use of 
iterates procedures, but not more elaborate factorization approaches such as also using a 
Schur-complement approach when solving these systems. 

A range-space method 

This is similar in some respects to the Schur-complement algorithm except instead of taking 
the Schur complement of the initial KKT matrix we use in the tth QP iteration the Schur 
complement of H,, where Ht is the Hessian portion of K,. Note that this approach requires 
Ht to be nonsingular. Since the Schur complement is in general a dense matrix the approach 
is only feasible when the Schur-complement is limited in size as it would be if we have 
few constraints. The fact the Schur-complement is limited in size implies V 2 L ( x )  is nearly 
full rank hence assuming that Ht is full rank is not unreasonable. It is necessary with 
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this approach to solve many systems with Hl and while iterative methods are possible the 
approach is best suited to the case where solves with H, are cheap and this usually implies 
Ht is sparse and possibly well structured. The adaptation to the case of solving a sequence 
of QPs is again straightforward. Unlike the Schur-complement approach where the Schur 
complement is built from scratch as iterations proceed we need to form an initial Schur 
complement and factor it. In general there will never be a need to discard these factors due 
to them becoming too large since a given KKT matrix does not have to be an augmentation 
of the preceeding KKT matrix. Consequently, the Schur complement may grow or shrink 
in size as the iterations proceed and there is an apriori limit on its growth. Obviously if a 
problem has only a few constraints it is known apriori that the Schur complement will not 
be large. Only general constraints are of significance since bounds on the variable may be 
used to solve a KKT system of reduced size. 

The range-space approach is occasionally suitable for problems for which the Schur 
complement is large provided it is sparse. Such problems do arise when V 2 L ( x )  has such a 
simple structure that (V2L(x))- '  is sparse. Usually in such cases V 2 L ( x )  may be computed 
or approximated directly by a small number of finite differences. The simplest case is when 
V 2 L ( x )  is a diagonal matrix. Sometimes a problem may be reformulated by adding some 
additional variables and constraints to obtain a such a simple structure. This is the case 
when V 2 L ( x )  is a low rank change to a diagonal matrix. 

A null-space method 

The null-space method is based on the Eqs. (4.5). It may be used either in conjunction with 
a projected Hessian approach or with a direct approximation to the Hessian. Approximating 
the reduced Hessian has two benefits, it requires storing only a small matrix and it facilitates 
the solution of the QP subproblem, which is solved very efficiently if the predicted active 
set is correct. In the approach taken by Gill et al. [20] and Eldersveld [ 151 the matrix Q 
is never required explicitly and the null-space algorithm may be efficiently implemented if 
solves with Q and Q'HQ are efficient. As before we define Q = (2 Y ) ,  but now the$rst 
columns of Z span the null space of the Jacobian of the current active set. By allowing the 
columns of 2 to span a bigger space than that defined by the null-space of the active set we 
are able to cope with some changes to the active set. If Z is not too large then Q'HQ is 
still cheap to operate with and requires little storage. Moreover, and this is a key point, the 
solution of the QP is relatively trivial to compute since it is not necessary to form Z'HZ 
(in practice the Cholesky factor of this matrix is recurred). 

We still require a sparse representation for Q .  The usual sparse representation for Z is 
to make use of the matrix 

where B is a basis from the Jacobian of the active set and S is the remaining columns of 
the Jacobian plus some columns of the full Jacobian corresponding to variables currently 
on their bounds. The matrix Z is not stored explicitly instead the sparse LU factors of B 
are stored. Since the algorithm requires only operations by Z and 2' this suffices. 
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It is convenient when using a null-space method to assume the problem is in standard 
form. If the active set changes the columns of S and B may also change, but not necessarily. 
It is shown in [21] that it is important to include any columns corresponding to slack variables 
in B .  This is because it is known that the Lagrangian function is linear with respect to the 
slack variables, which raises the spectra that the reduced Hessian could be singular unless 
the slack columns are in B.  

The choice of Y is less clear. In [20] and [ 151 the matrix Y is represented by 

Y = ( B J .  

It can then be shown that Q-' is given by 

Q - ' = ( '  B S  '), 
A barrier method 

In theory barrier methods for convex QP are a simple extension to barrier methods for linear 
programming (LP). In practice the computational implications of having a quadratic terms 
significantly alter the algorithm. It is helpful to assume the original nonlinear problem is 
in standard form, that is the constraints are of the form 

c(x)  = 0 x 2 0. 

It follows that the QP subproblem is in the following standard form. 

QPSUB minimize g T p  + i p T H p  subject to A p  = -c ,  p 2 - x ,  
p€!W 

As we discuss below, this choice of format is crucial. 
The logarithmic barrier subproblem for this QP is 

where p is the barrier parameter. 
Newton's method applied to the subproblem results in the need to solve a sequence of 

KKT systems of the form (5.1). The leading principal submatrix is the Hessian of the 
barrier function, HB = H + P D - ~ ,  where D = diag(xj + p j ) .  In the LP case, HB is 
the positive-definite diagonal matrix p W 2  and the KKT system can be reduced to two 
systems that define the normal equations and residual vector for the weighted least-squares 
problem min 11 Dg - D A T n  112. The least-squares approach is not generally applicable to 
quadratic problems, since H B  can be indefinite or singular, but in any event we believe 
that better numerical properties are obtained by treating the KKT system directly. The 
primal-dual method results in a KKT-type system in which the leading principal submatrix 
is H + ZD- '  , where Z is an estimate of dual slack variables. 
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Benejits of the standard form 

It was shown by Murray [3 11 that if the number of variables on their bounds at the solution is 
between zero and n - m, then limp+0 ~ ( p )  = 00, where ~ ( p )  is the condition of the KKT 
matrix at the minimizer of the subproblem. We can now show that this ill-conditioning, 
though still present, is benign under certain circumstances [37]. 

It is easy to see that the ill-conditioning is harmful if the problem is not in the proposed 
format. Suppose that the problem includes some general inequality constraints Ax 3 b as 
well as bounds x 2 0. The Hessian of the barrier function is then 

where 6 = diag(6Tx - bi) and D = diag(x,,). If an inequality constraint 6Tx 2 bi is 
active at the solution, it can be shown that Iimp30 p / @  = 00, and precision in H must be 
lost during theformation of H B .  The same situation must arise if the problem is in standard 
form and the optimal value of x,, is zero; however, only the precision of the j t h  diagonal 
of H is affected. Analysis shows that the condition number governing the sensitivity of the 
KKT matrix is K B S ,  the condition of the KKT matrix of the original QP in just the basic and 
superbasic variables. It is possible to solve systems of the form HBX = y accurately but 
to do so requires either transforming the system into solving KKT-type systems or decom- 
posing the problem into solving two systems of equations. In either case it is necessary to 
divide the rows of A into two types. The benefit of the standard form is that such special 
techniques are not required. 

Solving the KKT system 

If the solution of a system is insensitive to small perturbations in the matrix, it does not 
follow that all solution methods will be satisfactory. However, a direct method using an LU 
or LBLT factorization preserves the benign nature of the ill-conditioning. 

Warm starts 

We are not solving a single QP but a sequence of related QPs. For active-set methods 
“warm starts” mainly means using the “old” active set as an initial trial active set. For 
barrier methods warm starts are somewhat more complex. It may be that once the active 
set settles down it is worth switching to an active-set method. 

6. Methods using second derivatives 

It has been our observation over many years that for large problems for which the first 
derivatives may be computed it is often possible to compute second derivatives (see [7] and 
[39]). In many practical problems (see Section 7) the Hessian matrix, like the Jacobian 
matrix, is sparse. Quasi-Newton approximations to the Hessian of the Lagrangian function 
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are usually positive definite with a bounded condition number. In this way, a strictly convex 
subproblem is obtained, and if a feasible point exists, a solution exists and is unique. In 
contrast, the use of exact Hessians or quasi-Newton approximation that are not positive 
semi-definite presents a number of technical difficulties, most of which stem from the 
loss of control over the properties of Hk. Defining the Hessian of the QP subproblem as 
the Hessian of the Lagrangian function leads in general to nonconvex subproblems. On 
the other hand, there are numerous theoretical and practical benefits to be derived from the 
explicit use of second derivatives. For example, it is possible to define an algorithm that 
generates a sequence that converges to a second-order KKT point. Also, in practice it has 
been observed when solving other classes of optimization problems that second-derivative 
methods usually converge in much fewer iterations than alternative methods. In order to 
reap all the benefits from the availability of second derivatives, it is necessary to define the 
search direction other than as the minimizer of QP. The modifications necessary are similar 
to those required to Newton’s method when solving unconstrained optimization. 

In the approach adopted in [32] for quasi-Newton methods a search direction was defined 
based not on a solution of the QP subproblem but on information at a constrained station- 
ary point. Murray and Prieto show in [33] how this approach may be adapted to ensure 
convergence of the iterates to a second-order KKT point when exact derivatives are used. 
Clearly information at a stationary point alone will no longer suffice since an active-set 
method when applied to a nonconvex QP cannot be assured of finding a stationary point. 
Moreover, the procedure to construct the search direction from information at the station- 
ary point (should one exist) is no longer assured of being a descent direction for the merit 
function. 

In order to prove convergence to a second-order KKT point it is also necessary to be able 
to generate directions of negative curvature for the Hessian of the Lagrangian function. In 
this case, a conventional linesearch may no longer be adequate, as the termination criteria for 
this type of search depend on the value of the initial projected gradient, V F ( x k ) ” p k ,  which 
may be zero or arbitrarily small. In such circumstances the algorithm in [33] makes use of 
a curvilinear search, based on the model introduced in McCormick [29] and developed by 
More and Sorensen [30]. 

It is shown in [33] that the method of constructing a search direction given in [32] is 
only unsatisfactory if a direction of negative curvature is encountered in the QP active-set 
method or at the stationary point the reduced Hessian is not positive definite. In either case a 
direction of negative curvature may be computed. It is shown that it is sufficient to compute 
the direction of negative curvature only at the initial point for the QP. From the direction of 
negative curvature and the step to the stationary point (if it exists) it can be shown how a 
suitable search direction may be constructed. 

7. Industrial implementations 

Several special SQP codes have been written and applied to specific large-scale applica- 
tions. Starting in the early 80’s several codes were developed at GE and used to solve optimal 
power flow problems. Such problems may have as many as 60,000 variables and 45,000 
nonlinear constraints. The original approach taken was to use MINOS ([34] and [35]) as 
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the QP solver. Later a special QP routine was written based on the Schur-complement 
approach [25]. A special class of very large structured problems were solved by apply- 
ing Benders decomposition to the QP subproblem. The master problem was solved by the 
Schur-complement algorithm. The slave problems were LP’s. Explicit second derivatives 
were available. The user’s function and derivatives were relatively cheap to compute. The 
Harwell code MA27 was used to factor the initial KKT matrix, but a special technique was 
necessary to enable the ANALYSE phase to obtain a good ordering. The success of SQP 
methods on OPF problems is both encouraging and surprising. In this class of methods the 
problem functions and their derivatives are cheap to compute compared to solving the linear 
systems in the QP subproblems. The reason for the success of the SQP approach was the 
very small number of nonlinear iterations required. 

A sparse SQP method has been developed at Boeing (see El]) and used on trajectory 
problems. These problems are not super large, but are sometimes hard to solve. The 
algorithm is very similar to that developed at GE except the Hessian here is approximated by 
finite differences. In both cases the Hessian is sparse. Boeing has developed their own sparse 
linear equation solver. The user’s functions are very expensive to evaluate for trajectory 
problems, which is just the type of problem one expects SQP methods to perform well on 
relative to alternative approaches. 

Several codes have been developed to solve problems in process control in chemical 
engineering. These problems may be very large (100,000 variables), but are almost always 
highly constrained (the reduced Hessian is rarely larger than 50). There are almost as many 
equality constraints as there are variables. The QP subproblems are therefore highly suited 
to being solved by a null-space algorithm. This has been done in a conventional manner 
by DMC Corp. Since the number of equality constraints is nearly equal to the number of 
variables the solution of QP subproblem may be determined by solving a dense QP in a 
small number of variables (the dimension of the null space of the equality constraints) and a 
large number of inequality constraints. An algorithm along these lines has been developed 
by Shell. Such QP subproblems are usually most efficiently solved by solving the dual. 

An SQP method based on a barrier function approach has been developed by Power 
Associates to solve OPF and related problems. Recall that in such problems the user’s 
function and derivative are cheap to evaluate. Consequently, it is better to apply the barrier 
to the original nonlinear problem, which leads to equality QP subproblems. The work to 
perform the additional nonlinear iterations is more than off set by the savings in solving the 
simpler QP subproblems. 
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Abstract. We present a computationally efficient implementation of an interior point algorithm for solving large- 
scale problems arising in stochastic linear programming and robust optimization. A matrix factorization procedure 
is employed that exploits the structure of the constraint matrix, and it is implemented on parallel computers. The 
implementation is perfectly scalable. Extensive computational results are reported for a library of standard test 
problems from stochastic linear programming, and also for robust optimization formulations. The results show 
that the codes are efficient and stable for problems with thousands of scenarios. Test problems with 130 thousand 
scenarios, and a deterministic equivalent linear programming formulation with 2.6 million constraints and 18.2 
million variables, are solved successfully. 

Keywords: planning under uncertainty, parallel computing, optimization, software 

1. Introduction 

Stochastic linear programming (SLP), see e.g., Wets [20], and robust optimization (RO), 
see Mulvey et al. [12], model problems with uncertain input data. References to the 
wide range of applications are made by Wets and Mulvey et al., and in the textbook 
of Kall and Wallace [S]. The mathematical programming formulations arising in SLP 
and RO are usually of extremely large size, as they model constraints for a large num- 
ber of realizations (called scenarios) of the uncertain data. However, these programs 
are extremely sparse and structured. Considerable research efforts have gone into the 
development of efficient algorithms for solving these problems. With the advances in 
parallel computer architectures research has focused on the design of decomposition al- 
gorithms, and their implementation on parallel machines, Dantzig [5]. A non-exhaustive 
list of recent works in this direction includes (1) the parallelization of Benders decom- 
position due to Dantzig et al. [6] and Nielsen and Zenios [16], (2) the development of 
parallel decomposition algorithms based on diagonal quadratic approximations of aug- 
mented Lagrangian due to Mulvey and Ruszczyhski [ 111 and Berger et al. [ 13, and (3) the 

*Research funded in part by contract HPC-Finance of DGIII of the European Union. 
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development of parallel decomposition algorithms for stochastic programs with network 
structures [13, 151. 

The above references report encouraging computational results with large-scale problems. 
However, the parallel implementations do not scale well since decomposition algorithms 
contain a coordination phase which becomes critical for very large problems. It is also, 
usually, the case that some amount of fine-tuning is required in order to ensure convergence 
of the algorithm to a neighborhood of a solution, and this prohibits the use of the codes in 
industrial settings by non-experts. 

An alternative school of thought for solving these problems, that emerged more recently, 
seeks solution procedures using interior point algorithms. In particular, it has been observed 
that the number of iterations required by an interior point algorithm to solve SLP and RO 
is a low order polynomial in the number of scenarios. Hence, if we could develop efficient 
and stable, parallel, procedures for computing the steps of an interior point algorithm we 
will have an effective methodology for solving, routinely, these problems. The foundations 
for this strand of research were laid in the paper of Birge and Qi [2] who developed a matrix 
factorization procedure to compute the projections of an interior point algorithm for SLP. 
Birge and Holmes [3] tested alternative implementations of an interior point algorithm for 
SLP, and concluded that an implementation using the Birge-Qi procedure was stable and 
efficient. Jessup et al. [7] showed that the Birge-Qi matrix factorization procedure could 
be implemented on parallel machines in a scalable fashion. Their results, obtained on an 
Intel iPSC/860 (hypercube communication architecture) and a Connection Machine CM-5 
(fat tree communication architecture), exhibit perfect scalability. 

Some gaps remain in the above literature, and our goal in this paper is to fill these gaps. In 
doing so we develop an efficient and scalable parallel code for SLP and RO. We address three 
questions. First, does the perfect scalability of the Birge-Qi matrix factorization procedure 
translate to scalability of an interior point algorithm, based on this procedure, for solving 
SLP? Second, is the parallel implementation of the Birge-Qi procedure numerically stable 
when applied to systems arising in an interior point algorithm? Third, do the encouraging 
results with SLP carry over to the quadratic programming formulations arising in RO? As 
the rest of the paper demonstrates the answers are, in all cases, affirmative. Section 2 for- 
mulates the problem. Section 3 describes the algorithm and the parallel procedures of the 
code we developed, called ROBO, T for ROBust OpTimizer. Section 4 reports the results 
of the computational experiments using both high-performance workstations and parallel 
machines. 

2. Problem formulation 

Two-stage stochastic linear programs determine an optimal first-stage decision vector xo E 

RnO, with cost vector CO E Rno, before some random coefficients are observed, and then it 
takes an optimal recourse action after the random coefficients become known. We assume 
1 = 1,2,  . . . , N scenarios of the random coefficients: c~ E Rn', 8 E RmlXnO, Wl E RmrXnl, 

bl E Rm'. (For simplicity we assume that the probability of scenario I is incorporated in 
the cost coefficients cl). The recourse (second-stage) decision under scenario 1 is denoted 
by yl E W. With this notation the problem is written as: 
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minimize cixo + E,"=, cTy1 
subject to: 

Aoxo = bo, 
T x o +  W l y l  = 61, for1 = 1,2,  . . . ,  N ,  
~ 0 ~ 0 ,  y l > _ 0 ,  f o r 1 = 1 , 2  , . . . ,  N .  

A0 is an rno x no constraints matrix for the first-stage variables, and bo E IRmo is the vector 
of right-hand side coefficients for these constraints. This problem has n = no + E,"=, n1 
variables and rn = rno + E,"=, rnl equality constraints. A0 and Wl are assumed to have 
full row rank, with rnl 1. n1 for all 1 = 0, 1 , 2 , .  . . , N ,  and no 1. E,"=, n1. (Full row rank 
of A. is a reasonable assumption, but for many real-world problems the assumption of full 
row-rank of Wl may not hold true, at least for some 1. It is reasonable to assume that the 
concatenated matrices (q I Wl) have full row rank, but once is removed the remaining 
matrix (Wl) may not be of full row rank.) 

The objective function of SLP minimizes the cost of the first-stage decision, C ~ X O ,  plus 
the expected cost of the second-stage decisions, E,"=, C I T Y / .  RO minimizes higher-order 
moments of the objective function value, and this is one of its key distinguishing features 
over SLP. For example, a variance term may be minimized. Alternatively, for maximization 
problem, RO may use an expected utility maximization formulation [ 121. 

Denoting by c the concatenated vector cT = ( c z  I c: 1 . . I c i ) ,  and, similarly, xT = ( x l  
I y: I - - - I y:), and letting Q be a positive-definite matrix (e.g., a variance matrix) we can 
formulate the RO problem as: 

minimize cTx + xT QX 

s.t. Ax = b, 

x 0. 

X 

where bT = ( b i  I 6: - I b i ) ,  and A is the constraint matrix: 

Stochastic linear programming formulations are cast in the formulation of (1)-(3) simply 
by ignoring the quadratic term. (More general formulations of RO are given in [ 121.) 

3. The robust optimization code ROBOPT 

We develop a code for solving problem (1)-(3) based on the primal-dual path-following 
algorithm of Monteiro and Adler [ 101 and Vanderbei and Carpenter [ 191. It can be described 
as follows: 
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Algorithm 3.1 (The primal-dual path following algorithm for quadratic programs). 
Initialization: Start with a triplet (xo, y o ,  zo )  satisfying xo > 0, zo > 0,  and any po > 0. 

x are the primal variables in (1)-(3), y E IR” are the dual variables for constraints (2 ) ,  
and z E lUn are the reduced cost variables for the bound constraints (3) .  Initialize the 
iteration index v t 0. 

Iterative Step: Calculate the dual step A y  by solving: 

where@ = (Q+ZX-’)-’, $ = p+A@(a-X-’gS), Z = diag{z”}andX = diag{x”}. 
The constants p ,  a, and 4 are deJined by: 

p = b - A x ,  

a = c +  Q X  - A ~ Y  - z ,  
+pl  - X Z l ,  

where 1 E Rn is the vector of all one’s. Compute the primal step A x  from 

and the slack variable step Az from 

Az = X-’(gS - Z A x ) .  (6) 

Update : 

x”” = X ”  + U A X ,  
yv+ l  - - y”  + aAy,  

z”” = Z” + ~ A z ,  

where 0 < (I! 5 1 is the step length, chosen so that the primal and reduced cost variables 
remain positive. It is computed as (I! = 6 min{&p, Go}, where 0 < 6 < 1, and 

6 p  = max{a, I x,, + a, ;Ax ,  2 0 } ,  
f f j > O  ’ 

f f j > O  
1 max{a,j 1 Z, j  + ajhzj  2 0). 

A typical value for 6 is 0.9995. 
Reduce p” to ,!L”+’, update v t v + 1, and repeat the iterative step. 
The algorithm terminates when the gap between the primal and the dual objective 

function values is smaller than some acceptable tolerance. (In our numerical experi- 
ments the algorithm terminates when the primal and dual objective functions agree to, 
at least, 8 decimal points.) 
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The computationally expensive part of this algorithm is the solution of the system of 
eqn. (4) to calculate the dual step Ay. In the next section we describe the numerical 
procedures used for solving this system. 

3.1. Solving for the dual step Ay 

The procedure for solving eqn. (4) for the dual step Ay of the quadratic programming 
RO model is a straightforward extension of the procedure developed by Birge and Qi for 
the solution of SLP. (We assume that Q is a diagonal matrix. This assumption simplifies 
the presentation of the procedure and allows us to exploit the problem's structure. RO 
formulations with non-diagonal matrices can be reformulated by computing the factorization 
of Q = L T L ,  defining I = L x  and rewriting x T Q x  = x T L T L x  = XTX.) It is based on the 
following result: 

Theorem 3.1. Let M = A O A T ,  where 0 is diagonal, and S = diag{So, SI,  . . . , S N }  
where Si = W,Ol W: E IRm'XmI, 1 = 1, . . . , N ,  So = I is an mo x mo identity matrix, and 
01 E lUniXni is the (diagonal) submatrix of 0 corresponding to the lth block. Also, let 

Tl 0 
. .  . .  

, v =  

IfAo and Wi, 1 = I ,  . . . N ,  have full row rank then M and G2 = -AoGF'  A: are invertible, 
and 

Proof Follows along the same lines as the proof of Birge and Qi for linear programs, 
0 under the assumption that Q is invertible. 

It is easy to verify, using eqn. (1  l ) ,  that the solution of the linear system ( A O A T ) A y  = @ 
is given by Ay = p - r ,  where p solves Sp = @, and r is obtained from the system 

Gq = V T p ,  and Sr = U q .  (12) 

The vector p can be computed component-wise by solving Sip1 = @i, for 1 = 1 ,  . . . , N .  
In order to solve for q we exploit the block structure of G and write: 

= [ AO:] [ '611 = [ !] , where [!?:I = V T p  ---A0 
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Hence, we get 

Once q is known, r can be computed component-wise by solving Sir1 = c q l  . The procedure 
for calculating A y  is summarized below. (We use (A) i .  and (A).i  to denote the ith row and 
column of a matrix A respectively.) 

Procedure 3.1 (Matrix factorization for dual step calculation). 

Step 1: Solve Sp = +. 
Step2: (Solve G q  = VTp).  

a. Solve Sl(U,)i = ( q ) . i ,  for (Ul)i, i = 1 ,  . . . , no, thus computing the columns of 

b. Multiply T,T(~l);, for i = 1, . . . , no, to form TITS:’ 6, for all 1 = 1, . . . , N .  

c. Solve G1u = f i 1  for U ,  andset U = $2 + Aou, (cf eqn. (14)). 
d. Form G2 by solving (GI)wi = ( A i ) . i  for wi, for i = 1 , .  . . , mo, and setting 

e. Solve G2q2 = --U for q2, and solve Glql = j l  - Alq2 for q1 (cf eqn. (15)).  
Step 3: (Solve Sr  = Uq) .  Set ro = Aoq1 + q2, and, for 1 = 1,  . . . , N ,  solve Slrl = Tlql, 

for r-1. 

Step4: (Form Ay) .  Set A y  = p - r.  

the matrix S,-’ &, for all 1 = 1, . . . , N .  

Form G1 (cJ: eqn. (10)). Compute f i l ,  j 2 .  

G2 = -Ao[ww2,  - * * 9 Wrn,,]. 

3.2. Parallel implementation of ROBO, T 

The implementation of the interior code in ROBOPT uses the parallel implementation of 
Procedure 3.1, developed by Jessup et al. [7 ] ,  to compute the dual step. Computations of 
the various constants in Algorithm 3.1, and the calculation of A x ,  are also done in parallel 
as explained below. 

The parallel solution begins with the following data distribution. Processor 1 holds the 
data corresponding to the 1 th scenario for second stage decisions c ,  Wl , 01, pl and 01. Each 
processor also holds acopy of the data for the first stage parameters Ao, 0 0 ,  PO, 00. With this 
data distribution calculations that involve the scenario matrices and variables are computed 
by multiple processors in parallel, with the 1 th processor performing the calculations for 
the lth scenario. (We assume for simplicity that there are as many processors as there are 
scenarios.) Calculations that involve the first stage variables and matrices are computed, 
redundantly, on multiple processors. By doing so each processor has available, locally, the 
information on the first-stage decisions and the need to communicate this information from 
some “master” processor is avoided. We describe now the parallel implementation of all 
s t e p  of the algorithm. First, the right-hand side of eqn. (4) is computed by the following 
procedure, called Formrhs. 
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Procedure 3.2 (Parallel formrhs). 
We start with the vector 6 = o - X-' +. This vector is easily computed, componentwise, 

for every 61, 1 = 0, 1 ,  . . . , N ,  using parallel vector multiplications to postmultiply the 
diagonal matrix X-' by +. 
1. (Form A@&). On all processors form AoOo30. On processor 1 = 1 ,  . . . , N ,  form 

2. (Form p 4- A@&). On all processors form po i- AO@@O. On processor 1 = 1 ,  . . . , N ,  
7@0&0 + W[OlGl. 

form pl + TOO80 + W1@p+. 

Once the right-hand-side of (4) has been computed we can solve the system using the 
parallel matrix factorization procedure developed by Jessup et al. [7 ] .  This procedure, called 
Finddy, uses a global reduction function that takes as input vectors (or matrices) distributed 
in every processor, sums them, and leaves a single vector (or matrix) sum at every node, 
(For optimal implementations of this function on hypercube networks and fat trees, and 
additional references, see [7 ] ) .  It can be described as follows: 

Procedure 3.3 (Parallel finddy). 
1 .  (In parallel, solve S p  = b). On all processors solve Sop0 = bo. On processor 1 = 

1 ,  . . , , N ,  solve S1pl = bl. 
2. (Solve Gq = V T p ) .  

(a) On processor 1 = 1 ,  . . . , N ,  solve Sl(ul)i = ( & ) . j ,  i = 1 ,  . . . , no. 
(b) On processor 1 = 1 ,  . . . , N ,  multiply qT(U,)i. Cull global reduction to form 

(Gl)i  = ( 0 0 ) i i  + C,"=, qT(U/) i  + (A iA0) i .  Use global reduction to form b1 and 
i j 2  - 

(c) On all processors solve G1 U = $1 for U and set v = 6 2  + Aou. 
(d) On all processors form G2 by solving (G1)wj = ( A i ) . i  for wi,  for i = 1 ,  . . . , mo 

(e) On all processors solve G2q2 = -U for q2, and solve Glql = 

1 = 1 ,  . . . , N solve S1rl = Tql for rl. 

set Ay1 = pl - rI for 1 = 1 ,  . . . , N .  

and setting G2 = -Ao[wl w2, . . . , wmJ. 
- A:q2 for 41. 

3. (In parallel solve Sr = Uq) .  On all processors set ro = Aoq1 4- q2. On processor 

4. (In parallelform Ay).  On allprocessorsset Ay0 = po -ro. On processor 1 = 1 ,  . . . , N 

Finally the parallel procedure Finddx below constructs the primal step direction vector 
A x  defined by Eq. (5). 

Procedure 3.4 (Parallel finddx). 
1 .  On all processors form A: Ayo. On processor 1 = 1 ,  . . . , N ,  form TT Ayl. Call global 

reduction to form A20 = A: Ay0 + E,"=, T ~ A Y ~ .  
2. On processor 1 = 1 ,  . . . , N ,  form Ail  = W: Ay!. 
3. On all processors form AXO = --Oo(& - A&). On processor 1 = 1 ,  . . . , N ,  form 

Ax1 = -@i(&i - Ail).  

The step on the reduced cost variables, Az,  is finally trivially computed using parallel 
vector multiplications, since all matrices involved are diagonal, and the block corresponding 
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to the lth subvector of z resides at the lth processor. The lth processors can now take a step 
in the X I ,  yl, ZI variables, as well as the X O ,  yo, zo variables, since all required quantities 
are available locally. 

4. Computational results 

We now report results from the computational experiments carried out with ROBO, T with 
a suite of large-scale test problems. The objective of our experimental design is to address 
the questions raised at the introduction of this paper. Namely, to establish that the developed 
matrix factorization procedures are stable when used to solve large scale SLP and RO, that 
the scalability of these procedures, when implemented on parallel machines, translates to 
scalability of an interior point algorithm, and that very large scale problems can be solved 
efficiently with ROBO, T .  Comparisons with a state-of-the-art code, LOQO of Vanderbei 
[18], illustrate that ROBOPT is competitive even for small to medium size problems, on 
serial computers. 

The results with the parallel code were obtained on a Connection Machine CM-5e [9]. 
Serial computing experiments were carried out on an IBM RS6000/550 workstation. Both 
codes, LOQO and ROBO, T are written in C. ROBO, T uses the sparse, supernodal Cholesky 
factorization and solver routines SUPFCT and SUPSLV of Ng and Peyton [ 141 to solve the 
scenario systems, and LAPACK for the dense matrix systems of the first-stage problem. 
The communications in the parallel code are implemented via the usage of standard routines 
from the CMSSL library of the Connection Machine. The code is compiled with the gcc 
compiler with -03 flag for maximum optimization. 

4.1. Test problems 

We solved the five sets of problems-sc205, scagr7, scfxml, scrs8 and scsd8-from the 
library of SLP test problems described by Birge and Holmes [3]. We also experimented with 
the SLP formulation of a telecommunications problems, sen, described in Sen et al. [17]. 
For each set we generated several problems, with increasing number of scenarios. Their 
characteristics are described in Table 1 .  For two of the test sets, scsd8 and sen, we generated 
problems with thousands of scenarios, as described in Table 2. To the best of our knowledge 
these are the largest SLP problems solved to date. 

RO models were generated by adding a randomly generated diagonal quadratic matrix 
to the objective function of the SLP test problems. The condition number of this matrix is 
user specified, and is reported with the computational results below. The algorithm would 
terminate when the primal and dual objective values would agree in, at least, 8 decimal 
points. 

4.2. Serial computations: comparing ROBO, T with LOQO 

The Birge-Qi matrix factorization procedure is not the most efficient way for computing 
the interior point steps for small-scale problems. In order to establish the penalty paid by 
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Tuble 1 .  Characteristics of the stochastic linear programming test problems. 

Problem Scenarios Constraints Variables 

sc205.4 

sc205.8 

sc205.16 

sc205.32 

sc205.64 

scagr7.4 

scagr7.8 

scagr7.16 

scagr7.32 

scagr7.64 

scfxml.4 

scfxm 1.8 

scfxml. 16 

scfxm 1.32 

scfxml.64 

scrs8.4 

scrs8.8 

scrs8.16 

scrs8.32 

scrs8.64 

scsd8.4 

scsd8.8 

scsd8.16 

scsd8.32 

scsd8.64 

sen.4 

sen.8 

Sen. 16 

sen.32 

sen.64 

4 

8 

16 

32 

64 

4 

8 

16 

32 

64 

4 

8 

16 

32 

64 

4 

8 

16 

32 

64 

4 

8 

16 

32 

64 

4 

8 

16 

32 

64 

101 

I89 

365 

717 

I ,42 1 

167 

319 

623 

1,23 1 

2,447 

684 

1,276 

2,460 

4,828 

9,564 

140 

252 

476 

924 

1,820 

90 

170 

330 

650 

1,290 

70 1 

1,40 1 

2,801 

5,601 

11,201 

102 

190 

366 

718 

1,422 

180 

340 

660 

1,300 

2,580 

1,014 

1,914 

3,714 

7,314 

14,514 

189 

34 1 

645 

1,253 

2,460 

630 

1,190 

2,3 10 

4,550 

9,030 

2,9 13 

5,737 

11,385 

22,68 1 

45,273 

ROBOPT viz a viz a state-of-the-art serial code, LOQO, we solved several instances of 
scsd8 and sen with increasing number of scenarios. Results are summarized in figures 1. 
For problems such as sen, which has a single first-stage constraint, ROBO, T is faster than 
LOQO even for problems with very few scenarios. For problems where the first-stage 
constraint matrix is large, compared to the second-stage matrices, ROBOPT does not gain 
an advantage unless we solve problems with large number of scenarios. 
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Tuble 2. Characteristics of very large-scale test problems. 

Problem Scenarios Constraints Variables 
~~ 

scsd8.128 128 2,570 17,990 

scsd8.256 256 5,130 35,910 

scsd8.512 5 12 10,250 7 1,750 

scsd8.1024 1,024 20,490 143,360 

scsd8.2048 2,048 40,970 286,790 

scsd8.130 172 130,172 2,603,440 1 8,224,080 

sen. 128 128 22,40 1 90,457 

sen.256 256 44,801 180,825 

sen.5 12 5 12 89,60 1 361,561 

sen. 16384 16,384 2,867,201 13,025,369 

Figure I. 
with increasing number of scenarios. 

Comparing ROBO, T with LOQO for the scsd8 (figure on left) and sen (figure on right) test problems 

4.3. Parallel computations: relative speedup and scalability 

To establish the suitability of the code for parallel computations we solve the scsd8 and sen 
test problems on a Connection Machine CM-5, using up to 64 processors. Figure 2 shows 
the relative speedup (i.e., ratio of solution time with the serial implementation of ROBOPT 
to the solution time with its parallel implementation) as the number of scenarios increases 
and for different number of processors. 

Superlinear speedup is achieved with the scsd8 problem. That is, the parallel code on p 
processors solves the problem more than p times faster than the same code implemented 
serially. This is due to the effect of cache memory, which can hold more than one block 
(i.e., W!, matrices) of the scsd8 problem. When only a single processor is available not 
all blocks will fit in cache memory, and the solution time is affected by the transfer of 
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Figure 2. 
32 and 64 processors, for the solution of the scsd8 (figure on left) and sen (figure on right) test problems. 

Relative speedup of parallel ROBOPT, implemented on the Connection Machine CM-5 with p = 4, 

data in and out of the cache. In the parallel implementation each processor holds in cache 
memory all the blocks operated upon by that processor, and the overhead of caching is 
avoided. No caching effect is observed for the sen test problem, since each block of this 
problem is large and even a single block cannot fit in cache memory. Hence, data need to be 
transferred into and out of cache memory in both the serial and the parallel implementation. 
The speedup achieved for the sen problem is solely due to the efficient exploitation of the 
multiple processors by the parallel procedures Formrhs, Finddy and Finddx. The efficiency 
of parallel ROB0,T for the solution of sen is 98-99%. 

Similar efficiency has been observed for all test problems. The results obtained with the 
parallel solution of RO problems are identical to those reported here for the solution of SLPs. 

We also conducted experiments to establish the scalability of the parallel code. Scalability 
is the ability of a parallel code to maintain a constant level of efficiency as the number of 
processors increases, by solving problems whose sizes increase in proportion to the number 
of processors. See, e.g., Censor and Zenios [4, Chapter I]. This measure is important in 
establishing whether a massively parallel machine can be used to solve extremely large 
problems, or if the benefits from parallelism are restricted to machines with few processors. 
We solved problems scsd8 and sen, with 4, 32 and 64 scenarios, using an equal number 
of processors. Results are summarized in Table 3. We observe that the solution time, per 
interior point iteration, remains virtually constant as we increase the number of processors 
to match the number of scenarios. Parallel ROBOPT is perfectly scalable. 

4.4. Benchmark results with parallel ROBO,, T 

To benchmark ROBOPT, and establish the joint effects of the matrix factorization proce- 
dures and their parallel implementation, we solved the suite of SLP test problems on the 
Connection Machine CM-5. For the smaller test problems we use as many processors as 
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0.0 

Tuble 3. Testing the scalability of the parallel implementation of ROBOPT. The solution time, per iteration, 
remains virtually constant when the number of processors increases in proportion to the number of scenarios. All 
times in CM seconds. 

0 100 MO 300 a0 XH) 
- a 

150.0 

100.0 

f 
50.0 

0.0 

Solution Time 
per itn. Problem Processors Iterations time 

scsd8.4 4 9 1.19 .132 

scsd8.32 32 9 1.22 .I35 
scsd8.64 64 9 1.22 .135 

sen.4 4 18 13.6 .756 

sen.32 32 19 14.5 3 6 3  

sen.64 64 21 16.1 .767 

c 

.- 
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Figure 3. Speedup of parallel ROBO, T compared to LOQO for the solution of the scsd8 and sen test problems. 

the number of scenarios. Results are summarized in Table 4, where the parallel implemen- 
tation of ROBO, T is compared with LOQO executing on a single processor of the CM-5. 
ROBO, T outperforms LOQO, as the number of scenarios becomes large. The exact number 
of scenarios for which it becomes preferable to use ROBOPT over LOQO depends on the 
structure of the blocks of the test problem. Problems with small values of no, rno compared 
to nl , rnl favor ROBO, T .  This is the case with the sen test problem. Problems with large 
values of no, rno compared to nl, rnl favor LOQO unless the number of blocks is large. 

The relative performance of parallel ROBO, T over LOQO improves for larger problems. 
Figure 3 shows the speedup of ROBO, T over LOQO on machines with up to 64 processors, 
and for an increasing number of scenarios. The fact that the speedups exceed the number 
of the available processors provides additional support to the claim of Section 4.2 that, even 
when implemented serially, ROBO, T is more efficient than LOQO for large scale problems. 



A SCALABLE PARALLEL INTERIOR POINT ALGORITHM 155 

Tuble 4. Benchmark results with the parallel implementation of ROBOPT on the Connection Machine 
CM-5, and comparisons with LOQO. LOQO executes on a single processor of the CM-5; ROBOPT uses as 
many processors as there are scenarios. Solution times in seconds. NA: not available at the required level of 
accuracy due to numerical errors. 

~~ 

LOQO PARALLEL ROBO, T 

Problems Iterations Time Iterations Time 

sc205.4 

sc205.8 

sc205. I6 

sc205.32 

sc205.64 

scagr7.4 

scagr7.8 

scagr7.16 

scagr7.32 

scagr7.64 

scfxm 1.4 

scfxml.8 

scfxml.16 

scfxml.32 

scfxm 1.64 

scrs8.4 

scrs8.8 

scrs8.16 

scrs8.32 

scrs8.64 

scsd8.4 

scsd8.8 

scsd8. I6 

scsd 8.32 

scsd8.64 

sen.4 

sen.8 

sen. 16 

sen.32 

sen.64 

12 

14 

16 

17 

18 

14 

15 

16 

18 

22 

21 

25 

30 

NA 

NA 

13 

14 

15 
17 

18 

9 

9 

9 

9 

9 

12 

14 

16 

17 

19 

0.398 

0.605 

1.389 

1.788 

3.54 

0.59 

1.03 

1.67 

3.61 

8.81 

3.79 

8.92 

23.12 

NA 

NA 
0.57 

0.84 

1.38 

2.70 

5.69 

0.73 

1.45 

3.37 

5.92 

12.8 

7.30 

37.3 1 
188.1 

837.2 

1702.1 

10 

12 

15 
19 

21 

16 

15 

16 

18 

19 

20 

22 

28 

32 

41 

17 

17 

17 

19 

19 

9 

9 

9 

9 

9 

18 

19 

19 

20 

21 

1.18 

1.45 

2.16 

2.22 

2.39 

2.33 

2.44 

3.07 

2.66 

2.86 

80.2 1 

106.1 

180.6 

113.0 

165.3 

13.10 

13.15 

13.56 

14.50 

14.50 

5.31 

5.54 

6.03 

5.45 

5.42 

13.0 

25.1 

48.5 

14.5 

16.1 

4.5. Parallel computations: Stability of ROBO, T for robust optimization 

In the testing of matrix factorization procedures conducted by Birge and Holmes [3] it 
was demonstrated that the Birge-Qi procedure is more stable and accurate than alternative 
methods based on problem reformulation or Schur complements. The experimental results 
summarized in Table 5 illustrate that the procedure remains stable and accurate when 
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Tuble 5. Stability and accuracy of parallel ROBO, T when solving ill-conditioned robust optimization problems. 
For each test problem we report the number of interior point iterations, and (in parenthesis) the number of decimal 
points of accuracy of the primal and dual objective values. 

Condition number of Q matrix 

1 10 100 1000 
No. of 
procs. 

Problem 

scsd8.4 

scsd8.32 

scsd8.64 

scsd8.128 

scsd8.256 

scsd8.5 12 

scsd8.1024 

scsd8.2048 

sen.4 

sen.32 

sen.64 

Sen. 128 

sen.256 

sen.5 12 

Sen. 16384 

4 

32 

64 

64 

64 

64 

64 

64 

4 

32 

64 

64 

64 

64 

64 

18 (8) 

21 (9) 

21 (8) 

22 (9) 

24 (11) 

24 (8) 

29 (12) 

29 (12) 

25 (11) 

27 (14) 

28 (14) 

30 (14) 

27 (15) 

29 (15) 

37 (15) 

20 (10) 

25 (10) 

25 (10) 

27 (10) 

28 (12) 

25 (9) 

29 (11) 

32 (13) 

29 (13) 

23 (14) 

32 (14) 

33 (15) 

32 (15) 

34 (15) 

49 (14) 

18 (10) 

23 (11) 

25 (11) 

27 (11) 

29 (13) 

31 (12) 

31 (11) 

36 (15) 

28 (13) 

24 (14) 

33 (15) 

34 (15) 

32 (15) 

34 (15) 

49 (15) 

19 (1 1) 

24(11) 

26 (13) 

27 (13) 

30 (13) 

32 (13) 

35 (15) 

37 (15) 

23 (13) 

29 (15) 

33 (15) 

35 (15) 

33 (15) 

34 (15) 

49 (15) 

implemented in parallel and for RO problems as well. Stability and accuracy is maintained 
even for problems with thousands of scenarios, and for ill-conditioned Q matrices. 

4.6. Solving very large scale test problems 

As a last experiment we use the parallel implementation of ROBO, T to solve the very large 
scale problems described in Table 2. Results are summarized in Table 6. We observe that 
the interior point algorithm is capable of solving problems with millions of variables and 
constraints, to an accuracy of more than 8 decimal points. Solution times are, for most 
problems, less than one hour of computer time. The folklore that interior point algorithms 
take a small number of iterations holds true even with the multi-million variable problems 
solved here. 

5. Conclusions 

We have discussed the efficient and stable parallel implementation of a primal-dual path- 
following algorithm for structured linear and nonlinear programs arising when planning 
under uncertainty. The developed code, ROBO, T ,  is competitive with state-of-the-art opti- 
mization software, when applied to small scale problems. It has superior performance 
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Tuble 6. 
Connection Machine CM-5e with 64 processors.) 

Solving very large-scale stochastic linear programs using ROBOPT. (Solution times in seconds on a 

Problem Itns. Solution time 

scsd8.128 

scsd8.256 

scsd8.5 12 

scsd8.1024 

scsd8.2048 

scsd8.13 1072 

sen.64 

Sen. 128 

sen.256 

sen.5 12 

Sen. 16384 

10 

10 

11 

12 

14 

19 

21 

23 

31 

31 

49 

1.88 

2.39 

3.79 

6.73 

13.82 

1066.1 

16.1 

30.8 

78.3 

153.5 

7638.3 

for large-scale problems, and it also parallelizes extremely well and is perfectly scal- 
able. Work is under way for the extension of the ideas of this paper to the solution of 
multi-stage planning problems. Preliminary results are equally encouraging and will be 
reported elsewhere. 
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